The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/

Couverture endommagée

Covers restored and/ar laminated/
Couverture restaurée et/ou pelliculée

Cover tit!e missing/
Le titre de couverture manque

Coloured maps/
Cartes geographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations on couleur
Bound with other material/
Relid avec d'sutres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible. these have been omitted from filming/ Il se peut que certaines pages blanches ajoutees lors dune restauration apparaissent dans le texte. mais. lorsque cela était possible. ces pages nont pas ère filmes.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-ètre uniques du point de vue bibliographique. qui peuvent modifier une image reproduite. ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleur

Pages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculèes

Pages discoloured. stained or foxed/
Pages décolorées, tachetées ou piquèes

\square
Pages detached/
Pages détachées
Showihrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Includes supplementary material/
Comprend du ma:ériel supplémentaire

Oniy edition available/
Seule édition disponible

Pages wholly or partially obscured by errata slips. tissues. etc.. tiave been refilmed to ensure the best possible image/
Les pages totalement ou partiellement obscurcies par un feuillet derrata, une pelure. ete. con: été fi!meées à nouveau de façon a obtenir la meilleure image possible.

Additional comments:/
Continuous pagination.
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

©inuadia gegitulturist，

TRNAL AND TRANSACTIONS OF THE BOARD OF AGRICULTURE

OFUPPER OANADA

XIV．
TORONTO，MAY 16， 1862.
No． 10.

The Swedish Turnip．

introduction of the Turnip as a field crop treat Britain constituted a new and im－ tera in iier agricultural history．More and cattle，and those of improved quality maintained，more manure therefure pro－ and，as a consequence，the grain crops a proportionate increase．The same have notained in Canada，wherever tur root culture has becume established； general rule it will be found that in stricts where the raising of root crops fet found its way，cattle in particular， only small in number but especially in－ point of quality．
whole class of what are designated turnips，are characterised by certain re features and qualities，which broadly ish them from the white or common hip．The colour of their leaves is in－ of a darker green，almost approaching the root is also more solid，and pos－ higher specific gravity．They grow ily，requare better land in higher con－ dare better able than common turnips severe frosts．They contain less heir composition，and are proportion－ notritious．They are also more fat－ n mill－producing，and less laxative mon turnips．Twenty tons of good considered to contaiu as much nutri－ I as，$_{4}$ twenty－five tons of the average
of yellow rurnips，or as thirty tons of the aver－ age of white turnips．

The common purple top Swede，is an old variety， hardy，solid，and of good quality，and it has always been regarded as well adapted to the climate and soil of this cuuntry． This is probably the par－ ent stock from which others have sprung．It is distinguished from the other＂purple tops，＂by the dull red colour of the upper part of the bulb． It is very solid in texture， not apt to run to seed， and particularly suited to strong，deep soils．It grows deep in the ground，and the crop $\varepsilon: ?$ quently appears to the superficial observer to be less than it really is，while the case is re－ versed with the improved variety．The annexed： sketch（fig．l．）presents a eorrect view of the shape and appearance of this old and much approved variety．

Mr．Skirving of Liverpool；（England）has distinguished himself in raising new and improved varieties of the Swede；his Improved Purple Top has attained to a high reputation，and is more or less cultivated wherever Swedish tur－ nips－are grown．

Fig. 2.

The annexed cut (fig. 2.) will afford a correct view of a good spicimen of this sort. It differs from other "purple tops" in the more uhlong shape of the bulb, havin ${ }^{\circ}$ a large neck, standing more out of the ground, and conse ${ }^{-}$ quently, in this climate, requiring to be taken up carly, as being much exposed to frost. It is a good variety to sow in shallow or hard dry soils. In the former case it produces a better crop than any of the other varieties of Swedes, in consequence of the slingt hold it requires of the ground; and, in the latter, it swells out on the surface, and when lifted there is. not such an adhesion of earth as with the deeper seated roots; a circumstance of great advantage in a wet season.

Laing's Improved Purple-top Swede.

(Fig; 3.)
In Lavivqp'qiAgriculturist's Manual the author says of this turey, "thiot it difers from all hitherto. known varieties of swedish turnips, in bsvinglarge cabbage like leaves, which, by their
horizontal growth, form a thick covering tote suil, thereby materially checking the engourd autumnal weeds." This peculiarity of stap will be seen in the annexed cut,(fig.3) nherebors the leaves and bulb are seen in their daturaicer dition. We have seen excellent crops of the , anetly raised in Canada, but we question rt: ther for ordinary field culture it is equaito tu common or Skirving's Improved Purpietop; certainly it aill not jield so large a wieght. of all the class of Swedish turnips Lang's In proced is unquestionably the best suited for d. mestic use. Its size, form and quality adms ably adapt it for the table, and it should there fore be preferred by market gardeners to χ^{2} other sorts of Swedus. Matson's Swede sorat what resembles Laing's in its mode of grouth being remarkably neat and trim in its appearance, both grow late in the fail, and consequanit ar not so well adapted to a climate like vors, s: peculiarly subjest to early autumnal frosts. But these surts have been fuund quite hardy, g(m) keepers, and but little liable to run to seed This latter circumstance, by the way, grath depends on purity and change of sced, good cu! tivation, and the character of the season. $-T$ w Green top $S w e d e$ is considered to be one oft: oldest varieties, and had formerly a high ref tation, which L awson considers it would bare maintained -had the same care been given toin cultivation and the selection of roots gromn fit seed, as have been devoted to the Purple tops

The fullowing table is compiled from the really obtained by the writer of the article on "uningis Murtor's Cyclopuedilia, in experimenting on the growth of different varieties of Swedes 1848. The land on which they were grom is a good black trap soil, dry and easy th work. The foregoing crop was oats, fftul clover and rye-grass cut once and then res tured. The manure for the turnip croperat sisted of sisteen double cart-loads of rell rotted compost; (stram. yard dung and, nity mud) per acre, apd, in qdodition, fromifort five bushels of bopp-powder-were stremed 1 the drills above the duag; The sede 5 , sown on raised drills, at, the rate of 3 , hsores apre; the young plantsall brairded rell rate
 crop raised in the end of O_{k} tober

The two latter varieties are described as being of inferior quality, many of these bulbs being principally composed of their roots and matted filcts, and the weights in the table abore for these two sorts are probably higher than they should have been, in consequence of the practical difficulty experienced in cutting the ruots and fibres away from the bulbs. All the other varieties were of excellent qualits.
Althulgh the climate of the British Islands is from its muisture and alsence of excessive heat much better adapted to turnip culture than Clanada, jet we have seen in this country bearier crops than are indicated in the preceding table. From 800 to 1000 bushels per sere was no uncommon thing to meet with on the farms of those engaged in the turnip competitions that so materially tended to give an impetus to this department of Canadian hus landry during the last few years. A Thurough prepararation of the soil, judicious manuring, rith a plentiful application of pure seed from proved stocks, and proper after culture, will in general secure a good, prying crop of turnipshere as well as in the old country. Theerroot competitions to which we have referred, show indisputally the valuable results which may be ubtained in Canada by a vigorous applicalion of the proper means. Our advice is,in turnip and root sulture particularly, to atmapt no larger asurface than can be managed o the most thorough and perfect manner.

Flax Cultare.

Hessieurs Emirors. Ts there any way that one It he six Flax Cleaning machines, coming from Belfast to Canada West, could be located in prince Edward County. Our county is not med for flax caltare, for although I have repatedly shown samples of flax and seed at our bciety Show the judres, (except one trifling Sents,) never allowed me any credit for it. I Mlivated flas in the North of Ereland for the

Belfast market for twenty years, and knowing the value of the seed for calves raised less or more for the last twenty yeass in this country for the seed alone. I have never been able to get machinery to clean the fibre; it would not cost over $\$ 60$ or $\$ 70$ to make the rollers and shaft, with the scutching handles made to be attached to and driven by a horse power of a threshing machine. I am well acquanted with all the processis it has to undergo, ${ }_{\text {Lexcent }}$ the steaming, which may be preferable to watering, especially in this changeable and extreme climate. The best flax I ever raised in Canada I got nicely watered, and then lost it by three days of warm moist weather. It is more ticklesome to guage in watering and grassing here than in the North of Ireland, some more to weed and pull, and in an average of years about four inches shorter. These are the drawbacks; but on the other hand the cheapness of the land in Canada may make it as remunerative to grow here as there, and if so, I am sure it will pay better than wheat, if we only get the machinery in operation to dress it well. No one should sow it on new land, It needs to be as near one length as possible, therefore the soil needs to have been thoroughly wrought, moderately rich and clean. My seed has got foul with yeilow top, if you can get a barrel of good seed sent to Picton before the first of May, with a good prospect of means of clean fibre, please do so, and oblige,

Samuel Anderson.
Picton, April 14th, 1862.
[As our correspundent is not far from King. ston he will probably be able to take advantage in some way of the scutching mill placed at that city by the government.-Ens.]

Cure for Turnip Fly.

No. 1. Recommended by Mr. Fisher Hobbs to the Royal Agricultural Society of England.

Take I bushel of fresh white ashes, or Fine wood ashes may be used instead of gas ashes.
I bushel of fresh lime from the kiln.
6 lbs. of sulphar.
10 do of soot well mixed together, and got to as fine a powder as possible, so that it may adhere to the young plant. The above is safficient for two acres when drilled at 27 inches, to be applied early in the morning when the dew is.on the leaf, with a broadcast machine or sprinkled with the hand carefally over the rows. If thefly continue troublesome the process should be repeated, always when the plant is damp. In light land it is best to malie the drills on the flat, the ground being well prepared to receive the seed.
No. 2. Another remedy by the same.
Take 1.4 llbs of salphur.
1 bushel of fresh lime.
2. do of road scrapings, or a substance of igood.
mould where road scrapinos cannot be untuinu, pev acre, mixed torther a few dags befure it is used, arplied very eanly in the muniur, or late at nioht; in the same manater as difected in No. l. using the horse hoe imandiately after. J. B. M.

Dairy Management, and the Cultivation

 of Mangel Wurzel.We take the following abridgment of the proceedings of two important Societies connected with Agriculture in London, from the Irish Furmers' Gazette of April 19.h, and which will be found to contain much useful information of general inferest anà appiication.-
Those circ'es of the agricultaral world which have their centre in Lundon had last week a more than usual amoant of pleasarable excitcment, arising from the discusssion of sutijects connected with their profession. The ordinary monthly meeting of the Central Farmers' Club took place under the presilency of Mr. Charles Howard, on Monday, the . 7 th, idct., at which Mr. Dumbrell, of Ditchling, Sussex, iatrudactd the subject of "Dairy Management;" and at the weebly meeting of the Royal Agricult al Society, Mr. Freere, Editor of the Suc: y's Journal, upened the way fur bume tolerably useful remarks on the caltivat on of man el wuracl; both very seasonable "subjec's, and, in the case of the Central Clab, posstssing furthermore the merit of novelty, nothing immediately relating to it having been previously brought befure the clab. Professor Toelcker, indeed, as oar readers are aware, had recentls, at a metting of the Rogal Agricultaral Societs, expressed Lis viens as a scientific man on the subject, but it remained for the central io pronounce upon its practical bearicge.
In doing so, however, it was chitfly the mi"k. ing prO_{2} erties of certain breeds, and the best manacr of feeding milch cows, which wete discanted upon ; whilst the actual manufactare of dairy prodacts-butter and cheese-was very slightly attended to. Now, in a discassion uh dairy management, this was almost like acticg the play of Hamlet withoat the part of Hamlet; for, surely, the manafacture of batter and cheese form a most important part of the circle of sabjects which may, be comprised under the general head of dairy management. We confess therefore, feeling somewhat lisappointed; because, when we foand the sabject named as oce which Fould be brought forward at a meeting of the Central Clab, we hoped to have the pleasare of reading the experience of some practical speakers from the best dairy districts. And, assuredIf, the extraordinary difference which exists in the qualities of each of these prodacts of the dairy woald bave afforded ample coom for in-
 luxuries, whilat others are not good encogh io grease a cart wheel ; and then there are thench. mellow English cheeses, which actualis melt in the mouth, and, on the other hand, those bard, horny, kinds which might serve as wheels for wheel-barrows, but as an article of food are lite the celebrated skim milk cheese of Sofuiv, ol which it has been said that it "was so bard, that the pigs grunt at it ; dogs bark at it ; bos neither of them dare bite it."

With reference to the milking properties of the different breeds, Mr. Dumbrell was in faroun of the Channel Islands or so called Aideref cow as the best for butter making, raukiog the Ayrshire nest, and recommendirg a crossbes tween these two breeds as producing a veryral uable animal. Mr. Little of Wilts, coming from a cheese-nabing district, adrucated the stornhorn, beliering that "nothing looked betier or more promisi: g than a fue herd of shutthura feedidy in the upen pusture. Mr. Ellis, of Gaid for ${ }^{\prime}$, awother shert-hurn advocate, woad rea. ture to say," in oppusition to Mr. Dambrelis opinion of the Alderless, "that there mere olter breeds which, taken as a whole, wonld be foond equal, if not superior, to the Channel Isoard bieed for the purpose under cubsideration," haring "hnow some cows of the Agrehure Gretd which w re, in his opinion, mucre profisobia on the whole than the Channel Isiands cor, He cocsidered that the firet cross betmeen ios short-horn cud the Chancel Islands cumprohes. Ed a very useful animal for dairy parpuses, al though, perhaps, it might not "gise 80 mad butter as a pare Alderney it was Prry pro fitable, arriving early at matarity, and Laring many good puista belocging to the shurt-horn bretd." Mr. Coleman had found that a berd of sisty or sepeuty Heteford cows did not produce enough of batter and crcam to sappid the large demand for these articles at Wobon, the Duke of Bedford's seat, where Mr. Culman is farm manager, and he now keeps a herd of Herefords for breeding or suckling parposes,ard acuther kerd, polled Suffuse, on accoact of theis gicidiog an immense quantity of milk. He had fourd that crosses between the Hereford ad Ayrshire and Herefurd and Alderneg "improra' the feeling qualities of both the A:derneg ard Asrshise, while it did not mach affect ther milkicg quaiities." With respect to the sbuth horn, he allowed that no breed had a greater terdency to fatten, but is their case "it ofteo happetied that the better the puatare the small. er the quantity of milk." Mr. Middleton, Cab t'eslowe, Oxfurd, who had bept the best kind d common cows in the midlard counties at oxt time gave his experience of pare shorthome dairy, cows in the following terms :-
"About sizteen or seventeen years ago. bey considered whethor he coald not do betterbid paichasing some pure-bred animals avi he
breding from them. Accordingly he bought fire heifers of Oollings' blood (the parent stock or Bates and Booth), and has since bred exclugirely from them, and treated them as common coms up to the present day, from time to time pucchasing Eirst-class bulls to use with them, and ben reariug their caives upon skimmed milk; sad he believed t : at they gave as much mills sad butter upon fair treatment as the common cone, bat perhaps did not hold it quite so long rhen toey got near calving time. As a set off egainst that, he sold his bull calves at 6 or 7 griceas, at 10 or 12 days old, and some at a bigher figare, to farmers and others; and the risalt was that he, in conjunction with a ferv ot his neighbours, who have partially adopted this -anatice, had been the meaus of improving the breed among the formers; in tact, the whole of bis neighborhood was tolerably well off for good bulls. His owo opinion was that the ghort-hora was not only the best dairy cow, but laso after she was dued and barren, the best grazing cow into the bargain, and that the betas they are bred the better they feed; and we are Professor Voelcker's experiments in corroboration of the fact that pare-ored short-horns jielded as much milk and butter, within a fraciino, as the common cow. In conclusion, he regarked that in advocating the claims of the onrebred short-horn cow as a dairy cow, he did fotiatend it as an advertisements to his herd of borthorns, because they were milkers as well \$ grazers, but tor the simple fact that the Alderaegs had been put forward as the best dary cons ; and also to disprove the allegation o the Mark Lame Express, a week or two pack, that 'pedigree animals are just now Patting into bad odour,' because some people ill stalf, parper, aad spoil valuable breeding nimala for the purpose of exhibition"
This is just such language as we would expect tr. Tynte, of Tynte Park, to use, were he call1 upon to speak of the best description of prs for dairy purposes; keeping, as he does, a geg herd of high-bred cows solely for the diry and finding it profitable to do sv. In our Niat, however, we think Mr. Tgote would not gre mith Mr. Middieton, namely, that shortmos, perbaps, do not hold their: milk quite so tg as "the common cows" when near calving (ea; for the Tyate Park short-horus are not dy proitable milkers, bat some of the highest mod the cows, of Bosth blood, scarcely ever rome dry.
Referring to his spatem of keeping mich cows, Dambrell asked the meeting to forgive him on this part of his subject, he shou d" mount labby." His system consists in "ethering his daring summer, instead of pillowing them mage over the pasture. The cows are stakcorn at equal distances, epsh animal having froo of 16 feet. They sie moved frequentiy, - 12 or fourteon timps a day when the grass
is short, only a small portion being given at each time, not more than trvelve or eighteen inches, the object being to prevent the corms from placing their feet at any time upon the grass they are about to eat, so as to avoid waste. The cows have weter twice a day, and he finds that 8 or 10 statute acres of fair meadow land, pastured in this manoer, are generally sufficient "for 25 cows from the time they leave the stall until after haymaking." During summer, when the flies are troublesome, they are tethered only at night, getting rye, vetches, and clover in their stalls under cover during the day. Towards the end of autumn, as the weather becomes cold and wet, the cows must be taken into the stables at night, "loing cat in ivet weather being detrimental in every way to deiry stock, bat no weather," he says, and let our readers in the dairy district mark his words-"no weather is so injurious to the prodace of milk, besides being likely to cause abortion or slinking, as white frosts, and the greatest care should be taken that cows in calf should not feed out at that time." Mr. Dumbrell spoke of the merits of the drambead cabbage as food for milch cows during the early part of winter, being highly nutritious, and assisting the colour of the butter; he follows the use of it with that of swedes, then mangels, spring rape or late sown turnips with rye, bringing the corss on until the grass is ready for a renewal of the tethering system. Of that system he has had 18 years' experience, and although mach ridiculed at first, is now adopted by many of his neighbouns.Ose of these, Mr. Wood, spoke highly in favour si M1. Dambrell's mode of tethering cows, stating althungh at one time he had a very poor opinion of 1^{t}, experionce had made him quite a convert. Tioe other speakers, however, were not inclined io follow his example and become converts to the system, although some of them allowed that it might answer in the case of cows of the Oharinel Islands breed, which were brought up to it as calves.
sinir. Dúmbrell aad not found the use of artifcial food, sach as oil-cake, meal, grains, profitable, bnt others said they used it regalarly, and fonnd that they were paid by the use of it ; Mr. Ooleman even stating that verg few who kept a dairy, " whether of short-horns, Herefords, Alderneys, or any other breed, could sapply really good butter without a small portion of one of chose articles, "viz, cake or meal.

With regard to the indoor management of the dairy, Mr. Dumbrell recommended that a sus. tained temperatnre of 56 degrees should be kept up daring winter, by means of hot-water pipes; that the milk pans should be of tin, oblong, with rounded corners; that "butter to be perfect should be churned every day," that the cream should not be in a state of decomposition before being charned; that scrapalous cleanliness be attended to in every part of the masagement;'
and that in order to produce good butter there should be a succession of fresh caiving cows.

Such were some of the principal points attended to in the course of the evening; but befure closing this section of our subject, these were some remarks made both by Mr. Onleman and the chairman which we cannut refrain from giving. Mir. Coleman said "that very few farmers paid people properly to look after the dairy;' that "unless the whole system of a farm were dairying, the work seemed never to be done in a proper manner, and hence it was that the dairy was so much abused and so fecyaently giving up;" and the chairman, Mr. J. Howard, referring to the great point upon which successful dairg management hinges, said:-
"Speaking as a tenant farmer, he would observe that the successful management of a dairy depended very much upon tne ladies of the establishment. They might bay the best cows for milk that they could possibly obtain, and might also feed them with the very best deseription of food, bat if the ege of the mistress was not directed to the dairy, very little good would be accomplished. On his talling over this natter with an old fashioned' fruend of his some time since, and asking him what sgstem Fas pursued in his parish, his friend remarked, "There is very little dairging now-we have no dairy ladies." Now, he (the chairman) was at a loss to conceive how it could be beneath any young lady whose lot had been cast in a farmhouse, to notice the diary. There was no more necessity for her in the dairy than there was for the husband on the farm to perform menial duties; but it was highly desirable that the mistress should have a pracical acquaintance with and devote some attention to its management."

We omit the numerous and bearty "Hear, hears" with which these remarks were met; but, whilst they show that dairy farming is an occu pation in which determined bachelors should not ergage, they also show that a farmer's wife or danghter will never be demeaned in the estimation of eessible people when they take an active part in the management of what is really their particular department. And for the opinion of any other class of people farm-house ladies should noi care "two rows of pins."

We now turn to the proceedings at the weekly meeting of the Royal Agricaltaral Society, Fhere the cultivation of mangel warzel was discussed. Mr. Freere bad made what he termed "s slight experiment" to ascertain the comparatire value of "Lawson's artificial gusno" and ordinary Peruvian gaano as manures for mangel. The season proved unfavourable, and the weight. of the crop obtained only ranged from sbout 15 tons to 24 tons per acre. This "slight experiment's did not, therefore, afford information of any-practical value, and the rambling and somewhat incoherent remarks. with which he followed $x p$ his statement rere equally devoid of intereat.

Mr. Holland, M.P., was in favonr of antume
 referring to the use of long farm-jard dangi soj alludud to experiments reported by the late lle. Pusey, in an early number of the society's Jour. nal, when the inference drawn was "thatitis more profitable to use some artificial manaresio conjunction with dung', in mangel cultiration " than to use either singly."

Mr. Cantrell had grown mangels on the same piece of land four years in succession, giving the land a slight dressing every year, "and erer year the roots increased in size." Mr. Peel had grown mangels six years in succession, obtaicing
good crops all the time, and a friend of his good crops all the time, and a friend of his hos even "grown mangel on the same piece oflarj for 17 years in succession, and that land is oor being sown with mangel again."

The Chairman, Sir Edwaid Kerrison, ML_{p}, brougit forward reports of two sets of experi ments in mangel cultivation, which had beat made by his farm bailif, Mr. Horn, the one is 1856, and the other in 1860; and as thos experiments are of considerable practical rales, we gave them in full for the benefit of on readers:-

EXPERIMENTS IN 1850.

The following experiments were condacted on a poor gravelly soil, in order to asmertain the effects of artificials applied loosely ou esch Crop sown the 21st of May, and raised the 1 de of November, 1856:-

No Manures per Acre. tonse.
1.-20 loads well-prepared stable dung, and 4 cmt of guano
2.-20 loeds well-prepared stable dung, 4 cwt . of gaano, and 5 cmt . of salt..............................
3.-20 loads well-prepared stable dang,
$1 \mathrm{cwt}$. of guano, 1 cwt. saperphosphate, 1 cwt . blood mauare and $1 \mathrm{cwt}$. salt
4. 40 loads of dung 21
$5 .-2 \mathrm{cwt}$. gaano, 2 cwt . superphosphate, 2 cwt. of blood manare, and 2 cwt . salt
S. 73 zwt guano .-.......................
7.-12 cwt . superphosphate (Lawes)
8. -13 cwt . blood manare
9.-1 1 cwt gaano, $1 \frac{1}{3} \mathrm{cwt}$. saperphosphate, $1 \frac{1}{3}$ cit. blood manare, and $1 \frac{1}{8}$ cwt salt.
10.-5 cwt. gaano 12
$11 .-8 \mathrm{cwt}$. superhcsphate
$12 .-8 \mathrm{cwt}$. blood manare
This shows most diasinetiy, as has been desku?
ed by different speakera to day, that a combing
tion of farm-yard manure with somp species
artificial manure is generally the best-method
obtaisiag the: greatest emonet of maga'

The following experiments were conducted on the crops of 1860, in order to ascertain which manures raise the greatest weight per acre of mangel, in conjunction with farm-yard dung Field, a light soil; sced drilled on 27 -inch ridges first week in May. Dung applied in the ridges at the time of sowing ; the arificials sown by hand over the dung to ensure equal distribation. Crup stored in the second meek of October.

Produce.
No. Manure per Acre. tons cwt.
1.-20 cart-loads of good dang...... 164
2.-20 cart-loads of good dung, 2 cwt. guano, and 4 crt salt.........
$3-20$ cart-loads of dung, 5 cwt. blood and bone manure, and 4 cmt . salt
$24 \quad 9$
4-20 cart-losds of good dung and 2 cwt. guano
$21 \quad 35$
j.-20 cart-loads of good dung, 4 cwt. superphosphate, and 4 ewt salt.

2210
$6 .-20$ cartloads of good dung and 4 cwt. salt
$20 \quad 4$
7.-20 cart-loads of good and 4 cmt Lзшes's superphosphate.......
8 -20 cart-loads of good dung, 4 cwt . Lawes's superphosphate, and 4 cmt . salt
$21 \quad 10$
The advantage of using salt in mangel cultiration is clearly shown by these experiments, the application of 4 cwt. or 5 cwt . per statate ere resalisug in an addition of from 4 to 7 tons in the weight of the crop. Sir Edward's crops aredrilled at 27 incbes, but Mr. Peel began vith that width, and then got to 30 inches, phich he found too small; extending the width. tberfore, to 32 and finally to 36 inches, believing th 't if it is wished to grow rooto weighing 16 or 18 lbs . each, they cannot be develo-ed to that cire in rows of mach less than three feet apast.
Such were some of the principal points bronght ont in the discassion, and we cannot roid congratulating the society on the saccess which has already attended the open weekly meelings. Ample encouragement has been giren for persevering in the course recently wopted; for although the peg on which the discassion may bang, as in this case, may not we itealf of much value, yet it serves to draw ont tha results of experience from all parts of the yuntry, and that is of importance.

Straw as Food:

By CCTHBERTM, JOHNSON, ESQ, F.R.S.S.
Itis only in modern days that the value of How has heenfairly estimated. As longias our westors were content to; feeditheir livestock in fris-that:were strictiy:straw yards-or winter
them in cold impoverished pastures, straw was valued merely as a means of affording a bare subsistence, during the dreary mouths of winter, to the hall-starved inmates of the homesteads. The dung thu produced was of recessity poor, for the days or oul cake inad not arrived: artificial food was then rarely thought of : although everything was sold off the farm, nothing was returned to it; in fact, if nature ${ }_{3}$ had not helped the farmer in a way he never even suspected, his soil wouid have been in time nitterly exhausted. All that the tiller of our soi's then krew was, that when his fields cuecane so impoverished by growing continued crops of the cereals, that these ceased to be remunerative, he had only to leave thism for some years to grow a crop of either the self.sown grasses, er those produced by sprinkling the seeds from his hayloft over the land. In this way he used to say that "the land gets rested." He never suspected that, during this resting, as he unmeaningly called it, the soil and the grasses were slowly absorbing from the atmosphere its carbou and its ammonia, and enriching the soil with organic matters, which gradually became sufficient in amount to again support, for a seaser or two, crops of corn.

When, however, root crops were introdaced into the field, and oilcake into our homesteads, then began to be properly appreciated the real use of straw, as a nutritive substance. It is true that the best admizture of these is not always carefully ascertamed. A capital lecture on this subject, observe3 Mr. J. C. Morton, in his valaable edition of "Young Farmers" Calendar," was lately given by Mr. Blundell, of Burseldon, before a Hampshire Farmers' Cloh. As he troly enough remarked, straw must be more valuable as a feeding material than when used for littering the pens of antimals; but to make it so, it must be consumed with roots, oilcake, meal, and other feeding, materials. He foand that dairy cows in the winter months, if fed on large quantities of roots. particularly mangolds and carrots, refuse to eat straw almost entirely, and become very lean; but they will always eat a full portion of sweet well harvested straw, when they get a moderate allowance of ruots-say, for an ordinary-sized cow, 15 lbs . of mangold three times a day, the roots being given whole, just in the state they come from the sture heap. Again, calves:and yearlings, being fed roots in the same way, will eat a larye quantity of sraw; and when they have been kept nuder cover, I have had them in firstrate condition for many years past. Also, fatting beasts, when th ey get a fair allowance of roots, say 65 to 70 lbs per day, with from 3 to 4 lbs; of cake or meal in admixture, will.then eat strew with great avidity, and do well and profitably. It is however often the case that bullocks receive 100 lbs or upwards of roots per day, with a large quantity of cake or meal, often 10 or 12 lbs. each per day. They will thennot.look at straw, and are obliged to be fed with hay. The result of this is, that the cost
price of these quantities and kinds of food 18 so considerable, that the animals do not yield a profit to their owner.
'The amount of straw consumed by stock, and its mutritive properties, have for some time engaged the attention of the Council of the Royal Agricultural Society. In the twenty first volume of its Journal, p. J4, is given the prize essay of Mr. H. Everslied, on the uses of straw on a farm. Its author is of opinion that, although it is a common plan in grazing districts, where roots are scarce, to feed store cattle on about 20 lbs . of straw and 3 lbs o! boan meal, yet that they do better on straw, with roots instead of meal, even when the supply of roots did not exceed $\frac{1}{2}$ cwt. per head per day. Cattle wintered on straw and meal only become " hide bound," with staring coats. In a note upon this paper Mr. Frere calculates the average production of straw per acre to be $2 \frac{1}{2}$ tons, or 200 tons from 200 acres of corn. He reckons that not more than 4 cwt . of gtraw enters into the composition of a ton of farm-yard manure; the remainder being, excrecrements 6 cwt., rain-water 10 cwt . The composition of staw chaff by a cart-hdrse be places as at least one ton per annum; cattle, 1 ton 1 ewt.; per ammum; for sheep on a farm of 400 acres he assigns 8 tous of straw-chaff yearly. On an arable farm of 400 acres, therefore, Mr. Evershed calculates that there is requred for the fodder of 50 head of large stock, whether horses or beasts, at least 50 tons; for sheep, 8 tons; for storing roots, when wheat is reaped, waste from thatching, making foundation of stacks, \&c., say 5 tons; total 63 tons of straw.

As regards the quantity eaten by the stock, Mr. Evershed adds: "It is an interesting fact that well-fed cattle, kept in open fards, will eat more straw during the "inter months than other cattle kept under the warm shelter of a roof. The careful manager saves his stuck of bean straw until the cold weather sets in, knowing that at that season its bitter flavour will be disregarded. During the winter of $1859-60 \mathrm{I}$ compared the quantity of mixed hay and straw chaff eaten by six oxen, fattened in a warm cattlehouse, with that consumed by cattle of the same age and breed in an adjoining yard. Each lot was fod alike in respect of corn and roots, and as much chaff was given as they would eat. Those in the house ate 14 lbs., and the others 18 lbs. daily, showing a difference of nearly a fourth less carbonaceous food required by cattle when kept in a condition of artificial warmth." In the experiments on fattening cattle at Woburn (Jour. Roy. Ag. Soc., vol xxii., p. 216), in six experiments, during eight weeks, on 44 oxen, fed in boxes, of an average weight of $1,4701 \mathrm{hs}$., there was consumed per head weekly sbout $43 \frac{1}{4}$ ibs. of cake or corn, $110 \frac{3}{4}$ lbs. of clover hay chaff, 377 lbs. of roots; in all 531 lbs of food. There was used besides 133 lbs of litter. Total feeed and litter, 664 lbs . The amount. of fresh
dung produced, 575 lbs . The dry substance of the dung was 156 lbs ., that of the litter wid $100 \frac{3}{4}$ lbs.: there was therefore a $\xi^{\text {and }}$ of aboal 50 lbs., or nearly oue-half, upon the litter tied The dry sulstance of the food and litter tugethit was, however, 276 lbs., yielding in dung 156 ll , or only $56 \frac{1}{2}$ per cent. of tire total; $43 \frac{1}{2}$ per ceat. of the dry substance of the iood and litter hem therefore either stored up as increase, expended by the animal in resuiration, \&e, or lost by the decotnposition of the wanure. To produce 1 to of fresh box dung, there were cousumed 168 lts . of cake or comi, 431 lbs . of clover-hay chaf, add 1,496 lls. of Swedes; in all $2,068 \mathrm{lbs}$. of loos besides 5 lo lbs. of litter, making a total of 2 , is lbs. of Cood and litter; this contained l,075th of dry substance, and the ton of dung cusilts. but we must not fall into the common errord confounding together ac cod the straw of all kinds of cereals. Neither must we fail to cor sider the very material difference in valuete tween the straw of the same grass, harvested at different stages of its growth, or in varjing ds grees of ripeness. These points Professor VieIcker, in his recent valuable paver on the com position and nutritive value of straw, has elator rately examined; as he observes (Jour Roy, Ag. Soc., vol. xxii., p. 382), "Many farmes form much too low an estimate of the feeding value of every hind of straw, except pea haulm On the other hand, the views of others respeting the nutriment contained in straw are so tr. mistakably exagrerated that, with some degrt of justice, they are made a laughing stock atte market-talle. The main ansiety of the firs. named class seemed to be how to tread into manure all the straw grown on the farm; thit of the second how to stuff stock with all te: straw at their disposal: the creed of the fums being that neither little nor much will do them cattle any good. whilst the latter hold that any apprupriation of it for litter is an intolererabl waste.
"The intelligent agricultarist, howeres, knows fall well that whilst wheat, oat, and bariey straw when cat fine into chaff possess a cetain feeding value, particularly when this bulky m . terial is cambined with some concentrated or more readily digestible food, they are not the less essential on the generality of farms to the production of good farm-yard manare. On maxt farms, indeed, the want of straw is felt mach more on account of the difficulty of preserving the most valuable constituents of the liquid and solid excrements which arises from an insufficent sapply of litter, than because an economial sabstitute of this kind of bulky food cannotbo found."

But the professor feels evidently that there is much yet to be learnt with regard to the condif tion of the straw, the way in which it is prodey ed, and its varying nutritive quality; for he didy in his opening observations of its chemical coid
position, "Ae straw contaius only from 14 to 17 per cent. of moisture, there is in it about as mach solid matter as in meal and other kinds of dry feud, although it is considered to be worth oaly from 20s. to 30s per ton.
"The bull of straw, howe 7 er, includs a large proprtion of woody fibre, which, if digestible atall, is only partially assimimated in the syskm . Still, assuming that not more than onewird of the weight of straw is digested hy cattle, and probahly less by horses and sheep, and granting that the assimilable part is not food of the most nutritious character, straw will still hase to be regarded as as more ceonomical feedisy material than any other which can be sup. pirs. It is undoubtedly a fact that some practieal feeders are in the possession of the serret of conrerting considerable quantity of straw inbheef. What this seeret is, perhaps, is not koown to themselves. It may be that the combination in which straw is given, or the preparation to which it is submitted before it is placed in the feeeding-troughs, has something to do with the success that atends its use; but it is pet more probable that on farms where straw is largely and economically cut into chalf and given to cattle, its condition, fiowis ea-ly harvesting snd ther influences, is better than in other localities where the practice prevails of allowing corn to become over-ripe before it is cut. In consequence of this mis ohevious practice, straw gets more woody and less digestible than it would have been had the corn cron been cut earlier. Several ana! jses" of the Professor's, w Whtich I sha!! presently refers "show how mon the ermposition and nutritive value of tme depend on the condition in which it is harrested Indeed, the differences in the compositinn of somewhat under ripe and cver-ripe wheat or oat straw, are g.eater than the variations fibl may he noticed on comparing with each fher the composition of wheat, oat. and barley tram. - It would appear that in certain districts kach rarity in its turn becomes superior as food feach kind is preferred and exclusively retained Ir that purpose; • hilst in other distrints eash is posumed for litter. Moreover, the natural mefernee shown by stock for one kind or the ther affords a practical cvidence that the farmFin each case may have a good reason for the boice which suits his locality. We must therefore almays expect to meet with great diversity fopinion amongst practical men respecting the gatitive value of wheat, oat, and barley straw. That pea-haulm is too good to be trodden frio gane is admitted by all. When properly got A pea straw is, indeed, a valuable feed subWance. With respect to the nutritive properties flean stalks, a rain, zreat diversity of upinion ferails-same considering them almost as nuphous as olover hav, and others only fit for Mar:"-Farmer's Magazine.
(To be concluded in our next.)

English Agriculture:

AS SEEN HV AS ANERICAS.
We find the following interesting sketch of En $\boldsymbol{r l}$ ish ayriculture daring winter and spring in the - icago Prairic Farmer:

Ens. Pramie Farmer:-The firstimpression of an American of English agricultural life is exceedingly interesting. No doubt it would be as nuch and more interesting for an Enorishman to look tor the firat time upon an Illincis prairic in its state of nature, a sea of living green, ard to look upon the same scene again in a state of cultuvation, upon a field of corn of a thousand acres, inclosed by a pine board fence instead of the English hawthorn hedye.

The thought has occurred to me thatI should like, now and then, to give you my impressions of rural and arricultural life in England, as they may first be formed and as I may mature them from after observations and more relable information. There may be something profitable to be ohserved from the contrasts. Two such nations as England and the United States camnot thrive within the knowledge of each other, without furnishing, profitable lessons from their respective experiences, if they are willing to take lessnns in that way. There are certain ideas which each nation, from the nature of their circumstances, must more thoroughly work out; thus England understands better the use of coal and irn , the working of the mines, the art of pottery, \&c., because they are within the range of the nation's calling. For the same reason we are ahead of the English ia the use of timber, its manufacture from the tree in the forest to the last finish of it in the beautifulls constructed house. England knows nothing of our magnifis cently constructed machinery, such as the sary mills of Sarinaw and Green Bay, and the mul= titudinous inventions for planing and mancfacturing of the lumber into doors and sash, mouldings, \&c., simply because she has not the timber thus to manufacture. But she has led us in the tubular bridges, crystal palaces, and iron ships, simply because she has the iron and glass, and not the wood.
Thus in agricultnre, England bas been forced to the highest perfection of science, in the art of production, in order to wrench from the overpopulated soil the capacity to feed the people. The United States must more and more imitate her in this regard, not only to develope our productive capacities, but for the profit of labor as well. It has heen the necessity of the case which has made the TVest call for the reaper and thrasher, and the grain elevating warehouses of Chicaro It was the necessity of the case, high price of labor and great demand for clothing, or the use of the needles, which called for the invention of the sewing machine in Americ.. The low price of labor, the easy supily of the demand of the needle, from the poor women who
could carn their bread only by the interminable ${ }^{e}$ stitch, forbade that it should be discovered in England. But all these machines, having been invented and made available with us, are now slowly making their way into England.

It is well for the American to learn what he proftably can from Eaglish experieace in farming. When we see how fast the capacity of the land in the West is running down, how uncertain almost all our crops are becoming; and when we see over what obstacles of climite, and upon the taxation of its fertility for past ages, with what abundance all crops are raised, and with what certainty they can be relied upon in Eug-land-it seems to me our Western famers caulearn these lessons too soon.

There is one fact that should always be remembered when we think of the Eurlish farmer -the high price of agricultural products here, and the vecessity which compels the English farmer to make the most of his land-and that is, his land rent. Agricultural products are virtually taxed with a land rent, per acre from $\$ 5$ $\$ 15$ per year. What proportion of cultivators are actual land owners, I an not yet able to state, but I am told that most farmers are land renters, paying to the lanlord an amount of rent of from one to three pounds, sumetimes much more, according to the avaiiable and productive state of the land. Think of a farmer paying for rent, clean cash, as much as will buy him a farm in Illinois, each year! As an encouragement to the idea of the Western farmer sometme having a permanent market for his products in Eagland, he must remember, as an offset to the frephthow much English farm products are encumber, ed by this enormous ground rent.

Now let me reproduce to the mind of the western Farmer the picture which Enslish cultivation has produced upon my mind, from my first appearance here, the last month in autumn, up to the last in April-agriculture in winter, wiale in Illinois your grome has be n hard with frost or covered with snow. The first surprise is in looking out upon the face of the country at any time in winter, to see grass and vergetation, excepting on the trees, in a perpetual green. This is in a latitude of $51 \frac{1}{2}$ degrees argainst 42 deyrees in Illinots, (the latitude of Chicago,) or nearly 700 miles farther North. Bristol geographically ranges nearly with the latitude of the southern point of Hudson Bar, a locinity so far north as to be thought worthless on the Western contiuent for any agricultural purposes. But on this continent, on an island surrounded by the modifying influences of the seas and occans, the temperature is so mild that verotation is in a semi-state of growth the year round.

Farm work is done here all through the winter. January is the great month for grain sowing; February the ground is prepared for root creps; March, the season for yount vegetables; and, though this season is wet and bickward, the farmers almost despairing, gardens
are blooming in green; the cabbage plants, carliflowers, and the hundred and one binds of "greens" making one think of Illinois Junee. The wheat fields are growing, yet badly affected by the wet; the grass is furward, (and oh! hon beautifully green the fields look, and about the lJth of Λ pril, men were mowing one of the Bristol parlis or squares, shearmg a fleece of green duwn about two inches in length. In fields, grardens, and yards about the dwellin!s of the city, flowers of all hues and degrees of beauty, are putting forih their captivating appeals for admiration. Such is the difierence of the state of seasons between the Eastern and Western Continents. I write tois letter in the latter part of April ; it will be read in Illioois in the latter part of May or first of June, sis weeks later; and thus, let the reader fill the picture of contrast in his mind, of what yoo are then, and what was before us six weeks pre viously; and what has been the scenery before us the whole winter long. The ground his never frozen hard enough to freeze the turoip tups, or rub the old garden crops of last fall ol the green life-like looks.

Perhaps sometime I may paint a picture of the rural scenery of England-and fill in somt of the details of fanm life, and how therdo things here. Sush a description may be inssa son at. any time.

A few words as to the present state of farm work, must suffice for this first letter.

The season has been very wet, I am told. I judge so from the fact that it has rained almost every day since the first of Decemberlast. Ont man, buasting of the geod weather of Javur, said they had fourteen fair daps in the month and that was an unparalle'led streak of god we:ther. These fair days have been so unfaitio me that I have not observed them. I redh have no distant recoilection of more than foom or five fine days, and they all occurred in Apní As the consequence of this wet, the prospect. the crops has been seriously damagrd. Ho: was pretty much stopped un land, since the fi. of Narch, to the middle of April. The whs plant is rank where the land is in a high stan now growing spmaling and turning yellow fro: excessive moisture. In consequence of th the farm interest took a panic, and the price. wheat came up, in view of the possibility of failure. But recently there has been a fark able turn, a few of the good days have cone and last Sabbath, our good minister relum devout thanks for the cessation of the rains, 2 for the sioht once more of the smiling sun. in yet, notwithstanding this apparent deloge, you may think, I have not yet seen one h. rainy day, rainng in earnest and done rith: as in Americ:-but we have an excessirely: kind of rains, which will soak everything wh. it hardly seems . 0 come down in drups.

The whole atmosphere is in a state of a pended superabundant moisture. Some ra
say, it is weeping weather. Umbrellas are alwass in order-and it is a great perplexity to know when to carry them up, or when down. it rould suit me better, if the weather was more positive, more rainy when it rains, and more fair mhen it is Sair, which is the American style. But it has just occurred to me, that the weather was not made especially on my account.
Bristol, Eugland, April $19 . \quad$ z. E.
On the Aeration of soil.
Biy M. Jeger.
3. Daniel Hooibrenk, gardener at Heitzing, marar Vienua, announced, in i859, a vew system of calcure, stated to ensure a more vigorons gronth toan can be induced by any other means. This consists in placing in the earth pipes or iif, channels pierced with holes, which permit the air to penetrate throughout the mass of poil traversed by the roots. According to the frentar of this system, its advantages are numerons and important: he points out the folloring:

1. 'the strongest clay soils,'under the influence of carrents of air transmitted through the pipes, me divided by thnusands of small fissures and bas rendered friable, so that roots can easily peererate them. The depth at which the pipes thould be laid depends on the nature and cunfilence of the soil.
2. After the soil has been aerated by means ffte air-pipes, the vegetation of plants growing nii becomes more active, especially in the cases I grain crops and vegetabl s. The roots findrg the soil in a finely d'vided state penetrate teper then usual, and are consequently safe im the viciositudes of temperature which take lise near the surface.
3. The looseness produced by the circulation if ir in the soil caases a rapid absorption of fio water, and preven:s caking of the surface. Do the other hand, duriug long-continued logght, the roots, owing to the great depth to thed they have penctrated, are not exposed to
trying eff cts of the external air, and are engled to ob'ain a supply of moisture which they Fond not do near the surface.

- The air pip?s passing through sour soil gnes the sourness to dissppear, so that where Hir bad herbage previously grew, the finer faiss can be produced. These good effects fe mor particularly observed in swampy or why ground. which may thus be changed solertile sonl.
[. The soil, being always kept porous by the Fralatiod of the air, can be more easily work; and from its openness preventing the acFolation of water, culfivation can be com exeded earlier in spriug.

6. Plants grown on soil thus improved pro-

Lea great mass of roote, and cousequently,
being very strong, they require more spaceThere is no need to sow so thickly as usual; and hence a considerab'e auring of seed is effected.
7. Manures are mach more energetic in their action in soil that is aerated in this way than in that which has not been so treated; the reason of this being, according to M. Hooibrenk, that the areated soil is more uniformly moist throughout its thickness, and that being the case the decomposition of the fertilising substance is more rapid and uniform.*

In short, the inventor of this system states that double and even triple the produce may be obtained from land so treated. This increase snon repays the expense of laying the air pipes. He also states that in the culture of the vine the ripening of the fruit is greatly accelerated, and the quality improved. Such assertions could not fail to be received with doubt by many. Careful experiments were therefore made to test their truth by Messrs. Fitchner \& Son.

The field in which these experiments were conduc'ed consists of a bed of loam or sandy clay (argilosableuse) Prom 13 to 16 inches deep, resting on a subsoil of rounded pebble-stones like those in an adjoining brook. On the other side of the field is another brook, about $6 \frac{1}{2}$ feet lower. This difference of level, taken in connection with the stony subsoil, made it donbtful at first whether the benoficial action of the air pipes woald not be owiug to their actirg as drains in carrying off surplus water. The field contained rather more than 13 acre, and bad been in cultivation since 1852, bat yielded only indifferent returns, at most about six to ove of se:d. Messrs. Fitchner placed four air pipes at the depth of 3 feet across the field. Their internal diameter was nearly $2 \frac{2}{2}$ inches. The field thus prepared was divided into a number of beds, at right angles to the direction of the air pipes, and extending to the portion of cround not furnistaed with the apparatus. Of the four pines first laid duwn, two were joined by a communication pipe, and the mouth of one of them opened uto the ash pit of a furnace, whilst the other extremity terminated in an air tank, the sides of which were of masonry.
The surface of ground furnisbed with air drainage was half an acre and 22 poles. The furnace at the ead of the pipe was intended to show that the atmospheric air could reach the fire by passing through the soil. To prove this the opening at the further extremity of the pipe was completely clnsed, and also the furnace and ash-pit drore, in such a way that no air could reach the fire to support combustion except by passing through tha soil under which the pipe leading to tbe farnace was baried. The fire, however, burupd perfeotly well throughout the day. To hurn ten pounds of word in 22 hours would require 8,000 cubic feet of air, and this would have to traverse $108,000 \mathrm{lbs}$. of soil be-
fore it could reach the furnace. A similar cir culation, though less active, mnst take place whenever there is a dfference in the temperature of the air in the drains and that of the atmosphere, and from observations that have been made it has been found that a difference of this kind takes place at least once in 24 hours.. M. Jager remarks that where-er a furnace exists, its fire may be usefully employed io fertilizing by means of air tubes, the adjoining ground; and that gardeners might thus make gond use of their hothouse farnaces fur improving borders aud other parts of their gardens.

The advantageous action of atmospheric air in passing through the soil is due to the fact of its losiay a portion of its oxygen, and thus giving rise to the formation of a larger portion of carbonic acid. To determive the changes affected in these respects, Messrs. Fichtrer have analysedthe air contained in the tubes comparatively with that of the atmosphere. They fuund, after 8^{\wedge} veral days' uninterrupted healing by the furnace, during which time the circulation through the soil had been rapid, the air in the tubce had exactly the same composition as that of the atmosphere (21 per cent. of oxygen, and 79 of nitrogen), aud contained in 10,000 parts 1280 of carbonic acid. I'wo days aiter the fire was not kept up the ar in the tubes had only 20.85 per cent. of oxygen. and contained 20.99 of car bonic acid in 1000 parts, and from four to six dyys after the fire was let out, they ionnd 20.71 of oxygen and 3572 of carbonic acid ; six or eight days after, 20.08 per cent. of oxygen, and 35.73 per LOC' J of carbonic acid. Duiring these experiments they only found 4 parts of carbonic acid in 1000 of the air in the atnosphere.

The produce of the aerated soil, even taking into account the (ffect due to the working of the soil in layin r the pipes, was cor:siderably increased curing the frst and only year in which the results are known. A particular increase was observed in the gield of sugar beet. On the estate of Totis in Hungary, where similar experiments bave been made, rerg encouraging results have been obtained. It is, honever, impossible as yet to state anything precisely re specting them, and before we can draw concluEions we must wait till the experiments which are being made shall have been carried on for a sufficient length of time.-Gardeners' Chronicle.

Warranty of Soundness in Horses.

The subject of warranty of soundness in horees is one which cannot fail to possess a peculiar interest to those of our readers who, either as'agriculturists or sportsmen, are omongst the lovers of horse flesh. The manner in which horse dicctors differ on the important matter of sonndness is illustrated at nearly every trial in which the question is involved, and is perhaps
as high an example as can be addaced of the a. satisfactory nature of professional evidence-cot less strikiug even than that of the mad decton themsalves in the celebrated Windbam lonufcase. Mr. Litt, veterinary surgeon, has addras ed to the editor of the Edinburgh Velerinary Review a long letter on the subject, in which he advccates with considerable boldn. ss and spint, as the only satisfactory solation of the dificicoly, the entire abolition of the law of warranty. Vie give a few extracts :-
"A rather large experier.ce of more thas trenty years, during which I have had sume oot onfavourable opportunities for observation, hal led to the conclusion that, 80 loog as the preetit most absurd law and custom of warranty erich so long will the evils that arise from them-lte expensive law-suits, the contradictory profer sioual swaring, and the injury and diggas ahich necessarily fullow-continue to exisis bas The great aim, then, it appears to me, of erers body who takes an interest in horse-fl:sb-lat ers excepted, of course-uught to be to sethto bring about the abolition of the law of warraty alogether. Everything that leads in this dirce. tion may be recognised as wise and servicable; and I beieve the effect of a thorough irging into the various bearings of the sabject can scarcely fail to point to this conclusion. Not that I conceive any attempt to amend the larir the operation of the law as it etands much lam than Quixotic, but simply because I coraik that the more it is investigated, the more cleurg will its injustice and its absurdity be made man app: re.it. Shıw how ibjurious is the lario self, and how anwise the custcm of warrati, and something may probably be done tomm the:r abolition; for it is in this alone, accordh, to my view of the case, that we can reasonda. look for acy very mauifest advantage to an I feel assured that no man baving givena ${ }^{2}$ ranty is safe from injurs. He has nade binz :mtnable to a law, of all laws the most absa. and most unsatisfactory, and be has no right. be surprised if be should chance to reap the a ural fruit of such a course. A very worthy man wh m I knew well some y a ars since, a farmat and at one time a large breeder of horsea, rode stood these things so well, that when he soid high-priced horse with a warranty be almass 4 . the morey in the bank, and allowedit to rtm: six months without reckoning it to his secoll If, at the expiration of that time, lio beard: complaint of the animal, be then coneidered hi self at liberty to make use of the mones, bat. sooner. By this means, and by matiog it rale to request the immediale return of : horse that had been warrauted by him, of rim the slightest complaint was made, he man to steer prett: clear of the law ; and though.: was once exposed to some annogance aod: position, I am enclined to thiuk this plan wis wise one, and I recommend all who can find
order the like circumstance, to follow his example. The proverbial uncertainity of the law has uqquestionably its highest illustrations in what are called horse causes. Looking back to my own observation and experience of such cases and speaking necessarily with a peculiar toorledge of their merts, I have no hesitation is sajivg that the verdicts have been quite as ofien on the side of wrong as on that of right, :and that, therefore, the law itself is as frequentIs in its operation, productive of serious injury as of ressonable justice. This is no extravagant asiertion, but a deliberate conviction at which I bare heen compelled to arrive on a mature consideration of facts. What is more, I almays endearour to force it on any one who may happen to consult me on a question of disputed sonoiness, and I am enclined to think not without effect; for, though I no - examine more lonses than I ever did, I have not been enguged las case of this kind in any court of law for more ban a twelve month. To feel that one is in the ingt is duubtless a very noble and very dignified ennation to entertain at any time; but woe the to the man who is Coolish enough to fancy that in an action at law, and when the dispute is bont the soundness of a horse, the question of (ight is likely to have the slightest weight in Whe deciso". I believe he can nurse no greater palarion. For this is undeniable that the law fletf is mainly to blame. All defuitions of legal unsoundness are vague and imperfect, and doit of endless quibbling and dispute. Vekniary surgeons may differ in opinion; but fhat then? The authority of all the veterinary megeons in the world will not weigh a single main in the balance against the dictum of some 3mons lawyer, who whatever might have been解 atninments in other respect:, could have Enoma ahsolutely nothing about the diseases of barse."
Mr. Litt then goes on to illustrate bis position ps some cases in point, which whll be better ederstond by professional than general readers. De of these is as follows:-
"Or take another instance-one of the last Sess of the kind with which I have had anytingto do. Some of the readers of the Review "Il perhaps remember it as that of Drury v. foprood. It was tried in London in 1860 , cdmay be briefly expleined as involving the quch-resed question of spavin or no spavin. Thaplaintiff purchased two horses in Liverpool, Fattook them afterwards to London, where he * them a few weeks without any particular smiz of complaint. Being desirous of parting ith them, however, they were offered to a deal. F Tho agreed to purchose them at a given fixe il Mr. Mavor passed them as sound. They Fre accordingly exumined by Mr. Mavor, who chared them both to be spavined and lame, Whey mere, in consequence, returned to lierpoul. Here they were submitted by the
defendant to the examination of some of the highest veterinary authorities in the place-of Mr. Ellis, Mr. Lucas, and Mr. Bretherton, all of whom were of opinion that they were altogether free from any appearance of spavin, and that they were quite sound. Fornfied by such opinions as these, the defendant refased to take the horses back, and they were again sent to London. In corroboration of Mr. Mavor's opinion, those of Mr. Field, Mr, Spooner, and Mr. Varnell were also obtained by the plaintiff, and the horses were sold at Tattersali's, and bought back by an agent of the deiendant. Shortly afterwards they were again sold, but at different times and to different persons, and each at the time of sale examined by a veterinary sargeon, the one by Mr. Payne, of Market Drayton, the other by Mr. Kettle, of the same place, neither of whom, I believe, knew anytbing of the history of the animale, but both of whom failed to detect any appearance of spavin. Some time afterwards, and shortly before the trial, they were examined also by me, and I may here say emphatically, for myself, that, in wy opinion, the hocks of both these horses were perfectly free from any appearance of spavin or any trace of disease of any bind. At the time of trial, one of the horses, then the property of a gentleman of higu position in Staffordshire, to whom he had been sold, it may be mentioned, for a larger sum than that given for him originally by the plaivtiff, was brought to London, and the coachmon who drove him gave evidence to the fact of the horse having been regularly ased in his master's carriage, and of his perfect freed.m from all sign of lameness. The animal was also brought up for the inspection of the jury themselves. I need not say that the evidence was of the most contradictory character-Mavor, Field, Spooner, and Varnell, on the one side, and Ellis, Lucas, Bretherton, Payne, Kettle, and other less important witnesses, on the other side. Nothing reflecting more seriuasly on the character of prôessional evidence can possibly be conceived. The judge-Mr. Justice Jurle-summed up ra'ber, I think, in favor of the defendant; for be remarked somewhat pertinently that as the 'lorses had, since they left the plaintiff's possession, been sold for more than be had given for them in the first place, and were shown to be still worth the movey, although they had nevir been subjected to any veterinary treatment, he (the plaintiff) who was suing for dam:ages had suffered no damage, except by his own act of parting with the horses in the particular manner be bad done. The jury were locked up a considerable time, but eventually found a verdict for the plaintiff. I must resist any temptation to comment at much length on this case, excepting in so far as it illastrates the absurdity of the law itself. Where such authorities as these differ in professional opinion could any jury-it may be, of twelve men, not one, of
whom, perbaps, was ever on horseback in his life-be expected to deal out justice ? Is justice in such a case not a mere matter of chance, or, perhaps, rather matter of locality? A London jury naturally attaches more weight to the opinions of men like the professors of the London College and Messrs. Field and Mavor. A jury in L: verpool, or, perhaps, in the provinces, would, I think, have found a different verdict on the same evideace. You yourself may probably think that the weight of authority leans to the witness for the plaintiff; whilst I, on the other hand, may value the sound practical knowledge and varied experience of those of the defendant considerably the highest. "Who shall decide when doctors disagree ?" What amount of reasoning can remove the evils, of which this ease is only a sample; for many others, quite as bad, may be quoted ? I think it must be admitted on all hands that the case is hcpeless. The limb (of the law) is terribly, incurably diseased, and there is no remedy excepting in ampaiation. Try to get rid of it altogether."

The effect of such occurrences ass thest it will easily be seen must to some extent operate injariously on the production or first-class horses The burnt child dreads the fire, and the breeder who has once found himself involved in a horse case will very likely turn his attention in fature to stock of a less hazardous description. Mr. Litt does not forget to notice this fact :-
"All this is bad enough, but worse remains to be told. The greatest of all the evils that spring from this condition of the law is uncoubtedly the effect produced on the breeding and rearing of first class horses generally. It is not too mach to say that many of the largest and best breeders of such animals have been de ared by it from this most important pursuit. I speak only of circumstances witnin my own knowledge, when I say that it is not easy to estimate the iujurious influence of the law of warranty in this direction. Of all the causes that have tended of late years to bring about the scarcity c.f halfbred horses of the highest quality-for, I think, the fact of this increased and still increasing scarcity will bardiy be denied-this is cettainly one of the most potent, and it demands, therefore, a more serious consideration, on this account alnue, than has hitherto been accorded to it. And, for all this evil to individuals and to the community, what is there in the law of warranty really of compensatory good? Fou nint that it is chiefly of advantage to the dealer, as affording hian too many pretexts for fraudalent attempts to obtain back a portion of the purchase money, and I have myself known more than one instance of the character you relate. There can be no doubt that it does very often serve the parpose of enabling-not dealers only-but many o.her persons besides-to repadiate a hargain which they have begun to repent. It is idle to speak of it, therefore, as a protection
to the publie; for it is the very reverse. They require no such protection. It is sufficiont foe the law to protect the public against fraud, add men ought to buy horses as they buy olbes things. If they have not sufficient confidens in their own knowledge of an urticle they wish to purchase, they ask the opinion, and are guided oy the advice, of some one pecaliarly qualifed to judge of such matters. In the matter of hiorse-flesh here is a profession, whose inemben have made this qualifieation almost a special branch of study. Against false and frandulent representations on the part of the vendor, be be who he may, let the law be as stringent as yos like; but uutil it ceases to recognize that mos. ctievous thing called a warranty of soundnees, 1 fear there can little goo 1 be effected. With these sentiments it will be seen I am not of opinion that it is very important to discuss be question of what ought or ought not to beco. sidered unsoundness in a strictly legal sense. i have had some experience in horse causte, aud I have never found much weight attached to ret. erinary opinions on this subject. As a genend rule, I have found that everything of the char. acter of disease; no matter bow elight or insif. nificant, has been held to be an uusoundnof ond that to be compelled to admit the slightest deviation from a perfect normal structare od parts was always fatal to any attempt to estab lish the soundness of an animal."

With such a condition of the law, it is mo wonder if ofien un underrved amount of odiumis made to rest on the shoulders of the examina. Some of our friends may feel interested to boor what one so well quaiitied to speak as Mr. Litt has to say or this part of the subject:-
"It often happens, however, that the vele. inary surgeon-and this is a point that is eqpe cially wor hy of mention-fuels bimself com. pelled, by the absuid state of the law, to gin certificates of unsoundness in cases of ailmen, of so light a cbaracter that even be bime scarcely thinks them merited. I was request. a few days ayo, for example, to examine, ath purchase, a valuable horse, bought by a ga tleman in the country for a friend in Looda. There was, in the inver surface of the bead oue of the large metatarsal bones a slight exa osis, quite insulated, as it were, aod ieeming. uncounected with the hock joint. He was in lane in the slightest, nor likely to be from sith a cause. It was the most insiguticant thi. possible to the eye, and my gencral raie, in sa cases, is to point the thing out to the parchat. and advise him to take a special warraty; connection with it for a given lime. Ba howerer, I had no such privilese. In. simply asked to give a certificate, andiI bad. resource but to say "Unsoundpess from bu spavin; for, had I refused to do tbis, it. probability somebods would have done it wa the horse got to London, and the consquen
of my refasal might have been a job for the laspers. If our employers insist, therefore, apon ab absolute yes or no to the question, 'Is my borse s und in point of law as well as in fact? it is best for all parties that we should say no at once, if there is the very least deviation from a beallity condition ; for we can do no greater mrong th. n to lead them into law. There was atime when I was inclined to stand more firmly by my own views of soundness, in opposition to what I considered unjust and empirical dogmas; bus I have had reason to think differently. My opinien that a slightly ragged condition of the frogs, in the hind feet of a mare, was not sufficient cause of unsoundness, on one occasion indoced the gentleman who had sold her to defend an action that looked like a mere attempt to repa:iate a bargain. The mare had never been lame-at the time of the trial her frogs mare sound and firm, altbough they had undergone oo treatment, beyond being kept dry, and a mitie ragged horn cut awas-and my views mere supported by several veterinary surgeons of consideralle standing; bat the authority of IIr. Buron Parke on the subject of thrush was to much for us. Since then I have been especially careful not to differ from such very practicalgentlemen as those barons of the luw, where there is any danger of a collision, although at other times I prefer to exercise my own opinion, nith, I think, rather more of justice to all who may hapnen to be concerned."
The able editor of the Ieterinary Review fally end rses Mr. Litt's views. The old Roman law which is still in vogue over the dominfins of our mnst gracious Queen, be reminds us, thaberen gradually abandoned over the continfo of Eurnpe. The French law, for exaniple, fregirds all palpable defects as necessarily to be㻣 by the buyer ; but if intermitlent diseases medicovered, which could not have been cлwred at the time of the contract being closed, He brre can bs returned. This reduces the caie of breach of warranty to a very few, which refrather to positive frauds than to anythag tise. "In draving attention," it is added, "to IV. Litt's excellent communication, we wish to apress a decided conviction that, as the law ot mananty stands, no gentleman can submit to Ho oncertainties and injustices. in signing a fad a parsnn is supposed to anderstand thor (agiby the purport of its contents; but if a con that regarding a horse pronounced sound is giged, it is impossible for not-professional men, ctiofien difficult for a veterinarian, to know if Lis subseribing his name to that which may sadd the trst of a searching enquiry. Admitfor that horses should be purchased with the dranatage of mature judgment to assist ibe friditiated, and that a warranty of soundness pasnot be relied on, we think it is perfectly proper to retain the law of warranty as far as fiti is concerned. Agreeing, therefore, that
the rale caveat emplor should be respected, there are many defects such as gibbing. shying, kicking, crib-biting, vicious to shoe or to clean, running away, \&c., which might be provided against by warranty, just as much as coloured goods may be warranted fast-coloured. As the opportunities of testing for such vices are very limited in buying, it is expedient to protect the purchaser, at all events until he can have had ample means of tral. There can be few who look upon the warranty of horses as at all advisable or satisfactory; and as the law is certainly very defective, angendment, if not complete demolition, should be insisted upon. It is well known that horse-breeding is rendered so precarious by the practice of warranty as to deter persons from rearing colts. Mr. Litt specially refers to this; and we think our keen sportsmen, who pay so dearly for weight-carryiag bunters, and agriculturists, who might profit largely by a safe trade in horses, should lend a helping hand, and insist on better legislation of the subject under notice. If we ask veterinarians to take up the subject warmly we mast also instruct the public, and it is to be hoped that the agricultural and sporting press may assist us in fruming a new system, as favourable to the farmer as it would be to the pablic at large.-Murk Lane Express.

Cultivation of the White Bean.

For years we have earnestly advocated the more exteusive cultivation of the white bean as a field crcp on American Farms.
lise great need of American agriculture is a good "fallow crop"-some plant thit will stand our hot. dry summers, enrich the soil, and allow the use of the horse hoe to clean the land daring its growth. A plant, in short, that shall occapy the same place in our rotation as the turnip does in English agriculture.

The white bean comes nearer to this than any other plant yet introduced. If the beans are consumed on the farm-as turnips always are in Euglaud-their cultivation would add materially to its fertility. There can be no doubt on this point. Al the leguminous plants-including clover, peas. vetches, beana, etc.-contain large quantities of nitrogen, and this when consumed by animals or plowed under, is converted into ammonia-the very thing which we must need for the growth of the cereals.
Let us then grow beans. No crop will pay better. When prices are good, as at present they can be sold; and if prices fall, they can be fed out on the farm with advantage.

In regard to their cultivation we bave written so mach in provious volumes that little need be added at this time. They are generally grown on warm, light siil, but will sacceed on almost any soil if properly cultivated. For this, as for
all other crops, the land should be well underdrained, either naturally or artificially. The land may be plowed in the fall and again in the spring, and made clean and mellow before planting; or a clover sod may be turned over, and the beans planted at once. The common "white medium" is generally considered the most productive variety, but the White Mountain or Marrow yields nearly or quite as well, and brings a better price. It is a little larger, rounder, plamper and handsomer, and is gaining in popular esteem.

They may be planted in hilly 22 feet apart, and 15 to 18 inches apart in the rows, dropping five to six beaus in each hill; or they may be drilled in with a machine, in rows $2 \frac{1}{2}$ feet apart, and a single bean 2 inches apart in the rows. The latter, perbaps gives the larger crop, but the former requires less labour in hooing, etc. In this section they are usually pianted the first week in Jane.-Genesee Farmer:

Benefit of Hogs among Fruit Trees,

The principal object I had in baping the farm I now live, on was the fine orchards of fruit. They were then in a very thirifty condition, loaded year after year, with large crops of fruit; but when we came to picking and packing, we were obliged to throw out large portions of them on account of the worm holes and curculio stings with which they were more or less affected, rendering them unsaleable and fit only for eder.
The lower orchard, (the orchards are divided by a public highway,) I have for several years past used as a hog pasture, with very satisfactory results. The apples which were heretofore wormy and kuotty, are now as fair, smooth, and free from blemish, as one would wish to see. I allow my hogs and pigs, (the more the better,) free access to the orchards the year round, except a few days in October, while gathering and packing the apples. It is seldom apples fall before they are ripe unless something ails them, and that something is usually an apple worm or a curculio, and as the pigs are not very particular about their diet, all' goes down with a relish, thereby destroying millions of troublesome insects which could not otherwise be got rid of.

The hogs kept the orchard thoroughly plowed and manared without any assistance from me; kept down the grass and weeds, rendering he orchard much thrifter than could be done with broadcast cultivation, as the hogs do not distarb the raots, but a plow would, besides the inconvenience of working among trees, where you are liable to do mrre harm than good.

My upper orchard I am obliged to mow, and one would be astonished at the comparative quantity and quality of the fruit in the two orchards. The diffrence in quantity is as six to one, and the quality 100 per cent.

The pear and cherry trees enclosed ion orchard in which the hogs ran, are loaded ener year with crops of fruit which would maker amateur's mouth water-while on tres o the same varieties just across the mat can only be found knotty, wormy, unpalatiol specimens. Now I can no more afford to E withont hogs in my orchard, than I can affr to be without fruit ; for without one $I_{\text {sto }}{ }^{-1}$ be almost certain to be deprived of the otter and by adopting this course I seldom falle having a good crop, and never fail of findity ready sale at remunerative prices, even ne there is a large crop.

If any of the readers of your excellent joons are skeptical on this point, lei them try itfal term of years, and I believe their skepticism re vanish sith the increase in their crops.

Oswego, N Y.-Country Gentleman.

Agricultural $\mathfrak{I n t e l l i g n a c e . ~}$

Spring and Summer Horticultural and other Shows.

Hamilton Horticultural Society, lst Sk Nay 24
Niarara Electoral Division Society, at Niaga Jnne 27th.
Kingston Electoral Division Society, Ho cultural Show, at Kingston, July 2nd.

Provincial and State Shorrs, 1802
Cpper Canada, at Toronto, Seytemjere2: -26 th.
Lower Canada, at Sherbrooke, 17th, 18 19th September.
New York State, at Rcchester, Septen 30 to October 3rd.
Illinois State, at Peoria, Sept. 29 to oct.
Stoor for Canada.-The Helen Dougl of Annan, Capt. Maxwell, sailed from it Water-foot for Quebec, on Monday last and on board the following stock, which has t purchased in this country hy Mr. Simon Beat of Markham, C. W., a native of this place: entire thorough.bred horse, called Young Bird-catcher, late The Heir, by Grey Plorer, of Irish Bird-catcher-dam by Caronna, of Repartee ; two Short-Horn heifers, and tro calves, purchased from a good stock near mahagow; 40 Leicester and Lincolnshiresh selected from one of the best flocks in Lind shire ; two sows and one boar from Yoristbry and poultry, dogs, \&c. The horse mas chased by Mr. Jeattie in Ireland,--Na" (Scotland) Observer.

Coupratitive Valde of Oats and Roots. Foor and two-thirds pounds of oats are estiated by analysis to contain a little over one bond of Flesh, muscle and fat forming princi wos to equal that it will take, of carrots, essly nine lbs.; of Aberdeen turnips, near fenty 1 bs; and of Swedish turnips, near seve $\mu-$ reny younds. It will be seen that the difference greatly in favor of oats.

figorticultural.

The Early Short Horn Carrot.

The early horn carrot is the principal kind dby gardeners on both sides of the Atlantic rearly crops; and it is considered the best nity for table use. It possesses a very fine roor, and commands a ready sale in market. should be sown early, but we have seen good ys of it produced in Canada in backward sons like the present, when sown as late as midde of May. The above cut will afford idea of the general appearance of this valuasesculent. Por later crops the Altringham and long nope varieties are commonly cultivated; they fod a hearier produce, but are not equal in
firmness of texture and delicacy of flavour to the early horn. Of late gears other varieties of early carrots specially adapted to table use have been introduced, but the early horn continues to maintain the precedence. The short yellow, obtained from seed by Mr Vilmorin of Paris, has in Europe a good reputatiou, and the violet of that seedsman is sad to be a large and exceedingly sweet variety, sent to him from Spain.

The long red is usually faised by farmers for feeding stock; but the white or Belgran carrot is now generally cultivated in fields for agricaltural purposes, and, when properly managed, yields very heavy crops. Fur horses in particular, the carrot is excellent.

Carrots of all varicties are easily raised in Canada; they thrive best on a light, rich loam, which should be deeply cultivated; and if farm yard manure is used it should be well decomposed and thoroughly incorporated with the whole of the active soil. The seeds have num erous forked hairs on their borders, by which they adhere together, and therefore shouid, previously to sowing, be rubbed between the hands, and mixed with dry sand in order to separate them as much us possible. The seed being exceedingly light should be sown only in calm weather, carefu!ly covered by the rake, and the surfac compressed by a light roller. It is expedient often to test the vitality of the seed previous to sowing, by mixing it with fine sand in a heap, occasionally watermg it for two or three weeks; this, however; should be done very early in the season, that germination may only be slightly advanced before finally committing the seed to the earth, otherwise the plant would be weakened. For a bed $4 \frac{1}{2}$ feet by 30 feet, one ounce will be requisite, and the same for 150 feet of drill or row.

Grafting Fruit Trees.

An excellent little work on the "Science and Practice of Gurdening," has just appeared in England from the able pen of Geo. W. Johnson, Esq., one of the highest authorities in Europe on Horticulture. The following is a portion of the author's observations on grafting. We slall again refer to this very useful manual:-
peared in England from the able pen of Geo. W. Johnson, Esq., one of the highest authorities in Europe on Horticulture. The following is a portion of the author's observations on grafting. We shall again refer to this very useful manual :-
for in such case the Green Gage would be sltered by its Plum stock, and the Nonpareil by its Crab stem. So far from this beng the case, the old gardener's maxim - 'The graft overrulcth the stock quite,' in consonant with truth, though it is to be taken with some re servation. The graft prevails and retains its qualities, yet the stock has the power of influencing its product "eness as well as the quality of the fruit. 'ilhus, a tree having an expansive foliage and robust growth, indicative of large sap ressels and vigorous circulation, should never be grafted upon a stock oppositely charaterised, for the supply of sap will not he sufficient: illustrations are afforded by the Codlin never succeeding so well on a Crab, nor a Bigarreau on ai wild Cherry, as they do on freer-growing stocks. Indeed, we have no doubt that every tree and shrub succeeds best, is most productive, and most free from disease, if it be supplied with sap from roots and through a stem of its own peculiar kind. This is evident to common sense; nor would any scion be grafted upon a stock of another species or variety, if it were not that such stocks are most easily obtainable, or for producing some alteration in the habit of the plant, or to fit it for some particular soil.For example, our choicest Cherries are grafted or budded upon the wild Cherry only because of its being easily obtained; and cvery one must have noticed the frequently occurring consequence, an enlargement, appearing like a wen, encircling the tree just above where the graft and the stock joined-the growth of the former having far outstripped that of the latter. But the stock has some other influence over the sap, hesirles limiting the quantity of sap supplied to the scion, an infiuence not only arising from the size of its vessels, but fromits susceptibility to heat. It has a further influence over the scion hy the sap becoming more rich, indicated by its acquiring a greater specific gravity in some stocks than in others, during its upward progress. The specitic gravity of the sap of a Black Cluster Vine stock on which a Black Hamburgh had been grafted was, when obtained six inches from the ground, 1.003, and at five feet from the ground 1.006 ; but the same Black Hamburgh, growing upon its own roots, had specific gravities at corresponding heights of 1.004 and 1.' 09 . This increase is of great importance to a tree's growth when the quantity of sap passing annually through its vessels is considered. The
exact amount of this it is perhaps imposit to discover, bat its extent may be apprecist by the quantity of moisture their roots id known to imbibe, and by the facts that small Vine-branch has poured out 16 ousd sap in twenty-four hours; a Birch treeaqu tity equal to its own weight during the blow ing scason; and a moderate-sized IIapleate 200 pints during the same period."

Culture of.Melons.

It is a great object to get melons eart This cool, richest and most lunciolls of $\$$ herbaceous fruits, to be fully apprecias should be eaten in the hot weather of J et August and early September. They mas started in the hot-hed, provided some mes be contrived by which they may he lifed and transplanted to open ground withoutid turbing the roots. Some plant over a p of turf in the hot-bed, which may be cant with the plants to the open ground; othe in small cpen baskets, which may be set mil the plants in the hill, the roots being ate push through the interstices in the bask and others again in a shell made bresern ing a large turnip, which soon rots in i ground or may be removed after the ${ }^{1 / 2}$ are carried to the hill. In this climate, be ever, it is casy, with a little care, to raisen ons sufficiently early in the open ground

A light, rich, sandy soil should be selate In the lack of such a soil, it will be mell supply a bushel or two of sand to cach 5 The soil should be decply dug, thorong pulverized and enriched. A little findry verized chicken or pigeon manure mis with the soil of each hill, will be fond excellent stimulant. A frame, a fer iad high, around each hill, may be coreted m. glass or mosquito netting, and will be agt protection to the plants from cold niv: frost, or the striped bugs. Eight intens; should be planted in each hill, and attert are safe from insects, should be thinned to two or threc.

The greatest difficulty in point of sury in melon raising, is in obtaining and prad ing the seed pure. The varieties of then on readily mix with each other, and if save your own seed, without great care, will soon have no good melons.

The fruit, the first year will not st the mixture ; the second year it will beq apparent, and the third year may le med less. To preserve the seed pure, it is nof to plant nearer than ten rods of any ray with which they can mix. When yon planted a good variety where it is safe 4 admixture, save seed cnough to last years. Melon seed improves with age ${ }^{4}$ five or six years.-Valley Farmer.

The 讯aire.

From the Ohio Farmer.

How to make Cheese.

Lare been a cheese-maker for fifteen years, I thought that at the opening of this year I Hgive the readers of the Ohio Farmer the kit of my experience in cheese-making. fint thing necessary to success in cheesefog is

A Good Grass Farm,

tere timothy, red-top, clover, and other tame tee abound, instead of the harsh, coarse, grisses. These latter will not yield the fity nor quality of milk that dairymen want. this is well settled and admitted.

Good Cheèse Houses.

fter the grass and comfortable houses for 1 and tenants, come convenient and comable cheese-houses for making and curing the se. These save much unnecessary labor.

Good Cows.

bere cannot be too much care in selecting for the dary, as one good cow is worth poor ones.

Milking.

lmost every one can milk, yet there is no of cheese-making done with less care and fation than this, nor is there any part which ht to be done with greater care and precision milking. It is usually done (in this counin a muddy yard, and at very irregular pes; sometimes before light in the morning; etimes after dark at n.ght; sometimes at 9 fock in the morning, or 4 in the afternoon; taimes by one milker and then by another; , in my judgment is all wrong. The cows Ho driven to the barn at regular hours, bing and evening; they should ail be put the stables and milked by the same person time; don't change milkers, but have dy milkers for the same cows. A cow fint ouly be milked by the same person, at the same hour, but she shuuld be milked esame time. In order to do this. there dia no noise, or talk, or play, anong the ters. I cannot urge this caution too strongly fonit depend the profits of cheese-making.
blang should Cows be kept from pasture. (ta rerer one and a -half to two hours. Most time is necessarily consumed in driving plfom the pasture, and in milking. Thus fitre to fuur hours each day of the cow's tine for grazing is used up. The rule is, da expeditious as possible; upon it de sitbe suceess of cheese-making.

Scrupulous Cleanliness.

folld be observed in everything about the
dairy-house, mill-pails, place of straining milk, whether in the vat or elsewhere. All dirt, mud or standing water around or neal the place of making cheese should be removed, and none permitted to stay in the presence or uzar the place of keeping milk or making cheese. There is not known to me any production, animal or vegetable, so sensible to impressions from surrounding circumstances as milk, cream, and butter; hence arises the necessity of keeping everything around the dairy as sweet and clean as possible. No person whe lies in bed until his evenin ${ }^{\circ}$ milk souls, or who is not careful about his milk, can possibly make cheese of the first quality. Very much more ought to be said upon this part of the subject, and very much more attentiou ought to be given to it by nearly every one of our dairymen. Next in order comes

Preparing milk to receive the Rennet.

This is done in ways almost withont number, with very nearly the same result. All kinds of vats are used, like all kinds of cookng-stoves and mowing machunes, every one thinking his own the best. I have alwars used the one made by Jumeston \& Co., of Warren, Trumbull counts, Ohio, and like it very well, (perhaps it is not the best.) We strain our evening's milk into this vat, and manage, by using cold water, to extract the animal heat from the milk as soon as possible, in order to have it retain its sweetness until morning and to obstruct the rising of the cieam. In the morning, what cream does rise is removed, and the morning's strained into the vat with the evening's mils, which cools the whole together, wien a fire is started in the furnace of the vat, and by heating the water, all the milk is heated together to 84 deg., when a sufficient quantity of the rennet, with just enough good, nice coloring is added, to turn the milk to a firm curd, and give it a shade as near tine culor of butter as possible.I should have said, that in the cheese making season we do not make any butter; therefore the cream taken of in the morning, as mentioned above, is heated to 120 deg. Farh., and turned back into milk at the time of putting in the rennet, and all stirred together. This is left to stand from thisty to forty minules, or until all has thickened to a firm curd. One word

About the Rennet.

The Rennet should be well prepared. and great care should be taken to preserve it and keep it sweet. I an very certain that rennet changed, tainted, or in the least sour, is very injurous to cheese.

Management of the Curd.

When the milk has hardened, (as above described,) I take a curd knife composed of five blades, known as D. G. Young's curd kmife, (whick I am sorrs to say is not in general use in this couatry,) using it as directed by him, which is, to hold the knife upright, drawing
it forward and back carefully, until the curd is cut into blocks of about one-half inch suuare. Start the fire slowly in the forenoon. Let it stand ten or fifteen minutes, then use the kuife again very carefully, so as not to start otf the cream, or as the common saying is not to start the white whey. Great care should be taken not to mash the curd, so as to make the whey come from the cheese, as this is the cream; therefore, the best of milk. It is thus corefully worked and carefully heated until all comes to 92 or 94 derates of heat, when the fire is put out and the heatin' prucess stopped, and we call it scalded sufficieatly for any cheese in any time of ycar, if cut to tine as it should be, and worked in a proper manner. I use the curd-knife until curd is as tine as desirable, which should not be lariger than peas. The curd is then left to cool, still stirring it to hasten the cooling. When thoroughly cooled, the curd is put to press.

The Press.

A good press is indispensible to good cheesemaking, and presses are like many other patents, very numerous. But, in my opinion, a press should be able to press at least two thousand pounds, especially fur a large cheese. A cheese must be well pressed, and still not pressed so as to make it salvy, which is sometimes the case, and very much injures the cheese.

How to Press.

We always press a cheese two days. It is left in the press one day without being disturbed. When my next day's cheese is in the press, I then turn my cheese, made the day before, into a clean, swect strainer, and it is pressed with nearly or quite double the pressure of the first day. When I desire a cheese of frum eighty to one hundred putuds weight, I apply seven hundred and fifty or eisl.t hundred puunds pres sure the first ais, and about fifteen or sixteen hundred the second day.

Capping and Dressing.

When the checse is taken from the press, it is imm diately dressed in a shirt of cotton-thin cotton called cappin; or sacking. made for this purpose. We cap them all over, especially our heavy cheese; they are then scalded over with boiling water t, make the sack adbere elosely to the cheese; we press lightly under the press for a few minutes, when it is talen to the dairyroom and left without greasing for eight or ten days, that it may dry, and the gas which it still contains may escape. There is then a coat of warm orease lut on it to prevent its molding, (it should then be turned daily befure greasing.) It should then be placed on a cleau, dry shelf or table, and turned every day until well cured.

Dairy.Room Ventilated.

The dairy-room should be well ventllated,
airy, light dry room, in order to cure chese it should be. Notwithstanding, many of dairy-men, and even in some sections of En? dairy-men say tne room should be kept cloys dark. This appears to me to be an-natund almost everything requires air and light ino to have beauty and perfection.

I have made chetse nearly for fifteen fea and have never found it a difficult matter sell cheese made and cured as above, atura highest market price. Sixty cows hare b our number for three years past. It is a boast, but it is said by cheese-buyers that : my cheese, last seasom, the highest ut any in this country.-Silas N.JJones, North Bh field, Turmbull Co., O.

Domestic.

Packing Eggs for Long Journeys

The only safe way of packing egrg is-1st Get a large hamper or box-put on the direced card before packing-make holes for seren the lid on; let there be no hammer weed, only screws and screw-driver. 2nd. Procer box or hamper of such capacty that, placed inside, you will have three or fort iod space each way. Get some hay, which puld pieces, separating to some extens, then alor old newspapeas, cut up into lentths. Tot ceed (we suppose you have got the ems each into the paper, twisting the end of paper sideways like a lady's cnrl wrat tup a ordinary curling-paper, thus : este, thin downward; paper; place some hay in the then a layer of egess in paper, then laf, wid on until the box is full ; screw the lidur, some hay in a box, then in auother box, and round, and at top, and fasten down. If serf such as are used for star-rods, were fastered to the four corners of the smaller box, andit a string tied from them to the four cones the other box, all might be safer; alsu, if large bux, when filled, wees swarr in ibe on board ship; but I du nut think this isd lutely necessiar', though advisable. The utif) of using the paper is, it keeps oof dust, and the euds acts as springs, as dues ${ }^{3}$ the hay. Bran aud corn are bad, as thea much dust in both, and fresh air is hept a from the eggs; but the greatest fautit i, and the eggs pack into so sulid a mass tatitis is not enough elasticity, and the conserpereng the constaut jars, so to speak, break the dedig membrane suspending the yoke in the subly, the egs is "killed." Perlaps the folloring t, may be of use in the matter of packiageters long distances: the Dutch pack the plorertse for the English markets in strong wooden bid with the husks of buckwheat, and reesed have mnch breakage after the roughestpass

Abstract

woghandling in transmissiun. They begin Wveiab the bottom of the box with a thick wi. hisks, and so on till the box is

quire a vast amount of labor, a vast quantity of food, and any quantity of noise-giving fresh food for ooly a short time and sait food fur the balance of the year-and the stuck not left whole to start on agaiu, as in the case of poultry. The product in eggs was more than 6,925, perhaps over 7,000, as I detected a boy that had access to the hen-honse for some time, in stealing them. The number named was ac:u.ully collected. My stock is principally Leghorn; and it now costs $\$ 3$ per month to feed 75 head. As some may desire to know how, the hens are managed, I send a brief description.
"The Hex-House.-Mine is alean to-T0s16 feet-10 feet on the rear and 8 feet front, facing the eourh. A barn stands on the east and a shed on the west end, with a glass front, for a shelter and a feeding place in cold and wet weather. The roo's of both project three or four feet, which keeps the ground dry in front and about the entrance. The back and front of the honse are lioed or double boarded, and the front has three glazed sashes-furnished with i side shutters - a ventilator 16 inches square is placed in the roof with a valve hung at the bottom, to close more or less, as may be required, in cold and stormy weather.
"Roosrs-1 frame is made and hurg to the rear of the house, which can be set at any desired i.sclination; the ruos's are placed leagthwise on the frume, ladder-Hke, about is iucbes apart. As all fupls seek the bighest roosts these are filled first, and others in saccession. This brings them cluse togetber in cold we.ther. In warm weather the frame mast be levelled to make them scatter on all the r ,usts and keep as cool as possibl:-The floor b i.ig conerted, it is eaqy to clean, keeps out rats and makes it dry. Under the rossis I place fine chareoal [a poor plan to use charcoal-Em.] or dry earth, or muck to absorb the droopings; a fex shovelfulls added each day keeps the hoase free from any bad odor. The rest of the flour stould be covered with sawdast, dry eartb, chaff or cut straw, for in cold weather, hens like to keep their feet dry and warm. Neither coal nor ashes should be put in the hoase, as they act on the manare and decompise the unic acid, thus wastiog the ammonia, and making the house offensive.
"For Nests - Use butter or lard tabs (which can be had at the grucer's fur sis cents each) set on shelves at the eads of the house, one or two feet from the floor-portable nests (with glass eggs) are best--They should be often cleaned and supplied with fresh straw or hay. The grease on the tubs is a remedy against lice. Greasing the roosts at all the places where they touch :he frame, and in fact, the inside of the. honse and roos's, with any kind of s.fic grease or fish oil is certain to destroy them, as they cannot live a moment in grease. A paint brasi or

White wash brash can be used for applying the grease, which should be done early in the spring, and aguin in summer, if it appears to be required.
"Mode of Feedina.-I give only sound grain; no other should be used. A variety is not objectionable. My standing dish is wheat screenings; this is always by them in a box slatted up at the sides for the purpose as a feeding box. In winter scalded corn meal or ground corn and oats is given to them cold in the morning; but the main food must be hard grains. They most be well supplied with finely cracked oyster shells, gravel and mortar, and green food in wiater. Mice corsume two or three heads of cabbage. They get bread scraps from the tab e_{0} soup, meat, etc. In summer, gracs, lettuce and cabbage are furnished daily in adunda"c.-they will consume a great quantity.
"Yard Room.-The perm?nent yard is 50x50 opening into a grazing and rambling lot of 50×100, also used as a plum orchard. The fence is only 5 feet high, and by feeding well and clipping the feathers on pue win rithere is no trouble in keeping them at all times within the gard.
"Settina rue Hens -To insure good healthy chicks, the hen should be set in March, and certaibly not later than A pril. By having portable nests, when hens desse to set and become fixed in the habitit in the setting season, they can be supplied with eggs (the date of setting mark d on them in ink or pencil., and any number of nests moved to a room for the purpose, which mast be kept cloced, and well supplied with food and water. The rests mas all be set side by side, for if the hens should all leave their nests at once to feed, when they return they will each tike a nest, alihough they mas change places. This arrangement in:ures their setting steady, as they are not compelled to wander off for foud, but return quickly to the nests and beep up the warmth of the eggs, and thus bring out strong chicks. By setting a number at one time, if some batch half broods they can be put together with one hen. When a settiog hen looks pale about the head it is evident she is lousy; clean and wash the nest, grease the hen under the wings, on the back and rump, wash the eggs in warm water, and return to the nest.
"Treatafent of Chichs.-When.first hatched they must be fed ou biead so aked in milk; after three or four days, feed with cooked or scalded Iodian meal three times a day; but fiaely cracked corn or wheat screenings, shonld be always within their reach; also clean water. The hens with chicks should be kept io coops for several days, the coop, kept dry and clean and placed in sheltered places With such treatmeat not five per cent, of chicks will be lost. In conclasion let me say, tie secret of auneess is this. They wu.t be youns, well fod and cared for, and
small numbers- 12 to 25 --pas muid beriea proportion than large fiocks.
J. C. Thompsor,
"Tompkinsville, Staten Islado, N :
"P.S.-Since writing the above I Gad ios will cat six quarts of Indian corn a dag, 4 helping themselves to it , that is, a peck to hundred hens. The test was made on low corn, that being the staple food for poaltron.

©Tle Apiarn.

Bee Pastures.
Old and experienced beekcepers tell os: there is such a thing as overstocking a cond with bees. That yuu can get too many best your pasture as easily as you can get too d cattle or sbeep for your pasture. This, und edly, is sometimes the case. It is, therefire object of some importance to enquire iato subject and endeavor to find out in mast bee pastures can be increased in any mas. little study iuto their habits_and wats will us on the right track.

We believe bees do not stop to enquiri the grnus or species of the plant, shrub or on which they feed. They are not very purf lar whether it be on lowland or highland. have been kuown to cross the water fire a from hives on the main land to flowers distance from them, on an illard. Theird euquiry therefore seems to be the instincirit whether the flowers and fruits within their ${ }^{\text {a }}$ contain honey or not. The earliest bea pes that we can furnish thein in Maine, is mape: In warm days of our early spring, and be auy flowers bave put forti in our latitase, will often see bees flitting about the sap tro: at the foot of maple trees in sunng sivatio: on the surface of the stumps of m sple treat ${ }^{\circ}$ have been cut down during the winter, add 4 which the sap oozes out. It would not, th fore, be a bad plan to set small shallow rea of maple sap in the vicinity of the apistra in the spring, from which the bees might ip? separate the h ney.

The next earliest sonree of fond for th among us, is the willow. The several ratie of the willow blossom earliest, perhaps, of thing, and frum thess blosso.ns the bees of not ouly honey, but farina. It is, therefine o ject for bee keepers to not only presme willow, but to set them out in moist, 1 , places, it for no other purpose than for earlf pasture.
The red maple and tha elm come rext blossom, and bees also visit them forthe pint of ubtaiuing honey and other substazces su they wo:k ap in their operations of the the By this time quite a number of strabs flowers have cume into blossom, suci at
ep pear, (aronia, the plum cherry, and kapatly the apple and pear. All of these cat so many sources of food to the bees. T Tet, tho basswood tbrows out a profusion brese, and the bees are always found fnnly around them when in blossom. It Wbe well to have more of these trees out anes and road sides. They are highly ornaWiss well as useful for bee pasture.
et locust, or yellor locust, is another tree grows rapidiy and blossoms profusely, of birers of which bees are very fond. There at be more extensively cultivated, though borers sometimes make sad havoc with
[al the flowers it is thought that of the ecorer is most accepta le and most proin of hones to bees. This is a native of constry and will grow almost any whre, cialls if it be encouraged by sowing a little ere on it.
chasbeat is often sowed fur no other parpose to off rd pa tarage to bers
Iadition to these, the other flowers of the fasd the ardens all add to the extent of be pasture, and should all be multiplied and Frated wherever they can be conveniently.
4 Rysians sometimes cultivate quite extenTthe common borage of the gardens for the of bees, thinking, and probably not without ne, that it, affords a good supply of honey, sis eajily obtained by the bee. Perhaps fof our readers can thi k of other sources of it bees, the cuitivation of which would get the area of honey and make it, worth the pie to culivale then,-Maine Farmer.

Deterivary mep^{2} partment.

(Conducted by A. Smith, T. S.)
Bots in Horses.
mimps Cavadin Agriccutcrist.-Under bore head of page 154 of the "Agriculturist"
receipt, which it is said will generally afford

It in arriving at a right conclusion in this
er, I last year sent you an extract from
dti iskinner's work on the horse, wherein
s stated that bots, while they inlabit the
usch of the horse cannot give the animal
pinn: that they cannot be removed by any
:cine that can safely be administered, and
findue course of time they come avay.
hare had some experience with horses for
at trenty five years, and oreasionally (for
of a bettfr) have been obliged to be my
horse doctor; but I never yet saw a case Sering from bots. I have heard of most bordinary cases, such as the stomach being
thourh, and I was recently positively as-
$1 t^{2}$ an intelligent person that he ha ${ }_{2}^{2}$ lost
a.fine young horse from bots, where there was no symiptom of the cause twenty-four hours before death, that he did not make a thorough examination after death, but that he found the wind-pipe full of bots.

I now address you under the hope that some of your readers who have had experience in such matters will state which is the correct treatment; to endeavour to expel them or to let them take their one course.

Briar.

REMARKS.

The mucous membrane lining the stomach of the horse, is divided into two portions, a cuticular and villous. The cuticular is on the left side and is continuous with the cuticular lining of the oesophagus; this coat is cuvered by thick scaly epithelium and is thrown mito folds, which folds disappear when the stumach becomes dilated. The mucous membrane of the right side is called the villous, and this port:on, the true digestive stomach, the mucous membrane is thick, soft and pulpy.
Bots occur chiefly amongst young horses, grazing on damp coarse pastures, shaded with trees. The female fly deposits her ergs on the shoulders, le ${ }_{5}$ s, or other parts of the budy within reach of the animal's tungue, by which they are caried into the mouth and thence to their common nidus, the cuticular potion of the stomach. It is the cuticular hait of the stomach that bots mhabit generally, and from this circumstance, that they are fastened to a part rot very sensitive, bots do not give rise to such pain and irritation as is freguently imagined.

The larva, or worm, bei:ig hatched and lodged in the stomach, immediately clings by means of its tenacula to the cuticular coat which it prerces. and so pertinaceously does the bot adbere, that it will frequently suffer its houk to le broken rather than quit its hold.
This larva is found very difficult to destroy and resists the action of most medicines, hu ${ }^{t}$ there are certain times whan thes pass out, and and then their removal can be expedited by certain medicines. An easy remedy is to rub dove in hot water about three drachms each of aloes and assafæetida, and when the solution has got cool add to it an ounce, each of turpentine and sulphuric ether: repeat the dose every second day for a week, leaving out the alues if tho bowels become too open. Along with such
treatment it is necessary to give good food and a change of diet.

When bots only exist in small numbers they are generally harmless, when a multitude they prove detrimental to digestion, by absorbing part of the juices nee ${ }^{\text {ssary }}$ for that process.

Percivall in his work on diseases of the horse mentions that he recollects of hearing Professor Coleman sad, that he knew of a case where buts appeared to have destroyed lite, since after death the coats of the stomach appeared eroded in places, as well as the diaphragm, and some of them had mitue their way into the carity of the chest.

Inflammation in Animals.

(Concluded from Page 118.)

In the previous lecture we pointed out that in t e weh of a fior's foot, in which, from its tronspaneney, the various processes which take phace in it can be perceived with considerable facility by means of a microscope, the flow of bloud throut the minute vessels or caphlaries becomes slower and sluwer, and at last comes to a complete stimd-still, notwithstanding that the latter are dilated beyond their usual d.mensions; and ofler, therefore, apparently at least, less mechanical resistance to the onward passage of the blood than ustal. We further pointed out that this remarkaible stagnation of the blood in a part about to 'recome inflamed is not due to any primary alteration of the blood corpuscles, in as much as these bodies exhibit no deviations from their usual properties in the vessels before they arrive at, and after they left, the part about to breme the seat of inflammation, so that the cause of the remarkable tendency whech the corpuscles show to adhere to each other and to the walls of the vessels, so as to cause starnation of the errenlation, must be looked for in some alteration which has taken place in the surrounding textures.

Iu order to understand the nature of the alteration whinch first takes place in the textures of a pat about to hecome inflamed, so as to cause starnation of the circulation, it will be necessary to notice the remarkable movements which iake phace in erertain cells, called pigment cells, of the fros's font, and which appear to have heen first noticed hy Brucke, of Vienna, in 1a.i2. hat more recently and more correctly by Mr. Jister in the Philosophical Transactions for 15:5s. It has hem lons known that the from is capable of rhansing its colour under certain sircumstances-ljecoming dark when placed in
a dark place, and assuming a brighter hat placed in the light. This capability of the of changing its colour, althourg posesest certain extent by all the species of the fir sppears to be best marked in the tree Nuw, the lighter or darker hue of the tre different times is due to changes in the pre cells above mentioned. These cells are buted, in great numbers in the substance of true skin, and, in the web at least, are st also on the walls of blood-vessels Onest mg the web with the microscope, and dine attention to the pigment cells, thry are mind be black bodies consisting of a cenird tion, from which processes of vaturs radiate. On more careful examination enl! is found to consist, like all wht: of a delicate yet firm and clastic meth enclosing in its central portion a round less body, called the nucleus. The ws is usually situated in the centre of the but sometimes it is found placed merets side. In addition to the nucleus, the ced tains a transparent, colourless fluid, in: float an immense number of mimite rind which, when viewed singly, have a lup tint, but when seen aggregated in grous sent a coal-black appearance. The prod which proceed from the central cell he contain fluid and coloured particles; sothat are not solid outgrowths of the cell mill may be rerarded, as in truth they are, t t prolongations of the cell itself. These F , es, where they arise from the central pots the cell, are usually of considerable brediss as they pass outwards they soon ramify s ! up into numerous slender, threadilite! which anastomose or become continuws similar prolongation from neighbouring All these processes, even the most minate, in low, and consist of a delicate membranes so uous with that of the central cell, and are $\frac{1}{8}$ with a colourless fluid, in which coloured gar float. It follows, therefore, that the cot of the central cell can pass readily intote ious processes which radiate from it , add versa the contents of the processes mar: other circumstances, pass into the carirg cell. Moreover, owing to the processis ${ }^{\circ}$ cell anastomosing freely with similar not of neighbouring cells, the contents of oct may mingle with those of other celk. doubtful, however, whether this actudly take place; but at all events we have here makable scics of tubes, along which it: ment particles and the fluids n which tes suspended may move, quite inderendentl the circulation. It is very probable if x , tain, that the contents of all cells are changes similar to those which will be dean immediately, but owing to the absense of ed particles and the consequent homore: appearance of their contents, the mores annot be demonstrated. It is differeth,
sibthe proment cells. The dark pigment les concast strongly with the surrounding thas luid and cell membrane, so that any hon uiposition when they may experience reir easily observed.
maxe already remarked that the frog is eof churs ing from a dark, almost black, 1 acomparatively light appearance, and raty; and this is effected by a change of nut the proment molecules in the cells. the pisment graunies are ayrgregated lofelier in the cavity of the cell so as uader the microscope, a more or less I jput, the colour of the frog is light; dificed through the cell, and in part t the tubular processes, the colour is ; and when the pigments are still further
dhrourh the various ramifications of 1, so that comparatively few remain in the I portion of the cell, the colour of the almost blach. Of course, there are some hich are never of a dark colour, but we fad that, without exception, the colour fros is darkest the more diffused the pirmules are through the tubular processeceils, and lighest the more concentratare in the central portion of the cell. supposed by Brucke and Von Wittich en the pirment was aggregated in the portion of the cell this was effected by ning; or coutraction of the processes of liu which it was diffused, but this sup. mas first shown to be erroneous by Lis.cit.) On careful examination we find apigment moves from and towards the porion of the cell quite independent of we in the form and dimension of the j its processes. On the contrary, the tranules appear to be under the influa force or forces which reside in the part of the cell, while at the same time Seplace to a certain extent under the a of the nervous system. If, for exthe frog be excited by laying hold of it muse it to struggle, the pigment immeberney collected in the central part of and the animal turns pale. Agrain, if Il is brought from a dark place, and to a birght light, the same thing takes otas has been shown by theelight stimulatwisment cell directly, but by reflex action, the medium of the optic nerve. In this stimulus of light is conveyed by the opes to the nerve centres, and is thenco reor sent to the nerves of the skin, and ferciting the pigment cells to action, wentration of the pigment in the central - cell. Concentration of the pigment iren cell may, besides, be occasioned by ritating the part either mechanically or cal reagents. On the other hand, diffibe pirment into the processes of the -s to take place when the parts are in -quiescence, and seems to be caused by
the particles having a repellent action on each other, which comes into operation as soon as the attuactive force which is seated in the centre of the central portion ceases to be exerted with intensity suiticient to keep the gramuies torether.

Having thus endeavoured to deseribe as brief. ly as possible the nature of these pigmentary movements, let us next consider them when a part in which the cells are seated has been irritated to such a degree as to cause intiammation. We have already seen that one result of irritating a part to such an extent is to give rise to inilammation is to cause viscidiay of the blood corpuscles, and in this way to hinder the circulation, notwithstanding that the calibre of the vessels is greater than usual. If now we irritate strongly a small portion of the web of the frog's foot by placing a drop of turpentine or a little mustard on it, we shall find a remarkable difierence in the cehavour of those jigment cells which are seated directly under the irritant from those which are situated at a little distance. Let us suppose that at the commencement of the experiment the web is dark and the pigment consequicatly diffused throughout the processes of the cells, we shall find that while the pigment still remains in a state of diffusion in those cells which are placed nearest the irrtant, it becomes concentrated in those cells which are further removed from the irritant, and on which the irritant acts with comparative mildness. Un continuing to watch the web, it is found that no movements take place in these cells which are situated at the point of the irritation. The pigment granules remain in the same state as they were al the moment of the application of the irritant, while the surrounding cells which were more gently stimulated exhibit movements of their molecules as usual.

It may now be asked what is the cause of the stoppage of the molecular movements in those cells seated at the point of irritation. We have seen that the molecular movements are in all probability caused by a force which resides in the centre of the cell. We are, therefore, forced to the conclusion that the movements in question are destroyed by the irritant acting so strongly as to paralyse the central force. If the irritation, however, has not been too great nor too long apphed, the central force recovers its power, and the pigment again exhibits its usual movements; at the same time, the part begins to swell from the formation of the fibrine and the effusion of serum, and the various signs and symptoms of inflammation ensue. Bearing in mind that what takes place in the pigment cells likewise takes place in all the other cells of the part, we come to the conclusion that the first stage of inflammation consists in paralysis. of the functions of the part, and it is owing to this that the blood corpuscles, which flow through the part, become viscid, and stop the circulation; in the same way as they become viscid, and adhere to each other when removed from the vew:
sels and piated bey ond the influence of the vital action of the testures. When the intitation has been su great do to cause permanent paralysis of the functivus of the part, then mortification or death cusues. When the irritatiun has been mure suntie, the part resumes after a time its functions, but in a disudered manarer so as to give riou to the a dious phenumona of inflammation. The degree of these sabsequetht disurders is determined partly by the nature of the part, and path by the amuant of irritation ata consequent pucciysis of the functivus of the part which has talicu place When the inritation has beran slight, the reactionary phenomena w.Il, ceteris piribus, be currespondindy mild; whale if the initation has been serese, suppuration, ulcuation, \&e., will take. place, and the structure of the pait will be destroyed to a greater or less extent.

Scab.

We are apt to congratulate ourselves that scab, with many other evils, has disapeared before the improved practice of modern agriculture. But although usually comparatively circumscribed in all its attacks in this country, it is apt from time to time to spread, and occasion much trouble, expense and loss. Extensive graziers inform us that many of the Euglish hill sheep are this spring infected, and that much care will be required to prevent the evil extending with the distribution of the stock which generally takes place during the next three months. Even as far south as the Cotswolds the plague appears, and large graziers and dealers assure us that they will take no sheep home without a full and explicit warranty of soundness.

Scab, as is now well ascertained, is nearly allied to mange in dogs and itch in man, and depends upon the presence of minute creaturesa species of acarus or mite-which burrow in the skin, causing the familiar distressing itchiness, the inveterate rubbing, and the irritable pimpled skiv, which, as the diseace preceeds, becomes scurfy, bare, and scabbed. The unfortunate Eligblandman of immortal fame, irritated by the "Scottish Fiddle," as it is technically styled in the north, blessed the Duke of Argyle for his considerate erection of rubbing posts, and the sheep allicted with scah make an equally liberal use of all objects against which they can rub, and in this manner the acari are frequently deposited, and transferred to the next visitor. The acari are of tro sexes; the females, however, are the most active and tronblesome, burrow at once in the skin, leaving as the mark of their entrance only a minute red speck, like the point of a pin. In eight or ten days a littie smelling. appears, which gradually softens and becomes pastular, and by the fifteenth or sixteenth day breaks, and allows the escape of the female, who oppears with her brood of from eight to fifteen
young ones clinging round het lifs. Thest soon distributed, bury themselves in the: and if uncl ecked multiply with great rapa Warm weather is especiully favorable to propagation, and hence the spring weatbag sally aggravates and increases the comp and even causes its re-appearance in thosect whic h seemed during the colder moaits to perfectly cured. Troublesome and proveriaf every case, scab is especially so amongt te aud lambs; for not only do the dressings dat and annoy the ewe, but the offspriug are quently weakly, thrive badly, and sooashon mistaktable evidence of the disease.

Shatpherds often understand tolerably nell treatment of scab, and various dressingse goud repute. A mixture of tobacco riter, of tar, and soft soap is very effectual, ant? any other applications, must be well rabbe : It does not answer now to adopt the old scription of allowing the "salve to side to sair ;" it must be applied with smartand gent friction. Four ounces of tobacco if in hot water, a pint of oil of tar, a poucd of a pound of soft soap, will, with the additio water, make a gallon of dressing, or gas sufficient for three score of ordinary A mixture of mercurial and iodine ointed or an alternate dressing of each, is alsos application, but must be used with cation pecially in damp weather, as the mercury: to become absorbed, ${ }^{\text {and }}$ cause slow poiso During the past month a gentieman in neighborhood lost five ewes, which died rently from the uaduly liberal are of ming ointment applicd for the cure of scah. the rest of the flock, these five had beensid od to a second dressing, and the sheit naturally anxions to get rid of the pett probably too liberal with his remeir. weather, moreover, was afterwards met, might possibly facilitate the absorptiono poison and aggravate its injurions effedy the system. The animals gradually beares thrifty and weak, lost flesh, and dwindledly or six weeks, when foar died, and one be hopelessly ill, was killed. We are told ${ }^{4}$ only notable appearances were mastiva paleness of the flesh, "soft rottenoess" liver, and in the uterus a dead, swoileo, pu patrid lamb. Cases of this deccipition they are by no means uacommon, ongllid der farmers more careful than they are ase of remedies so potent as meriarial oid The articles mentioned by no means erhar list of agents employed in scab. The ow ined salphar ointments or liniments ate, use, but not very trustrorthy; solution of ride of lime, or bleaching: porder, is akon mended; bat is less effectual than sedois arsenic, corrosive sublimate; chlonide of 5 the other remedies already adpised: Inat to the medical trestment; eatire separif
punsifium the tainted stock, must of course, ructly enjoined, and as the acari, deposited Silte bark of trees, or on other such objects, iomild weather retain their vitality for some no sonnd sheep should, for at least a fortIh bare access to the fields from which the bed stock have been removed.-North is Agricullurist.

fliscellancous.

The Horse-Hair.

Profesor Agrassiz's interesting paper on ftado of Study in Natural History," the dof the series in the Allantic Monthly, ad this anecdote of an animal known to alall country bogs:
ganleman from Detroit had the kinduess to me one of those long, thread-like worms five) found often in brooks, and called fair by the common people. When I fectirfd it, it was coiled up in a close roll fottom of the bottle, filled with fresh f, that contained it, and looked more like a tagle of black sewing silk than anything Wishing to unwiad it, that I might examentire length, I placed it in a large china filled with water, and proceeded very to disentangle its coils, when I perceived beanimal had twisted itself around a bonits eggs, holding them fast in a close emIo the process of unwinding, the egre fedsmay and floated to a little distance. fo fally stretched it out to its full length, ps half a yard, I sat watching to see if this ir being that looked like a loug, black in water, would give any signs of life. Itimmediately it moved towards the bunlegge, and, having reached it, began to kelf through and through the little white pasing one end of its body through it, rear relurning to make another stitch, as it fill the eggs were at last entangled again intricate net-work of coils. It seemed to nost impossible that this care of offspring be the result of any instinct of affection patare of 80 low an organization, and I leparated it from the egge, and placed tagreater distance, when the same action pested.
frying the experiment a third time, the eofeggs bad become lessened, and a fer ndropped off singly into the water. The which the animal then made to recover king ones, winding itself round and round bat failing to bring them into the fold terest, because they were too small, and ?all efforts to secare them, when once liom the first little compact mass, con©e that there was a definite purpose in zapt, and that even a being so low in the tamimal-existence has some dim consci-
ousness of a relation to its offspriog. I afterwards unwound also the mass of eggs, which, when coiled up as I first saw it, mid a roll of white substance about the size of a coffee-bean, and found that it consisted of a string of egg ${ }_{5}$, measuring more than twelve feet in length, the eggs being held together by some gelatinuus substance that cemented them and preveuted them from falling apart. Cutting this string across, and placing a small section under the microscope, I counted on one surface of such a cut from seventy to seven' y-five e:, gs; and essimating the entire number of eggs according to the number contained on such a surface, I found that there were not less than eight millions of eggs in the whole string.

Managenent of Dogs.-Dogs kept constantly in the house must be let ont four of fire times a day for a ferw minutes, othervise it is cruel to punish them for want of c!eaminess. All dogs, whether long or short haired, are better for being brushed once a day; it conduces to the health, and greatly increases the cumfurt of the animal. A dog who is well brushed regularly, seldom requires washing, ard is never infested with vermin; but if the dog is to be washed let it be done with yokes of eggs and not with soap, which irritates the skin, inflames the eyes, and by temporarily depriving the skin of its natural oily secretion, makes the dog extremely liable to be chilled afterwards The wasking with the yoke of eggs may be managed as follows:-Tet ine dos stand in an cmpty tub, rub the yolks of two, four, or mure eggs by de grees into his coat, adding lukew trm water a litthe, until the dog is covered with a thick lather. When it is well rubbed in over the whole coat, pour clean warm water over the dog till the egg is entirely washed out. The advantages of this process are, that the dog's coat does nut lose its gloses appearance afterwards, and that the whole operation can be performed quicky and quietly, and without any splashing of water or rough handling. To remove flea, take enough soft soap to rub into the whole cuat of the dog; add to this a teaspoonful more or less, according to the size of the dog, of sp rits of turpentine; rub this mixture well into the roo's of the hair, adding a little warm water to make it reach the skin. Let this remain on for a quarter of an hoar, then plange the dog into a warm bath, and rub of the mixture with the hand. Care should be taken not to let it get into the eyes, and to wash it completely out of the skin.-House Dogs and Sporting Dogs; by J. Meyrick.

Gossir about Concres.-The Egyptians used a car or box, upon wheels, and the word "cach" is sappose $?$ to be of Hangarian origin. In 1294 the citizen wives of Paris rode in them. The oldest (ased by ladies) were called whirlicotes, or open cars. The mother of Richard II. rode in one; and. in 1474 the Emperor Frederick III.
went to Trankfort in one. Stow eays William Boonen, a Datchman, in the sixtenth century introduced cuaches intu Eugland; while Strutt, in his Manners and Customs of the English, says that Walter Ripon in 1555, made fur the Larl of Rutland the first coach in England. The Duke of Buckingham, in 1619, was the first to have a coacu drawn by six horses, but he was eclipeed by the Duke of Northamberland, who drove eight in ridicule. State coaches gilt are mentioned in 1609. Uharles I, had oue, and specimens cau now be seen in the Lord Mayor's. "Gingerbred," and her Majesty's gilded oneStage coaches gitt are mentioned 1664, and Sor-biere(1664-70) says he weat in oue from Dover to London, "drawn by six hores oue before another," but this is what we shoulu now term a waggon. Fosbroke gives a list of thirty different kinds of coaches, and our friend Taylor in 1623 writes that he heard of "a gentlewoman who sent her man from Charing-cross to Smithfield to bire a coach to carry her to 16 hitehall; another did the like from Ludgate-hill to be carried to see a play at the Blackiriars." In 1634 one Capt. Bailey established the first hackney coach stand in London. He set four coachrs with men in livery by the Strand May Pole, and this example being soon followed by others, a writer of the time adds that "sometimes there are twenty of them together, which disperse up and domn," and be frequently adds, that "everybody is much pleased with it."-(Garrard) In 1636, there were more than 6,000 cackney-coaches in London, a proof of the public's appreciation; but in 1660, Charles II \cdot issued a proclamation forbidding their stopping in the streets, for that they must be hired from the stables, \&c. The WFeckly Register, December 8, 1773, tells us that "these hackney gentlemen who drive about the city and suburbs of Lordon, have by their overgrown insolence obliged the Government to take notice of them." The Gentleman's .Magazine records, that on September 23, 1751, a man ran a coach wheel from the Old Bailey to the eleven mile-stone at Barnet aud back in three hours fifty-one minutes, for $£ 50$. He had four hours to do it in. By statute 3rd Geo. I, c. 7, sec. 2, 800 hackney coaches were licensed at 5 s . each weekly.-City Pross.

Potato Blight.-M. Lemaire adrocates coal tar as a preservative against the potato blight. He incorporates two parts of coal tar with 100 parts of dry and loose earth, and strews this misture over the ground to be planted with potatoes, after which the field is ploughed or dug in the usual way. In this manner the coal tar is buried to the depth of 20 centimeters or thereabouts, and the potatoes planted in it thrive perfectly, and are never attacked with the blight. Mr. Lemaire has also made the discovery that potatoes planted in a part of the same field, which had been purposely left without coal tar, contracted the disease at the same time that the others were free....Galignana.

A Living Frog Found in Coala.The follos is an extract from a letter received on 1 PF day last in this city, by John Rosell, from the manager of bia Try Nicholis Coll Com T'ylery, near Newport:-'Our menis heading in the rock vein coal yesterdas, yf 10, in the fall of coal in the face of the besa found in a hole in the pricking, in the topos coal and in the nine-inch bed of coal, 8 frog. The hole was not more than 31 ich diameter and this found in a soft bnis There is a slight bollow over the coal he: was found. Ii began moving about assit it was released, but seems larger and morel to-day. It is kept shat ap in clay to ere the air from it. Now this is 200 yard $\mathrm{t}=$ the surface, where this little thing was foond I do not suppose any oua can form an idea long it must have been there. I intented ing it kept for you until you returned'- (Ass L. W. Rees. [Mr. Russell is going toste] the Great Exhibition a block of coal, bat ten and eleven feet long, solecting the pes which the frog was found, the locus in quod exactly in the centre and the block will cut oui that the frog and its strangedras will be clearly shown in front]-Worceskr Chronicle.
Sunset Ayong the Icebergs.-The bas open to record. The sun on the ragged ha Labrador, a goiden dome; Bell Isie, a it blue mass, with a wavy outline, rising firat purple main pricked with icebergs, some a white, others flaming in the resplendest if like red-hot metal. We are sailing quieth eagle on the still air. Our English friad beard singing while they walk the deck, and off upon the lonesome land where their bor waiting for them. All that we anticipat the sunset, or after-sunset, is now presed. ocean, with its waves of Tyrian dye laced silver, the tinted bergs, the dark blae iolsid and brown neadlands underlie a slig of of abla beauty. The west is all one paras colours. Surely, Nature, if she follons mourner on the footsteps of the fall, alsong jubilant and glorious to the scenes of Here, between the white light of day 8 ff . aark of the trae evening, shade and brijt like Jacob and the angel, now meet and ro for the masters. Close down arong thest purple of the rugged earth, beam the bit? lemon haes, scon deepenng into the in, orange, with scattered tints of new stran ${ }^{5}$ ly-blown lilachs, young peas, pearl and but termingled. Above are the royal drapen the twilight skies. Cloudsin silken thress skeins ; broad velvet belts and amplefoldss as night, but pierced, and stoeped, and with faming gold, soarlet and crimion, ci deep as blood, crimson fleeces; plames: with pink, and tipped with fire, white fire. all this glory lies sleeping on the store, col
arribure of the great ethereal ocean, in the sof hich are melted and poured out raby int, and cmerald, pearl and gold, with figg mist blue of human eyes. The painwas mith speechless, loving wonder; and I er to myelf, "This is the pathway home finmortsility of bliss and beauty." Of all ariof the year, this may be the birthday hiog $\hat{i d y}$, and this effulgence an imperial as through the grand gate of the west. tes soul follows on in quiet joy, dreaming Elf ones waiting at home, and lovely ones AL maiting with Christ! Here comes fodedos lines of Goethe, marching into the if with glowing pump: "The setting sun! fols and sinks-the day is over-lived. a he burries off, and quickeus orher life. at Ihaseno wing to lift me from the gr, und, Igye after, for ever after him! I should Erylating evening beams, the stilly world fit., every height ou fire, every vale in retheilver brook flo ving into golden streams. paged mountain, with all its dark defiles, cot then break my godlike course. Althe sea, with its heated bays, opens on aptured sicht. Yet the gud seems at last away. But a new impulse wakes. I on to driok his everlasting light -the day me and the night behind -the heavens gid under me the waves. A glorions ! as it is passing he is goue." Here the last touches of the living colouring, the purple waves around the vessel. the irebergs hang their pale and spectral , piaceing the depths with their mimic and giving them a lustr uns, aerial appearThe wind is lulling, and we rise and fall Ho the rolling plain. "The day is itio the later twilight, and the twilight zslema darkness" No, not into darkIn in these months, the faiat flame flickerdight above the white ashes of day from fircling around to the north and east, Gnalight and the starlight and the nortbern Il conspire to make the night, if not more 1 than day," at least very lovely. A darkiness drapes the capes, beneath the thffs of which lies half entonbed a liceberg, a ghostly wreck, around whose bite ruins the mad surf springs up and troad its ghastly arms. Softly comes its aning, and blends with the plaintive melothe ocean. Hark ! a sullen roar booms thedakly sea-nature's burial service and cral gans. A tower of the old iceberg sige has tambled into the billows. We presently iato the cabin for prayer, and ixtscene closes on the coast of Labrador. Levis Nobles' Iceland.
sinton of Sea Siciness.-Let a person Pasrd, when the vessel is bounding over筑 seat himself, and take hold of a tumily filled with water or other liquid, and
at the same time make an effort to prevent the liquid from running over by keeping the mouth of the glass horizoutal, or nearly so. When doing this, from the motion of the vessel, his hand and arm will seem to be drawn into different positions, as if the glass were attracted by a powe:ful marnet. Continuing his effirts to leep the mouth of the glass horizontal, let him allow his hand, arm, and body to go through the various movements-as those observed in sawing plauing, pumping, throwing a quoit, de. -which they will be impelled, without fatigue, almost irresstibly to perform; and he will find that this has the effect of prevention the giddiness and nausea that the rolling and tossing of the ressel have a tendency to produce in inexperienced voyagers.-Albencum

Tie Jay's Volubintix.- 0 je of the most remariable peculiarties of the j ty is the volubility of their sounds. The alarm note the bird utters on the appearance of danger, or even of a stranger in its haunts, is extremely harsh; but it has a love note peculiarly soft, "yet so low and apparently caatious, that it seems whispering to its mate, as if to hide their affections and labours from the other tenants of the grove. Even then it is very imitative, and though it does not attempt the songs of the warblers, it is very adroit at bleativa, screaming, nergbing, and in short, imitating all the harsher sounds." Bewick says: "We have heard one imitate the sound made by the action of a saw so exactly, that though it was on a Sandar, we could be persuaded that the person who kep: it had not a carpenter at worls in the house Another, at the approach of cattle, had learned to hound a cur dog upon them, by whistling and colling upon him by name. At lazt, during a severe frost, the dog was excited to bite a cow big with calf, when the poor animal fell on the ice, and was much hart. The jay was comp!ained as a nuisance, and its owner was obliged to destroy it." Mudie, another cartful observer, remarks: "Words in which the letter r occuas are soonest learned, not only by the jay, but by most birds that can be taught to articulate." That is easily accounted for by the unjieldıdg nature of the mandible which forces the air to come out between the apper part of the tongue and the palate, on which that trills. A man cannot easily pronounce the r in any but Northumberland faghion, if he grins the while; and those who use the tongue simpering and sofuly merely touch, but do not pronounce it.-Cassell's Popular Natural History.

Original Anemote of Burns - As Lord Crawford and Lord Boyd were one day walling over the lands in Ayrshire, they saw Burns ploughing in a field bard by. Lord Crawford gaid to Lord Boyd; "Do yoa see that rough looking fetlow across there with the plough? I will bet you a wager jou cannot say anything to him
that he will not make a thyme of." "Done said the other; and immediately going up to the hedge, Lord Boyd cried out, "Baugh!" Burns stopped at once, leant against the plough, and, surveging his aspailant from head to foot, he quietly answered-
"It's not Lord Crawford, bat Lord Boyd, Of grace and manners he is voidJ ust like a bull among the rye, Cries "Bugh!" at folks as he goes by." 'The wager was of course won.

©

Provincial Exhibition at Toronto, 22nd to 26th September, 1862.

In our last issue we were unable to announce decisively the exact days on which the Provincial Exhibition would take place this year, in consequence of it having been discovered that the days which had been chosen by the Board were the same as those selected by the New York State Society for their show at Rochester this year. As it was, of course, desirable to to avoid a collision of dates if possible, some correspondence, as stated in our last, took place with a view to a satisfactory arrangement.

Asit appears from the correspondence that the New York Society had published their list, and made various arrangements which would render it exceedingly difficult to change their days, the Upper Canada Board of Agriculture, after full consideration of the subject, decided that our Show should take place one week earlier than first intended, viz., during the week, commencing on Monday, September 22nd. The Exhibition will accordingly be held at Toronto, this year, on the days above stated: 22nd, 23rd, 24th, 25th and 26 th September. It would be seen in our last that the rules or regulation connected with the Exhibition have been remodelled and amended, and some new prizes offered. We shall have some remarks to offer on these points on another occasion.

BOARD OF AGRICULTURE.

THEik Office of the Board of Agriculture has been removed to 188 King Street West, in few doors from the late location adjoining the Government House. Agriculturists and any others who may be so disposed are invited to cill and examine the Library, dc., when convenient.
Toronto, 1861.
Ноан С. Тномяоп,
Stecretary.

FOR SALE.
A LOT of thorough bred improved Ber Pigs of various ages:

$$
\text { R. L. Denison, }_{\text {Dover }}^{\text {Co }}
$$

Toronto, Aug., 1861.

Notice of Partnership.

THE Undersigned have entered into P_{t} ship as Seedsmen and dealers in all $\mathrm{b}-$ Agricultural and Horticultural Implement der the firm of James Fleming \& Co .

JAMES FLEMING,
GEORGE W. BUCKLA:

NOOTICE.

TAMES FLEMING \& CO., Seedsment \int Agricultural Association of Upper. will carry on the above business, wholess Retail, at 126 Yonge-st., 4 doors North of laide-street, until next July, when they move to the new Agricultural Hall, at ther of Queen and Yonge -streets.

JAMES FLEMING will continue the br of Retail Seedsman and Florist at his old 350 Yonge-street.
Toronto, January 1st, 1861.

THOROUGH BRED STOCK FOR\&

THE SUBSCIIBER has for Sale I and Galloway Cattle, male and femd leicester, Cotswold, and Lincolnshire male and female.
January 1, 1862.
Joux Skelh tf. Edmonton, P. O,

IMPROVED BERKSHIRE II

GOR SALE y Mr. Denison, Dore Toronto.

Toronto, April, 18.62.

\triangle Thorough Bred 2 Yoar Old ATRSEIIREB BU゙

HOR SALEE, by Mr. Denison, Doret:
April ${ }_{j}$ 1862;

EORGE NURSERYMAN.

PEER FOR SALE, THIS SPRING, A (EDERAL assortment of Nursery Stock, suing of
Apples, Standard and Dwaris,

lherries,	do,	do.
Pears.	do.	do
Plums,	do.	do.
Pearhes,	do	
lopricots and	Nectarines	do.

eppricots and Nectarines,

RADTETVINTES,

native and forkign.
RRANTS, GOOSEBERRIES, RASPBERBIES, BLACKBERRIES, STRAWBERRIES, \&c.; \&c.
tecollection of fruits cultivated is extenand embraces all the different varieties tare been found of value, as well as those te introduction.
go ornamental department is also extensive, fiting of Shade Trees, Shrubs, Roses, Hardy factuls Plants, \&c., \&c., with a fine collecof Evergreens.

LARGE TREES

FOR

TREET PIANTTINJG;
he supplied, as also Evergreens, and Dews Plants for Hedges.
It the above are of FIRST QUALITY. ing for a distance carefully performed by rienced hands.
Iorders by post or left at the Nursery, will prompt attention.
talogues forwarded gratis on receipt of ent. stamps.
Hdress
GEORGE LESLIE.
Toronto Nurseries.
Torento.
quato Nurseries,
April 1862.

Seeds! Seeds!! Seeds!!!

HN GEORGE WAITE lligh Holborn, London, England. STHE LARGEST STOCK of VEGETAPLE, LGRICULTURAL, and FLOWERps, in the WORLD, and can suplle won hetter terms than any other whoge lose, as he makes most extensive arranto brith none but experienced growers d te his supply of seeds, which axe raiseforn from stock selected under his.own aal superintendence, and as they are all fd and picked in his own extensive waresby an auxiliary strength of: several hunmen and women, kept for that purpose, he bled to recommond, with the greatest.conP, every description of Seed: offered: by the sale, and he therefore. invites. Seed trsto apply for his Catalogue.
us-Cash, or satisfactory reference in 4d
帾 1862.
bt.

Fresh Garden, Field, \& Flower Seeds.

 for spring sowing.JAMES FLEMing \& Co, Seedismen to the Agricultural Association of Upper Canadn, beg to inform their friends, and the Farmers of Canada generally, that their stock of Fresh Seeds is now complete and very extensive, embracing almost every kind of seed suitable for the country. The stock of Agricultural Seeds is large and well selected. The vitality of each sort is carefully tested, and their genuineness may be fully relied upon A large stock of Peas, Timothy, and Clover :

> Spring Tares,

Black and White Oats.
Swede Turnips, Purple top.
" " Green top.
" " Laing's Improved.
" " Skirving's Improved.
White Globe Turnip.
Yellow Aberdeen " "

> :. Altringham "
Waite's Eclipse Turnip.
Stubble or Six Weeks "
Mangel, Long Red.
" Long Yellow.
" Yellow Globe.
" Red Globe.
" New Olive Shaped.
Sugar Beet.
Field Peas, several varieties.
Marrowfats, " "
Barley, two and four rowed.
Buckwheat.
Indian Corn, several varicties
Alsike and White Clover.
American Orchard Grass,
Kentucky Blue Grass.
English Rye Grass.
French Lucern.
Cow and Rib Grass.
Carrot, White Belgian.
"" Long Orange.
" Altringham.
Parsnip, Hollow Crowned.
\&c., \&c., \&c.
Also a full and general assortment of all kinds of Garden Seeds: a Catalogue of which, with ditections for sowing, can be had on application. Agricultural Societies ordering Seeds, will be supplied on liberal terms. Country Merchants supplied with complete assortments of Garden Seeds on Commission, neatly put up in boxes of 200 . papers each, for retailing at five cents a paper. Also a large assortment of Flower Seeds, embracing the anvelties of the semson.

No. 126 Yonge Street, Toronto.
March, 1862.

VETERINARY EURGEON.

ANDREW SMITH, Licentiate of the Edinburgh Veterinary College, and by appointment, Vuterinary Surgeon to the Board of Agriculture of Cpper Canada, respectfully amounces that he has oltained those stables and part of the premises heretofore vecupied by John Worthtngton. Esil., situated corner of Bay and Temperance streets, and which are being fitted up as a Veterinary Infirmary.

Medicmes for Horses and Cattle always on hand. Hurseo carmind to to suunducss, de.

Veterinary Estabhshment, Corner of Bay and Temperance Sts.

Toronto, January $22 \mathrm{nd}, 1 \times 62$.

The Imported Thorough-Bred Horse "Charon,"

WILI stand for Mares, at Mr. St. George's Farm, second Concession, and travel as follows, from lst May: He will leave his own stable on Monday at noon, proceeding down Yonge Street and stopping as required. Will remain at Stecle's 'Taveru all night, will go on to Tolunto ule Tusday murning, and stop till Wednesday at noon at Bond's Livery Stables. Will proceed to Weston, and stop there all night; return home on Friday, by Xonge Street; will remain all night at Stecle's Tavern, and arrive at his own stable on Saturday morning.

CHARON is by "Archy," by "Camel," by "Whalebone," by "Waxy," by "Pot-8-o's," by "Eelipse,' 'de, sec. Mis dam, "Styx," was by "Defence," out of "Proserpinc, \&ec. See Studd Book. Any one acquainted with the English Turf and Stud Book will see that there is not in America a better bred horse than Charon. His pedigree includes the most celebrated sires, and the most faslionable blood of England. Charon was in tiaining for the Derby when he was purchesud and bruaght to Canada. See liuff's Guide.

TERMS : Scason Mares, S12; Single Leap, \$8; Thorough lred, \$2', and \$12, single leap; Groom's fee, 50 cents.

Mares will be taken into pasture, and carefully attended to on Moderate Terms.

Address H. Q. St. George, Esq, Oakridges Post Office.

Oakridges, April 17, 186?.

HOR SALE.

A ${ }^{L_{0}} 0 \mathrm{~T}$ of thorough bred Essex Figs,-bred ... ir recuntly imported lot prize animals a. $1: \therefore$ have this scason taken premiums at ívelh Toñshiy, Cuunty, ad Provincial Exhibition:
Jambs Coman.
Clochmhor, Galt P. O., Oct. 19, 1861.

Contents of this Number,

The Swedish Turnips........................
Flax Culture
Remedy for Turnip Fly.
Dany Nanayement and Mangel Wural.... Straw as Food.
Euglish dgticulture, as seen by an
American
On the Aeration of soil.....................
Warranty of soundness in Horses.
Cultivation of the White Bean..
Benctit of $\mathrm{Ho}_{o}{ }^{s}$ among Fruit Trees

Agmetitl ral. Intelligence:

Inorticultural and other Shows this Season $\%$ Pruvincial and State Exhibitions, $1862 . .$. ? Importation of Stock for Canada

Hobticultural:

The Early Shurt IIurn Carrot. Grafting Fruit Trees
Culture of Melons.
The Dairy:
Huw to make Cheese

Domestic:

Packingr E_{s}^{\prime} 's for Long Journeys Tine Pocltry Yard:
How to make Hens Profitable.
The Apiary:

Bee Pastures

Veterinary:
Bots in Horses.
Inflammation in Animals.
Scab in Sheep

Miscellaneous:

The Horse Hair, Mranargement of Doge, Coaches.
Potatu Blight, 1 Living Frog in a Coal Seun, Sunset among the Icebergs.... Prevention of Sea-sickness, The Jay, Anec dote of Bunns
Editorill, Notices:
The Provincial Exhibition, \&c., \&c.

©ly $\mathfrak{A g r i c a l t u r i s t}$,

Or Juernal and Transactions of the Boele of Agriculuture of Upper Casid, γS pablished in Toronto on the ist and 164 each month.
Subscription-Half a dollar per annui Single copies; Eleven copies for Five Dollha Twenty-two copies for Ten Dollars, \&c.
Editors-Professor Buckland, of Uniresit College, Toronto, and Hugh C. Thomson, kity tary of the Board of Agriculture, Toronis, whum all orders and remittances are to bit dressed.
Printed at the "Guardian" Steam Press,
Street East, Toronto.

