The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliograptrically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagée

\square
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manque

Coloured maps/
Car tes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Reliè avec d'autres documents
Tight bindirg may cause shadows or distortion
along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauratio. apparaissen! dans le texte, mais, lorsque cela ètait possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont inćiqués ci-dessous.Coloured pages/
Pages de couleurPages damaged/
Pages endommagéssPages restored and/or laminated/
Pag̣s restaurées et/ou pelliculées
\square
Pages siscoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachéesShowthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-tête provient:

Title page of issue/
Page de titre de la livraison

\square
Caption of issue/
Titre de départ de la livraison

\square
Masthead/
Génézique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

THE CANADIAN PHARMACEUTICAL FOURNAL.

VUL. IV. \qquad
ORIGINAL AND SELECTED PAPERS,

ON ELUID ĖXTRHCTS AND TEIERR MENSTRUA.

BY EDWARD R. SQUIBE, N. D.

Concluded.

The monstrua for fluid extracts need much revision and much researeh, for upon the menstruum a large part of tho therapentical as well as pharmacentical success depends. The writer has anly very imperfectly studied this branch of the subject, and yet too much time and space would be required to give an alistract of the observations made. He must th:ercfore $k=$ content with offering lus judgment as based on his experience.

The officinal "s alcohol," defined as "spirit of the specific gravity 0.830 ," seems to bo no longer nceded in the Plarmacopocia, its placo having been well taken by the common socalled "95 per cent. alcohol," or "alcohol dortius" of the Pharmacopoein. This might now be called in the lharmacopceia, as it is in tho narket, simply alculool. Since the last revision of the Pharmacoleia the Government has taken charge of the spmit market, and one result of legislation unon it, has been to reluce the strength of the market grades. Ten years ago it was casy to get the so-called " 95 per cent. alcohol" and "cologno spirit" from any good maker, containing 92 per cent., or of the officinal specific gravity 0.817. But of late years, in the writer's experience, this is always difficult and generally impossible. In a revice of some fifty barrels or more from several good makers, including "Atwood's Alculal," at various times within the past ye:r, and all bought to special order, and not in the general market, the specific grarity has only once reached. 817 , all the others rarying between .818 and .824 with an average of about .820 . A ten-gallon keg bought in the common market, of a first-rate house, and with the brand of a good maker on it, stamped by the United States Revenue Officer as containing "10 wine gallons," "Procf 188," contained 8 gallons and seven pints, yet gave no evidence of leakare, and had a specific gravity of $\mathbf{8 2 0 5 8}$. This probability fairly represents the mariet at the present day, and if so, 91 rather thion 92 per cent. should be amed at by the Elarmacopocia.

Some refurm in the mercantile management of alcohol is much needed and the influenco of this Asseciation might be used to bring this about at an carlicr day than it would naturally come through popuiar demand. When the so-called " 95 per cent. alcohol" sold for 40 to 45 cents per gallon, the "shortage" of half a gailon or a gallon on each barrel was of less moment than it is nuw with a price of \$2, or thereabouts; and the difference of temperature between sum-

[^0]mer and vinter, -or between $10^{\circ} \mathrm{C} .=50^{\circ} \mathrm{F}$, and $30^{\circ} \mathrm{C}=86^{\circ} \mathrm{F}$. of a fraction over 2 per cent. in the measuring, was also of less moment. Either through erroncous gauging, or through some slill in making barrels, or through both together, it is very rare to find a barrel of alcoliol that holds out measure even in summef temperatures, and the rule is that they fall short from half a gallon to one and a half gallons on the barrel, while of late years the writer never knew a barrel to overrun the gauge. And as the United States Inspector's certificate always certifies the gauge, the alcolol-maker throws himself upon this, and there is no redress. Besides this there can be nothing more clumsy, nor more difficult to comprehend in common usayc, than the plan of defining the strength by degrees above and below proof, and the quantity by proof gallons. If it was desirable to keep the consumers or users of alcohol so befogged that they could not detect deficiences in strength or mensure hardly a better plar could bo adopted, and the advisers or experts of the General Government, who are esponsible for the present methocould not have beticr sub-served the interests of the Whiskey Ring, or damaged the interests of the consumbr had they been paid for it.
The strength should always be indicated by a percentage of absolute alcohol by acight and not by volume, and this should be determined by apparent specific gravity.

It shonld alrays be bought and sold by weight, the barrels being tared, just as castor oil, linseed oil, cotton seed oil, d.c., are of late years.
Fire gallons alcohol, specific gravity .5202 at $15.6^{\circ} \mathrm{C}=60^{\circ} \mathrm{F}$, measured at $21^{\circ} \mathrm{C}=$ $69.8^{\circ} \mathrm{F}$., weighs 34 lbs . avcirdupois, or nearly 6 lbs. 13 oz . to the gallon. Thisalconol contains about 91 per cent. by weight of absulute alcohol.
The officinal alcohol furtius, specific gravity -S17, containing about 92 percent. of alcuhol by weight, if measured at $1 \overline{\mathrm{j}} .6^{\circ} \mathrm{C}=60^{\circ} \mathrm{F}$., weighs just about the same. So that about $5.4^{\circ} \mathrm{C}=9.8^{\circ} \mathrm{F}$. of temperature, is equal to 1 pur cont. in strength.
If bought and sold by weight, or by weight gallons, which would be the first step, temperature rould not lave to be taken inco consideration.
Alcohol of specific grarity $.8167^{4}$ at 15.6° $\mathrm{C},=60^{\circ} \mathrm{F}$. when weighed at $25^{\circ} \mathrm{C}=77^{\circ} \mathrm{F}$., has an apparent specific gravity of $.80876{ }^{\circ}$, and at $30.6^{\circ} \mathrm{C}=87 \mathrm{~F} . \mathrm{B}^{2} .80400$, or about .00085 for each Centigrade decrece of temperature By apparent specific gravity is meant that although the alcohol is weighed at the ligher temperiture given, it is compared with the same volume of water at the luwer temperature of $15.0^{\circ} \mathrm{C}=60^{\circ} \mathrm{F}$.

One pint of this alcohol, officinal "alcohol fortius,"
at $10.6^{\circ} \mathrm{C}=51^{\circ} \mathrm{F}$. weighs $357.72 \mathrm{gram} .=50 \$ 3 \mathrm{grs}$ nt $30.6^{\circ} \mathrm{C}=57^{\circ} \mathrm{F}$. $\quad 379.87^{\circ}{ }^{\circ}=5500^{\circ}$ "

$$
20^{\circ} \mathrm{C}=36^{\circ} \mathrm{F} \quad 7.85 \cdots=121
$$

Alcoltol of specific gravity . 82154 at 15.6° C. $=60^{\circ}$ F. when welghed at $25^{\circ} \mathrm{C} .=$ 77° F., has an apparent specific gravity of .81342 , and at $30.6^{\circ}=87^{\circ}$ F., 80889 , or

000843 for each Centigrade degree of tem perature. One pint of this alcohol, which is about the common commercial strength,
at $15.6^{\circ} \mathrm{C}=60^{\circ} \mathrm{V}$. werghs $398.05 \mathrm{gman}=5985 \mathrm{gm}$. at $25.6^{\circ} \mathrm{C}=73^{\circ} \mathrm{F}$. $354.15^{\circ}=5938{ }^{*}$

$$
10^{\circ} \mathrm{C}=15^{\circ} \mathrm{F} \quad 3.90 " 1=60
$$

The next alcolnolic menstruum which tho writer has fond necessary thus far, is a mixture of cqual parts, by weight, of stronger alcohol and water. This mixture rejects mueh more of the tronblesome mucilaginous portions of such drugs as dandelion than the dilited alcohol docs.

Fgual weights of alcohol specific gravity .81953 at $15.6^{\circ} \mathrm{C}=60^{\circ} \mathrm{F}$. and water, sive a mixture having a specific gravity
at $15.6^{\circ} \mathrm{C}=60^{\circ} \mathrm{F} . .325 .3 \mathrm{~S}$
at $25^{\circ}=77^{\circ} \mathrm{F}$. .92003. Difereace, . 000 S3 for
ca. $1^{\circ} \mathrm{C}$.

Ono pint of this mixture

at $10.6^{\circ} \mathrm{C}=51^{\circ} \mathrm{F}$. weighs 439.93 grau. $=6758 \mathrm{gms}$. at $30.0^{\circ} \mathrm{C}=59^{\circ} \mathrm{F}$. $\quad 433.03^{\circ} \because=6652^{\circ}{ }^{\circ}$

$$
20^{\circ} \mathrm{C}=36^{\circ} \mathrm{F} .
$$

$$
6.9 \quad 6=107
$$

Diluted alcohol, as at present oflicinal, consists of equal measures, at $60^{\circ} \mathrm{F}$., of aleohol of specific gravity .835 and distilled hater, and has a specific gravity

$$
\begin{aligned}
& \text { at } 35.6^{2} \mathrm{C}=60^{\circ} \text { 1. . } 1411 \mathrm{~S} . \\
& \text { at } 25.2^{\circ} \mathrm{C}=77^{\circ} \mathrm{F} .0343 \mathrm{~S} \text {. }
\end{aligned}
$$

This, when made fromalcoluls.o. 81674 at $10.0^{\circ} \mathrm{C}$. requir's 100 mensures of the alcoholat 15.6"e. to 11254 "" "dist. waterat $15.6^{\circ} \mathrm{C}$. or $100 \quad$ " "" " " $15.6^{\circ} \mathrm{C}$. require $S S .85 \quad$ "t "the alcohol at $15.0^{\circ} \mathrm{C}$.
Made by weight
100 parts of the alcohni require 230 s0distilicd mater, or 100 "1 listilien water is j2 03 alcohol.
:00 \quad " alculwl s.g. 835 at 110,51 distilled water, or 100 " distilled water a 8 si.tisicoliol, 835.
One pint of this diluted alcohol
at $10.6^{\circ} \mathrm{C} .=51^{\circ} \mathrm{F}$. weigls $446.30 \mathrm{gram} .=6557 \mathrm{grs}$. it $30.6^{\circ} \mathrm{C} .=37^{\circ}$. F. " 439.69 " $=6755^{\circ}$

$$
20^{\circ} \mathrm{C}=30^{\circ} \mathrm{F}, \quad 6.61 \quad 4=102
$$

Nrade with alcuhol, s.g. . 8203 at $15.6^{\circ} \mathrm{C}=60^{\circ}$ F., 100 parts alcohol require $13 \overline{0}$ paris distilled water, and the s. g. of the mixture at $15.6^{\circ} \mathrm{C}=60^{\circ} \mathrm{F}$. is 941849 .
at 25° C. $=77^{\circ}$ F. is 935422 or 009684 for each $1^{\circ} \mathrm{C}$.
One pint of this mixture
at $100^{\circ} \mathrm{C}=51^{\circ} \mathrm{F}$. reighs $446.50 \mathrm{grm} .=6890 \mathrm{grs}$. at $30.6^{\circ} \mathrm{C}=57^{\circ} \mathrm{F} . \quad * \quad 130.75 *=67 E G^{\circ}{ }^{\circ}$

$$
20^{\circ} \mathrm{C}=36 \mathrm{~F} \quad 6.75 "=104
$$

A mixture of three parts, by weight, of stronger alcohol, and whe part of giycerin, proves to be a very grod menstruum for cinchona and rhubarb, and may bo fuund applicable to other drugs.
Made with alcohol of s. 5 and glycerin 1.2023 at $15.6^{\circ} \mathrm{C}$ the mixture has an specific gravity at $15.6^{\circ} \mathrm{C} .=60^{\circ} \mathrm{F} .90050$
at 25° C. $=77^{\circ}$ F. . 69206 , or 000802 for each $1^{\circ} \mathrm{C}$.

One pint of this mixture

at $10.0^{\circ} \mathrm{C}-51^{\circ} \mathrm{F}$. wighs $127.00 \mathrm{gmm}=6.594 \mathrm{gm}$ at $20 \mathrm{C}=3 \mathrm{a}^{\circ} \mathrm{F}$.

The other special menstrunm thus far studied by the writer is one that has been found weil adapted to wild cherry bark, rareria brava, and uva ursi. This is a mixture of two parts stronger alcohol, three parts glycerin, and five parts water. By mensure this is very nearly two measures each of the alcohol and glyecrin, and four of water.

Make from alcolol of s. g. . 81053 at 15.6^{n} C., and glycerin s. g. 1.2523 at $10.0^{\circ} \mathrm{C}$., it lias a s. g.
at $15.6^{\circ} \mathrm{C}=60^{\circ} \mathrm{F} .1 .03833$,
at 25° C. $=77^{\circ}$ F. 1.03283, or acarly .0000 for ca. $1^{\circ} \mathrm{C}$.

One jint of this mixturo

at $10.6^{\circ} \mathrm{C}=60^{2} \mathrm{~F}$. weighs $192.03 \mathrm{gram} .=7593 \mathrm{grs}$. at $30.6^{\circ} \mathrm{C}=87^{\circ} \mathrm{N} . \quad{ }^{\circ} \quad 486.97{ }^{\circ} \quad=7514{ }^{\circ}$

$$
20^{\circ} \mathrm{C}=36 \mathrm{~F} \quad 5.06 "=79 \quad "
$$

It appears very probable that special menstrua for special drugs cam and should be very much multiplied. Indeed, it may be regarded as most certain that a proper degreo of research would show that every drug requires a special menstruum in order to secure the best results. If there be a rule of any general applicability, it is that for drugs which contain definte alkaloids, the menstrumm should be as strongly alcoholic as possible; a rule which is $2 n$ opposition to former practice.
Itremains now to notice the prominent fluid extracts with which the writer has had most experience, in detail.
fludd exthact of aconite reot.
Not officinal, but should be, and should always bear a red label. The root should be in very fine powder, and tho menstrum stronger alcohol. The officinal quantity of powder requires 5 fluid ounces for moistening, and the moistenins powder should be passed through a sievo for packing. A pint of tho menstrum at $25^{\circ} \mathrm{C} .=77^{\circ} \mathrm{F}$., weighs about 5907 grains, and a pint oi the finished preparation, at the same temperature, should weigh about 63 ja 0 grains, giving a difference of about 40 grains, varying somewhat with the quality of the root and the dryness of the powder.

FLOID EXTRACT OF BELLADONNA ROOT.

Not officinal, but should be, as stronger and more uniform than that yielded by the leaf. The two are not necessay, and if the lear was dropped, the root would soun go into gencral use. The finid extract should always beat a red label.

The root should be in very fine powder, and the menstrum stronger alcohol.

FLLID ESTRACT OF BUCIL, OFFICINAL.
The leaf should bo green and fresh, tho short buchu the best, and bo in vory finc powder. Many menstrua tried, with various portions of glycerin and water, but none so good as stronger alcohol. About $8 \mathrm{f} \overline{\mathrm{j}}$ required to moisten the powder, which should be passed through a seive before packing. A pint of the menstruum weighs about 5907 grains, and a pint of the finished preparation nbout 6077 graius, giving a differelice of about 770 grains.
fluid extract of cimicifuan, officinal.
The root being in rery fine porder, the officinal plan yields an excellont preparation by repercolation. The process could, howovor, be much simplified.
fluid extract of cinchona, officinal.
The bark should be in very fine porvder, tho menstrumm one part gly cerin and three parts alcohol, and 8 f 3 should bo used to monsten tho powder beforo sifting. Mrany menstrua were tried with this drng. but none secmed to answer so woh as tho mixture indicated. With it a fluid extract was prepared of which a minim represented about. one and a half grains, and this has now stood more than four months without a doposit. Therefure, a preparation of one minim to the grain, or double the present officinal strength, would probably stiand indefinitely, and this chango of strength is, in the writer's judguent, very desirable. The details of this percolation werogiven in tho Tables. In the management of this drug the weak percolates become overluaded with extract from time to time, bui the alcohol can easily bo recovered from them without much damage, as the glycerin takes care of the alkaloids and bitter principles.
'ihe writer has found no demand for fluid extract of colelicum root, and believes it to be a useless preparation, while that of the seed is so commonly used, and a more uniform preparation.
fluid extract of conium seed, not orficinal.
But should be. Ono hundred pounds of green unripe fruit or seed, yield about thirtytive pounds of dried unripe fruit, which when properly dried retain their green color. The best fluid extract of this very tender and sensitice drug, is made by crushing the fresh unripe seed with is simall proportion of stronger alcohol slightly acidulated with hydrochloric acid and pressing out the liguid by a powerful press, and evaporating, without heat, by inclosing it over lime, until three pounds of the fresh unripe fruit is represented by one pint of the preparation.
An excellent preparation may also be made from the dried unripe fruit in fine powder, by repercolation with stronger alcolol silghtly aciduleted with hydrochlorle acid.
flutd exthact of ergot, officinal.
Ergot cannot be obtained in fine powder without material injury. It should be hal in as ine a powder as practicable without drying, and this grinding should be done at the time when it is to be percolated. Skilfully repercolated with diluted alcohol acidulated with one per cent. of acetic acid, the preparation appears unexcrptionable. A pint of the menstrum, at $25^{\circ} \mathrm{C}=7 \mathrm{~T}^{\circ} \mathrm{F}$., weighs about 68.4 grains, and a pint of the finished preparation weighs about 7224 grains, giving a difference of about 400 grains.
fluid extract of ipecaclanha, officinal.
This preparntion is very much in need of special study and rescarch, the present fornula being trunblesume and uncertain in regard to the precipitation of the resin, and yielding a preparation not uniform in appearance and properties.
fluid bitract of pardira brava, not orficifal.
But should be. This drug from its density is a refractory substanco to percolate. It should be in tho finest possible powder and be percolated very slowly with the mixture of alcohul, glycerin, and water.
fluid extract of wild chehry bark, officinal.
This is, perhaps, tho most troublesome of the oflicinal formulas, and requires more
knowledge and skill than repercolation does. If the menstruum bo watery onough, and contain but littlo alcohol, the reaction between the constituents of the bark for the production of hydrocyanic acid and oil of bittor nlmonds takes placo during tho macoration, and thus sares the circuitons route by omulsion of alnonds. The mixturs of a!colhol, glycerin, and water is woll adapted to this porcolation, and yiolds a proparation having much mors of the sensible propertios of the drug than the officinal process. It should also bo made duublo the prosent otticinal strength.
A pint of the menstruum weighs about 7040 grains at mean tom 1 ratures, and a pint of the preparation of full strength about 8290 grains, giving a differenco of about $7 \overline{0} 0$ grains. Or, for the prosent officinal halfstrength, tho weight of a pint would bo about 7915 grains, with a difference of about 370 grains.
The hydrocyanic acid and oil of bittor almonds of this preparation seem to suffer spontancous decomposition, as the proportion, always very small, appears to diminish somewhat rapidly. As the physician often needs these sedative constituents, they should be added at the tine of prescribing.

fluid exthact of mabiarb, ofeictinal.

The rhubarb should be in very fine powder, and be reporcolated with the mixture of one part glycerin and threo parts stronger alcohol. Many menstrua were tried with this drug, but none seemed to do so well as that indicated. A pint of tho menstrunm weighed about 6828 grains, and a pint of tho finished preparation nbout 7328 grains, giving a difference of about 500 graing.
flutd extract of samsaparilla, and comyound flud extract of sarsaramilla, both officinal.
Should be in fine powder, and be repercolated with diluted alcohol, and glycerin added to the weak residuary percolato in such amount is to constitute one-fourth the weight of tho finished preparation. This should then bo reduced to the proper extent by distillation, and tho glycerin residue bo added to the strong percolate.
The mezereen of the compound fluid extract is often complained of, and probably might be omitted rithout injury.

fluid extract of sensa, offilinal.

This preparation, mado by tho officinal prosess, is often complained of for want of purgative strength. In order to try the effect of stronger alcohol as a menstruum for senma, a portion was completely exhausted by the use of 18 pints of the alcohol. The residue was dricd, and when taken by the writer in doses of 180 to 200 grains, proved purgative, and produced griping. Other portions mere exhausted by weaker alcohul, and the residuo tried in the same way, but the purgative power did not disappear entirely until tho alcohol was reduced by the addition of half its volume of water. It appeara, therefore, that the officinal diluted alcohol, as now used, or that which is a littlo stronger, as made by mixing equal weights of stronger alcohol and water, aro one or tho other proper for the repercolation of senna. The diluted alcohol has been tried and does well, but whether the other would be better las not been tried. The addition of glycerin, oven in small proportion, overloads the proparation with mucilaginous oxtractive matter.

FLUID EXTMACT OF D.ANIELIUN, OFPICINAL.
Tho German bitter root is much preferred by the writer, and it should bo in very fine powder. The oflicinal diluted alcohol, as now directed, dissolves an unnecessary proportion of tho mucilaginous ingredients of the drug, and clogs the percolation. A mixture of equal weights of stionger alcohol and water ansivers better, and yiolds a good preparation.
feluid extract of uva unsi, officinal.
Should be simply repercolated in very fine powder by the mixture of alcohol, glycerin, and water. This menstrum scems woll adapted to this drug.

Fluid extilact of valemian, officisal.
Various mixtures of glycerin were tried for percolating this drus, but withont success, nothing answering so well as stronger alcohol. English valerian yields a meparation of mifder taste, and finer and more delicate odor. But the German or French drug, which gives a peppery impression to the tongue, is donitless the moro efiectual medicimal atgent.
fluid extract of american mellemohe, orficinat.
This should be repercolated in very fino powder with stronger alcohol, and should always bear a red label.
fluid exthact of anger, officinal.
This should be made from African ginger in very fine powder, and not from Jamaica ginger: The latter has a finer aronatic favor, but the former is the stionger carminative. The menstrum should be stromfer alcohol.
The dificulty and labor in making good fluid extracts has recently led to a proposition, chiofly aidocated among the pharmatcists of Chicago, to reduce the strength of these preparations by one-half, or to the present strength of the fluid eatracts of cinchon: and wild cherry bark. Although there are some good reasons for this proposition, yet in the writer's opinion it would not be a wise change. The popularity of these medicines, as a class, depends largely upon the convenience which they offer to country physicians of carrying their jemedics in small compass, and in a convenient form ; and to give this and many other advantages up at this lato day, after many of che dificulties and deficiencies have been discovered and remedied, would be to sacrifice much uscful labor with the recognized adrantages. Besides, one of the most useful of the directions in which progress in pharmacy is recomized, is in the concentration and condensation of medicinal agents.

One direction in which several of the fluid extracts night be improred, is by the addition of corrigents. Fluid exiracts of cinchona and senna should have aromatics in full proportion added, and there should be a, fluid extract of May-apple with belladonna or hyoscyamus, and aromatics.

THE CRYSTAYLIRATION OF CAMPHOR.

BY R. ROTHER.
The peculiar predilection of camphor for the crystallino form, is one of tho potty annoyances inherent to the dispensing department. Insignificant as the objection may seem, it is nevertheless one for which the

[^1]dispensing pharmacoutist is but too willing to accept a remedy. This dificulty is chietly experienced with powdered canphor, but the objection, likewise, though in a less obvions degree, applies to the aqueous solution. Tho most perfect means of pulverizing canphor, although not the pacticable, is madobitedly tho method by precipitation. The trituration with small quantities of chloroform, cther, benzine, and naphtha has been proposed; but nono of these substances possess any advantages over alcohol, which even still is preferable to all. There is no difliculty whatever in pulvarizing camphor; the object is to rutain it so.

For this purpose it has been suggesteci to iriturate the camphor with small gquantities of magresiom carbomate. If this management insured tho pulvernlent state indefinitely, the magnesimm would often be objectionable. The writer has not iested the process, but was informed by good anthority that it is not salisfactory ; similar result is experienced by precij, itating the canphor with water from an alcoholic solution, holding the matrnesimn carbonate in suspension. Other dry substances, as stareh, for instance, have been used with eqaially indifferent success. The writer, feeling the necessity of some altermative, and basing his theory of this crystallization upon the volatility of camphor; applied in etheral solution of resin with a view of coating the particles with a deposit of resin. The experiment, however, yielded a nesative result. The writer, assuming then that a nonvolatile solvent might retard the crystallization, employed a small proportion of fixed oil-preferably castor oil. 'Jhis addition is entirely unobjectionable, and although it does not strictly meet the most sanguine expectation of preventmur erystallization, it yet modifies this tendency to such a degree that after a long trial the writer is so thoroughly satisfied with its peculiar advantages that the complete snccess of the experiment would have been scarcely hailed with mure delight. The proportion of castor oil employed is about one part in thirty of camphor, or oven less. It is added, togethes with the alcohol, to the camphoi, and the whole triturated to the proper degree of fincness. The great advantage rests in the fact that the crystals of camphor subsegneminy formed are excedingly minute, and the oil entirely removes the very disagreeable adhesiveness and tenacity of the camphur, whach becomes so troublesome during the trituration of pure camphor. Campior containing the oil can be triturated in lare or small quantities, witholit in the least clogging the mortar or pestle. The powder, after kecping even a long time. mixes perfectly and with facility with all the ordinary ingredients with which it is usually combined in prescriptions. The peculiar gumuiness has been perfectly removed by the intervention of the onl.
Tho acyucous sulution of eamphor as another point at issuc. It has been supposed that during cold weather camphor witer drops parts of its camphor. However, this phenonenon is only spparent. The witer has often been struck by the extraordimary solvent power of very cold water upon camphor, so that furing tho coldest winter wenther the cold water drawn fresh from the hydrant, and having is very low tenperature, always yielded the strongest camphor water, which, when subjected to the warm temperature of the room, deposited camphor aluundantly and in weighable quantities, not
in beautiful crystals in the lipuid itself; so much so that the water was often filtered again before uso.

To verify the above anclusion, the writer employed latewarn water. Tho camphor was first fincly triturated with tho aid of alcoluol, then with tho magnesium carbomate, first rubbed through a coarse sieve, then with a portion of the water, and poured into a capacions buttle; the remainder of the water was then gradnally added, and tho mixture viulently shaken during tho intervals, and linally filtered. (This is essentially the writer'smanipulationfor the aromatic waters.) Tho bottle containing the filtrate was securely corked and allowed to cool. After six hours a very thin than of crystalline camphor had deposited on the walis of the bottlo above the liquid, tho latter containing no visiblo trace, not even floatins upon the surface. The lipuid was astian filtered amd exposed to intense foold for a long time, but no more camphor separated, although the licquid possessed the taste of cemphor in a marked desre. Therefore, to make camphor water, free from separated camphor, usc lukewarm water, or uso water of the ordinary temperature, let it become equalized to the temperature of the room, and after a repose of twenty-four hours, filter. But to make a supersaturated camphor water, empluy water having a very low temperature.

SYRUP OF PEYOSPTATE OE MRON AND OTHER SYRUPS CONTAINING PiOSPFORIC ACXD.'

iv michall carteighe.

Of the numerous preparations of iron at the disposal of the plactitioner few have in late years acquired move fawor than the syrup of phosphate. First introdaced to tho notice of the profession by Mr. Greenish in a form mure or less unayue, it was not until about ten y cars ago that it came ia:to very general use. Abonat this time Gale and Schweitzer cach read a papper at one of the evening mectings of the Plarmaceutical Suciety; detailing processes fur the preparation of this syrup in at orm which should remain periectly bright and freo from deposit. Gale's frocess was introdaced into the 13ritish Pharmacopouia of 1867, and since tho publication of that volume the demand for this medicine has viastly increased. Its tendency to darken in color aiter having been kept for some time was soon nuticed, and Umney made somo experiments with tho view of preventing or retarding this change, but the results "ere not practionlly satisfactory. T. B. Groves aiterwards examined a very old specimen in his possession, and determined the chemical composition of tho precipitate, which is furned on long standing. Ge describes this precipitate as bemg essentially a compoumd of iron rith phosphoric acid, corresponding to the octocalcic phosphate of Wasington. The dark color ho thinks due to the production of caramel by the action of tho phosphoric acid and iron salt upon the sigar. He also prepared several specimens with a stronger acid, made by himsclf from amorphous phosphorus, and foumd that these kept somerwhat better than when made according to the B. P.

The necessity of keeping tho syrup recently propared induced me to try a few experi ments with a stronger acid, and to advise a

[^2]Ghorter process than that of the B. P. Whis has doubtless already suggested itself to, and been practically tested by, other chemists, hut, so far as I am aware, it has not hitherto been published. It is as follows :-
sthup of phosphate of mon.
Phosphate of Tron.................... 00 grs.
Water
9 il. drms.
Syruny Phosphoric Acid, sp. gr:
© $1 \cdot 500$............................... 7 f. drms.
Surup 10 fl. oz.
Rub tho phosphate of iron with tho water in a glass mortar, add the phosphoric acid and filter the mixturo into syrup.
As thus prepared, it containg tho same proportion of iron, about 2 minims less of tho dilute acid (25 instead of 27), and rather more sugar than when prepared according to the Pharmacopoia.
Tho phosphate of iron is made by the \mathbf{B}. P. process, and dried at a temperature not exceeding $100^{\circ} \mathrm{F}$. The specimens I have found in the ordinary course of trade aro not readily soluble in the acid. This want of solubility is, I believe due to the length of time they have been kept before sale.
I have obtained the best results with phosphate only a few days old, and find it advantageous to make as much as is required froquently.
Syrupy phosphoric acid of s1]. gr. 1,500 may now be oltained of any manufacturing chemist, and according to Dr. Watt's table, contains about 50 rer cent. of $\mathrm{P}_{2} \mathrm{Os}_{5}$ It is made by the action of nitric acid on phosphorus, the excess oi acid being driven off in a platinum vessel.

Manganeso is sometimes prescribed with or without iron, and according to Pereira, the former is a useful adjunct to ferruginous preparations, and occasionally a desirable substitute for them.
syrup of phosphate of manoanese
May be prepared in a similar manner with the following ingredients :-
Phosphato of Mangancse............ 90 grs.
Water...
9 fl. drms.
Syrupy Phosplioric Acid, sp. gr.
1-000.
Syrup.
if fle drms.
Strength-1 grain phosphate of manganese and acid equal to about $2 \bar{o}$ minims of the dilute phosphoric acid in each fluid drachm.

The phosphate of mangancse is mado in the same manner as the phosphate of iron, substituting sulphate of manganese for the ferrous sulphate.
byiug of phosphate of mon witi ghanoanesk.
Phosplate of Iron..................... 06 grs.
Phosphate of Manganese........... 48 grs.
Water..................................... 8 H. drms.
Syrupy Phosphoric Acid................ 8 f. drms
Syrup................................... 10 fl . oz.
Rub tho powders with the water, and the acid and filter into the syrup.
Each fluid drachm contains 3 grain phosphate of iron, $\frac{1}{2}$ grain phosphate manganese and acid equal to about 30 minims of the dilute phoshoric acid, 13. P.
The tendency of modern practitioners of medicine to encourage the cxhibition of substances which may nssist in the formation of bone, cte., has led to the introduction of
symup of phosinate of iron amd hime. Take of Phosphate of Yron........ 96 grs.

Phosphate of Limo........ 192 grs.
Water... 8 il. dıms
Syrupy Phosphoric Acid, sp. 世r. 1•500.............. 8 "s,
Syrup......................... 10 fl. oz.
Mix the powders with tho water ia a glass mortar, add the acid and filter into tho syrup.
Each fluid chachm contains 1 grain of phosphate of iron, 2 grains of phosyhate of lime, and an amount of acial cognat to about 30 minims of the dilate indesphuric acid, B. P.
The phosphate of lime is made by precipitation from sohations of chtonido of calcium and phusphnte of suda, and dijed at $100^{\circ} \mathrm{F}$., and should not bo kept too long before use. That mado from bone ash, as the Pharmacopaia directs, is mach less readily soluble.
Iho following fu:amila maty bo useful as an appeadix:
syhul of yhosphate of zinc.
Phosphate of Zinc.................... 192 ars.
Water..
11 il. drms. Syrupy Phosphoric Achi, zpl. gr.

1:000................................. 5 f1. drms. Syrup 10 fl. oz.
Rub the phosphate with the water, add the acid and filter into the syrup.
Each fluid drachan contains 2 grains of zine phosphate, and about 18 minims of dilute phosphoric acile.
symup of rhasizisutz of quinine.
Tale of Phosphate of Quinia*... 90 grs.
Water.......................
SyrupyPhosphouic.eid,

Nix the acid withe the wator, ndd the quinin, and filter into the syrup.
Each thid drachm contains 1 grain of phosphate of quininc, and acid equal to about 10 minims of the dilute phosphoric acid.
syRup of hiospinite of han with quinine. Take of Phosph:ite of Tron 192 grs.

Phosphate of Quinii*... 96 grs.
Water.................... 7 fic drms.
Syrupy PhosiphoricAcid
sp. g. 1-503.
9 fl. drms.
Syrup...................... 10 f. oz.
Rulb the powders with the water, add the acid and fiter into the syrup.
Dech fluid draclm contains 2 grains of phosphate of aroa atad 1 grain of phosijhate of quinine.
sybup of phosprate of iron, quxinel and sthyenvise. Easta:'s Syrup,
Take of Phosphate of Iron........... 192 grs.
lhosphate of Quinia**...... 96 grs.
Strychni, (ini crystuls)...... 3 grs.
Water:....................... 7 Il drs
Syrup Phosphoric Acid, sp.
gr. 1,500................... 9 fidrs.
Syrup............................... 10 \& oz.
Rub the phosphate of iron with 5 drachms of
the water in a gliss mortar, dissolve the strychnia and quinia in the acid, previously mixed with the remaining 2 drachms of water; mix and filter into the symup.
Each fluid drachm contains 2 grains of phosphate of iron, 1 grain of phosphate of quinine and 1-32nd of a grain of strychnine.

[^3]
SYMUP OF PHOSPLATE OF IRON AND

 staychalix.May be prepared in tho samo manner as tho last, omitting the phosphate of quinine.
I inn conscions of the oljections that may be urged against the prescribing of theso compound proparations, but in the face of the constant and increasing demand for many, it appears to me futile to attempt to discourago them by declining to publish formule. Such a course tends to perplex both the medical profession and pharmacist3, and to tho iutroduction of quasi-secrot romedics of unknown, and, possibly, of uncertain strongth.

FERRATED ELIXIR OZ CINCHONA.

BY JOHS M. M.IINCH.
A correspondent requests us to publish a good formula for this clixir. The first one published is that of Mr. James 7. Shimn. \dagger Another one, differing sumewhat from the former, was commmicated to this journal by Mr. Wm. C Bakes. \ddagger At our request, Mr. Wm. McIntyre, of this city, has furnished us with the following formula for elixir of calisnya with pyrophosphate of iron, in which calisaya bark is employed:
Take of Calisiya,ziv.
Sweet Orange Pcel, recently dried...亏iii.
Coriander, ...5vi.
Ceỳlon Cimamon, ...
Cardamon,
Anise, us,... 3 ij.
Prepared theso for percolation, and displace with a mixture of one quart stronger alcohol and three quarts water.
To this tincture adid

Agitate this mixture with moist freshly precipitated hydrated sesquioxido of iron (well washed), prepared from an aqueus solution of the sesquichloride, for three or four days, or until a portion filtered of ghows no reaction with the tincture of chloride of iron. Filter, and cissolve in it, without heat, tro and a half pounds (av.) sugar. Add 1024 grs. pyrophosphate of iron, previously dissolved in a small portion of water, and make up the measuro cf one gallon, if necessury, by the addition of wator. If a more reddish color is wanted, use a fow grains of soluble citrate of iron.
The elixir thus prepared will keep well in color, and has a rescmblance to the articlo extensively advertised under the same name.
If the cinchona bark contains 3 per ct. of alkaloids, and supposing the bark to bo entirely exhausted, one gallon of elixir prepared according to the above formula would contain about 60 grains of alkaloids, or nearly half a grain to the fluidounce. Cincliona bark, however, cannot be completely exhauisted by weak alcohol, § and after the treatment of the resulting tincture with hydrated sesquioxide of iron. the natural combination of the cinchons alkaloids is broken up, and nothing of medicinal valne is retained by the liquid except the alkaloids.|| Tho aromatics used in most of the formulas I believe add conparatively little to tho meti. cinal virtues of this preparation, which has, ostensibly, to unite the tonic properties of

From the Atuctican Journal of Fharmacy.

+ Ann. Jour. Mh. 1801 , 153. Ibld. $1861,304$.

cinchona and iron. Theso considerations induced me to takeadvantage of the cxcellent combination of aromatice with calisaya bark, which was suggested by Dr Squibb, * and has met with great favor by the medical corps of the U. S. Army. Accordingly, I have dispenmed for the last five years a ferrated elixir of calisaya mado by the following formula, and manipulated as follows:

1. Triturate magnes. carbon. Zgs, first with the following volatile oils: Ol, aurantii $m \times x$, ol. anisi $m \times v$, ol. coriandri and cinnam. aa $m 10$, ol. carui m; then, with a mixturo of 2oz. alcohol and 14 oz. water, throw upon a filter and wash with water until tho filtrato measures $3 \frac{1}{2}$ pints.
2. Mix tinct. ©ardnm. (simpl.) f弓ij, tinct. ringib, and calami aa fzi, alcohol Oj_{j}, and add syrup, sinnpl. 0 j .
3. Dissolve uubleached quinia 3 iss, with acid. citr. Jijas, in alcoh. dilut. fziv.
4. 1)issolvo ferri pyrophosph. 3 xx , in aq. ferv. fơviij.
Add solution No. 3 to No 2; then add No. 4, then No. 1, and finally add $1 \frac{1}{2}$ pint simple syrup and $\frac{1}{2}$ pint alcohol. The whole measures $8 \frac{1}{2}$ pints, and may be colored by caramel to suit; each fluid ounce contains about $0 \frac{1}{2}$ gra. pyrophosphato, $3 \cdot 5$ the gr. alkaloids, and 1 gr. each of ginger, calamus and cardamom. It has a very pleasant, warm, aromatic, but, at the same time, a decidedly bitter; taste. The unhleached quinia may be prepared from the infusion of calisays bark, made with acidulated water, by presipitating with ant alkali. I have come into possession of a chinoidin containing a large spercentage of quinia and quinidia, which has been used with advantage.
The two formulas published above reprewent the two viows held by our pharmacists, namely, that sinchona bark, as auch, and the isolared alkaloids alone should be combined with salts of iron.

Vinoont'n Procens of Proparing Linseed Oill. 1

Various methods haye from time to time been adopted to accelerate and increnso the natural siccative action and properties of linseod oil.

This is generally accomplished by boiling the oil ; but a mothod of preparing it in a cold state has lonct been known and practised. It consints in agitating the oil, to which a small quantity of litharge has been added, with a solution of vinegar of lead (tribasic acetate) in soft water. This operation is carried on in a warm place with frequent atirrings, till a.whitish precipitate is thrown down, and the oil is of a pale straw color. By a process of filtration and exposure to the sunlight it may be obtained almost as clear as water. This is the vehiole used for the pigments used by decorators and painters in the finer descriptions of work, and where the purity of the tints is a matter of inportance, althoughi it does not dry quite so rapidly as the boiled oil. [This vehicie has not met Fith the favor in Americi which, as we are led to nuppose by tho paragraph, it receivea in England.]-Eps. Scit. Ax.
The proces, by which the ordinary darkcolored vehimle used by painters in cominon Frork is proatuced, consists in boiling the raw linyeed oil with a larger or smaller propor-

[^4]tion of lithargo, which, by some chemical action not thoroughly understool, increases the drying proporties of the oil. Magnesia and the oxides of zine and manganese have also been omployed for the purposo, but oxide, or somo other salt of lead, is in more general use, with the addition, in some cases, of a small quantity of resin.
According to Liobig, the mucilage and vegetable albumen in the how oil prevent or impair its natuml siccative action, and the boiling with litharge in some way revoves these substances, and permits tho oil to more readily absorb oxygen from the air. MI. Chovreul, however, expressed an opinion some years ago, that it was not necessary to boil the oil at all; that a temperature far below boiling point (about 600° Fah.) had an equally good effect, and that in fuct it was possible to boil tho oil too much.
Of late years, a method of preparing tho raw oil by cmploying steam has been ndopted on the Continet and by some English makers, in which the temperature is rarely raised above 228° Fah. An account of this process, as discovered and worked by himself, was recently given beforo tho Sosiety of Arts, by Ir. Vincent. Tho process destroys the pungent odors and intensely disagreeable smells
of the older process. The apparatus used consists of a pan, constructed preferably of copper, with a depth about equal to the diameter, and with an iron jacket, for the lower half, forming a space for the steam, and capable of standing a pressure of 40 pounds to the inch. To the tup of the pan a dome provided with a man-hole is rivoted, and proceeding from this dome is a pipe to convey the vapors into the ash pit, and consequentig through the fire. In the centre of the dome is a stuffing box, throug! whel two shafts, the one working inside the other, are passed. These shafts bear fans, which, rotating in opposite directions within the pan, by the violent agitation set up, cause a complete mixture of its contents. The oil to bo boiled is placed in a largo tank, through which passes a coil of pipo conveying tho Waste steam from the jacket, thus raising the temperature of the oil to about 95° Fiah., and facilitating the separation of mucilage and accidental impuritics beforo tho boiling oporation is commenced. When the previous charge has been run off, about two tons of oil are pumped into the pan from the tank, the steam turned on, and the fans started, When the pressuro of the ste:m has reached 35 pounds, air is forced into the alrcady agitated and churning liquid through an inch pipe fixed in the bottom of the pan. The dryers, about threc-quarters of a pound to the cirt. of oil, are ndded as soon as the oil is heated through, boing ground to a fine powder, mixed with oil, and passcd through a funnel and stop cock into tho pan. Aiter the introduction of the drycrs, it is ouly necessary to kecp the fans and tho air pump at work; and at the expiration of about four hours the oil is fit for removin: into tanks, where it remains till the dryers hare settled, and the clear oil is then dravas off into the vessels used for storing. In practice, Mir. Vincent says it is advisablo to add about 20 per cent. of raw oil to each barrel of the prepared liquid intended for exportation.
No iniormation as to the name of the dryers employed is given in the paper. They part with some of their oxygen to the onl, and, coming in coutact with tho oxyge:2 of the air forced into the pan, become re-oxidized, and again contribute oxygon to the
heated oil. Tho accomplishment of this reoxidization of the dryers necessitated tho omployment of hlowing engines for tho boiling oil, when tho discovery, that umeder this treatment the oil rapidly nequired body, give riso to the method of treating it wo havo described above, a process by which the absorptive powers of the oil for oxygen aro enormously increased and pormanently retained.
What these dryors really are remaias a trade secret; but many years ayo, Faraday singgested the employnent of binoxide of manmanese in order to hasten tho drying of printing inks, while it has been asserted that a small quantity of borato of mingameso is sufficient to canse any of tho drying oils with which it is mixed to mpidly dessicato. Hitherto it has been a common belief anong manufacturers that oils would not show their impurities until a temperature of some 500° was reached ; but if the articlo prepared by Mr. Vincent's process be as good ns that moduced by the old method, there can bo no doubt that ia great step in the right direction has been taken, and tho disasreeable odors, with the unavoidable danger from fire, those usual attendants on oil and vamish works, should rapidly become things of the past.
[This process was patented in America nbout two years since. There is no secret here aboat the dryer used; it is simply red lend. The oil produced by the process does not dry well, but remains tacky for a considerable period. Experts inform us that it is an inferios article. There seens to be, howerer, room for improvement upn tho process, and in the hands of those compotent to experiment with it, it might develop into something of greater imporance then it appears to be al present.-Eus. Sor. Ans.

Caltivation of Cinchona in Coylon.

The British Medical ,Juurnal has learned from reliable sources that Ceylon gives fair promise to take rank at no very clistant timo as one of the chief quinine-producing conntries in the world. Although the cinchona plant has heen for many yeass cultivated in the colony, it was not until quite recently believed that the bark afforded an appreciablo proportion of quinine, but only cinchonine or other of the less raluable medicinal alkaloids, and consequently little attention was bestowed on its cultivation. It appears, howover, that a sample of some bark recently sent to this country for analysis was found to contain a large quantity of the sulphate of quinine. A pound of this bark contained of sulphate of guinine 289 grains, of quinidine 47 grains. and of alkaline cinchonine 14 grains. An ounce of sulphate oi quinino was thus obtained from one pound eight ounces and a quarter. As the supply from Pemi has greatly diminished, and as India, it is said, comsumes its own quinine, there is every reason to believe that tho cultivation of cinchons? will secure some of that attention from cultivators in Ceylon which has hitherto been almost exclusively besteswed on the growth of the coffec-plamt. As another causo which may give some impetus to the cultivation of cinciona in Ceylon, it is stated tinat the red bark is highly praised in Paris for tooth-powders, $2 s$ it gives them a delicato tinge, and at the same time a bitter flapour.

EDITORIAL,

Subscriptions will not be acknowledged by letter, nas cur sending the paper may be tahen as sullicient cvidence of the receipt of the money. All communicntions comnected with the pipur to be addressel, post-paid.
"Editon Cayadian P'mamachetical Joumal 'lonowro."

Owisa to an unusual press of work in the office in which this paper is printed, the present issue has been delayed several days beyoud the usual time.

REGISTRATION.

We would remind those of our readers who have not yot sent in thoir names to the Registrar, and who intend to continue business after the first of July next, that registration must be effected before that date. Neglect in this particular is punishable by the imposition of a fine of twenty dollars. As the mero application for registration, if made after July 1st, would be an open avowal of the law having being broken, the Registrar could not honestly receive such.
Those persons who were in business at the time of the passing of the Act, but who have sinco discuntinued, and those who were in business for a period of ihree years, previous to the passing of the Act, and who may nut, in July next, be so engaged; and those assistants who lanve served in that capacity for the prescribed poriod, may effect registration at any future period, provided the evidence of such qualification is presented to the Registrar.
By reference to the minutes of the last mecting of the Society, it will be seen that a resolution was passed by that borly, declaring themselves lawfully constituted a part of the Collego of Pharmacy mentioned in the Act. The question arose whether registration could be effected by members of the Society, without any other evidence boing given as to qualification. The Registrar, being present, gave assurances to the mecting that no other evidence than that furnished by the roll of membership of the Society would be required. Members of tho Society will therefore be accepted by merely sending in the fee of four dollars.
Although we do not think that it was the intention of the framers of the Act that two separate organizations should be created, yet, somehow or other-perhaps through the amendments mado by the Parliamentary committce-this is the fact. Wo have, first, the members of the Ontario College of Pharmacy; and then those persons entered on the roll of "Pharmaccutical Chemists." It has been thought that members of one body are entitled to the privileges of the other, and rice versa. This is hoverer not the case. Mrembers of the Collego are entitled to all
the advantages which may be derived from such association, and withent further fee, enjoy the rights of pharmacentical chemists to conduct business and to deal in poisons; while those cutcred as pharmacertical chemists can carry on business, but if thoy desire membership with the Collego, must pay m additional twe of four dollas before they can bo admitted. It will be well fur those making application to bear this in mind.

A Furexd calls attention to the fact that medical men are getting into the habit of expressing the hydrate of chloral by the contraction hyd. chlor. This is an error which should be at once corrected, as the sign belongs, by long established usage, to the chloride of moreury, and, with carcless drugasists, might leal to the substitation of uno article for the other ; indeed, nothing but the difference of the dose would indicate which was required. The word chlore? is equally short, and is free facm o',jection.

Patrid Wator.

An American cachange says that water may be preserved in a perfectly sweet condition by putting therein a few scraps of wrought iron, or somo clean iron tarnings. For keeping cistern water sweet, the turmings should bo enclosed in a bag, so that detached rast may not find its way to the laundry. The oflensive smell from the water n which thowers are kept may bo prevented by dropping a fow tacks or nails in the vase3. An application in pharmacy is suggested by the fact that leeches may be kept for a length of time in the same water if a fow pieces of iron aro placed in the vessel. Our cotemporary accounts for this preservative action by saying that water in which thero is no oxygen, or air, cannot become putrid, atid that the iron, in its convertion to oxide, acts as a consumer of oxjgen.

Rather Curions.

In the Journal of Eltecation we notice an item extracted from the Boston Juurnal of Chemistry, in which Dr. Nichols asserts that "the human body contains phosphorus enough for four hundred ordinary two-cent packages of matches, but not quite sulphur enough for them. There is water enough to drown a person. The sodium in a human body of $1 \overline{0} \overline{\mathrm{j}} \mathrm{lbs}$. weight, weighs two ounces 116 grains. There is enough iron for a good sized pentinio blade, and enough magnetism to furm the silver to a duzen rockets." While acknowledsing our indcbtedness to the author of theso curious and abstruse calculations we must confess our inability to fullow the writer in that mathematical nicety with which the quantities aro expressed. We have, indeed, an idea tlat the phosphorus vilue of an able-bodiced uina is somechhere near that
of 400 bundles of matches, at two centa prex package; bat is it not munkind provision that there should not bo sulphur enough to ensure a thorough dipping? And then in"regard to the water-wo are told it is enougla to drown a person, but as its mannor of application is involved in mystery, we cannut conceive of the precise quantity reguired; even supposing a person weighing 154 pounds. to be wholly aqueous, wo should have thought the supply of fluid too small for the wants of even the most determined suicide. That magnctism is a source of silver wo shall"certainly mako a note of, but the rockets wo must leavo to the pyrotechnic editor of tho Juwnal of Chemistry who, it seems is rather fond of indulging in litoring froworks.

Soparation of tho Nitrates of Sllvor and Copper.

Taking advantage of the fact that nitrate of coppor dissolves readily, or is retained in solution, by nitric acid, and that nitrate of silver is insoluble, a prucess has been devised for the purification of the silver prepared from coin or other alloy of copper. The solution of mixed nitrates is evaporaited-to an oily consistency, aroiding solidification, and when cool, mixed with nitric acid-sjl. gr. 1-250, has been found to answer. The silver salt is I recipitated, and, to free it fronin al! traces of copper, must be washed with conf contrated acid. The acid is driven off fra:n the washed nitrate by the application of heat. The fire cryatals are then dissol eed in distilled water and allowed to crystalize, when a pure salt is obtained.

Ozolsorit.

As most of our readers are aware, tho term "Ozokerit" has been applied to a new candle, or rather a new material for candies, which, after the most extensivo adrertising, has been put into the English market. The meaning of the word was, for a long time, involved in mystery, and as it was placarded in every corner and appeared in every papor, no small amount of curiosity vas excited in regard to it. The appearance of the now candle settled the question, at least as far as the word was concermr latterly we have had some little discussio. us to the origin of the material. In speaking of this, the editor of tho Gas Light Journal says:-
As our scientific contemporaries are passing around an itom from. Enginecring upon this mineral product, it may be well to set the public right thereupon. Ozocerite (odorons trax). instead of having been "discovered some two years since by a Russian engineer," as Engincering promulgates, is a familiar specics in cabincts sinco 1833, and has long been made into candles, in thio countrics where it is found, one of which iṣ the United States. Ozoccrite is rothing more, or less, or other, than mineral parafinino, which is an abundant natural product concumitant: with our Pennyslvania petroleums.

It was first discovered as a mineral species in 1833, in Moldavia, by Von Hoyor, and is known throughout tho German countrios quite familiarly as "Erdeochs" (earthwax). Even its occurvonco in tho Cnspian region is by no means a novel announcement. Quenstedt in his Mineviloyic, p. U43, umder Ozveiceit, sycaks of it from the island Tschiliben in tho Caspian. Its composition approaches carbon 85 hydrogen 15 , which appears to indicato (if it belongs to the saturated hydrocarbons, as the most cminent of living chemists, llerthelot, appears to have proven, or what he calls the "formene" or marsh gis series, of the generic or molecular formula $\mathrm{Cu}\left[54+{ }^{2}\right)$ somewhere abont the composition cist H^{2}, which corresponds ex actly to this. It must be remarked that Borthelot's examination of American paraftines by his method of synthesis by hydrogenation, gave him a molecule moro highly condensed thian this, nanely C 0 H 92 calling for the centesimal composition carbon $85.0 \cdot 1$, hydrogen 14.96. An analysis of Galician nowecerite, hy Hofstaodter, is cited by Dana, in his last edition (p. 232) which gave carbon 84.94 hydrogen 14.57 . All paraffines, however, both matural and antificia, are evidently mixtures of compounds of typical composition, which may vary within small contesimal limits.

Pharmaoy undor the Commune,

The following extract is taken from the lother of a Paris correspondent of the Pharmacentical Jommal:
Since the horrors of the siege, Paris had been gradunlly sliding into the old grooves; strangers reapmeared, letters and telegrams seemed no longer a struge and now pleasure, and commerce had reinstated herself. It was unfortunately but the lull before the stom. Nhree diys before, the Place Vendome had been occupied by the insurgent battalions of the National Guard, the pretending friends of arder, who, at the approach of a peaceful umarmed deputation hèaded by the journalist Henti de Pene, discharged more than 500 shots into the crowd, killing over terenty and wounding about sixty persons. In in instant the pavement was red with blood, and the dend and dying werecarried into theneighboring pharmacies, to receive what attention could be given to them, awaiting tho arrival of the surgeons. Anbbulance stretchers vere seen procured, and mourniful processions, headed by men bearing large white flags with the Geneva cross, traversed the strecta of Paris, exciting the late and loathing with which all orderly citizens regard tho resump. tion of a new reign of terror at the hands of the Belleville insurgents. All business, except the mournful duty of stanching deathwounds, is over for the present in this usually gay quarter of Paris. Half-i-dozen bloodstained mattresses piled in a cormer of nearly overy pharmacy tell their own sad tale, and the once whito marble fours are variegated and slijpery as the pavement of the Piazza Saia Marcont Venice, on a rainy day. All tho shops are closed, and peremptory commands to shat all windows fronting the street are issued in loud tones, accompanied by menaces from loaded chassepots. In comparison with this, the siege was quito onviable; then, at all events, shops were open, and one could wall about the central parts of the city in perfect safcty.
And then a certain amount of busimess was
done-business of the pathetic kind. ,Wives, sisters and sweothe:rts camo and 'buight pocket pharmacies, littlo stocts of lint nind plaster, pezchande of ston, ete., for their dear fruends abult to start for the fielda of batile. Many a teay was shed over the parchnso, many in wigh uttered that thoso dear to thom should nover requise the sad ajopliances of modern civilization to heal the wounds cansed by the destructive ensines of modern barbarity. Al.s ! how many hopes have been seattered to tho wind! How many pale, weeping figures, clothed in black, are daily to be seen carrying in pious hands wreathy of immortelles," to deck the rude crosses that lie thick at Montretont and foi miles round. Tho piat was dreadful enough, gilded over by a coateng of patriolisa; tho present is donibly fearful-brother against brother, and no cimopy of glory, but one reoking shroud of vengeance, hatred and bloodshed.

The siege, by provoling the appetito, instigated curious rescarches among the edibles generally fomud in plamameies. As long as a few tius of conceatiated milk remained we fared lixarionsly on arrowroot puldings and oatneal grnel; in fact, a tolerable phamacenticai dmmer, save tho monotony, was daily procurable, and consisted of a soup of Liebio's extract thickened with tapioca or poarlbarlcy. A hors d'ectore of anchovy paste or olives; then a piece de resistance, such as curried horseflesh, or a cat's thigh strong with garlic, a salad of mustard and young flax, which we grew in boxes in the cullus, a dessert of Jordan almonds and conserve of hips, and a° strong cupp of coffee with which to wish all down. When the bread became almost uncatable, Hard's frod was brougit into re-quisition-the dongh was cleanly made in a large pestle and mortar, with a dne proportion of bicarbonate of soda and hydrochloric acid, and baked mono light littlo loaves, or rather cakes, of sumpassing delicacy of flavor. Our distaste for hoiseflesh induced us to invent sundry bouquets, the suceess of which was so grent imparting a really ploasant flavor to the inspid meat, that 1 am sure no cordon blew should ignore their utility. The favorite consisted of a clove of garlic and a pinch of peppercoms, corianders, cloves, parsley seed, dried thyme and ginger, bruised together and tied in a piece of muslin.

The only article for which an extraordinary demand existed was extritct of meat. Tonics were much taken, and resulted in several new specialities, ratiner more ingenious than tasty, such is a combined essence of calisaya and Lueb:g prepared wath Cugnac!

Seoale Cornatum.

The following particulars in regard to the nature and development of ergot of rye, were communicated to the Pharmaceuticul Journal by Mr. M. C. Cooke:

We will say nothing of the difference of opinion as to the ergot itself being a transformation of the germen, or at parasite of the gerinen, but start at unce with the Secale Cornutum, a3 the first stage. In this condition it is called by butanists a selerotirm, and this particular one is Sclervtium clacus. What $2 s$ to be understood by a schioticin? is a very natural question to suggest itjelf. It will nut do to pass it as a gencric namie, since it has no ralue is a genas, and even wero it not so the answer would be insufficient. Fungi are known to bo developed in the majority of in-
stances from cortain root-hke filaments called mycelinm. Suantimes theso filanents aro very mueh cumpacted, and in tho presont, and some allied instances, assmene tho form of a compart celluhar miss called a selerotium. So that a sclerotilum is, in fact, a compaot mycelinm. a. surt of bulbuas mycelmm, of variable shape. Such is ergot. Whether prodnced on wheat, rye or the grisses, thin selerotimm differs very little in form, being hovi-shaped, whalst other kinds of sclerotium are spherical, discoid or inregntar.

The carliest condition of this species is manifested by the presence of at thick gummy matter on the spikes of corn or gras3, and this contains granules. During the growth of the sclerotium it is invested by a coating described ia det.il by Professor Quekett, i: a memoir devotol by him to this subject. What the relation is between the gamany matter and the sclerotium and its coating is naertain, unless it be accepted that the "eles stium is doveloped ultimately from the base of a spermogone, which, in the first insiatae: exuded gp:enatia in the aforesaid ormmy mass. The coating wiss considered a Nistinct fangus, parasitic on the ergot, hy Quelsett, and called by him Ergoletia abortifuciens, whilst Berkeley retains it in Oidium, with the same specific name. It is now regarded as the spermatiferous condition of tho completo fangus.
The ultim.to stage consists in the growth of little stalked borlies with womded hcads fromand upon the sclerotimm. If eryot of rye, wheat, ote., be slightly covered with suil in spring (asarch or April), and kept modertely mo:st with rain water, in the course of time a cerp of these stalked bodies wall be produced, but patience is quite necessary, for six months may be required for their griwth. These are the Cordyceps purpuree, or Claciabs perpierea, by which namo the whole of the fomms of this polymorphons fungus should be called. Henco wh have tho stwom, or compact myceliun (sclerotium), conidia, spermatia, and fimally the ascopheies containing the spuridia, and all appertaining to Clariceps purpurea, Tulane.
The aseophores, or stelked bodies with globose purplish heads, are minuto and delicate, several of them being often produced upoa the same sclerotium. The globose head is the fuit-bearing portion. Numerous cells, with distinct walls (perithecia) are immersed in the substance of the head. Each of theso cells coatains a mass of long, narrow, cylindricul, transparont sacs, tomed asci, which are thickened at their apices. Each ascus enclosed eight lain-like sporidia, fleruous and delicate, slightly attemuated toward each cul. This is the final and highest devdopment which the fungus attains. A closely allied spreies is found on the sclerotium of reeds, and mother on the sclerotinm of El-cockaris-the latter, as far as wa are arparo, never having been found, except as a sclerotium, in l3:itain.

To=tiuct Quartz, for Gold.

Mr. W. Skey (Chemucal News) calls attention to an casy and expeditious method for detucting the presence of gold in quartz:

Trogrammes of ronstel quartz sand, which contained twi, olinces of gold to the ton, was shaken up with an equal volume of a tincture of indine, and after tho sa:ad had settled to the bottom, and the liguid above was clea., a piese of Swedisli filter paper was iminersed
it, and afterwards burned. The ash was not white, but purple, and th.e coloring mattor was quickly extracted by lromine. Une gramme of the same gold-benring quartz was taken and thoroughly mixed witn other rock, so that the gold dir not exceed 2 diwts. per ton, and left for two hours with coustant atirring, in contact with the iodine tincture. A strip of filter paper was then immersed five times in the liguid nud tried each time, then burned and treated with bromine as before, when traces of gold wero made evident. Hematito ore was mixed with gold quartz in such proportions that the gold did not exceed 0.5 diwt. to the ton, and yet it was ensily detected in this way. By the amalgamation method it is scarcely possible to detect gold, eyen when 100 grammes are put into test, where the amount does not exceed 2 divts, to the ton.

Quinine Pilln.

A writor in the Tharmacist recommends the quinine to be made iuto a mass by the aid of glycerine, rolling the pills in sifted arrowroot. A beautiful white pill is made with gum arabic, which, by fastidiuus persons, is preferred to glycerine, on account of technical ditticulties, but the writer has found the latter by far the best excipient, more especially as it prevents the pills from becoming land.

STUDENTS' DEPARTMENT,

ANSWERS.

I. -The reaction between iodide of potassium and perchloride of mercury may be expressed :-

$$
\mathrm{Hg} \mathrm{Cl}_{2}+2 \mathrm{KI}=\mathrm{HgI}_{2}+2 \mathrm{~K} \mathrm{Cl}
$$

271 parts of the perchloride require 332 of the iodide, giving 454 parts of red iodide of mercury. As the' proportions of the Pluarmacopcia are not according to this fommula-the potassium salt being in ex-cess-the product must be calculated from the perchloride. If 271 parts yield 454; 4 parts will give 67. (6.7 oz .) A 12 .
II.-Crystallized carbonate of soda, or sal soda, gencrally contains 10 equivalents of water of crystallization, which may he driven off by heat. 286 parts of the orystals are equivalent to 106 parts of the anhydrous salt; 8 oz . will, therefore, yield 2.96 oz . solle curb. exsiccut.
III. 56 parts of iron cumbine with 204 parts of iodine producing 310 parts of $\mathrm{Fo} \mathrm{I}_{3}$. The excess of iron, according to the B. P., over that actually required is 84 of an ounce, as the quantity of iudiae ordered-3 oz. - only requires -66 oz. for combination, while 1.5 oz is ordered.
IV.-Tincture of opium contains $1 \frac{1}{2} \mathrm{oz}$. of the drug in 1 imperial pint, or $656 \cdot 25$ grains in 9600 minims, giring 14.6 minims to each grain.
V.-J. Williams.-The simplo tinciures of
the B. P. may bo grouped ns follows, according to the quantity of tho drug in oach pint of fluid:

ORDER OF MERIT.

NUHDER OY MAT:KS AWMRDED FOLI ANSYERS.

As we have not yet learned the intention of the Council in regard to a jurther issue of the Journal, the questions are, fur the present month, omitted.

BOOKS AND PAMPHLETS.

Western Medical Advance and Progress of Pharbacy. Edited by W. H. Lathbor, A. M., M. D., Detruit, Mich., U. S. Vol. I., No. 1.

This is the title of a new quarterly devoted to the interests of medicine and pharmacy. The issue before us containe a number of interesting articles and papers, several of which are original. It is proposed to publish, with each issue, a chromo-lithograph of medical plants, microscopic drawings, apparatus, \&c. The plate given with the present number is remarkably pretty, and is, moreover, calculated to answer a very useful purpose in rendering familiar the appearance of a number of narcotio plants, eight' of which are represented in full flower. Tho subscription is 50 cents per annum.

The Canadian Entomologist. Vol. III., No. 1.
Entonology is generally regarded as one of the lcast practical of the sciences; its bearings on the welfare of mankind are thought to be of the most trivial character, and the advantages to be derived from its study are a fined to those actually engaged in its pursuit. The journal before us is certainly calculated to dispel such ideas as these, and
cannot fail to convort tho most sceptical in regnrd to tho utility of tho science. Amongst other articles, we refer to those on the Plum Sphinx Moth, Quebee Curant Worms, and a most useful papor by Mx. W. Saundern, of London, ontitled "Hints to Fruit Growers:" Those are quite sufficient to show that our entomologists regard their atudy as something more than giving to an insect "a name in science and a pin through the body.". We cordially rocommend the Entomulogist to our readers, as one of the neatest, most instructive, and interesting journals wo have ever soon. Tho paper is mailed, free, to all members of the Entomological Society, the annual fee to which is ono dollar per annum.

ONTARIO COLLEGE OF PHARMACY.

MONTHEX MEETING.

The regular monthly meeting was held on Friday evening, 2nd inst., at the usual place, with the President in the chair. The minuten of last meeting were read and adopted.

Mr. R. W. Elliot reported from the printing committee that the poison books were printed and being bound, that the certificates were being engraved and would be placed in the Registrar's hands about the fifteenth of the month, or it might perhaps be a little later on account of press of work on hand.
Mr. R. W. Flliot asid that he thought it would be necessary to make some kind of a declaratory resolution to show that the society here was the mame as the one authorized in the sth section of the Pharmacy Act, so that there might ise no impediment in the way of the registration of the members, as he understond there were nome doubts in the minds of some of the member: that the act was placing them in a somewhat inferior position, while nothing of the kind was intonded. As the act made all feen payable on the lst day of May in each year, it would unly be necessary for members to pay the balance of their fees, if auy, up to that time in order to entitlo them to regintration. He moved, seconded by Mr. Miller, That this society hereby declare itsolf constituted under the fourth section of the Pharmacy Act of 1871, and is : members in good standing with the Treasurer are thereby entitled to registration as provided in section 17 of the same act.-Carried.

Tho Chairman maid that this being the lant meeting of the society for the year, it was necessary to appoint troo auditors, ono by the meeting and the other by the Chairman.
It was proposed, in view of the labor involved, to make an appropriation, for the purpose of remunerating the geutlemen to be appointed, but the amount wail left ovier till next meeting.

Mr. Watson was nominated by resolution, and the Chairman named Mr. Shapter.
The Chairman said thern should bo a meeting to hear the report of the anditors, before the first meeting of the council, which took place on first Wodnesday in July.
A resolution was carried appointing the the Monday previous to that dato as night for meeting.
Meeting adjournod.
H J. Rost, Sec'y.

Adaltionial List of Mombor:

Who havo paid fees to May 72, and others entitled to be rogistered.

associates.

Caulfeld, Chas..............Stratford.
Clark, John A................Guelph.
Curtis, J. W.............. ..Hamilton.
Fraser, Thos. B...........Napance.
McKenzie, Alcx...Acton.
Mitchell, C.............St. Thomas.
Wood, Geo...........Strathroy.
H. J. Ross.

The attention of members is called to the report of monthly meeting, by, which it will be seen that mombers who pay their fees up to May, '72, are entitled to registration without further proceedings.

In consequonce of numerous npplications, the Registrar has made arrangements for sonding frames for the certificates to theos wishing them :
A neat, black wainut Oxford frame,
glazed and packed for oxpross...... . 8075
Two frames in a package................ 130 Three " ${ }^{4}$.................... 190

The poison books, 75 cents each, postage paid, or 60 cents if obtained through any of our wholesalo dealers, can bo packed with thom. Parties wishing them will pleane mand the amount to
H. J. Rose,

Prcvis'l Registrar.

SELECTIONS,

Preparation of Grapo Sugar.

The manufacture of - rape sugar han become one of the most important industries of the country, and it is well to consider some of the improvements that have recently been introduced.

It has been found that the addition of a small quantity of nitric acid greatly facilitates the transformation of the starch into sugnr. If, for example, 3,300 pounds of freah and wet starch are to be converted into syrup, as soon as thesulphuric acid is weighed, add two ounces of concentrated nitric acid for every pound of the sulphuric. For syrup, one pound of sulphuric acid is usually taken for every 110 lbs . of atarch. We require for 3,300 pounds of starch, 30 pounds sulpharic acil and 4 pounds of nitric acid. The nitric acid is mixed at once with the sulphuric, and the mixture poured into the reducing kettles. After boiling for three-quarters of an hour, the iodino test is applied, to see if all the starch is decomposed; and this test is repeated every five minutes, until the entire contents of the boiler are changed to grape sugar. Great impitance is attached to making the iodine test. The boiling munt be continued until the tincture of iodine is no longer violet or red, but shows the true iodine color. If the boiling oe superseded too sion, the syrup has a tendency to ferment; and if it be continued ten or fifteen minutes too long, the syrup crystalizes; and in both cases, the ayrup obtained is siot easily sold. In order to give the syrup a clear color, after filtering through bone black, it in well to bleach with sulphurous acid, and this acid alio prevents formentation, in case the syrup wis not boiled sufficiently long. The sulphurous acid in introduced as follows:-After tho acids hayo beop neutralizod by chals,
and the requisito quantity of bone black has been added, for 3,300 pounds original starch mixture, 15 pounds of an aqueous solution of sulphurous acid is poured in, and tho whole well agitated; to assist the escape of the acid fumes, an ounce of crystallized soda, dissolved in at pint of water, is added for every pound of acid.

Where it is desired to make sugar instead of syrup, tine proportions of acid to bo employed are different, 45 pounds of sulphuric acid and 6 pounds of nitric acid being taken to reduce the 3,300 pounds of starch. Before the uso of nitric acid was discovered, the boiling required four hours; it can now be accomphished in less than two hours. After boilng threc-tyuarters of an hour, it is well to begin the iodine tests, and after it is ripe for syrup, to continue the operationd some time longer, until, on cooling, sugar will readily crystallize. It is one thing to make syrap, sand another to produce sugar, the proportions of acid and the time being difierent in each case.
After shutting of the steam and suspencing tho boiling, 15 pounds of boue black must be strewn in, and the lituid sut to buil for five minutes. It is then ready to run into the neutralizing vats.

Afterncutralization, 20 pounds of bonchlack must be added, under constant agitation, and 15 pounds sulphurous acid and 1 pound crystallized soda, as before, and the whole left 6 to 8 hours to settlo. The clear sweet liquid can be introduced into the vacumu apparatus for concentration. It can be boiled durn in open versels by steam, but is not so white and pure aj when the sacuma pan is employed. As soon as the syrup shows 36°, it is filtered, and run into suitable crystallizing vessels. On the filter will be collected the gypsum weduced by the $1:$ eutralization ; and as it contains considerable sugar, it must be pressed out and washed. In Gemmany, the filter consists of strong cluth placed inside of a conical baskeut, fitted to a suitable harrel. The liquid ruais through perfectly clear, and requires thrcie or some days for its crystallization; to hasten the crystallization, some farina sugar can be stirrcd ia. When nearly dry, it is poured intu boxes of a suitsblu size for transportation. The solid grape sughr is extensivels empluyed in ureweries, in the manufacture of wines, for distillntion, and in candy. The price of the sugar is higher than for syrup, and it is notiliable to deteriozate, if it lie properly prepared.
The form of the boiler lass been considerably modified. Instend of performing the reduction by sieam under pressure, a coil of copper pipes, in the buttom of the rooden vessels, serves to convey the heat for boiling the mixture. The dilution of the liquid by the condensation of the steam in the vat, sund the-necessity of boilers that could resist several atmospheres of pecssuro, are aroided. There is also leas liability to explusion. The cmployment of nitric acid is an new frature, and the uso of sulphurous acid, for the double purpose of bleaching the symup and preventing fermentation, ought not to be overloo'and,
l'ure starch syrup resembles honny so close2y that fow could detect any diference. It is fast becoming a substitute for molasses and syruy from canc, and as the syrup resulting from the best root sugar is only suited to fermentation and the recorery of potish, the .starch cyrup must iast gturr in favor.
Grape : dgar can also be made from sharings, megs, sivr-dust and any kind of cclinlose, ings, mins, salr-dust and any theapest material is tho starch from
corn and grain. To insuro a good quality, attention must be paid to removing all traces of the limo and soda used in neutralizing, and to a proper bleaching by bone black and sulphurous acid. With these precautions, and by aid of improved machinery, thero is no reason why tho industry should not bo made a profitable ono to all who are disposed to invest in it.-SScientiñc American.

Tho Ccmparative Effloacy of Antiseptios.

Dr. F. Craco C.lvert has performed two series of experiments in order to ascertain the cumparative powers of various substances ordinarily used as antiseptics. Tho first consisted in placing in bottles (not corked) solution of albumen and flomr-paste. To these leadded various propurtions of some of the substances patrunicad at the present time as antiscytics, and tho followint tiblo shows the dime in which an offensive odor became sensible at a temperature from 70 to 80 degrees F. :

	Aluutnen.	Finur juste.
I'Du:gall's disiniecting prwaler 5	11 daju	25 days
Carbollir disinfectiug juwder... 5	Sound	Sound
Chlor-Alun (made latily)..... $\frac{2}{}$	9 dalys	-
Chluriale of ziac.................. ${ }^{\text {a }}$	15 al.198	
Chluride of lime.............. 5	10 dass	17 days
l'cratingana te of joterlu......... 5		
Tar vil $\frac{2}{}$	11 dars	28 days
Carivilic acjd.................... $\frac{2}{2}$	Soand	Sound
Crusfic ncid........ 2	Sound	Soumd
Sivat	; 4.ays	7 dass

The ahove table he considers clearly to show that tho only true antiseptics are carbolic and cresylic scids; and these results coincido with those obtained by Mr. William Crookes, F.R.S., Dr. Angus Smith, F.R.S., and Dr. Sansum. Thesetwoacids continued their action till the albumen solution and paste dricd up. The second series had the object of ascertaining which of the undetermined substances is most active in destroying gernas, and preserving animal substance. At tho bottom of wile-mouthed pint bottles, Dr. Calvert placed a known quantity of each of the antiserptics, suspendin: over them by a thread a juicce of sound meat; and, by daily examination, it was easily ascertnined when the meat became tainted or putrid.

Antiscptic used.	Breane tainted	Putrid
Pcmanmante of grash	. $\%$ clase	$4{ }^{1}$ days
Ch!or-slum		
M'bousall's dixintecting	Ider. 12	19
Ciluride of dime 18	910
Tar ciil ... \quad....	- 16	25

Chlurilc or zinc............................ 19 .

-British Maclical Jourunl.

Mace.

The mace known as a spice is the berry of the Myristica officiraiis of Linnaus, and is andigenous to the Meluccis. It is cultivated in the Cariccas and Pern, and to a slight extent in other South American countrics, but our chice supplies are derived from the island of Bandia. The fruit is pyriform, of a whitish-roseate colour when ripe, becoming yellow when dried, and is but slightly succu-
lent. It is the kernsl divested of its dif. ferent cuvolopes-tho outer capsule, tho membraneous pulp, and an interior skin, which loses its flavour on peeling of -which cunstitutes the spice. The mace is the most aromatic of all spices; the tasto is hot, the Hiavour very expansive, comparable in this respect to cinnamon. In their preparation the kernels are steeped in sea-wator, and afterwards dried. Tho grain is hard, vory aromatic, and serves to season various condiments. In commerce we distinguish the fumale or cultivated maco from the male or wild mace, which latter is more coarse, less odorous, and conseguently less valued. The mace is remarbable for its stimulatiug qualities, and on this account is largely employed in the preparation of balms. The tree is far from fertile, and appruximatesim general character to the orange-tree. From the treo itself a resin is extracted in South America known as otobu. A highly aromatic volatile vil is finmenshed by the distillation of the kernel, but there is also a fixed oil, retired by means of heat, but always mixed with a certain portion of volatile oil, which com: municates its odour and colour. This mixed oil, yf a yellow colour, inclining to red, is often designated butter of mace, owing to tho numerous particles of great density which rise to the surface of the water.in tho course of soparation. The spirituous extract is very active ; the latter is less energetic. Grocer.

Solnble Saooharated Oide of Iron as an Antidote to Arronic.

Dr. Kohler, of Halle, remarles that the long-known antidote, hydiated oxile of iron. has many practical inconveniences. Tho preparation now recommended only differs from the latter in containing a larger proportion of water (as hydrate.) Kohler used it with remarkable success in the case of a young man who had swallowed thirty or forty graius, or more, of arsenic. Ho comes to the following general conclusious about the new therapeutic: 1. That it precipitates arsenious acid from solution in the form of insoluble arseniate. 2. That on chemical grounds it should be justly substituted for the ordinary hydrated oxide as an antidote. 3. The experiments on animals fulls bear out its practical ellicacy: 4. That, while in other forms of metallic poisoning (especially with common sublimate) mechanical antidotes like alburaen, etc., are useful, the latter treatment is only a hindranco to the efficient application of the oxide of iron in arscnical poisoning. 5 . That the irou-treatment should nut bo accompsuicd by the uso of neutral purgative salts, otherwise the artidotal combinations may be interfered with. G. Since Schroff has proved that the arscuixto of iron itself is always alssorbed in minuto quantitics, enretics should be administered is soon as the antidutal combination of the iron with the arsenic may be supposed to hare taken place. 7. As to the quantity of saccharatud oxide of iron required to neatral-
izo a given quantity of arsenic, it appears that about ten or twolvo parts of the oxido should be administered for uvery one part of arsenic believed to have been swallowed. Berlin Ǩlin. Wochensch.-N.Y Mrd. Jour:

I ature of Iifo.

We clip the following from the Philidelphia Sunday Dis̀patch of the 2 öth ultimo. Its perusal cannot inil to provoko a "molecular', smile, and to sharpen the "protoplastic" ap. petite of our readers:
: Professor Pocy, of Lycoming county, in this State, lias been trying to tell us what 'life' is. Accoordin! tó Poey, 'Life results from a double molecular motion, general and continuous, of composition and of decomposition in relation to the organism and the inorganic medium. The medium is the comhination of extcrial agents, physical and chemical, proper to fumish to the organism the principles necessary for its nutrition and the manifestation of the properties of the anatomical clements.'
S sange! low Errur fastens itself in the human mind, and by its rank growth chokes tho tender plant of Trutis! During all the fourscore years of our existence we have cherished the fond delusion that Life was rather an immorigerous outgrowth of a retiary paradox, which enirafted upon the persiflage a mophitic diapason, causing it to perineate the neurosthenic rhomboid, and so producing isothermally protoplastic vitality. That is what ue thought Liff was. But we see the mistake ño hard, though-very, very hard-to see the idols of our youth thus thrown down and broken one after the other. find by a man named Poey, too!. It will make our whole Christmas season sid."-Mrclical Times.

Logical.

To the question "Why will not a pin stand upon its point \ddagger " an undergraduate at Cambridge is reportod to have returned the following claborate and conclusive answer:-

1. A pin rill not stand on its head, much less is it possible that it should stand on its point. 2. A point, according to Euclid, is that which has no parts nud no magnitude. A pin caunot stand on that which has no parts and no magnitude, and therefore a pin cannot stand on its point. 3. It will if you stick it in.

Simo Jaice sud Glycerine.

Thke lime or lemon juice $\frac{1}{2}$ pint.
Hent in a porcelain mortar to near the boiling point, and add gradually

Rose water,
Elder-flower water, and
Mectified spinits-0f cach, 2 ounces.
Agitate the Thole well together. After 24 hours' repose, decant or filter through calico or muslin, then add

Glycerine; pure, $2 \frac{1}{2}$ ounces.
Oil of lemon, $\frac{1}{2}$ drachm.
Agnin agitate them rogether for some time, and by carcinl manipulation you will have a somerrhat milky liquid; but it should be guite frec from any coarso flanting matter or coane scdiment.-Druggists' Circular.

TRADE REPORT,

Trade since our last las beon very activo in all lines of goods. Payments have slightly improved, but are still a good deal behind.

The fluctuations are nunterous, and in some instances show a very marked change.

Thearticles in favor of thebuyerneo Opium, which touched a very low point, but is now again tending upuards; Black Antimony which is considerably lower, as also sorts Gum Arabic, Morphias, Senega Rout and Rochello Salts.

Carb. Ammunia has made a decided advance, and is likely to command higher ratos than at present quoted; Sucotrine Aloes remain high; Shellacs are quoted at adranced prices, which would have been still higher but for the removal of the customs duty; Cit. Iron and Quinine rery sarce and high; Mercurials still keep at our last quotations. Quinine is in very active demand, with none in stock, and would fctch almost any price at present.
In Spices, hack and whito Pepper are quoted at excessively high figures.
Naval Stores continue high, with active demand and shart stocks. Spts. Turpentine is much ranted, and remains very from in price.
In Oils, Linseed has mado a decided jump uprards in Eugland, and must sympathize here. Jard Oils are also likely to briug higher prices than at present quoted.

PETROLEUAK REPORT.

As I anticipated in last montles report, the oil refiners combination could not be bruught to a satisfactory conclusion. The interests of sume refiners were so complicated with others that it wis found impossible to come to any unanimons agrecment, and so the matter fell to the ground. I have nori, howrerer, to report a crude oil combination, which has just been formedi in Petrolia. The producers lave entered into a formal agreement to sellall their oil hirough a board of directors composed of eleren members, chosen from amengst themselves. Tro distinct priecs will be made, one for export trade and one for those who refine for the home markct. For the former they will be gaided by New York prices, and soregulated that when refined oil in Ner York is sold at $2 t$ conts per gallon, crude in Petrolia (for the export trade) will beworth $\$ 1.40$ per barrol. For ercry cent adrance or fall in Nor York markicts, crude will be affected to the extent of 80 cents per berrel. The exporting firms will, homorer, only be allowed to purchaso Whatever surplus may be on hand, as it is
proposed by tho management to raise tho prico for the homo markets, forthwith, to at least $\$ 2.00$ or $\$ 3$ per barrel, and stiil more if practicable. The idea seems to have taken hold upon them that the country is now enjoying much to cheap a light, and strango to say, the same men, who only -a few months ago, potitioned the Goveṛiniont to remoro the oxcise duty of $\bar{p} \downarrow$ cents per gallon on refined oil, intended for liouio consumption, calling it an imposition upon the public, and an unjust tax upon an articlo of the first necsasity to life and comfort, aro now combined together to impose upon the public a still furthor tax of ton or fifteen cents per gallon, for the sole bencfit of those interested in the production.
Hurr the practical working of this new principle of frec trado will turn out, it is impossible to furoteil. As a general thing, a business which will not flourish without such artificiai bolstering, soon comes to naught; and the experience of the past, in all that regards combinations and the liko, proves beyond doulst that they are uureliable, and in example, dangerous. To-day a combination is formed to impose upon the pubiic of Canada a lear light, and to-morrow we may see one formed laving for its cbject dsar brcad.
Monawhile, the Crude Oil mariet for exporters is active, and as New York has advanced Refined from 23 to 26 cents per gailon, Crude has also gradually advanced from $\$ 1.35$ to $\$ 1.60$ and 81.70 per barrel. The production remains abont the same, say 7,000 barrels per week.
Refined Oil for export is on the move upwards, sud prices range from 15r. io 17c. per gallon in bond. For tho lione trade, Refined lias also adrancel, this being duo, in a great measure, to the general impression that tho crade oil combination is geing to work successfully. It is quoted to day as worthilic. to 22 c. for the best quality, with good demand, but rery fers selicers. Taris altogether neglected; nominally worth 50 c . per barre?.
Tha shipments of Oil from Petrolia station for the monith of May are as follows; Cride, 22,264 brlk. ; Rofined, 741 brls. ; distillate, 4,910 brls.

ONTARIO OOL工EGE OF PHARYAOY.

REGISTRATION NOTICH:

Drageists in basiness, nul others entitleal to be rejistered noder the Pharmacy iset, will sare delay loy sending along with the fec of four dollars, a mefernece to a member of the Conneil.
Assistants rishing to be registered must sund, with the fec, a proof of their having serrell thine jcars as apprentice and one as assistanit.

HESHY J. ROSE,
I'misional Registrar.

WEIOIESAIE PRICES CURRENTI-JUINE, 1871.

[^0]: - From the procedings of the American Pharnactu:ical

[^1]: - From ihe Fharnacist.

[^2]: - limem tho Phanuaceitical Joumal, London.

[^3]: TThe samo veinht of quinin, premired by precipitationg an acluulatel solution if the disulphate by solution of

[^4]: - An. Jour. Ph., 1803, 250.
 ${ }^{4}$ Condenaed from the English Mochanic, in the Sclen.

