IMAGE EVALUATION TEST TARGET (MT-3)

CIHM/ICMH Microfiche Series.

回

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La re liure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence
Quality of print varies/
Qualité inégaie de l'impressionIncludes supplementary material/
Comprend du matériel supplémentaire
Only edition available/
Seule édition disponible
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/
Les pages totalement ou partiellement obscurcies par un feuillet d'errata, uire pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Original beginnit the lest sion, or other or first pag sion, an or illust

The last shall co TINUED whichel

Maps, p differen entirely beginnir right an required method

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

Library of the Public
Archives of Canada

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:

La bibliothèque des Archives publiques du Canada

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la derniere page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres examplaires originaux sont filmés en commençant par la premiere page qui comporte une empreinte d'impression ou d'illustration et en terminant par la derniére page qui comparte une telle empreinte.

Un des symboles suivants apparaîtra sur la derniére image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction differents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite. at do haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

REMARK』

U.Y THF:

GEOLOGY AND MINERAlogY

OF
"NOVA SCO'TIA.
\qquad

- By abrailam gesner, Esq., Surgeon.

CIJE EARTII NOT ONI.Y CONTAINS WITHIN IIER LOSOM

 TU I: MISTAKEN HY HISIOKY, WIITTRN : NHARACTERS NOT

Halifax, Novascotia.
\qquad

PRINTED BY GOSSIP AND COADE, TIMES OFFICE, halifax, Nova scotia.
1836.

＇1＇＂

1．ORD YLSCOLN＇V V．LISNTA，

A．M．，I．R．S．，心と．太r．太e．

My Loris，

 enquiries into her licological stineture，hare aided the Cause of Scicnce，and stimulated others in more humble stations，to enter upon pursuits of the hishest importance （1）the Country ；I beg leare to present to Vour Lordship， the follouing Remarks on the Gicology and ．Dincialogy of the Province．

And although they are but limited in regard to the interesting subjects they cmbrace，it is sincercly hoped that they may be acceptablo to one，who delights to cullivate studies of the most usfful and important clearacter．

I have much reason to hrsitate in laying my humble labours before an Intividual，whese superior talcnts and knowledge，will recudily discouce litcir imperjections；but
all my anxiely on this account is dispelled, when I eonsitede. the kindurss with which permission urus given, to tralicate them to Vour Loordship.

Should this I'ork meet F'our Loordship's approbution, it will then be sufficienlly recommended, aul I trust prove usefint to the Public.

> There the houor to be
> My Lavrl,
> Your Lorelship's Most Obedient, Mumble Serrant,
> ABRALIAM GESNER.

Parraborounth, Noma Scotia, 1836.

PREFACE.

- n-

IN writine a Profice, it has becone customary for Ablins:, to derdare the several difierent ohjects, hat induced them to give thein knowhere to the Public. Some of them have howerer, made many apolegies for semding their ideas abrom, and a fin have been impelled omward in their Literary and Scientife pursuits, by the solicitations of their contemporaries. lathe present instance, a limited momber of the Anthor's friends, have condeavomed to dissuade him from his olyeet ; while many have been pleased to lend their cheering influence to his support. 'To the former it is hoperl, wone of the imperfections of the following pages will be ascribed; and mong all, the credit due to the few merits they contain, should be equally divided.

Whder the patronage of Sir Colin Campeeth, Who in the Administration of the Govermment, and in every act of domestic kindness, has promoted the welfare of the Combty, even the highest scientife and literary atainments would receive additional lustre. How much more then, will the chanacter of the following lamble work be elevated, mater the anspices of llis Vacellency, from
whom the Author hats had the honor to receive mmerons acts of personal kindness, and every encomagement amidst his labours.

Abounding in numerons and important minerals, that are not only indispensably necessary to supply the wants of mankint, but also those which contribute to his minor necessities, Nova Scotia will maintain a character univalled by any comatry of the same cxtent. So abourdant are mineral sabstances in this Province, and comparatively so little is known of their nomber and extent, that in the advanced state of science and useful knowledge, any developement of their sources and modes of application, cannot be considered usciess.

While the cultivation of the soil, the mechanical arts, and navigation, solely depend upon the use of metals, the discovery and manufacture of ores, will ever be ohjects of the greatest national importance ; and the prosperity of a country must deperd upon the facilities afforded for obtaining those materials, without which man would be miserable indeed. To convince ourselves of these facts, let us refer to savage nations. Eren these sharje the harder stones for various purposes. To them small pieces of iron have been invaluable, and a knowledge of minerals is among the principal of those improvements, which have elevated such mations from a state of barbarism, to one of a moral and dignified character.

Throughout that extensive chain of civilization, from
the highest to the lowest grades of soricy, mineral and metallic substanes loold an important station, whether they are employed in the plough of the famer, the hook of the fisherman, the anchor that holls the ship, the cannon of the battery, or sparkle in the crown of the sotereign.

In the department of Mincralogy, Mohs, Mansmann, Jameson, and Cleveland, have produced regular systems, which supported by the improved state of ehemistry, and the discoveries of Sir Inmphrey Davy, Brande, Vampuelin, Klaproth, and other distinguished ehemists, have made mankind acquainted with the elementary substances of almost all mineral compounds.

Whe !abours of Come Sternburg, Professor Lindley, and Brongniart, have opened a new source of enquiry into antedituvian botany ; while the discoveries of the celebrated Doctor Buckland and Baron Cuvier, have exhibited mumerous classes of enormous animals, now inhmed in the earth. The relative ages of the different classes of rocks in England, have been clearly demonstrated in the admirable work of Conybeare and Philips, from which Dr. Ure, of Glasgow, has drawn just conchasions in reference to the former condition of the globe, and the deluge recorded by Mioses. But it was the task of Mr. Lyell, to collect the srattered fragments of Geological Seience, and erect a beacon to guide the wadering student in the path of philosophical truth, and to solve those
diflimulues thenereieal writers had theow in the natmally obscure way.

The Author of the following Rematks has been desirons to supply some of the testimony afforled among the Rocks of Nova Scotia, which support the opinions, and correspond with the discoveries of distinguished Naturalists in Europe. But more especially has his object been, to arouse the attention of the inhabitants of the Province, to a duc estimation of the advantages they possess, and the resources l'rovidence las placed within their reach.

That the Farmer may obtain a just knowledge of the soil he cultivates ; the Legislator be made arequinted with the sources of public wealth and economy ; that the Natural Philosopher may be assisted in his purstits ; and lastly, that the Theologian may draw from the earth the surest testimony of "Holy Writ," are certainly objects worthy of far better talents than the Author can ever possess. But if his humble labours shall be the means of leading those who are better qualified, into similar but more extensive enquiries, his object will be gained. With such motives he fears not an honest criticism ; for any attempt to correct errors, which may have stolen their way upon his pages, will lead to useful examinations, and further the design of his work

The thick forests that occupy extensive portions of the Province, and cover her momanons ranges of land,
added to other difliculties, which to the Geologist in new comtries are insurmommble, have prevented the Anthor from pursuing his enquities with that particular researeh the subjeet requires. Ite has nevertheless examined each section of the country at such places as are accessible, and endeavoured to obtain the most accurate information by actual inspection. He is aware that the appearance of many of the less important localities is changing, by the clearing of the earth's surface, and the destruction constantly advancing among the rocks. Those changes however, only affect the outwarl garb, while the rocks and minerals will be found at or near the places described.

In a book intended for the pertsal of the general reader, it has been considered proper to afins a short Introduction to the studies of Geology and Mineralogy. Some of the matter contained in the latter has been derived from Professor Cleveland's work. 'The Introduction to Geology will be found to agree with the hest modern systems extan. Those who would obtain a more extensive knowledge of these Sciences, must consult more elaborate weatises.

The Author has received some information from the remarks of Mesers. Jackson and Alger, of Boston, and from Mr. Halibmon's excellent History of Nora Seotia. For the corsed and beaniful hrawing of the Village at Pamblge Island. he is indehted to Miss Jefery. He also expresse his sincere thank to George R. Vomg, Esq.,
and all those Gentlemen who have kindly become his Agents throughout the Provinces.

It is truly pleasing to observe, that a taste for scientific pursuits is fust gaining ground in Nova Scotia. Already several gentlemen have embarked in the study of Natural History, and it is hoped that their mited efforts will not only disclose those interesting facts which serve as suljects of speculation, but such as will load to the practical improvement of the country.

Is it not singular, that a Province containing coal, iron, copper, lead, and all those inferior minerals used in manufactories, should import her metals across the Atlantic ? Why should granite, marble, and even limestone, be conveyed to those very shores where they abound? Is it not wonderful that a vast amount of sluggish capital should lie dormant in the hands of its possessors, when so many channels of enterprise might be opened, and the surplus earnings of the country be retained among its inhabitants? These are questions which require answers from Legislators, while science is opening the way to those inprovements, which can alone enrich the Colony, and render its inhabitants more industrious and happy.

In the description of minerals, repetitions have been avoided as far as possible. When the same mincral occurs at several different places, the most particular description has been given of it, and the locality where it occurs under its most perfect forms ; and the best speci-
mens have been selected, when giving the details of their properties. A deseription of the less important associations has been omitted altogether ; for so mmeroms are the Mineralogical and Fossil substances in the comntry, that a fill description of each variety, would fill a volume of no ordinary dimensions. Nor does the Author give more than a brief outline of these important branches of Natural History, so far as they are comected with Nora Scotia. So momerous are the objects of these departments, and so wide the field of their diseovery, not only would it be impossible to give an account of them in a pocket volume, but require years of laborious investigation to colleet, and arrange them.

The mineral springs are included in the description of the rocks where they occur. The discovery of the bones of the mammalia, in Cape Breton, and the tecth of animals lelonging to that class, and bones of fish in Nova Scotia Proper, awaken in the mind new sensations. If the study of Geology be yet in its infancy in other countries, it must be almost unborn in this Province, where facts of the greatest interest to the Natural Philosopher, are almost daily developing the condition of the antediluvian world, and placing the comitry upon a footing highly interesting and importint.

The following work has been divided into four parts, corresponding with fom natural Geological divisions the Comntry. Each part is subdivided and distinguished
by having the name of a Township or particular locality, placed before it, and to which the Index refers. Therefore, an aceount of any particular phace nay be referred to without delay, and the eye is relieved from time to time, by the different heads muder which the subjects are arranged.

The Author has endeavoured to avoid any appearance of error, but is sensible nevertheless, that the Work may contain some, in regard to the distances from one place to another. In numerous instances those distances have never been accurately measured, and he has thercfore been guided by the opinion of respectable inhabitants.

It was not intended, when the Prospectus of this Work was written, to give a Geological Map of the Province, or any pictorial illustrations of its scenery; but from the very general support the book has received, a Map has been prepared, at a considerable additional expense, which will enhance its utility. The increased price of the Volume, in consequence, will be no objeet, compared with the advantages to be received by this general view of the rocks and most important minerals of the country.

He might plead as an apology for some of the imsperfections of the Work, that it has not been prepared with leisure and retirement. On the contrary, amidst the arduous duties of a laborious profession, and under the annoyance oi yerpetual interruption, most of the follow-
ing pages have been written ; or during the silent hours of midnight, when the labour but not the fatigne of the day, had departed.

Some years have elapsed since be commenced an encuiry into the subjects treated of ; but not supposing that they would ever be made public, the labour of arranging a mass of detached notes, taken under a variety of circumstances, has greatly increased the task.

He knows however, the futility of these apologies, and although he feels the pecuniary loss he has sustained, by indulging in his favourite pursuits, he will be amply rewarded if his labours shall in any degree promote the sturly of Natural History in the Province, or prove useful to his countrymen.

ABRAHAM GESNER.

Parrsborough, July 1836.

IN'IRODUC'IION

TO T11E

STUDY OF GEOLOGY.

-

GEOLOGY is that Science which investigates the nature and properties of the various substances which compose the earth. It examines their laws, combinations, and relations, the changes they have undergone at different periods, and finally establishes a correct theory of the formation of all the materials of which the globe is constructed.

Many of the ancient philosophers doubtless, never extended their views upon this subject, beyond the general and limited account given by Moses, whose record of the creation of the world is supported by the voice of inspiration, and the strongest testimony that can be adduced to support facts believed by all christian naions. It was not necessary for the author of the Pentateuch, to record any details of the formation of the carth, but to state such important facts as would establish the faith of every Cluistian believer. And no reasonable mind can cousider a more minute enquiry into this department of Natural History, irreverent to the Sacred Scriptures, as all such investigations must be conducted by the human mind, which with all we belold in creation, was formed by Him, "who hath made the earth by His power, and established the world by his nisdum."

Wibl the Geological opinions of the ancient philosophers, we are macquainted ; and those which history has recorded must be considered extremely whimsical, and blended with much error and superstition. It was not until the days of Werner, Hutton, and others, that anything like a tangible theory was adopted. Since that period, modern discoveries have placed this Science upon reasonable grounds at least, although even now the reader will perhaps be startled at some conclusions which the modern Geologist will endearour to sustain, and some of those which recent discoveries have proved to be correct.

GEOLOGICAL THEORIES.

It is absolutely neecssary, that before any substance can be crystalized, that it first be made fluid, or suspended in some solvent; and it is generally admitted, that the agent employed in the formation of minerals, must have been either aqucous or igneous. For without the action of one of those agents, it would be impossible to account for the phenomena the mineral kingdom presents. Two systems of Geology have therefore been advanced and supported, and the disciples of each have done much good to the Science, by the facts they have produced to establish their farourite opinions. Those who helieve water was the solvent employed, are called Neptumians, and those who give the preference to caloric, as the agent referred to, are denominated Vulcanists, or they are called Wernerians and Huttonians, from the theories Werner and Hutton supported.

THEORY OF BUFFON.

This author endeavours to prove, that the earth is the ruins of a former world. He says, "The surface of
this immense Globe exhibits to our observation, heights, depths, plains, seas, marshes, rivers, caverns, gulphs, voleanoes; and on a "sory view of these ohjects, we can discover in their a. sition, neither order nor regnlarity. If we penetrate into the bowels of the carth, we find metals, minerals, stone, bitmmen, sands, earths, waters, and matter of every kind, placed as it were by mere accident, and without any aparent design. Upon a wearer and more attentive inspection, we discover sunken mountains, caverns filled up, shattered rocks, whole countries swallowed up, new islands emerged from the ocean, heavy substances placed above light ones, hard bodies inclosed within soft bodies; in a word, we find matter in every form, dry and homid, warm and cold, solid and brittle, blended in a chaos of confusion, which can be compared to nothing but a beap of rubbist, or the ruins of a former world." He believed that great revolutions took place in the earth in the early ages, after its creation, and that the land we now inhabit was formerly covered for a long time by the sea. Hence shells and other marine fossils are now found upon the tops of the highest mountains. 'The vast continents of Asia, Europe, Africa, and America, were then at the bottom of an immense ocean, and covered with every thing which the present sea produces. The ebbing and flowing of the tides, and the dimmal motion of the earth, he thought were quite sufficient to account for the spheroidal shape of the earth, the formation and elevation of continents, and the phenomena of stratification this globe presents. The veins and fissures so common in rocks, were formed when the newly constructed planet was undergoing the process of drying, and therefore it cracked in the manner of clay when exposed to the sm. Some large openings were formed by the falling in of caverns in the earth, and thas the Straits of Thermopyle, Gibraltar, the gaps in Momnt

Cuncasus, and the Cordilleras, were produced. It will be unecessary to proered any farther in the theory which this celebrated man embearomed to establish, but one that can mever be believed; as he finally informs us that the earth and all the phanets in the solar system, were origimally parts of the smu i.mself, and that they were detached from his body by the stroke of a comet! With what mighty force must that comet have been propelled! Aud how very singutar that the pieces knorked oft from the sun, are so remular in their dimensions and movements. These reflections will remind us of the state of Geologi. cal knowledge in his day ; and while his mane will long be remembered as a Naturalist, his opinions in regard to the Formation of the larth, will only be ynoted to anuse his successors in the Science.

THEORY OF WERNER, on, Aqueoc's Theory.
At some very remote period, this globe was for a long time suspended in water, so that the tops of the highest momtans were then submersed. 'The water was undisturbed by rarificd air, and not agitated by currents. In this vast collection of water, all the particles which now form the exterior coats of this earth, were held in solution. In this fhuid was the muclens of the earth, and crystaline deposits were made, investing the nucleus like the coats of an orange, therehy forming the Primitive Rocks of granite, gneise, and all those which are destitute of organic remains. In this original deposit no animal or vegetable relies are to be fomm. Nor have any round pebbles been discovered in then ; but in the first collection of earihy particles upon their surfaces, shells and fragments occasionally occur. These are therefore called 'Tramsition Rocks, in consequence of the earth having passed as it is supposed, from a chantic to an habitable
combition during their fomation. At this period the ocean became fillod with the fimy tribers. The waters upon the earth now began to subside. They comained divided particles of the original rocks, whirl paricles were deprosited upor the nuclens, in horizontal layers. These layers contain many orgmic romains, and were called by Werner, Ftoeta, or Secombary Rochs.

During the subsidence of the waters, the primitive rock; were worn down by the violence of curconts, and the particles contaned in the water, were consequemty deposited at a lower level than the tops of the highest mombains, which had energed from the great deep, and could receive no further accumblation of partiches from the solution.

Werner believed that through the agencies of wind, and disturbed state of the remaining ocem, violent currents were producet, which wore down and carried away large quantities of the primitive, transition, and secondary rocks in some places, and made large deposits in others, whereby inequalities of surface were produced. Hence momtains were formed, and those deep ravines which are every where exposed. As the waters continued to subside, deposits were still going forward that produced clay, gravel, and what are now termed alluvial fomations. Tho water at last observed a proper level. Its bomods wero fixed, and the surfice of the earth becane inhabited.

There are a variety of substances that do not appear in regular layers upon the earth, but are only met with occasionally under very irregular limits, and uncertain dimensions. Rock sult, coal, limestone, basalt, with others of that character, are thus distinguished, and were called by Werner, subordinate formations. He has also another class of roeks produced by subterraneous fires, with which his classification of strata is concluded. Ite has arranged all the rocks mader the terms primitive, tran-
－ition，secombary，allavial，subordinate and voleanic：pro－ ductions．

It will doubtess：he whserved，that mo attempt has been made to enter into the minnte deseripuions，mat ex－ consive dotails siven hy this coldobatod deologist：surf is not the objeet of this work，but morely to give a gene－ rat outho of a theory which has berom stomyly suppoted， and has certamly many fints fivomathe 10 comelusions to which it leads．With many positions evidenty correct， it is mixed with hyouthetial notions hat camoot be mot mited．＇To the Neptunian theory there are many ohipe－ tions，and ahthongh its general oullines may he correse， modern liseoveries have decided hat many of its death are ahogether abond and ineonsiston．It pre－supposes the solubility of many minerals in water，a thing imperssi－ ble in the present state of our howlealge．It cammot account for the ind dinise and vertical position of rocks ； and althomgh it may give a satisfartory explemation for the organic remains of manine productions，it athords not a shadow of reason to areomet for super－marine fossils．－ When the whole of the carth：s surface is taken into con－ sideration，the＇rheory of Wemer must be given up，us many of its doctrines ate mmeh at variance with plain mats－ ter of fact．

Dr．Hutton betieved than the whote surface of tho rath was undergoing a smadual decay，and hatt the dr－ structive process firnished the materials for the regener－ ation，and support of the animal and regerable kingoboms． That the matretals of fomer cominents，were by the action of the atmoshere and water，Hamsported amt deposited in the bothom of ancient seds．The smmats of the loftiest momatans yedacd we currents of air，and he
tempestuous action of rains. The particles disseminated by these causes were carried downwarl, and in their course supplied fertile vallies, and finally filled the reservoirs of the mighty deep. That by the action of subterrancous fires, the same materials were elevated to form continents and islands. Some rocks were only sofened and thrown upwards, while granite and other unstratified formations, were completoly melted and forced in a perpendicular direction through the incumbent strata. And by the same means, veius of ore were filled by metallis, materials, thrown upwards into the strata above. The Doctor's theory intimates, that the transition and secondary rocks of Wemer, were colleeted at the bottom of the ocean, through the medium of operations still actiug upon the earth; and that the primay rocks were formod beneath them by the action of heat. This opinion is supported hy the erystaline texture, hardness and fracture they have produced, of the secondary rocks with which they have come in contact. Hence by the action of subterraneous fires, rocks have been hardened, and those changes produced that the strface of the earth now exhibits. The production of allowium and the various tinds of soil are explaned in a similar momer in both theories. Thus, by water the materials of rocks have heon produced, and by fire they have been elevated and rentered solid.

This theory has received able support from the pen of Mr. Playlair, whose talenis would not have been lost upon any subject, and whose style and eloquence will long be admired. But how will this theory accord with the fact, that ofien in stratified rocks there is a sudden change from one stratum to another. Beds of shale, coal, sandstone, \&e., altermate with each other, and are sometimes found under beds of limestone. How could such a variety occur from one distunct and uniform canse? What rould have become of the prytes comtaned in sulphur
and in anthracite? And what would have becone of coal had intense heat been applied? The circunstances already stated, would be more likely to result from anueous solution.

THEORY OF BURNET.

Tus theory of Burnet seens to bave heen simila to that of Hutton, in soma particulars. The following passage is certainly very sublime, and was highly enlogized by Stecle.
"Let is now" says he, "reflect on the transien: glory of the carth; how by the force of ne element breaking loose upon the rest, ull the beantics of nature, each work of art, and every labour of man, were medned to nothing : all that once semed admirahle is now obliterated, all that was great and magnificent has vanished, and another form and fice of things, plain, simple, and uniform, overspreals the earth. Whre are now the Empires of the world; where the Imperial cities, the pillars, trophies, and monmments of glory? what remains, what impressions, or distinctions do yon now behold? what has becone of Rome, the great city : of eternal Rome, the Empress of the word, whose fomdations were so deep, whose palaces were so sumptuous ?- Her hour is come : she is wiped from the face of the earth, and buried in everlasting oblivion. But not the cities only, and the werks of men's hands, but the hills, and monntains, and rocks of the earth are melted as was before the sun, and their place is no where found ; all have vanished, and dropped away like the snow which once rested upon their summits." ${ }^{*}$ This guotation accords well with one from "The art of Preserving Ilealh" hy Amstrong, who has given the following beantiful pasage.

[^0]
sxii INT:OnUCTION.

"What does not fade; the tower that lone had stood 'The crash of thmoter and the waring winds, Shook by the slow but sure destroyer Time, Now hamgs in doubful rums o'er its base ; And tlinty pyramids, and walls of brass Descend ; the Babylonian spires are sonk: Aeha:a, Rome, and Esypt, moulder down. 'i'me shakes the stable tyrany of thrones, And tottering Empires rash by their own weight. This huge roturdity we tread grows old, And all those worlds which roll aromd the sum'Whe sun himself shall die, and ancient Night Again involve the desolate alyss."

MODERN GEOLOGICAL THEORY.

'Taf Earth is a spheroidal body, the dianeter from pole to pole is somewhat less than that which passes through the equator. It is composed of land and water. Surromed by an amorphere adapted to the animals that inhabit its surface, the earth has an amual motion prodheing the changes of season, and a diumal motion which gives day and wight. The sun and moon have a great influence upon the occan, and produce tides. The surfine of the dry land is beantifully diversified, with hills, and valieys, plains and hollows, rocks and carths, of various kinds. The bnttom of the occan corresponds with the carth, and is equally irregular. Islands are the tops of vast momtains, whose smmits are elevated above the level of the sea. Were the sea to be lowered to any considerable distance, it would exhibit new ishands and continents, similar to those now inhalited by man. On the earth there are tempestuous reminns, where the elements rage at some scasons with wrat and irresistible fary. In some simations there ne water-spouts and
whirlpools; there are also volemoes, from which fire, water, sulphur, and bitmuen, are emitied, producing horror and dismay among all who behold them. Asain, there are gulphs and cataracts, the hidden canses of earthynakes, and all those intemal commotions which have existed since the world was created. On the other hand, there are vast regions of etemal shows, from whence momtains of ice float to warmer latitudes, dissolve and are seen no more.

The mineral kingdom is not under the influence of climate ; rocks are similar in polar and equatorial regions. The volcanic fires of Iceland are equal in greatness to those near the Line, so that it may be said the solid parts of the earth, are alogether independent of the influence produced by the swrounding planets upon the softer materials of the globe. Rocks and minerals are similar in different countries.

It is well ascertained that the crust of the carth consists of a number of layers or strata, differing from each other in their structure and composition. The elementary substances of which they are composed are few in number, but variously mixed. They are in general siliceous, calcareous, or argillaceous. The different layers or classes of rocks, are placed in beautiful and regular order. 'Those which have been discovered at the greatest depths, are found in every instance to be the lowest in the order of super-position, and those that appear near the surface aro never found beneath them. Sometimes the lowest formations appear on the surface, and often form the summits of the highest momntains. In such instances they are uncovered by those layers, which in other places are deposited upon them in the greatest regularity.

There is perhaps no situation on the earth, where all the different classes of rocks can be found existing from their lowest to their hishest formations; hut in dif.
ferent plares they are all exposed ; and alhough some of the intervenines series or strata, may be wanting to complete the order of the different layers, the next in sueecession fills its place, and the greatest harmony is preserved. This fact will be better explained ly referring to the classification of rocks, and the relations they have to earh other.

The crust of the globe presents three distinct series of substances. The first of these, and that upon which the others rest, is called the Primary or mostratified rocks. 'These appear to be coeval with the world, and afiord a compact and substantial foumdation for the less solid materials placed upon them.

The second series was evidently formed at a moro recent date, and present a stratified texture. The strata are variously inelined, and always meet the primary rocks beneath. The different layers composing this series, have been denominated Secondary Rocks. These contain many organic remains, pebbles, and a great number of metallic and mineral substances, indefinitely combined.

Modern Geologists have established another series, which they have called 'I'ertia Rocks. These appear to have been deposited after a remarkable change had taken place in the secondary strata. They are very different from the rocks bencath them, and constitute all the varieties found above the layers of chalk.

There rannot be any doult that the Primary Rocks were formed by a process very different from that of the other series : all their characters seem to prove that they were elevated from the interior of the earth in a state of fusion, or in a fluid and elastic condition. They appear to have been raised by a great force, as the strata placed above thens are singularly penctrated by their ejections from beneath. There is a great similarity between tho Primary Rocks and the products of voleanoes, and the
numerons observatione recently mate upon this subjece, clearly exhibit the greatest andogy between the cemem and distinguishable eflects of voleanocs, and the phenomena presented by the minnte disseminations of the Primary rocks that have been forced npwards into the Secontary formations.

The Secondury Roeks always lie above those called Primary. Their regular and parallel arrangement, the pieces of pre-existing rocks, the remains of organic bodies they contain. and every circumstance comected with their composition, arragement, and situation, clearly prove that they were fommed moder water, by having their constituent particles thrown downwaids from the surface. And it may be truly said, that " every stratum contains within its own domains records cif its past history, written in characters intelligible to all nations, which no possible events can falsify or destroy." These records have enabled Geologists to arrive at some just conclusions respecting the relative ages of rocks, which possess almost all the certainty of mathematical demonstration.

In the secondary rocks are included a great varicty of different beds of stone, which have been classed in the following order, descending from the chalk downwards.

The Chalk Group,
The Oolite Group,
'The Red Marl Group,
The Coal Group,
'The Momtain Limestonc Group,
The Old Red Sandstone Groun.
The Graywacke Group.
The following classification of Rocks in Great Britain is easily understood, and has been extensively applied. Such as require more minute divisions, should consult the admirable work of Conyheare and Philips, on the (ienlney of Eughand and Walme.

Pbimitie.

1. Granite,
(6 Gineiss,
b Mica Slate.
2. Porphyry,
3. Serpentine, c Statite,
4. Marble.
m secondary rocks.
$\%$ 1. Clay Slate,
$\theta \quad$ a Graywacke,

- 2. Transition Limestone,

2. 3. Old Red Sandstone,

』 4. Coal,
b Argillaccous Iron-stone,
5. Red Sandstone (Nere.)
6. Limestone,
7. Chalk.

Isolated Rocks.
Trap Rocks,
a Greenstone, b Basalt,
c Amyglaloid,
d Toadstone.
The Tertiary Rocks contain a great varicty of limestones, sandstones, clays, pebbles and sands, separated from cach other into different groups, by distinct characters. They contain the remains of quadrupeds, birds, and near the surface the bones of mammalia. In this class of Rocks the organic remains are generally similar to those of animals now inhabiting the earth. This important discovery distinguishes its strata from those of Secondary formations, in which among all the numerous fossil remains of plants, and the animal creation, few have been found belonging to classes now existing upon this globe.

Wherefore it is believed that their inhabitats most have b en de:stroyed previous to the consolidation of the 'Pertiary strati.

It is not the object of this work, to enter into the details comeeted with the cvidences brought forward to support the modern theory of Geology. Derhaps enough has been already introducel, which if aided by common observation, will comsinee the reader that the Secondary and Tertiary Rocks have been deposited from some fluid in which their partiches were held in solntion. But in order to give some proof of the elevation of the Primary Rocks, it may be added, that "near the Island of Santorina, in the Archipelago, an Island rose from the sea 114 years before the Christian era ; in $1: 573$ anoher Island arose at the same place. In 1707 a third appeared. In the year 1822, a whole line of coast, extending more than one hondred miles, arose four feet above its former level. A portion of Cutch, sear the mouth of the Indus, inclucting sixty miles of the coast, was raised sixteen fect above its original height, by an eartlopuake. New mountains were formed in Mexico, in the year 1759. A new Island appeared off the coast of Sicily in the year 1831." And many other ocemrences of a similar kind might be cited, all of which prove, that elevations of the Rocks hase taken place from time to timo since the world was first ereated.

From the foregoing circumstances, and the mmerons faets that have been observed, Geologists have arrived at the following conelusions.-That all the elementary particles of the Secondary Rocks, have been at some remote period held in solntion by water, and deposited in layers as they now ocemr, and have cmbaced the ammala and plants, the remains of which now appar in then. That the Prmary Rocks on the obler hand, have at different periods sines, or durins tise fomation of the sec-
ondary strata, been thrown upwards in a stane of fusion, and thereby have penctated the superincmabent rocks. or hecome elevated so as to form the smmats of the highest momatans. And finally, that the 'leriany strata are of much later origin than either, as they contan the remans of anmals now existing upon the earth.

It only remans to take some notice of a very singular and important class ol Rocks, which oceur both in I'rimary and Sucondary comutries; and are as much raried in their chatacter and appenian ee, as they are in their situation. We mean the 'Tap Rocks of Werner, and the Whinstones of thuton. They inchate all the formations called greenstone, hasalt, amygdabid and toadstone. The colammar besait terms those celebrated and beamtiful structures of the Island of Staffa, one of the Hebrides; and the Ciant's Causeway, upon the coast of Antrin, Freland. This chass of roeks is now generally believed to be of voleanic origin, from its great similarity to more recent lava. Its rocks contain many varioties of crystalized minerals, and form the :mose sturendons clifis of Nova Scotia.
fision, rocks. chighatia tue he re-singuin Privaried 1 their r, anul formatitone. mutiful rides ; mrin', ved to more ystalNova
anmmodechan TO THI: STUDY OWMNNBAIGKY. -

CHAP. I.

1. MINERALOGI is the scieme which , inains a correct knowledge of the properties, relations, ind combinations of all mineral substimees, and cuables us to distinguish, arrange, and deseribe them.
2. Chemical Mineralogy inevestigates the chemical properties, and discovers the elementary parts of mineral compomens.
3. Gcographical Mincealogy informs ins whereminerals are found, and the particedar sitnation where they are deposited.
4. Simple minerals are composed of sinialir particles, and are homogencons.
5. Componill mincrals are composed of more than one simple sulstance, united or attacheci to other sulbstances.
6. In the study of Aineralogy, it is often mecrissary to seek the assisiance of phillosophy, chemistry, imd untmal history, wh ohain a correct knowlenge of the mineral muder examination.
7. In order to arrauge minceals into proper classes and orders, it is meessary in the investigation of their
properaies, to consider all the chataders hey presem. Those chanacters are divided into physical and chemical. Dach of those divisions includes a great variety of circumstances, that should be duly considered.
8. 'The most important of all the phesical properties of minerals, is that by which those regudar solid bodies are formed, called crysuls.

CII AP. II.

CRYS'TALOCRAPII.

1. Chespabzatas is a pery remarkible process, whereby all the simple mineral sulistanes armere themselves into regnlar and decerminate boties, surromeded by plain fices, right lines, and angles well defined.
a. From the regular forms crystals present, it is evident that the various particles of which they are composed, have also regula forms. 'These particles by chemical aturaction and affinity, mite themselves layer upon layer, in the maner cimon shot are sometimes piled, so that a porteet form, bounded by right lines, is produced.
2. 'The integrant particles of every simple substance, always possess similar figures. Hence it might be supposed that any collection of such particles, would pussess a similar ligure: but such is not the case, for different combinations assmo diferent forms, and difierent causes produce this seming want of hamomy.
3. Therefore the same mineral will often appear under very different forms. For insiance, cabonate of lime, having a rhombod for its primitive form, will exhibit a hexadral prism, and a dolewedron, with trianguar or pentagonal faces.
4. The difirence in the forms of arsials, arise fiom a difierent aranecomen of their incerant particles.

mical. i' cir-

орст d bus
times so armage themselves, ata produce n bube, int
 faces.

Primitife Forns.

Eveny sulstamee capable of crystalization, has one particular form natural to itself. This is callod its primitive form. But an accumulation of particles in a decreasing ratio, may take place mpon any of the sides of the primitive fom, so as to produce a great bariety of figures. For an example,-all the diflerent secondary foms of the gamet are reduceable to one, by meehanical division ; and its primitive form in every instance, win lon found a dodecaedron.

The following are the primitive forms of crystals, so far as they have yet been discovered.-1, 'The Cube ; 2 , the regular 'Tetrahedron ; 3, the regular Octahedron ; 4, the rhombic Dodecahedron; 5, the Octahedron with a square base; 6 , the Oetahedron with a rectangular base ; 7, the Octahedron with a rhombic base ; 8, the right square Prism; 9, the right rectangular Prism; 10, the right rhombic Prism ; 11, the right oblique angled Prism; 12, the ollique rhombic Prism; 13, the doubly oblifue Prism; 14, the Rhombohedron or Rhomboid; 15, the regular hexaedral Prism.

Secondary Forms.

From the foregoing remarks it will appear evident, that crystals must by the laws of their formation, present a great variety. Indeed, they are discovered in almost every possible shape that regular can be made to assume. Let the primitive forms already mentioned, have successive layers of particles placed upon their faces, each layer decreasing a row of particles on one or all of the edges of the primitive form, or let deerements lo made on the
rderes of the reystats, amd some ider of the mmone of soromalay forms com be inmiged. The stadent in Minmadosy will derive much adramage from haring pieces of word, eat ino the forms of those geometrical ligmes, phared before him when lo is exambing my regular eystal ; and he will soon diseover, that a kowtedge of geomotry is nocessary to his alvancemont in the Science; for from the forms reystals present, they are distinguished from earh other, and the minorahi to which they belong are properly armand.

CIIAP. III.

RX'TERNAI, CHARAC'LERS OF MINERALS.

'Tue extermal chameters of mineme, are those discovered by inspection or simple experiment. 'They are very momerons, and require minnte investigation to point out the difference that exists among them. The terms used in the description of minerals, should be well defined and correctly applied ; for it is evident that may different opinions have arisen among Mineralogists, from the uncertain meaning of worls they have used, in their deseriptions of the substances examined. It is not the objeet of this work to go into the details comected with this part of the sulbject. Such iletails are only to be found in extensive treatises on Mincralogy, and require laborious study and olservation before they can be applich.

For the appropriate language now generally used to describe Minerals, we are indebted to the celebrated Werner, late Professor of Mineralogy at Freyburg, in Upper Saxony. The following arrangement of external characters has been adopted by Professor Cleveland, and includes all that is necessary to be considered.

Colour,
Laistre,

Changeable colours,
Tramparcuey,

Refraction,
Fiorm,
Surface,
'louch,
Colduess,
O.lor,
'T:astr,
Arhesion to the tongen,
Suil,
Streak and powder,
Distinct conerctions,
Flexibility and elasticity,

Sumbl,
Culne:man
I Bartheros. Framgibility, Sturlume,
 Shapne of limwacht, 'Anmaty, Magnotisul, Whemicit!, Plobophorespener, spocide grwity.

CHAP. IV.

CHEMICAL CHARAC'PRS OF MINERALS.

Tut chemical chameters at mimerah, ate highty inportant, as they discover the component parts of each Find, deride umon their classes, ind point out the various uses to which they may be applied. It will mily be necessary to describe in this phee, such chemical experiments as are generally employed in the description of minerals, are easily performed, ind require hat a simple apparatus. For the complete analy is of a minemal, can only be successfully condncted with a perfert knowledge of chemistry, and an expensive labomatory. Henee the blowpipe and the acids form almost the whole of the chemical means, by wheh the metahs in all their combinations, are detected.

> Fershaliti of Minerais.

Tur blownpe affords the greatest facilites for discovering the constituent pats of ahorost all minerals; and ahhough we camot know at what tomproture fusion takes place, the varions appearamen metallio substaners exhibit

While meling, are clemly bought to view, mat we have also the advane of examinims the difierent protucts of lision. These prodacts are cfen very characteristic of the mineral under exannination.

In general the common blowpipe nsed ly goldsmiths, will answer every parpose, and a litte esperience will amble an adept to use it in a proper manner. It may not nevertheless be improper to add, that the air should be forced through the instiment by the action of the muscles of the face and lips, and not by those of the chest. The breathing mast he kept up through the mostrils, while the air is propolled through the pipe. Any kind of fame may he used in experinents with this useful instrument ; but that from an oil lamp is preferable to any other. The wick should be large, and olive oil will yield the most powerful flane.

If the flame of a lamp be examined under the influence of the blowpipe, it will appear in two unequal parts. The external flame is the largest and most luminous. The internal flame is smaller, more regular, and of a blue colour. The extemal is the oxidating flame, and the intomal the reducing flame. The greatest heat is a little within the point of the latter, whore the mineral to be examined should be placed. The external flame will retain the heat and equalize its distribution. Tho greatest heat is obtained by blowing moderately and steadily. The piece of mineral to be examined should be a little larger than a pin's head, and supported on a piece of charcoal made from alder or pine, which is preferable to any other kind. Platina, asbestus, and slass tubes, are sometimes used for supports, but in common experiments the charconl will answer every purpose. In using the blowpipe it is often necessary to employ re-agents, or floxes, those most generally employed are soda, nitre, nitrate of cobalt, and boras. 'iThe effects of each should be care-
we hare ducts of ristic of see will may not ould be muscles The lile the me may ut ; but

The: he most se influal parts. The a blue the ina litule to be will repreatest The larger harconl y other ctimes e charowpipe
, those
of co-
care-
fully noted. The tyro in Minerabogy will derive math advantage from the pertalal of atealise on the use of the Wowpipe ; and when this simple instrument is property uscol, it will coable him to ascertain the distinetive clanracters of aldoost atl the minerals, so that with a gooed mannal of the scionce at his clbow, lio can arrange and clasify his specimens in a sprientife mamer.

Aetion of Acibs.

The acids gencrally used as tests for mincrals, ate the nitric, sulphuric, and muriatic, diluted with one or two parts of water. 'The mineral to be examined should be powdered, and placed iis a concave pieve of glass. A common wath ceystal is well adtapted for the purpose. The acid should be poured u;ion the mineral. And it must be carefully noticed, whather the soluion is made quietly or with efiervescence-whefiner the effervescence be quiak, violent and perfect, or stow and partial. 'The gas also, which escapes, must be examined. In some instances a complete solution is the result, in other itistances a residue is left belinut.

CHAP. V.

description of minerals.

fr order to describe a mineral, and determine the class, order, gemus and species to wheh it beongs, its physical and clionical chameters, must be duly considered and compared with thase of a system already iomed. In the first place it showd be observed what is the form, regalar or irregular. Obain the primitive form if possibe by mechanical divison, dhea the harthess and specifie gravity mus! be abertaned sith the greatest posmbe accuras. These chatacters serve as distinct data. Ater the cyamination has becu thas far conducted the particu-
lar characteristic may be applied, when it will be soon discorered what characters agree or disagree, and also those that are altogether wanting. Let the substance under examination he carried throngh the classes of an established systen, and in general it will be asily discovered to which of them it belong-. 'Then ly proceeding to the diiferent orders of that chas, its chameters will he recognised, amd so on through the orders, genera and species, mutil the minemal is pheed in its preper situation, having its properties folly determined.

In the examination of minerat, difionhes will nathrally erve in consequence of the varmos combinations and appearances they ofen assme. And much lahour and careful examination is often required, to determine the phace a single speeimen shond poesess under any classification, and the projer name by wheh it shonld he designated. But in proportion to such difficulties must experiments be multiplied. After all the phesical characters have been duly consirlered, the action of the acids known, the blowpipe used, and the products of fusion carefully exmmed, almost always every species of the different minerals will be clealy made out, and com be placed under the classes where they belong. If all the experiments tried do not prove satisfactory, a chemical analysis must then be instituted, whereby its component parts will be known and separated. These remarks are intended for those who may not possess a proper apparatus for such in amalysis, nor wish to pursue the study so far, as to examine chemically every substance taken from the carth. But the scientific \therefore.neralogist will feel a pleasure in the investigation of every specimen the mineral kingtom anfords.
e Sonn nd also nee un(1) esta:overed ${ }^{5}$ to the recogpecies, having

Il matnons and our and ine the 1ssifica-esignatriments. e been blowmined, als will classes do not : instirii and e who alysis, chemhe scigation

CIIAP. VI.

ARRANGEMEN'T OE MHNERALS.

Ir is to be regretted that Minemingists have used different arrangements of minerals, and several of ilem have applied nomenclatures agreeable wheir own paricular views ; hence the Science has been retarded in it. progress, and much confusion produced. Probesor Mons, the successor of the celehated Wermer, has adopted an arrangement of minerals from their extermal characters. The species are determined by their prinitive forms, cleavare, hardness, and specific graviyThis arangement with some alteration: has abo been employed by Jameson, in the third redition of his Nineralogy. 'The results are these, - that ores of the same metal have been separated from each other in their classification, and some of the metals have been associated with the earths. Whereas it is obvious, hat the ores of each metal shonld be arranged by themselves.

tabular yiev of minerals.

DESCRHBFD IN THIG WOBK.

ies \&
buracties.
.
lic.
of Iron.

The South side of the Province, painted broven, is the Primary District, and is composed principally of Grante, Ginciss and Mica Slate.
'The blue denotes the Slate Distriet, which is composed of Slate, Greywacke, and Greywacke Slate.

Tho Red Sandstone District is painted light red.
The crimson belts shew important beds of Iron Ore.
The Trap Rocks are painted ereen, and the Coal black. See Geological Divisions.

REMARKS

ON THE

06
 NOVA SCOTIA.

NOVA SCOTIA presents many difliculties to the natural philosopher. With extensive tracts of country, covered with dense forests, and trackless mountains, where the moose and carriboo still enjoy quict repose from the yell of the Indian, or sound of the woods-man's axe ; the Geologist amidst his arduous labors to discover her structure, must meet with frequent disappointments in a country, that in regard to cultivation and improvement is yet in its infimey. No shafts have been opened or excavations made in the Province, cxcept such as are confined to the raising of coal. Hence the opportunitie: afforded for examining the different strata of rocks upon which the soil is placed, are very limited. And as but

REMARKS

OX THE

crology and matutcalogy

0 F

NOVA SCOTIA.

NOVA SCOTIA presents many difliculties to the natural philosopher. With extensive tracts of country, covered with dense forests, and trackless mountains, where the moose and carriboo still enjoy quiet repose from the yell of the Indian, or sound of the woods-man's axe ; the Geologist amidst his arduous labors to discover her structure, must meet with frequent disappointments in a country, that in regard to cultivation and improvement is yet in its infancy. No shafts have been opened or excavations made in the Province, except such as are confined to the raising of coal. Hence the opportunitic: afforded for examining the different strata of rocks upon which the soil is placed, are rery limited. And as but
a small proportion of the surface has been cleared of timber, the labor of examining the country, even superficially, is greatly increased. The facilities for obtaining Geological information are confmed to the shores, and those places where the removal of the earth for making roads, has uncovered the rocks which lie beneath.

Nlmost surrounded by the sea, Nova Scotia does indeed upon her shores, not only offer the most majestic and beautiful scenery, but affords an opportunity to any enquirer, to examine immense precipices and strata of rocks, from which some just inferences may be drawn, in regard to the internal formations of the country. But in general the shores only give a knowledge of the circumference, a short distance from which in some places, other kinds of rocks are deposited. And it should be considered, that every section of the country upon the border of the sea, is very superficial, extending only from the soil to the lowest level of the water. Much information may however be obtained by examining the banks of rivers, deep ravines, pri the tops of the highest mountains ; although such examinations are not always attended with safety, and are never made without great labour. From these circumstances it will not be supposed, that a perfect Geological description of the country can be given, untii time and cultivation shall have removed the obstacles that now lie in the way.

It should never'heless be observed, that numerous as the difficulties in the prosecution of Geological enquiries may appear in Nova Scotia, there are some circumstances connected with the rocks themselves, which are favorable to their examination, and of much importance in
the d ourab
in sor of dif
each
remai
were
witho knowl throw mense may b carth 1 ited in is an o would the san its strat A of the and the added tide risc is affor minerals of a tur produce thrown ocean, tiose in erals.
the discorery of useful quarries and mines. These favourable circumstances arise from the highly inclined, and in some situations the almost vertical position of the strata of different classes of rocks. For if the different layers of each class of the secondary rocks had been horizomald, or remained in that position in which it is supposed they were originally deposited, it would have been impossible. without naking deep excavations, to have arrived at any knowledge of the lower classes, now in many places so thrown out of their original level, by the elevation of immense ridges, that extensive ranges are exposed, and may be examined without the labour of removing even the earth from the surface. An instance of this kind is exhibited in the clay slate of the Horton Mountains. The slate is an older formation than the new Red Sandstone, that would have covered it, had it not been turned up, so that the sandstone leans against its north side, in contact witit its strata.

Again, it should be observed, that in consequence of the rapid currents upon the coasts of this Province, and the exposed situation of the comntry to the sea. added to the advantages gained by the great height the tide rises in the Bay of Fundy, an exeellent opportunity is afforded the Mineralogist, to obtain those interestine minerals with which the country abounds. The effects of a turbulent sea, frost, and the action of the atmosphere. produce such destructive results upon the solid materials, thrown up as harriers against the encroachments of the ocean, that every succecding season opens a new fiod 0 timse interested in the discovery and collection of minerals.

But without entering into any further details of the advantages or disadvantages offered by the Province to the natural philosopher, enough has been already discovered, enough has been noticed and examined, to convince even the most sceptical, that Nova Scotia contains within her bosom, immense and inexhaustable treasures. Her resouress far surpass those of the neighbouring Colonies, and in time will enrich her sons, and render a Province now by some considered of little value, a desideratum of less favoured countries, on account of her valuable mines. 'These opinions are not the result oif idle speculation, or the extravagant fancies of superficial examinations ; they are the sentiments of all scientific men who have visited the country, and made themselves in some degree acquainted with the numerous minerals it contains. Therefore let it never be supposed, that this Colony is doomed to the character of a worthless and barren appendage to (i:cat Britain, for time will develope her almost hidden treasures, and prove that her soil is not only fertile, but her rocks contain an abundance of substances, which are indispensable for the necessitics, luxuries, and happiness of mankind.

Let the great extent of the Coal fields of Nova Scotia : the beds of Iron Ore, Sandstone, Gypsum, Limestone ; with every kind of material proper for building, both the massive cathedral and the humble cottace, be considered; the Copper and Lead, which will ere long be obtained in rich supplies, be taken into the account: and the above sentiments will be more generally believed, and this tansathantic settement more highly valued. Ir confirmation of these opinions, it vill be recessary to ra.
guire timor such does or th but th we co will h ject, the M
mation distinc each di and rur meter of Cans the Co and Shi the Pri Hence the Prir abundan trict, ar Cape S cupied vision o trict.
riure into each section of Nova Scotia, produce such testimony as present discoveries will furnish, and collect such facts as are daily noticed. It is true, Nova Scotia does not enjoy the privilege of working her own mines, or the profit arising from the sale of their productions; but there is a satisfaction in knowing to what an amomt we contribute to the interests of other men. No atternpt will however be made to enter into this part of the stibject, as it more pronerly belongs to the Legishator than the Mineralogist.

GEOLOGICAL DIVISIONS.

Ir is necessary in parsuing an enquiry into the Formations of Nova Scotia, to divide the Province into four distinct Geological Districts. The lines which segarate each division, extend from south west to north east nearly, and run in a longitudinal direction with the greaiest dicmeter of the country. If a line be drawn from the \mathcal{G} it of Canso to Yarmouth, lengthwise the Prowince, crossing the Counties of Sydney, Halifax, Lunenburg, Queen's, and Shelburne, it will cover and run in the direction of the Primary and unstratified rocks of Nowa ScotiaHence all the south side of the Province will be called the Primary District, for in it the Primary rocks are mos: abundant. On the north west side of the Primury D_{s} trict, and extending its whole iength from Antigonishe to Cape St. Mary, there is an immense tract of country oecupied by clar slate (argillite.) Hence the Middle I):vision of the Province will be called the Clay Slate Dis. trict. Agrin, ja a line be dawn from Amanolis :o Mes-
igomishe, and a curve made in the direction of W indsor River, all the remaining part of the Province will be called the Red Sandstone District, including the Coal Fields. through which the Cobequid chain passes. Lastly, the whole of the North Mountains, extending from Brier Island to Cape Blomidon,- -the Five Islands, the Two Islands, Isle Hant, and all the Capes on the north side of the Bay of Fundy, will be called the 'Trap District, the rocks of which rest upon the Red Sandstone.

It must not be suppose! however, that each class of rocks already named, appear always upon the lines that. make those natural divisions. Such is not the fact, for they are variously indented by each other, irregularities and deviations from right lines occur probably in seme places to a considerable distance ; notwithstanding in each of the divisions thus made, the Rocks from which cach District is named are abundantly predominant, and occupy a large extent of country. Many advantages will arise from keeping this very general Geological description in view, for from a knowledge of these facts distinct data are offered the Geologist, that will save him much labor in following up the different associations existing among the secondary strata, and guide the miner while he is seeking for ores. For it would be as vain to search for conl on the south side of Nova Scotia, where granite prevails, as for granite among the sandstones of Cumberland, or grindstones among the trap rocks of Blomidon.

It is interesting to observe that the different Formations in Nova Scotia, correspond with those of the United States. In woth countries they extend from north
cast to south west, nearly parallel to the Atlantic coast, having the transition and secondary rocks placed to the northward and westward of the Primary formations.The same laws which have operaied anong the rocks of other countries, have their effects fully exhibited in this Province. And there are few Colonies-perhaps none of the same extent, where so great a variety in the scale of superposition, and so rich a field, is exposed to the natural philosopher, or to those who only seek the pecuniary profit of mining, -as the Province of Nova Scotia. A section of the strata extending from Halifax across the Province to Cumberland Basin, would expose a greater varicty of rocks and minerals, placed in regular order, than has yet been discovered in any country of a similar magnitude. But these are facts which will be better explained, as the reader advances in the investigation of the subjects thus briefly opened.

In pursuing a description of the rocks and minerals of Nova Scotia, as far as they have yet been discovered and examined, it will perhaps be most convenient to commence with such as are considered to be of the oldest kizds, gradually advancing to those of more recent deposits ; and therefore the Primary District on the south side of the Province will be first noticed.

PRIMARY DISTRICT.

A'T Canso, Granite appears in all its beautics, and forms the interior of the country to an unknown distance. The feldspar, quartz, and mica, composing this rock, exist in such quantities at this locality, that the stone in many places is admirably adapted for buildings, both on account of its resistance to the effects of the weather, and its beauty. Excellent mill-stones are made at White Point, the granite at that place being preferred to any other in the neighbourlood, for grinding all kinds of grain. In some specimens from the interior, the mica seemed wanting, so that they have the appearance of pieces of iuartz rock ; but the other ingredients in the composition determine its character. The mica when present, varies in colour from dark brown to black. At Country Harbour, St. Mary's River, White Islay s, and several other localities along this coast, the granite is seen until w...in a few miles of Halifax Harbour, where the slate and quartz rock supply its place. How far it extends into the country to the northward has not yet been discovered, as there are few inducements to ascertain its boundaries. But there can be no doubt, that the Primary rock occupies a large portion of this part of the country. No indications of ores, were seen on any part of this coast, which is admirably constructed to resist the angry motions of the turbulent Atlantic. The whole of the shore is generally low, seldom rising more than five hundred feet above
the level of the sea, notwithstanding the solid materials of its base form some of the highest momtains in the world. The whole of this coast as would be naturally expected, has a gloomy appearance. The shore is indented with many small harbours, rivers, and crecks, which afford shelter for fishing vessels daring the stmmer season. In some of the valleys between the rude hills of granite, pebbles, sand, and decayed vegetable substances, form a scanty, althongh in some instances a productive soil.

HALIFAX.

In proceeding along the coast, on the south side of Nova Scotia, and in a westerly direction from Canso, towards Cape Sable, a deep and narrow bay, terminated by an expanded basin, form the beantiful Harbour of Halifax, not surpassed by any in the world for convenience and safety. The rocks in the vicinity of the town of Halifax, and the surrounding country, are in general Primary. The granite generally appears on the summits of the hills, having the clay slate, and quartz rock, alternating in the valleys. The granite of the County of Halifax, contains a smaller quantity of mica, than is seen in that rock in other parts of the country. Its gramular fragments are so intimately united, that they form hard and compact rock, which is seldom decomposed by the action of the weather, and therefore affords no fertility to the soil. Near the town there are two large granitic boulders, so placed as to form rocking stones. They may be rolled from side to side on their bases by light mechanical pressure, and form places of resort for the eurious. One of these natural
rmiosities has been described by J. Leander Stanr, Lesquire, who wihh his ustud neatness of style, says,-"The rock stands upon a broad flat stone, the surface of which is quite level with the gromad, and it is rocked to and fro by the aid of a short wooden lever. Any stick found lying near the spot is picked up for that purpose, and it may thus be set in active motion, even by a child. Although very difficult to climb to its summit, I succeeded in doing so, and when my friend plied the lever I sensibly felt its rocking motion, as I walked about upon its surface. I examined it very minutely, and discovered the vast body to move upon a pirot of twelve by six inches, situate about the centre, and a slight rest at the north end. The quality of the rock is granite, but apparently somewhat porous." This stone is twenty feet long, fourteen feet wide, and ninc feet thick. It contains two thousand five hmulred and twenty solid feet, and will weigh ulwards of sixty tons.

Pliny says, that "at Harpasa, a town of Λ sia, there was a rock of such a wonderful nature, that if touched with the finger it would shake, but could not be moved from its place by the whole force of the body." Several other rocks of this kind have been mentioned by the ancients. Some have supposed that rocking stones, or Logan stones, as they have been called, were monuments erected by the Druids, who pretended that they performed miraclos by moving them by gentle means. It is not probable however, that those singular rocks in Nova Scotia, were thus placed to mislead the aborigines of the country, or to deceive the inhabitants of a more enlightened age. 'These blocks of granite in Nova Scotia, were evidently
detact siluali which and 1 quartz Scotia butes tor's c nothing beantifi ity, ar tific agı rock an many a upon w
'Tower: soil in been cu run liort at ant cmious been rel even, an down by and bene shore of rings, se tistined large cha from adv hippine.
detached, amb accidentally lodged in their present masat: sttations, by a voleanic ermption, or some violent force, which has acted upon all the rocks in their neighhourhood. and produced that disturbance, now so manifest. 'I'lo quartz rock, that alternates with the clay slate, in Nova Scotia, is hard, compact, brittle and heavy. It contributes nothing to the production of soil, resists the sculpfor's chisel, and oceupies a portion of the country, where nothing hut art and labour can produce vegetation. The beantiful farms on the peninsula of Halifax, and its virinity, are only the monments of industry, and the scientific arriculture of the inhahitants of the city. The quart\% rock and granite, have by their naked appearance, induced many a passing traveller to condemm a fertile comme, upon which Nature has bestowed her choicest gritts.

On the new road from the town of Malifias, to the 'Jower at Point Pleasant, the slate is seen rising ahove the soil in sharp prominent ridges. Several of these have been cut through in making the tumpike. Their strata rum north east and south west, and dip to the northward at an angle of nearly fifty degrees. At the 'Tower, it is curious to observe those places where the seanty soil has been removed, leaving the surface of the rock smooth, even, and polished, as if its inequalities had been worn down by mechanical means. Not far from the 'Vower, and bencath the walls of an old fort, standing ugon the shore of the North West Arm, here are wo large iton rings, securd in the trasition slate. Similar ringo ate fastened in the rocks of the opposite shore. 'Io these a large chain was fomenty athelhed, to perent the cheme from adsancine inte the salic and beandiful bey, whene

Wherever the gramite is not predominam, the slate. greywacke slate, and quartz rock, alternate with each
 Kiug's quarrice, gneiss, mica slate, and clay shate, will he foum to sueceed the granite occasionally. The Primary rock is however, most abmedant, and forms extensive ridges, and chains of rugged hills, stretehing west. wardly towards Margaret's Bay. Gueiss and mica slate, are frefuently placed between the granite and clay slate. In some instances the transition strata pass into each other. Several quarries of these rocks have been opened, to supply the Town with materiats for building. The granite is scarcely rivalled by any hitherto discovered in other parts of the world. It enters into the strong batteries of the Citadel of IIalifix. These batteries when completed, will form an admirable and strong protection against the advances of an invading enemy. At Flim's quaries, the granite is also of an excellent quality, and may be transported without difficulty.

In no part of the Province have we seen granite of so good a quality as that at the North West Arm, where an incerhaustable store of that rock, is laid up on the shore of a safe harbour, from whence it could be readily shipped to any part of the world. And it is probable that the granite of Halifax, will not only enter more extensively into the buildings of this Colony, but soon afford an articie of exportation to other comuries. One spectes of the slate is rather peculiar, and is called hy the inhabitants "iron stone." It hats a crystalline structure, is very somorous, compact, and heavy. 'This rock, and the slate in general, coutains much iron; sometimes thin
layers a sulpher lsure, so
'The tria approac intense quautity 'Ite clat plureto frepuen tics :und sulphure argillite the alunr other aut ties of gr tal of the imported the mono prohibite again pro mean tim in Englan ries, ther its smalle and ready Great nu aloung the tance liki memione Some har
layers are covered with the cablonate of lhat metal. The sufphuret of iron, in cubit: crystals of a hrass yellow colour, sometimes ocenpy the slate to considerathe distance. The transition rocks hore, as in many places, when they approach the granite, appear to have been exposed to intense heat, from their vitreons apparance, and the quanting of sublimed suphar still adhering to their ligets. Ilae clay shate also, contains at numerons platees the sulphoret of ahmine, and potash, or common alum. 'This, frepuently forms an efflorescence, or mould, in the cavities and fissures of the rocks. Sometimes the admen and sulpharet of iron are mited. Hence this speeies of the argillite is identical with the alaun chicfer, of Werner, the alum slate of Jamieson, and the almmons slate of other authors. 'There can be no doubt that large quant ties of good alm, might be manufactured near the Capital of the Province, and at as cheap a rate as it is now imported from Great Britain. King James I., assumed the monopoly of the mannlacture of almen to himself, and prohibited its importation. In 1625 , its importation was arain prohibited, by a proclanation of Charles I. In the mean time, the manufacture of the salt became profitable in England. A short distance southward of Flim's quarries, there is a large granitic boulder, resting upon one of its smallest sides, on the highest pinnacle of a barren hill, and ready to roll down a precipice into the valley beneath. Great numbers of these detached masses, may be seen along the south coast of the Provinee, appearing at a distance like small cothages. The rocking stones already mentioned, are curious specimens of these isolated blocks. Sume have stangely suphosed that the ee rock, hate becen
placed in: their present sitnations by the flood; but the deluge would have produced a contary etieet, by sweeping them headlong into the ravines below. In the granite there are deep chasms and fissures, with small eracks ruming in every direction throngh the solid rock. 'Ihese openings are more common in the granite near Halifix, than in other parts of the comme. Were these lissures and crevices produced by the cooling of the Primary rock, alfer its clevation had taken place? or, Were they opened by those voleanic explosions, by which the boulders adready noticed, were thrown to the tops of the highest hills in this vicinity? In whatever way these facts may be explained, there yet :emains among the gramite, and uther rocks of the comntry, the most certain evidences of their having been visited by earthuakes, or other violent internal distmbance. From a hill near the quarries just mentioned, there is an extensive view. A pant of the 'Iown of Halifix, George's Island, and Dartmouh, appear eastwad ; while in a westerly direction, the scattered spruce, and hardy bireh, form a singular contrast with the white hills of solid granite, to which they are clinging lor support. The granite of this portion of the combry, often contains small nodules of another kind of the same rock. Some of these imbedded nodules, are very crystalline, and contain much quartz ; but how they have been formed is diffient to imagine. Some have stupposed that they are pieces of still older rock, embraced by the melted compound in its progress upwards

DARTMOUTII.

Ar Barmouth, the slate appears above the surface. It composes most of the walls in that 'Town, and enters largely into the lost labour of the Slubenacadie Canal ; the gramite having been used only in such places as requirad strength and durability. From Darmouth to Schult?'s Imin, the argillite and quartz rock alternate with, and frequently pass into each other. Those rocks abound along the road, which passes on the lower grounds and sides of the lakes; but the granite was found composing the higher hills eastward and westward of the Grand Lake. The quartz rock is often regularly stratified, and is casily broken into rhomboidal blocks. Extensive fires a few years since, destroyed the forests to a great distance upon the Triro road, and have rendered the appearance of the surface more barren than it was before that event; and a small undergrowth of grey birch, seatered among the withered hemlocks, produces a singular, but not an agreeable landseape. We had been informed, that cepper ore had been found on the west side of the Grand Lake, but were unable to discover any traces of that metal near its ronfmes. The micaceous oxide of iron, seen in several places, might have been mistaken for the ore of copper. On the north side of the Grand Lake, the slate is met by the red sandstone, containing beds of gypsum, and compact limestone. From the high lands eastward of Schultz's Inn, the granite extends through the Musquodoboit settlement, to Guysboro. Slate quartz rock, and greywacke, accompany the Primary formation, which often raises its momtans, far above the level of the sur-
rounding country. It has been remarked by Messrs. Jackson and Alger, that it is singular Messrs. Smith and Brown, should have called the quartz rock, trap. With trap it can hardly be confounded. Its comnexion with the slate is intimate, and the rock itself, in all its characters, are quite sufficient to fix its proper name.

SAMBRO and PROSPECT.

At Sambro and Prospect, the granite abounds, forming sharp ridges, and separating extensive valleys. The quartz rock appears occasionally, and the slate in many places is altogether excluded. Over a large portion of the surface, the naked rocks are exposed, with scarcely a lichen sticking to the sides of their misslapen masses, which are scattered upon the more solid foundation in great confusion. Λ stunted spruce occasionally appears, drawing its support, like many of the animal creation, from the death and decay of its predecessors. At Sambro and Prospect Harbours, small collections of pebbles and sand, have afforded a resting place for soil ; but a toilsome day's journey into the interior, will only present to the eye, a dreary and barren wilderness.

MARGARET'S BAY.

At Margaret's Bay, the Primary rocks recede from the coast, and some members of the greywacke group are exlibited. Thin beds of clay, and angular fragments of the neighborring rocks, succeed ; and upon them a soil capable of culivation, extends some distance from the
shore
tend
tile va
in the
soon !
materi
the se:
manife
upon tl
B
remark
marine
On this
general
'Tlis ro
alapted
samtly,

At
occur in superior purposes surlace of requiring with the At occurs ul still farth Halifax,
choir, alhough the hishaudman at this place must conrend with a stuhthom and rocky surfiace. Were the fertile valleys of the red sandstome of Nova Scotia, exposet to the violence of the Milantic Occan, their strata would soon be worn away. But they are now protected by such materials, as will ever secure them from the influenee of the sea. Thus the wisdom of Nature's arrangements is manifested, by placing the most solid and durable rocks upon the coast.

Between Margaret's and Mahone Bays, is seen the remarkable clevation called Aspotagoen, well known to mariners, whom it serves as a landmark of distinction. On this account it is extremely useful, as the coast in general exhibits a great sameness some distance at sea. This rock is composed chicfly of granite, and is well adapted to oppose the firther advances of the ocem, emntantly rolling upon its base.

LUNENBURG.

At Chester, limestone, ironstone, and pipe cliy, occur in considerable guantitics; the pipe clay is of a superior quality, and might be employed for the various purposes to which it is applied in other commtries. The surface of the Township of Chester is rocky and meren, recpuiring the greatest industry to supply its inhabitants with the common bountics of nature.

At Mahone Bay, an extensive and deep indentation occurs upon the coast. The Primary rocks are found still farther from the shore, than at Margaret's Bay or Halifix, and at several localities the old red samdstone is
seen, ontcropping lieneath the beds of clay, sand, and pebbles phaced above it. 'The scattered fiagments over the soil increase the labour of cultivation; although from the heat they retain from the rays of the sum during the day, they assist the growth of vegetables during the night.
 prospects in Nova Scotia. A deep, navigable hasin, in which numerous islands exhibit their evergreen summits, almost survomed by a closely populated, and neatly cultivated comntry, are not often seen in that natmal and delightful order which is exhibited here. In the neighbourhood ol' the 'I'own of Lamenburg, and at La Have River, the beds of elay, pebbles, and sand, covered at many points with good soil, aflord those rieh supplies, that Nature is pleased to award the industrious and honest farmer.

The old red sandstone in this part of the country, has contributed much to the preduction of soil, by its eas y decomposition and gradual decay. But these remarks are applied to the margins of the bays, and rivers; for "pon penetrating the almost mbroken forests to the northward, the granite again assumes its dominion, and frequently harremess prevails.

Two singular excavations have been made hy the sea, in the rocks a few miles from the 'rown of Lamenhurg. Cavities have heen worr: out, called the "Ovens." Into these the waves often rusl :with great violence, and the air being confined, lomsts ont, carrying before it the spray, like that made by the sponting of some enomous whate. We were informed by a very lopuacious Ameririall, that these Overs are the nests of the " sea ser-
peats,
ested
believe
paying
'T' is simil: and M:a the 'Tor Primaty fince of Some of sembling In some here call , illage. neighbou produces tive, atio ind arahl 'The masses of which in the hamks C'minberla the unyidel ler prasor. hacir rise
'I'le'
peats," so often secn near Boston. Such as are interested in the natmal history of these singalar amimals, and believe in their existenee, will perhaps be rewarded by paying the "Ovens" a visit.

LIVERPOOL.

'Tane coast extending from Lamoubug to Liverpool, in similar in its ippamance to the shore between Simbro and Margaret's Bay, being broken and irregular. Near the 'Town of Liverpool, and north of Mill Village, the Primary rocks advance towards the shore, and the whole face of the combly is covered with white granitic masses. Some of these are of large and regular dimensions, resembling at a distance huts, and other rute buidengs. In some places the imitation is so perfect, that what is here called a clear liehd, might be mistaken for a deserted village. 'The granite is more liable to decay than in the neighhomhood of Malifin, and from its decomposition produces a soil, that although scimty, is good mad producive, affording the inhahitants of the Town, fine meadow and inable sromeds.

The rapid river of Liverpool, rolling over shapeless masses of the Primary rocks, is destitnte of that allovimm, which in other parts of the country, has been lodged upon the banks of fertile streans, so common in King's and Cmonerland commes. This circumstance arises firom the myied ling nature of the materials over which the waler patsers, and is common io all those streams tahime Hed rise in, aml fowine orer Primaty fomations.

There are howerer in the interion of this Cumber
numerons beds of clay, sand, and pebbles, resting between mountains of the myyielding rock; some of these were evidently at some former period, covered by lakes. They are now however, capable of being cultivated, and have excited the ambition of a number of sturdy countrymen, before whom the forest bows in humble submission, and falls "to rise no more." A few inferior crystals of smoky quartz or cairn gorm, were obscrved among the broken granite, near Mill Village. But few specimens, however, tave been discovered in this Comety, to reward the labour of the Mineralogist; and the roeks only seem interesting, on account of the imitative forms they prescut.

SHELBURNE.

Tue high lands forming the interior of Halifax, Lanenburg, and Queen's Comities, extend nearly through the County of Shelburne, to its western shore. This mountainous chain has not yet been explored ; but from the gencral appearance of the country, and its elevations, the Primary District becomes narrow, and finally terminates by dipping bencalh the sea, and giving place to secondary strata. In a few instances the old red sandstone makes its appearance, although the clay slate, greywacke, and greywacke slate, are always predominant. From the dectitus of these rocks, the Marshes of Argyle and Yarmouth have been collected, with all those smialler deposits of allurium, upon the rivers and crecks penctrating the coalst.

A lage part of this C'omety is covered wilh fetis, boge, and barcul wibes, inter-perced over a sufface of man.
miles the ind was ob liable t of Hor lection: stances depress wauting camot ture of
U_{1} Forchu,
the clay est port notwills compell contiins
lections

Remart

In the Prov rum near posed by so abund inply.
lin winh dilu
miles in extent. These have arisen in consequence of the indurated and myielding nature of the rocks; and it was observed here, that the slate is much harder, and less liable to decomposition, than that of the south mountains of Horton, which yield a fruitful soil. Those large collections of mixed pelbles, sand, and heterogeneous substances, which have in other situations filled up deep depressions in the sul-strata of rocks, are in many places wanting in Shelburnc. From this circumstance the soil camot be retained, and sterility forms a melancholy feature of a large portion of the County.

Upon the shore extending from Cape Sable to Cape Forchu, the gre ite appears only to a limited extent, and the cliy slate alternated with quartz rock, form the greatest portion of the western extremity of the Province ; and notwithstanding the uniavourable character we lave been compelled to give of Shelburne, as a farming country, it contiins many fertile tracts, and upon its estuaries, collections of good alluvial soil.

Remarks on the Priminy District, of Soltif side of Nova Scotia.

In the examination of the rocks on the Sonth side of the Province, and those elevated peaks and ridges, that rime nearly parallel with the coast, it must not be supposed by the reader, that the granite appears so often and so abmandent, as the foregoing accome might seem to imply.

In many sitmations, that rock is so much covered whe dimial denitu:, and the dense forests, that great
labour would be required to discover, even a small portion ol its surface; and in general it can only be discovered by the appearance of the hills viewed at a distance : for cultivation has not extended far from the margin of the sea, the interior of the country still remaining a dreary and pathless forest.

It has been observed, that the slate succeeds the granite, and lies directly upon it ; this is always the case when gneiss and mica slate are not interposed. Wherever the argillite is absent, the granite is in contact with quartz rock, greywacke, or the old red sandstone, and there are extensive portions of country, where these rocks altemate with each other, withont the appearance of any other kind of strata. The hills of granite may be distimguished by their rugged, sharp and prominent summits. 'Ihose elerations where the quartz rock is predominant, are round and conical, while the ridges of clay slate, give the country a furrowed appearance.

If there be iny peenlimity in the gramite, so often mentioned, it i:s the generally dak colour of the mica it contains ; much of it however, corresponds with specimens from the Hartz Forest, in Germany, and St. Michacl's Mount, in Comwall. The guartz rock is similar to that occuring in some of the Istands of Scothend. The argillite occasionally contains beds of granular limestone, chlorite slate, and tale.

Perhaps in some instances, the slate should be convencrú I'rimary, particularly when it seems to pass into ryeiss, muimica slate. At such localities the argillite is more compact, vilreous, and altogelier destitute of organic remains. In erery instance it inclines to the granite,
int the in Dev vertical itic dist distorte stances shapele: circums regard t little do Geology truc.

Sol when th places de obtaining pipe clay the pure converte most ilut extreme ployment ancient, ductions, of the cot Tha briefly de vines, w rivers and being par clay, san
in the same manner that it was observed at Dartmoor in Devonshire, and Land's End in Cornwall. When the vertical and broken position of the clay slate in this granitic district, is considered; the veins which penetrate the distorted superincumbent strata, and appear in many instances to have been ejected from bencath, by ridges and shapeless hills of the more ancient formation ; and all those circumstances and facts manifested in other countries, in regard to the once fused state of the granite, are viewed, little doubt can be entertained, that the modern theory of Geology is, in this respect at least, more than probably true.

Some notice will be taken of the foregoing facts, when the Clay Slate District is considered, and those places described which were visited for the purpose of obtaining correct information of their structure. The pipe clay beds which occur near Chester, would afford the purest supply for the potter's wheel, and might be converted to useful purposes. The granite affords the most durable materials for public edifices, although its extreme hardness is used as an argument against its employment. It is nevertheless, not only one of the most ancient, but one of the most interesting of Nature's productions, and forms an important feature in the Geology of the country.

That portion of the Province, which has been thus briefly described, is excavated by deep hollows and ravines, which give passage to the waters of numerous rivers and creeks. Large basins of table land are formed, being partially covered with fragments of rocks, beds of clay, sand and pebbles, where the agriculturist may de-
rive an honest suppori from the labours of the tield. Deep depressions of the strata are filled with water; hence numerous lakes occur, and in many instances form chains, greatly adding to the facilities of conveyance, and the beanty of the country.

CLAY SLATE DISTRICT.

IN entering upon a description of this extensive Formation in Nova Scotia, it may again be necessary to remark, that this division of rocks, lies on the north side of the Primary formation, extending like a zone from Yarmouth to the most eastera part of the Province. It occupies a large extent of country, but is often overlaid, interrupted, or alternated by other strata. In many places it rises to the surface, which it occupies extensively.At some points it is in contact with the granite already described; at other places it is in juxtaposition with gneiss, and mica slate. In these instances it may be considered primary. At several localities it is associated with greywacke, and the old mountain limestone, and contaius muncrous remains of marine plants, and animals. The primary slate of Nova Scotia is similar in all its characters and properties, with that found in Great Britain, and has the same Geological relations. Specimens from Gaspereau River, in Horton, cannot be distinguished from others brought from Bangor, in Wales ; and there can be no doubt, that Nova Scotia will produce
\therefore crery
to whi It has inon d cimen a more
I_{1}
will be
ted, be
cerly dia
forms til
Λ_{F}
along the its domin greywad The stra instances are so pla rocks un some viol the neigh perpendic The forming ri of luge b invading rock are is of the age

- crery kind that has been used, for the various purposes to which it is applied. Clay Slate is easily recognised. It has a simple, homogeneous appearance ; and the common drawing slate used in schools, furnishes a good specimen of this valuable rock. The primary varieties: ec a more shining and vitreous appearance than the secondary.

In describing the Clay Slate District, the same order will be observed, in which different localities were visited, begiming at Yarmouth, and proceeding in an easterly direction along the chain of South Mountains that forms the rear, and uninhabited parts of several Counties.

CLARE TO NSHIP.

After learing the Town of Yarmouth, and passing along the shore towards St. Mary's Bay, the slate assumes its dominion, although it is oceasionally alternated with greywacke, guartz rock, and the old momain limestone. The strata of slate are variously inclined, and in some instances much twisted, and broken; but generally they are so placed, as to support the opinion, that the primary rocks under their southern side, have been uplifted by some violent and sudden movement, which has thrown the neighbouring slate in its present leaning, and often perpendicular position.

The quartz rock is elevated above its companions, forming ridges, and mounds. These produce the idea of huge battlements, thrown up to resist the fury of an invading enemy. In some places the slate and quartz rock are intermixed, in others, feldspar makes up a part of the aggregate ; and they form a singular compound,
not tulike feldspar porphyry. Several pieces of asbestos, will filures radiating from a common centre, were procured in reins penetrating this rock. Few boulders of primary rocks, are to be found along the south side of St. Mary's Bay, and those almost certain indications of a flood having swept the surface, and so often observed in other places, seem to be wanting here; as if the ing edients under the soil had enjoyed quiet repose since thay were created. But singular as this eircumstance may qupera, some facts will be related in their proper place, which will perhaps let in a ray of light upon the subject. By referring to the Arbiteau, drawn across from the North to the South Mountains at Digby, it appears that a resistance to :II immense flood was offered, and therefore it seems, that the rocks at Amapolis Gut yielded to its force, leaving. that barrier unbroken.

CLEMENTS.

Between Weymouth and Clements, the great Western Iron Ore bed of the Province commences, followiug its course along the Slate District of the South Mountain range, through the Counties of Annapolis, and probably King's, until it is terminated at Falnouth by the indentation of the River Aron. The ore is crossed by uwo dykes of porphyry, and perhaps others yet undiscovered. The first dyke appears at a place very aptly called the "Joggins," where an immense ridge of porphyry extends like an arm, from the high lands of the South Mountains, crossing the slate at right angles, and dividing the great hed of Iron Ore into two separate portions. It

Woul
vated
very
its oc from
' hornbl feldsp: valuab Scotia thein it $\operatorname{mind} u$ F from th curs un differen ensy re The sla its exit ; This iro although form, at were ob; exposed ously, a and form of consic is hower The sul, well adal compose
would be difficult to determine the dimensions of this ele. vated mass of porphyry, but there can be no doubt it is very extensive. The interruption of the ore is known by its occurrence on the west side of the dyke, several miles from the "Joggins."

This dyke is feldspar porphyry ; its hase is compart hornblende, in which are imbedded white concretions of feldspar. The ancients considered this kind of rock very valuable, and no doubt blocks may be obtained in Nova Scotia, which will vie in beauty with those employed by them in their splendid edifices, pieces of which still remind us of the art of their sculptors.

Following the Slate District in an casterly direction from the dyke of porplyyy, nothing very interesting of. curs until the Bear River is seen, rushing through the different windings in its chamel, produced by the more easy reduction of the rocks in some places than in others. The slate forming the banks of this river, contains near its exit into Ammapolis Basin, beds of the sulphuret of iron. This iron pyrites is generally amorphous, and compact, although a few crystals, presenting the cube its primitive form, and some with the cube truncated on all its angles, were observed. In consequence of the sulphuret being exposed to the atmosphere, it is decomposed spontaneously, and the sulphate of iron (copperas) is produced, and forms an incrustation upon the rock, in many places of considerable thickness. The sulphate thus produced, is however very impure, as might naturally be expected. The sulphuret of iron occurring at Bear River, is very well adapted for the manufacture of copperas, as it decomposes rapidly when exposed to the air and moisture;

8

 ©L.AY SI, ATE DISTRICT.and perhaps at some finture period, when this article may the regnired in the mandintories of the Province, the rocks already mentioned will supply copperas, equally pute as that now innorted from Great Britain and the United Staters.

It may mot be improper to remark here, that the suphoret af iron during its decomposition, prodaces a ereal degree of heat, mad has thos beem, in several instances, : we canse of the spontaneons combustion of coal mines. The temperature of certan wam springs, is also - \quad ppesed to arise from the same camse. We have a spe"imen of this mineral now ugon the table, that is daily sulfering from the oxygen it absorbs from the atmosphere.
'The next locality of interest apears at Clements, :hont there miles from the month of Moose River. Here the sreat hed of iron ore has been penetrated to consid-- mable extent, to supply a smelting fiunare, erected a lew years aro, within a few miles of Ammpolis 'lown; but which has now discontinmed its operations, fiom canses mot Emerally known.
'The bed of ore is ahout nine feet wide, and its conteuts of a good quality ; but as the ore is imtimately hlemed with the slate, which forms its walls to a vomsiderable distance, no distinct line of separation is seen, and its mentarement becomes abbitary. The ore is the magnetic oxide of iron, -ot a steel grey colour, it affects the magnetic needle, and some specinens attract iron filings. It yelds in the smelting limace about fify per cent. of good cast iron. Sthough iron ore is very abundant in Nova Scotia, it does not always oceur in such quantities, nor in such situations, as will offer the hopes of proft to the

Miner hed :11 carth, sellt al quality inharhita any oth II and the We rem diant. ing to 1 terelnatt ceons all piat of those fo: no altel former e such fac should 1 , be disco profusely with pho crystals phosphot instances situation produced tained in The dee corering

Miner ; but this remark will not aply to the immense hed at Clements, for lecing elevated so the surfare of the carth, and situated in "part of the commery whels at presemt abounds in linel to supply firmaces, its thichness: and quatity also considereal, it wonld for inges supply all the inhahitants of America, with an article more use find than any other ever discovered.

It is certainly remarkiable, that imbedded in the ore, and the slate with which it is in contare and intermixad, the remains and impressions of marime amimals ane atmodant. Some of them belong to chasses the most interesting to the naturalist. 'They are the trilohite, follinite, lerebrambite, encrinite, ammonite, and other small ernstiaceons amimals, appearing as perfealy as if they formed a part of those amimals whes they were alive. Bach of those fossils will be noticed in imother place, and althonsh no attempt will be made to solve the theory of their former existence, and present extraordinary sithation, yro such facts as will have any bearing poon the subject, should be accurately detailed. Upon examination it will be discovered, that the internal surfices of these lossils, profusely seattered through the ore and slate, are eminted with phosphate of iron, sometimes in erystals. 'These eystals have been produced by the chemical mion of the phosphoric acid in the shells, with the iron. In other instances the carbonate of iron is seen, ocenpying the situation of the original shell. Also the sulphate of lime, produced by an affinity existing between the lime contained in the shells, and the sulphur mixed with the ore. The decomposition of the amimals, and their crustaceons coverings, must lave been produced by some agent more
powerful than water; and all the phenomena connected with them, can perhaps only he accounted for by allowing that agent to have been heat, the operation of which will now under certain circumstances produce similar effects ; and would also unite the carbonic acid gas, contained in the before mentioned animals, with the lime of their shelly coverings, thus producing the salt so easily discovered in this metallic vein.

To support the arguments in favour of the aqueous origin of the iron ore of the South Momntains, it will be immediately observed, that the marine fossil shells contained in it, are almost sufficient to demonstrate the fact.

From whence came these shells; and by what mighty convulsions and changes in this globe, have their inmates been deprived of life, and incarcerated in hard, compact, and unyiclding rocks? By what momentous and violent catastrophe, have they been forced from the bottom of the ocean, (where they were evidently at some former period placed,) to the lieight of several hundred feet abown the level of the present sea, and even to the tops of the highest mountains? It is not an uncommon circumstance in Nova Scotia, to see the honest farmer ploughing up the ground once inhabited by myriads of living marine animals, although he may not consider that he is deriving his support from the wreck of a former world. But the laborious researches of the Geologist, have explained the causes of these phenomena, which in this Province are so abundantly presented to our noties.

It is evident that the slate and ore containing the shells already mentioned, were once at the bottom of an ancient sea, occupied with numerous species of radiated.
molus a per horizd ground native even i strata almost mals thrown lit ro known observ :hrown which it not corals was als sorted, We wo opinion plain al remains

B ©leme heat, " singular formatic opinion leniable the roc
moluscous, and crustaceens animals, which then enjoged a perfect animal existence, upon a surface placed in a horizontal position. By some mighty revolution, the ground occupied by them has been uplifted, and their native submarine possessions converted into slate, and even iron ore. It has been already observed, that the strata of slate are highly inclined, and in many situations almost vertical. Hence it is impossible that those animals could have been deposited one upon mother, or thrown confusedly into an open and perpendicular chasm th void in the earth; this would have been contrary to known laws, and is immediately disproved by the facts observed. If it be true that the primary rocks have been dhrown upwards by the expansive force of heat, (a fact which modern Geologists consider fully established,) is it not probable, that the bottom of the sea, with all its corals and shells, then resting upon the melted granite, was also thrown upwards, having its strata broken, distorted, and fixed edgewise, in the manner it is now found. We would not enter upon the arguments by which such opinions are established, they are however, such as explain almost all the phenomena of the slate, and its forsil remains.

But again it may be observed, that the iron ore of Clements is magnetic. It is difficult to suppose that the heat, which rendered the bed of iron ore capable of this singular influence, was derived from that attending the fommation of the trap rocks of the North Mommains ; an opinion whicin Messrs. Jackson and Alger consider " undeniable." Had it been received from that source, all the rocks between those mountains and the ore, would
have exhibited the marks of caloric. But such is certainly not the fact; and the trap rocks are placed in a situation indicating a date much later, than even the new red sandstone upon which they rest. If it be true that the primary rocks have been formed, and elevated by heat, there will be no difficulty in accounting for the maguctic promerties of the ore, as that rock is not far distant from the metallic bed.

ANNAPOLIS.

Huge masses of granite, are scattered upon the surface between Clements and Amapolis; they are detached pieces from the Primary Distriet, and often of large dimensions. These masses have not been transported far from their origimal places of abode, as the granite alternating with the clay slate, form the high and broken hills, appearing on the south side of the beautiful sheet of water, at the head of which the Town of Annapolis is built. The granite of this place contains a large share of shiuing black mica, and sometimes the component parts of that rock are collected in such large crystals, as to give it the appearance of breccia. The feldspar entering into its composition is easily decomposed; hence the rock decays, crumbles down, and emriches the soil. How far the granite predominates in a south direction from Annapolis, is not known, but from the appearance of the hight lands, it probably occupies the surface to a considerable distance ; it is certainly inferior to the slate, placed at the base of those peaks, which compared with the argillite in iss channeled appearance, affords a singular and pleasing contrast.
imation from i They Mines, promot
fertile Distric misshap the soil obtaine crystalli earthy detache ness, fo soil in the Co places a

Be
pears in barren h which w Cominty, trap roc of the B:

Let Nera Sc town, w uncomes which :ll Infiy and

At Annapolis it is interesting to observe the approximation of the North and South Mountains, diverging from this place like rays from a common central point. They expand gradually, until they reach the Basin of Mines, where the former terminates in a bold and lofty promontory, and forms the side of a very extensive and fertile valley, to be noticed when the Sandstone and Trap Districts of the Courtry, are considered. Among the misshapen masses and blocks of granite, appearing abose the soil in the neighbourinod of Amapolis Town, we obtained two magnesian garnets, one of which is regularly crystallized, under twenty-four trapezoidal faces. The earthy chlorite of Jameson, also occurs in many of the detached pieces of Primary rock; but from their britteness, few specimens were found worth preserving. The soil in the vicinity of the granite and slate, of this part of the County, is in general luxuriant, although in many places along the side of the Moumtain, it is very scanty.

Between Amapolis and Bridgetown, the granite appears in its proper situation, and forms the abrupt and barren hillis seen on the south side of the beantifin river, which winds its way through the fertile marshes of the County, urging its waters forward to an opening in the trap rocks near Digby, where they are mingled with those of the Bay of Funde.

Let such as doubt the existemee of Primary rocks in Neva Scotia, travel the road from Clements to Britgetown, where the granite not only appears in broken and uncomected masses, but presents a chain of mountains, which almost defies fertility, and marks thir horizon with Iofty and irresular mounde. The date whirh aremma-
mies the granite, sometimes contains chlorite, and in wh: axpected that greywacke wold who appear upon: some of these mountains; we did not bover as observe any of that rock, so common in other parts of the comntry.

Near Paradise River, and in the neighbourhood of Bridgetown, and at a Village called Lawrence Town, immense crystals of smoky quartz have been found from time to tine, scattered among the soil. Sometimes from the decomposition of the granite, the summits of beantiful crystals of this mineral, are seen imbedded on their surfaces, and may be casily extracted. These crystals are whmical with those found at Caim Gom, in Scotand, and hence their nane has been derived. In some instan-re- the crystals appear under the primary form, and present a thombs slighty obtuse; but in general they are six sided prisms, terminated by six-sided pyramids, variously berelled and truncated. Some are almost as transparent a plass, some are of a rich yellow colour, white others hawe that dark smoky shade, which has given rise to the apqullation of smoky quart\%.

Frequently the Farmers in this part of the combry. "hen plonghing their fields, meover these beatiful gens: Herefore it is obrious, that the rock in which they were omre wom dis been broken down, and decomposed. Whilh the erystals from their more rompact texture, have resisted the action of the elements, and remain \because olated. annome the common pebbles of the fied. This kind of yuar\% is amployed in jewellery, and adds mach to thr. besmis of the eabinet.

From Mr. Longley, near Paradise Bridge, we obfainul pats of two large erystals. One of these is a per-

Sect six-s still pres crosswist mehes. in diamet certain p^{x} surface ol crystais o viewed tl ance sing ing scarce them of la out paying years ago of the field ported to the south through a with the el Mountain, ing over th

The degree sup, gin. They could not with, but is splendid sp amine card smoky appe be passed b
fect sux-sided prism, having a part of its he vaedral summet still preserved. Each of the sites monsures wo be a. " crosswise, and the lengil to the top a the prism is seren mehes. A part of the other crystal moasures six inches in diameter, and is beautifully transparent, reflecting in " certain prosition all the colours of the rainbow. Upon the surface of a large piece of the smoky variety, prismatie crystals of schorl, rim in different directions, and when viewed through the iransparent mass, render its appearance singular and pleasing. These specimens are becoming searce; their beanty has increased the demand for them of tate, and few pieces can now be obtamed, with. ont paying down their full value; notwithstanding a few years ago they were piled up among the common stenes of the field, from whence many have been taken and transported to the United States. From Paradise River, Ca the south side of the Annapolis River, the road passes through a flourishing settement. The granite altemating with the clay slate, often appears on the side of the Soah Mountain, forming bold and barren prominences, fromning over the fertile valley beneath.

The above described erystals of quartz, in sorne degree support the opinion, that granite is of igranus or:gin. They are well marked by their regular foriss, and could not be prodteed by any means we are acquainte: with, but by the agency of heat. In searching for these splendid specimens, the mineralogist will do well to examine carefully, for very often fine crystals from their smoky appearance, and the soil that clings to them, may be passed by unnoticed.

NHCDAU.

Pursunati the Slate District in an easterly direction from Bridgetown, the thick forests prevent the Geologist from following the dircet course of the Iron Ore, which donbtless occupies its place among the strata of slate, until it reaches Nictan, where it is again exposed on the surface, afierdiug an extensive and rich supply; and possessing most of the distinctive characters of the ore at Clements. The comimance of the ore is known, from pieces being found at different points between those places; and the ferrugimous soil covering its bed, may be traced a distance of several miles. Boulders of granite may also be observed on the post road, but they gradually becone Iess frequent at Wilnot, and Aylesford. The bed of iron ore al Nictan is ahout six feet and a half wide. It will afford an immense quantity of metal, at less expeuse than it can be procured at many other places, on accoum of its heing divided into cubical masses, and therefore casily broken up. It has but a shallow covering of soil, a large proportion of which is the carbonate of iron. The walls of slate are distinelly separated from the metallie compound, and are not so much intermixed with the iron, as those forming the sides of the bed at Clements. This ore is very similar to that already described. It is the magnetic oxide of iron, possessed of metallic lustre, is of a superior quality, and offers every inducement for working. Several years ago, a smelting furnace was rrected near the spot, and excellent iron is now in use in Comwallis, which was manfactured at that foundry, K has sime been deemed, in constyrence of an influence
said to
This o remain and sla cannot wonde since it moluse perfect ore, wl seen, it possess the gen bling th
'Th as in the cent. of Many G filled by that the, without facts as the Pror both of t filled fro that the contents, whole ex having b shells wh nould be
said to have been used by iron merchants in London. This ore like that at Clements, abounds in marine organic remains, and the impressions they have made in the ore and slate, are extremely beautiful and distinct. They cannot fail to give every enquiring mind some itea of the wonderful changes which have taken place upon our Planet since its original ereation. Millions of shell-fish, of the moluscous and crustaceous tribes, which once enjoyed a perfect anmal existence, have been swallowed up by this ore, where their remains and perfect likenesses are yet seen, in the same natural and symmetrical beauty they possessed when alive. They are almost all bivalves of the gemus anomia, although some were obtained resembling the nautilus disens, and planorbis aqualis.

The shells at Nictan, are as abundant in the iron ore as in the slate. That compound, which yields fifty per cent. of pure metal, also contains those ancient relics. Many Geologists have supposed, that metallic veins were filled by injections of melted matter from beneath ; others, that they have received their contents from above; but without entering into the arguments of either side, the facts as they occur in the great westem iron ore bed of the Province, are such as will in some degree disprove both of those opinions. Had the ore bed at Nictau, been filled from beneath upwards, it seems almost impossible that the shells now contained in it, would enter into its contents, and be scattered promiscuonsly throughout its whole extent. The same observation may apply to its having been filled from above. In either instance the shelts which occupy the walls on both sides of the ore. "ould beare their impressons, or olier betso relicwos
upon it, but could not be mixed among its masses. Wherefore considering those circunstances, and the admixture of the ore with the surrounding slate, it must be belioved that they are of contemporaneous origin.

The Clay Slate of Nova Scotia, in general belongs to that class, called by the older Geologists, transition rocks; as they supposed that those strata were formed at that periorl, when the earth was passing from a chaotic to an habitable state. But however just such opinions may be, it is evident that the strata and ore at Nictau, were formed posterior to the creation of the primary rocks. This fact is not only proved by the shells zontamed in the Slate District, but also by the occurrence of pieces of granite embraced in its strata, shewing at once its later origin ; for it is plain that any substance which encloses another, must have been in action, subsequent to the origin of the thing enclosed.

The strata of slate, and the bed of iron ore, are nearly in a perpendicular direction, extending from south west to north east. It is singular that the stratum of ore makes a gentle curve to the southward, and represents a segment of an immense circle. This fact is obvious on the farm of Mr. Banks, where a channel has been formed eight feet deep, by removing the ore to supply the Annapolis foundry auring its operations.

It is somewhat dificult to account for this circular dircetion of the ore, although it is not impossible that the cruption of a dyke of porphyry near it, may have produced this peculiar circumstance.

About a mile and a half north west from the spot where the iron ore has been exposed, the Nictau Falls
come out of ed at tl turned the lat snug fal and rap
 impossi and a ha power, be requ momntai ages.
not only tion, bu the Cols ore of tl fuel is al ed in er connect cmploye establish so desira diarrow demon of of the P frice 100 It w retards tl but this
come foaming down a narrow and tortuous chamel, worn out of the strata of slate. Several Mills have been erected at this romantic locality, a part of the river has been turned from its original bed, and compelled to perform the labour of sawing wood, and grinding corn. The smug farms and cottages on each side of this picturesgue and rapid stream, render it a pleasant and interesting spot.

Were an iron foumdry erected at Nictan Falls, it is impossible that it would be unprofitable. Only a mile and a hall from the ore, the rapid river would supply a power, more than sufficient to carry machinery that might be required under most extensive operations; and the mountains to the southward, would supuly fuel for many ages. In many coumtries this valuable bed of iron would not only become a source of private wealh and speculation, but also would be considered of vital importance to the Colony, wherever it shoudd be discovered. Near the ore of the Comity of Amapolis, and in a situation where fuel is abundant, a large sum of money has been expented in erecting furnaces, and all those necessary buildings comected with the manufacture of iron. Workmen were employed, the ore smelted, and fomd rich, and the whole establishment commenced with that energy, which seemed so desirable to a country sending abroad for ploughshares, harrow teeth, and sickles. But almost in an instant, the demon of the land spreads out his wings over the treasures of the Province-the fomblry is deserted and sold, at a price too low to be named.

It will perhaps be said, that the high price of labour retards the progress of mamufactories in this Province ; but this cannot be the real difliculty in the present case,
for labour is equally high in the United States, where manufactories are extremely profitable. All the circumstances were doubtless considered beforehand, in regard to the Amuapolis foundry, for they were nieely calculated by Americans themselves. And we hesitate not to declare that the mining, and smelting of the iron ore at Clements, and Nictan, may be as profitably conducted as it can be in any other part of the world. When we lifted the ore from the bed at Nictan, with a space imported from England, and broke some of its masses with a hammer of Swedish iron and German steel, we could not refrain from giving interance to some unpleasant feelings, and lament over a country whose resources seem blighted and forgotten.

Upon the road which extends from Nictau to Liverpool, aud crosses both the Primary and Clay Slate Districts of the Province, we cbserved a kind of Porpl:yry similar to that rock at Clements. This Porphyry forms an extensive dyke, that crosses the strata of Clay Slate, and the iron ore rather obliquely. The direction of this dyke is distinetly marked by its being a little more elevated than the neighoouring rocks, and apparently covered with a different kind of timber. This rock is of a pale blue color, its base is homblende, containing crystals of white feldspar, and the aggregate resembles porphyry brought from Ben Nevis, one of the highest mountains of Scotland. The great growth of timber, and thick underbrush on the road, are obstacles not easily overcome, and their entangled branches prevent any extensive examintations of the rocks over which they are thickIy spread. Athough the hare and fox may pass along in
sately,
inhinur
will an
same in In one place n :Igainst

> Be tached ing a fo tarnishe and it c esen.
and yicl hence it what gua journey reluctant numerous since.
indeed m terest, pi that mine sate cali The yranite,
cre
satery, the hands and fice of man can scarcely escape mbint. Advancing upon the roal to liverpoot, the slate will again be seen, olternating with the granite, in the same manner that it docs at Croghon Kinshela, in Ireland. In one instance Gneiss was observed, and in another place mica slate appeared in large tabular masses, leaniners against the sides of an alorupt mass of primary rock.

The clay slate is stuperior to the mica slate; the granite supports extensive tracts, that only afford pasture for the moose and carriboo which have escaped the hmter's vigilance, and are often seen playing their antic pranks upon them.

Between Nictan and Liverpool, and amoite the detached pieces of argillite, we discovered a sulastanc having a feeble metallic lustre, of a lead grey color, with a tarmished surface. Its streak is metallic fracture foliated, and it corresponds with the foliated copper glance of Jameson. Before the blowpipe it gives the fames of sulphur, and yields a small globule of copper, mixed with iron, hence it may be denominated the sulpharet of copper. In what quantity it exists, is unknown, for a toilsome day's journey had produced some fatiguc, and we, aldhough reluctantly, plodded homeward from a place, which the numerous duties of life, have prevented us from visiting since. The appearance of the sulphuret of copper, was indeed mexpected, and produced at the time much interest, particularly as it is like the beatitul specimens of that mineral found in the mines of Commall, among the slate call d by the miners Killas.

The relation the shate in Nova Sorotia, boldes to the stanite, its smilar direetion and du indications of erep6

IMAGE EVALUATION

TEST TARGET (MT-3)

Photographic Sciences Corporation
per already mentioned, compared with those circumstances, as they exist in Derbyshire, and other parts of Great Britain, will support the opinion, that the Slate District of this Province contains copper, and probably in abundance. And as tin frequently occurs in the neighbourhood of copper, it is far from being improbable, that our uninhabited mometains, and hills of slate, will at some future period, supply that quantity an increasing demand requires. But as the situations where those valuable minerals are deposited, are now covered by thick, unfrequented forests, soil, and decayed regetable matter, and more especially as all stimulus is taken from the inhabitants to pursue useful enquiries of this kind-all the profits arising therefrom, would only fill the coffers of a few individuals who do not reside in the country, and Nova Scotia as a Colony, does not enjoy a share of the advantages to be gained; no investigation is made farther than to advance the cause of science, while those articles which might be raised from beneath our native soil, are now imported at a great expence. In searching for copper anong the slate rocks, much valuable information may be gained, by immersing clean plates of steel or old iron, in the springs, wherever they are discovered; the air will decompose the sulphate of copper, sulphuric acid will be produced, and a new combination formed. The acid possesses a stronger affinity for iron than copper, will unite with the former, and leare the metal upon the plates.
caste
the N
consi
by the
of the granit bound of Hi is affo valley, with tl to the places the arg and sw as in sc the slat tion mi great v

T called colour and is 1 scmbles broken, The sul specific tains the

AYLESFORD.

I. passing through Wilmet and Aylesford, in an casterly direction, the immense valley situated between the North and South Mountains, will have expanded a considerable distance. The slate formation, accompanied by the bed of iron ore, occupies the high lands southward of those Townships; and occasionally an elevation of granite lifts its head above the other hills, marking the foundary of the primary rock. From the country seat of His Lordship the Bishop of Nova Scotia, a fine view is afforded of the liigh lands on cach side of the great valley, and the parallel ridges of slate may be contrasted with the more bold and majestic scenery of the trap rocks to the northward. Near Harris's Inn, and at numerous places in this Township, there are extensive deposits of the argillaceous oxide of iron. It occupies bogs, ponds, ad swanips, varying from one to six feet in deptls ; and as in some situations it rests upon the shallow basins of the slate, it will now be noticed, although its consideration mig!t have been deferred until a view is taken of the great valley of King's and Annapolis Counties.

The argillaceous oxide of iron, has by some been called "shot ore," or "bog ore." In Aylesford, its colour is a brownish yellow; it has a cellular structure, and is perforated as if it had been caten by worms, or resembles the cinders of the blacksmith's forge. It is casily broken, and the recent fracture has a resinous lustre. The surface is friable, soils the fingers, and is ochreousspecific gravity $3.2 \overline{5}$, and according to Bergman, contains the cold short qualities of the metal. In some spe-
cimens lime, and in others the black oxide of manganese has been detected. Like this kind of ore in general, it occurs in low swampy grounds, where it is collecting daily from the stagnant water holding the oxide of iron in solution. This kind of iron ore is common in England, France, and the United States. The ore of Aylesford would probably be advantageously mixed with the ore of Nictau, and although the former yiclds ouly about thirty five per cent. of pure iron, the quality of the metal contained in each would be improved by mixing.

It is evident that the water from which the iron ore at this place, is derived, is impregnated with the oxide of iron, existing extensively in the sands of the Township, through which numerous streams are ever passing, and carrying along with them the decomposed iron sand, and finally lodging it in the lower gromeds. The soil near the margin of the ponds, and swamps, is ferruginous, and not romarkable for its fertility. The argillaceous ozide might be advantageously worked; but as a richer kind of ore can be obtained in a more eligible situation, it is not probable that it will ever be required for smelting, separately from other ores of iron.

The unbroken forests crowning the summits of the South Mountains from Aylesford to Horton, ${ }^{\text {revent any }}$ inspection of their rocks for a considerable distance; but from the scenery they exhibit, and their occurence in a direct course farther eastward from that place, their continuity camot be doubted. A visit was made to English's Mountain, three miles south of the Ammpolis road, where the slate was again observed, and found to alternate with the granite. Still farther southward the
prim
term
the
'The ingro kind
rount west irreg baske ing e inters retrea sition dheir tion, conve isolate round somet King's to inet
miles
of the obstacl
primary rock lorms several abrupt and elevated ridges, terminated by steep and naked cliffs, which add much to the grandeur of the gloomy secnery of a new country. The granite of these hills is very compact and heavy, its ingredients are mixed in regular proportions, affording the kind commonly used for millstones.

A large valley occupying the space between two rounded hills of slate, which rise to the southward and westward of English's Mountain, is covered with large irregular masses of granite, piled upon each like eggs in a basket. Occasionally a sturdy spruce, and a few creeping evergreens, are seen making an effort to live in the interstices of these boulders, and the hare finds a safe retreat in the crevices produced by their disordered position. These masses have evidently been exiled from wheir native situations, by some sudden and violent eruption, by which also rocks of the same kind have been conveyed to those places, where they now appear in isolated blocks upon the surface.

Decomposed slate and granite mixed with sand, and rounded pebbles, cover the rocks in many places, and sometimes to a great depth in this part of the County of King's ; and the hopes of successful cultivation seemed to increase, as we proceeded in an easterly direction.

HORTON.

At Beach Hill, a flowishing settlement about three mules southward of Kentville, the industrious inhabitants of the South Mountains, have removed some of those obstacles from the surface of the earth, which prevent
many extensive examinations from being made in situations farther westward. At that place all the varieties of clay slate (argillite) may be seen. The strata are highly inclined, and in some instances almost vertical ; they run north east and south west, and display all the colours of this kind of rock. Brick red, pale red, brown, grey and several intermediate shades, are here observable in the slate. Its fracture is sometimes undulated and conchoidal, but more frequently it separates into thin plates of equal thickness throughout. Some layers are very brittle, and even friable, others are compact and will hardly yield before the knife ; again, others produce soft tables that can be easily sawed, and cut into any shape. Roof slate (shiste ardoise of Brongniart,) is abundant throughout the whole slate district of the Province ; but at the place just mentioned it is not only plentiful, but can be quarried at a moderate expense, and will equal in quality any obtained at Bangor in Wales. Near Kentville a slate quarry has been recently opened, and the quality of the article taken from it, appears favourable to a more extensive speculation than has yet been entered into by its proprietors.

In opening a quarry of slate, great care should be taken to avoid a situation where the sulphuret of iron appears, for that salt will hasten its destruction, and render it unfit for covering roofs. Also that kind which will absorb much water, should not be chosen, as the action of rains, and frost, will soon destroy it or render it useless for any purpose.

Beautiful specimens of marine fossil plants, have been discovered in the slate at the above quarry. One of these fossils was first discovered by William B. Webster,
M. D., of Kentville ; it belongs to the zoopliyte family, and is considered to be a submarine plant of the oldest formations. It originally consisted of many delicate, divided, and jointed branches, bearing a close resemblance to some species of moss. By some unknown agency, its calcareous coat has been converted into iron pyrites, and a perfect form composed of that mineral still remains in the slate, where it resembles a light bronze painting. This fossil is a species of articulated coraline, and it nearly resembles a kind common on the shores of Nora Scotia.

Besides the coraline, sponges and other aqueous plants, are abundant in the argillite of Beech Hill. We obtained here large plates of slate, covered with the remains and prints of these marine productions, which now resemble paintings of the branches of trees, beautifully displayed in the colours of the carbonate and sulphuret of iron.

It is certainly remarkable, that in these the oldest of the secondary strata, in Nova Scotia, the orgmic remains belong altogether to the sea, and none of the animals and plants of the present carth can be found among them. It may also be observed by some, that these fossil plants and animals are very simple in their structure, and apparently very inferior in regard to organization, to those now living upon the earth. From these circumstances, some have supposed that there has been a gradual developement of animals and plants upon the globe, from the lowest up to the highest grades-from the zoophyte upon the rock, up to the Lord of Creation. But such reasoning must be refuted by the consideration, that the little snail
clinging to the blade of grass, or crawling about with tardy pace, carries with him a machine equally as complicated as that of the lmman system ; and his creation would require as great an exertion of Almighty Power, as that by which man, with all his intellectual faculties, was ralled into existence.

Near the Gaspereau Lake, greywacke appears, forming a part of one of those elevations by which the picturesque scenery of this new settlement, is in many places so beautifully diversified. The greywacke alternates with the slate, and at some spots contains small quantities of transition limestone. About a mile from the Village of Kentville, and upon the banks of " Mill Brook," the old red sandstone crops out, and forms broad and sloping precipices, upon which, and in the neighbourhood of the Village, there are extensive deposits of diluvial detritus, consisting of beds of clay, sand, and water worn pebbles.

Near the banks of the rapid brook, and among the slate, a species of anthracite was observed. The oclorey red oxide of iron, (red ochre,) and the ochrey brown oxide of iron, (yellow ochre,) also occur in considerable veins among the slate. Each of these substances received considerable attention in King's County not long since, and a very industrious individual erected a paint mill, at considerable expense, in order to convert them into pigments. Several buildings in that portion of the country, are painted with those materials manufactured at Kentville : notwithstanding, the enterprise of the ingenious manufacturer has proved unsuccessful.

Before the visitor descends from the South Mountains near Kentrille, let him take a view of the extensive valley
before him. On its north side rise those mountains in basalic columns, which with proud elevation line the coast of the Bay of Fundy, protecting the beantiful and fertile Township of Cornwallis, and all the settememt situated at their base, from the bleak north-wester, so well known, and so little admired in Nova Scotia. Let him turn his cyes towards the western horizon, andi as far as vision extends, the red sandstone supports the soil of the almost level country before lim, while rorks of different classes are thrown up like walls on cach of its sider. affording shelter both from southern and northern galles: and lastly, let a glance be taken at the bustling little Vitlage beneath his feet, and he will admire not only the arand and beautiful spectacle before him, but also the infant town below, prepared to afford lim those refreshments his stroll will have rendered necessary. In the neighbourhood of Kentville, the new red sandstone is in contact with the old red sandstone, the members of the mountain limestone, and coal groups, being deficient. The great bed of iron, represented as occupying a place throughout the whole South Mountain range, has not yet been discovered south of that Village ; lout from the occurrence of detached pieces of the ore, iron pyrites, and the carbonate of iron at Beech Hill, no doubt can be entertained of its minterrupted existence, even farther eastward than that place.

Upon the road extending from Kentville to Sherbrooke, after passing across the slate formation, and at ridge of greywacke, the granite of the Primary District again appears. At some places that rock alternates with the slate ; but in general it occupies large tracts, forming
a part of that elerated chain of hills, extending almost dhrough the country, in the direction of the slate, its companion.

Upon the New Canaan road, and before the hill is aseended to that heautiful settement, the clay slate was discovered to be in contact with the new red sandstone. This sandstone of the marly group, is the margin of that rock which underlies the soil of the beautiful and extensire valley previonsly noticed, and again to be considered when that formation is described. The slate contimues on the road about three miles. Its strata are nearly rertical, and display all the varieties of texture and color scen at Beech Hill. About midway in New Canam settlement, the slate is met by greywacke, and greywacke slate.

In the greywacke and greywacke slate of New Canaan, we were rather surprised to discover the remains of the encrinite, and tribobate, identical with those found in the limestone of Germany. It has been asserted by a celebrated Geologist, that this species of the encrinite only occurs in the old mountain limestone; but he would be surprised to find it in the greywacke of this country, and also in the iron ore. It is a strong argument in favour of the contemporaneous origin of slate, greywacke, and iron ore of the Province, that they contain similar organic remains throughout. Extending from one extremity of the country to the other, a certain number of strata contain the relics of animals belonging to the same epoch, and exhibiting the same characters wherever they are found.

One of the fossils mentioned is called the lilly en-
crinite, from its resemblance to the lilly resting poon is stalk. It is supposed that the animal resided in the base of the flower, and those portions of it which were moveathle, stood stretched out like arms to seize its prey. In the greywacke at New Canan this fossil animal apparlike the lilly with its capsule and petals closed. 'Thar part resembling the flower, is heautiflly figured and indented on the surface, and throughout the whole of its body. From the base of the flower proceeds the stall, Which sometimes penetrates the rock to considerable distance. 'This stalk is composed of circular rings placed one upon another, like the windpipe of some fowls. In one specimen those rings are perfect and regular ; in another every fourth circle is colarged in its circunference. When a section of this singular fossil is polished, it has the appearance of the sun-fish. The serrated edices of the petals meet each other, forming a zigzag line.After a section of the stalk has been made, it exhibits a cellular structure, and in some instances, dark rays proceed from a central circle to the circumference. The circular rings forming the stalk, give it the appearance of a necklace; hence the fossil has been called enerinitis moniliformis, or necklace encrinite. The remains of this animal at New Canaan, will be distinguished by its white appearance, and the imitative figures it presents. It is often of large dimensions ; some were procured diring our last visit to their stony graves, as large as watermelons, althongh in general they are much compressed, and have been flattened by the weight of the rock resting upon them when in a soft state.

This species of radiated anmals is now altogether
extinct, and many ages have passed by since a living sfecimen could be produced. It has never been diserstered in any of the strata placed above the new red saudstone, and as it does not appear but in few of the older strata, the whole race must have enjoyed but a short existence, when every individual belonging to the family was deprived of life, and cemented in a solid mass of the greywacke ; or in other instances so perfectIy destroyed, as to leave no record of their existence and history.

In the same rock which embraces the encrinite, a -pecies of the trilobate appears. This fossil most frefuently exhibits an hexangular cell, once oceupied by the living mimal ; each lobe has left two sides impressed in the rock. From the peltings of the rain, and other ranses, the intemal parts of the fossil have been worn, and scooped out, leaving its crustaceous covering a faithfill witness of its former existence. They are not numerous, and vary in size from one to two inches in length. When a new fracture of the rock is made, two or more of their lobes are sometimes uncovered, each having a furrowed appearance. Like the encrinite, the remains of this singular animal have not been discovered in any strata newer than the old mountain limestone, therefore numberless ages must have passed away, since it became altogether extinct. The trilobate has been called the Dudley Fossil, and is found near Birmingham, and other parts of Great Britain ; Germany and Sweden have also an abundance of these fossil creatures.

In some situations, myriads of these animals once snjoyed life, so that it has br:" presumed that their pon-
er's
ers of multiplications have been prodigious. But few enquiries respecting the chancter atsa mabits of these ancien animals, have been made, and an acomate accome of them can scarcely be expected. At what period in the history of this globe were they created? What nemendous revolution placed them in their present situation: And by what means were they converted into compact, ponderons rock? are questions few can answer with satisfaction to themselves, or with safety for the reputation of their common sense, to others.

The seenery in the settlement of New Caman, is extensive and pleasing. Besides a view of the great valley seen from Beech Hill, we have here to the south west, deep ravines with steep banks, beneath which winding chanuels are formed, giving passage to torreuts of rain, after they have descended, and washed the oval summits of the hills. It is true there are no elevations of great height in this neighbourhood, but the earth is diecply furrowed by the upturned ridges of slate, and offers a landscape, singularly diversified when contrasted with the level appearance of the Sandstone District, over which the lofty peak of the frowning Blomidon, may be seen ready to fall into the beautiful Basin curling at its base. By turning the eye southward, a long low depression will be perceived ; here the Gaspereau River, laving taken its rise from a large lake, rolls on from eataract to cataract, or murnurs among the strata of slate, where it is compelled to pass.

From Kentville to the Church at Wolfville, the new red sandstone is probably in contact with the state; although the large collections of rounded pebbles mixed
with sand, and occasionally beds of clay, cover the rocks so decply, that their relation to each other could not be easily discovered. When the soil - the collection of allurium deposited on the south side of the Cornwallis River - the industry of the inhabitants, and the facilities afforded to narigation at Wolfville, are considered, it is not surprising, that that pleasant and flourishing Village, should increase with a rapidity seldom equalled in the Province. But as those remarks apply better to the historical than the Geological account of the country, wo must refer our readers to Mr. Haliburton's excellent History of Nova Scotia.

Near the Church at Wolfville there is another dyke, that in a few places has been uncovered by removing the earth for repair of the roads. It consists of a reddish coloured granite, which may be examined in the fields near the mansion of the Rev. Mr. Clanke. This dyke was traced to the margin of a vast collection of alluvium called the "Grand Pre," and in a southerly direction, until the decp hollow of the Gaspereau River oftered some proof of its termination. It is not improbable that this granitic ridge separates the slate of the South Mountains of Horton, from the sandstone succceding it near the entrance of Horton River. Millstones of a good quality were formerly made of the granite appearing near the Church, and they might yet be quarried and cut here, as cheap as at other places.

It was hoped that a discovery of the great western iron ore bed would have been made on the South Mountains of Horton ; but, although every indication of its existence there was seen, we have been mable under
very is er suced 110111 SOI', than at W
separ figurat the ey tion aucien Grey Horto of fos: They coal fis

Slate its trib their Falmo whole directic minatio mation.
very limited inspection, to gratify our wishes. The ore is eridently discontinued at that spot where the slate is suceceded by the grey saudstone, on that part of the momtains where the road passes from Horton to Windsor, as the sandstone is of much more recent formation than the slate containing its bed. The ridge of granite at Wolfillle, may perhaps be on the same line which separates the slate from the sandstone. 'The whole configuration of the comutry in this Distriet, running with the eye along the granitic ridge, and the supposed jurction of it and the sandstone, presents the idea of an ancicnt shore, from which the waters have retreated. Grey sandstone of different shades, occupies that part of Horton castward of the Windsor road. Sevcral pieces of fossil plants have been found near "Lyman's IItll." They are of the fern tribe, and similar to those of the coal fields of Cumberland.

A sudden and extensive interruption is made in the Slate District of Nova Scotia, where the Avon, with all its tributary streams, issue from the country, and pour their waters into the Basin of Mines. At Horton Bluff, Falmouth, and on the road to Chester, including in the whole a distance of twenty-five miles in a southerly direction, no slate appears, so that a decp notch or termination in its strata, is occupied by a more recent formation.

From Falmouth Bridge the Avon will be seen, extending its branches with many curves and windings, into the momtains of slate, appearing again in comection with the granite in a south west direction. From what has been already observed, it must appear probable, that
the bed of iron ore, accompanying the slate formation, from Clements to Nictau, and from thence to some part of the high lands of Horton, is finally cut off somewhere in that Township. For admitting that it follows a direct course, which is evident as far as our discoveries have extended, that course is nearly north east : wherefore, the ore must necessarily terminate somewhere in the Horton Mountains, where the slate itself ceases to continue its course.

It is impossible that the ore can occupy a place throughout the whole length of the South Mountains, as far as Pictou, and according to the opinions of Jackson and Alger. For as the sandstone succeeds the slate in Lower Horton, Falmouth, and Windsor, and the latter rock is withdrawn many miles farther southward than its former range, the ore to continue its course would have to penetrate freestone, limestone, and gypsum, or dip beneath the waters of the Basin of Mines, and again rise in the slate of Pictou. But these are things impossible, although not more so than that the ore should make the necessary curve at Windsor River, diverge to the southward fifteen miles with the slate, and still have its continuance uninterrupted. Indeed the facts already known, and thus briefly stated, are almost sufficient to prove the final termination of the great western iron ore bed, somewhere in the Mountains of Horton.

The sturdy forests covering large portions of the counties of Hants, Lunenburg, and King's, where the Indian hunter alone travels the bleak and gloony moun-tains-where the tracks of the moose and carriboo direct him from ravine to ravine, urging lim forward to the
conc
conquests of the chace-where the hollow sound of the woodsman's axe, and his cheerful whistle, have never echoed-where the bear and wild cat stalk fearlessly, regardless of man and his destructive habits,-here the labours of the Geologist are almost uscless, and from thence the naturalist longs to return to the haments of men. Even here we discovered fine specimens of lead ore, scattered along the bottom of a rapid brook, where thry had been conveyed by the violence of the stream.

ARDOISE HILLS.

At Ardoise Hills, an opportunity is agnin afforded for the examination of the slate. The strata rom north, 5 s e east, deviating a little from their general direction throughout the Province. The old ronte of the Windsor Road, is much more interesting than the new, as the later has been made without consulting the wishes, either of the Creologist, or those who are fond of picturespue scenery. The new road has heen made along the lower lands, so that stecp hills are avoided, and a more safe, casy and comfortable commmication to the Capital, is aftorded. The slate of these hills has little variety. Specimens of iudurated talc sometimes occur, but not often. About a mile to the westward of the old roart, roof slate of a good puality might be quarried to advantage. On the most clevated summit of one of these hills, a telegraph was formerly erected; but a general and prevailing peace, and the improved state of the roads throughout the Province, have been the canse of its abmonment; and that lofty pole, which once bore signals of
the higinest importance to the country, now lies prostrate, umoticed and forsaken. Like many a loyal and brave subject, to whom every eye was turned in the hour of danger, who was faithful to the demands of his king and country, the lofty pine is now stripped of his honours, fallen and forgotten. From the site of the ancient telegraph, a most extensive and beautiful scenery is presented. The Townships of Rawdon and Douglas, appear like large English parks. The spot where Windsor is builh, is easily recognised, although the forests intercept a view of the Town. The winding Avon, Fahnouth, the North Mountains, and the Basin of Mines, are all seen of a fine day; the latter appears like a large lake, while the bold momontory of Cape Blomidon, stands drooping over the placid waters spread out before it. The soil on the hills is meagre ; its lighter and richer particles are swept from their sides by torrents of rain, which often descend uposs the mountains with great violence.

RAWDON.

At Rawdon the slate exlibits all the varieties noticed at Kentville. Formerly, roofing slate was quarried in this 'Township ; but the spot where it occurs is too distant from the Basin of Mines, or any navigable river, to render its exportation profitable.

The great difficulties of pursuing Geological exaninations in this pait of the country, on account of the thick forests on the surface, have heretofoie hindered those particular researches, which it is hoped, will before many years, be instituted. We know however, that the slate is
met by the new red sandstone, on its northern side, and that the latter rock forms both sides, and the bottom of the Basin of Mines.

Greywacke, and greywacke slate, accompany the argillite, cross the Grand Lake, and the road between Halifax and Truro, and continue eastward through the high lands of the Township of Egerton, to the liills of Antigonish, and Cape Breton. Nor docs the slate terminate at that place ; still farther eastward, and in contact with granite, it lifts its strata among the mountains of Newfoundland.

PICTOU.

In the District of Pictou, and twelve miles south east from the thriving Town of New Glasgow, there is an immense bed of iron ore, at a place called McLellan's Mountain. Leaving the great coal field of Pictou, and ascending this momtain, the scenery becomes suddenly changed, where the elevated ridges of slate, and greywacke slate are travelled. Instead of the low, and rounded summits of the sandstone hills, the older formations start up before the eye; lofiy ridges of slate, separated by deep ravines, are seen far south, and towards; their termination.

In approaching the great Eastern Iron Ore bed of Nova Scotia, from the westward, the meagre condition of the soil will indicate a change in the underlieing rocks, and numerous strata \rightarrow a fine red coloured state, cross the road a short distance from the ore. The bed of irom is about eighteen feet wide, and is enclosed in walls of

60

sreywacke slate, with which the ore is not intermixed, in the way it was observed at Clements. The strata of slate, and greywacke slate, as well as the bed of iron ore, are highly inclined, and extend north 65° east. This great deposit of the iron has bcen opened, and a quantity of its contents removed to the Albion Mines. Its direction can be traced a considerable distance on the surface, and it may be observed extending across a small farm cleared on the spot. The ore is generally of a reddish brown colour, and when recently taken from the quarry, jossesses considerable metallic lustre. Its structure is slaty, and powder red. We could not discorer that it had any magnetic properties, and therefore it is different in this particular, from the ore of the western part of the Province.

This ore is a peroxide of iron, and will yield about fifty-five per cent. of pure metal. Like the ore of Clements and Nictau, it abounds in marine organic remains. The ancient shells are white in the newly raised orc, and consist principally of the carbonate of lime, occasionally united to a little of the phosphate. Upon exposure to the weather the lime becomes gradually decomposed, and beatiful impressions of the shells remain in the metallic compound. At the time of our visit, a small field of wheat had been sown directly over the bed, and the soil was made up of small pieces of ore, and the red oxide of iron. The numerous fragments of this field abound in the remains and impressions of the inhabitants of the sea, which are now placed several hundred feet above the level of the present ocean, and are ycarly exposed to the movenients of the plough and hoc. These
reme may field. mile: whic
simil organ each neath with
so per it is e and w Althot vein o from t the ro vince, from 1 terebra Of the and the the ring Mount
remans are also abundant in the greywacke slate, and may be collected among heaps of stones piled in the field. Numerous fossil shells were observed several miles from this place, and in the greywacke slate, of which an industrious farmer had crected a wall.

That the ore and greywacke slate were formed under similar circumstances, there can be no doubt, as the organic remains in both are alike, and plainly prove, that each of those now solid substances were origimally beneath the waters of some ancient occan, once swarming with testaccous animals.

The organic remains at McLellan's Mountain, agree so perfectly with those of Clements, Nictau, and Horton, it is evident they were the inhabitants of the same period, and were amihilated by the same terrestrial revolution. Alhough we are not prepared to admit, that the metallic vein of Clements and Nictau extends the whole distance from those places to Pictou, there can be no doubt that the rocks, ore, and shells, at each extremity of the Province, have had one common origin, and were elevated from the sea at the same time.

The shells contained in the ore of Pictou, are the terebratulite, pectinite, cardium elongatum, and cnerinite. Of the latter, several portions of the cylindrical tubes, and the flowering tops were obtained ; the former have the rings perfect, and resemble those firom the Horton Mountains.

We have no desire to enter into nice theories, as it is foreign to our wishes, and the object of this work. But this enquiry may be made. If the slate district of Nora Scotia were formed at the bottom of an ancient
ocean, (a fact which is plainly proved ly its organic remains,) is it not possible that the different layers of slate, greywacke, \&c., might have been successive deposits of sand and argillaceous particles, which formed the submarine surface? And might not the extensive bed of iron ore have been a deposit of iron sand, of which the Isle of Sable, and Bauks of Newfoundland, furmish now vast quantities? When we consider the extensive disruptions of the primeval world, even these results appear more than probable.

It has been already stated, that a quantity of iron ore had been removed from McLellan's Mountain, to the smelting furnace at the Albion Mines; but the reader will perlaps be much surprised, that instead of working the ore of the Province, iron in pigs, is now imported from England, and used at the Pictou foundry, and in the immediate neighbourhood of an inexhaustable store of that metal. An enquiry was made, why the ore of Nova Scotia was not used in preference to the imported metal, and we were informed, that the ore of this Province, is too rich for manufacture, and would not "run" when melted. The richness of any ore, is generally the last objection against its use, and complaints are more frequently raised against its poverty. Nor can it be possible that this is the real difficulty in the way.

It is true that the phosphate of lime, and alumine contained in the ore of Pictou, may render the process of smelting somewhat different from that of materials containing none of these substances; but it camot be supposed, that the scientific gentlemen of the Mining Association, are unacquainted with the chemical properties of the ore, and the proper fluxes for its reduction.

It is to be regretted that any of the mineral resources of the conntry remain inert, and its productions yield no profit or advantage to the Colony. This subject certainly deserves a more scrious investigation, and should arouse the spirits of those to whom it properly belongs.

Four miles from the ore at McLellan's Mountaintwelve miles from New Glasgow-at Mr. Fraser's farm, and on the East River, a quantity of hematite has been discorered, and detached pieces of that peculiar kind of ore, are found along the beautiful settlement upon that stream. It has been stated by Messrs. Jackson and Alger, that near this place, "a bed of brown and red hematite was discovered, about twenty feet in width ;" but their information must have been derived from an incorrect source, for the Mining Association have expended a large sum of moncy in seeking a vein of that rich ore, of which none has yet been found, except in masses scattered over the fields; and among the soil. This hematite exhibits both the red and brown varieties. Its structure is fibrous, and apparently crystalized. It appears in globular, botryoidal and columnar masses, also in beautiful concretions, having a rich silky appearance, not rivalled by any specimens brought from Bohemia, or lancashire. Sometimes perfect geodes are formed, in which there are white and delicate crystals of arragonite, and sulphate of barytes, in small tabular plates. The grey oxide of mangane: also appears attached to the hematite in small cuscre ans, and in acicular crystals. The mangancse associated with this ore, affords a circumstance that should be particularly considered, when it is used at the furnace, as the process of smelting should
agree with the chemical effects it will produce. It is prohable that the hematite at the above place, is conneeted with the great bed of iron ore, although we were mable to trace any such comection, as the surface in many places is closely covered with lofty trees, and thick underbrush.

Greywacke and greywacke slate appear on the south side of Antigonish, and on the shores of Chedabucto Bay. The latter occupies the east river of Merigomish, and extends to Arisaig Pier, where it is penetrated by a bed of porphyry. At Guysboro the greywacke contains reins of the specular oxyde of iron. It is also believed, that there are ores of lead on Salmon River. The Indians, it is said, formerly made their bullets of lead found among the hills of this part of the country; and as they refuse to make their discovery known, we regret that we have been unable to extend our examinations so far as might perhaps disclose the secret.

As the old mountain limestone succeeding the slate in the District of Pictou, is comected with the great coal basin of that place, it will be considered when a description of the coal fields in general is introduced.

General Remarks on the Slate District of Nova Scotia.

In reviewing the preceding remarks made in regard to the Slate Formation of Nova Scotia, we are often reminded of those obstacles which, in many instances, prevented a perfect examination of its rocks, and those associations between different classes, that are not only
necessary to be known, hut may he usefully employed by such as may pursue the investigation of this subject to a greater extent.

Often, having been worn down by the fatiguce of a milsome day, have the expectations of the discovery of some important fact, kept our spirits allive till the setting sum has given the signal to depart. Nevertheless, from the observations already recorded, and a comparative view of the Slate District of Nova Scotia, with those of Eugland and Wales, and without venturiug to reason from analogy, it will be safe to affirm, that that portion of the Province which is oceupied by the slate, comtains ores of the most nseful and important kinds ; although their full discovery may not be made until some future period, when the fetters now binding Mineralogical enquiries in Nova Scotia, shall be taken off, and when other ohjects than those of a scientific nature, shall stimulate the spirit of Geological enquiry.

In every instance the slate will be found above the granite. In some situations gneiss and mica slate (which belong to primary formations,) immediately succeed the granite. In other places, greywacke is interposed tortween these rocks and the slate ; but wherever the gneiss, mica slate, and greywack, are absent, the argillite and granite are in immediate contact. Hence that beautiful harmony existing in the arrangement of those rocks in other comatries, is preserved in the structure of this Province. In the granite, gnciss, and mica slate, not th. smallest vestige of the remains of any organized substanc: has been discovered, and not the least doubt can remien in the mind, that they were formed, or at least their ma .
terials were created, prior to any kind of plant or terrestrial being. Although the granite is one of the oldest rocks with which we are acguainted, it must not be presumed that it is always placed at the lowest level, for facts prove the contrary. In Nova Scotia, it is seen at the tops of the highest mountains; but wherever it uppears under such circumstances, it seems to have been thrown upwards by some great force; for the secondiry rocks found in the valleys formed by the unequal eruption of the gramite, are seen sticking by their sides in the greatest possible confusion. It would be absurd to argue that the slate of Nova Scotia, was formed in a mame: similar to that of the granite; the separate and distinct strata, or layers, separated by parallel lines, and the fossil animals contained in them, added to a variety of other circumstances, not necessary to be detailed, will satisiactorily prove, that it was originally a submarine deposit. Wherever the slate and other formations approach the primary rocks, their strata are turned up in an almost perpendicular position ; and as we recede from the more original structure, so the strata of the slate become more inclined, and approach that level from which they have evidently been thrown.

The slate of Nova Scotia in general belongs to that class of rocks called by the older Geologists, transition ; tirat it is among the most ancient of the secondary strata, is evident from the following facts. It is in many instances, placed directly upon the granite, and encloses detached pieces of that rock. Its strata are broken and disiorted most, in those situations where it meets its plutonic neighbour. In it organie remains first begin to appear,
intil is
thave
Aml
and its relics belong to species now altogether extinct, or have descendants resembling them only in zopical seas. And lastly, as the fossils it embraces, belong altogether :o marine tribes, so far as present discoveries extend, it is mot inpossible that they may have existed previous to the creation of those super-marine plants and animals contained in the overlieing strata.

It is doubtless among her slate, greywacke, quart\% rock, and old momntain limestone, that Nova Scotia possesses her rich and valuable ores; and although the newer of the secondary strata contain copper, and oxides of other metals, they probably have been derived from the more important deposits of the older rocks, and will never vield that profit which may be received from the older deposits. When the situation of our lead mines is discorered, silver may be expected ; but imtil that metal is found, and that in considerable quantities, we must remain satisfied with the discoveries already made, and such as a liberal policy would encourage.

Before leaving the consideration of the Slate District, another important enquiry arises from the fact, that frayments of slate, rolled masses of quartz rock, and even granite, are not only found upon the surface of the new red sandstone, but enter its composition at a great dephlt. Now the debris of the slate and other rocks, of old classes, must have been made while the newer sandstone was becoming deposited, and consolidated ; and the shape of the fragments thus observed, demonstrate that they have been transported by the efforts of mighty currents. Again, the sandstone itself has also beef under a similar influence, which must have been exerted long since the
materials entering its composition had been accumulated. Hence it is equally easy to prove the occurrence of similar causes having operated upon the earth's surface, at separate and distinct periods of time. One period has produced the ingredients of the newer rocks, which in their turn have been evidently denuded by the rapidity of overwhelming floods. The effects in both cases are similar, and appear wherever the eye is turned. Is it possible that the first great catastrophe arose, when the earth emerged from bencath its waters, at its first creation, before which "darkness was upon the face of the deep"? Is it improbable that another Geological event, may have produced another class of phenomena, at that period when the " windows of heaven were opened, and the fountains of the great deep broken up"? Or, have all these changes taken place by the influence of causes now operating upon the surface of the earth? Perhaps that instead of fixing all the mutations which the earth has undergone, upon one class of causes, the whole should be taken into consideration; and the effects now exhibited upon the globe, are quite sufficient to allow each of them a due share of power. It is here natural to enquire, in what direction those currents flowed. Some have supposed, that in Nova Scotia they rushed from the southward towards the north, on account of the boulders of granite being found northward of their native beds; but this argument proves nothing, as the trap rocks of the North Mountains are often found upon the southern hills, and rocks of almost all classes, are discovered in occasional blocks all over the country. Now it is evident that all currents of water will in some degree be governed by the
dated. simice, at d has ich in dity of are sils it en the cation, deep'"? ay have d when untains these operatinstead ergone, ken into oon the a a due in what pposed, uthward granite out this c North Ils, and casional that all 1 by the
surface over which they pass; hence the direction of hills and mountains, formerly existing, will prevent us at the present day from determising accurately, the course pursued by the waters that produced those effects. Again, those currents were liable to become changed duriug the subsidence of any flood, by the alteration constantly going forward in the channels over which they passed. But by no means however, are we to suppose, that the granitic boulders placed upon the summits of the highest hills, and particularly in the neighbourhood of Halifax, were carried thither by the above means. Λ flood would have had a very different effect upon them, and hurled their shapeless masses into the valleys above which they are now loaged. 'They have doubtess been thrown upwards, and left cresting the lighest ridges, by volcanic explosions that have taken place since the general inundation of our planet.

Besides the disturbance the slate has suffered, from the eruption of the primary rocks from beneath, as it is supposed, there appear to have been other causes in action, that have had a powerful influence in breaking asunder, and carrying away large portions of its already broken strata. Large masses of that rock are often observed far from the locality where they belong, and from which they have been removed. Sometimes detached pieces of its strata are found upon the surface of the newer rocks, and promiscuously scattered over the soil covering the red marl group. In this respect they are like the boulders of granite, affording so much speculation among Geologists, but can in no way have their transportation so well explained, as by admitting fully the
former occurrence of powerful currents, that carried away not only loose materials, but also tore up even the solid strata themselves. In the valleys, ravines, and basins formel by the very unequal elevation of the strata of slate, beds of clay, sand, and water-worn pebbles, were frequently observed. The clay consists of different layers, placed horizontally. The parellism of these laycrs, with the variety of their colours, resemble those produced by dissolving clay in water, the most ponderous and coarse particles will fall first in the solution, the lighter atoms last, so that layer after layer will appear in the bottom of the vessel containing them. Each will be conuposed of particles similar in their dimensions, the smaller ones succeeding the greater in every instance. Therefore it is reasonable to conclude, from a knowledge of these facts, that those beds of clay have been deposited from a flood in which they were once suspended.

It is well known, that rocks broken by mechanical means, have their edges and angles left sharp and prominent. But pieces of rocks having been exposed to the rapid currents of rivers, or the constant motion produced among them by the violence of the waves upon the sea shore, have their angles and edges broken off, and thereby vecome gradually rounded, bearing the appellation of water-worn pebbles. The pebbles found in the basinshaped depressions of the slate, are of this description, and have evidently assumed their oval appearance, from attrition in water. Again, the smaller particles broken from larger fragments, would contribute greatly to the production of sand, of which there are vast accumulations. These remarks do not only apply to the District already
described, but to the Province generally, where even greater proofs of a general deluge may be observed. In regard to the soil resting upon the slate in Nova Scotia, it is generally fertile: wherever the rocks yield easily to frost, rain, and the action of the atmosphere, it is very luxuriant, although not well adapted for roads and bridges, on account of its claycy nature, and easy solution in water. Like the Primary District, the argillite abounds in lakes, which often form chains to considerable extent. In the deep valleys formed by the upturned strata, the waters descending from the mountains collect, and from them camot escape, affording a safe retreat for the salmon, gaspereau, and trout, to deposit their ora.

RED SANDSTONE DISTRICT.

It was before observed, that if a line be drawn from Amapolis to Antigonish, and a curve made in the direction of Windsor River, all the remaining part of the Prorince might be called the Red Sandstone District. We hall describe this Formation, following the same course in which its examinations were made. Beginning in the western part of the Province, the sandstone first makes its appearance at the head of St. Mary's Bay, in the County of Annapolis. At that place it forms an isthmus, uniting Digby Neek with the South Mountains. A beautiful and sublime sectic" of the sandstone, will be seen on the west side of that isthmus. The elevation of the
tides, and violence of the sea, have undermined the rock, which has been broken up, and washed away, leaving an extensive and nearly perpendicular front, averaging from an hundred, to an hundred and thirty feet high. This precipice is called by the inhabitants the "sea wall," a very appropriate name ; for were this barrier removed, the waters of Amapolis River and Basin, would make a more ready escape into St. Mary's Bay, than at the narrow opening called Digby Gut, through which a narrow passage has been forced, while the sea wall just mentioned remains unbroken. The sandstone is red, grey, and light blue, variously intermixed with those colours. The coloured varieties appear in the upper strata, while the layers beneath are miformly red. The strata run in a north and south direction, falling away at a low angle. They are of different thicknesses, varying from a few inches to six feet. A few veins of reddle, or red chalk, are interposed between some of the strata, and in one instance it might properly be termed red jasper, having been apparently consolidated by heat, and capable of bearing a good polish.

The red sandstone at this place, is the beginning of an extensive formation, which reaches from Digby through the Counties of Annapolis and King's, underlieing the trap rocks of the North Mountains, throughout their whole extent ; and cropping out beneath the lofty Blomidon, it forms the eastern shore of King's County, upon the Busin of Mines. In this part of the country, it forms a long narrow belt. It rests upon the slate of the South Mountains throughout its whole formation, except in a few places, where the old mountain limestone, and old
red sandstone are interposed. Upon its northern marein the trap rocks have been placed, forming a resistance Which seares the country from the adrances of the tide: and turbulent waters of the Bay of Fundy. At Blomidon, and many places along the north shores of thos. Comuties, the sandstone is seen juting ont bencath the trap, but at so low a level in general, as to suffer but litue from the waves that fall with great violence ? plom the coast.

The sandistone forms the botton of a long narrow and heantiful valley, extending from Anmapolis 'lown to the Basin of Mines. The Northand South Momains depart from each other at a small angle, as they extend casterty, and consequently the great valley between them, hecomes wider in that direction. At Amapolis 'Town, the North and South Momtains meet ech other very nearly, athd seem only to be separated at that place, by the river passing between them. White at Wolfville, it will be abserved how far they have receded from each other, by the breadth of the almost level land, placed between Blonidon and Horton Church.

The great valley thas produced, resembles a louy entrenchment, dug out of King's and Annapolis, by the work of art, and reminds us of the bottom of sone ancient river, whose waters have been withdrawn. The rocks oecupying this great valley, belong to the red marl group. The slate of the southern hills, dips bencath these rock: wherever they have been discovered to meet, thereby affording the best evidence of its greater antiguity. No beds of gypsum, or rock salt, have been discuvered in the saudstone of those Counties: numerous nareon weins 10

74. RED SANDSTONE DISTRICT.

of the former, have however, been fonnd in the strata beneath the trap at Blomidon, and several other situations where the rock has been exposed. In these places, snowy and fibrous gypsum frequently occur, with large and beautiful plates of selenite ; but all these varieties decline, and finally disappear, in proportion as the rock in which they are placed, approaches the slate to the southward. 'The sandstone is composed of siliccous parlicles, and oxide of iron, mited by an argillaceous, and sometimes calcarcous cement. It is used by the inhabitants for the purpose of building fire places, and under priming ; although no pains have been taken to open those useful quarries, which are abundant, and would supply the best materials for erecting their dwellings. In this formation numerous quarries might be opened, and in situations afording all the facilities for exporting those valuable freestones that might he raised from them. Care should be taken to excavate a rock that would resist the frost and vicissitudes of the weather, and to sclect an agrecable or fashionable colour, for a sufficient number of shades can be obtained, from brick red to dark brown, to accommodate such as choose to have a choice in these things. The rock is easily hewed into cubical masses, when recently quarried, hut gradually becomes harder by being exposed to the heat of the sun. Like the strata at St. Mary's Bay, those forming the walls on each side of the Basin of Mines, fall away gently to the southward, notwithstanding in many places they are moch broken and disturbed.

Small shining particles of mica, frequently appear in some of the uppermost layers ; these from their brillian
apparance, have led to a supposition among some of the honest firmers, that silver is at hand. But although that precious metal is certainly very scarce in the Province at present, the time may soon arrive, when it can be obtained from other commies in exchange for those very rocks, in which some suppose it is now mixed. It is curious to observe the similarity between this formation and that constiluting a part of Lancashire, in England ; both apparently repose upon slate, and possess sinular Geological relations. The ancient castle of Hawthornden, near Edinburgh, with all its dungeons and vaults, having resisted the action of the elements, will shew the durability of our freestone, heing built of similar rock. In Nova Scotia this group of strata contains few organic remains. Such as have been discovered in Morton, and Comwallis, resemble reeds, and other plants common in low grounds ; nor are they well preserved, and thercfore yield few sperimens of interest to the fossil hotanist. 'The soil covering the valley already mentioned, is in general extremely fertile, producing abundantly all the plants common to this, and even warmer climates. As the North Mountains shelter it from chilly winds, and also scrve as a refractor to the rays of heat emitted by the sum, it offers advantages seldom rivalled in any country. On the cast, this valley is emriched by the Rivers of Horton and Cornwallis, where large collections of allmvimu have been made from the decomposed sandstone and shate, ever suspended in the waters of the Basin of Mines. The red sandstone affords the dark red marsh, while the blue kind is made of decayed vegetahle matter and shale, the latter being conreyed from the northem coast. Both the praticles of
sundstone and shale, are much afiected in their transportation by prevailing winds. A northerly breeze transports the blue particles from Parsborough shore, and an easterly gale urges forward the crmmbled sundstone of Horton and Comwallis. llence those fertile streams not only ronvey the surplus waters of the country, but receive trasures of alluvimen from the sca, which are always accomulating, to the great advantage of its inhabitants. 'Io the westuard the Amapolis River not only pertorms these common and inportant operations, but also affords a channel through which the protuce of its fertile banks can be readily cxported. We have already mentioned the irregular blocks of gramite of this section of the comtry, and the minerals they contain. The boulders of Nora Scotia have also been noticed by Professor Buckland, in vindicating the doctrines of the Flood. 'The plains of the north of Europe, present the same phenomena. The level lands of the Po, and Danube, also contribute their testimony, that those isolated rocks now lodged upon the soil, have been wansported from primary situations, by some propelling force, mknown upon this present world ; ahhough it is almost certain that they are the effects of an overwhelming deluge, which at a former period pro. duced those results now so manifest upon the earth. Not only has the granite sent its heralds-abroad, large blocks of trap are also scattered over the soil of Nova Scotia, far from their original and former stations.

A large collection of sand in the 'lownship of Aylesford, furnishes still further testimony favourable to Professor Buckland's views. Wine siliceous particles, oecasionally intermixed with iron sand and seales of mica,
cover the rocks of that 'Township, between the mountains and over a considerathe space. In some pares this sand is quite compace, and arranged in layers of difierem colours ; some layers are composed of fine particles, and others of coarse materials, and even small prebles. In general it is casity broken up, and greaty diminishes the rapidity of travelling. The inhabitants, aware of these circumstances, frepuenty change their ronte from side :o side of the turnpike, as the harduess of the soil dictates, and the long parallel ridges of grass between the pathways, testify how mumerons those changes have been. The effeets produced by currents of water, are very manifest at that place, where many ridges and momuls of sand have been thrown up. In making the roads, advantage has been taken of these ciremistances, and the bogs and swamps have been aroided. It is not poossibie that this sand has been produced widnon the breaking down of the rocks loy the before mentioned canses; the similarity in its particles to those composing granite, and secondary strata, offers an argunent in tarour of that opinion, and the arrangement of its lagers shews, that it has been moved by a current of water. In Aylesford there is also an extensive barren waste, called the "Carriboo Bog," covered in many places wilh peat and turf. Some have supposed this bog was formerly a lake, but the nmerous elevations upon its surface do not support that opinion, and it is more probable, that a collection of unproductive sand has been made in a kind of basin, where it refuse. to supply sufficient support for the towering pines now flourishing upon its border.

WILMOT SPRING.

In the 'Township of Wilmot, and about three miles from Gihbon's Inn, there is a mineral spring, possessing medicinal properties of considerable importance. When the discovery was first annonuced to the public, mumerous were the persons who being afflicted with different diseases, hastened to the waters, then supposed to be the elixar vitte, and quite sufficient to remove all the ills " the flesh is heir to." 'The languishing and consumptive patient, he that knew the thirst of a burning fever, the gonty, and rhemmatic, the serophulous and bilious, all sought the cure thas cheaply offered to relieve them. Wihout reference to the nature of their diseases, and at every stage of their complaints, they hoped and vainly hoped to obtain relief. In the midst of the forest, the little Village near the pool of this motern Bethesda was all bustle and confusion, while many for the want of accommodation, were obliged to depart not healed. Few of those comforts could be procured, which the invalid repuires, and those conveniences so necessary at all watering places, could not at the moment be obtaincl. Many and great were the cures reported to have been made by the spring. Newspapers teemed with its praises, auid its virtues were said to be such as would even restore amputated limbs. But experience, that faithful schoolmaster, snon proved that its powers were not sufficient to remove all the ailments of its visitors ; hence the Wilmot Spring is already abandoned, and its name is seldom spoken. So changeable and unsteady is public opinion, the idot of the clamonons and the goddess of radicalism.

Perhaps there are no circumstances in which man is ever placed, that the is mere liable to be duped and misled, than in those comnected with his own bodily inadth. Of his own disease he supposes he knows more, but really knows less than of almost any other subject he considers. From these causes quackery has hitherto been supported, and will continue its pretending and mysterious ants, to the inginy of sound knowledge and disgrace of society. Were the mineral springs of Wilmut surrounded by the gay and pleasant secnery, united with the cheerfil socicty of the European watering places, its waters would be found at least equal to many of those celebrated resorts in other commies ; and even now the time is not far distant, when the public mind will react, and many find relief at the deserted pool.

The waters of the spring have heen analysed by Dr. Webster, of Boston, and were found to contain-

Iodinc,
Lime,
Sulphuric Acid,
Magnesia.
They will doubtess be beneficial in all scrophous and glandular diseases, and probably in the first stage of tuburcular consumption. They are gently aperient, and camot fail to be serviceable in dyspepsia, and other discases of the digestive organs. This might be supposed from their composition, and has been confirmed by experience.

HORTON BLUFF.

Emerging from bencath the lofty precipice at Cape Blomidon, the new red sandstone forms the shores of the eastern side of Cormallis, and those of Loug and Boot Istands. At Horton Bluff it is met by a grey samdstone atternating with shale. On the west side, and near the month of Windsor River, there is a stratum of light grey sandstone, well adapted for buildings. In the detached masses of shate and sandstone frequently falling near that place, we discovered the remains and impressions of plants, some of which are like immense rushes; others have the appearance of the iris or common blue flag. 'These plants have suffered great compression among the rocks, lut still show the most perfect stony casts of their origimals. They seem to have flourished in low grounds, and are quite different from those frequently foumd in other parts of the country.

In the greywacke slate of the South Mountains, fossil amimals belonging to the sea, are abundant; but not the least vestige of any plant belonging to the dry land, has yet been discovered there. On the other hand, the sandstone succeeding the slate at Horton Bluff, contains plants belonging to species like those now growing in low and swampy grounds; hence its later formation seems well proved from this circumstance, without considering its position on the more ancient rock. It is a little singular, that even the grey sandstone between Fahmouth and Horton, where it is elevated more than three hundred feet above the Bluff, has disclosed pieces of perfect fossil Conifere, of harge size and great beaty. This plant was
ceidenty produced upon dry soil, where it might have flourished at the same time when the agneous plants upon He shore, were rustling upon the border of some ancient hake, amh possessing the same sitmation their several hatits required.

WINDSOR.

The red stundstone occupies the low lands of Falmouth and Windsor, extending through Donglas, alous the south shore of the Basin of Mines, and borders of the Shubenatadie river. At all those phaces it contains muncrous and important beds of gypsm, (sulphate of lime,) and limestone, the former afordine an inexhanstable soure of commerce, and the latter yielding the agriculturalist an abundance of the best manure. The gypum is largely exported to the United States : and althongh it atfords but a small profit to the carrier at present, the time is alvancing when it will hecome of national importance, and open a new source of Provincial wealth.

In many situations throughont this prart of the country, the gypsum appears in prominent masses above the soil, forming conical clevations, which often give the surface a very picturesque appearance. In some instances it occupies meven ridges, passing through the country to considerable extent, or with steep precipiees forms the banks of rivers, from whence it is cheaply removed. On the St. Croix River, it constitutes an elevated wall, reaching sereral miles along the nothern sidle of the rapid ctrom. Wherever it ocen's the surfare is irmendar, or
undulated ; and in those places where it forms the shore of the Basin of Mines, like the sandstone it suffers from the steady dilapidation produced by the waves, and rapid tides.

The gypsum is evidently contained in the sandstone, which throughout its whole formation belongs to the red marl group. Between the projecting masses of plaister, there are frequently cylindrical cavities, called ly the miners "kettle holes." In these the bones of quadrupeds have lieen found. The skeleton of an Indian, and some of his rude hunting implements, were also taken from one of those pits, into which he had probably fallen, during the rapidity and heedlessness of the chace. These relics are prescred in the muscum of King's College, at Windsor. 'The chasms amb other openings in the rocks, are frequently filled with decomposed gypsum. Its colours vary from grey to dark brown; its appearance is mealy, and whon damp it soils the fingers. The soil also, in maur phaces, is mixed with this substance, which does not in the least increase its fertility. In the interstieres between the gysum and limestone, the naturalist would donbtess find a reward for his labours. It was from one of these singular openings, that we took a large tonth of a graminivorous animal, not belonging to any species now living: lut the expense of clearing away the rublish would be considerable, and has heretofore been an olyjection not easily overcome with limited funds. 'The sulphate of lime thus briefly noticed, contains many varieties of that mineral, some of which are beautifully erystalized. It ofien mencloses broad foliated masses of selenite. 'This saricty yields easily to meelanical divi-
sion in the direction of its Jamina ; these when broken crosswise have a rhomboidal form. Its lastre is sometimes highly splendent and often pearly ; it is generaliy transparent, and sometimes coloured with delicate tints of red and puple. Snowy gypsm, hrancly gypsum, and other varieties, frequently appear ; mong them is the compact gypum, generally called abaster, suitable for buildings.

The extensive beds of secondary limestone alternating with, and frequently passing into gypsum, in this part of the Red Sandstone District, extend from Windsor to the east side of the Shmbenacadie, and from thene in an easterly direction to Antigonish. The limestone is often separated from the gypsum by beds of marl, chay, and the decomposed rocks. It forms hills with oval sumnits, which are readily distinguished from the broken and irregular ritges of phaister. It contains myriads of fossil shells, which, in many instances, appear to compose the rock altogether ; from this circumstance it has been called shell limestone. These remarks not only apply to the limestone of Windsor, but also to the whole of those valuable deposits of that rock, in the red marl group of this section of Nova Scotat. Withont referming to the usefulness of the limestone for building and agricultural purjoses, it will appear obvions what an modiminishable sturce of trate is contained in the commery, particularly when the comparative seareity of gypsum in the United States, and the superior guality of that mineral in the Lrovince, are considered.

The dmericans are so well cominced of these factos, that sume of their enterprising individuab have purchased
an extensive quarry, and are now erecting mills to reduce it to that state in which it is used in their own country.

The group of rocks to which we have referred, are simiar to those forming extensive portions of country in England, where vast coilections of rock salt have been discovered. No such collections of that valuable mineral have however been found connected with the sandstone of Hants Comily, notwithstanding the saline properties of a spring near Windsor, afforl sone evidence of its existence there. Of all the shells contained in the limestone before mentioned, bivalves are by far the most numerous. Several kinds of coral have been collected, and a species of the mytilus lithophagus. The later has given the rock the appcarauce of having been worm eaten. Excellent specimens of some of these fossils, are found near the Town of Windsor. In France this kind of limestonc has produced some singular phenomena. In Provence, between its layers, and upwards of forty feet below the surface, pieces of columns, and stones partly wrought, were found ; handles of hammers, and wooden tools, a board one inch thick and seven feet long, were also obtained, having been converted into perfect agate. Indeed, should we ever feet disposed to seek the bones of the fossil clephant, mastedon, or hyena, the chasms and fissures in this limestone would receive the earliest attention.

It has been already observed, that the encrinite of the Gouth Mountains, has long since ceased to exist, and none of the fossils contained in the slate, have living successors in these northern latitudes. Not so with the shells of this limestone, they have yet some represen!atives upon our shores, bearing the distinctive characters of then ancestors. puld we ephaut, is lime-
inite of st, and e living

It is certainly interesting, that in this part of the country, each class of rocks as they succeed each other, should contain fossils peculiar to themselves, and of species admirably adapted to that period of the earth's history, in which their separate strata seen to have been formed. At Kentrille, the ancient articulated coraline is found compressed in the slate; in the greywacke slate that succeeds it at New Canaian, the encrinite and trilobate are fossilated in the compact rock, but have long since disappeared in a living state from the earth; while the beds of limestone at Windsor and Douglas, contain the relies of cockles, like those now inhabiting the shores of the Basin of Mincs.

Among the limestone in this part of the Red Sandstone District, and espeçially in the neighbourhood of the Shubenacadie, the sulphuret of lead, and the cobaltic sulphuret of lead, one of its sub-species, are sometimes scattered in small crystals through the rock. 'The sulphurct is of a lead grey colour, and appears in small lamiuated masses, having a metallic streak and lustre. Its crystals are curiously disseniuated in the limestone, but too small in quantity to offer any profit for working them as an ore of lead, allhough it is almost certain that an important vein of that mineral, is somewhere concealed near the Shubenacadie. The cobaltic sulphnet of lead resembles the sulphuret, both in its situation and external chandeters. It is, however, more rare, and may be distiuguished by its decrepitation before the blowpipe, and the hhe colour it communicates to boras.

These ores of lead may be mistaken for the micaceous oxide of iron, which atso often appears in beanti-
ful tabular ciystals in the secondary limestone of the Province. But a little examination will distinguish them from the ores of iron with which they are sometimes mixed.

MONTAGUE RIVER.

Ar Montague River, and not far from where that winding strean is emptied into the St. Croix, there is a very singular hill of breceia and greywacke passing into each other. Irregular fragments of feldspar and quartz, with occasional seales of mica, compose the aggregate, which at a distance resembles a coarse saudstone, or a peculiar kind of gramite. The strata rom north east and south west, dipping to the northward at a small angite. In its neighbourhood there is some beauiful scenery, well known at Montague House, a pleasant summer retreat. This hill was perhaps formed prior to the red sandstone, and might have raised its head above the sea, forming a small island, during the formation of the surromading rocks.

From Montague River, through Rawdon to the Shubenacadic, the meeting of the new red sandstone and slate was observed only in a few places, as the thick forests prevent such examinations as would lead to a discovery of their junction to any great distance ; nor were we able to ascertain in the township of Rawdon, whether any of the members of the old red sandstone, mountain limestone, or coal groups, are ilaced between the granite and the red marl sroup.

SOUTII SIDE OF THE BASIN OF MINES.

If the south side of the Basin of Mines be examined, it will be found to consist of the members of the new red sandstone, or red marl group, occupied by beds of limestone and gypsum. Between the river Aron and the Shubenacadie, those beds appear at many phaces. The gypsum is quarried and exported to the United States, and the limestone has been often conveyed from Tony Cape and the Black Rock, at the entrance of the Shubenacadie, across the Basin, for the purpose of making mortar ; but recent examinations have discovered limestone abundant in Economy and Londonderry ; and thus an article formerly procured at a great expense, can now be obtained cheaply by the iuhabitants along the north side of the Basin. The specular and micaceous oxides of iron are often seen between Cheverie and Noel Bay. They are however mimportant in a l'rovince where iron is abundant. Not so with the sulphuret of iron, which also appears along this shore, and in a sufficient quantity to supply manufactorics of copperas.

The several rivers and ereeks along this inland coast, afford shelter for vessels, and greatly inerease the natural advantages this part of the country possesses, in regard to shipping botli its agricultural and mineral productions. Probably the inhabitants of King's County, would receive their lime at less expense from Tony Cape, than from the Horton Mountains, should it be discovered there ; and it is hoped that they will soon become acquainted with its fertilizing properties when used as a manure: by its use, many of their meagre and barren fields, might be conserted into luxuriant meadows, and produrtive pastures.

SHUBENACADIE RIVER.

From the entrance of the Shubenacadie, and directly across the country to Halifax Harbour, there is a renarkable channel formed in the sandstone, and the beds of limestone and gypsum that accompany its strata. In this rhamel the Shubenacadic conveys the waters of the Stewiack, St. Andrew's and Gay's Rivers, into the castern extremity of the Basin of Mines. On the north side of the Grand Lake, the red sandstone is met by the greywacke, and slate of the transition series. These rocks also have the continuity of their strata broken, and a chain of lakes reaches along this deep and wide excavation, even to the Harbour of Halifax. Having examined the strata of geywacke, greywacke slate, and quartz rock, both on the ϵ ast and west side of these lakes, their strata were found to correspond, having the same direction, dip, thickness and composition, on each side of the valley where they are placed. The same remarks may be applied to the banks of the Shubenacadie ; and it is evident that no other cause than the action of running water, has worn out the deep fosse through which that rapid river now passes.

The materials that at some former period filled the channel of the Shubenacadie, have been swept out, and now constitute those extensive sand banks and shoals, so troublesome to such as navigate the eastern extremity of the Bay of riundy. Again, there can be no doubt, that the great opening in the Slate District, corresponding with the bed of that river, has been forced out of the solid strata by a mighty current. This seems evident
from the masses of broken rocks that may he still seen northward of the slate formation, and exiled from the strata to which they belong. That this deep and expanded bollow in the comntry, is in reality a great "valley of demudation," we have not the least doubt ; although our limits are too much confined, to bring forward all the testimony in farour of that opinion.

It was along the lakes and river, of this valley of demmation, that a Canal was proposed, and a vast sum of money expended, to open a commmication from the head of the Basin of Dines to Halifax. Notwithstanding Nature had abready done so much, and had given a suliicient hint to the imbabitants of the comtry, to complete what had been almost finished without the work of art, the undertaking as yet, has failed, but whether from the want of science or suficient fimds, we do not decide. Canals are much inferior to rail-roads, and as the latter are extended yearly, and their uility known to surpass every other kind of conveyance, it is probeble that instead of the tardy process of drawing boats by mimal strength, that rail-roads will ere long be seen crossing the Provinee, imder the pressure of the locomotive engine.

The banks of the Shubeatacadie present a superficial soction of the rocks belonging to the red sandstone formation, and af. yrd the Mineralogist several rare and beautifill specimens. The limestone and gypsum form beds of much importance. The former abounts in marine organic remains, corals, sponges, and a great variey of mollusrous shells, of which we have collected upwards of forty diferent species ; almost all of these are now extime in this climate.

Along the eastern side of the river, several detached pieces of brown hematite, (hydrate of iron,) were observed. Sometimes this mincral presents beautiful imitative forms, particularly the botryoidal, and coraloidal varieties. In one instance we fomed the liematite associated with crystals of arragonite ; any considerable quantity of the ore was not however discovered, although a collection of it may yet be found in the neighbourhood. The red and brown oxides of iron, often appear in veins in the limestone, and would supply a sufficient quantity to justify the manufacture of the ochres for paint. But among the numerous productions of the Shubenacadic, the intlications of lead are important. At one situation, and about four miles from Fort Ellis, in the bed of the river, we discovered a vein of the sulphuret of lead, an inch wide ; but the time and expense necessary for making any extensive cxamination of its quantity and situation, were obstaclee not easily overcome. In another instance, argentiferous galcna, in a small quantity, was procured from a fissure in the rock; this ore contains a small proportion of silver, and almost the first indications of that precious metal we had observed in the country; but the quantity of any of these interesting and valuable ores, and the situations they possess, are at present almost unknown, for we were compelled to leave the banks of that rapid stream, without being able to make the discovery future enfuirers may be fortumate enough to enjoy. Sulphate of barytes, in laminated crystals, often appears comected with these ores of lead ; this circumstance is very favourable, notwithstanding the appearance of the ore in secondary formations, for the barytes is wenerally exhibited in rich mines.

Sull pursuing an casterly direction, the red sandstone gromp contimes its comse to Antignisth, where it contains mmerons beds of limestone, imel occasionally sypsum.

TRURO ROAD.

'Tome red sandstone formation reaches as fiat somhwath as the notll side of the Grand Lake, Bron the Trmo Road. Near the Lake, and at Mr. 'Tremain's farm, both the gypsum and limestone beds appear similar to those already described at Windsor. Near Nine-mite River, Key's farm, Gay's River, and Stewiack, we fomed the limestone and gypsum abundant. At Giay's River, the plaister is dark coloured, and singulaty figured with sams of jet black erystals. It is however, of a good quality, and when calcined equally as white as the paler varictics. Near Sibley's there are long parallel rielges of slate, of a good quality, and which, as before observed, appear like islands elevated above the sandstonc. Λ large collection of yellow sand crosses the road, and the detritus of the delage is every where manifest.

Among the limestone at Gay's River; the sulphuret of lead also appears in small narrow veins, or is seen scattered in brilliant erystals among the layers of the rock; and it is probable, hat a laborious examination of dhis section of the comery, would be rewarded by the discorcry of a valuable vein of that uscful ore.

Ihe organic remains contaned in the limestone at the above flaces, beiong to manime tribes: bivalves, the cornm innmonis, zouplyters, of different species, and
spomges, are abmadant From Filmonth to Stewiark, following the course of the red mat group, eastwardly, the calcarems rocks abomed in fossil stictis belouging to the same familics, and cloarly proving that they have had one common origin.

Ghamal Rember, wn the somph She or that. Red Sumstone Bestriet.

GBRywakb, and greywacke slate, aphar on the Souh River of Amigumish; it may also be seen an Guysboro, and formug both sheres of Chedabueto Bay, wher it allemates with the primary rorks. Farther morthard the red mate eroun ocempes the surfice. 'The eypsme, limestone, and sild springs of Antigmish, denmine the Chametere of is stratio, and are equatly important ats the collections already noticed. We megen hat we hase been mable to make in this portion of Noma Scotia, amy axtensive rxaminations, but domb not that its mincral resoures are great. It is hepeed that a Geological surver of the comatry will soon be mate, and a full deseription siven, of every portion of the Province. It is howerer cortain, that at Antigonish, as well ats at Picton, :umb many ofter phaces along the castern shore, lhere are innmense beds of rock salt, from which muncrous saline springs artise. Donbtess these beds migh be opened, w supply British America with an article now impored from other cometries. The waters from an munber of theos springs have been cxamed, and by the great quantity of the murate of soda (common sall) they comain, we ar warranted in the ofinion, that the collections implegnatins
thero arre at hand，some of which might be opened and worked，as profitably us those of Nantwich and Northwich in Eingland．

Neither the ores of lead nor the salt，mincrals of the areatrst importance to the cometry，have been songht for any lather than as ohjects of natwal history ；nor is there any hepe of reward for such as might be willing of devote Hu ir labmens to the discovery of those vahable mines rontaned in the commtry ；and should any useliol discor－ eries have been made，what is the promised reward for prothas years of hatd labont？It the Province of Nova Soontia received the adrantages to be derived from her own mines and minerals，it is hoped there are few who would not disclose any information which might advanee her welfite ；but a palsy rests uon Minctalogical discov－ cries，and her resonres are sealed up．

Hitherto we have endeavoured to give a briel des－ reption of the minerals contaned in the sonthern part of the Sindstone District，－Laken some notice of the organic manans it embrates，－and the testmony it brats of hav－ ing becn buried by a general deluge．Each of these suh－ jects tecus with useful and interesting matter，and would be jursued by the details comeeted with them，were the limits of the description of their outline more extented．
＇The fertility of the soil covering this group of rochs， hats been already noticed ；but before we proceed to call any attention to the gencral resources of the Province，it may not be considered muecessary to give a hint to such F＇anners as are located in the neighbourhood of linestone． and point out some of the advantares they possess to ler－ tilize their meadows，and emrich their arable fiedd．Be－

9)

sides referring them to the excellent Letters of John Young, Essquire, who has written scientifically upon the subject, we would endeavour in the most plain and unaffected mamer, to bring before their notice, a substance seldom used in the Province, and one which is generally abundant, wherever the lime rock appears. We mean marl, which not only fills cavities and hollows in lime surata, but also frequently oceupies deep basins on the surface of the earth. The red sandstone often includes within its group, beds of indurated red, blue and white clay, argillaccous and calcareous marl. The most important of these to the agriculturalist, are the marls, occorring in many places and in several varieties. Compact limestone passes imperceptibly into marl. In Nova Scotia, the limestone enclosed in the superior strata of the red sandstone group, agrees in most of its characters with the lias limestone of Great Britain, although some of its organie remains seem to be mulike those of the calcareous formations of the Mother Comntry. Marl is generally composed of the carbonate of lime and clay, mixed in different proportions, alhough sand and other foreign ingredients are often present. Indurated marl is casily cut with a knile, its fracture is carthy, and the colours are white, brown, grey, yellow, \&c. Eartly marl differs only from the indurated, by being more loose, soft and friable; both kinds frecpuently pass into each other. All the varieties of marl effervesce in the acids, hence it may be casily known by placing a small quantity in contact with nitric, sulphuric or muriatic acid, or mixing it with strong vinegin.
'These varictice of the carbonate of lime, are as nd unafubstance gencrally fe mean in lime the surincludes nd white most imarls, ocCompact ova Scoa of the ters with ne of its alcareous generally mixed in reign incasily cut lours are rl differs soft and crl. All ce it may a contact ig it with
are
tremely uscful in the improvement of soil, the fertility of which depends much upon the proportions of siliceous and argillacous earth it contains ; therefore to employ matl judicionsly, the farmer shoud be made aequainted with the different chemical agents entering into the composition of the : l he cultivates. The beds of marl occurring, coir .. ' with the limestone and eypum, and extending ove a considerable portion of the Province, are of great practical value, and should be employed without delay. From the limited description thas given of that useful substance, it is hoped no dificulty will be found in discovering all its varicties; but for its particular application, some good work on agriculture should be consulterl.

That part of the red sandstonc formation, which lies along the north west side of the Slate District, after begiming at St. Mary's Bay, and following the course of the South Moumtains, docs not terminate until its layers, like those of the older formations, are buried beneath the waters of the Gulph of St. Lawrence. The gypsum and limestone, do not however, accompany the sandstone thronghout its whole extent. They are altogether deficient in the great valley of Annapolis and King's Courr'es. After having been deposited in numerous situation ; at Windsor, Newport, Rawdon, Douglas, and the bruks of the Shubenacadic, they decline in the neighbourhood of Pictou, where coal, a more important article, supplies the secming deficiency.

The organic remains contained in the slate, throughout the whole range of its distorted and vertical strata, from Yarmouth on the west, to the Gut of Canso on the
east, are in some degree miform in their characters; and evidently possessed an existence at one and the same time. However different that ejocl: may have been from those which have suceceded it, the same kinds of marine phants and amimals appear in the slate at both extremities of its layers; and numerous as they indeed are, they doubtess had an existence coeval with the original stratification of the slate, where they are forever rendered ineapable of either multiplication or decay. They were the inhabitants of the same age, enjoyed similar hounties, the same climate, and were companions at a period when the waters of the sea were as warm as those of the present tropical oceans ; a fact easily proved by their organization, and the beanty and delicacy of their shelly coverings. The rorals, coraline, sponges, and other vegetable prom ductions of that period, athough bearing a striking resemblanee to those now flourishing in submarine situations, have nevertheless some peculiar characteristic features, distinguishing them from species of the same classes now inhahiting our shores, alhough their lincal descendams have long since passed away. Lgain as we ascend the scale of superposition, the limestone of the sandstone formation, contains numerous relics of productions belongings to the shores and bottom of the ocean, with species of shells and zoophytes like those still living and moving upon the coasts of this iuteresting country. Without seeking further testimony, these circumstances are perhaps sufficient to prove, that the red sandstone of Nova Scotia is a recent deposit, and was formed long since the strata of shate had been the graves of myriads of plants, and animals, belonging to an earlicr period in the history of our plamet.
ers ; and the same ecu from of marine tremitics are, they nal stratidered inhey were bountics, iod when de pesent anization, overings. table prong resemsiluations, features, asses now scendants scend the sandstone ns belongth species Hil moving
Wilhout re perthaps ova Scolial 1e strita of ul aminuals, firr plane

The new red sandstone in Nova Scotia, never attians any considerable elevation, and the slate towering far above it, dips beneath the soft and marly covering of the rountry; and also rising from bencath, forms some of our most elevated hills. Is it then impossible, that long after the slate had been thrown upwards by the expansion of the granite, the sandstone might have been formed at the bottom of a sea then covering the mumberless marine plants, and animals, now folded up in its strata? Might not the beds of limestone formenly have been coral reefs, which as the sea retreated, became more compact, and now furnish the surest evidence of their former growh ? The relics of plants and animals in each of those classes of rocks, afford the characters of an history written by time itself. Here we neel not fear the partiality of the historian, nor the secrecy with which human affairs are often conducted. Here great and important events in the history of this globe, have been faithfully recorded, by once living wituesses to the momentons catastrophes that have taken place ; and their remains are yet preserved for our use, that we may be able to form higher conceptions of the sublime works of our Almighty Creator. By these imperishable records the cobwel) theories of many ancient Geologists are torn asmeder, white modern opinions, supported by facts alone, not only confirm the faith of their believers, but lead them to enquire into circumbstances hitherto unknown.

The practical value of the gypsum must be manifest. It already forns an article of commerce, and its demand will increase yearly. Scattered along the whole coast of the south side of the Basin of Mines, upou the banks of
navigable rivers and creeks, throughout an extensive portion of the country, the gypsum can be quarried and shipped at a low rate; and from its inexhaustable treasures supply the whole world with an article, which, in many places, will render the barren sand a fruitful soil, and the parched ground a productive field. Morcover, the best kinds of freestone may be quarricd in many parts of the Red Sandstone District, should it ever be required, and the snowy white alabaster, with several variegated kinds of that beautiful rock, may be procured for the designs of the sculptor, among the beds of plaister so common in the country. These at least will serve to ornament the dwellings of those who rise with the progress of civilization, and keep pace with the march of refinement.

Before this part of the subject is given up, the attention should be directed to an opinion common in the Province : namely, that gypsum is not beneficial to our soil, while in many parts of the United States it produces abundant crops. We have instigated several experiments and made many observations, to ascertain how far those opinions are correct, and give the following as the result of our enquirizs. In those situations where the plaister forms the ratural rock of the country, the soil to considerable extent in every direction, is decply impregnated with he gypsum, and often in the immediate neighbourhood of the rock, the soil is so completely surcherged with the sulphate of lime, that sterility ensues, in the same manner as if the ground had been manured too higtig. In the latter case however, the manure gradually diecays, and the earth is fimally left fruitful for a definite period. But ied and reasures in many oil, and ver, the parts of equired, ariegated for the aister so serve to the promarch of
the atin in the al to our produces keriments far those he result plaister to consiregnated iglibour. rcherged the same tiy. In rays, and od. But

In plaister districts, the decomposition of the rock is always going forward, and its influence is exerted from year to year. Let the sulphate of lime be applied to soils more distant from the rock, and where none of its particles enter into the mixture upon the surface, and the same effects will be produced in Nova Scotia as in other countries. Hence in many parts of the Proviuce, plaister would be found extremely beneficial as a manure.

Wherever beds of gypsum and limestone have appeared throughout the country, collections of marl of greater or lesser dimensions, lave also been noticed. Our limits will not therefore allow a particular deseription of each of those collections, and this bricf outline has only been given to arouse the attention of the farmer, if possible, and direct him to those valuable deposits of manure, that may perchance be placed on his own lot.

A deposit of the purest white marl occurs in the Nine Mile settlement, four miles from the Shubenacalic River. It was discovered by the Revd. Robert Blackwood, who kindly forwarded specimens containing shells. This mart is of a pure white colour, and when dry falls into a !ight powder containing a large quantity of the carbonate of hone, and will, if skilliflly used, greatly enrich the soil to which it may be applied. This marl is mentioned more particularly on accomnt of its shells, which arc in a good state of preservation, and very interesting ; being similar to speeies foumd in the lias limestone, and lower members of the oolite group, in England. Anong them is a species of ammonite rescmbling the emomphatus pentangulas.

Wherever the red sumdstone is nut covered by mere
superficial deposits, or diluvium, its disintegration is continually advancing, and the superimposed soil partakes of its constituents and colour. Hence the reddish hue of the soil is a certain indication of the rock beneath. When the sandstone is contiguous to limestone, it becomes marly, or calcareous, and very muddy after light showers of rain. Beds of clay are often deposited on the members composing this group; the soil then becomes argillacious or argillo-siliceous. In numerous instances has the decomposed gypsum entered so extensively into the superficial covering of the rocks, as to render it sterile : and not a little skill would be required to preserve such proportions of these materials as are necessary to the support of plants. In some parts of Devonshire in England, the soil is so red, that the sheep driven from them are known by the colour of their fleeces. A similar observation may be made of those animals grazing on the red soil of Nova Scotia.

A few cold and unfruitful patches, do indeed occupy the sturface of the rocks under consideration ; this circumstance arises from collections of diluvial sand, and meagre clay, of which they are often composed. In such places lime, and marl, are of great value, and would quickly arouse the torpid covering of the earth, into healthy and fruitful action. These observations have been made from a number of situations where their subjects were manifest, and it is evident they may be applied far beyond what has hitherto been brought to our view; for in the infantite state of the country, it is impossible to mark the bomendaries, and the soil that covers them.

The shells appearing in these rocks, certainly difier lhe of When ,ecomes showers e menes argilces has into the sterile : ve such the supEngland, henı are r obserthe red l occupy circum1 meagre dh places quickly lithy and ade from manifest, what has infantile boumda-
in some particulars, from those of the lias formations of other countries, and therefore we lave hesitated to apply the term lias, to the compact carbonate of lime, appearing above the 1 2d sandstone of Nova Scotia, until more accurate information can be obtained, or the character of the rock fully cstablished, by those who are better qualified to decide upon its relative age. The beds of indurated and eartly marl, clay, \&c., seem to agree with the under oolites in Great Britain, and contain the same, or similar relics of the great London and Paris basims. Among these relics we discovered a large molar tooth, belonging to the manmalia tribe, and the jaw-bone of a species of shark. These remains, few and insigniticant as they may appear, open a new source of enpuiry in this country : they clearly testify that even here, not only numerous tribes of shell-fish have been inhumed, but fish and land animals have been buried in the common overthrow. The diluvial deposits on the south side of the Sandstone District, are similar to those covering older formations. In some places they form collections of great depth, in others they are altogether absent.

COAL FORMATION.

In dividing the Country into Geological Districts, it was necessary to refer to the rocks of the Province, only as they appear at the surface generally; and not to the strata often covered by more supericial deposits. The
new red sandstone in Nova Scotia, covers tie coal measures to a great extent; notwithstanding the breaking through, or outcropping of the sandstone, limestone, shale, and clay iron-stone, belonging to the Coal Formation. Therefore, having examined the new red sandstone formation, so far as it is unconnected with the carboniferous strata, it is now necessary to examine all the Coal fields of the Province, so far as they have yet been discovered ; and at the same time take some notice of the red marl group, so frequently placed above them. Hitherto this group has been considered where it rests upon the slate, old red sandstone, and mountain limestone; therefore, when we arrive at that point, where it is separated from those rocks by a most important and valuable class of strata, it is expedient to examine those strata carefully, and point out their situations and extent, as far as possible under our present discoveries.

At Pictou, and in the County of Cumberland, the coal measures are introduced, separating the newer rocks fism those of the transition series. Here the order of superposition is periect and regular, having all its members present, occupying those situations, and producing that harmony, so clearly laid down by Geologists, and beautifully demonstrated in other countries.

The granite, gneiss, and mica slate, of the South Mountains of Nova Scotia, are succeeded by the slate, and other members of the greywacke group, reaching as far northward as the Township of Egerton, in the District of Pictou; then comes the old red sandstone, succeeded by the old mountain, or carbonilerous limestone, urou which the coal mosasures are placed, and surmounted by
the new red sandstone. But before a more particular description is given, of these highly interesting, and innportant parts of the country, it may be necessary to lay before the reader a brief view of the Coal Formation, as it generally appears. This may prevent injudicious speculation, in seeking for a mineral, where it can never be found, for coal ever appears in any profitable quantity, only under circumstances that never vary. Here again is another instance where Geological knowledge is invaluable. Numerous are the instances in which vast sums of money were expended in sinking shafts, and seeking for mines, where according to fixed laws, and the mandate of Nature, they could never be discovered ; and men of large estates have been ruined by ignorant pretenders.

Of all the substances ever taken from the earth, coal is certainly the most useful. Its value increases with the improvements introduced almost yearly, in the power communicated to all kinds of machinery. Besides the numerous purposes to which it is generally applied, it possesses the means of raising itself from the earth, and forwarding its own transportation. Coal is power ; it is the foundation of manufacturing industry, the greatest source of national wealth; and administers largely to the comforts of man. It hurls the car along the rail-road, the boat across the mighty deep; it lights the city traveller along his midnight way, and warms the shivering peasant, after his daily toil is over.

All the different kinds of coal commonly used, are found beneath the surface of the earth, alternated with strata of sandstone, a slaty clay called shale, sometimes with limestone, and clay iron-stonc. These strata vary
much, both in the size of their armular fragments, hardness and thickness. Associated and alternated with each other, they form beds varying from a few acres to several miles in extent, and are known under the name of Coal Measures. Any portion of country containing coal, is called a Coal Field. The different strata composing a coal field, are generally very regular throughout the same field ; but different coal fields have different arrangements of their strata, each being peculiar to itself. Between these layers of sandstone, shale, \&c., the coal is deposited, also varying from an inch to many feet in thickness. The number of seams of coal may be few or many, but in every instance the quantity of carbonifercus matter is much less than that of the associated rocks.

The rocks which make up a Coal Formation, are the old red sandstone, the carboniferous limestone, and a coarse sandstone called the millstone grit ; upon the latter rock the coal measures are generally placed. Sometimes coal is interstratified with the limestone, and millstone grit, but the above is the most usual order of its occurrence. It would be in vain to seek for coal in any of the rocks beneath the old red sandstone, or in any above the new red sandstone; as all profitable mines of this kind of coal, are confined to the series placed between those rocks.

Coal measures most frequently lie in a great trough, or basin, in the earth, rising upwards from a central point to the surface. Hence, if a section of a coal field be made, by cutting it through the middle, and removing one half, the remaining portion will present a number of coal seams, accompanied by the interstratified rocks form-
hardh each several Coal coal, is rosing a le same rements 3etween is depoickness. ny, but natter is
ion, are ne, and pon the Someand milller of its al in any r in any mines of between
it trough, tral point
field be removing umber of cks form-
ing portions of rings, or segments of circles. The ends of these rings or the sides of the coal basin, often rise to the surface, and are then called the onteropping. If a number of bowls be buried in the earth, placed one within the other, and separated by layers of slaty rocks, haviug one or more of their edges rising to the surface ; then if we suppose each of these bowls to consist of coal, a miniature coal basin is represented. In this manner most of the coal basins of Europe appear, and those of Nova Scotia are like them.

There is another kind of coal called anthracite, or stone coal, found in primary and transition rocks; it contains no bitumen, and its history is involved in great ohscurity. This species can never be profitably worked, and therefore is not an object of statistical interest.

ORIGIN OF COAL.

Although there are arguments of some force against the vegetable origin of coal, those arguments vanish when the carboniferous strata are examined. Having entered among layers of rock, where that important article is only found in any considerable quantity, the mind is suddenly arrested wilh the remains of vegetable productions, which increase just in proportion as beds of coal are approached. At least three hundred species of fossil plants have been discovered in coal fields, ferns, equicetacea, araucarian pines, conifera, cacti, lofty palms, and enormous rushlike plants, are crowded together on the very border of the coal. The cortical portion of these plants, is often earbonized; in some a part of the wood has been changed,
and in other instances a gradual passage from wood to coal is manifest. All these plants, wherever they are now found anong the rocks, are the growth of warm latitudes, so that a great and sudden change must have taken place in all northem climates, since their foliage covered the country where their relics are now found. Previous to the great Deluge, recorded hy Moses in Sacred History, the Earth had doubtless suffered many and great changes, and perhaps from common canses, lakes, basins, and estuaries, had from time to time received successive layers of vegetable matter, swept into them by overwhelming torrents. Perhaps a layer of woody matter, was succeeded by a layer of sand, or clay, which might have produced those alternations that yet remain. In all this nothing more has taken place, than is still going forward upon the earth, and from the recent discoveries of the conversion of peat into coal, may still be advancing. The operations of causes now active upon this planet, may be sufficient to account for the collections of lignite, so common in all countries; but to our humble judgment, are not sufficient to explain all the changes which have taken place. And why need we seek to prove the formation of coal, from the vast rafts of wood yearly sinking in the embouchures of large rivers? Was there not a delugewhere is the Geologist who has hardihood enough to deny that most certain of all Geological facts? But we forhear ; and without entering into the theoretical deductions. relating to the origin of coal, procecel to examine its deposits in Nova Scotia, which for richness and extent, will stand high compared with the collections discovered in any comulty.

Before we proceed to give a more particular account of the Nova Scotia coal fields, it may be observed that the bituminous mineral is not confaned to any particular Comuty or District, but occupies a large arca of the conatry. Not by conclusions arrived at in the eloset, should the vegetable origin of coal be maintained, but by carefully cxamining the facts recorded by the hand of N_{it} ture, and stamped upon almost every rock within the limits of coal basins. Not by chemical experiments, instituted under liability to accident, and to he disturbed by agents perhaps manown, even to Sir Humphrey Davy, the fitther of ehemistry. Not hy wandering among the inventions of men, need this subject be clucidated ; the appearance of whole trees, partially converted into the bituminous compound, and which still exhibit the vegetable fibre, proves more than all the nice reasonings of fhilosophers, and is of itself sufficient to convince any mind not harrlened arainst the tiuth.

General Vieq of the Independent Coal Fields of Nova Scotia.

CODERUID CUAIN.

From Cape Chignecto, at the entrance of Chigneeto Channel, and on the northern coast of the Bay of Fundy, there is a chain of Mountains extending castwardly through Parrsborough, Lconomy, and Onslow, where its extremity is divided or forked. One branch of this
chain includes Moumt Thom, and continues its course towards Merigomish. The other branch runs towards Tatmagonche, on the Gulf of St. Lawrence. Alhough these mountains attain in many places a considerable elevation, they have not been delineated on any map of the Province. The ligh lands in that part of the country where the road from Truro to Amherst crosses this chain, are called the Cobequid Momutins, and one of the elevations on the old road from 'Truro to Picton, is denomEnated Mownt 'Thom, alhough we were umable in discover which of the Mountains near the sources of the West River of Pictou had received that appellatiois. Green Hill, in the District of Pietou, enters into the branch that is stretched out towards Merigomish. Notwithstanding these elevations are distinguished by well-known names, they are only links in the extensive chain that separates the Comely of Cumberland from its neighbouring Districts, and is stretched across this section of the Province. Some of these momtains contiin primary rocks, but in gencral they are composed of greywacke, and enormous ridges of porphyry. They form a line of clivision between the cual fields of Pictou, Pomket, Onslow, the north side of the Basin of Mines, and those of the Comity of Cumberland. Almost all his momtainous comutry is uninhabited, and from many points along its range, one mulroken forest meets the eye. Having crossed these mommans at a number of places, a briel detail of the most important of their features will to given, from which a general idea of their whole structure may be formed.

Bennecu those rideces, and the primary chain on the iderable map of country is chain, the ele-denomo discohe West Green e branclı ithstand-ll-known hain that eighbouron of the primary cywacke, a line of Pomket, and those is moun. y points the eyc. p places, ures will de struc-
soull side of Nova Scotia, a long and deep hollow is formed. In this hollow the Basin of Mines penctrates the country, having the red sandstone group upon its shores and bencath its waters. The trap rocks of the North Mountains are superadded. The red sandstone appears again in the level lands of Cumberland, and in the bifurcation of the Cobequid Chain in the District of Pictou. If an extended view of the country be taken, it will appear as beautilul as singular. The primary, the slate, the red sandstone, coal, and trap districts, are distinctly marked out by chains of mountains perfectly characteristic of the formations to which they belong, and run nearly parallel with each other lengthwise the country. From these circumstances alone, the Mineralogist would expect a rich harvest, and the Geologist would look forward with great interest to the relation cach mountain has to the other. Those abrupt and parallel ridges along the south side of the County of Cumberland, seem to form the margin of a large basin, or trough, having its northern side fixed by high lands in the Province of New Brunswick. In this trough the Cumberland coal fields are placed, while the dip, of the strata in Onslow, shows that they conform to the basin before described.
'lic coal field at Pictou is perfectly indeprendant, and is placed in the forked extremity of the mountains alluded to. Coal is abundant in the lsland of Cape Breton ; it appears at Pomket, then at Pictou, Onslow, Londonderry, Parrsborough and C'mberland. It evidently exists in distinct measures, as far west as the Grand Lake, in the Province of New Brunswick. But few of the coal liedds along this extensive uact of comntry, have
been scientifically explored; and the infant state of the Colony presents many difficulties in ascertaining their boundaries. The result of our labours will be given, limited as they are, when compared with the importance of the sulbject, and the wide ficld where they have been devoted. The practical value of this portion of Nova Scotia, is incalculable, and the great variety of organic remains contained in it, is worthy the rescarch of a Bucklaud or a Cuvier.

With much labour has the Coberpuid Chain of Mountains been traced from one side of the Province to the other ; and notwithstanding we might claim the original discovery of its continuation, and bomodaries, and were the first to mark its outline upon the Map of the Province, no other name than that applied already to one portion of its rugged hills, has been bestowed; and until a more appropriate shall be given, we choose to preserve the ancient designation of the natives, and therefore have called it the Cobequid Chain. This chain of mountains seems to preserve in uniform width, which seldom exceeds ten miles. In some places even that distance would much more than reach from side to side of its base. Its course is nearly cast and west, until it reaches Mount Thom, where the bifureation may be observed.

Eastward of the road between 'Truro and Tatmagomehe, the mountains appear to consist chicfly of greywacke and greywacke slate, which are met by the coal measures of Pieton on one side, and those of Cumberland on the other. On the Cobequid Momentains, ats they are called, granite, in limited misses, makes its appearance near Mr. P'urdy's farm, aud is seen at several pla-
res
1.0
e of the ing their e given, portance ave been of Nova f organic a Buck-
of Mounce to the e original and were Province, portion of il a more eserve the fore have mountains oldom exnee would base. Its es Moumt
d Tatuay of greyy the coal Cumberis, is they is appearveral pla-
res along the road. It also forms the top of the "Sugar Loaf ", in the neighbourhood of West Chester. Westward there are immense ridges of porphyry, of several different kinds, some of these are beautiful when cut and polished. Appearing only at the summits of the loftiest mountains, the granite is confined to narrow limits, and is insufficient to render improper the appellation of Primary Distriet to the south side of the country.

Northward of Economy and Parrshorough, the Cobefuid chain consists chiefly of greywacke, greywacke slate, and porphyry.

Covered with a thick and pathless forest, the momtains defy the labours of the Geologist, and the minerals they contain are so perfectly concealed beneath the rubbish on the surface, that many years will elapse before the progress of cultivation will admit of their discovery. Ofien has an attempt been made to examine the rocks at the sonrces of rivers flowing between the oval crests of the hills, and almost as often has disappointment followed from rafts of trees, and windfalls, which have been planged from the steep sides of the ravines into the narrow channels below. More than once has the carrihoo been alarmed by our footsteps, and darted away with bounding speed. Not so the lazy and sulky bear-he has either stood his ground, or carelessly stalked among the underbrush upon the approach of a solitary visitor. Notwithstanding the dificulties attending Geological pursuits in all new countries, the length of the winter season, and the violent freshets common in the spring and autumn, several interesting facts have been discovered in regard to the Cobequid Chain. The granite and other primary
masses of these mountains appear to have been forced upwards, through the strata of secondary rocks. This opinion seems fully established, where the strata on each side of the chain are seen leaning towards and upon the more elevated granite and porphyry. On the Cumberland side of this chain the strata lean to the sothhward, and dip north. On the south side the layers incline northward, lipping in the contrary direction. The rocks belonging to the coal measures also conform to this arrangement. The Cobequid Mountains appear like a long and narrow dyke, thrust upwards through the coal strata of the country ; and the disturbance they have produced becomes more obvious as the tops of its highest hills are ascended. Its prominences can be seen ât a considerable distance ; one of them, placed a number of miles from the coast of Parrsborough, affords a well known landmark to pilots in the Basin of Mines. Several pieces of black oxide of manganese, were picked up from the bottom of the east river, in the Five Island Village. They had evidently been carried down the stream by the rapidity of the water, but with the spot from whence they came we are yet unacquainted. Sulphate of iron, arsenical pyrites, and specular iron ore, have also been found in the greywacke of Parrsborough, but each of these minerals appear in inconsiderable quantities.

The north side of Nova Scotia may be compared to a large level plain penetrated by estuaries and rivers, which like large drains convey the melted snow and rain from the higher grounds. Almost through the centre of this valley, the Cobequid chain of mountains extends across the country to the distance of more than a humedred
and twenty miles, greatly increasing the beauty of the Province, and rendering its atmosphere more healdyy.

parrsborougit.

Strid. pursuing the same order in our descriptions, that was observed in making the examinations from which they were drawn, the rocks comnected with the Coal Formations will be viewed, begiming at Cape Chignecto, and following the north side of the Bay of Fundy, and Basin of Mines, across the commtry to Pictou. Near the extremity of the above Cape, the shate is covered by the trap rocks, and at the place where their junction might be expected, they are so blended together, that a compound is formed, very different from cither rock, monder ordinary circumstances.

The shore on the north side of Adrocate Harbour, is composed of alternate strata of shale, and sandstone. The strata have suffered great disturbance, being broken and distorted wherever they appear. It nevertheless seems fuite certain, that their layers dip northward. Not any of the relics of animals were observed among them ; nor was a specimen found here worth carrying away. Near the house of Mr. Knowlton, the red sandstone will be observed resting upon the shale, and dipping beneath the trap of the lofty Cape D'Or. On the main land, westward of Spencer's Island, there are several strata of grey sandstone, suitable for buildings and grindstones. Near Mr. Fraser's farm, there is an mimportant bed of gevprim. At Phiney's Brook a small quantity of limestone appears upon the shore, where it semens only to occupy an isolated spor.

114

Near Ratchford's River the shate is black, resembling that which rests upon the main coal band, at Pictou. Sulphuret of iron in cubic crystals, often appears amone the shate and sandstone, succeeding each other in regular layers, allong this border of the Bay. Between the above place and Fox River, the strata are covered with a deep bed of diluvial sand and rounded pebbles, forming upon the sea coast a bank often forty feet ligh. 'This collection of dilusial detritus, is undergoing a constant and rapid destruction from the waves ever clashing upon its foundation. It was in a part of this bank, we were surprised yon the discovery of a number of human bones, which had become exposed, and were slipping downwards, towards the river. Having carefully returned them to the earth, and in a safer situation, the information of an old inhabitant gave sufficient proof, that they belonged to an unfortmate squaw, who had dressed herself in a bearskin, and during a snow storm was mistaken by her hushand for a bear, and shot. This melancholy event took place many years ago, and the poor Indian remained a maniac during the rest of his life.
Λ vein of coal only two inches wide, has appeared on the east side of Fox River ; but no important quantity of that useful combustible, will probably ever be discovered where its measures are so much confined. Fine grained sandstone, of a superior quality for buildings, and capable of affording good grindstones, may be readily quarried between Fox Point and Diligence River. It contains numerous remains and impressions of large lanceolate leaves, which appear to have been much broken If at the time of their fossilization, and show their car-
bonized remmants in detuched pieces among the solid rocks.

Not far westward of Diligence River there is a collection of clay iron-stone, in which we discovered a fossil tree apparently of the conifere tribe, converted into rompact iron ore. This tree was probably about eighteen inches in diameter, and as it was placed between strata of the rocks, has been broken in many pieces, some of which have fallen from the embankment of the shore with other rubbish. 'The bark and considerable portions of the wood forming the original tree, have been conserted into lignite, and jet. 'The whole of its tiasses seem to exhibit the harmony of that law, by which all substances during their petrifaction, assme the claracters of the substances wherein they are changed from organic into inorganic mater. Thus an Arbor Martus, or iron tree, has been formed, and the perishable fibres of wood have been suaceeded by more durable kinds of mater. On the east side of the river, the sandstone forms a high cliff, called Bull's Bluff. At this place lignites are numerous ; some of them resemble the stalks of Indian corn, others immense reeds. Large trees have apparently become flatened between the rocks, and converted into lignite. In some of these a small portion of the centre of the tree has resisted the change produced on the circumference, and has been transmuted into a sandstone. forming a longitudinal pith through the centre of the once flouristing phant. The impressions of leaves are muncrous: they appar like larwe aperes of the "Eibations" or common llag of the comme. The Blaft fimizhe: succimens of jet. but linte milerior to bives fonent in

116

Spain. This mineral is black and blackish brown, opaque, compact, and susceptible of a high polish.

Between Black Rock and Partridge Island, the shale and alternating sandstone exhibit in their strata the effects of a powerful force that has acted from below upwares. At cach extremity of West Bay, the layers are nearly perpendicular, while in the centre they are hor:zontal mudulated, or rom in zigzag lines along the coast, where they form a bold precipice, almost equalling in grandeur the subline secuery of the trap rocks. At Partridge Island the upturned strata are a little retired from the shore. Upon their most prominent ridge stands the blockhouse, while between it and the basin a narrow spate is sufficiently level to afford an easy commmication with the harbour, and to accommodate the inhabitants of the beautiful village standing upon its border. Near this romantic spot there is an extraordinary locality. The remains and impressions of large flags, and other aqucons plants, are found in strata of blue shale. Several other small regetables have been observed imbedded in this rock; and their appearance indicates that they were the growh of low and moist grounds. Lumediately alongside of the strata containing these antediluvian records, and in inmediate contact with their branches and leaves, the rock is filled with myriads of fossil shells, which have been obtained in great perfection and beauty.

These shells belong to a species of the mytilus edulis, or common fresh water muscle ; none of their kind ever inhabited the saline waters of the ocean, and their home was at the bottom of some lake, pool, or rivulet, whose watters flowed from higher gromads. Here the
brown, ish. wind, the strata the elow upyers are are horihe coast, walling in cks. At le retired ge stands a narrow nuication bitants of Near this ity. The aqucous cral other ed in this were the ely along. records, ad leaves, hich have

1ytilus edtheir kind and their or rivulet, Here the
productions of the soil, and the testaceous inhabitants of the water, have been buried side by side. Here the animal and vegetable creat ons have been laid up together in the vast cabinet of Nature ; here is testimony of the most extraordinary kind, proving the changes which have taken place upon the earth, since it rose from the dark and mighty deep. And great must the overthrow have been, when the inhabitants of the peaceful lakie or brook, and the plants which blossomed upon its margin, were doomed to be imprisoned in the solid rock, where their remains still appear, forming the monuments of their former vitality, and the awful shock that hurled them upwards above the level of tiue waters. Had the phenomena which accompanied the events recorded at this phace, been inscribed by the hand of man, many would ridicule them as idle phantoms: but as the most fiuthful Historian has placed the objects of the marative before our eyes, we should begin to know how limited our knowledge is of what is past.

A bed of coarse breccia forms the cast side of the mouth of Partridge Island River; the grey sandstone and black shale, in perpendicular strata, compose the shore as far eastward as Clarke's Head, where it is succeeded by a bed of diluvium ; and afferwards by the new red sandstone, which is finally overlaid by a mass of trap, to be mentioned hereafter. At this locality all the rocks have been under the influence of heat during the formation of the greenstone in the neighbourhood ; and there are few places in the Province, where so great a variety of minerals hats been produced. The sulphur has been tuited with the iron, and large plates of shate
are covered with a brilliant efflorescence of the sulphate of that metal, forming very singular specimens. The sulphate and carbonate of lime, are mixed, and contain within narrow fissures, groups of crystals, called hog tooth spar. Frequently the mixed rocks have their surfaces studded with delicate erystals of analcine. Sandstone, shale, trap, gypsum, and limestone, seem to have been thrown together and heated intensely. Hence many masses of rock defy classification, and must be consigned to that very convenient term in Mineralogy, called " compounds." A few yards in front of a low cliff, a solitary pillar of rock, about seventy feet high, adds much to the beauty of the shore. In this rock several interesting specimens may be obtained. They are the tremolite, augite, micaceous oxide, and sulphuret of iron. The tremolite is distinctly erystalised in prisms: sometimes these prisms are oblique and terminated by diedral summits. The augite is of a dark green colour : when the crystals are found regular, they are generally sixsided prisms, occasionally terminated with beveled tops. Small cavities in the pillar are often lined with delicate erystals of this mineral, and sometimes comtain all the above substances congregated together. The micaceous oxide will be known by its tabular crystals and pigeonblue colour : and the sulphuret of iron exhibits its usual brassy appearance.

From Swan Creek to Moose River, the red sandstone crowned widh trap, predominates. These rocks will be particularly described when treating of the 'Trap District. Alternate layers of sand-stone, iron-stone, and shale, constitute the shore at the entrance, and form walli is. The coutain hog tooth surfaces andstone, ave been ice many consigny , called w cliff, a idds much eral intea the tretof iron. is : someby diedral ur : when erally sixeled tops. h delicate in all the micaccous d pigeons its usual
red sandese rocks the Trap tone, and form wall;
on the sides of Moose River. Here the coal and its series, extends along the coast of Mines Basiu some distance, and would lead any miner to suppose that reins of that most useful mineral were cropping out before him. No coal has however been discovered at his river, although it is lighly r bable it will be femed when the surfare becomes cheared of the thick forests now growing upon it. Another indication of coal at this place, is the number of fossil plants, and impressions of leaves contained in the strata, which dip in a north easterly direction. Near the entrance of the above river, we discov. ered an immense fossil tree, which is not only remarkable on accomet of its great magnitude, but also for the great enfection of its branches and leaves. The shate and andstone are gradually broken up, and removed by the operation of the elements upon their brittle and crumbling strata ; hence this enormous tree, now a solidi stone, once buried deeply in the earth, became exposed, ard largo sections of its trunk are now seen projecting from the base of an almost perpendicular cliff. One portion of the trumk, supposed to be its largest part, measures nearly three feet in diameter. Another section, of dimensions gradually becoming less, penetrates the rocks to an unknown distance: from the size of those blocks, and the supposed class to which the tree belonged, it must have been a lofty plant. It has not, however, like some others that will be noticed hereafter, maintained its original perpendicular position. Its glory is fallen, and probably during the rush of some fearful torrent, has been uprooted and covered by the materials now forming its grave. This fossil, in its appearance, has a general agreement with the
L.api do ilendron Aculatum of Sternburg, in arborescent plant, having some analogy to the cocoa-mut tree of the tropics. We have finally succeeded in tracing this tree to its bramches and leaves, which are perfect models of the originai. Among the shale and near the trumk of the ahove fossil, we also discovered numerous impressions of leares, apparenty belonging to different species of grasses ; and the remains of the aquicetacea are abundant. Beantiful impi:esssions of the leaves of the Sphenopteris Trifoliata are seen when opening the slaty rock, appearing as uatural as if they were just taken from the lierbarium of a botanist. But among the numerous vegetable organie remains found at the above locality, none are more interesting than a kind of fruit resembling grapes, which are so naturally preserved anong the stony foliage of this singular spot, that no doubt remains of their original character. A whole strata of black shale, containing a large quantity of carboniferous matter, is almost wholly composed of grasses, branches, and leaves of trees.

May we not be allowed to pause for a moment in these enquiries, and reflect upon the phenomena before us. That the freshwater shells and aqueous plants at Cranc's Point, and the majestic tree at Moose River, with all the lesser plants, that were once mantled in green beneath its branches, were the productions of the same age, there can be no doubt. All these relics are enclosed in the same class of rocks, and furnish the best testimony of their coeval existence. But how are they changed; the muscle has now become a solid stone, and the towering palm an umbending and massive column. Perhaps, in considering the original habits of the plants just des- this tree nodels of nk of the essions of necies of are ahume Sphenlaty rock, from the ous vegelity, none ng grapes, my foliage their ori, containis almost es of trees. noment in ena before plants at ose River, ed in grecn the same e enclosed st testimoy changed; the towerPerhaps, s just des-
aribed, we must as Count Sternhurg observes, "transport our thoughts to an epoch, when the vast tracts now oceupied by more recent marine deposits, were still beneath their paremt ocean, from which scattered groups of primitive istands alone emerged, covered ly the vegetation of which, these relies are still preserved. The rivers, which in such a condition of things, would have existed only as torrents, would frequently tear up this vegetation, and deposit it along the bottom of the adjacent basins." But we will shortly have occasion to shew, that a whole forcst of fossil plants in Nova Scotia, retains in a great measure the upright position, so necessary to its former existence; and protuce substamial proof that in one inslance at least, trees now remain in the same position and place they ocenpied duriag their growth.

In the rocks to which we refer, there are no remains of land anmals. This indeed is a remarkable circumstance, and has produced a belief in some, that long before these animals were created, the seas were inhalited, the carth covered with herbage, and prepared to receive those ereatures which were destined to feed upon the tender phant, and find a shelter beneath the branches of the lofty palm. Might not many of the clanges which have taken place upon the earth, lave been produced betweon that period when the globe was first created, and the Noachian deluge ? And might not many of those effeets, the causes of which are now almost inexplicable, have been protuced at that momentous period, when the "windows of hearen were opened," and " the fomanains of the great deep broken up ?" From what we have emlearoured to examine, and our feeble penetration into these dark pro-
bems, we are compelled to helieve, that in mo way can these phenomena be so satisfactorily accounted for and explained, as by admitting the brief accoumt of the creation of the world, in tie first Chapter of Genesis ; and that there is no necessity for making the world appear older than its date given by Moses. Fortunately however, diversified as the opinions of modern Geologists may be, there are few who do not ald much testimony to corroborate the statements of that inspired historian.

Before the plants to which we refer, could have become petrified or econverted into stone, it was necessary that they should have been submersed beneath the waters of a lake or ocean, at the bottom of which layers of sand and argillaceous particles, accumulate in successive doposits, according to the course of the currents, and the roeks from which their materials were derived. And is it not probable that the bottom of the sea where these collections of vegetable matter have been made, and covered by successive layers of sand and clay, has been uplified by some voleanie force? The sand and clay have been rendered solid, and still preserve their stratification : the plants have been decomposed, and their places filled ip by the surromiding materials, presenting those facts so common in secondary deposits.

The causes of similar phenomena are now in progress upon the earth. Instances might loe quoted where vast rafts of timber fimally sink at the mouths of rivers, and in esturarics where there are enormons accumulations of vegetable matter. Stich occurrences are common on the Mississippi, and other large rivers, and why should they not have taken place on the autediluvian world ? for and the creasis ; and d прpear ely howcologists estimony torian. lave berecessary te waters s of sand ssive doand the

And is ere these ade, and has been and clay - stratifimid their resenting v in proed where of rivers, mulations nmon on ly should world?

These efferts maty he altogether independent of the great general dehge. 'The detritus of that overwhehming flood is indeed placed above the rocks containing those vegetible remains, and is common in all patts of the world.
'The volcanic lires of the carth are gradually becoming extinct. 'They were evidemly fin more vehement in former iges than in the present day. Therefore we have sufficient reasons to believe, that from the creation of the Burld to the delage, great changes most have taken place upor the earth's surfice. Who can clearly decide, hat the llaning sword which forever shat ont our tirst parents. from Eden's delightful garden, was not a livid torrent of thanc, issuing liom the ground pollnted by sim? Near Moose Niver, there are luge masses of tap rocks, and there is every evidence aflorted, that in that neighourhood at least, the earth's internal fires have hooken forth.

From Moose River to the settlement at Five Istands, the red simblone oecupies the embankinent of the shore. and is covered at some phaces with a dilavial deposit from ten to thirty leet deop. A small headland called "Blac Sac, $"$ is composed of treeciat, and seems to be the margin of the trap formation. At the above settlement, the red simdstone, covered by diluvimu, composes the low grounds. The mombtimons chain already noticed, here begins to recede from the shore. Over its perpendicular strata of greywacke, the North River falls in a splendid cataract, amb offers to the eye a waving rambow, playing in its beatiful colours over the frothy pool into which the broken torrent deseonds. 'The waters of this litl pass over a precipice about fifty feet high. In the spring and autumn, when the contents of the eiver is increased, it

124

produces a hollow sound, which may be heard at the distance of several miles. Were it placed in a more exposed and populous part of the comtry, it would afford a celebrated resort for the lovers of romantic scenes. From the bank of bass River, a small stream rmming through the settlement, a salt spring rises from the red sandstone bencath. 'These waters have never been analysed ; but they probably contain only the muriate of soda, (common salt.) It is reported by the inhabitants of the Village, that they possess medicmal virtues ; lut it is probable, that a strong solution oi diverpool salt, in clean water, would be equally ediacacions in healing them of their disrases. Although a bed of rock salt may be near the spot from which this spring issues, it could not be worked whom a great expense, as it is probably situated on a narrow point of land and nearly surrounded by the sea at high water.

RCONOMY.

Thas new red sandstone forms the shore of this Township, ind olien rises to considerable height. It:; layers are nealy horizontal in some places, winde at others they dip to the souhtard, at a small angle. Lixcellent quarries of frecstone might be opened along this const, and dumble materials for buideng loe procured at a low ratc, although great care should be taken to select strata that will resist the weather. Nem the principal sonree of the Ecomomy River, there is another splendid water-fiell, and the contents of the rapid stream is harled oser the strata formins: the south site of the Cobequid
d at the nore exaflord a ;. From through andstone sed ; but common Village, probable, an water, their disthe spot e worked tted on a the sea at
e of this the. It: white at le. lixnomg this cured at a to select principal - splendid is hurle! Cobequin?

Chain ; but like the cataract it Five Islands, its retired situation in the mfrequented forest, has deprived it of that poetical description "falls" of far less dimensions have received from the pen of the delighted traveller.
'The "Economy Falls" will never disappoint their visitors in the mamer a number of our firiends were defeated in their expectations a few years ago, in King's County. 'They had taken a long stroll, of' a fine smmmer's day, and beheld the lolyy rocks over which a small river was doomed to pass, and dash upon the pavement beneast ; but the dryness of the season had taken efiece, the heat of the sum had evaporated the crystal element, and sealed up the springs. The seenery aromed the lofty clifts, the bed of the river,-ill were complete ; but the most important article in a water-fiall was absent, and no Huid could be seen, save a few drops that came pattering down the sides of the rocks.

The sandstone in Economy is sticceeded lyy thick arerillaccous deposits, and beds of slaty clay. Λ blue mand I so enters between those layers, which near the farm of Hr. Thomas Durning, seprates the sandstone from an extensive formation of limestone. 'The limestone extends eastward to an mknown distance in the rear of the 'Yownslip. It is of a dark carthy colom, and seems to comes poond with the lias limestone of Great Britain. 'Ihere are also beds of marl in this settlement, agreeing in their chatracters with those of the Mother Comiry. But the orsanie remains appening in the linestone of Feonomy, are sulficient to determine its relative age, ind there can be litule doubt that it is of similar formation to the lias of other combries. It contains numerous fossil shells, and
other marine inhabitimts. Among the former we discovered the Nisutilus Truncatus, Productus Scoticus, and belemites. The limestone is one of the largest of the most recent deposits, in the country. It approaches the oolite series, of which there are no extensive formations in Nova Scotia, so far as we have surveyed it. Nor can a pound of chalk be found in British America, belonging to its rocks ; hence those more recent depositions have never been made in this quarter of the carth.

The diseovery of the carbonate of lime in the above 'Township, is very valuable. A few years ago the inhabitants were obliged to cross the Basin, to obtain the rock that has since been found abundant on several of their farms. Beds of clay of a superior fuality, are common between the uper members of the red mand group, and the limestone. Many of these wonld afioted the best materials for potteries, and for the manufacture of some kinds of china. These argillaceous beds are often covered with sand and water-worn pebbles to a considerable depth. Notwithstanding they often rise to the surface, where they can le readily openced.

LONDONDERRY.

A smmar serics of formations to that just deseribed, contimes its comse eastward. We did not observe any ypsum along the shore of this 'Township, and the limestone is less common on the margin: of the Basin at this place, than it is farther castwat. The mountamons chain northward of the great road, and the rocks belonglonging to coal series by ruming farther from the coast
than at Parrshorough, have a low and fertile plain at their bases, and the oval prominences so characteristic of the red sandstone, may be observed in every quarter of this fertile district.

At the mouth of Portapirgue River, and on the farm of Mr. Wiliam Davison, two small salt springs break from the bank, which at their site is thickly covered with diluvial gravel. The water of these springs is highly impregnated with common salt. Three pounds of good salt were obtained, hy evaporating ten gallons of water in the ordinary way.

On the hanks of the Portapique, pieces of coal have been discovered. A small ruantity of the micaceons oxide of iron, was however, the only reward for a hard day's labour among the rocks overlanging its sides.

Sereral beds of limestone are exposed on De Burt River. A little to the westward of the bridges crossing that stream, and on the farm of Mr. Morrison, the rock abounds in shells of varions kinds. We have been mahle to decide upon all their different species, any farther than that they generally agree with those of the lias formation in England. 'The rock in which they are now secured, is of a reddish colour, and apparently mixed with the marly sandstone lying beneath it. It aflords good lime when calcined, and is casily guarried. A bed of dark coloured slaty limestone occurs in immediate contact with the ahove rock, on its west side, and was evidently formed under different circumstances. Three species of shells appear in this calcareous deposit; they are all bivalves, and are not found in the red limestone. These bivalves are so different from any of the species we
have seen figured or described, that it has not been determined to whe: fanily they belong. Indeed, if the reader "ould wish to try his skill in fossil conchology, the rocks near the entrance of DeBurt River, will aflord abundans materials for his exercise. A bed of gypsum also appears at the above place; but as that mineral can be more conreniently shipped from the other side of the Basin, it is of little value.

On some of the preceding pages, the fresh water shells, and the fossil plants, incarcerated in the shale of Parshorough, have heen very concisely described, and a few hints given of their probable listory. But here, in rocks of later origin-in those which are placed far above that shate in the order of succession, - the testaccous inhabitants of the sea are cemented together, almost defying conjecture itself. But if we enguire into the condition of all the secondary strata, and believe that while one portion of the hahitable earth has been engulphed in the waters of a primeral ocean, and the bed of the ancient sea uplifted far above the waters that covered it: If we believe that these changes may have been effected, perhaps several times, upon the same portion of the curth's surface, there will then be no difliculty in finding cimses equat to the effects protuced. We had been informed by a reapectable indivifual, that some kind of ore was common in the fields near this river, and found upon examination, that pieces of hematite were scattered over the surface, and often became exposed during the plougling of the soil. This species of iron ore is often beamifully crystadised. and assumes several imitative figntes. Its occurrence on the surface of new rocks, and intermixture with the soit, ar above ceous int defying udition of one pora the wancient sea If we beperlays rull's siluIses equal hed by a - commen mimation, e surfaci, if the soil. ystalisont, rrence on: Ih the soil,
are cingular circmustances : for it is improbable that :my ronsiderate quantis of tho hematite can the collected in the supericial strata of the Termainio.

Abont five miles arethara of the lower Debure Bridge, the coal neesures at be momatains rise athere the gypseons and saibem ors sanistone; and a beautiful section of their strata in made by the river passiurs ower them. Two small reins of coal hawe been intersected, ahthongh it is not known what quantity of that valuable substance is still !idden in the adjarent rocks.

onstam.

Two marrow veins of roal are exposed on the sides of the Chiganos River, five miles from the "Iower Bridge." The coalstrata dip nereth, at an angle of 45°, and evidently bedong to the same roma hasin containm whe De Burt measures. The enall is of :an interion que or and its distance from the navigath part of the river is..... great to admit of its profitable exportation, even should : much richer vein be discovered. The Du But and Chiganusis coal field is iudependen of the measures unon the Tatuagouch road, and their atrata dip in opposite direcetions.

Througtan the fertile 'Townshin of Oustors, the decompesed red satidstone and calcareous deposits, produce a tertile soil ; but in many phaces, collections of sand and diluvial detritus, cover the surface of the rock, and produce scanty crops. The debris protuced by the delues. consisto of gravel, sand, and remend pebbles, the
 17
are also patches of brown and white sand, produced from the same rause, and are common wherever the eye is turned over the Province. Limestone forms a portion of Dickson's Hill, four miles north east of the Village of 'hruro, and the fertile surface of the country extending eastwardly through a number of flourishing settlements, whose inhabitants have been taught by experience to cultivate the red soil in preference to any other.
'Ten miles northward of the beautifil Village of 'Truro, and near the road to 'Tatmagouch, an outcropping of two veins of coal has been discovered on the banks of a brook that cuts the strati, almost at right angles. The layers of coal cross the brook, and have been worked from twenty to an hundred yards in each direction, on a level with the strean passing across them. They are separated from each other about two furlongs. The fargest vein is twenty and the other welve inches in thickness-dip southwart, one foot in three. The coal burns frecly, although not highly changed with hitumen. We examined these mines accompanied by an intelligent old miner, who had laboured almost night and day during the winters of 1834 and 1835 , in a narrow dark opening in the earth, where a necessity for standing in a bent position, has forced a habit upon the poor miner he is mable to overcome. The walls of the small coal seam are altogether composed of fossil trees of mormons growth. In entering the dark chasm on the West side of the brook, it reminded us of ereeping into a large raft of timber, having its interstices filled with coal. Such as have any seruples respecting the vegetable origin of coal, should visit this locality, where all the plants found in the roeks, are partially converted into this useful com- om twenty ch with the ated from a is twonty soudhward, though not hese mines ad haboured mul 1835 , a necessiy habit upon he walls of fossil trees asin on the ping into a with coal. table origin hants found Iseful com-
bustible. Some large reeds or calamites, and mmerous trees, the growth of this world in a former state, have only their cortical covering cabonized. In other instances the coal surromeds the plant, and is several inches in thickness ; while in the centre of large masses, taken from the workable part of the vein, longitudinal and furrowed pieces of slaty chaystone are collected, representing most perfectly, the pith of the plants to which they helonged. These piths were placed too lar from the carbonizing power, and instead of being transformed into coal, were by another process, made to bear the chanaters of the surrounding shate. A number of solid evidences of the conversion of wood into coal are now upon our shelves, and furnish testimony not easily overcome, by such ats woud defend opinions opposed to these fate. Whe Wher those plats have been this changed, by the medimm of water or heat, or whether hoth of those agents have heen in operation during their chrions transmatation, it is somewhat dificult to decide. Notwithstandine, hat bypothesis which admits heat to have been the whiect cmployed, seems most preferable.

The practical value of the Onstow eod mine, is a present of but litle importance, and jertaps: diate is comparatively known of its extem. On the Desint and Chinsanois River, and at the Onslow roal mints. Whe efferts of ranning water are very phanly exhibited. At these places the conl measmes lane heen demmed from titis to two hmelred leet, and deep chameta limmed a manom ol miles in lenght tarongh the solid roctso. 'These fencos aro very manife: : the stran on each sirle of those rivers, and on the brook of Duslow roal field, correspond sexactly in
every particutar, :mad the most imperfect examinations shew, that those deep notches through which the water now passes, have been wom out since the rocks were consolidated and placed in their presem sithation. They also give an useful him when a general view of the surface is tiken, firmishing indisputable evidence, that deep valleys in which rivers now perss, have been formed by the steady action of he watery element.

About mine miles castward of the Villige of 'Truro, and on the road to Picton, the red sandstone meets and overlies the coal measures. In passing along this road, a change wi'i be observed to take place in the colour and quality of the soil. On the manly samelstone the soil is red and ligh, over the coal measures it is grey and stell)born. The situation of the former roek is known by low and romaded eminences, while the later constitutes marrow ridges of considerable alitude. From some of these elevations a part of the Cobeguid Chain may be seen, eoverod widh thick forests, and reaching towards 'Tatmagouch. They prodnce a gloom upon the mind, and recali it to reflect upen those days when the whole Probince wats a thick forest, intabited only by the natioe salvage.

On the banks of we Salmon River, at the farm of Mr. Arclibadd, thene is an onteropping of carboniferons limestone, and there are indications of coal near his house. A shomt distance from the limestone there is a salt spring, that athough it appears so mear the coal scries, evidenty bises from at collection of salt in the red marl group phaced above it. Tha limestone is black, and at far as we hatse examod it comans no oranic remains.

From Sitmon River Bridge towards the West River of Picton, but a small quantity of diluvium was seen, a!though boulders of granite and hloeks of porphyry ate common on the road side. From the bridge to Picton, the road passes over rocks comected with coal measures, and it is curious to observe in rainy weather, how mueh more muddy the turnike hecomes over the shate and slate clay, than above the strata of coarse grey sambitone.

Having, daring a visit to this part of the Province, passed along the new roat, aud sides of several proud elevations, an enquiry was made for the celebrated " Momut Thom"; and not a little surprise was felt, when it was discovered that this appellation wals applied to all the lills in the neightomhood. Knowing that Germans are fond of low and moist situations, we could not fail to olserve here the local feelings of the Highlanders, who choose another extreme, and climb the summits of the highest hills they can discover, when fiining their residence.

PIC'IOU.

On the north side of the west river of Picton, and not far from the Kempt Britge, there is a vein of coal about six inches wide. The rapid strean has worn: away the sandstone, and a perfeet section of the rocks is produced. 'This coal is accompanied with lignites, and immense jointed reeds, which appear in great numbers throughout this populous and extensive District. It has been remarked, that at the eastern extremity of Nova Scotia proper, the different classes of rocks sueceed each other in regular order, and all the secondiry formations
are deposited one upon or against the other, acco:ding to the most perfect Geological arrangement. 'The gramite of the southern hills is suceceded by the slate of the 'Townships of Egerton, Maxwelton, and Antigonish. Then comes the old red sandstone, seen at Fraser's Brook. The old momatain limestone appears at numerous situations. Upon this rock the coal measures rest, having the new red or saliferous simdstone above them on the aurfice. Here the regular succession of strata is so perfeet, that the modern arrangement of the secondary rocks is found to be correct by reular demonstration.
'The old red sandstone is coarse and gramular ; itcolour varies from a dark red to a light grey. This formation does not appear to be extensive, having only been observed at two different localities in the vicinity of the coal.

The old mountain or carboniferous limestone, outcrops at numerous places, and oceupies a considerable spatee beneath the superficies of the country. It points out most accurately, the margin of the great coal basin of Pictor, so that its extent may be very accurately measured. Begiming at Merigomish, it continues westward, crossin, the East, Middle, and West Rivers of Pictou, and foilowing a curvilinear course, appears at Carriboo Harbour and at Pictou Island. Thus the limestone underlieing the coal of this District, encircles an area of more than a hundred square miles.

On the banks of a rapid strean called Mchcllan'; Brook, the limestone is cavernous, and num ons deep interstices are left void between the amorphons masses of rock. One of these openings forms the entrance to the
ording to granite of te TownThen s Brook. ous situat, having in on the is so persecoultiry ation. nular ; it This foronly been ity of the tone, outnsiderable It points al basin of meastred. 1, crosilu and fota Larbour rlieing the re than a
\therefore save." 'This cave is about one hundred feet in length, and on an average six feet wide. Its loor is at the foos. of a hill, where by stooping the visitor may enter "the dark retreat." \quad sutall guantity of pure water rums along the flow of the vault, and the rude masonry of the walls is ouly equalled by the fearful projecting masses, ever ready to fall from the roof above. Even this damp and shomy cavern had an mhabitant but a few years since. An old genteman of eccentric: habits, tired of the busy secues above ground, removed downward among the rocks, Where his friends were ever welcome to his seanty accommodations. Ife is now agam removed ; not to the carth, for his residene was in it ; but to a marrower prison, from whenee he $1:$ atot som return. Will the aid of a light, we succeeded in procuring a few stalactites from a remote corner of the "cave" ; but the frepuent visits of the lovers of novely, had removed most of the acicular masses from its rool and walls.

The mombtain limestone of Merigomish, contains several species of fossil shells; among thea are ammonhes and terchratulites. Eincrinites are common in the ralcareons rocks of Picton Island, and the remains of exfinct species of shell fist, are common in the limestone phaced bencath the great coal basin of Picton.

The coal measures of this District, consist of a series of layers or strata, composed of sandstone, clay iron stone, shate, bituminous shale, and coal; alternating frequently and indefinitely, but not difierent in any important particular from those strata, as they appear in coal measures in general. 'Ten strata of coal have been penetrated at the Allion Mines. They are from one to three yards in

$$
\rightarrow
$$

thickness. The main coal band is however, thirty seven feet wide, having a thickness of twenty-four feet of good coal. The remaining portion of the great rein, yields fuel adapted to smith's fires and iron foundries. An outcropping of the coal has been discovered at Fraser's Moumtain, and several other situations in the District ; but as each of these veins evidently belongs to the same field, and are umimportant, compared with the cnormous stratum at the Albion Nines, it will be mmecessary to give a particular description of their dimensions and situations. At the above mines the coal dips north-east, one foot in three and a half. It is lighly bituminous, burns freely, and in every respect must be considered of a good quality.

This most extensive and important collection of bituminous matter, has been greatly disturbed in its original bed, several dykes and faults are known, which often confound the miner, and afford strong evidence of the former existence of subterraneous fires, by which the substrata have heen melted and clevated, or have produced faults, by forcing one portion of the coal field higher up than the other ; or what amounts to the same thing, sinking one portion lower than its original level. We were informed by a respectable gentleman who resides upon the spot, (and beheld the evidences of the phenomena ourselves,) that even the miners were much alarmed on oue occasion, by suddenly meeting with a long, deep, and open fissure or crack, in the coal measures. This fissure was about three feet wide, and so deep, that a stone thrown into it could not be heard to strike the bottom. The gas that issued from this carity was extremely dan-
gerons, mutil effectual measures were taken to remove or decompose it, and the month of the dismal pit could be stoppect. Here then is an instance of the eracking of the solid earth, on which we walk without apprenension, and scarcely believing the mighty revolutions nature has unfolded to our senses.

A large dyke cuts off a portion of the coal field, about two miles north-cast of the mines. 'There is also an extensive fanlt reaching from Fraser's Mountain, in an east and west direction, to the distance of upwards of twelve miles. The surface of the earth over this fault is broken and uneven, and points ont the course and boundary of the disturbance which has taken place beneath. Other marks of the inflaence of porrerful causes are manifest in this coal field ; but they are of less importance to the practical miner than those thove mentioned.

Calamites, large cactites, the remains and impressions of several ancient trees, have been procured in the sandstone and shate of the colliery, and among the rocks of this coal field ; but they are less common thim similar plants in the field of Cumberland and Onslow. In Pictou all the antedilurian herbage seems to have been converted into coal, whereas at the above places only a part of them have been thus changed, ant therefore have left perfect stony casts of their original stems and foliage.About a mile northward of the town of Pictou, and on the south bank of a large brook, grood specimens of calamites, and their leaves, were obtaned. The impression of a large cactus was also observed near the "hills." We were accompanied to this place by several scientific gentlemen of the town, who kindly presented all the 19

138

fossils procured by them during the excursion; nor were we less pleased to observe, tiat a taste for literary and scientifie pursuits, is daily inercasing in this valuable section of the Provinco. Already the Picton Academy, imder the talented management of Doctor McCulloch and his sons, has accumulated a number of interesting Mineralogical and Geological specimens, and other objects of natural listory.

The new red sandstone covers the Picton coal field, and skirts the coast towards the Gint of Canso. It is also spread out over a considerable part of the County of Cumberland, forming the surface of the lowest and most level lands. At the base of a hill in the neighbourhood of "Mount Thom," and also a short distance from the Kempt Bridge, it semeds forth salt springs. At the later place salt was manufactured a few years ago by a company formed in England, but as they were unsuccessful in discovering the bed of salt, from whence the springs flowed, the enterprise was abandoned. Perhaps their object would have been gained, had they selected a spot where the coal strata were placed at a greater distance from the saliferous sandstone; for it is evident, that the rock is more superficial in the neighbourhood of coal, than in situations more remote from the carboniferous strata; and thick beds of clay often direct the water from the mineral by which it may be impregnated. Salt springs are very numerous in the eastern sectic: of the Province; their number multiplied too rapidly in our travels to allow a description of them all. It was nevertheless olserved, that wherever they appear the gypsum declines, and where the gypsum is plenty, there is seldom any appratame of salt.

About eight miles north of the Town of Picton, and on the benks of the Carriboo River, there is a bed of copper ore. 'The strata at this place rum in an east and west direction, dijping to the northward at in angle of about fifteen degrees. The copper ore ocenrs about two miles from the month of the river, in strata of standstone and conglomerate, which form steep, banks on eath side of its winding chamel. A remarkable circumstance comnected with this copper, is the great aboudance of lignites with which it is enveloped and intermixed. Large trees have been converted into coal, but still retain their natural form and external appearance, and in some instances the vegetalle fibre of the wood, impressions of the leaves, hark, and all those figures so common on the surface of the living plant. Sometimes the whole tree appears to have been transformed into lignite. In other instances, only a partial change has heen efficeted, and the ancient herlage of a productive climate is now half stone, and half coal. It is truce that lignite and coal are dissimilar in some particulars, notwithstanding it has never been proved that both of those substances have not been produced ly similar causes. Among the lignites good specimens of je: are common ; these are stisceptible of a good polish, and equal in beauty to any hrought from Wittemburg, in Saxony, or from Whitby, in England.

In breakiug open masses of these once majestic trees, now transmuted into jet and biteminous lignite, the green carbonate of copper oficu aplears, forming a beanifill efloresence in their delicate arevices. The bluc carbonate, and red oxide of coiner alveapreat oce
casionally, both in the lignite, and sandstone embracing the metal. 'The copper ore is deposited in narrow veins, from one to four inches in thickness, and alternating with the lignite and samdstone. The ore exhibits a variety of appearanecs, from its admixture with the rock and carhonized wood. Compact masses of the specifie gravity 5.5 , are identical with the fuhlerz of the Gemmens, and may properly be called grey copper ore. Its colour is greyish black-fracture conchoidal-lustre metallic. By exposure to the air, the surface becomes tarnished, and renders its appearance unfavourable ; it is nevertheless a rech ore, and very interesting, both to the Geologist and Miner. The politeness of Messis. Ross and Primrose, afforded us an opportunity of examining a quantity of this ore, which hat been collected and stored for exportation. Anong several varietics procured from this collection, were pieces composed of the green carbonate ol copper, almost in a pure state. Copper ore has also been discovered at 'Toncy's River', and the Last and West Rivers of Pieton, but in quantities too small to admit of profitable mining. When the circumstances under which the above ore appears are considered, its association with vegetable remains, its sithation in secondary strata, it can hardly be sipposed that any very inportant quantity of copper wilf ever be lound near this place. It is among the more ancient formations of granite, greywacke, and slate, that more valuable deposits will be discovered. While the small and occasional collections contained in the coal series, are only indications of those rich stores the country evidently contains.

The santstone of the coal meastres often contains
valuable heds of freestone, which in the District of Pictou supply materials for building, millstones and grindstones; the latter are however much inferior to the blue grits of Cumberland.

The red sandstone that has been represented as covering the great coal basin of lictou, is a more shalllow deposit of that rock than that of other Comnties. In Pictou it is often associated wilh beds of conglomerate, which may be seen in almost every section of the castern division of Nova Scotia, while in Kins's and Hants Counties it is comparatively of rare occurrence.

From a small eminence a short distance castward of the 'Town of Pieton, long ridges of slate and greywacke may be seen rising southward of the coal bomerny. In a northerly direction, a part of the Cobequid Chain may be observed, and although this district does not possess the sublime senery of the trap fomations, it is nevertheless very pleasing from the highlimed villages spread over the face of the comntry.

The shores of the harbour and rivers of Picton, abound in projecting masses of sandstone and conglomerate ; these towards the surface seem to pass insensibly into a soft red sandstone, which from its ready disintegration, yields a rich and fertile soil. The ligher lands slope gradually down to the sea, that is yearly extending the limits of its confines, by weang down the unesisting rocks of the shore. Enclosed in long glades of interval, the rivers of this district have their more elevated borders omamented with coltivated fiches and rich meadows : and no extramedinary discomment need be exercised in disconering, that lieton must be comsidered a most impertant part of Nora Scontie.

Four : badte are now open into the great coad bed of the Allion Mines, these being worked by stemengines, raise an immense quantity of coal. At none of the mines visited in England, was there seen so great a quantity of that mineral ready for exportation by any comparison, as was observed at those of Picton. From the mouths of the pits the coal is conveyed on a railroad to New Glasgow, where vessels of a lundred and fifty tons are loadell in a few hours. On the river below, an excellent steanhoat is constantly plyiug. On her passage down the river, she is followed by a chain of large lighters, decply laden with the contents of the mine, to cemplete the cargoes of the larger ships at the mouth of the East River. On her voyage up the stream and over a distance of four niles, tied to some lofty craft, she paddles her winding course, thus performing a double office, and completing that series of operations by which vessels are now loaded at the port with every facility. Under the immediate direction of Mr. Sumith, a genteman of seience, and to whose politeness we are indebted for much information, the whole of these operations are conducted, with credit to himself and the Mining Association.

At Pomket Harbour, a small vein of coal has been discovered. It is only about eight inches wide, and dips to the northward at a small angle. Pieces of coal and the remains of vegetables, have also been fomd on the North River of Antigonish, but he workable quantity has yot been exposed.

Leaving the District of Picton and all its natural addramtages, boiln in regard to soil and importime minerals, the sandstone, clay iron shme, shate, and limestone, in
indefinite altermations and qualiies, fom the whole coast (1) the Bay do Verte. They were examined at 'Toney": River, Tatnagouch, Wallace, and Shenemicay, anl were found having the new red or saliferous sandstone superimposed. There are indications of coal at numerous places along the coast, which abounds in vast quantities of the best building-stone, and grindstone quarries of as good materials as those of the Joggins, on the Coast of Cumberland. Organic remains are also ablundant in the rocks, the limestone containing those of marine tribes, and the coal series myrials of fossil plants. Among the latter are trees of great dimensions, hut similar to those appearing on the Chignecto Bay and Cumberland Basin. But as all these belong to the same deposits, it will be umecessary to enter into any details of their characters, mutil we arrive at the Joggin shore, where they appear in still greater perfection and beauty. Numerous places in this part of the country have been examined, and in every instance the rocks appear to have been deposited in one vast basin, which was once covered with a most luxuriant tropical herbage. Even the common stones of the field partake of the character of the more substantial strata. The impressions of reeds and ferns, the cylindrical petrifactions of celamites, and other culmiferous plants, which occupy all the rocks on the northern side of the County of Cumberland, show that this great basin was at some former period covered with primeval plants, under a climate similar to that of the present tropics.

CUMBERLAND.

Snit Sprongs are common in the new rod samdstone along the const of Northmberland Strait. At the River Philip, a large quantity of sall was formerly mannfactured, by evaporatiug the waters of a bring pool. One of the springs at that place yields a larger quantity of muriate of soda than atmost any other in the comutry, and would supply, under proper management, more salt than would be required by the British North American colonies ; nor can it be possible that the crystaline deposit from which these waters flow, is beyond the reach of the Miner's skill. The infancy of the colony is a trite apology for not entering into usefil speculations, but it seems impossible tiat any country can arrive at manhood, when little pains are taken to develope its growth.

Leaving the Cobeguid Chain, and proceeding towards Amherst, in mmerous situations the coarse sandstone of the coal measures is uncovered by the saliferous rock, and conglomerate is seen upon the surface. These circumstances are very obvious at the River Plilip, Black River, and on the roads leading to the eastern shore. Collections of fine sand, beds of clay, and marly clay, are common. Frecstone of an excellent quality and of various kinds, is abundant: some strata are soft and yielding, and therefore are easily worked, the stone becoming gradually harder by being exposed to the heat of the sun. The impressions of large reeds and other jointed plants, are common in all the sandstones belonging to the coal series of this part of the Province, although they are less distinct and beautiful than at other places where the roek is composed of finer materials.

Between Purshoronyh and Cumberlame, a desp notel in the Cobrepuil Chain, afortes a passige for the Patridge Island River, cmprying somband into the Dia of Mines, and the River Dohere, opening into the Cumm berland Basin. Whese Rivers meet at Half-way Rimer, where a smath lake occuphes a space botwern heir someres. The sroywacke of the mommans, is here met by the sautstones of the Cumbertand coal bisin, which arre orecasionally oredaid by the ronglomerate, or wew red samastone. Near this lake, mul at the im of Aloxander Fullerton, there is a great collection of clay intostone, forming a steep hank on the north side of the river.

From Macean in an casterly direction towards the River Philip, a long belt of commty is oecupiod by nembers of the red marl gromp. In this group, aud about sia miles from Furlong's Bridge, another sult spming has been discovered upon the same tract where that of the River Philip breaks out. These springs are certair evidences of immense quantities of salt, deposited beneath the rocks' of this part of Cumberland. No less than four springs, highly impregnated, have been already discovered within the circumference of a few miles, and every proof is thus afforded, of the vast accumblations of that mineral somewhere near them.

At Spring Hill, an eminence five miles eastwatel of Maccan River, an outcropping of coal was discorered but a short time since. In the bottom of a small brook, running through a wild forest of heech and maple, a poor farmer has been digging coal, one of the createst weastres of the carth. As the pit he had exmavated was full cif water during our visit to the spot, it 1 ar a impossibla fo 19
obtain much informatom reespecting the grantity and position of the Macerm coal. It appears howerer, to dipte the northwarel, and the largest vein is about ten feet wide. 'The coal is reported to be of a grood guality, notwithstanding the quantity of sand mixed with it, lhough the carelessness of the miner. Two other smatl veins appear, a short distane efarther somth: Hese, and the ten feet liyer, are enclosed in strata of coarse samstone, wesembling that rock as it apporas at Picton. 'The ingression of a hargo cactus, wat the only relie of anciew regetation observed, and the rocks are so dreply corered with the mbhish of the suffare, that the visitor will return from the wildermess disappointed in the collection of fossils, and fatigued by a jomern orer an meven sufface.

Whe distance between the Macean coal at its outcropping, and the navigable part of the river, is a dificulty few in the present day will be willing to contend with, notwithstading the country is very level, and a rail road might le laid at a moderate expense, to meet the river at a point from which either steamboats or small craft might depart in safety. 'There are indications of coal near Pugsley's Im, on the Macean River ; and perhaps this article of commerce may be obtained in a situation more farourable to its exportation. Quarries of sandstone are numerous between Maccim and Nepan. At the latter place the coal measures are covered by the red marl group, including limestone and gypsum. Collections of red, yellow, and white sand, beds of plastic clay, and small pebbles, often repose upon the rocks in this part of Cumberland ; they are mfavourable to the production of grool soil, and freguently render the surface sterile. Turf
and peat bogs are common in such situations, and will supply that peenliar kind of fued used hy the loner chasses in Ircland.

NEPAN RIVER.

On the semalh side of Nepan River, there is all extensive furmation of limestone, ruming in in eatat and west direction. It erosses the Maremand Hehert Rivers, and extembs castwardly, to an mbinown distance. Several species of fossid shells, and other marine orgmic remans, were discorered in the gharries a slort distance from Nepan Brilge. They belong to classes contine in the magnesim limestone of (ireat Britain, and therefore clearly shew, that this limestone is not the carboniferons or old mountain, ats has been supposed by Messrs. Sumith and Brown. Whe comection this linestome formation holds with the new red sandstone and gyprim, at the above place, is another circumstance not to be overlooked in determining its relative age. It is curions to observe here the numher of pits and hollows, which contrasted with the accompanying momeds, form a peculiar feature in calcarcous districts. Some of the shells, alhough imprisoned and forming a part of the solid rock, where for many ecnturies their inhabitauts have ceased to exist, still appear beantifully marked with the delicate stria of the bivalves. Species of the encrinite, trilobate, \&e., are the principal inhabitimuts of the carboniferons limestone of the Province; but not one of these extinet inimals are found in the limestone refered to, and a more modern race of testact ous an'…ats hat been its intabisiants. The shels comanced
in the limestone of Nepar, are far abowe the rocks of the coalmensures. They lie upon strata in which a great variey of pants haw heon haried. The layers of sandstone, wecupying the fossil valley of the Joggins, are beneath the catemerons deposit ; a faed that none cam deny who will take the pains to examine. It is then evident, that a large portion of this Combty, has been enrulphed in the oceam of a fomer siate of the glohe. It is also obvions that it was eovered hy the seat ater the grow th of a haxufiant hombere, for perfect stony easts of the original trees ath remain, and eren leacs are preserved. Wherefore, althongh these phemenema may combond the gro in Gedomy, it is phan that the fossil valley has heon sumbersed, and during its sabmarine visit the limestone and shells were deposited thon its surfice, where they still remain. But the gean valley of fossil trees has retmed from beneath the water: of the sea, and is now dry eartli. The moluscons anmals of the limestone, have in their then been exiled from their native element. These are facts requiring no ingonious arguments to establish their helief; but of the mature of the revolntions which produced these remakible changes, we are compeiled to acknowledge our ignorance. On the surface of the limestone, the detritus al the dehge forms a disinct covering ; and acending to the opinion of some Geologists, should not be considered in any way connected with the changes which have taken place in the strata bencath. But we would remark, that athough the heds of romoded pehbles and sand, elearly demonstate the effeets of a llood, they can have no re-

the raising of the ocean's level bed, the distortion of stata previously horizontai, the elevation of momtains, and all those violent operations, whereby the whole surface of this planct has heen rent asme r, might have been the prelude to that overwhelming deluge, white the dihsial debris resulted from the action of torrents, after the erwst of the enhoe had been thas broken up.

On the morth side of Nepan River, gypmen is abmolant. It also appears in other parts of the county, but in the same mamer, and of the same quality of the plaister in other parts of the comntry. The samblones of the coal measures, with their red marly coverings, continue into the Province of New Brmswick, where they are met by the high lands of Shepody Mountains. The great collection of allavim on the rivers of Cumbertant, has enriched its industrious inhabitants. Λ number of beautiful and extensive views are presented to the eye, from spots where the neat villages of the sister Province ars seen in the distance, and the cultivated fields and green marshes of Amherst are spread out over the pleasing landscape. But the visitor longs for a hill in this low and level district-for some proud eminence where the eye can wander over this interesting portion of the comery.
'The extensive athavial deposits, forming wide borders on the rivers of Cumberland, have been principally derived from the broken down sandstone and shate of the coal measures. Livery succeeding tide brings its treasures of fine particles, until creeks are filled up, and the rivers confmed to narow limits. So rapid and great has this collection been, that even miles from the sea trees hawe boen dus m, havine becon covered a mmber of lee by
the detritus fron Cumberland Basin. This dihuvium yields a soil inferior to that formed at Windsor, Horton, and Cornwallis. This cireunstance arises from the more fertile qualities of the debris made from the red marly sandstone in the Busin of Mines, than can be derived from the decomposed sandstone, or blue grits of Cumberlaud.

RIVER HEBERT.

At Minudic, near the entrance of the River Hebert, and a short distance from the store of Mr. Simmonds, a small vein of copper ore, half an inch wide, appears in the red sandstone, on the margin of the river. Several pits were dug by a Mr. Backwell, a gentleman employed by the Mining Association some years ago, in order to discover a profitable quantity of this metal. It is almost umecessary to state, that his digging was unsuccessful, as it always will be, when conducted without some knowledge of the strata excavated; for it is almost impossible that any considerable quantity of copper should be found in the marly covering of the Cumberland coal field, notwithstanding several veins in the sandstone, at the locality referred to, are coloured green by the carbonate of that metal mixed in them.

The sandstones of the Joggius coal basin, cross the river in in easterly direction, and are identical in thickness and quality, to those appearng westward on the coast of Clignecto Bay. Several valuable grindstone quarries have been opened on the banks of the river, and yield their proprictors most liberal profits. One of the veins of coal of this basin lins been discoreed where it crosses
the Hebert near the bridge. At this place it has been opened, and a small quantity mined to supply blacksmiths in the neighbourhood, and the inhahitants of the Village of Amherst.

SOUTH JOGGINS.

The coal basin of the Joggins not only extends eastward from the shore of Clignecto, to a distance almost monnown, but also being placed beneath the Bay, reaches into the Province of New Brunswick, including in its dimensions Cape Mereguin, Grindstone Island, North Joggins, and the lower lands at the base of Shepody Mountains. The strata of sandstone and shale, on each side of Clignecto Bay, are perfectly alike, containing the same fossils, having the same dip, direction, \&c., and so perfectly correspond, that no doubt can remain in the mind that they belong to one and the same formation, were produced by the same causes, and have undergone the same changes and revolutions, alike singular and extraordinary.

The broad and deep opening of Cumberland Bay, the estuary called Cumberland Basin, and the channels of the several rivers emptying into them, and which are widely blocked up with collections of alluvium, have been worn out, excavated and formed, long since the Joggins coal basin was constructed and filled.

There must have been a period when this basin was perfect, when the site now occupied by Chignecto Bay, Cumberland Basin and its rivers, was far above the level of the present ocean, when the dry land was spread out
from Appte River to Cape Carnage. But how is the landscape chauged ; the site of the Bay, once covered with lofy trees, is now often studded with the white sails of coasters, its waters are inhabited with numerous kinds of fish, and dash upon the shores they have formed for themselves, with umremitting violence. The action of rimming water has here produced two very contrary effects: first, it has worn down, and carried away by its erosive force, the materials which formerly filled the bays, lasins, and estuaries of the country ; and as those channels became widened and more expanded, as the waters themselves obtained a more easy exit, so they have brought back the debris they hal produced, and deposited it along the sides of broal channels, required at some former period to allow their escape. The fragments carried downward by the torrents of rivers, have again been restored by the influx of the sea, which still continues yearly to increase alluvial collections, by bringing up the rocks disintegrated by its steady influence. Such are some of the changes produced by water in motion, and such are the effects obvious in many parts of Nova Scotia. These effects are by no means to be confounded widh those produced at an carlier period in the carth's history ; they belong to the present period, and may be viewed wherever the eye is directed.

The coal measures having thus been most extensively denuded, have their strata almost yearly broken up by the turbulent sea and the frost, and now present a beantiful section of their several layers, extcnding from Minudic to Cape Chignecto, a distance of nearly thirty miles. These effects are greatly augmented by the rapidity and
height of the tide, which rises about fifty foet at its ordinary influx. The coast from the South Joggins to Apple River, is generally low, meeting the sea with a perpendicular cliff, averaging from fifty to an hundred feet high, and skirted at low water with a beach composed of broken sandstone and fossil trees, through which the inclining strata often project in dangerous reefs and shoals.

From the South Joggins to the above river, this shore is almost uninhabited ; notwithstanding, a great number of men are employed in quarrying grindstones at Ragged Reef during the summer season. They retreat on the approach of winter, as the soil offers few inducements for the elearing of farms.

Between the Bank Quarry at the South Joggins, and Ragged Reef, there are eight veins of coal, included in a distance of about six furlongs, and averaging from six inches to three feet and a half in thickness. The strata of sandstone, shale, and coal, dip to the southward, at an angle of thirty-five degrees, and are perfectly exposed, from the top of the cliff until they disappear bencath the sea. The strata are extremely regular, parallel and equal, affording a section of a coal basin, not surpassed by any in the world, while the sloping layers of the rock, and serpentine waving of the cliff, render the scenery extremely interesting. Several of these veins of coal could be profitably worked, and will produce good bituminous fucl. At the "King's Vein," (so called from having been excavated by some soldiers formerly stationed at Fort Cmmberland,) we "ound three Cornish miners, who hatd made an opening in the side of the precipice, and were supporting themselves and their families by their mienal occupation.

When the quality of the Cumberland coal is considered, and its geographical situation properly viewed, it is remarkable that those who claim an extraordinary right to the Mines and Minerals of Nova Scotia, should negleet a situation offering so many advantages. Almost all the coal raised from the mines at Pictou aud Sydney, is transported to the United States, where its demand is steadily increasing. But vessels loading at those places, must almost circumnavigate the Province, before they can oltain their cargoes. On the other hand, if they were supplied at Cumberland, the length of the royage would be greatly diminished, and consequently the coal would command a higher price at lo pit's mouth. It is lowever very probable, that the Mining Association having expended large sums of money at the coal mines of the eastern parts of the Province, would rather discourage the coal trade from Cumberland, than abandon their former labours. And while competition is prevented, and the inhabitants of Nova Scotia are only permitted to gaze upon the treasures of their comntry, without being permitted even, to dig a bushel of coals from beneath the soil, so long in all pro. bability will the mines of Cumberland remain closed, although steamboats propelled by fuel brought from England, shall almost daily pass over their strata.

Having briefly adverted to the coal of Cumberland, we proceed to the consideration of strata yielding great profits to their proprietors, and of the greatest importance to the country. Among the various kinds of sandstone belonging to the carboniferous deposit, there are numerous strata of that peculiar kind used for grindstones, and of a quality superior io any other ever discovered. 'These
sandstones are composed of minnte grains of quartz, sometimes transparent and colondess, but more frequently stained red, green, blue and brown, united by an argillaceous cement. 'These grains of quarta, sometimes mined with particles of mica, and foldspar, form a compact rock, capoble of being split into tabular masses of large dimensions. Sometimes by the presence of a litte of the oxite of iron, the rock las at tinge of a blue colour ; from stata of this kind the " ljhe grits" are derived. From the most compact and finer kinds of these varieties, the grindstones are made, and adready form an article of commerce, of much greater importance than is gencrally considered. At the Bank Quarry, owned by Ar. Simmonds, a very industrious individual, the gravel and upper stratum is first removed, then the rock beneath is broken into large masses by blasts of gmpowder. After having been split into pioces of smaller dimensions, with iron wedges, it is conveyed to the stonecuters, who with a pair of compasses describe the circle, and with amazing facility cut the eye, and complete the whole process in a shorter space of time than would be required to form a picee of wood of similar size into the figure of a grindstonc. One man will cut fifteen and even twenty of the common grindstones in a day, alter the rock has been quarried properly and placed at his hand. The smaller grindstones are most valuable, and those of the quarry just mentioned, are preferred by purehasers in the United States to any other. 'The value of a limished stone at the guarry, is from two shillings and sixpence to three shallings; hence it is easy to perccive the great profit arising from this sonte, as they are oficn sold in that cometry as hizh as ton shillung,
per stone. Much larger griudstones are quarried and floated between large boats, from the reefs covered by the tide at high water; some of these are six feet in diameter, and twelve inches thick. They are used by the Americans in grinding and poli,hing the metals.

Griurlstones are also quarried at Ragged Reef, and other places along the coast. On the opposite shore there are several excellent qumries, so that New Brumswick also, can suply a most useful article in almost all manufactories. So rare and valuable are these rocks, that they are now largely exported to Boston and other American ports, and from thence have been reshipped to different nations in Enrope. It is to be regretted that any of these quarries should ever become the subjects of monopoly. His Excellency Sir Colin Camplell, with his usual interest in the welfare of the Province, is however, endeavouring to sccure to the country such as are yet ungranted, and those rights the Crown has reserved in former gifts. Some idea of the value of Nova Scotia as a Mining Distriet, might be formed from a knowledge of the fact, that the inhabitants of the Northern States find it advantageous to procure coal from this Province; and as steam navigation and rail-road enterprise increase, so most the demand for our fuel be raised. Also in proporion as their population, trade and manufactories muliply, so will the demand for our coal, grindstones and gypsum, expant. Nevertheless, if the monopolizing influence of our fellow sulyjects, be allowed the power it has so long enjoyed, the inhabitants of this country may weep over the folly or avarice of other men, but can never enjoy the common bounties granted to them bex impartial Providence.

rossils of cumberland coal basin.

Having thus briefly detailed circumstances intimately linked with the practical importance of the Comity of Cumberland, so far as they relate to Provincial and individual weath, we proceed to lay before the reader such interesting facts as have been collected, and such as will delight the Natural Philosopher, however elevated his attaimments may be in these scientific empuries. Ofien have we gazed in astonishment upon the precipiees of the Joggins shore, and beleld rie beach on which the broken tromks and limbs of ancient trees are scattered in great prolusion-the place where the delicate herbage of a tormer world is now transmuted into stone.

The Cumberland coal field may justly be called a vast fossil valley, where plants from the lowly iris, 口l to the majestic palm, have been buried by some great and sudden change on the surface of our planet. The area included within the limits of this simgular event, is by no means narrow or confined to the petrifaction of a few lignites : it reaches at least fifteen miles along the shore, and more than twenty into the interior of the comery. 'The banks of rivers and creeks, the sides of ravines and cliffs, have bcen examined, and the sanc fossils are every where exposed, over several miles on the surface : and even among the common rocks of the field, the remains and impressions of antediluvian plants are yearly overturned by the movements of the plough and hoe. 'Ihese facts shouk be remembered, as they phanly shew that no common catses cond have produced effects so wide in their operations, and powerful in their resuls.

Beween the Bank Quary and the coal veins, there are sections of two large fossil trees, standing perpendicular by the side of the cliff, and penetrating the strata in their way upwards: bu* , the precipice is constantly yidling before the action 'ic elements, its strata have fallen, and in their descent carried downwarls large portions of these trees, which may now be seen mong the mmerous relics of the shore. The roots of the largest tree may be observed as they cuter the roeks, and a sudden swell is spread out at the base, reminding the visitor of the cocoa-mit tree of the West Indies. Mr. Brewster, in the Ldinburgh Phil. 'Yreus. for 1821, has figured a stem with roots, foumd at Niteshill. Comnt Sternburg has also figured a magnifieent specimen of this species of tree, which is called Lepiododendron Aculatum: neither of those specimens however, equal these of the South Joggins in their size, for the tree to which we now refer, is upwards of three fect and a half in dimneter ; and although only about difteen feet of its stem remains, it must have been more than a hundred feet high. Trums and braches of other phimts, are abundant ; their stems are frequently perpendicular in the rocks, except near the coal veins, where they lie parallel to the strata, a fact of considerable importance.

A few miles southward of the "King's Vein," we discovered an immense lossil Lepiododendron Aculatum; the violence of the sea had removed the adjacent shale, and sandstone, and the majestic phant remains erect, by the side of a vertical elifl. 'This tree stauds perpendicular, passing through ant crossing the strata, according to the angle of their dip. Jta roots are seen branching out, and
fenctrating thr rock heneath. At the base it measures two feet eleven inches, and forty fiet of its trmk wore exposed at the time of our last visit to the spot. Sections of a still larger growth may be seen along this mifiequented shore, and pieces of smaller dimensions may be ohserved, from fifty to an hundred feet up the embankment.

Frequently the bark of these trees is converted into coal, constituting the true lignite; in other instances the bark, with the tree itself, is changed into compact santstone. Great care should be taken in removing pieces of the former, as sometimes a whole tree, having its cortical portion carbonized, will slip through the bark, and come headlong to the beach. In this way we were in dimger of being killed from the unexpected lameh of a huge fossil.

Since a recent visit to the Joggins, our agent in fossil affiurs, a sturdy miner, has informed us that a portion of the cliff has lately fallen, and exposed another tree of great size. But few days have elapsed since we fomd a gigantic plant imbedded in the sandstone at low water mark, opposite the Bank Quarry : it had been exposed by blasting the rock for grindstones, and the miners suffered some loss and disappointment, in consequence of its passage through a profitable layer of stone. At this place, a cactus, beautifully figured on the surface, and measuring fifteen feet in length, had been broken by the workmen, and rolled off the reef. Such are some of the ponderous fossils of this valley, to which months might be devoted in collecting and describing the remains of a former world, and where more fossils of large dimensions, more perfect in their preservation, and interesting in their
postures, occur perhaps, than in any other part of the world, so far as they have been discovered.

Some of the trees of this valley, seem to belong to the palmaceous order, and to amomalous species, connecting the palm to coniferons tribes. Arumdinaceons plants are abmalant ; among them are calanites, a generic term used by Stemburg and Sclothein. These are jointed stems, longitudinally striated: in some of theso lossils the joints are long, in others short ; frequently they resemble bamboo very closely, and hence have been called bambusites, although Count Sternburg observes, " elles se distinguent des bambousiers en ce que les divisions n ' en sont point marquées par des nouds saillans, mais par des contures ; elles sont en outre rayées plus distinetment."

The variolaria of Sternburg are common; they have the depressed arcola, with a rising in the middle having a central speck; these are called variolate, from the surface appearing as if covered with pits of the small pox. Different species of this plant are easily procured. The variolaria are almost always found between the layers of sandstone and shale, considerably flattened, and with a longitudinal groove along their under side. Steinhauer considered that this groove represented the pith, which was not so easily decomposed as the other woody parts of the plant. With him we are unable to agree in this particular, for besides the longitudinal groove, so well described by lim, and appearing in numerous specimens, the pith or heart of the plant is beautifully preserved, enclosed in a tube ruming through the fossil so clearly and naturally, as to leave no doubt of its original nature. We placel a
specimen of this kind in the Merlanirs Institute, at Jalifis, an ratablishmone of much importanere to the coumtry, and many large specimens with the pith contire, are now upon our sholves.

Another elass of fossils common on this shore, is easily recognised by their fluted appearmee. 'The flutings are farther infart than those of the calamites, and the plant has no joints. This class is called syriugodendirt, liy Sternburg. Several species have been fomm in the strata of Cumberland; among them is that called Pratmilus Sutcatus by Schlotheim.

Trums and branches transversely striated-the Phytolothus transversus of Stemhaner--sometimes appear ; although they are more rare than the preceding plants. Enormons cactites may be picked up among the lroken strata, near the coal veins. Large oval masees, resembling the thick fleshy stems of the tropical cartites, are abundant; but it is difficult to decide how far they are represented by species now inhabiting the carth.

But besides the foregoing classes and their several species, we have here a lofty and majestic fossil, lifting its head far above the humbler plants. This siment of the petrified forest, nearly resembles the palm tree of the tropies; it consists of a large straight trunk, without limbs, except at its summit, where the leaf and branch were mited. The leaves resemble those of the living paln, and must have been of great length, as some of them can be traced continuously through the shaly rock, to the distance of forty fect. The cortical covering of these trees has been converted into coal, which readily separates from the trum, leaving a smonts suffere. Seremal kinds of

16:

leaves have been found, but in the present state of oun knowledge, and being mable to obtain the most recent works on fossil flora, we find it difficult to decide to what species they belonged. Conybeare and Philips have observed, that one class of these impressions has been compared by different anthors to Ilippuris equisetm, Asperula, Galiun, Rubia, Moluga, and Casnarina; a list quito sufficient to shew their contire uncertainty of the sulject.

From what we have examined, more than one half of the plants petrified in this great fossil valley, belong to species resembling filices, (ferns.) One kind belongs to the equisetacea, (horsetail.) There are reeds, canes, conifern, (fir tribe,) Arancarian pines, tree ferns, cactites, palms, and rush-like plants, twenty feet high. There are leaves of the Sphenopteris trifoliatu; others are pectinate, flabilliform, bissinate, and ensiform. The intention of this work will not allow an elaborate description of the above fossil plants; but from the foregoing facts some general idea may be formed, how great the vegetative power must have been during that period, when their branches and leaves overshadowed the antediluvian soil.

Doubtless there was a period in the history of this terrestrial planet, when all these plants spread forth their vigorous leaves; when the lofty pahn with its umbrageous foliage, hovered over the leafy cactus; when the jointed and bending calamite, waved in the primoidal breeze, casting is moving shadow upon the waters of some ancient lake or basin. In the examination of these relics, belonging to one of the kingdoms of living nature, the mind is transported back to an era for ever gone, and the soul is aronsed in its deepest recesses, by a faint ray of
light, seening to issue from the primeval world. But in vain will that world have perished ; in vain will its ponderous relies, thus preserved for our instruction and admonition, be unfolded to our senses, if they fail to awaken their oculate withesses to a view of the begiming and end of all smblumary things, and lead them to admire the great Author of all terrestrial beings.

All the plants thus concisely noticed, and now converted into solid stone, flourished in a climate as wimm as that of the present tropies ; every fact comected with their classes, stracture, foliage and size, demonstrates that they are natives of a moist soil and heated amosphere. Descending anong these enormons fossil vegetables, the mind is inmediately arrested with their similarity to living plants now growing in Sould Anerica and the West India Islands. The botmist may search in vain for their successors in these northem latitudes: none of their analogies are now growing in this figid region. Since their mighty vegetation covered the carth, since their delicate leaves and blossoms had heen expanded, their vast sources of multiplication mocked, and their odoriferous exhatations emitted in a benign amosphere, the climate has been changed, and they have been sealed up in the dark cemeteries of the dead. And although our name may perchance be enotled among those who are called catastrophists, and do not allow enough latitude for the operations now going forward upon the carth; we know hat some vast change hats taken place in the climate, some mighty revohtion in the rocks has heen offected ; and moreover we are eompelled to believe, that the change has been as sulden as great. We dismption a-
powerful as it appears extraordinary. Let him who doubts the correctness of these opinions, examine the herbage upon the Joggins cliff ; here the birch, miple and spruce, in dwarfish thickets, with small ereeping evergreens, manthe the earth. But if he deseend among the strata bencath, the majestic paln tree, the gigantic cactus, and several species of sucenlent vegetables, are placed belore him, and the stony foliage of another climate, more mild, hmid and salubrious, lies buried in the earth bencath his feet.

An order to account for the great collection of tropical plants now found in northern latitudes, some Geologists have informed us, that they drifted there during the Noachian delage. But is it possible that delicate branches and leaves, should suffer a transportation of two thousand miles, and even much more, be exposed to a powerful cument, the agitations of the ocem, the chemical action of the saline fluid, and still be preserved in all their original beauty? Could the fossil flora and tender pericarps, endure a voyage so hazardous to their structure ? Most certainly not. Others have supposed that the poles of the earth have been changed, whereloy the ancient tropics have been conveyed to the present poles, and the ancient poles to the present tropies. 'These opinions must also fall, and the idle theories they have introduced, be abandoned ; for the plants belonging to the coal fields are all tropical, whether they be fomed in Greenland, or directly moler the Line. Therefore a warm climate must have pervaded the whole miverse during the coal period. But without bringing hefore the reader all the evidence refuting such opinions, let the matter be referred to the testimony afforded on the coas of Chignecto Lats. Here immense
fossil trees are seen standing perpendicular, penetrating the strata in their way upwards, and maffected by the inclination of the several layers through which they pass. Here also the roots of the plants are seen branching outwards, and entering the rocks bencath in the most natural order. 'Therefore the best evidence is afforded, that they flowished upon the spot where they are now located, and stand in the same situations as when their spreading boughis afforded a cool retreat from the scorching rays ot the sum.

We have alrealy observed, that the great fossil valley has been submersed bencath the waters of the ocean. This is evident from the calcarcous deposit placed above it at River Hebert, Nepan, \&e. This calcarcous deporsit contains an abundance of marine shells, therefore all doubt on the subject is removed. 'That the Cumberland coal basin has been bencath the waters of a primeval ocean, there can be no doubt ; round masses of quartz, sandstone, and even porphyry, frepuently appear in the middle of its strata. Sometimes these bolls are troublesome to grindstone-cutters, who call them " bull's eyes." They are frequently as large as a four pound camon shot, and render the slabs where they are depositert, unfit for use.

Fiom the facts already described, perlaps the following theorem may be derived;-Hat the Cumberkmel coal field was at some very remote period covered with a very luxuriant tropical herbage; during the growth of enormous plants upon its bosom, it was by some Geological catastrophe buried bencath the waters of the ocean. In this state of things, the sea would naturally convery and deposit upon it, layers of sand and clay, ultimately form.
ing strata of samdstone and shate. In those sithations where there was a hollow or a hill, those materials would be carried over the summit of the latter, forming regular sloping strata down its side, leaving the trees in their original upright position. In this way only can we account for their freguent upright posture ; for had the strata containing the trees, been formed horizontally, the fossils would cross them at right angles, however much they might have been elevated by some eruptive force from beneath. 'Ihis opinion seems to be supported by the fact, that it is only in a few situations, where the upright position of these enormous fossils is preserved ; often they lie at different angles with the strata, and more freguently between them. After the elapse of an manown period, after the basin was filled, the imhabitants of the sea took up their residence upon its surface, the calcarcous rocks of Nepan were laid, and finally, through some volcanic agency, the limestone was elevated from the deep, and the shore of the Joggins raised above the level of the present sea. The " beds of coal were produced by vast fuantities of plants, carried down from the land, and accommated at the bottom of the sea ; the numerous alternations, anounting to many hundreds sometimes, of sandstone, shale, and beds of coal, proving a long period of the process of depositio "." Admitting these opinions to be correct, it is easy to account for the coal and fossils, now lying leneath the present sea, mad the shells appearing so far above them.

Perhaps many would entuire at what time since the weation of this earth, did these mighty revolutions and changes oceur: But although the sciene of Leologre i,
sipplied with the best evidence of certain events having occurred, and of distant periods when by the fiat of the Almighty, mumerous classes of animals and plants were called into existence, or were amihilated by His supreme mandate, he is lost in his account of time, and camot discover the periods which have els sed between one of those epochs and another. And why need the human mind revel in chaos, a thing incomprehensible, an invention of the Pcrsian Magi ? Why endeavour to grasp millions of ages, while there is " a sure word of propheey, in which fools shall not err"? "Why should we claim in behalf of our globe, a more ancient origin than that assigned by the inspired chronologist? Will its rank, dignity and importance, be enlanced by a remote gencology ? Is this not a taint of the pride of ancestry, common to the whole family of man? But how can it be gratified? even lyux-eyed science can pierce no farther into the dark veil of creation, than common vision; her telescopic glasses, which penetrate farthest into space, have no time keeping power whatsocver." Might not the Cumberland coal field have been submersed during the time which elapsed between the creation of the world and the deluge ? And might it not have heen restored at that awful crisis, when Noal and his family were floating in the ark? We think it might, and that there is enough contained in the Scriptures to warrant this conclusion, however humbling it may scem to the expanded views of some modern theorists.

From the vast collection of facts recorded, and obsservations made by the most distinguished philosophers of the present day, it appears that the events which accom-
panied the deluge, produced a great and sudden change in the temperature of the terraqueous globe. The proportion of the land to the water, of the antediluvian world, was much greater than that of the present earth, and as evaporation, a rery cooling process, is now much increased by the greater aqueous surface exposed to the atmosphere, so the temperature of the earth must have been greatly lowered, as the situations of primeval continents became occupied by postdiluvian seas. "The almost incredible number of bones of fossil elephants, found in Northern Siberia, which betray no marks of having been rolled from a distance, attest the existence on its plains, of huge herbiferous animals, at that distant epoch. These demonstrate, that a vigorous vegetation clothed countries now covered with frost a great part of the year, where even in summer sterilizing cold, and humidity perpetually reign, and where at present the reindeer can hardly pick up from beneath the snow its scanty mouthful of moss." Dr. Ure, of Glasgow, from whose admirable work we have made the foregoing quotation, has produced much testimony to prove that the changes which accompanied the flood reduced the temperature of the earth ; and the more we behold and consider of the effects produced by that mighty catastrophe, the more we are convinced that his reasoning is just.

TRAP DISTRICT.

Trap is a term that has long been used in a very general sense, and therefore much ambiguity and misunderstanding have arisen among Geologists, from the indefinite meaning the word has conveyed. It is derived from the Swedish Trappa, signifying a stair, or number of steps. Hence it has been applied to rocks forming a series of steps, by the gradual retreat of their different layers. By this term we mean the trap rocks of the Wernerians, the whinstones of Dr. Ifutton, and the floetz traps of the school of Freyburg.

Trap Rocks include greenstone, basalt, anygdaloid, and toadstone. Greenstone is composed of homblende and feldspar, differing extremely in the proportions of those two minerals-sometimes assuming a homogencous aspect, but often presenting large crystals of hormblende. Basalt is a homogeneous rock, generally containing black oxide of iron. This rock is remarkable for the appearance it often exhibits, of having been crystalized ; hence it often composes lofty columns regular in their dimensions, and bounded by plain sides and angles. Of this rock Great Britain exhibits some of the finest specimens in the world. Upon the coast of Antrim, in Ireland, both the massive and columnar varictics are seen in all their native beauty. The Giant's Causeway is formed of this rock, likewise the panorama of Staffa, and the celebrated Cave of Fingal. The amygdaloid is named from the Latin (amygdala,) an almond, and is remarkable for containins:
rounded vesicles or nodules, resembling that fruit. The toadstone is distinguished by its resemblance to the back of a toad. It is now generally believed, that this assemblage of rocks is of volcanic origin : of this there can be no doubt, although no arguments will be produced to support that opinion, until the facts as they appear in the Trap rocks of Nova Scotia, are considered; when the reader will be qualified to form an opinion, without the bias of any theory previously introduced. Nor is it our object to give a particular description of trap rocks in general, but faithfully to delineate the situation and characters of those belonging to the Province. Such as wish a more extended account of this remarkable class of solids, will find all its qualities described in Lyell's principles of Geology.

It has already been remarked, that the whole of the North Mountains, extending from Brier Island to Blomidon, including the Five Islands, Two Islands, Isle Hant, and all the capes on the north side of the Bay of Fundy, are composed of trap, and rest upon the new red sandstone, throughout the whole of their formation. Some might suppose it singular, that the basaltic rocks of Nova Scotia, which are hard, compact and solid, should be placed upon the new red sandstone, a rock recent in regard to its formation, and soft and yielding in its nature : but similar phenomena appear at numerous places in Scotland ; at Regla, twenty-five miles north east of Mexico, where the prisms of basalt repose on a layer of clay ; and at Totonilca they are found resting upon compact chalk. Some of these groups are elevated with the country around them, six thousand feet above the level of the sea.

Maving made these remarks, we proceed to the arduous task of lescribing the hornblendo rocks, and tho numerous minerals contained in them. Having during several past years visited different and extensive portions on the coast of the Bay of Fundy, at all seasons of the year, and under a great variety of circumstances,-having always taken notes during each visit, it has appeared most convenient to pursue a plan adopted in regard to the Slates District, and to commence at the most westerly portion of the Trap Formation, and continue our remarks upon the interesting minerals it contains, to its termination upon the shores of the Basin of Mines.

The Trap Rocks on the south side of the Bay of Fundy, form a strong wall, extending from Digby to tho eastern shore of King's Comnty. This wall varies from four miles to two miles in thickness; it is narrow in the Township of Granville, but preserves a very uniform thickness in King's County. It is cut through at the Grand Passage, Petit Passage, and Digby Gut, and is elevated upon an average about four hundred feet abovo the level of the sea, and on its south side three humdred feet above the sandstone upon which it is placed.

From whatever cause these rocks have been formed in Nova Scotia, they are a distinct and separate class, having no other connection with the secondary formations of the country, than such as arise from their mechanical position upon the sandstone. If the Trap Rocks were all removed, the country now occupied by them would present a surface quite level and uniform, and therefore they now appear like mountains, superadded after the earlier formations had been completed.

brier istand.

'Turs Island forms the most westerly extremity of the 'Trap Formation, and is separated from Long Island by a narrow channel, through which the tides pass with great rapidity. From that cause, and the exposed situation of its rocks to the open sea, it suffers mueh from the destructive powers of the elements, and more than the Islands in the Basin of Mines, or Mathone Bay, which are somewhat sheltered from the violence of the waves. On the south side of the Islaud, and near the entranee of the chamel from St. Mary's Bay, the rocks have been worn away, and beautiful cliff's of regular colunnar basalt are exposed to the ocean. The colums form long ranges of pillars, like the steps of stairs, reaching from the sea below to the precipice above, against which the waves often dash with fury, breaking down the notched ridges and pedestals forming its basc. 'ïlhese pillars are in general hexagonal, atthough some are enclosed by seven sides. Their articulations occur at short intervals. This circumstance renders the rock more liable to be broken down, than it would be were the colums of greater length. On this side of the Island the basalts extend outwards beneath the sea, forming a submarine causeway, called "the Bar," over which the tide and waves rush with great force, foaming and breaking over the impediment thus placed in their way ; the sea sends forth hollow sounds like those of dis. tant thender, and in caln weather may be heard several miles off: On the western side of the Island, and near the lighthouse, the rocks attain a greater elevation, altho' their columnar arrangement is not so manifest. At low
water the red sandstone was seen cropping out bencah the trap, thas confiming an opinion already adranced, and supporting a fact of considerable importance. In comparing specimens of basalt from Brier Island, with those from the Island of Statlia, they were found very similar, and no important feature was wanting, to identify the rock of Nora Scotia with those of the celebrated Fingal's Cave. Between the layers of trap we found several narrow veins of jasper, and thin veins of the magnetic oxide of iron. They are not however important when compared with those minerals occurring at other places.

From the exposed sitnation of Brier Island to northern gales and thick foges, the soil is unproductive ; but what Nature has withheld in vegetation she has supplied in fish, which are excellent in kind and quality, upon the shores. We camot forget an opportmity aflorded for surveying this Island in 1821, although the cireumstances comected with our visit at that time were not of the most pleasing kind. On the last of December of that year, on our way to the West Indies, the vessel in which our lot was cast, was overtaken by a violent gale of wind : she soon became a perfect wreck-the crew frozen and exhausted. Fortmately a change of wind drove the crazy bark into the Grand Passage. 'There had been a cargo of twenty horses upon the deck, but when we landed only five remained, and they had been dragged ashore in the turns of the cable, which had washed overboard, and so encircled them as to prevent their escape. Nor should the kindness of Charles Jones, Esquire, and his family, be forgotten; to them we leel greatly indebted, and the marks of frost still remaining upon our lower extremitics, will not allow the circumstance to lice our nemory.

17.4

L.ONG ISLAND.

On this Island the anygdaloid will be observed, projecting out beneath the almost perpendicular walls of irregular greenstone. 'The cavities in the anygdaloid often contain chlorite; a few zeolites were observed at one place only. In some situations these cavitics are unoccupied, and the rock possesses all the claracters of the vesicular anygdaloid. Sometimes the cavities present small nodules, which when broken disclose green lamina of chlorite, with delicate fibres proceeding from the centre to the circumference of its crystals. It has been said that several large pieces of pure native copper, have been taken from the rocks on the west side of Loug Island; but none of that metal was discovered, during an ardent examination of alnost every crevice where it would be most likely to occur. On the north side of the Island, there are several veins of red jasper penetrating the greenstone ; as these veins descend into the amygdaloid beneatl? they lose their compact and solid properties, and pass immediately into a kind of clay-stone, of a soft and friable nature. And it appears that this clay-stone has been converted into jasper, by the greater heat to which it has been exposed in the uppermost portions of the rock, while below it has becn insufficient to convert the clay into jasper susceptible of a polish.

The trap composing this Island does not assume the perfect basaluiform structure, so manifest at other places ; although some beautiful views might be taken, where its projecting cliffs appear ready to fall into the sea beneath.

DIGBY NECK.

Digby Neck is separated from Long Island, by a deep and narrow channel, called l'etit Passage; both the flood and ebbing tide rushes through this opening, with a rapidity almost sufficient to propel water wheels and powerful machinery. Not far eastward of the Passage, on the side of St. Mary's Bay, a deep notch appears in the solid trap, called Little River. At the entrance of this river, the rocks again assume a regular and beautitul basaltiform structure. They form a lofty precipice, appearing like a great number of square piles, driven down to protect the coast from the undermining influence of the sea. These columns are composed under four, five, seven and nine sides. They are not stingly secured to each other, and therefore are constantly falling to the base of the precipice, where they resemble the ruins of frame work. "Sir Joseph Banks observes, that the bending pillars of Staffa, differ considerably from those of the Giant's Causeway. In Staffa they lic down on their sides, each forming the segment of a circle, and in one place a small mass of them very much resembles the ribs of a ship. Those of the Giant's Causeway which he saw, ran along the face of a high cliff, bent strangely in the middle ; as if at their first formation, they were unable while in a soft state to support the mass of incumbent earth." At several places along the coast of the Trap District, has this bent form of the basaltic pillars been observed, although it is perhaps uncertain whether they have become crooked from the above cause, or some other disturbance which may have taken place during their crystalization.

Betwren little River and Sandy Cove, there are several minerals appearing, both in the amyerdaloid at the base of the long precipice, and the superincombent trap. Among them is jasper, sometimes in veins a foot wide, containing geodes of quartz. The quartz is often in beautiful transparent crystals ; amethyst also appears, in varions shades of purple, and like the quartz in six-sided prisms terminated by six-sided pramids, the most common forms in which those minerals appear in the trap recks of Nova Scotia. The cavities in these geodes are sometimes occupied hy white thombic crystals of chabasie. In one instance we found crystals of quartz, amethyst, and chabasie, curiously combined. Some very singular specimens were obtained, composed of lamella of quartz, arranged in parallel and oblique plates, with cavities filled with calcarcous spar. They have a peculiar variegated appearance, and furnish a singular imitation of a certain kind of porphyry. Red, yellow, and striped jasper, are frequently seen sticking in the fissures of the rock in some places; these colours are curiously intermixed, bat every variety is inferior, when occurring in the amygdaloid, improving as it ascends into the greenstone placed above. Many of these mineals are very beautiful when polished, but in their present state they are of small value, only making up a variety in the specimens afforded by the country.

SANDY COVE.

Ar this place there is a singular opening in the trap, affording a safe and comeenient little harbour for small craft.

At its entance the rocks form steep battements on cach side of a narrow passage, seming ready to fall upon such as seek shelter between them, when St . Mary's Bay is disturbed by gales of wind. The trap is in large irremular masses, separated by marow fissures ruming in every direction, giving its walls the appearance of cuboidal blocks, mechanically piled upon each other. Afier passing throngh the opening, the amygdadoid slopes gradually down to the beach, forming an agrecable contrist with the bold scenery in advance. The trap rocks at the entrance of the cove, consist of the greenstone so well deseribed by Jameson. It is generally composed of horublende and feldspar, in a state of small granular particles, sometimes in ceystals. At this locality the hornblende predominates, giving the rock its peenliar sreenish hue.

The amygdaloid is of a coarse kind, and contains several beatiful and interesting minerals; anomg them is the Lamonite, found projecting from the serpentine veins in the rock, and rarying from an inch to a foot in width. In order to obtain good specimens of this singular mineral, it shoukd be taken from situations not exposed to the weather, therefore a little previous digging and breaking, are aecessary hefore a seleetion is made. The veins contain numerous cavities, where beatiful crystals project in clasters of obligue-angled four-sided prisms, terminated by slightly rhombie planes. They are tramsparent and colonrless, varying from half an inch to an inch in length. Calcareons spar in obuse rhomboids, is associated with the lamonite, the later forming the base. and lining the sides of the lissures in which both orems. Ipon each of those minerals is often implanted dilieate and splendent \therefore :
crystals of specular oxide of iron, rendering the aggregate extremely interesting, and plainly shewing the affinity each atom harl, for those similar in their natures, during the process of erystalization. The specular oxide of iron is sometimes collected in veins, which when broken contain cavitics where white semi-transparent crystals of chabasie, are safely secured upon one of their rhombic planes. Agates, chalcedony, and crystals of quartz, are also found, either occupying veins and cavities in the rock at this place, or having been disengaged by the disintegration of their beds, are scattered upon the shore. Among those detached pieces a small nodule of semi-opal was discovered. In one of the geodes occurring in the amygdaloid, we also found a kind of needlestone, resembling specimens from Iceland: this mineral appears however, at other localities, in much greater perfection and beauty. Should the reader be induced to pay this interesting place a visit, for the purpose of obtaining minerals, he will find that a strict examination of the rocks, and a little labour, will be rewarded with specimens curiously associated, and well adapted for the cabinet.

The specular oxide of iron, appears in considerable veins a short distance eastward of Sandy Cove, and vies in beauty with the best specimens brought from Cornwall, or the Island of Elba. Upon the shore of St. Mary's Bay, it occurs in crystals slightly rhombic, its primitive form ; also in plates and scales, sinilar to those found in the fissures of lava, : volcanic districts. We could not however discover, that any of these crystals possessed polarity, a property common to those taken from the neighbourhood of a crater. The specular oxide referred
to, is connected with the magnetic oxide of iron, seen in narrow veins penetrating the anygdaloid, and often appearing in considerable masses upon the soil. Although the specular and magnetic oxides of irou are valuable ores, they do not occur in a sufficient quantity upon Digby Neek, to admit of being profitably worked. 'The former yields crystals beautifully tarnished with azure blue, resembling tempered steel ; sometimes they are of a light bronze colour, and irised. It is doubtless from the presence of these oxides of iron, that surveyors in running lines upon this peninsula, find the magnetic needle so much disturbed, and there can be no doubt that the magnetic influence of these oxides, was received during the heat which accompanied their formation; nor should we omit to mention in this place, the great similarity existing between the specular oxide of iron on the shore of St. Mary's Bay, and that which is now found in the recent lava of volcanic countries. These evidences of the origin of the trap rocks of Nova Scctia, were noticed during the examination of that class of rocks, where important testimony is afforded in favour of the modern belief of their igneous origin. It was before observed, that the Trap District at Digby Neck, is much narrower than at Granville or Comwallis; and it is singular, that opposite to Sandy Cove, and upon the shore of the Bay of Fundy, this Formation should have a like indentation to that already described, with a small lake placed between them, so that another Island, similar to the one placed to the westward, might have been formed with a less remarkable occurrence, than it could be cffected at any other place along the coast. 'The existence of that lake might lead to
some curious enquirics ; and from its situation and appearance, many theoretical propositions might be brought forward. It has however a companion of similar features aud cimensions, a few miles farther eastward. Were these openings, in which the fresh water is now collected, at one time craters, giving vent to the melted lava, which now remains in distinct layers upon the shores on each side of their openings ? Did they give exit to the various substances now found crystalized and filling the vacancies produced in the rocks by cooling ? It is evident that without the aid of heat those splendid specimens could not have become crystalized. Let such as would auswer these queries, examine carcfully those lakes and the surrounding rocks, and they will find sufficient evidence to auhorise such interrogatorics. At the cove opening into the Bay of Fundy, thick layers of amorphous trap dip at a low angle beneath the sea : they are similar to those at the inner Sandy Cove, and like them contain some curious minerals. Large veins of inperfeet jasper are here seen, forming ridges projecting from the rocks. Pieces of hornstone and chalcedony were also observed along the shore, which we were unable to examine to any great distance, on account of the approaching tide.

Along the shore extending from Sandy Cove to the liead of St. Mary's Bay, where the trap and red sandstone formations meet, there are numerous pieces of agate, jasper, chalcedony, ametlyst, quartz, hornstons, calcarcous spar, and oxide of iron. The agates exhibit several singular varicties : among them is the fortification agate, from its resemblance to the zigzag lines of fortifications.

They are composed of alternate lines of transparent and white chalcedony, jasper and guartz, curiously waved, and often lined crosswise with rays : sometimes jasper, anetliyst, and chalcedony, are united in such a mamer as to form breccia and dotted agate. Many of these if collected and polished, would equal in beauty any found in other countries, where they have been sold at high prices for ornamental purposes. These masses often form geodes containing brilliant crystals of purple amethyst. Messrs. Jackson and Alger, of Boston, found a gende of amethyst on this shore, weighing upwards of forty pounds, and coated externally with fortification agate. The jasper is capable of bearing a good polish, and very compact.Among the chalcedony, we found that peculiar kind called " cat's eye," the quartz agathe chateyant of Havy ; when polished it exlibits the remarkable appearance of the cat's eye, hence the French term " chatoyant" has been applied. The hornstone and calcarcous spar present nothing remarkable, and the specular oxide of iron is like that already noticed.

Not far to the westward of the junction of the trap rocks and red sandstone, on the north side, and a few miles from the head of St. Mary's Bay, large irregular blocks of red and yellowish red jasper, lie scattered at the foot of the precipice, which in some places rises to considerable height. Some of this jasper is very compact, although many masses appear to have been imperfectly consolidated during the operation of the process, by which the more perfect kinds have been rendered sufficiently solid to admit of a good polish. Some fragments are curiously striped with different colours, in others rounded
pebbles of chatcedony are united by a siliceous cement, forming a coarse and remarkable kind of agate. Were large pieces of this breccia polished, it would afford an agreeable imitation of mosaic pavement ; and it is quite probable, that as a taste for the curious and refinement advance in the country, so these now misshapen masses, may be removed to ornanent the abodes of the weatthy and eceentric. 'They would excel in beauty many ancicut porphyries, and perhaps efpual those composing the busts of Apollo and the Twelve Euperors, in the palace of the Thuilleries.

Clusters of quartz crystals, frequently appear suspended in cavities of the jasper, and in a few instances, when the rock is broken, amethystine quartz, in delicate prisms, may be secia lining its crevices. Several of the mincrals seem to have been promiscuously thrown togisther, and cemented by a process in which heat had evidently an extensive influence. Frequently the jasper contains the red oxide of iron, which gives it the appearance of wax. Almost all the minerals at some localities, have their colours greatly diversified by the presence of the sulphuret and carbonate of iron, that often form singular combinations with the siliceous - id calcareous deposits.

From the outer Sandy Cove to Digby Gut, upon the shore of the Bay of Fundy, the red sandstone was scen at low water mark, shelving out beneath the amygdaloid resting upon it. The amygdaloid frequently abounds in those hollow vesicles which characterize the genuine species of that rock. These cavitics are however, ofton occupied with zeolites, to be noticed here-
alter. Upon the amygdaloid is plared the basaltie trap, which in a few places shews its columar structure, and approximation to a crystaline form.

Rising from beneath the boundary of the highest tides, the trap forms perpendicular precipices more than two hundred leet high, and presents a majestic front, from whose wavelike summit the waters of the rivulets above fall in glittering spray upon the heach bencath. The wearing effects of the sea upon the amygdaloid, has in many places left rude pillars, overhanging the limited path of the traveller, and seeming ready to fall upon him as he climbs the rugged crag, or seeks his way among the misshapen blocks upon the shore. Frequently thousands of tons break off from the cliff, and fall towards the sea, covering the beach with broken masses, and leaving between them frightul arches and darkened chasms. Silent and lonely we trod this unfrequented shore, and amidst its picturesque scenery, the note of the screaming gull and trumpeting loon, cchoing from the gloomy cliffs, added not a little to the wildness of its scenery.

Near Trout Cove there are agates having a base of semi-transparent chalcedony, studded with irregular fragments of jasper and hornstone ; sometimes the jasper is curiously striped with zigzag lines of red carnelian, forming a kind of agate not observed in other situations. These agates occur in veins in the basaltic trap, varying from half an inch to two inches wide.

Milky white chalcedony of a fine quality, and well adapted for seals, rings, \&c., also appears in narrow veins along with the agates. A small piece of this chalcedony having been polished, is much admired, and the
peculiar reflection of rays of light falling upon its surface, perhaps affords a new variety of that mineral.

Eastward of Trout Cove there is a singular indentation in the coast, which appears to have been formed by the soft and yielding nature of the trap rocks. Here the affrighted mariner finds a shelter between massive columns of greenstone, when the Bay is agitated by fierce winds; for Gulliver's Hole is the only imitation of a harbour along this part of the coast. Stilbite under several different modifications, occurs in the vertical fissures of the rocks. On the sides of the fissures, this mineral appears in horizontal leaves; wherever a sufficient opening has been allowed, the crystalization has been perfect, and several secondary forms are exhibited. Among them is the right rectangular prism, with a pyramidal summit. Sometimes the prisms are compressed, and become sixsided tables with bevelled edges. In other instances the crystalizing process has been so much disturbed, that no regular form has been assumed, and the mass resembles ice. Pieces of each variety are readily obtained, and shew the difference of form that mineral is capable of bearing. On hot coals it exfoliates, and before the blowpipe it melts into a white cnamel. In beauty it is much inferior to specimens discovered at other localities, and to be noticed hereafter. Between Gulliver's Hole and Digby Gut, considerable veins of the magnetic oxide of iron are inserted in the rocks, but they are similar to those already described; and as they are unprofitable for mining, will require little attention. Jasper, agate, chalcedony, and other minerals, were also observed lieing in detached pieces along the shore, as far eastward as the Lighthouse at the entrance of the Gut.

DIGBY Gu'T.
Two distinct interruptions in the continuity of the Trap Formations, have already been considered, namely, Grand Passage and Petite Passage : another similar in its appearance to those having formed Brier and Long Islands, appears at Digby, and is called Dighy Gut. The peninsula of Digby would also have been an Island, had not a strong barrier or dyke been stretched across from the trap rocks of the North Mountains to the slate of the Southern hills. This barrier cuts off the cul de sac of St. Mary's Bay, dividing it into two portions. The smaller portion being terminated by Anmapolis River, and the larger communicating directly with the sea.

After having considered the outer and imer Sandy Coves, the deep indentation of Gulliver's Hole, and also the openings upon the surface now forming small lakes, it appears obvious that the Trap District, in this portion of its fixture, originally possessed several weak points. By comparing all those weak points, it can scarcely be doubted that the particular indentation which existed upon the spot where the Digby Gut now enters the Bay of Fundy, was capable of being converted into a channel, from a lesser cause than could produce that effect at other situations along the north side of the Annapolis Basin.

Let us suppose that the trap rocks had been continuous across the present Dighy channel, and a noteh or cove, like that of "Gulliver's Hole," formed on the north side of the then united rocks : he Amapolis Basin would then have been a lake, and the constant accumulation of water from the surrounding mountains, would over-
flow part of Aunapolis, the Township of Granville, Wilmot and Aylesford, until they formed a way for their eseape into the Basin of Mines. 'Then also, the pressure of the waters at the nurrow barrier of Digby, would have been great, aud quite sufficient to force it and make their exit through the chamel they had formed for themselves, and still continue to occupy. Now it is not probable that the Amapolis River had an existence prior to the formation or elevation of the North Momtains, which are evidently of later formation than the sandstone upon which they rest. Prior to their elevation, the surplus waters of the country might have been conveyed directly to the site of the present Bay of Fundy, and the ancient channels over which they passed, seem to remain even to this day. After the formation of the North Mountains, a vast accumulation of water must have been made over the great valley of King's and Annapolis Counties; and the weakened columns of the trap at Digby, having offered a more feeble resistance to the pressure of the water in the valley above, than the istlmmus already mentioned, have been forced, and their pillar-like masses thrown into the deeper bottom of the Bay. Thus a chamel has been formed, through which the waters have pursued their course, and contiune to escape ever since. These opinions are supported by the rocks now lying at the entrance of the Gut from its north side, where an immense submarine reef of trap yet remains, and is placed in the same situation where it might be expected if these opinions are correct. Over this reef the sea continues to break with unremitting fury : the pilot knows its bounds, and the hardy mariner shums the tide that sets upon it, but may not consider from what sonve the inpediment in his way has been derived.

But it may be enpuired at what period did these events take place? Did the collection of water between the North and South Mountains, at the sulbsidence of the deluge, burst through the passage alluded to ? Or, did the volennic furnaces, from whence the trap rocks flowed in torrents of burning lava, suddenly block up the avenues through which the waters of the great walley of King's and Amapolis cscaped to the sea? We know that whole islands and momtains have been raised in a single night, from such causes, but leave the reader to speculate upon these phenomena, while we pursue a farther enfuiry into the most interesting class of rocks ever discovered upon our shores.

From the sea, the strait at Digby, and the perpendicular basaltic masses of the adjacent coast, present a grand and striking scene. Crowned with the deligluful verdure of spring, we saw it in its best dress, and were reminded of the creeping ivy, decorating the lofy batdements of ancient castles.

NORTH SHORE OF GRANVILLE.

About six miles castward of Digby Gut, our cxauinations were again renewed. 'The whole of the coast is composed of basalic trap, resting upon amyglaloid.Here as at other places upon the shore, the red saudstone in broad strata, was seen reaching outwards bencath the amygdaloid, which succeeds it in almost every instance. Not an opening of any kind, nor a projecting cape, offer any sheltor for vessels during the northern gale, and for many miles in extent, the perpendicular and mudermined
rocks appear ready to dash themselves into the sea beneath. Every season masses of tottering pyramids make an avalanche, and cover the beach with fragments, which are again gradually broken up by the constant attrition of the sea: hence sand is produced lining the shore, and filling the spaces between the angular, prismatic, and yet umbroken stones. On this store we observed the wreck of a large vessel, partially buried by the falling of the rock:s from above.

Along this unfrequented and romantic shore, where the traces of the Mincralogist are blotted out by each succeeding tide, and where few persons have any desire to land unless to procure objects of science, there are several minerals that would be carefilly collected, were they deposited in more eligible situations. Among them is a peculiar kind of agate, which has apparently fallen from the cliffs, towering several hundred feet in many places, above the beach. This agate is composed of alternate lines of chalcedony and red carnelian, sometimes separated by narrow veins of cacholong. Sometines they resemble the figures of Cortifications, but more frequently run in waves around geodes of amethyst. Jaspery iron ore, and the magnetic oxide of iron, were found in amorphous masses, among the broken and dislocated columns of the trap. The ore of iron appears only in narrow veins, and among the various specimens found, none were of much practical value, being only useful in exhibiting the difierent chemical combinations they have entered into, and storing the cabinet with singular species of their compounds. At one particular spot, the waters of a brook came spouting langh a marow opening worn in the top
of the precipice, that still remains a humdred feet high; and long before they reach the platform below, they are divided into drops, that formed a shower twenty yards from the base of the roek they had eseaped. This sparkling torrent, curving its downard way fir above the trat veller's head, presents fimtastic images from the reflection of the rays of light among its pearly atoms. No inconvenience will be suffiered bencath its rapid descent, except the collection of the mist upon the visiters' clothes, and the great coolness produced by the steady evaporation of the water.

CHUTES COVE.

At Chates Cove, a shallow excavation in the trap, affords anchonage to small craft, during the prevalence of south winds. Like the places just deseribed, elevated eliffs are suspended over the affighted mariner secking a shecter at their base. In the cove the roeks assime the basallic figure: their columens have been removel by the constant peltings of the waves, and the pebbles by their constimt atrition on the remaining blocks, have worn out basin-shaped cavities. 'This effect has been produced hy the greater hardness of the sides than the ends of the prisms, and the protection the lateral surfaces have received from veins of quartz and jasper, insinuated between them. Similar basins appear in the rocks at Partridge Island, and other places in this district.

Between Chutes and St. Croix Coves, there is a vast collection of pieces of trap, that have fallen from the cliffs, and become romaded by being constimly rubled
against each other. The surf ofter rolls upon them with great force, and during the retreat of each wave or " undertow," the largest of these masses are moved, and a heavy sea produces a peculiar cracking sound, by striking the ponderous fragments one against auother. At a distance they appear like a great collection of bomb-shells placed side by side. Upon the surfaces of these gigantic pebbles, there are small nodules of heliotrope; these as the rocks wear oway, fall out. and nay be found in the sand beneath. The amygdaloid in some situations, contains narrow veins of white chalcedony; from others thin plates of carnclian were extracted.

ST. ROIX COVE.

At St. Croix Cove, the majestic walls of trap, incumbent on the amygdaloid, rise boldly from the sea. it often affords subjects worthy of the artist's pencil, and poet's pen. Large blocks of amorphous tripl, lie scattered along the shore, giving the clearest demonstration of the destruction ever going forward among the rocks , ";on this wild and menfrequented coast. The amygdaloid in this neighbourthood is peculiar, on account of its large carities. Some of these are three incles wide, and more thinn a foot long; instead of presenting the usital oval opening, they frequently seem as if their sides had been compressed during the consolidation of the rocks where they occur. These cavities are frequently occupied with zeolits, composed of fascicular groups of delicate crystals, diverging from a central point to the surface. In one instance perfret four-sided prisms, terminated ly four-sided pyranids,
were discovered; these prisms are sometimes trumeated on their lateral edges. Some of the irregular shaped cavities contain white delicate fibres, not mulike cotton wool : this variety forms a jelly with the acids, and becomes electric by heat, like other kinds of zeolite. It therefore only shows the numerous appearmees that mineral exhibits, and the variety its crystals are capable of forming. At mother station the cavities are occupied with beantiful crystals of heulandite ; and wherever sufficient space has been allowed, the crystals are perfect. The hexaedral prism with dihedral summits, and several other modifications of the right oblique angled prism, its primary form, often appear. Sometimes this mineral fills the cavities in the rock so perfectly, that no indication of a crystaline structure is manifest.

The occurrence of these cavities in trap rocks, is by no means singular ; they appear in similar formations on the Connecticut River, and have been well described by Professor Hitchcock. They are also seen in the trap of the Ferroe Islands, and at several other places. They have been the subject of considerable enquiry, and varions are the opinions entertained respecting the manner of their formation. Averaging from a hundred to two hundred feet high, the basaltic trap reposing on amygdaloid, forms an almost perpendicular wall, extending to the eastward, until it is again excavated by a shallow opening about six miles from St. Croix Cove.

martial's cove.

Tuis cove, and the coast penetrated by it, abounds in minerals curiously associated and united. Zeolites of different species fill the cavities in the amygdaloid. The heulandite is found in veins frequently six inches wide, and exhibits both in the form of its crystals and its colour, several interesting specimens. Instead of the iron that so often enters into the chemical composition of the minerals, at other localities along this extensive shore, the green carbonate of copper seems here to take its place, and will be found attached to many of the singular combinations from which the iron is altogether excluded. A narrow vein of the carbonate of copper, was seen entering the rock, but its quantity is too small, as far as it las yet been exposed, to offer any profitable speculation in mining. Small globular and stalactical pieces of pure native copper, are sometimes observed attached to crystals of analcime. The analcime appears in solids contained under twenty-four trapezoidal faces, resembling one form of the garnet. The carbonate of copper that enters into its composition, gives it a beautiful green tinge : in some specimens however, the carbonate is absent, and its crystals are transparent. The copper is very pure, and after having been cut or scraped with a knife, exhibits a golden metallic lustre. We have been prevented hitherto, from making any extensive enquiries among the rocks where this metal is found, and remain in some degree ignorant in what quantity it is deposited, and where the best prospects are offered at Martial's Cove, for more expensive investigations: but it is far from being impossible, that a
more laborious motertaking might be rewadded with a mote important discovery of that mineral.

At Caje 1)'Or, on the morth side of the Bay of Fondy, native copper appears in a mach greater quantity than has hitherto been found upon the opposite coast. There can be no doult thercfore, that his metal was formed under similar circumstances at both of those phaces: Λ t both it appears in the anygetabid, and although its filiments are attached to a different gangue near Martial's Cove, the absence of the analcime at Cape $\mathrm{D}^{\prime} \mathrm{Or}^{r}$, is the only material difference noticed, and eren this circumstance is to be considered accidental. Cape D'Or is nearly in a north-cast direction from this cove, hence it appears that the same laws obscerved in regarl to the course of the slate and other formations, have also been in operation during the deposit of those substances, from which the copper has been smelted; whether that canse was heat, or as some have strangely supposed, the weight of particles falling downward in a solution, from which the earth was supposed to have been formed.

At Martial's Cove the copper is often in small shohuar concretions, the form it would appear in, had it been melted at the time the analeime was passing imo a crystaline state. Again, it appears in delicate fibres, as if elastic gases had been passing through the cavities where the fibres are now suspended. In one specimen we have drops of pure copper hangitg on the ends of small fibres of the same metal: the e drops or shot, and the fibres to which they are attarhed, were evidently once in a melted state, and at the moment the drops of melted copper were about to fall off, they became coolet. 'This \therefore
is strong te. ${ }^{\text {mon }}$ in favour of the igneous origin of trap, and proves beyond all doubt that the copper contained in it, has been in a fluid condition through the agency of heat.

GATES'S PIER.

Rounden masses of water-worn trap cover the heach at this locality. The inhabitants have found the rongh pavement extremely troublesome at the onl.: pot where they can launch their boats in the fishing season. Ever, spring they are compelled to throw and roll the poli. of timber are secured, that their boats may be more readily conreyed to the sea. Twice in every twentyfour hours this causeway is covered by the tide, which runs along the shore with great rapidity. A short distance eastward of the common landing place, a mass of trap extends outward towards the Bay. Here to the work of nature is added the work of art, and a wharf or pier, has been erected at the expense of the Province. Thus a kind of shelter for small vessels is afforded during the prevalence of certain winds. The harbour is very limited, and not a little ingenuity is required to bring small craft into its narrow opening. We recollect of entering this singular haven a few years ago, and before the schooner could be " rounded to," she ran headlong against the perpendicular cliff in front, and drove the bowsprit down the fore cuddy. Our skipper however, soon put things " to rights," and treated the whole aflair as a common cerery day occurrence. The pier is never-
theless extremely useful upon a coast altogether deficient of harbours.

PETER'S POINT.
An elerated and leaning precipice of hasaltic trap, at Peter's Point, renders its sceuery somewhat different from that of the place just mentioned. Undermined by the beating of the waves, the solid rocks hang in frightful grandeur over their own ruins, the broken masses of which lie scattered upon the beach beneath in great disorder. The boiterous bay torn up by the northern gale, sends long and lofty billows thundering upon the rocks trembling beiore them ; even the hungry raven seems affriguted, and soaring high, his cries are lost among the summits of the tottering basaltic walls. Among the fissures of the amygdaloid, beautiful specimens of laumonite often occur in regular crystals, wherever sufficient space has been allowed between the walls where they have been lodged. The more perfect crystals appear in slightly oblique-angled four-sided prisms, terminated by rhombic planes, often replaced on the acute solid angles by triangular facets. The primary form is easily detected, as the secondary planes are but small. This mineral is frequently embedded in beautiful rhombic crystals of carbonate of lime, and in one instance, crystals of laumonite, calcareous spar, and quartz, were found united, each having its own peculiar structure preserved. Sometimes the laumonite occurs in masses in which the crystalizing process has been disordered, and appears in lamina penctrated by small radiating fibres. By being ex-
posed to the air the lamnonite disintegrates; its lamine separate and fall into small prismatic fragments, aud finally into a white powder. 'To prevent this, it should be immersed an hour or two in a solution of gum-arabic, which will defese!! it from the air and prevent its disintegration.

Apophylite in laminated masses, is frequently observed along this part of the const, but in no situation are their crystals more perfect than in the vicinity of Peter's Point. Here its crystals are in right four-sided prisms, with rectangular hascs. Several secondary forms were olserved, and in some the primary solid is obscured by deep truncations on the solid angles, learing triangular faces. This mineral has a glistening vitreous lustre, sometimes pearly. Its specimens resemble those brought from the Isle of Skey, where it also occurs in trap rocks. Small pieces of hormstone and jasper, were also observed among the detached fragments at the foot of the clifi:

Great changes are going forward upon this shore, the rocks are almost daily falling, and as they become broken up, and conreyed into the bay, others are drop.ping from the precipice to endure the same process, by which all seem destined to be remored. A remarkable cavity, abounding in fine specimens of lammonite, in 1828, was buried during the succeeding season, by the downfill of the leaning cliff that before stood over it.

FRENCII CROSS.

Betiweren Peters Point and French Cross, the perpendicular walls of trap often rise thece humdred foet above the level of the sca. At low water, during the
highest spring tides, the sambtone was seen in smooth and level layers bencath the superinemmbent amygdaloid. The standstone is seldom seen above the surface of the sea, even at the lowest obb, and it was only by taking advantage of a caln day and the greatest retreat of the water, that its situation was discovered. 'Ilhe anygdaloid generally reaches from low to high water mark, although sometines it extends higher up the eliff before it is succeeded by the greenstone.

Several instances were observed where the sandstone and amygdaloid are mixed, and pass by insensible shades into each other. From this circmmstance the latter is rendered so soft, that the constant washing of the sea often wears ont large cavities, and forms singular arches and chambers of the most grotesque figures. Upon the walls of grottos thus formed, beatiful erystals of calcareous spar, liculandite, and other minerals, are implanted, or make up a splendent incrustation, easily removed by the hand alonc. Near the French Cross, the ill..g gdaloid is rendered quite red by its admixture with the sandstone, and contains numerous zeolites. The same rock as it approaches the basaltic trap, contains unoccupied hollow vesicles, at once deciding the true character of the amorphous masses where they appear : lastly, the basaltiform trap, rising in irregular columns, crowns the whole with a vertical and often tottering cliff. The lamonite appears here also, and fine specimens of mesotype may be obtained from fissures in the rock. Veins of jasper, quartz and chalcedony, penctrate the basalt: in many places these veins are lined with crystals of pearly heudandite, not rivalled by any in the Brit-
ish Nuseum, or any other collection of mincrals in the kinglom. These colourless and transparent crystals, present oblique angled prisms, having their solid obtuse augles, replaced by triangular planes. Sometimes they occur in six-sided prisms, and under other modifications of the primary form. Other minerals were obtained in this neighbourhood, but as they have been already described, require no farther notice. Indeed so mumerous and variegated are the minerals of this const, that a particular account of each would of itself fill a volume of considerable dimensions.

BLACK ROCK.

On a fine day in the month of June, we travelled the shore from the French Cross to Black Rock, a distance of sixteen miles; and although this journcy was extremely interesting, it was by no means rendered less fatiguing by the numerous specimens then obtained, and the weight of the minerals upon our shoulders, ever demonstrating one of the laws of gravitation. Even the hammer and chisel, and a single joint of a whale's vertebre, added a little to the inconvenience of ascending the hill leading to the hospitable village.

The sandstone and reddish coloured amygdaloid, were observed at several localities along this unfrequented shore. The latter contains numerous zeolites : among them was fibrous mesotype and chlorite. This mineral sometimes occurs in six-sided tables, with lamina easily separated parallel to the terminal planes. The chlorite is often of a greenish colour, and commmicates to scaling
wax megative electricity. Before the blowpipe it medts into a brown scoria. The heulaudite is of a flesh red colour, and crystalized in right oblique angled prismsits primary form is seen in the liniug of narrow veins in the rocks. Λ variety of aulcime, called by Thompson sarcolite, was discovered upon the side of a fallen mass of trap. This mineral presents the primary cube, having each solid angle replaced by three planes gradually passing into a solid, under twenty-four trapezoidal faces. It is of a flesh red colour, and in its chemical characters is like the analeime with which it is found. In a narrow opening in the amygdaloidal trap, beautiful specimens of laumonite were projecting, and ready to fall iato the basket of the Mineralogist. Many of these are of a flesh red colour, and therefore add to the variety afforded by that mineral.

The columnar shape of the trap is manifest in many situations; in one instance perpendicular prismatic blocks, with articulations several feet apart, rise from the amorphous variety below, exhibiting in great beauty the crystaline structure of the rocks themselves. At the season this visit was made, the brooks had lost a part of their contents, from the constant evaporation from their surfaces, and therefore instead of pouring from the cliffs in rapid cascades, the water trickled down the precipice, or dashing from side to side of the narrow gutter it had prepared for itself, finally was lost among the pebbles of the beach.

Between French Cross and Black Rock, the trap rocks are often arranged in distinct and parallel strata, a circumstance by no moans common. The lowest strata,
reposing nuon the new red sambitone, varies from fifteen to thiry feet in thickness. 'The layers of anygdatoid succeeding it are different in colour, ad often contain zeolites. The superincumbent trap also thews the lines distinctly which divide its masses. These seeming strata dip at a smail angle at some localities ; at others they are quite horizontal. In no way cin the occurrence of those strata be so casily accomted for, as by admitting that they have been derived from volcanic sources, in the way that masses of melted lava ejected from the craters of Etna and Vesurius, have succeeded each other. One hurning deluge overwhelms the comntry and cools, another and another follows, each having a distinct line of separation between them. The appearance of the hornblende rocks in Nova Scotia, are almost sufficient of themselves to decide the question of their igneous or volcanic origin, in the absence of every other lind of testimony.

At Black Rock the shore becomes declivious, and instead of lofty mural precipices fronting the Bay, a genthe slope affords the inhabitants an easy communication with the sea. At low-water-mark, an amorphous mass of black trap, having supplied the village above it with a mame, is seen extending outwards from the shore, forming a kind of harbour, until the waves of the rising tide roll over its surface, and give the signal for vessels to lepart: and there is no opening along the coast where they can take shelter, except such as have been artificially erected.

Proccerling eastwardly along the shore, the eye is again hailed by rustic battlements and masses of basalt, projecting far above the heads of such as may venture an
escalade over the rublinh beneath. The beight of the: mommain rising thos almuply from the sea, leaves ins bohd front to fice the nowh. Jidden from the light, mamy thasms and sea worn exnatations, receive searely a solitary ray of light, to be reflected among the erystals lining :heir walls. Filtered through the rocks above, large drops of watter, cold as the ice itself, lall pattering on the spary parement, sarching then way batek to the sea from Whence they came.

A few miles eastward of "The Rock," sereal harge veins of calcareous spar separe the layers of anygdalod. The spar in many instances is of a rich straw yellow colour, and erystalized in rhomboids, sometimes measuring an inch across their obligue plames. This carhonate of lime is more abundant in the rock as it approaches the sandstone beneath, and declines altegether in the basaltir trap above. Large masses of stilbite having heen detached from their native situations by the action of the elements, lie among the dehris of the shore. Some of these will weigh more than a hundred pounds. Most frequently these masses are crystalized in fasciculi, resembling fans, or bundles of minute and delicate threads. When broken they present a fibrous appearance, as described by the excellent Mineralogist, Professor Cleveland. Pieces of jasper, of various colours, and milky white chalcedony, are readily obtained. Between two large blocks of amorphous trap, several beautiful agates were procured, and among them the onyx agate ; but as it is inferior to specimens of that mineral occuring at Blomidon, a deseription of it is deferred, until we treat of that interesting locality.

Besides many of the minerals already noticed on pre-
ceding pages, we accidentally discovered one hitherto not foumd in Nova Scotia, as far as we are arcuainted, and its appearance was as mexpected as it was gratifying. This mineral is called Phrenite : it occurs in small botryoidal masses, of which none were found larger tham a hen's egy. It consists of very delicate erystals, radiating in all directions from the centre to the circumference. A mmmber of these small circular clusters are collected together, each having its fibres proceeding from an aljusted centre to the extremity of the group composed by them : its colour is paie green, sulpposed to arise from the green carhonate of copper, also fomed near it. Before the blowpipe the phrenite intumesces, and melts into a spongy black enamel. It does not form a jelly with acids, ani is therefore distinguished from zeolite. It appeared in the amygdaloid, near the jumetion of that rock with the super-imposed basaltie trap. This mineral received its name from Governor Phren, who first brought it from the Cape of Good Hope. It has since been discovered in many other places, and funally in this Province. The locality of the phrenite was afterwards visited carly in the spring, but none of that interesting mineral could then bee obtained, as the rock where it was implanted had become dilapidated, and was removed in our absence. The ice still remained on the shore, and in those places where brooks came pouring over the lofty escarpment of the cliff, majestic columns of ice had accumulated, and the basates of the trap were rivalled by the fluted and contorted pi!lars of water rendered solid, and clinging to the precipice until lengthened days and warmer weather, should compel them to relax their grasp and totter down. It is no
macommon thing mon this coast in the months of March and $A_{\text {pril, }}$ to see icicles attached to the leaning rocks, hanging downwards a hundred and fify feet in lengh: in one instance a hollow tube had been formed though a perpendicular mass of ice, through which the torrent poured to the beach with "wild mearthly sound." These nat matal curiosities may be seen at periods when the south side of the momation is matled in green, and while the "pple and cherry are putting forth their blossoms. Adbancing along the shore towarls Hall's Harbour, the psendo-statification of the rocks gradually declines, and the trap is divided into prismatic and cuboidal masses. In a few places only, was any thing like a colummar struclure manitest, and where the architectural regularity of its blocks cond be fairly made out. At Huntington's Point there is another sloping descent towards the Bay, but it is immediately succeeded on the east by a frightinl and lofty cliff.

hatle's marbour.

'Ins phace received its mane from a Captain Hall, the commander of a small party of plundering vagabonds, who for some time during the American revolution infested Commallis. The fate of this mortunate gang was truly deplorable ; the active inhabitants of King's County destroyed their boats, while the bancitti after straggling in the woods, shmming discovery, suffered every privation. Many died, and lew ever returned to their homes.

Hall's IIarbour is a small creek entering the rocks, and aftording a safe harbour for small craft at high water.

Lately a pier has been erected at the entrance of the crect, and the litule haven is much improved; therefore, from its sithation near a flowrishing settlement, it will probable become a place of considerable importance. Rastuad of this harbour there is a beatiful beach, and the rocks harhigg atained far less clevation on the adjacent shore than at other situations, they are aceessible by tems of horses and oxen. About a mite castward of the landing-phace, there is a notel in the trap rocks ealled Crambery Cove. It is only remarkable for the height of the precipice, and the beautiful torrent rushing over its erest into the sear In notieing this platee we are reminded of one of those catastrophes common upon the coast. Seated upona rock enjoying the remainder of a scanty lunch, and occasionally sipping the best and purest beverage from the brook rippling at our feet, suddenly the rocks trembled, and a noise lond as thunder, directed the eye to the westward, where a cloud of clust and smoke ascended upwards from the beach, then half covered by the flowing tide. An aralanche had taken place, and an immense mass of trap which had stood a hundred and fifty feet high, had fallen headlong upon the beach and into the Bay. The surface of the fallen rocks had occupied ncarly an acre, which was covered with large trees of liereh and maple: some of these were buried in the debris, the remainder formed mimmense raft that floated out to sea. Had we heen seated it short distance firther westward, the event wonll never in ve been recorded by a living witness. The ruins thes produced lorm a great inperdinent in tuan velling along ihe shore, and several yeus will elape before the sea will have removed the anorphous blocks now taning against the clifs.

The foregoing incident slould remind the reader of the danger attending such as frequent the base of precipires that are constantly falling. Several instinces have oecurred during a few past years, when individuals have been instantaneously crushed and huried beneath the ruins of the trapl. Nor should the months of June and July be considered perfectly safe as some have supposed : For alhough during the earlier part of the season the hazard is increased in consequence of the destruction froduced among the exposed rocks, by the escaping frost, nevertheless "launcles" are continually taking phace from the medermining eflects of the waves. Nore than once in the cagerness of a search for minerals, has the tide in calm weather stolen silently around us, and prevented a retreat ; on one occasion wé were compelled to sit perched upon a solitary rock beneath a mural precipice, until the ebling water opened a way for escape. In this cove the water is tery deep. About sis miles farther castward, there is a singular submarine causeray, stretching out from the shore into the sea about a mile. Over this canseway the tide passes with great rapidity, in comscquence of the obstruction thas placed in the wiy. It is called by the inhabitants "the Race," and atlords a resort for codfish and pollock, which frequently remain around the fishing boats so long during the elbing tide, that the water becomes shallow, and they are seen darting at the bait containing the fatal hook. Great mumbers of gulls are constantly hovering over "the Race," :und while the larger fish are devouring the smets and syuids below, these and the fisling hawk are carrying on atorisk attack from ahove. The smelt in his turn however, devours the ova of the
rodtish and !ollock, thes retaliating upon his powertind foes, by cutting ofl their infintile broods.

CAPE SPIIT.

Hitnerto in describing the rocks on the south side of the Bay of Fundy, sererol small openings and protuberanes have been considered ; but the trap rocks in general pursue a very miform course from north east to south west ; and in this respect are like other Formations of the comiry. From Scots Bay, advancing towards the Basin of Mines, a great change in that course takes place in the rocks at Cape Split, a lofty promontory extending northnard directly into the Bay, where it has produced great eddies and other distmbance in the course of the tides. This caje advances about two miles directly outwards into the sea, increasing the width of the 'Prap Formation liom four to six miles. This width however, gradually diminishes towards Cape Blomidon, where this part of the Formation temmates. Besides the lofty and vertical clevation that is raised far above the surface of the sea, this cape sends out a stibmarine promontory beneath the waters of the Bay. Hence the flood tide already uged forward by a powerful impulse, is met by a formidable barrier at the super-marine Cape, and its violence muned mon the opposite coast. The submarine cape also offers a partial resistance to the influx of the occan, notwithetanding the vast column of water that rolls over its embankment. The flood tide thas thrown upon the northem shore, has swept out large bays in places where the solid trap forming the capes and headtends, have not

resisted its influcuce, and turned the cmrent back to the coast where it had arisen. Hence a boat leaving Cape Split of a calm day, will be carried to Parrsborough on the flood tide, without the aid of rowing. From the before mentioned causes, the bay at Diligence River, and the placid sheet called West Bay, have been formed, as the rocks at those places are of a yielding nature, and not capable of offering the resistance afforded by the columnar masses of Partridge Island, and Cape Sharp. Again, the ebb tide nearly equalling the flood in violence, is met by the east side of Cape Split, and its submarine causeway ; from thence it is propelled upon the opposite coast near Fox River, where it has wom away the shale, leaving Spencer's Island exposed to its steady and furious influence. These facts have been clearly ascertained by observation and experiment, and may afford a useful hint to masters of vessels in the consting trade. About half a mile southward of Cape S_{p} lit, the basaltic trap forms a small sharp point, at the extremity of which there is an isolated mass detached from the neighbouring cliffs. This eminence at high water becomes an island, and daring the egress of the sea adds much to the beauty of the landscape. Between this pscudo-island and the cape, the basalt forms a lofty and perpendicular escarpment three hundred and fifty feet high : the rapidity of the tides sweeps all the debris away, and often a polished pavement of solid rock may be scen sloping towards the retired ocean; although in calm weather in the summer season, a collection of rounded pebbles covers the water-worn surface to considerable distance. Exposed to the fury of the sea, rendered still more boisterous by prevailing wes-
terly wiuds, the majestic precipice has withstood its violence for many ages, or has retreated but slowly from the site where it formerly overshadowed the enormons whirlpools ever curling at its base. It is inaccessible at every point, and affords at high-water not a single broken pedestal where the tardy traveller might rest, had he negleeted to retreat before the coming flood.

Standing two hundred yards from the base of this mural cliff, and towards the sea at low water, a lofy parapet is seen a short distance in its rear, and rising upwards still higher than the precipice in advance. From the appearance of these cliffs it is almost certain, that there is a narrow and frighful chasm between them. Having landed upon the beach we were umable to pay this singular ojening a visit, it being impossible to ascend the rocks on either side of the cape. By landing at Scot's Bay, and travelling along the pathless wilderness a few miles, the entronchment might be viewed from above, a pleasure we hope to enjoy at some future day. Few minerals were discovered at this remarkable locality, which for the grandeur of its scenery surpasses many celebrated views anong the basaltic rocks of other countries, and is deserving of a far better drawing and description than has yet been given.

A large geode of crystalized quartz was found at the base of the precipice : it would weigh more than two hundred pounds; but being already loaded at the time of its discovery, we had little disposition to bring it away, nor could a place of security be found, where some future visitor might ohtain its splendid crystals. At the extremity of the super-marine cape, several isolated masses of
columnar trap with perpendicular sides, stand crowning the reef that extends bencath the surface of the water. The largest of these masses is about two lundred and fifty feet high, with perpendicular sides, and closely resembles an ancient and majestic tower. The surface of this natural edifice is crested with creeping evergreens, which searching their way into every crevice where the decayed rocks have formed a soil, hang clinging to the basaltic castle, like the ivy decorating deserted European castles. Its surface is nearly level, and comprises about half an acre, which during the summer months is perfectly covered with the nests of gulls. In the months of July and August, the winged inhabitants of the cape are scen with a telescope, sitting side by side, latching their broods. Swarms of male birds are hovering in the air, while their constant screaming would almost make a statue nervous. Even here, notwithstanding they are congregated far from the abode of man, and seldom disturbed by a visitor to the gloomy "Split," the gull is often gulled, and not always secure. During our last excursion to the spot, a fox was seen creeping up the rock, in order to purloin a feast of egiss, while hundreds were darting about his head: upon the approach of our boat reynard retreated, and made his escape along the beach to the eastward. A little farther towards the sea, a smaller basaltic cone-shaped rock stands exposed to the rapid torrents rolling at its base. It terminates in a sharp top, and is bald, black, and barren. Several other irregular masses of lesser elevation, mako up the dangerous cape, which afiords a most subline, and often terrific spectacle. Over the submarine cape, the tide rolls in frightfil fury ; its extent is known loy a long
chain of white breakers, that even in calm weather, after the tide is turned, are thrown upwards into foaming curls, which may be seen at a distance of twenty miles, accompanied at high spring tides with a bellowing noise, like that produced by the distant firing of camon. This Charybdis, which in a gale is almost mequalled in any country, is called "'The Rips." It has been the grave of several vessels, and is shunned by all prudent pilots in the Bay. The main land at this place presents a bold promontory, in which there is a singular wedge-shaped opening worn out the pelting of the waves. The cape therefore, vied at o distance, and from the sea, has a very peculiar notched appearance, and affords a remarkable feature of the class of rocks entering into its formation.

BLOMIDON.

Between Cape Split and Cape Blomidon, a distance of fifteen miles, the coast like that just described, is uninhabited, and generally known by the appellation of Blomidon, to distinguish it from the lofty cape where it terminates, on the west side of the Basin of Mines. This shore and its celebrated cape, afford a most fruitful field to the Mineralogist, abounding in numerous specimens of the finest minerals, and exlibiting some of the most magnificent scenery in the Province. We found a variety of mineral substances, more abundant and more perfectly crystalized upon this shore, than in any other part of the country, and have selected them for the process of analysis and description ; therefore a somewhat more particular detail will now be given of minerals also found at other localities,
and to which the same detaits may be applicd when a more extended account of them is reguired.

This part of the coast, like others already described, is composed of basaltic trap, resting on amygdaloid; the former composes the elevated cliffs, the latter extends in general from high water mark to the sea. At several places perfect basalts are constructed under five, seven, and nine sides. 'The articulations are numerous, and the prismatic form distinct. The trap is almost identical, in general, with that of other basaltic districts, where the rocks themselves having been crystalized, aford the most picturesque and interesting scenery. In one instare instead of prisms being placed upright, they are kaveng outwards towards the bay, so that their ends are exposed instead of their sides. This circumstance has apparently happened, in consequence of some catastrophe which has thrown the pillars originally placed perpeiadicularly, partially upon their sides, and left them in an inclining position, at an angle of forty-five degrees from the horizon. Towards Cape Split, the basalt is in regular architectural blocks, accurately fitted to each other ; but the columnar arrangement becomes more manifest in the vicinity of Cape Blomidon. 'The basaltiform structure of the rocks is more distinct at the top of the precipice, the lower rocks being separated into cuboidal blocks, sometimes of large dimensions. The rocks have frequently a reddish hue externally, from the red oxide of iron formed upon their surfaces, but when recently broken they are of a dark green colour.

Half a mite from C'ape Split, a basaltiform mass of trap extends outwards into the sea, so that it camot be
passed at low water without the aid of a boat: a short distance larther eastward, we entered a dark and curious cavity, cherisling the hope that a cave was at hand: lout after the eye had adapted itself to the degree of light then present, to our great mortification the imaginary care was found to terminate ia a wide fissure, extending upwards into the superiuctminent trap. A part of the fissure rums ofl to the right, and opens into a notch in the precipice abore. 'Through this narrow opening the light enters, and appears like a star sending its feeble rays into the dreary chasm below. 'This excavation has been made in consequence of the rock having been composed of softer materials, that have gradually been washed away by the war of the elements. Many superstitious imdividuals have believed that money was deposited in this dark opening, and that the place was haunted by evil spirits. Let such as have given credit to these idle stories, now be assiured, that during a minute examination of every crevice in its walls, no money was foum, and neither ghost nor goblin made its appearance.

At the base of a mural precipice three miles eastward of the $\mathbf{S p h i t}_{\text {p }}$ and among the debris produced by the downfall of the crumbling rocks, several pieces of benutiful moss agate were obtained, of a kind perhaps never before discovered in the Province. It consists of transparent chalcedony, enclosing sumall brown filaments perfectly resembling moss: the transparency of the chalcedony atmits of the moss being seen in the interior of the different masses ; these when polished afford rare and pleasing specimens of that mineral. Dauberton suggested, that these filaments in moss agate might have been mosses, and vege-
hort ious lout then wals ards rums ipice , and reary misc-- ma. war e be, and ch as ured, in its oblin
table fibres, embraced lyy the agme at the time of its formation. But this idea appears to be absurd, as organic remans are seldom or never found in trap rocks, and the curious figures displayed by agates, are only inititive and accidental. These filaments and twigs are generally composed of the brown oxide of irom, as we shall lave occasion to shew more fully hereafter. 'Thin phates of milky white ehalcedony ocenr near the agates; they oeveny ararow veins in the fallen rocks, and now afford tine materials for setting in rings and scals.

Still farther eastward, and perhaps five miles from Cape Split, the trap becomes declivious, allowing the small spruce to eling to the slope, and rise one above another to its sumin. Here the shore is covered with coarse pebbles, and the eye is relieved by the tramsition from lofty colomades, to the evergreens decorating the coast.

Several pieces of wreeks lic half buried in the sand, near the spot called "Long Beach," a place olten visited in the season of gooseberries, which grow abmandly upon the bank.

Still advancing towards the majestic Blomidon, :anl near Long Beach, there are several kinds of agate scattered in detached pieces among the pebbles of the shore. Some of these agates are partially polished by attrition in water, during the influx of the tide. A large block of agrate, weighing ipwards of forty pooinds, was pieked up at low water mark: it is composed of semi-transparcmt chatecdony, with curved fortifications of white chalcedony interlaced with lines of red carnclian. On one side the perfect ongx agate is formed, encireled ly the same lines,
haviug the pupil dark coloured. 'The mass contains caritiess lined with erystals of anechyst. One part of this beamifilul specimen of agate, was presented to Viscoumt Valentia, by whom it was much admired. At the sane place there are large masses of jasper ind hormstonc. The latter has been thas named from its resemblane to certain horns: it is like some kinds of jasper, hut its tramsparency ani splintery fracture will distinguish it from that mineral. 'The jasper includes several varieties and anong them is what called riband jasper. At this place the gradual passage of claystone into red jasper, was again olserved, similar to the transmutation of those minerals at Dighy Neck; and the Gcological testimony in hoth instances is such, as to leave little doubt in regard to the certuinty of the later having been formed from the claystone, in situations where it was exposed to a stronger heat than that to which the latter had been sulmitted. If this opinion be correct, the basaltic trap must have been formed under a more intense state of fusion than the amyghtaloid, in which the claystone occupies veins, the jasper being confined allogether in the greenstone.

Scven miles enstward of Cape Split, the precipice las attained a more considerable elevation, and according to the altitude taken hy Sir Howard Doughas, is four lunsdred and fifty feet ligh. Nowhere along the coust have the rocks a greater height, except at Cape Blomidon, where they rise still higher. Here these ejected monuments display magnificent forms, and present sone of the most maguificent scenery in the commtry. Near the former plate a sumall brook pours from the eliff, and in the spring, when the melted snow increases the strean, it lands upon
the beach benenth, wenty yards from the foot of its cxulted bed. A slont distance from this cascade, a lange collection of debris lies sloping from the side of the mural trap. 'This debris was produced by a great avalanche from the try of the precipiee, in the spring of 1834 ; and the noise of the downfall was leard many miles along the opposite coast. Being made acjuainted with the circmmstance, we hastened to the spot, and were richly rewartied for our trouble. This place however, has been visited so often since, that little now icmains there worthy a place in the cabinet. Among the numerous and beantiful minerals obtained during the first visit to this interesting locality, was the onyx agate. A large mass, weighing upwa:ds of eighty pounds, had been dislorged, and lay anong the ruins of the eliff. This agate exhibits distinet and parallel zones of different colours ; these zones consist of white circles of cacholong, alternating with small rings of chalcedony and pale red carnelian. When these agates are polished they are extremely beautiful, and resemble the eyes of certain animals. Sometimes there are white lines of cacholong, and grey circles of chalcedony, forming the chalcedonyx of the ancients. Other curious figmres are presented ; among them is one imitative of the gay figures made by our Indians with the quills of the porcupine on boxes made of bark. The mass containing these agates, enclosed a cavity crusted with small crystals of violet coloured amethyst. In another specimen of the fortification agate found near the debris, the parallel lines were piereed with rays, which add much to its beanty. Large blocks of amethyst had been broken by the downfall of the cliff, and lay among its broken masses. In several instances
prefeet geodes of that heantiful mineral were ohnamed. These geodes when whole, appear like balls of yiviz, indented all over their external surfaces with botryoidal cacholong, which ofien achoses the geode; but when broken the mass often presents large crystals of anethyst, of a deep violet blue colour. Frequently also the shell of the geode is composed of rihand jasper, or agate. 'The amethrst also occus in cavities in the amorphous trap; a single block when opened with a blow of the hammer, presented a surface a foot square, perfectly covered with splendid erystals of that mineral : some of these crystals measure an inch in diameter, and when they are perfect are six-sided prisms, terminated by six-sided pyramids. The amethyst found along this shore, is seldom surpassed in heauty. A erystal from Blomidon is now in the Crown of the King of the French, and other pieces have been much admired in England and the United States; but as these minerals are carefully sought by all persons, they are becoming comparatively scarce. In several instances we found large geodes of this gem filled with zeolite, and one of the cavities in a fine specimen, is occupied with that variety called mesotype. It is also associated with chalcedony, calcareous sjar, and stilbite, exhibiting rare and interesting combinations. Amethyst is only used for ornamental purposes, "it receives a good polish, and is muchesteemed in jewellery for necklaces and ring-stones. In the Royal Libiary at Paris, there is a bust of Trajan, engraved on amethyst." It was supposed by the ancients, that wine drank from a goblet made of that mineral, would not intoxicate. If the mineral really possessed that extraordinary virtue, ressels made of it would be invaluable in
the present day, when sad effects are produced by using glass.

The amygdaloid contains many small veins of the magnetic oxide of iron, incrusted with grey oxide of mamganese. It is doubtless from these oxides entering into erystals of quarte, that the amethyst with its peculiar tint has been produced. Sometimes these ores are crystalized in red jasper, from which they drop leaving heir impressions perfect. Numerous veins of iron ore penctate the trap upon the coast of Blomidon ; at one place a vein six inches wide is seen, extending upwards in the compact rock; it is of the richest quality, and highly magnetic. This vein has been explored, and a quantity of the ore shipped to the United States. It is called by the imhatitants magnus, the common term for manganese ; but the Americans are not particular about the shadow of a mane, if they obtain the substance. We have a specimen of this ore in our possession, which will yield eighty-five per cent. of pure iron, and possesses the lighest metallic lustre we have ever seen in the ore of that metal. Frequently it is united with quartz and jasper, making singular aggregates.

Apophyllite occurs among the minerals at Blomidon, in great perfection and beauty ; sometimes it appears in prismatic erystals, and exhibits a glossy pearly lustre. In a few instances however, has the right four-sided prism with rectangular bases, its primitive form, been found. It is seen in broad laminated masses, divided into leares transparent and colourless. Again, its regular erystals are truncated by triangular faces, sometimes so deeply, that four-sided pyramids having rhombie phanes, are produced. Several other secondary forms may be chentred mumen \therefore
the detached pieces on the beach. This mineral also appears, partially filling the cavities in geodes of guartz and amethyst ; the pearly lustre of the apophyllite, contrasted with the purple crystals where it is imbedded, forms a pretty variety, and furnishes rich and elegant specimens. Agate, amethyst, and apophyllite, ane sometimes found combined, each affording an instance of the singular process by which they have arranged their particles during the progress of erystalization. Almost all the geodes containing this mineral, and those in the neighbourhood, are coated and curiously indented with botryoidal cacholong. Before the tlame of the blowpipe, the apophyllite melts into a white enamel ; it forms a jelly with the acids, and is easily distinguished from stilbite by its pearly and irised colours.

The anygdaloid at one spot contains analcime, in colourless transparent dodecahedral crystals. These crystals are nevertheless sometimes coloured, and appear to be lightly coated on the surface with extremely minute crystals of the same mineral, as if after the regular dodecahedron had been formed, a gas containing analcime had lighted on their surfaces, giving them a peculiar incrustation. This circumstance we do not recollect of having seen noticed before, although it is equally obvious in specimens of this mineral from other countries. Attached to the analcime there are frequently delicate four-sided prisms, of that variety of mesotype called needlestone, from its resemblance to needles. It often occurs in radiating masses, and bundles of delicate fibres, which terminate on the surface of each group, in elongated four-sided pyramids. 'This mineral is in much greater heauty at 'Two

Islands, and will be noticed when treating of that place. 'The needle-stone does not in ay instance penctrate the malcime, and the prisms are but slightly attached to its crystals.

Besides the minerals already brought under consideration, one hitherto umknown to us in Nova Scotia, appears unon this interesting shore. 'This mineral is called the leucite, or the trapezoidal Komplone spar of Professor Mohs: probably it is the same described hy Jackson and Alger, who supposed it to be a new variety. It appears in the amygdaloid, in well defined crystals, contained muder twenty-four equal and similar trape\%imms,-sometimes this form is slighty modified : the fices of the erystals are occasionally striated parallel to the surfaces of cleavage, like those of the ganet. It is transparent and colourless generally, although some pieces have a milky appearance. Before the blowpine it is infusible, and is easily distingnisined from the garnet and analcime. We have not yet had an opportunity of analyzing this mineral, lat having taken the opinion of Professor Emmons, of Willian's College, a distinguished Mineralogist, and compared it with accurate descriptions, think we are safe in calling it the leucite; the only mineral in Professor Cleaveland's catalogue agreeing with it in the characters examined.

Henlandite and calcareous spar are frequently associated, and fill narrow veins in the amygdaloid. Agates, jasper, chalechony, hornstone, iron ore, and a varicty of other minerals, lie seattered along the loot of the debris. During every visit to this locality, the Mineralogist will discover some new association or combination, so rich
and varied are the natural productions of the coast. A: outline of deseription has only been attempted, and much yet romaino to be performed by such as may suceced u: in these enpuiries. But before we take a riew of the majestic cape, and bid adien to its magnificent scenery, a peculiar mineral should reccive a litte attention, on accomn of the Geologieal testimony it supplies, in regard to the igncous origin of trap. We mean the cacholong, a variety of chalcedony. It appears in white and yellow-ish-white massos, resembling chalk-it frequently passes into chalcetony, and envelopes other minerals, producing on their surfaces impressions resembling those made by the fingers in soli puty. Frequently it adheres to the tongue, being possessed of absorhent properties. Thas mineral is identical with pieces bronght from recent volcanoes, and camot be distinguished from specimens contamed in the lava of Dina and Vesurins. This fact, in addition to numerous others of a similar kind, ahbough not so plainly marked in their characters, should have been sufficient to convince even Wemer himself, that trap rocks were produced by heat ; that during its energy reduced the ingredients of the munerous minerals they contain, so that hey have assmand those regular and determinate figures moder wheh they vew appens.

Approaching the lofty cape from the westward, the amyghaloid begins to aseend, extending to the southward mintil it is cut off, and the basalice trap permitied to rest directly upon the sandstone, in the mamer it is seen at "White Water," a small cove on the south side of this healland. The hasaltic trap attaining still greater elevation, forms sepratate and distinet ranges of columus. 'The

Wirat of these ranges composes the perpendicular precipice in front, and stands fining the Basin of Mines: live others rise in suceession in the rear, and are lified 口1 like steps of stairs to support the higher bands of the coast. The two ranges placed rearward have been clearly male out, althongh they are obseured from a view beneath, by the growth of trees covering the smmit of the momentan. These snecessive facales of columms resemble those on the const of Antrim, and were the surface cleared would nearly equal in beanty those of the Seotish Isles. It is true that the basaltic arrangement is not so perfort in Nova Sootia, hat the colummar structure thronghout the whole of this fomation is manitiest, and in many places extremely beantifal and well defined.

Bencath the basaltic tap, the amygrdoid emerges, supporting the slope of debris that forms a somicircle aromed the bold promontory. 'This immense collection of debris is composed of broken columns mod shapeless masses of trap, which have fallen towards the sea bencath. Ewen here the trees of the forest have taken root, amd form a beantiful terrace around the cape, that far surmomes the altitude of their highest tops. Many of these trees have been transplamted from the stmmits of the highest clifls, now leaming over their adopted lomes, aud seeming to gaze with frightulal pride over the ruins to which they will finally be consigned. Often have we made ant escalate up the aecessible part of the aboupt escarpment, and our brain has reeled over the frightul chasms open in the cliff. Arriviage at the smmmit of the slope, the momal precipice above stands frowning ower the rains of its less elevated and broken masses. Bencath the sloping anyg-
daloid and perpendicuiar trap, the samdstone forms a bold outcropping, stretching away to tho southward, where it gradually declines and forms the great valley of Amapolis and King's Counties. The red sandstone dips at an angle of ten degrecs, and foming a broad base projects outwards beneath the ponderous pillars ahore. Here the Trap Formation of the North Montans terminates, and seems at the close of its reign to have given the master-piece of its grandear. Here the samdstone, anygdaloid and trap appear, exhibiting a peffect section of their extensive formations. Here the melted lava consed to flow, and winding rivers were allowed to unite, and pass towards the ocem. Like some imperishable tower, with circling battlements, the ranging columns of basali seem to resist pacroachment; but Time with ever wearing and destructive energy, undermines the stupendous clifis, and the sea by washing away the substrata, bids the lofy colonnade descend and totter downards to the beach, where each retreating wave transports its crumbling masses to their occan grave. On the somb side of the rape the new red sandstone rises from beneath the amygdaloid, at an angle of seventy-five degrees, umtil it has attaned an elevation of upwards of three lmudred feet: the vescicular amygdaloid having disappeared, a precipice of basaltic trap, two humdred feet high, rests upon its almost horizontal strata. The highest pat of the cape is six hondred and forty feet, the most elevated promontory in this part of the country. The salidstone in several places is excavated by feep ant narrow ravines that extend up the emhankment. Howing ascended upwards of three hondred feet, a peep over che of these rude indentations will pro-
duce a tremour well known to those who are maccustomed to climbing. Upon a part of the cliff where the precipice had become a little sloping, some large blocks of trap were set at liberty. Hurling in rapid motion down the escarpment, and over the beach, lighting up their way with streans of liquid fire produced by their collision with the rocks lieing in their way, they plunged into the sea, whose placid surface foamed above their momentary tract.

The red sandstone contains numerous veins of fibrous gypsum and selenite, deposited with mechanical regularity. Many of the plates of selenite are beautifully transparent, others are of different shades of red, and appear like ice stained by foreign ingredients. Haviug ascended the lofy cape, the visitor will enjoy one of the most splendid, varied, and extensive views the country affords. Looking over the frightful precipice, before him is the Basin of Mines studded in summer with the whits sails of coasters, which in calm weather are hurried along by the rapid tide, and often in an opposite direction to their "desired haven." On the right, the great valley airendy described, is seen stretching towards the far west, and decorated with scattered villages and fruifful fields, through which small rivers wind their serpentine way. Here and there the spire of a church reminds the traveller, that the Author of these terrestrial wonders is not forgotten, and the temples dedicated to his service commemorate the tidings, that even He has promised to dwell among his creatures. Far beyond the chain-like villages of Horton and Windsor, the umfrequented hills of slate and grante rise in sticcessim, mutil the sight is dimmed
among their wave like summits. Eastward a depression in the horizon marks the site of 'Pruro: on the left tho picturespue village of Parsborough, points out a safe retreat for vessels in stormy weaticer. Still farther north, heyond the rugged preaks of shale, the more level coal fields of Cumberland, once shaded with the lofty palm and antediluvian pine, retires from the sight, leaving the inagimation to compiete the scene.

General Remarks on the North Mountains.

Having thus furnished a description of the Trap Formation on the South side of the Bay of Fundy, so far as it forms the coast, and having given a brief view of its mineral contents, it remains to notice the South side of the North Mountains, between Cape Blomidon and Digby Giut. Wherever the soil has been removed and the rocks exposed, for instance on the sides of roads and ravines, and at other situations where the vertical position of the basaltic trap will not permit vegetation to go forward, there in every instance without one exception, the hornblente rocks will be found reposing upon the red sandstone as before described. Sometimes the amygdaloid is apparenty absent, and columnar masses of basalt rise upwards from the sandstone; but at numerous places along this range, few such instances occurred, and the vescicular rock containing zeolites is in situ. The North Mountains therefore, have the same Geological relations throughout, and contain on all sides those munerons and interesting minerals alrealy moticed.

On the road leading to Iall's Harhour, in the 'Township of Commallis, and near the highest part of the momtain, the amygedaloid rises to the surface. It contains occasionally small moccupied cavities, which have been filled with zeolites; these having been decomposed by being exposed to the atmosphere, have left their situations vacant. In some instances however, the zeolites are perfect. Large pieces of stilhite were found anong the soil, but they are not dissimilar to those recognized upon the shore. Quartz, agate, jasper and chalcedony, were discovered at several localities upon the monntans; but as those minerals have already received that share of description we intended to give, any further detail of them in this place will be omitted. ' There is however one mineral occurring in the momntains of Aylesford, and described hy Jackson and Alger, that we have been unable to obtain, and therefore avail ourselves of their descrip:tion of it. "Specimens of chlorophate when recently broken are of a greenish tinge, sometimes approaching to leek green. It is trimslucent on the edges and soft, yielding to the nail with about the same readiness as horn silver. Its fracture is distinctly conchoidal ; on exposure to the air the colour changes, and the substance becomes black and oparue. This peculiar change is also observed in specimens before being removed from the rock, even to the depth of six inches from the surface." The above mineral occurs in the amygdaloid at Jadley's and Gates's Mommains.

It may be enquired of what praction sabue are the minerals contained in the Trap District of Nova Scotia, and what Provincial advantage can arise from their dis-
covery : In reply it must be acknowledged, that alhongh many of them are gens of great beauty, and such as have been eagerly sought for to be set in rings, seals and necklaces, or to ormament the aborles of a lighly civilized people, and therefore are of considerable value ; notwithstanding it is not probable that they will ever afford an article very important to commerce, or make up the source of an abundant revenue. As oljects of seience they are however, more valuable. 'Ihey shew the chemist how variously different substances may be combined, and the different forms they are capable of assuming. The discovery of such combinations have produced the most beneficial results, and chemical aflinities exhibited by mineral substances found in the earth, have supplied mankind with useful hints. These having been laid hold of, are now followed by vast improvements in the arts, and the manufactories of this kinglom are now teeming with the richest and most valuable productions, many of which have arisen from the advanced state of chemical knowledge. The mind of the Natural Plilosopher becomes enriched by the objects drawn from Nature's private cabinet, and he is enabled to suply his fellow men with knowledge, the most valuable of all earthly blessings : and although he may toil in silence, and remain manown, and may not receive the least encouragement anidst his labours, or reward for his pains, yet when he disappears he leaves something in the hands of his successors that may administer to their wants, and render them wiser and more happy.

The North Momtains have evidently been formed much later than the sandstone upon which they rest.

They must be distinguished from every other Fommation in the combry，and admitting them to be of volcanic ori－ gin，their occurrence may be considered extraneons． Had they never been elevated to their present situation， the lower lands of Ammapolis and King＇s Comnties，would have presented an almost level surface，even to the margin of the Bay of Findy ；then munerons rivers and creeks would have entered those commies from the north，and the mprotected sandstone would have been exposed to the more rapid encroachments of the sea．But the trap rocks have been thrown up like an embankment upon the border of tie sandstone，protecting it from the augry tides and turbulent billows of the Bay．The torrents of rain collected upon these elevated lands，instead of being peacefully conveyed to the sea，through the gente wind－ ings of the vallies，are precipitated over stupendons pre－ cipices of the hard basalt，and fall headlong into the oce：m that rolls beneath．At some of those romantic spots a thousand persons might receive the vapour hath at once， and at the sane time behold the sparkling rainhow formed in the mists abore their heads．

The Amapolis and Cornwallis Rivers meet in the great valley before mentioned，and the floods that are olten accumulated on the lower gromeds，are sullenly con－ veyed to the ocean through a narrow opening in the trap rocks at Digly，while the small rivers of King＇s Comnty convey the surplus waters from the fertile soil into the Basin of Mincs．The soil covering the North Mountains， allhough in many places scanty，is nevertheless very good． llere and there the rocks appear above the surface，but they do not hinder the progress of cultivation，which i ： rapidly advancing in erery guater．

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

The soil is composed of disintegrated traj rocks; these having a consideralble quantity of lime and potash contained in the homblende and fellspar of which they are constinted, greatly promote vegetation. Not only is the surlace of the mountain emriched by those chemical substances, but the washing of the rain and numerous small brooks, are constantly carrying the debris of the hills to the sandstone at their base: from these causes the lower gromods are constanty supplied with a most appropriate source of lertility.

Afording a shelter from bleak northern blasts, and refracting the rays of heat upon the valley below, the great wall of trap also produces a regnlar supply of mamure to fertilize its covering. From these canses there is a belt of land extenting from Comwallis to Granville, along the base of the mountains, not smbassed by any in the Province for richness and the production of good crops. No better evidence of the good guality of the soil covering the trap rocks need be produced, than a reference to the immense growth of beach, birch and maple, thriving upon them.

Hitherto a consideration of the destruction that is continually going forward in the solid materials of the country, has not been introduced any farther than it appears along the sea coast ; for it must be obvious to every one who will bestow a little reflection on the subject, how rapidly the dilapidation of every class of rocks is adrancing. Naving thus given a description of the 'Trap District, so far at it extends on the south side of the Bay of Fundy, we now proceed to bring hefore the reader's notice the remainder of the rocks belonging to that division.

These form the lole lamt, Cape Chignceto. Cape do Or, Spencers Istand, Cape Sharp, Partidge Stand, ind the other headlands and islands on the shore of Parshorongh.

ISLE HAET.

Anober ten miles from Cape Chignecto, Isle llant rises abrupty from the sea, and is on an ancrage ahome four hundred feet high. lis surface ocempies an area of about one hondred acres, corered with a hick growth of timber. At several phaces it aflerds safe auchorage, although it is not moch frequented hy vessols in the Bay. It has not proved dingerous to coasters, as the tides are separated at this spot on the flood, one portion rushing $\quad 11$ the Chignecto Chanel, and the other adiancing enstwardly through the Gut to the rapid Shubenacadie. On the somith site of the Island the massive trap rises in towering sublimity, and presents o'erhanging cliffs of great grandene. On the north-cast quarter a collection of samd forms a small "bar," and contains a beautiful basin filled with clear water. 'The minerals ocemring at this lsland are but few in number, and are similar to these on the south const of the Bay. Sometime in the summer of 183.5 , this desolate Island obtained an inhahitant, who hoped some aid would have been given him by the Government, to render his retreat comfortable; but as little publie bencfit could arise from his location at a place where there are few shipwrecks, the antieipated atlowance was wibloch, and lie has sime removed to better guarters.

CAPE CHIGNECTO.

Capr: Cmbexecto is also composed of amorphons talp, which extends about two miles and a half from its extremity, on the shores of Cumberland Bay and Adrocitte Harbour. It is difficult to determine the boundary of the trap, it being intimately blended with the slate upon which it is placed. This is the only instance in Nova Scotia, so far as we have discovered, where the hornblende rocks are not deposited upon red sandstone. It is curious to ohscrve the great difference in the overlieing roeks at this phace, compared with those where the red marl group) instead of the shale, forms the foundation upon which they rest. Instead of having a beach along its base at low water, as is common on the shores of the comntry, the roeks at this place descend, almost perpendicularly into the sea, rendering it impossible to examine them without making an aquatic excursion. Rude and lofty cliffs rise out of the sea, and hang in solemn pride over the head of the alventurous visitor ; alded to this circumstance a rapid tide whirling in frothy pools, requires dexterous boatmen io shum the vortices threatening on every side. Instead of rolling upon the beach, and curling their brows forward upon the trembling shore, the waves dash against the upright cliffs, rebounding and shooting upwards as if disappointed in their landing place. About a mile eastward of the bold extremity of the Cape, and between isolated towers of grecustone, a marrow opening affords a retreat for boats in stormy weather. 'This opening is called Refugee Cove. Here the sea lats thrown ip a small beadh, and a brook comes rushing down a tromendons chitism,
situate in the rear. Half an acre of matrsh hats been formed, and uponits margin there were at the time of one visit, craneberries as large as musket halls. 'Ihese are in mo danger of being devoured by greedy schoolloys, for seldom indeed does a visitor venture so far from any inhabitant. Having ascended the top of the clifl, the sutare for several miles around presents a most gloomy aspect : the lofty spires of trap and upturned strata of shale, render it alnost impossible to pass their frontier, and years will elapse before an accurate description can be given of their minerals, or a hardy settler begin to fell the spruce now skirting the ravines, and cresting the pathless hills.

The trap of Cape Chignecto is of two kinds, which alternate with each other in pseudo-stratification. One of these kinds resembles the common greenstonc, and contains a moderate quantity of homblende ; the other is of a reddish colour, and is apparently mixed with silex.Both pass insensibly into shale, and contain not a specimen of any mineral worth notice.

Perhaps it may be observed, that the trap at this locality being mived with the shale, furnishes an argment against is volcanic origin : but it should be remembered, that the shale itself might have been exposed to the operation of subte raneous fires, forming a part if not the whole of the mass, from which the trap has been produced ; or the superimposed rocks might have been thrown up in such an intensely heated state at the time of their formation, so as to liquefy the shale that came in contact with it. In either case nothing more has been effected than would certainly result, admitting that the crystalized rocks lave been produced in the same mamer as granite, to which
the homblemberoris of the eomery are meally allied. The former or both of these opinions maty be true; for if the latable rocks in Nova Scotia, have all orginated from thre same canse, (a fact which few can doobt,) and have been produed by the same materials, then they would be miform in their composition. Such howerer is not the impression they produce upon the mind, as those rocks where they rest upon the shale at Cape Chignecto, are diftorent in that particular ; and although they have evidently been produced by the same cause, their original romection with the shale, and subsequent mixture with its materials, have evidently produced the difference in both structure and composition, now so obvious. The difierent appearances of granite, porphyry, and other crystalized rocks, can only be accounted for in this way. 'The minerals of which all the rocks are composed, are but few in number ; it is their dissimilar combinations that make up the great variety among them. Perhaps Geologists have often reasoned from preconceived opinions, and have neglected circumstances like those thus briefly detailed. Notwithstanding, the facts remain the same, and the trap roeks where they rest upon the shale, in Nova Scotia, are very difierent from those placed upon the new red sindstone.

Advancing from Refugee Cove towards Advocate Harbour, the shale in general is black. Its strata are broken, torn asunder, and often twisted in the most remarkable manner, and form a cliff abont two hundred feet ligh. The strata become more regular in proportion as they are placed at a distance from the trap. 'This circumclanee, and the carbon entering into the composition of
their masses, clearly indicate that there has been great heat in the neighbowhood at some former perionl, which will appear still more certain when Cape D'Or is examined.

C.APE D'OR.

Like Isle Hant, this Cape received its name from the French, who upen its first discovery mistook its native copper for gold. Rising upwards four hundred feet from the level of the sea, this bold cliff extends outwards into the Bay in a southerly direction. At its southern base a submarine cape reaches still fartiner into the sea, and produces the well known whirlpools called " Dory Rins." During a heavy gale, the stmken pillars oi trap throw up frightful breakers; notwithstanding at ordinary periods there is sufficient water upon them to allow the largest ships to pass in safety. The rapid flood tide, rolling forward to fill the Basin of Mines, meeting an impediment at the submarine precipice, is thrown above the common level, and much broken in its tortuous course. The red sandstone is seen at Advocate Harbour, (a small bay between Cape D'Or and Cape Chignecto, dipping at a small angle beneath the overlieing rocks. The superficies of the country occupied by that rock is low and level, and extending eastward is characterised by the same features it bears in King's Comnty, on the opposite side of the Bay.
'The majestic cape, composed of massive trap, reposing on anygdaloid, lifts its crest far above the strata of sandstone, and seems like a huge tower erected after the work of creation had been enmpleterl. Nortliaral, clevated
ridges of grey sandstone and shate，have been thrown 川， leaving the red marty rock，sole occupant of the valley between then and the more recent trap．Viewed at a distance the eape appears like an island ；and under a pe－ ruliar condition of the atmosphere，when low banks of fog skirt the horizon，this healland，Cape Chignecto，and Isle Hant，present the most delusive appearances．Often the desolate Isle appears like a black spot in a cloud，and the capes exhibit the most fantastic shapes．On the west side of Cape D｀Or，the trap forms a mural precipice，be－ neath which large blocks of the solid rock，worn round by constant rubbing against each other，when overflowed by the sea，lie orer the broad polished pavement of amygda－ loid，that slopes gently down beneath the water．The anygdaloid is divided into cuboidal blocks，by seams that run across its surface，and the whole phatform is curiously figured with narrow fissures．In these seams and fissures， the pure native copper appears in dendritic，reniform，and flattened pieces．Each fragment is indented by the ine－ qualities of the rock where it is secured，and it conforms in every instance to the matrix which surrounds it．Often the globular masses composing the moveable portion of the shore，agitated by the waves，wear down the more tenacious copper，leaving a bright surface exposed ；hence the metal may be often seen，shining with great brillianey beneath the margin of the sea．More commonly however， the surface of the copper beccenes o．．ydized，and is cov－ ered with a beautiful green coat．The fragments are of various figures，and weigh from a few grains to several ounces．a few years ago a piece of the pure metal was discovered，weighing fifteen pounds．It is rlosely com－
pressed in the roch, tilling up the interstiens very perfectly, and therefore to procure wood specimens, a hammer and chissel are indispensahly neecessary. The amergdaloid is gradually worn down by the constant attrition of the lare loose blocks covering its surface, honce the copper, which is more capable of enduring this spoming process, beromes disengaged, and is olien fomblanong the stad and pehbles of the shore. From these ciremmstaness has arisen the eroneons itlea, that the copper is comstantly rising upward, and performing its own exhmation. Near the extrenity of the cape, and on its west sille, at abont "half tide," we have been most suceressfil in obtaining line specimens for the cabinet. Near this spot we also discorared a vein of guat $\%$, about two inches wide, penedrating the rock downards. This vein of guart encloses reniform pieces of pure eopper, which are not secn on the sides of the vein, but extemd upwards in the centre of its siliceons contents. I learned and elegant writer on Geology, Dr. Ure of Glasgow, has brought forward very ingenions testimony to prove the igncous origin of trap; but while he alunts that this class of rocks has been formed by heat, it is in our hamble opinion extremely singular, that he should suppose their mineral eontents have been formed by the infiltation of water. He sats,-"Tho infiltation of quart\% and carbonate cillime in aqueous solution through rocks, is proved by he formation of chatcedonies, quart\% erystals, and calcareous spar, in the inflated cavities of trap roeks, and may be traced through every stage of the process." Is it not more probable, that while the rocks themsties have evidently been formed and cry:talized hy heat, that the numerous cry:
tals comained in them and widely disseminated thronghont their solir masses, were also formed by the sime powerfil agent. A great distinction should be made beween those chalectonies foum in the very vitals of tap rocks, and such as are produced by the remarkable process of petrifiction. What will become of the fact presemed in the quart\% vein of Cape D'Or? Was the quartz collected by infilation, and did it comain "inflated cavities"? If so, those cavities would doubtless have been coated with crystals. Was the pure malleable native metal also filtered first through the rock, and then through the quartz, so as to till up the cavities? 'This certainly is a romdabout way of arrivins at the conchasion. While it is gencrally admitted, that the trap rocks have been formed by heat, to us it is equally phain, that hoth the quarta and its enclosed copper, have also heen in a melted state, and cast into the fissures where they are now found, whether they are in the quart\% or amygdaloid.

It is acknowledged by the best modern Gcologists, that all the rocks possessing a crystaline structure, have been produced by heat. In granite and porphyry there are frequently large erystals of mica, quart\%, and feldspar. Few have ever supposed that those rocks have been collected in an aqueous solvent ; but it is generally believed that they are the result of ignition. It camot then appear singular, that the minerals so beantifully crystalized in the homblende rocks, have also been aided in forming regular solids through the medium of caloric. These few obscrvations on this sulject have not been introduced with a viow of entering into the details comected with such argunents, but merely to accompany the facts as

Wey are presuted by the copper of Cape D'Ur, and to afliord a himt of its probable origin ; for few who will exanine the trap rocks of Nowa Scotia, will ever believe that they and their muncrous minerals, were ever produced by any ofter canse than that which would accompany voleanic inthence. Thas far a description of the copper has only been given where it appears in the anystaloid ; but it was also discovered in the amorphous trap, of which the perpendicular elift on the west site of the cape is composed ; and finally it was fomend in the soil covering this promontory. 'This ciremnstimee was by mo means surprising ; for as the rocks at their surfate are mudergoing a graduai decay, the copper being beter that lified to resist the action of the elements, is left among the delris of its more decomprosable gangue.

On the cast side of the cape the anyydaloid receives into its composition a large proportion of red simdstone, by which it is rendered less durable. Here again the waves that roll upon the shore, with alnost irresistahbe fury, have worn out extraordinary chasms and arches, which are phaced over the pathway at low water, aliording a grand and imposing spectacle. Beneath one of these natural arches, we discovered a marrow vcin of jasper, containing like the quart\% alreally mentioned, irregular fragments of native copper. In one instance the sulphate of that metal was discovered, and it inearly equals in purity the blue-stone of commerce. The green carbonate of copper is however, more common, and frequently enters into the composition of other minerals in this neighbourliood.

I short distance castuard of the cape, the con-

Hicting currents of the const hate worn out a semicirentar oproning, called Ilorse Shoe Cove. At this phace thero are veins of calcareons spar, comming small particles of copper. Ceystals of analeime, sometimes trmsparent, and sometimes coloned green by the carbonate of that metal, are fomed in cavities in the rocks. Imegnarerestals of ealcarroms spar are ofeen beatifally conted with delicate erystils of stilhite: some of these abso have roceived the green tinge and attiord rare specimens. Several other minerals appear at the cove, but they are similar to those of the 'Trap District in general, and may be obtained at Blomidon in greater perfection.

Liatward of IHorse Shoe Cove, a bold headland extends into the sea, and prevents the pedestrian from jussing that way eren at low water. Having entered the Bay westward of Spencer's Island, the red sandstone will be seen dipping beneath the trap, which even here, limited as its dimensions are, retains the same Geological relations, so clearly manifested in the more extensive ranges of the North Mountains. The apparance of pure copper at the above cape, has proved a fertile source of reasoning to many; some have supposed that a considerable quantity of gold is comtained in the copper. It has heen analysed by good chemists, and it certainly is not anfiferons; the coppor itself is extremely pure and malleable. Much labour has been applied to discover what prospects might here be afiorded for mining ; but the most accurate observations have resulted in the conchusion, that the quantity of motal is not sufficient 10 ofier any profit to such as might he disposed to open the rocks in search of its hidden treasures. Neat the core, we
e r"
Sere-
simi-
ay be
clland
firon d the Istone here， piical nsive pure ce of ider－ has not mal－ what the clu－
disenvered the remains，not of a mosil hyma，but of a small firmace，which had beon secretly erected ly a pary of Americalls，who are crer realy to lay hotd of the pre－ rions metals，and probably expected to obtuin a quantity of gold at a cheap rate．The projent was nevertheless abandoned，for reasoms already given．Mr．Backwoll， an Buglish genuleman，dug a pit on the top of the rape， but for what useful purpose we never could discover．It is among our momtains of gramite，slate，and transition limestone，where these treasmes are concealed，and not among those recent and isolated collections of hornbleme： rocks，where all the ores have been smelted，and are now in a pure state，from the heat which aceompanied their formation．

spencer＇s island．

Spencer＇s Island is situated about three miles from Cape D＇Or，and although its position is somewhat sthel－ tered from the rapidity of the tides，by the headlands to the westward，it is gradually crumbling down．It is sepa－ rated from the main land by a narrow chanuel，through which the tide rushes with great force．This chamel is gradually becoming wider ：an old and respectable inha－ bitant upon the coast informed us，that he can remember when he was used to wade at low tide from the peninsula of Cape D＇Or to the Island．The channel is now several fathoms deep，and half a mile wide ：such are the changes daily going forward in every part of the country．Spencer＇s Island is composed of basaltic trap， that on its south－east side rises abruptly from the hay．

At its north base there is a pretty beach, where a landing ram be safely effected. 'The minerals here consist of siliceous sinter, jusper, and perfeet erystals of quartz. The latter appear under several different forms, the most common of which is the six-sided prism. 'The siliceous sinter is mueh inferior to that found at Two Istands, where it appears in more interesting varietics.

CAPE SHARP.

Tine next headland composed of trap is Cape Sharp, situated about fifteen mile.; from Cape 1)'Or, and opposite the coast of Blomidon. The intermediate roeks are sandstone and shate ; these afford scenery which forms a pleasing contiast with the lofty peaks of the basalt, standing like centinels upon the boundary of the Bay, and resisting more powerfully its daily encroachments. On the east side of this cape, the red sandstone will be again seen, shelving downward beneath the amorphous trap, and forming a small valley between it and the shale. Here again the crystaline rock appears to have been produced by some fortuitous circumstance, and resting upon the strata of marly sandstone, lifts its summit far above the level of the adjoining country. At this place the shate ance red sandstone meet, and although the strata of the former are almost vertical, it is evident they dip beneath the latter, declaring its more ancient character. 'The red sandstone here contains veins of selenite, that often appears in large and beautiful transprent plates. The cape is about two miles in circumference, and affords the bold scenery so peculiar to basaltic districts. Fuen bere the poor inha-
amding of sili-
'The t coul115 sinwhere

Sharp, pposite e sanda pleastanding esisting the east in seen, d formc again y some rata of of the 1 sandcr are latter, dstone large ut two ery so inha-
hitants have discorered the fertility of the soil covering trap, and have ascembed the lofiy preeipiee to obtain its adrantages. At one particular situertion on the eabs site of the cape, the rock is a conse breceiated gremstone, comprosed of augular fragments of trap, aungdatoid, and a dark coloured samdstone. In this aggregate we discovered a large geode of ametlyst, that would have combuned before it was broken, two gallons. Its inmer surfare was studded with lange and regular crystals of a deep violet colour ; over these erystals, extremely delicate atoms of silicoous sinter, form a light inerustation, so that the intermal superticies of the geode appears as if it were covered with an autumal frost. A situilar appearance was observed among the minerals at Blomidon, and we can only arcomut for it by supposing, that affer the crystals of ambthyst had been constructed, a kind of gas or vapour containing sinter intensely heated, had allighted on their surfaces, and supplied them with a singular covering. Sereral pieces of agate, composed of challectony and camelian, have at different times been foumd anong the ruins of the cape. A large vein of caicareous spar, ocrupies a place between the anyglaloid and trap. At another site, a considerable vein of the magnetic oxide of iron fills a similar situation. In the spring of 1834 , a mass of stillite that would weigh upwards of two humdred pownds, fell from the overhanging precipiee, and supplied a great number of beautiful specimens. Many of these have been forwarded to English and Americim Nittualists, who have acknowledged them equal in beaty wowy hitherto discorered. The mass was composed of large fiesciculi, or groups of diverging eryotils, of a stany yollow colour, and rescmbled . 1
sheaves of wheat. During one of our visits to this cape, we collected a number of masses, covered with large and splendent crystals of amethyst ; but being unable to remove them at the time, on our return a part of the elifi had fallen, and our treasure now lies buried beneath a heap of stones, from which it will probably never be rescued.

PARTRIDGE ISLAND.

Four miles eastward of Cape Sharp, Partridge Island, so justly celebrated for its numerous minerals and picturesque scenery, rises in Lofty grandeur from the Bay. Its name has probably arisen from the numerous broods of partridges reported to have frequented its surface. These however have long since disappeared, leaving the fox sole occupant of its elevated area. This island is northward of Blomidon about six miles, and separated from it by the narrow outlet of the Basin of Mines called "The Gut." These strong collections of basalt, may be compared to the pillars of a gateway, and being more unyielding in their natures, have resisted the impetuous tides more faithfully than the shale and sandstone which they defend. While Blomidon protects the softer rocks of Cornwallis from the encroachments of the aqueous element, Partridge Island and Cape Sharp, on the opposite side of the Gut, stand like giants guarding the coast of Parrsborough. The great body of water rushing forward to fill the Basin of Mines during the flood tide, is thus compelled to pass this narrow opening, and rushes with fearful rapidity along its confines. Through this contracted but deep channel, the tide runs eight miles an
hour during the spring tides；and when it is considered， that it rises upwards of tifty feet high in the short space of six hours，its violence camot be surprising．Often in calm weather，when vessels have been prevented from anchoring by their distance from the shore，they are seen passing along with great speed stern foremost，through the ＂Gut，＂over the rippling surface of the Basin．Fre－ quently a single flood will sweep them fifty miles，either towards or from the place of their destimation．It is on this accomut that the harbour of Partridge Island is so ex－ tremely advantageous；the peculiar direction of the cur－ rents，with a light air of wind，ahmost always allows them to make that port，where they are often collected in great numbers．l＇artridge lsland not only offers a retreat from the fury of the tides，but also in tempestuous weather af－ fords a shelter both on its east and west sides．A fine navigable river at hand，where a thousand vessels may lie in safety，opens in the rear ；hore during the cold and blustering months of autum，their masts are seen rising almost among the elusters of spruce，like leafless pines anong the underwood．

From Cornwallis to Digby，following the course of the shore，not a sciitary harbour of any importance can be found：also from Cumberland Bay io Truro，on the north shore of the Bay of Fundy and Basin of Mincs， the coast affords no protection to vessels in storny weather，except that which may be found at Partridge Island．Hence that harbour is invaluable，and although not duly appreciated by many in the present day，it will at some future period becone a port of much problic im－ portance．It is curious to observe the deep excavations：

24t

made by the sea, at those situations where the basaltic trap rocks have not been thrown up on the coast. West Bay, situated between Partridge Island and Cape Sharp, is an example of the speedy destruction of shale, compared with the greenstone. Notwithstanding the locality to which we again refer is called an Island, it is only surromeded by the water at very high tides, laving a level heach comecting it with the mainland. Here again, the red sandstone dips beneatl the amygdaloid, similar to its sub-position at Cape D'Or.

On the shore of West Bay, the shale in vertical strata mects the red sandstone, rendering it dificult to decide which of those rocks should claim priority. The shate, however, belongs to the coal formation, and is evidently of more ancient composition than its neighbour.

On the west side of Partridge Island, the basaltic trap deposited on amygdaloid, forms a sublime and stupendous cliff, three hundred feet ligh. At some places it is undermined, and hangs frowning over the visitor who venturcs to stroll among the fragments at its base. Beneath the most lofly part of the precipice, a cone-slaped insulated mass of amygraloid rises to considerable height, only a few yards from the base of the more exalted summit of the Island. Even this linited portion of the rock, is beautifully topped with regular basalts. At the south east extromity of the island, several small detached and grotesque rocks, form a kind of rampart in front of a rugged point. These rocks are beautifully crowned with low evergrecns, above which the spear-shaped top of the spruce mocks the fury of the waves bencath. Viewed from the summin of the lofity precipice, or from the beach
below, the whole gromp affords a grand and beautifill landseape. On the east side of the istand, a large mass of basalt has made an attempt to fall ; but being arrested in its deseent has left on the earth above, a deep and narrow clasm, into which access may be had by curefully descending a short distance down the boader of the escaripe above. This chasm has probably been produced ly an earthpuake, and there are monerous evidences in the Province, of those dreadful events.

A description of minerals, brief as we have endeavoured to give it, may have become fatigning to the reader, and more certainly so if he have not entercal into the sul)ject with that interest they seem to invite. But as the minerals of Partridge Island have reccived a share of attention from Professor Cleveland, and other scientific individuals, we camot fail, however justly the charge of repetition may be made, of giving some details of those interesting substances, as they appear in our own immediate neighbourhood. 'The alvantages to be received by residing in a part of the coumtry where minerals are abundant, were not the least of those motives by which we were led to occupy our present domicile ; and although it is very uncertain how near the period may be, when an unwilling migration must take place, we cannot hesitate to affirm, that over and above the Mineralogical inducements, Partridge Island offers a neat and airy village, on the very border of the Basin, attended with every facility for sea bathing, and the pleasure to be derivel from a kind and hospitable society; it offers every inducement to the relaxed invalid, and all who can enjey a pleasim stmmer retratt. Here the Mincralugist will find the oljecte of his
study beside him ; the ealeulating merehant would be invigorated for new latoors ; and the fair daughters of our land would receive another charm from the refieshing inHnence of a pure and wholesone atmosphere.

Among the umerons minerals of Partridge Istand, is calcareons spar, often in large and regular crystals, sometimes transparent, and of a light stan coloner. When a few lanima have been separated from the surfaces of clearare, the rhomboidal masses are sufficiently pellucid to allow the finest prints to be seen through them; and as the mineral is possessed of double refraction, each line becomes duplicated, and may be read at two diflerent places upon the paper. This carbonate of lime is beautifully phosphorescent when thrown upon hot iron, and if then put in a dark place, will emit a clear grold-coloured light. Sometimes large and perfect rhomboids, measuring an inch and a half in diameter, are sealed upon thin plates of stilbite. The rhombs are separated from each other, and nearly approximate the primary form. The spar also appears lining veins in the amygdaloid, and occurs in small splendent hemitropic erystals. These from having the acute angles of the rhombs turned up, appear to shew tetraedral or wedge-shaped summits. Large pieces on the shore, when broken, exhibit groups of stillite in fasciculi, or bundles resembling sheaves of wheat: upon these the carbonate of lime in regular forms is secored, sometimes upon the base of the rhomb, and often hemitropically. We opened a rich vein at the base of the cliff, and after much lahour were rewarded with large masses of wine-coloured st..'hite, curionsly studded with erystals of spar, and where the jar is eleficient, delicate cr! stals of
bright red henlandite tips the lamdles of that mineral, and renders the collection not mily highly intresting on account of its singular associations, but gives it a peculiar splendour seldom met with. Often thin plates of stillite are separated from half an inch to two iuches, by erystals of the earbouate of lime. Ofien small cavities are left void, when the sides of the rhombic angles are seen interlaciug each other, in a manner seldom wimessed at other places. Many other varietios might the mentioned, in which the spar and stilbite have been upon terms equally friendly. 'The subjacent rock contains numerons hollow places, surrounded with colourless, transparent, and rhombic crystals of chabasie : this mineral however, possesses a variety of colours, varying from gold yellow to a bright red, which added to its peculiar glassy appearance, renders it easily distinguished from the carbonate of lime.

Arragonite is a mineral, that according is Stromeyer, is composed of carb. lime $9 \mathbf{3} 29$, and carb. of strontian .50. This singular sulbstance has exercised the talems of many distinguished chemists, who have eudeavoured to discover its constituents. It occurs in the amygdaloid of Partridge Island, in six-sided prisms, terminated by diedral and tetraedral summits : frequently all the angles of the prism and pyramid are truncated, and the crystal assumes a cylindrical form. It is often transparent, and possesses double refraction : in nitric acid it dissolves with effervessence, and small fragments split when held in the flame of a candle. Perhaps the arragonite is the same substance Messrs. Jackson and Alger have called phosphate of lime, a mineral which generally occurs in !".imary rocks, and one we have been mable to find at the above
place. The arragonite was first discovered at Arragon, in Spain, hence its name has been derived. That variation of apophyllite called allbin, has also been observed in small pieces among the fragments of the beach: this mineral appears in right square prisms, the terminal angles are more or less truncated, sometimes producing octacdrons. It is now becoming scarce, and few good specimens can be procured at the Island. Several veius of jasper enter the rock, and ascend with it a considerable distance. Chalcedony, and botryoidal cacholong, may be easily obtained in rich varieties; the latter frequently encloses geodes of amethyst, and small agates, similar to those foumd at Cape Blomidon. Sometimes the chalcedony forms geodes of a milky white colour, and encloses cavities occupied with splendent chalcedonic crystals. Sevcral veins of magnetic iron ore, run in tortuous veins up the cliff. Two of these are each a foot wide, and although composed of rich ore, are useless for Mining speculation. Large pieces of horustone may be procured along the shore, many of which would be extremely beautiful if ground and polished.

Opal and semi-opal, are also among the interesting specimens of Partridge Island. We have obtained two small nodules of the former-both resemble pieces of wax. Both varieties are greatly improved by the labour of the lapidary, and when they are cut and polished, afford beautiful gems. This mineral was much esteemed by the ancients. Nonias, a senator, suffered banishment rather than relinquish to Mark Anthony a precious opal. Of all the minerals for which Partridge Island has been celebrated, none is more admired and carefully sought for than
the amethyst. 'This rem is now hecoming scarce, and nothing but the downfall of the rlife will bring it to view. Monsiear DeMonts, a leading chameter mons the Irench emismats to this combtry during the reign of llemy IV., was so much pleased with these brithant crystals, that he conveyed a momber of them to France, where they were received by the King and Queen as a token of his loyalty. Many similar specimens have been transported to Europe, where they are much admired.

The north side of the island descends with a somewhat granual slope. About hald the distance from its summit towards the base, a large vein of the magnetic oxide of iron breaks through the soil ; the ore is of a good quality, and suficiently abundant to supply a smehing furmace. The waters of a spring in the neighourhood, are impregnated with the fernginou; oxide, and possess medicinal virtues superior to far more colehated pools. The south site of the island is entirely baren of good specimens, and the minerals on its east sifle are like those of the westem clifs.

SWAN CREMK, AND 'TWO ISLANDS.

About fire miles eastiward of Partritge Island, an inconsiderable indentation in the const, has received the appellation of Swan Creek. At the entrance of the creek, and a mile from the mainland, two small Islands are sittiated, and have received the above appropriate mame. Appronehing Swan Creek from the westward, the attention of the Geologist will be arrested by a bold blufi called Clarke's Head, formed be a confused collection
of red sandstone, shate, limestone, and gypsum. 'I'hese have been noticed when a deseription was given of the Red Sandstone District. Upon a thick formation of the sandstone, and formine "a surface of the Blutf, a thin insulated tayer of hasaltic .ap extends a short distance to the northward. 'I'his layer is uneonformable to the strata of sandstone, wihl which it forms a peeuliar conmast, meither rock having had its colom changed by mixture. If it be almitted that trap rock is the production of rolcanic heat, a faet not to be doubted, it really appears that the crater from which this detached mass has issued, has been demolished or swept away. From its apperarance it must have been the very border of a column of melted matter that overflowed this section of the comntry. This small collection of hormblende rock, lies above the shale, samistone, and lime; and as it was doubtless coeval with the ponderous masses of the majestic Blomidon on the opposite coast, it plainly proves that the trap rocks of Nova Scotia are of recent formation.

No more of this rock is seen until after crossing Swan Creek, where mother isolated collection of the massive kind appears, resting upon the sandstone as usual. Here also whererer the trap occurs, the land is elevated just in proportion to its extent; and as it was before observed, it forms a crown to the substrata beneath. The basalcic rock at this locality passes by gradual steps into amygdaloid, and contains many beautiful and interesting minerals. About two firlongs from the creek, the amygdaloidal trap is seen in immediate contact with the sandstonc. The trap along this coast appears in insulated and detached portions, forming several re-
markiable prominences and obtuse devations, above the subjacent members of the red mand group. It appears like a manber of separate masses, that have been superimposed at several difierent points, mul which are disjoined by the less elevated freestone. 'Ihese elevated acemmatations extend but a few hunded gards from the shore of the basin, and have the sandstone rising up their sides. The whole of these singular collections of the homblende rocks, including the 'Two listands, and parts of the live lstands, appear like immense molehills, raised from the materials of which the surrounding earth is composed. The largest of these momds will not exceed a mile in circmoference. If they have heen formed from the melted lava of a crater, that vomited its liguid contents upon the surface, and diselarged boiling torrents "pon the samdstone, filling up hollows and ravines that were placed in its way, then these remarkable cone shaped hills of trap cease to be a phenomenon. At each of those places it is curious to observe, the gradual passage of shate and red sandstone, first into a perfect vescicular amygdaloid, and finally into compact trap. In some instances the layers of sandstone are filled with angular masses of compact greenstone, forming a coarse breccia. It has been supposed by an American Geologist, that the shate, sambstone, and trap of this place, have been converted into a coarse breceia, and finally into amygdaloid. But, if it be true that the later rock has been formed and elevated by heat, (and there is most unequivocal testimony supporting the fact, it is neecssary to enguire of what materials amygedaloid and basait were originally composed, and the changes those materials have suffered from
volemic influence. With the nature of the ingredients from which gramite, porphery, and other ceystatine rocks have resulted, by the application of heat, we are altogether unarpmanted, and litale is known of hose substances firon which lava is formed in the howels of volcames. On: himg howner apyars cortain, that the anyghatoid of Swan Greck, has not been formed of the trap that lies above it ; and as both the trap and anygetaloid are evidonly rok anic productions, it is most probable they were both protued by the same canse. Let it for a moment he supposed, that a crater is epenced and its melted matter porred ont uron the solt sandstone: the result would be a mixture like that now seen. If it be observed that the amyghatod is matike the hasthic rock in its structure, it may be replied, that these two rocks agree very moarly in their chemical characters, and resemble each other more dam the different layers of hava in some roleanoes now in operation.

From the splontid discoveries of Sir Mumphey Davy, a cause of voleanic heat has been introduced, mot only plausible but extremely probahle. Of hese, Dr. Ure justly remarks, " the metals of the alkalies and earths, from their paramom alimity for oxyen, could not possibly exist on the suface, but only in the interior of the globe. On this principle volcanic fires would be occasioned wherever those motals "ere extensively exposed to the action of air and water. Thes also the formation of lavas might be explamed, as woll as that of granites, porphyries, basalts, and many other crystaline rocks, from the slow cooling of the protucts of combus. tion, or osidation of these remakable substances." Shond
any one empuire how were the istated porions of trap of the istands and clevations on the moth side of the Bay of Fumly and Basin of Mines formed, so fir from any comtimuons range of that rook, a meply is reatily fimushed in the volemoes of ether commeres, where the smoke of their barming materials is pemring in donds thengh momerons openiags on the surface of the carth." 'To the west of the valley of Limagne, immediandy Wehinad Cher mont, rises a gigantie phtem, about 1600 fee athere dhe valley, mul :5000 above the sea. On this rests a r hain of voleanic hills, ahout 71 in munher, compered of steep cones called the Puys of the Momts Dome, which fom with the ashes and scoria seatered around, an irregular rillge from 500 w 1000 feet high, and about 15 mile; in length by two in breadth." "In the ancien D'roneme of Velay, Mr. Scrope comted more than one lumdred and fifty comes, :o thickly sown along the asis of the gramitic ridge, hat separates the Lovie and Allier from Palhaguee to Pradilla, as generally to tonch eareh other ly their bases, and to fom a continuous chain." Thase cones are all volcanic, and many similar ocenrences might be quoted; but we forbear, feeling confident that it would not be a diffiente task to prove, that in Nora Serotia those remarkable openings in the earth have poured forth torrents of liguid trap, and that the conical hills of hasaitt along the coast of the Bay and Basin, have been like so many enormons chimmies ascending from the carth at some former period.

Having thus given some idea of the singular structure of this part of the 'Traip District, so far at its rock: have hecen examuled and having daspibed the shate,
sandstone, 发c. of this part of the Province, when treatiug of the other roeks upon this coast; it seems proper to remark here, that at Clarke's Head, MeKay's Head, and other situations where the shate approximates the overlicing rocks, the greatest possible confusion is manifest. At one situation, the shale has apparently been partially melted, its strata are broken, contorted, and thrown upwards in a vertical position. At another place, bhack shale, limestone, red sandstone, and gypsum, are collected in eonflused hraps, and all of these bear the marks of having been moder the influence of heat. Numerous are the minerals of this interesting coast, for the number of materials which have thus been exposed to some powerful agent, have produced a correspondiug variety in their contents. Those belonging to the basaltic trap are few, while the vescicular rock abounds in rare and beautiful specimens.

Near Swan Creek the roek contains large plates of analcime; some of these are of a dark brown colour, others have their crystals of pure white piled one upon another, frequently resembling bunches of grapes. In these erystals the cube is greatly modified, and the trapezoedron under twenty-four equal trapeziums, is produced. Often large masses of analeine are thickly covered with transpiarent and elongated groups of needlestone; these projecting outwards, give the aggregate an appearance similar to that of the urehin covered with thorns. Frequently this species of zoolite exhilits long crystals not larger in diameter than hairs, and may be blown away with the breath ; and instead of bearing the common appellation of needle-stone, might more property be called hair-stone. Veins in the
anyglaloid are often occupied with beautilul crystals of pearly heulandite : this mineral also appears in plates containing the brown variety. Large pieces of siliceous sinter are eovered with delicate bundles of stilbite, interwoven with the heulandite, and superior in beanty to any we have seen from other countrics. Chabasie in large yellow and wine-red crystals, in rhomboids, is seen sticking to the side of a low eliff, where with the aid of a ladder the most splendid specimens can be obtained. Often chabasie, stilbite, and heulandite, are associated, and may be picked up among the ruins of the coast. Indeed the Mineralogist will be well rewarded, and a cabinet richly stocked wiht the curious objects of seience, in the distance of a few yards. Half a mile eastward of the creek the trap forms a bold precipuee, with a slope at its base composed of the detritus formed by the falling rocks: here also the anygdaloid abounds in minerals.

McKay's Heal is a lofty overhanging eliff, affording the most rare and beantiful crystals of siliceons sinter. This mineral occupies geodes and veins in the clifi, and appears under a variety of forms. Stalactical, mamillary, and branching groups of erystals, may be easily procured, imitating flowers, leaves, and a variety of other figures ; its lastre is shining, pearly or vitreous, and sometimes it is shaded with a light tinge of red. In a large open fissure the sinter is perfectly covered with delicate crystals of hog tooth spar, so finely pointed as to wound the fingers when they are incautionsly handled. Among the curious specimens of the siliceous mineral found here, is that varicty called michaelite, first discovered by Dr. J. W. Wehster, in the Island of St. Michael, from which its
name has been applied. The michaclite forms a net-like incrustation on the interior of cavities abundant in the roek; sometimes it constitutes delicate wreaths and chains, over which branching crystals of the sinter are coriously congregated, affording rare and beautiful groups that are umivalled by any in the worde ; its colours are pure white, greyish white, and light cherry red, lustre ghistening and pearly. With these minerals there frequently occur small geodes, lined with erystals of amethystine sinter, a gem of the greatest beanty. These crystals, like those of quartz, are six-sided prisms, terminated with six-sided pyranids, and are well adapted for rings, neeklaces, \&c.
'The above minerals generally oceur in voleanic countrics: they are abundant at the hot springs of Iceland, Isles of Ischia, and St. Michael's. In Iceland the sinter forms a deposit around the celebrated Geysers ; hence another witness is produced at the above situation, to prove the volcanic origin of the trap rocks of NovaScotia. Jasper, calcarcous spar, and jaspery red oxide of iron, are among the detritus of the shore, where numerous and singular combinations have been exposed.

The largest of the 'Two Islands, or that which is situated nearest the shore, is about three quarters of a mile in circumference, and presents a bold and perpendicular precipice on each of its sides: it being accessible only at one spot, where by climbing some rugged rocks the summit may be gained. O_{0} its east side there is a great collection of debris produced by a lameh of the precipice a few years ago. Not far from this place a vein of compact brown oxide of iron, abont thee inches
wide, enters the trap and may be seen cetending up the escarpment. Within a bew feet of the vein of ferruginous oxide there is mother of moss agate, varying from half tur inch to three inches in width. The bise of this agate is tramsparent chalcedony, in which numerons brown filaments are curiously intermixed, periectly resembling moss. Pieres of this agate, affier they have been polished, will vie in beauty with ayy hitherto diseovered. Wherever the oxide of iron appeximates the agate nearly, the latter becomes opaque, and it is easy to observe the gradual passage of the iron into the amate: therefore the filanents so muel like moss, are delieates crystals of the oxide, which have insinuated themselves into the chalcedony during its fluid state, or probably when both were cooling down from an intense heat. In this instance, however, it is by no means probable that the moss in the agate was ever the plant itself, as some have supposed. These, and many other kinds of agate, have arisen from circmustances evidenty accidental, and their various figures are only imitalive.

On the south side of this island the cliff reaches its greatest allitule : here a large vein of be utiful jasper winds its way through the compact rock. We were surprised to find small pieces of this piasper on the border of a lake fifteen miles from the 'Two Islands, knowing it was impossible that it could ever be found among the strata in that neighbourhoorl. But pursuing our enquiries still firther, we discovered that on the side of the lake, the aborigines of the comtry had mandactured their "arrow points," and the fragments of jasper now found upon the spot, had been hrought from the Islands, and S.;
were the discarded aphinters from the points of their weapons. We have now in our possession perfect spearshapod arrow points, composed of jasper, identical with that in the vein near Swan Creek, and others which have been made of pieces of chalcedony from Blomidon. The Indians, in these instances, certainly selected the hardest of stones for cutting instruments, but by what means they could have broken them into such regular lances, it is not easy to determine. 'There are now before us several stone axes, which like the arrow heads, were used by the natives of Nova Scotia previous to the introduction of iron and steel by the Europeans. These relics illustrate the great advancement of useful knowledge, since their proprietors pursued the bounding moose over our mountains ; and happy would it have been for our red brethren, if the necessary implements of husbandry, and the chace, had been put into their hands, unaccompanied with habits and vices, which have so nearly annihilated their race. Between these ishands there is a narrow channel, aud the Mineralogist may drive a gig to each of those romantic spets at low water; but his visit must be short, or the coming tide will surround him, and an escape be rendered impracticable. The outermost of the Two Islands is neither so large nor so lofty as the imner one, but is far more remarkable on account of the little coves and hollows that have been gradually worn out by the violence of the tides. On its south side the sea has dug out a deep noteh in the leaning wall, ready to plunge into the waves dashing at its base. 'The west side presents an excavated front, which is rendered truly singular on account of a very grotesque opening, that rums en-
tirely throngh the islime and beneath its ponderous masses. 'This opening is near high water mark, and is formed beneath a majestic gothic arch of trap, and extends under and through the island, allowing sufficient space to drive a coach and four. The distance through the passage is about thirty yards, and the archway opens into a most romantic narrow cove, forming a natural tumel bencah the rocks and herbage above. Here also minerals are abundaut : some of the richest pieces of stillite we have ever seen, were found projecting from the sides of the archway. Analcime and heulandite, in beautiful specimens, the latter lining the walls of a deep and narrow chasm, will be readily secured at this wild and romantic little Island, where the eagle, fishing-hawk, and gull, have long claimed an equal, allhough not undisputed title, to the privilege of occupation.

fIVE ISLANDS.

The Five Islands form a small group six miles castward of the Two Islands. Three of their number are composed of trap, the other two are chiefly red sandstone, and in their Geological characters are similar to the detached portions of the overlieing rocks already described. The gradual passage of sandstone into a reddish annygdaloid, which is succeeded by the amorphous trap, is strikingly displayed among them, and the mixture of these different rocks is similar to that appearing near Swan Creck. Situated about a mile from the main land, this cluster of small islands is secn forming a kinul of chain, in from of a considerable sculloment bearing their name;
and so firl does the tide recede in this part of the Basim, that these islands may be visited ou horseback at low water, when the tide has rolled away from their foundations, and retreated from the small rivers which wind their way into the country beside them. At high water they become islands again, and camot then be examined winhout cros. sing the rapid waters of a beisterous chamel. Ever exhibiting the grandesi and most picturesque scenery, the trap is lified up in lofty colomades, or towering walls, strongly testifying that the modem theory of its origin is true. The moment the sight is directed to the sandstone of the neighbouring or opposite coast, the landscape becomes tame and lumble, while the lofyy manal clifs of the islands, shew that their rocks have been produced and elevated by other canses than those which formed their frail foundations. The largest of the chain is called Moose Island, which probably supports an area of one hundred acres : it has recently received an imhabitant, a poor industrions fellow, who is quite sale from the attack of the midnight invaler, but not so from the hmmid peltings of the south-east gale. A second island is inaccessible on all sides, and rises perpendicularly from the sea about two handred feet. 'Two others are less clevated and of smaller dimensions. The most westerly island consists of several needle-shaped spires of greenstone, rising from fifty to in homedred feet. These are called the " Pimacles," and greatly cmbellish the romantic scenery of this part of the coast. These islands contain but few minerals. Such as have been discovered are inferior in beanty to those belonging to other localities. Our last visit to the Pinnacles, was in the season when the gulls are hatchins
their broods. 'The ferocity of the male birds wat surp rising. Darting will great rapitity at tie mexpected intruder, and widhin a few inches of his head, their open beaks were brought together widh a devoming suap, by no means pleasing to our auricular organs. Leaving the subjects of Geology and Nineralogy for a moment, the reader it is hoped will pardon a short accoumt of a matural curiosity at this place, which is introduced from our manuscript pencilling upon the spot, and appeared in the Norascotian, in 1834. There is at Five Istands, in the Township of Parshorough, a pond between two islands, of considerable extent. Three of its sides are formed by a small cul de sat, pentrating the shore ; the other sides have evidently been ereated by the violence of the sea, throwing up a barrier of sand in from, so that an hour before low tide, a perfect basin filled will water, clear as erystal, remains.

Great numbers of fish, of diferent kinds, have been incarcerated in this deeoy. While they are in search of food, or depositing their ova, the tide leares them enclosed in the pond, and in water about two feet deep. It is curious to observe the inbabitants repairing to the spot at low water, with pitchforks and other implements of husbandry; they make a deadly charge upon the benildered prisoners, and a great many cod, halibut and pollock are caught without hook or bait. Seven hundred codlish were taken at one tide; at the same time a boy dhrew a barrel of herrings out of the pond with his hands. Athough this kind of fishing might not alfiord much amusement for the seiemific angler, nor furnish matter for a treatise on cod fishing. nes ertheless the flathes of the inlabiants of
the adjateent village, declare that their amusement has not heen unprofitable.

At Indian Point, on the main land, the trap rocks descend to the beach, where several conical masses stationed upon a bar, afford a siugular imitation of ancient and dilapidated castles. The red simdstone now begins to ascend to its proper level, forming shelving walls of considerable height. The trap rocks keep their place, and form the summit of Gerrish's Moumtain. Here they leave the shore, and extend to the eastward several miles, where they terninate in an abrupt precipice, similar to that of Cape Blomidon. Thus we have followed the course of the trap rocks, from Brier Island to Economy in the County of Colchester, a distance of an hundred and forty miles; and throughout this extensive range, the rocks abound with numerous oljects of science, not rivallod by any other in the world.

Concluding Remaks on the 'Thap Rocks of Nova Scotia.

Besines the abundant testimony furnished in other countries, to prove the volcanic origin of Trap Rocks, Nova Scotia produces in addition to those which have been collected by distinguished Geologists, some of peculiar interest; many of these have already been detailed. The Rev. W. Conybeare, in a note to his paper on the North East of Ireland, and in the third volume of the Geolegical 'Iransactions, remarks:-

Ist. The identity of chemical composition in hasalt and lava.
Qud. The constant occurrence of Trap Rocks in rokmie: districts.
3rd. The confessions of the Wernerians themselves, that the basalt of Auvergue is of igncons origin.
The red sandstome of Nova Scotia, is a soft gramular rock, forming an extensive area in the Province. Its superficies is level and low, never rising above a certain altitude. From its situation and structure, it must have been deposited bencath water, and doubtless derived from the detritus of older formations. Not so with the superimposed Trap Rocks; they are hard, compact, and often sonorous, -their structure is crystaline, and the changes they have produced in those strata which have been in contact with them, althongh not remarkable, are indicative of a power they at one time possessed, of heating all that came in their way. The position which the Trap Rocks of Nova Scotia holds, is of much importance ; they are placed unconformably upon the strata of sandstone, and the height of the country is exactly in proportion to the thickness of their masses, which as we have previously remarked, seem to have been added by some fortuitous circumstance, after the work of creation had been completed. The appearance of the hornblende rocks overlieing red sandstone, is by no means uncommon; it is extremely frequent in Scotland, where the trap is often elevated 2000 feet above the level of the sea. "What a vast body of lava must have been ejected, to cover an island like Skye, fifty miles long, and twenty broad, with coulies in many places one thousand feet deep. The ba-
saltic: mande of the istand of Mall, is in like manner enormons, and from these wo cemtral foci, the antigue lava seems to hase spread over the whole district of the Trap Jises, of which only small firtmems are exposed to view, the great portion being now mgulphed in the deep, forming dark basaltic caves, mad sabmarine canseways." What tremendons convolsions must have shaken the primeval ocean, when the North Mommans of Nova Scotia came boiling to the surface of the carth ; and how magnificent musi the scene have been, when spiral Hanes and curling clouds of smoke rose from their smmits, and the lesser cones of the north shore were giving vent to accumulated heat.

Beween carthruakes and volcanoes there is an intimate relation, and where the latter has once appeared they are liable to break forth again. For many centuries however, the intermal fires of the carth have been subsiding, and therefore it may not be prohable that the inhabitants of this happy country, will ever be visited by those calamities, that have at different priods inhmed thousands of their fellow men. We camot however be surprised, if shocks of earthquakes, and trembling of this planet be felt. They are only the movements of those causes which have often opened foumtains of burning lava, or vents for the combustible materials of the carth, to breathe out its swollen contents, and obtain relief from concentrated internal fire.

To the Geologist such phenomena are not surprising : he sees the changes the crust of the earth has already undergone, and to which it is still liable: he beholds the wreck of a world that has been once destroyed ; and he
knows that the earth contains within her vast domains, the materials of her own destruction. 'These only require the comamad of their Almighty Creator-" when the elements shall melt with fervent heat, the earth, and the works that are therein shall be burnt 川.."-2d Peter, ut, 10.

Pifrrata

Page 6 , line 7 th-for Isle IJant rad Isle Hant.
33, line id from the botom-for prevents read pie. sents.
64, line 12th-for aryde read oxide.
74, line 12lh-for underpriming read moderpinmins 162, line 16th-for bissinale read bipimate.

INIDEX

\qquad
Awinces,180, lins, 」1:
 18に
Agutlo, Moss, $212,25 \%$Nlimi,
1.i
Nimis Slate, 1.3
Ambinstor, Gi.
Albion Minkes, 1.12
Albili,216
Amellesst, $176,180,314,215,21!$
Smethšatine (2uatu, 182
Ammonites, -!
Ancollystine Sinter, Sij
Amystaloid, Di)
Amalcinse, 118, \%1, 102, J3*
Ammpolis, i)
Antaracite 16
Apphlyllite 196,217
Argentiferons (aileni, (9)
Arrigonite, 6.5, $10,2.17$
Arsenical Prwites, 112
Argillite, 16
Asbestus,
26
26
Augite, 118
Aylestord, 4.
Basall,
Batsalic: 'Trap, $172,17 \%$
Barytes, Suphate of -11
6.3
Batsin of Mines. $\therefore 7$
Black Pruch. $1!1!$
1Bomidon. 2111
Bos Oro $1 . i$
Brecria, 111, 1.
Brian I land. 1:
Carriboo Bog, 78
Cardimu L'longatum, 61
Calcareons Spar, $180,195,197,25$
Chalcedony, 175, 180, 183, 241
White $15: 3$
Carbonate of hron. 182
Carnelian, 2.11
Gamolian, Red. $18: 3$
Cape Split, 206
Cacholons 215, 200,948
Chatereminx 215,216
Cape Chisnecto, 930
Cape D'Or, 29:3
Cipe Sharp, 240
C'anhonate of Lime, 246
Caingerm, 30, $3 \cdot 1$
Chlorite, (3i), 17.1, 1!s
Chborite, biarthy, 33
Chorite Siate, 92
Chathasie, $174,178,255$
Chutes' Cove, 189
Clay Slate District, 94
Clare, 'lownship of 9.5
Chememes,
Clay" Iron-stone, 115
Copperas, 27
Coraline, 47
Cobahtic: Sulphuret of Lead, (i,
Cormu Ammonis: $!1$
Conal Formation 101
Origin of 10:
Fiedds of Nova Scotia, 107
of P'icton, 134
of Coslow, $13!$
o! 'Tamagomeh, 130
of River llebert, 1.30
of Spming Hill 1.15
of Somila Jorgins. 1.3
Coboquid Chain. 1117
Conglomerate, 1.11. 1.11
Copper Ore, 150
copper orr,

Copper, Pure Native,
(ircen Carbonate of . . . $192,2: 31$

Bhe Carhentate ol . . . 1339
Grey Ore of
139
Sulphores of
110
Red Oxide of 11
Colmmar Basalt, 139
Cimbertind, 17%
Darumouth, 15
Dighy Gut, .
Dighy Gut, 15.
Dighy Neck,
18.0
Dighy Neek, 175
Eastern Iron Ore Bed, . . . 59
Economy, .
Economy, Falls of . . 12.
Fills of
Fossil Shells of $\quad . \quad 124$
Encrinites, . . 121
Fialls, North River,

Fossil Shelis,
Vorophe
Vo

| Plants, | $80,115,110,100, ~$ | 28 |
| :--- | :--- | :--- | :--- |

of Cumberliand, $1.3,1.37$
Frestore, $141, \begin{aligned} & 1.77 \\ & 1.1 .1\end{aligned}$
Gates's Pier
Gianets, Munnesian, - $1!1$
(icological Divisious, i;i
Granite, i
Boublers, in : iz
Gheiss, . . . i, 36
Creywacke, AB, \%0, 61
Slate, . . 50, 5!, (i), 6.1
Grindstones,
154
Gireenstone
175
(armille, Noth shere of,
Gypinn,
Fibroms.
I
Halifis, 9
llall's Iharbour, $20 ;$
Hairstone, 254
Hematite, Red, 6.3
Ilematite, Brown, 6.3
Heliotrope, 190
Ileulambite, $19,197,205$
Red 247
Iforton, 46
Horton Bluff, 80
Hog-tooth Spar, 118
Hornstone, 150, 214
Haut, Isle, 229
Iron-stone, $12,11 \%$
Iron, Magnetic Oxide of, $18,28,17 . j$
Brown Oxide of, 256
Ore of Nictan, 36
Argillaceous Oxide of, 43
Spectuar Oxide of, 11~, 64, 178
Micaceons Oxide ol', 118
Sulphate of, 112
Sulphurct of, 27, 114, 182
Hydrate of, 90
Ochrey Red Oxide of, 45, 182
Brown Oxide of, 48
Peroxide of (6)
Introduction, 14
Sasper, 173, 176, 180, 21.1, 257
dasper, Red. 131
Jasper, Riband 214
Jet, 4.5, 139
Joggius, (i)
Lammonite, $1 i 7,195,197$
Leal, Suphued of i1, 90
Lignite: $1 \% 3,1.39,10 \%$
lime, Sulphate of -1
Linnestone: 'Tran inm $1:$
()d V., Mnam, 1.1

Liverpool,
Lomdondery, - 19
Long Island, - - - - - $\quad 120$
Limenbirg, - - - . - \quad - 171
Margarcts Bay,
Mahone Bay, - - - - - 16
Marl, - - - -
Manganese, Black Oxide of, - - 83,94
Macean, Grey Oxide of, - . . \quad (i3, 217
Martial's Cove, - - - - - 146
Mesotype, - - - - . 192
Mica Slate, - - - - \quad - 198, 216
Michaelite, - - - - - - 12, 41
Montague River, - - . - . - 255
Nepan River,
Needlestone,
Nictan, - . - - . 178,254
North West Arm, - - - - $\quad 30$
Oll

Ochre, Red, -
Ochre, Yellow, -
Ophe
$\begin{array}{lllll}\text { Ochre, Yellow, } \\ \text { Opal, }_{\text {pal }} & - & - & - & - \\ O_{0}\end{array}$
Opal, Semi, - - . . - $\quad 248$
Onslow, - - - 248
O$_{\text {vens, }}$ - - 129
Onyx Agate, - - \quad 201, 213,215
Partridge Island,
Paradise River, - - - - - - 242
Parrsborough,
Peter's Point
Peter's Point, . . - - 112, 113, 120
Pectinite, - . . - - 195
Pipe Clay, . - . - - - 61
Pictou, - . - - - 17
Plrenite - . - - - 59, 133
Primary District, - . . . 202
Primary Rorks, - - - 8
Porphyry,
$27,10,64,105$
Prefare, 5
Quant, 176, 180
Rock, 11
Amethystine, 182
Smoky, 20
Rawdon, 58
Ragged Recf, 153
Reddle, 72
River Hebert, 150
Rocking Stones, 9
Sambro, 16
Sandstone, Old Red, 48, 134
Sandstone District, 71
Salt Springs - $124,127,132,138,144,14 \%$
Selenite, - 74, sz
Schorl, - 35
Shelburne, 20
Shubenacadie Rircr, - 88
Siliceous Sinter, 240, 255
Spring Hill, $14:$
Stilbite, - 184, 201, 216, 238, 241 246
Stalactites, 135
Swan Crcek, 249
Talc, - 22
Tatmagouch, 1.30
Tellinite, 29
Terebratulite, 29
Tides, Violence of, 243
Trap, 211
Trap District, 169
Trilobite, 50
'Tremolite, 115
Turf, 147
Wilmot Spring, 78
Windsor, 81
Zeolites, 174, 190, 102

AGENTS

FOR THE FOREGOING WORK.

- ${ }^{3}$ -
J. Leander Starr, Joseph Howe, and Clement H. Belcher, Esquires,_Halifax: Charles E. Ratchford, Esq.-Parrsborough : Dr. Harding,-Windsor: W. B. Webster, M. D., and Henry B. Webstur, Esq.-Kentville: James R. Fitch, M. D.,-Wilmot: George S. Millidge, Esq.—Annapolis: Dr. Bent,—Digby : William H. Keating, Esq.- Yarmouth : James IR. DeWolfe, Esq.-Liverpool: John Creighton, Esq.-Lanenburg : James Morse, Robeıi M. G. Dickic, and Thomas Logan, Esquires,-Amherst : Henry G. Pineo, Esquire,Wallace: Joseph Chipman, Mi. D.-Pictou: Elisha DeW. Ratchford, and M. H. Perley, Esquires,-St. John, N. B. : William Crane, Esq.-Dorchester: Henry Allison, Esq.-Miramichi : Solomon Thayer, Esq.Eastport: Elisha DeWolfe, Jun., Esq.-Wolfville : Samuel Chipman, Esq.-Cornuallis : Silas H. Crane, Esq.—Economy : George Duncan, Esq.—Truro : Rev. Robert Blackwood,-Gay's River: Mr. Stamper-Londonderry: Doctor Dennison,-Newport: Mr. Avard,Sackville: Gibbs Gesner, Esq.-Cape Breton: Rev. Thomas H. Davis,—Guysborough : Samuel Willowby, Esquire,-New York.

[^0]:

