

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques
(c)
 3

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/ $\overbrace{}^{\circ}$
Le titre de couverture manque
Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches ev/ou illustrations en couleur

Bound with other material/
Relí́ avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ Il se peut que certaines pages blanches ajoutées lors d'une restauration epparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments:/
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reprodulte, ou qui peuvent exiger une modification dans la méthude normale de filmage sont indiqués ci-dessous

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
Pages datached/
Pages détachées
Showthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impression

Inciudes supplemeritary material/
Comprend du matériel supplémentaire
Only edition available/
Seule édition disponible
Pages wholly or partialiy obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure. etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/ Ce document est filmé au raux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

Library of Congress
Photoduplication Service

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol $\boldsymbol{\nabla}$ (meaning "END"), whichever applies.

Maps, plates, cherts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la générosité de:

Library of Congress
Photoduplication Service
Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est Imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernière page qui comporte une empreinte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la premidre page qui comporte une empreinte d'impression ou d'illustration et en terminant par la derniere page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il eat filmé à partir de l'angle supérieur gauche, de gauche à droite, et de haut en bas, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

QB 392 ${ }^{1} \mathrm{~N}_{54}$

CONSIDERATIONS

ON THE

APPARENT INEQUALITIES OF LONG PERIOD

IN THE
MEAN MOTION OF THE MOON.

BY SIMON NEWCOMB.
.
[From the American Journal of Siciencoz and Arts, Vol. IL, Sept., 1870.]

New Haven
en

CONSIDERATIONS
on the

APPARENT INEQUALITIES OF LONG PERIOD

 IN the mean motion of the moon. BY SIMON NEWCOMB.[Read to the Nationwl Academy, April, 1870.]
THE problem of determining the motion of the moon around the earth under the influence of the combined attraction of the suu and planets has, more than any other, called forth the efforts of mathematicians and astronomers. Nearly every great geometer since Newton has added something to the simplicity or the accuracy of the solution, and, in our own day we have seen it successfully completed in its simplest form, in which the earth, the moon, and the sun are considered as material points, moving under the influence of their mutual attractions. The satisfactory solutions are due to the genius of Hansen and of Delaunay. Working independently of each other, each using a method of his own invention more rigorous than had before been applied, they arrived at expressions for the longitude of the moon which, being compared, were found to exhibit an average discrepancy of less than a second of arc. No doubt could remain of the substantial correctness of each.
The solutions here referred to exhibit only inequalities of short period in the motion of the moon. But, it has long been known, from observation, that the mean motion of the moon is subject to apparent changes of very long period, and especially to a secular acceleration by which it has been graduelly increasing, from century to century, since the time of the earliest recorded observations. If we inquire into the problem of these inequalities of long period, we shall find it seemingly no nearer a final solution than it was left by La Place, observation having since added more anomalies than theory bas satisfactorily shown to exist.
The first inequality in the order of discovery was the secular acceleration. This was discovered about the middle of the last century by a comparison of ancient eclipses with modern ob-
*See Buffs paper in the Annalen d. Chem. u. Pharm., 4th supplement vol., 1865-6. Or, see his."Grundlehren der theoretischen Chemie."

F
servations. Its cause was first discovered by La Place, who showed that it was due to the effect of the action of the planets in changing the eccentricity of the earth's orbit.

The results of his computations agreed sunbstantially with observations, and was thereforc received with entire confidence until less than twenty years ago. The question being then taken up by Mr. John C. Adams, this eminent mathematician was led to the conclusion that La Place's result was nearly twice too large.
The same conclusion was reached independently by Delaunay, and gave rise to a remarkable discussion, the history of which is too familiar to be now recounted. It is now conceded that the value found by Adams and Delunnay is theoretically correct.

The new result no longer agreeing with observation, the difference is now accounted for by an inerease in the length of the day. That this length is increasing is also known from theoretical considerations, but the data for its accurate determination are wanting.*
In the third volume of the Mécanique Celeste (Seconde Partie, Livre vii, Chapitre v) La Place discusses an apparent inequality of long period in the motion of the moon. The discussion is mainly empirical. The existence of the inequality is inferred fimm observations, these showing that the mean motion of the moon during the half century following 17006 was less than during the half century preceding. He then assumed that the inequality wes due to the fact that twice the mean motion of the moon's node, plus the motion of its perigee, minus that of the sun's perigee was a very small quantity, less than two degrees per annum, and determined the coefficient of the varying angle solely from the observations. The result was that these might be satisfied by supposing the inequality of mean longitude

$$
\left.\delta l=47^{\prime} \cdot 51 \text { [or } 15^{\prime \prime}: 30\right] \sin (2 \Omega D+\pi D-3 \pi C)
$$

If, in this expression, we substitute Hansen's values of the elements, it becomes

$$
\delta l=15^{\prime \prime} \cdot 39 \sin \left[173^{\circ} 26^{\prime}+\left(1^{\circ} 57^{\prime} \cdot 4\right)(t-1800)\right] .
$$

When in 1811 Burckhardt constructed his tables of the moon,

* The time and place when the discordance referred to was first distinctly attributed to the tidal retardation of the earth having been a subject of discussion, tite following extract from an article on "Modern Theoretical Astronomy" in the North Amorican Review for October, 1861 (vol. 93, p. 385), may not be devoid of interest. "It seems to be well established that the new theory is incousiatent with the obse:vitions of ancient eclipses, and if it should prove to be correct. we may be driven to the conclusion, that a portion of the accelerstion proceeds from some ither cause th:n the att-ac ion of gravitation, or that the letgth of the day is graduelly incress ing to an extent which has become perceptible from the cause to which we have already referred [the tidal retardation, p. 374]. If, as centuriea roll by, the day should gradually increase, the moon would move a little farther in the course of a day than if no such increase should tako plase. Since, in our calculations, we euppose the day constant, the apparent accoleration would be greater then the realprecisely the effect observed. The difierence can be entirely accounted for by supposing an increase of something less than one thousandth of a second per century in the length of the day, and a corresponding diminution in the lunar month."
a Place, who of the planets
ially with obnfidence until ihen taken up an was led to rice too large. by Delaunay, ory of which onceded that ically eorrect. tion, the diflength of the from theoretletermination
conde Partie, rent inequalte discussion ty is inferred otion of the ess than durthat the inotion of the that of the two degrees arying angle these might ngitude ○)
alues of the)].
of the moon,
he omitted the sun's perigee from this argument by the authority of La Place, himself, who now attribated the inequality to a difference of compression between the two hemispheres of the earth. The function was also changed from \sin to cos and the cocfficient altered. The adopted term thus became

$$
\begin{aligned}
\delta t & =-12^{\prime \prime \prime} \cdot 5 \cos \left[\begin{array}{ll}
291^{\circ} & 57^{\prime}+\left(2^{\circ}\right. \\
& \left.\left.0^{\prime} 45\right)(t-1800)\right] \\
& =12^{\prime \prime} \cdot 5 \sin \\
201^{\circ} & 57^{\prime}+\left(2^{\circ}\right. \\
\left.0^{\prime} 445\right)(t-1800)
\end{array}\right] .
\end{aligned}
$$

Succeeding investigators have regarded the theoretical coefficients of both of these terms as insensible. It does not seem likely that there is any such difference between the two terrestrial hemispheres as could produce the second, but I am not aware that the coefficient of the first has ever been shown to be insensible by any published computation. This coefficient is of the ninth order and the argument is,

In Delaunay's notation,
 In Hansen's,
 $$
\begin{aligned} & 3 \mathrm{D}-2 \mathrm{~F}-l+3 l^{\prime} ; \\ & w-3 w^{\prime} \end{aligned}
$$

The period is 184 years, and the large value of the ratio of this period to that of the moon itself might render the coefficient sensible. Both Hansen and Delaunay pronounce it insensible, but neither publish their computations of its magnitude.
These terms have ceased to figure in the theory of the moon since Hansen announced that the action of Venus was capable of producing inequalities of the kind in question. So far as I am aware, Hansen's first publication on this subject is that found in No. 597 of the Astronomische Naehrichten (B. 25, S. 325.) Here, in a letter dated March 12, he alludes to La Place's coefficients, and says he has not been able to find any sensible coefficient for La Place's argument of long period. But on examining the action of Venus on the moon he found, considering only the first power of the disturbing foree, the following term in the moon's mean longitude:

$$
d l=16^{\prime \prime} \cdot 01 \sin \left(-g-16 g^{\prime}+18 g^{\prime \prime}+35^{\circ} 20^{\prime}\right) .
$$

g, g^{\prime} and $g^{\prime \prime}$ being the mean anomilies of the moon, the earth and Venus respectively. As this expression still failed to account for the observed variations $r_{2}^{\prime \prime}$ the moon's longitude he continued the approximation to theurth power of the disturbing force, and found that the terris; of the third and fourth order increased the coefficient to $27^{\prime \prime} \cdot 4$, the angle remaining unchanged, so that the term became

$$
27^{\prime \prime} \cdot 4 \sin \left(-g-18 g^{\prime}+18 g^{\prime \prime}+35^{\circ} 20^{\prime}\right),
$$

But this increase made the theory rather worse, and the term depending on the argument of Airy's equation between the earth and Venus was then tried with the result-

$$
\delta l=23^{\prime \prime} \cdot 2 \sin \left(8 g^{\prime \prime}-13 g^{\prime}+315^{\circ} 30^{\prime}\right) .
$$

The introduction of this term seemed to reconcile the theory with observation.

Hansen finally remarks that these values of the coefficients are still subject to somo uncertainty from his not having employed decimals enough in his eomputation.

In a letter to the Astronomer Royal, published in the Monthly Notices of the Royal Astronomical Society for Nov. 1854, Hansen gives is statement of the clenents employed in his tables of the moon, and refers to the subject of these inequalities in the following terms:-
"The accurate determination of these two inequalities by theory is the'most difficult matter which presents itself in the theory of the moon's motion. I have on two oceasions and by different methods sought to determine their values, but I have obtained results essentially different from each other. I am now again engaged with their theoretical determination by a method which I have simplified, and hope to bring the operation to a definitive close. I have also applied to my tables some eoefficients which are not free from empirieism but which I can justify by the circumstance that they represent the ancient as well as the modern observations with great exactness, and it may be expected that they will represent the future observations equally well."

Hansen's lunar tables were published in 1857.
The terms of long period finally adopted are

$$
\begin{array}{r}
15^{\prime \prime} \cdot 34 \sin \left(-y-10 \dot{\mathrm{E}}+18 \dot{\mathrm{~V}}+30^{\circ} 12^{\prime}\right) \\
+21^{\prime} \cdot 48 \sin \left(8 \mathrm{~V}-13 \mathrm{E}+274^{\circ} 14^{\prime}\right),
\end{array}
$$

V and E representing the mean longitudes of Venus and the earth. Changing them to mean anomalies the terms become

$$
\begin{aligned}
& 15^{\prime \prime} \cdot 34 \sin \left(-g-16 g^{\prime}+18 g^{\prime \prime}+33^{\circ} 36^{\prime}\right) \\
& +21^{\prime} 47 \sin \left(8 g^{\prime \prime}-13 g^{\prime}+4^{\circ} 44^{\prime}\right) .
\end{aligned}
$$

It appears that while the first term has been restroed to what was substantially its original value, when only the first power of the disturbing force was included, the argument of the second term has been changed by 50°, the coefficient being but slightly ehanged.
In a letter to the Λ stronomer Royal, dated 1861, Feb. 2d, found in the Monthly Notices for March, 1861, Hansen again refors to this second term with the statement that its coefficient is one of those somewhat empirical. At the sane time he has found the coefficient, by his last theoretical determination of it, by no means insensible, like Delaunay. Ho adds that in the comparison with observation he has never gone beyond Bradley, nevertheless his tables satisfactorily represent the ancient observations.

A well marked feature of Hansen's published works is the copiousness and perspecuity with which his theoretical calculations are laid down. But, so far as I am aware he has never published any computation of these inequalities except that part of the first inequality which depends on the first power of
the coefficients th having em.
n the Monthly ov. 1854, Hunn his tables of ualities in the equalities by Itself in the asions and by es, but I have other: I am nination by a ug the operato my tables m but which nt the ancient ctness, and it ture observa-
nus and the ns become
ored to what 3 first power of the second ; but slight-
61, Feb. 2d, Iansen again ts coefficient time he has nation of it, that. in the yond Bradthe ancient
ks is the cocal calculahas never xcept that st power of
the dienturbing force. This computation is found in vol. xvi of the Menoirs of the Royal Astronomical Society. In the seeoud purt of his "Darlegung" we find a general methol of treating inequalities of long period, but-unless I have overlooked it-no computation of any particular inequality. Nor do we find any statements of the numerieal results of Hansen's various computations except those already quoted.
The only geometer besiles Hansen who has attaeked the prohlem of these inequalities is Delaunay. His resenrehes are published in full in the Additions to the Connaissance des Temps for years 1862 and 1883. For the first approximation to the first inequality his result is

$$
16^{\prime \prime} \cdot 02 \sin \left(-l-16 l^{\prime}+18 l^{\prime}+35^{\circ} 20^{\prime} \cdot 2\right)
$$

a result practically identical with that of Hansen. The ulterior approximations change it to

$$
10^{\prime \prime} \cdot 34 \sin \left(-1-16 l^{\prime}+18 l^{\prime \prime}+35^{\circ} 10^{\prime} \cdot 5\right),
$$

so that they increase the coefficient instead of diminishing it as in Hansen's theory. The difference is however so small that the results may be regarded as identical.
But, in the case of the second inequality instead of reproducing the result of Hansen, he tinds a eoefficient of only $0^{\prime \prime} \cdot 27$, a quantity quite insignificant in the present state of the question. We have thus an irrceoncilable difference on a purely theoretical question.

I- propose to inquire whether we have in either theory an entirely satisfactory agreement with observation. As a preliminary step to this inquiry I have prepared the following table of the mean longitude of the moon from the tables of Burckhardt and of Hansen respectively, for a series of equidistant dates, the interval being 3652.5 days, and the epoch 1800 Jan. 0, Greenwich mean noon. These dates are marked by the year near the beginning of which they fall. Column $L_{\text {. gives Burckhardt's }}$ mean longitude on the supposition of uniform motion, from the data given on the fifth page of the introduction to his tables. Next is given the acceleration of the mean longitude deduced from Table xuvui. The inequality of long period is from T'able xlix. The sum of these three quantities gives the correcterl meam longitude.
Hansen's mean longitude and secular aceeleration are deduced in the sume way from the elements given on page 15 of his Tables de la Lune. His terms of long period are deduced from Tables XLI and XliI, the constants being subtracted and the remainder reduced to are by being multiplied by the factor $0^{\prime \prime} \cdot 004703$. The last column of the table gives the correction to Burckharlt's mean longitude to reduce it to that of Hansen. That this difference is really the mean differcnce between the longitudes of the moon deduced from the two tables is shown.
by its agreement with the known difference at particular epochs. At the end of the British Nautical Ahmane for 1862 is found a comparison of the two tubles, from which it uppears that Burek. harift's mean longitude was then greater than Hansen's by about $14^{\prime \prime} \cdot 2$. 'The general agreement between 1750 and 1800 , when both tables agreed with observations, shows that the difforence of meun motion is certainly atiected with no sensible error.

Burckhardt's tables have been selected for this comparison becnuse they have been extensively compared with observations made before 1700. The additions to the Connaissunce des Temps for 1824 contain a paper by Burckhardt himself giving a comparison of his tables with observations of occultations made by Flamstead, Hevelius and others, between 1637 and 1700. The general result of this comparison is that the mean longitude of his tables could hardly have been more than a very few seconds in error in the year 1670. But, the preceding table shows that for this epoch Hansen's mean longitude is $30^{\prime \prime}$ less than Burekhardt's. Therefore, unless we s.ppose Burckhardt's investigation to be affected with some egregious systematic error we must admit that the mean longitude of Hansen's tables for the epoch 1670 is about $30^{\prime \prime}$ too small.

Desiring an independent test of this conclusion I have selected certain observations which, with the data available, seemed
rtieular epochs. 1862 is found a ars that Burek. nsen's by about nd 1800 , when the difference ible error.

is comparison 1 observations ce des Temps giving a comions made by d 1700. The longitude of few seconds le shows that than Burck rdt's investiatic error we tables for the

I have selectable, seemed
well fitted to maswer this purpose and eompared them direetly with Hansen's Tables.
They are

1. Oceultation of Aldebaran, 1680, Sept. 18, observed at Greenwich by Flumstead.
2. Occultation of the aame star 1680, Nov. 7, observed at Greenwieh by Flamstead, and at London by Halley.
3. Total eelipse of the sun 1715 , May 3, observed at London, Greenwich and Wanstend by Halley, Flamstead and Pound.

To compute the occultations of Aldebaran the mean position for 1880.0 was derived from Le Verrier's Tables (Annates de l'Observatoire, Tome II) correcting the right ascension by $+0^{n} 01$, and was as follows:

$$
\begin{gathered}
a(1680)=4^{\mathrm{h}} 17^{\mathrm{m}} 37^{\prime \prime} \cdot 01 \\
\delta \ldots+15^{\circ} 40^{\prime} 11^{\prime \prime} \cdot 8
\end{gathered}
$$

The corrections for reduction to apparent place are

$$
\begin{array}{lll}
\text { for Sept. 13, } & \Delta u=+2 \cdot 90 ; & \Delta J=+1^{\prime \prime} \cdot 1 \\
\text { Nov } 7
\end{array}
$$

$$
\text { Nov. } 7, \quad \therefore u=+4 \cdot 18 \quad \Delta d=+2 \cdot 4
$$

The following geocentric positions of the moon were derived from Hansen's Tables.

From these data we derive the following times for the immersion and emersion of Aldebaran for the dates in question. The observed times have been concluded from the observed altitudes and clock times given by Flamstead in the Historia Celestis, kindly furnished me by Prof. Winlock. They differ but little from the results of Flamstead himself, when the latter are corrected for the equation of time.

Sept. 13, Iminersion,	Compated.			Obnorved.			O-0.
	15^{11}	${ }_{2}^{\text {m }}$	40	15	0	6.1	116
Noptr Einersion,	16	10	6	16	-9	12	+ 63
Nov. 7. Immersion,	7	51	47	7	60	43	+64
Nov. \%, Emersion,	8	48	16	8	47	12	+64

The great difference between the results of the two phases of the first occultation gives rise to a suspicion of error in the observations or the data of reduction. The sccond observation is confirmed by that of Halley in London, he having observed the immersion at $7^{11} 50^{\prime \prime \prime} 9^{\circ}$, and noticed that the star was "newly emerged "at $8^{\prime \prime} 47^{\mathrm{m}} 1^{10}$. His place of observation was probably twenty-five or thirty seconds west of Greenwich, and thore-
fore his observation agrees well with that of Flamstead. The discordance between the observed and computed times, of this second occultatic: indicates a correction of about $+32^{\prime \prime}$ to Hansen's mean longitude at the epoch 1680, and the first may be considered as confirming this correction in direction, if not in amount.

For the eclipse of May 3, 1715 we have the following computed and observed times. I have assumed Hilley's station to be in latitude $51^{\circ} 31^{\prime}$ and longitude 25° west. Pound's is taken in accordanee with his own statement to be in latitude $51^{\circ} 34^{\prime}$, and longitude 8° west. These agree pretty well with Flamstead's statements that Wanstead is seven or eight miles N. by
E. from Greenwich,* and that Crane Court is half a minute of E. from Greenwich,* and that Crane Court is half a minute of time West of Greenwich.

Halley at London.							
	Computed.			Obwerved.			0-0
First contact,	$2{ }^{\text {h }}$	${ }_{2}^{\text {m }}$	$3{ }^{8}$	$2{ }^{3}$	${ }_{2}^{\text {m }}$	37	- ${ }^{8}$
Beginning of Totality,	21	5	52	21	5	39	+13
End of of Eclipse ${ }^{\text {E }}$	21	9	3	21	9	2	+1
End of Eclipse,	22	16	55	22	16	37	$+18$

Pounct at Wanstead.

Eclipse first perceived,
The total immersion,
The omersion,

Computed.			Ofsuerved.			C-0
20	${ }^{\text {m }}$	18	$2{ }^{\text {h }}$	3	15	$\begin{aligned} & 8 \\ & 3 \end{aligned}$
21	6	38	21	6	6	+3 +32
21	9	48	21	9	26	+32 +22
22	17	42	22	17	10	+32 +32

The only information I have respecting Flamstead's observations is contained in a letter of his found in Baily's 'Life and Correspondence of Flamstead, p. 315, from vhich it uppears that his times differ only a few seconds from Halley's, instead of differing by the half minute required by the difference of meridians. An obvious slip of the pen, (later being written instead of earlier) makes it doubtful in which way the "few seconds" are to be counted. It can, however, be fairly inferred from his statement that his observations diverge from the tabular times as much or more than Pound's.
The discordance of the results of tirst and last contact may be attributed to this cause: that with their imperfeet telescoppes the observers did not begin to see the moon until several seconds after the actual commencement of the eclipse, and lost sight of it a few seconds before the actual end. The discordance in the duration of totality indicates with a high probability that the computed shadow path falls a few miles too far north. In this case the mean of the results for beginning and end of totality

* Baily's Flamstead, p. 316 p. 328.
mstead. The times, of this out $+32^{\prime \prime}$ to the first may ection, if not
llowing comy's station to ind's is taken itude $51^{\circ} 34^{\prime}$, with Flamt miles N . by : a minute of

	c-0
37^{88}	- ${ }^{8}$
39	+13
2	+1
37	+18
	c-0
$15^{\prime \prime}$	
	+3 +32
26	+22
10	+32

d's observa's 'Life and appears that 3, instead of nce of meritten instead w seconds" ed from his bular times
ontact may thelcscopes eral seconds lost sight of lance in the ty that the b. In this of totality
will be about right, and we have for the excess of computed times

Halley's observations,	$+\mathbf{7}^{3}$
Pound's,	
Flamstead's,	+27
	$+30 \pm$

I infer from these results that the correction to Hansen's mean longitude at the epoch 1715 is about $+11^{\prime \prime}$.

Comparing the corrections thus found for the epochs 1680 and 1715, we find they are substantially those required to reduce Hansen's mean longitude to Burckhardt's I conclude, therefore, that no egregious systematic error has crept into the researches by which Burckhardt sought to show that the epoch of his tables was substantially correct during the latter half of the seventeenth century, and that the difference between the mean longitude of Hansen and Burckhardt during that period represents approximately, at least, errors of Hansen's mean longitude.

The observations of the moon made at the observatories of Greenwich and Washington during the last ten years, indicate a tabular deviation of a remarkable character. From 1850 to 1862 we find the moon slowly running ahead of the tables, until the latter required a correction of plus two seconds in longitude to make them agree with observation. But this correction, instead of continuing to increase as all analogy would have led us to anticipate, suddenly began to diminish, so that since 1862 the moon seems to have been falling behind the tables at the rate of a second a year. This is shown by the following exhibit of the corrections to Hansen's mean longitude, or right-ascension, deduced from the meridian observations of the two observatories.

Year.	Correction Greenwich.	given by Washington.	Mean.	Corr. mean.
1850	+ 113	$-1 / 3$	${ }^{\prime \prime} \cdot 0$	$+{ }^{1 /} \cdot 0$
51	+1.5	$+0.6$	+13	$+2.7$
52	$+0.9$	-...	+ 0.9	+2.4
56	$+10$	-..-	$+1.0$	$+14$
57	$+1 \cdot 5$	--	$+1.5$	+1.4
58	$+2.0$	$+1 \cdot 5$	$+1 \cdot 8$	$+13$
62	+2.4	+2.4	+24	$+0.9$
63	+2.2	+1.2	$+1 \cdot 7$	+0.5
64	+0.1	-1.0	-0.4	-1.2
65	$-1 \cdot 1$	-2.4	-1.7	-2.1
66	-2.2	-2.5	-2.4	-2.4
67	$-3 \cdot 9$	$-4 \cdot 1$	-4.0	-3.6
68	$-4 \cdot 4$	$-4 \cdot 5$	-4.5	-3.6
69	----	$-5 \cdot 5$	-5.5	-4.3

The corrections here given as those of Greenwich are, previous to 1859 , derived from the comparison found in the Green-
wich observations for 1859. From 1863 forward they are derived from a paper by Mr. Dunkin in the Monthly Notices of the Royal Astronomical Society for April, 1869. The work of only the four principal observers is therefore included in the comparison. The object of this comparison being not so much to determine the absolute correction to the epoch of the tables as to show the changes of this correction, it is better to reject the results of the observers whose labors were discontinuous. In the case of the Washington observations, such a selection could not be made: the results given are therefore an indiscriminate mean of all. The systematic personal differences are however found to be very small.
That these corrections are real will not, I conceive, be disputed. To suppose them due to errors of observation, would be to suppose that six or eight long practiced observers divided between the two hemispheres, all progressively changed their habits of observing in the same way, and to nearly the same amount, through a period of seven or eight years.
A portion of the observed discordance may arise from a small error in Hansen's value of the coëficient depending on the ellipticity of the earth, which is more than a second greater than the values derived by previous investigators, either from theory or observation. The last column of the preceding table shows what the correction would be if Hansen's coëfficient were $1^{\prime \prime} .5$ smaller than it is.

From all these comparisons it would appear that the problem of the inequalities of long period in the moon's mean motion is really no nearer such a solution as will agree with observation, than when it was left by La Place. By a partially empirical correction, Hansen has succeeded in securing a very good agreement during the period 1750-1860, but, if the results of the preceding examination are correct, this has been gained only by sacrificing the agreement for the century previous to 1750 , and for the years following 1860. This failure to reconcile theory with observation must arise from one of two sources. Either:
(1) The concluded theory does not correctly represent the mean motion of the moon. Or:-
(2) The rotation of the earth on its axis is subject to inequalities of irregular character and long period.

The first hypothesis admits of two explanations. We may suppose either that the mean motion of the moon is subject to change from some other cause than the gravitation of the known bodies of the solar system, or that the effect of this gravitation is incorrectly calculated, and that theory and observation will be reconciled by a correct calculation.
There are difficulties in the way of accepting either of these explanations. In reference to the first it may be remarked that
they are derivNotices of the The work of sluded in the g not so much of the tables etter to reject discontinuous. tch a selection fore an indis. differences are
ive, be dispu ion, would be rvers divided changed their rly the same
e from a small nding on the econd greater either from receding table ö̈fficient were
t the problem ean motion is a observation, lly empirical y good agreeesults of the ained only by to 1750 , and oncile theory ces. Either: represent the et to inequal-
18. We may is subject to tation of the t of this gravand observa-
ther of these emarked that
anomalies of mean motion cannot be accounted for by a deviation from the received law of gravitation inversely as the square of the distance, because the anomalies produced by such deviation would be regularly progressive, and would be most sensible in the secular motion of the moon's perigee. The comparison of the theoretical and observed values of this motion is, perhaps, the severest test to which the Newtonian law has yet been subjected. That the anomalies proceed from the attraction of unknown bodies passing through the system seems extremely improbable, since, if they were distant, they would affect the earth and planets more than the moon, while the closer passage of bodies could scarcely escape detection. Stll, this explanation does not admit of being mathematically disproved. If we attribute the deviation to the impact of meteoric matter, we must suppose the moon to have encountered such matter in quantities nearly incredible.
These three causes exhaust those on which we can base the first explanation, unless we invalidate the third law of motion. For, by that law, matter moves only by the influence of other matter. Other matter can affect the motion of the moon only by impact and gravitation. The gravitation of known bodies. the gravitation of unknown bodies, and the impact of matter is therefore an exhaustive enumeration.
We pass now to the second explanation of the first hypothesis, namely, errors or omissions in the theoretical computation of the effect of gravitation. The wide difference between the conclusions of Hansen and Delaunay suggests the possibility that there may be inequalities still overlooked. We have however the assurance of Hansen that there are none, and we shall find it extremely difficult to introduce any periodic terms whatever which will represent the observed deviation of the moon from the tables during the past ten years, without discordance during the century previous, when the agreement of Hansen's tables with theory is believed to be quite close. It is however hardly worth while to dwell upon this explanation until we have a more rigorous theory of the inequalities of long period produced by gravitation.
Cunsidering that the reconciliation of theory and observation is not very probable, the second hypothesis may become worthy of serious consideration. If we accept it we must admit that between the years 1860 and 1862 the rotation of the earth was so accelerated that our reckoning of time is already eight or ten seconds ahead of what it would have been had the day remained invariable. Such an acceleration could proceed only from a change in the arrangement of the matter of the earth. The possibility of this effect being produced by changes in the quantity of ice accumulated around the poles has, I be-
lieve, been pointed out by geologists. But the effect of this cause could scarcely be sensible. But, if we admit that the interior of the earth is a fluid, and also admit that general changes in the arrangement of this fluid are possible, we have all that is necessary to account for considerable changes in the rotation of the outer crust. That this fluid, admitting its existence, is not in a state of entire quiescence is rendered probable by the phenomena of volcanoes and earthquakes If we suppose a large mass of it to move from the equatorial regions to a position nearer the axis, a mass from the latter position taking its place, the following effects will follow:-

1. A diminution in the angular velocity of the surface of the fluid, accompanied by a corresponding increase in the velocity of the axial portion. The velocity of the outer crust will then be gradually retarded by friction.
2. The gradual transmission of the increased rotation of the central mass to the surface by friction and viscosity. The motion of the crust will then be gradually accelerated. The velocity of rotation finally attained will be greater or less than the original velocity, according as the radius of gyration of the fluid mass is diminished or increased by the change in the arrangement of the fluid.
I conclude, frouis this discussion, that we have reason to sus. pect that the motion of rotation of the crust of the earth is subject to inequalities of an irregular character, which, in the present state of science, can be detected only by observations of the moon. This suspicion can be neither confirmed nor removed until we have more positive knowledge than we now have of the possible inequalities which may be produced in the mean motion of the moon by the action of gravitation.
The operation of calculating these inequalities, th ugh complicated and difficult, is certainly within the powers of analysis. When it is completely and thoroughly done, we may ascertain whether the result can be made to represent observations. If so, well; the length of the day is not variable, and the future positions of the moon can be safely predicted. If not, it will follow either that the motion of the moon is affected by other causes than the gravitation of the known bodies of the solar system, or the day is irregularly variable.

By the end of the present century, if not sooner, we shall have an independent test of the latter hypothesis, in the agreement of the observed and theoretical times of the transits of Mercury and Venus. If the hypothesis is a true one, the irreg. ularities may range over half a minute of time in the course of a century, and this quantity might be detected even by meridian observations of the plancts in question.

