IMAGE EVALUATION TEST TARGET (MT-3)

CIHM/ICMH Microfiche Series.

> CIHM/ICMH Collection de microfiches.

The Institute has attempted to obtain the best original copy available for filming. Physical features of this copy which may alter any of the images in the reproduction are checked below.

Coloured covers/
Couvertures de couleur

Coloured maps/
Cartes géographiques en couleur

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Tight binding (may cause shadows or distortion along interior marginl/ Reliure serré (peut causer de l'ombre ou de la distortion le long de la marge intérieure)

L'Institut a microfilmé le meilleur exemplaire qu'il lul a été possible de se procurer. Certains défauts susceptibles de nuire á la qualité de la reproduction sont notés ci-dessous.

Coloured pages/
Pages de couleur

Coloured plates/
Planches en couleur

Show through/
Transparence

Pages damaged/
Pages endommagées

Bibliographic Notes / Notes bibliographiques

Only edition available/ Seule édition disponible
\square Pagination incorrect/ Erreurs de pagination

Bound with other material/
Relié avec d'autres documents

Cover title missing/
Le titre de couverture manque
\square Pages missing/
Des pages manquent

Maps missing/
Des cartes géographiques manquent

Additional comments/
Commentaires supplémentaires

The images appearing here are the best quality possible considering the condition end legibility of the original copy and in keeping with the filming contract specificetions.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning CONTINUED'), or the symbol ∇ (meaning "END"), whichever applies.

The original copy was borrowed from, and filmed with, the kind consent of the following institution:

National Library of Canada

Maps or plates too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, ieft to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de le netteté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Un des symboles suivants apparaitra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

L'exemplaire filmé fut reproduit grâce à la générosité de l'établissement prêteur suivant:

Bibliothèque nationale du Canada

Les cartes ou les planches trop grandes pour être reproduites en un seul cliché sont filmées à partir de l'angle supérieure gauche, de gauche à droite et de haut en bas, en prenant le nombre d'images nécessaire. Le diagramme suivant illustre la méthode :

TRISECTION

EXTRAORDINARY OF ANY RECTILINEAL ANGLE - BY ELEMENTARY GEOMETRY

AND SOLUTIONS OF OTHER PROBLEMS Considered impossible except by aid of the higher Geometry.

ANDREW DOYLE.

OTTAWA:

A. BUREAU, PRINTER SPARKS STREET.

Cain Noyle Andiew D

EXTRAORDINARY GROMRRRICAL DISCOVERY TRISECTION
 OF ANY RECTILINEAL ANGLE - BY -

 ELEMENTARY GEOMETRY

 ELEMENTARY GEOMETRY AND SOLUTIONS OF OTHER PROBLEMS Considered impossible except by aid of the higher Geometry.
 $\mathcal{A N D R E W}$ DOYLE.

OTTAWA:
A. BUREAU, PRINTER, SPARKS STREET.

3240

Entered according to Act of Parliament of Canada, in the year 1880, !y Andrew Doyle, in the office of the Minister of Agriculture.

Trisection of a Rectilineal Angle.

Let B O C be the angle to be trisected.
At the point O, make (23.1) the angles B O D and U O II, each equal to the angle BOC. Take O as centre with any radius $O B$, and describe the are $D B C E ;$ join D B, B C, C E, and D E. Produce D B, and E C to meet in T; join OT. By 4.1., the angle O D B is equal to the angle O E C , and (5.1) the angle O DE is equal to the angle $O E D$; take away the two latter angles and the remaining angles E D T and D E T are equal: therefore (6.1) $\mathrm{D} T$ is equal to $\mathrm{E} T$. In the iriangles O D T and O ET, the three sides of the one are respectively equal to the three sides of the other, by (8.1) they are equal in every respect; therefore the angle D T O is equal to the angle ETO, then the line OT bisecting the vertical angle of an isosceles triangle, bisects DE and BC perpendicularly. It also bisects the arc $B C$; it is evident by 4.1 that $D B, B C$, and C E are equal to one another.

Draw ad parallel to B C. so that $a d$ shall be equal a B and $d \mathrm{C}$. This is done by bisecting the angles T B C and T C B by lines meeting the sides B T and CT in a and d, when the triangle is isosceles, or equilateral and proved by (29.1, 6.1, and 4.1). Find the diamater of a circle circumscribing the trapizium B a $d \mathrm{C}$, and make $t \mathrm{~L}$ equal to it; join $a \mathrm{~L}$ and $d \mathrm{~L}$, cutting the arc $B C$ in the points r and l : these are the trisecting points of the are $B C$ which is t measure of the given angle B OC. Draw the lines Orband O $l c$, and the three angles $b \mathrm{O} c, b \mathrm{OB}$, and $\mathrm{CO} c$ are equal and each equal to one third of the given angle BOC.

FIRST DEMONSTRATION.

Through the point B, draw BG paralled to $\mathrm{O} l$ or O c, and meeting D E in G ; draw also $\mathrm{B} P$ parallel to $\mathrm{O} r$ or $\mathrm{O} b$; make (3.1) B A equal to BG ; through G draw $G H$ parallel to $B O$, and through the point A draw A H parallel to BG ; join BH , and BH passes through the point P. We have now, the straight line $B P$ and the line $B H$, having the two points B and P in common; therefore (Prop. 2, Legendre,) they coin cide throughout the whole, or they are in one and the same straight line.
$A B$ is parallel to $G H$, and $A H$ is parallel to $B G$; therefore A B G H is a parallelogram, having its opposite sides equal and parallel, and $A B$ is equal to $B G$ by construction; therefore $A B G H$ is a rhombus and the diagonal BH bisects its opposite angles; therefore the angle A B P is equal to the angle G B P.

BG is parallel to $\mathrm{O} l$ and BO a line meeting them, by (29.1), the angle A B G is equal to the angle BO l; for the same reason, the angle $A B P$ is equal to the angle $\mathrm{BO} r$; therefore the remaining angle G BP is equal to the angle r O l but G B P and A B P are equal ; B or and r oe similarly it can be proved that the angle $l O$ C is equal to the angle $r \mathrm{O} l$; but things which are equal to the same thing, are equal to one another; therefore the angles $\mathrm{BO} r, r \mathrm{Ol}$, and $l \mathrm{OC}$ are equal, and the angle BO O is trisected.

SECOND DEMONSTRATION.

Suppose $L C$ and $L B$ to be joined, it is easily proved that $L C$ is equal to $L B$, then by 5.1 , the angle $L B C$ is equal to the angle $L C B$, and the angle $B C T$ is equal to the angle CB T ; therefore the whole angle

L C d is equal to the whole angle $\mathrm{L} \mathrm{B} a$. In the triangles $d \mathrm{CL}$ and $a \mathrm{~B}, a \mathrm{~B}$ and BL are equal to d C and C L , and their contained angles equal, by (4.1), $a \mathrm{~L}$ is equal to $d \mathrm{~L}$, and the angle $\mathrm{B} a \mathrm{~L}$ equal to the angle $C d \mathrm{~L}$, by (13.1), the angle $r a b$ is equal to the angle $l d c$. In the triangle $r \mathrm{LO}$ and $\iota \mathrm{L} \mathrm{O}$, the three sides of the one are respectively equal to the three sides of the other, by (8.1), O $r \mathrm{~L}$ is equal to the angle $\mathrm{O} l \mathrm{~L}$, and the angle $r O \mathrm{~L}$ equal to the angle $l \mathrm{OL}$; by (15.1) the angle $a r b$ and $d l c$ are equa but it has been proved that the angle $b a r$ is equal to $c d l$; therefore (32.1), the two triangles are equiangular, and ar equal to $d l$; therefore, by (26.1), $a b$ is equal to $c d$, but $a \mathrm{~B}$ is equal $d \mathrm{C}$; therefore $b \mathrm{~B}$ is equal to $c \mathrm{C}$. Then, in the triangles $b \mathrm{BO}$ and $c \mathrm{CO}$, we have $b \mathrm{~B}$ and BO equal to $c \mathrm{C}$ and CO and their contained angles equal, by (4.1), the angle $\mathrm{BO} b$ is equal to the angle $\mathrm{CO} c$: Then, as in the first demonstration it may be proved that each of these angles, is equal to the angle $b \mathrm{O} a$; therefore the three angles $\mathrm{BO} r, r O l$, and $l \mathrm{O} \mathrm{C}$, are equal, and the angle B. O C is trisected.

THIRD DEMONSTRATION.

Join $\mathrm{B} l$ and $\mathrm{C} r$, cutting $\mathrm{O} l$ and $\mathrm{O} r$ in n and m. If on O B we describe a semicircle, it passes through the point m; therefore (31.3), the angles at m are right angles, and (3.3) B l is bisected perpendicularly by O m; hence $\mathrm{B} m$ and $m \mathrm{O}$ are equal to $\mathrm{O} m$ and $m l$ and the angles at m equal, by (4.1), the angle B Om is equal to the angle $l 0 \mathrm{~m}$. This may also be proved by letting fall a perpendicular from O ; on $\mathrm{B} l$ and this perpendicular always falls on the point m; then we have two straight lines which coinside in part they must coinside throughout the whole (Legendre, Prop. 2). It
may be similarly proved that $C r$ is bisected perpendicularly by $\mathrm{O} c$ in n, and that the angle $\mathrm{CO} n$ is equal to the angle r On; therefore the three angles, B Or $r \mathrm{O} l$, and $l \mathrm{OC}$, are equal ; therefore the angle BOC is trisected.

FOURTH DEMONSTEATION.

In $\mathrm{O} T$, take any point, as L , and with L O as radius describe the circle O U V S. Through V draw V X parallel to S O, meeting the circle in X ; and through u draw $u \mathrm{X}$ parallel to V O.

Because $S O$ is parallel to $V X$ and V O meeting them, (29.1) the angle S O V is equal to the angle $O V$ X; for the same reason, the angle OV X is "qual to the angle $V \mathrm{X} \mathrm{U}$; but $\mathrm{V} X \mathrm{U}$ is equal to VOO ; therefore the angle $S O V$ is equal to the angle $V O$ U. Similarly the angle C O U may be proved equal to $\mathrm{V} O \mathrm{U}$; therefore $S O V=V O U=U O C$, and the angle BOC is trisected. The lines $V X$ and $U X$, in the trisection of every angle, always neet the circumference of the circle in the same point. This evidently, can never happen but when the three arcs $\mathrm{B} r, v l$, and $l \mathrm{C}$ are equal.

The following problems also have been considered by all mathematicians to be beyond the range of elementary geometry.

1. Let BACC (Fig. 2) be any angle; take any point D in A B and let fall the perpendicular D E ; through D, draw D P parallel to A C ; it is required to draw the line A N O P, so that N P may be equal to twice A D.

Trisect the angle B A C by A P and N P is the line required. Bisect N P in O , and join O D .
2. Let C A G be any angle, (Fig. 2) it is required to draw a line G H cutting the legs of the angle, so that the angle $\mathrm{A} G \mathrm{H}$ may be equal to twice the angle A HG.

Trisect B A C by A P ; take any point G and draw G H parallel to A P, meeting A C in H.

ANDREW DOYLE.

[^0]
$$
\nabla
$$

[^0]: ln the next Edition will appear the method of finding two geometrican means between two straight lines, and also the dupiication of the cube.

