The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/

Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculíe

Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur

\square
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

\square
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

\square
Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion ls long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas èté filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées

Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qual: ‘és inégale de l'impression

Continuous pagination/
Pagination continue

Includes index(es)/
Comprend un (des) index

Title on header taken from:/ Le titre de l'en-tête provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Gènérique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:
This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

ghe
 diatullian

Vor. XXXII.

. 5,5	crote cio
Poling Nicophasia Townotii.is ${ }^{\text {s }}$	Ashanead Chamges in (ieneric Nitutes in Ilymenoptera..
Grute Climsification of the Butterlics.,3is	
King Now Prulvinaria from New Mexios. .(x)	nary l Rev. (i. D. Iluht.
Cowkerell Niw. Mexico Bear.... 6 ,	Gihnon-Liti-hintory of Aretia phaterata
1lamam Mamioha Buttertlic: , .05	Entumoleriaal Society of Ontario.

REMARKS ON PSOROPHORA CILIATA, WITH NOTES ON ITS EARLY STAGES.

BY 1. O. HOWARD.

Psorophora ciliata, Fabr., is the only species of the genus Psorophora known to occur in the United States. It is a widespread species and is known to the writer to occur in Massachusetts, New Jerscy, Pennsylvania, District of Columbia, Virginia, Kentucky, Illinois, Florida, Louisiana, Arkansas, Nebraska, Texas and California. It is, however, rare in its northern range and seems to be a lower austral form. It may have a tropical range, but among many mosquitoes received by the writer during the past year from Mexico, Nicaragua and Cuba, this species does not occur. In his "Notes on the Mosquitoes of the United States" (Bulletin 25, New Series, Division of Entomology, U. S. Department of Agriculture), published August 23 rd, 1900 , the writer calls attention to the fact that Psorophora and Megarhinus have not been studied by investigators engaged in working upon the transfer of Haematamoebre by mosquitoes, and urges that physicians and bacteriologists in our Southern States pay some attention to the mosquitoes of these genera.

At the time when the bulletin was written nothing was known about the early stages of Psorophora. A large series of living specimens was captured in June of the present year at St. Elmo, Va., by Mr. Pratt, and we expected that we should be able to secure eggs without difficulty and to study the insect in its different stages. The females were placed alive in large battery jars, under conditions which had repeatedly been successful with Culex and Anopheles, but no eggs were deposited. This brought
the writer to the conclusion that either the confined specimens were not impregnated, or that they had already deposited all of their eggs, or that the breeding habits differ from those of the mosquitoes of the other genera mentioned.

Fig. 31.-Psorophora ciliata: a, full-grown larva; b, head of same from below; c, antenna of same; d, a mandibular flament; e, tuft from penultimate segment of same ; f, fringe from same; g, pupa ; h, anal flaps of same. Enlarged (original).

On August 30 th, 1900 , some very large mosquito larve and pupe were received from Mr. Wm. P. Seal, of the Aquarium Supply Company, at Delair, N. J. An examination of these specimens convinced me that they could be nothing else than the larver and pupse of P, cilinta. The first specimens received were in alcohol, and Mr. Seal was informed of their probable identity and urged to send on living specimens in water and to endeavor to rear the adult himself. It was then, however, unfortunately; too late. Mr. Seal wrote that during the summer a small creek and some earth ponds on his place became entirely dry, in consequence of which

Fio. 32.-P'sorophora ciliata: young larva with enlarged antenna at left. Snlarged (original).
all fish in them died. Some time in August there was a sufficient rainfali to fill a few of the deepest places, which became almost alive with mosquito larve. These were used for fish fond until it was noticed that they were developing to the pupa stage, when coal oil was immediately poured on the water. It was when the coal oil was being applied that the big larve and pupee were first noticed. Mr. Seal had been a collecting naturalist for 26 years, supplying material for the aquarium, for biological research, and having discovered some low forms of life new to science, described by Leidy and Ryder; but in all his experience he had never observed such large mosquito larve.

On being assured of the novelty and importance of his observation, Mr. Seal promised to watch for the subsequent appearance of similar harva, and on September 2oth last was able to forward other specimens which appeared after a rain which occurred about the 15 th of September or a little before. Mr. Seal was able to distinguish between them and the ordinary Culex larve, and wrote that they were very scarce, perhaps one of them to many thousands of the others. On the 25 th of September additional larve and pupe were sent by Mr. Seal, and from these specimens the accompanying drawings were made. The larva is structurally of very great interest. On comparison with the larva of Culex, which it resembles more nearly than that of Anopheles, it will be seen that the respiratory siphon is longer, that the anal thaps are longer and more pointed, that the hair fringe on the venter of the anal segment is much longer and denser, and that the mouth-parts differ in very important particulars. The labium is well differentiated into ligula and paraglossa and the labial palpi are represented by little simple processes. The lacinix of the maxille are beautifully modified into mandibular-like structures, each with a long terminal tooth and stout basal tooth and three intermediate teeth. These not only resemble mandibles, but have a mandibular function, since they are indubitably used in the mastication of food. Other mosquito larva studied fed upon spores of alge and other small particles which appeared to require no mastication, but this larva descends to the bottom of the water and has been noticed to grasp a bit of vegetation a half-inch long and to actually chew it. The maxillary galea is membraneous and furnished with long terminal cilia. The mandibles are long, brush-like organs, each. element of which is beautifully pectinate, as shown in Fig. 3i d. The clypeus is bent over the front of the head, forming a chitinous overlapping lip which reaches nearly to the maxilla.

The duration of the pupal stage in specimens received was 4 to 5 days, and adults issued on the 27 th and 28 th of September, and confirmed the determination of the species as P. ciliata. In the last sending young larve were found, shown at Fig. 32.

The adult of this species is at once distinguished from all other mosquitoes by the peculiar vertical scales on the legs, as shown in the illustration, Fig. 33. The colour of the insect is dark yellowish, with infuscated wings.

The breeding places in which these larve were found were small depressions in the bed of a small stream and similar hollows in certain small ponds, all of which were dry the grenter part

F10. 33.- Psorophora ctatha : adult females, showing resumg position on side wall and celling. Enlarged (original).
of the past summer. After they first dried in the spring they were barren of fish and vegetation. Mr. Seal is satisfied that the insect is very rare in the vicinity of Philadelphia. It is now important to discover the egg of this interesting species.

NOTES ON NEOPHASTA TERLOOTIT, BHR., FROM ARI. ZONA, WITH DESCRIPTION OF A NEW VARIETY.

iv orto c. boling, quinct, int..

Neophasia Terluotii was described a great many years ago*, and the description being in Latin, it is not surprising that Dr. Strecker overlooked it in the hurry to publish his description of the female I sent him, which he supposed had not been previously described. It is a little surprising, however, that Dr. Skinner, who had the first opportunity to examine one of my examples of Terlootii, should have failed to recognize the generic characters of the insect until Dr. Strecker's description as Neophasia epyaxa was published.

The first female example of Terlootii taken, which is the type of "Archonias lyeeas, Skimer" \dagger, and is now in my collection, agrees with the type of Neophasia epyaxa, Strk., which I sent him after a careful comparison. These two specimens were taken in Cochise County, Arizona, to which locality I sent one of my regular collectors to spend the past season in studying the habits and collecting a series of examples of this interesting butterfly.

Of the series before me, most of the examples agree with the description of Terlootii male, and subsequent illustrations and descriptions of specimens sent out. There are, however, three females and one male which differ so much from the others as to well deserve a varietal name, and with the kind permission of my friend, Dr. William Barnes, I am allowed to use a most appropriate name, which he had intended to bestow on the species had it not been previously described, Neophasia Terlootii, var. Princetonia, n. var. Male differs from type in having the margin of hind wings washed with pale red on both surfaces, of a shade somewhat lighter than that of the female. The under surface is more heavily washed with red than the upper. There is a submarginal entire black band on both surfaces of hind wings, which is not quite so broad as in the female menapia, but the veins between this band and the outer margin are more heavily washed with black scales than in the latter species.

Female-From the types of Neophasia epyaxa, Strk., and "Archonias lyceas," Skinner, this form differs in having a much greater suffusion
*Trans. Am. Ent. Soc., Phil., II., 304 (1869).
\dagger Ent. News, XI., 533, plate NIV. (Sept., 1900).
of back on both suffaces of the wings, and in the absence of the orange sposts in outer marginal band of hind wing. There is also a large patch of orange in the centre of the cell.
[The Curator, on behalf of the Fintomotogical Society of Ontario, desires to acknowledge with grateful thanks Mr. Doling's very acceptable gift of specimens of both sexes of this remarkably interesting butterfiyNeophasia I'erlootii.]

CIASSHFICATION OF THE BUTTERFIIES.

II A. k. GROTL: HHDESHEIM, GERMANY.
In the course of my already-pullished studies, the probabilities as to the homology of the hast anal vein of the lapilionides primary have varied. lirom preparations of the pupal wing of the Hesperiades, it has become elear that the fork to second anal at base is the remans of the third anal vein, which is irregular and more extended in the fore wing of the chrysalis and does not attain the outer margin. It is furcate and connected with the second amal in the pupal stage. On the other hand, the downwardly curved, short, last and free amal vein of the l'apilionid primary camot be homologons with this, as, indeed, I originally comtended. This vein reaches the internal margin, and is probably a survival of the fourth anal. This fact points to a different origin for the two groups, which I have finally defined as follows :
A. Butterfies having a short fourth anal vein on primaries, rumning downwardly free from base of wing to internal margin; on secondaries only one anal vein................... Papintonibes. b. Butterflies having a short third anal rein on primaries, joining outwardly the second near base of wing (this fork sometimes wanting by reduction and always thinner than second anal or degencrate), fourth anal wanting, and having more than one anal vein on secondaries
.Hesperiades.
In order to bring out the probable phylogeny in the classification, I accord superfamily value to the two divisions. The Papilionides include the three families: Parmassida, Teinopalpide and Papilionide, separable on neurational features, the first two appearing as specializations of the last in the order given. The Hesperiades include not only the Lycenids, as indicated by Fabricius, but all the rest of the butterflies, of which I regard the Pierids and Blues as the more recent developments, while the Nymphalids and Skippers represent older types.

A NEW PUIVINARIA FROM NEW MEXICO.

P'uluinaria Tinslcyi, n. sp.
Shriveled adult female scales on the twigs, light brown, elliptical, convex. Ovisac, clear white, texture as in P. innumerabilis. Nfer boiling in K. O. H., derm colourless, not pitted or tessellate. Legs and anal plates tinged with yellow. Spines of lateral cleft in threes, one long and curved; 76μ long, two quite short, 28μ long. Margin with one row of stout blunt spines 40μ long, 6 broad. Anal plates heart shaped, each 100μ broad and 136μ long, Antemme 7 -jointed, width quite constant, but the length of the joints seems to be quite variable. I have examined ten, with the following results in μ : Joint (1) 24 to 40 , (2) 40-60, (3) 68-80, (4) 52-64, (5) 28-36, (6) 28-40, (7) 44-52. Formula 347265 t. Joint 3 is always longest, while 4 is nearly as long, but never equal ; I is always the shortest, 5 and 6 are next and sometimes nearly equal. Joints 2 and 3 have two long hairs each ; 5 and 6 have 3 each ; 7 seems to have 2 , the terminal one verylong.
legs normal, with the coxa 80μ long, 100 brond. Femur with trochanter, 20 S iung, 68 broad. Tibia, 180 long, 24 broad. Tarsus, 92 long, 20 broad. Claw, 24 long. The trochanter has one short terminal hair. Tibia and tarsus each with four short subterminal hairs. Digitules of tarsus and claw normal, with knobbed ends. No satisfactory measurements can be given of the dead and shriveled adult scales; but those boiled and pressed under a cover glass seem to be nearly circular, about 5 mm . in diameter. Larva, just hatched,-yellow, elliptical, marginal spines absent. Antenne 6 -jointed, measuring in $\mu:(1) 20,(2) 16,(3)$ 32, (4) $16,(5) 16$, (6) 3^{6}. Leg, coxa 48 . Femur with trochanter, 60. Tibia, 48. Tarsus, 44. Larvie, perhaps about three or four weeks old, on the leaves of the food plant, have well-developed 7 -jointed antenne, and large blunt marginal spines.

Hab.-On Celtis sp., in a draw near the road from Pecacho to Roswell, in the Pecos Valley, New Mexico, about $20-25$ miles west of Roswell. Some of the limbs were almost covered with the scales, and many of the leaves were about killed. Collected by Prof. Tinsley, August, 1900, and sent to Prof. Cockerell, who turned it over to me for study. Pulvinaria innumerabilis has been recorded from Celtis occidentalis, but innumerabilis has nothing to do with the species above described, although the two are superficially similar, and might be confused at first sight.

NOTES ON NEW MEX!CO BEES.

IIY T. 1). A. COCKEREIL, N. M. AGR. BNL. STATION.
Bumbomelectaz larrece, n. sp.
ㅇ.-Length $121 / 2 \mathrm{~mm}$. ; general build and structure of B. thoraticia, but the scutellum is convex with a central depression, and wholly without spines; while the claws have the inner division short and broadly truncate. The maxillary palpi are 6 -jointed, and the mandibles have a strong tooth on the inner side. Black ; pubescence of the face and vertex pale brown; of the occiput, labrum and clypeus, black ; of the pleura, metathorax and scutellum, black ; of the post-scutellum, yellowish, especially noticeable at the sides; of the mesothorax, orange-fulvous, short, dense and conspicuous in front, thin behind. Abdomen with broad but inconspicuous ochreous bands on segments 2 to 4 , more or less interrupted in the middic on 2 and 4 , represented on the first segment by lateral patches, and a few ochreous hairs even in the middle; fifth segment with black hairs. Antenne entirely black, apex trune te, the corners of the truncation rounded. L.egs black, with black pubescence ; spurs black, hind spur of hind tibia larger than the other, and somewhat bent. Wings dark fuliginous, with hyaline patches on the third transverso-cubital and second recurrent nervures; venation resembling that of B. thoracica, var. filvida, except that the first recurrent nervure joins the second submarginal cell almost at its apex.

Hab.-Mesilla Park, New Mexica, at flowers of Larrea tridentata, May 9, 1900.
Epcolus occidentalis, Cresson, var. segregratus, n. var.
d.-Differs from typical occidentalis from Colorado, received from Mr. Fox, as follows : Spurs of four hind tibite pale brownish, only the minutely ciliate margins black; tegulx deep orange-ferruginous, shining and distinctly punctured ; the two longitudinal pale ochreous stripes on mesothorax narrow, very well defined, not reaching the front margin ; marginal cell shorter and broader; wings grayish, not yellowish; light band at apex of first abdominal segment narrowly interrupted in the middle; apical plate of abdomen subtruncate ; second and third ventral segments with appressed white hair-bands. The first joint of flagellum is ferruginous beneath.
¢.-Similar to the d. Scape and first two joints of hagellum ferruginous beneath; longitudinal stripes on mesothcrax subclavate, and attaining the anterior margin ; scutellum ferruginous; all the abdominal
bands interrupted in the middle; fifth segment with a pyriform light patch on each side. The last ventral segment is dark, a little hoary in some lights, contrastive strongly with the broadly snow-white hind margins of the three previous segments; apex or abdomen very obtuse, the apical ventral segment not produced.

Distinguished from E. lunatus by the transverse black band, instead of semilunar mark, on the first abdominal segment. The lower part of the pleura is free from hair, and sparsely punctured on a shining ground. This insect seems intermediate between lunatus and occidentalis, and it may be that all three are races of one species.

Hab.- © . Las Vegas Hol Springs, N. M., July ri. q. Las Vegas, at flowers of Petalostemon candidus, Aug. in. (W. Porter.)
Epeolus remigatus, Fabr., var. Martini, n. var.
9 .-Length about it mm. Head dull from the excessively close punctures; clypeus with some larger punctures interspersed, and a more or less distinct longitudinal raised line; dark mark on mesothorax anchorshaped, the lateral lobes long; pleura with very little light colour; first segment of abdomen with a broad triangle of black on its disc; the band below the triangle narrowly interrupted; band on second segment very thick, and produced obliquely upwards at the sides, forming an acute angle where it bends; sides of fifth abdominal segment black; antenne and legs black, tarsi becoming ferruginous, middle tibie with a stripe of orange-fulvous pubescence.

Differs from E. robustus by the dull, densely-punctured clypeus and face, different ornamentation of thorax, band on second abdominal segnent bent back at sides, etc.

Differs from E. concavus by not having the last ventral segment produced or curved.

Differs from E.Texanus, v. nigripes, by the ornamentation of the thorax and abdomen, and considerably shorter lateral teeth of scutellum. In life the eyes of Martini have the upper third green, the rest black.

Hab.-Romersville, N. M., Aug. 6, 1899. (Martin D. Cockerell.) This is very possibly a distinct species.
Epeolus Cressoni, Rob., 1867 . New to New Mexico.
Las Vegas, July 24, at flowers of Spheralcea Fendleri lobata, 1 d (Wilmatte Porter) ; San Ignacio, Sept. 1, Aug. 31, q (W. Porter and Ckil.). A female from near San Ignacio, Aug. 15 (W. Porter), is unusually large, 13 mm . long.

Diadasia diminuta, Cresson.
Santa Fé and Las Vegas, abundant at flowers of Malvaceæ; caught at Las Vegas on Spheralcea Fendleri lobata, S. cuspidata, Maluastrum coccineum, M. dissectum and Sidalcen neomexicana, on the last by Mr. A. Garlick.
Diadasia apacha, Cresson.
Mesilla Valley, abundant at flowers of Sphteralcea Fendleri lobata. Heretofore recorded as D. diminuta (Trans. Am. Ent. Soc., XXV., 193). Its nesting habits are recorded in Nature, Sept. 17, 1896, p. 46i.
D. diminuta was described from the of, apacha from the q; they are perhaps only subspecifically distinct. The $\%$ diminuta is distinguished from apacha by the dark tegule and the thorax broader between the wings; the stigma also averages darker. The D. diminuta recorded from Juarez, Mexico (Cat. Abejas de Mexico, p. I4), is apacha.
Centris Cockerelli, Fox, Pr. Acad. Nat. Sci. Phila., 1899, p. 68.7.
I have little doubt this is the true of of lanosa; i. e., of the Mesilla Valley insect regarded as lanosa.
Centris rhodopus, var. pulchrior, n, var.
Mesilla Park, N. M., June 24, one ot. This is the of variety described by Mr. Fox in Proc. Acad. Nat. Sci. Phila., I899, p. 68, but not named. I think it is probably a distinct species. The legs are ferruginous (the hind femora blackish beneath at base), and the basal joint of the hind tarsi has long white hair like that on the tibia. The hind margins of the abdominal segments have distinct pale hair-bands.
Centris Hoffmanseggice, Ckll., Am. Mag. Nat. Hist., April, 1897, p. 395. of (not q).
Mr. Fox regarded the insect which I had described as $\%$ C. lanosa as the true O of C. Hoffmanseggice: but it difiered from the δ in its larger size, and entirely different pubescence of the legs, so I thought to treat it as a distinct species. It appears to be fond of the flowers of the mesquite (Prosopis glandulosa), on which it was again taken on May 15 of the present year, by Miss Nora Newberry. On May 16, at Mesilla Park, individuals of Centris were seen hovering in the air, but not visiting flowers. They were so agile that it was only with considerable difficulty that three were caught. These proved to be males of C. Hoffmanseggie, but larger ($131 / 2-14 \mathrm{~mm}$.) than the single male hitherto known. At the same place, the females, their hind legs covered with orange pollen, were found entering their nests, which were tunnels in the ground, about two
inches vertically, and then laterally about four inches. The female is the insect which I described as iq lanosa, and thus Mr. Fox's reference of it to Hoffmansegryia is confirmed.
Panurginus Portera, n. sp.
3.-Length about $71 / 2 \mathrm{~mm}$., black; head and thorax with fairly long, thin whitish pubescence; head transversely suboval; clypeus, except the two black dots, and lateral face marks, lemon yellow; face below antennæ without any conspicuous hair ; labrum, mandibles, anterior edge and receding lateral pieces of clypeus (which are hairy) all dark; lateral face-marks triangular, their upper limit barely above the level of the upper edge of the clypeus; antennæ entirely black; front above antennæ cancellate with large punctures; vertex with large punctires, a smooth impunctate area on each side ; thorax entirely black; mesothorax and scutellum shining, with well-separated large punctures; legs black, tarsi very dark brown; tegulæ dark brown; wings slightly smoky ; nervures and stigma piceous; abdomen rather long and narrow, punctured except the broad hind margins of the segments ; apex with two sharp points.
?.-Stouter ; face entirely black; abdomen with very small punctures, extremely sparse on first segment.

Hab.-Beulah, N. M. (Wilmatte Porter). The d was taken Aug. 25, 1899.

From the description, I thought this might very well be a variety of P. picipes (Cress.), but Mr. W. J. Fox has kindly sent me a drawing of the face-marks of Cresson's type of picipes, and it is evidently a different species. In picipes the lateral face-mark is a small band along the orbital margin, running considerably above the level of the top of the clypeus, and not at ail triangular. In my table in Trans. Am. Ent. Soc., XXV., p. 196, the of of Portera runs to picipes. From P. innuptus the ${ }^{\delta}$ is easily known by the triangular lateral face-marks (those of innuptus resemble those of picipes) and the dark stigma; the q differs from that of innuptus by the dark stigma and nervures, the much darker tegulæ, the larger punctures of the mesothorax, the first abdominal segment much more sparsely punctured at the sides, and the black tarsi.
Panurginus Cressoniellus, Ckll. New to New Mexico.
Beulah, N. M., 3 q ; near Beulah, Aug. 23, 1899, I $\delta, 3$ ㅇ. All collected by Miss Wilmatte Porter.

ADDITIONS TO THE IIST OF MANITOBA BUTTERFIIES, WITH NOTES ON OTHER SPECIES.

bv a. w. hanham, winnipeg, man.
Euptoieta•claudia, Cram.- This species had never even been observed in previous year., but this season appeared plentifully at Bird's Hill in June, and again in August (16th) and September (4th); it was also met with at St. James, just outside the city limits. The species is usually common in prairie districts farther west.

Melitea Harrisii, Scud.-Taken at Bird's Hill on July 1 st, 1899. This season I came across a larva in the act of pupating, but missed the butterflies.

Chionobas alberta.-I captured one specimen at Bird's Hill on May 24 th, 1899 . This was my first experience with a Chionobas "on the wing" up here, and I nearly missed it (being a case of mistaken identity).

Thecla irus, Gdt., and Thecla augustus, Kirby.-Bird's Hill, May $24^{\text {th }}$ (and later), 1899 , not uncommon. None seen on same date this season.

Thecla titus, Fabr. - One specimen at Bird's Hill this season (August 16) ; not uncommon at Brandon.

Chrysophanus dione, Scud.-One specimen at Silver Height on July $22 n d$, 898. Mr. Boger took a nice lot this season at Brandon.

Lycena rustica, Edw.-Bird's Hill, June 8th and roth, 1899, and May 24th this year, fairly plentiful locally. Also taken at Aweme in 1899.

Pieris protodice, Bd.-Lec.-Bird's Hill, this year, in June and September. Though generally common in the West, I have not yet taken this species nearer the city than Bird's Hill.

Pamphila Manitoba, Scud.-Earlier captures were all the var. Assiniboia, Iyman; this season on August 16th, at Bird's Hill, I took the typical form in some abundance.

Pamphila hianna, Scud.- Bird's Hill, taken June 8th and soth, 1899, and one specimen this year on May 24th. It was a plentiful species last June (1899) in the Rounthwaite district.

The season of 1900 opened earlier than usual in Manitoba; on May 24 th the early "skippers" and "hair-streaks" appeared to be over; on that date Lycana rustica was out, some being quite worn, and on my next visit in June none were visible. I also took Lycena sapiolus. Ordinary seasons neither of these "blues" would be on the wing much
before the middle of June, the latter bying into July. Vanessa Millertii and Pyrameis atalanta and cardui were unusually abundant during the spring and early summer.

Argynnis nevadensis, Edw.-I captured my first specimen of this handsome "fritillary" on June $25^{\text {th }}$ at Carberry. Mr. Boger reports it to have been plentiful in June at the Experimental Farm, Brandon. It has not turned up yet at Wimineg.

Neonympha canthus, Bd.-Lec.-Some I took at Carberry on June 26 th appeared to be unusually pale for fresh specimens.

Erebia discoidalis, Kirby, and Erebia epipsoden, Butl.-Specimens of both these species have been received from Mr. Dennis, of Beulah, taken there in 1899.

Hipparchia Ridingsii, Edw.-Mr. Norman Criddle, of Aweme, takes this species in his district.

Chionobas varuna, Edw.-In June, 1899, Mr. Marmont, of Rounthwaite, and I took a good series on the slopes and summit of the Brandon Hills, and in the sandy district near Treesbank and that of Aweme it occurred quite plentifully. Some examples of Alberta were captured during my visit to his place.

Chionobas jutta, Hbn.-Through the kindness of the Messrs. Criddle and their guidance from Aweme into the Douglas swamp (some 10 or 12 miles), we were able to see this fine butterfly on the wing. The date, June 18th (1899), however, was a little too late, and sew of those netted were worth keeping. I think the specimens were somewhat larger and more brightly coloured than those from the Gomin swamp, Quebec.

Pieris napi, Esp.-Early in May "whites" were plentiful in the vicinity of my house, and I supposed that they were rapa, which is our common Pieris now. Examining my small boy's captures later on, I was surprised to find that he had been taking the above species, usually a rarity here, and that there was not a single rapoc in the lot.

Anthocharis olympia, Edw.-Examples of this species have been taken by Mr. N. Criddle, and by Mr. Robinson, of the Experimental Farm, Brandon.

Colias eurytheme, Bdv.-This season has been noted for the abundance of "oranges"; they have been common from May into October. In 1899, I did not see one the whole season. "Albinos" were plentiful in June; on the 27 th at Carberry this form predominated; unfortunately, few were any good.

Pamphila ottoc, Edw.-I have not met with this species at Wimnipeg since my captures in 1895 , but it turned up at Brandon this year, having been taken by Mr. Robinson.

Pamphita uncas, Edw.-On June 27th 1 got thee beautifully fresh specimens at Carberry. They were all taken off milkweek. Also captured this year at Brandon by Messrs. lioger and Robinson.

Pyrgus tessellata, Scud.-The previous record was not my capture, and I had never seen the species in the district until this year, when I bagged several at Bird's Hill on June $13^{\text {th }}$, and at Carberry on the 27 th I got two more.

CORRECTIONS.
BY A. RADCLIFFE GROTE, A. M.
'To prevent misconception of my paper in the October number of the Canadian Entomologist, on the Neuration of Lepidoptera, there should be added to the statement on p. 29x, line 2 from bottom of the page, the words: "On the hind wings." The Hesperiades have two anal veins on the secondaries, the Papilionides only one remaining.

Also, at the close of the article, p. 292, the words "of the fore wings" should be intercalated, in the concluding sentence, after "internal vein." I am writing of the last short downwardly curved veins of the Papilionides' primary wing, and which Dr. Chapman regards as homologous with the fourth anal, not the "third," as I have given in the paper. Upon this difference in the appearance and retention of the anal veins of the primaries, I have founded the theory of the diphyletism of the diurnals. The Papilionides will thus have lost the third anal of primaries and retained the fourth, which is free and joins the internal margin. The Hesperiades have generally retained a remnant of the third anal pupal vein, in the shape of a fork to second anal, which is absorbed in many brt:sh-footed butterflies, but is determinate in the Limnadida, Libytheidæ and Nemeobiidæ, while the fourth anal of the fore wings has become lost.

I finally would mention that the authorities give Borkhausen as author to Hydroecia nictitans, not Linné, as I had written without having consulted the earlier references to the species. The work of Duponchel should be cited : "Lep. Eur.," not "Lep. Ent.," as printed in my last paper on "Types of Noctuid Genera."

SOME: CHANGES IN GENERIC NAMES IN THE HYMENOP'TERA.

liY WII.IAAM H. ASHMEAJ.

The following generic names in the Hymenoptera, alphabetically arranged, being preoccupied in other groups of zoology, must be changed, and I propose for them the following names:

Brachycephalus, Förster, 186S, nec Holland, 1857, to Brachycranium. Ciacus, Riley, 1893, nec Selys, 1854, to Oethecoctonus.
Canidia, Holmgren, 185 S , nec Thompson, 1857, to Canidiella.
Ceratosuma, Cresson, 1865, nec Reeves, :850, to Ceratogastra.
Clepticus, Haliday, 1839, nec Cuvier, 1829, to Mischoxorides.
Ca:/onotus, Förster, 1862, nec Peters, 1855, to Protaphidius.
Eicphorı, l'̈̈rster, 1868, nec Conrad, 1843, to Ecphoropsis.
Eucorystes, Marshall, 1888, nec Sclater, 1883, to Eucorystoides.
IVilconotus, Förster, 1862, nec Agassi\%, 1864, to Aulonotus.
Kiograster, Kriechbaumer, isyo, nec Perty, 1834 , to Liotryphon.
Limneria, Holmgren, 1888 , nec Adams, 1857 , to Limnerium.
Obba, 'Tosquinet, 1896, nee Beck, 1837 , to Tosquinetia.
Ophiodes, Hartig, 1840, nec Wagler, 1828, to Ophiogastra.
Thalcssa, Holmgren, $1859,12 c i$ Adams, 1858, to Megarhyssa.
Zar'hynchus, Ashmead, 1900, nec Oberholzer, 1899, to Rhynchothyreus.

Zetetes, l'örster, 1862, nec Cabanis, 1859, to Opiellus.

OBITUARY.

DR. OTTO STAUDINGER.
The death of this prominent Lepidopterist is announced as having taken place on October 13, at Lucerne, Switzerland, during a journey undertaken for his health, and at the age of 71 years. Dr. Staudinger's work is well known. It has been given to few to acquire his influence over theoretical and practical workers alike. The new edition of his standard catalogue of palearctic Lepidoptera, upon which the work has been long in hand, has not yet appeared, but may very shortly be expected. In this place we can only express our profound regret at the closing of a long and prosperous career which has greatly benefited the general cause of Entomology.-A. R. G.

REV. G. 1). HULS'r.
We deeply regret to amomee the death of the Rev. George Duryea Hulst, Ph. D., which took place suddenly on Monday, Nov. 5 th, at his residence, 15 Himrod street, Bronklyn, N. Y. Mr. Hulst was in his fifty. fourth year, and had been pastor of the South Bushwick Reformed Church for over thirty years. In the entomological world he was widely known from his researches in the Lepidoptera, and especially for his work in the Geometridx, in which family he was recognized as an authority. He was a frequent contributor to the pages of this magazine, and also published elsewhere many elaborate papers on his special department of study. His removal from among us, when in the prime of life, and with apparently many years of useful work before him, will be keenly regretted by systematic entomologists everywhere.

THE LIFE-HISTORY OF ARCTIA PHALERATA, HARR.
by arthur gibson, assistant, division of entomology, central, experimental farm, ottana.

On the 18 th June, 1g00, Mr. C. T. Hills, of Chicago, was kind enough to send me a batch of about 79 eggs of Arctia phaterata, Harr. The parent moth was captured on the 12 th June, and enclosed in a box over night : on the next day, the t 3 th, the eggs were laid.

Egg. -75 mm . in width, semi-ovoid, about as high as wide, shing, smooth, creamy-white, concave at base.

The eggs hatched on the 2oth and 21 st of Junc. Duration of egg stage 7 or 8 days.

Stage I.-Length 2 mm . General colour dirty cream. Head .3 mm . wide, bilobed, shiny, brownish-black, and bearing sparse slender hairs. On each segment is a transverse row of black tubercles, which appear to occur almost in a line in the middle of the segments. These tubercles bear long black and silvery hairs, and are situated in a light brownish field, which encircles each tubercle. On segments 5 to 12, inclusive, slightly nearer to centre of dorsum, and anterior to larger dorsal tubercles, are two smaller tubercles, which also bear one or two hairs. Thoracic feet and prolegs concolorous.

On the 23rd June the larvæ were swollen, and on the 24 th they passed the first moult.

Stage $/ 1$. - l.ength 3.5 mm . General colour, some blackish-brown with a light stripe on dorsum, others light brownish with a creamy stripe on dorsum. Head .5 to .6 mm . wide, sparsely covered with short light hairs and long slender dark hairs, bilobed, black at apex and on cheeks; frontal triangle whitish, with a slight tinge of brown. In the darker specimens almost the whole of the head is black. Dorsal tubercles large, with exception of the two anterior tubercles on segments 5 to 12 , inclusive, which appear smaller, and are like minute dots. The large dorsal tubercles are now situnted in a distinct light brown band. Lateral, stigmatal and ventral tubercles smaller than dorsal series, varying in size from lateral down. Between lateral and stigmatal series of tubercles are brownish blotches, which give the appearance of stripes, or bands. These markings are not so plain on the darker specimens. The bristles from dorsal tubercles are black, with the exception of the small tubercles on segments 5 to 12 , inclusive, which bear one or two whitish hairs. Remaining .tubercles bear blackish and whitish bristles. Stigmata brown. Thoracic feet and prolegs concolorous, darkened at tips.

On the $27^{\text {th }}$ June most of the larva passed the second moult.
Stase HII.-Length 5 mm . General appearance blackish hairy larve, with a pale yellowish stripe on dorsum, which is almost imperceptible in some specimens. In the majority of the specimens, however, this stripe was plainly distinguishable. Head .8 to 1.0 mm . wide, bilobed, shiny, blownish black, sparsely covered with long blackish hairs ; frontal triangle lighter in colour, with dark centre, in some specimens all black. Dorsal tubercles large and shiny black, and bearing black bristles, varying in length, some long and some short. Medio-dorsal tubercles on segments 5 to 12 , inclusive, are very small, and bear two or more short white hairs. This series of tubercles almost touches the pale yellowish dorsal stripe. Lateral, stigmatal and remaining tubercles smaller than dorsal tubercles, and bearing black and white bristles. In some specimens the skin of the body is a deep black, with the exception of the dorsal stripe ; others are lighter in colour of skin, and have the appearance of two stripes on the sides, but this is due to the black shiny tubercles being more plainly noticeable than the skin. Stigmata dark brown. Thoracic feet concolorous, splashed with shiny black; prolegs concolorous.

On the ist July a number of larvæ passed the third moult, and by the 3rd all had moulted.

Stuge $/ V .-1$ ength 7.5 mm . (ieneral appearance, black haing larva, tubercles very prominent, some specimens having a yellowish dorsal stripe. Of the whole batch of 71 larve, the dorsal stripe was only present in seven specimens. In the majority of the other specimens just the faintest sign of this stripe was to be seen, while the remainder were perfectly black. Head t .2 to I. 4 mm. wide, bilobed, shiny, brownish-black, sparsely covered with long blackish hairs. Bristles from dorsal tubercles black, with a few white hairs intermingled. The bristles from the stigmatal and ventral tubercles in this moult are of a light rusty hue, in some specimens much brighter than in others; there are also a few black bristles from these tubercles. The medio-dorsal mbercles on segments 5 to 12 , inclusive, are very small and black in colour, bearing two or three bristles cach. The dorsal tubercles are very large, and bear numerous black bristles. Stigmata black. Thoracic feet shiny, jet black, covered with short reddish and blackish hairs. Prolegs concolorous, rather translucent, light at tips.

On the $7^{\text {th }}$ July three larver passed the fourth moult, and on the 8 th the majority of the remainder moulted.

Stare $V .-$ Length 11.5 mm . General appearance, black larve with black tubercles, bearing short and long black bristles, with rust-red bristles from tubercles on lower half of sides. Head 1.5 to $\mathbf{~} .8 \mathrm{~mm}$. wide, depressed at apex, shiny, black, sparsely covered with short whitish and long blackish hairs. The reddish bristles on dorsum of second segment turn down abruptly over the face, and give it a brownish appearance. The dorsal stripe has disappeared, and is not present in any of the specimens. Bristles from dorsal tubercles black, with a few grayish ones intermingled. On the 12 th and 13 th segments the dorsal tubercles bear one or two long hairs, black in colour, tipped with gray. The bristles from upper half of stigmatal tubercles are black, those from lower half, as well as all bristles below stigmata, rust-red. Spiracles black, with a light orange centre, with exception of those on 2nd and 12 th segments, which are wholly bright orange. Thoracic feet shiny, jet black, covered sparsely with short rust-red bristles; prolegs concolorous, lighter at tips, also bearing short rust-red bristles.

On the 14th July three larve passed the fifth moult, and by the 17 th nearly all had moulted.

Stage VI.-Length $\mathfrak{r} 5 \mathrm{~mm}$. General appearance the same as after the fourth moult ; the rust-red bristles on sides and dorsum of second segment appear brighter. Head 2.0 to 2.4 mm . wide, of about the same
size as the body, shiny, jet black, slightly depressed at apex, sparsely covered with slender blackish and silvery hairs, with a number of short light rust-red hairs around the mouth-parts. Bristles from the black tubercles on the dorsum, black. Dorsal tubercles on 12 th and 13 th segments bear three or four long hairs. Upper half of stigmatal tubercles bear black bristles, lower half rust-red bristles. Bristles from all tubercles beneath spiracles bright rust-red. On dorsum of segment 2 the bristles from front half of tubercles are bright rust-red. These turn down over the face, and give front portion of larva a reddish appearance. Spiracies orange, in some specimens faint. Skin of body deep velvety black. 'Thoracic feet shiny, jet black, sparsely covered with short rust-red bristles. Prolegs, upper two-thirds shiny, jet black ; lower third and claspers dull reddish ; the whole bearing short rust-red bristles.

On the 2 rrd July three larve passed the sixth moult, and by the 3 rist all but a few had moulted.

Stage VII.-Length 24 mm . General appearance, velvety black larve with black tubercles, bearing short stiff black bristles on dorsum, and bright rust-red bristles from the tubercles below stigmata. In some specimens there is a distinct clear ochre-yellow dorsal stripe, expanded somewhat in the middle of each segment. In others, instead of the dorsal stripe there is a series of elongated spots of the same colour, one on each segment; the number of spots constituting this series varies, some specimens having as many as nine,others only one or two. Head 2.5 to 2.8 mm . wide, slightly smaller than second segment; shiny, jet black, depressed at apex, and sparsely covered with short reddish hairs, and some long slender blackish hairs, the reddish hairs being mostly around the mouthparts. Base of antennue and mentum pale. Bristles from dorsal tubercles black. On dorsum of segment 2 the anterior half of tubercles bear rustred bristles, which turn down over the face. In some specimens the bristles from tubercles on segment 2 are all reddish, with only a few black bristles. Dorsal tubercles on segment 3 also bear some rust-red bristles in some specimens. Medio-dorsal tubercles on segments 5 to s 2 , inclusive, bear a small bunch of short black bristles. Tubercles on dorsum of segments 12 and 13 bear a few longer black bristles. In some specimens all the dorsal tubercles bear a very few bristles of a dark rusty colour. Lower halves of the stigmatal tubercles bear bright rust-red bristles. All bristles below spiracles, including those from ventral tubercles, are bright rust-red. Tubercle $\mathrm{i}_{\text {, }}$ small, about one-fifth size of tubercle ii. ; tubercles
without shining base. Bristles smooth, not barbed. Stigmata bright orange. 'Thoracic feet shiny, jet black, dull brownish at tips, and sparsely covered with rust-red bristles, some short and some long. Prolegs, upper two-thirds shiny, jet black; lower third and claspers light rust-red, covered sparsely with short, reddish bristles.

Length of mature larva before spinning cocoon 30 mm ., width at widest part 8.5 mm .

On the 26 th Juty one larva passed the sixth moult, and showed the clear ochre-yellow dorsal stripe (rather faint on segments 2,2 and 13). Another moulted the same day, and in this specimen, instead of the dorsal stripe, occurred a series of elongated ochre.yellow spots, one on each segmemt, from segment 4 to 12 , inclusive. On the 26 th July, also, seven more specimens passed the sixth moult, the ochre-yellow varying in these specimens from very faint elongated spots only on one or two segments, to a distinct dorsal stripe, faint on segments 2,3 and 13 . On the 28 th one larva moulted, and in this instance the dorsal stripe was distinct, but only present on segments 8 to 12 , inclusive. In this, the sixth and last moult, out of the whole batch of 64 larve, only 17 specimens showed the ochre-yellow on dorsum; the remaining 47 were perfectly black, and no dorsal stripe or spots whatever were present.

On the ist August eight specimens began to spin their slight cocoons between the leaves, and on the following day changed to pupte. In some later specimens it was two days before the pupa was formed, but in the majority of the specimens the change took place the following day.

The cocoon is very thin, and is simply a slight network or web of reddish-brown silk, covering the pupa. The larva draws the leaves of the fond-plant together by means of threads of silk, or folds up a leaf, fastening the edges together, and spins its slight cocoon inside.

Pupa.-Length 19 mm ., width at widest part 6 mm . ; black slightly pruinose, abdomen minutely pitted, thorax and wing.cases slightly wrinkled, dull reddish-brown in folds of abdomen. Cremaster rough and short, rounded above and hollowed below, terminating in a bunch of about 20 capitate bright rust-red bristles of varying lengths.

On the morning of the I^{3} th August four female moths emerged, and by the following morning five more females had appeared. During the afternoon of the 14 th the first male moth emerged. The moths continued to emerge every day for about a week and a half.

Length of pupal stage about 12 days.

On the 23 rd dugust two live females and one mate, all of which had just emerged, were placed out of doors in a cage made of wire cloth, and two days later the females haid a large number of egys.

On the 2nd September, 80 larve hatehed, and by the 4 th September 35 more had emerged. The description already made of this stage agreed with these specimens.

The larve which hatched on the 4 th September passed the first moult on the morning of the 9 th, and showed no difference from those described in former brood.

On the tath September one larva passed the second moult, and many others on the foilowing day. These also were the same as the specimens described previously.

On the $17^{\text {th }}$ September a number passed the third moult, the remaining specimens moulting on the 18 th and 19 th. At this time the number of larve living was 85 , and in this moult, out of the whole batch, 22 specimens showed the dorsal stripe; in three or four of these specimens the stripe was present on segments 3 to r , inclusive, but in most of the specimens it was only ouservable on a few of the middle segments.

On the 25th September a number passed the fourth moult, and by the asth nearly all had moulted. The larva in this moult showed no sign whatever of the dorsal stripe, and the description already given above of this stage answers well for this batch.

On the $4^{\text {th }}$ October some passed the fifth moult, and by the $7^{\text {th }}$ nearly all had moulted. These also corresponded with the description already made. In many of the specimens, however, the rust-red bristles on sides were not so bright or numerous as in the first lot of larvee.

On the 16 th October eight specimens passed the sixth moult. At this time-in fact, a few days earlier-the larve were very quiet, and had almost stopped feeding, only a very little frass being found each day in the breeding jars.

On the 18 th October four more specimens passed the sixth moult. Of these $: 2$ larve, only one specimen showed any sign of a dorsal stripe, and in this case the colour of the stripe was just a little lighter than the velvety black of the skin. The rust-red bristles from sides of these specimens were also not so bright or numerous as those already described. The hairs on the face were mostly blackish, and in some specimens none of the dorsal tubercles bore rust-red bristles.

From the 1 th to the 26 th October the larve had practically stopped feeding, and at this latter date they were put down in a cool cellar, to be left there throughout the winter.

Food-phant.- The larve of the lirst brood were fed on dandelion and plantain, those of the second on dandelion only.

In the Journal of the New Vork Entomological Society for March, 1 1900, Dr. Dyar publishes an article entitled "Preliminary Notes on the larvae of the Genus Arctia." In this paper some remarks are made regarding the mature larve of Aretice phalerata and Aretia vittata, and it is stated that "the matter is not decided beyond question as to whether phaterata or pittata has the larva with the dorsal stripe, or whether this is a specific character at all." The notes on the mature larve of phatcrata, as given in the present paper, throw some light upon the matter, and it will be readily seen that the dorsal stripe is not a specific character, as it is present in some mature larve, and totally absent in others. This will agree with both Professor French's description and also with the notes of the Department of Agriculture at Washington.

With regard to mittata, I might say that on the 26 th May last I found a specimen of the mature larva at Ottawa, which spun a very slight cocoon two days later, and produced the moth on the ist june. This larva was a reddish, hairy caterpillar, with no sign whatever of a dorsal stripe, and not at all like those mentioned above.

The following description was taken from the cast skin and head of larva: Head 3.3 mm . wide, jet black, bearing sparse long s!ender blackish and reddish hairs, and some short rust-red hairs. Skin of body velvety black, tubercles rough, not polished, bearing bright rust-red bristles, those on dorsum slightly darker. Bristles smooth, not barbed. Tubercle i. about one-fifth size of tubercle ii. Thoracic feet blackish brown, covered sparsely with rust-red bristles.

Pupa.-Length 24 mm , width at widest part 8 mm .; black, pruinose, covered with a bloom similar to that on a ripe unrubbed pium; folds of abdominal segments with slight reddish tinge. Abdomen minutely pitted, wing-cases and thorax slightly wrinkled. Cremaster rough, short, rounded above, slightly hollowed beneath, and terminating in a bunch of about is capitate rust-red bristles of varying lengths.

From the first brood of phalerata 55 moths were bred. In over half of these specimens the costal edge of the primaries is narrowly black, that of the others being yellow. Dr. Dyar, in the above paper, says that the
costal edge of platerata is yellow, and remarks that this may possibly be a distinguishing character between phalerata and nais, as the costal edge of all his specimens of the latter is black. This, of course, agrees with many of our specimens of phalerata, but on account of the black edging being present in the majority of those bred at Ottawa, it would appear that this character is not of specific importance. In about ten female specimens all the yellow markings on the primaries are suffused with the ruddy colour of the secondaries, but there is a remarkable lack of variation in the whole series, both with regard to colour and markings.

I beg gratefully to acknowledge assistance from Dr. Fletcher in confirming my notes in the above investigation, and also to Dr. Dyar for the determination of this species and of the specimen of A. vittata referred to above.

ENTOMOLOGICAL SOCIETY OF ONTARIO.

The thirty-seventh annual meeting of the Society was held in London on the $13^{\text {th }}, 14^{\text {th }}$ and $55^{\text {th }}$ of November. On the first evening a joint meeting with the London Horticultural Society took place in the Normal School, and was very largely attended. Prof. James, Deputy Minister of Agriculture, presided, and gave an interesting address on the beneficial effects of the pursuit of horticulture. Mr. W. E. Saunders read a paper on "The planting, care and pruning of the trees in the parks and streets of the city," and was followed by Dr. James Fletcher, who gave an address, illustrated by lantern pictures, on the growth of trees, and the insect enemies of the flower and fruit garden.

The morning of the 1 th was taken up with a business meeting of the Council. In the afternoon the various reports of the Directors, Officers, Branches and Sections were read, and then followed an important discussion on the San José scale in Ontario. Mr. Fisher, the Provincial Inspector, gave an account of the work that had been performed during the year for the repression of the scale, and the results that had been obtained from the use of various remedies. Dr. Fletcher, Prof. Webster (of Ohio), Prof. Loclhead, Mr. Dearness, Dr. Fyles, and others, took part in the discussion. The speakers insisted strongly upon the very dangerous character of this insect, its wide dissemination in several parts of the Province, and the destruction that would be surely wrought among the orchards and fruit plantations if stringent measures were not taken for its subjugation.

In the evening the Rev. Dr. Fyles read his presidential address on "Insects as agents in the cross-fertilization of blossoms," and papers were read by Prof. Webster on the Codling moth, Prof. Lochhead on Forest Insects, and Mr. Gibson on the life-history of Arctia phalerata. The points brought forward by the speakers were discussed with much interest and animation at the close of each paper.

On Thursday a large number of papers were read during the day, which will be published, with a full account of the proceedings, in the lorthcoming Annual Report. The election of officers resulted as follows :

President-Rev. 'T. W. Fyles, D.C.L., F.L.S., South Quebec.
Vice-President-Professor William Lochhead, Ontario Agricultural College, Guelph.

Secretary-IVilliam E. Saunders, London.
Treasurer-f. A. Balkwill, London.
Directors: Division No. $1-\mathrm{C}$. H. Young, Ottawa. Division No. 2-J. D. Evans, Trenton.
Division No. 3-D. G. Cox, Toronto. Division No. 4-James Johnson, Bartonville. Division No. 5-R. W. Rennie, London.
Directors Ex-officio (ex-Presidents of the Society)-Professor Wm. Saunders, LL.D., F.L.S., F.R.S.C., Director of the Experimental Farms, Ottawa; Rev. C. J. S. Bethune, M.A., D.C.I., F.R.S.C., London ; James Fletcher, LL.D., F.L.S., F.R.S.C., Dominion Entomologist and Botanist, Experimental Farms, Ottawa; W. H. Harrington, F.R.S.C., Ottawa ; John Dearness, Normal School, London; Henry H. Lyman, M.A., Montreal.

Librariant and Curator-J. Alston Moffat, London.
Auditors-J. H. Bowman and W. H. Hamilton, London.
Editor of the Cantadian Entomologist-Rev. Dr. Bethune, London.
Editing Committee-Dr. J. Fletcher, Ottawa; H. H. Lyman, Montreal; J. D. Evans, Trenton; W. H. Harrington, Ottawa; Prof. Lochhead, Guelph.

Delegate to the Royal Society-Rev. Dr. Bethune, London.
Delegates to the Western Fair-J. Dearness and Dr. Bethune, London.
Committee on Field Days-Dr. Woolverton, Messrs. Balkwill, Bowman, Elliott, Law, Moffat, Percival, Rennie, and Saunders, London.

Library and Rooms Committce-Messrs. Balkwill, Bethune, Dearness, Moffat, and Saunders, London.

ERRATA.
Vol. XXX., $\mathbf{3} 898$, page 280 , line 10 from bottom, for "clavipennis" read "claripennis."--D. W. Coquillett.

Page 236, third line from bottom, for Guaris read Gauris.
Page 320, line 22 from top, for "varieties of Aphrodite and Bischoff ; " read " varieties of Aphrodite, and Bischoff,".
[Comma after Aphrodite and another after Bischoffi, instead of semicolon.]

NOTE ON SESIA ARCTICA, Beuten. BY WM. BEUTENMÜLLER.
In advance of my forthcoming memoir of the Sesiidæ, I published in the current volume of the Canadian Entomologist, page 208, a description of a new Sesia from Alaska, but through a curious blunder on my part omitted to mention the name of the species, and herewith propose to call it Sesia arctica.

Mailed December 10, 1900.

INDEX T0 VOLUME XXXII.

Acacia Farnesiana, Coceus on, 65, 60.
Acidalia niphe, 7 .
Acknowledgments, 18 + 359.
Acrocaula, in. gen., 169 .
" comacornella, n. sp., 170 .
Acrotophus Arizonellus, 309. $\because \quad$ cervinus, 308.
". symopsis of species, 308.
" violaceellus, 309,326 .
Acronycta, motes on species in the
British Museum, 333 .
Acronycta, species taken in Manitoba, 93, 94.
Acrosoma maculata, n. sp., 100.
Agapostemon melliventris, 304 . $\begin{array}{ll}6 & \text { radiatus, } 303 . \\ \text { i } & \text { Texanus, } 303 \\ 4 & \text { viridulus, } 303 .\end{array}$
Ageniina, table of genera, 296 .
Agonoderus pallipes injuring corn, 271.
Agraulis vanilla, 8.
Aldrich, J. M., article by, 3^{18}.
Allograpta obliqua, 60.
Amblychila cylindriformis, tog.
Amphicarpæa monoica, Tineid feeding on, 244.
Amphisa luridana, 239.
Anaphora macrogaster, 327 .
", Morrisoni, 327.
" popeanella, 309, 327.
" propinqua, 32%.
" tenuis, 326.
Anaphorinae, new species of, 326.
table of genera, 306.
Anisodactylus sericeus, 270 .
Anosia menippe, 8.
Anthocharis ausonides, 119.
" flora, 108.
" olympia, 366.
Anytus obscurus, n. spl., 218.
" profundus, n. sp., 218.
Apamea didyma, type of genus, 210 , 292.

Aphelininæ, a new genus from Chile, 167
Aphelininæ, description of new genus in, 349.
Aphides, new species of, 29, 56 .
Aphidius Fletcheri, 60.
". Washingtonensis, 60.

Iphy/is, n. gen., 168.
" Chilensis, n. sp., 168.
Archonias lyceas, 35^{8}.
Aretia phalerata, life-history of, 369 . " vittata, 375 .
Arithuen consuetipes, n. sp., 33^{2}.
Argas Americanus, 20.
" columba, 20.
" persicus, 17.
" reflexus, zo.
Argynnids of North America: Arthur
J. Snyder, 319, 350.

Argynnis aglaia, 7.
" Freija, 119.
" Frigga, var. Saga, :1o.
" Nevadensis, 366.
" the neuration of, 7 .
Argyrodes Floridama, n. sp., 98.
Artemisia Californica, Coceus on, 313 -
Ascalaphus (Myrmeleonidx), 184.
Ashmead, W. H., articles by, $145,185$. 295, 349, 368.
Aspidiotus hedera, 214 .
" " parasites of, 168.
" Crawii, 214.
" cydoniæ, 215.
" rapax, 21+.
Aspidiotus (Hemiberlesia) candidulus, n. sp., ${ }^{1} 30$.

Aster umbellatus, root-borer of, 280.
Asterolecanium hederae, 215 .
Atopocera Barnesii, n. sp., 326.
Atteva aurea, 39.
" gemmata, 39 .
Atylotus bicolor, 247 .
Aurora nigrocinereclla, n. sp., 176.
Automeris Janus, spine-bearing larva of, 236 .
Automeris, notes on, 235 .

Baker, C. F., articles by, +9, 207.
Ball, E. D., articles by, 200, 337.
Banks, Nathan, articles by, 30, 96.
Barnes, William, article by, +2 .
Barrett, O. W., article by, 234 .
Bassus lætorius, 59.
Bees, New Mexico, of the genus Cœlioxys, 297.

Bees, notes on Colorado, 303 .
Bees, notes on New Mexico, 361 .
Bembidium t-maculatum injuring strawberry plants, 271 .
Bethune, C. J. S., artiches by, 1, 119 120.

Beutemmbler, W., articles he, 208, 30 , 377.

Mird, Henry, anticles by, 226. 276.
Bogue, E. E., article by, 205.
Bolter collection of insects, 184 .
Bombameldecta larree, n. sp., 3^{61}.
Bombyx cunca, 16, 87, 122, 193, 286.
Book notices, 119, 159, 192, 216, 319, 351.

Brachycephatus = Brachperanium, n. gen, 368.
Bratail, new species of Coccide from, 3.
Brenthia pavonicella, 243 . " the genus, 243 .
Brenthis hecate, 7.
Burdock (Lappa major), inseet affecting, 15.
Butler, Arthur G., article by, 9 .
Buttertlies, additions to list of Manitoba, 365 .
Butterthes, classification of the, $\mathbf{3 5 9}$.
Rutterflies from the Yukon, 119.
Butterflies, neuration of, 7, 289, 359, 367.

Butterflies, new species and varieties of, 42, 92, 348, 358.
Butterflies, sale of, 132.
Butterfly lists, 8, 365 .

Caberodes subochrearia, n. sp., 107.
Cacus $=$ Oethecoctonus, n. gen., 368.
Callaretia, Chinese genus, chanyed to Euleechia, 347.
Callilepis insularis, n. sp., 97.
Calopompilus, n. gen., 188.
Cambridge Natural History, vol. vi., some notes on, $23+$.
Camed Doorn tree (Acacia ginatfe), 23.
Campanita (little bell cocoon), 235 .
Canarsia gracilella, n. sp., 17+.
Canidia =Canidiella, n. gen., 368.
Capparis cynophallophora, Pyralid larva on, 272.
Capulinia crateraformis, n. sp., 3. " jaboticabae, +.
" Sallei, +.
Carabida feeding upon vegetable substances, 265 .
Carneades holoherba, 225 (plate). " Lagganæ, 225 (plate).
Catocala Barnesii, n. sp., 190.

Catocala, larva ofis esg.
Catocala, list of black-winged speries of the United States, 191.
Cartocaln moderna, in. sp., 191.
\because new specties from Texas, 191.
" the gemus, 188.
" species taken in Manitoba, 95 .
Catudell, A. N., atticle by, 67.
Centris Cockerelli, 363.
" Hoffinanseggi:e, 303 .
Centris rhodopus, vits pulditior, n. var., $3^{6} 3$.
Conatosoma $=$ Cera/ngras/ra,n. gen., 368.
Cerostomm Lorbililla, n. sp., 4о.
" Synopsis of species, 4 .
Change of preoceupied names, $3+7$.
Cheese and bacon tly, 159.
Chemopodiam albun, Aretian larva on, 325.

Chionobas Alberta, 365 .
" jutta, 366 .
i" varuna, 366.
Chlorotetfive nuduth, n. sp., 34 .
" stolnta, n. sp., 3+1.
" tunicala, n. sp., 3 +o.
Choreutida, synopsis of genera, 238 .
Chorentis and its allies, North American species of, 236 .
Choreutis Bjerkandrella, $2 \neq 1$.
" extrincicelha, n. sp., 86.
" inflatella, 2 q2 2
" leucobasis, n. sp., 242.
" occildentella, n. sp., 86, 242.
" onustana, $2+2$.
" sororculella, n. sp., 86.
" Synopsis of species, 85, 2.t.
". the genus, 2 qo.
" virginiella, $2+3$.
Chrysomela varians, antemat of, 257 (fig.)
Chrysomphahus aonidum, 214 .
dictyospermi, $21+$
Chrysopa oculata, 60.
Chrysophanns dione, 365 .
Cicadulat potoria, n. sp., 346.
Cicindelida of Kansas, 109.
Cicuta maculata, larva boring, 229.
Clepticus $=$ Mischoxorides, n. gen., 368 .
Clinopleura flavomaryinata, n. sp., 332.
Clisiocampa disstria, a new popular name for, $27,5+, 68$.
Coccida, Bibliography of Massachusetts, 9 .
Coccida, new species of, $3,6,6,129$, 205, $311,360$.
Cuccida, of the Ivy, 21.4 .
Coccidology, contributions to, 64 .
Cockerell, T. D. A., articles by, 91, :29. 297, $3^{61 .}$

Cocoon of a Hesperid, 234.
Cocos nucifera (Cocoanut l'alm), larva injuring foliage, 157.

" deplamata, 297.
" Gilensis, 299.
". grinddite, n. spl., 300.

- menthre, zg8.
". mestit, 298 .
" actodentatti, 297.
" Porlerer, n. sp., 2gS.
". ribis, In. sp., 301.
" rutitarsis, zox.
" Sayi, 297.
Cielomys, tables for separaling New Mexico species, 297, 300.
Colonotus = Prolaphidias, in. gen.,368.
(arnocalpe caיnompinthula, n. sp., 104.
Colamis Julia, S:
Coleosoma blanda, 98.
" .toridatnt, n. sip., 98.
Colias eurytheme, 3^{66}.
Colletes nisrifroms, 11. sip., $30+$.
Coloradia Doris, n. sp., +6 .
Condemmable patatices in gemeric revisions, 166.
Copaxa multifenestrata, larva of, 236 .
Coquillett, D. W., articles by, 33 .
Cosmian punctirena, n. sp., 222.
Crioceris merdigera, antemat of, 257 (fig.).
Crioceris, mandible of, 259 (fig.).
Crotalaria longirostrata, larva within thowers of, ${ }^{156}$.
C'rustulina barealis, n. sp., 98.
". table of species, 99.
Cyaniris pseudargiolus, proposed atteration of name, 91,116 .

Dactylopius citri, synonyms of, 215.
" Farnesiane, 66.
" filamentosus, 64.
" \quad Irishi, n. sp. 129. "" maritimus, n. sp., 3 !6. " quercus, n. sp., 315. " Texensis, n. sp., 6 . " vastator, $6+$
Damais archippus, late oceurrence of, 2. Dandelion, Aretian larva on, 375.
Deltorephalus apicatus, n. sp., 285 .
". cuparatus, n. sp., 343 .
" comatus, in. sp., 343 .
" elimatus, n. spp., 345 .
". snarus, n. sp., 345 .
" srammicus, n. sp., 204.
" Melsheimeri, 207.

Destructive green-pea louse, 5 (6.
Diadasia apachat, 363 .
" diminuta, $3^{6} 3_{3}$.
Dinspis Arizomicus, n. sp., 131.
Dichograma Redtenbatheri, partial lifohistory uf, 271.

Dione Juno, 8.
Diptera inhabiting wheat fiodds, 212.
Doberes Mexieanns, 235 -
Dodge, G. M., article by, 9z.
Dolichopodida, a decade of, 1,3.4.
Dolichophes misifllus, n. spl. 136.
" sincerus, n. sp., 13 \%.
Donacia crassipes, larva of, :49.
" piscatrix, larvat of, 2fo.
Donaciance, larve of, 250 .
Doryphanta Porlerce, n. sp., 9ו.
Drasterim conspican, n. sp.., 22.4.
" distincta, 225 (plate).
Drosophila pollinosa, 36 .
Dryas paphia, 7.
Dyar, Harrison G., articles by, 16, 37. $8_{4}, 117,355,156,271,284,305,347$.
Dyaria, notes on the genus, $28+$.

Eacles imperiadis, zar. didyma, 192.
" var. nobilis, 192.
Eatonia scopulifera, 32.
Ecphora = Ecphoropsis, n. gem., 3 68.
Ehrhom, E. M., article by. 311.
Ehrmann, G. A., article by, 34^{8}.
Elwes, H. J., article by, itb.
Entomological expedition into Southern Mexico, 213.
Entomolorical muddle, an, 121.
" " arejoinder, 193 .
Entomological Society of Ontario, annual meeting, 376 .
Entomological Society, election of ofticers, 377.
Entomological Society of Ontario, Montreal Branch, 120.
Entomological Society of Ontatio, Toronto Branch, ${ }^{158}$.
Entomological Society of the Northwest (Canada), 225 .
Entomologists' Directory : H. Skimer, M.D., 119.

Emis Crossii,, n. sp., 105.
" purpurascens, n. sp., 105.
Epcira Arizonensis, n. sp., 100.
Epeolus Cressoni, 362.
occidentalis, 3^{65}.
Epeolus occidentalis, var. segregratus, n. var., 36 .

Eifeolus romigatus, via. Jhartini, n. viar., 3 (62.
İpermenia pimpinerla, n. sp., 162.
Ephydra alis/rina, 11. sp., 36.
Ephydridie, new genera and species of, 3.3

Epilepsy; a parasite the supposed canse of some cases, 203.
1erebia disco oidalis, 366 .
" epipsordera, 3^{606}.
brebus odura at Orillia, 288.
briogronum latifolium, Coccus on, 316.
Ervatal, 108, 120, 225, 367, 375.
Eiucntoplus siriute'lla, t1. sp., 163.
Eucorystes \rightarrow Eucorbshilles, in. gen., 368.

Bugenia jaboticaba, Coceus on, 3.
Eulerrhia, new gemerie name, $3+7$.
liulepishe (ockerelli, n. sp., 307. " Cressmin, zo6. " matulifer, 3 o6.
Eiulimacmies Tirlligii, n, spl., 46 .
Euprepia caja, anr. Americanat, lifehistory of, 321 .
Fuptoieta claudia, 365. neuration of, 8.
Siuryopis ,5-maculala, n. sp. . 97.
Eiury/hmia Coloradella, n. sp. 175.
Eustixiat pupula, larvat of, 155 .
lénledfix insant, n. sp., 203.
" stricta, n. sp. 204.
linzopheres inornatilla, n. sp. 173.
lielderiar dorsimarula, n. spl., 328. " filicornis, 3 to.
Fernald, C. H., article by, 236 .
Ferceolomorpha, n. gèn., 188.
lield, H. H., article by, 166.
Fletcher, J., articles by, 159, 192, 273.
French, G. H., articles by, 188, 263 .
Fiyles, Rev. Dr., accident to, 116.
Fyles, Thomats W'., articles by, 15,87 , 193.

Gastrophilus cpilepsalis, n. sp., 263, 318.

Gastrops nebulosus, n. sp., 34.
Gelechia persicaeella, t64.
Geometridar, new species of, 102.
Gibson, Arthur, articles by, 2, 321, 369.
Gloveria Arizone'nsis, n. sp., 48.
Glyphipteryx, synopsis of species, δ_{4}.
fo-punctata, 11. sip., 84.
Gnaphalium polycephalum, leaf-miner on, 2.41.

Gortynat erepta, 107.
"i micacea, type of penus, 225.
Gramt, C. E., atticle by, 287.
Grapevine roots, Coceus on, 5 .
'Grapta J-alloum, partial life-history of, 273 .
Grote, A. R., articles by, 7, 68, 107, $118,119,191,209,225,289,202$, $352,359,365$.

Mabrorestum signatu", n. spl., 101.
Hadena aretica, 287.

$$
\text { " ceriount, n, sp, } 220 \text {. }
$$

Harmatopinus columbiantus, n. sp., 215.
Hamonia nigricornis, eit). zostere, z. 49 .
1talisidota propinquat, $\mathbf{2 3 5}$.
llancock, J. 1.., article by, 25.
Hanham, A. W., article by, 365 .
Harpalus eatiginosus as at strabberry 1 pest, 265 .
Harpalus ruficomis, $\mathbf{1 6 0}$.
Harpalus ruficornis, cating seeds of strawberries, 268.
Harpalus Pennsyivanicus eating seeds of ragweed, 270.
Hawaii, larva from-a correction, 156.
Heath, E. F., article by, 93.
Hemerophila pariana and its synonyms, 236.

Hemerophila, the genus, 239 .
" vicantalis, 2 , 0 .
Hempel, Adolph, article by, 3 .
Herroshomus anarmostus, n. sp., 139. " table of species, 138 . " vetitus, n. sp., 138 .
Hine, J. S., article by, $2+7$.
Hipparchia Ridingsii, 366 .
Hofmann, Dr. O., death of, 18.
Holconotus $=A$ ulonolus, n. gen., 368.
Holland, Dr. W., appointed Director of the Carnegie Museum, 216 .
Honora fumosella, n. sp., 17+.
Howard, L. O., articles by, 54, 16\%, 353.

Hubner's Tentamen and Verzeichniss, 236.

Hulst, Geo. D., articles by, 13, 102, t (0).
Hulst, Rev. G. D., death of, 369.
Hyadina albovinosa, n. sp., 3.4.
Hydracia cerrusata, life-history of, 231.

Hydracia circumlucens, 283. " Harrisii, life-history of, 282.
Hydracia impecuniosa, life-history of, 279.

Hydrectia inquassitit, 283 .
" laveal chamateristio's, 227. " luntata, 107.
Hydraccia margithidens, life-history of, 229.

Itydraeria micalce:a, 229 .
" new histories in, 22(0, 27 (\%
" nictitans, 367 .
Hyalractia nictitans, lype of genns, zog. $225,293$.
Hydreceia rutila, 03 (plat(e). $" \quad$ " life-history of, ajo.
Hydraecia, specties taken in Mantobat, 95.

Hydraceita strathentosas, of (phatre), 1ro, 133.

Myidriominena amurala, n. spl., to.
Hedrometra lineata, a study of, 70.
stiaghorum, 71.
Hymenoptera, some changes mgeneric names, 368 .
Hyphantria ctmea, 16, 87, 123, 193. " penctata, 87, 123, 194.
Hyphantria punctatissima, $16,87,122$, 193 (plate), 287.
Hyphantria textor, $16,87,123,19+$ (plate).
Hyphantria, vat: budea, 16.
Hypoclopus griseus, 307. mortipenellus, 307.

Ichneutes spo, paratsitic on the parsiane sawfly, 5 -
Idiocerus distinctus, zo8.
" Du\%e:, 207.
" lachrymatis, 207.
" mimicus, zos.,
" pallidus, 208.
" perplexus, 207.
" productus, 208.
" ramentosus, 207 .
" striola, 207.
" verticis, 207.
Index to Entomological Reports, $3+7$ Insect bites and the effects thereof, 17 . Issoria lathonia, 7.
lvy, Coccida infesting, 214 .
Jassida, new, from the South-west, 200. " notes on Idiocerus, 207.
" two new species of, 285.
Jassid fauna, additions to Western,337.
Johnson, C. W., article by, 246 .
Johnson, Willis G., article by, $\mathbf{5 6}$.

King, Cicorge 13., articles byo 9, 214. .3(x).
Kinalls, W., atticle by, tos.
l.aphygma havimaculatia, 1.5\%.

Lamera tridentata, Coceus on, 1.30.

S.ccanimm hesperidum, 24. " maculatum, 24. " whscurum, n. sp.. 5 " bleae, new patasite of, 34^{4}. " Silu"irai, n. sp., s.
1.edereria cievens, type of genus, sor).
L.epidium virginisum (Peppergrass). lawat eating seeds, 155 .
Lepidopterat, a Natural History of the British: J. W. Tutt, 3.51 .
1.epideptera, new North American, +2. 102, 161, 160, 20S, 217, 242, 307.
l.epidoptera, notes on captures, 93,11 .
 348.

l.iogatster = lioutriphan, n. geno, 368.

Lobopterat Americana, 329.
homaturat mebulensa, n. sple, $3+1$.
" moclizungr, n. sp., $3+2$.
Lounsbury, C. P., article by, 17.
f.ucusialln, n. gen., 32.
" Hitleri, 33 .
$\because \quad$ plumifer, 3.3 .
". plumipess, 3 . 3 .
Luperina testatea, type of genus, 211 .
Leycanat boctica, 156 .
" rustica, 3^{65}.

- sappiolus, 365.

Lyman, Henty H., auticles by, tog, 121, 286, 319.
Lyman, Henry H., biographical sketeh of, t.
Lyman, Henry H., portrait of, :

MacGillivray, A. D., atticle by, 177.
Mally, C. W., appointed assistant Entomologist of Cape Colons, 55 -
Mally, C. W., article by, $5^{\text {t. }}$
Mamestra uegussia, n. sp., 219.
Mamestra, species taken in Matnitoba, 95.

Manitoba Lepidoptera, captures of, 93 -
Margarodes flegia, life-history of, 117.
Maricopa albocostclla, n. sp., 176.
Martin, J. O., article by, 70.
McNeill, Jerome, article by, 77.
Megasis cinctella, n. sp., 172.
Melander, A. L., article by, 134.

Melanophus diflimentialis in New Jersey alld Pemmsyivania, 28.
Melitie:a Chalciedon, ah. fiusimatrila, 42. " " ab. $1 /$ riman, 42.
" 11 arrisii. 365.
-9 .i'nrelbii, in. spl., 4.3.
.Mchiturn juncholinerlla, 11. sp., 173.
Herolonche spinea, 33 o.
Melanastria psidia, 235.
Metzmeria lapella, life-history of, 15.
. Mirmotss, II. yell., 329.
" mubiln, n. sp., 330.
Mioza igninix, 39.
" psanminitis, 39.
-4 sublervens, 39.
" Symopsis of species, 39.
. Mincola rubescentelle, n. spo, I(x).
". scitulichn, n. sp., i(xg.
Mites, on two genera of, 30.
Moffat, J. A., articles by, 61, 133.
.1/mmphlilu/a, n. gen., 13 .
mubililhn, in. spl., 1+.
Murtfeldh, Miss M. E., article by, $16 t$.
. Kirllois dulciclla, n. sp., 176.
.ifuriucnemer, in. gren., 3+9.
Cimperci, n. sif., 349.

Needham, James G., article by, (x).
. Nimatoproctus viculushas, n. sp., t+2.
. Ticmurin Dyarii, n. sp., 105.
. Iembophas persimplex; n. sph., 3:7.
Neonympha canthus, 360 .
Neophasia cepatat, 35%.
Neophasia Terlootii, new variety of, 358.

Neophasia Terlootii, notes on, 358 .

- Neophasia, var. Princelonia, n. valo. 35^{8}.
Diphlelodes pectinutrs., 11. sp., 221.
Niphoptery.: modestella, n. sp., 170.
Neuration of Butterflies, 7.
Neuration, the principle which underlies the changes in, 289.
Noctua inopinatus, 225 (plate).
Noctuid genera, types of, 209, 292.
Noctuide taken in Manitoba, 93 .
.Vomada Illinoiensis, n. sp., 294.
" parza, n. sp., 294.
" Sayi, 293.
Nomenclature, a question of, 318 .
.iastima, n. gen., 35.
" Slossonte, n. sp., 35.
Nymphera alba, Donacia larva on roots, 253 .

Oak-gall from New Mexico, a new, 91.

Obituary, 18, $368,3(x)$.
Ochria havago, 229.
Octotoma pilicatula, pupa of, $2 \mathbf{j}^{(0,202}$ (ligs.).
Odenata, nymphes of northern, still unknown, (x).
(Emothera biemmis, larvat mining leaves, 162.

Omiodes Blackburni, 1 37.
Omophron labiatum injuring yomgs coms, 270.
Ophiodes - Ophingrastra, 11. gen., 3 (os.
Orange, Cocens 6in, 64.
Orchelimum, key to species of, 77.
Orchemia Dianti, 238 .
" the genms, 236."
Orguial Os/ari, n. spe, 4.
Ormerod, Miss E. A., degree of I.I., I). conferred upon, to8.
Ormerod, Miss E. A., 'Wenty-hird R(-iport on Insects, 159.
Ornithodoros Savignyi, 20. " turicatit, 20.
Ortalidar, new North Ameriean, 2 fi.
Orlholuphuss piger, 11. sp., 327. " variabilis, 310, 327.
Orthoptera, new or little-known Califirmian, 329.
Orthoptera, notes on Tettigeall group, 25.

Osborin, Herbert, atticles by, 215 . 2 S .

Patmphila hiannat, $3^{6} 5$. " Manitoba, 303 . " ottoe, 367 . " uncas, 367.
Panturginus Cressoniellus, 364. Porterie, n. sp., 364.
Papilio asterias, var. semi-cilba, n. var., 348.

Papilio Machaon, var. Aliaska, 119.
P'apilio philenor, var. obsoleta, in. var., 348.

Papilio troilus, var. Texanlus, n. var., 348.

Papilio Turnus, 119.
Paraclius hybridus, n. sp., 1+1.
Paratissa, n. gen., 36 .
" pollinosa, 36 .
Paramesus furratus, n. sp., 285.
Parasa prasina, 347.
" wellesca, 347.
Parkinsonia Torreyana, Coccus on, 132.
Parotis flegia, 117.
Passadena, n. gen., 171.
" constantella, n. sp., 1.71.
l'ach, hatiminer ant, rers.

Peas, destructive aphis on, 50 .
$" \quad$ " parasitessaltackenges.

Pcorin wlhidellle, n. sp., 175.
Pepsinte, table of gellerat, 185.
Persande, Thoodoro, attiche bey, 2%.
Phalienta punctatissima, 87, 122, 10,3, 287.

Phassus argentifierus, 235.
" triangulatis, 235 .
Mhenerveras arlemisier, 11. spl., 31.3.
" Unthis, n. sil., 314.
" hederie, 214 .
" stachposs, n. sp., 31.3.
Jhilerame nigrescems, n. sip. lot.
'hilomlromus interuipes, n. splo, ge.
Mhlepsius allidus, in. sp., 203. г"umuluhus, n. sp., 202.
 n. val:, 202.

Thlepsius graphicus, n. sp., 201.
" jusca, n. sp., 347.
-" luscivitus, n. sjp., 200.
" turpiculus, in. spl., 200.
Phatymatobia rubricosia, 110 .
Phycitinae, a new genus and speries of, 13.

Phycitinat, some new genera and species of, $\mathbf{t} 69$.
lieris napi, 360 .
" "t var, venosa, 1 tg.
" protodice, 365 .
Pimpinella integerrima, leat-miner on, 163.

Plantain, Arctian larva on, 375 .
Platymetopius lutus, n. sp., so.
" Orcgomensis, n. sip., t9.
" urnatus, in. sp., +9.
" tenuifroms, n. sp., so.
Plusiat chalcites, 157.
Plutella cruciferarum, to.
" dubiosella, to.
" maculipennis, fo.
Plutellinae, genera of, to.
Podabrus rugrulosus, 60.
Poling, Otto C., article by, 358 .
Polyommatus ladon, 91, 116.
Pompilide, bibliography of the genera, $1+9$.
Pompilide, classification of the family, 150.

Pompilide, table of subfamilies, 153 .
Praton cerasaphis, 60.
Proctotrypoidea, characters of the superfanily, 146 .
Prosopis velutina, Coceus on, r3o, $\mathbf{1 3 2}^{2}$.

I'sematamaphoratarcanclla, 310. ${ }^{1}$ Davisellus, 310.

" similis, In. splo, $3,3$.
" amripes, n. spo., 3.3 .
D'sorophoma ciliata, carly stages of, 35.3.
" $"$ ruminks om, 353.
Psorusu Midremellir, n. sp., 174.
P'ulvinata from New Mexiro, z_{6}. " Tinshivi, n. sp., 3 (ov.
Purslane sawher 51.
P'ushance sawtiy, sudden disappearanere of, 318.
Pyrameis atalanta, 3 (к). - cardui, 360.

Pyrameis llumera, var. liutzia, n. var., 92.

Purgsolu (\%us'uni, n. sp)., 2.46.
piprgus Polimurii, in. sp., it.
Pyrgus fessellata, 367.

Quercus agrifolia, Tineid feeding on, 245.

Quereus chrysolepis, Cocous on, 313. 316.

Quercus nigra, Kurmes ont, zob.
Guereas stellata, Tineid feeding on, $2+5$.

Neln, James A. G., article by, 28.
Rhagidiat, list of species, 31.
$R^{1} / m p$ mednsiphum violer, n. sp., 29.
Rhyncholophus (Macropus) plumifer, 32
plumipes, 32.
Riporsia serrata, n. sip., 66.
Rivellia Floridana, n. sp., 247.
Robertson, C., atticle by, 293.
Rucinin (ialifirnicu, n. sp., q).
Saldbriar aflictella, n. sp., 170.
" lurleclla, n. sp., 171.
" nigricuns, n. sp., 171.
" Slossonella, n. sp., 170.
Sanderson, E. D., article by, 2+9.
Sirrata cinerectla, n. sp., 172.
Sarcopsylla penetrans, 20.
Schizocerus Zabriskei, life-history of, 5 .
Schizocerus Zabriskei, sudden disappearance of, 318.
Scius cinctipes, 11. sp., 101.
Scudder, S. H. article by, 329.
Seed-eating habits of Carabidae, 270.
Seirarctia Clio, var. Jessica, n. var., +5 .
Sclagiat ausiraledhn, n. sp., 174.

Silidasemar deliculum, n. sp. 100.
Serginlus bicolur, It. sp., 96.
Sissian arrlim, note oh, 377.
" from Alaska, a new, 208, 377.
" rutilans, 208.
Sessiidae, food-habits of the larved, 301.
Setiosoma Fernaldella, $+1,245$.

$$
\text { " the genus, } 244 \text {. }
$$

" xamthobasis, 41, 245.
Silk from a spider, 264.
Simathis pavonacella, f1.
" vicarilis, 41 .
Sincer compleva, n. sp., 67.
Slingerland, M. V., article by, 28.
Smith, John 13., articles by, 217, 333 .
Snyder, A. H., article by, 350 .
Solanum, nigram, larva feeding on berries, 164.
Solidago sempervirens, root-borer of, 276.

Spermophilus Columbianus, louse infesting, 216.
Spharophoria cylindrica, 60.
Sphingida taken in Manitoba, 93, 94.
Sphinx convoluali, 157.
Spiders, new North American, 96.
Spilosoma antigone, $16,87,123,193$, 287.

Spilosoma congrua, 16, 87, 123, 193 (plate), 286.
Spilosomat prima, 16,90.
" virginica, 123 .
Spodoptera mauritia, 157.
Stachys bullata, Coceus on, 314 .
Statudinger, Dr. Otto, death of, 368 .
Stenaspilates albidula, n. sip., 107.
Slenopterina bicolor, n. sp., $2 \neq 6$.
St. Louis Academy of Science, 328.
Stories of insect life: Mary E. Murtfeldt and Clarence M. Weed, 192.
Strawberries injured by Harpatus caliginosus, 265.
Streptococeus pyrogenes, 19.
Sugar-cane, Coccus on, 66.
Syinelys pergracilis, n. sp., 10.-
Syrphus Americanus, 60.
Systema Lepidopterorum Hildesiae: A. R. Grote, 216.

Tabanide, new species of, 2+7.
Tabanus pruinosus, n. sp., 248. " thoracicus, n. sp., 248 .
Tachytrechus proterous, n. sp.., 143 . volitans, n. sp., $i+3$.
Tamatind, Cocens on, 6_{4}.

Tenthredo acqualis, 8 so.
". Aldrichii, n. sp., 183.
"" mphius, 11. мp., 182.
" ciracrustus, n. sp., 183.
". attavemus, 180.
" ratisatus, in, spl., 178 .
". erythromerus, i83. $_{3}$.
". Fiernahdii, n. sp., 177.
" Junghunnsii, n. sp., 179.
" lunatus, tu. sp., iso.
" "iyriconi, n. sp.. 18s.
" n igrifisscia, n. sp., i84.
" nikrisommus, 883 .
". mivulipes, n. sp., 180.
" pallipunctus, 182.
". remotus, 180.
" rubripes, n. sp., 178 .
"- rubrisommus, n. sp., isi.
" ruficollis, 183 .
" rutostigmus, 179 .
" Saragrei, n. sp., 184.
$\because \quad$ sicalus, n. sp., tig.
B. Slossonii, n. sp., 179.
". subcortilea, 182.
" terminatus, 181.
Tephroclustis Bolteri, n. sp., toz.
" lachrymosa, n. sp., to3.
" plenescriphta, n. sp., 103.
" plumbaria, n. sp., 102.
" tencbrescens, n. sp., 103.
Tetrachat virginica, 110.
Titralopha formosella, n. sp., 169.
Fitraodontony, x, n. gen., 187.
rufipes, n. spi:, 187.
Tettigriden chichimeca anstralis, n. sp.. 26.

Tettigidea jullapa, n. sp., 25.
Thatessis $=$ Megrarkyssa, n. gen., 368.
Thamnotatfix chiragrica, n. sp., 337.
" Corkerelli, n. sp., 339.
" Heidemanni, n. sip., $33^{8 .}$
" Osborni, n. sp., 337.
" percxigrue, n. sp., 339
Thecla augustus, 365 .
" irus, 365.
" mirabelle, n. sp., ti.
" titus, 365 .
Thelethis extranea, 86.
Thelvetia nerifolia, Pyralid attacking, 117.

Therina lepta, n. sp., 107.
" lugubrosa, n. sp., 106.
Tick, effects of bite, 17 .
Tineida, new, with life-histories, 161.
Tineida, notes on some North American species, 305.
Tinsley, J. D., article by, 64 .
Titus, E. S. G., article by, 303.

Treleasod W., antiold bey, 328.
Trichostihas calligura, 40 .
" fumbsil, qo.
Trimerotrupis srutiessa, 11. spe. 330.
Tse-tse thy, is.
TYpes of lepidopterit: H. Strecker, 120.

Uieus plicatus, yo.
Ulimus Americrant, Grapta lave: on, 273.
('ruln, n. kenl. 175.
" incingrucillu, n. sp., 17 .
Vianessa antiopia, var, grandia, n. var., 348.

Vimessat Mibertii, 360.
Viernomia nowboracensis, root-borer in, 232.

Vespoidea, c:lassification of the supertimily, 145, 185, 295.
Vespuidea, table of Gamilies, 146 .
Violets, new plathtlouse on, zo.
\#"rksinghamin Shossonin, n. sp., 2tt:
Wiasps, classification of the Fosserial. Predaceous, and l'aransitic, 4.45. $185,295$.
Webster, fi. M., articles by, 51,212, $265,315$.
Wheat fields. Diptera frequenting, 212. Wright, W. G., artiche bey sos.

S'rnthin pulcheller, 11. sp., 223.
Xirophilaspis Parkinsomice, n. spo. 1.3.
Nyluctoces quercus, n. sp., 3 3.
Xilomiges patlidior, 225 (plate).

Vukon, butterflies from the, 119.
Pronomenta multipunctella, 38.
" orbimacalella, 38 .
" Synopsis of species, 38 .
Yponomentidec, North Americall, 37, 84. " Synopsis of generi, 37.

Zathynchus - $N / 2$ yncolhure'us, in. gen., 368.

Zetetes $=$ Opiellus, n. gen., 368 .
Zophodia copischnioides, n. sip., 173.
" fuscritelltr, in. sp., 173.

