The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Caıtes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurées et/ou pelliculees

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégate de l'impression

Contintious pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index
Title on header taken from: / Le titre de l'en-tête provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

\squareAdditional comments:/
Commentaires supplémentaires:
This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

CLISSIFICATION OF THE HORNTAILS AND SAWFLLES, OR THE SUB-ORDER PHYTOPHAGA.
by WILliAM H. ASHMEAJ, ASSISTANT CURATOR, DEPARTMENT OF insects, U. S. Narional, MUSEUM.
(Paper No. 5.)
Family IX.-Selandmidm:
After the removal of the Strongrylograsterince, which, to a centain extent, form a connecting link between this family and the 'lenthredinide, but which, on account of their elongate shape and their cephalic and abdominal characteristics, I have placed with the latter family rather than retain here, there need be no difficulty in separating the Sclatdriida from all the other families by the characters made use of in my table.

The species have a peculiar habitus quite their own, and with a little care one may easily recognize a Selandriid without even the trouble of an examination.

The head is more transverse, the temples much narrower, not nearly so quadrate as in the Strongylogasterine ; the antemne are shorter, the scape or first joint not or rarely much longer than the pedicel or second joint ; the wings are proportionately shorter and broader, the costal vein being much dilated or broadened towards the apex, before the stigma ; while the abdomen is much shorter, broader and oviform.

I have separated the family into four subfamilies, distinguished as follows:

Table of Subfamilies.

Lanceolate cell petiolate (in only a single genus Kaliosysphinga $=$ Pseudodineura, Konow, does it appear contracted, but in this genus the anal vein is faint or sub-obsolete before uniting with the submedian vein, while the anal cell in the hind wing is wanting)...Subfamily I., Blennocampine.
Lanceolate cell contracted before the middle, but still open, and sometimes with an oblique or transverse nervure between it and the apex.

Antennæ 4 -jointed, the third joint very long, the fourth or last very minute .Subfamily II., Blasticotominæ.

Antenne 7.15-jointed (in a single case 22 -jointed), the third joint not unusually long, often shorter or not longer than the fourth . Subfamily III., Selandriinae. Lanceolate cell contracted at or a little before the middle, and completely closed Subfamily IV., Hoplocampinæ.
Subfamily I.--Blennocampine.
The distinctly petiolated lanceolate cell in the front wings readily distinguishes this group. The anal vein is usually entirely wanting ; in only two or three genera is it present, and with these genera some difticulty might arise in placing, since this vein curves upwards towards the submedian, and thus resembles somewhat the contracted lanceolate cell of the Hoplocampinte. The vein, however, does not quite attain the submedian, and there is always a distinct space between them.

Tabie of Genera.
Front wings with four submarginal cells.
4.

Front wings with three submarginal cells, the first transverse cubitus wanting, rarely with the second transverse cubitus wanting.

Hind wings with two discal cells.
Hind wings without discal cells.
2.
2. Antenne ir-14-jointed............................. . . . Fenella, Westw.

Antenne 9 -jointed.
Hind wings with a distinct anal cell. Fenusa, Leach.
Hind wings without an anal cell.. Kaliosysphinga, Tischb. (=Pseudodineura, Konow.)
3. Front wings with the second transverse cubitus wanting; head transverse ; clypeus anteriorly truncate. Pelmatopus, Hartig.
Front wings with the first transverse cubitus wanting; head large, quadrate, the temples broad; clypeus anteriorly deeply emarginate ; antenne densely hairy, the third joint nearly as long as joints 4-5 united. Xenapates, Cameron.
4. Second recurrent nervure joining the third submarginal cell......5.
5. Eyes extending to base of mandibles or at most with only a linear
space between. 10.

Eyes more or less distant from base of mandibles, with a distiact space between.
6. Hind wings not surrounded by a bordering nervure at apex......7.

Hind wings surrounded by a bordering nervure at apex.
No discal cell in hind wings ; claws bifid or with a tooth within.

Anal cell in hind wings fully as long as the submedian. of . Isodyctium, Ashm.
7. Hind wings without a closed discal cell 9.

Hind wings with a closed discal cell.
Claws simple, or with a very minute, scarcely perceptible tooth within 8.

Claws cleft, or with a large tooth within.
Anal cell in hind wings shorter than the submedian cell.
Transverse median nervure in hind wings received by the discal cell at or somewhat beyond the middle; sheaths of ovipositor equally thickened and more or less obliquely pointed at apex ; third joint of antennæ almost as long as joints $4-5$ united. ๆ Periclista, Konow.
Transverse median nervure in hind wings received by the discal cell before the middle ; sheaths of ovipositor produced at apex into a thorn-like tip.
o
Ardis, Konow.
Aral cell in hind wings as long as the submedian.

> f . Isodyctium, Ashm.
S. Third joint of antennæ longer than the fourth; sheaths of ovipositor at tips obtuse. Pareophora, Konow.
Third joint of antenne a little shorter than the fourth, never longer ; sheaths of ovipositor at tips rounded ; clypeus anteriorly truncate

Rhadinocerea, Konow.
9. Anal cell in hind wings as long as the submedian. 아

Isodyctium, Ashm. Anal cell in hind wings shorter than the submedian. § Ardis, Konow.
10. Presternum of mesosternum not at all separated by a suture 1 I.
Presternum of mososternum separated by a distinct suture ; clypeus anteriorly truncate; hind wings with one discal cell, the anal cell shorter than the submedian; claws long, simple Tomostethus, Thomson.
1r. Hind wings with one discal cell 15.
Hind wings without a discal cell.

> Hind wings with the marginal cell pointed at apex, and sometimes open 14.
> Hind wings with the margimal cell well rounded at apex, with. out an appendage ; a surrounding neriure at apex 13.
> Hind wings with the marginal cell well rounded at apex, but ruith an appendage; no surrounding nervure at apex. . . . in.
12. Third transverse cubitus curved inwardly, not extending in the same direction with the transverse radius, the third submarginal cell considerably larger than the first and second united; antemme densely pilose, tapering towards tips, the third joint longer than the fourth ; claws cleft. i 5 Parazarca, Ashm.
Third transverse cubitus straight, or nearly so, running in the same direction with the transverse radius; antemne pubescent, the third joint nearly as long as joints $4-5$ united.

Claws cleft or bifid; anal vein in front wings straight, not curving upwards at tip; transverse cubitus in hind wings not short, the anal cell somewhat briefly petiolate.

Erythraspides, Ashm.
Claws simple; anal vein in front wings curving upwards at tip; transverse cubitus in hind wings very short, the anal cell longly petiolate. \& đ Blennacampa, Hartig.
13. Third transverse cubitus curved inwardly, not extending in the same direction with the transverse radius, divergent; third submarginal cell larger than the first and second united; pedicel as long as the scape, about thrice as long as thick at apex.

Third transverse cubitus straight, or nearly so, and running in the same direction with the transverse radius; third submarginal cell hardly larger than the second, much smaller than the first and second united ; pedicel shorter than the scape, only a little longer than thick. δ.............................. . . Erythraspides, Ashm.
14. Third transverse cubitus in front wings not running in the same direction with the transverse radius; marginal cell in hind wings zoith an appendage; third joint of antenne much shorter than joints $4-5$ united ; claws with a small tooth within

Scolioneura, Konow. Third transverse cubitus almost interstitial with the transverse radius and having the same direction; marginal cell in hind wings
zuithout an appendage, sometimes open at apex; claws with a strong tooth at base. Entodecta, Konow.
15. Hind tarsi usually longer than their tibiae ; clypeus very small, transverse linear; antemne densely pilose, the third joint longer than the fourth; amal cell in hind wings a little shorter than the submedian. qo Zarca, Cameron. Hind tarsi not longer that their tibie ; clypeus not unusually small, anteriorly subemarginate or truncate.

Antenne pubescent, the third joint distinctly longer than either the fourth or fifth.

Third submarginal cell longer than $1-2$ united; antenne densely pilose, tapering off toward tips, the third joint about as long as $6-9$ united........ Calozarca, Ashm. Third submarginal cell not longer than t-2 united; antenne pubescent, the third joint not longer than 4-5 united.

Claws cleft ; transverse radius and the third transverse cubitus running in the same direction; larva with forked spines....... Monophadnoides, Ashm., n. g. (Type M. rubi, Harris.)
Claws simple, or with a minute tooth near the middle; transverse radius and the third transverse cubitus not running in the same direction, divergent; larva smooth. Monophadmus, Hartig. (Type 'l. albipes, Gmel.)
Antennæ clothed with long appressed hairs, the third and fourths joints equal, the fifth longer, all somewhat thickened toward tips. Senoclia, Cameron.

Subfamily II.-Blasticotomine.
This group is confined to Europe, and is represented by a single genus, with one species, the Blasticotoma filiceti, Klug. The species in some of its characters, especially in the antenne, is quite anomalous. It has been shifted from one place to another by different authorities, but to me seems to belong to the Selandriide. The shape, especially of the head and thorax, agrees quite closely with such genera as Rhadinocercea, Phymatocera and Tomostcthus, while the venation agrees fairly well with many other of the Selandriidæ, the only real difference being in the more distinctly petiolated first discoidal cell, caused by the cubitus originating farther away from the apex of the basal nervure than is
. sual. The first discoidal cell in dthalia almalata is, however, similarly petiolated. The antemne alone, therefore, offer any very striking difference: They are four-jointed, the third joint being very long, the fourth or last very minute. At first sight they appear wholly different from other sawflies, and I was almost inclined to consider them of family value, as I have the three-jointed antenne in the Hylotomide; but on submitting them to a bigh-power lens I was able to see that the long third joint was resolvable into seven indistinct annulations, caused by the amalgamation of seven distinct joints. This discovery demonstrated that the amtenne were originally, in ages long past, to.jointed, and had an affinity with such genera as Athatia and Phyllotoma. I therefore consider Blasticotomia to be an anomalons Selandrid. Like Athalia, it probably had its origin in the tropics, and has been changed structurally in its struggle for existence in a colder clime.

In addition to the 4 -jointed antenne, the genus may be further distinguished by the following characters :

Hind wings with two discal cells; claws with a small tooth within: ovipositor subexserted. Blasticotoma, Klug. Subfamily III. -Selandruna:.
This subfamily differs from the others, except the Biasticotominte, by having the lanceolate cell, in the front wings, contracted a little before the middle, but still upen, the contracted part not quite attaining to the submedian vein. This cell is also sometimes divided by an oblique or transverse nervure between this contraction and its apex, a character frequently found in the Strongylogasterince, and thus some Selandriines might be easily mistaken for species in that subfamily. The Strongylogasterines, however, are always distinguished by the more elongate shape, the larger, more quadrate head, longer antemne, longer scape, and by the more distinct costal cell, the costal vein being slenderer, not so much thickened towards apex.

The number of joints in the antenn:e, 9-22, readily separate the Selandriines from the Blasticotomince. The abdomen is always short, oviform, the head transverse, the temples rather narrow; the vertex, seen from the side, convexly rounded from the ocelli to the base of antenne; there is no well-marked furrow or groove between the antenne and the eyes, as in the Tenthredinide, while the scape is small, not or scarcely larger than the pedicel.

The genera may be readily recognized with the aid of the following table :

Table of Genera.

Antemax 0 -jpinted. 3.
Antemne more than 9 jointed (10 - to 22 -jointed).
front wings with four submarginal cells, the second and third cach receiving a recurrent nervure. 2.
Front wings with three submarginal cells, the first transverse cubitus absent or indistinct.
Autenne 10.15 -jointed ; hind wings with one discal cell Phyllotoma, lallen.
2. Hind wings with one discal cell.
Antonnte 10.15 -jointed. Phyllotoma, Fallen.Hind wings with two discal cells.Antenme 10-1i-jointed. § F Athalia, Leach.Antenno 22 -jointed. 5 Mennedyia, Cameron.
3. Lanceolate cell with an oblique or transverse nervare between the contraction and the apex 4.
lanceolate cell without such a nervure.
Front wings with four submarginal cells. the costal vein muchthickened before the stigma; hind wings with two discal cells.Anal cell in hind wings as long or a little longer than the sub-median cell; cubitus in front wings strongly angularly bentat its origin ; claws strong, simple. Selandria, Klug.Anal cell in hind wings shorter than the submedian; cubitusin front wings not angularly bent at its origin ; claws with amedian tooth beneath......... . Paraselandria, ashm., li. g.(Type S. flavens, Klug.)
4. Eyes not extending to base of mandibles 7.
Eyes extending to base of mandibles.
Hind wings with two discal cells. 6.
Hind wings with one discal cell. 5.
Hind wings without a discal cell.Hind wings with a surrounding nervure at apex, the anal cellshorter than the submedian ; claws simple.
§ Periclistoptera, Ashm., n. g. (Type M. alba, Nort.)
Hind wings without a surrounding nervure at apex, the analcell shorter than the submedian; claws simple.
q Periclistoptera, Ashm.
> 5. Anal cell in hind wings shorter than the submedian, petiolate at apex, claws with a large triangular tooth at basc.................. Endelomyia, Ashm. n. g. (Type M. rosic, Harris.)
6. Anal cell in hind wings as long as the submedian ; claws simple or with a small tooth within. 各 δ....Caliroa, Costa. (= Eriocampoides, Konow.) (Type E. cinxia, Klug., =C. sebetin, Costa.)
Anal cell in hind wings shorter than the submedian; claws cleft . Briocampa, Hartig.
7. Front wings with three submarginal cells, the first transverse cubitus wanting 10.

Front wings with four submarginal celis...............
8. Hind wings with one discal cell. 9 .

Hind wings with two discal cells ; claws
simple . Eriocampidea, A shm, n. g. (Type E. arizonensis, Ashm.)
Hind wings without a discal cell. Hind wings with a bordeling nervure at apex

Tetratneura, Ashm., n. g. (Type M. ignota, Nort.)
9. Anal cell in hind wings as long or a little longer than the submedian cell. \wp. Tetratneura, Ashm.
Anal cell in hind wings shorter than the submedian, petiolate at apex ; claws with a tooth beyond the middle.. Peecilostoma, Dabbb. ($=$ Monostegia, Costa.)
10. Hind wings with one discal cell.

Anal cell in hind wings shorter than the submedian ; claws with a long acute median tooth. Pecilostomidea, Ashm., n. g.
(Type P. maculata, Nort.)
Subfamily IV.-Hoplocampine.
This subfamily is at once separated from the others by the distinctly contracted lanceolate cell in the fromt wings, the contracted part, unlike the Selandriine, extending to and isniting with the submedian wein. The genera are not numerous, and may be separated as follows:

Table of Genera.
Four submarginal cells, the second and third each receiving a reçurrent nervure ; hind wings with two discal cells.
Claws simple. 3.
Claws cleft or with a tooth near the middle 2.2. Claws deeply cleft; habrum anteriorly truncate or subemarginate;first joint of flagellum distinctly longer than thesecond. Vnschi\%ony x, Ashm., in. g.(Typu H, montama, (.r.)
Claws with a small tooth beneath, a little beyond the midde;habrum anteriorly rounded, semicircular ; first joint of flagellun alittle shorter than the second, rarely somewhatlonger.MacGillivraya, Ashm., n. g.(lype M. oregonensis, Ashm.)
3. Anal cell in hind wings longly petiolated; habrum anteriorly rounded; first joint of thagellum not or scarcely longer than the second Hoplocampa, Hartig.

NO'TE ON THE LARVA OF MEIANOMMA AURICINC. TARIUM, GROTE

This genus will have to be transferred to the Noctuide. Larva cylindrical, feet normal on joints 7-10, 13, about equally developed. Tubercles minute, sete long, fine, iv. opposite the lower edge of the spiracle, a little nearer to v. than to iii., and rather far behind the spiracle; sete single, several on the smooth leg plates. Segments obscurely 5 -ambulate. All green; spiracles small, brown; no marks ; cervical shield and amal plate uncornified, invisible. (Head broken off.) Feeds on " hockelberry" (Vaccinium ?).

Washington, D. C., colls. U. S Nat. Muscum.
The larva resembles the Deltoids.
The moth is a Noctuid in venation. In Hampson's tables (which I recommend American students of Noctuide to study) I make it fall in the Palindiina near the genus Homodes, from which it differs in that vein 7 of fore wings does not join the stalk of $8-9$ to form an accessory cell, while the third joint of palpi is rather long. Dr. Hulst's accomnt of the genus (Trans. An. Ent. Soc., XXIII., 294) seems to me erroncous, as I find veins $8-9$ long stalked, and 6 arising well above the middle of cell. Harrison G. Dyar.

Papilio Ajax.-Mr. C. Troxter, Sr., ,ouisville, Ky., reports that on the $7^{\text {th }}$ of May last a female P. ajax emerged from its chrysalis, which had been kept in a cellar all winter, with all the red on its wings replaced by yellow.

NOTES ON SOME ONTARIO ACRIDIIDEE.

BY E. M. WALKER, TORONTO, ONT.

(Continued from page rab.)
III.-(Eidirodine.
10. Arphia sulphurea, Fabricius.

Gryllus sulphureus, Fab. Species Insectorum, I., 369 (1781).
Acrydium sulphureum, Palisot de Beauvois. Ins. d'Afr., et d'Am., 145 (1817).
Cidipoda sulphurca, Burm. Handbuch, II., 643 (1838).
Locusta sulpharea, Harr. Ins. Inj. to Veg., 177 (:862).
Tomonotus sulphurezes, Sauss. Rev. et Mag. de Zool., XIIl., 321 (1862).

Arphia sulphurea, Sauss. Prodromus CEd. Ins., etc., 71 (1884).
This species is one of the earliest to appear in the spring, making itself conspicuous on the wing by its bright yellow wings and rattling stridulation. It is quite common about Toronto in open, sandy, uncultivated lands, especially where these are scattered with low bushes and scrubby trees. I have never seen it about Lake Simcoe, though there are spots there which would apparently make a suitable home for it.

My earliest capture of the full-winged insect was on May $16 t h, 1 S_{9} \sigma$, though it probably appears some days before that.

I think it very probable that Arphia xanthoptera, Germ., is also found in Ontario, but have not as yet seen a specimen from here. ir. Chortophaga viridifasciata, DeGeer.

Acrydium viridifasciatum, DeG. Memoires d'Ins., III., 49 S (1773).

Gryllus virginianus, Fab. Syst. Entom., 291 (1775).
Locusta (Tragocephala) viridifasciata, Harr. Ins. Inj., 182 (1862).
" " infuscata, Harr. Loc. cit., 181 (1862).
" " radiata, Harr. Loc. cit., 183 (1862).
Tragocephala viridifasciata, Thos. Syn. Acrid., 103 (1873). " infuscata, Thos. Loc. cit., 102 (1873).
Chimarocephala viridifasciata, Scudd. Proc. Bost. Soc. Nat. Hist., XIX., 89 (1876).
Chortophaga viridifasciata, Sauss. Prod. WEd., etc., 72 (1884).
This is the first of our locusts, except the Tettiginæ, to make its appearance in the spring. The young are sometimes extremely abundant in the fall, but large numbers perish during the winter, and though often
numerous in early spring, they are much reduced in numbers. They may be seen in sumny sheltered spots quite early in the spring and complete their last transformation about the first or second week in May. They are found until about the middle of July, but are commonest in May and early June.

This species is the least particular about its haunts of all our (Edipodinæ, appearing in open grassy places of almost any kind, whether the soil be a sandy or a clayey one. It seems to be very generally distributed in Southern Ontario. I have seen it at Hamilton, Grimsby, Toronto, DeGrassi Pt., and Clear Lake, Peterborough Co.

The males are almost always of the brown form, infuscata, green examples being quite rare. I have, in fact, taken but three specimens of the latter. Of the females, on the other hand, the majority are green, but the relative proportion of the two forms is not nearly so unequal as with the males.
12. Encoptolophus sordidus, Burmeister.

CEdipoda sordida, Burm. Handbuch der Entom., II., 643 (ıS38). Locusta nebulosa, Harr. Ins. Inj., I81 (IS0z).
Encoptolophus sordidus, Burm. Scudd., Proc. Bost. Soc. Nat. Hist., XVII., 479 (1875).

A very local species in Ontario. I have taken only three specimens, 2 of and 1 , at Toronto, and have never seen it about Lake Simcoe. I found it, however, very abundant at Niagara, Sept. irth, i893, and its rattling stridulation could be heard from the trolley window all along the line between Niagara Falls and Queenston Heights. My Toronto specimens were taken on the following dates: dbout Sept. 10, 1892, I 9 ; Sept. 21,1896, r 9 ; Oct. 17, 1897, 1 亿. It is most commonly found in dry upland pastures.
13. Camnula pellucida, Scudder.

Gedipoda pellucida, Scudd. Bost. Jour. Nat. Hist., VII., 47^{2} (1862).

CEdipoda atrox, Scudd. Ap. Hayden Geol. Survey of Nebraska, 253 (1872).
Camnula pellucida, Sauss. Prod. ©Ed., etc., Si (i884).
This is a very abundant grasshopper in many parts of Ontario, especially towards the north. At DeGrassi Pt. it sometimes occurs in positive swarms, rising up from the grass by the dozens at every step. It is not usually as numerous as this, however, though always one of our
commonest grasshoppers. At Toronto it is much less abundant. It prefers dry, grassy upland pastures, but is also commonly found in other dry situations, such as be:nt woods on sandy soil.

I have taken the full-winged insect from June $2+$ till about the beginning of October, but it is not ustally seen until July, and specimens taker in late September are apt to be ragged at the tips of the tegmina and wings. I have specimens from Nepigon, Lake Superior, Aug. 27, $1 \mathrm{~S}_{97}$; Clear Lake, Peterborough Co., July 7 and 16, 1897 ; DeGrassi Pt., Lake Simcoe, July to late September ; Toronto, June and September. West of Ontario, I have taken it at various points along the Canadian Pacific Railway from Manitoba to Vancouver Island.
14. Hippiscus tuberculatus, Palisot de Beauvois.

Acrydium tuberculatum, Pal. de Beauv. Insectes d'Afr. et d'Amer., 145 (i817).
Locusta corallina, Harr. Ins. Inj. to Veg., 176 (1862). (EEdipoda phoenicoptera, Thos. Syn. Acrid., 135 (1873).
Fippiscus phoenicopterus, Thos. Ninth Rep. State Ent., Ill., II 7 (isSo).
Hippiscus tuberculatus, Sauss. Prod. Ed., etc., 87 (1884).
The "Coral-winged Locust" is rather local in Ontario as far as my experience in collecting goes. Where it does occur, however, it forms colonies of considerable size. It is quite numerous in certain spots about Toronto, but this is the only locality where I have met with it. Dr. Saunders says it is common at London, and Mr. Scudder reports it from Nepigon.

There is a great disparity in the relative number of individuals of the two sexes. Since 1893 I have seen probably more than one hundred males, but have taken but four females.

It is found on light sandy soil, covered preferably with rather long grass and generally with other plants, as lupine, scrub oak, blueberries, etc.

It appears from about the twelfth of May till near the end of June, and I have seen the nympins late in autumn and again in early spring. Wherever I have found this species it has been associated with Arphia sulphurea.
15. Dissosteira carolina, Linn.

Gryllus (Locusta) carolina, Linn. Syst. Nat., I., 701.
Gryllus carolinus, Fab. Syst. Ent., II., 58 (1775).

Qedipoda carolina, Serv. Hist. Orthop., 722 (is39).
Locusta carolina, Harr. Ins. Inj. to Veg., 176 (i862).
Dissostcira carolina, Sauss. Prod. (Ed., 37 (ISS4).
This large, well-known locust, easily recognized by its black wings with a yellow border, is common everywhere in the settled parts of Ontario, frequenting every dusty roadside during late summer and autumn. It is our most striking species when on the wing on account of its large size, ample wings, and peculiar, butterlly-like flight.

It appears about the beginning of July, the earliest date on which I have taken it being July 2,1896 , and continues till October. I have seen it at Rat Portage, the Muskoka District, De(irassi Pt., Toronto, Hamilton, and various other places in Southern Ontario which have not been recorded.
16. Spharagemon bolli, Scudder.

Spharagemon bolli, Scudd. Proc. Bost. Soc. Nat. Hist., XVII., 469 (1875).
Spharasemon balteatum, Scudd. Proc., etc., 469 (1875).
Dissosteira Bollii, Sauss. Prod. (Ed., 140 (1884).
Spharagemon aeguale, Comstock. Introd. to Entom., 103, 104 (1888).

This locust is quite common about Toronto on sandy soil. It is also sometimes seen where the soil is clay, but much less frequently. I have also taken it at Stony Lake, Peterborough Co., and have seen a specimen taken at Sparrow Lake.

The earliest date upon which I have taken it was June 24,1896 (1 o). Its first appearance is generally, however, a little later, and it continues to fly about until October.

Its stridulation is a rapid and rather loud, rattling sound, resembling that of Ar'phia sulphurect.

I should think it not improbable that other species of Spharagemon occur in Ontario, since there are two others in New England, one of which, S. saxatile, Morse, frequents rocky unsettled districts, such as abound in the northern part of our Province.
17. Scirtetica marmorata, Harris.

Locusta marmorata, Harr. Ins. Inj. to Veg., 179 (1862).
QEdipoda marmorata, Thos. Syn. Acrid., iti (i873).
Dissosteira (Scirtetica) marmorata, Sauss. Prod. (Ed., 141 (1S84).
Scirtetica marmorata, Morse. Prelim. List N. E. Acrid., in Psyche, 105 (1894).

This is one of our most beautiful Acridians, but is very local in distribution. I have specimens taken at Sparrow Lake by Mr. C. 'T. Curelley, who found them very abundant. I have also taken it, personally, at Gravenhurst, Muskoka District, Sept. 27, i897, where they were flying in considerable numbers about a dusty gravelly road close to the railway station. They were very rapid in flight, though they never flew very far, and being without a net and pressed for time, only a few were secured. Its stridulation resembles that of Sphazagyemon bolli, but is more rapid, the sound being almost a buzz.

It probably occurs in many parts of our Laurentian area, but I have had, as yet, but little opportunity of collecting in that region. 18. Trimerotropis maritima, Harris.

Locusta maritima, Harr. Ins. Inj. to Veg., if8 (1862).
Edipoda maritima, Thos. Syn. Acrid., 124 (1873).
Trimerotropis maritima, Stal. Recens. Orth., L., 134 (1873).
On the sandy biaches of Toronto Island this locust flies about the coarse grass which grows at a short distance from the water's edge. In some seasons it occurs in large numbers, in others it is comparatively scarce. I have also two pairs which were taken at Kingsville on the beach of Lake Erie, by Mr. C. T. Hills, who says they were abundant there.

It is an extremely alert species and very difficult to capture, and is almost impossible to see when it alights, on account of the close similarity of its gray tints to those of the sand.

The specimens of this species found about the Great Lakes differ very considerably from the typical form of the Atlantic coast, and may possibly constitute a distinct species. The dark band crossing the wings is much broader than in the typical form, and is uninterrupted instead of being broken up into a series of sub-continuous spots. The greatest breadth of this band is nearly half the greatest breadth of the wing, while in typical maritima it is only about a third the greatest breadth of the wing. The base of the wings is yellower and more opaque, resembling S . bolli in this respect. All the markings are generally more distinct, and the tegmina and wings usually somewhat shorter in proportion. It is distinctly smaller in size, judging from specimens of the typical form which I have from Monmouth Beach, N. J. This form appears to be a distinct variety, and may be known as interior.

My Toronto specimens were taken between July 22 and about the middle of September, while those from Kingsville are dated Aug. 13, 1897.
19. Circotettix verruculatus, Kirby.

Locusta verruculata, Kirby. Jauna Bor. Amer., Insecta, 250 (1837).

Locusta latipennis, Harr. lns. Inj. to Veg., 179 (IS62).
OEdipoda vorruculata, Scudd. Bost. Jour. Nat. Hist., V1I., 471 (ISG2).
Trimerot, opis verruculata, Scudd. Daws. Rep. Geol. Rec., 49th Par., 344 ($1 \mathrm{~S}_{75}$).
Circotctixix verruculatus, Sauss. Prod. (Ed., 175 (1S84).
With the exception of Camuala pellucida, this is the most abundant (lidupodine in Northern Ontario, where it finds a very congenial home, flying about the bare rocky slopes and among the burnt timber, the loud, crackling stridulation of the males resounding in every direction. It is, however, by no means confined to rocky situations, being found wherever burnt timber occurs, even in swampy places, though preferably on dry sandy soil. I found it in a burnt clearing in a large swamp of tamarack and white cedar near Lake Simcoe at a considerable distance from dry soil.

Nearly all the specimens from Northern Ontario are of a black variety, being thus afforded an excellent protection when they alight upon the blackened stumps and logs, which they very frequently do. This variety has all the markings, except those of the wings, hind tibie and inside of hind femora almost entirely obscured by a blackish tone. I have seldom seen specimens of the mottled or southern form, though individuals intermediate between the two extremes are not infrequent. I found a dark brown, somewhat mottled variety common at Bradford on a marshy flat covered with weathered blocks and chips of wood from a sawmill; while in the rocky islands in Stony Lake, Peterborough Co., the specimens met with were frequently ash gray mottled with black.

I have occasionally heard the female stridulate, the sound being similar to that of the male, but more subdued.

It appears about the beginning of Iuly and continues till near the end of September. My earliest capture was at DeGrassi Pt., July 2, 1896, and I heard one stridulating at Gravenhurst, Sept. 27, 1897.

My specimens are from the following localitues: Rat Portage, Aug. 28, 1897 (very abundant) ; Molson, Lake Superior, Aug. 28, 1897 ; Jackfish, Lake Superior, Aug. 27, 1897 ; Stony Lake, Juiy 9 to 15, 1897; Bradford, Aug. 6, 1897 ; DeGrassi Pt., and various other localities about Lake Simcoe. I have also seen it at Aurora, but never at Toronto. though it has occasionally been seen there by other collectors,

A NEW ALEURODES ON OAK.

BY I. D. A. COCKERELA, N. M. AGR. EXP. STA.

Aleurodes gelitinosus, n. sp.-Pupa oval, rather less than 1 mm. long, pitch black, not bearing the larval skin, margin beaded; no fringe of the ordinary kind, but the pupa is surrounded by and rests on a gelatinous-looking colourless translucent substance, which extends rather further from the margin than half the diameter of the pupa. Radiating from the pupa, resting on the translucent substance, are three conspicuous lines of white secretion, one from the caudal end, and one from each side of the cephalice end.

Adult with head and body very bright lemon yellow; wings white, semitransparent, spotless. Eyes not divided. Antenne with second segment at least twice as long as the first ; formula for the slender segments +3576 .

Hab.-Pupae abundant on under sides of leaves of oak at Dripping Spring, Organ Mts., New Mexico. Adults emerging the last week of April. The oak, according to Prof. E. O. Wooton, is probably Qucrulus arizonica, Sarg.

AUTUMN CAPTURES.

Our park caretaker unwittingly caters to the wants of the entomologist by planting every year some fine beds of Phlox Drummondii and verbenas. Last year, without a net, I took with a cyanide bottle 59 Plusias in one evening about the 2oth of September. I was surprised to find that 22 of them were Biloba, the rest were Precationis. This year I went to the park on the $17^{\text {th }}$ of Sept., better prepared for taking anything I came across. I caught Plusia Balluca, one ; Aroides, one ; Simplex, several; and Precationis, a few ; three Plusias of a species s.ot yet determined; also two Dcilephela lineatar; but the capture of the evening was a very fair specimen of Dilophonota obscura, which was not represented in my cabinet. I have two of ello, but this insect is at once easily distinguished from it by the description quoted by Mr. Moffat in the last annual report, viz., smalier size, light gray primaries, and unbanded abdomen. I thought the capture was worth recording. I have taken over 40 Heterocea, new to me this season, and my Orillia list is now fairly respectable,
C. E. Granst, Orillia, Ont,

THREE MYRMECOPHILUS MITES.

BY NATHAN BANKS, WASHINGTON, D. C.

Many American entomologists have, doubtless, been much interested in the accounts published during the past year by Charles Janet on the relations of certain Myrmecophilus Acarians and their hosts. His very interesting papers have been noticed in various English and American journals. Particular attention was paid to two species of Eamasidal, Discopoma comata and Antennophorus Uhimanni.

A few years ago, while collecting mites on long Island, New York, I obtained three species of Eamaside, which were always associated with certain ants. One, a species of Discopoma, is attached to the body of the ant, and appears to obtain food from it in the same manner as its European relative, by piercing the skin. But while the European species appears to choose the abdomen, the American form is, at least gererally, found attached to the thorax of the host ; and 1 have not observed more than two mites attached to one ant. There is usually but one mite fastened to the dorsum of the thorax near the median line. In some nests the mites were found on about ro per cent. of the ants, but in other nests they were much more scarce.

Of the other two mites, one, the Uropoda, was found in considerable numbers associated with the same ant as the Discopoma, but they were not attached to the ants. The other was observed only a few times in the nests of another ant.

The ants have been kindly determined for me by Mr. T. Pergande. Holostraspis mastus, n. sp.

Body one and one-half times longer than broad, broadly rounded behind, sides subparallel, narrowed in front on cephalic part, and narrowly rounded in front, quite convex above. Body above with four rows each side of clavate hairs; two lateral rows of about nine hairs, which start from the shoulders; the third row has about ten hairs, one on the cephalic part of body; the sub-median row has about twelve hairs, and starts from the anterior edge of head. On the soft posterior sides is a row of a few small clavate hairs; soft parts of venter with a few simple hairs, and some on the margins of the sternal and genital plates. Anal plate nearly circular, and almost its diameter from the hind border of the ventral plate. Legs of moderate length, clothed with a few clavate hairs on basal joints, and more and simple ones on the apical joints, Length, I. mm,

In the nest of Lasius aidenus, var. americanus; Sea Cliff, N. Y. Readily known by rows of clavate hairs, and small anal plate.
Uropoda punctulata, n. sp.
Body rather long oval, about one and one-fourth times longer than broad, broadly rounded behind, narrowly rounded in front; moderately convex, both above and below : dorsum with small hairs, mostly on the sides, and a row of much larger and stiffer hairs along the margin, and about four rows each side above, of slightly smaller size than the marginal ones, all erect; hairs of under side confined to the legs and a few on the anal plate ; three on each side, and two smaller before anus; sternal plate more than twice as long as widest parts, which are just behind the second and third cone, narrowed in front and behind, truncate at each end, rather coarsely, sparsely punctate, anal plate more densely and finely punctate; legs short, concealed in repose, the femora (except I.) slightly margined bencath. Length, 85 mm .

In the nest of Cremustosraster linenlata at Sea Cliff, N. Y., Fitch described a Uropoda (U. formicee) found in the nest of an ant, but it is evidently different from this species.

Disiopoma circularis, n. sp.

Body nearly circular, a triffe longer than broad, quite convex above, with a rather broad, thin margin all around, alike at each end, so that from top view one cannot tell which is front, clothed above with minute hairs, and many scattered, short clavate hairs, arranged in concentric rows ; legs very short, when in repose not showing from above; the sternum elliptical, rather narrowed behind, its margin finely serrate, containing a central plate of same shape in front, but truncate behind; the plate is sparsely punctate, the venter behind is also punctate; the legs are clothed with minute hairs. Length, .48 mm .

Attached to thorax of Cremastoraster lineolata; Sea Cliff, N. Y.

A NEW SCALE INSECT FOUND ON BEARBERRY.

BY T. D. A. COCKERELL, N. M. AGR. EXP. StA.

Aspidiotus Dearnessi, n. sp.- 9 . Scale suboval, about 2 mm . long, moderately convex, pale gray, more or less concentrically ridged; with the orange-yellow, partly exposed exuviæ quite to one side. Ventral scale thick and distinct. The scales resemble minute oyster-shells.
\%. Dark yellowish-brown, after prolonged boiling in K. H. O. becoming transparent and almost colorless, except that the lobes remain
dark brown. No circumgenital grouped glands. Only one pair of lobes, these short, parallel, very close together, practically contiguous at the lips, their ends broad and obliquely truncate, breadth of a lobe greater than its length beyond the general margin. Apparently no squames. Margin irregularly bluntly serrulate; a small projection near the lobes, and two much larger ones at considerable distances beyond, much in the style of A. bigclovice. Anal orifice oval, a considerable distance from the hind end. Surface striated, with rows of small round dorsal glands, much in the manner of A. bigcloaice. Nouth-parts large.
ot. Scale elongate, nearly parallel-sided, light brownish, with the pale orange exuvia at one end, when fresh covered by a film of white secretion.

す. Brownish-yellow, with ample wings.
Hab.-Crowded on twigs of Arctostaphylos uva-ursi, collected on " shore of Lake Huron," Aug. 20, 1898 , by Mr. J. Dearness.

This interesting species is not a Diaspidiotus, but is evidently allied to the south-western group composed of A. bigelozice, $A . y u c c e$ and A. yuccarum. At the same time it is allied to A. Sisnoreti of Europe, which is the type of the subgenus Targionia, Signorct. For the present I believe we cannot do better than extend the subgenus Targionia to include all these five species.
[In his note to the Editor, Mr. Dearness states that the precise locality where he collected the infested plants was in the Ojibeway Indian Reserve in Saugeen, in the Bruce Peninsula, on the sandy shore of a little bay off Lake Huron, a favourite botanizing ground of Dr. Scott, of Southampton, Ont. Mr. Dearness does not know whether the inlet is generally known by the name of "French Bay," but that is what the Doctor calls it.]

A CORRECTION.

In an article in the October, 1897, number of the Cin. Ent., page 243, I used the name subfasciatus in describing a new species of Attalus from San Clemente Id. I have since discovered that this name had been previously used by Gorham for a Mexican species, and I would therefore propose the name transmarinus for the San Clemente species. Oddly enough, in looking over the Horn collection the past summer, I found specimens of subfasciatus, Gorh., labelled Arizona ; the name must therefore enter our lists.

Superficially sur fosciatus and transmarinus resemble each other very closely, but the tatter may be at once distinguished by the prothorax being sinuately narrowed behind so as to produce the appearance of being broadly lobed, while in subfusciatus it has the normal form.
H. C. Fall.

NOTES ON ANDRENA.

HY S. N. DUNNING, HARTFORD, CONN.
Anhrena Mallif, n. sp.
P.-lenth, 14-17 mm. Black, shining; pubescence black with patch on vertex, the prothorax, mesothorax (excepting posteriorly where pubescence is not so thick and has black mixed with ferruginous, forming a more or less distinct black-appearing band between the tegule), scutellum and postscutellum bright ferruginous, thick, entirely obscuring punctures on thorax. Clypeus shining, large quite close punctures, a median line impunctured ; antenne black, third joint equal to fourth and fifth combined; metathorax not shining, closely and more finely punctured; scutellum with two smooth shining spots anteriorly, a few scattered punctures near-by, otherwise roughened; postscutellum and metathorax roughened, enclosure triangular, distinctly outlined, carried to a point on posterior face, sometimes faintly and irregularly wrinkled in fore half, last half impunctured. Abdomen without hair bands, a few long scattered hairs on segments 3-4, $5^{\text {th }}$ seg. pubescent and protuberant as is vicina; anal fimbria heavy, black; segments $1-4$ depressed posteriorly, the first very slightly if at all, the remainder one-third or one-half of their length; fine scattered punctures on seg. $1-3$, remainder impunctured ; a sweep of hairs below like vicing. Wings dusky throughout, a violaceous rellection, otherwise like vicina; stigma and nervures piceous or very dark brown. Claws bifid, rufous; spurs black. Basal process of labrum prominent, cmarginate.

Three females. Pullman, Wash. (coll. C. W. Piper), and Moscow, Idabo (J. M. Aldrich).

It differs at once from vicina by pubescence and punctures of clypeus.
A. marife, Rob.
'Three females Ames, Iowa (E. D. Ball) ; one from flowers of gooseberry, May 6th.
A. rhonura, Ckll.

Two females on Salix, April 25th, at Hartford, Conn. A. Casajee, Ckill.

Two Émales on Holodiscus discolor, Evergre ${ }^{1}$, Colo. (about 7,000 fect), July 16. One specimen shows the second segme.:t rufous throughout. Prof. Cockerell thinks a large series may show this species to be synonymous with prunorum.
A. Kincaimi, Ckll.

This species varies like Synhalonia Edanardsii, Cr. (see paper by Cockerell, Proc. Acad. Nat. Sc., Sep. '97, page 347), but owing to the unsatisfactory nature and variability of the differences I have not named the races into which it falls.
(1) Typical Kincaidii. Seattle, Wash. 3 ? : Vancouver Is., B. C., 2% (July t and July 5); Moscow, Idaho, 1 ? . This has the abomen more ovate in $?$.
(2) A geographical race. Pulman, Wash. 3 Я. Abdomen subdepressed in q.

My male specimens are all from Seattle and Vancouver. The only differences they show is in colour of pubescence as mentioned by Cockerell in the original description.
A. perarmata, Ckll. (in ed.)

I have males from Seattie, Wash, (Feb. 16-Mch. 14), and females from Seattle (March 13-14), and Vancouver Is. (Apr. 20).

Aphilanthors Bakeri.

d. The "lobes" in the co-types take the form of dentations in a larger series. Third joint antenne as long or almost as ang as joints 4-5 combined. The first abdominal segment is a little coarser in punctuation than the rest. Sometimes a yellow spot is on the mesothorax in front of the tegule.

ㅇ. Differs from δ in larger size ($12-13 \mathrm{~mm}$.), face with three broad yellow stripes (not all yellow), clypeus 5 -dentate. Montana and Colorado, Coll. Amer. Ent. Soc. and Colo. (Baker 2044). The P is much like frigidus; the δ shows differences, however.

DIASPIS AMYGDALI, Tryon.

by c. p. lounsbury, department of agriculture, cape toln, africa.
The article on Diaspis amygdali, Tryon, by Professor Webster, in the April isstie of this magazine, has left me with the impression that the introduction of this insect to several widely separated sections of the United States has not aroused the apprehension among American entomologists that the advent of a pest of its importance justifies. The quotation from Mr. Tryon's letter to the effect that the insect is neither widely distribued nor destructive in Queensland is too reassuring. it constrains me to emphasize the fact that the species is a highly injurious
one in Cape Colong. A brief account of is occurrence here may not be uninteresting.

Under various common names, this insect has been known about Cape Town for at least twenty-five years. Owing to the slight attention paid to fruit culture until within a comparatively short time, and also to the lack of transportation facilities, it has not, however, become nearly so widespread as would have been the case had such favourable conditions as are found in the United States prevailed. And yet, despite of adverse circumstances, it has become established at many of the principal centres, both cast and west, and in the country adjacent to the seaports. One serious occurrence in the Transvaal has been reported to me, and M. d'Emmerez de Charmoy, of the Museum at Port I.ouis, writes that it is destructive in Mauritius. From Cape Town, it has spread inland for about one hundred miles, and within this area I do not think there is any orchard insect pest, with the exception of the Fruit Fly (Ccratitis capitata), that gives greater trouble.

The peach is pre-eminently the food-plant of Diaspis amygrdali, and notwithstanding the vigorous growth it makes in this climate, this tree is not infrequently killed to the ground ; more often, branch by branch dies, and the tree becomes misshapen and unproductive. Reddish stains, both in the rind and pulp, are produced on the fruit of some varieties; and if the attack begins when the fruit is very green, malformation results. Many other food-plants are cited by Professor Webster, but the list might be greatly lengthened. The China 'Tree (Mclia azcdarach), known here as Syringa, a tree adapted to the requirements of several of our common scale pests, sometimes gets thoroughly coated with this one. Many Solanaceous plants assist in passing the infection from orchard to orchard; chief among these are Solanum sodomaum, S. sigranteum and S. aculeastrum (?) (Natal Thorn). Mrvoporum insulare, chiefly grown here as a hedge plant, is similarly responsible. Fortunately, the pomaceous fruits are nearly exempt from attack; I have not seen it at all on apple, and not on more than a dozen pears.

Upwards of fifty per cent. of the insects are here destroyed by parasites on many trees, and a further large percentage is devoured by Coccinellids. But the loss might be ninety-five per cent., and still the increase be a hundred fold in twelve months. Three to four generations are passed in a year, and two hundred young from one female is not exceptional. The multiplication may prove less rapid in the Northern

States, but it is reasonable to suppose that many years may clapse before natural enemies prey on it there to the extent that they now do here.

That the insect is not an sasy one to contend against in the United States may be inferred from the results obtained in the experiments recorded by Dr. Howard. In this warm climate the Californian lime-sulphur-salt wash will keep it in check if the wash is well made and thoroughly applied, and fumigation with hydrocyanic acid gas destioys eggs and all other stages when one ounce of cyanide is used for each one hundred and fifty cubic feet of enclosed space. Manly suburban people have all their stone-fruit trees protected by whitewashing them from the ground to the tips of the twigs every winter.

All in all. 1 consider that Diaspis ampyrdali is almost as much to be feared in the peach orchard as Aspidiotus perniciosus. The whiteness of the scale renders the former easier of detection, it is true, but conspicuous as it is by reason of its colour, people here often unwittingly infect nursery stock in the process of budding. American nurserymen and fruit-growers are not, 1 feel sure, any the less likely to commit such a blunder. The insect is fond of secreting itself behind buds on young wood, and much of it is often to be found in such situations when the twigs elsewhere are quite clean.

STATE ENTOMOLOGIST OF NEW YORK.

We beg to offer our hearty congratulations to Mr. M. V. Slingerland upon his appointment to the important position of Entomologist to the State of New York. We may also congratulate the authorities of the State upon having selected one so eminently fitted for the position. Mr. Slingerland is a graduate of the College of Agriculture of Cornell University, and for the last eight years has been a member of the University Experiment Station at Ithaca. In this capacity he has published a number of admirable bulletins on injurious insects, and a large number of articles of a popular character on practical entomological subjects in various agricultural papers. He has also contributed to this magazine and to other scientific publications, many valuable papers of a more technical character. He has thus proved himself to be thoroughly well qualified to carry on the work at Albany, both in its scientitic and practical departments, in accordance with the high standard maintained by his eminent predecessors, Drs. Asa Fitch and J. A. Linener.

ABBREVIATIONS OF AUTHORS' NAMES.

BY A. RADCLIFFE GROTE, A.M., HILDESHEIM.

It is quite desirable that the names of authors should be uniformly treated according to a certain standard. To this end the Zoologists of the Berlin Museum have published a list, which has now appeared in a second edition. It is quite necessary that names which are borne by different persons, owing to their prevalence, should be so abbreviated that the particular bearer intended is designated. I give here a selection of the abbreviations of the names of chiefly American authors determined upon, and call attention to the pamphlet which is published by R. Friedländer and Sohn, Berlin :

Aaron............ Aar.	Grote, A. R.............. Grote.
Abbct Abb.	Guenće, A. Guenée.
Berg, C. Berg.	Gundlach. Gdl.
Buisduval. Bsd.	Harris Harr.
Butier Butl.	Harvey Harvey.
Casey, Th. L. Casey.	Herrich-Schaeffer H.-Sch.
Chambers Chambers.	Howard, L. O. How.
Clemens. Clemens.	Huibner Hb.
Comstock, J. H. Comst.	Hulst........ Hulst.
Coquillett. Coquill.	Packard................. . Pack.
Cresson. Cress.	Reakirt........Reak.
Crotch. Crotch.	Robinson............ . . . Rob.
Duzee, Van. Duzee.	Schwarz, E. A...... E. A. Schw.
Edwards, H. H. Edw.	Scudder. Scudd.
Edwards, W. H. . . . W. H. Edw.	Smith, Emily A. E. A. Sm.
Fabricius F.	Smith, J. B............ J. B. Sm.
Fernald. Fern.	Smith \& Abbot........ . Sm. Abb.
French, G. H. French.	Walsingham.. Wighm.

ENTOMOLOGICAL BOOKS.

We have much pleasure in informing our readers that entomological books of all kinds can now be imported into Canada free of all customs duty, and that this concession was made by the Dominion Government in consequence of the representations made to it by the President and Council of the Entomological Society of Ontario,

