The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method oi filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculée

Cover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black!/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleurBound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

\square
Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas èté filmées.

L'Institư a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

$\square \begin{aligned} & \text { Coloured pages/ } \\ & \text { Pages de couleur }\end{aligned}$

$\square \begin{aligned} & \text { Pages damaged/ } \\ & \text { Pages endommagées }\end{aligned}$
$\square \begin{aligned} & \text { Pages restored and/or laminated/ } \\ & \text { Pages restaurées et/ou pelliculées }\end{aligned}$
\square
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index
Title on header taken from:/ Le titre de l'en-tête provient:

Title page ofl issue/
Page de titre de ia livraison

Caption of issue/
Titre de départ de la livraisonMasthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires: Various pagings.

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

High-speed Engine, Dunamo, Rolling-Mill, Steamship, Raliroad, Saw-Mill, Cotton-Mill, Paper-Mill, Woolen-Mill, Silk-Mill, Jute-Mill, Rubber-Mill, Sugar-Mill, Flour-Mill and all Machineru Bearings.
MAGNOLIA ANTI-FRIGTION METAL GO.,

London Office: 75 Queen Victoria St.
Chicago Office: 41 Traders Building.
Montreal Office: H. McLaren \& Co., Agents.

JOHN LANGTON \& CO.

Canada Life Building, Toronto
ELEGTRIGAL - ENGINEERS - AND - GONTRAGTORS

Plants reguiring special combinations of Electrical Machinery a Specialty. CORRESPONDENCE SOLICITED.
" DIREGT-DRIVEN" DYNAMOS for large and small plants. SLOW SPEED GENERATORS AND MOTORS.
Sole Canadian Agents for the Waddell-Entz Alkaline Storage Batteries.

Automatic Are Dynamos and Lamps. Direct Current Incandescent Dynamos. Alternating Current Incandescent Dynamos. Transformers of High Efficiency. Electric Motors. All Electric Supplies.

Our record for the past 10 years as Electrical Manufacturers guarantees purchasers satisfaction. Ask our customers about cost of repairs on Ball apparatus.
. . . exclusive dominion representatives of . . .
National Electric Mfg. Co.

THE BALL ELECTRIC LICHT COMPANY, LIMITED,

Incorporated 1882.
Agencies $\left\{\begin{array}{l}\text { MONTREAL, QUE. - } 302 ~ S t . ~ J a m e s ~ S t r e e t . ~\end{array}\right.$
VICTORIA. B. C. - 10 Trounce Avenue.

NONTREAL INSULATED WIRE WORKS:
J. ROSS, SON \& CO., ahanupattuerres of

INSULATED ELECTRICWIRES

dnil Wires for Anntinctators, Offecs, Marmets and Dynamos.

Factory: 4IK/2 Wiliam St., MONTREAL.

Orders solicited and carefully executed. P. O. Brase 1800.

E. Garl Breithaupt consulting

Electrical Engineer
Graduate in Electrical Engineering at Johns Hopkins Universily, Baltiniore.

Strongest and most portable boiter in use.

robe Ammstronc encine,
Containing all the beat points of Standard Amencan High Spetd Eagines and sereral inpiovements.
Prof. Sicoet's Strzight Line Govemor and Valve, The Coffin Throtule, Armotrong Cresshcad Valve Gear and Oiling Devices, Interchaogeable Parts. Perrect Alignment. Larre Deariggs.
ROBB EMCINEERING CO., LTD. Amherst, NYova Scotia.

JOHN A. BURNS
B. A. SC.

MECHANICAE ENGINEER AND MANUFACTURERS' AGENT
Engineers' and electrical SUPPLIES

Machinery	Pumps
Engines	Dynamos
Bollers	etc.

MOTORS

Sole Agent in Montreal for the Kay Electric Works, Hamilton, Ont.
... nixcialitst in...
STaking Boiler Evatorative and Engine Ecosomy Tests.
Irdicating and properly selting the walves of Stean Engines.
686 Graig Strat - MONTREAL

(IMNEITIDD)

manufacturers of ELECTRIC LICHT WIRE, Magnet Wire, offlee and Annunolator Wire, Rubber Covered Wire, Lead Encased Wire, TELEPHONE AND INCAMDESCENT CORDS.
FARADAY GFBLES.
RAILWAY FEEDER AND TROLLEY WIRE.

OFFICE AND FACTORY:
New York 0ffice: 10 Cortlandt Street.
Providence, R. l.: American Electrical Works. MOflfaal. Ganada; J. MP. HARRISON. H.A. SEYLER Montreal Electrical Supply Co.

781 CRAIG STREET, MONTREAL

MANUFACTURERS And CONTRACTORS

estimates given on
COMPLBTE INSTALLATIOM OR BLECTRIC LIGET PLAMTS, BTC.

General Electrical Supplies

Please mention the Electrical News when corresponding with advertisers.
A. Allan, President.
J. O. Gravel, Sec.Treas.
F. Scholes, Man.-Director.

THE CANADIAN RUBBER CO. OF HONTREAL CAPITAL, $\$ 2,000,000$.

MANUFACTURERS OF ALL KINDS OF

sand RUBBER COODS

FOR ELECTRICAL PURPOSES,

 - including -BLACK AND WHITE TAPES, TUBINGS, ROD, SHEET, TELEPHONE RECEIVERS, ETC.
Rubber Beltings, all kinds of Hose, Packings, etc. Mould Goods of every description.

WESTERN BRANCH:
COR. FRONT AND YONGE STS.,
J. H. Walker, Manager.

FIRSTBROOK BROS. King St. East, - TORONTO. manutacturers of TOPPINE, SIDB-BLOOKS and GROSS-ARME. WRITE YOR PARTICULARS.

Reliance Works

TENDERS WANTED
A Weekly Journal of advance informa. tion and public works.
The recognized medium for advertise. CANADIAN CONTRACT RECORD TORONTO

Ganada Lumberman

YUDLISHED SONTHIM BY
A. G. МニOIRTIMIHE

Canada Life Assurance Elds. . TORONTO, ONT. Substription $\$ 1.00$ terycar in adtaxte.

- WANTS

E you want a particular let of lumber, or have one 1 to dispose of; if you want to buy or sell timber limits; if you have a mill for sale or want to buy one; if you have a piece of second-hand machinery to dispose of, or want one; if you want a situation; if you want an employee for any purpose: an inexpensive advertisement und ar the heading of "Wanted" or "For Sale" is the easiest and quickest way to acexmplish what you wish.
An advertisement in the Canaon Lusuerasas is the only always on the road, but on all the roads at once.

Special Pulleys

 made in all sizes,from $3^{\prime \prime}$ motor pulleys to 15 ft . driving pulleys, ... with ...
IRON CENTRES AND WOOD RIMS, AND ALL WOOD.
Our pulleys are used in all large stations in Canada. 8END FON OATALOOUN

DODCE WOOD SPLIT PULLEY CO.
 83 KINO STREET WEST, RONTO

ARMINGTON \& SIMS

ELECTRIC :-: LIGHTING . . . AND. . .
General Factory Purposes. bekfect hegulation and highest hConomy
STEAM PUMPS, SHAFTING, PULLEYS, AND
GENERAL MACHINERY. Hamilton, Ont. ARMINGTON \& SIMS
 G.C.RDBB Chief Engineer A.FRASER Sec. Tres

Head Office TORONTO

 Scle Agent for Canada and the United States for John C. Taylor \& Co.'s (Bristol, Bugland) Liquid Anti-Scalo
Vegetable Boiler Composition

For the total prevention and removal of Incrustation, Corrosion and Pitting; also for preserving the plates, and for proventing Leafage of Bed Taps, Water Gauges, etc., in STATIONARY, LOCONOTIVE or MARINE BOILERS. UNRIVALLED FOR ITS EFFIGIENCY AND PRESERVATION OF PLATES, ETC. ENQUIRIES SOLICITED. SATISFACTION GUARAMTEED. INOTE TEE EOILOWINGG:

STEVENS \& BURNS.

Kay Electric Works

No． 263 James Street N．，Hamilton，Ont．

．．．manupacturbrs of ．．
DYNAMOS

For Are and Incandescent Lighting．

MOTORS

From is H．P．to 50 H．P．
Electro Plating Machines and General Electrical Appliances．Special attention to Mill and Factory Lightung．：．：．：

WRITE FOR CIRCULARS．

NORTHEY MFC．CO．

 TINMTBI
mANUEACTURERS OF STERMMED
PONMERED

For General Water Supply and Fire Protection． BOILER FEED PUMPS AND PUMPS FOR ALL DUTIES

CONDINSERE，ETC．

HIGH CLASS PUMPING ENGINES
 FOR HIGH DUTY，SUITABLE FOR TOWN AND CITY WATERWORKS．

．．．．OUR SPECIALTY

We also manufacture Horse and Trail Cars of every description．

PATTERSON \＆GORBIN． ST．CATHALINES，ONT．

we manuzacture
Standard Bell Telephones
Warehouse Telephones．
Garbon Transmilter Telephiones．
Local exchanges fitted up．All line material supplied． Ste．Julie，Scpt．5th，18ga．
T．W．NESS．ESQ．，Montreal．
Dear Sik，－We are happy 10 state that your telephones and switches are giving us good satis． faction．We have three sorts of switches and we fini yours tar preferable．There is now alnut werty of your telephones in operation on our line． forty of your telephones in operation on our line．
Every one works well，and we intend to use no oiber．Yours very truly， The Mifgantic Tei．epione Co．
Write us when you want anything electrical．

T．W．NESS
Canadian lieadquarters for Electneal Supplies

Key Socketa，	Magreto Hells，
Suchefies，	Anииs ${ }^{\text {A }}$（ators，
Cut－outs，	Bells，
M＇tre．	Eattertes．
Satmpes．	Push Butlons，dc．
shasden．	Dynamos and 3iotors

Dynamos and Brotors

749 Graig Street，MONTREAL．

CANADIAN
Electrical News
AND
STEAM ENGINEERING JOURNAL.
VoL. III. JULY. 1893 No. 7

THE LATE JOHN A. WILLS.

Ir becomes our painful duty to chronicle the unespected death on the 16th of June, of Mr. John A. Wills, Chief Engineer at the Toronto Custom House. Mr. Wills, who was in his 48 h year, was possessed of a naturally strong physical organization, and until the last two years enjoyed the best of health. Of late he was a sufferer from Bright's disease, and early last spring passed through a severe illness which several times threatened to have a fat thending. Greatly to the comfort of his family and many friends, what seemed to be a marked improvement in his condition suddenly manifested itself two or three weeks ago ; his appetite returncd, he gained strength rapidly and was able to go down town. But a few hours previous to his de:th he drove around town with a frient who was on a visit to Toronto. lfter retuming from the drive he lay down to sleepwhich proved to be the sleep of death-for he passed quietly away a few hours later without having regained consciousness.

Mr. Wills was one of the best known and most popular men of the city, and his death came as a great surprise and grief to thousands of his fellow citizens.

The deceased was a native of Ottawa, in which locality his parents were among the first sellers. Atter graduating from college, he entered as an apprentice the machine shops of Messrs. E. \& C. E. Gilbert, at Montreal, who at that time were the principal manufacturers in Canada of marine engines. C_{n} completing his apprenticeship he went to the New England States, where he spent several years, mostly at Fall River, Mass, where he met and married the estimable wife who survives him.
He returned to Canada, and received the appointment of Chief Engineer of the 1)ominion Parliament Buildings, which position he held for three or four years, when at his own request he was transferred to Toronto and assumed the duties of the position which he occupied at the time of his death and for seventeen ycars previously.

He always showed a desire to assist his brother engineers. He was the fist Registrar of the Ontario Association of Stationary Engineers, and in Maj last was clected to the P'residency. He was .llso a member of the Camadian Association of Stationary Engineers, and Chairman for the present year of the Technical School Board. He likewise filled prominent positions in connection with the Masonic order, the A. O. U. W., and the Orange Socicty.
His checrful, sympathetic disposition made for him a multi tude of friends, to whom his sudden death is the subject of profound regret. A wife, seven sons and one daughter mourn the loss of a beloved husband and father.

The National Electric Tramway Company, of Victoria, B. C., has purchased the business of the Victoria Electric Light Company of that city for the sum, $L^{5},: 0,000$. The plant purchased embraces dynaunos, 30 miles of wire anu 3,700 lamps. The pirchasers intend to laugely increase the capacity of the lighung plant, and to empluy water 1. wer for the genera. tion of current for both lighting and tmaway purposes.

The late jonn A. Wials.

THE CANADIAN ELECTRICAL ASSOCIATION.

Several mectings of the Committec on Statistics have lately been held. A form of schedule has been drafied, which embraces enquries for statistics which would show the extent of the electrical industies of Canada, and the conduons under which they are being conducted. Copies of this schedule will be immediately forwarded to every firm in the electrical business or Candala, with a reguest that the blanks be filled in with the information sought to be obtamed, and which if secured should prove to be very useful. The deputation which a few months aso visited Ottawa to oppose the bill for the inspection of electric lighting, greatly felt the need of statisucs such as those which the Association is about to attempt to secure. It is hoped that persons engaged in any department of electrical business to whom copies of this scheclule may be sent, will promptly supply the information required.

TORONTO ELECTRIC LIGHT CO.

THE Toronto Electric Light Co., in addition to having recently doubled the size and capacity of their central station, have erected h.adsome new business offices facing on Esplanade street, into the pussession of which they have just entered. The new office building, which by the way was erected from the design and under the supervision of the versatile general manager, Mr. J. J. Wight, includes a commodious business office and an office for the manager on the ground floor, a large board toom, and sleeping : = nmmodation for officials of the com. pany whose dulies at times prevent them from reaching home. Of course the latest equipments in the way of electric bells, speaking tubes, etc., are employed. The office on the ground floor are handsomely finished in quatered oak, having stained glass windows, and comfortable looking fiteplaces of pressed brick. We congratulate the company and the general manager upon these indications of progressiveness and prosperity.

PERSONAL.

Mr. John Ran, who for twelve gars has kren in the emproy of the R. G. McLean Co., of Toronto, has been apponted to take charge of the water power station of the Niagam Falls Park and River Electric Railroad. Mr. R. G. MeLean, on behalf of Messrs. R. G. McLean \& Co , and of the employees of that firm, presented Alr. Bain before leaving for Niagara with a gold-headed cane and diamond pin, as a token of esteem. Mr. Ban is a menber of the C.. A. S. E., and is thetd in the highest respect by all his acyuantances, whese best wishes will go with bimito his new pustion.

There are already a number of applicants in the field for the position made vicant by the recent death of Mr. John A. Wills. The salary is sis00 per yeir.
We have recelved from the Columbia Lamp Co., of St. I.ouis, a large size portmit framed in ark of Henry Gocbel, who is clamed to be the original inventor of the incandescent latmp.
The Ottawn Electric Street Railway Company, at its annual meeting a few days ago decided to establish a car manufactory as a separate depart ment, for which purpose a capital of $\$ 50,000$ will be employed.

A QUESTION OF PRIORITY.

Hamiliton, June ighl, 1893.

Dear Sik, -In a recent artucle in the E:lectrical Review of New York, the writer, Mr. Allen R. Foote, clums to have been the "first in the fiedd" in suggesting that an are light be known by its amperage and voltage only, and not by candle power. Now, while we do not make any claitn to priority in the matter :at all, we beg to state that the contract made between this eity and our company calls for lightes of to amperes at 55 volts, and says nothong about candle power at all, and we have no doube the same will be found to be the case in several other places where are lights are being supplied on city contracts. We chaim, then, that Mr. Foote's suggestion was nothing new under the sun in 1800, ns our contract has now been running nigh on to four years.

Yours very truly,

thb hamilon Eibctric light \& Powik Co.
D. Thomson, General Manager.

QUALITY OF ARC LIGHT CARBONS.

Hutior Canaman Bi.metrical News.
Sik, - I note in a iecent number of The Electrical Ricvicio, of New York, a short article on the "Development of Are Light Carbons," in which the writer is made to say that, "A carbon manufacturer five years ago would make a poor showing iftested in comparisor with one of the prrsent day." I am in a position to say that just the opposite is the case. I had oppertunity not very long ago to see sested some Wallace diamond carbons (so called) that were manufactured away back in the early period of the electric lighting industry, and which burned better, lasted longer, vere more evenly coated, and fully 50% better in efficiency than mast of the carbons in use at the present day. True the price of them was about to cents a piece, but to say that they were of poor quality or not equal to those now manufictured is incorrest as any one who has had the handling of are lights from the start to the present day can amply testif):

Yours tuly,
Central. Station Maniger.
MOUNLIGHT SCHEDULE FOR JULY.

$\begin{aligned} & \text { Day of } \\ & \text { Month. } \end{aligned}$	Loght.	Extinguish.	No. of Hours.
	II.M.	11.34.	H.M.
	1. M. 8.00	P. AR. 10.40	2.40
2. . .	18.00	111110	3.10
3	18.00	11 11.30	3.30
$4 . .$.	" 800	"111.50	3.50
5......	118.00	A. M. 12.20	4.20
	118.00	" 12.50	4.50
	" 8.00	11.10	5.10
8 .	" 8.00	"1 1.40	5.40
	118.00	112.20	6.20
10......	1 88.00	113.10	7.10
11......	" 8.00	113.40	7.10
12......	1 8.00	113.40	7.40
13	188.00	113.40	7.40
14.	118.00	113.40	7.10
	118.30	113.40	7.10
16....	(1) 9.00	" 3.40	6.40
17. . .	11920	" 3.50	6.30
18	" 9.40	" 3.50	6.10
19. . .	1110.00	" 3.50	5.50
$20 . . .$.	1110.20	113.50	5.30
21......	+1 10.10	113.50	5.10
22	+ 11.00	113.50	4.50
23	1111.20	" 3.50	4.30
$24 .$.	111.50		$\{4.00$
$25 . . .$.	113.50	\{ 4.00
26.	A. M. 12.20	11 3.50	3.30
27	$\because 1.20$	$\because 3 \cdot 50$	2.30
$2 S$	No light.	No light.
$\geq 9 .$	No light.	No lisht.	
30	$\text { P. M. } 7.50$	$\text { I. M. } 9.50$	2.00
j1.......	" 7.50	1110.00	2.10
		Total,	143.50

A compant is said to have lieen forned for the purpose of cleaning arad repairing incandescent lamps, the bulbs of whick have become blackened and the filament impaired by use. The process, as described, consists of cuttinga hole in the glass and hy mechanical or chemical means cieaning the interior of the bulb, restashing the earbon, exhausting the bulb and rescalag it.

THE ELECTRIC HEATEK. \dagger

by 'timamas Alikarn.
Tus increasing interest manifested in electric heating apparratus during the past year throughout the Unted States and Canada is lighly satisfactory and, without a full knowledge of what interesting application of heating devices may lave been mide in the United States, 1 will endenvor in this paper in outline what we have accomplished in Canadia, and more particularly in the city of Ottawa.

The idens relating to the limited ficld of electic beating are fast disappearing, and the notion that an electric light or railway planf, unless operated by water-power, cannot profitly introduce clectric heat, is but an instance of history repeating itself, as witness the introduction of the elephone, incandescem light, etc.

When friction is overeome, heat is produced, whether the friction be the resistance of any portion of an clectric circuit or of a purely mechanical chat neter, as, for example, the application of the ordinary car brake; the resultant equivalent in each case appears as heat, so that if one or five horse-power of electical energy be absorbed in an electric heater the full amount is converted into heat.

A mechanical example of this conservation of force may be demonstrated by rubling the right hand on the cont sleeve of one's left arm. If the rubbing is brisk and continued, an unpleasant lieating of the hand will result ; the force expended in the muscular effort of rubbing results in an exact cquivalent of heating of the hand, and the cont sleeve rubbed. This result is practically analagous to the leat developed in the heating wire of an electric heater. The tesistance (or friction) offered, as in the rubbing of the coat sleeve, results in the developing an exact equivalent of heat.
The operation of the electric heater may also be compared to that of an incandescent lamp, in which, as is well known, good conductors of electricity are sarried to the terminals of the lamp filanent, and the latter purposely made a poor conductor, in order that the resistance offered by the filament and overcome by the current may produce a sufficiently high degree of heat to give the desired light. Although light alone is the object sought, it is but an arcompanimert of the incandescence of the filiment. in the elect - ieater, heat alone is desired, and heat alone is present.

The size and length of the lamp filament and wire of the heater are both determined in very much the same manner, excepting that in the case of the heater, the calculation for amount of wire does not subject the heater wire to such a degree of heat as in the case of the incandescent lamp. The size and length of wire employed in a serviceable electric heater should be such that the heat developed will uot be sufficient to destroy it by oxidation of fusion. This is greatly assisted by the design and other conditoons of manufacture, and in the case of my cylindricall 500 volt upright car stove, the inlet of cooler air at the bottom, and its rush through the heated cylinder, results in a vigorous circulation of the air through the space to be warmed, and this displacement of hot air by cooler air constantly relieves the heater wire within the stove.

Instead of making heaters on the plan of the rheostat, I have found that for marked results, and more paticularly for the air draught, it is desirable to conserve the heat within the heater up to a certain digrec, above which the construction of the beater should not permit the wire to reach.

1 have also concluded that iron wire is most desirable, and among many of the points in its favor is that its resistance incre:ases with the heat. The tenefit of this quality is felt when the electromotive force is increased, as frequently happens for short intervals in nearly all classes of circuits.
By the method of construction and the use of good non-conductors of heat, as insulatiun and packing, the-heat developed in small water heaters and large water furnaces is directed to the copper water-containing vessels around which the heating wire is wound; the heat is quickly transferred from the wire to the copper vessel, which can never reach a very high degree of heat. The air draught in my other heater operates in very much the same manner as the presence of the water in the liquid heater.
It is an interesting fact that the good conductors of heat are also the good conductors of electricity, and the poor for one 15 also poor for the other. This conductive quality, which is com-

I Paper read lefore me Chicaro Electic Cluin
mon to both fomms of force, is very sugestive of a close relationship, which doubtless future investigation will determine. With the good conductors, such as copper, the current may be im. agined as gliding freely through the atoms of the copper; while in the case of the comparatively poorer conductor-iron-the atoms may be pictured to throw themselves, like barriers, across the track of the current, this friction (or as we electrically term $i t$, resistance) resulting in the development of heat. The mutual convertibility of the various natural forces is evinced from the combustion of ceal in a power house, the dynamo converting the energy supplied by the coal into the convenient form of electricity, which is transmitted along wires to electric henters placed at different points in the circuit, where we agem have heat as at the starting point, the heater in turn giving up its heat to the sumrounding air. It is evideht thus, that from electricity heat may be obtained. It is also true that from heat we can obtain electricity as in the ordinary thermoelectric pile-the application of heat to the junction of the dissmilar metals of the pile will be demonstrated by the movement of the needle of the galvanometer.

I will now proceed to a brief desenption of some of the electric heating installations which have been in successful operation during the past winter.
In July of last year 1 had erected in the car shop of our local electric railway a bakers oven eight fect square, which was built of brick in the usual way, excepting that within the oven, and set in the foundation, were placed two of my 20 ampere, 50 volt cylindrical stoves, the interior of the oven being whitened and lighted with incandescent lamps; a small window looking into the oven, and provided with three panes of plate glass, separated from each other by air spaces, being provided for the purpose of observing the process of baking, cooking, etc. The oven was also equipped with a clock and a pyrometer, which latter instrument recorded the degree of heat within the oven. The pyrometer indicating 400 degrees Fahrenheit, a neighboring bakertried a few pans ol buns. The process of baking was watched with much interest, and from the puffing up of the dough to the pretty brown finish could be seen through the window of the oven which, as before stated, is provided with incandescent lamps. A short time after a full dimner of one of our leading hotels was cooked, including in 21 pound roast of beef, several turkeys, ducks, lamb, etc. This electric dinner was served to the regular guests of the hotel, together with a distinguished company of invited guests. The cooking of the meats was pronounced perfect, and the time occupied in cooking was 30 minutes less than is usually required to do the same work in the hotel mange.

It may be interesting to state that this oven has been in full blast since it was started, and the current has been applied constantly night and day without trouble of any kind, and it is now used in drying out repaired electrical parts of railway equip. ments.
At the Central Canada Fair, held in this city in September of last year, a bakers oven the same as described was erected in the main teilding, ittended by a staff of bakers. The oven was provided on one side, with a window, through which our delighted ruralists gazed in wonder. The oven yroved the great card of the show, and the presence of a special policeman was required to keep the crowd moving. The baker started in selling a small bag of buns at five cents on the first day, but the law of demand justificd him in increasing the price to 25 cents on the last day of the exhibition, when the supply was not sufficient although is pans were turned out every 14 minutes. In the same building the Women's Christian Temperance Union Dinng Hall was made somewhat more attractive than in fonner years by the use of large electric water heaters, which supplied a dozen smaller heaters placed conveniently, and in which were made tea and coffe. The outfit was kept in continuous operation during the Fair, and although hard pressed by the crowds present, the supply was ample; no other means of heating water was employed. The success of this display will be best appreciated by the fact that the financial results were for the first time in many years of a satisfactory nature.

An ordinary hot water radiator connected with an electric furnace placed in a pit below the door, lighted by incandescent lamps and covered with an iron grating flush with the floor,
attracted the attention of houscholders. The absence of a chimney and other accessotics of a hot water coal furmace added to the fact that the closing of a switch only was necessary to obtain heat, which might be continued indefinitely without dirt, dust or labor, were doubtless the main reasons for the innumerable inquiries made as to the cost of operation, etc.
As no long continued test of this form of hot water house heating had ever been made, I concluded that only two installations of this description should be made during the winter just passed.
The first installation was made for the purpose of heating a genticman's conservatory in this city. The furmace was placed in the basement, the controlling switches on the floor above, and all connected with the 50 -volt lighting circuit. The total amount of pipe employed in the conservatory was 300 fect, the current absorbed being equal to three horse-power. The amount charged by the light company was based upon the cost of an equal anount of power from motor citcuit. The operation of this plant has been a great success, having worked continuously and absolutely without attention since October last, the user being so much pleased with its sucress that the question of heating the entire premuses electrically is now under consideration.
The second installation of the hot water system was made in R. A. McCormick's drug store, Spatks street, this city. The premises was piped throughout for het water heating in November of last year, the electric furnace being placed in the basement. This 50 volt furnace was constructed in five independent heaters radially comnected to a common oupply pipe, each heater being independent of its neighbor, the five sections both mechanically and electrically being connected in multiple. Each of the sections was controlled by five 10 ampere switches, which were placed in a row in the store above, so that for all conditions of weather the heat could be regulated by turning off and on any of the five sections into which the furnace was divided. Another important consideration which suggested this design was that in the event of trouble with any one of the five sections comprising the complete furnace, it could be detached by closing the valves, and the particular section which might require examinatinn could be removed without disturbing the other fourfifths. Despite the fact that the past winter was unusually severe in this usually cold clinate, this outfit worked without a hitch and without allention of any kind, and provided at all times the heat desired.
For the usual Christmas display of the Chaudicre Electric Light Company, I designed an electric upright boiler which operated a one horse-power engine and the boiler being placed upon a large table in the company's office. The boiler was provided with steam gauge water glass, safety valve, etc. Being nickle plated throughout, it presented a very handsome appearance. The safety valve was set for 35 pounds pressure, which operated the engine. As heretofore steam engines have been employed in applying the power necessary to energize dynamos, the novelty of this outfit consisted in the fact that the electricity was developed by water power, which was converted into heat, making steam in the boiler, and which was then used in driving the steam engine.
The charge that is here made for curtent used in the numerous one gallon water heaters, which have been largely introduced by the Chaudiete Electric Light Company, is based upon the amount charged for the 16 candle-power lamp, which is $\$ 8$ per annum (the user paying for lamp renewals). Motor rates are charged for larger installations. These water heaters are used in barber shops, drug stores, bar-rooms, etc., and absorb threc times is much current as one 16 candle-power lamp- $3 \times 8=\$ 24$. The con:pany collects 50 cents per week for current supplied each heater, making $\$ 26$ per annum, as against $\$ 24$ if the same current was used for lighting. The charge is considered small by users, and the service is very satisfactory.
The business done during the past year in electric heating devices of various kinds has amounted to a very respectable sum, and will here, as it should elsewhere, increase from year to year.

The Merchants Tcicphone Company has obtained unrestricted right of way in the city of Montreal. The Sherbrooke Telephone Association have mace arrangements with the Merchants' Telephone Co., by which at an early date the subscribers to the Association will have communication by metallic circuit with Montreal.

THE TESTING OF DYNAMOS AND MOTORS.* iby llazk kitcilik.

Tint: first and probably the most important serics of tests which are made on any machine nre those from which the characteristic curves are obtained. The elameteristic curves give us practically everything we require to know about a machine, and from them we obtain all necessary dita for making any necessary allerations and improvements.
The most importame curve to be taken is the curve of mangetination in wheh the vertical ordinates represent the electromo. tive force in the armature and the horizontal absissac the ampere turns fowing round the fiedds.

In this test the speed should be kept constant, as no accurate corrections for varintions can be made. The fickls must be separately excted, preferably from a storage battery, as this gives a practically constant electromotive force.
The first point on the curve is obtained by measuring the voltage at the brushes when the fields are open circuited, and which is due toresidual magnetism. The fiedds are then excited, we:kly at first, and readings taken of voltage, amperes in the field and specd.
The fielils are gradually strengthened, readings being taken at each change, until a great change in the feeding current is reguired to produce a small change in the voltage; great care being taken to keep the speed constant throughout.
'To make llis test of any; value, only the most accurate instruments should be used. The best instruments for this purpose are a Thomson refecting galvanometer combined with a high resistance of say : megohm or a condenser for measuring the electromotive force, and a Thomson quadrins electrometer shunted aconss a standard resistance of siny 1 ohm, which is in circuit with the field, for measumg the current in the fields. Both these instruments shoukd be calibrated with two or more standard cells checked against each other, both before and after the test.

The next tests in this serics are the quarter, half and full load curves. These are taken in the same way, except that a quater, half of full current is taken from the machine, the current being kept constant by means of an aujustable resistance.

Oher curves which are of interest show the selation between the volts and amperes in the external circuit, the speed being kepp constant, and the volts and amperes in the external circuit at various speeds.
The next test is the efficiency test. In generntors this must be made in one of three ways: either by indicating the engine used for driving the machine and measuring the output; by measuring the power supplied by means of a transmission dynamometer, or by coupling two machines of the same type, one as a motor and one as a generator, and dividing the loss equally between them This is by far the most satisfactory method, all the readmes being easily made ; and, in testing large machincs, by coupling back to line we need only use the power lost in the inefficiency of the machines. That is, we could test two too h.p. machines havitu: an efficiency of 85° with a generator capable of giving only 30 h. p. This saving of power would be a large item in factories construiting large machines.
This hast method of obtaining the efficiency has the great advantage that we are able very accurately to separate the mechanical losses due to frietion of the moving pats from the purely electricallosses.
In all these tests corrections have to made, when machines we not directly connected, for loss in belt or gearing.
There is some question :ts to the correctness of dividing the loss equally between the marhine running as a motor and that ruming as a generator MIF W. Mordey, in a recent paper before the lastitute of Electrical Engineers, said that this might be assumed to be correct, and as he was not contradicted I think we may consider it so.
The efficiency of a motor is obtained by measuring the electromotuve force and current taken and the power given out ; the power berng measured either by a transthission dynamometer or an absorption dynamometer or brake, the latter being the preferable way. Une of the simplesf and best transmission dynamoneters is that designed by Profs. Ayrton and Perry. This consists of a pulley fixed to shafi, a loose pulley and a pulley connected by springs to a plate rigitlly connected to the shaft.

[^0]The engine belt runs on the fixed pulley and the machine belt on the spring pulley. The extension of these springs caluses, by means of a link motion, n bripht bead at the end of a long arm to move towards the celitre.

The distance of the bead from the centre being a measure of the power transmitted, by having adjustable links the leverage, and therefore the range, of the dynamometer can be varied at will. They have also designed a coupling on this principle for use on direct connected machinery. In several forms of tmansmission dynamometers the tension of the belt is measurad by means of jockey pulleys held in position by spring balances and weights, and from this the power ran be calculated.
Transmission dynamometers are unsatisfactory owing to the difficulty of taking accurate readings, and in the case of measuring the deflection of the belt by the complicated nature of the calculations.
The absorption dynamometer is usually some form of the Prony brake, which consists of two braike blocks placed round the pulley of the machine to be tested, and beld logether by bolts and thumb screws. A lever is fastened to the upper block, one end of which is secured to a Salters balance which is made fast to the floor, the other carrying a counter weight. The brake is adjusted when the machine is at rest with the blocks slack, the counter weight being moved till the balance reads. zeto. The machine is started and the thumbscrews tightened until the required balance is obtained, the Salter's balance being adjusted by a nut at the end of the lever to keep the lever level. The horse power absorbed is found from the formula

$$
H P=\frac{2 \pi r n P}{33,000}
$$

when $r=h o r i z o n t a l$ distance in feet from centre of balance to centre of shaft.
$n=$ the number of nevolutions per minute.
$\mathrm{P}=$ the Salter's balance reading in pounds.
It is important to note that neither the dianeter of the pulley, nor the pressure of the friction blocks on the pulley, nor the coefficient of friction enter into the formula for obtaining the horse power.
Every reading taken during any test should be recorded, whether it appears to be correct of not, as very often important results are obtained from figures which at first sight appear to be contradictory and due to errors of observation. With each test the complete detail of the machine should be fyled, showing the number of turns on the armature and fields, the size of the wire and the copper resistance of the various windings both before and after the test, when the machine is cokl and at the end of the run : together with the insulation resistance before and atter the run, and the final rise of temperature.

purely vegetable boiler composition.

Messkt. J. C. Taytor \& Co. Led., Bristol, England, manufacturers of boiler compounds solely for thirty-five years, have hately brough: out a special and invaluable invention, called "Liquad Anti Scale," which is at the present time meeting with introduction in Great Britain, Canada, the United States, France, Germany, India and Australia.
This compound is claimed to be invaluabic to all users of steam power, being an articie which is free from all chemical matter. It not only proves powerful in removing, but effective in preventing the accumulation of scate, without injurng the boiler, also acting as a preservative to the plates and fittings. The advantages to be derived from the use of a gaaranteed article, which this is, recommended it to proprictors of locomotive, marine and stationary boilers. The company are represented in Canada by Mr. L. Fuge, London, Ontario.

QUESTIONS AND ANSWERS.

In answer to the enqury of "Subscribet," Chatham, in the Electricar. News for June, the Toronto Radiator Mifg. Co., of Toronto, write that they are manufacturers of Kieley's patent standard steam trap, and will be pleased to send full particulars reparding the same to all enquirers.

The annual statement of the St. John, N. B, Gas and Electric Light Cumpany shows a gratifying improvement in the financal position of the business as compared with former years. The income from all sources was $\$ 76.523$, and the total expenses $\$ 55,205$.

DYNAMO ROOM TALKS.

Uy Foribi imin.
Lex us take the litte things first; success is usually reached throughs close attention to litte tinings.

A voltmeter is an instrument for measuring the electromotive force or difference of potential between any two points in a circuit, just is the steam gauge measures the difference of potential or pressure between the inside and the sutside of the boller. Pressure is an element of power in electricity exactly as it is with stenm ; it is necessary, therefore, that we should know continuously and reliably the pressure of our dynamo plant as our steam boiler. The economic opetation of an incandescent plant requires the pressure to be kept within at least two per cent. of the proper voltage. If the pressure is a few volts too low, the lamps are not efficient in producing light; if too high, the clurability and life of the lamps are very much below the normal value. In an electric railway power siation we should have a voltmeter always in circuit. In a properly designed plant of this kind the electric pressure at the station should rise proportionately as the load comes on, and we should be able at all times to know just how much this rise is. If it is not maintained at a constant degree with the proportionate increase of amperes to line, there is sure to follow serious consequences, such as the burning out of armatures in the motors. The voltage being low, more current is required by the armatures in the motors to to the work, and it is the current that overburdens the armatureso They heat and chafe in consequence, finally, and often quickly burn out.
There are a number of things that may happen to prevent this increase of volage referred to. A stiff governor on the steam engine; low steam at the boiter; engine overloaded, with less than full dynamo capacity ; slipping of a belt ; series field coil of dynamo short circuited;--any one of these would cause trouble which you would not be able to detect without a good voltmeter.
An ammoer should be in circuit with every feeder and every main at the station. You cannot be too well informed on just what is going on in your circuit. Remember you are handling an agent which you cannot sec, feel, hear or smell, and this is the only means of telling what you are doing.
Don't get ammeters or voltmeters for your plant until you are sure you know just what you want. There are instruments now on the market that are not any more reliable than the method used by an old farmer for weighing his pigs, -which was to balance a pig on a rail on one side and a stone on the other, and guess at the weight of the stone. I will describe the construction and pecularities of the instruments you are familiar with, and then give you my idea of what you require.

In a plan. where a number of instrunients are to be used, it is not necessary to pay extravagant prices for instruments of great delicacy and theoretiral precision; there are cheaper instruments which will answer every purpose. These instruments will indcate within one per cent., which is quite close enough, provided they may be depended on ; and for this reason one fine, standard instruntent-one volmeter and one ammeter-should be kept for the purpose of checking and recalibrating those in regular use.
Dn without an instrument rather than buy one which is unreliable and which does not possess the features described. There are a number of instruments in the market which depend upon the power of a coil to lift a heavy piece of iron and pointer against the varying force of gravity. These instruments are sluggish of action, so that small changes in the strength of the current or potential difference that is being measured is not instantly indicated. The needle and other moving portions being large and heavy, the moment of inertia is great, and this moving in a weak magnetic field, upon any change taking place in tie current strength, the needle would simply oscillate over the scait. Many changes might take place in the current strength, the current or potential even remaining constant at each of its various values for a very decided time, before the needle had come to rest and allow any measurement to be taken. An instrument with the needle dancing around over the scale is not of much practical use. These solenoid instruments also indicate differently for the same values, depending upon whether the readings are taken on the rise or fall of potential or current.
Instruments employing permanent magnets are not reliable; the effect of each measurement varies the condition of the per-
minnent magnet. A temper fracture, which is liable to exist en detected, causes the strength io be constantly changing and consequently variable reatings for the same value of current. A spring is the most unreliabls and inconstant of all mechanical devices. Temperature affects its value, it is easily misplaced, and its molecular structure is changed with every strain to which it is sulyjected.
Multiplying devices of all kinds should be abjured; they lave no place in a properly constucted voluneter or amperemeter. Select an instrument in which electro-magnets, or the action due to the cu:rents fowing in diamagnetic conductors, are emplojed. The moving portion should be the very lightest weight possible, and there should be no complicated multiplying devires. The instrument should be tested to sec that it is absolutely dead-beat. This is an important feature. A voltmeter shouk be wound with a wire having a very small heat coefficient, and it should be wound with a resistance having at least fifty times as many ohms as the highest number of volts on the srale. For instance, at 00 volt instrument sboutd have a resistance of at least 30,000 olmis. An ammeter, on the contrary, should have as little iesistance as possibir.-Electrical Industries.

SPARKS.

The St. Charies Co.. of Dellewille, nte reported to have orders for 1.40 electric ears, all of which are to be completed before the end of the ytar.
The Bell Telephone Company's exclange at Ancaster, Ont., was recently struck by lightning. All the wires were burned and coustlemble other dimage done.
The Toronto Strect Ralway Company are about to erect a two.story brick motor house on the corner of Frederick and Esplanade streets, at a cost of $\$ 30,000$.
The Goldie \& McCulloch Co. of Galt, are placing in the new electric light station in Pembroke two new engines and boilers, with necessary shafting, pulleys, etc.
An action has been entered by Mr. Lacroix, Building Inspector of Montreal, against the Montreal Street Railway Company for erecting a power house without a permit.
Owing to increase of business and the consequent need of additional accommodation, the Royal Electric Co., of Montreal, Que., are said to be about to issue $\$ 250,000$ worth of new stock.

Mr. J. A. Culverwell, formerly contmet agent for the Edison General Electric Company, has been appointed general agent for the Automatic Telephone and Electric Company of Canada.
An exnmination of the water powers on the Enst River near Hopewell is being made by the New Glasgow, N. S., Electric Light Co. with a view of uulizing the same 10 drive its lighting and power plant.
The Stratord Gas Co. has under consideration the advisab lity of estab. lishing a power circuit. In view of this the promolore of a street railway who hav. for sonie time possessed a chatter, are talking of constructug an electric rond.
The Coal Saving and Smoke Consuming Company, Lid., with a capital of $\$ 50,000$ is seeking incorporation at Montreal. The promoters are Chas. J. Arthur, Thos. H. Turton, Wm, Angus and Jas. B. Kerr, of Montreal, and Frederick Jones, of St. John, N. 13.
The Merchants' Electric and General Service Company have elected the following officers.-Mr. G. A. Greene, president. Mr. John A. Goose, manager ; and Senator A. W. Ogilvie, Messrs. S. H. Ewing, James Cooper, G. S. Brusb, E. Hanson and S. Finley, directors.

The application of the Hamiton Radial Electric Railwiny Company for incorporation bas been refused as the powers asked for are exceptional and cannot be granted to a street railway company. The ditectors of the company are considering the advisability of seeking incorporition as an ordinary railway.
The Northern Graphite Co., Lid., are secking incorporation. Their headquarters would be Montreal and the captal stock $\$ 95,000$. The com. pany is composed of Jolin Fraser Torrance, Frank E. Caunc. II. E. Stearns, D. F. Stearns. Wm. Starke and Gco. R. Starke, of Montreal, and James E. Caine, of Boston.

Courtland Bronson, of Hamiton, Ons., recentiy received a patent for an invention by which he clains he can make 20 -year-old whiskey from raw whiskey by removing all impurities. He cools the whiskey to 70 degrees below zero and then passes an electric current through $1 t$. He bas been supplied with money to carry on bis experiments.
Mr. Charles F. Medbury has resigned his pestion of agent for the Mont. real district of the Canadan General Electric Co. and accepted that of general sates agent for Mescrs, Ahearn \& Soper, of Otawa, the Canadian agents of the Westinghouse Electric Co., of Bittsburgh. In this rostion he will look after the salcs of Westinghouse apparaus throughout Canada. Mr. Medbury has had an extensive experience with the Thomson-Houston Electric Co. in the United States, as well as with the Canadan General Electric Ce, in Canada, and is exceedingly well qualifed for the postition he is to fill.

fUULISHBD ON THF PIKSt OF RVERY MONTH BY CHAS. H. MORTIMER,
Office: Confederation life Buliding, Corner Yonge and Richmond Sirrets.
TORONTO
Telephone $23 \bar{\sigma}^{2}$.
6_{4} Tramile BuilionsG, Ikell Telephone 2299.

ADVEATREFBENTS.

Advertising ratez ment promptly on aptlication Orders for advertisiog should each the offee of pulucation not ater than the 3 th day of the month immediately preceding date of issue Changes in adverrisemnents will be made whenever desired, Without cost to the sdreetiser, gin so insure proper comphance wily as instred day or the month. nurnecriptions.
The Eluctaical Nxws will be mailed to subseribers in the Dominion, or the United Statex, poost free. for $\$ 1 . \infty 0$ prer annum. so cents for six manths. The pice of subscription unay be remitted by currency, in regastered Icter, or by postal ordes payable 10 C. H. Mhortimer. Please do not send cheques on local banks uniess 25 cents is added for cost of discount. Noney sent in unregistered letters must be al senders risk. Sulscriptions fom forcign eountriclembracenci the Thenerse will be diccontinued at expitation of tersp paid for if so stipulated by the subscriber, but where no such yoderstanding exstrs, will be continued unill instructions to discontinue are recrivrd and all arressages paid.
Subacribers may have the mailing addres changed as often as desired. When


```
promply and regulanlidITOB'S A NNOUNCEMENTS.
```

Correspondence is invited upon all sopics comang legitimately within the scope of this iournal.

THE "CANADIAN blectrical news" has been atrointed the opficial faler of the carautan elegtrical, association.

CANADIAN ELECTRICAL ASSOCIATION.

OFFICERS:

Prestident:
J. J. WRIGift, Mianager Toronto Electsic Laght Company: IST Vice-phesinent:
K. J. DUNSTAN, Local Manager Bell Telephone Company, Toronto. and Vice.president.
IOHN CARROI.ß., Sec-Treas. Eugene Phimps Electrical Works, Montreal. Sherptary-Txfasuker:
C. H MORTIMER, Fublisher Electrical. Nkws, Toronto. Extcltive Cobmitter.
D. A. STARR, Royal Electric Company, Montreal.
H. O. FISK. Electrician Electric Light Compnny. Peterboro', Ont. W. A. jOHNSON. Alanager mall Electric Light Company, Toronto.
S. J. PARKER, Aianaging Director Owen Sound Electric Light Company, Owen Sound. Ont.
A. R SMithil Inspertor Canadian Baard Fire L'nderwriters. Toronto. D. THOMSON. General Manager Hamiton Eleetric Light and Power Company, Hamilton, Ont.
THOS. H. WADLAND. Supennendent Corstruction, Bell Telephone Company, Hamitton. Ont.

1. A Mofariane. Bell Triephone Company, Montreal. JOifn YUl.E. Manager Gueloh Gas and Electric Light Company. Guelph, Ont.

CANADIAN ASSOCIATION OF STAIIONARY ENGINEERS. exectitive doard.
Presdent A E, liokivs.
Vice-presulem, G. Hunt.
Serretary. W' G. Mi.achiguth.
Treasurer. R. Mackik.
Conductor. Cisas ilkal.
Door Keeper. F. Inshois,

Tomento, Ont.
Monircil. Que.
${ }^{3}{ }^{3}$ Brant Ss. To Mamilion. Ont.
Toronto. Ont.
Toronto. Ont.
Montreal, Que.
 Secresary, 137 Universuy street.
Maniliton likanch. No. Z-Meets ist and 3rd Friday each month. in Maceaber's Hall W. Suret. Iresulent, E. Nash, Secretary, \&9 litile William Sireel
Steatrort brancli No 3-John Hoy, President: Samuel II. Weit. Sectetary.

17hos 1iggrim Presidme: john Ogie. Secretary, Brantford Cordage Ca
Lavdon Bravell No. s. - Meels and Tuesday ench month. F Mitchell. Presdent, J. Melntosh, Secrelary.
Branion. Mans. Bravelt No. 8.-Meets 1st and 3nd Fnday each monh. in Cily liall. A. R Crauford, President, Anthur Fleming. Secretary:
Montranl, Bxavich No. 1.-Meets ist and 3id Thursday cach month. in Mochanies' Institutc. 204 SL James streel Thos Naden, President: Jos, G. Robertron, rizo Mignonne strect. Secreiry.

St. Laurent Brancil No. 2.-Mects ist and 3rd Tuesday mach month. in Mechanies' Institure 204 St Jamies street. Mathais Gummond, President ; Alfred latour, Secretary, 306 Delisle street, St. Cunedionge.
Guth.pit Branch No. G.-Mects ast and 3ral Wednerday ench month at $30 \mathrm{pm}$. J. A. Angell, Presilent; C. Jorden, Seeretary.
 sectetary.
Drksuge Braneli Nu. 8. - Meels every and week in each month; Thos. Merrill. Secretary
Berlis Branci No. 9.-Merts and and filh Saturday each monthat 8 p. cu. W. J. Rhodes, President: G. Steinmetz. Secreta.y. Berlin Ont.
Kingston. Association Stationary Enginegrs.-Mects wice each month over No. 1 Fire Siation. J. Devlin, Presioient: W. Gilmour, B. O. Box Gog, Secretury.

Tue Chief Engineer of the Dominion canals states that tests of the applicability of electricity to the working of lock gates are being made at Beauharnois Canal, and should they prove satisfactory, electrical appliances will be adopted in connection with the Canadian canal at Sault Ste Marie, water power from the canal being used to generate the electricity. The tesult of the test at the Beauhamois canal will be known shortly, and will be looked for with much interest.

Faise notions of economy still prevail to a very large extent, notwithstanding that vast improvements in business methors. have come into vogue within recent years. These false notions, singular as it may appear, frequently exist side by side in manufactuting establishments with the most improved mechanical appliances, and not unfrequently serve to neutralize the benefits which would otherwise be derived from the employment of perfect mechanism. Of what use is it to buy the most perfect and cconomical engine at a high price and place in charge of it a man whe has never got beyond his A 13 C's in euginecring? No doubt his services can be gut cheap, and on the surface there would appear to be a substantial saving in salary as compared with the amount which would be required to pay a skilled engineer. This apparent saving soon disappears, however, through the medium of the coal pile, repair bills and depreciation of plant. Often, too, the manufacturer of valuable money-saving devices is blamed because the result of their use in the hands of incompetent engineers is not what it would be under skilful management such as they were designed for. A great deal of loss and trouble results to the owners as well as the manufacturers of steam plant because, as a gentleman bluntly expressed it to the writer the other day, the practice so often prevails of placing a " mutton head" in charge of nicely adjus:ed mechanical apparatus.
Tue recent decision in the U. S., sustaining what has become known as the Edison feeder patent, will without doubt cause considerable trouble to the different lighting and power companies doing business in that country provided it is pushed to a suit for injunction. Whether the General Electric Co. will push their claims in this durection remains to be seen; in the meantime there may arise another Gocbel to dispute their right, and it would be well for all interested in this method of distribution, and particularly those who have been using it for a long tume, to try and fix the time at which they commenced its use, and then refer to the patent records to see if this does not antedate the original patents. What effect this de cision may have on this side of the line we are not in a position to say, nor can we say if a patent was ever issued ot applied for in this country. We fail to see, however, how the company can prohibt the use of feeders, for most assuredly they could not begin to operate even a small part of the plant now distributing currents by means of fecders. They may impose a royalty, but 10 our mind the question with them resolves itself into one of policy, and we do not think they will adopt the stringent and arbitary conditions that they bave thus far done in the lamp case. We note also that they have been allowed an injunctic. to prevent a street milway company from using a irollep; on claim of nwnership of the foundation patent by right of purchase. It may be that therr claim in' this direction is a valid one, and presuming this to be the case before they try to stop all who are using this method of collectung the current from the wires, they will act wisely if they at least grant the right to continue its use on the payment of a small royalty. How much better it would have been, and how much better off they would have been, had they pursued this course in the lamp case. We doubt if there
would bave been one of the many factories that they have closed by mjunction that would not have willingly paid them a royalty on all the lamps they manufacutred, and upheld reasonable prices throughout. This would have brought the lamp cumpetition down to the "survival of the fittest". We should not be surprised to wake up some fine morning and find that somebody has injuncted somebody else for using a dynamo for any purpose whatever. Although this may be an overdrawn surmise, yet it may become affet sooner or later if monoplies are allowed to flourish in our midst.

Much diversity of opinion exists as to the proper engine to employ for the operating of generators for street railway work, some pieferrng one type, others something quite different. But litte argument should be necessary to convince the most skeptical that the cross connected slow or moderate speed is the iteal engine for this cliss of duty. The engine natay be either horizontal or upright, and either high pressure on both sides or cross compound, or in the case of tery large units, tanden: or steeple compound on bo:h sides. It should be compound only if there is sufficient water available for condensing purposes or if very high pressutes can be carried; not otherwise, else when there is litte or no load on there will be a steady drag of the low on the high pressure on account of the steam beng cut off early in the stroke and the low pressure cylinder being unable to get sufficient to fill it. We have seen an engine of this kind, of high speed, show a vacuum of 15 to 20 lbs . in the low pressure cylinder when the engine was only doing about 25% of its rated capacity ; this of course meant a considerable waste of coal. In this case it did not take long to unship the valve on the low pressure end and let the high pressure end do all the work. However, when the proper load was put on the engine, the valve was put back and the cylinder did good service with an initial piessure of 100 lbs . on the low pressure end. But to return to our subject, if those who contemplate using engines for street railway work will but remember that there are times when an engine being used for this purpose is suddenly required to jump from a few to hundreds of horse power in but a few seconds of time, and that this sudden load may come on at the very instant that the single side engine is on its centre, it may readily be seen why the second side with caanks connected to shaft at an angle of 90° with each other will help out and carry the sudden load without any appreciable effort, and with litle or no fluctuation in the speed, paricularly if the engine is provided with a good heavy wheel. We are aware that what are known as high speed engines will do the work perhaps equally as well, but they cannot be classed with low speed engines on the point of cconomy in steam consumption, not to speak of the expensive and frequent repairs required on then, which feature is almost entinely eliminated in the slow runners. Advocates of high speed engines clain as one of their points of superiority that with a number of units, should anythine go wrong, one enyine can be shut down and a spare one substituted for it for the time being, while with slow running engines if anything goes wrong it perhatps means the shutting down of the entire plant. But we think we are safe in saying that there is not one ciance of such an engine breaking down to a dozen or twenty in the case of the smaller high speed engines, as any one who has had the running of the two kinds will know. While each style of engine has its admirers, we nust enroll ourselves on the side of slow running cross connected engines for electrical work of all descriptions.
\checkmark Lead water pipes that are used on strects occupied by clectric railways who use the riil for a ground and return, are found in various places to be seriously affected bv the eating away of the outside of the pipe by electrolytic action. Electrical joumals from time to time have recorded cases of this kind, some of the most recent being in the city of Hamilton, where the water department have been compelled to renew the service pipes in quite a few places, the worst affected seeming to be in close proximi:y to the power house. It sould perhaps be quite a difficult matter to advance a proper theory for this result. It is perhaps caused by the pipe being laid in a paricularly dry sandy soil, and by the retum curcent in its effort to reach a good ground finding such ground by way of these lead pipes to the water mains in preference to forcong its way to a wet spot in the ground
through dry sand or perhaps reck. That it should vecur in the immediate vicinty of the power house is more difficult to ac. count for, unless it be that the rime connections on the fround plate at that end offer a greater resistance to the passung of the current than does the intervenung carth between the ralls and these numerous water service pipes. In the case of Hamiton the water mains are several feet higher than the level of the bay and the streets all dip at a very great angle to the bay, forming thereby a water shed that must result in a somewhat day sub-soil. That the pipes are eaten away as the result of the current going to ground through them there can be no doubt, and that this action is purely an oxidization of the metal through the electrols tic action is reasomably certain. To remedy the trouble we thank will be gute a difficult matter, but as experiments in that direction will no doubt be the order of the day, we would suggest the following as worthy of consideration and trial: Wrap the pipe with a coverng of tarred (pine tar) hemp about half an melh thick before buryong it, give the outside of the ppe a thack coat (or two or three coats) of a good, hard, but elastic japan, which has been well dried in an oven; let the outside of the pipe be enamelled with an elastic enamel, the same as is now beng used on the insude of some leal water pipes; surround the ppe by a square bux some 3 or 4 inches in internal dameter, thereby allowing an air space as an insulator ; last but not least, see that the mils are well grounded, bearmg in mind the fact that a hole dug some 6 or 7 feet in the ground and a good sized piece of an old boiler stuck in with a number 4 galvamzed ron connection to the rail is simply no ground at all in a sandy sont, and would not be much better in a pool of water. For the cirrying of heavy currents such as are used in strect malway work, a good ground should consist of at least 100 square feet of exposed metallic sufface, preferably copper, covered on tts two sides with at least one foot in thickness of fine gas coke and buried in decidedly moist earth, and connected to each rail by a No. 0000 copper wire well rivetted and sweated on. With such a ground every quarter of a mile, and good and sufficient bonds between the rails we predict that the eating away of lead water pipes would suon be a thing of the past.

TuE Canadian Electncal Association has mossed the only chance it has had since its inception to make its name immortal. This chance came when a motion was made at the first convention of the Association in the City of Hamiton in June, 1892, to establish a standad for the nominal candle power of are lights, which motion was voted down, principally because the subject was considered too grave a one for the Association to grapple with. Time now proves the fallacy of this reasoning. Oar readers will have noticed in the electrical journals of the United States that one of the many subjects that will be brought before the Electrical Congress to be held, in Clicitio will be one to establish a standard of current or wats for the different nommal candle powers as useci at the present tume in speaking of or coniracting for are lighting. From present appearances it secins is though one of the methods which will likely be proposed will be to standardize the different arcs as of so many watts capacity, and to drop the candle power appellation entirely. Doubtiess this is a step in the right direction, and will solve the problem to all intents and purposes, but we do not see why they do not adopt a standard for the several sized are lights and let the voltage take care of itself, which it undoubtedly will do. We are decidedly of the same opinion as the mover of the reso lution in the convention (Mr. D. Thomson), that with the proper carbons and hamps producing a quet, steady, non-fluttennar, non-frying and non-flaming arc, with a fixed current, they will take the same voltage in every case; consequently a watu standard is not what is required, but a current standard oa! $;$. We commend this to the consideration of the nembers of the Congress to be held very shortly in connection wath the World's Fair in Chicago. At the same tume we wish to record the fact that the Canadian Electrical Assuciation was the first socicty in America-and for aught we know, in the world-to have the matier brought up for consideration. That some action was not taken which would have placed it on record as perhaps the first mover in this important matter is, to say the least, a deplorable mistake. Questions presented themselves to the minds of some of the members that were entirely reasonable and m-
tional from their standpoint, but that, nevertheless, should have had little weight ir deciding so momentous a question. One of the objections urged was that as the Canadion Government was about taking some action with that end in view, their standard, If established, and that of the Association would conflict. What argument could have been weaker? What would have prevented the Government from adopting the Association standard? We doubt if they could have improved upon it. Another objection urged was that such a standardization would create discord between cities and towns which were buying their lights from private companies, from the fact that some municipalities would insist that they be supplied are lights of the candle power and curient called for by the Association standard. It seems a useless waste of words to say that there could have been nothing so easy of adjustment. It would have been an easy matter to convince such towns and cities that at the time their contract was made, the lights they were then furnished were known as of a certain candle power, and that any new standard established could have no bearing towards annulling their contract or in compelling the company supplying the light to live up to the new standard. Of course when it came to making a new contract with the company, if the Association standard was calied for, it would in very many cases entail but a smatl expenditure to have the dynamos re-wound for the new conditions. Nothing now remains for the Association but to await the decision of the Electrical Congress and follow in its wake. If they adopt a standard, and it seems reasonably sure that they will, the same hardships will be experienced by would-be suppliers of a 2000 c.p. are light with 7% amperes of current as would have been had the Association instead of the Congress adopted the standat, for be it understood that this standard will be used in Canada to as great an extent as would have been the one adopted by the C.E.A. That there should be some sort of a standard is unquestionably a fact, for at present we know of from 4 to $51 / 2$ ampere lights being called 1000 c. p., of 5 to $61 / 2$ being called $1200 \mathrm{c} . \mathrm{p}$., and of from 7% to 10 amperes being called $2000 \mathrm{c} . \mathrm{p}$. This is very misleading to those whose knowledge of such things is limited. That the C. E. A. will profit in future by the lesson they are now about to learn we sincerely hope.

IT is understeod to be the intention of the Canadian Association of Stationary Engincers to make an exhibit of models and inventions in the line of mechanical engineering, at the fortheoming Montreal Exhibition, which will be held simultancously with the Convention of the Association.

CANADIAN ASSOCIATION OF STATIONARY ENGINEERS.

Niote- - iecretrries of the various Axmiathons ate requeted to formard us matter for publication in this Depaiement not taser than the zath of cach manth

RESOLUTION OF CONDOLENCE

At the last regulat meeting of Toronto No. i, the following resolution was adopted: Where:t, it has pleased our all wise Creator anc lieavenly Father to reinove from this carth our es. teemed frierd and worthy brother engineer, John A. Wills, therefore be i: resolved, that while we bow in humble submission to the Divine will of our Heavenly Father, we do at the same time extend our sincere and heartfelt sympathy to the bereaved jamily in this their hour of sorrow, and we deplese the loss of so eninent an engineer. Be it further resolved, that a copy of these resolutions be sent 10 the sorrowing family, be spread on the records of this Association, and also that a copy be sent to tine mechanical press for publication. And be it further resolved that our chater be draped fin the space of three months.
On behalf of Toronio No. 1, C. A.S.E.

> A. E. Eikins,
> W. Butler, G:o. Gilcheist.

Toronto No. 3, C. A. S.E, elected officers at last meeting for the ensuing year, as follows: Yresident, Wilson Phillips; Vice President, W. Iuuler; Rece ling Secretan; Herbert Terry; Financial Sccretp,ry, Geo. Mooring ; Treasurer, A. M. Wickens; Conductor, S. Thomson; Door Kieeper, J. Thomson; Tnistees, W. G. Blackgrove, Charles Ilcal, Wilson IMillips.

Toronio No. 1, C. A. S. E., have appointed a committec of five to devise some means of bringing the aims and objects of the

Association to the notice of the mamufacturers and to invite their co-operation.

At the annual meeting of the Canadian Association of Stationary Engincers, held in Hamiton on June ith, the following officers were elected:-lresident, W. Sweet (re-elected) ; vicepresident, E. Johnson; recording secretary, William Norris; financial secretary, A. Nash; assistant permanent secretary, George Mackie ; treasurer, W. Nash.

The membership of Hamilton No. 2 uumbers about 50, and the finances are in a flourishing condition. The Association is about to purchase in indicator for the use of the members.

THE ERIE IKEY SEATING MACHINE.

The accompanying engraving represents the Eric Key Seating Machine, manufactured by the Buton Machine Co., of Erie, Pa. They are furnished with two or three arbars, as clesired, to cut any width of key seat up to $2 \mathbf{2}^{\prime \prime}$ wide. If the work is t avy and too large to be placed on machinc it can be readily detached from stand and used as a portable machine, and fully meets all the requirements of a machine shop.

The arbors are made of steel and supphed with eccentric taper bushings to accommodate all botes within their range. Each arbor is hollow and has within a steel guide bar, movable up and down by means of a screw at each end. It is planed through its entire length the necessary size and shape to carry within a tool bar. This steel tool bar carries two tools of the

The Erie Key Senthig ajachine.
width desired for the key-seat. It is connected to the driving carriage by means of a removable pin, and is driven back and forth through the guide bar, cutting in both directions, and fed down the desired depth and tapers by the screws at the ends.
The driving apparatus consists of two parallel screws $2 \frac{1}{2}$ inches in diameter, $\frac{1}{2}$ inch pitch threads. They are set six inches from center to center, and run in opposite directions; between them is an open-sided nut which slides from one to another within a carriage. The nut engages in one screw and travels the desired distance when it comes in contact with a cam which throws it out of gear, and by a spring it is pushed in gear with the other screw. The nut has on its top two ribs, onc of which, by passing behind a guide, holds it in gear. The otherserves to receive the pressure of the spring. By shifting the cams and springs, anv desired length of stroke can be made. The travelling of the nut carries with it a carriage to which the cutting bar is attached. The screws are driven by cut gears ranning smoothly and giving a very strong motion to the cutter bar.
With an attachment for the purpose, seats can be cut in holes as small as 1 inch in diameter by one passage of the cutter.
Mr, John A. Burns, B. A. Sc, machameal enginecr and manufacturere agent, GS6 Craig strect, Montreal, has the sole agency for these machines in Canada.

TRADE NOTES.

Messrs Patterson \& Corbin, of St. Cathariues, have been given the order for the cars required for the proposed electric street railuny ai kingsion.
The Waterous Engine Works Co., of Brantord. are just starting at Windsor for the Sandirich and Amherstburg milmay, an adtition to their plant. consisting of 93 feet of 55^{4} sted shafing. 9 beavy floor stands with extra strong ring oilling ball and socket pillow blocks; one solid pulley $45 \times$ $\mu^{\prime \prime}$ face, and the following grip palleys: $54 \times 16,84 \times 12,86 \times 12,54 \times 22$, 53×17; one 350 combined friction grip pulley 72×101 face and grip coup. ling: two 300 h.p. grip couplings: one heavy tightenes frame with screw adjusting for 230×24 pulley. They havealso an order to ship next mon:h for the Wingham Electric Light plant 5 pairs of grip gears connecting a sbaft 84 feet loag with 5 wate wheels, with its riag oiling ball and socket bores and floor stands and sereral grip palleys.

SPARKS.

Miea deposits have been found in Burgess and Bastard townships, Leeds county, Ont.
W. C. Green bas been offered a large sum of money for a muea mine near Arden Station.
The Armprior Electric Light Co. will probably install a new engine neat fall with which to operate their plant.
The Merchants' Telephone Company is about to commence operatious in Montrenl, and will advertise for poles.
Michael Keegan has been registered proprietor of the Keegun, MilneCo.. manufucturers of eleetrical supplies, Montreal.
The Aontreal Street Rnilway Company are erecting iron posts on Notre Dame. Windsor, Peel and other streets in Montreal.
The Kingston Electric Light and Power Co. will enlarge their lighting station and will put in two new boilers and a new engine.
The corporation of the town of Port Arthur intend applying to the Legislature for power to enable them to do street and commercial lighting.
The Kay Electrical Works, of Hamilton, have applied for a patent for a combined motor and dynamo which will furnish both light and power.
Tenders have recently been invited for the purchase of the Vancouver Electric Railway and Lighting Company, which is in the hands of a receiver.
The St. Henri Light and Power Company will apply for power to increase their capital stock to $58,000,000$, and make other amendments to their charter.
The Thomson Electric Welding Co., of West Lynn. Mass, bas nearly completed an electric loom. Thas will be the introduction of electricity into another branch of industry.
Mr. A. W. Congdon, formerly engineerng representalue of the Canadian General Electric Co for the Aiontreal district, has been appointed agent of the company for that district.
The town of Arnprior bas granted for a term of twenty years to the Antomatic Telephone and Electric Conpany, the privilege of erecting wites and poles on the streets of the town.
The citizens of Toronto Junction are talking of requesting Mr. A. Campbell to install in his new flour mill, a dynamo sufficiently large to supply electric light for commercial purposes.
In view of the intention of the Government 10 widen the apprazches to the Oltawa bridge on the Hull sio: of the river, the Ottava Electric Railway Company has decided not to en,ier at present into any agreement to establish an electric street railway in Hull,

A telephone line is to be constructed from Revelstoke to Kalso and Nelson, the centre of the Kootenay mining district. British Columbia.
The Toronto and Scarboro Electric Railway Company propose to issue londs covered by a mortage on the present and future assets of the company. for the prosecution of its undertakings.
There appears to be a greater demand for mica than any other material at present. Mir. James Stark, a dealer in minerals, hus just returned from England and intends sinipping 100 to: s in a few days, and will continue to send large shipuents until fall.
Messrs. E. Leomard \& Sons, of Loudon, engine and boiler manufncturers, have op:ned an olice nt 79 liay street, Totonto, and have placed in charge Aif. Thos. Nopper, who has been in their employ for the past iwelve years.
The county council of Welland has granted to Messrs. Dawson \& Syme puwer to construct a street tailway between St. Catharimes and Port Ditlhousie, and will request the Minister of Railways and Canals to give then permission to cross the canal bridge.
The town council of Toronto Junction has dected that the town shatl retain its cwn electric light plene As the haw will not allow corporations to do commescial lighting, the merchants are anxious to see how the councol will de.ll with this phase of the question.
At the annual meetug of the electric light company of Amherst. N. S., the Board of Directors was re-elected. No dividend was declared, but though the business of the past has not fulfilled the expectations of the shareholders, the prospects for the future are brighter.
The following gentemen liave been re-elected the Board of Directors of the Chaudiere Electric Light and Power Company, of Ottawa: T. Ahearn, G. P. Brophy, J. W. McRae, Thos. Workman, W. Y. Soper, R. Hurdmar, W. G. Hurdman, Wm. Scott and Wm. Hulchison.

Messrs. W. H. Wrighton, H Long and M. T. Ostrum, merelants, of Peterboro'. Ont., are seeking by an injunction to restrain the construction of the proposed electric street railway on the business portion of George street. The road has been completed almost up to the point mentioned.
The Montreal Park and Island Railway Co., consisting of Sir Donald A. Smith, Hon. Louis Benubier, Messrs. R. L. Gault. David Morrice, M. Permult, D. Graham, Semaier Thibeaudeau, and a number of New Yorl, capitalists, has been consolidated with the Corrivenu-Willtams Street Railway Co. and has taken over all the franchises held by the latter company.
An act of incorporation has been obtained by Alex. Fraser, Westmeath: Wra. Gibson. M. P., and Richard Fuller, of Hamiton: John Mather, of Otawr., and W. H. Brouse, of Toronto, unber the name of the Keewatin Power Co., to furnish hydraulic and electric power from the Winnipeg river. and to establish facturies, dwellings, etc. The capital stock is $\$ 1,000,000$.

THE RELIANGE ELECTRIC MFG. CO., LTd.

WATERFORD, ONT.
masuFactukeks of all kindos of

Dynamos

Generators and Motors

Station

Fixtures

and

General
Supplies

ELEGTRIC INSTALLATIONS AND SOME RADICAL CHANGES in general systems of Wiring."

by Cinaries G. Ahaistrong.

Ir is not my intention llus evening to enter into a peneral discussion of ischited electric installations but sumply to point out common errors and suggest such remedies as would seem, in my judgment, to make il better plant. In planuing a buldugg it is true that the desugning of the clectric plant is genentily left until the last. In my expenence I have found at not an unusual thang to be called upon to design a plant, when upon recetving the plans I find that the architect has left room for the plumbers' pipus, has prepared exceltent nuways for drainage, has looked after his eatch basins, bas located his elevator pumps and given then plenty of room m the basement, has provided anople space for everything except the electric light phant. There are no meeways in the building, the space leff for the dymamos and engines is totally inacequate, the botker capactity is nhout half what it ought to be, no phace for stomge of canl, and yet the most important feature of the entire building is light. It becomes neeess ry, of course, to at once ninke a claim for more space and provide meennys or some substitute therefor. Ilaving obianed all the space possible the next tem that confronts the designing enginecr is how to lay out his plant.
There is a plant on State street that it was my duty to inspect and report upon a little while ago where I found an are and incandescent dynamo running in a septrate room ablout so feet from the switch-board. The plant really consisted of two separite plants connected to one switch-board; the only redeeming feature about it was that there was only about an hour a day when both dynamos were running at the same time. This phant sbow. ed an insulation resistance of ten ohens to grotud on the are circuit and onetwenticth of an ohm on the incandescent circuit.
In order that the proprictor and others easually inspecting the plant would have a good opinion of it. the hinhly ingenious electrician in charge hat disconnected the ground wire so his plant always showed clear on the ground lamp. It is often very much easier to remove the evidence of a ground than to go to the trouble of removing the ground iaself. It would undoubedly be betier to have elertricians of less ingenuity and mote honesty in cases of this kind.
One cause of a had plant is lack ol forethought on the part of the designer of the building, another is desire to diminish the first cost, and a third is often force of eircumstances. A person may have an old building. and to put in an electric plant he may have to accept what he finds and make the best of it. For the first two faults there is no excuse, and even the latter can be remetied by a little study on the subject and a proper selection of dynamos and engines. There is a great need to day of a small unit direct connected slow.speed dynamo in b- used in such places as 1 have last mentioned, where plauts ate to be installed in old buildings and the space is very limited. E'erhaps some of you will say. "if you speeify such dynamos, I will furnish them." but from the fact that it would requre from six months to a year to design and perfeet these sizes I would not dare specily then.
Generally when a man has concluded to put in an eleetric phans he wants it as soon as he can get it, and although he takes six months or a year to make up his mind, he wants the phan put in at once. But if such dynamos were constructed and kept is stock as ordipaty dynamos are. I have no douht that you would find a good demand for them and they would be a natiter of great comenience both to the designer and the owner of the plant.
1 prier to get dynamos as close together as possible. The only conditons to ix consideted are first, that they will not be reversed in polanty by proximity of like poles, and second, that the armature of any machine can be removed without disturbing the other. A modification of this condition could te made where space is very 1 mited by running the smaller machmes in tandem, but as a genernit rule 1 do not favor this arrangement.
On the mater of foundations for dynamos I hold decided views. I like to have a good foundation undet the dynamos. and while this is not as absolutely essential as a good foundation under the engines, yet a concrete or brick foundation in which the best quality of Poniand cement has been used is a very decirable thing. A strorg wooden frame should be bolted to this foundation, and the tred plate of the dynamo would be bolted to the wooden frame The nood should be previously sanked and thoroughly painted with insulating and water proof compound. This insulates the machines from ground. Some companies insist that their particular type of machine needs no foundation. I have handled almost every machine on \therefore maket and I bave yet to find one that runs as well without a good fou tation as is does with one.
Switch-boards are the next item of amporance. The switch-board should be placed within six or eight feet of the commutator of the dynamo or as noar that as possible; a greater distance is unnecessary and a closer proximity is not desirable. I Lelteve that switch-boards should be made of marbleized slate 8 marble. I pefer marbic and 1 use white marble in many cases. but between uhite and Tennessee marble, 1 prefer Tennessec from the face that it is less easily strained. Slate is somewhat cheaper than marble, but it absorts moisture, which is a thing to avoid in swath-boards. If matbleired slate is used it should be thorouglily panted on the back ic prevent absorpion There is cne precsunion which should be taken, howeirt, in all mable =witchioards, that is in fastening instruments thereto. From the unyielding properties of cither marble or slate it is indvantageous $t 0$ hare a coil spring. and connctions should be made after the manner shown in Fig. 1, otherwise tbe instruments will soan beconcelouse by the

[^1]jarring of the board. In no case should the wire connections to the instruments be so placed that it can jar loose, as there is great danger of arciug.
Whete more than one dynamo are used, bus bars, I believe, are better than any other method of connection. If they are placed on the front of the board they must be polished and lacquered, and if fine effects are desired, they can be nickel plated. If placet on the back of the board, rough and unpolished copper bars can be used. Bus bars shou'd be large, and of such eapncity as not to heat perceptibly on the heaviest lotd. The object of this is to get a good connection. If they are made sufficiently latge, connections can be tapperl and screwed into them just as a bolt would screw inten nut. Where connections are made on the fiont of the board this methorl is not as desirable as the "stirrup," which is used pretty genetally by first-class construction companies
It should be the object of all designers of switch. boards to make the board ns simple as poosible. To avoid complications and yet have the board accomplish the purpose designed requires no little ingenuity on the part of the designer.
Electrical engineers and Philadelphia lauyers usually are not employed by owners to run plants. The salaries prid are so ridiculousty small that in some cases the dynamo tenders are anything but what they should be in education or knowledge of the business. Often the engineer of the plant must also take care of the dynamos, although he admits that he knows nothing about them. The whole matter is a mystery to him except that he knows he must keep the brushes trinmed and perhaps polish off the conmutator once in a while, and in order to perform his duty thoroughly he may perhaps use a file to do the polishing.
The great objection to cornections being made on the rear of the board with bus bars, I find, is the liability of a great multiplicity of wires bring

run helier stelier across the lack of the board, making the simplicity on the face of the hoard more than compensated for by the intrieate connections on the back.
It often happens in very large buildings that the motor load anounts to quite a considerable part of the entire load. When such cases arise 1 be lieve in having a third bus bar on the board, which sball be used for motor connections. This applies only, of course, to such plants as have two or more dynamos. Where motor connections are used it is desirable to have an ampere meter to measure the amount of current used on the tnotors. This ampere meter should be ".dead beat," and should have a mange equal to all the motors in the installation. A careful attendant would know if his motors got into trouble or blow a fuse, and could also tell how the different loads were being handled throughout the building. This applies especially to cases where electric elevators are being operated from the same plant as the lights. As to other meters on this board I would preter the non-polar. ized type, from the lact that they are less liable to get out of calibrationThere is one slight disadvantage. perhaps, and that is if a machine should get to running as a moter an atuendant might not as quickly understand it ; but it is seldom, indeed, thatit oceurs, and where it does the operator ought $t 0$ knew that the belt is pulling the wrong way.
Dynamo switches should be made double throw, one connecticn being onto the bus bars in such a manner that any or all dynamos can be thrown on the motor circuit. By closing a switch the motor circuit is placed in mulliple with the lighting circuit. By opening this rwitch and throwing down a dynsme switch any dynamo is conneted to the motor circuit.
Rerently 1 was called upon to solven problem in connection with the Schiller theater in this city, where the owners expected to take current from ilic Chicago Edison company's mains. As you are well aware the rules of the Edison company prevent the operation of zso volt motors upon their lines from the liability of throwng their lines out of balance. They require that motors operating on their lines should be $2=0$ solts. We were not using the three wire system in the building, and it was neeessary to constrtet 2 switch-board in such a wiay that 220 volts could be obtained on the motor circuit from our own plant as well as from the mains of the Chicago Exison company. In order to accomplish this the dynamo switches are arranged to throw any dyname in series with the others by a simple movement of the switch. The motors throughout the building are used to operate ventilating fans. and therefore can be operated at 220 volts or 110 volts according to the amount of ventilation desired. In addition to this a small Theostat placed in the fiela of each motor allows us to get any variation of speed desired with searecly any waste of current. I may say in this conncosion thas the use of ventilating fans is bocoming more and more appreciated by architects and owners, and this method of varying spoed is a very advanageousand economical way of regulatiag ventiation. In this poiat the
switch.board is placed in the middle of the room, completely boxed, is very close to the comnutator, and is convenient in operation.*
There is nothing more important in an installation, outside of dynamos. than wire. Use alivays the best wire. In making tests upon wire I do not believe in soaking it in chluroforms, naphtha, sweet spirits of nitre, or any other absurd metiod. In the ordinary course of events wire is not subject to the influence of any of the substnnces named. The greatest enemy of wire is ammonia; an enemy which is most potent, and which is found in any ond all plastering; it is an incidental product in the setting of mortar. which is more especially found in patent plastering.
One of the grealest outrages perpetrated on electric wires is the use by painters of an acid wash to neutmalize the acid in the plaster. This wash is composed chiefly of sulphate of inon and sulphuric acid; it quickly penetrates the plastering, and by its action on the nitmates contained therein evolves ammenia, which attacks and boneycombs the rubber insulation of the wire.

Within the hast few weeks it bas become necessary to remove all of the wire in a large building in this city, owing 10 just such barbarous treatment as that described. The only protection apannst ammonia that I know of is a waxy covering which is used on the best grades of weather-proof wire. I generally specify wire which is covered with a braid saturated with some compound to strengthen and protect it. Other enemies of wire are mats and mice and roaches. My experience has boen that the weather-proof compound already mentioned will prevent them eating the wire; they are fond of rubber, but do not like wax. In addition to its chemical properties wire. should have the ability to stand rough usage and bendine without perceptibly breaking its insulation.
The present inethod of running distributing wires in fire proof buildings is, first, placing directly beneath the plasting with cleats; second, enclosing in interior conduit tubes; third, and most desirable, is running wires from cut-out cabinets in moulding to the rooms, and then under the plastering in nterior conduit tubes to the outlets. This last method I have andopted almost exclusively. Fig. 2 shows one form of corridor moulding which I

Fig. 2.
use. It has three compartments, one for each polanty of the light wires. and one for the bell wires. When leaving this moulding interior conduits carry the wires to the outlets. This is a belter method than all interior conduits, as architects are every day limiung the thickness of plastering. Originally $13 / 2$ inches of plasterng was considered abour right, now $\frac{1}{2}$ inch is considered too much: in fact, many arehitects comphin bitterly when asked to use enough plastering to cover $\%$ inch tubing: but the greatest objection to running interior conduits clear back to the cut-out eabinets is that a large number of tubes are brought to one point and it is almost impossible to make the plastering adhere to them.

Many architects thlak that interior conduits should only be placed in the flooring. I ebject tothis, becillseit is almost impossible to lay tubing in the flooring and to prevent them from being broken to pieces by the workmen. Theoretically it is a perfect way of wiring, practically it is anything but satisfactory in my estimation. I object to the indiscriminate use of interior conduit from the fact that a slight setting of the building will break and destroy the tubes in such a manner as to make them useless for the purpose for which they are intended. I do not wish to be understoon as being opposed to interior conduit, as in 95 per cent. of my work I use it ; but I believe in restricting its use to its proper place-using it in short runs between outlets, and then having some form of moulding to carry the wire back to the cut off cabinets. In office and hotel buildings this is especially applicable. The amount of conduit is reduced to a minimum and the liability of breakage from setting of the building is reduced in proportion.

For convenience of testing, I prefer an individual distributer, which consists of a horse shoce cut-out, having no luses. This can be placed in the centre electrolier of the room from which a circuit will run to the outicts, or, where possibie to do so, I use a block, which is placed in the moulding at the entrance to the room. All wires are ran from the block to the outlets. In ense of a ground in any line in this room, it requires but a moment to uncover this box and discover the line which is grounded.
All work described so far is in strict accordance with the rules of general

[^2] at the moot prosunenat and charnoteristie fatures of cach

Wiring as pronounced by good nuthorities up to date. I wish now to disgress somewhat from orthodox rules and suggest some changes which are more or less starting, dependiug upon the nmount of thoughit that has been given the subject. When the matter was first presented to me th did not strike tue lavorably, but is I considered the question further I beenne convinced that the innomition would sooner or later be adopted.

There are three danger points in electre light plants: First, the switch. board: second, the cut-out cabinets, and third, the liability of ground on a circut.

Grounds can be avoided by the use of good wire, by using insuiators to carry all risers and feeders, and by distributing in mouldang and interior conduit as described. I would consider that a model plan, in a modern office or hotel building, would consist of no less than three and not more than five dynamos, a slate switch-board properly mounted with instruments arranged tastefully thereon, the best quality of rubber covered, brided and slicked wire, mains and feeders run upon porselain or glass insulators, cut-out cabinets made of slate or marble, something after the fashion of that shown in Fig. 3, with all connections on the face. Up to

Fig. 3.
this point the piant would have been made according to the best and most approved system of wiring, but bere I would make a departure, by bunching my distributing wires together, wires of opposite polarity being placed side by side in the same raceways, as shown in Fig. 4. This raceway would be lined with asbestos paper, with several couts of a good fire-proof paint, or made of fire-proof material throughout. Opposite each room I would place an individual distributor sinilar to that atready shown. The greatest amount of current to be allowed on one circuit I would make eight amperes. I would so construct my fuse block that it would be imporsible to place a fuse theren with a greater carrying capacity than eight amperes. Nc fixture could be used unless it be provided with an insulating joint, which must aiso carry the canopy It is quite a common thing to place a good insulat. ing joint on a fixture with a canopy which grounds the fixture by shunting the joint.

Fig. 5 shows the common method of insulating (?) fixtures. Electric gas lighting work would not be accepted on my fixtures unless the same quality

of wire was used as in the rest of the installation. No ground would be permitted in the gas lighting circuit. No drop cord smaller than No. 16 B $\& S$ could be used and no wire smaller than No. it These suggestions I am satizised are in the line of better and cheaper construction. The reasons are: First, wires placed behind the cut-out box are generally arranged in such a manner as to make it almost impossible to trace them, which is in violation of the board rule that $2 l l$ wires should be accessible for repairs and resewal at any time; second, the bunching of wites is a cheaper and neater method of ruaning than where opposite polarities are separnted.
When electric liphting came into existence it had no precerfent except that of telegraph work and rales. hence telegraph practice was followed. Wires
were separnted as far as possible; it was argued by many that wires of like polarity should be kept npari for fear there mighin te a difference of polarity between then, and in one case no longer aro than last summer an insurance inspector Insisted lane the wires of a luop rumsing to a swith were of dif. ferent polarty and liable to shore circtit.
The safety valve of electric lighting is the fuse. The most dangerous current that we can have is known by somens the "sneak" curremt and is one that is so slight as not to aflect the fuse and opent the cercant. The indiscrimitate mixing of polarities is especinlly to protect us ngainst the "sneak" current. With the present system wites become bruised at a certain point, the insulation is injured, the breaking of a water pipe causes a ground, electrolysis takes place, the wire becomes oxidized and netenuated, and finally causes an are, which may result in a fire in the system which 1 am describing a short circuit would very quickly develop and the fuse would be blown, which would wara the electrician that something was wrong. Repeated blowing of fuses would cause an investigation, the trouble would be discovered and remetied. Dinger from short circuiting would be comparatively nothing, tor the faithful fuse, ever on duty, would give warning of danger. In fact, it would not require a great stretch of imagination to conceive of placing a false linang on the door of the cut-out cabinet in such a manser that the bowing of the fusc would iudicate onan annunciator in the engite room where the fuse had blown, thus notifying the engineer in advance of the inevilable angry tenant.
As to the use of eight amperes on a circuit instead of eight lights, as is the present rule in Chicago, I believe there can be no serious objection made. "Lughts" is an indefinite term and depends entitely upon the voltage employed for its value in current. The only object of limiting the amount of current on circuits is to reduce the liabilty to destroy sockets by short circuiting. Experience bas convinced me that erght amperes properly protected by an eight ampere fuse will not destroy a socket by short circuiting. If the fuse is warm and other lights are on the circuit there is not the slightest dinger of injuring it.
To conclude, 1 will say that the plant designed after the plan outined would have an economical mange in the dynamo eapacity, and an economical loss in the wires, which, by the way, is a point that many do not seem to nppreciate ; in lact, one building is being wired to-day in Chicago with wires several times larger than needed, the owner probably following the logic of the man who dmank the whole bollte of medicine with the remark that "if some of 11 was gocil more was belter." or the son of the Orient who went to purchase a pair of shoes, found that whereas a pair of No. 6 would exarety fit him, that a pair of No. 12 would cost the samie money, so he took the No. 12 shoes.
A plant should be designed with a very small loss at the average load: this loss will wary with the character of the buildang. Very few buildings operateany where narar their full capacity at any one time, but if they should for a few minutes in the day require their full capacity the excessive cost of coal expended for that short time would nearly compensate for the interest on the copper, which is a fixed charge against the plant.
This methorl would reduce the cost of distributing to a minimum, danger of grounds would be almost entrely removed, and with improved fixture connectuons I doubt whether a better plant could bedevised.
It is true that this plant would not coincide with the ctyy inspection rules of Chicago to-day, but the history of our inspection department has been one of incessant warfare against bad work and in favor of better and safer installations. The gentlemen who compose Prof. Barrelt's staft are progressive, active, and thoroughly alive to the interest of the electrical profession, and 1 am satisfed are willing to make any change or alteration in the present rules that would make our work better, safer and more in accordance with good engineering : and we all feel that they are working toaccomplish this laudable olject. When I say that these gentlemen are working I wish it understood that 1 mean it literally. When you consider that four inspectors are required to thoroughly inspect 498 isolated stations operating 646 anc lamps and $: 32.521$ incandescents, and 21 central stations operating 9.300 arcs and 150.000 ineandescen lamps, all of which are irregularly distributed over 174 square miles, you will understand that they have plenty to occupy their minds and time.

TRADE NOTES.

The Montreal Electric Company, $30=$ St. . James St, have been appointed sole agents for the province of Quelec for the Crocker-Wheder motors.
The Robb Engineering Co., Amherst. N. S.. recently received orders for a 125 borse-powes Monarch Economic boiter foc the I. C. R. shops at Aloncton. N.- B.: 125 horse-power Kobb Armstrong automatic engine for an clectric station at Lethbridge. N. W. T.: and a igo horse-power Monarch Economic boiler fur a woollen factory at Preston, Ont.
Mr. John A. Burns, of Montreal, bas secured the agency for that city for the Kay Electric Works, of Hanalion, Ont. The excellent workmanship and well known features of their machines need no recommendation on our part, and we hate no doubt but that their interest will be well looked after by Mr. Burns, who has had an extensive experience in some of the largest engincering works in Canada and the United States, and is also a graduate of McG:ll University, Montreal.

There is a scheme on foot to build an electric railway line between Deschene mills and Aylmer, a distance of about three milis. Mr. R. H. Connoy, warlen of the county of Ottawa, is the prineipal promoter of the movement.

THE CORLISS ENGINE.

The valve that is used in the Corliss is by no means a new thing, and it is a fact that all of the principal valves in use $10-$ day were conceived and tried in the early days of the stcam engine, but the time was not ripe for their use. The slide, the gridiron, the rotary, piston, rocking, and poppet valves were all old enough when Corliss commenced first to work on the steam engine, although the minor details may not have been the same, but these are constantly changing. The Corliss engine is noted for its valve motion, not its valve. Corliss could have chosen the gridiron valve to put his ideas into practice upon, or any other, but the rocking valve answered best his purpose. The rocking valve is by no means an ideal valve, but it possesses some advantages. The best feature is that it can be extended clear acioss the cylinder and placed very near the cylinder, thus reducing the waste or clearance space between the valve face and the piston head, at the end of its stroke, and in addition by the use of a fair valve system, the steam and exhaust passages are short and direct. Its great length makes a very slight opening of the port represent a considerable area of opening, and the movement of the value need not be very great to make a considerable area of opening of the valve. The valve is very quick in reaching a full opening, and if the motion given the valve is also very rapid, the port is opened extremely rapid. These are important points to the advantage of the Corliss engine valve-the small clearances and the quick opening; and as the valve motion is one that gives a particularly quick movement to the valve it is very quick in action.

The valve has this agninst $i t$, that it is hard to keep tight. To do this it must fit its seat well, and no grit or substances must be allowed to cut this seat, for once a leak begins the cutting action of the steam makes the leak extend very rapidly. It is not an easy matter to remedy this leak after it has once commenced. The valve chambers must be re-bored, and unless the leak is stopped a considerable loss ensues. It is a fact, too that leakage past the steam valves exists more than is generally admitted, and represents a considerable loss even though the steam is used again for heating purposes. Men put up with leakage that they know exists in an engine and satisfy themselves by saying, it is'nt wasted, for it goes to heat the feed water or to do this heating, and all there is about it is that we use the engine as a reducing valve instead of using a separate reducing valve. It is a fact, usually that the legritimate exhaust from an engine is sufficient to do this work, and this being so all that leaks past the valve is pure loss. The Corliss valve may not show any more leakage than the Brown or Putnam under the same care, perhaps not so much as the two latter, but it is far from being a perfect valve in this respect. The old valves were much worse than those of the present day, for they were hung turning in bearings, while to day they rest upon the seat, the valve being held against the seat by springs or the pressure of the stean. The insufficient warming up of the engine before starting up produces unequal expansion of the valve and its seat, and wear in spots follows and, of course, a leaky valve. The valve is not balanced and the friction item is an important one. This defect is one of varying magnitude, according as the valve allows steam to get underneath it or not. The plain slide valve, with the pressure squarely upon it, will sweep the steam from beneath it on a true seat. A Corliss or any motating value has not this tendency and instead is inclined to lift and allow steam to get beneath it and its seat, and this in a measure balances it. The friction of the valves is therefore greater in some Corliss engines than in others, and it is undoubtedly less when the engine is running than when starting up. A leaky Corliss valve is also in a measure balanced, so that whether the valve possesses excessive friction or not comes back to the practical consideration of the matter in its practical operation. It docs-not always show friction, but it is not like the piston and balanced slides ot high-speed engines, which are under all conditions working with the least friction. Their great defect, then, lies in their tendency to leak, the wearing of the valve seat unequally at different cut-offs sequiring a frequent use of the boring machine.

The fact that the valve extends clear across the cylinder makes so wide an opening for a full admission of stean unneces-

- Abarace of lecture delivered by Thanas Hawley, in the Lowell Course at Wells
atemial Institute, Boston, Mass
sary. The ordinaty Corliss engine has a single-ported steam valve, but some attempts have been make to give it double ports. The Trenton valve, Fig. i, has a sungle port to the cylinder, but two passages through the valve so as to make a very slight movement of the valve give a full port opening, a quick port opening and, of course, a quick closure. The new Wright value is a gridiron Corliss with a single port to the cylinder, and in some of the Reynolds-Corliss engines, instead of

Fig. 1:
placing the valves on top and beneath the cylinder, place them in the heads, as in Fig. 2.

The object of this construction was to give a short travel and wide port opening at the high speed run, 100 revolutions per minute and least clearance. It is obvious, of course, that the chances of leakage are increased by thus multiplying the extent of edges exposed to the steam. The lap of the valve edges must be decreased, and in doing so we get back to one of the defects of the early Corliss engines, of insufficient lappage, causing more leakage.

It is quite clear, I think that a valve of itself must have defects, but its merits will depend very much upon the valve gear by which it is operated. On the continent of Europe a Corliss engine is any engine with a detachable cut-off gear, though the valves may be poppet or anything but what we know as the Corliss. This is, in a great measure, right ; and, though many people will have a Corliss engine nothing but what it is, yet the great beauty of the Corliss engine is its valve motion, and it is its

Fia. 2.
valve motion that made for it the important position it holds today as the best of steam engines. The motion is calculated to fill what is best of the different fanctions of the value. It will open the steam valve rapodly, it will hold it wide open until the time it is to be closed, and it will remain closed, without movement, until again to be used. In short, it operates rapidly when in motion, and when not opening or closing is at rest. The same is true of the poppet valve of the Putnam engine, and in the Brown less so. This lingering or dwelling of the valve when opened or closed, is caused by the position of the wrist
plate and connections. If we take a skelcton outline of the wrist plate and connections, as in Fig. 3, they are, in effect, like a number of levers, each independent, except that they derive their motion from a single shaft. The eccentric rocks these levers back and forth in a certain arc, and they rock the valve

Fras 3.
over a certain path to uncover and cover the ports. That is all there is to it except the trip gear.

Take one of these valves and connections, as in Fig. 4 , you will observe that the opening movement of the valve comes when the wrist-plate connections are in such position that the full movement of the wrist plate is given to the valve, the skeleton "levers" being then in position, a a. If the opening of the valve should take place when the "levers" were in position, $b \delta$ it will be seen that the wrist plate would have a considerable circular motion befere moving the valve at all, hence the more the "levers," a a, are at right angles to each other, the more

Fia. 4.
alike will the movement of wrist plate and valve be. This constıuction gives a rapidity of motion in opening and a dwell when open that is important, and in the case of the exhaust, particu: larly so, since that is positive in its motions, opening quickly; barely moving when open, closing quickly and hardly moving when closed.
The original Corliss had the wrist plate situated half way down the frame and long connection rods to the steam and exhaust valves. The dash pots were also horizontal, and attached to the frame, the dash pot rods running lengthwise of the engine. This construction has one advantage, that the influence of the heat of the cylinder was not noticed as now, the present construction making the valves act slightly different when hot than cold. The placing of the wrist plate on the side of the cylinder obviated the difficulty that was found in the spring of the long connections, and while with the old Corliss one of the values opened toward the centre and the other away from the centre, the ordinary construction to day makes them open one way.

In the case of the ordinary Corliss the valve opens toward the centre of the cylinder, and in modifications opens away from the centre of the cylinder, so the steam does not have to pass over the value to enter the cylinder. The tendency of the Corliss original shop is to increase the angularity of the connections so as to give an even quicker motion to the valve than was
possible under the old arrangement. This has led to the adoption of a wrist plate like this, Fig. 5. It is a fact that the full pressure of steam may be realized in the cylinder of the engine, even though the port is not wide open. It follows, then, that any opering of the pott after this point is reached is useless, but the valve must continue to move formard some or the trip could not have a chance to operate. The cut-off of the valve must not be considered ns taking place until the valve has actually closed. The valve may be tripped and still slow in closing, showing a wire drawing of the stealn. A sluggish dash pot will aggravate this trouble, and in any event there must be some time consumed in closing the valve. With the Corliss that time is very litle. The acton of the tripping is likely to give shocks to the governor, even though the dash pot prevents, in a measure, the oscillation.
The particular fault with the value motion of this engine is that it does not permit of a sufficient degree of compression being given the engine without affecting the release. The exhaust valves are large enough, siad open rapidly enough to make a quick, free exhaust, with very little back pressure. The time of release may be changed by lengthening the right and lefts, but to obtain more compression the right and lefts must be lengthened. This action makes the release later, and before you know it the release is at the cond of the stroke, and no more can be done. To give the eccentric moreangular advance will increase the compression, but at the sacrifice of the mage of cut-off, and making tie valve open slower. To obviate this difficulty of obtaining considerable compression without a release too late, some enyineers place two eccentrics upon their engine, one for the steam and one for exhaust valves, and set their exhaust eccentric with sufficient angular advance to give the proper compression. Another scheme proposed is to make the exhaust ports nearer the centre of the cylinder, so that the piston will completely cover it in a portion of each return stroke. The covering of the pont by the piston confines the steam and allows it to be compressed, the exhaust valves caring for the release. This gives a fixed compression. The weight of the dash-pot piston and connections is to cause wear to appear, causing the stuffing boxes of the valve stems to wear oval. In the Wright engine the wrist-plate is made in two parts, one portion lesing in engagement with the tripping gear so that the tripping comes at the wrist plate, which is more able to stand the shock than the valve stems.

In setting the valves of the Corliss engine it should be done first by the marks and then with the indicator. The first thing to do is to place the wrist plate in its central position. Upon the stud or pin supporting tise wrist plate will be found a mark, and upon the wrist plate three marks, the central one of which should coincide with the mark upon the stud when the plate is in its central position. Upon removing the bonnets from the back end of the valves we will find upon the end of the valve a mark, and that mark coinciaes or is in line with the opening edge of the valve, and upon the valie seat are two marks that correspond with the edges of the port, showing its location and widh. It might be well to verify these marks, but after that is

denc, or assuming the marks are right, we can set the valve by these marks, two showing where the port is, and the one on the value, the edge of the valve, b con the valve seat show the location of the port as shown by the drawing, Fig. 6. With the wrist plate in its central position, the steam valves on each end should overiap equel distances, 4 inch for an 18 -inch cylinder and up to $\frac{1}{巳}$ inch for a 36 inch cylinder, and the cxhaust port may be a little open, usually one-sixteenth of an inch for an 18inch cylinder, and 36 -inch for a 36 -inch cylinder. The object is
to get all alike and squared. If they do not appear alike, turn each of the right and left connections until they do. The valves are then squared. See next that the rocker arm rocks equal distances eacli side of a plumb line, and if not, cause it to do so by taking up between the rocker arm and eccentric. Next hook the carrier rod to the wrist plate, and byturning the engine oyei see if the wrist plate moves equal distances on each side of its central position. There being three marks upon the wrist plate this is easily seen, Fig. 7.

If the wrist plate does not move equal distances each side of a plumb line cause it to do so by taking up on the carrier-arm connections wherever it can be done, and if there are no means of taking up there it must be done at the eccentric rod, but only after the rockerarm has been squared. The point is to have the wrist phate vibrate evenly. Now, when this is done, and the wrist plate hooked in, turn the engine on the centre and set the eccentric in the direction the engine is to run so that the steam valve on the end which is to take steam will be open about one thirty-second to one sixtecinth of an inch. It should be kept sinall as possible. If the valve had no lap or lead the eccentric would be set at 90° angular advance, and any advance from this position will cause the opening to be slower and diminish the ras:ge of cut off.

The next point is the governor. The long rods from'governor transmit the motion of the governor to the cut off mechanisin and adjust it to trip the steam valve. Dy changing the length of these rods the point at which the valve will be tripped for a certain postion of the governor is altered. Block the governor in its highest position, and adjust the long rods so that the valve will trip before tie steam port is opened, that it will trip before the lap is uncovered, or no more than touch the steam valve. This can be determined by working the valves with the bar in the wrist plate. Then drop the governor to its lowest point and see if valves do not trip at that point. If, when the average load is on as determined by the indicator, the cards are unequal in area, as will probably be the case, change the governor rods so that the end doing the most work will trip a little carlier, and the one doing the least work, a little later. If the card should be a little late all around, set the eccentric ahead a trifle. If it is then desired to change any particular point, shortening the right and left will give.more lead, and decreasing it, less lead. By shortening the exhaust connections, the release will be earlier and the compression decreased, while lengthening these connections makes exhaust take place later and increases the compression.

THE REAL INVENTOR OF TELEGRAPHY.

Says a writer in the Pobular Science Monthly for February, Weber was the first who established a permanent workable telegraph line, and thereby demonstrated the practical value of electric telegraph. Weber's house in this city was connected with the astronomical and magnetic observatories by a line three of four kilometers (over two miles) in length. The signals were made by the deviations of the needle of a galvanometer to the right and left, and were interpreted according to a conventional alphabet. The use of interrupted or reversed currents did not permit the transmission of more than one or two words a minute, but the specd was increased to seven or eight words by the use of induced currents. The following first notice of this telegraphic connection was published in one of the numbers of the Gottingen Gelchrtest Anseigen (or Gottingen Scientific Notes) for 1834: "We cannot omit to mention an important and, in its way, unique feature in close connection with the arrangements we have described [of the Physical Observatory], which we owe to our Professor Weber. He last year stretched a double connecting wire from the cabinet of physics over the houses of the city to the obscrvatory; in this a grand galvanic chain is established, in which the current is carried through about nine thousand feet of wire. The wire of the chain is chiefly copper wirc, known in the trade as No. 3. The certainty and exactness with which one can control, by means of the commutator, the direction of the current and the movement of the needle depending upon it were demonstrated last year by successful application to telegraphic signalizing of the whole words and short phrases. There is no doub: that it will be possible to establish immediate telegraphic communication between two stations at considerable distances from one another."

ELEGTRIG RAILWAY DEPARTMENT.

TORONTO AND MIMICO ELECTRIC RAILWAY.

IT is reperted that negotiations are under way and will spee. lily be consummated for the purchase of the above road by the Toronto Street Railway Company. The present owners of the road appear to have had a by no aneans pleasant experience. They have for some time been engaged in litigation with the builders of the road, the Reliance Electric Mfy. Co., arising out of their claim that the plant installed for the purpose of operating the road is defective, and that to this cause was due the fact that the road ceased operations after having been running for a couple of months last ycar. Again the company has been involved in litigation with persons resident in the township of Etobicoke, with the object of securing payment of a bonus of $\$ 10,000$ granted to the company by a vote of the ratepayers under a by-law of the municipality. The line, if properly operated, should prove a profitable one in the summer months at least, when thousands of the citizens are weekly visitors to High Park and the Humber.

ECONOMICAL OPERATION OF STREET RAILWAYS.

Mr. A. B. Johnson, in writing on this subject to Electricily of New York, says :-I think it can be reasonably ciaimed that any route where the travel will warrant the installation of a horse rainoad, can be more economically operated by means of electricity, provided the water supply is ample, and the cost of the fuel is not exorbitant.
It is in just such cases, however, where the conditions for sucress ate the most testricted, that a system of talse economy is most apt to be practiced. Managers of small roads will argue that their business will not warrant the expense of employing a competent electrician, and in consequence, men are often found in charge of eletrical plants and railway equipments whose knowledge is limited to the operation of replacing burnt gut armatures, which under these conditions, is an operation of unnecessarily frequent occurrence. A cass: illustrating this, recently came under my notice, in which an armature, which had been running for over six months without a particle of attention or inspection, was suddenly burnt out.
This was replaced by three others, successively, which met with the same fate. On examination it was found that the armature brushing had worn down so much that the armature winding was rubbing on the lower pole piece of the motor.

The "electrician" of the company, after making this discovery, spent two days in patiently chipping out the lower pole piece, until sufficient clearance for the armature was obtained. This remedy had the effect of burning out the armature on the opposite motor, and the case was referred to the company, who installed the plant. This company supplied a now pole piece, two pairs of brushings, five armatures and the services of an expert.
The cost of this experiment, cuvering a period of five days, would have paid the salary of a competent electrician for more than six months. This is undoubtedly an unusual and, it is to be hoped, isolated case, but it serves to illustrais the fully of intrusting the care of electrical machinery to men who have no knowledge, either theoretical or practical, of its requirements.
The idea that electrical machinery is indestructible is fast losing ground with railwav companies and it is now the rule to find competent men in charge of electrical equipments, but it is difficult to surmise why such an opinion has ever existed. In installations of almost every other class of machinery the greatest care is take and the most competent engineering ability is demanded, but in the case of electrical plants these ordinary piccautions are frequerily neglected, and while it would be hard to find a case where a steim plant is in charge of a man wno knows nothing whatever about an engine, electrical equipments, which are infinitely more susceptible to injury, are often intrusted to men who have not the least knowledge of electricity.
The annual depreciation in the value of a plant is always an important item to which too littic attention is apt to be paid, but the care which a roilway plant receives will, to a great extent,
determine the percentage of its yearly depreciation. It would seem that the expense of equipping a street railway is sufficient to make the saving of two or three cent. per annum on the investment an object of very careful consideration. This question of depreciation is sure to be an important one with this class of machinery, and every care should be taken wincrease the life of such an equipment. The renewal of the plant is sometimes a matter of great expense to companies who have allowed their machinery to run down until it is useless, while the entire cost of keeping it in good order from day to day would be hardly felt in comparison.
There can be no doubt that the supervision of a competent man will save any railvay company several tines the amount of his salary, in averting accidents by intelligent foresight, and at the end of five years the value of the plant will be probably twice as much as in the case where it is permitted to take care of itself.

The Berne, Switzerland, compressed air tramway is at present exciting a good deal of interest. The peculiar feature of this system, which is known as Mekarski's, is, according to the Strect Railzuay Gazelte, that steam is mixed with the compressed air-in order to keep its temperature from falling too much when the pressure is lowered-and so reducing the air pressure to a point too low for use on the engines. The air is compressed in a central compressing station, and after passing through dryers is sent out in pipes to the socalled accumulator stations, where it is stored in tanks preparatory to delivery to the car. At these accumulator stations are also the boilers furnishing the steam to be mixed with the air. The motors are like a common steam motor, and the storage tanks are under the car floor.

The Oltawa Electre Street Rallway Company are enlarging their power house and intend putting in larger motors in the place of the ones now in use. The company have extended their line to Rockliffe, but say that even with the lines now in operation they require additional power.
Messrs. C. and J. F. Beck and others have been granted incorpomation as the Penetanguishene \& Midland Electric Street Railway, Light and Power Co. The rapital of the company is $\$ 75,000$. Mr. Holgate, C. E., and his staff are engaged in surveying the road, and it is expected that construction will soon be commenced. The company intend to carry freight as well as passergers.
The Montreal Street Railway Company's new power house, of which mention was made in the last issuc of the Electrical. News, will contain an engine and dynamo room 160 feet by 85 feet, and a boiler room roo feet by 80 fect, and will be built of brick and stone. Messrs. J. Laturie \& Bro. of Montreal, are now engaged in the construction of the twelve generators which are to furnish the power, and which will be driven by six steam jacketted, compound condensing Corliss engines of 600 h . p. each. The high pressure cylinders will be 24 in . in dameter by 48 in . stroke ; the low pressure cylinders $i 8$ in. diameter by $\ddagger 8 \mathrm{in}$. stroke. The shafts will be of stect, 15 i.s. diameter in the centre and with 13 in . journals. The fy wheels are to be 22 feet in diameter, is in. face, with a weight of about 40 tons each. The cost of the engines will be $\$ 75,000$, and the weight over 500 tons.

In reply to Mr. Cockburn's inquiry. Mr. Wood, Controller of Iniand Revenue, lias stated that the Government do not intend to introduce a bill for the inspection of electric light.
The Northwest Tmensportution Co. has let the contrnets for lighting their boats. There will be one engine of the Armangton \& Sims pallern for each broit, and they will be lurnished by Messrs. Nie \& Lyuch, of llumbion, while Messrs. Ahearn * Soper will complete the work ind fumish all materinl.
The Canadian General Electric Co., of Peterboro', have completed the fourth of the lecomotives they have been building for the Vancouver Coal Co. The nvernae speed will be about 8 miles per hour, the groding in the mine being very irregular. The current will be delivered at 3.000 volls, but will be reduced to 50 volts at the locomotive.

\& Sons

Hydraulie and Mechanteal Engineers.
Sole Manxfacturers in Canada of
The "New imerican" Turbine
(hoth vertical and horizontal) which is the very best kind of Water Wheel for Jriving electrio machinery by water power.
Special attention given to the arringement and production of Superior gears, shanting, \&c., for Electric Siations.

Governor

VULCANIZED FIBRE CO. HARD VULCANIZED FIBRE

In Sheets, Tubes, Rods, Stichs and special shapes to order. Colons, Red, Black and Grey. SEND FOR CATALOGUE AND PRICES.
The standard electrical insulating material of the world.
Factoru: Wilmington, Del.
Offige: 14 Dey St., New York.

NOTE -Grips always motionless when pulley out of clutch. Permits adjustment without stopping shaft pulley is on.

SPARKS

The name of the Guelph Gas Company has ween changed by an order.in-council to sthe Guclph Liglst and Power Company.
Messrs. McColl Bros. \& Co., of Toronto, haye formed a company and are being incorporited under the name of The MreColl Oil Company, of Toronto.
Mr. T. Ahcarn, of Ottawa, has returned from a trip through Mexion and Centml and South America, where, he states, very littie progress in electracal matters has been made, owng to politicil difficulties.
The St. Catharines Electric Street Railway Co. have relaid the track from Thorold to St . Catharines and intend to commence work shortly on the extension to Port Dalloouste. They have also built a large and handsome car stable.
Mr. J. W. MeRae, president of the Ottawa Electric Strcet Rnilway Co., .states that it is the intention of the company to put in a steam plane. so that in ease of low water they can have steam to fall back on. During March last, when the water was low, they had considemble trouble. They with a number of others interested also propose to deepen the channel so as to obtain a greater head of water.
The Montreal Electric Club held its last meeting for the season on May 2gith. An instructive paper was read by Mr. H. Ritchic on "Testing Dynamos and Metors." and the secretary-treasurer afterwards presented a report, showing the club to be in a flourishing condition financially and the nembership to be increasiug satisfactorily. The meeting then adjourned to metel at the call of the ptesident next September.

Fredericton, N.B., June roth, 1893.

TENDERS

Will be received, addressed "City Clerk, Fredcricton, N. B.," for

Lighting the Streets of sald City by Electriclty (are lights),
said tenders to be recei, ed until rith DAY OF JULY NEXT, at noon. Fifty arc lights will be required. to be sut per "Moonlight Scheriule." A contract will be entered into (if terms satisfactory) to run ten jears. The contmetor will be required to furnish, put in and run dynamos, machinery. all plant and materials at his own charges ire all things. Any further information will be furnished on application. Each tender to wiate description of machinery und light proposed state descripuon of marnished. The lowest or any tender not necessarily accepted.
By order of Street Light Committee.
CHAS. W. BECKWITH.
City Clerk.

${ }^{\text {ThE }}$ TORONTO ELEGTRICAL WORKS

Manufaciuving Electricians and Engineers.
Dealers in Electrical Supplies. Makers of Dynamos and Motors. Dealers in Elestrical Books.
35 Adelaide Street West, - TORONTO.

F. E. Dixon \& Co.
 manufacturers of

LEATHER BELTING

70 KING STREET EAST, TORONTO. Headquarters for Electric and Dynamo Belting.

We have the following Leather Relts in use in the works of the Toronto Electric Light Co. :-

One 36 inch belt 98 feet long.
[This belt has leen in constant use since August, i885, and looks good for another ten yoars yet.] Also
One 36 inch belt 100 feet long. One 38 inch belt 100 feet long. One 36 inch belt 123 feet long. One 24 inch belt 100 feet long. And over 1500 feet of 8 inch belting.
All the above belts are DOUBLE THICKNESS and are all giving satisfaction.
The 3^{8} inch belt is the largest belt ever made in this Province.
The following Electric Companies are also using our llelting:
The Toronto Construction and Electrical Supply Co.
The Ball Electric Light Co.
The Hamilton Electric Light \& Powet Co.
The Niagara Falls Electric Light Co.
West Toronto Junction Electric Light Works.
The St. Thomats Electric Light Co.
The Barrie Electric Light Co.
The Berlin Electric and Gas Co.
The Woodstock Electric Light Co.
The Manitoba Electric and Gas Light Co., Winnipeg.
The Goderich Electric Light Co.
The Markham Electric Light Co
The Oshawa Electric Light Co.
The Orangeville Electric Light Co.
The Port Arthur Electric Railway Co. AND OTHERS.
We are the only Belt Manufacturers in this Province who can show Belts of OUR OWN MAKE which have been in uSe AS LONG AS FIVE YEARS. We can point to belts of our own make in THIS CITY ALONE which have been in constant use for TEN, THIRTEEN and oven NINETEEN years, and are still good.

We are prepared to furnish Belts of any size, two or three ply, of any
width. Every belt fully guaranteed.
Send for Discounts. Dixon's Belting Hand-Book mailed free on application.

SPARKS.

St. Cunegonde, Que., has been equipped with complete electric fire nlarm and police signal systenis by Mr. N. Simone.ll, of Montreal, who was awirted the conimet for the work.
In nnother part of this paper the cily of freetericion. N. B., invites tenders for electric street lighting. Mr. Chas. W, Beckwith, City Clerk. writes as follows "I may suy that we have a compiny here to whom we pay nbout $\$ 2,000$ for 62 gis lights, and as they also tun an clectric system (the only one (in the cis) (they will not furnish us with electric street lights at anj reasonable figure, preferring to keep us to the old gas ifhis. We are therefore seekil. R some adrance, and if satisfactory tenders are received, are in a position to close a contract on terms ulvertised."
The giganue undertiking of barnessing Nag. arn is rapudly nearing completion, and when finished will be one of the triumphs of the nineicenth century. The large tunnel through which the water will have to pass nfter being uulized to rotate the largo turbines is nearing completion, and the total length of the cunnel is $7,000 \mathrm{fect}$; 19 feet wide and as feet high. The immense shaft in which the turbines will be sttuated is sunk to n depth of 200 teet. Turtunes of enormous size and capable of producing 5,000 horse power each will be used, the largest ever constructed. large dyn.thos will be vertically coupted directly to the main shaf. so that no power will be lost through the means of bellung and the electric current generated will be used 10 futmish power, beat and lightug. This large undertaking is engineered ove-hy G. B. Burkink, of New Agueduet fame, and Prof. Gto. Vorbes. the great Enghsh electricaan. On the Canadman side work is finished. In this case the water power is oblatised from a cut leathong from the rwer of atoout 100 tert in lengith, at the end of wh th the slure gates are stuated, thence a fall of erghty feet, the waste water passing through it tunned situated beton tied Falls. In this case swo turbines of s.o60 horse power each are used. The current fumshed will be used to operate the electric rulway, whech is now bult, running from Quecnston along the brink of the river to the pretuly situated village of Chippewa. On every pole used to suspend the wire between the Clifton House and Queen Vietona lark, thetorere situated six 16 candle powe. lamps, whach will be lit up ne night, makug it one of the prettest rides ina:binable.

.. Do you Want. .

A 30 OR 40 GENT LAMP?
If so, we cannot supply you; but should you prefer a higher priced article, cheaper in the end, and guaranteed for an average life of 800 hours, call upon or address the

Pagkaro Lamp Co., Lto.
 96 to 100 King Street, MOINTREA工

Write for Price List and Discounts.

Lake Girard Mine. . Nellie and Blanche Mines. - The Horseshoe Mine. CONTROLLING 2,500 ACRES CHOICEST MICA LAND.

The LARGEST USERS in the United States are among our EARLIEST CUSTOMERS, and can testify to the excellence of our material as well as to our PROMPTNESS OF DELIVERY.

All MICA SHIPFED ISY EXPRESS, and sales made at PRICES INCLUDING ALL CHARGES TO POINT OF DESTINATION.

Why buy through MIDDLEMEN and pay COMMISSION, when you can DEAL DIRECT WITH THE MINES, and receive your MICA AT FIRST HANDS?

We are prepared to SUPPLY the requirements of SMALD USERS, on advantageous terms, looking to the FUTURE GROWTH of their BUSINESS.

Our PRESENT STOCK OF MICA actually mined EXCEEDS 300 TONS, and this, too, AFTER A YEAR'S STEAUY OPERATIONS.

ALL SIZES AVAILABLE, and we will either cut to size or in rough split sheets, with edges trimmed or untrimmed, as may be desired. We will cut dises or segments of circles when required.

Send us a SAMPLE ORDER-we only ask a finir trial; once we receive that, we are not afraid of holding your business. Address all communications to

STEAM USERS
Dosiring the services of COMPRTENT ENO CINEERES of nny clran, can obtain - eobor. intelligent and rellablo mon, by applying tr

chandian association

STATIOMARY ENGIMEERS.
A. E. Edkinc, President, care Boiler Inspecion \& Insumnce Co., l'oronto
Jas. Ronertson, Secretary Montreal Branch, 1480 Mignonne Street, Monirath.

EOR

ESTEIRY
BUSINEES

M.A.N

Inierested in any branch of the Hardware Wrourht, Cast Steel or Spun Metnl Trades. be will find
"The Hardware Merchant" acts like a right bower, and keeps you posted on all business changes and items of note. Its market quolations are reliable. $\$ 2$ per year

THE J. B. MeLEAN C0., Ltd.,

Fill Patent Friction Pulleys

AND GUT OFF GOUPLINGS

For Electre Light Stations and all purposes where intermittent power is required.

Miller Bros. \& Toms,
(Snocessors to Miller Brosi do Mitolielt)
Toronto Offica: 74 York Straet,
MONTREAL, QUE.
FSTABLISZIED 1869.

THE CANADIAN LOCOMOTIVE \& ENGINE CO., Ltd. KINGSTON,

MANUFACTURERS OF ONITARIO. Locomotive, Marine and Stationary Engines

Ardington \& Sims High Speed Engine fga Electric light Plant. etc.
NOMICIE.
The Canadian Locomotive \& Engine Co. Limited of Kingston:"Ontario, finve the exclusive license for building our Improved Patent High Speed Engine for the Dominion of Canada, and are furnished by us with drawings of our latest improvements.
PROVIDINĊE, R.1., Nov, 38th, 8889.
(Signed) ARMINGTON \& SIMS.

[^3] IMPULSE EVERY REVOLITXION wihout Descriptive Catalogues of the above on application.

C. W. HENDERSON Mawiduranan Contador ELECTRICAL SUPPLIES

Wiring and Installing Complete Electric Plants

Expermental apparate, Models. patteras.
Linimt Machneky and Commetatoks.
Elifethical. apparatus of al.i kinds repaired.
Storabie Batternes, Doctors' asb dentists Enectricat
Ambatates and Machinery.
finectric and Gas finguris.
buckeys Incandmomet hamps.
Somorts Fancy and dinimure incandescent Lambs,

CO

44 Bleury Street (CORNER JURONAS)

LONDON MACHINE TOOL CO.,

LONDON,
ONTEIRIO,

manuracturers of

Machinist \& Brass Finishers' Tools

A. II. WILLLAMS, General Arent, TORONTO, ONT.

It is no longer necessary to import Carbon Points.

THE PETERBOROUCH CARBON AND PORCELAIN CO.
.... can furnlsh them equal to any in the world, as they are....
manufactureks of
CARBON POINTS for all Systems of Arc Light, BATTERY PLATES, CARBON BRUSHES,

TORENTO
76 YOERE STEREET

THE J. G. MCLAREN BELTING CO. MONTREAL

White and Amber.

MCRAE \& CO. - OTTAWA, ONT.

Please mention the Engectical News when corresponding with advertisers.

The Penberthy

 Automatic Injector is the Standard. ISEFARE OF IMITATIONS! TARE NO OTHER. In use in hundreds of electrical power plants In the United States and Canada
[^0]: - λ paper read before the hiontreal Filectric Club.

[^1]: - Road before the Chicago Electric Clab. Fel. rath, 159;:

[^2]: - At this piot Mr. Armstroos displayed photographic views of switchbboard,

[^3]: "GYCLE". CAS EMCIIE

