CIHM
 Microfiche Series (Monographs)

ICMH
Collection de microfiches (monographies)

Cenadien Institute (e> Historical Microraoroductions/Institut canadion de microreproductions historiques

Technical and Bibliographic Notes / Notes technique et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the Images in the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers /

Couverture de couleurCovers damajed/
Couverture endommagée
Covers restored and/or laminated /
Couverture restaurée et/ou pelliculée
Cover title missing / Le titre de couverture manque
Coloured maps / Certes géographiques en couleur
Coloured Ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur

Bound with other meterial /
Relié avec o'eutres documents
Only edition available /
Seule édition disponible
Tight binding may ceuse shadows or distortion elong Interior mergin / Le reliure serrée peut causer de l'ombre ou de la distorsion le long de la merge inténeure.

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / il se peut que certaines pages blenches ejoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments/
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur examulaire qu'il lui e été possible de se procurer. Les détails de cet exempiaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modifications dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages / Pages de couleur
Pages damaged / Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Peges discoloured, stained or foxed /
Pages décolorées, tachetées ou piquées
Peges detached / Peges détachées
Showthrough / Trarisparence
Quality of print varies /
Qualitée inégale de limpression
Includes supplementary material /
Comprend du matériel supplémentaire
Pages wholly or partielly obscured by errete slips, tissues, etc., have been refilmed to ensure the best possible image / Les peges totelement ou partiellement obscurcies par un feuillet d'errate, une pelure, etc., ont été filmées à nouveau de feçon à obtenir le meilleure image possible.

Opposing peges with verying colouretion or discolourations ere filmed twice to ensure the best possible imege / Les peges e'opposant ayant des colorations variables ou des décoloratlons sont filmées deux fois efin o'obtenir le meilleur Image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmé su taux de riduction indiqut ci-densour.

The copy filmed hara has been reproduced thanks to the generosity of:

Osler Library. McGill University, Montreal

The imeges eppeering here ore the beat quelity possible considering tha condition end legibility of the original copy and in keeping with the filming contract specificetione.

Originel copies in printed paper covers era flimed beginning with the front cover and ending on tha last page with e printed or ilifustrated impression, or the beck cover when epproprieta. All other original coples ere filmod beginning on the first page with e printed or iliuatrated impreesion, and anding on the lest page with e printed or illuatreted impression.

The last racorded frame on eech microfiche shail contaln the aymboi - (meening "CDNTINUED"). or the symbol ∇ (meening "END"). whichever epplies.

Meps, piates, charts, etc., moy be filmed at diffarent reduction retion. Those too ierge to be antiraly inciuded in ona axposure ore filimed beginning in the upper left hend corner, iaft to right end top to bottom, es many fremes as required. The foliowing diegrems iliuetrete the mathod:

L'exempiaire filme fut raproduit grten ia générosité da:

Osler Library.
McGIII University, Montreal

Les Imeges suiventes ont ít reprodultes evec is plue grend soin, compte tanu de le condition et de le nettet de l'axemplelre filme, ot en conformite evec les conditions du contret de filimaga.

Lea exampieires origineux dont ie couvarture an pepier est imprimie sont filimis en commençent par le premiar piat ot en tarminent soit per lo dernidre pege qui comporte une empreinta d'impression ou d'iliustrotion, solt per le second piot, selon le cas. Toue ies eutres exempiaires origineux sont filmís en commençant per ie premidre pege qui comporte une emprelnte d'impreasion ou d'lliustration ot en terminant per is dernidre paga qui comporte une telle emprainte.

Un des symboles sulvents apperaltre sur la derníóra image de chaque microficha, selon le cas: io symbole \rightarrow slynifia "A SUIVRE'", le symbole ∇ signifie "FIN".

Les certes, plenches, tabieeux, etc., peuvent êtra filmis al des taux de réduction différants. Lorsque ie document ent trop grand pour eitre raproduit on un soui clicht, il eat fllme a partir de l'engie supírieur geushe. de gauche de droita. ot de hout en bes, en prenent te nombra d'imeges núcessaira. Les diegremmes suivants iliuetrant ia mothode.

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

APPLIED IMAGE inc
1653 East Main Street
Rochester, New Yark 14609
USA
(716) 482-0300-Phone
(716) $288-5989-F 0 x$

THE PEOPLE'S LIBRARY

LECTURES AND ESSAYS

THOMAS HENRY HUX:EY
\bullet

LECTURES AND
 ESSAYS

BY

T. H. HUXLEY

CASSELL AND COMPANY, LTD. LONDON, PARIS, NEW YORK, TORONTO \& MELBOURNE MCMVII

CONTENTS

ON OUR KNOWLEDGE OF THE CAUSES OF THE Pact PHENOMENA OF ORGANIC NATURE-
the Present Condition of Oroanic Nature :
11
11
Tite Past Condition of Oroanic Nature
27
27
The Method by whicr the Causes of the Present and Past Conditions of Oroanic Nature are to be Discovered.-The Orioination of Livino Beinos . . or Livino
The Perpetuation of Livino Beinos, Hereditary Transmission and Variation 44
The Conditions of Existence as Affectino the Per- petuation of Livino Beinos 80 64 64
A Critical Examination of the Position of Mr. Darwin's Work, "On tite Orionn of Sfecies," in Relation to the comflete theory of the Causes of the Phenomena of Orony of
Nature98
ESSAYS ON DARWIN'S " ORIGIN of SPECIES"-
The Darwinian Hypothesis
Time and Life 117
The Orioin of Species 131
Chiticisms on "The Orion of Species" 143
177On the Natural History of the Man-Like afes
evidence as to man's place in nature-
197
On tie Relations of Man to the Lower Animals
244
244
On Some Fossil Remains of Man 298
8 CONTENTS
ON THE ADVISABLENESS OF IMIPROVING NATURAL KNOWLEDGE 335
ON THE STUDY OF ZOOLOGY 351
GEOLOGICAL CONTEMPORANEITY AND PERSIST- ENT TYPES OF LIFE 373
CORAL AND CORAL REEFS 395
YEAST 413
THE CIRCULATION OF THE BLOOD 431

ON OUR KNOWLEDGE of the

CAUSES OF THE PHENOMENA of

ORGANIC NATURE

NOTICE
 TO THE FIRST EDITION

The Publisher of these interesting Lectures, having made an arrangement for their publication with Mr. J. A. Mays, the Reporter, begs to append the following note from Professor Huxley:-
" Mr. J. Aldous Mays, who is taking shorthand notes of my 'Lectures to Working Men,' has asked me to aliow him, on his own account, to print those Notes for the use of my audicice. I willingly accede to this request, on the understanding that a notice is preflxed to the effect that I have no ieisure to revise the Lectures, or to make alterations in them, beyond the correction of any important error in a matter of tact."

THE PRESENT CONDITION OF ORGANIC NATURE

When if was my duty to consider what subject I would seiect for the six lectures * which I shall now have the pleasure of deiivering to you, it occurred to me that I could not do better than endeavour to put hefore you in a true light, or in what I might perhaps with more modesty call, that which I conceive myseif to be the true light, the position of a hook which has heen more praised and more abused, perhaps, ihan any hook which has appeared for some years ;-I mean Mr. Darwin's work on the Origin of Species. That work, I doubt not, many of you have read ; for I know the inquiring spirit which is rife among you. At any rate, all of you will have neard of it,-some hy one kind of report and some hy another kind of report; the attention of all and the curiosity of all have heen prohahiy more or iess excited on the subject of that work. All I can do, and all I shall attempt to do, is to put hefore you that kind of judgment which has heen formed hy a man, who, of course, is liahie to judge erroneously ; hut at any rate, of one whose business and profession it is to form judgments upon questions of this nature.

And here, as it will always happen when dealing with an extensive subject, the greater part of my course-if, indeed, so smali a numher of iectures can he properly called a course -must he devoted to prelimiuary matters, or rather to a statement of those facts and of those principies which the work itself dwells upon, and brings more or less directiy before us. I have no right to suppose that all or any of you are naturalists; and even if you were, the misconceptions and misunderstandings prevalent even among naturalists on these matters would make it desirabie that I should take the course I now propose to take, -that I should start from the heginning,-that I should endeavour - To Working Men, at the Museum of Practical Geology, 1863.
to point out what is the existing state of the organic worid, -that I shouid point out its past condilion,-that I shoulid state what is the precise nature of the undertaking which Mr. Darwin has taken in hand; that I shouid endcavour to show you what are the oniy micthods by which that undertaking can be brought to an issue, and to point out to you how far the author of the work in question has satisfled those conditions, how far he has not satisfled them, how far they are satisflabic by man, and how far they are not satisflabie by man.

To-night, in taking up the first part of 'his question, I shail endeavour to put before you a sort of broad notion, of our knowiedge of the condition of the living worid. There are many ways of doing this. I might deal with it pictorially and graphicaily. Foilowing the example of Humboidt in his Aspects of Nature, I might endeavour to point out the infinite variety of organic iife in every mode of its esistence, with reference to the variations of climate and tbe iike; and such an attempt would be fraught with interest to us ali; but considering the subject before us, sucb a course wouid not be that best calcuiated to assist us. In an argument of this kind we must go further and dig deeper into the matter; we must cadeavour to iook i_{1} : to the foundations of iiving Nature, if I may so say, and discover the principies invoived in some of her most secret operations. I propose, therefc. is, in the first piace, to take some ordinary animal with wbicb you are all familiar, and, by easily comprehensibie and obvious exampies drawn from it, to show what are the kind of probiems which iliving beings in general iay before us; and I shall tben sbow you that the same probiems are iaid open to us by all kinds of living beings. But, Arst, let me say in what sense I have used the words "organic nature." In speaking of the causes which iead to our present knowledge of organic nature, I have used it almost as an equivalent of the word "living," and for this reason,that in almost ail living beings you can distinguisb severai distinet portions set apart to do particular things and work in a parlicular way. These are termed "organs," and the whoie togetber is calied "organic." And as it is universally characteristic of tbem, this term "organic" has been very conveniently empioyed to denote the wbole of iiving nature,-the whole of tbe piant world, and tbe whoie of the animal worid.

Few animals can be more familiar to you than that whose skeieton is shown on our diagram. You need not bother yoursclves with this "Equus caballus" written under It, that is only the Latin name of It, and does not make it any better. It simply means the common Horse. Suppose we wish to understand all abou* the Horse. Our first object must be to study the structure of the animal. The whoie of his body is inclosed within a hide, a skin covered with hair; and if tnat hide or skin be taken off, we find a great mass of fiesh, or what is technically calied muscie, being the substance which by its power of contraction enabies the animal to move. These muscles move the hard parts one upon the othcr, and so give that strength and power of motion which renders the Horse so usefui to us in the performance of those services in which we employ hir 1.

And then, on separating and removing the whole of this skin and flesh, you have a great serics of bones, hard structures, bound together with ligaments, and forming the skeieton which is represented here.
In that skeieton there are a number of parts to be recogniztid. The iong series of boncs, beginning from the skuil and euding in the tail, is calied the spine, and those in front are the ribs; and chen there are two pairs of limbs, one bcfore and one behind; and there are what we all know as the fore-iegs and the hind-legs. If we pursue our researches into the interior of this animal, we find within the framework of the skeleton a great cavity, or rather, I should say, two great cavities, - one cavity beginning in the skuil and running through the neck-bones, along the spine, and ending in the tail containing the brain and the spinal marrow, which are extremely important organs. The second great cavity, commencing with the mouth, contalns the gullet, the stomach, the iong intestine, and all the rest of those internal apparatus which are essential for digestion; and then in the same great cavity, there are lodged the heart and all the great vessels going from It; and, besides that, the organs of respiration-the lungs; and then the kidneys, and the organs of reproduction, and so on. Let us now endeavour to reduce this notion of a horse that we now have, to some such kind of simple expression as can be at once, and without difficuity, retained in the mind, apart from all minor details. If I make a transverse section,
that is, if I were to saw a dead horse across, I sbould find that, if I left out the detalis, and supposing I took my section through tbe anterior region, and throngh the forelimbs, I should hava bere this kind of section of the body (Fig. 1). Here would be the upper part of the animalthat great mass of bones that we spoke of as the spine (a, Fig. 1). Here I shouid have the alimentary canal (b, Flg. 1). Here I should have the heart (c, Fig. 1); and then you see, there would be a kind of double tube, the whole being inclosed within the hide; the spinal marrow would be placed in the upper tube (a, Fig. 1), and in the lower tube (d d, Fig. 1) there would be the

Fio 1. alimentary canal (b), and the heart (c); and here I shall have tlee ief!s procceding from cach slde. For simplicity's sake, Irepresent them merely as stumps ($c e$, Flg. 1). Now that is a horse-as mathematiclans would say-reduced to lis most simpie expression. Carry tbat in your minds, if you picase, as a simplifed idea of the structure of the Horse. The considerations wbich I have now put beforc you belong to what we technically call tbe ' Anatomy' of the Horse. Now, suppose we go to work upon these several parts,-flesh and hair, and skin and bone, and lay open tbese various organs with our scalpels, and examine them by means of our magnifyingglasses, and see wbat we can make of them. We sball find that the flesh is made up of bundles of strong fibres. The brain and nerves, too, we shall find, are made up of flbres, and tbese queer-icoking things that are called ganglionic corpuscles. If we take a slice of the bone and examine it, we shall find that it is very like this dlagram of a section of the bone of an ostrich. though differing, of course, in some details; and if we take any part whatsoever of the tissue, and examine It, we shall find it all bas a minute structure, visible only under the microscope. All tbese parts constitute microscopic anatomy or 'Histology.' These parts are constantly being cbanged; every part is
constantly growing, decaying, and heing replaced during the life of the animal. The tissuc is constantiy replace 1 hy new matcrial ; and if you go hack to the young state of the tissuc in the case of muscle, or in the case of skin, or any of the organs I havo mentioned, you will find that they all como under the same condition. Every one of these microscopic fliaments and nbres (I now spcak merely of the general character of the whole proce - --every one of these parts-could be traced down to somo modificution of a tissue which can be readily divided into iltile particies of fleshy matter, of that suhstancc which is composed of the chemical elements, carbon, hydrogen, oxygen, and nitrogen, having such a shape as this (Fig. 2). These particies, into which all primitiye tissucs hreak up, are. called ceils. If I wcre to make a scction of a plece of the skin of my hand, I should find that it was made up of these cells. If I examine the fihres which form the various organs of all living animais, I shourd find that all of them, at one time or other, had heen formed out of a substance consisting of similar eicments; so that you see, just as we reduced the whole body in the gross to that sort of simple exprcssion given in Fig. 1, so we may reduce the

Fig. 2 whoie of the microscopic structural clements to a form of even greater simplicity ; just as the plan of the whole hody may be so rep.esented in a sense (Fig. 1), so the primary structure of every tissue may he represented by a mass of ceils (Fig. 2).

Having thus, in this sort of general way, sketched to you what I may call, perhaps, the archiltecture of the body of the Horse (what we term technically its Morphology), I must now turn to another aspect. A horse is not a mere dead structure : it is an active, living, working machine. Hitherto we have, as it were, heen looking at a stcamengine with the fires out, and nothing in the hoiler; hut the body of the living animal is a beautifuly-formed active machine, and every part hes its different work to do in the working of that machine, which is what we call its life. The Horse, if you see him after his day's work is done, is cropping the grass in the felds, as it may be, or munching the oats in his stahie. What is he doing? His 'nws are working as a mill-and a very complex m :
grinding the corn, or crushing the grass to a pu:. As
soon as that operation has taken place, the lood is passed down to the stomach, and there it is mixed with the chemical fluld calied the gastric Juice, a substanee which has the pecullar property of making solubie and dissolving out the nutritious matter in the grass, and leaving behind those parts which are not nutritious; so that you have, first, the mili, then a sort of chemical digester; and then the lood, thus partially dissolved, is carried back by the muscular contractions of the intestines into the hinder parts of the body, whlie the soluble portions are taken up into the blood. The blood is contained in a vast system of plpes, spreading through the whole body, connected with a fercs-pump,-the heart,-whil h, by its posil 1 and by the contractions of its valves, keeps the blood constantly ircuiating in one direction, never aliowing it to rest; alic then, by mcans of this cireuiation of the blond, laden as it :- with the products of digestion, the skin, the flesh, the hair, and every other part of the body, draws from It that whieh it wants, and every one of these organs derives those materlais whieh are necessary to enable it to do its work.

The aetion of each of these organs, the performance of each of these various duties, involve in their operation a continuai absorption of the matters neeessary for their support, from the biood, and a constant formation of waste products, which are returned to the blood, and conveyed by it to the fungs and the kidneys, whieh are organs that have aliotted to them the offce of extracting, separating, and getting rld of these waste products; and thus the general nourishment, labour, and repair of the whole machine is kept up with order and reguiarity. i, ut not only is it a machine which feeds a d appropriate: io its own suppo. t the nourishment neccssary to its existenceit is an englne for locomotive purposes. The Horse desires to go from one place to anuther ; and to enabic It to do this, it has those strong contraetile bundles of museies attached to the bones of its limbs, which are out in motion by means of a sort of telegraphic apparatus formed by the braln and the great spinal cord running through the spine or baekbone; and to this spinal eord are attaehed a number of fibres termed nerves, which proceed to ali parts of the strueture. .By means of these the eyes, nose, tongue, and skin-ali the organs of per-ception-transmit impressions or sensations to the braln,
which acts as a sort of great central telegraph-offce, receiving impressions and sending messages to all parts of the body, and putting in motion the museics nccessary to accompilsh any movement that may be desired. So that you have here an extremely complex and beautifuliyproportioned machine, with ali its parts working harmoniously together towards one common object-the preservation of the life of the animai.

Now, note this : the Horse makes up its waste by feeding, and its food is grass or oats, or perhaps other vegetabie products ; therefore, in the long run, the source of ali this compiex machinery lles in the vegetabie kingdom. But where does the grass, or the oat, or any other plant, obtain this nourishing food-producing material? At first it is a ilttic seed, which soon begins to draw into itscif from the earth and the surrounding air matters which in themseives contain no vital propertics whatever; It absorbs into its own substance water, an inorganic body; It draws into its substance earbonic acid, an inorganie matter ; and ammonia, another inorganic matter, found in the ir ; and then, by some wonderful chemical process, the detalls of which chemists do not yet understand, though they are near foreshadowing them, it combines them int one substance, which is known to us as 'Protein,' a complex compound of carbon, hydrogen, oxygen, and nitrogen, which alone posscsses the property of manifestin's vitality and of permanentiy supporting animal ilfe. So that, you see, the waste products of the animal econony, the cffetc materiais which are continually being thrown ofl by all llving beings, in tho form of organle matters, are constantiy repiaced by suppiles of the neeessary repairing and rebullding materials drawn from the plants, which in their turn manufacture them, so to speak, by a mysterious combination of those same inorganic materials.

Let us trace out the history of the Hurse in another direction. After a certain tinie, as the resuit of siekness or disease, the effeet of aceldent, or the conscquence of oid age, sooner or iater, the animal dies. The multitudinous sperations of this beautifui meehanism flag in their perlormance, the Horsc loses its vigour, and after passing through tbe curious series of changes comprised in its formation and preservation, it flnaliy deeays, and ends its ilfe by going back into tbat inorganie worid from which all but an inappreciable fraction of its substance was
derived. Its bones become mere carbonatc and phosphate of lume ; the matter of Its flesh, and of lts other parts, becomes, in the long run, converted into carbonic acid, into water, and into ammonla. You will now, perhaps, understand the curlous relation of the animal with the plant, of the organic. with the inorganic world, which Is shown in thls diagram.
The plant gathers these inorganic materials together and makes them up into Its own substance. The animal cats the piant and appropriates the nutritious portions to its own sustenance, rejects and gets rid of the useiess matters ; and, finally, the anlmal itself dles, and Its whoie body is decomposed and returned Into the inorganic worid. There is thus a constant circulation from one to the other, a continual formation of organle life from Inorganic matters, and as constant a return of the matter of iiving bodles to the inorganic worid; so that the materlals of which our bodles are composed are largeiy, in all probabillty, the substances whlch constltuted the matter of iong extinct creations, but which have in the Interval constituted a part of the inorganle world.
Thus we come to the conclusion, strange at first sight, that the Matter constituting the living world is Identical with that which forms the inorganic world. And not less true Is It that, remarkabie as are the powers or, in other words, as are the Forces which are exerted by living beings, yet all these forces are either Identical with those which exist in the inorganic world, or they are convertible into them; I mean in just the same sense as the researches of physical philosophers bave shown that heat is convertible into electriclty, that eiectricity is convertible into magnetism, magnetlsm into mechanical force or chemical force, and any one of them with the other, each being measurable in terms of the other,-even so, I say, that great law is appilcable to the iiving worid. Conslder why is the skeieton of this horse capabie of supporting the masses of flesh and the various organs forming the living body, unless it is because of the action of the same forces of cohesion which combincs together the partlcles of matter composing this plece of chalk?. Wbat is there in the muscular contractile power of the animal but the force which Is expressible, and which is in a certain sense convertible, into the force of gravity which it overcomes? Or, if you go to more hidden processes, in what does the process
of digestion differ from those processes which are carried on in the laboratory of the chemist? Even if we take the most recondite and most complex operations of anlmal iffe-those of the nervous system, these of late ycars have been shown to be-I do not say identical in any sense with the electrical processes-but this has been shown, that they are in some way or other associated with them ; that is to say, that every amount of nervous action is accompanied by a certain amount of electrical disturbance in the particies of the nerves in which that nervous action is carried on. In this way the nervous action is related to electricity in the same way that heat is related to electricity; and the same sort of argument which demonstrates the INORGANIC WORLD.

two latter to be related to one another shows that the nervous forces arc correlated to electricity; for the experiments of M. Dubois Reymond and others have shown that whenever a nerve is in a state of excitement, sending a message to the muscles or conveying an impression to the brain, there is a disturbance of the electrical condition of that nerve which does not exist at oiher times; and there are a number of other facts and phenomena of that sort ; so that we come to the broad conclusion that not only as to living matter itseif, but as to the forces that matter cxerts, there is a close relationship between the organic and the inorganic world-the difference between them arising from the diverse combination and disposition of identical forces, and not from any prinary diversity, so far as we can see.

I said jusi now that the Horse eventually died and became converted into the same inorganic substances
from whence ali but an inappreciable fraction of its substance demonstrably originated, 80 that the actual wanderings of matter are as remarkable as the transmigratlons of the soul fabled by Indian tradition. But before death has occurred, in the one sex or the other, and \ln fact in both, certain products or parts of tbe organlsm have been set free, certain parts of the organisms of the tro sexes bave come into contact wlth one anotber, and from that conjunction, from that union which then takes piace, there resuits the formation of a new being. At stated times tbe mare, from a particular part of the interior of ber body, called the ovary, gets rid of a minute particle of matter comparabie \ln ail essential respects with tbat which we called a ceil a ilttic while since, which cell contains a kind of nucieus in lts centre, surrounded by a clear space and ${ }^{\circ}$ by a vlscid mass of protein substance (Iig. 2) ; and thougb it ls different in appearance from the eggs which we are mostiy acquainted with, it ls realiy an egg. After a time this minute particie of matter, which may oniy be a smali fraction of a grain \ln weight, undergoes a serles of changes,-wonderful, compiex changes. Finaliy, upon its surface there is fashioned a little elevation, which afterwards becomes divided and marked by a groove. The iateral boundarles of tbe groove extend upwards and downwards, and at iength give rise to a double tube. In the upper smaller tube the splnal marrow and brain are fashioned; in the lower, the alimentary canal and heart, and at iength two pairs of buds shoot out at the sldes of the body, whlch are the rudiments of the limbs. In fact a true drawing of a section of the embryo in this state would in ali essentiai respects resembie that dlagram of a horse reduced to its simpiest expresslon, which I first placed before you (Fig. 1).

Siowly and gradually these changes take place. The wbole of the body, at first, can be broken up lnto "cells," which become \ln one piace metamorphosed into muscle, -in another place into gristle and bone,-ln anotber piace into flbrous tissue,-and \ln another into hair ; every part becoming gradually and slowiy fashloned, as if tbere were an artificer at work \ln each of tbese complex structures that we have mentloned. This embryo, as it is called, then passes into other conditions. I shouid tell you that tbere is a time wben the embryos of nelther dog, nor borse, nor porpoise, nor monkey, nor man, can be distinguished by any
essential feature one from the other; there is a time when they each and all of them resembic this one of the Dog. But as deveiopment advances, ali the parts acquire their speciaiity, tili at iength you have the embryo converted into the form of the parent from which it started. So that you see, this living animal, this horse, begins its existence as a minute particie of introgenous mattcr, which, being suppiied with nutriment (derived, as I have shown, from the inorganic worid), grows up according to the special type and construction of its parents, works and undergoes a constant waste, and that waste is made good by nutriment derived from the inorganic worid; the waste given off in this way being directly added to the inorganic worid; and eventually the animal itseif dies, and, by the process of decomposition, its whoie body is returned to those conditions of inorganic matter in which its substance originated.

This, then, is that which is true of cvery iiving form, fr: the lowest piant to the highest animal-to man himse... You might define the iife of every one in exactly the same terms as those which 1 have now used; the difference betwcen the highest and the iowest being simpiy in the compiexity of the deveiopmental changes, the variety of the structural forms, the diversity of the physiological functions which are exerted by each.
If I were to take an oak tree as a specimen of the plant worid, I should find that it originated in an acorn, which, too, commenced in a celi ; the acorn is piaced in the ground, and it very speedily begins to absorb the inorganic matters I have named, adds enormousiy to its bulk, and we can see it, year after year, extending itseif upward and downward, attracting and appropriating to itself inorganic materials, which it vivifies, and eventualiy, as it ripens, gives off its own proper acorns, which again run the same course. But I need not multipiy exampies,-from the high st to the lowest the essential features of life are the same, as I have described in each of these cases.
So much, then, for these particuiar features of the organic worid, which you can understand and comprehend, so long as you conflne yourseif to one sort of living being, and study that only.

But, as you know, horses are not the oniy living creatures in the world; and again', horses, iike all other animals, have certain limits-are confined to a certain area on the surface of the earth on which we live,-and, as that is the
simpler matter, I may take that first. In its wild state, and before the discovery of America, wben the natural state of things was interfered with by the Spaniards, the Horse was oniy to be found in parts of the earth which are known to gcograpbers as the Oid Worid; that is to say, you might meet with horses in Europe, Asia, or Africa; but there were none in Australia, and there were none whatsoever in the whole continent of America, from Labrador down to Cape Horn. This is an empirical fact, and it is what is calied, stated in the way I have given it you, the 'Geographical Distribution' of the Horse.

Wby horses shouid be found in Europe, Asia, and Africa, and not in America, is not obviovs; the expianation that the conditions of ilfe in America are unfavourabie to their existence, and tbat, therefore, they bad not been created there, evidently does not apply; for wben the invading Spanlards, or our own yeomen farmers, conveyed horses to these countries for their own use, they were found to thrive weli and muitipiy very rapidiy ; and many are even now running wild in those countries, and in a perfectiy animal what we have here done for the Horse,-that is, to mark off and distinguisb the particular district or region to which each beionged; and supposing we tabuiated all these results, that would be calied the Geograpbical Distribution of animals, while a corresponding study of piants would yield as a result the Geographical Distribution of I pass on from that now, as I mcreiy wished to explain to jou what I meant by the use of the term ' Geographical Distribution.' As I said, tbere is another aspect, and a mucb more important one, and that is, the relations of the various animels to one another. The Horse is a very welldefined matter-of-fact sort of animal, and we are all pretty you, that it resembies very mucb no other member of the animal kingdom, except perhaps the Zebra or the Ass. But iet me ask you to look along these diagrams. Here is the skeieton oi the Horse, and here tbe skeicton of the Dog. You will notice that we bave in the Horse a skull, a backbone and ribs, shoulder-biades and haunch-bones. In the fore-ilmb, one upper arm-bone, two fore arm-bones, wrist-bones (wrongly calied knee), and middie hand-bones, ending in the three bones of a finger, the iast of which is

OF ORGANIC NATURE

sheathed in the horny hoof of thic fore-foot: in the hindlimb, one thigh-honc, two ieg-hones, ankle-hones, and middle foot-hones, ending in the three bones of a toe, the last of which is encased in the hoof of the hind-foot. Now turn to the Dog's skeleton. We find identically the same hones, hut more of them, there heing more toes in each foot, and hence more toe-boncs.

Well, that is a very curious thing ! The fact is that the Dog and the Horse-when one gets a look at them without the outward impediments of the skin-are found to be made in very much the same sort of fashion. And if I were to make a transvcrse section of the Dog, I should find the same organs that I have already shown you as forming parts of the Horse. Weil, here ls another skeieton-that of a kind of Lemur-you sce he has just the same hones; and if I were to make a transverse sectlon of it, it would io just the same agaln. In your mind's eye turn him round, so as to put hls hackhone in a positlon inclined obiiquely upwards and forwards, just as in the next three diagrams, which represent the skeletons of an Orang, a Chimpanzee, a corilla, and you find you have no troubic in identifylng ihe bones throughout; and iastly turn to the end of the series, the diagram representing a man's skeieton, and still you find no great structural feature essentially altered. There are the same hones in the same reiations. From the Horse we pass on and on, with gradual steps, until we arrlve at last at the highest known forms. On the other hand, take the other llne of dlagrams, and pass from the Horse downwards in the scale to this fish; and still, though the modifications are vastly greater, the essentlal framework of the organization remain. unchanged. Here, for instance, is a Porpoise; here ls its strong hackbone, with the cavity running through it, whlch contains the splnal cord; here are the rlbs, here the shoulder-hlade; here is the iittle short upper-arm hone, here are the two forearm bones, the wrist-hone, and the finger-boncs.

Strange, is it not, that the Porpoise should have in this queer-iooking affair-its flapper (as it is called), the same fundamental eiements as the fore-ieg of the Horse or the Dog, or the Ape or Man ; and here you will notice a very curlous thing, -the hi' limhs ar ' absent. Now, iet us make another jump. see is the forearm, in th. 's gu to the Codifs : here you arge pectoral fin-carrying your
mind's eye onward from the flapper of the Porpolse. And here you have the hinder limbs restoriu in the shape of these ventral fins. If'I were to make a transverse section of this, I should find just the same organs that we have before noticed. So that, you see, there comes out this strange conclusion as the resuit of our investigations, that the Horse, when examined and compared with other animals, is found by no means to stand alone in nature; but that there are an enormous number of other creatures which have backbones, ribs, and legs, and other parts arranged in the same general manner, and in all their formation exhibiting the same broad pecuiliarities.

I am sure that you cannot have pecuilarities. this extremeiy eiementary exposition of the struciural reiations of animals, without seeing what I have been driving at all through, which is, to show you that, step by step, naturaiists have come to the idea of a unity of pian, or conformity of construction, among animals which appeared at flrst sight to be extremeiy dissimilar.

And here you have evidence of such a unity of pian among ali the animals which have backbones, and which we technicaliy cali Vritebrata. But there are muititudes of other animals, such as crabs, iobsters, spiders, and so on, winich we term Annulosa. In these I could not point out to you the parts that correspond with those of the Horse, -the backbone, for instance,-as they are constructed upon a very different principic, which is aiso common to ali of them ; that is to say, the Lobster, the Spider, and the Ccntipede, have a common pian running through their whoie arrangement, in just the same way that the Horse, the Dog, and the Porpoise assimilate to each other.

Yet other creatures-wheiks, cuttleflshes, oysters, snails, and all their tribe (Mollusca)-resembie one another in the same way, but differ froin both Vertebrata and Annulosa; and the like is true of the animals called Coelenterata (Polypes) and Protozoa (animaicuies and sponges).

Now, by pursuing this sort of comparison, naturalists have arrived at the conviction that there are,-some think flve, and some seven,-but certainiy not more than the iatter number-and perhaps it is simpier to assume flve-distinct pians or constructions in the whoic of the animai world; and that the hundreds of thousands of species of creatures on the surface of the earth, are all reducible to those five, or, at most, seven, pians of organization.

But can we go no further than that? When one has got so tar, one is tempted to go on a step and inquire whether we cannot go back yet further and bring down the whole to modifications of one primordial unit. The anatomist cannot do this; but if he cail to his aid the study of deveiopment, he can do it. For we shail find that, distinct as those plans are, whether it be a porpoise or man, or iobster, or any of those other kinds I have mentioncd, every one begins its existence with one and the same primitive form,-that of the cgg, consisting, as we have seen, of an introgenous substance, having a smali particle or nucieus in the centre of it. Furthermore, the earlier changes of each are substantialiy the same. - And it is in this that lies that true "unity of organization" of the animal kingdom which has been guessed at and fancied for many years; but which it has been ieft to the present time to be demonstrated by the carefui study of deveiopment. But is it possibie to go another step further stili, and to show that in the same way the whoie of the organic worid is reducible to one primitive condition of form? Is there among the piants the same primitive form of organization, and is that identical with that of the animal kingdom? The repiy to that question, too, is not uncertaln or doubtful. It is now proved that every piant begins its existence under the same form ; that is to say, in that of a ccii-a particie of introgenous mattcr having substantiaily the same conditions. So that if you trace back the oak to its first germ, or a man, or a horse, or iobster, or oyster, or any other animal you choose to name, you shali find cach and all of these commencing their existence in forms essentialiy similar to each other: and, furthermore, that the first processes of growth, and many of the subsequent modifications, are essentialiy the same in principie in almost ali.

In conclusion, ict me, in a few words, recapituiate the positions which I have laid down. And you must understand that I have not been talking mere theory; I have bcen speaking of matters which arc as piainiy demonstrabie as the commonest propositions of Euclid-of facts that must form the basis of ali specuiations and beliefs in Biological science. We have gradualiy traced down ail organic forms, or, in other words, we have analyzed the present condition of animated naturc, untii we found that each specics took its origin in a form similar to that under which all the others commence their existence. We have

26 PRESENT CONDITION OF ORGANIC NATURE

found the whole of the vast array of living forms, with which we are surrounded, constantly growing, increasing, decaying, and disappearing; the animal constantiy attracting, modifying, and applying to its sustenance the matter of the vegetabie kingdom, which derived its support from the absorption and conversion of inorganic matter. and reproduction, that it unsal is this absorption, waste, tainty that there is ieft in mo may be said with perfect cermoment a milifonth part of the of our bodies at the present originaliy formed ! We have matter of which they were is the living matter derived from, again, that not only that the forces of that mat from the inorganic worid, but with and convertibic into those are ali of them correiative
This, for our present purse of inorganic nature. present condition of organicposes, is the best view of the you: it gives you the enic nature which I can lay beforc which you must fill up by great outlines of a vast picturc, In the next fecture I your own study. to go back into the past, and endeavour in the same way manner the history of ilfe in to sketch in the same broad manner the history of ife in epochs preceding our own.

THE PAST CONDITION OF ORGANIC NATURE

In the lecture which I deilivered last Monday evening, I endeavoured to sketch in a very brief manner, but as well as the time at my disposal would permit, the present condition of organic nature, meaning by that iarge titie simpiy an indication of the great, broad, and general principies which are to be discovered by those who iook attentively at the phenomena of organic nature as at present dispiayed. The general result of our investigations might be summed up thus: we found that the multipiicity of the forms of animal life, great as that may be, may be reduced to a comparatively few primitive pians or types of construction; that a furtber study of the deveiop. ment of those different forms revealed to us that they were again reducibie, untll we at iast brought the infinite diversity of animal, and even vegetabie ilfe, down to the primordial form of a single cell.
: We found that our analysis of the organic worid, whet her animals or piants, showed, in the long run, that they migbt both be reduced into, and were, in fact, composed of the same constituents. And we saw that the piant obtained the materials constituting its substance by a peculiar combination of matters belonging entireiy to the inorganic worid; that, then, the animal was constantiy appro1 'ing the nitrogenous matters of the piant to its own nourishment, and returning them back to the Inorganic worid, in what we spoke of as its waste; and tbat, finaliy, when the animal ceased to exist, the constituents of its body were dissoived and transmitted to that inorganic worid whence they had been at first abstracted. Tbus we saw in both tbe biade of grass and the horse but the same eiements differcntly combined and arranged. We discovered a continual circuiation going on,-the piant drawing in the eiements of inorganic nature and combining them into food for the animal creation ; the animal borrow-
ing from the plant the matter for its own support, glving ofl during its iffe products which returned immediatciy to the inorganic worid; and that, eventualiy, the constitucnt matcrials of the whole structure of both animals and piants were thus returned to their original source: there was a constant passage from one state of existence to another, and a returning back again.
Lastiy, when we endeavoured to form some notion of the nature of the forces cxereised by iiving beings, we discovered that they-if not capabie of being subjected to the same minute analysis as the constituents of those beings themscives-that they were corrclative with-that they were the equivalents of the forces of inorganic nature -that they wcre, in the sense in whicb the term is now used, convertibie with them. That was our general resuit. And now, leaving the Present, I must endeavour in the same manner to put before you the facts that are to be discovered in the Past history of the living worid, in the past conditions of organic nature. We have, to-night, to deal with the faets of that history-a history invoiving periods of time before which our mere human records sink into utter insignificance-a history the variety and pbysical magnitude of whose events cannot even be foreshadowed by the history of human iife and human phenomena-a bistory of the most varied and compicx eharacter.

We must deal with the history, then, in the frst piace, as We should deal with ali other histories. The historical student knows that his first business shouid be to inquire record in validity of his evidence, and the nature of the record in which the evidence is containcd, that he may the able to form a proper estimate of the correctness of the conclusions which have been drawn from that evidence. of a matter wist pass, in the first piace, to the consideration diseussion. We must seem forcign to the question under and the credibiity of the e upon tife nature of the records, look io the completeness evidence they contain; we must themselves, before we turn incompieteness of those records reveal. The question of the that whieh tiney contain and happily for us, will not the er-Nibility of the history, in this history, unlike those of mumat consideration, for, no eaviliing, no differenecs of humian origin, there can be the facts of winich it is made as to the reality and truth of and are iald out cleariy before us the facts state themselves,

But, although one of the greatest dimcuities of the historical student is cleared out of our path, there are other dimcuities-dificuities in rightly interpreting the facts as they are presented to us-which may be compared with the greatest dimeuities of any other kinds of historical atudy.

What is this record of the past history of the glohe, and what are the questions which are involved in an inquiry into its compicteness or incompicteness? That record is composed of mud; and the question which we have to investigate this evening resolves itseif into a question of the formation of mud. You may think, perhaps, that this is a vast step-of aimost from the subilme to the ridiculous-from the contempiation of the history of the pasi ages of the worid's existence to the consideraiton of the history of the formation of mudi But, in nature, there is nothing mean and unworthy of attention; there is nothing ridicuious or contemptihie in any of her works; and this inquiry, you will soon see, I hope, takes us to the very root and foundations of our suhject.

How, then, is mud formed ? Always, with some trifing exception, which I need not consider now-always, as the resuit of the action of water, wearing down and disintegrating the surface of the earth and rocks with which it comes in contact-pounding and grinding it down, and carrying the particles away to piaces where they cease to be disturbed hy this mechanical action, and where they can suhside and rest. For the ocean, urged by winds, washes, as we know, a iong extent of coast, and every wave, loaded as it is with particles of sand and gravei as it hreaks upon the shore, does something towards the disintegrating process. And thus, slowiy hut sureiy, the hardest roeks are gradually ground down to a powdery substance; and the mud thus formed, coarser or finer, as the case may be, is carried hy the rush of the tides, or currents, till it reaches the comparatively deeper parts of the ocean, in which it can sink to the hottom, that is, to parts where there is a depth of ahout fourteen or fifteen fathoms, a depth at which the water is, usualiy, neariy motionless, and in which, of course, the finer particies of this detritus, or mud as we call It, sinks to the hottom.
Or, agai.., if you take a river, rushing down from its mountain sources, brawili, over the stones and roeks that intersect its path, loosening, removing, and carrying with

THE PAST CONDITION

It in its downward course the pebbies and lighter matters from its banks, it crushes and pounds down the rocks and earths in precisely the same way as the wearing action of the sea waves. The matters forming the deposit are torn from the meuntain-side and whiried impetuously into the valiey, mure siowly over the pinin, thence into the estuary, and from the estuary they are swept into the sea. The coarser and heavier fragments are obvlousiy deposited frst, that is, as soon as the current begins to iose its force by becoming amalgamated with the stilier depths of the ocean, but the finer and lighter particles are carried further on, and eventualiy deposited in a deeper and stilier portion of the ocean.

It cleariy foliows from this that mud gives us a chrunoiogy; for it is evident that supposing this, which I now sketch, to be the sea bottom, and rijpposing this to be a coast-iine; from the washing action of the sea upon the rock, wearing and grinding it down into a sediment of mud, the mud wiil be carried down, and at length, deposited in the deeper parts of this sea bottom, where It will form a layer; and then, while that Arst layer is hardening, other mud which is coming from the same source wili, of course, be carried to the same place; and, as it is quite impossibie for it to get beneath the layer already there, it deposits itseif above it, and forms another layer, and in that way you gradualiy have layers of mud constantly forming and hardening one above the other, and conveying a record of time.
It is a necessary result of the operation of the faw of gravitation that the uppermost iayer shnili be the youngest and the lowest the oidest, and that the different beds shall be oider at any particuiar point or spot in exactly the ratio of their depth from the surfacc. So that if they were upheaved afterwards, and you had a series of these different iayers of mud, converted into sandstone, or Himcstone, as the case might be, you might be sure that the bottom layer was deposited nrst, and that the upper layers were formed afterwards. Herd that the upper first step in the history-these Here, you see, is the Idea of time.

The whole surface of the earth, I speak broadiy, and leave out minor qualifications,-is made up of such layers of mud, so hard, the majority of them, that we call them rock, whether limestone or sandstone, or other varietles
of roek. And, seeing that every part of the erust of the earth is made up in this way, you might think that the determination of the ehronology, the living of the time which it has taken to form thls erust is a comparatlvely simple matter. Take a broad average, aseertain how last the mud is deposited upon the bottom of the sea, or In the estuary of rivers; take it to be an Ineh, or two, or three inches a year, or whatever you may roughly estimate It at ; then take the total thiekness of the whole scries of stratined roeks, which geologists estimate at twelve or thirteen miles, or about seventy thousand feet, make a sum in short division, divide the total thilekness by that of the quantity deposited in one year, and the result will, of course, glve you the number of years which the crust has taken to form.
Truly, that looks a very slmple process 1 It would be so except for certain dimcultics, the very first of whleh is that of finding how rapidly sediments are deposited; but the maln dimeulty-a dimeulty which renders any certaln calculations of such a matter out of the question -is thls, the sea-bottom on which the dcposit takes place is continually shifting.

Instead of the surface of the earth being that stable, fixed thing that it is popularly belleved to be, belng, In common parlance, the very emblem of fixlty itself, it is incessantly moving, and 1 s , In faet, as unstable as the surface of the sea, exeept that its undulations are infinitely slower and enormously higher and deeper.

Now, what is the effect of thls oscillation? Take the ease to which I have prevlously referred. The finer or coarser sedments that are carrled down by the eurrent of the river, wili only be carrled out a certain distance, and eventually, as we have already seen, on reaching the stiller part of the ocean, will be deposited at the bottom.

Let $\mathrm{C} \boldsymbol{y}$ (Flg. 4) be the sea-bottom, $\boldsymbol{y} \mathrm{D}$ the shore, $\boldsymbol{x} \boldsymbol{y}$ the sea-level, then the coarser deposit will subside over the region B, the finer over A, while beyond A there will be no deposit at all ; and, consequently, no record will be kept, slmply because no deposit ls golng on. Now, suppose that the whole land, C, D, whlch we have regarded as statlonary, gocs down; as it does so, both A and B go further out from the shore, which will be at $y^{1}, x^{1} y^{1}$ belng the new sea-level. The consequence will be that the layer of mud (A), belng now, for the most part, further
than the force of the current is strong enough to convey even the finest debris, will, of course, recelve no more deposits, and havlng attained a certain thlckness, will now grow no thicker.

We should be misled in taking the thlckness of that layer, whenever lt may be exposed to our vicw, as a record of time in the manner in whlch we are now regarding this subject, as lt would give us only an imperfect and partlal record: it would seem to represent too short a period of time.

Suppose, on the other hand, that the land (C D) had gone on rising slowiy and gradualiy-say an inch or two Inches in the course of a century,-what would be the practical effect of that movement? Why, that the sediment A and B which has been already dcposited, would

eventually be brought nearer to the shore-ievel, and again subjected to the wear and tear of the sea; and dlrectly the sea begins to act upon it, it would of course soon cut up and carry lt away, to a greater or iess extent, to be re-deposited further out.

Well, as thcre ls, In all probahility, not one single spot on the whole surface of the earth, which has not been up and down in this way a great many tlmes, it follows that the thickness of the deposits formed at any particular spot cannot be taken (even supposing we had at first obtained correct data as to the rate at which they took piace) as affording reliabie information as to the period of time occupled in lts deposit. So that you see lt is absoiutely nccessary from these facts, seeing that our record entirely conslsts of accumulations of mud, superimposed one on the other; seeing in the next place that any particular spots on which accumulations have occurred, have been constantly moving up and down, and sometimes out of
the reach of a deposit, and at other times its own deposit broken up and carried away, it foliows tbat our record must be in the highest degree imperfect, and we have hardly a trace ieft of thick dcposits, or any definite knowledge of the area that they occupier in a great many cascs. And mark this i That supposirig syen iliat the whoie surface of the earth had been 'ccessibie to the geoiogist, -that man had had access to :-very part of the earth, and had made sections of the whoie, :nd put thim ali together, -even then his record must of necessity ie imperfect.
But to how much has man rcaliy access? If you wili look at this Map you wiil see that it represents the proportion of the sea to the earth : this coioured part indicates all the dry land, and this other portion is the water. You will notice at once that the water covers three-fifths of the whoie surface of the globe, and lias covered it in the same manncr ever since man has kept any record of his own observations, to say nothing of the minute period during which he has cultivated geoiogical inquiry. So that three-fifths of the surface of the earth is shut out from us because it is under the sea. Let us iook at the other two-fifths, and see what arc the countries in which anything that may be termed searching geological inquiry has been carried out : a good dcai of France, Germany, and Great Britain and Ireiand, bits of Spain, of Italy, and of Russia, have been examined, but of the whole great mass of Africa, except parts of the southern extremity, we know next to nothing; iittle bits of India, but of the greater part of the Asiatic continent nothing; bits of the Northern American States and of Canada, but of the greater part of the continent of North Amcrica, and in stili larger proportion, of South America, nothing i

Under these circumstances, it foilows that even with reference to that kind of imperfeet information which we can possess, it is oniy of about the ten-thousandth part of the accessibie parts of the earth that has been examincd properiy. Therefore, it is with justice that the most thoughtfui of those who arc concerned in these inquirics insist continuaily upon the imperfection of the geoiogical record; for, I repcat, it is absoiutely necessary, from the nature of things, that that record shouid be of the most fragmentary and imperfect character. Unfortunately this circumstance has been constantly forgotten. Men of science, ilke young colts in a fresh pasture, are apt to be

THE PAST CONDITION

exhilarated on being turned into a new fieid of inquiry, and to go off at a hand-gallop, in total disregard of hedges and ditches, iosing sight of the real iimitation of their inquiries, and to forget the extreme imperfection of what is really known. Geologists have imagined that they could tell us what was going on at ali parts of the earth's - surface during a given epoch; they have talked of this deposit being contemporaneous with that deposit, untII, from our ittle local histories of the changes at iimited spots of the earth's surface, they have constructed a universal history of the globe as fuli of wonders and portents as any other story of antiquity.
But what does this attempt to construct a universal history of the globe imply? It implies that we shall not only have a precise knowledge of the events which have occurred at any particular point, but that we shall be able to say what events, at any one spot, took piace at the same time with those at other spots.
Let us see how far that is in the nature of things practicabie. Suppose that here I make a section of the Lake of Killarney, and here the section of another lake-that of Loch Lomond in Scotland for instance. The rivers that flow into them are constantly carrying down deposits of mud, and beds, or strata, are being as constantly formed, one above the other, at the bottom of those lakes. Now, there is not a shadow of doubt that in these two iakes the iower beds are all older than the upper-there is no doubt about that; but what does this tell us about the age of any given bed in Loch Lomond, as compared with that of any given bed in the Lake of Killarney ? It is, indecd, obvious that if any two sets of deposits are separated and disconthuous, there is absolutely no means whatever given you by the nature of the deposit of saying whether one is much younger or older than the other; but you may say, as many have said and think, that the case is very much altcred if the beds which we are comparing are continuous. Suppose two beds of mud hardened into rock,-A and B are seen in section (Fig. 5).

- Well, you say, it is admitted that the lowermost bed is always the older. Very well; B, therefore, is oider than A. No doubt, as a whole, it is so ; or if any parts of the two beds which are in the same vertical ine are compared, it is so. But suppose you take what seems a very natural step further, and say that the part a of the sound reasoning? If you find any record of changes toling place at b, did they occur before any events which took piace while a was being deposited? It looks ali very plain sailing, indeed, to say that they did; and yet there is no proof of anything of the kind. As the former Director of this Institution, Sir H. De la Beche, long ago showed, this reasoning may invoive an entire faliacy. It is extremeiy possibie that a may have been deposited ages before b. It is very easy to understand how that can be. To return to Fig. 4; when A and B were deposited, they were substantially contemporaneous; A being simpiy the finer deposit, and B the coarser of the same detritus or waste of iand. Now suppose that that sea-bottom goes down (as shown in Fig. 4), so that the

Fig. 5.
fine deposit is carried no fart:- in a, forming the bed A^{1}, and the coarse no farther :.adn b, forming the bed B^{1}, the resuit wili be the formation of two continuous beds, one of fine sediment ($A A^{1}$) over-lapping another of coarse sediment (B B ${ }^{1}$). Now suppose the whole sea-bottom is raised up, and a section exposed about the point A^{1}; no doubt, at this spot, the upper bed is younger than the iower. But we should obviously greatiy err if we concluded that the mass of the upper bed at A was younger than the iower bed at B; for we have just seen that they are contemporaneous deposits. Still more should we be in error if we supposed the upper bed at A to be younger than the continuation of the iower bed at $\mathrm{B}^{\mathbf{1}}$; for \mathbf{A} was deposited iong before $\mathrm{B}^{\mathbf{1}}$. In fine, if, instead of comparing immediateiy adjacent parts of two beds, one of which iles upon another, we compare distant parts, it is quite posibibie that the upper may be any number of years oider than the under; and the under any number of years younger than the upper.

THE PAST CONDITION

Now you must not suppose that I put this before you for the purpose of raising a paradoxical difficulty ; the fact is, that the great mass of deposits have taken place in sea-bottoms wbich are gradualiy sinking, and have been formed under the very conditions I am here supposing.
Do not run away with the notion that this subverts the principle I iald down at first. The error iles in extending a principie which is perfectiy applicable to deposits in the same vertical ine to deposits which are not in tbat reiation to one another.

It is in consequence of circumstances of this kind, and of utbers that I might mention to you, that our conclusions on and interpretations of the record are really and strictly only valid so iong as we confine ourseives to one vertical section. I do not mean to tell you that there are no quaifying circumstances, so that, even in very considerable arcas, we may safeiy speak of conformably superimposed beds being older or younger than others at many different points. But we can never be quite sure in coming to that conclusion, and especially we cannot be sure if tbere is any break in their continuity, or any very great distance between the paints to be compared.
Well now, so mucb for the record itself,-so much for its imperfections,-so much for the conditions to be observed in interpreting it, and its chronological indications, the moment we pass beyond the iimits of a vertical ii.ear section.

Now iet us pass from the record to that which it contains, -from the book itself to the writing and the figures on its pages. This writing and these figures consist of remaits of animals and piants which, in the great majority remains have lived and died in the very spot majority of cases, them, or at ieast in the immetion which we now find all of you be aware-and I reediate vicinity. You must lecture-that there are varerred to the fact in my last at the hottom of the sea. soor $\cdot \cdot r$ later die, and these creatures, iike all otbers, at the bottom; and then ir shells and hard parts ile constantly brought down the fine mud which is being wear and tear of the sea by rivers and the action of the them from any furtber covers them over and protects course, as in process of change or alteration; and, of and solidified, the shells of the mud becomes bardened and firmly imbedded in the these animals are preserved and irmiy imbedded in the limestone or sandstone which

OF ORGANIC NATURE

 is being thus formed. You may see in the galieries of the Museum upstairs specimens of limestones In which, such fossil remains of existing animals are imbedded. There are some specimens 'in which turtles' eggs have been imbedded in calcareous sand, and before the sun had hatched mud, and thus have been preserved and fossilized.Not only does this process of imbedding and fossilization occur with marine and other aquatic animals and piants, but it affects those iand animals and piants which are drifted away to sea, or become buried in bogs or morasses; and the animals which have been trodden down by their feliows and crushed in the mud at the river's bank, as the herd have come to drink. In any of these cases, the organisms may be crushed or be mutilated, before or after putrefaction, in such a manner that perhaps only a part will be ieft in the form in which it reaches us. It is, indeed, a most remarkable fact, that it is quite an exccptional cese to find a skoleton of any one of all the thousands of wild land animals that we know are constantly being kilied, or dying in the course of nature: they are preyed on and devoured by other animals or die in places There are other animals existing in the sea, the sheils of which form exceedingly large deposits. You are probably aware that before the attempt was made to iay the Atlantic telegraphic cabie, the Government empioyed vesseis in making a series of very careful observations and soundings of the bottom of the Atiantic ; and although, as we muss all regret, up to the present time that project has not succeedcd, we have the satlsfaction of knowing that it yielded some most remarkabie results to science. The Atlantic Ocean had to be sounded right across, to depthe of several miles in some places, and 'he nature of its botths was carefully ascertained. Weil, now, a spoce bottom 1,000 miles wide from east Weil, now, a space of about know how many from nost to west, and I do not exactiy or 700 . miles, was carefuliy to south, but at any rate 600 tbat over the whoie of examined, and it was found fine chalky mud is being immense arca an excessively entirely made up of animg deposited; and this deposit is in this part of the oreals whose hard parts are deposited acquiring soildity and chalky limestone. Thus eoming metamorphosed into a chalky limestone. Thus, you see, it: is quite possible

THE PAST CONDITION

In this way to preserve unmistakable records of antmal

 and vegetabic life. Whenever the sea-bottom, by some of those undulations of the earth's crust that I have referred to, becomes upheaved, and sections or borings are made, or pits are dug, then we become able to examine the contents and constituents of these ancient sea-bottoms, and find out what manner of animals ifved at that period.Now it is a very important consideration in its bearing on the compieteness of the record, to inquire how far the remains contained in these fossiliferous imestones are abic to convey anything iike an accurate or compiete account of the animals wbich were in existence at the time of its formation. Upon that point we can form a very clear judgment, and one in which tbere is no possibie room for any mistake. There are of course a great number of animals-such as jelly-fishes, and other animals-without any hard parts, of which we cannot reasonabiy expect to ind any traces whatever: there is notbing of them to after they are removed from tbe water, they dry up to a mere notbing; certainly they are not of a nature to ieave any very visibie traces of their existence on such bodies as chalk or mud. Then again, iook at iand animals; it is, as I have said, a very uncommon thing to find a iand animal entire after death. Insects and otber carnivorous animals very speedily pull them to pieces, putrefaction takes piace, and so, out of the hundreds of thousands that are known to die every year, it is the rarest thing in the worid to see one imbedded in such a way that its remains would be preserved for a iengtbened period. Not oniy is this the case, but even when animai remains have been safeiy imbeddcd, certain natural agents may wholly destroy and remove them.
Almost all the hard parts of animals-the bones and so on-are composed chiefly of phosphate of lime and carbonate of lime. Some years ago, I bad to make an inquiry into the nature of some very curious fossils sent to me from the Nortb of Scotiand. Fossils are usualiy hard bony structures that have become imbedded in the way I have described, and have gradually acquired the nature and solidity of the body with whicb they are associated; but in this case I bad a series of holes in some. pleces of rock, and nothing else. Those holes, however,

OF ORGANIC NATURE

had a certain definite shape about them, and when I got a skiful workman to make castings of the interior of these holes, I found that they wcre the impressions of the joints of a backbone and of the armour of a great reptile, tweive or more feet long. This grcat beast had died and got buried in the sand, the sand bad graduaily hardened over the bones, but remained porous. Water had trickled througb it, and tbat water being probably cbarged with a superfluity of carbonic acid, had dissoived ull the phosphate and carbonate of ime, and the bones themselves had thus decayed and entireiy disappeared; but as the sandstone happened to have consoildated by that time, the pandstone shape of the bones was retalned that time, the precise remained soft a iittle ionger, we should that sandstone had whatsocver of the existence of thould bave known nothing encased.

How certain it is that a vast number of animals which have existed at one period on this earth bave entireiy perished, and left no trace whatever of their forms, may be proved to you by other considerations. There are iarge tracts of sandstone in various parts of the world, in whicb nobody has yct found anything but footsteps. Not a bone of any description, but an enormous number of traces of footsteps. Tbere is no question about tbem. There is a whoie valley in Connecticut covered with these footsteps, and not a single fragment of the animals which made them bas yet been found. Let me mention another case wbile upon that matter, which is even more surprising than those to which I have yct referred. There surprising stone formation near Oxford, at a piace. There is a limewhich has yielded the remains of pace called Stonesfield, mammalian animals, and up to certain very interesting rightly, there have been to this time, if I recollect lower jaws, and not a bit of seven specimens of its bones nor skull, or any part anytbing else, neither iimbof the whoie system ! part whatever; not a fragment to imagine that the beasts course, it would be preposterous The probablity is, as Dr. of his observations on . Buckland showed, as the result that the lower jaw, not being dogs in the river Tbames, to the bon is of the bead, ang secured by very firm ligaments easily be knocked off, or and being a weigbty affair, would as it floated in water in might drop away from the body jaw would thus be deposited state of decomposition. The jaw would thus be deposited inmediately, while the rest

THE PAST CONDITION

of the body would float and drift away altogether, ultimately reaching the sca, and perhaps becoming destroycd. The jaw becomes covered up and preserved in the river silt, and thus it comes that we have such a curlous circumstance as that of the lower Jaws in the Stonesfieid slates. So that, you see, faulty as these laycrs of stone in the earth's crust are, defcctive as they necessarliy are as a record, the account of contemporaneous vital phenomena presented by them is, by the necessity of the case, infinitcly more defective and fragmentary.

It was necessary that I shouid put all this very strongiy before yon, because, otherwise, you might have been icd to think differently of the completeness of our knowiedge by the next facts I shali state to you.

The researchcs of the last three-quarters of a century have, in truth, revealcd a wonderful richness of organic life in those rocks. Certainiy not fewer than thirty or forty thousand different species of fossilis have been discovered. You have no more ground for doubting that these creatures rcally ilved and died at or near the piaces In which we find them than you have for like scepticism about a sheli on the sea-shore. The evidence is as good In the one case as in the othcr.

Our next business is to look at the general character of these fossil remains, and it is a subject which it will be requisite to sonsider carefuliy; and the first point for us is to examine how much the extinct Flora and Fauna as a whole-disfegarding altogether the succession of their constituents, of which I shall speak afterwardsdiffer from the Flora and Fauna of the present day ;how far they differ in what we do know about them, leaving altogether out of consideration speculations based on what we do not know.

I strongly imagine that if it were not for the pecuilar appearance that fosslized animais have, any of you might readily waik through a museum which contains fossil remains mixed up with those of the present forms of IIfe, and I doubt very much whether your uninstructed eyes would lead you to see any vast or wonderful difference between the two. If you looked ciosely, you would notice, in the first place, a great many things very like animals with which you are acquainted now : you would see differences of shape and proportion, but on the whoie a close similarity.

I explalncd what I meant by Onders the othcr day, when I described the animal kingdom as being divided in sub-kingdoms, classes, and orders. If you divide the animal kingdom into orders, you will find that there are about one hundred and twenty. The number may vary on one side or the other, but this is a fair estimate. That is the siri total of the orders of ali the animals which we know now, xad which have bsen known in past times, and icft reinalns behind.
Now, how many of those are absolutcly extinct ? That is to say, how many of these orders of animais have ilved al a former period of the wor!d's history, but have at present no representatives? Shat is the sense in which I meant to use the word "cxtinct." I mean that those animals did live on thls earth at one time, but have left no one of their kind with us at the present moment. So that estimating the number of extinct animais is a sort of way of comparing the past creation as a whole with the present as a whole. Among the mammalia and birds therc are none extinct ; but when we come to the reptiles there is a most wonderful thing: out of the eight orders, or thereahouts, which you can make among reptiles, onehalf are extinct. These diagrams of the plesiosaurus, the tchthyosaurus, the pterodactyle, give you a notion of some of these extinct reptiles. And here is a cast of the pterodactyle and bones of the ichthyosaurus and the piesiosaurus, just as fresh as if it had been recentiy dug up in a churchyard. Thus, in the reptile class, there are no less than half of the orders which are absolutely cxtinct. If we turn to the Amphibia, there was one extinct ordcr, the Labyrinthodonts, typified by the large salamander-like beast shown in this diagram.
No order of fishes is known to be extinct. Every fish that we find in the strata-to which I havc been referringcan be identified and piaced in one of the orders which exist at the present day. There is not known to be a single ordinal form of insect extinct. There are only two orders extinct among the Crustacea. There is not known to be an extinct order of these creatures, the parasitic and other worms; but there are two, not to say three, absoiutely extinct orders of this class, the Echinodermala; out of all thc orders of the Coelenterata and Prolozoa oniy one, the Rugose Corals.
So that; you see, out of somewherc about 120 orders of
animals, taking them altogether, you will not, at the outadde estimate, find above ten or a doren extinct. Summing up all the orders of animais which have left remalns behind them, you will not find above ten or a dozen which cannot be arranged with those of the present day; that is to say, that the difference does not amount to much more than ten per cent.: and the proportion of extinct orders of piants is still smaller. I think that that is a very - astounding, a most astonishing fact, seeling the enormous epochs of time which have elapsed during the constitution of the surface of the earth as it at present exists; It is, indeed, a most astounding thing that the proportion of extinct ordinal types should he so exceedingly small.
But now, there is another point of view in which we must look at this past creation. Suppose that we were to sink could succeed in making a section right through in the dirfern of New Zealand, I should find in each of the animals which I shough which I passed the remains of the others. First, or drift contalning the rould come upon heds of gravel clephant, rhinoceros, things to fall across in a:d cave tiger. Rather curious still, I should come upon a seadilly if If should dig lower clay, and in this, as you will of what we call the London are found remains of strill see in our galleries upstalrs, palms, and large troptrange cattle, remains of turtles, as you see the like of now only in with shell-fish such went below that, I should only in troplcal regions. If I there I should find something upon the chalk, and remains of lchthyosauri athing altogether different, the and so lorth.

I do not know what Mr. next, but prohably reckr. Godwin Austin would say comes more ichthyosaurl and containing more ammonites, and of other things ; and undes osauri, with a vast numher older rocks, containing number Ihat should meet with yet fishes; and in thus passing trers of strange shells and depths of the earth's crugg from the surface to the lowest vegetable lle which I should the forms of animal life and beds would, looking at should meet with in the successive the further that I went them hroadly, he the more differentas we, started with the clear pr, in other words, inasmuch we, started with the clear princlple, that in a series of
naturally-disposed mud heds the lowest are the oldest, we should come to thls result, that the further we go hack in time the more diference exists hetween the animal and vegetable life of an epoch and that which now exists. That was the conclusion to which I wished to bring you at the end of this Lecture.

The method by which the causes of The present and past conditions OF ORGANIC NATURE ARE TO BE discovered. - The origination of Living beings

In the two preceding lecturcs I have endeavoured to inquiry upon which we are engaged; and now, having thus aequired some conception of the Past and Present phenomena of Organic Nature, I must now turn to that which constitutes the great probiem which we have set before ourseives;-I mean, the question of what knowledge we have of the causes of thes phenomena of organic nature, and how such knowiedge is obtainabie.

Herc, on the threshoid of the inquiry, an objection meets us. There are in the worid a number of extremely worthy, well-mcaning persons, whosc judgments and opinions are entitled to the utmost respect on account of their sincerity, who are of opinion that Vitai Phenomena, and especialiy all questions reiating to the origin of vital phenomena, are questions quite apart from the ordinary run of inquiry, and are, by their very nature, piacinary of our reach. They say that ail these phature, placed out miraculousiy, or in some way tose phenomena originated ordinary course of nature, and that the different from the it to be futiie, not to say presumptuous, they conceive inquire i ito them.

To such sinere . that a question of earnest persons, I would oniy say, theoretical or speculative krcunds. to be sheived upon the story of the Sophist grcunds. You may remember in the most compiete and demonstrated to Diogenes couid not walk; that, in satisfactory manner that he bility ; and that Diogenes fact, all motion was an imposslup and walking round his refuted him by : imply getting man of science replies to tub. So, in the same way, the 41
gotting up and walking onward, and showing what science has done and is doing,-by pointing to that immense inass of facts which have been ascertained and systematized under the forms of the great doctrines of Morphology, of Deveiopment, of Distribution, and the ilke. He sees an enormous mass of facts and laws relating to organle belngs, which stand on the same good sound foundation as every other natural law ; and, therefore, with thls mass of lacts and laws before us, seelng that, as far as organic matters have hitherto been accesslble and studied, they have shown themseives capable of ylelding to scientifc investigatlon, we may accept thls as proof that order and law relgn there as well as in the rest of nature ; and the man of science says nothing to objectors of thls sort, but supposes that we can and shall walk to a knowledge of the origin of organle nature, in the same way that we have walked to a knowledge of the laws and princlples of the inorganle worid.

But there are objectors who say the same from Ignorance and III-will. To such I would reply that the objection comes ill from them, and that the real presumption, I may almost say the real blasphemy, In this matter, is in the attempt to limit that inquiry into the causes of phenomena which is the source of all human blessings, and from. which has sprung all human prosperity and progress; for, after $a^{\prime \prime}$ we can accomplish comparatively little; the imited range of our own faculties bounds us on every side,-the field of our powers of observation is small enough, and he who endeavours to narrow the sphere of our inquiries is only pursuing a course that is likely to produce the greatest harm to his fellow-men.

But now, asstuming, as we all do, I hope, that these phenomena are properly accessibie to inquiry, and setting out upon our search into the causes of the phenomena of organic nature, or, at any rate, setting out to discover how much we at present know upon these abstruse matters, the question arises as to what is to be our course of proceeding, and what method we must lay down for our guldance. I reply to that question, that our method must be exactly the same as that which is pursued in any other scientific inquiry, the method of scientific investigation being the same for all orders of facts and phenomena whatsoever.

I must dwell a llttie on this point, for I wish you to leave this room with a very clear conviction that. scientific

METHOD OF DISCOVERY

inventigation is not, as many peo

some kind of modern black art people seem to suppose, easily gather this impression from say that you might many persons speak of scientiom the manner in which inductive and deductive phillosic inquiry, or talk ahout the "Baconian philosophy." phlosophy, or the principies of vast numher of cants in this Io protest that, of the my mind, so contemptible world, there are none, to which is talked about the " as the pseudo-scientific cant To hear people talk about thentan phllosophy." a very great man he certain the great Chancellor,-and that it was he who had invented was,-you would think no such thing as sound reasoning belenee, and that there was Elizabeth, Of course you say, there the time of Queen true ; you perceive, on a moment cannot possibly be an idea is absurdly wrong. moment's refleetion, that such sort of impression,-I cannot and yet, so firmly rooted is this -the thing is too absurd to call it an idea, or coneeption, pietely does it exist at the he entertained, -but 80 com that this has heen a matter of of most men's minds, many years past. There are observation with me for knowing absolutely nothing are many men who, though they may he dealing, wish, neve subject with which author of some view with which thertheless, to damage the What they do, then, is not they think fit to disagree. about the subject, which one to 80 and learn something hest way of fairly dealing one would naturally think the originator of the view they with it; but they abuse the and wind up hy saying that, " question, in a general manner, principies and method of this, "After all, you know, the to the catoons of the Baconian phitior are totally opposed hody applauds, as a matter of philosophy." Then everymust he so. But if you were to course, and agrees that it of their applause, you would to stop them all in the middle the speaker nor his applauders coubably find that neither way it was so; neither the could tell you how or in what the slightest idea of what the one nor the other having of the "Baconian philosophy." mean when they speak You will understand, I hope, th desire to join in the outcry against I have not the slightest intellect, or the great genius of elther the morals, the He was undouhtedly a verys of Lord Chancellor Bacon. what they will of him ; hut great man, let people say did for philosophy, it would notwithstanding all that he
philosophy, it would be entircly wrong to suppose
that the methods of modern scientific inquiry originated with him, or with his age ; they originated with the first man, whoever he was ; and indeed existed long before him, for many of the essential processes of reasoning are exerted by the higher order of brutes as compieteiy and effectiveiy as hy ourseives. We see in many of the hrute creation the exercise of one, at ieast, of the same powers of reasoning as that which we ourseives empioy.
The method of scientiffc investigation is nothing hut the expression of the necessary mode of working of the human mind. It is simply the mode at which all phenomena are reasoned ahout, rendered precise and exact. There is no more difference, hut there is just the same kind of difference; hetween the mental operations of a man of science and those of an ordinary person, as there is hetween the operations and methods of a haker or of a butcher weighing out his goods in common scalcs, and the operations of a chemist in performing a difficult and compiex analysis hy means of his halance and finely-graduated weights. It is not that the actinn of the scaies in the one case, and the halance in the other, differ in the principies of their construction or manner of working; hut the beam of one is set on an infinitely finer axis than the other, and of course turns hy. the addition of a much smaller weight.
You will understand this better, perhaps, if I give you some famillar exampie. You have all heard it repeated, I dare say, that men of science work hy means of Induction and Deduction, and that by the heip of these operations, they, in a sort of sense, wring from Nature certain other things, which are called Natural Laws, and Causes, and that out of these, hy some cunning skill of their own, they huild up Hypotheses and Theories. And it is imagined by many, that the operations of the common mind can he by no means compared with these processes, and that they have to he acquired by a sort of special apprenticeship to the craft. To hear ali these large words, you would think that the mind of man of science must he constituted differently from that of his feliow men; hut if you will not he frightened hy terms, you will discover that you are quite wrong, and that all these terribie apparatus are being used hy yourseives every day and every hour of your lives.
r: There is 2 well-known incident in one of Moilere's plays, where the author makes the hero express unbainded
delight on being toid that he had been talking prose during the whole of his uife. s In the same way, I trust, that you will take comfort, and be delighted with yourseives, on the discovery that you have been acting on the principies of inductive and deductive philosophy during the same period. Prohably there is not one here who has not in the course of the day had occasion to set in motion a complex traln of reasoning, of the very same kind, though differing of course in degree, as that which a scientific man goes through in tracing the causes of natural phenomena.
A very trivial circumstance will serve to exemplify this. your take up one, and, on biting it, you find it is sour; you look at it, and see that it is hard and green. You take; The shopman offers you a third; but, before hiting it, you examine it, and find that it is hard and green, and you mmediately say that you wili not have it, as it must he sour, iike those that you have already tried.
Nothing can he more simpie than that, you think; but if you will take the troubie to analyze and trace out into its iogical elements what has been done hy the mind, you will he greatly surprised. In the first piace, you hava performed the operation of Induction. You found that, together with souruess hardness and greenness in appies go it was confirmed hy the second. so in the first case, and hasis, hut still it is enough to mak. True, it is a very small generalize the facts, and you expect an induction from; you where you get hardness and grect to find sourness in appies that a general iaw, that all hard and greess. You found upon and that, so far as it goes, is and green appies are sour ; having got your natural law is a perfect induction. Well, offered another apple which in this way, when you are you say, "All hard and green you find is hard and green,' is hard and green, therefore appler are sour; this apple train of reasoning is what iogicions appie is sour:". That has all its various parts and terms call'a syllogism, and minor premiss, and its conclusion, -its major. premiss, its further reasoning, which, if draion. And; by the help of exhibited in two or three drawn out, would have to he at your final determination, "I will syifogisms, you arrive So that, you see; you have, in the frot have that appie." luw by Induction, and upon the first piace, eatablished a

METHOD OF DISCOVERY

Deduction, and reasoned out the speclal conclusion of the particular case. Well now, suppose, having got your law, that at some time afterwards, you are discussing the quallties of apples with a friend: you will say to him, "It is a very curious thing,--but I find that all hard and green apples are sour !" Your frlend says to you, "But how do you know that ?" You at once repiy, "Oh, because I have tried It over and over again, and have always found them to be so." Weil, if we were talking science instead of common' sense, we should call that an Experimental Verlfication. And, if stlll opposed, you go further, and say, "I have heard from the people ln Somersctshire and Devonshlre, where a large number of appies are grown, that they have observed the same thing. It is also found to be the case In Normandy, and in North Amerlca. In short, I find it to be the unlversal experlence of mankind wherever attention has been directed to thsubject." Whereupon, your frlend, unless he is a very unreasonable man, agrees with you, and is convinced that you are quite right in the conclusion you have drawn. He believes, although perhaps he does not know he beileves it, that the more extensive Verlfications are,-that the more frequently experiments have been made, and resuits of the same kind arrived at,-that the more varled the conditions under which the same results have been attained, the more certain is the ultimate conclusion, and he disputes the questlon no further. He sees that the experiment has been trled under all sorts of conditions, as to time, place, and peopie, with the same resuit ; and he says with you, therefore, that the law you have lald down must be a good one; and he must belleve it.
In science we do the same thing;-the philosopher exerclses precisely the same facultes, though in a much. more delicate manner. In scientifle inquiry it becomes a matter of duty to expose a supposed law to every possible kind of verification, and to take care; moreover, that this is done intentionally, and not left to a mere accident, as in the case of the apples. And in'science, as \ln common life, our conflence in a law is in exact proportion to the absence of vartation in the result of our experimental verifications. For instance, if you let go your grasp of an article you may have in your hand, It will immediately tall to the ground.' That is a very common verification of ones of the best established laws: of nature-that of

METHOD OF DISCOVERY

gravitation. The method by which men of science establish the existence of that law is exactly the same as that by which we have established the trivial proposition about the sourness of hard and green appies. But we believe it in such an extensive, thorough, and unhesitating manner because the universal experience of mankind verifies it, and we can verify it ourseives at any time; and that is the strongest possibie foundation on which any natural law can rest.

So much by way of proof that the method of establishing laws in science is exactly the same as that pursued in common iife. Let us now turn to another matter (though really it is but another phase of the same question), and that is, the method by which, from the reiations of certain phenomena, we prove that some stand in the position of causes towards the others.

I want to put the case cleariy before you, and I will therefore show you what I mean by another familiar example. I will suppose that one of you, on coming down in the morning to the pariour of your house, finds that a tea-pot and some spoons which had been left in the room on the prevlous evening are gone,-the window is open, and. you observe the mark of a dirty hand on the window-frame, and perhaps, in addition to that, you notice he impress of a hob-nailed shoe on the gravel outside. All these phenomena have struck your attention lnstantly, and before two minutes have passed you say, "Oh, somebody has broken open the window, entered the room, and run off with the spoons and the tea-pot $1^{\prime \prime}$ That speech is out of your mouth in a moment. And you will probably add, "I know there has; I am quite sure of it !" You mean to say oxactly what you know; but in reality what you have said has been the expression of what is, in all essential particulars, an Hypothesis. You do not know it at all ; it is nothing but an hypothesis rapldly framed in your own mind ! And it is an hypothesis founded on a long train of inductions and deductions.

What are those inductions and deductions, and how have gou got at thls hypothesis? You have observed, In the first place, that the window is open; but by a train of reasoning invoiving many Inductions and. Deductions, you have probabiy arrived iong before at the General Law-and a very good one it: is--that windows do inot open of themseives; and you therefore conclude that
something has opened the window. A second general law that you have arrived at in the same way is, that tea-pots and spoons do not go out of a window spontaneously, and you are satisfled that, as they are not now where you left them, they have heen removed. In the third place, you look at the marise on the window-sill, and the shoe-marke outside, and you say that in all previous experience the former kind of mark has never been produced hy anything else but the hand of a human heing; and the same experience shows that no other animal hut man at present wears shoes with hob-nails on them such as would produce the marks in the gravel. I do not know, even if we could discover any of those "missing links" that are talked ubout, that they would heip us to any other conclusion i At any rate the law which states our present experience is strong enough for my present purpose. You next reach the conclusion, that as these kinds of marks have not heen left hy any other animals than men, or are llahle to he formed in any other way than by a man's hand and shoe, the marks in question have heen formed hy a man in that way. You have, further, a general law, founded on ohservation and experience, and that, too, $1 \mathrm{~s}, \mathrm{I}$ am sorry to say, a very universal and unimpeachable one,-that some men are thieves; and you assume at once from all these premisses-and that is what constitutes your hypothesis-that the man who made the marks outside and on the window-sill, opened the window, got into the room, and stole your tea-pot and spoons. You have now arrived at a Vera Causa;-you have assumed a Cause which it is piain is competent to produce all the phenomena you have ohserved. You can explain all these phenomena only by the hypothesis of a thief. But that is a hypothetical conclusion, of the justice of which you have no absolute proof at all; it is only rendered highly prohable hy a series of inductive and deductive reasonings.

I suppose your first action, assuming you are a man of ordinary common sense, and that you have established this hypothesis to your own satisfaction, will very likely he to go off for the pollce, and set them on the track of the burglar, with the view to the recovery of your property. But just as you are starting with this ohject, some person comes in, and on learning what you are about, says, "My good frlend, you are going on a great deal too fast How
do you know that the man who really made the marks took the spoons? It might have been a monkey that took them, and the man may have merely looked in afterwards." You would prohably reply, "Well, that is all very well, but you see it is contrary to all experfence of the way tea-pots and spoons are abstracted; so that, at any rate, your hypothesls is less probable that mine." While yout are talking the thing over in thls way, another friend arrlves, one of that good kind of people that I was talking of a llttle while ago. ' And he might say, "Oh, my dear slr, you are certalnly going on a great deal too fast: You are most presumptuous. You admlt that all these occurrences took place when you were fast asleep, at a time when you could not posslbly have known anything about What was taking place. How do you know that the laws of Nature are not. suspended during the night? It may ference in thls case." In point of fact, he. declares that strate the tresis ls one of which you cannot at all demonthe laws of Nature that you are by no means sure that when you are awake. kind of reasoning. cannot at the moment answer that you somewhat at a disadvanthat your worthy friend has convinced in your own minntage. You will feel perfectly right, and you say to himd, however, that you are quite be gulded by the natural probabillted friend, I cail only you will be kind enough to stand aside of the case, and if pass, I will.go and fetch the pollce.". W and permlt me to that your journey is successfulle.". Well, we will suppose meet . with a policeman ; that and that by good luck you found with your property on eventually the burglar is correspond to hls hand and his person, and the marks fury would conslder those facts a boots. Probably any verlfication of your hypothests, a very good experimental abnormal phenomena observ, touching the cause of the would act accordingly, observed: in your : pariour, and Now, in this supposititious case, I have taken phenomena of a very common kind, in order that you might see what are the different steps in an ordinary process of reasoning, If you will only take the trouble to analyze it carefully. All the operatlons I have described, you will see, are involved in the mind of any man of sense in leading him

METHOD OF DISCOVERY

to a conclusion as to the course he should trike in order to make good a robbery and punish the offender. I say that you are led, in that case, to your conclusion by exactly the same train of reasoning as that which a man of science pursues when he is endeavouring to discover the origin and laws of the most occult-phenomena. The process is, and always must be, the same; and precisely the same mode of reasoning was empioyed by Newton and Laplace in their endeavours to discover and define the causes of the movements of the heavenly bodies, as you, with your own common sense, would employ to detect a burglar. Tbe only difference is, that the nature of the inquiry being more abstruse, every step has to be most carefuliy watched, so that there may not be a single crack or flaw in your bypothesis. A flaw or crack in many of tbe hypotheses of daily life may be of little or no moment as affecting the general correctness of the conclusions at which we may arrive; but in a scientific inquiry a faliacy, great or smali, is always of importance, and is sure to be constantly productive of mischievous, if not fatal, resuits in the iong run.

Do not allow yourselves to be misled by the common. notion that an bypotbesis is untrustworthy simply because it is a.a hypothesis. It is often urged, in respect to some scientific conclusion, that, after all, it is only an hypothesis. But what more have we to guide us in nine-tenths of the most important affairs of daily life than hypotheses, and often very ill-based-ones? So tbat in science, where the evidence of an bypotbesis is subjected to tbe most rigid examination, we may rightly pursue the came course. You may bave hypotheses and hypotheses. A man may say, if be likes, that the moon is made of green cheese : that is an hypothesis. But anotber man, who has devoted a great deal of time and attention to the subject, and availed himself of the most powerful telescopes and the results of the observations of others,' declares that in his opinion it is probably composed of materials very similiar to those of which our own earth is made up: and that is also only an bypotbesis. But I' need not tell you that there is an enormous difference in the value or the two hypotheses. That one wbich is based on sound scientific knowledge is sure to bave a corresponding value ; and but little value Every great step in our progress in discovering causes has been made in exactly the same
way as that which I have detalled to you. A person observing the occurrence of certaln facts and phenomena asks, naturally enough, what process, what kind of operation will unravel and explain the mystery? Hence you have the scientific hypothesis ; and its value wlil be proportionate to the care and completeness with which its basis had been tested and verfied. It is in these matters as in the commonest affairs of practical life: the guess of the iool will he foliy, while the zuess of the wise man will contain wisdom. In all cases, you see that the value of the result depends on the patience and falthfulness with which the investigator appifes to his bypothesis every possible kind of verification.

I dare say I may have to return to this point hy-and-by ; hut having dealt thus far with our logical methods, I must now turn to something wblch, perbaps, you may consider more interesting, or, at any rate, more tangible. But in reality there are but few things that can he more impor. tant for you to understand than the mental processes and the means by whicb we obtain scientific conclusions and theories.* Having granted that the inquiry is a proper one, and having determined on the nature of the methods we are to pursue and which only can lead to success, I must now turn to the consideration of our knowledge of the nature of the processes. which have resulted in the present condition of organic nature.

Here, let me say at once, lest some of you misunderstand me, that I have extremely ilttle to report. The question of how the present condition of organic nature came ahout, resoives itself into two questions. The first is: How has organic or Hiving matter commenced its existence? And the second is: How has it been perpetuated? On the second question I shall have more to say bereafter. But on tbe first one, what I now have to say will be for the most part of a negative cbaracter.

If you consider what kind of evidence we can have upon this matter, it will resoive itself into two kinds. We may have historical cvidence and we may have experimental evidence. It is, for exampie, conceivable, that inasmuch as the hardened mud which forms a considerable portion

- Those who wish to study fully the doctrines of which I have Mr. John Stuart Mili's Syetem of Logic.

ORIGINATION OF LIVING BEINGS

of the thickness of the earth's crust contains faithtul records of the past forms of life, and Inasmuch as these difier more and more as we go further down,- it is possible and concelvable that we might come to some particular bed or stratum which should contaln the remains of those creatures with which organic life began upon the earth. And if we did so, and if such forms of organic life were preservabie, we should have what I would call historical evidence of the mode in which organle ilfe began upon this planet. Many persons will teli you, and indeed you will find it stated in many works on geology, that this has been done, and that we really possess such a record; there are some who imagine that the earilest forms of ilfe of which we have as yet discovered any record, are in truth the forms in which animal life began upon the glohe. The grounds on which they base that supposition are these :That if you go through the enormous thickness of the earth's crust and get down to the oider rocks, the higher vertebrate animals-the quadrupeds, birds, and fishes-cease to be found; beneath them you find only the invertebrate animals; and in the deepest and lowest rocks those remains become scantier and scanticr, not in any very gradual progression, however, until, at length, in what are supposed to be the oldest rocks, the animal remains which are found are almost always confined to four forms,-Oldhamia, whose precise nature is not known, whether plant or animal ; Lingula, a kind of molluse; Triliobites, a crustacean animal, having the same essential pian of construction, though differing in many detalls from a lobster or crab; and Hymenocaris, which is also a crustacean. So that you have all the Fauna reduced, at this period, to four forms: one a kind of animal or plant that we know nothing about, and three undoubted animals-two crustaceans and one mollusc.

I think, considering the organization of these mollusca and crustacea, and looking at their very complex nature, that it does indeed require a very: strong imagination to concelve that these were the first created of all living things. And you must take into consideration the fact that we have not the slightest proof that these which we call the oldest beds are really 80 : 1 repeat, we have not the slightest proof of it. When you find in some places that in an enormous thickness of rocks there are but very scanty traces of life, or absolutely none at all ; and that if other parts of the world rocks of the very same formation
are crowded with the records of living forms ; I think it is imposslbie to place any reliance on the supposition, or to feel oneself Justifed in supposing that these are the forma In which Ife first commenced. I have not time here to enter upon 'he technical grounds upon which I am ied to this en..-busion,-that could hardly be done properiy in half a dozen lectures on that part alone;-I must content myseif with saying that I do not at all believe ianat these are the oldest forms of life.

I turn to the experimental side to see i/hat evidence we have there. To enabie us to say that we know anything about the experimental origination of organization and life, the inveatigator ought to be abie to take inorganic matters, such as carbonic acid, ammonia, water, and salines, in any sort of inorganic combination, and be abla to bulld them up into Protein matter, and that that Protein matter ought to begin to live in an organic form. That, nobody has done as yet, and I suspect it will be a iong White before anybody does do it. But the thing is by no means so impossible as it iooks; for the rescarches of moadern chemistry have shown us-I won't say the shown the Anger-post, if I may so say, they have fead to it. anger-post pointing to the road that may

It is not many years ago-and you must recoliect that Organic Chemistry is a young science, not above a coupie of generations old,-you must not expect too much of it ; it is not many years ago since it was sald to be perfictiy impossibie to fabricate any organic compound; that is to say, any non-mineral compound which is to be found in an organized being. It remained so for a very iong period : but it is now a considerabie number of years since a dis: tinguished foreign chemist contrived to labricate Urea, substance of a very compie: :haracter, which forms one of the waste products of animal structures. And of iate yeare a number of other compounds, such as. And of iate years others, have been added to the such as Butyric Acid, and . that chemistry is an enorm the list. I need not tell you indicate; all I wish to point distance from the goal I means safe to say that that out to you is, that it is by no day. It may be that. it is goal may not be reached one the conditions requisite to the impossibie for us to produce must speak modestly about the origination of life; but we Science has put her apout the matter, and recollect that

ORIGINATION OF LIVING BEINGS

ladder. Truly he would be a bold man who would venture to predict where she will be filty years hence.

There is another inquiry which bears indirectly upon this question, and upon which I must say a lew words. You are all of you aware of the phenomena of what is called spontaneous generation. Our forefathers, down to the seventeenth century, or thereabouts, all imagined, in perfectly good falth, that certain vegetabio and animal fornis gave birth, in the process of their decomposition, to insect life. Thus, if you put a piece of meat in the sun, and allowed it to putrefy, they conceived that the grubs which soon began to appear were the result of the action of a power of spontaneous generation which the meat contained. And they could give you receipts for making various animal and vegetable preparations which would produce particuiar kinds of animals. A very distinguished Italian naturalist, named Redi, took up the ruestion, at a time when overybody believed in it; among others our own great Harrcy, the discoverer of the circuiation of the blood. You wili constantiy find his name quoted, however, as an opponent of the doctrine of spontaneous generation; but the fact is, and you will see it if you will take the troubio to look into hls works, Harvey believed it as profoundly as any man of his time; but he happened to enunciate a very curious proposition-that every living thing came from an egg; he did not mean to use the word in the sense in which wo now empioy it, he oniy meant to say that overy Ilving thing originated in a ilttle rounded partlcie of organized substance; and it is from this circumstance, probabiy, that the notion of Harvey having opposed the doctrine originated. Then came Redi, and he proceeded to upset the doctrine in a very simple manner. He merely covered the piece of meat with some very fine gauze, and then he exposed it to the same conditions. The result of this was that no grubs or insects were produced; he proved that the grubs originated from the insects who came and deposited their eggs in the meat, and that they were hatched by the heat of the sun. By this kind of Inquiry he thoroughly upset the doctrinc of spontaneous generation, for hls time at least.

Then came the discovery and application of the microscope to scientific inquiries, which showed to naturalists that besides the organisms which they alrcady knew as living beings and plants, there were an immense number

58

 ORIGINATION OF LIVING BEINGSof minute things which could be obtained apparentis almost at will from decaying vegetable and antmal forme. Thus, if you took some ordinary black pepper or some hay, and steeped it in water, you would find in the course of a few days that the water had become impregnated with an immense number of animalcules swimmin: whout in all direetions. From facts of this kind naturalists were led to revive the theory of spontaneous reneration. They were headed here by an English nnturalist,-Needham,-and afterwards in France by the learned Buflon. They sald that these things were absolutely begotten in the water of the decaying substances out of wifich the infusion was made. It did not matter whether you took animal or vegetable matter, you had only to steep it in water and expose it, and you wouid soon have pienty of animalcules. They made an hypothesis about this whieh was a very fair one. Thev sald, this matter of the animal world, or of the higher pients, appears to be dead, but in reallty it has a sort of um life about it, which, if it is placed under fair conditions, will cause it to break up into the forms of these little animaicuies, and they will go through their iives in the same way as the animal or plant of which they once formed a part.
The question now became very hotly debated. Spallanzani, an Italian naturalist, took up opposite views to those of Needham and Buffon, and by means of ecrtain experiments he showed that it was quite possibie to stop "Wich it was contained. "OhI" said his opponents; " but what do you know you may be doing when you heat some property of the air requisite for the spontaneous generation of the animaleules."
However, Spallanzani's views were supposed to be upon the right side, and those of the others fell into discredit ; aithough the fact was that Spallanzani had not made good; his views. Well, then, the subject continued to be revood from time to time, and experiments were made be revived persons; but these experiments were made by several factory. It was found that if yere not altogether satisanimalcuies would appear if it you put an infusion in which a vessei and boiled it, and then sealed uped to the air into vessei, so that no air, save such as had up the mouth of the could reach its contents, that then bo been heated to $212{ }^{\circ}$.

ORIGINATION OF LIVING BEINGS

be found; but if you took the same vessel and exposed the intusion to the alr, then you would get animaleules. Furthermore, it was found that if you connected the mouth of the vessel with a red-hot lube in such a way that the alr would have to pass through the tube before reaching the infusion, that then you would get no animalcules. Yot another thing was notieed: If you took two nasks containing the same kind of infusion, and left one entirely exposed to the air, and in the mouth of the other placed a ball of cotton wool, so that the air would have to niter Itself through it before reaching the infusion, that then, although you might have pienty of animalcules in the frst alask, you would certalnly obtain none from the second.

These experiments, you see, all tended towards one conelusion-that the infusoria were developed from Hittio minute spores or eggs which were constantly floating in the atmosphere, which lose their power of germination if subjected to heat. But one observer now made another experiment, which seemed to go entirely the other way, and puzzled him altogether. He took some of this boiled infusion that I have been speaking of, and by the use of a mercurial bath-a kind of trough used in laboratorieshe deftly finverted a vessel containing the Infusion Into the mercury, so that the latter reached a little beyond th: level of the mouth of the inverted vessel. You see that \mathbf{r}. thus had a quantity of the Infusion shut off from any; possible communication with the outer air by being inverted upon a bed of mercury.
He then prepared some pure oxygen and nitrogen gases, and passed them by means of a tube going from the outside of the vessel, up through the mercury into the infusion; so that he thus had it exposed to a perfectly pure atmosphere of the same constituents as the external alr. Of enurse, he expected he would get no infusorial animalcules at all in that infusion ; but, to his great dismay and discomfltu... he found he almost always did get them.
Furthermore; it has been found that experiments made in the manner described above answer well with most infusions ; but that if you fill the vessel with boiled milk, and then stop the neck with cotton-wool, you will have infusoria. So that you see there were two experiments that brought you to one kind of concluston, and three to another; which was a most unsatisfactory state of thlngs to arrive at in a scientifie inquiry. very hotly discussed in France. There was M. Pouchet, a professor at Rouen, a very learned man, hut certainly not a very rigid experimentalist. He puhilished a number of experiments of his own; some of which were very ingenious, to show that if you went to work in a proper way, there was a truth in tbe doctrine of spontaneous generation. that M. Pouchet took up this question, because it induced a distinguisbed French chemist, M. Pasteur, to take up the question on tbe other side; and he has certainly worked it out in the most perfect manner. I am glad to say, too, that he bas published his researches in time to enabie me to give you an account of them. He verifled all the experiments which I have just mentioned to you-and then finding those extraordinary anomalies, as in the case of discover their nature. In the case of milk he found it to de a question of temperature, Milk in a fresh state is but this very slight degree of alkalinity seems to have the effect of preserving the organisms which fall into it from the air from being destroyed at a temperature of 212° which is the boiling point. But if you raise the temperature 10° wben you boll it, the milk hehaves iike everything else; and if: the air, witb which it comes in contact, after heing boiled at this temperature, is passed through a red-bot tube, you will not get a trace of organisms.
He then turned bis attention to the mercury bath, and found on examination tbat the surface of the mercury was almost always covered with a very fine dust. He found matters; that from being constantly exposed to the alr, organisms from the ammense number of these infusorial he felt tbat the case was Well, under these circumstances was not what it bad appeared to clear, and tbat the mercury to the admission of these org to M. Schwann to be,-a bar it acted as a reservoir from organisms; but that, in reality, diatciy : supplied with the which the infusion was immepuzzicd him. But not others, M. Pastent with expiaining the experiments of pleteiy. He said to went to work to satisfy himself completeiy. He said to bimseif : "il my view is right; ond

If, in point of fact, all these appearances of spontaneous generation are altogether due to the falling of minute germs suspended in the atmosphere,-why; I ought not oniy to be able to show the germs, but I ought to be abie to catch and sow them, and produce the resulting organisms." He , accordingly, constructed a very ingenious apparatus to enabie him to accompiish this trapping of this "germ dust" in the air. He fixed in the window of his room a glass tube, in the centre of which he had piaced a ball of guncotton, which, as you all know, is ordinary cotton-wooi, which, from having been steeped in strong acid, is converted into a substance of great expiosive powcr. It is also solubie in alcohol and ether. One end of the glass tube was, of course, open to the external air; and at the other end of it he piaced in aspirator, a contrivance for causing a current of the external air to pass through the tube. He kept this apparatus going for four-and-twenty hours, and then removed the dusted gun-cotton, and dissoived it in alcohol and ether. He then ailowed this to stand for a few hours, and the resuit was, that a very fine dust was gradually deposited at the bottom of it. That dust, on being transferred to the stage of a microscope, was fouind to contain an enormous number of starch grains. You know that the materials of our food and the greater portion of piants are composed of starch, and we are constantly making use of it in a variety of ways, so that there is always a quantity of it suspended in the air. It is these starch grains which form many of those bright specirs that we see dancing in a ray of light sometimes. But besides these, M. Pasteur found also an immense dumber of other organic substances such as spores of fungi, which had been floating about in the air and had got caged in this way.

He went farther, and said to himseif, "If these realiy are the things that give rise to the appearance of spon taneous generation, I ought to be abie to take a bail of this dusted gun-cotton and put it into one of my vesseis, containing that bolled infusion which has been kept away from the air, and in which no infusoria are at present deveioped, and then, if I am right, the introduction of this gun-cotton will give rise to organisms."
Accordingly; he took one of these vessels of infusion, which had been kept eighteen months, without the least appearance of life, and by a most ingenious contrivance,

62

 ORIGINATION OF LIVING BEINGS he managed to break it open and introduce such a ball of gun-cotton; without allowing the infusion or the cotton been subjected to a red heat, and in tweinty-four hours he had been hithection of inding all the indications of what succeeded in catching the germs aneous generation. He had in the way he had anticipated.It now struck him that the truth of his conclusions might be demonstrated without all the apparatus be had employed. To do this, he took some decaying animal or vegetable suhstance, such as urine, which is an extremely decomposable substance, or the juice of yeast, or perhaps some other artlicial preparation, and filled a vessel having a long tuhular neck, with lt: He then boiled the llquid It open at the end. appearance of spontaneous infion then gave no trace of any might be left, as all the germs generation, however long it the heginning of the bent in the air were deposited in close to the vessel, and all neck. He then cut the tube free and direct access; and the ordinary air to bave appearance of organlsms in it the result of that was the been allowed to stand long enong soon as the infusion had of tbose it recelved from the agh to allow of the growth eigbt hours. The result. of air, whicb was about fortyproved, therefore, in the most M. Pasteur's experiments the appearances of spontane conclusive manner, tbat all nothing more than the deposeous generatlon arose from wblch were constantly feposition of the germs of organisms To thls conclantify floating in the air. that if that were the cause, the objection was made, such an enormous number of then the air would contain he a continual fog.: - But M of these germs, that it would not there \ln anything like the Pasteur rcplied that they are and tbat an exaggerated vine number we might suppose; ject ; he showed that thei chance heen held on that subs Iffe appearing in infuisions, ditions under whicb they are depend entirely on the conto the ordinary atmosphere exposed. If they are exposed may have organisms appearing us, why, of course, you hand, If they are exposed to air from. But, on the other some very quiet cellar, you will oftem a great height; or from of life:

ORIGINATION OF LIVING BEINGS

So that M. Pasteur arrived at last at the clear and definite result, that all these appearances are like the case of the worms in the piece of meat, which was refuted by Redi, simply germs carried by the air and deposited in the liquids, in which they afterwards appear. For my own experiments before us, we cannot fall to arrive at his conclusions ; and that the doctrine of spontaneous generation has received a final coup de grace.

You, of course, understand that all this in no way inter. feres with the possibility of the fabrication of organic matters by the direct method to which I have referred remote as that possibility may be.

THE PERPETUATION OF LIVING BEINGS, HEREDITARY TRANSMISSION AND VARIATION

Thr inquiry which we undertook, at our iast meeting, into the state of our knowiedge of the causes of the phenomena of organic nature, -of the past and of the present,resoived itseif into two subsidiary inquirics : the first was, whether we know anything, either historicaliy or experimentaliy, of the mode of origin of living beings; the second subsidiary inquiry was, whether, granting the origin, we know anything about the perpetuation and modifications of the forms of organic bcings. The repiy which I had to give to the first question was altogether negative, and the chief resuit of my last lecture was, that, neither historically nor experimentaily, do we at present know anything whatsoever about the origin of iiving forms. We saw that, historically, we are not likely to know anything about it, although we may perhaps learn sometbing experimentally ; hut that at present we are an enormous distance from the goal I indicated.

I now, then, take up the next question, What do we know of the reproduction, the perpetuation, and the modifications of the forms of living heings, supposing that we have put the question as to their origination on one side, and have assumed that at present the causes of their origination are heyond us, and that we know nothing about them? Upon this question the state of our knowiedge is extremeiy different; it is exceedingly large, and, if not compiete, our experience is certainiy most extensive. It would he impossihie to lay it all hefore you, and the most I can do, or need do to-night, is to take up the principal points and put them hefore you with such prominence as may suhserve the puiposes of our present argument.

The method of the perpetuation of organic heings is of two kinds,-the asexual and the sexual. In the first the perpetuation takes piace from and by a particular act of an individual organism, which sometimes may not be
classed as belonging to any sex at all. In the second case, it is in consequence of the mutual action and interaction of certain portions of the organisms of usualiy two distinct individuals, -the male and the female. The cases of asexual perpetuation are hy no means so common as the cases of sexual perpetuation; and they are hy no means so common in the animal as in the vegetahie worid. You are all prohabiy familiar with the fact, as a matter of experience, that you can propagate piants hy means of what are called "cuttings ; " for exampie, that hy taking a cutting from a geranium piant, and rearing it properiy, hy suppiying it with iight and warmth and nourishment from the earth, it grows up and takes the form of its parent, having all the properties and pecuilarities of the original piant.

Sometimes this process, which the gardener performs artiflially, takes piace naturally; that is to say, a ifttie bulb, or portion of the piant, detaches itseif, drops off, and hecomes capabie of growing as a separate thing. That is the case with many huihous piants, which throw off in this way secondary huihs, which are iodged in the ground and hecome deveioped into piants. This is an asexual process, and from it resuits the repetition or reproduction of the form of the original heing from which the hulh proceeds.
Among animals the same thing takes piace. Among the iower forms of animal iife, the infusorial animalcula we have already spoken of throw off certain portions, or hreak themseives up in various directions, sometimes transverseiy or sometimes iongitudinally; or they may give off huds, which detach themselves and deveiop into their proper forms. There is the common fresh-water Poiype, for instance, which multipiies itself in this way. Just in the same way as the gardener is ahie to muitipiy and reproduce the peculiarities and characters of particular piants hy means of cuttings, so can the physioiogical experimentalist, -as was shown hy the Ahbe Tremhiey many years ago,so can he do the same thing with many of the iower forms of animal ilfe. M. de Trembiey showed that you could take a poiype and cut it into two, or four, or many pieces, mutilating it in all directions, and the pieces would still grow up and reproduce compieteiy the original form of the animal. These are all cases of asexual multipication, and there arb other instances, and still more extraordinary ones; in which this process takes place naturally, in a more

[^0]
66

hidden, a more recondite kind of way. You are all of you familiar with those littie green insects, the Aphis or bilght, as it is called. These littic animals, during a very considerabie part of their existence, multipiy themselves by means of a kind of internal budding, the buds being deveioped into essentially asexual animals, which are neither male nor female; they become converted into young Aphides, which repeat the process, and their offspring after them, and so on again; you may go on for nine or ten, or even twenty or more successions; and there is no very good reason to say how soon it might terminate, or how iong it might not go on if the proper conditions of warmth and nourishment were kept up.
Sexual reproduction is quite a distinct matter. Here, in all these cases, what is required is the detachment of two portions of the parental organisms, which portions we know as the egg and the spermatozoon. In piants it is the ovule and the pollen-grain, as in the flowering piants, or the ovule and the ant herozooid, as in the floweriess. Among all forms of animal iife, the spermatozoa proceed from the male sex, and the egg is the product of the female. Now, what is remarkable about this mode of reproduction is this, that the egg by itself, or the spermatozoa by themseives, are unabie to assume the parentai form ; but if they be brought into contact with one another, the effect of the mixture of organic substances proceeding from two sources appears to confer an altogether new vigour to the mixed product. This process is brought about, as we all know, by the sexual intercourse of the two sexes, and is called the act of impregnation. The result of this act on the part of the malc and female is, that the formation of a new being is set up in the ovule or egg; this ovule or egg soon begins to be divided and subdivided, and to be fashioned into various complex organisms, and eventually to develop into the form of one of its parents, as I expiained in the first iecture. These are the processes by which the perpetuation of organic beings is secured. Why there should be the two modes-why this re-invigoration should be required on the part of the female element we do not know; but it is most assuredly the fact, and it is presumabie, that, however iong the process of asexual multiplication couid be continued, $-I$ say there is good reason to believe that it would come to an end if a new.commencement were not obtained by a conjunction of the two sexual elements.

HEREDITARY TRANSMISSION

Thit character which is common to these two distinct processes is this, that, whether we conslder the reproduction, or perpetuation, or modification of organic heings as they talce place asexually, or as they may take piace sexually,-in either case, I say, the offspring has a constant tendency to assume, speaking generally, the character of the parent. As I sald just now, if you take a silp of a plant, and tend it with care, it will eventually grow up and develop into a plant ilke that from which it had sprung; and this tendency is so strong that, as gardeners know, this mode of multlplying by means of cuttings is the only secure mode of propagating very many varieties of plants; the peculiarity of the primitlive stock seems to be better preserved if you propagate it hy means of a sllp than if you resort to the sexual mode.

Again, in experiments upon the lower animals, such as the polype, to which I have referred, it is most extraordinary that, although cut up into various pleces, each partlcular plece will grow up into the form of the primitlve stock; the head, if separated, will reproduce the hody and the tall; and if you cut off the tall, you will find that that will reproduce the body and all the rest of the memhers, without in any way deviating from the plan of the organlsm from which these portlons have heen detached. And so far does this go, that some experimentallsts have carefully examined the lower orders of animals,-among them the Abhe Spallanzani; who made a numher of experiments upon snalls and salamanders,-and have found that they might. mutilate them to an incredible extent; that you might cut off the jaw or the greater part of the head, or the leg or the tail, and repeat the experiment several times, perhaps, cutting off the same member agaln and again; and yet each of those types would he reproduced according to the primitive type: nature making no mistake, never putting on a fresh kind of leg, or head, or tail, hut always tending to repeat and to return to the primitive type.

It is the same in sexual reproduction: "it is a matter of perfectly common experience, that the tendency on the part of the offspring always is, speaking hroadly, to reproduce the form of the parents. The proverh has it that the thistie does not bring forth grapes; so, among ourselves, there is always a likeness, more or less marked and distinct, between children and their parents. That is a matter of familiar and ordinary observation. We notice
the same thing occurring in the cases of the domestic animals-dogs, for instance, and their offspring. In all these cases of propagation and perpetuation, there seems to be a tendency in the offspring to take the.characters of the parental organisms. To that tendency a special name is given-it is called Atavism; it expresses this tendency to revert to the ancestral type, and comes from the Latin word alaous, ancestor.

Well, this Alavism which I shall speak of, is, as I said before, one of the most marked and striking tendencies of organic beings; but, side by side with this hereditary tendency there is an equally distinct and remarkabie tendency to variation. The tendency to reproduce the original stock bas, as it were, its limits, and side by side witb it there is a tendency to vary in certain directions, as if there were two opposing powers working upon the organic being, one tending to take it in a straight line, and the other tending to make it diverge from that straight line, first to one side and then to the other.

So that you see these two tendencies need not precisely contradict one another, as the ultimate result may not always be very remote from what would bave been the case if the ine bad been quite straight.

This tendency to variation is less marked in that mode of propagation whicb takes piace asexually ; it is in that mode that the minor characters of animal and vegetabie structures are most compietely preserved. Still, it will happen sometimes, that the gardener, when he has planted a cutting of some favourite plant, will find, contrary to his expectation, that the slip grows up a iittic different from the primitive stock-tbat it produces flowers of a different colour or make, or some deviation in one way or another. This is what is called tbe 'sporting' of piants:

In animals the phenomena of asexual propagation are so obscure, that at prescrit we cannot be said to know much about them ; but if we turn to that mode of perpetuation which resuits from tbe sexual process, tben we find variation a perfectiy constant occurrence, to a certain extent ; and, indeed, I think that a certain amount of variation from tbe primitive stock is the necessary result of the metbod of sexual propagation itself; for, inasmucb as the thing propagated proceeds from two organisms of different sezes and different makes and temperamente, and as the offspring is to be elther of one sex or the other, it is quite clear that it cannot be an exact diagonal of the two, or it would be of no sex at all; it cannot be an exact intermediate form between that of each of its parents-it must deviate to one side or the other. You do not find that the male follows the precise type of the male parent, nor does the female always inherit the precise characteristics of the mother,-there is always a proportion of the femaie character in the male offspring, and of the male-character in the temale offspring. That must he quite piain to all of you who have looked at all attentiveiy on your own children or those of your neighhours ; you will have noticed how very often it may happen that the son shall exhihit the maternal type of character, or the daughter possess the characteristics of the father's family. There are all sorts of intermixtures and intermediate conditions between the two, where compiexion, or heauty, or fifty other different peculiarities helonging to elther side of the house, are reproduced in other memhers of the same family. Indeed, it is sometimes to he remarked in this kind of variation, that the varicty helongs, strictly speaking, to neither of the immediate parents; you will sec a child in a family who is not like either its father or its mother; hut some old person who knew its grandfather or grandmother, or, it may be, an uncic, or, perhaps, even a more distant relative, will see a great similarity between the child and one of these. In this way it constantly happens that the characteristic of some previous memher of the family comes out and is reproduced and recognized in the most unexpected manner.

But apart from that matter of general experience, there are some cases which put that curlous inixture in a very siear light. You are aware that the offspring of the Ass nd the Horse, or rather of the he-Ass and the Mare is That is called a Mule ; and, on the other hand, the ompring of the Stallion and the she-Ass is what is called a Hinny. It is a very rare thing in this country to see a Wfriny. I never saw one myself; hut they have been lely carefully studied. Now, the curious thing is this, that although you have the same clementa in the experiment in each case, the offspring is entirely different in character, according as the male influence comes from the Ass or the Horse. Where the Ass is the male, as fet fent of the Mule, you

And that the head is like that of the Ass, that the ears are long, the tail is tufted at the end, the feet are smali, and the volce is ian unmistakable bray; these are all points of similarity to the Ass; but, on the other hand, the barrei of the body and the cut of the neck are much more like those of the Mare. Then, if you look at the Hinny,-the result of the union of the Stallion and the she-Ass, then you find it is the Horse that has the predominance; that the head is more ilike that of the Horse, the ears are shorter, the legs coarser, and the type is altogether altered; while the voice, instead of being a bray, is the ordinary neigh of the Horse. Here, you see, is a most curlous thing: you take exactly the same elements, Ass and Horse, but you comhine the sexes in a different manner, and the result is modified accordingly. You have in this case, however, a result which is not general and universal-there is usually an important preponderance, but not always on the same side.
Here, then, is one inteligible, and, perhaps, necessary cause of variation: the fact, that there are two sexes sharing in the production of the offspring, and that the share taken by each is different and variahie, not only for each comhination, but also for different memhers of the same family.

Secondily, there is a variation, to a certain extent, though in all prohability the influence of this cause has heen very much exaggerated-but there is no douht that variation is produced, to a certaln extent, by what are commonly known as external conditions,-such as temperature, food, warmth, and moisture. In the long run evavariation depends, in some sense, upon ing run, every seeing that everything has a cause of external conditions, term "external conditions" cause of its own. I use the is ordinarily employed : cenow in the sense in which it ditions have a definite certain it is, that external conwhich has singie flowte effect. You may take a plant nourishment, and so on, and hy dealing with the soll, and Llowers into double flowers, may hy-and-hy convert single hranches. You may thick, and make thorns shoot out Intó in the shape of the fruit. In or make various modifications analogous changes in this in animals, tooc you máy produce hronze colour which persons way, as in the case of that deep any length of time in trops rarely lose after having passed alter the development of countries. You may also
of training ; alf the worid knows that exercise has a great effect in this way; we always expect to find the arm of a blacksmith hard and whry, and possessing a large development of the hrachial muscles. No doubt, training, which is one of the forms of external conditions, converts what are originally only instructions, teachings, into habits, or, in other words, into organizations, to a great extent; but this second cause of variation cannot he considered to be by any means a large one. The third cause tbat I have to mention, however, is a very extensive one. It is one that, for want of a hetter name, has been called "spontaneous variation;" which means that when we do not know anything ahout the cause of phenomena, we call it spontaneous. In the orderly chain of causes and effects in tbls world, there are very few tbings of which it can he said with truth that they are spontaneous. Certainly not in these physical matters,- ln these there is nothing of the kind,-cverything depends on previous conditions. But when we cannot trace the causc of phenomena, we call them spontaneous.

Of these variations, multitudinous as they are, but llttic is known with perfect accuracy. I will mention to you some two or three cascs, because they are very remarkable In themselves, and aiso because I shafl want to use them afterwards. Réaumur, a famous French naturalist, a great many years ago, in an essay wbich he wrote upon the art of hatching chickens,-which was indeed a very curlous essay,-bad occasion to speak of variations and monstrosltles. One very remarkable case had come under his notice of a variation in the form of a human member, in the person of a Maltese, of the name of Gratlo Kellefa, who was born with six fingers upon cach hand, and the like number of toes to each of his feet. That was a case of spontaneous variation. Nobody knows why be was born with that number of fingers and toes, and as we don't know, we call It a case of "spontaneous" varlation. There is another remarkable case aiso. I select these, because tbey happen to bave been observed and noted very carefully at the time. It frequently happens tbat a variation occurs, but the persons who notice it do not take any care in noting down the particulars, until at length, when inquiries come to be made, the exact circumstances are forgotten; and beṇce, multitudlnous as may he such " spontaneous" variatlons, it is exceedingly difficult to get at the origin of them.

72

 PERPETUATION OF LIVING BEINGSThe second case is one of which you may And the whole detalls in the "Philosophical Transactions" for the year 1813, in a paper communicated by Colonel Humphrey to the President of the Royal Society,-" On a new Variety In the Breed of Sneep," giving an account of a very remarkable breed of sheep; which at one time was well known in the northern states of America, and which went by the name of the Ancon or the Otter breed of sheep. In the ycar 1791, there was a farmer of the name of Seth Wrigbt in Massachusetts, who had a flock of sbeep, consisting of a ram and, I think, of some tweive or thirteen ewes. Of this flock of cwes, one at the breoding-time bore a lamb which was very singularly formed ; it had a very long body, very shert legs, and those legs were bowed I I will tell you by-and-by how this singuiar variation in the breed of sheep came to be noted, and to have the prominence that It now has. For the present, I mention only these two cases; but the extent of variation in the breed of animals is perfectly obvious to any one who has studied natural history with ordinary , attention, or to any person who compares animals with others of the same kind. It is strictly true that there are never any two specimens which are exactly alike; however similar, they will always difer In seme certain particular.

Now let us go back to Atavism,-to the hereditary tendency I spoke of. What will come of a variation when you breed from it, when Atavism comes, If I may say so, to intersect variation? The two cases of which I bave mentioned the bistory, give a most excellent iliustration of what occurs. Gratio Keliela, the Maltese, married when he was twenty-two years of age, and, as I suppose there were no six-fingered ladies in Malta, he married an ordinary five-fingered person. The result of that marriage was four children; the irst, who was christened Salvator, bad six fingers and six toes, like bis father ; the second was George, Who had five fingers and toes, but one of them was deformed, showing a tendency to variation; the third was Andre; he had five fingers and five toes, quite perfect ; the fourth was a girl, Marle; she had five fingers and flve toes, but her thumbs were deformed, sbowing a tendency towards the sixth.

These children grew up, and when they came to adult years, they all married, and of course it happened tbat they all married five-fingered and five-toed persons. Now

HEREDITARY VARIATION

let us see what were the results. Salvator had four chlidren; they were two hoys, a girl, and another hoy: the first two boys and the girl were six-Angered and sixtoed like their grandfather; the fourth hoy had only five fingers and five toes. George had only four ehlldria: there were two girls with six ingers and six toes; thice was one gir! with six fingers and nive toes on the right side, and five Ingers and five toes on the left side, so that she was half and haif. The last, a hoy, had itve Angers and flve toes. The third, Andrd, you will recolicet, was perfeetiy well-formed, and ho had many children whose hands and feet were all regulariy developed. Marie, the last, who, of course, married a man whn had oniy five Angers, had four children : the Arst, a Loy, was born with six toes, hut the other three were normal.

Now observe what very extraordinary phelmmena are presented here. You have an aceidental varlation :rising from what you may call a monstrosity ; you have that monstrosity tendency or variation diluted in the flrst instance hy an admixture with a female of normal construction, and you would naturaliy expeet that, in the resuits of such an union, the monstrosity, if repented, would he in equal proportion with the normal type; that is to say, that the children would he half and half, some taking the peeuliarity of the father, and the others heing of the purely normal type of the mother; hut you see we have a great preponderanee of the abnormal type. Well, this comes to he mixed onee more with the pure, the normal type, and the ahnormal is again produced in large proportion, notwithstanding the second dilution. Now what would have happened if these abnormal types had intermarried with each other; that is to say, suppose the two hoys of Salvator had taken it into their heads to marry their first eousins, the two first giris of George, their uncle? You will remember that these are all of the ahnormal type of their grandfather. The resuit would prohably have been, that their offspring would have been in every case a further development of that ahnormal type. You see it is only in the fourth, ir the person of Marie, that the tendency, when it appears hut silightly in th: second generation, is washed out in the third, while th:progeny of Andre, who escaped in the first instanee, escape altogether.
: We have in this case a good example of nature's tendency
to the perpetuation of a variation. Here it is certainly a variation which oarried with it no use or beneft ; and yet you see the tendency to perpetuation may be so strong, that, notwlthstanding a great admixture of pure blood, the variety continues itself up to the third generation, whlcb ls iargely marked with It. In this case, as I have said, there was no means of the second generation intermarrying witb any but five-fingered persons, and the question naturaliy suggests itself, What would have been the resuit of such marriage? Réaumur narrates thls case only as far as the third generation. Certainly it would bave been an excecdingly curlous thing if we could bave traced this matter any further; bad the cousins interhave been set up.

To show you that this supposition ls by no means an unreasonable one, iet me now polnt out what trok piace be a matter of moment to him to obtain a breed or raise a flock of sheep like that accidental variety that I have described-and I will tell you why. In that part of Massacbusetts where Setb Wright was llving, the fieids were separated by fences, and the sheep, whle were very active and robust, would roam abroad, and witiout much difficulty jump over these fences into other peopie's farms. As a matter of course, thls exuberant activity on the part of the sbeep constantiy gave rise to all sorts of quarreis, blckerings, and contentlons among the farmers of the neighbourhood; so lt occurred to Seth Wright, who was, like hls successors, more or less 'cute, that if he couid get a stock of sheep ilike those with the bandy legs, thcy would not be abie to jump over the fences so readily, and be acted upon that ldea. He killed his old ram, and as soon as the young one arrived at maturity, he bred altogether from lt, experiment whlch I mentloned just now. Colonei Humphreys testifies that lt always happened tbat the offspring were either pure Ancons or pure ordinary sbeep; that in no case was thcre any mlxing of tbe Ancons witb the otbers. In consequence of this, in the course of a very few years, the farmer was abie to get a very considerabie flock of this variety, and a large number of them were spread throughout Massachusetts. Most unfortunately, bowever-I suppose it was because they were so common-nobody took cnougb
notice of them to preserve their skeietons; and although Coionel Humphreys states that he sent a skeieton to the president of the Royal Society at the same time that ne forwarded his paper, I am afraid that the variety has entirely disappeared; for a short time after these sheep had hecome prevalent in that district, the Merino sheep were introduced ; and as their wool was much more valuahle, and as they were a quiet race of shcep, and showed no tendency to trespass or jump over fences, the Otter hreed of sheep, the wool of which was inferior to that of the Merino, was gradualiy aliowed to die out.

You see that these facts illiustrate perfectiy weil what may he done if you take care to hreed from stocks that are similar to each other. After having got a variation, if, by crossing a variation with the original stock, you muitipiy that variation, and then take care to keep that variation distinct from the original stock, and make them breed together, 一then you may aimost certainly producc a race whose tendency to continue the variation is exceedingiy strong.

This is what is calied " seiection"; and it is by exactiy the same process as that hy which Seth Wright hred his Ancon sheep, that our breeds of cattle, dogs; and fowis, are ohtaincd. There are some possibilities of exception, hut still, speaking hroadly, I may say that this is the way in which all our varied races of domestic animals have arisen; and you must understand that it is not one peculiarity or one characteristic alone in which animals may vary. There is not a single pecuilarity or characteristic of any kind, bodily or mental, in which offspring may not vary to a certain extent from the parent and other animals.

Among ourseives this is well known. The simplest physical peculiarity is mostly reproduced. I know a case of a man whose wife has the iohe of one of her ears a iittle flattened. An ordinary observer might scarcely notice it, and yet every one of her children has an approximation to the same peculiarity to some extent. If you look at the other extreme, too, the gravest diseases, such as geut, scrofula, and consumption, may he handed down with just the same certainty and persistence as we noticed in the perpetuation of the bandy legs of the Ancon sheep.
However, these facts are hest illustrated in animals, and the extent of the variation, as is well known, is very re-

markabie in dogs. For exampie, there are some dogs very

 much smalier than others; indeed, the variation is so enormous that prohahiy the smallest dog would be about the size of the head of the iargest; there are very great variations in the structural forms not only of the skeleton but also in the shape of the skuil, and in the proportions of the face and the disposition of the teeth.The Pointer, the Retriever, Buildog, and the Terrier, differ very greatly, and yet there is every reason to beileve that cvery one of these races has arisen from the same source,-that all the most important races have arisen hy this selective hreeding from accidental variation.
A still more striking case of what may be done hy seicctive breeding, and it is a better case, hecause there is no chance of that partial infusion of error to which I alluded, has heen studied very carefully by Mr. Darwin, -the case of the domestic pigeons. I dare say there may be some among you who may he pigeon fanciers, and I wish you to understand that in approaching the subject, I wouid speak with all humility and hesitation, as I regret to say that I am not a pigeon fancier. I know it is a great art and mystery, and a thing upon which a man must not speak lightiy; hut I shall endeavour, as far as my understanding goes, to give you a summary of the puhlished and unpubilished information which I have gated from Mr. Darwin.

Among the enormous variety,-I helieve there are somewhere about a hundred and fifty kinds of pigeons, -there are four kinds which may be selected as representing the extremest divergences of one kind from another. Their names are the Carricr, the Pouter, the Fantail, and the Tumhier. In the iarge diagrams they are each This first one is the reiative sizes to each other. excrescence on its Carrier; you will notice this iarge small head; there is a beak; it has a comparativeiy liong neck, a very iong hear space round the eyes; it has iong wings, and so on teak, very strong iegs, iarge feet, very iarge hird, with very The second one is the Pouter, a the Pouter hecause it is in ing icgs and heak. It is called to swell up hy inflating it with habit of causing its gulet that all pigeons have a tend with alr. I should tell you the Pouter it is carried to ancy to do this at times, hut in appear to be quite proud an enormous extent. The birds as droll a sight as you can well see to iook at a cage full of these pigeons pufling and hiowing themseives out in this ridiculous manner.
The third kind I mentioned-the Fantall-is a smali bira with exceedingly smali iegs and a very small beak. It is most curiousiy distinguished hy the size and extent of its tail, which, instead of containing tweive feathers, may have many more,-say thirty, or even more-I heilicve there are some with as many as forty-two. This bird has a curious hahit of spreading out the feathers of its tail in such a way that they reach forward, and touch its head; and if this can be accompilished, I believe it is iooked upon as a point of great heauty.
But here is the iast great variety,-the Tumbier; and of that great variety, one of the principal kinds, and one most prized, is the specimen represented here-the shortfaced Tumhier. Its beak is reduecd to a mere nothing. Just compare the heak of this one and that of the first one, the Carrier-I heiieve the orthodox comparison of the head and heak of a thoroughly weil-hred Tumbier is to stick an oat into a cherry, and that will give you the proper reiative proportions of the head and beak. The feet and iegs are exceedingly small, and the hird appears to he quite a dwarf when piaced side hy side with this great Carrier.
These are differences enough in regard to their external appearance; but these differences are hy no means the whoie or even the most important of the differences which ohtain hetween these hirds. There is hardiy a single point of their structur? which has not hecome more or less altered; and to give you an idea of how extensive these alterations are, I have here some very good skeietons, for which I am indebted to my friend Mr. Tegetmeier, a great authority in these matters; by means of which, if you examine them hy-and-hy, you wili he ahie to see the enormous difference in their hony structures.
I had the privilegc, some time ago, of access to some important MSS. of Mr. Darwin, who, I may tell you, has taken very great pains and spent much vaiuabie time and attention on the investigation of these variations, and getting together all the facts that wear upon them. I obtained from these MSS. the foilowing summary of the differences between the domestic hreeds of pigeons; that
is to say, a notification of the various points in wrich their organization differs. In the first place, the hack of the skull may differ a good deal, and place, the development of the hones of the face may vary a great deal ; the back varies a good deal; the shape of the lower jaw varies; the tongue varies very greatiy, not only in correiation to the length and size of the heal, hut it seems also to have a kind of independent variation of its own. Then the amount of naked skin round the eyes, and at the hase of the beak, may vary enormously; so may the length of the eyelids, the shape of the nostrils, and the length of the neck. I have already noticed the habit of hlowing out the gullet, so remarkable in the Pouter, and comparatively so in the others. There are great differences, too, in the size of the female and the male, the shape of the hody, the numher and width of the processes of the rihs, the development of the ribs, and the size, shape, and development of the hreasthone. We may notice, too, and I mention the fact hecause it has heen disputed hy what is assumed to he high authority,-the variation in numher of the sacral vertehres. The numher of these varies from eieven to fourteen, and that without any diminution in the numher of the vertehræ of the hack or of the tail. Then the numher and position of the tail-feathers may vary enormously, and so may the numher of the primary and secondary feathers of the wings. Again, the length of the feet and of the heak,-although they have no relation to each other, yet appear to go together,-that is, you have a long heak, whercver you have iong fcet. There are differences also the size and shape of the eggs,-the nature of night, and the powers of Iight,-so-called "homing" hirds having enormous liying powers; * while, on the other hand, the little. Tumbier is so called hccause of its extraordinary faculty of turning head over heeis in the air, instead of pursuing a distinct course. And, lastly, the dispositions and voices of the hirds may vary. Thus the case of the pigeons shows you that there is hardly a single particular, -whether of instinct, or hahit, or hony structure, or of plunage,-of either the internal economy or the external

[^1]shape, in which some variation or change may not take place, which, by selective hreeding, may become perpetuated, and form the foundation of, and give rise to, a new race.

If you carry in your mind's eye these four varieties of pigeons, you will hear with you as good a notion as you can have, perhaps, of the enormous extent to which a deviation from a primitive type may be carried hy means of this process of selective breeding.

THE CONDITIONS affecting the Living beings
 of existence
 AS PERPETUATION OF

In the iast iecture I endeavoured to prove to you that, while, as a general ruie, organic beings tend to reproduce their kind, there is in them, also, a constantly recurring tendency to vary-to vary to a greater or to a less extent. Such a variety, I pointed out to you, might arise from causes which we do not understand; we therefore called it spontaneous; and it might come into existence as a definite and marked thing, without any gradations hetween itself and the form which preceded it. I further pointed out, that such a variety having once arisen, might he perpetuated to some extent, and indeed to a very marked extent, without any direct interference, or without any exercise of that process which we calied seiection. And then I stated further, that by such selection, when exercised artificialiy-if you took care to hreed oniy from those forms which presented the same pecuilaritics of any variety which had arisen in this manner-the variation might he perpetuated, as far as we can see, indefinitely.

The next question, and it is an important one for us, is this: Is there any limit to the amount of variation from the primitive stock which can he produced by this process of selective hrecding? In considering this question, it which useful to ciass the characteristics, in respect of consider structural characteristics two heads: we may physiological characteristics.
In the first piace, as regards structural characteristics, upon the tabie, and hy reference to a great many wellCascertained facts, that the different hrceds of Pigeons, the Carriers, Poutcrs, and Tumbiers, might vary in any of their internal and important structural characters to a very great degree; not only might there be changes in the proportions of the skuli, and the characters of the fect
and beaks, and so on ; but that there might be an absoiute difference in the number of the vertebres of the back, as in the sacral vertebre of the Pouter; and so great is the extent of the variation in these and similar characters that I pointed out to you, by reference to the skeletons and the diagrams, that these extreme varieties may absoluteiy differ more from one another in their structurai characters than do what naturalists call distinct Species of pigeons; that is to say, that they differ so much in structure that there is a greater difference between the Pouter and the Tumbler than there is between such wild and distinct forms as the Rock Pigeon or the Ring Pigeon, or the Ring Pigcon and the Stock Dove ; and indeed the differences are of greater value than this, for the structural differences between these domesticated pigeons are such as would be admitted by a naturalist, supposing he knew nothing at all about their origin, to cntitle them to constlitute even distinct geinera.
As I have used this term Species, and shall probably use it a good deal, I had better perhaps devote a word or two to explalning what I mean by it.

Animals and plants are divided into groups, which become gradually smaller, beginning with a Kingdom, which is divided into Sub-Kinodoms; then come the smalier divisions called Provinces; and so on from a Province to a Class, from a Class to an Order, from Orders to Families, and from these to Genera, until we come at iength to the smallest groups of animals which can be defined one from the other by constant characters, which are not sexual; and these are what naturalists call Species in practice, whatever they may do in theory.

If in a state of nature you find any two groups of iiving beings, which are separated one from the other by some constantly-recurring characteristic, I don't care how slight and trivial, so long as it is defined and constant, and does not depend on sexual peculiarities, then all naturalists agree in calling them two species; that is what is meant by the use of the word species-that is to say, it is, for the practical naturalist, a mere question of structural differences.*
We have seen now-to repeat this point once more, and

[^2]it is very essential that we should rightly understand it -we have seen that breeds, known to have been derived from a common stock by seifection, may be as different in their structure from the original stock as species may bo distinct from each other.
But is the ilike true of the physioiogical charactwitilis of animals? Do the physiological differences of .varteties amount in degree to those observed between forms which naturalists call distinct species? This is a most mportant point for us to consider.
As regards the greal majority of physiological characteristics, there is mo doubt that they are mpaile of being deveioped, increased, and modifed by selection.
There is no doubt that breeds may be made as different as spectes in many physiological characters. I have already pointed out to you very briefly the different habits of the breeds of Pigcons, all of which depend upon their physioiogical peculiarities,-as the peculiar habit of tumbling, in the Tumbier,-the peculiaritles of filight, in tho "homing" blrds, -the strange habit of spreading out the tall, and walking in a peculiar fashion, in the so characteristic of the Pouter. These are all due to phystological modifications, and in all these respects these birds differ as much from each other as any two ordinary species do.
So with Dogs in their habits and instincts. It is a physioiogical pcculiarity which leads the Greyhound to chase its prey by sight,-that enabies the Beagle to track it by the scent,-that impeis the Tcrrier to its rat-hunting propensity,-and that leads the Retricver to its habit of retrieving. These habits and instincts are all the resuits of physiological differences and peculiarities, which have been developed from a conmmon stock, at least there is cvery reason to beileve so. But it is a most there is circumstance, that while you But it is a most singuiar whole series of physioiogou nay run through almost the a check to your argument where you do find a check, you comie at last to a point processes. For there is a and that is in the reproductive respect to natural species most singuiar circumstance in and it would be sufficient for theast about some of themif it were true of only one of purposes of this argument, great number of such cases them, but there is, in fact, a
and tt rived mt in y be

84

"hybrids," which are crosses between distin
The mongrels are, so far as we ling distinct species. another. But between specles, in know, fertile with one succeed in obtaining even the first many cases, you cannot quite certain that the hybrids are cross: at any rate it is one with another.
Here is a feature, then, great or small as it may be, which distinguishes natural species of animals. may be, find any approximation to this in the different races known we to be produced by selective breeding from a common stock ? Up to the present time the answer to tbat question there is nothing approxime. As far as we know at present, the breeds between the Fantail to this check. In crossing and the Tumbler, or any other vart Poutcr, the Carrier name-so far as we know at present variety or race you may in breeding together the mongreis. There is no dimculty the Fantail, for instance, and fet the Take the Carrier and and the Ass in the case of distinct them represent the Horse as the result of their breeding thet species; then you have, -we will say the male and feme Carrier-Fantail mongrel, as we know, these two when crosengrel,-and, as far fertile than the original cross, orossed would not be less Here, you see, is a physis, or than Carricr with Carrier. races produced by selective modifil contrast between the I shall inquire into the value ifation and natural species. modifying circumstances value of this fact, and of some merely put it broadly before you by; for the present I But while considering befe you. of species, a word must this question of the iimitations Recurrence-the tendency sald about what is called developed by selective breeding races which have been their primitive type. This is supom varieties to return to absolute limit to the extcut supposed by many to put an variations. People say, "It is of selective and all other producing these different races all very well to talk about that if you turned all these birds but you know very well Carriers, and so on, they would all wild, these Pouters, and stock." This is very commoniy assurn to their primitive it is an argument that is commossumed to be a fact, and conciusive; but if you will commonly brought forward es into it rather closely, I think take the trouble to inquire worth very much. The first you will find that it is not thus return to the primitive question of course is, Do they

$$
\mathrm{c}_{0}
$$

PERPETUATION

 to get anything ifke and aceepted, it is extremely dimeuit sald, for example, that it evidence of it. It is constantly whld, as they have been in domesticated Horses are turned South Ameries, that they reme parts of Asla Minor and stock from which they were bred once to tho primitive that you make to this assumpred. But the frst answer what the primitive stock was that in that case the wild was ; and the sccond answer is, be exactly ilise the wild wild Horses of Asia Minor ought to are both ilke the same thinges of Soutb America. If they like each other! The best that it is quite different. The authorites, however, telf you to be of a dun colour, with a the wild Horse of Asia is said other pecullarilies; whife the bisb head, and a great many Horses of South America tell yost authorities on the wild between their wild Horses and that there is no similarity eut of their heads is very different, ane of Alia Minor; the ehestnut or bay-coloured. It is q, and they are commonly as by these facts there ought is quite clear, therefore, that stocks, they go for nothing in to have been two primitive that races recur to one primitivepport of the assumption evidence is concerncd, it falis to stock, and so far as tbis Suppose for a forlis to the ground. domesticated races, moment that it were so, and that eommon condition, I cannot turned wild, return to some much more than that cannot see that this would prove produce similar resuits similar conditions are likely to domesticated animals int and that when you take back you do exactly the same thing we call natural conditions, the work you had gone through, if you carefuliy undid all the animal from its wild to its for the purpose of bringing not see anything very wondertul domesticated state. I do that trouble to get it from a min in fact, if it took all back into its original sta a wild state, that it shouid go conditions which produced the as soon as you removed the form. There is an important fion to the domesticated brought forward by Mr. Darwin faet, bowever, forelbly connection with the breeding, which has been noticed in and it is, that however different domesticated pigeons; may be from eacb other, and we these breeds of pigeons great differences in these breed have alrcady noticed tbe tbose variations, you cbance to that if, among any of up, it will be sure to have the to have a blue pigeon turn up, it win bure to have the blaek bars across the wings,

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

APPLIED IMAGE Ine

1653 Eost Main Street Rochester, New York 14609 USA (716) 482-0300-Phone
(716) 288 - 5989 - Fax
which are characteristic of the original wild stock, the Rock Pigeon.

Now, this is certainly a very remarkable circumstance ; but I do not see myself how it tells very strongly either one way or the other. I think, in fact, that this argument in favour of recurrence to the primitive type might prove a great deal too much for those who so constantly hring it forward. For example, Mr. Darwin has very forcibly urged, that nothing is commoner than if you examine a dun horse-and I had an opportunity of verifying this illustration lately, while in the islands of the West Highlands, where there are a great many dun horses-to find that horse exhibit a long black stripe down his back, very often stripes on his shoulder, and very often stripes on his legs. I, myself, saw a pony of this description a short time ago, in a haker's cart, near Rothesay, in Bute : it had the long stripe down the hack, and stripes on the shoulders and legs, just like those of the Ass, the Quagga, and the Zebra. Now, if we intcipret, the theory of recurrence as appiled to this case, might it not be said that here was a case of a variation exhibiting che characters and conditions of an animal occupying something like an intermediate position between tbe Horse, the Ass, the Quagga, and the Zehra, and from wbich these had been developed? In the same way with regard even to Man. Every anatomist will tell you that there is nothing commoner, in dissecting the human body, than to mcet witb what are called muscular variations -that is, if you dissect two hodies very carefully, you will prohahly find that the modes of attachment and insertion of the muscles are not exactly the same in both, there heing great peculiarities in the mode in whicb the muscles are arranged; and it is very singular, that in some dissections of the human body you will come upon arrangements of tbe muscles very similar indeed to the same parts in the Apes. Is the conclusion in that case to he, tbat this is like tbe hlack hars in tbe case of the Pigeon, and that it indicates a recurrence to the primitive type from which the animals have heen prohably developed? Truly, I think that the opponents of modification and variation had hetter leave the argument of recurrence alone, or it may prove altogether too strong for them.

To sum up,-the evidence as far as we have gone is against the argument as to any limit to divergences, so far as structure is concerned; and in favour of a physiological
limitation. By seiective breeding we can produce structural divergences as great as those of species, but we cannot produce equal physloiogical divergences. For the present I leave the question there.

Now, the next probiem that lies hefore us-and it is an extremely important one-ls this: Does thls seicctive breeding occur in nature? Because, if there is no proof of it, all that I have been telling you goes for nothing in accounting for the origln of species. Are natural causcs competent to play the part of selection in perpetuating varieties? Here we iabour under very great difficulties. In the iast iecture I had occaslon to point out to you the extreme difficulty of obtalning evidence even of the first orlgin of those varieties which we know to have occurred in domesticated animals. I told you, that almost alwys the origin of these varietles is overiooked, so that I could only produce two of three cases, as that of Gratlo Kelleia and of the Ancon sheep. People forget, or do not take notice of them until they come to have a prominence; and if that is true of artificial cases, under our own eyes, and in animals in our own care, how much more difficult it must be to have at first hand good evidence of the orlgin of varieties in nature ! Indeed, I do not know that it is possibie by direct evidence to prove the origin of a varlety in nature, or to prove seiective breeding; but I will teli you what we can prove-and this comes to the same thing -that varieties exist In nature within the limits of specles, and, what is more, that when a varlety has come into exlstence in nature, there are natural causes and conditions, which are amply compctent to play the part of a selective breeder; and although that is not quite the evidence that one would like to have-though it is not direct testimony -yet it ls excecding good and cxcecdingly powcrfui evidence in lts way.

As to the first point, of varletles existlng among natural species, I mlght appeal to the unlversal experlence of every naturalist, and of any person who has ever turned any attention at ali to the characteristles of piants and animals in a state of nature; but I may as well take a few definite cases, and I wili begin with Man himself.

I am one of those who belleve that, at present, there is no evidence whatever for saying, that mankind sprang originaliy from any more than a singie pair; I must say, that I cannot see any good ground whatever, or even any
tenable sort of evidence, for believing that there is more than one specles of Man. Nevertheless, as you know, just as there are numbers of varleties in animals, so there are remarkable varieties of men. I speak not mercly of those broad and distinct varlations whieh you see at a giance. Everybody, of course, knows the diffcrence between a Negro and a white man, and can teil a Chinaman from an Englishman. They each have peculiar characteristics of colour and physlognomy; but you must recoliect that the characters of these races go very far deeper-they extend to the bony strueturc, and to the eharacters of that most important of all organs to us-the brain; so that, among men belonging to differcnt races, or even within the same race, one man shall have a brain a third, or half, or even seventy per cent. blgger than another; an' if you take the whoie range of human brains, you will find a variation in some cases of a hundred per cent. Apart from these variations \ln the size of the brain, the characters of the skull vary. Thus if I draw the figures of a Mongui and of a Negro head on the blaekboard, in the case of the last the breadth would be about seven-tenths, and in the other it would be nine-tenths of the total length. So that you see there is abundant evidence of variation among men in their natural condition. And if you turn to other animals there is just the samc thing. The fox, for exampie, which has a vcry large geographical distribution all over Europe, and parts of Asla, and on the American Continent, varles greatly. There are mostly large foxes in the North, and smaller ones in the South. In Germany alone, the foresters reekon some elght different sorts.

Of the tiger, no one supposes that there is more than one species; they extend from the hottest parts of Bengal, into the dry, cold, bltter steppes of Siberia, into a iatitude of 50°,-so that they may even prey upon the reindeer. These tlgers have exceedingly different characteristics, but still they ali keep their general features, so that there is no doubt as to their belng tigers. The Siberian tiger has a thick fur, a small mane, and a iongitudinal strlpe down the back, while the tigers of Java and Sumatra differ in many important respects from the tlgers of Northern Asla. So lions vary; so birds vary; and so, if you go further back and lower down in creation, you find that fishes vary. In different streams, in the same country even, you will find the trout to be quite different to each other and easily recognizabie by those who fish in the particuiar strcams. There is the same differences in leeches; ieech collectors can easily point out to you the differences and the pecuiliarities which you yourseif would probably pass by ; 80 with fresh-water mussels; so, in fact, with every animal you can mention.

In plants there is the same kind of variation. Take such a case even as the common bramble. The botanists are all at war about it; some of them wanting to make out that there are many species of it, and others maintaining that they are but many varieties of one species; and they cannot settie to this day which is a species and which is a variety 1

So that there can be no doubt whatsoever that any plant and any animal may vary in nature; that varieties may arise in the way I have described,-as spontaneous varieties, -and that those varieties may be perpetuated in the same way that I have shown you spontaneous varieties are perpetuated; I say, therefore, that there can be no doubt as to the origin and perpetuation of varieties in nature.

But the question now is:-Does selection take piace in nature? is there anything like the operation of man in exercising selective breeding, taking piace in nature? You will observe tbat, at present, I say nothing about species; I wish to confine myseif to the consideration of the production of those natural races which everybody admits to exist. The question is, whetber in nature there are causes competent to produce races, just in the same way as man is abie to produce, by selection, such races of animal- is we have already noticed.

Wh : \& variety has arisen, the Conditions of ExistENCE are such as to exercise an influence which is exactly comparable to that of artificial selection. By Conditions of Existence I mean two things,-there are conditions which are furnished by the physical, the inorganic world, and there are conditions of existence which are furnished by the organic worid. There is, in the first piace, Climate ; under that head I include only temperature and the varied amount of moisture of particular piaces. In the ncxt piace there is what is technically called Sration ncxt means-given the climate which an animal or a plant the particular kind of piace in station of a fish is plant lives or grows ; for example, the station of a fish is in the water, of a fresh-water fish in
fresh water ; the station of a marine flsh is in the sea, and a marine animal may have a station higher or deeper. So again with iand animais: the differences in their stations are those of different soils and neighbourhoods; some being best adapted to a calcareous, and others to an arenaceous soil. The third condition of existence is Food, hy which I mean food in the broadest sense, the suppiy of the materials necessary to the existence of an organic being ; in the case of a piant the inorganic matters, such as carbonic acid, water, ammonia, and the earthy salts or salines; in the case of the animal the inorganic and organic matters, whicb we ha seen they require; then these are ali, at ieast the two rst, what we may cali the inorganic or physical conditions of existence. Food takes a mid-piacc, and then come the organic conditions; hy which I mean the conditions which depend upon the state of the rest of the organic creation, upon the number and kind of iiving heings, with which an animal is surrounded. You may class these under two heads: there are organic beings, which operate as opponents, and there are organic heings which operate as helpers to any given organic creature. The opponents may he of two kinds: there are the indirect opponents, wbicb are what we may cali rivals; and there are the direct opponents, those wbicb strive to destroy the creature; and these we call enemies. By rivals I mean, of course, in the case of piants, those which require for their support the same kind of soii and station, and, among animais, tbose which require the same kind of station, or food, or climate; those are the indirect opponents the direct opponents are, of course, tbose which prey upon an animal or vegetabie. The helpers may also be regarded as direct and indirect : in the case of a carnivorous animal, for example, a particuiar herbaceous piant may in muitipiying be an indirect heiper, by enabiing the herhivora on which the carnivore preys to get more food, and thus to nourish the carnivore more abundantly ; the direct heiper may be best illustrated hy reference to some parasitic creature, such as the tape-worm. The tape-worm exists in the human intestines, so that the fewer tbere are of men the fewer there will be of tape-worms, other things heing alike. It is a humiliating reflection, perhaps, that we may be classed as direct heipers to the tape-worm, but the fact is so: we can all see that if there were no men there would be no tape-worms.

It is extremeiy difficuit to estimate, in a proper way, the importance and the working of the Conditions of Existence. I do not think there were any of us who had the remotest notion of properiy estimating them until the pubicication of Mr. Darwin's work, which has piaced them before us with remarkabie ciearness; and I must endeavour, as lar as I can in my own fashion, to give you some notion of how they work. We shali find it easiest to take a simpie case, and one as tree as possibie from every kind of compilcation.

I will suppose, therefore, that all the habitabie part of this globe-the dry land, announting to about $51,000,000$ square miles,-I will suppose that the whoie of that dry land has the same ciimate, and that it is composed of the same kind of rock cr soil, so that there will be the same station everywhere; we thus get rid of the pecuilar influence of different ciimates and stations. I will then imagine that there shali be but one organic being in the worid, and that shali be a piant. In this we start fair. Its food is to be carbonic acid, water and ammonia, and the sailine matters in the soil, which are, by the supposition, everywhere alike. We take one single plant, with no opponents, no heipers, and no rivals; it is to be a "fair fieid, and no tavour." Now, I wili ask you to imagine further that it shaii be a piant which shali produce every year fifty seeds, which is a very moderate number for a piant to produce; and that, by the action of the winds and currents, thesc seeds shali be equaiiy and gradualiy distributed over the whole surface of the iand. I want you now to trace out what wili occur, and you will observe that I am not talking fallaciously any more than a mathematician does when he expounds his probiem. if you show that the conditions of your probiem are such as inay actually occur in nature and do not transgress any of the known laws of nature in working out your proposition, then you are as safe in the conciusion you arrive at as is the mathematician in arriving at the soiution of his probicm. In science, the only way of getting rid ol the compiications with which a subject of this kind is environed, is to work in this cleductive method. What will be the result, then ? I will suppose that every plant requires one square foot of ground to live upon; ard the resuit wili be that, in the course of nine years, the piant will have occupied every single availabie spot in the whole globe! I have chalked
upon the blackboard the figures by which I arrive at the result :-

You wlll sce from this that, at the end of the first year the slngle plant will have produced fifty more of its kind; by the end of the'sccond year thesc will have increased to 2,500 ; and so on, in succeedlng years, you get beyond even trillions; and I am not at all sure that I could tell you what the proper arlthmetical denomination of the total number really is; but, at any rate, you will understand the meaning of ali those noughts. Then you see that, at the bottom, I have taken the $51,000,000$ of square miles, constltuting the surface of the dry land; and as the number of square feet are placed under and subtracted from the number of seeds that would be produced in the ninth year, you can see at once that there wouid be an immense number more of plants than there would be square feet of ground for their accommodation. This is certainiy quite enough to prove my point; that bctween the eighth and ninth year after being pianted the single piant would have stocked the whoie available surface of the earth.

Thls is a thing which is hardly conceivabie-it seems hardly imaginabie-yet it is so. It is indeed simpiy the law of Malthus exemplifed. Mr. Malthus was a clergyman, who worked out this subject most minutely and truthfuliy some years ago; he : owed quite cleariy,and although he was much abused for his concluslons at the time, they have never yef heen disproved and never will be-he showed that in consequence of the increase in the number of organic beings in a geometrical ratio, while

PERPETUATION OF LIVING BEINGS

the means of existence cannot ie made to increase in the same ratio, that there must come a time when the number of organic beings will be in execss of the power of production of nutriment, and that thus some check must arise to the further increase of those organic beings. At the end of the ninth year we have seen that each pirnt would not be able to get its full square foot of ground, and at the end of another year it would have to share that space with nifty others the produce of the seeds which it would give off.

What, then, takes piace? Every piant grows up, flourishes, occupies its square foot of ground, and gives of its fifty sceds; but notice this, that out of this number only one can come to anything; there is thus, as it were, forty-nine chances to one against its growing up; it depends upon the most fortuitous circumstances whether any one of these fifty seeds shall grow up and flourish, or whether it shail die and perish. This is what Mr. Darwin has drawn attention to, and calied the "Strugole por Existence'; and I have taken this simpie case of a piant because some pcopie imagine that the phrase seems to impiy a sort of fight.

I have taken this piant and shown you that this is the result of the ratio of the increasc, the necessary resuit of the arrival of a time coming for every species when exactiy as many members must be destroyed as are born; that is the inevitable uitimate result of the rate of production. Now, what is the resuit of all this? I have sald that there are forty-nine struggling against evcry one ; and it amounts to this, that the smallest possibie start given to any one seed may give it an advantage which will enabie it to get ahead of ali the others ; anything that wili enabie any one of these sceds to germinate six hours before any of the others wili, other things being aiike, enabie it to choke them out altogether. I have shown you that there is no particuiar in which piants wiil not vary from each other; it is quite possibie that one of our imaginary piants may vary in such a character as the thickness of the integument of its seeds; it might happen that one of the piants might produce seeds having a thinner integument, and that wouid enabie the seeds of that piant to germinate a little quicker than those of any of the others, and those seeds would most inevitabiy extinguish the forty-nine times as many that were struggling with them.
I have pnt it in this way, but you see the practical result
of the process is the same as if some person had nurtured the ine and destroyed the other seeds. It does not matter how the variation is produced, so long as it is ilowed to occur. The variation in the piant once $1 ., \cdots$.ted tends to become hereditery and reproduce itscif; iseeds would spread themseives in the same way and take part in the struggle with the forty-nine hundred, or forty-nine thousand, with which they might be exposed. Thus, by degrecs, this variety, with some siight organic change or modification, must spread itself over the whole suiface of the habitabie globe, and extirpate or repiace the sther kinds. That is what is meant by Natural Selection; that is the kind of argument by which It is perfectly demonstrable that the conditions of existence may piay exactly the same part for natural carieties as man does for domesticated varietles. No one doubts at al. that particular circumstance. may be more favourable for one plant and icss sc for another, and the moment you admit that, you admit the selective power of nature. Now, although I have been putting a hypothetical care, you must not suppose that I have been reasoning hypothetically. Thero are pienty of direct experiments which bear out what we may call the theory of natural seiection ; there is extremciy good authority for the statement that if you take the sced of mixed varieties of wheat and sow it, coliecting the seed next year and sowing it again, at iength you will find that out of all your varieties oniy two or three have a dd, or perhaps even oniy one. There were one or two vartetles which were best fitted to get on, and they have killed out the other kinds in just the same way and with just the same certalnty as if you had taken the troubie to remove them. As I "qve already sald, the operation of nature is exactly the same as the artificiai operation of man.

Fut if this be true of that simpie casc, which I put before you, where there is nothing but the rivalry of one member of a species with others, what must be the operation of seiective conditions, when you recollect as a matter of fact, that for every species of animal or piant there are fifty or a hundred species which might all, more or less, be comprehended in the same climate, food, and station;that every piant has multitudinous animals which prey upon it, and which are its direct opponents; and that these have other animals preying upon them,-that every piant has its indircet heipers in the birds that scatter

ebroad Its seed, and the animals that manure it with their

 dung:-I say, when these things are considered, It scems impossibie that any variation which may arise in a species In nature should not tend in somn way or other eltace to be a littie better or worse than the previous stock; If it is a ilttic better it will have an advantage over and tend to extirpate the latter i: this crush and struggle; and if it is a ilttie worse it wili itself be extirpated.I know nothing that more appropriatcly expresses this, than the phrase, "tbe struggle for existence"; because it brings before your minds, in a vivid sort of way, some of the simpiest possibie circumstances connceted with it. When a struggie is intense there must be some who are sure io be trodden down, crushed, and overpowcred by others; and there will be some who just manage to get through oniy by the heip of the siightest accident. I recoliect reading an accoun ${ }^{f}$ of the famous retreat of the French troops, under Napoleon, from Moscow. Worn out, tircd, and dejerteci, they at iength came to a great river over which Disorganized and demoralized as that army was, the struggle must certainiy have been a terrible one-pery one heeding only himseif, and crushing through tbe ranks and trcading down his feliows. The writer of the narrative, who was himscif one of those who were fortunate enougb to succeed in getting over, and not among the thousands who ucle ieft behind or hirced into the river, ascribed his escape to the fact that he saw striding onward through the mass a great strong feliow,-one of the French Cuirassiers, who had on a large bluc cloak-and he had enough presence of mind to catch and retain a hole of this strong man's cloak. He says, "I caught hoid of his cloak, and although he swore at re and cut at and struck me by turns, and at fast, when he found he couid not sbake me off, fell to entrcaîing me to leave go or I should prevent him from escaping, hesides not assisting myseif, I still kept tight hoid of him, is would aot quit my grasp until he had at last dragged me throush." Here you see was a case of seiective saving-if we may so term it-depending for its success on the strength of the cioth of the Cuirassier's cl ${ }^{1}$'s. It is the same in nature; cvery species has its briuge of Beresina; it has of fight its way through and struggle with other specics; and wben well nigh nverpowered, it may be that the smallest chance, something

In Its colour, perhaps-the minutest circumstance-will turn the scale one way or the other.

Suppose that by a variailon of the black race it had produced the white man at any time-yuu know that the Negroes are said to believe this to have been the care, and to imagine that Cain was the frst white man, and that we arc his descendants-suppose that this had ever happened, and that the first residence of this human being was on the West Const of Aifica. There is no great structural difference between the white man and the Negro, and yet thero is something so singulariy different in the constitution of the two, that the maiarlas of that country, which do not hurt tbe biack at all, cut off and destroy the white. Then you see there would have been a seleetive operation performed; if the white man had risen in that way, be would have been seiceted out and removed by mcans of tbe malaria. Now there really is a very curious casc of seiection of this sort among pigs, and it is a case of selection of colour, too. In the woods of Fiorida there are a great many plgs, and It is a very curious tbing that they are all black, every one of them. Professor Wyman was there some years ago, and on notlicing no pigs but these biack ones, he asked some of tbe people how it was that they had no while pigs, and the repiy was that in the woods of Florida tbere was a root which they calied the Paint Root, and tbat if the white pigs were to eat any of It, It had the effect of making their hoois crack, and they dicd, but if the biack pigs eat any of It, it did not hurt them at all. Here was a very simple casr of - tural seiection. A skilful breeder could not more carefuly develope the black breed of pigs, and weed out all the white pigs, tban the Paint Root does.

To show you how remarkably indirect may be such natural selective agencies as I have referred to, I will conclude by noticing a case mentioned by Mr. Darwin, and whicb is certainly one of the most curious of its kind. It is that of the Humbie Bee. It has been noticed that there are a great many more humble bees in tbe neighbourhood of towns, than out in the open country; and the expianation of the matter is this: the humble bees build nests, in which they store their honey and deposit the larver and cggs. The fieid mice are amazingly fond of tbe honcy and larve; therefore, wberever there are pienty of field mice, is in the country, the humble hees are kept
down; but in the nelghbourhood of towns, the number of cats which prowl about the ficlds cat up the feld mice, and of course the more mice they eat up the less there are to prey upon the larvo of the bees-the cats are therefore the indinect $1 \cdot$ lpeses of the becs." Coming back a step farther we may say that the old malds ure also indliret friends of the humble bees, and indirect cnemies of the field mice, as they keep the cats wisch eat up the latter 1 This is an illustration somewhat bencath tbe dignity of the subject, perhaps, but it occurs to me in passing, and witb It I will conclude this lecturc.

- The humble bees, on the other hand, are direct helpers of some plants, such as the heartsease and red clover, which are fertlizeed by the visits of the bees; and they are Indirect helpers of the numerous insecte wbich are mors ve less completely supported by the bearts ease and red clover.

A CRITICAL EXAMINATION OF THE POSITION OF MR. DARWIN'S WORK, "ON THE ORIGIN OF SPECIES," IN RELATION TO THE COMPLETE THEORY OF THE CAUSES OF THE PHENOMENA OF ORGANIC NATURE

In the preceding five iecturcs I have endeavourcd to give yoin an account of those facts, and of those rcasonings from facts, which form the data upon which ali thcories regarding the causcs of the phenomena of organic nature must be based. And, although I have had frequent occasion to quote Mr. Darwin-as ail persons hercafter, in speaking upon these subjects, wiil have occasion to quote his famous book on the "Origin of Spccies,"-you must yet remember that, wherever I have quoted him, it has not been upon theoretical points, or for statements in any way connected with his particuiar speculations, but on matters of fact, brought forward by himseif, or coiliccted by himscif, and which appear incidentally in his book. If a man wiii make a book, profcssing to discuss a single question, an encyciopædia, I cannot heip it.

Now, having had an opportunity of considering in this sort of way the different statements bearing upon all theories whatsoever, I have to liay beforc you, as fairiy as I can, wbat is Mr. Darwin's view of the matter and what position his theories hoid, when judged by the principies which I have previousiy laid down, as deciding our judgments upon ali theorics and hypotheses.

I have already stated to you that the inquiry respecting the causes of the phenomena of organic nature resoives itseif into two probiems-the first bcing the question of the origination of living or organic beings; and the second being tbe totaliy distinct probicm of the modification and perpetuation of organic beings wben they have already come into existence. The first question Mr. Darwin does

THE PHENOMENA OF ORGANIC NATURE

not touch ; he does not deal with it at ali ; but he says -given the origin of organic matter-supposing its creation to have already taken piace, my object is to show in consequence of what iaws and what demonstrabie properties of organic matter, and of its environments, such states of organic nature as those with which we are acquainted must have come about. This, you will ohserve, is a perfectly iegitimate proposition; every person has a right to define the iimits of the inquiry which he sets before himseif; and yet it is a most singuiar thing that in ali the muitifarious, and, not unfrequentiy, ignorant attacks which have heen made upon the Origin of Species, there is nothing which has heen more speciousiy criticised than this particuiar iimitation. If peopie have nothing eise to urge against the hook, they say-" Weil, after ali, you see, Mr. Darwin's expianation of the 'Origin of Species' is not good for much, because, in the iong run, he admits that he does not know how organic matter began to exist. But if you admit any speclal creation for the first particle of organic matter you may just as well admit it for ali the rest ; flve hundred or five thousand distinct creations are just as intelligibie, and just as iittle difficult to understand, as one." The answer to these cavils is two-foid. In the first piace, all human inquiry must stop somewhere; ali our knowiedge and all our investigation cannot take us heyond the iimits set hy the finite and restricted character of our facuities, or destroy the endless unknown, which accompanies, iike its shadow, the endless procession of phenomena. So far as I can venture to offer an opinion on such a matter, the purpose of our heing in existence, the highest ohject that human beings can set hefore themselves, is not the pursuit of any such chimera as the annihilation of the unknown; hut it is simpiy the unwearied endeavour to remove its houndaries a iittle further from our littie sphere of action.
I wonder if any historian would for a moment admit the ohjection, that it is preposterous to troubie ourselves: about the history of the Roman Empire, because we do not know anything positive ahout the origin and first building of the city of Rome i Wouid it he a fair ohjection to urge, respecting the subilime discoveries of a Newton, or a Kepier, those great philosophers, whose discoveries have been of the profoundest benefit and service to ali men, -to say to them-"After all that you have toid us as to
how the planets revolve, and how they are maintained in their orhits, you cannot tell us what is the cause of the origin of the sun, moon, and stars. So what is the use of what you have done?" Yet these objections wouid not he one whit more preposterous than the ohjections which have heen made to the Origin of Species. Mr. Darwin, then, had a perfect right to limit his inquiry as he picased, and the only question for us-the inquiry being so limited -is to ascertain whether the method of his inquiry is sound or unsound; whether he has obeyed the canons which must gulde and govern all investigation, or whether he has broken them; and it was because our inquiry this evening is essentialiy iimited to that questlon, that I spent a good deal of time in a former lecture (which, perhaps, some of you thought might have heen hetter employed) in endeavouring to illustrate the method and nature of sclentific inquiry in general. We shall now have to put in practice the princlples that I then lald down.

I stated to you in substance, if not in words, that wherever there are complex masses of phenomena to be inquired into, whether they be phenomena of the affairs of daily life, or whether they helong to the more abstruse and difficult problems laid before the philosopher, our course of proceeding in unravelling that compiex chain of phenomena with a view to get at its cause, is always the same; in all cases we must invent an hypothesis; we must place before ourselves some more or iess llkeiy supposition respectling that cause; and then, having assumed an hypothesis, having supposed a cause for the phenomena in question, we must cndeavour, on the one hand, to demonstrate our hypothesis, or, on the other, to upset and reject lt altogether, by testing it in three ways. We must, in the first place, he prepared to prove that the supposed causes of the phenomena exlst in nature; that they are what the logiclans call vera causx-true causes;in the next place, we shouid be prepared to show that the assumed causes of the phenomena are competent to produce such phenomena as those which we wish to explain by them ; and in the last piace, we ought to he able to show that no other known causes are competent to produce these phenomena. If we can succeed in satisfying these three conditions we shall have demonstrated our hypothesis; or rather I ought to say, we shall have proved it as far as certainty is possible for us; for, after: all, there

THE PHENOMENA OF ORGANIC NATURE 101

Is no one of our surest convictions whicis may not be upsct, or at any rate modified by a further accession of knowiedge. It was because it satisfied these conditions that we accepted the hypotiesis as to the disappearance of the tea-pot and spoons in the casc I supposed in a previous lecture; we found that our hypothesis on that subject was tenable and valid, bccause the supposcd cause existed in nature, because it was competent to account for the phenomena, and becausc no other known cause was competent to account for them; and it is upon similar grounds that any hypothesis you choose to name is accepted in science as tenable and valld.

What is Mr. Darwin's hypothesis? As I apprchend ft-for I have put it into a shape more convenient for common purposes than I couid find verbatim in his book -as I apprehend $\mathrm{it}, 1$ say, it is, that ail the phenomena of organic nature, past and present, resuit from, or are caused by, the inter-action of those propertics of organic matter, which we have called Atavism and Variability, with the Conditions of Existence; or, in other words, -given the existence of organic matter, its tendency to transmit its propertics, and its tendency occasionaliy to vary; and, lastiy, given the conditions of existence by which organic matter is surrounded-that these put together are the causes of the Present and of the Past conditions of Organic Nature.
Such is the hypothesis as I understand it. Now let us sec how it wili stand the various tests which I laid down just now. In the first place, do these supposed causes of the phenomena exist in naturc? Is it the fact that in nature these properties of organic matter -atavism and variability-and those phenomena which we have calied the conditions of existence,--is it truc that they cxist ? Weii, of course, if they do not exist, all that I have told you in the iast three or four iectures must be incorrect, because I have been attempting to prove that they do exist, and I take it that there is abundant cvidence that they do exist ; so far, therefore, the hypothesis does not break down.

But in the next piace comes a much more dimeult inquiry:-Are the causes indicated competent to give rise to the phenomena of organic nature? I suspect that this is indubitabie to a certain extent. It is demonstrable, I think, as I have endeavoured to show you, that they are
perfectly competent to give rise to all the phenomena which are exhiblted by Races in nature. Furthermore, I believe that they are quite competent to account for all that we may cali purely structural phenomena which are exhibited by Spectes in nature. On tbat point also I have already enlarged somewhat. Again, I think that the causes assumed are competent to account for most of the physiologlcal characteristics of specles, and I not oniy think that they are competent to account for them, but I thin: that they account for many tbings which otherwise remain wholly unaccountable and inexplicable, and I may say incomprehensible. For a full exposition of the grounds on which thls conviction is based, I must refer you to Mr. Darwin's work; all that I can do now is to liliustrate what I bave sald by two or three cases taken almost at random.

I drew your attention, on a prevlous evening, to the facts which are embodied in our systems of Classification, which are the results of the examination and comparison of the different members of the animal kingdom one with another. I mentioned that the wbole of the animal kingdom is divisible into five sub-kingdoms; that each of these sub-kingdoms is again divisible into provinces; that each province may be divided into ciasses, and the classes into the successlveiy smaller groups, orders, families, genera, and species.
Now, in eacb of these groups, the resembiance in structure among the members of the group is cioser in proportion as the group is smaller. Thus, a man and a worm are members of the animai kingdom in virtue of certain apparently silght though really fundamental resemblances whicb tbey present. But a man and a fish are members of the same Sub-kingdom Vertebrata, because tbey are much more like one another than either of tbem ls to a worm, or a snail, or any member of the other sub-kingdoms. For similar reasons men and horses are arranged as members of the same Class, Mammalia; men and apes as members of the same Order, Primates; and if there were any animals more ilke men' , an they were like any of tbe apes, and yet different fror. men in important and constant particuiars of their organization, we should rank them as members of the same Family, or of the same Genus, but as of distinct Species:

That it is possible to arrange all the varied forms of
animals into groups, having this sort of singular subivrdination one to the other, is a very remarkabie circumstance; but, as Mr. Darwin remarks, this is a result which is quite to be expected, if the principies which he lays down be correct. Take the case of the races which are known to be produced by the operation of atavism and variability, and the conditions of existence which check and modify these tendencies. Take the case of the pigeons that I brought before you: there it was shown that they might be all classed as bcionging to some one of five principal divisions, and that within these divisions other subordinate groups might be formed. The members of these groups are reiated to one another in just the same way as the genera of a family, and the groups themscives as the families of an order, or the orders of a ciass ; whiie all have the same sort of structural relations with the wild rock-pigeon, as the members of any great natural group have with a real or imaginary typical form. Now, we know that all varieties of pigeons of every kind have arisen by a process of seicctive brecding from a common stock, the rock-pigeon; hence, you see, that if all species of animals have proceeded from some common stock, the general character of their structural reiations, and of our systems of classification, which express those relations, would be just what we find them to be. In other words, the hypotheticai cause is, so far, competent to produce effects similar to those of the real cause.

Take, again, another set of very remarkable facts,the existence of what are calicd rudimentary organs, organs for which we can find no obvicus use, in the particular animal economy in which they are found, and yet which are there.

Such are the spiint-like bones in the leg of the horse, which I here show you, and which correspond with bones which beiong to certain toes and fingers in the human hand and foot. in the horse you see they are quite rudimentary, and bear neither toes nor fingers; so that the horse has oniy one " finger" in his fore-foot and one "toe". in his hind-foot. But it is a very curious thing that the animais closely allied to the horse show more toes than he; as the rhinoceros, for instance: he has these extra toes well formed, and anatomical facts show very clearly that he is very closely related to the horse indeed. So we may say that animals, in an anatomical sense nearly
related to the horse, have those parts which are rudimentary in him, fuily developed.

Again, the sheep and the cow have no cutting-teeth, but oniy a hard pad in the upper jaw. That is the common characteristic of ruminants in general. But the call has in its upper jaw some rudiments of teeth which never are developed, and never piay the part of teeth at all. Weli, If you go back in time, you find some of the oider, now extinct, aliies of the ruminants have weii-devcioped teeth in their upper jaws; and ait the present day the pig (which is in structure closeiy connected with ruminants) ha: well-deveioped teeth in its upper jaw ; so that here is another instance of organs weli deveioped and very useful, in one animal, represented by rudimentary organs, for which we can discover no purpose whatsoever, in another closeiy allied animal. The whalebone whaic, again, has horny " whalebone" plates in lts mouth, and no tceth; but the young foetal whale, before it is born, has teeth in its jaws; they, hqwever, are never used, and they never come to anything. But other members of the group to which the whale beiongs have well-deveioped teeth in toth jaws.

Upon any hypothesis of special creation, facts of this kind appear to me to be entirely unaccountabie and inexplicable, but they cease to be so if you accept Mr. Darwin's hypothesls, and sce reason for belleving that the whalebone whale and the whale with teeth in its mouth both sprang from a whale that had teeth, and that the teeth of the foetal whale are mereiy remnants -recollections, if we may so say-of the extinct whale. So in tre case of the horse and the rhinoccros: suppose that both have descended by mudification from some earlier form which had the normal number of toes, and the persistence of the rudimentary bones which no longer support toes in the horse becomes comprehensible.

In the language that we speak in England, and in the language of the Greeks, there are identical verbal roots, or eiements entering into the composition of words. That fact remains unintellipibie so long as we suppose English and Greek to be independentiy created tongues; but when it is shown that both languages are descended from one original, the Sanscrit, we give an explanation of that resemblance. In the same way the existence of identical structural roots, II I may so term them, entering into the

THE PHENOMENA OF ORGANIC NATURE 105

composition of widely different animals, is striking evidence in favour of the descent of those animals from a common original.

To turn to another kind of illustration:-II you regard the whole serfes of stratified rocks-that enormous thickness of sixty or seventy thousand feet that I have mentioned before, constituting the only record we have of a most prodigious lapse of time, that time being, in all probability, but a fraction of that of which we have no record;-if you observe in these successive strata of rocks successive groups of animals arising and dying out, a constant succession, giving you the same kind of impression, as you travel frum one group of strata to another, as you would have in travelling drom one country to another;-when you find this constant succession of forms, their traces obliterated except to the man of science,-when you look at this wonderful history, and ask what it means, it is only a paltering with words if you are offered the repiy,-
'They were so created.'
Bui if, on the other hand, you look on all forms of organized beings as the results of the gradual modification of a primitl a type, the facts receive a meaning, and you see that these oldcr conditlons are the necessary predecessors of the present. Viewed in this iight the facts of pairontoiogy receive a meaning-upc:i any other hypothesis, I am unabie to see, in the slightest degree, what knowledge or signification we are to draw out of them. Again, note as bearing upon the same point, the singular likeness which obtains between the successive Faunm and Flore, whose remains are preserved on the rocks: yo: never find any great and enormous difference betwees. the immediateiy suecessive Faunz and Floræ, unless you have reason to belicve there has also been a great lapse of time or a great change of conditions. The animals, for instance, of the newest. tertiary rocks, in any part of the worid, are always, and without exception, lound to be closely allied with those which now live in that part of the worid. For example, in Europe, Asia, and Airica, the large mammals are at present rhinoceroses, hippopotamuses, elephants, lions, tigers, oxen, horses, etc.; and if you examine the newest tertiary deposits, which contain the animals and plants which immediately preceded those which now exist in the same country, you do not find gigantic specimens of ant-eaters and kangaroos, but you

And rhinoceroses, elephants, lions, tigers, etc., -of diferent species to those now living,--hut still their close allies. If you turn to South America, where, at the present day, we have great sioths and armadilloes and creatures of that kind, what do you find in the newest tertiarles? You find the great sloth-like creature, the Megatherium, and the great armadillo, the Glyplodon, and so on. And if you go to Australia you find the same law holds good, namely, that that condition of organic nature which has preceded the one which now exists, presents differences perhaps of species, and of genera, but that the great types of organic structure are the same as those which now flourish.

What meaning has this fact upon any other hypothesis or supposition than one of successive modification? But If the population of the world, in any age, is the result of the gradual modification of the forms which peof ed it in the preceding age,--il that has heen the case, it is intelligihie enough; because we may expect that the creature that results from the modiacation of an elephantine mammal shall be something like an elephant, and the creature which is produced by the modification of an armadillo-like mammal shali be like an armadillo. Upon that supposition, I say, the facts are int.lligible; upon any other, that I am aware of, they are not.

So far, the facts of palxontology are consictent with almost any form of t'ie doctrine of progressive modification ; they would not he absolutely inconsistent with the will speculations of De Maillet, or with the less objectionabile hypothesis of Lamarck. But Mr. Darwin's views have one peculiar merit ; and that is, that they are perfectiy: consistent with an array of facts which are utterly inconsistent with and fatal to, any other hypothesis of progressive modification which has yet teen advanced. It is one remarkabie pecullarity of Mr. Darwin's hypothesis that it involves no necessary progression or incessant modification, and that it is perfectly consistent with the persistence for any length of time of a given primitive stock, contemporaneously with its modifications. To return to the case of the domestic breeds of pigeons, for example ; you have the Dove-cot pigcon, which closely rescmhies the Rock pigeon, from which they all started, existing. at the same time with the others. And if species are. developed in the same way in nature, a primitive stock and its modifications may, occasionally, all find the con-

THE PHENOMENA OF ORGANIC NATURE 107

ditions fitted for their existence ; and though they come into compctition, to a certain extent, with one another, the derivative specics may not necessarily extirpate the primitive one, or vice verse.

Now palcontology shows us many facts which are perfectiy harmonious with these ohserved effects of the process hy which Ar. Darwin supposes species to have originated, hut which appear to me to he totally inconsistent with any other hypothesis which has heen proposed. There are some groups of animals and piants, in the fossll worid, which have heen said to beiong to "persistent types," hecause they have persisted, with very littic change indeed, through a very great range of time, while everything ahout them has changed fargely. There are families of fishes whose type of construction has persisted all the way from the carhoniferous rock right up to the cretaceous; and others which have fasted through almost the whoie range of the secondary rocks, and from th. lias to the oider tertiaries. It is something stupendous this-to consider a genus lasting without essential modifeations through all this enormous lapse of time while almost everything else was changed and modifled.

Thus I have no doubt that Mr. Darwin's hypothesis will he found competent to explain the majority of the phenomena exhibited hy species in nature; hut in an earlier lecture I spoke cautiously with respect to its power of expiaining all the physioiogical peculiarities of species.

There is, in fact, one set of these peculiarities which the theory of selective modification, as it stands at present, is not wholly competent to expiain, and that is the group of phenomena which I mentioned to you under the name of Hyhridism, and which I eypiained to consist in the sterility of the offspring of ecrtain species when crossed one with another. It matters not one whit whether this sterility is universal, or whether it exists only in a single case. Every hypothesis is hound to expiain, or, at any rate, not he inconsistent wili, the whole of the facts which it professes to aceount for; and if there is a sing.a one of these facts which can he shown to he inconsistent with (I do not merely mean inexplicabie hy, hut contrary to) the hypothesis, the hypothesis falis to the ground, it is worth nothing. One fact with which it is positively ineonsistent is worth as much, and as powerful in negativing the hypothesis, as five hundred. If I am right in thus
defining the obilgations of an hypothesis, Mr. Darwin, In order to piace his views beyond the reach of all possibie assault, ought to be able to demonstrate the possibility of developing from a particular stock by seiective breeding, two forms, which should either be unabie to cross one with another, or whose cross-bred offspring should be Infertile with one another.

For, you see, if you have not done that you have not strictly fuinlled all the conditions of the probiem; you have not shown that you can produce, by the cause assumed, all the phenomena which you have in nature. Here are the phenomena of Hybridism staring you in the face, and you cannot say, ' I can, by seiective modification, produce these same resuits.' Now, it is admitted on all hands that, at present, so far as experiments have gone, it has not been found possibie to produce this compiete physioiogical divergence by seiective breeding. I stated this very cleariy before, and I now refer to the point, because, if it could he proved, not oniy that this has not been done, but that it cannot be done; if it couid be demonstrated that it is impossibie to breed seiectiveiy, from any stock, a form which shall not breed with another, produced from the same stock; and if we were shown that this must be the necessary and inevitahie resuit of all experiments, I hoid that Mr. Darwin's hypothesis wouid he utteriy shet cered.

But has this been done? or what is realiy the state of the case? It is simpiy that, so far as we have gone yct with our hrecding, we have not produced from a common stock two breeds which are not more or less fertile with one another.

I do not know that there is a single fact which wouid justify any one in saying that any degree of sterility has been observed between hreeds ahsoiuteiy known to have been produced hy seiective breeding from a common stock. On the other hand, I do not know that there is a single fact which can justify any one in asserting that such stcrility cannot be produced hy proper experimentation. For my own part, I sce every reason to beileve that it may, and will he $s 0$ produced. For, as Mr. Darwin has very properiy urged, when we consider the phenomena of sterility, we find they are most capricious; we do not know what it is that the sterility depends on. There are some animals which sill not breed in captivity; whether

THE PHENOMENA OR ORGANIC NATURE 109

It arisus fram the simpie fact of their being shut up and deprived of their llberty, or not, we do not know, but they certainly will not breed. What an astounding thing this 1 s , to find one of the most important of all functions annihilated by mere imprisonment í

Sc, again, there are cases known of anlmais which have been thought by naturalists to be undoubted specles, which have yielded perfectly fertile hyhrids; while there are other species which pi int what everylsody belleves to be varletles * which are more or less infertile with one another. There ars other cases wisirh, are truly extraordinary ; there is one, for example, which har been carefully examined, -0 two kinds of sca-weed, of which the male eiement of the one, which we may call A, fertlifes the female element of the other, \mathbf{B}; while the malis element of B will not fertillze the female element of A ; so that, While the former experiment seems to show us that they are oarieties, the latter leads to the conviction that they are species.

When we see how capricious and uicertain this sterillty is, how unknown the conditions on which it depends, I say that we have no right to affrm that those conuitions will not be better understood by and by, and we have no ground for supposing that we may not be able to experiment so as to obtain that crucial result which I mentioned just' now. So that though Mr. Darwin's hypothesis does not completely extricate us from this difficulty at present, we have not the least right to say lt will not do so.

There is a wlde gull between the thing you cannot explain and the thing that upsets you altogether. There is hardly any hypothesis in this world which has not some fact in connection wlth it which has not been explained, but that is a very different affair to a fact that entirely opposes your hypothesls; in thls case all you can say ls, that your hypothesis is in the same position as a good many others.

Now, as to the third test, that there are no other causes competent to explain the phenomena, I explalned to you that one should be able to say of an hypothesls, that no other known causes than those supposed by It are competent

[^3]to give rise to the phenomena. Here, I think, Mr. Darwin's view is pretty strong. I really belicve that the aiternative is elther Darwinism or nothing, for I do not know of any rational conception or theory of the organic unlverse which has any scientifc position at all beside Mr. Darwin's. I do not know of any proposition that has been put before us with the intention of explaining the phenomena of organic nature, which has in its favour a thousandth part of the ovidence which may be adduced in favour of Mr. Darwin's views. Whatever may he the objections to his views, certainly all others are ahsolutely out of court.

Take the Lamarckian hypoth ' ' for example. Lamarck was a great naturailist, and t., certain extent went the right way to work; he argued from what was undouhtedly a true cause of some of the phenomena of organic nature. He rald it is a matter of experience that an animal may he modifled more or less in consequence of its desires and consequent actiona. Thus, if a man exercise himself as a blacksmiih, his arms will become strong and muscular; such organic modification is a result of this particular action and exercise. Lamarck thought that by a w:y simple supposition hased on this truth he could explain the origin of the various animal specles: he snid, for example, that the short-legged birds which 1: m. fish, had been converted into the long-legged waders . , deshing to get the fish without wetting their feet, and so i etching their legs more and more through sucressive gen attons. If Lamarck could have shown experisuentaily, that even races of animals could be produced in this way, there might have been some ground for his speculations. But he could show nothing of the kind, and his hypothesis has pretty well dro, ped into ohi. ion, as it deserved to do. I sald in an carlier lecture that there are hypotheses and hypotheses, and when people tell you that Mr. Darwin's strongly-based hypothesis is nothing hut a mere modification of Lamarck's, you will know what to think of their capacity for forming a judgment on this suhject.

But you must recollect that when I say I think it is elther Mr. Darwin's hypothesis or nothing ; that elther we must take his view, or look upon the whole of urganic nature as an enigma, the meaning of which is wholly hidden from us ; you must understand that I mean that I accept it provisionally, in exactly the same way as I accept any other hypothesis. Men of sclence do not pledge themselves
to creeds; thoy are hound by articles of no sort; there is not a single helief that it is not a bounden duty with them to hoid with a light hand and to part with it, checrfully, the moment it is really proved to be contrary to any fact, great or small. And if in course of time I see good reasons for such a proceeding, I shali have no hesitation in coming hefore you, and pointing out any change in my opinion without finding the alightest occasion to hlush for so doing.
So I say that we accept this view as we accept any other, $s 0$ long as it will heip us, and wo feel hound to retain it only so iong as it wili serve our great purpose-th ". provement of Man's estate and the widening of his knowiedge. The moment this, or any other conception, ceases to be useful for these purposes, away with it to the four winds: we care not what hecomes of it !

But to say truth, although it has been my husiness to attend elosely to the controversies roused hy the publication of Mr. Darwin's book, I think that not one of the enormous mass of ohjections and obstacles which have been raised is of any very great value, except that sterility case which I hrought before you just now. All the rest are misunder: standings of some sort, arising either from prejudice, or want of knowiedge, or stlll more from want of patience and care in readling the work.

For you must recoliect that it is not a hook to he read with as much ease as its pleasant styie may lead you to imagine. You spin through it as if it Fire a novel the first time you read it, and think you knew all about it; the second time you read it you thlnk you know rather iess about it; and the third time, you are amazed to find how iitile you have really apprehended its vast scope and objects. I can positively say that Inever take it up without finding in it some new view, or light, or suggestion that I have not noticed before. That is the best characteristic of a thorough and profound book; and I belleve this feature of the Origin of Species expiains why so many persons have ventured to pass judgment and criticisms upon it which are hy no means worth the paper they are written on.

Before concluding these lectures there is one point ta which I must advert,-though, as Mr. Darwin has sald nothing about man in his book, it concerns myself rather than him ;-ior i have strongly maintained on sundry occasions that if Mr. Darwin's views are sound, they apply
as much to man as to the lower mammals, seeing that it is perfectly demonstrable that the structural diferences which separate man from the apes are not greater than those whlch separate some apes from others. There cannot he the sllghtest doubt in the world that the argument whlch applles to the improvement of the horse from an earlier stock, or of ape from ape, applles to the improvement of man from some simpler and lower stock than man. There is not a slngle faculty-functlonal or structural, moral, intellectual, or instinctive,--there is no faculty whatever that ls not capable of improvement ; there ls no faculty whatsoever which does not depend upon structure, and as structure tends to vary, it is capable of being Improved.

Well, I have taken a good deal of pains at various times to prove this, and I have endeavoured to meet the objections of those who maintaln, that the structural diferences hetween man and the lower animals are of so vast a character and enormous extent, that even If Mr. Darwin's vlews are correct, you cannot imagine this particular modification to take place. It is, \ln fact, easy matter to prove that, so far as structure is concerned, man differs to no greater extent from the anlmals which are immedlately below him than these do from other memhers of the same order. Upon the other hand, there is no one who estimates more highly than I do the dlgnlty of human nature, and the width of the gulf in intellectual and moral matters, which lles between man and the whole of the lower creation.

But I find this very argument hrought forward vehemently by some. "You say that man has proceeded from a modification of some lower animal, and you take palns to prove that the structural differences which aro sald to exist \ln hls brain do not exlst at all, and you teach that all functions, intellectual, moral, and others, are the expression or the result, in the long run, of structures, and of the molecular forces which they exert." It ls quite true that I do so.
" Well, but," I am told at once, somewhat triumphantly, " you say in the same breath that there ls a great moral and intellectual chasm hetween man and the lower animals. How is this possible when you declare that moral and intellectual characteristics depend on structure, and yet tell us that there ls no such gull hetween the structure of man and that of the lower animials ?"

THE PHENOMENA OF ORGANIC NATURE 113

I think that objection is based upon a misconception of the real relations which exist hetween structure and lunction, hetween mechanism and work. Function is the expression of molecular forces and arrangements no doubt ; but, does it follow from this, that variation in function so depends upon variation in structure that the former is always exactly proportioned to the latter? If there is no such relation, if the variation in function which foliows on a variation in structure, may he enormously greater than the variation of the structure, then, you see, the ohjection faiis to the ground.

Take a coupie of watches-made hy the same maker, and as compieteiy alike as possibie; set them upon the tahle, and the function of each-which is its rate of going -wili be performed in the same manner, and you shall he abie to distinguish no differcnce hetween them; hut Iet me take a pair of pincers, and if my hand is steady enough to do it, let me just ilghtly crush together the hearings of the balance-wheei, or force to a siightly different angle the tceth of the escapement of one of them, and of course you know the immediate resuit wiil be that the watch, so treated, from that moment will cease to go. But what proportion is there between the structural alteration and the functional result? Is it not perfectiy obvious that the alteration is of the minutest kind, yet that siight as it is, it has produced an infinite difference in the performance of the functions of these two instruments?

Weii, now, appiy that to the present qucstion. What is it that constitutes and makes man what he is? What is it but his power of language-that language giving him the means of recording his experience-making every generation somewhat wiser than its predecessor,-more in accordance with the estabiished order of the universe?

What is it hut this power of speech, of recording experience, which enables men to be men-iooking hefore and after and, in some dim sense, understanding the working of this wondrous universe-and which distinguishes man from the whoie of the hrute worid? I say that this functional difference is vast, unfathomable, and truly infinite in its consequences; and I say at the same time, that it may depend upon structural differences which shall be absoiuteiy inappreciable to us with our present means of investigation. What is this very speech that we are talking about $\%$ I am speaking to you at this moment, but if you
were to alter, in the minutest degree, the proportion of the nervous forces now actlve in the two nerves which supply the muscles of my glottis, I should become suddenly dumt. The voice is produced only so long as the vocal chords ars parallei ; and these are parallel only so long. as certain muscles contract wlth exact equality; .. and that agaln depends on the equallty of action of those two nerves 1 spoke of. So that a change of the minutest kind in the structure of one of these nerves, or \ln the structure of the part in whlch lt orlginates, or of the supply of blood to that part, or of one of the muscles to which it ls distributed, malght render all of us dumb. But a race of dumb men, deprived of all communication with those who could speak, would be little indeed removed from the brutes. And the moral and intellectual difference between them and ourselves would be practically infinlte, though the naturallst should not be able to find a single shadow of even specife structural difference.

But let me dismiss thls question now, and, in conclu n, let me say that you may go away wlth lt as my macure conviction, that Mr. Darwin's work is the greatest contribution which has been made to blological science since the publication of the Regne Animal of Cuvier, and since that of the Hislory of Development of, Von Baer. I believe that if you strip it of its theoretical part lt still remains one of the greatest encyclopædlas of blological doctrine that any one man ever brought forth; and I believe: that, if you take it as the embodiment of an hypothesis, lt is destined to be the gulde of blological and psychological speculation for the next three or four. generations.

ESSAYS
ON
DARWIN'S "ORIGIN OF SPECIES"

THE DARWINIAN HYPOTHESIS*

Darwin on the Oriain of Species

There is a growing immensity in the speculations of science to which no human thing or thought at this day is comparabic. Apart from the resuits which science brings us horne and securely harvests, there is an expansive force and fatitude in its tentative efforts, which iifts us out of ourselves and transfigures our mortality. We may have a preference for moral themes, ilike the Homeric sage, who had seen and known much :-
"Cities of men
And manners, climates, councils, governments";
yet we must end by confessing that

> "The windy ways of men Are but dust which rises up And is lightly ladd again,"
in comparison with the work of nature, to which science testifies, but which has no boundaries in time or space to which science can approximate.

There is something altogether out of the reach of science, and yet the compass of science is practically illimitable. Hence it is that from time to time we are startied and perplexed by theories which have no parallel in the contracted moral worid; for the gencralizations of science sweep on in ever-widening circles, and more aspiring filights, though a limitiess creation. While astronomy, with its tefescope, ranges beyond the known stars, and physioiogy, with its microscope, is subdividing infinite minutix, we may expect that our historic centurles may be treated as inadequate counters in the history of the planet on which we are piaced. We must expect new conceptions of the nature and reiations of its denizens, as science acquires the materials for fresh generalizations; nor have we occa-

$$
\text { - Th es, December 26th, } 1850 .
$$

THE DARWINIAN HYPOTHESIS

sion for aiarms if a highiy advanced knowiedge, ilike that of the eminent Naturaiist beforc us, confronts us with an hypothesis as vast as it is novel. This hypothesis may or may not be st 'tainable hereafter; it may give way to something cise, and higher science may reverse what science has here built up with so much skill and patience, but its sufficiency must be tricd by the tests of science atone, if we are to maintain our position as the heirs of Bacon and the acquittcrs of Galifeo. We must weigh this hypothesis strictiy in the controversy which is coming, by the only tests which are appropriate, and by no others whatsoever.

The hypothesis to which we point, and of which the present work of Mr. Darwin is but the preiminary putline, may be stated in his own language as foliows:-"Species originated by means of naturat selection, or through the preservation of the favoured races in the struggte for life." To render this thesis inteiligibie, it is neccssary to interpret its terms. In the first piace, what is a species ? The question is a simpic one, but the right answer to it is hard to find, even if we appeal to those who should know most about it. It is all those animals or plants which have descended from a single pair of parents ; it is the smallest distinctly definabie group of iiving organisms; it is an eternal and immutabie entlty ; it is a mere abstraction of the human inteifect having no existence in nature. Such are a few of the significations attached to this simpie word which may be culled from authoritative sources; and if, leaving terms and theoretical subtieties aside, we turn to facts and endeavour to gather a meaning for ourseives, by studying the things to which, in practicc, the name of species is appiled, it profits us iittle. For practice varies as much as theory. Let the botanist or the zoologist examine and describe the productions of a country, and one will pretty certainiy disagree with the other as to the number, limits, and definitions of the species into which he groups the very same things. In these islands we are in the habit of regarding mankind as of one species, but a fortnight's steam will land us in a country where divines and savans, for once in agreement, vie with one another in ioudness of assertion, if not in cogency of proof, that men are of different species; and, more partlcuiariy, that the species negro is so distinct from our own that the Ten Commandments have actualiy no reference to him. Even in the calm region of entomoiogy, where, if anywhere in this sinful world, passion and
prejudice should fall to stir the mind, one icarned coicopterist will fill ten attractive volumes with descriptions of species of beetles, nine-tenths of which are immediately declared by his brother beetle-mongers to be no species at all.

The truth is that the number of distinguishabic ilving creatures almost surpasses imagination. At ieast a hundred thousand such kinds of tasects alone have been described and may be identificd in coliectlons, and the number of separable kinds of iiving things is under cstimated at half a million. Seeing that most of these obvious kinds have their accidental varletics, and that they often shade into others by imperceptibie degrees, it may well be imagined that the task of distinguishing between what is permanent and what fleeting, what is a species and what a mere variety, is sumfiently formidabie.

But is it not possibie to apply a test whereby a true specics may be known from a mere variety ? Is there no criterion of species? Great authorities aflrm that there is-that the unions of members of the same species are always fertile, while those of distinct species are either stcrile, or their offspring, calied hybrids, are so. It is affirmed not oniy that this is an experimental fact, but that it is a provision for the preservation of the purity of species. Such a criterion as this would be invaluable; but, unfortunately, not only is it not obvious how to apply it in the great majority of cases in which its aid is needed, but its gencral validity is stoutly denled. The Hon. and Rev. Mr. Herbert, a most trustworthy authority, not oniy asserts as the result of his own observations and expcriments that many hybrids are quite as fertile as the parent species, but he gocs so far as to assert that the particular piant Crinum capense is much more fertile when crossed by a distinct species than when fertilised by its proper pollen ! On the other hand the famous Gaertner, though he took the greatest pains to cross the primrose and cowslip, succeeded only once or twice in several years; and yet it is a well-established fact that the primrose and the cowsilp are only varieties of the same kind of piant. Again, such cases as the following are well established. The female of species \mathbf{A} if crossed with the male of species \mathbf{B} is fertlle, but if the female of B is crossed with the male of A, she remains barren. Facts of this kind destroy the value of the supposed criterion.

If, weary of the endless dimcuities invoived in the determination of species, the investigator, contenting himseif with the rough practical distinction of separabie kinds, endeavours to study them as they occur in nature-to ascertain their relations to the conditions which surround them, their mutual harmonies and discordances of structure, the bond of union of their parts and their past history, he Inds himseif, according to the received notions, in a mighty maze, and with, at most, the dimmest adumbration of a plan. . If he starts with any one clear convictlon, it is that every part of a living crcature is cunuingly adapted to some sperilal use in its life. Has not his Paley toid bim that that seemingly useless organ, the spleen, is beautifully adjusted as so much packing between the other organs ? And yet, at the outset of his studies, he finds that no adaptive reason whatsocver can be given for one-half of the peculiarities of vegctable structure; he also discovers rudimentary teeth, which are never used, in tbe gums. of the young calf and in those of the foctal whale; insects which never bite have rudimental jaws, and others which never fly have rudimental wings ; naturaliy blind creatures have rudimental eyes; and the halt have rudimentary limbs. So, again, no animal or plant puts on its perfect form at once, but all have to start from the same point, however varioas tbe course which each has to pursue. Not only men and horses, and cats and dogs, iobsters and bectles, periwinkles and mussels, but even the very sponges and animalcules commence their existence under forms which arc essentialiy undistinguishabie; and this is true of all the infnite variety of plants. Nay, more, all living beings march side by side along the high road of development, and separate the fater the more like they are; like peopie feaving church, who all go down the aisie, but baving reached tbe door some turn into the parsonage, others go down tbe viliage, and others part only in tbe next parish. A man in his development runs for a iittle while parallel with, though never passing through, the form of the -anest worm, then travels for a space beside tbe fisb, then Jc aeys along with the bird and the reptile for his fellow travellers; and only at last, after a brief companionship with the bighest of the four-footed and four-banded worid, rises into the dignity of pure manhood. No competent thinker of the present day dreams of explaining these indubitable facts by the notion of the existence of unknown and
undiscoverable adaptations to purpose. And wo would remind those who, ignorant of the facts, must be moved by authority, tbat no one has asserted the incompetence of the doctrinc of final causes, in its appilication to physiology and anatomy, more strongly than our own eminent anatomist, Professor Owen, who, speaking of such cases, says (On the Nature of Limbs, pp. 39, 40): "I think it wili be obvious that the principie of final adaptations falls to satisfy all the conditions of the probiem."

But, if the doctrine of final causes will not help us to comprehend the arromalles of living structure, the princlple of adaptation must surcly lead us to understand why certain living beings are found in certain regions of the worid and not in others. Tbe palm, as we know, will not grow in our cllmate, nor tbe oak in Greeniand. Tbe white bear cannot live where tbe tiger thrives, nor vice versa, and the more the natural habits of anlmal and vegetabie specles are examined, tbe more do they seem, on the whole, limited to particular provinces. But when we look Into the facts established by the study of the geographical distribution of animals and piants it seems utteriy hopciess to attempt to understand the strange and apparently capricious relations which tbey exhibit. One would be inclined to suppose d priort that every country must be naturally peopied by those animals that are fittest to live and thrive in it. And yet bow, on this hypothesis, are we to account for tbe absence of cattle in the Pampas of Soutb America when those parts of the New World were discovered? It is not tbat they were unflt for cattlc, for millions of cattle now run wild there ; and the ilke holds good of Australla and New Zealand. It is a curlous circumstance, in fact, tbat the animals and plants of the Northern Hemlsphere are not oniy as well adapted to llve in the Southern Hemisphere as lts own autochthones, but are In many cases absolutely better adapted, and so overrun and extirpate the aborigines. Clearly, therefore, the species whlch naturally inhabit a country are not necessarily the best adapted to its climate and other conditions. The inhabitants of islands are often distinct from any other known spectes of anlmal of plants (witness our recent examples from the work: of Sir Emerson 'Tennent, on Ccylon), and yet they have almost always a sort of general family rescmblance to the anlmals and plants of the nearest malnland. On the other band, there is hardly a species of ilsb, shell, or crab common to
the opposite sldes of the narrow lsthmus of Paname. Wherever we look, then, llving nature offers us riddles of dimeult solution, if we suppose that what we see is all that can he known of lt.

But our knowledge of life is not confined to the existing world. Whatever their minor differences, geologists are agrecd as to the vast thickness of the accumulated strata which compose the visibic part of our earth, and the Inconcclvahic immensity of the time of whose lapse they are the imperfect, but the only accessilhle witnesses. Now, tiroughout the greater part of this long series of stratified rocks are seattered, sometimes very abundantly, mulltudes of organle remains, the fossllized exuvise of animals and plants which lived and died while the mud of which the rocks are formed was yet soft ooze, and could recetve and hury them. It would he great error to suppose that these organic remains were fragmentary rellcs. Our museums exhibit fossil shelis of Immeasurahle antlquity, as perfect as the day they were formed, whole skelistons wlthout a limh disturhed-nay, the changed nesh, ithe deveioping cmbryos, and even the very footsteps of primeval organisms. Thus the naturailst finds in the bowels of the earth specles as well defined as, and in some groups of animals more numerous than, those that hreathe the upper aif. But, singulariy enough, the majorlty of these entomhed species are wholiy distinet from those that now live. Nor is this unlikencss without lts rule and order. As a hroad fact, the further we go back in time the less the huricd speeles are iike existing forms; and the further apart tbe sets of extinct creatures are the less they are like one another. In other words, therc has been a regular successlon of living beings, each younger set being in a very hroad and gencral sense somewhat more like those which now ilve.

It was onee supposed that this succession had been the result of vast successive catastrophes, destructions, and re-creations en masse; but catastrophes are now almost eliminated from geologicai, or at least paleontological specuiation; and it is admitted on all hands that the seeming hreaks in the chain of belng are not absolute, but only : Iative to our imperfect knowiedge; that species have repraced species, not In assembiages, hut one hy one; and that, if it were possible to have all the phenomena of tbe past presented to us, the convenient epochs and forma-
tlons of the geologist, though having a certain distinctness, would fade into one another with limits as undefinable as those of the dlstinct and yet separable colours of the solar spectrum.

Such is a bricf summary of the main truths which have been established concerning specles. Are these truths ultimate and Irresolvable facts, or are their complexities and perplexities the mere expresslons of a higher law?

A large number of persons practlcally assume the former position to be correct. They belleve that the writer of the Pentateuch was empowered and commlssloned to teach us sclentific as well as other truth, that the account we find there of the creation of llving things is slmply and llterally correct, and that anything which seems to contradlet It 1 s , by the nature of the case, false. All the phenomena which have been detailed are, on thls view, the immedlate product of a creative flat and consequently are out of the domaln of sclence altogether.

Whether thls vicw prove ultinately to be true or false, It is, at any rate, not at present supported by what is commonly regarded as logical proof, even if it be capable of discussion by reason ; and hence we conslder ourselves at llberty to pass it by, and to turn to those views which profess to rest on a sclentlific basls only, and therefore admit of being argued to their consequences. And we do this with the less hesitation as it so happens that those persons who are practlcally conversant with the facts of the case (plainly a conslderable advantage) have always thought fit to range themselves under the latter category.

The majorlty of these competent persons have up to the present time malntalned two positlons,-the frst, that every specles 1 s , withln certaln defined or definable limits, fixed and Incapable of modification; the second, that every species was orlglnally produced by a distinct creatlve act. The sccond positlon ls obviously Incapable of prool or disproof, the direct operations of the Creator not belng subjects of sclence; and it must therefore be regarded as a corollary from the first, the truth or falsehood of which is a matter of evldence. Most persons Imagine that the arguments in favour of it are overwhelming ; but to some few minds, and these, it must be confessed, Intellects of no small power and grasp of knowledge, they have not brought convictlon. Among these minds that of the famous naturallst Lamarck, who possessed a greater
aequaintance with the lower forms of Ufe than any man of his day, Cuvier not excepted, and was a good botanist to boot, oceupies a prominent place.

Two facts appear to have strongly affected the course of thought of this remarkabie man-the one, that Iner or stronger links of afninity conneet all iiving belnge with one another, and that thus the highest creature grades by muitiludinous steps into the lowest ; the other, that an organ may be deveioped in particuiar directions by exerting itself in particuiar ways, and that modifeations once induced may be transmitted and beeome hereditary. Putting these facts together, Lamarek endeavoured to account for the first by the operation of the second. Place an animal in new circumstances, says he, and its needs wlli be aitered ; the new needs will create new destres, and the attempt to gratify such dealres will result in an appropirate modification of the organs exerted. Make a man a biacksmith, and his brachiai muscies will deveiope in accordance with the demands made upon them, and in like manner, says Lamarck, " the efforts of some shortnecked bird to catch fish without wetting himseif have, with time and perseverance, given rise to all our berons and iong-necked waders."

The Lamarckian hypothesis has iong since been justiy condemned, and it is the estabiished practice for every tyro to raise his heel against the carcass of the dead lion. But it is rareiy either wise or instru: i.ve to treat even the errors of a really great man with mere ridicuie, and in the present case the iogical form of the doctrine stands on a very different footing from its substance.

If species have reaily arisen by the operation of natural conditions, we ought to be abie to find those conditions now at work; we ought to be abie to discover in nature some power adequate to modify any given kind of animal or piant in such a manner as to give rise to another kind, which wouid be admitted by naturalists as a distinct species. Lamarck imagined that he had discovered this vera causa in the admitted facts that some organs may be modified by exercise ; and that modifications, once produced, are capabie of hercditary transmission. It does not secm to have occurred to him to inquire whether there is any reason to believe that there are any ilmits to the amount of modification producibie, or to ask how iong on animal is likeiy to endcavour to gratify an impossibie desire. The

Dird, in our axample, would surely have renounced fish dinners long before it had produced the least effect on leg or neck.

Since Lamarck's time almost all competent naturalists have ieft speculations on the origin of species to such dreamers as the author of the Vesiliges, by whose wellintentioned efforts the Lamarckian theory recelved its anal condemnation in the minds of all sound thinkers. Notwithstanding this sllence, however, the transmutation theory, as it has been calied, has been a "skejeton in the closet" to many an honest zoologist and botanist who had a soul above the mere naming of dried piants and skins. Surely, has such an one thought, nature is a mighty and consistent whole, and the providential order established in the world of life must, if we could only see it rightiy, be consistent with that dominant over the muitiform shapes of brute matter. But what is the history of astronomy, of all the branches of physics, of chemistry, of modicine, but a narration of the steps by which the human mind has been compeiled, often sorciy against Its wili, to recognize the operation of secondary causes in events where ignorance beheid an immediate intervention of a higher power? And when we know that living things are formed of the same elements as the inorganic worid, that they act and react upon it, bound by a thousand ties of natural piety, is it probabie, nay is it possibie, that they, and they alone, shouid have no order in their seeming disorder, no unity In their seeming mutipicity, shouid suffer no explanation by the discovery of some central and subiime faw of mutual connexion?

Questlons of this kind have assurediy often arisen, but it might have been iong before they received such expression as would have commanded the respect and attention of the scientific worid, had it not been for the pubilcation of the work which prompted this articie. Its author, Mr. Darwin, inheritor of a once cetebrated name, won his spurs in science when most of those now distinguished were young men, and has for the iast 20 years held a piace in the front ranks of British philosophcrs. After a circumnavigatory voyage, undertaken soiciy for the love of his science, Mr. Darwin pubilshed a series of researches which at once arrested the attention of naturalie's and geologists ; his generalizations have since receiveci ampie confirmation, and now command universal assent, nor is.
it questionabie that they have had the most important influence on the progress of science. More recentiy Mir. Darwin, with a versatility which is among tbe rarest of gifts, turned his attention to a most diflicult question oi zooiogy and minute anatomy ; and no living naturalist and anatomist has pubiished a better monograpb than that which resulted from his iabours. Such a man, at ali events, has not entered the sanctuary with unwasbed hands, and when he iays before us the results of 20 years' investigation and reflection we must iisten even tiough we be disposed to strike. But, in reading his work it must be confessed that the attention which migit at first be dutifuily, soon becomes willingly, given, so clear is the author's thought, so outspoken his conviction, so honest and fair tbe candid expression of his doubts. Those who wouid judge the book must read it ; we shall endeavour oniy to make its line of argument and its philosophical position inteiligibie to the general reader in our own way.

The Baker-street Bazaar bas just been exhibiting its familiar annual spectacie. Straight-backed, smail-headed, big-barrelled oxen, as dissimilar from any wild species as car well be imagined, contended for attention and praise with sheep of half-a-dozen different breeds and styes of bioated prcposterous pigs, no more iike a wild boar or sow tban a city alderman is iike an ourang-outang. The cattle show hias been, and perhaps may again be, succeeded by a pouitry show, of whose crowing and ciucking prodigies it can oniy be certainiy predicated that they wili be very uniike tbe aboriginal Phasianus Gallus. If the seeker after animal anomalies is not satisfled, a turn or two in Seven Dials wili convince him that tirc breeds of pigeons are quite as extraordinary and uniike one another and their parent stock, while the Horticuitural Society will provide him with any number of corresponding vegetabie aberrations from nature's types. He wili iearn with no iittle surprise, too, in the course of his traveis, that the proprictors and producers of these animal and vegetabie anomalies regard them as distinct species, with a firm beiief, the strength of which is exactly proportioned to tbeir ignorance of scientific bioiogy, and which is the more remarkabie as they are all proud of tbeir skill in originating such " species."
. On carefui inquiry it is found that ali: tbese; and the many other artificial breeds or races of animals and
plants, have been produced by one method. The breeder -and a skllful one must be a person of much si jacity and natural or acquired perceptlve faculty-notes some slight difference, arislng he knows not how, ln some Indlvlduals of hls stock. If he whsh to perpetuate the difference, to form a breed wlth the pecullarity in questlon strongly marked, he selects such malc and female Indlviduals as t-hibit the deslred character, and brecds from them. Their offspiring are then carefully examincd, and those \mathbf{x} uich exhibit the pecullarity the most distinctly are sclected fo: breedinf, and thls operation is repeated until the desirs amouric of dlvergence from the primitive stock is reached. It is then found that by continuing the process of sclection-always breceling, that ls, from well-marked forms, and allowing no lmpure crosses to Interfere,-a race may be formed, the tendency of which to reproduce ltself ls excecdingly strong; nor ls the llmlt to the amount of divergence which may be thus produced known, but one thing is certain, that, If ecrtain breeds of dogs, or of plgcons, or of horses, were known only in a fossil state, no naturallst would hesitate \ln regarding them as distinct specles.

But, In ail these cases we have human interference. Without the breeder there would be no sclectlon, and without the selectlon no race. Bcfore adinltting the posslbillty of natural specles having orlginated ln any similar way, lt must be proved that there is in nature som: power which takes the place of man, and performs a selectlon sud sponte. It ls the claim of Mr. Darwin that he professes to have dlscovered the existence and the modus operandi of thls natural selcetlon, as he terms It ; and, If he be right, the process is perfectly simple and comprehenslble, and irresistibly deducible from very familiar but weil nlgh forgotten facts.

Who, for Instance, has duly reflected upon all the consequences of the marvcllous struggle for existence which Is dally and hourly going on among living beings ? Not only does every animal llve at the expense of some other animal or plant, but the very plants are at war. The ground is full of seeds that cannot rise lnto seedlings; the seedilngs rob one another of air and llght and water, the strongest robber winning the day, and extinguishing his competlors. Year after year, the wild animals with which man never Interferes are, on the average, acltber
more nor less numerous than they were; and yet we know that the annual produce of every pair is from one to perhaps a milition young,-so that it is mathematicaliy certain that, on the average, as many are killed by natural causes as are born every year, and tbose oriy escape which happen to be a littie better fitted to resist destruction than those which die. The individuals of a species are like the crew of a foundered ship, and none but good swimmers have a chance of reaching the iand.

Such being unquestionably the necessary conditions under which living creatures exist, Mr. Darwin discovers in them the instrument of natural seiection. Suppose that in the midst of this incessant competition some individuals of a species (A) present accidental variations which bappen to fit them a iittle better than their fellows for the struggle in which they are engaged, then the chances are in favour, not oniy of these individuals being better nourished than the others, but of their predominating over their feilows in other ways, and of having 2 better chance of leaving offspring, which will of course tend to reproduce the peculiarities of their parents. Tbeir offspring will, by a parity of reasoning, tend to predominate over their contemporaries, and there being (suppose) no room for more than one species such as A, the weaker variety will eventually be destroyed by the new destructive influence which is thrown into the scale, and the stronger will take its place. Surrounding conditions remaining unchanged, the new variety (wbich we may call B)supposed, for argument's sake, to be the best aaapted for these conditions which can be got out of the original stock -wili remain unchanged, all accidental deviations from the type becoming at once extinguished, as less fit for their post than B itself. The tendency of B to persist will grow with its persistence through successive generations, and it will acquire all the characters of a new species.

But, on the other hand, if the conditions of life cbange in any degree, however slight, B may no ionger be that form which is best adapted to withstand their destructive, and profit by their sustalning, influence ; in which case if it should give rise to a more competent variety (C), this will take its place and become a new species; and tbus, by natural selection, the species \mathbf{B} and C will be successively derived from \mathbf{A}.

That this most ingenious bypothcsis enables us to give
a reason for many apparent anomalies in the distribution of living beings in time and space, and that it is not contradicted by the main phenomena of iffc and organization appear to us to be unquestionabie, and so far it must be admitted to have an immense advantage over any of its predecessors. But it is quite another matter to affirm absoiutely either the truth or falschood of Mr. Darwin's views at the present stage of the inquiry. Goethe has an exceilent aphorism deflning that state of mind which he calis Thätige Skepsis-active doubt. It is doubt which so loves truth that it neither dares rest in doubting, nor extinguish itself by unjustified beiief; and we commend this state of mind to students of species, with respect to Mr. Darwin's or any othe. hypothesis, as to their origin. The combincd investigations of another 20 years may, perhaps, enabie naturalists to say whether the modifying causes and the seiective power, which Mr. Darwin has satisfactorily shown to exist in nature, are competent to produce all the effects he ascribes to them, or whether, on the othcr hand, he has been ied to over-cstimate the vaiue of his principie of naturai seiection, as greatiy as Lamarck over-estimated his vera causa of modification by exercise.
But there is, at all events, one advantage possessed by the more recent writer over his predecessor.' Mr. Darwin abhors mere specuiation as nature abhors a vacuum. Ha is as areedy of cases and precedents as any constitutionai law. : :nd all the principies he lays down are capabie of beis:- "ght to the test of obscrvation and experiment. The : ful he bids us foliow professes to be not a mere airy track, fabricated of ideal cobwebs, but a soild and broad bridge of facts. If it be so, it wili carry us safeiy over many a chasm in our knowiedge, and iead us to a region free from the snares of those fascinating but barren Virgins, the Final Causes, against whom a high authority has so justly warned us. "My sons, dig in the vineyard," were the last words of the oid man in the labie; and, though the sons found no treasure, they made their fortunes by the grapes.

TIME AND LIFE*

Mr. Darwin's "Orioin of Species"

Everyone knows that that superficial film of the earth's substance, hardly ten miles thick, which is accessibie to human investigation, is composed for the most part of beds or strata of stone, the consolidated mads and sands of former seas and iakes, which have been deposited one upon the other, and hence are the oider the deeper they lie. These multitudinous strata present such resembiances and differences among themseives that they are capable of classification into groups or formations, and these formations again are brigaded together into stili largur assemblages, called by the oider geoiogists, primary, secondary, and tertiary; by the moderns, palæozoic, mesozoic, and cainozoic : the basis of the former nomenciature being the reiative age of the groups of strata; that of the iatter, the kinds of iiving forms contained in them.

Though but a film if compared with the total diameter of our pianet, the total series of formations is vast indeed when measured by any human standard, and, as all action implies time, so are we compelled to regard these minerai masses as a measure of the time which has eiapsed during their accumulation. The amount of the time which they represent is, of course, in the inverse proportion of the intensity of the forces which have been in operation. If, in the anclent worid, mud and sand accumulated on seabottoms at tenfoid their present rate, it is clear that a bed of mud or sand ten feet thick would have been formed then in the same time as a stratum of similar materials one foot thick would be formed now, and vice versa.
At the outset of his studies, therefore, the physical geoiogist had to choose between two hypotheses; either, throughout the ages which are represented by the accumulated strata, and which we may call geologic time, the

[^4]forces of nature have operated with much the same average intensity as at present, and hence the lapsc of time which they represcnt must be something prodigious and inconceivabie, or, in the primeval epochs, the natural powers were infiniteiy more intense than now, and hence the time through which they acted to produce the effects we see was comparativeiy short.

The eariier geologists adopted the latter view almost with one consent. For they had little knowledge of the present workings of naturc, and they read the records of geoiogic time as a child reads the history of Rome or Greece, and fancies that antiquity was grand, heroic, and unilke the present because it is unlike his little experience of the present.

Even so the earlier observers were moved with wonder at the seeming contrast between the ancient and the present order of nature. The elemental forces seemed to have been grander and more energetic in primeval times. Upheaved and contorted, rifted and fissured, plerced by dykes of molten matter or worn away over vast areas by aqueous action, the older rocks appeared to bear witness to a state of things far different from that exhibited by the peaceful epoch on which the iot of man has fallen.

But by degrees thoughtful students of geology have been led to perceive that the earliest efforts of nature have been by no means the grandest. Alps and Andes are children of yesterday when compared with Snowdon and the Cumberland hills; and the so-caiied glacial epoch -that in which perhaps the most extensive physical changes of which any record remains occurred-is the last and the newest of the revolutions of the globe. And in proportion as physical geography-which is the geology of our own epoch-has grown into a science, and the present order of nature has been ransacked to find what, hibernice, we may call precedents for the phenomena of the past, so the apparent necessity of supposing the past to be widely different from the present has diminished.

The transporting power of the greatest deluge which can be imagined sinks into irsignificance beside that of the slowiy floating, slowiy melting iceberg, or the glacier creeping along at its snail's pace of a yard a day. The study of the deltas of the Nile, the Ganges, and the Mississlppi has taught us how slow is the wearing action of water, how vast its effects when time is allowed for its operation.

TIME AND LIFE

The reefs of the Pacific, the decp-sca soundings of the Atiantic, show that it is to the siow-growing coral and to the imperceptibie animalculc, whlch lives its brief space and then adds its tiny sheli to the muddy calrn icft by its brethren and ancestors, that we must look as the agents in the formation of limestone and chalk, and not to hypothetical oceans saturated with calcareous salts and suddenly depositing them.

And while the inquirer has thus learnt that existing forces-give them time-are competent to produce ail the physical phenomena we meet with in the rocks, so, on the other side, the study of the marks left In the ancient strata by past physical actlons shows that these were slmilar to those which now obtaln. Ancient beaches are met. with whose pebbles are iike those found on modern shorcs ; ithe hardened sea-sands of the oidest epochs show rlpple-marks, such as may now be found on every sandy coast ; nay, more, the plts left by anclent rain-drops prove that even in the very earllest ages, the "bow in the clouds" must have adorned the palæozoic firmament. So that if we could reverse the legend of the Seven Sleepers,-ll we could sleep back through the past, and awakc a million ages before our own epoch, in the midst of the eariliest geologic timcs,-there is no reason to belleve that sea, or sky, or the aspect of the land would warn us of the marvellous retrospection.

Such are the beliefs which modern physical geologists hoid, or, at any rate, tend towards hoiding. But, in so doing, it is obvious that they by no means prejudge the questlon, as to what the physical condition of the globe may have been before our chapters of its hlstory begin, In what may be called (with that iicence which is implled In the often-used term "prehistoric epoch ") "pregeologic time." The views Indicated, In fact, are not only quite conslstent with the hypothesis, that, in the still earller period referred to, the condition of our world was very different; but they may be held by some to necessitate that hypothesis. The physical philosopher who is accurately acqualnted with the velocity of a cannon-ball, and the precise character of the line which it traverses for a yard of its course, is necessitated by what he knows of the laws of nature to conclude that it came from a certaln spot, whence it was impelled by a certain force, and that it has followed a certaln trajectory. In ilke manner, the
student of physical geology, who fully beifeves in the uniformity of the general condition of the earth through gcologic time, may feel compciled by what he knows of causation, and by the general analogy of nature, to suppose that our solar system was once a ncbulous mass, that it gradually condensed, that it broke up into that wonderful group of harmoniousiy rolling balls we call planets and satellitcs, and that then each of thesc underwent its appointed metamorphosis, untll at iast our own sharc of the cosmic vapour passed into that condition in which we first meet with definite records of its state, and in which it has since, with comparativeiy ittle change, remained.

The doctrine of uniformity and the doctrine of progression are, therefore, perfectiy consistent ; perhaps, indeed, they might be shown to be necessarlly connected with one another.

If, however, the condition of the worid, which has obtained throughout geologic time, is but the sequel to a vast series of changes which took place in pregcologic time, then it seems not unilkely that the duration of this iatter is to that of the former as the vast extent of gcologic. time is to the iength o: the bricf epoch we call the historical period; and that even the oidest rocks are records of an epoch almost infinitcly remote from that which could have witnessed the first shaping of our globe.

It is probabie that no modern geologist would hesitate to admit the general validity of these rcasonings when applied to the physics of his subject, whence it is the more remarkable that the moment the question changes from one of physics and chemistry to one of natural history, scientife opinions and the popular prejudices, which reflect them in a distorted form, undergo a sudden metamorphosis. Geologists and palæontologists write about the "beginning of iife" and the "first-created forms of living beings," as if they were the most famlliar things in the worid ; and even cautious writers seem to be on quite friendly terms with the "archetype" whereby the Creator was guided " amidst the crash of falling worlds." Just as it used to be imagined that the ancient universe was physically opposed to the present, so it is still widely assumed that the living popuiation of our globe, whether animal or vegetabie, in the oider epochs, exhibited forms so strikingly contrasted with those which we see around us, that there is hardly anything in common between the
two. It is constantly tacitly assumed that we have before us all the forms of life which have ever existed; and though the progress of knowienge, yeariy and almost monthly, drives the defenders of that position from their ground, they entrench themselves in the new line of defences as if nothing had happencd, and prociaim that the new beginning is the real beginning.

Without for an instant denying or endeavouring to soften down the considerabie positive differences (the negative ones are met by another line of argument) which undoubterly obtaln between the anclent and the modern worids of life, we belleve they have been vastiy overstated and exaggerated, and thls belief, is based upon ccrtain facts whose value docs not seem to have been fuily appreciated, though they have iong been more or iess compieteiy
The multitudinous kinds of animais and plants, both recent and fossil, are, as is weif known, arranged by zooiogists and botanists, in accordance with their natural relations, into groups which receive the names of sub-kingdoms, classes, ordcrs, families, genera and species. Now it is a mist remarkable circumstance that, viewed on the great scale, iiving beings have differed so ifttle throughout all gcologic time that there is no sub-kingdtle and no class wholly extinct or without ifing sub-kingdom

If we descend to the smationout iiving representatives. number of orders of piants is groups, we find that the I have it on the best authoris about two hundred; and exclusiveiy fossll ; so that thity that not one of these is extinct ordinal type of vegere is absoluteiy not a singie we descend to the next vegetabie iffe; and it is not until types which are wholiy ext, or the families, that we find of animals, on the other exinct. The numbes of orders hundred and twenty, or therend, may be reckoned at a nine have no living reprereabouts, and of these, eight or extinct ordinal types representatives. The proportion of therefore, does not exceed seven ans to the existing types, small proportion when we conen per cent.-a marveliousiy time.

Another class of considerations-of a different kind, it is true, but tending in the same direction-seems to have been overiooked. Not oniy is it true that the general plan of construction of animals and piants has been the
same in all recorded time as at present, but there are particuiar kinds of animals and piants whici have existed throughout vast epochs, sometimes through the whole range of recorded time, with very little change. By reason of this persistency, the typical form or sucb a kind might be cailed a "persistent type," in contradistinction to those types which have appeared for but a short time in the course of the worid's history. Exampies of these persistent types are ahundant enough in hoth the vegetahie and the animal kingdoms. The oidest group of piants with which we are weil acquainted is that of whose remains coal is constituted; and, so far as they can be identilied, the carbonifcrous piants are ferns, or club-mosses, or Coniferæ, in many cases gencricaliy ddentical with tbose now living 1

Among animals, instances of the same kind may be found in every sub-kingdom. The Giobigerina of the Atlantic soundings is identical with that which occurs in the chalk; and the casts of lower silurian Foraminifera, which Ehrenherg has recently described, seem to indicate the existence at that remote period of forms singuiarly like those which now exisi Among the corals, the paleozoic Tabuitata are constructed on precisely the same type as the mosua miliepoies; and it we turn to moliuscs, the most competent malacologists fail to discover any generic distinction hetween the Cranie, Linguixe, and Discinee of the silurian rocks and those which now live. Our existing Nauitius has its representative species in every ereat formation, from the oidest to the newest; and Loilgo, the squid of modern seas, appears in the lias, or at the hottom of the mesozoic series, in a form, at most, specificaliy different from its ilving congeners. In the great as semhiage of annulose animals, the two highest classes, the insects and spider tribe, exhibit a wonderful persistency of type. Tie cockroaches of the carboniferous epoch are exceedingly similar to those which now run about our coal-ceilars; and its locusts, termites, and dragion-flies are closely allied to the memhers of the same groups which now chirrup about our fields, undermine our houses, or sall with swift grace about the hanks of our sedgy poois. And, in like manner, the palæozoic scorpions can only he distinguisbed by the eye of a naturalist from the modern ones.

Finally, with respect to the Veriebraia, the same law holds good: certain types, such as those of the ganold

TIME AND LIFE

and placold Ashes, having persisted from the palsozole epoch to the present time without a greater amount of deviation from the normal standard than that which is reen within the ilmits of the group as it now exists. Even among the Replllia-the class which exhibits the largest proportion of entirely cxtinct forms of any-one type, that of the Crocodilla, has persisted from at least the commencement of the Mesozoic enoch up to the present time with so much constancy, that the amount of change which it exhibits may fairly, in reiation to the time which has elapsed, be calied insignificant. And the imperfect knowledge we have of the anclent mammalian population of our earth leads to the belief that certain of its types, such as that of the Marsupialio, have persisted with correspondingly ilttie change through a similar range of time.

Thus it would appear to be demonstrable, that, notwithstandhig the great change which is exhibited by the animal population of the world as a whole, certain types have persisted comparatively without alteration, and tho question ariscs, What bearing have such facts as these on our notions of the history of ilfe through geologlcal time? The answer to this question would seem to depend on the view we take respecting the origin of spectes in gencral. If we assume that every species of animal and 0° niant was formed by a distinct act of creative power, and the species which have incessantly sueceeded one another were placed upon the giobe by these separate acts, then the existence of persistent types is simply an uninteligibie irregularity. Such assumption, however, is as unsupported by tradition or by Reveiation as it is opposed by the analogy of the rest of the operations of nature; and those who imagine that, by, adopting any such hypothesis, they are strengthening the hands of the advocates of the ietter of the Mosalc account, arc simply mistaken. If, on the other hand, we adopt that hypothesis to which alone the study of physiology lends any support-that hypothesls which, having struggled beyond the reach of those fatal supporters, the Telliameds and Vestigiarians, who so nearly caused its suffocation by wind in eariy infancy, Is now winning at least the provislonal assent of all the best thinkers of the day-the hypothesis that the forms or species of living beings, as we know them, have been produced by the gradual modification of pre-existing species-then the existence of persistent types seems to
teach us much. Just as a small portion of a great curve appears straight, the apparent absence of change in direction of the line being the exponent of the vast extent of the whole, in proportion to the part we see; so, if it be true that all living speeies are the resuit of the modification of other and simpler forms, the existence of these Iittle altered persistent types, ranging througb all geological time, must indicate that they are but the final terms of an enormous series of modineations, which had their being in the great lapse of pregeologic time, and are süw perhaps for ever lost.

In other words, when rightly studied, the teachings of palieontology are at one with those of physleal geology. Our farthest expiorations carry us back but a littic way above the mouth of the great river of Life: where it arose, and by what channeis the nobie tide has reaehed the point when it first breaks upon our view, is hidden from us.

Tie foregoing pages contain the substance of a leeture deilivered before the Royal Institution of Great Britain many months ago, and of course iong before the appearance of the remarkable work on the "Origin of Speeies," just pubilshed by Mr. Darwin, who arrives at very simllar eonclusions. Altbough, in one sense, I might ? 'riy say that my own views have been arrived at independently, I do not know that I ean claim any equitabic right to property in them; for it has long been my privilege to enjoy Mr. Darwin's friendship, and to profit by corresponding with him, and by, to some extent, beeoming acquainted with the workings of his singulariy originad and well-stored mind. It was in consequenee of my knowiedge of the general tenor of the researches in which Mr. Darwin had been so long engaged; because I had the most compiete confidence in his perseverance, his knowiedge, and, above all things, his high-minded love of truth; and, moreover, beeause I found that the better I beeame aequainted with the opinions of the best naturalists regarding the vexed question of speeles, the iess fixed they seemed to be, and the more inclined they were to the hypothosis of grauual modification, that I ventured to speak as strongly as I have done in the final paragraphs of my diseourse.

Thus, my daw having so many borrowed plumes, I see no impropriaty in making a tail to this brief paper by
taking another handful of feathers from Mr. Darwin: endeavouring to point out in a few words, in fact, what, as I gather from the perusal of his book, his doctrines really are, and on what sort of basis they rest. And I do this the more wlilingly, as I observe that already the husticr sort of critics have begun, not to review my frtend's book, but to howl over it in a manner which must tend greatly to distract the pubilic mind.

No one will be better satisfied than I to see Mr. Darwin's book refuted, if any person be competent to perforin that feat ; but I would suggest that refutation is retarded, not aided, by mere sarcastic misrepresentation. Every one who has studied eattie-breeding, or turned pigeonfancier, or "pomologist," must have been struck by the extreme modifiability or plasticity of those kinds of animals and piants which have been subjected to such artificial conditions as are inposed by domestieation. Breeds of dogs are more different from one another than are the dog and the woif; and the purely artifieial races of pigcons, If their origin were unknown, would most assurediy be reckoned by naturalists as distinct species and even genera.

These breeds are always produced in the same way. The breeder seiects a pair, one or other, or both, of which present an indication of the pecuilarity he wishes to perpetuate, and then seleets from the oflspring of them those which are most charaeteristie, rejeeting the others. From the seleeted offspring he brecds again, and, taking the same precautions as before, repeats the process untll he has obtained the preeise degree of divergence from the primitive type at which he aimed.

If he now breeds from the variety thus established for some generations, taking eare always to keep the stoek pure, the tendeney to produce this partieuiar variety becomes more and more strongiy hereditary ; and it does not appear that there is any iimit to the persisteney of the race thus deveioped.

Men like Lamarek, apprehending these facts, and knowing that varieties comparabie to those produced by the breeder are abundantiy found in nature, and finding it impossibie to discriminate in some cases between varieties and true species, couid hardiy fail to divine the possibility that species even the most distinct were, after all, only exceedingly persistent varieties, and that they had arisen by the modifcation of some common stock, just as it is
wlth good reason belleved that turnsplts and greyhounds, carrier and tumbler plgcons, have arisen.

But there was a llnk wanting to complete the parallel. Where in nature was the analogue of the breeder to be found? How could that operation of selection, which is his essential function, be carried out by mere natural agencies? Lamarck dld not value thls problem; nelther dld be admlt hls impotence to solve it ; but he guessed a solution. Now, guessing in science is a very hazardous proceeding, and Lamarck's reputatlon has suffered woefully for the absurditles into whlcb his baseless suppositions led him.

Lamarck's conjectures, equipped witb a new hat and stick, as Sir Walter Scott was wont to say of an old story renovated, formed the foundation of tbe blological speculatlons of the Vestiges, a work whicb has done more harm to the progress of sound thought on these matters than any that could be named; and, indeed, I mention it here simply for the purpose of denying tbat lt has anything in common witb what essentlally characterises Mr. Darwin's work.

The pecullar feature of the latter ls , in fact, tbat it professes to tell us what in nature takes the place of the breeder; what it is that favours the development of one varlety into which a species may run, and checks that of anotber ; and, finally, shows bow this natural selection, as it is termed, may be the physical cause of the production of species by modification.

Tbat which takes tbe place of the breeder and selector in nature is Death. In a most remarkable chapter, On the Struggle for Existence, Mr. Darwin draws attention to the marvellous destructlon of life wblch is constantiy going on In nature. For every specles of llving thing, as for man, "Eine Bresche isi ein jeder Tag."-Every species has its enemles; every species has to compete with others for the necessarles of existence; the weakest goes to the wall, and death ls the penalty inflicted on all laggards and stragglers. Evcry varlety to which a species may give rise is eitber worse or better adapted to surrounding circumstances than lts parent. If worse, it cannot maintain ltself agalnst death, and speedily vanishes again. But if better adapted, it must, sooner or later, "improve" its progenitor from the face of the earth, and take its place. If circumstances change, the victor will be similarly supplanted by its own progeny; and thus, by the operation
of natural causes, unlimited modification may in the lapse of long ages occur.

For an explanation of what I have here cailed vaguely "surrounding circumstances," and of why they continually change-for ampie proof that the "struggle for existence" is a very great reality, and assurediy tends to exert the influence ascribed to it-I must refer to Mr. Darwin's book. I beifeve I have stated fairly the position upon which his whoie theory must stand or fall; and it is not my purpose to anticipate a full review of his work. If it can be proved that the process of natural seiection, operating upon any species, can give rise to varietles of species so different from one another that none of our tests will distinguish them from true species, Mr. Darwin's hypothesis of the origin of species will take its piace among the estabiished theories of science, be its consequences whatever they may. If, on the other hand, Mr. Darwin has erred, either in fact or in reasoning, his fellow-workers will soon find out the weak points in his doctrines, and their extinction by some nearer approximation to the truth will exemplify his own principie of natural seiection.

In either case the question is one to be settled oniy by the painstaking, truth-ioving investigation of skilled naturallsts. It is the duty of the general public to await the result in patience ; and, above all things, to discourage, as they would any other crimes, the attempt to enlist the prejudices of the ignorant, or the uncharitabieness of the bigoted, on either side of the controversy.

THE ORIGIN OF SPECIES*

Mr. Darwin's iong-standing and well-earned scientific eminence prohably renders him indifferent to that social notoricty which passes hy the name of success; but if the calm spirit of the philosopher have not yct wholly superseded the ambition and the vanity of the carnal man within him, he must he well satisficd with the results of his venture in publishing the Origin of Species. Overllowing the narrow bounds of pureiy scientific circies, the "species question" divides with Italy and the Voiunteers the attention of gencral society. Everyhody he., read Mr. Darwin's book, or, at ieast, has given an opinion upon its merits or demerits; pletists, whether iay or ecciesiastic, decry it with the mild ralling which sounds so charitabie; higots dephounce it with ignorant invective; oid iadies of hoth sexes consider it a decidedly dangerous hook, and even savants, who have no hetter mud to throw, quote antiquated writers to show that its author is no better than an ape himself; while every philosophical thinker hails it as a veritable Whitworth gun in the armoury of libcralism; and all competent naturalists and physioiogists, whatever their opinions as to the ultimate fate of the doctrines put forth, acknowiedge that the work in which they are emhodied is a solld contribution to knowiedge and inaugurates a new epoch in natural history.

Nor has the discussion of the suhject been restrained within the iimits of conversation. When the puhlic is eager and interested, reviewcrs must minister to its wants; and the genuine litterateur is too much in the habit of acquiring his knowiedge from the hook he judges-as the Abyssinian is said to provide himself with steaks from the ox which carries him-to he withheld from criticism of a profound scientific wors hy the mere want of the requisite. preliminary scientific acquirement; while, on the other hand, the men of scicnce who wish well to the new view,

[^5]no iess than those who dispute their validity, have naturally sought opportunities of expressing their opinions. Hence it is not surprising that almost all the critical journals have noticed Mr. Darwin's work at greater or iess length ; and so many disquisitions, of every degree of excellence, from the poor product of ignorance, too often stimuiated hy prejudice, to the fair and thoughtful essay of the candid student of Nature, have appeared, that it seems an almost heipiess task to attcmpt to say anything new upon the question.

But it may be douhted if the knowiedge and acumen of prejudged scientific opponents, or the subtlety of orthodox special pleaders, have yet exerted their full force in mystifying the real issues of the great controversy which has been set afoot, and whose end is hardly likely to he seen hy this generation ; so that at this eleveth hour, and even falling anything new, it may he useful to state afresh that which is true, and to put the fundamental positions advocated by Mr. Darwin in such a form that they may he grasped by those whose special studies ilie in other directions. And the adoption of this course may he the more advisabie, because notwithstanding its great deserts, and indeed partiy on account of them, the Origin of Species is hy no means an easy book to read-if hy reading is implied the fuli comprehension of an author's meaning.

We do not speak jestingly in saying that it is Mr. Darwin's misfortune to know more ahout the question he has taken up than any man living. Personally and practically exercised in zoology, in minute anatomy, in geology ; a student of geographical distribution, not on maps and in museums only, but hy iong voyages and laborious coliection; having largely advanced each of these hranches of science, and having spent many years in gathering and sifting materials for his present work, the store of accurately registered facts upon which the author of the Origin of Species is abie to draw at will is prodigious.

But this very superabundance of matter must have heen emharrassing to a writer who, for the present, can only put forward an ahstract of his views; and thence it arises, perhaps, that notwithstanding the clearness of the styie, those who attempt fairly to digest the hook find much of it a sort of intellectual pemmican-a mass of facts crushed and pounded into shape, rather than held together hy the ordinary medium of an obvious logical bond: due attention
will, without douht, discover this hond, hut it is often hard to find.

Again, from sheer want of room, much has to be taken for granted which might readily enough he proved; and hence, while the adept, who can suppiy the missing inks in the evidence from his own knowiedge, discovers fresh proof of the singular thoroughness with which all diffculties have heen considered and all unjustifabie suppositions avoided, at every reperusai of Mr. Darwin's pregnant paragraphs, the novice in bioiogy is apt to compiain of the frequency of what he fancies is gratuitous assumption.

Thus while it may he doubted If, for some years, any one is iikeiy to be competent to pronounce judgment on all the issues raised by Mr. Darwin, there is assurediy abundant room for him, who, assuming the humbier, though perhaps as useful, office of an interpreter between the Origin of Species and the pubiic, contents himself with endeavouring to point out the nature of the probiems which it discusses; to distinguish between the ascertaincd facts and the theoretical views which it contains; and finally, to show the extent to which the expianation it offers satisfies the requirements of scientific logic. At any rate, it is this office which we purpose to undertake in the following pages.

It may be safely assumed that our readers have a general conception of the nature of the objects to which the word "species" is appilied; but it has, perhaps, occurred to a few, even to those who are naturalists ex professo, to reflect, that, as commonly employed, the term has a double sense and denotes two very different orders of relations. When we call a group of animals, or of piants, a species, we may imply therehy, either that all these animals or piants have some common peculiarity of form or structure; or, we may mean that they possess some common functional character. That part of bioiogical science which deals with form and structure is called Morphology-that which concerns itself with function, Physioiogy-so that we may conveniently speak of these two senses, or aspects, of "species"-the one as morphoiogical, the other as physiological. Regarded from the former point of view, a species is nothing more than a kind of animal or plant, which is distinctly definabie from all others, by certain constant, and not merely sexual, morphological peculiarities. Thus horses form a species, hecause the group of animals to which that name is applled
is distinguished from all others in the world hy the foliow. lag constantiy associated characters. They havo-1, A vertehral column ; 2, Mamme ; 3, A placental embryo ; 4, Four legs; 5, A single well-developed toe in each foot provided with a hoof; 6, A hushy tall ; and 7, Callositics on the inner sides of hoth the fore and the hind legs. The asses, again, form a distinct species, hecause, with the same characters, as far as the fifth in the above list, all asses have tufted tails, and have callosities only on the inner side of the fore-legs. If animals were discovered having the general characters of the horse, hut sometimes with callosities only on the fore-iegs, and more or less tufted tails; or animals having the general characters of the ass, but with more or less hushy tails, and sometimes with callosities on hoth pairs of iegs, hesides heing intermediate in other respects-the two species would have to be merged into one. They could no longer he regarded as morphologically distinct species, for they would not he distinctiy definabie one from the other.

However bare and simpie this definition of species may appear to he, we confldently appeal to all practical naturalists, whether zoologists, hotanists, or palwontologists, to say if, in the vast majority of cases, they know, or mean to affirm, anything more of the group of animals or plants they so denominate than what has just heen stated. Even the most decided advocates of the received doctrines. respecting species admit this.

[^6]of their skins, or bones, or other llfeless exuvia; that we are acquainted with none, or next to none, of their physioiogical pecullaritles, heyond those which can he deduced from their structure, or are open to cursory observation; and that we cannot hope to iearn more of any of those extinct forms of life which now constitute no inconslderable proportlon of the known Flo'a and Fauna of the world : It ls obvious that the definitlons of these species can be only of a purely structural or morphological character. It is probable that naturallsts wouid have avolded much confuslon of ldeas if they had more frequentiy borne the necessary llmitations of our knowledge in mind. But while lt may safely he admitted that we are acquainted with only the morphological characters of the vast majority of species-the functionai, or physloiogical, peculiaritles of a few have been carefully investlgated, and the result of that study forms a large and most interesting portion of the physiology of reproduction.

The student of Nature wonders the more and is astonished the less, the more conversant he hecomes with her operations; but of all the perennial miracies she offers to his inspection, perhaps the most worthy of admiration is the development of a plant or of an animal from its embryo. Examine the recently laid egg of some common animal, such as a salamander or a newt. It is a minute spherold in which the hest microscope will reveal nothing but a structureless sac, enclosing a glairy fluld, holding granules in suspenslon. But strange possibilities lie dormant ln that semi-fluid glohule. Let a moderate supply of warmth reach its watery cradle, and the plastic matter undergoes changes so rapld and yet so stcady and purposelike in their succession, that one can oniy compare them to those operated hy a skilled modelier upon a formless lump of clay. As with an invisible trowel, the mass is divided and subdlvided into smaller and smalier portlons, until it is reduced to an aggregation of granules not too large to huild wlthal the finest fabrics of the nascent organlsm. And, then, it ls as if a delicate finger traced out the iine to be occupied by the spinal column, and moulded the contour of the body; pinching up the head at one end, the tall at the other, and fashioning flank and limb into due salamandrine proportions, in so artistic a way, that, after watching the process hour by hour, one ls almost involuntarily posscssed hy the notion, that some more subtie aid
to vision than an achromatic, would show the hidden artist, with his pian hefore him, striving with skiliful manipulation to perfect his work.

As life advances, and the young amphibian ranges the waters, the terror of his insect contemporaries, not only are the nutritious particles supplied hy its prey, hy the addition of which to its frame growth takes place, fald down, each In its proper spot, and in such due proportion to the rest, as to reproduce the form, the colour, and the size, characteristic of the parental stock; hut even the wonderfui powers of reproducing lost parts possessed hy these animals are controiled hy the zame governing tendency. CI't ofl the iegs, the tall, the jaws, separately or all together, and, as Spallanzani showed long ago, these parts not only grow again, hut the redintegrated iimh is formed on the same type as those which were iost. The new jaw, or leg, is a newt's, and never hy any accident more like that of a frog. What is true of the newt is true of every animal and of every plant; the acorn tenc to huild itself up again into a woodiand giant such as that from whose twig it fell; the spore of the humhiest iichen reproduces the green or hrown incrustation which gave it hirth; and at the other end of the scale of life, the child that resemhied neither the patcrnal nor the maternal side of the house would be regarded as a kind of monster.

So that the one end to which, in all living heings, the formative impulse is tending-the one scheme which the Archæus of the old speculators strives to carry out, seems to he to mould the offispring into the likeness of the parent. It is the first great iaw of reproduction, that the offspring tends to resembie its parent or parents, more closely than anything else.

Science will some day show us how this iaw is a necessary consequence of the more general laws which govern matter ; but, for the present, more can hardly he sald than that it appears to he in harmony with them. We know that the phenomena of vitality are not something apart from other physical phenomena, hut one with them; and matter and force are the two names of the one artist who fashions the living as well as the iifeless. Hence living hodies should ohey the same great laws as other matter-nor, throughout Nature, is there a law of wider application than this, that a hody impeiled hy two forces takes the direction of their resultant. But living bodies may he regarded as nothing
but extremely compiex bundies of forces heid in a mass of matter, as the compiex forces of a magnet are heid in the steel hy its coerclive force; and, since tbe differences of sex are comparativeiy silght, or, in other words, the sum of the forces in each has a very similar tendency, thelr resultant, the offspring, may reasonably be expected to deviate hut littic from a course parallei to elther, or to both.

Represent the reason of the law to ourseives hy what physlcal metaphor or analogy we will, however, the great matter is to apprehend its existence and the importance of the consequences deducibie from it. For things which are like to the same are iike to one another, and if, in a great series of generations, every offspring is ilke its parent, it follows that all the offspring and all the parents must be like one another ; and that, given an original parentai stock, with the opportunity of undisturhed multiplication, the law in question necessitates the production, in course of time, of an indefinitely large group, the whoie of whose memhers are at once very slmilar and are biood reiations, having descended from the same parent, or palr of parents. The proof that all the memhers of any glven group of animals, or piants, had thus descended, would be ordinarily considered sufficient to entitie them to the rank of physiological species, for most physlologists consider species to he definahle as "the offspring of a slngle primitlve stock."

But though it is quite true that all those groups we call species may, according to the known laws of reproduction, have descended from a singie stock, and though it is very likely they really have done so, yet this conclusion rests on deduction and can hardly hope to estahlish itself upon a hasis of ohservation. And the primitiveness of the supposed single stock, which, after all, is the essential part of the matter, is not oniy a hypothesls, hut one which has not a shadow of foundation, if hy " primitive" he meant " independent of any other living belng." A scientific definition, of which an unwarrantable hypothesis forms an essential part, carries its condemnation wlthin itself; hut even supposing such a definition were, in form, tenable, the physiologist who should attempt to apply it in Nature would soon find himself invoived in great, if not inextricabie, difficulties. As we have said, it is induhitabie that offspring tend to resembie the parental organism, but it is equally true that the similarity attained never amounts to identity,
elther ir form or in structure. There is always a certain amount of deviation, not only frora the precise characters of a single parent, but when, as in most animals and many plants, the sexes are iodged in distinct individuals, from an exact mean between the two parents. And Indeed, on general principles, this slight deviation seems as intelligibic as the general similarity, if we reflect how compiex the co-operating " hundles of forccs " are, and how improhabie it is that, in any case, their true resultant shali coincide with any mean hetween the more obvious characters of the two parents. Whatcver he its cause, however, the co-existence of this tendenmer to minor variation with the tendency to general similarity, is of vast importance in its bearing on the question of the origin of species.

As a general rule, the extent to which an offspring differs from its parent is slight enough ; hut, occasionally, the amount of difference is much more strongly marked, and then the divergent offspring receives the name of a Variety. Multitudes, of what there is every reason to helieve are such varietles, are known, hut the origin of very few has heen accurately recorded, and of these we will select two as more especiaily illustrative of the main features of variation. The flrst of them is that of the "Ancon," or "Otter" sheep, of which a careful account is given by Colonel David Humphreys, F.R.S., in a letter to Sir Joseph Banks, puhilshed in the Philosophical Transactions for 1813. It appears that one Seth Wrigt , the proprietor of a farm on the hanks of the Charies RJ. in Massachusetts, possessed a flock of fifteen ewes and :a ram of the ordinary kind. In the year 1791, one of tae ewes presented her owner with a male lamh, differing, for no assignable reason. from its parents by a proportionally long hody and short handy legs, whence it was unable to emuiate its relatives in those sportive leaps over the neighbours' fences, in which they were ir the habit of indulging, much to the good farmer's vexation.
"he second case is that detailed by a no less uncxceptionah. - authority than Réaumur, in his Art de faire éclore les Poulets. A Maltese couple, named Kclleia, whose hands and feet were constructed upon the ordinary human model, had horn to them a son, Gratio, who possessed six pertectly movable fingers on each hand, and six toes, not quite so well formed, on each foot. No cause could be assigned for the appearance of this unusual variety of the human species.

Two circumstances are well worthy of remark in both these cases. In each, the varioty appears to have arisen in sull force, and, as it were, per sallum; a wide and dcfnite difference appearing, at once, betwcen the Ancon ram and the ordinary sheep; between the six-Ingered and six-toed Gratio Kelleia and ordinary men. In neither caso is it possibie to point out any obvious reason for the appearance of the variety. Doubtless there wore determining causes for these as for all other phenomena; but they do not apivear, and we can be toicrabiy ccrtaln that what are ordinarily understood as changes in physical conditions, as in cilmate, in lood, or the ilke, did not take piace and had nothing to do with the matter. It was no case of what is commonly called adaptation to circumstances; but, to use a conveniently erroneous pbrase, tbe variations arose spontancously. The fruitiess searcb after Anal causes leads their pursuers a iong way ; but even those hardy teieoiogists, wbo are ready to break through all the iaws of physics in chase of tbeir favourito will-o'-the-wisp, may bo puzzlod to discover what purpose couid be attained by tbe stunted legs of Seth Wright's ram or the bexadactyie members of Gratio Kellela.

Varioties then arise we know not why ; and it is more tban probabie tbat the majority of varieties have arisen in this "spontaneous" manner, though we aro, of course, far from denying tbat they may be traced, in some cases, to distinct external infuences; which are assuredly competent to alter the character of the tegumentary covering, to cbange coiour, to increase or diminisb the size of muscles, to modify constitution, and, among piants, to give rise to the metamorpbosis of stamens into petals, and so foitb. But bowever tbey may have arisen, what especially interests us at present is, to remark that, once in oxistence, varieties obey the fundamental iaw of reproduction that like tends to produce iike, and their offspring exempilfy it by tending to exhibit the same deviation from the parental stock as tbemseivos. Indeed, there seems to bo, in many instances, a pre-potent influence about a newiy-arisen variety which gives it wbat one may call an unfair advantage over the normal descendants from the same stock. This is strikingly exempiliod by the case of Gratio Kelleia, wbo married a woman with the ordinary pentadactyio extremities, and bad by ber four children, Salvator, George, André, and Marie. Of tbese children Salvator, the eldest.
boy, had six fingers and slx toes, llke his father; the second and third, aleo boys, had Ive fingers and inve toes, like their mother, though the hands and feet of George were sllghtly deformed. The last, a girl, had five fingers and ave toes, hut the thumhs were slightly deformed. The variety thus reproduced itself purely in the cidest, while the normal type reproduced Itself purely In the third, and almost purely in the second and last: so that it would seem, at first, as if the normal type were more powerful than the variety. But all these children grew up and intermarried with normal wlves and husband, and then, note what took place: Salvator had four , illdren, three of whom exhilited the hexadactyle members of thelr grandfather and father, while the youngeit had the pentadactyle limbs of the mother and kiandmother; so that here, notwithstanding a doubie pentadactyle dilution of the hlood, the hexadactyle variety had the hest of lt. The same prepotency of the varlety was stili more markedly exempilined in the progeny of two of the other children, Marie and George. Marle (whose thumbs only were deformed) gave birth to a hoy with six toes,' and three other normally formed children; but George, who was not quite so pure a pentadactyle, begot, first, two girln, each of whom had six fingers and toes; then a girl with six fingers on each hand and six toes on the right foot, but only five toes on the ieft ; and lastly, a hoy wlth only five fingers and toes. In these instancen, therefore, the variety, as it were, leaped over one generation to reproduce ltself in full foree in the next. Finally, the purely pentadactyle Andre was tie father of many children, not one of whom departed from the normal parental type.

If a variation which approaches the nature of a monstrosity can strive thus forcibly to reproduce itself, it is not wonderful that less aberrant modifications should tend to he preserved even more strongly ; and the history of the Ancon sheep is, in this respect, partieulariy instruetive. With the "euteness" characteristic of their nation, the neighbours of the Massachusetts farmer imagined It would be an excellent thing if all hls sheep were imbued with the stay-at-home tendeneies enforced by Nature upon the newly-arrived ram; and they advised Wright to kill the old patriarch of his fold, and install the Ancon ram in his place. The result justified their sagacious anticipations, and coincided very nearly with what occurred to the always elther pure Ancons, or pure ordinary sheep.* But when sumcient Ancon sheep were obtained to interbreed with one another, It was found that the offspring was aiways pure Ancon. Colonel Humphreys, in fact, states that he was acquainted with only "one questionable case of a contrary nature." Here, then, is a remarkable and wellestablished instance, not only of a very dis "c: " race being estabilshed per sallum, but of that race 1 "certing "true" at once, and showing no mixed forms, even when crossed with another breed.

By taking care to select Ancons of both sexes, for breeding from, it thus became easy to establish an extremely wellmarked race; so peculiar that, even when herded with other sheep, It was noted that the Ancons kept together. And there is every reason to believe that the existence of this breed might have been indefinitely protracted; but the introduction of the Merino sheep, which were not only very superior to the Ancons in wool and meat, but quite as quiet and orderiy, led to the complete negleet of the new breed, so that, in 1813, Colonel Humphreys found it dimicult to obtain the specimen, whose skeleton was presented to Sir Joseph Banks. We belleve that, for many years, no remnant of It has existed In the United States.

Gratio Keliela was not the progenitor of a race of six. Angered men, as Seth Wright's ram became a nation of Ancon sheep, though the tendency of the variety to perpetuate Itself appears to have been fully as strong in the one case as in the other. And the reass: of the difference is not far to scek. Seth Wright imok caic not to weaken the Ancon blood by matching f is, Ancon $\mathrm{i} \cdots$ with any but males of the same variety, whl Ciralio Kellemais sons were too far removed from the patician? tines .c. ntermarry with their sisters ; and his grandchildren se.mn not to have

[^7]
THE ORIGIN OF SPECIES

been attracted by their six-fingered cousins. In other words, in the one exampie a race was produced, because, for several generations, care was taken to select both parents of the breeding stock from animals exhibiting a tendency to vary in the same condition; while, in the other, no race was evoived, because no such sefection was exercised. A race is a propagated variety ; and as, by the iaws of reproduction, offspring tend to assume the parental forms, they will be more ilkely to propagate a variation exhibited by both parents than that possessed by only one.

There is no organ of the body of an animal which may not, and does not, occasionally, vary more or less from the normal type; and there is no variation which may not be transmitted, and which, if selectively transmitted, may not become the foundation of a race. This great truth, sometimes forgotten by philosophers, has iong been familiar to practical agriculturists and breeders; and upon it rest all the methods of improving the breeds of domestic animals, which, for the last century, have been followed with so much success in England. Coiour, form, size, texture of hair or wool, proportions of various parts, strength or weakness of constitution, tendency to fatten or to remain lean, to give much or iittie milk, speed, strength, temper, intelligence, special instincts; there is not one of these characters whose transmission is not an every-day occurrence within the experience of cattle-breeders, stockfarmers, horse-dealers, and dog and poultry fanciers. Nay, It is only the other day that an eminent physioiogist, Dr. Brown-Séquard, communlcated to the Royal Society his discovery that epilepsy, artificially produced in guineapigs, by a means which he has discovered, is transmitted to their offspring.
But a race, once produced, is no more a fixed and immutabie entity than the stock whence it sprang; variations arise among its members, and as these variations are transmitted like any others, new races may be developed out of the pre-existing one ad infinitum, or, at feast, within any fimit at present determined. Given sufficient time and sufficientiy careful selection, and the multitude of races which may arise from a common stock is as astonishing as are the extreme structural differences which they may present. A remarkable example of this is to be found in the rock-pigeon, which Dr. Darwin has, in our opinion, satisfactorlly demonstrated to be the progenitor of all our
domestie pigcons, of which there are certainly more than a hundred weii-marked races. The most noteworthy of these races are, the four great stocks known to the "fancy" as tumblers, pouters, carriers, and fantails; hirds which not only differ most singulariy in size, coiour, and hahits, but in the form of the heak and of the skull : in the proportions of the beak to the skull; in the numher of tailfeathers; in the absoiute and reiative size of the feet; in the presence or absence of the uropygial gland; in the number of vertehra in the hack; in short, in preciseiy those characters in which the genera and species of birds differ from one another.

And it is most remarkahie and instructive to observe, that none of these races can be siown to have heen originated by the action of changes in what are commonly called external circumstanccs, upon the wild rock-pigeon. On the contrary, from time immemorial, pigeon fanciers have had essentiaily similar methods of treating their pets, which have been housed, fed, protected and cared for in much the same way in all pigeonries. In fact, there is no cas:- better adapted than that of the pigeons to refute the doctrine which one sees put forth on high authority, that " no other characters than those founded on the deveiopment of bone for the attachment of muscles " are capabie of variation. In precise contradiction of this hasty assertion, Mr. Darwin's researches prove that the skcieton of the wings in domestic pigeons has hardiy varied at all from that of the wild type; while, on the other hand, it is in exactiy those respects, such as the relative iength of the heak and skull, the number of the vertehra, and the number of the tail-feathers, in which muscuiar exertion can have no important influence, that the utmost amount of variation has taken piace.

We have said that the following out of the properties exhibited hy physioiogical species would icad us into difficultics, and at this point they hegin to he ohvious; for if, as the result of spontaneous variation and of seiective breeding, the progeny of a common stock may become separated into groups distinguished from one another hy constant, not sexual, morphoiogical characters, it is cicar that the physioiogical definition of species is iikeiy to clash with the morphoiogical ciefinition. No one would besitate to describe the pouter and the tumbier as distinct
species, if they were found fossil, or if their skins and skeietons were imported, as those of exotic wild birds commoniy are-and without douht, if considered alone, they are good and distinct morphoiogical species. On the other hand, they are not physioiogical species, for they are descended from a common stock, the rock-pigeon.

Under thesc circumstances, as it is admitted on all sides that races occur in Nature, how are we to know whether any apparently distinct animals are reaily of different physioiogical species, or not, seeing that the amount of morphoiogical difference is no safe guide? Is there any test of a physioiogical species? The usual answer of physioiogists is in the affirmative. It is said that such a test is to be found in the phenomena of hybridization-in the results of crossing races, as compared with the results of crossing species.

So far as the evidence goes at present, individuals, of what are certainiy known to he mere races produced by seiection, however distinct they may appear to be, not only breed freeiy together, but the offspring of such crossed races are only perfectiy fertile with one another. Thus, the spaniel and the greyhound, the dray-horse and the Arab, the ponter and the tumbier, breed together with perfect freedom, and their mongreis, if matched with other mongreis of the same kind, are equaliy fertile.

On the other hand, there can be no douht that the individuals of many naturai species are either ahsoiutely infertile, if crossed with individuals of other species, or, if they give rise to hyhrid offspring, the hyhrids so produced are infertile when paired together. The horse and the ass, for instance, if so crossed, give rise to the mule, and there is no certain evidence of offspring ever having heen produced by a male and female muie. The unions of the rock-pigeon and the ring-pigeon appear to be equaliy barren of result. Here, then, says the physiologist, we have a means of distinguishing any two true species from any two varieties. If a male and a femaie, seiected from each group, produce offspring, and that offspring is fertile with others produced in the same way, the groups are races and not species. If, on the other hand, no resuit ensues, or if the offspring are infertile with others produced in the same way, they are true physiological speeies. The test would be an admirabie one, if, in the first piact, it were always practicabie to appiy it, and if, in the second, it always yielded results
susceptible of a deflnlte interprctation. Unfortunately, In the great mujority of cases, this touchstone for specics is whoily inapplicabie.

The constitution of many wild animals is so altered by confinement that they will not breed even with thicir own females, so that the negative results obtained from crosses are of no value; and the antipathy of wild animals of different species for one another, or even of wiid and tame members of the same species, is ordinarily so great, that it is hopeiess to iook for such unlons in Nature. The hermaphrodlsm of most piants, the difficulty in the way of insuring the absence of their own, or the proper working of other pollen, are obstacles of no less magnitude in appiying the test to them. And \ln both animals and piants is superadded the further diffculty, that experiments must be continued over a iong time for the purpose of ascertalning the fertility of the mongrei or hybrid progeny, as well as of the first crosses from whlch they spring.

Not oniy do these great practical diffcultles ile in the way of applying the hybridization test, but even when this oracle can be questioned, its repiics are sometimes as doubtful as those of Delphi. For exampie, cases are cited by Mr. Darwin, of plants which are more fertile with the pollen of another species than with their own; and there are others, such as certain fuci, whose male element will fertilize the ovule of a piant of distinct species, while the males of the iatter species are ineffective with the females of the first. So that, in the iast-named instance, a physiologist, who shouid cross the two species in one way, would decide that they were true specles; while another, who siculd cross them in the reverse way, would, with equal justice, according to the rule, pronounce them to be mere races. Several plants, which there is great reason to believe are mere varieties, are almost sterile when crossed; while both animals and plants, which have always been regarded by naturalists as of distinct species, turn out, when the test is applicd, to be perfectly fertile. Again, the sterillty or fertility of crosses seems to bear no reiation to the structural resembiances or differences of the members of any two groups.

Mr. Darwin has discussed thls question with singuiar ability and circumspection, and his conclusions are summed up as follows, at page 276 of his work:-
"First crosses between.forms sumbiently distinct to be ranked as species, and their hybrids, are very generally, but not universally, sterile. The sterillty is of all degrees, and is often so slight that the two most careful experimentalists who have ever lived have come to diametrically opposite conclusions in ranking forms by this test. The sterility is innately variable in individuals of the same species, and is eminently susceptible of favourable and unfavourable conditions. The degree of sterility does not strictly follow systematie affinity, but is governed by several curious and complex laws. It is generally different, and sometimes widely different, in reciprocal crosses between the same two species. It is not always equal in degree in a first cross, and in the hybrid produced from this cross.
"In the same manner as in grafting trees, the capacity of one species or variety to take on another is incidental on generally unknown differences in their vegetative systems; so in crossing, the greater or less facility of one species to unite with another is incidental on unknown difierenees in their reproductive systems. There is no more reason to think that speeies have been specially endowed with various degrees of sterility to prevent them crossing and breeding in Nature, than to think that trees have been specially endowed with various and somewhat analogous degrees of difficulty in being grafted together, in order to prevent them becoming inarched in our forests.
"The sterillty of first crosses between pure speeies, which have their reproduetive systems perfect, seems to depend on several circumstances; in some cases largely on the early death of the embryo. The sterility of hybrids which have their reproductive systems imperfeet, and which have had this system and their whole organization disturbed by belng compounded of two distinct species, seems closely allied to that sterility which so frequently affects pure species when their natural conditions of life have been disturbed. This view is supported by a porallelism of another kind : namely, that the crossing of forms, only slightly different, is favourable to the vigour and fertility of the ollspring ; and that slight changes in the conditions of life are apparently favourable to the vigour and fertility of all organic beings. It is not surprising that the degree of diffeculty in uniting two specles, and the degree of sterillty of their hybrid ofispring, should generally correspond, though due to distinet causes; for both depend on the amount of difference of some kind between the species which are crossed. Nor is it surprising that the faclity of effecting a first cross, the fertility of hybrids produced from It, and the capacity of being grafted together-though this latter capacity evidentiy depends on widely diferent circumstances -should all run to a certain extent parallel with the systematic aflnity of the ferms which are subjected to experiment; for systematic affinity attempts to express all kinds of resemblance between all species.
"First crosses between forms known to bo varieties, or suffieiently alike to be considered as varieties, and their mongrel ollsjiring, are
very generally, but not quite universally, fertile. Nor is this nearly general and perfect fertulity surprising, when we remember how Hable we are to argue in a circle with respect to varietles in a state of Nature; and when we remember that the greater number of varictles have been produced under domestication by the selection of mere external differences, and not of differences in the reproductive system. In all other respects, excluding fertility, there is a close general resemblance between hybrids and mongrels."Pp. 276-8.

We fully agree with the general tenor of this weighty passage; but forcible as are these arguments, and little as the value of fertility or infertility as a test of species may be, it must not be forgotten that the really important fact, so far as the inquiry into the origin of species goes, is, that there are such things in Nature as groups of anlmals and of plants, whose members are incapable of fertile union with those of other groups; and that there are such things as hybrids, which are absolutely sterile when crossed with other hybrids. For if such phenomena as these were exhibited by only two of those assemblages of living objects, to which the name of species (whether it be used in its physlological or in its morpbological sense) is given, it would bave to be accounted for by any theory of the origin of species, and every theory which could not account for it would be, so far, Imperfect.

Up to this point we have been dealing with matters of "act, and the statements which we have lald before the reader would, to the best of our knowledge, be admitted to contain a fair exposition of what is at present known respecting the essential properties of species, by all who have studied the question. And whatever may be his theoretical vlews, no naturalist will probably be dlsposed to demur to tbe following summary of that exposition :-

Living beings, whether animals or plants, are divislble into multitudes of distinctiy definable kinds, which are morphological species. They are also divislble into groups of individuals, which breed freely together, tending to reproduce their like, and are physiological species. Normally resembling their parents, the offspring of members of these species are still liable to vary, and the variation may be perpetuated by selection, as a race, which race, In many cases, presents all the characteristics of a morphological species. But it is not as yet proved that a race ever exhibits, when crossed with another race of the same species,
those phenomena of hyhridization which are exhilhited by many species when crossed with other species. On the other hand, not oniy is it not proved that all species give rise to hybrids infertile inter se, but there is much reason to belleve that, in crossing, specles exhibit every gradation from perfect sterility to perfect fertility.

Such are the most essential characteristics of species. Even were man not one of them-a member of the same systicm and subject to the same laws-the question of their origin, their causal connexion, that is, with the other phenomena of the universe, must have attracted his attention, as soon as his intelligence had raised itself above the level of his daily wants.

Indeed history reiates that such was the case, and has emhalmed for us the specuiations upon the origin of living beings, which were among the eariiest products of the dawning inteilectual activity of man. In those eariy days positive knowiedge was not to be had, but the craving after it needed, at all hazards, to be satisfled, and according to the country, or the turn of thought of the speculator, the suggestion that all iiving things arose from the mud of the Nile, from a primeval egg, or from some more anthropomorphic agency, afforded a sufficient resting-piace for his curiosity. The myths of Paganism are as dead as Osiris or Zeus, and the man who should revive them, in opposition to the knowiedge of our time, would be justiy iaughed to scorn; but the coeval imaginations current among the rude inhabitants of Palestine, recorded by writers whose very name and age are admitted by every schoiar to be unknown, have unfortunateiy not yet shared their fate, but, even at this day, are regarded by nine-tenths of the civilized worid as the authoritative standard of fact and the criterion of the justice of scientific conciusions, in all that reiates to the origin of things, and, among them, of species. In this nineteenth century, as at the dawn of modern physical science, the cosmogony of the semibarbarous Hebrew is the incubus of the philosopher and the opprobrium of the orthodox. Who shall number the patient and earnest seekers after truth, from the days of Galileo until now, whose ilves have been embittered and their good name biasted by the mistaken zeal of Bibliolaters? Who shail count the host of weaker men whose sense of truth has been destroyed in the effort to harmonize
to force the generous new wine of Sasted in the attempt bottles of Judalsm, compelled by of Science into the old strong party ? - It is true that if phijosophe has heen amply avengedoph have suffered, their cause ahout the cradle of cvery science Eushed theologians lie heside tiat of Hercules; and histo as the strangled snakes science and orthodoxy have bestory records that whenever has heen forced to retire from been fairly opposed, the latter if not annihilated; scotched, if iists, bleeding and crushed, is the Bourhon of the worid of thain. But orthodoxy neither can it forget; and though thought. It learns not, and afrald to move, it is as willing at present, hewildered the first chapter of Genesis wiling as ever to insist that the end of sound science; thunderboits as its half-paralysed visit, with such petty who refuse to degrade Nature to hands can hurl, those Judaism.

Philosoph tendencies. With the other hand, have no such aggressive "per aspera et ardua" they the nohle goal to which be stirred to momentary wrath hy they may, now and then, with which tbe ignorant, or thy the unnecessary ohstacies they cannot har, the difficult pat malicious, encumber, if souls he deeply vexed? The path; but why should their slde, and the elemental forces majesty of Fact is on their them. Not a star comes to the Nature are working for time hut testifies to the justice meridian at its calculated heiiefs are "one with faliing re of their methods-their corn." By douht they are estahlished, with the growing is their bosom friend. Such men have, and open inquiry however venerable, and no respect no fear of traditions hecome mischievous and ohstructive them when they hetter than merc antiquarian ohstive; hut they have dogmas, which ought to be business in hand, and if forced upon their notice, they fossil hut are not, are not as non-existent.

The hypotheses respecting the origin of species which profess to stand upon a scientific hasis, and, as such, alone demand serious attention, are of two kinds. The one, the "special creation" hypothesis, presumes every species to have originated from one or more stocks, these not
being the result of the modification of any other form of Ifving matter-or arising by natural agencics-but being produced, as such, by a supernatural creative act.

The other, the so-called "transmutation" hypothesis, considers that all existing species are the result of the modification of pre-existing species, and those of their predecessors, by agencies similar to those which at the present day produce varieties and races, and therefore in an altogether natural way; and it is a probabie, though not a necessary consequence of this hypothesis, that ail living beings have arisen from a singie stock. With respect to the origin of this primitive stock, or stocks, the doctrine of the origin of species is obviously not necessarily concerned. Tbe transmutation hypothesis, for example, is perfectiy consistent either with the conception of a special creation of tbe primitive germ, or with the supposition of its having arisen, as a modification of inorganic matter, by natural causes.

The doctrine of special creation owes its existence very largeiy to the supposed necessity of making science accord with the Hebrew cosmogony ; but it is curious to observe that, as the doctrine is at present malntained by men of science, it is as hopeiessiy inconsistent with the Hebrew view as any other hypothesis.

If there be any result wbich has come more cleariy out of geoiogical investigation than another, it is, tbat the vast series of extinct animals and piants is not divisibie, as it was once supposed to be, into distinct groups, separated by sbarpiy-marked boundaries. There are no great gulfs between epochs and formations-no successive periods marked by the appearance of piants, of water animals, and of land animals, en masse. Every ycar adds to tbe ilst of links between what the oider geoiogists supposed to be widriy separated epochs: witness the crags linking the drift with oider tertiaries; the Maestricht beds iinking tbe tertiaries with the chalk; the St. Cassian beds exhibiting an abundant fauna of an mesozoic and palæozoic types, in rocks of an epoch ice supposed to bi: eminentiy poor in ilfe; witness, lasuy, the incessant disputes as to whether a given stratum shall be reckoned devonian or carboniferous, silurian or de ionian, cambrian or silurian.

This truth is further lliustrated in a most interesting manner by tbe impartial and highly competent testimony

THE ORIGIN OF SPECIES

of M. Pictet, from whose calculations of what percentage of the genera of animals, existing in any formation, lived during the preceding formation, it resuits that in no case is the proportion less tban one-lhird, or 33 per cent. It is the triassic formation, or the commencement of the mesozoic epoch, which has received the smaliest inheritance from preceding ages. The other formations not uncommonly exhlbit 60, 80, or even 94 per cent. of genera in common with those whose remains are imbedded in their predecessor. Not only is this true, but the subdivisions of eacb formation exhibit new species characteristic of, and found only in, them; and, in many cases, as in the lias for example, the separate beds of these subdivisions are distinguished by well-marked and peculiar forms of life. A scetion, a hundred feet thick, will exhibit, at different beigbts, a dozen species of ammonite, none of which passes beyond it or into that above it; so that those who adopt the doctrine of special creation must be prepared to admit, that at intervals of time, corresponding with the thickness of these beds, the Creator tbought fit to interfere with tbe natural course of events for the purpose of making a new ammonite. It is not easy to transplant oneself into the frame of mind of those who can accept such a conciusion as this, on any evidence short of absolute demonstration; and it is difficult to see what is to be gained by so doing, since, as we have said, it is obvious that such a view of the origin of living beings is utterly opposed to the Hebrew cosmogony. Deserving no aid from the powerful arm of Biblioiatry, then, does the received form of the hypothesis of special creation derive any support from science or sound iogic? Assuredly not much. The arguments brougbt forward in its favour all take one form : If species were not supernaturally created, we cannot understand the facts x, or y, or z; we cannot understand the structure of animals or plants, unless we suppose they were contrived for special ends; we cannot understand the structure of the eye, except by supposing it to have been made to see with; wo cannot liniferstand instinets, uniess we suppose animats to have been iniraculously endowed with tbem.
As a question of diflectics, it must be admitted tbat this sort of reasoning it not very formidable to those who are not to be wightened by consequences. It is an argumentum ad tgnorantiam-take this expianation or be ignorant.

But suppose we prefer to admit our ignorance rather than adopt a hypothesis at variance with all the teachinge of Nature? Or, suppose for a moment we admit the explanation, and then seriousiy ask ourselves how much the wiser are we; what does the explanation explaing is it any more than a grandiloquent way of announcing the fact, that we really know nothing about the matter? A phenomenon is explained when it is shown to be a case of some general law of Nature; but the supernatural interposition of the Creator can, by the nature of the case, exempilify no law, and if spectes have really arisen in this. way, it is absurd to attempt to discuss their origin.

Or, fastly, let us ask ourselves whether any amount of evidence which the nature of our faculties permits us to attain, can justify us in asserting that any phenomenon is out of the reach of natural causation. To this end it is obviousiy necessary that we shouid know all the consequences to which all possibie combinations, continued through unlimited time, can give rise. If we knew these, and found'none competent to originate species, we shouid have good ground for denying their origin by naturai causation. Till we know them, any hypothesis is better than one which involves us in such miserabie presumption.

But the hypothesis of special creation is not only a mere specious mask for our lgnorance ; its existence in Blojogy marks the youth and imperfection of the science. For what is the history of every science, but the history of the elimination of the notion of creative, or other interferences, with the natural order of the phenomena which are the subject-matter of that science? When Astronomy was young "the morning stars sang together for joy," and the pianets were guided in their courses by ceiestial hands. Now, the harmony of the stars has resoived itself into gravitation aceording to the inverse squares of the distances, and the orbits of the pianets are deducible from the laws of the forces which aliow a sehoolboy's stone to break a window. The lightning was the angel of the Lord; but it has pleased Providence, in these modern times, that seience shouid make it the humble messenger of man, and we know that every flash that shimmers about the horizon on a summer's evening is determined by ascertainable conditions, and that its direction and brightness might, if our knowledge of these were great enough, have been calculated.

The solvency of great mercantlic companies rests on the valldity of the laws which have been ascertained to govern the seeming Irregularity of that human llfe which the moralist bewalls as the most uncertain of things: plague, pestilence, and famine are admiltted, by all but fools, to be the natural result of causes for the most part fully within human control, and not the unavoidable tortures inflicted hy wrathful Omnlpotence upon His helpless handlwork.
Harmonlous order governing eternally continuous pro-gress-the weh and woof of matter and force interweaving hy slow degrees, without a hroken thread, that vell whlch lles hetween us and the Infinlte-that universe which alone we know or can know ; such is the plcture which sclence draws of the world, and in proportion as any part of that pleture is in unison with the rest, so may we feel sure that it is rightly painted. Shail Biology alone remain out of harmony with her sister sciences?

Such arguments agalnst the hypothesls of the direct creation of species as these are plalniy enough deducible from general considcrations; but there are, In addition, phenomena exhiblted by specles themselves, and yet not so much a part of thelr very essence as to have requircd earller mentlon, which are In the highest degrce perpiexing, If we adopt the popularly accepted hypothesis. Such are the facts of distribution In space and In time; the singular phenomena hrought to llght hy the study of development; the structural relations of species upon which our systems of classification are founded; the great doctrines of philosophlcal anatomy, such as that of homology, or of the community of structural plan exhiblted by large groups of species differing very widcly In their hahits and functions.

The species of animals which inhabit the sea on opposite sldes of the isthmus of Panama are whoily dlstinct ; * the animals and plants which inhablt islands are commoniy distinct from those of the neighbouring mainlands, and yet have a similarity of aspect. The mammais of the latest tertiary epoch in the Oid and New Worids belong to the same genera, or family groups, as those which now inhablt the same great geographlcal area. The crocodilian reptiles which existed In the eariiest secondary epoch were similar in general structure to those now ilving, but exhlbit

[^8]alloht differences in their vertebre, nasal passages, and one or two other points. The guinea-pig has teeth which are shed before it is born, and hence can never subserve the masticatory purpose for which they seem contrived, and, In like manner, the female dugong has tusks which never cut the gum. All the members of the same great group ran through almilar conditions in their development, and all their parts, in the adult state, are arranged according to the same pian. Man is more like a gorilla than a gorilia is like a lemur. Such are a few, taken at random, among the multitudes of similar facts which modern research has estabilshed; but when the student seeks for an explanation of them from the supporters of the recelved hypothesis of the origin of species, the reply he recelves is, in substance, of Oriental simplicity and brevity-" Mashallah I it so pleases God I" There are different species on opposite sides of the isthmus of Panama, because they were created different on the two sides. The pllocene mammals are iike the existing ones, because such was the plan of creation ; and we find rudimental organs and similarity of plan, because it has pleased the Creator to set before Himself a "divine exemplar or archetype," and. to copy it in His works ; and somewhat ill, those who hold this view imply, in some of them. That such verbal hocus-pocus should be recelved as sclence will one day be regarded as evidence of the low state of inteliggence in the nineteenth century, just as we amuse ourselves with the phrascology about Nature's abhorrence of a vacuum, wherewith Torricelli's compatriots were satisfled to explain the rise of water in a pump. And be it recoliected that this sort of satisfaction works not only negative but positive ill, by discouraging inquiry, and so depriving man of the usufruct of one of the most fertlle fields of his great patrimony, Nature.

The objections to the doctrinc of the origin of species by special creation which have been detailed, must have occurred, with more or less force, to the mind of every one who has seriously and independently considered the subject. It is therefore no wonder that, from time to time, this hypothesis should have been met by counter hypotheses, all as well, and some better, founded than itself ; and it is curlous to remark that the inventors of the opposing views seem to have been led into them as much by their knowledge of geology, as by their acquaintance with blology. In fact, when the mind has once admitted the conception of
the gradual production of the present physical state of our globe, by natural causes operating through 'ong ages of time, It will be iittle disposed to allow that il ir beings have made their appearance in another $w_{1} \cdot$. .. '. specuiations
of De Malliet and his successors are 1 of Scllia's demonstration of :lli true

A contemporary of Newilor, and or Abnitz, sharing therefore in the inteliectual actlvity of the remarkable age which witnessed the birth of modern physical science, Benoft de Mailiet spent a long life as a consular agent of the French Government in various Mediterranean ports. For sixteen years, In fact, he heid the office of ConsulGeneral in Ecypt, and the wonderful phenomena offered by the valley of the Nile appenr to bave strongly impressed his mind, to have directed his attention to all facts of a similar order which cane within his observation, and to have led him to spocuible on the origin of the aresent condition of our globe and of its inhabitants. But, with all his ardour for sclence, De Naillet seems to have hesitated to pubilsh views which, notwithstanding the Ingenious attempts to reconcile them with the Hebrew hypothesis contained in the preface to Telliamed, were hardly bith:ly to be recelved with favour by his contemporarics.

But a short time had elapsed since more than un:c of the great anatomists and physicists of the Italiar sehwos hert pald dearly for their endeavours to dissipate $3 \mathrm{sm} \cdot$ ot 4,4 prevalent errors; and their illustrious pupil, Hesmo : founder of modern physiology, had not farec or wet?, is a country less oppressed by the benumbing influences of theor logy, as to tempt any man to foilow his exampie. Probably not uninfluenced by these considerations, his Catbolic majesty's Consul-General for Egypt kept his theories to himself throughout a long lifc, for Telliamed, the only scientife work which is known to have proceeded from his pen, was not printed till 1735, when its author bad reached the ripe age of seventy-nine; and though De Maillet lived three years longer, his book was not given to the world before 1748. Even then it was anonymous to those who were not in the secret of the anagrammatic character of its title; ind the preface and redication are so worded as, In case of necessity, to sive t? :urinter a fair chance of falling back on the excuse that the work was intended for a mere jeu d'esprit.

Tbe speculations of the supposititious Indian sage,
though quite as sound as those of many a "Mosaic Geology," which sells exceedingly weli, have no great value if we consider them hy the light of modern science. The waters are supposed to have sriginally covered the whole glohe; to have deposited the rocky masses which compose its mountains hy processes comparabie to those which are now forming mud, sand, and shingle; and then to have gradually iowered their ievel, ieaving the spoils of their animal and vegetahie inhahitants emhedded in the strata. As the dry fand appeared, certain of the aquatic animals are supposed to bave taken to 1 l , and to have hecome gradually adapted to terrestrial and aërial modes of existence. But if we regard the general tenor and style of the reasoning in relation to the state of knowiedge of the day, two circumstances appear very well worthy of remark. The first, that De Maillet had a notion of the modifiabillty of ifing forms (thougb wlthout any precise information on the suhject), and how such modifiability might account for the origin of species; the second, that he very cleariy apprehended the great modern geological doctrine, so strongly insisted upon hy Hutton, and so ahly and comprehensively expounded by Lyell, that we must look to existing causes for the expianation of past geological events. Indeed, the foliowing passage of the preface, in which De Maillet is supposed to speak of the Indian philosopher Telliamed, hls alter ego, mlght have heen written by the most philosophical uniformitarian of the present day :-

[^9]But De Malliet was before his age, and as couid hardly fall to happen to one who speculated on a zooiogical and botanical question before Linnæus, and on a physioiogical probiem before Haller, be feil into great errors here and there ; and hence, perhaps, the general neglect of his work. Robinet's specuiations are rather behind, than in advance of, those of De Maillet; and though Linnæus may have piayed with the hypothesis of transmutation, it obtained no scrious support until Lamarck adopted it, and advocated it with grcat ablity in his Philosophic Zoologique.

Impelled towards the hypothesis of the transmutation of species, partly by his general cosmoiogical and gcoiogical views ; partly by the conception of a graduated, though irregulariy branching, scale of being, which had arisen out of his profound study of piants and of the iower forms of animal iife, Lamarck, whose general iine of thought often cioseiy resembies that of De Mailiet, made a great advance upon the crude and mereiy speculative manner in which that writer deals with the question of the origin of iiving beings, by endeavouring to find physical causes competent to effect that change of one species into another, which De Mailiet had oniy supposed to occur. And Lamarck conceived that he had found in nature such causes, amply sufficient for the purpose in view. It is a physioiogical fact, he says, that organs are increased in size by action, atrophied by inaction ; it is anotber physioiogical fact that modifications produced are transmissibie to offspring. Change the actions of an animal, therefore, and you will change its structure, by increasing the deveiopment of the parts newiy brougbt into use and by the diminution of those iess used ; but by altering the circumstances which surround it you will alter its actions, and hence, in the iong run, change of circumstance must produce change of organization. Ali the species of animals, therefore, are, in Lamarck's view, the result of the indirect action of changes of circumstance upon those primitive germs which he ronsidered to have originally arisen, by spontaneous geueration, within the waters of the giobe. It is curious, however, that Lamarck should insist so strongly * as he has done, that circumstances never in any degrec directly modify the form or the organization of animais but only operate by cilanging their wants and consequentiy their actions; for he thereby brings upon himself the obvious question bow, then, do piants, whicls cannot be

[^10]said to have wants or actions, become modified? To this he replies, that they are modifted ly the changes in their nutritive processes, which are effected by changing circumstances; and it does not seem to have occurred to him that such changes might he as well supposed to take place among snimals.

When we have said that Lamarck felt that mere speculation was not the way to arrive at the origin of species, hut that it was necessary, in order to the establishment of any sound theory on the suhject, to discover by ohservation or otherwise, some vera causa, competent to give rise to them; that he affirmed the true order of classification to coincide with the order of their development one from another; that he insisted on the necessity of allowing sufficient time, very strongly; and that ali the varieties of instinct and reason were traced hack by him to the same cause as that which has given rise to species, we have enumerated his chief contributions to the advance of the question. On the other hand, from his ignorance of any power in Nature competent to modify the structure of animals, except the development of parts, or atrophy of them, in consequence of a change of necds, Lamarck was led to attach infinitely greater weight than it deserves to this agency, and the absurdities into which he was led have met with deserved condemnation. Of the struggie for existence, on which, as, we shall see, Mr. Darwin lays such great stress, he had no conception; indeed, he doubts whether there really are such things as extinct species, unless they be such large animals as may have met their death at the hands of man; and so littie does he dream of there heing any other destructive causes of work, that, in discussing the possible existence of fossil shells, he asks, "Pourquol d'ailleurs seroient-ils perdues dès que l'homme n'a pu opérer leur destruction?" (Phil. Zool., vol. i. p. 77.) Of the influence of selection Lamarck has as ilttle notion, and he makes no use of the wonderful phenomena which are exhibited by domesticated animals, and illustrate its powers. The vast influence of Cuvier was empioyed against the Lamarckian views. and, as the untenability of some of his conclusions was easily show.a, his doctrines sank under the opprohrium of scientifc, as well as of theoiogicai, heterodoxy. Nor have the efforts made of late years to revive them tended to re-establish their credit in the minds of sound thinkers acquainted with the facts of the case; indeed it may be
doubted whether Lamarck has not suffered more from his frlends than from his foes.

Two years ago, in fact, though we venture to question if even the strongest supporters of the special creation hypothesls had not, now and then, an uneasy consciousness that all was not right, their position seemed more impregnable than ever, if not by Its own Inherent strength, at any rate by the obvlous failure of all the attempts which had been made to carry it. On the other hand, however much the few, who thought deeply on the question of species, might be repelled by the generally recelved dogmas, they saw no way of escaplng from them, save by the adoption of suppositions, so llttle justlfied by experiment or by observation, as to be at least equally distastefui.
The choice lay between two absurdities and a middle condition of uneasy scepticism; which iast, however unpieasant and unsatisfactory, was obvlously the only justiflable state of mind under the circumstances.
Such being the general ferment in the minds of naturallsts, it is no wonder that they mustered strong in the rooms of the Linnæan Society, on the 1st of July of the year 1858, to hear two papers by authors Ilving on opposite sides of the globe, working out their results Independently, and yet professing to have dlscovered one and the same solution of all the problems connected with species. The one of these authors was an able naturalist, Mr. Wallace, who had been employed for some years In studying the productions of the Islands of the Indian Archipeiago, and who had forwarded a memoir embodying hls views to Mr. Darwin, for communleation to the Linnæan Soclety. On perusing the essay, Mr. Darwin was not a little surprised to find that it embodied some of the leading ideas of a great work which he had been preparing for twenty years, and parts of which, containing a deveiopment of the very same vlews, had been perused by hls private friends fifteen or slxteen years before. Perpiexed in what manner to do full justice both to his friend and to himseif, Mr. Darwin placed the matter in the hands of Dr. Hooker and Sir Charies Lyell, by whose advice he communicated a brief abstract of hls own views to the Linnæan Society, at the same time that Mr. Wallace's paper was read. Of that abstract, the work n the Origin of Species is an enlargement; but a complete statement of Mr. Darwin's doctrine is looked
for in the large and well-illustrated work which he is sala to be preparing for puhlication.

The Darwinian hypothesis has the merit of heing eminently simplo and comprehensible in principle, and its essential positions may he stated in a very few words: all species have heen produced hy the development of varieties from common stocks hy the conversion of these first into permanent races and then into new species, hy the process of natural selection, which process is essentially identical with that artificial selection hy which man has originated the races of domestic animals-the struggle for existence taking the place of man, and exerting, in the case of natural selection, that selective action which he performs in artificial selection.
The evidence brought forward hy Mr. Darwin in support of his hypothesis is of three kinds. First, he endeavours to prove that species may be originated hy seiection; secondly, he attempts to show that natural causes are competent to exert selection; and thirdly, he tries to prove that the most remarkable and apparentiy anomalous phenomena exhibited by the distribution, development, and mutual reiations of species, can be shown to be deducihle from the general doctrine of their origin, which he propounds, comhined with the known facts of geoiogical change ; and that, even if all these phenomena are not at present expicabie hy it, none are necessarily inconsistent with it.

There cannot he a doubt that the method of inquiry which Mr. Darwin has adopted is not only rigorously in accordance with the canons of scientific iogic, but that it is the only adequate method. Critics exclusively trained in classics or in mathematics, who have never determined a scientific fact in their lives by induction from experiment or observation, prate learnedly about Mr. Darwin's method, which is not inductive enough, not Baconian enough, forsooth, for them. But even if practical acquaintance with the process of scientific investigation is denied them, they may learn, by the perusal of Mr. Mill's admirahie chapter "On the Deductive Method," that there are multitudes of scientifc inquiries, in which the method of pure induction helps the investigator hut a very littie way.

[^11]or can acquire, respecting the conditions and law of recurrence of the more complex phenomena, is called, in its most general ex:pression, the deductive method, and consists of three operations: the first, one of direct induction; the second, of ratiocination; and the third, of verification."

Now, the conditions which have determined the cxistence of species are not only exceedingly compiex, but, so far as the great majority of them are concerned, are necessarily heyond our cognizance. But what Mr. Darwin has attempted to do is in exact accordance with the rule iald down by Mr. Mill; he has endeavoured to determine certain great facts inductiveiy, by observation and experiment; he has then reasoned from the data thus furnished; and iastly, he has tested the validity of his ratiocination hy comparing his deductions witb the observed facts of Nature. Inductiveiy, Mr. Darwin endeavours to prove that species arise in a given way. Deductively, he desires to sbow tbat, if they arise in that way, the facts of distribution, deveiopment, classification, etc., may he accounted for, i.e. may be deduced from their mode of origin, combined with admitted cbanges in physical geography and climate, during an indefnite period. And this expianation, or coincidence of ohserved with deduced facts, is, so far as it extends, a verification of the Darwinian view.

There is no fauit to be found with Mr. Darwin's method, then; hut it is another question whether he bas fulliled ali the conditions imposed by that method. Is it satisfactorily proved, in fact, that species may be originated by seiection? that there is sucb a thing as naturai seiection? that none of the phenomena exhibited hy species are inconsistent with the origin of species in tbis way? If these questions can be answered in the afflrmative, Mr. Darwin's view steps out of the rank of hypotbeses into those of proved theories; but, so iong as the evidence at present adduced falis short of enforcing that affirmation, so iong, to our minds, must the new doctrine he contert to remain among the former-an extremeiy valuabie, and in the highest degree probabie, doctrine, indeed the only extant hypothesis whicb is worth anything in a scientific point of view; hut still a hypothesis, and not yet the theory of species.
After much consideration, and with assuredly no hias against Mr. Darwin's views, it is our clear conviction that, as the evidence stands, it is not absoiutely proven that a group of animals, having all ti,3 characters exhibited by
species in Nature, has ever been originated by selection, whether artilliciai or naturai. Groups having the morpho iogical character of species, distinct and permanent races in fact, have been so produced over and over again ; bat there is no positive evidence, at present, that any group of animals has, by variation and seiective breeding, given rise to another grou? which was even in the ieast degree infertile with the first. Mr. Darwin is perfectly aware of this weak point, and brings forward a multitude of ingenious and important arguments to diminish the force of the objection. We admit the value of these arguments to their fuliest extent ; nay, we will go so far as to express our belief that experiments, conducted by a skilfui physioiogist, wouid very probabiy obtaln the desired production of mutually more or iess infertile breeds from a common stock, in a comparativeiy few years; but stili, as the case stands at present, this "iittie rift within the iute" is not to be disguised nor overiooked.

In the remainder of Mr. Darwin's argument our own private ingenuity has not hitherto enabied us to pick hoies of any great importance ; and judging by what we hear and read, other adventurers in the same fleid do not seem to have been much more fortunatc. It has been urged, for instance, that in his chapters on the struggle for existence and on natural selection, Mr. Darwin does not so much prove that natural seiection does occur, as that it must occur; but, in fact, no other sort of demonstration is attainabie. A race does not attract our attention in Nature until it has, in ali probability, existed for a considerabie time, and then it is too late to inquire into the conditions of its origin. Again, it is sald that there is no reai anaiogy between the seiection which takes piace under domestication, by human influence, and any operation which can be effected by Nature, for man interferes inteiiigentiy. Reduced to its elements, this argument impiies that an effect produced with troubie by an intelligent agent must, a fortiori, be more troubiesome, if not impossibie, to an unintelligent agent. Even putting aside the question whether Nature, acting as she does according to definite and invariabie iaws, can be rightiy called an unintelligent agent, such a position as this is wholly untenabie. Mix salt and sand, and it shall puzzle the wisest of men, with his mere natural appilances, to separate all the grains of sand from all the grains of salt ; but a shower of rain will effect the same object in ten minutes. And so, while man may find

It tax all his intelligence to separate any variety which arises, and to breed selectively from it, the destructive agencies incessantly at work in Nature, if they find one variety to be more soluble in circumstances than the other, wili inevitably, in the long run, climinate it.

A frequent and a just objection to the Lamarckian hypothesis of the transmutation of species is based upon the absence of transitional forms between many species. But against the Darwinian hypothesis this argument has no force. Indeed, one of the most valuabie and suggestive parts of Mr. Darwin's work is that in which he proves, that the frequent absence of transitions is a necessary consequence of his doctrine, and that the stock whence two or more species have sprung, need in no respect be intermediate between these species. If any two species have arisen from a common stock in the same way as the carrier and the pouter, say, have arisen from the rock-pigeon, then the common stock of these two species need be no more intermediate between the two than the rock-pigeon is between the carricr and pouter. Clearly appreciate the force of this analogy, and all the arguments against the origin of species by seiection, based on the absence of transitional forms, fall to the ground. And Mr. Darwin's position might, we think, have been even stronger than it is if he had not cmbarrassed himself with the aphorism, "Natura non facil saltum," which turns up so often in his pages. We believe, as we have sald above, that Nature does make jumps now and then, and a recognition of the fact is of no small importance in disposing of many minor objections to the doctrine of transmutation.

But we must pause. The discussion of Mr. Darwin's arguments in detail would icad us far beyond the limits within which we proposed, at starting, to confine this article. Our object has been attained if we have given an inteliigibie, however brief, account of the establisbed facts connected with species, and of the reiation of the expianation of those facts offered by Mr. Darwin to the theorctical views heid by his predecessors and his contemporaries, and, above ali, to the requirements of scientific logic. We have ventured to point out that it does not, as yet, satisfy ali those requirements; but we do not hesitate to assert that it is as superior to any preceding or contemporary hypothesis, in the extent of observational and experimental basis on which it rests, in its rigorousiy scientific method, and in its power of explaining biological phenomena, as was the hypothesis of Copernicus
to the specuiations of Ptolemy. But the planetary orblts turned out to be not quite circular after all, and, grand as was the service Copernicus rendered to scleace, Kepler and Newton had to come after him. What tit the orbit of Darwinism should be a little too circuiar I What if species should offer resldual phenomena, here and there, not explicable by natural selection? Twenty years hence naturalists may be in a pastion to say whether this is, or is not, the case; but in elther event they will owe the author of The Origin of Species an immense debt of gratitude. We should leave a very wrong impression on the reader's mind if we permitted hem to suppose that the value of that work depends wholly on the ultimate justification of the theoretical views which it contains. On the contrary, if they were disproved to-morrow, the book would still be the best of its kind-the most compendious statement of well-sifted facts bearing on the doctrine of species that has ever appeared. The chapters on Variation, on the Struggle for Existence, on Instinct, on Hybridism, on the Imperfection of the Geological Record, on Geographical Distribution, have not only no equals, but, so far as our knowledge goes, no competitors, within the range of biological literature. And viewed as a whole, we do not believe that, since the pubilcation of Von Baer's Researches on Development, thirty years ago, any work has appeared calcuiated to exert so large an influence, not only on the future of Biology, but in extending the domination of Science over regions of thought into which she has, as yet, hardly penetrated.

CRITICISMS ON "THE ORIGIN OF SPECIES"*

1. Usber die Danwin'sche Schöppunostheomer ein Vortano, ron A. §6̈lliken. I.elpzig, 1864.
2. Examination du Livie de M. Dabwin sur l'Oriaine des Espìcas. Par P. Flourents. Paris, 1864.

In the course of the present year several foreign eommentaries upon Mr. Darwin's great work have made thelr appearanee. Those who have perused that remarkable ehapter of the Antiquily of Man, in whleh Sir Charles Lyell draws a parallel between the development of speeles and that of languages, will be glad to hear that one of the most eminent philologers of Germany, Professor Sehleicher, has, independentiy, published a most instructive and phllosophieal pamphlet (an excellent notiee of whieh is to be found in the Reader, for February 27th of this year) supporting similar views with all the welght of his speelal knowledge and established authority as a lingulst. Professor Haeekel, to whom Sehleicher addresses himself, previously took oceasion, in his splendid monograph on the Radiolaria, \dagger to express his high appreclation of, and general concordance with, Mr. Darwin's views.

But the most elaborate critielsms of the Origin of Species which have appeared are two works of very wldely different merit, the one by Professor Kollliker, the well-kncwr. anatomist and histologist of Wuraburg; the other by M. Flourens, Perpetual Seeretary of the Freneh Academy of Sciences.

Professor Kölliker's erilleal essay Upon the Darwinian Theory is ilike all that proceeds from the pen of that thoughtful and accomplished writer, worthy of the most careful consiỏeration. It comprises a brlef but ciear sketeh of Darwin's views. followed by an enumeration of the leading diffeulties in the way of their aceeptance; diffeulties whleh would aippear to be insurmountable to Professor

[^12]Kolliker, Inasmuch as he proposes to replace Mr. Darwin's Theory by one which he terms the Theory of Heterogeneous Generation. We shall proceed to consider first tho destructive, and secondily, the constructive portion of the essay.

We regret to And ourselves compelled to dissent very widely from many of Professor Kollicer's remarks ; and from none more thoroughly than from those in which he seeks to define what we may term the philosophical position of Darwintsm.

> "Darwin," says Professor Kolliker, "is, in the fullest sense of the word, Teioologis. He says quite dilitinctiy (First Edition, pp. 199, 200) that overy particuiar in the structure of an animal has been created for its beneft, and he regards the whole serles of animal forms only from this point of viow."

And again:
"7. The teleological general conception adopted by Darwin is a mistaken one.
" Varieties arise irrespectively of the notion of purpose, or of utility, according to general laws of Nature, and may be elther useful, or hurtfui, or indifferent.
"The assumption that an organism exists only on account of some definite end in view, and represents something more than the incorporation of a general idea, or law, implies a one-sided conception of the universo. Assuredly, every organ inas, and every organiom fulinis, its end, but its purpose is not the condition of its existence. Every organism is also sumeiently perfect for the purpose it serves, and in that, at least, it is useiess to seek for a cause of its improvement."

It is singular how diffcrently one and the same book will impress diffcrent minds. That which struck the present writer most forcibly on his first perusal of the Origin of Species was the conviction that Teleology, as commonly understood, had received its deathbiow at Mr. Darwin's hands. For the teieological argument runs thus: an organ or organism (A) is precisely fitted to perform a function or purpose (B) ; therefore it was specialiy constructed to perform that function. In Paley's famous iliustration, the adaptation of all the parts of the watch to the function, or purpose, of showing the time, is held to be evidence that the watch was specially contrived to that end ; on the ground, that the only cause we know of, competent to produce such an effect as a watch which shall

CRITICISMS ON "THE ORIGIN OF SPECIES" 179

keep time, is a contriving intelligence adapting the means directly to that end.

Suppose, however, that any one had been able to show that the watch had not heen made directly by any person, hut that it was the result of the modificatlon of another watch which kept time but poorly ; and that thls agaln had proceeded from a structure which could hardly he called a watch at all-seeing that it had no figures on the dial and the hands were rudimentary; and that going back and hack in tlme we came at last to a revolving harrel as the earliest traceahle rudiment of the whole fabric. And imagine that it had heen possithle to show that all these changes had resuited, first, from a tendency of the structure to vary indefinltely; and secondly, from something in the surrounding world which helped all variations in the direction of an accurate time-kecper, and checked all those In other directions; then it is ohvious that the force of Paley's argument would he gone. For it would he demonstrated tbat an apparatus thoroughiy well adapted to a particular purpose might he the result of a method of trial and error worked by unintelilgent agents, as well as of tbe direct applleation of the mcans appropriate to that end, by an intelligent agent.

Now it appears to us tbat what we have here, for illustration's sake, supposed to he done with the watch, is exactly what the estahlishment of Darwin's Theory will do for the organic worid. For the notion that every organism has been created as it is and launched straight at a purpose, Mr. Darwin substitutes the conceptlon of something which may fairly be termed a method of trial and error. Organisms vary incessantly ; of these variations the few meet with surrounding conditions which suit them and thrive; the many are unsulted and hecome extingulshed.
According to Teleology, eacb organlsm is llke a rifle bullet fired straight at a mark; according to Darwin, organlsms are like grapeshot of which one hits something and the rest fall wide.

For the teleologist an organlsm exists hecause it was made for the conditions in which it is found; for the Darwinian an organism exists because, out of many of its kind, it is the only one which has heen ahle to pcrsist in the conditions in which it is found.
Teleology implles that the organs of every organism are perfect and cannot he improved; tbe Darwinian theory

microcopy resolution test chart

(ANSI and ISO TEST CHART No. 2)

(716) 482 - 0300 - Phane
(716) 288 - 5989 - Fox

180 CRITICISMS ON "THE ORIGIN OF SPECIES"

simpiy affirms that they work well enough to enable the organism to hoid its own against such compctitors as it has met with, but admits the possibility of indefnite improvement. But an exampie may bring into ciearer light the profound opposition between the ordinary teieoiogical, and the Darwinian, conception.

Cats catch mice, small birds and the iike, very weli. Teleoiogy telis us that they do so because they were expressiy constructed for so doing-that they are perfect mousing apparatuses, so perfect and so deifeateiy adjusted that no one of their organs could be altered, without the change invoiving the alteration of all the rest. Darwinism affirms, on the contrary, that there was no express construction concerned in the matter; but that among the multitudinous variaitions of the Feiine stock, many of which died out from want of power to resist opposing influences, some, the cats, were better fitted to catch mice than others, whence they throve and persisted, in proportion to the advantage over their fellows thus offered to them.

Far from imagining that cats exist in order to catch mice well, Darwinism supposes that cats exist because they catch mice well-mousing being not the end, but the condition, of their existence. And if the cat type has iong persisted as we know it, the interpretation of the fact upon Darwinian principies would be, not that the cats have remained invariabie, but that such varieties as have incessantiy occurred have been, on the whoie, less fitted to get on in the worid than the existing stock.

If we apprehend the spirit of the Origin of Species rightiy, then, nothing can be morc entirely and absoiuteiy opposed to Teleoiogy, as it is commonly understood, than the Darwinian Theory. So far from being a "Teleoiogist in the fullest sense of the word," we wouid deny that he is a Teleoiogist in the ordinary sense at all ; and we should say that, apart from his merits as a naturalist, he has rendered a most remarkabie service to philosophical thought by enabling the student of Nature to recognise, to their fuilest extent, those adaptations to purpose which are so striking in the organic worid, and which Teleoiogy has done good service in keeping before our minds, without being false to the fundamental principies of a scientific conception of the universe. The apparently diverging teachings of the Teleoiogist and of the Morphoiogist are reconclied by the Darwinian hypothesis.

CRITICISMS ON " THE ORIGIN OF SPECIES" 181

But leaving our own impressions of the Origin of Species, and turning to those passages specially cited by Professor Köliiker, we cannot admit that they bear the interpretation he puts upon them. Darwin, if we read him rightiy, does not affirm that every detail in the structure of an animal has been created for its benefit. His words are (p. 199) :-

[^13]And after sundry illustrations and qualifications, he conciudes (p. 200) :-
" Hence every detail of structure ln every living creature (making some littie aliowance for the direct action of physical conditions) may be viewed either as having been of special use to some ancestral form, or as being now of special use to the descendants of this formelther directiy, or indirectiy, through the compiex iaws of growth."

But it is one thing to say, Darwinicaliy, that every detail observed in an animal's structure is of use to it, or has been of use to its ancestors; and quite another to affirm, teleologically, that every detail of an animal's structure has been created for its benefit. On the former hypothesis, for exampie, the teeth of the fætal Balæna have a meaning; on the iatter, none. So far as we are aware, there is not a phrase in the Origin of Species, inconsistent with Professor Kölliker's position, that "varieties arise irrespectively of the notion of purpose, or of utility, according to general laws of Nature, and may be either useful, or hurtful, or indifferent."

On the contrary, Mr. Darwin writes (Summary of Chap. V.) :-
"Our lgnorance of the laws of variation is profound. Not in one case out of a hundred can we pretend to assign any reason why this or that part varies more or less from the same part in the parents. ... The external conditions of life, as climate and food, etc. seem to have induced some sllght modifications. Habit, in producing constitutional differences, and use, in strengthening, and disuse, in weakening and diminishing organs, seem to have been more potent in their effects."

182 CRITICISMS ON "THE ORIGIN OF SPECIES"

And finally, as if to prevent all possibie misconception, Mr. Darwin concludes his Chapter on Variation with these pregnant words:-
"Whatever the cause may be of each slight difference in the offspring from their parents-and a cause for each must exist-it is the steady accumuiation, through natural selection of such differences, when beneflial to the individual, tbat gives rise to all the more important modifications of structure, by which the \ln numerable beings on the face of the earth are enabied to struggle with each other, and the best adapted to survive."

We have dweit at iength upon this subject, because of its great general importance, and because we beiieve that Professor Kölliker's criticisms on this head are based upon a misapprehension of Mr. Darwin's views-substantially they appear to us to coincide with his own. The other objections which Professor Kölliker enumerates and discusses are tbe foilowing: *-
"1. No transitional forms between existing species are known ;
and known varieties, whether selected or spontancous, never go so
far as to cstablish new species."
To this Professor Kölliker appears to attach some weight. He makes the suggestion tbat the short-faced tumbier pigeon may be a pathoiogical product.
" 2. No transitionai forms of animals are met with among the organic remains of earlier epochs."

Upon this, Professor Köiiiker remarks that the absence of transitional forms in the fossil worid, thougb not necessarily fatal to Darwin's views, weakens his case.
" 3. The struggle for existence does not take piace."
To this objection, urged by Pelzein, Kölliker, very justly, attaches no weight.

[^14]
CRITICISMS ON " THE ORIGIN OF SPECIES" 183

is perfect of its kind, and needs no further development. Shouid, however, a variety be usefui and even maintain itseit, there is no obvious reason why it shouid change any further. The whole conception of the imperfection of organisins and the necessity of their becoining perfected is plainiy the weakest side of Darwin's Theory, and a pls aller (Nothbeheif) because Darwin could think of no other principle by which to explain the metamorphoses which, as I also believe, have occurred."

Here again we must venture to dissent compietciy from Professor Käiliker's conception of Mr. Darwin's hypothesis. It appears to us to be onc of the many pecuilar merits of that hypothesis that it invoives no beilic in a neccssary and continuai progress of organlsms.

Again, Mr. Darwin, if we read him aright, assumes no speciai tendency of organisms to give rise to usefui varieties, and knows nothing of nceds of deveiopment, or nccessity of perfection. What he says is, in substance : All organisms vary. It is in the highest degree improbabie that any given variety should have exactly the same reiations to surrounding conditions as the parent stock. In that case it is either better fitted (when the variation may be called useful), or worse fitted, to cope with them. If better, it will tend to suppiant the parent stock; if worse, it will tend to be extinguished by the parent stnck.

If (as is hardiy conceivabie) the new varicty is so perfectly adapted to the conditions that ne improvement upon it is possibie,-it wili persist, because, though it does not cease to vary, the varieties wili be inferior to itseif.

If, as is nore probable, the new variety is by no means perfectiy : tcd to its conditions, but only fairiy weil adapted to inem, it will persist, so iong as none of the varietles which it throws off are better adapted than itself.

On the other hand, as soon as it varics in a usefui way, i.e. when the variation is such as to adapt it more perfectly to its conditions, the fresh variety wlil tend to suppiant the former.

So far from a gradual progress towards perfectlon forming any nccessary part of the Darwinian crced, it appears to us that it is pcrfectly consistent with indefinite persistence in one estate, or with a gradual retrogression. Suppose, for exampie, a return of the glacial epoch and a spread of poiar ciimatal conditions over the whoie globe. The operation of naturai seiection under these circumstances wouid tend, on the whoie, to the wecding out of the higher

184 CRITICISMS ON "THE ORIGIN OF SPECIES"

organisms and the cherishing of the lower forms of iffe. Cryptogamic vegetation wouid have the advantage over Phanerogamic; Hydrozoa over Corals; Crustacea over Insecta, and Amphipoda and Isopoda over the higher Crustacea; Cetaceans and Seals over the Primates; the civilization of the Esquimaux over that of the European.

[^15]To this Professor Ku.. ecr repiies, with perfect justice, that the conclusion drawn by Pclzein does not really follow from Darwin's premisses, and that, if we take the facts of Palæontoiogy as they stand, they rather support than oppose Darwin's thcory.

Abstract

" 6. Great weight must be attached to the objection brought forward by Huxiey, otherwise a warm supporter of Darwin's hypothesis, that we know of no varieties which are sterile with one another, as is the rule among sharply distinguished animal forms. " If Darwin is right, it must he demonstrated that forms may be produced by selection, which, like the present sbarply distinguished animal forms, are infertile, when coupled with one another, and this has not been done."

The weight of this objection is obvious; but our ignorance of the conditions of fertility and sterility, the want of carefully conducted experiments extending over long series of years, and the strange anomalies presented by the results of the cross-fertilization of many plants, should all, as Mr. Darwin has urged, be taken into account in considering it.

The seventh objection is that we have already discussed (supra, p. 178).

The eighth and iast stands as foliows :-
" 8. The developmentai theory of Darwin is not needed to enable us to understand the reguiar harmonious progress of the complete series of organic forms from the simpler to the more perfect.
"The existence of general laws of Nature explains this harmony, even if we assume that all beings have arisen separately and independent of one ancther. Darwin forgets that inorganic nature, in which there can be no thought of genetic connexion of forms, exhibits the same regular plan, the same harmony, as tbe organic world; and that, to cite only onc cxample, there is as much a natural system of minerals as of plants and animals."

CRITICISMS ON "THE ORIGIN OF SPECIES" 185

We do not feei quite sure that we seize Professor Köililker's mcaning here, but he appears to suggest that the observation of the general order and b rmony which pervade inorganic nature, wouid iead us to anticipate a similar order and hamnony in the organic worid. And this is no doubt true, but it by no means foilows that the particuiar order and harmony observed among them shouid be that which we see. Surciy the stripes of dun horses, and the teeth of the foetal Balæna, are not expialned by the "existence of general laws of Nature." Mr. Darwin endeavours to expialn the exact order of organic nature which exists; not the mere fact that there is some order.
And with regard to the existence of a naturai system of minerais; the obvious reply is that there may be a naturai ciassification of any ohjects-of stones on a sea-beach, or of works of art ; a natural ciassification being simpiy an assembiage of objects in groups, so as to express their most important and fundamental resembiances and differences. No doubt Mr. Darwin beilieves that those resembiances and differences upon which our natural systems or classifications of animals and piants are based, are resembiances and differences which have been produced genetically, but we can discover no reason for supposing that he denies the existence of natural classifications of other kinds.

And, after ali, is it quite so certain that a genetic relation may not underiic the ciassification of minerais? The inorganic worid has not always been what we see it. It has certainly had its metamorphoses, and, very probabiy, a iong "Entwickeiungsgeschichte" out of a nebuiar biastema. Who knows how far that amount of likeness among sets of minerals, in virtue of which they are now grouped into families and orders, may not be the expression of the common conditions to which that particular patch of nebuious fog, which may have been constituted by their atoms. and of which they may be, in the strictest sense, the descendants, was subjected?

It wili be obvious from what has preceded, that we do not agree with Frofessor Köiliker in thinking the objections which he brings forward so weighty as to be fatal to Darwin's view. But even if the casc were otherwise, we should be unabie to accept the "Theory of Heterogeneous Generation " which is offered as a substitute. That theory is thus
stated :-

186 CRITICISMS ON "THE ORIGIN OF SPECIES "

> "The fundnmental conception of tinis hypothesis is, that, under the influence of a gencrai law of development, the germs of organisms produce others different from themseives. This mlght happen (1) by the fecundated ova passing, in the course of their development, under particular circumstances, into higher forms; (2) by the pumitive and iater organisms producing other organisms without fecundation, out of germs or eggs (Parthenogenesis)."

In favour of this hypothesls, Professor Köliker adduees the well-known facts of Agamogenesls, or "alternate generation"; the extreme dissimilarlty of the maies and females of many animals; and of the males, females, and neuters of those lnsects : sh live in eclonies: and he defines its reiations to the , urwinlan tincory as foliows:-

[^16]It is obvious, from these extracts, that Professor Kölliker's hypothesis is based upon the supposed existence of a clnse analogy between the phenomena of Agamogenesls and the production of new species from pre-existing ones. But is the analogy a real one ? We think that it is not, and, by the hypothesis, eannot be.

For what are the phenomena of Agamog' nesis, stated generally? An impregnated egg deveiops inco an asexual form, A; thls gives rise, asexuaily, to a seeond form or forms, B, more or less different from A. B may muitipiy asexually again; in the simpier cases, however, it does

CRITICISMS ON "THE ORIGIN OF SPECIES" 187

not, but, acquiring sexual characters, nroduecs impregnated eggs from whence A once more ariss.
No case of Agamogencsis is known in which, when A differs widely from B, it is itseif capabic of scxual propagation. No ease whatever is known in which the progeny of B, by sexual generation, is other than a reproduction of \mathbf{A}.

But if this be a true statcment of tie naturc of the proecss of Agamogenesis, how can it enable us to comprchend the production of new species from aiready cxisting ones? Let us suppose Hyænas to have precedcd Dogs, and to have produced the fatter in this way. Then the Hyæena wili represent A, and the Log, B. The first dimcuity that presents itself is that the Hyæna must be asexuai, or the process will be whoily without anaiogy in the worid of Agamogenesis. But passing over this difficuity, and supposing a malc and female Dog to be produced at the same time from the Hyæna stock, the progeny of the pair, if the analogy of the simpier kinds of Agamogenesis * is to be followed, shouid be a iitter, not of pupples, but of young Hyænas. For the Agamogenetic series is always, as we have seen, A:B:A:B, etc.; whereas, for the production of a new species, the series must be A: B: B : B, etc. The production of new specics, or genera, is the extreme permanent divergence from the primitive stock. All knowa Agamogenetic processes, on the other hand, end in a complete return to the primitive stock. How then is the production of new specics to be rendered inteliigibie by the analogy of Agamogenesis?
The other altcrnative put by Professor Kobiiikcr-the passage of fecundated ova in the course of their deveiopment into higher forms-would, if it occurred, be mereiy an extreme case of variation in the Darwinian sense, greater in degree than, but perfectiy similar in kind $t c$, that which occurred when the weli-known Ancon Ram was developed

[^17]
188 CRI. ICISMS ON "THE ORIGIN OF SPECIES"

from an ordinary Ewe's ovum. Indeed we have always thought that Mr. Darwin has unnecessarily hampered himself by ritiering so strictiy to his favourite "Naturn non facit saltum." We greatiy suspect that she docs m considcrabie Jumps in the way of variation now and t. and that these saltations give rise to some of the gapy which appcar to exist in the series of known forms.

Strongly and free! y as we have ventured to disagree with Professor Kbliiker, we have always done so with regrct, and we trust without vioiating that respect which is due, not only to his scientific cminence and to the careful study which he has dcvoted to the subject, but to the perfect fairness of his argumentation: and the generous appreciation of the worth of Mr. Darwin's labours which he always displays. It would be satisfactory to be abie to say as much for M. Flourens.
But the Perpetuai : ©cretary of the I'rench Academy of Sciences dcals with Mr. Darwin as the first Napoieon would have treated an "Idéologue"; and while dispiaying a painful weakness of fogic and shallowness of infirmation, assumes a tone of authority, which always touches upon the fudicrous, and sometimes passes the fimits of good breeding.

For exampie (p. 56) :-
" M. Darwin continue: 'Aucune distinction absolue n'a été et ne peut être établie entre les espèces et les variétés.' Je vous al dél' dit que vous vous tromplez; une distinction absolue sépare les varíétés d'avec les espéces."
"Je vous at déjd dit; moi, M. ie Secrétaire perpétuel de l'Académie des Sciences: et vous

" ' Quil t. ${ }^{\text {Tees }}$ rien, Pas même Académicien; ${ }^{\prime}$

What do you mean by asserting the contrary ?" Being devoid of the bisssings of an Academy in England, we are unaccustomed to see our abiest men treated in this fashion, even by a " Perpetual Secretary."

Or again, considering that if there is any one quality of Mr. Darwin's work to which friends and loes have alike borne witness, it is his candour and lairness in admitting and discussing objections, what is to be thought of M. Flourens' assertion, that
" M. Darwin ne cite que les auteurs qul partage it ses oplnions." (P. 40.)

Once more (p. 65) :-
" Entin l'ouvrage de M. Darwin a paru. On ne peut qu'ttre trappé du talent de l'autcur. Mals que d'laces obscures, que d'ldés fausses I Quel jargon métaphysique jete mal à propos dans l'histoire naturelle, qui tombe aur le galimatiae des qu'elle sort des Iddes elaires, des Iddes justes ! Quel langage prétentieux et vide ! Quelles personifieations pitriles et curannes 10 luelditel 0 solidité de l'esprit Françals, que devenez-vous ?"
"Ohscure Idcas," " metaphyslcal Jargon," " pretentlous and empty language," " puerile and superannuated personlfication:s." Mr. Darwin has many and hot opponents on this side of the Channel and in Germany, hut we do not recollect to have found precisely these sins in the long catalogue of those hltherto laid to his charge. It is worth while, therefore, to examine Into these discoverles effected soiely by the ald of the "lucidity and solidity" of the mind of M. Fiourens.
According to M. Flourens, Mr. De.rwln's great error is that he has personlfied Natire (p. 10), and further that lie has
" Imagined a natural selection : he Imagines afterwards that this power of seicetion (pouvoir d'élire) which he gives to Nature is similar to the power of man. These two suppositions admitter, nothing stop: bin: he plays with .Vature as he likes, and makes her do all he pleases." (P. G.)

And this is the way M. Flourens extingulshes naturai selection :
" Voyons done eneore une lols, ce qu'll peut y avolr de fonde dims ee qu'on nommo élection nolurelie.
" L'eleellon nalurelle n'est sous un autre y, m que la nature. Pour un être organisé, la nature n'est que l'organisation, ni plus ni moins.
" Il favidra done aussi personnifler l'organisalion, et dire que l'organisation cholsit l'organisalion. L'élection nalurelle est cette forme suislantielle dont on ovait autrefois avee tant de faellité. Aristote disait que 'Si l'art de bâtir étalt dans le bols, cet art agirait comme la nature.' A la place de larl de batir M. Darwin met réleelion naturelle, et e'est tout un: l'un n'est pas plus chlmérique que l'antre.' (P. 31.)

And this is really all that R. Flourens can make of Natural Selection. We have given the original, in fear lest

190 CRITICISMS ON "THE ORIGIN OF SPECIES"

a transiation shouid be regarded as a travesty; but with the original before the reader, we may try to analyse the passage. "For an organized being, Nature is only organization, nelther more nor less."

Organized beinge then have absolutely no relation to inorganic nature: a plant does not depend on soll or sunshine, climate, depth in the occan, height above it ; the quantity of saline matters in water have no infuence upon animal ilfe ; the substitution of carbonic acid for oxygen in our atmosphere would hurt nobody 1 That these are absurdities no one should know better than M. Flourens ; but they are logical deductions from the assertion just quoted, and from the further statement that natural selection neans only that " organization chooses and selects organization."

For if it be at once admitted (what no sanc man denies) that the chances of iffe of any given organism are increased by certain conditions (A) and diminished by their opposites (B), then it is mathematically certain that any change of conditions in the direction of (A) will exercise a seiective influence in favour of that organism, tending to its increase and muitipication, whilc any change in the direction of (B) will exercise a selective influence against that organism, tending to its decrease and extinction.

Or, on the other hand, conditions remaining the same, let a given organism vary (and no one doubts that they do vary) in two directions: into one form (a) better fitted to cope with these conditions than the original stock, and a second (b) less well adapted to them. I in it is no less certaln that the conditions in quei..on must exercise a selective influence in favour of (a) and against (b), so that (a) will tend to predominance, and (b) to extirpation.

Tbat M. Flourens shouid be unabie to perceive the logical necessity of these simpie arguments, which lie at the foundation of all Mr. Darwin's reasoning ; that he shouid confound an irrefragable deduction from the observed reiations of organisms to the conditions which lie around them, with a metaphysical "forme substantielie," or a chimerical personification of the powers of Nature, would be incredible, were it not that other passages of his work leave no room for doubt upon the subject.

[^18]
CRITICISMS ON "THE ORIGIN OF SPECIES" 191

"J'al deja dit ee qu'll taut penser de rellection nalurelle. Ou releelion nalurelle n'est rien, ou cest in nature: mals ta nature doute dellection, mala la nature personnince: derniére erreur du demier slecie: Le xixe ne falt plus de personninentions." (P. 53.)
M. Flourens cannot Imagine an u..conscious selection-ll is. for him a contradictiv. in terms. Did M. Ftourens ever visit. one of the prettlest watering-places of " ia belle France," the Bale d'Arcachon? If so, he wlli pre ably have passed through the district of the Landes, and wili have had an opportunity of observing the formation of "dunes" on a grand scaic. What are these "duncs"? The winds and waves of the Ray of Biscay have ot much consclousness, and yet they have with great care " selceted," from among an infnity of masses of siiex of ali shapes and sizes, which have been submitted to their action, all the grains of zand below a certain sizc, ani have heaped them by themselves over a great area. Tl... sand has been " unconsciously selected "from amidst the gravel in which it first lay with as much precision as if man had "consciously sele ted " it by the ald of a sieve. Physical Geology is fuii of such selections-of the picking out of the eft from the hard, of the soluble from the insoluble, of te fusibie from the infusibic, by natural agencles to whi we are certainly not in the habit of ascribing consciousness.

But that which wind and sea are to a sandy beach, the sum of influenres, which we term the "condi':.ns of existence," is to iiving organisms. The weak at ifted out from the strong. A frosty night " seiects" th lardy piants in a piantation from among the tender ories as effectually as if it were the wind, and they, the sand and pebbies, of our iiliustration; or, on the other hand, as if the inteliigence of a gardener had been operative in cutting the weaker organisms down. The thistle, which has spread over the Pampas, to the destruction of native plants, has been more effectualiy " seiected" by the unconscious operation of natural conditions than if a thousand agriculturists had spent their time in sowing it.

It is one of Mr. Darwin's many great services to Biological science that he has demonstrated the significance of these facts. He has shown that-given variation and given change of conditions-the inevitabie result is the exercise of such an influence upon organisms that one is heiped and another is impeded ; one tends to predominate, another to disappear; and thus the living worid bcars within itself,

192 CRITICISMS ON "THE ORIGIN OF SPECIES"

and is surrounded by, impuises towards incessant change.

But the truths just stated are as certain as any other physical laws, quite independently of the truth, or falsehood, of the hypothesis which Mr. Darwin has hased upon them ; and that M. Flourens, missing the suhstance and grasping at a shadow, shouid he hlind to the admirabie exposition of them, which Mr. Darwin has given, and see nothing there hut a " dernière erreur du dernier siécle "a personification of Nature-leads us indeed to cry with him: "O fucidité! O soildité de l'esprit Français, que
M. Flourens has, in fact, utteriy failed to comprehend the first principies of the doctrine which he assails so rudely. His objections to details are of the oid sort, so hattered and hackneyed on this side of the Channel, that not even a Quarteriy Reviewer could he induced to pick them up for the purpose of yeiting Mr. Darwin over again. We have Cuvier and the mummies; M. Roulin and the domesticated animals of America; the difficulties presented by hyhridism and hy Palæontology; Darwinism a rifacciamento of De Maillet and Lamarck; Darwinism a system without a commencement, and its author hound to helieve in M: Pouchet, etc. etc. How one knows it ail hy heart, and with what relief one reads at p. 65-

$$
\text { " Je laisse M. Darwin }!"
$$

But we cannot leave M. Flourens without calling our readers' attention to his wonderfui tenth chapter, "De ia Préexistence des Germies et de i'Epigénèse," which opens thus:-

[^19]
CRITICISMS ON "THE ORIGIN OF SPECIES" 193

times. It is formed at once at the single indioidual moment at which the conjunction of the male and female elements takes place." It will be observed that M. Flourens uses ianguage which cannot be mistaken. For him, the labours of Von Baer, of Rathke, of Coste, and their contemporaries and successors in Germany, France, and England, are non-existent : and, " imagina" "imagina" natural selection, so Harvey, claim to the vat doctrine which gives him an even greater discovery of the circuian of posterity than his better known
Language such as thation of the blood.
posterous, so utteriy we have quoted is, in fact, so preabsoiute ignorance of incompatibie with anything but that we shouid have some of the best estabilished facts, appeared to afford some clue to over in silence had it not d priori, repudiation of all to M. Flourens' unhesitating, gressive modification of forms of the doctrine of proremains uninfluenced by inving beings. He whose mind mena of deveiopment, must acqualntance with the phenomotives towards the endeavour ind lack one of the chlef between the different existing form to trace a genetic reiation ignorant of Geoiogy, find no iorms of life. Those who are worid was made as it is : and thity in believing that the history, sees no reason to and the shepherd, untutored in indicate the site of a Romegard the green mounds which parcei of the primeval hil camp, as aught but part and believes that embryos hili-side. So M. Flourens, who naturally finds no difficuity are formed "tout d'un coup," into existence in the same way.
EVIDENCE
As to
MAN'S PLACE IN NATURE
1863

ON THE NATURAL HISTORY OF THE MAN-LIKE APES

Ancient traditions, when tested by the scvere processes of modern investigation, commonly enough fade away into mere dreams: but it is singuiar how often the dream turns out to have been a half-waking onc, presaging a reality. Ovid foreshadowed the discoveries of the geologist : the Atlantis was an imagination, but Columbus found a western worid: and though the quaint forms of Centaurs and Satyrs have an existence only'in the rcalms of art, creatures approaching man more neariy than they in essential structure, and yet as thoroughly brutal as the goat's or horse's half of the mythical compound, are now not only known, but notorious.

I have not met with any notice of one of these Man-like Apes of earlier date than that contained in Pigafetta's Description of the kingdom of Congo,* drawn up from the notes of a Portuguese sailor, Eduardo Lopez, and published in 1598. The tenth chapter of this work is entitied " De Animalibus quæ in hac provincia reperiuntur," and contains a brief passage to the effect that "in the Songan country, on the banks of the Zaire, there are muititujes of apes, which afford great deiigbt to the nobles by imitating human gestures." As this might apply to aimost any kind of apes, I should have thought iittlc of it, had not the brothers De Bry, whose engravings illustrate the work, tbought fit. in their eleventh Argumentum, to figure two of these "Simix magnatum deiicix." So much of the piate as contains tbese apes is faithfully copled in the woodcut (Fig. 1), and it will be observed that they are tail-iess, iong-armed, and

- Rronum Congo : hoc est Vera Descriptio Rroni Ayricani quod tam ab incons quam Lusitanis Conois appellatur, per Philippum Pigafettam, olim ex Edoardo Lopez acroamatis lingua Italica excerpta, num Latio sermone donata ab August. Cassiod. Reinio. Iconibus et imaginibus rerum memorabillum quasi vivis, exormata. Francofurt. Theodori et Joan. Israclis de Bry, fratrum exomata. Francofurti, mdxcyin.
large-eared; and about the size of Chimpanzees. It may be that these apes are as much figments of the imagination of the ingenious brothers as the winged, two-legged, crocodile-headed dragon which adorns the same plate; or, on the other hand, it may be that the artists have constructed their drawings from some essentially falthful description of a Gorilla or a Chimpanzee. And, in either case, though these figures are worth a passing notice, the oldest trustworthy and definite accounts of any animal of this kind date from the 17th century, and are due to an Englishman.

Fia. 1.-Simise magnatum deliciæ.-De Bry, 1598.
The first edition of that most amusing old book, Purchas his Pilgrimage, was published in 1613, and thereln are to be found many ref rences to the statemeats of one whom Purchas terms " Andrew Battell (my neere neighbour, dwelling at Lelgh in Essex) who served under Manuel Silvera Perera, Governor under the Klng of Spalne, at his city of Saint Paul, and with him went farre into the countrey of Angola"; and again, "my friend, Andrew Battle, who lived in the kingdom of Congo many yeares," and who, " upon some quarell betwlxt the Portugals (among whom he was a sergeant of a band) c id him, llved elght or nine moneths in the woodes." From this weather-beaten old soldier, Purchas was amazed to hear "of a kinde of Great Apes, if they might so bee termed, of the height of a man,
but twice as bigge in feature of their iimmes, with strength proportionahic, hairle all over, otherwise altogether like men and women in their whole hodily shape. They lived on such wilde frults as the trees and woods yielded, and in the night time lodged on the trees."

This extract is, however, less detalled and clear in its statements than a passage in the third chapter of the second part of unother work-Purchas his Pllgrimes, published in 1625, hy the same author-which has heen often, though hardly ever quite rightly, cited. The chapter is entltled, "The strange adventures of Andrew Battell, of Leigh in Essex, sent hy the Portugals prisoner to Angola, who lived there and in the adioining regions neere eighteene yeeres." And the sixth sectlon of this chapter is headed" Of the Provinces of Bongo, Calongo, Mayomhe, Manikesocke, Motimhas : of the Ape Monster Pongo, their hunting: Idoiatries ; and divers other observations."
" This province (Calongo) toward the east hordereth upon Bongo, and toward the north upon Mayomhe, which is nineteen ieagues from Longo along the coast.
"This province of Mayomhe is ali woods and groves, so overgrowne that a man may travalle twentie days in the shadow without ; -y sunne or heat. Here is no kind of corne nor graine, so that the peopie liveth oneiy upon piantanes and roots of sundrie sorts, very good; and nuts; nor any kinde of tame cattell, nor hens.
" But they have great store of eiephant's flesh, which they greatly esteeme, and many kinds of willd heasts; and great store of fish. Here is a great sandy bay, two ieagues to the northward of Cape Negro, \dagger which is the port of Mayombe. Sometimes the Portugals iade iogwood in this hay. Here is a great river, called Banna: in the winter it hath no harre, hecause the generali winds cause a great sea. But when the sunne hath his south declination, then a hoat may goe in; for then it is smooth because of the ralne. This river is very great, and hath many flands and peopie dwelling in them. The woods are so covered with haboones, monkies, apes and parrots, that it will feare any man to travaile in them alone. Here are also two kinds of monsters, which are common in these woods, and very dangerous.

[^20]"The greatest of these two monsters is called Pongo in their language, and the lesser is called Engeco. This Pongo is in ali proportion like a man; but that he is more like a glant in stature than a man; for he is very tall, and hath a man's face, hollow-eyed, with iong halre upon his browes. His face and eares are without halre, and his hands also. His bodie is full of haire, but not very thicke ; and it is of a dunnish colour.
"He differeth not from a man but in his iegs; for they have no calfe. Hee goeth alwaies upon his legs, and carrieth his hands clasped in the nape of his necke when he goeth upon the ground. They sleepe in the trees, and build sheiters for the raine. They feed upon fruit that they find in the woods, and upon nuts, for they eate no kind of flesh. They cannot speake, and have no understanding more than a beast. The peopie of the countrie, when they travaile in the woods make fires where they sleers in the night; and in.the morning when they are gone, the Pongoes will come and sit about the fire till it goeth out; for they have no understanding to lay the wood, together. They goe many together and kill many negroes that travaile in the woods. Many times they fall upon the eiephants which come to feed where they be, and so beate them with their clubbed fists, and pleces of wood, that they will runne roaring away from them. Those Pongoes are never tolcen alive because they are so strong, that ten men cannoc hold one of them; but yet they take many of their young ones with poisoned arrowes.
"The young Pongo hangeth on his mother's belly with his hands fast clasped about her, so that when the countrie peopic kill any of the females they take the young one, which hangeth fast upon his mother.
"When they die among themselves, they cover the dead with great heaps of boughs and wood, which is commonly found in the forest."*

[^21]It docs not appear dimeult to identify the exact region of which Batteli speaks. Longo is doublless the name of the place usually spelled Loango on our maps. Mayombe still lies some nincteen leagues northward from Loango, along the coast ; and Cilongo or Kilonga, Manikesocke, and Motimbas are yet reristered by geographers. The Cape Negro of Battell, hewever, cannot be the modern Cape Ncgro in $16^{\circ} \mathrm{S}$., since Loango itself is in $4^{\circ} \mathrm{S}$. latitude. On the other hand, the "great river called Banna" corresponds very well with the "Camma" and "Fernand Vas," of modern gcographers, which form a great deita on this part of the African coast.
Now this "Camma" country is situated about a degrce and a-half south of the Equator, while a few mlles to the north of the line lies the Gaboon, and a degree or so north of that, the Moncy River-both well known to modern naturalists as localities where the largest of man-like Apes has bcen obtained. Moreover, at the present day, the word Engeco, or N'schego, is appiled by the natives of these regions to the smaller of the two great Apes rihich inhabit them ; so that there can be no rational doubt that Andrew Battell spoke of that which he knew of his own kncwledge, or, at any rate, by Immediate report from the natives of Western Africa. The "Engeco," however, is that "other monster" whose nature Eattell "forgot to reiate," while the name "Pongo "-applled to the animal whose characters and habits are so fully and carefully described-seems to have died out, at least in its primitive form and signification. Indeed, there is cviderice that not only in Battell's time, but up to a very recent date, it was used in a totally different sense from that in which he employs it.

For cxamplc, the second chapter of Purchas' work, which I have just quoted, contains "A Description and Historicall Declaration of the Goiden Kingdom of Guinea, ctc. etc. Translated from the Dutch, and compared also with the Latin," wherein it is stated (p. 986) that-
" The River Gaboon lyeth about fifteen milics northward from Rio de Angra, and eight miles northward from Cape de Lope Gonsalvez (Cape Lopez), and is right under the Equinoctial line, about fifteene miles from St. Thomas, and is a great land, well and easily to be knowne. At the mouth of the river there lieth a sand, three or foure fathoms deepe, whereon it beatcth mightily with the
streame which runneth out of the river into the sea. This river, in the mouth thereof, is at least four miles broad; but when you are about the liand calied Pongo, it is not above two miles broad. . . . On both sldes the river there standeth many trees. . . . The Iland called Pongo, which hath a monstrous high hill."

The French naval offlers, whose ietters are appended to the fate M. Isidore Geoff. Saint Hilaire's excellent essay on the Gorilla,* note \ln similar terms the wldth

Fra, 2-The Orang of Tulplua, 1641. of the Gaboon, the trees that line its banks down to the water's edge, and the strong current that sets out of it. They describe two islands in its estuary :one iow, called Perroquet; the other high, presenting three conical hllls, called Coniquet ; and one of them, M. Franquet, cxpressiy states that, formeriy, the Chief of Coniquet was called Meni-Pongo, meaning thereby Lord of Pongo; and that the N^{\prime} Pongues (as, in agreement with Dr. Savage, he affirms the natives call themseives) term the estuary of the Gaboon itself N^{\prime} Pongo.
It is so easy, in dealing with savages, to misunderstand their appilcations of words to things, that one is at first inciined to suspect Batteil of having confounded the name of this region, where his "greater monster" still abounds, with the name of the animal itself. But he is so right about other matters (including the name of the "losser monster ") that one is loth to suspect the oid traveller of crror ; and, on the other hand, we shall find that a voyager of a hundred years' later date speaks of the rame "Boggoe," as applied to a great Ape, by the inhabilants of quite another part of Africs-Sierra Leonc.

But I must leave this question to be settled by philo*Archives du Mustum, tomo x.
logers and traveliers ; and I should harily have dwelt so long upon it except for the curious part played by this word 'Pongo' in the later history of the man-like Apes.

The generation which succecded Batteli saw the first of the man-like Apes which was ever brought to Eurnpe, or, at any rate, whose visit found a historian. In the third book of Tulpius' Obsersation . Medices, pubilshed in 1641, the 56th chapter or section is devoted to what he calis Satyrus indicus, "called by the Indians Oreng-autang, or Man-of-the-Woods, and by the Africans Quolas Morrou." He gives a very good figurc, evidently from the life, of the specimen of this animal, "nostra memorla ex Angola delatum," presented to Frederick Henry Prince of Orange. Tuiplus says it was as big as a child of three years old, and as stout as one of six ycars: and that its back was covered with black hair. It is piainly a young Chimpanzce.

In the meanwhile, the existence of other, Aslatic, manlike Apes became known, but at first in a very mythical fashion. Thus Bontius (1658) gives an altogether fabuious and ridiculous account and figure of an animal which he cails "Orang-outang" ; and though he says, "vidl Ego cujus effigiem hic exhibeo," the said efligies (see Fig. 6 for Hopplus' copy of (t) is nothing but a very halry woman of rather comely aspect, and with proportions and feet wholly human. The judicious English anatomist, Tyson, was justified in saying of this description by Bontius, "I confess I do mistrust the whole representation."

It is to the last mentioned writer, and his coadjutor Cowper, that we owe the first account of a man-like ape which has any pretensions to scientific accuracy and completeness. The treatise entitied, "Orang-outang, sive Homo Sylvestris ; or the Anatomy of a Pygmie compared with that of a Monkey, an Ape, and a Man," pubilished by the Royal Soclety in 1699, is, Indeed, a work of remarkable merit, and has, in some respects, served as a model to subsequent inquirers. This "Pygmie," Tyson tells us, "was brought from Angola, in Africa; but was first taken a great deal higher up the country"; its hair "was of a coal-biack colour, and strait," and "when it went as a quadruped on all four, 'twas awkwardly ; not placing the palm of the hand flat to the ground : ! it walk'd upon its knuckles, as I observed it to d. not strength enough to support its : uy."-" From the
top of the head to the heel of the foot, in a atrait lune, it measured twenty-alx inches."

These characters, even without Tyson's good Agures (Figs. 3 and 4), would have been sumelent to prove his "Pygmie" to bo a young Chimpanzee. But the opportunity of examining the skeleton of the very animal Tyson anatomised having most unexpeetedly presented itself to mo, I am able to bear independent teatimony to its being

Flas. I and 4.-The - Vemie' reduced t inid Tyorn's
Agures and $2,1699$.
a veritable Troglodytes niger,* though still very young. Although fully appreciating the resemblanees between his

- I am indebted to Dr. Wright, of Cheitenham, whose paloontological labours are so well known, for bringirg this interesting relic to my knowiedge. Tyson's granddaughter, jt appears, martied Dr. Allardyce, a physician of repute in Cheltenham, and brought, as part of her dowry, the skeieton of the 'Pygmie.' Dr. Allardyce presented it to the Cheitenham Museum, and, through the good offices of my friend Dr. Wright, the authorities of the Museum Lave ormament.

Pygmie and Man, Tyson by no means overiooked the difierenees between the two, and he concludes his memolr by summing up frst, the points in which "the Ourangoutang or Pygmie more resembled a Man than Apes and Monkeys do," under forty-seven distinet heads ; and then giving, in thirty-four similar brief paragraphs, the respects in which " the Ourang-outang or Pygmie differ'd from a Man and resembled more the Ape and Monkey kind."
After a eareful survey of the Ilterature of the subjeet extant in his time, our author arrives at the cone $:$ on that his "Pygmie " is Identical neither with the Orangs of Tulpius and Bontius, nor with the Quolas Morrou of Dapper (or rather of Tuiplus), the Barris of d'Arcos, nor with the Pongo of Battell ; but that it is a species of ape probably identical with the Pygmies of the Aneients, and, says Tyson, though it "does so much resemble a Man in many of its parts, more tban any of the ape kind, or any other animal in the worid, that I know of: yet by no means do I look upon it as the product of a mixt genera-thon-'tis a Brule-Animal sul generis, ind a particular spectes of Ape."

The name of "Chimpanzee," by which one of the Airican Apes is now so well known, appears to bave come into use in the first halt of the eigbteenth century, but the only important addition made, in that pe-iod, to our acqualntance with the man-like apes of Atrica is contained in A New Voyage to Guinea, by Willinm Smith, which bears the date 1744.
In describing the animals of Sierra Leone, p. 51, this writer says:-
"I shall next describe a strange sort of animal, called by the white men in tbis country Mandrill,* but why it is so called I know not, nor did I ever bear tbe name before, neither can those who cail them so tell, except it be for

[^22]their near resemblance of a human creature, though nothing at all like an Ape. Their bodies, when full grown, are as big in circumference as a middle-sized man's-their legs much shorter, and tbeir feet larger; their arms and hands in proportion. The head is monstrously big, and the face broad and flat, without any otber hair but the eyebrows; the nose very smail, the mouth wide, and tbe ilps thin. The face, which is covered by a wbite skin, is monstrousiy ugly, being ail over wrinkled as with oid age; the teetb broad and yeilow; the hands have no more hair tban the face, but the same white skin, though all

Fig. 5.-Facsimile of William Smith's Agure of the "Mandrill," 1744.
the rest of tbe body is covered with iong biack hair, like a bear. Tbey never go upon all fours, like apes; but cry, wben vexed or teased, just iike children.
" When I was at Sherbro, one Mr. Cummerbus, whom I shall have occasion hereafter to mention, made me a present of one of these strange animals, wbich are called by the natives Boggoe : it was a she-cub, of six months' age, but even then larger than a Baboon. I gave it in charge to one of the siaves, who knew how to feed and nurse It, being a very tender sort of animal ; but whenever I went off the deck the sailors began to teaze Itsome ioved to see its tears and hear it cry; others hated its snotty-nose; one who burt it, being checked by the
negro that took care of it, toid the siave he was very fond of his country-woman, and asked him if he should not iike her for a wife? To which the siave very readily repiied, 'No, this no my wife; this a white womanthis fit wife for you.' This unlucky wit of the negro's, I fancy, hastened its death, for next morning it was found dead under the windiass."
William Smith's 'Mandrill,' or ' Boggoe,' as his description and figure testify, was, without doubt, a Chimpanzee.
Linnæus knew nothing, of his own observation, of the man-iike Apes of either Africa or Asia, but a dissertation by his pupii Hoppius in the Amœenltates Academlce (VI.

Fio. 6.-The Anthropomorpha of Linnæus.
'Anthropomorpha') may be regarded as embodying his views respecting these animals.
The dissertation is iliustrated by a piate, of which the accompanying woodcut, Fig. 6, is a reduced copy. The figures are entitled (from ieft to right) 1. Troglodyta Bontil; 2. Lucifer Aldrovandi; 3. Satyrus Tulpii; 4. Pygmæus Edwardi. The first is a bad copy of Bontius' fictitious 'Ourang-outang,' in whose existence, however, Linnæus appears to have fully believed; for in the standard edition of the Systema Nature, it is enumerated as a second species of Homo ; "H. nocturnus." Lucifer Aldrovandl is a copy of a figure in Aldrovandus, De Quadrupedibus dlgitatis viviparis, Lib. 2, p. 249 (1645), entitled "Cercopithecus formæ raræ Barbilius vocatus et originem a china ducebat." Hoppius is of opinion that this may be
one of that cat-talled people, of whom Nicolaus Köping affirms that they eat a hoat's crew, "gubernator navis" and all! In the Sysiema Naiuree Linnæus calls it in a note, Homo caudaius, and seems inclined to regard it as a third species of man. According to Temminck, Sailyrus Tulpit is a copy of the figure of a Chimpanzee published hy Scotin in 1738, which I have not seen. It is the Saiyrus indicus of the Systema Naturæ, and is regarded by Linnæus as possibly a distinct species from Satyrus sylvestris. The last, named Pygmæus Edwardi, is copied from the figure of a young "Man of the Woods," or true Orang-Utan, given in Edwards' Gieanings of Natural Hisiory (1758).
Buffon was more fortunate than his great rival. Not only had he the rare opportunity of examining a young Chimpanzee in the living state, but he became possessed of an adult Asiatic man-liile Ape-the first and the last adult specimen of any of these animals brought to Europe for many years. With the valuable assistance of Dauhenton, Buffon gave an excellent description of this creature, which, from its singular proportions, he termed the long-armed Ape, or Gibbon. It is the modern Hyiobates lar.

Thus when, in 1766, Buffon wrote the fourteenth volume of his great work, be was personally familiar with the young of one kind of African man-like Ape, and with the adult of an Asiatic species-while the Orang-Utan and the Mandrill of Smith were known to him hy report. Furthermore, the Abhé Prevost had translated a good deal of Purchas' Pilgrims into French, in his Histoire générale des Voyages (1748), and there Buffon found a version of Andrew Battell's account of the Pongo and the Engeco. All these data Buffon attempts to weld together into harmony in his chapter entitied "Les Orangoutangs ou le Pongo et le Jocko." To this titie the following note is appended :-

[^23]Thus it was that Andrew Battell's "Engeco" hecame metamorphosed into "Jocko," and, in the latter shape, was spread all over the world, in consequence of the extensive popularity of Buffon's works. The Abhé Prevost
and Bufton between them, however, did a good deal more disfigurement to Battell's sober account than 'cutting of an article.' Thus Battell's statement that the Pongos "cannot speake, and have no understanding more than a heast," is rendered hy Buffon "qu'il ne peut parler quotqu'il ait plus d'entendement que les autres animaux"; and again, Purchas' affirmation, "He told me in conference with him, that one of these Pongos tooke a negro hoy of his which Hived a moneth with them," stands in the French version, " un pongo lul enleva un petit negre qui passa un an entier clans la socleté de ces animaux."

After quoting the account of the great Pongo, Buffon justly remarks, that all the ' Jockos ' and ' Orangs ' hitherto hrought to Europe were young; and he suggests that, in their adult condition, they might he as big as the Pongo or 'sieat Orang'; so that, provisionally, he regarded the Jockos, Orangs, and Pongos as all of one species. And perhaps this was as much as the state of knowledge at the time warranted. But how it came about that Buffon falled to percelve the similarity of Smith's 'Mandrill ' to his own ' Jocko,' and confounded the former with so totally different a creature as the hlue-faced Bahoon, is not so easily intelligible.
Twenty years later Buffon changed his oplnion,* and expressed his belief that the Orangs constituted a genus with two species,-a large one, the Pongo of Battell, and a small one, the Jocko : that the small one (Joclio) is the East Indian Orang; and that the young animals from Africa, observed by himself and Tolplus, are simply young Pongos.

In the meanwhile, the Dutch naturalist, Vosmaer, gav 2 , in 1778, a very good account and figure of a young Orang, hrought alive to Holland, and his countryman, the famous anatomist, Peter Camper, puhlished (1779) an essay on the Orang-Utan of similar value to that of Tyson on the Chimpanzee. He dissected several females and a male, all of which, from the state of their skeleton and their dentition, he justly supposes to have heen young. However, judging by the analogy of man, he concludes that they could not have exceeded four feet in helght in the adult condition. Furthermore, he is very clear as to the specific distinctness of the true East Indian Orang.
"The Orang," says he, " differs not only from the Pigmy - Histoire Nalurelle, Suppl. tome 7eme, 1789.
of Tyson and from the Orang of Tulpius by its peculiar coiour and its long toes, but also by its whoie external form. Its arms, its hands, and its feet are ionger, while the thumbs, on the contrary, are much shorter, and the great toes much smaller in proportion." * And again, "The true Orang, that is to say, that of Asia, that of Bornieo, is consequently not the Pithecus, or tailless Ape, which the Greeks, and especialiy Galen, have described. It is neither the Pongo nor the Jocko, nor the Orang of Tuipius, nor the Pigmy of Tyson,-it is an animai of a pecuiiar species, as I shali prove in the clearest manner by the organs of voice and the skeleton in the following chapters" (1. c. p. 64).

A few years later, M. Radermacher, who held a high office in the Government of the Dutch dominions in India, and was an active member of the Batavian Society of Arts and Sciences, published, in the second part of the Transactions of that Society, \dagger a Description of the Island of Borneo, which was written between the years 1779 and 1781, and, amiong much other interesting matter, contains some notes upon the Orang. The small sort of Orang-Utan, viz. that of Vosmaer and of Edwards, he says, is found only in Borneo, and chiefly about Banjermassing, Mampauwa, and Landak. Of these he had seen some fifty during his residence in the Indies; but none exceeded $2 \frac{1}{2}$ feet in length. The iarger sort, often regarded as chimæra, continues Radermacher, would perhaps iong have remained so, had it not been for the exertions of the Resident at Rembang, M. Palm, who, on returning from Landak towards Pontiana, shot one, and forwarded it to Batavia in spirit, for transmission to Europe.

Palm's ietter describing the capture rans thus :-" Herewith I send your Excellency, contrary to all expectation (since long ago I offered more than a hundred ducats to the natives for an Orang-Utan of four or five feet high) an Orang which I heard of this morning about eight o'clock. For a long time we did our best to take the frightful beast alive in the dense forest about half way to Landak. We forgot even to eat, so anxious were we not to let him escape; but it was necessary to take care he did not revenge himself, as he kept continually breaking off heavy pieces of wood and green branches, and dashing them at us. This game

[^24]lasted till four o'clock in the afternoon, when we determined to shoot him ; in which I succeeded very well, and indeed better than I ever shot from a boat before; for the buliet went just into the side of his chest, so that he was not much damaged. We got him into the prow stili iiving, and bound him fast, and next morning he died of his wounds. All Pontiana came on board to see him when we arrived." Palm gives his height from the head to the heei as 49 inches.

A very inteiiigent German officer, Baron Von Wurmb, - who at this timc heid a post in the Dutch East India service, and was Secretary of the Batavian Society, studied this animal, and his careful description of it, entitled

Fio. 7.-The Pongo Skull, sent by Radermacher to Camper, after Camper's original aketches, as reproduced by Lucse.
"Beschrijving van der Groote Lorneoscbe Orang-outang of de Oost-Indiscbe Pongo," is contained in the same voiume of the Batavian Society's Transactions. After Von Wurmb had drawn up his description he states, in a ietter dated Batavia, Feb. 18, 1781,* that the specimen was sent to Europe in brandy to be piaced in tbe collection of the Prince of Orange ; "unfortunateiy," he continues, " we hear that the sbip has been wrecked." Von Wurmb died in the course of the ycar 1781, the ietter in which this passage occurs being the iast he wrote; but in his postbumous papers, pubiisbed in the fourth part of the Transactions of the Batavian Society, therc is a brief

[^25]description, with measurements, of a female Pongo four feet high.

Did elther of these original specimens, on which Von Wurmh's descriptions are hased, ever reach Europe 9 It is commoniy supposed that they did; hut I douht the fact. For, appended to the memoir De l'Ourarg-outarg, in the collected edition of Camper's works, tome l., pp. 64-66, is a note hy Camper himseif, referring to Von Wurmh's papers, and continuing thus:-"Heretofore, this kind of ape had never heen known in Europe. Radermacher has had the kindness to send me the skull or one of these animals, which measured fifty-three inches, or four feet five inches, in height. I have sent some sketches of it to M. Soemmering at Mayence, which are hetter calculated, however, to give an idea of the form than of the real size of the parts."

These sketches have heen reproduced hy Fischer and by Lucæ, and hear date 1783, Soemmering having received them in 1784. Had either of Von Wurmh's specimens reached Holland, they would hardily have heen unknown at this time to Camper, who, however, goes on to say:" It appears that since this, some more of these monsters have heen captured, for an entire skeleton, very hadly set up, which had heen sent to the Museum of the Prince of Orange, and which I saw only on the 27th of June, 1784, was more than four feet high. I examined this skeleton again on the 19th Decemher, 1785, after it had heen excellently put to rights hy the ingenious Onymus."

It appears evident, then, that this skeleton, which is douhtless that which has always gone hy the name of Wurmh's Pongo, is not that of the animal described hy him, though unquestionahiy simllar in all essential points.

Camper proceeds to note some of the most important features of this skeleton, promises to descrihe it in detall hy-and-hye; and is evidently in douht as to the relation of this great ' Pongo' to his "petit Orang."
The promised further investigations were never carried out; and so it happened that the Pongo of Von Wurmh took its piace hy the side of the Chimpanzee, Gihhon, and Orang as a fourth and coiossal species of man-like Ape. And indeed nothing could look much iess like the Chimpanzees or the Orangs, then known, than the Pongo ; for all the specimens of Chimpanzee and Orang which had heen ohserved were small of stature, singularly human
in aspect, gentie and docile; while Wurmb's Pongo was a monster almost twice their size, of vast strength and fierconess, and very brutal in expression; its great projecting muzzle, armen with strong teeth, being further disfigured by the outgrowth of the cheeks into fleshy lobes.

Eventually, in accordance with the usual marauding habits of the Revolutionary armles, the 'Pr,igo' skeleton was carried away from Holland Into France, and notlces of it, expressly intended to demonstrate its entire distinctness from the Orang and Its affinity with the baboons, were glven, in 1798, by Geoffroy St. Hilaire and Cuvler.

Even In Cuvier's Tableau Elementaire, and in the first edition of his great work, the Regne Antmal, the ' Pongo' is classed as a specles of Baboon. However, so early as 1818, It appears tbat Cuvier saw reason to alter this opinion, and to adopt the view suggested several years before by Blumenbach,* and after him by Tileslus, tbat tbe Bornean Pongo is simply an adult Orang. In 1824, Rudolphi demonstrated, by the condition of the dentition, more fully and completely than had been done by his predecessors, that the Orangs described up to that time were all young animals, and that the skull and teeth of the adult would probably be such as those seen in the Pongo of Wurmb. In the second edition of the Regne Animal (1829), Cuvier Infers, from the 'proportions of all the parts' and ' the arrangements of the foramina and sutures of the head,' that the Pongo is the adult of the Orang-Utan, ' at least of a very closely allied specles,' and this conclusion was eventually placed beyond all doubt by Professor Owen's Memolr published in the Zoological Transacions for 1835, and by Temminck in his Monographies de Mammalogie. Temminck's memoir is remarkable for the completeness of the evidence which It affords as to the modification which the form of the Orang undergoes according to age and sex. Tledemann first published an account of the brain of the young Orang, while Sandifort, Müller and Schlegel, described the muscles and the viscera of the adult, and gave the earliest detailed and trustworthy history of the bablts of the great Indian Ape in a state of nature; and as important additions have been inade by later observers, we are at this moment better acquainted with the adult of the Orang-Utan,

[^26]
214

 ON THE NATURAL HISTORYthan with that of any of the other greater man-like Apes.

It is certalnly the Pongo of Wurmb ; * and it is as certalnly not the Pongo of Battell, seeing that the OrangUtan is entirely confned to the great Asiatic islands of Borneo and Sumatra.

And whlle the progress of discovery thus cleared up the history of the Orang, it also became estabilished that the oniy other man-ilike Apes in the eastern world were the various spiscies of Gibbon-Apes of smaller stature, and therefore attracting less attention than the Orangs, though they are spread over a much wider range of country, and are hence more accessibie to observation.

Although the geographical area inhabited by the ' Pongo' and ' Engeco' of Battell is sc much nearer to Europe than that in which the Orang and Gibbon are found, our acquaintance with the African Apes has been of slower growth; indeed, it is only within the iast few years that the truthful story of the oid English adventurer has been rendered fully intelligibie. It was not untll 1835 that the skeieton of the adult Chimpanzee became known, by the pubilcation of Professor Owen's above-mentioned very excellent memoir On the osteology of the Chimpanzee and Orang, in the Zoological Transactions-a memoir which, by the accuracy of its descriptions, the carefulness of its comparisons, and the excellence of its figures, made an epoch in the history of our knowledge of the bony framework, not oniy of the Chimpanzee, but of ail the anthropoid Apes.

By the investigations herein detailed, it became evident that the oid Chimpanzee acquired a size and aspect as different from those of the young known to Tyson, to Buffon, and to Traill, as those of the oid Orang from the young Orang; and the subsequent very important researches of Messrs. Savage and Wyman, the American missionary and anatomist, have not only confirmed this conclusion, but have added many new details. \dagger

[^27]One of the most interesting among the many valuable discoveries made hy Dr. Thomas Savage is the fact, that the natives in the Gaboon country at the present day, apply to the Chimpanzee a name-" Enche-eko "-which is ohviously Identical with the "Engeko" of Battell; a discovery which has been confirmed by all later inquirers. Battell's "lesser monster," heing thus proved to he a veritable existence, of course a strong presumption arose that his "greater monster," the 'Pongo,' would sooner or later be discovered. And, indeed, a modern traveller, Bowdich, had, in 1819, found strong evidence, among the natives, of the existence of a second great Ape, called the' Ingena,' "Ave feet high, and four across the shoulders," the hullder of a rude house, on the outside of which it slept.

In 1847, Dr. Savage had the good fortune to make another and most important addition to our knowledge of the man-like Apes; for, heing unexpectedly detained at the Gaboon river, he saw in the house of the Rev. Mr. Wilson, a missionary resident there, "a skull represented hy the natives to he a monkey-iike animal, remarkable for its size, ferocity, and habits." From the contour of the skull, and the information derived from several intelligent natives, "I was Induced," says Dr. Savage (using the term Orang in its oid general sense), " to belleve that it heionged to a new species of Orang. I expressed this opinion to Mr. Wilson, with a desire for further investigation ; and, if possibie, to decide the point by the inspection of a specimen allve or dead." The result of the combined exertions of Messrs. Savage and Wilson was not only the obtaining of a very full account of the habits of this new creature, but a still more important service to science, the enabling the exceilent American anatomist already mentioned, Professor Wyman, to describe, from ampie materials, the distinetive osteoiogical characters of the new form. This animal was calied by the natives of the Gaboon "Enge-ena," a name obviousiy identical with the "Ingena" of Bowdich ; and Dr. Savage arrived at the conviction that this iast discovered of all the great Apes was the iong-sought " Pongo" of Battell.

The justice of this conclusion, indeed, is beyond doubt -for not only does the 'Enge-ena' agree with Battell's "greater monster" in its hoilow eyes, its great stature, and its dun or iron-grey coiour, but the only other maniike Ape which inhabits these iatitudes-the Chimpanzee

ON THE NATURAL HISTORY

-Is at once Identified, by its amaller size, as the "lesser monster," and is excluded from any posibility of being the ' Pongo,' by the fact that it is hlack and not dun, to say nothing of the important circumstance already mentloned that it stili retains the name of ' Engeko,' or ' Enchocko,' by which Battell knew it.

In seeking for a specific name for the 'Enge-ena,' however, Dr. Savage wisely avolded the much misused 'Pongo '; hut finding in the ancient Periplus of Hanno the word "Gorlita" appiled to certaln hairy savage people, discovered hy the Carthaginian voyager in an isiand on the African coast, he attached the specific name "Gorllla" to his now ape, whence arises its present well-known appellation. But Dr. Savage, more cautious than some of hls successors, hy no means identifies his ape with Hanno's 'wild men.' He merely says that the latter were "probably one of the species of the Orang ; " and I quite agree with M. Brulle that there is no ground for identifying the modern 'Gorilla' with that of the Carthaginian admiral.
Since the memoir of Savage and Wyman was puhlished, the'skeleton of the Gorilla has heen investigated hy Professor Owen and by the fate Professor Duvernoy, of the Jardin des Plantes, the latter having further supplied a valuahie account of the muscular system and of many of the other soft parts; while African missionaries and traveliers have confirmed and expanded the account originally given of the hahits of this great man-like Ape, which has had the singular fortune of helng the first to he made known to the general worid and the last to be sclentifically investigated.

Two centuries and a half have passed away since Battell toid his stories about the 'greater' and the 'iesser monsters ' to Purchas, and it has taken neariy that time to arrive at the clear result that there are four distinct kinds of Anthro-polds-in Eastern Asia, the Gibhons and the Orangs; in Western Africa, the Chimpanzees and the Gorilla.

The man-like Apes, the history of whose discovery has just heen detaile ${ }^{5}$. have certain characters of structure and of distribution in common. Thus they all have the same number of teeth as man-possessing four incisors, two canines, four false molars, and six true molars in each jaw, or 32 teeth in all, in the adult condition; while the milk dentition consists of 20 teeth-or four incisors, two called catarrhine Apes - that is, their nostrils have a narrow partition and look downwards ; and, furthermore, their arms are always ionger than their legs, the difference beling sometimes greater and zometimes less; so that if the four were arranged in the order of the iength of their amns in proportion to that of their legs, we should have thls series-Orang ($15-1$), Glibbon ($1 \nmid-1$), Gorila ($1 \frac{1}{2}-1$), Chimpenzee ($1 \frac{1}{1} \frac{1}{6}-1$). In all, the fore limbs are terminated hy hands, provided with ionger or shorter thumbs ; while the great toe of the foot, always smaller than in Man, is far more moveable than in him and can he opposed, like a thumh, to the rest of the foot. None of these apes have tails, and none of them possess the cheek pouches common among monkcys. Finally, they are all inhabitants of the oid worid.
The Gibhons are the smallest, slenderest, and iongestlimhed of the man-IIke apes; their arms are longer In proportion to their hodies than those of any of the other man-like Apes, so that they can touch the ground when erect ; their hands are longer than their leet, and they are the only Anthropolds which possess callositios like the lower monkeys. They are varlously coloured. The Orangs have arms which reach to the ankles in the erect position of the animal ; their thumhs and great toes' are very short, and their feet are longer than their hands. They are covercd with reddish-hrown hair, and the sides of the face, in adult males, are commonly produced into two crescentic, flexible excrescences, like latty tumours. The Chimpanzees have arms which reach helow the knees; they have large thumhs and great toes, their hands are longer than their feet, and their hair ls hlack, while the skin of the face ls pale. The Gorilla, lastly, has arms which reach to the middle of the leg, large thumhs and great toes, feet longer than the hands, a hlack face, and dark-grey or dun hair.
For the purpose which I have at present in view, it is unnecessary that I should enter into any further minutla respecting the distinctive characters of the genera and species into which these man-like Apes are divided hy naturalists. Suffice it to say, that the Orangs and the Gibhons constitute the distinct genera, Slmla and Hylobates; while the Chimpanzees and Gorilias arc by some regarded simply as distinct species of one genus, Troglodytes; hy $0^{\prime \prime}$ urs as dlstinct genera-Troglodytes heing
reserved for the Chimpanzees, and Gorilla for the Engdena or Pongo.

Sound knowledge respecting the hahits and mode of Ufe of the man-like Apes has heen even more dimeult of attainment than correct information regarding their structure.

Once in a generation, a Wallace may he found phystcally, mentally, and morally qualifed to wander unscathed through the tropleal wilds of America and of Asta ; to form magniffent collectlons as he wanders; and withal to think out sagaciously the conclusions suggested by his collections : hut, to the ordinary explorer or collector, the dense forests of equatorial Asla and Atrica, which constitute the favourite habitation of the Orang, the Chimpanzee, and the Gorilla, present dimeultles of no ordinary magnitude : and the man who riskr his ilfe hy even a short visit to the malarlous shores of those regions may well he excused If he shrinks from tacing the dangers of the interior; if he contents himself with stimulating the industry of the hetter seasoned natives, and collecting and collating the more or less mythical reports and traditions with which they are too ready to supply him.

In such a manner most of the earlier accounts of the hablts of the man-like Apes originated; and even now a good deal of what passes current must he admitted ir have no very safe foundation. The hest information we possess is that, hased almost wholly on direct European testimony respectling the Gibbons ; the next best evidence relates to the Orangs; while our knowledge of the hablts of the Chimpanzee and the Gorilla stands much in need of support and enlargement by additional testimony from instructed European eye-witnesses.

It will therefore be convenlent in endeavouring to form a notion of what we are justifled in helleving about these animals, to commence with the hest known man-like Apes, the Glhbons and Orangs ; and to make use of the perfectly reliahle information respecting them as a sort of criterion of the prohable truth or falsehood of assertions repecting the others.

Of the Gibbons, half a dozen specles are found scattered over the Aslatic lslands, Java, Sumatra, Borneo, and through Malacca, Slam, Arracan, and an uncertain extent of Hindostan, on the main land of Asia. The largest attain a few inches above three feet in helght, from the
crown to the heel, so that they are shorter than the other man-like Apes; while the slenderness of their hodies renders their mass far smaller in proportion even to this diminished beight.

Dr. Salomon Mulier, an aceomplished Dutch naturalist, who ifved for many years in the Eastern Archipelago, and to the resuits of whose personal experience I shall frequently have occasion to refer, states tbat the Gibbons are true mountaineers, ioving the siopes and edges of the hills, though tbey rarely ascend beyond the ilmit of the fig-trecs. All day long tbey haunt tbe tops of the tall trees; and though, towards evening, they deseend in small troops to the open ground, no sooner do they spy a man than they dart up the hili-sides, and disappear in the darker valieys.

All observers testify to the prodigious volume of voice possessed by these animals. Aecording to the writer whom I have just eited, in one of them, the Siamang, " tbe volee is grave and penetrating, resembing tbe sounds gōek, gōek, gōek, göek, goek ha ha ha ha haaīā̄, and may easily be heard at a distance of hall a feague." While tbe cry is being uttered, the great membranous bag under the throat whicb communicates with the organ of voice, the so-ealied "laryngeai sac," becomes greatiy distended, diminishing again when the ereature reiapses into silence.
M. Duvaucei, ilkewisc, affirms that the cry of the Siamang may be heard for miles-making the woods ring again. So Mr. Martin * describes the ery of the agile Gibbon as "overpowering and deafening " In a room, and " from its strength, weil calcuiated for resounding through the vast forests." Mr. Waterhouse, an aecomplisbed musician as well as zooiogist, says, "The Gibbon's voice is certainiy much more powerful than that of any singer I bave ever heard." And yet it is to be recoilected that tbis animal is not hall the beigbt of, and far iess buiky in proportion than, a man.

There is good testimony tbat various species of Gibbon readily take to tbe erect posture. Mr. George Bennett, \dagger a very excelient observer, in describing tbe babits of a male Hylobales syndactylus which remained for some time in his possession, says : "He invariably walks in tbe erect posture when on a level surface ; and tben the arms either

[^28]hang down, enabiing him to assist himself with his knuckles ; or what is more usual, he keeps his arms upiifted in nearly an erect position, with the hands pendent ready to seize a rope, and climb up on tbe approacb of danger or on the obtrusion of strangers. He walks rather quick in the erect posture, but witb a waddling galt, and is soon run down if, whilst pursued, he has no opportunity of escaping hy climbing. . . . When he walks in the erect posture he turns the leg and foot outwards, which occaslons him to bave a waddling gait and to seem bow-iegged."

Dr. Burrough states of another ulbbon, tbe Horlack or Hooluk :
"Tbey walk ercct ; and wben placed on the floor, or in an open fieid, balance tbemselves very prettily, by ralsing their hands over their head and slightly bending the arm at the wrist and elbow, and then run tolerahly fast, rocking from slde to side; and, if urged to greater speed, tbey iet fall their hands to tbe ground, and assist themselves forward, rather jumping than running, still keeping the hody, however, nearly erect."

Somewhat different evidence, bowever, is given hy Dr. Winslow Lewls : *
" Their only manner of walking was on tbeir posterior or inferior extremities, the otbers being ralsed upwards to preserve their equillbrium, as rope-dancers are asslsted hy long poies at fairs. Tbeir progresslon was not by piacing one foot before the other, but hy simultaneously using botb, as in jumping." Dr. Salomon Müller also states tbat tbe Gibbons progress upon the ground by a short serles of tottering jumps, effected only by tbe hind limbs, tbe body being held altogether upright.

But Mr. Martin (l. c. p. 418), who also speaks from direct ohservation, says of the Gibbons generally :
" Pre-eminently qualified for arhoreal hablts, and displaying among the brancbes amazing actlvity, the Gibhons are not so awkward or embarrassed on a ievel surface as mlght he imagined. They walk erect, wltb a waddling or unsteady gait, hut at a qulck pace ; tbe equilibrium of the body requiring to he kept up, elther by touching the ground with tbe knuckies, first on one side then on the other, or by uplifting the arms so as to poise it. As with tbe Chimpanzee, tbe whole of tbe narrow, long soie of the foot ls piaced upon the

[^29]ground at once and raised at once, without any elasticity of step."

Fra. 8.-A Glbbon (H. pllealus), after Wolf.
After this mass of concurrent and independent testimony, it cannot reasonably be doubted that the Gibbons commonly and habitually assume the erect attitude.

222

But ievel ground is not the piace where these animals can dispiay their very remarkable and peculiar iocomotive powers, and that prodigious activity which almost tempts one to rank them among flying rather than among ordinary climbing mammals.

Mr. Martin (i. c. p. 430) has given so exceiient and graphic an account of the movements of a Hylobates agilis, iiving in the Zooiogical Gardens, in 1840, that I will quote it in full:
" It is almost impossibie to convey in words an idea of the quickness and graceful address of her movements : they may indeed be termed aërial, as she seems merely to touch in her progress the branches among which she exhibits her evolutions. In these feats her hands and arms are the soie organs of iocomotion; her body hanging as if suspended by a rope, sustained by one hand (the right, for exampie), she iaunches herself, by an energetic movement, to a distant branch, which she catches with the ieft hand; but her hoid is iess than momentary : the impulse for the next launch is acquired : the branch then aimed at is attained by the right hand agaln, and quitted instantaneousiy, and so on, in alternate succession. In this manner spaces of twelve and eighteen feet are cleared, with the greatest ease and uninterruptediy, for hours together, without the sightest appearance of fatigue being manifested; and it is evident that, if more space couid be aliowed, distances very greatiy exceeding eighteen feet would be as easily cleared; so that Duvaucei's assertion that he has seen these animals iaunch themselves from one branch to another, forty feet asunder, startling as it is, may be well credited. Sometimes, on seizing a branch in her progress, she will throw herseif, by the power of one arm oniy, compietely round it, making a revoiution with such rapidity as almost to deceive the eye, and continue her progress with undiminished veiocity. It is singuiar to observe how suddenly this Gibbon can stop, when the impetus given by the rapidity and distance of her swinging ieaps would seem to require a gradual abatement of her movements. In the very midst of her flight a branch is seized, the body raised, and she is seen, as if by magic, quietiy seated on it, grasplng it with her feet. As suddenly she again throws herseif into action.
"The following facts will convey some notion of her dexterity and quickness. A live bird was iet loose in her apartment; she marked its flight, made a iong swing to a distant branch, caught the bird with one hand in her
passage, and attained the branch with her other hand; her aim, hoth at the hird and at the branch, being as successful as if one object only had engaged her attention. It may be added that she instantly hit off the head of the hird, picked its feathers, and then threw it down without attempting to eat it.
" On another occasion this animal swung herseif from a perch, across a passage at ieast tweive feet wide, against a window which it was thought would he immediateiy hroken: hut not so; to the surprise of all, she caught the narrow framework hetween the janes with her hand, in an instant attalned the proper impetus, and sprang back again to the cage she had ieft-a feat requiring not only great strength, hut the nicest precision."

The Gibbons appear to be naturaliy very gentle, hut there is very good evidence that they will hite severely when irritated-a female Hylobates agilis having so severeiy lacerated one man with her iong canines, that he died; while she had injured others so much that, hy way of precaution, these formidahie teeth had been filed down; hut, if threatened, she wouid still turn on her keeper. The Gihhons eat insects, but appear generaliy to avoid animal food. A Siamang, however, was seen by Mr. Bennett to seize and devour greedily a live iizard. They commonly drink hy dipping their finger, s the iiquid and then iicking them. It is asserted that th $\quad \mathrm{p}$ in a sitting posture.

- Duvaucei affirm. . he has seen the females carry their young to the waterside and there wash their faces, in spite of resistance and cries. They are gentle and affectionate in captivity-full of tricks and pettishness, iike spoiled children, and yet not devoid of a certain conscience, as an anecdote, toid hy Mr. Bennett (l. c. p. 156), will show. It would appear that his Gihbon had a peculiar inclination for disarranging things in the cahin. Among these articies, a piece of soap would especially attract his notice, and for the removal of this he had heen once or twice scoided. "One morning," says Mr. Bennett, "I was writlng, the ape heing present in the cahin, when casting my eyes towards him, I saw the iittle fellow taking the soap. I watched him without his perceiving that I did so : and he occasionally would cast a furtive glance towards the piace where I sat. I pretended to write; he, seeing me busily occupied, took the soap, and moved away with it in his paw. When he had walked
half the length of the cabin, I spoke quietiy, without frightening him. The instant he found I saw him, he walked back again, and deposited the soap neariy in the same place from whence he had taken it. There was certainly something more than instinct in that action: he evidentiy betrayed a consciousness of having done wrong hoth by his first and last actions-and what is reason if that is not an exercise of it ?"

The most elaborate account of the natural history of the Orang-Utan extant, is that given in the "Verhandelingen over de Natuuriijke Geschiedenis der Nederlandsche overzeesche Bezittingen ($3839-45$)," hy Dr. Salomon Muller and Dr. Schlegel, and I shall base what I have to say upon this suhject almost entireiy on their statements, adding here and there, particulars of interest from the writings of Brooke, Wallace, and others.

The Orang-Utan would rareiy seem to exceed focr feet in height, but the hody is very hulky, measuring two-thirds of the height in circumference.*
The Orang-Utan is found only in Sumatra and Borneo, and is common in neither of these islands-in hoth of which it occurs always in low, flat plains, never in the mountains. It ioves the densest and most somhre of the forests, which extend from the sea-shore inland, and thus is found only in the eastern half of Sumatra, where alone such forests occur, though, occasionally, it strays over to the western side.

On the other hand, it is generally distributed through Borneo, except in the mountains, or where the population

- The fargest Orang-Utan, eited hy Temminck, measured, when standing upright, 4 ft .; hut he mentions having just received news of the capture of an Orang 5 ft .3 in . high. Schlegel and Maller say that their largest oid male measured, upright, 1.25 Netheriands " el "; and from the crown to the end of the toes, 1.5 el ; the circumierence of the hody being about 1 ei . The largest oid female was $1.09 \mathrm{el} \mathrm{high} ,\mathrm{when} \mathrm{standing}$. of Surgeons' Museum, if set upright, would stand 3 ft . 6-8 in. from crown to sole. Dr. Humphry gives 3 ft .8 in . win the mean height of two Orangs. Of seventeen Orangs examired by Mr. Wallace, the largest was 4 ft .2 in . high, from the heei to the crown of the head. Mr. Spencer St. John, however, in his Life in the Forests of the Far East, tells us of an Orang of " 5 ft . 2 in., measuring fairiy from the head to the heel," 15 in . across the lace, and 12 in. round the wrist. It does not appear, however, that Mr. St. John measured thls Orang himseli.

If dense. In favourable places, the hunter may, by good fortune, see three or four in a day.

Except in the palring time, the old males usually live by

Fig. 9.-An adult male Orang-Utan, after Müler and Schlegel.
themselves. The old females, and the immature males, on tbe other hand, are often met with in twos and threes; and the former occasionally have young with them, though the pregnant females usually separate themselves, and sometimes remaln apart after they have given birth to
their offspring. The young Orangs seem to remain unusualiy iong under their mother's protection, probably in consequence of their slow growth. While climbing, the motier always carries her young against her bosom, the young holding on by his mother's hair.* At what time of life the Orang-Utan becomes capable of propagation, and how iong the females go with young, is unknown, but it is probable that they are not adult until they arrive at ten or fifteen years of age. A female which lived for five years at Batavia, had not attained one-third the height of the wild females. It is probable that, after reaching adult years, they go on growing, though slowiy, and that they iive to forty or fifty years. The Dyaks tell of oid Orangs, which have not only lost all their teeth, but which find it so troublesome to climb, that they maintain themseives on windfalis and juicy herbage.

The Orang is siuggish, exhibiting none of that marveiious activity characteristic of the Gibbons. Hunger alone scems to stir him to exertion, and when it is stilled he reiapses into repose. When the animal sits, it curves its back and bows its head, so as to look straight down on the ground; sometimes it holds on with its hands by a higher branch, sometimes iets them hang phlegmatically down by its side-and in these positions the Orang will remain, for hours together, in the same spot, almost without stirring, and only now and then giving utterance to its deep, growling voice. By day, he usually climbs from one tree-top to another, and only at night descends to the ground, and if then threatened with danger, he seeks refuge among the underwood. When not hunted, he remains a long time in the same locality, and sometimes stops for many days on the same tree-a firm place among its branches serving him for a bed. It is rare for the Orang to pass the night in the summit of a large tree, probably because it is too windy and cold there for him; but, as soon as night draws on, he descends from the height and seeks out a fit bed in the lower and darker part, or in the leafy top of a small tree, among which he

[^30]
OF THE MAN-LIKE APES

prefers Nibong Palms, Pandani, or one of those parasitic Orchids which give the primeval forests of Borneo so characteristic and striking an appearance. But wherever he determines to sieep, there he prepares himseif a sort of nest : little boughs and icaves are drawn together round the seiected spot, and bent crosswise over one another; while to make the bed soft, great leaves of Ferns, of Orchids, of Pandanus fascicularis, Nipa fruticans, etc., are iald over them. Those which Mülier saw, many of them belng very fresh, were sltuated at a height of ten to twenty-flve feet above the ground, and bad a circumference, on the average, of two or three feet. Some were packed many lnches thick with Pandanus ieaves; others were remarkable oniy for the cracked twigs, which, united \ln a common centre, formed a regular platform. "The rude hut," says Sir James Brooke, "which they are stated to build in the trees, would be more properiy called a seat or nest, for it has no roof or cover of any sort. The facility with which they form thls nest is curlous, and I had an opportunlty of seeing a wounded female weave the branches together and seat herseif, within a minute."

According to the Dyaks, the Orang rareiy leaves his bed before the sun is well above the horizon and has dissipated the mists. He gets up about nine, and goes to bed again about five; but somctimes not till late in the twilight. He iles sometimes on his back; or, by way of cbange, turns on one slde or the other, drawing hls limbs up to hls body, and resting his head on his hand. When the night is cold, windy, or ralny, he usually covers his body with a heap of Pandanus, Nipa, or Fern leaves, like those of which his bed is made, and he is especlally careful to wrap up bis head in tbem. It is this habit of covering himself up which has probably ied to the fabie that the Orang builds huts in the trees.
Although the Orang resides mostly amid the boughs of great trees, during the daytime, he is very rareiy seen squatting on a thlck branch, as other apes, and jarticularly the Glbbons, do. The Orang, on the contrary, confines himself to the slender ieafy branches, so that he ls seen right at the top of the trees, a mode of iife which is closely related to the constltution of his hinder limbs, and especlally to tbat of hls seat. For this is provided with no callosities, such as are possessed by many of the lower apes, and even by the Gibbons; and those bones of the
pelvis, which are termed the ischia, and which form the solid iramework of the surface on which the body rests In the sltting posture, are not expanded ike those of the apes which possess callositles, but are more like those of man.

An Orang climbs so slowly and cautlously,* as, in this act, to resemhle a man more than an ape, taking great care of his feet, so that lnjury of them seems to affect him far more than lt does other apes. Unlike the Glhhons, whose forearm? do the greater part of the work, as they swing from branch to branch, the Orang never makes even the smallest jump. In climblng, he moves alternately one hand and one foot, or, after having lald fast hold with the hands, he draws up hoth feet together. In passlng from one tree to another, he always secks out a place where the twigs of hoth come close together, or interlace. Even when closely pursued, hls circumspection is amazing: he shakes the branches to see if they will hear him, and then bending an overhanging hough down hy throwing his welght gradually along it, he makes a hridge from the tree he wlshes to quit to the next. \dagger
On the ground the Orang always goes lahoriously and shakily, on all fours. At starting he will run faster than a man, though he may soon be overtaken. The very long arms which, when he runs, are hut little hent, raise the hody of the Orang remarkably, so that he assumes much the posture of a very old man bent down by age, and making his way along by the help of a stick. In walking, the hody is usually directed straight forward, unlike the other apes, which run more or less obllquely; except the Gibhons, who in these, as in so many other respects, depart remarkably from their fellows.

The Orang cannot put lts feet flat on the ground, but ls supported upon their outer edges, the heel resting more on the ground, while the curved toes partly rest upon the ground by the upper side of their first joint, the two outermost toes of each foot completely resting on this surface. The hands are held in the opposite manner, their inner edges

[^31]serving as the chief support. The fingers are then hent out in such a manner that their foremost jolnts, especially those of the two innermost fingers, rest upon the ground by their upper sldes, while the point of the free and stralght thumh serves as an additional fulcrum.

The Orang never stands on Its hind legs, and all the pletures, representing it as so dolng, are as false as the assertion that it defends itself with sticks, and the llke.

The long arms are of especial use, not only in climbing, hut in the gathering of food from houghs to which the animal could not trust his welght. Figs, blossoms, and young leaves of varlons kinds, constitute the chlef nutrlment of the Orang; hut strips of hamboo two or three feet long were found in the stomach of a male. They are not known to eat Ilving anlmals.

Although, when taken young, the Orang-Utan soon hecomes domestlcated, and Indeed seems to court human society, it is naturally a very wild and shy animal, though apparently slugglsh and melancholy. The Dyaks affirm, that when the old males are wounded with arrows only, they will occaslonally leave the trees and rush raging upon their enemies, whose sole safety lles in instant filight, as they are sure to be killed if caught.*

[^32]But, though possessed of immense strength, it is rare for the Orang to attempt to delend Itscli, especially when attacked with firc-arms. On such occasions he endeavours to hlde himself, or to escape along the topmost branches of the trees, breaking off and throwing down the boupis as he gocs. When wounded he betakes himself to the hlghest attalnable point of the trec, and emlts a slngular cry, censisting at first of high notes, which at length deepen into a low roar, not unlike that of a panther. While giving out the high notes the Orang thrusts out hls llps into a funnel shape; but ln uttcring the iow notes he holds his mouth wlde open, and at the same tlme the great throat bag, or laryngeal sac, becomes dlstended.

According to the Dyaks, the only animal the Orang measures hls strength with ls the crocodile, who occasionally selzes him on his vislts to the water slde. But they say that the Orang ls more than a match for hls enemy, and beats him to death, or rlps up hls throat by puliling the jaws asunder !

Much of what has been here stated was probably derived by Dr. Mulier from the reports of his Dyak hunters ; but a iarge male, four feet hith, lived in captlvity, under hls observalion, for a month, and receives a verv bad character.
" He was a very wild beast," says Muller, " of prodlgious strength, and false and wleked to the last degrec. If any one approached he rose up slowly with a low growl, fixed his eyes \ln the direction in which he meant to make bis attack, slowiy passed hls hand between the bars of hls cage, and then extending hls long arm, gave a sudden grlp-usually at tbe face." He never trled to bite (though Orangs will blte one another), bis great weapors of offence and defence being hls hands.

His lnteliigence was very great; and Muller remarks, that thoubb the facultles of the Orang bave been estimated too hlghly, yet Cuvler, had be seen this specimen, would not have consldered lts intelligence to be only a llttle higher than that of the dog.

His hearing was very acute, but the sense of vlsion
of rage, uttering at intervals a loud pumping grunt, and evidently meaning mischief."-" On the Habits of the Orang-Utan," Annals of Nat. History, 1856. This statement, it will be observed, is quite in accordance with that contained in the letter of the Resident Palm quoted above (p. 210).
seemed to be less perfect. The under lip was the grea ${ }^{\circ}$ organ of touch, and piayed a very important part in drinking, heing thrust out ilke a trough, so as either to catch the faliing rain, or to receive the contents of the half cocoa-nut sheil fuil of water with which the Orang was suppiied, and which, in drinking, he poured into the trough thus formed.

In Borneo the Orang-Utan of the Malays goes hy the name of "Mias" among the Dyaks, who distinguish several kinds as Mias Pappan, or Zimo, Mias Kassu, and Mias Rambi. Whether these are distinct species, however, or whether they are mere races, and how far any of them are identical with the Sumatran Orang, as Mr. Waliace thinks the Mias Pappan to he, are prohiems which are at present undccided; and the variahility of these great apes is so extensive, that the settiement of the question is a malier of great diffculty. Of the form calied "Mias Pappan," Mr. Waliace * ohserves, "It is known hy its iarge size, and hy the iateral expunsion of the face into fatty protuberances, or ridges, over the temporal muscies, which have been mis-termed caliosities, as they are perfectiy soft, smooth, and flexibie. Five of this form, measured by me, varied oniy from 4 feet 1 inch to 4 feet 2 inches in height, from the heei to the crown of the head, the girth of the hody from 3 feet to 3 feet 7! inches, and the extent of the outstretched arms from 7 feet 2 inches to 7 fcet 6 inches; the width of the face from 10 to $13 \pm$ inches. The colour and iength of the hair varied in c^{-}nt individuals, and in different parts of the same inu. .adual ; some possessed a rudimentary nall on the great toe, others none at ali; but they otherwise present no external differences on which to estabilish even varieties of a species.
"Yet, when we examine the crania of thesc individuals, we find remarkahie differences of form, proportion, and dimension, no two heing exactiy alike. The siope of the proflie, and the projection of the muzzle, together with the size of the cranium, offer differences as decided as those existing between the most strongiy marked forms of the Caucasian and African crania in the human species. The orhits vary in width and height, the cranial ridge is either singie or doubie, cither much or little deveioped, and the

[^33]zygomatic aperture varies conslderably in size. This variation in the proportions of the crania enables us satisfactorily to expialn the marked difference presented by the single-crested and double-crested skulls, which have been thought to prove the existence of two large species of Orang. The external surface of the skull varies considerably In size, as do also the zygomatic aperture and tbe temporal muscie; but they bear no necessary relation to each other, a smali museic often existing with a large eranial surface, and vice versa. Now, those skulis which have the largest and strongest jaws and the wldest cygomatic aperture, have the muscles so large that they meet on the crown of the skuil, and deposit the bony ridge which separates them, and which is the highest in that which has the smallest cranlal surface. In those which combine a large surface with comparativeiy weak jaws, and smali zygomatle aperture, the muscles, on each side, do not oxtend to the crown, a space of from 1 to 2 inches remaining between them, and aiong their margins smali ridges are formed. Intermediate forms are found, in which the ridges meet oniy in the hinder part of the skull. The form and size of the ridges are therefore independent of age, belng sometimes more strongly developed \ln the less aged animal. Professor Temminck states that the series of skulls in the Leyden Museum shows the same resuit."

Mr. Wailaee obscrved two male adult Orangs (Mlas Kassu of the Dyaks), however, so very different from any of these that he concludes them to be specifiealiy distinet ; they were respeetively 3 feet $8 \frac{1}{1}$ inches and 3 feet 91 inches high, and possessed no slgn of the cheek excrescences, but otherwlse resembled the larger kinds. The skull has no erest, but two bony ridges, 14 lnehes to 2 inches apart, as in the Simia morio of Professor Owen. The teeth, however, are immense, equalling or surpassing those of the other specles. The females of both these kinds, according to Mr. Wallace, are devold of exerescences, and resemble the smalier males, but are shorter by $1 \$$ to 3 inches, and thelr canine teeth are comparatively sraall, subtruneated and dilated at the base, as in the so-ealled Simia morio, which is, in all probability, the skull of a female of the same species as the smailer males. inth males and females of this smaller species are distingulshabie, according to Mr. Wallace, by the comparatlvely large size of the middle inclsors of the upper jaw.

So far as I am aware, no onc has attempted to dispuie the accuracy of the statements which I have just quoted regarding the habits of the two Asiatic man-ilke Apes; and if true, they must be admitted as cvidence, that such an Ape-

Firstiy, May readlly move aliong the ground in the erect, or semi-ciect, position, and without direct support from its arms.

Secondly, That it may possess an extremely loud voicc, so loud as to be rcadlly heard one or two milies.

Thirdly, That it may be capable of great viciousness and violence when irritated: and this is especialiy true of adult mates.
Fourthly, That it may build a nest to sieep in.

- Such being well-estabiished facts respecting the Asiatic Anthropoids, analogy alone might justify us in expecting the African species to offer similar peculiaritics, separately or combined; or, at any ratc, would destroy the force of any attempted a priori argument against such direct testimony as might be adduced in favour of their existence. And, if the organization of any of the African Apes could be demonstrated to fit it better than clther of its Asiatic allies for the erect position and for efficient attack, there would be still less reason for doubting its occasional adoption of the upright attitudc or of aggressive proceedings.

From the time of Tyson and Tuipius downwards, the habits of the young Chimpanzer in a state of captivity have been abundantly reported and commented upon. But tristworthy evidence as to the manners and customs of adult anthropoids of this species, in their native woods, was almost wanting up to the time of the publication of the paper by Dr. Savage, to whieh I have already referred ; containing notes of the observations which he made, and of the information which he collected from sources which he considered trustworthy, while resident at Cape Palmas, at the north-western limit of the Bight of Benin.
The adult Chimpanzees, measurcd by Dr. Savage, never exceeded, though the males may almost attain, flve feet in height.
"When at rest, the sitting posture is that generally assumed. They are sometimes seen standing and walking, but when thus detected, they immediateiy take to all fours, and flee from the presence of the observer. Such
is their organization that they cannot stand erect, but lean forward. Hence they are seen, when standing, with the hands clasped over the occiput, or the lumbar region, which would seem necessary to balance or ease of posture.
"The toes of the adult are strongly flexed and turned inwards, and cannot be perfectiy straightened. In the attempt the skin gathers into thick folds on the back, shewing that the full expansion of the foot, as is necessary in walking, is unnatural. The natural position is on all fours, the body anteriorly resting upon the knuckles. These are greatly enlarged, with the skin protuberant and thickened like the sole of the foot.
" They are expert climbers, as one would suppose from their organization. In their gambols they swing from limb to limb to a great distance, and leap with astonishing agility. It is not unusual to see the 'old folks' (in the language of an observer) sltting under a tree regaling themselves with fruit and friendly chat, while their 'children' are leaping around them, and swinging from tree to tree with bolsterous merriment.
" As seen here, they cannot be called gregarious, seldom more than five, or ten at most, being found together. It has been said, on good authority, that they occasionally assemble in large numbers, in gambols. My informant asserts that he saw once not less than fifty so engaged; hooting, screaming, and drumming with sticks upon old logs, which is done in the latter case with equal facility by the four extremities. They do not appear ever to act on the offensive, and seldom, if ever really, on the defensive. When about to be captured, they resist by throwing their arms about their opponent, and attempting to draw him into contact with their teeth." (Savage, 1. c. p. 384.)

With respect to this last point Dr. Savage is very explicit in another place:
" Biting ls their principal art of defence. I have seen one man who had been thus severely wounded in the feet.
"The strong development of the canine teeth ln the adult would seem to indicate a carnivorous propensity; but in no state save that of domestication do they manifest lt. At first they reject flesh, but easily acquire a fondness for 1t. The canines are early developed, and evidently dcsigned to act the important part of weapons of defence.

When in contact with man almost the first effort of the animal is-to btte.
" They avoid the abodes of men, and build their habitations in trees. Their construction is more that of nests than huts, as they have been erroneously termed by some naturalists. They generaliy build not far above tbe ground. Branches or twigs are bent, or partiy broken, and crossed, and the whoie supported by the body of a limb or a crotch. Sometimes a nest wili be found near the end of a strong leafy branch twenty or thirty feet from the ground. One I have iateiy seen that couid not be iess than forty feet, and more probably it was ffty. But this is an unusual beight.
" Their dwelling-place is not permanent, but changed in pursuit of food and soiltude, according to the force of circumstances. We more often see them in elevated places; but this arises from the fact that tbe low grounds, being more favourable for the natives' rice-farms, are the oftener cleared, and bence are almost always wanting in sultable trees for tbeir nests. . . . It is seldom that more than one or two nests are seen upon the same tree, or in tbe same neighbourhood: five have been found, but it was an unusual circumstance."
"They are very filthy in their habits. . . . It is a tradition with the natives generaliy bere, that they were once members of their own tribe : tbat for their depraved habits tbey were expelled from all human society, and, that through an obstinate indulgence of their vile propensities, they bave degenerated into tbeir present state and organization. They are, however, eaten by them, and wben cooked witi tbe oil and pulp of the palm-nut considered a highly palatable morsel.
"They exhibit a remarkabie degree of inteiligence in their babits, and, on the part of the mother, much affection for their young. The second female described was upon a tree when first discovered, with ber mate and two young ones (a male and a female). Her first impulse was to descend witb great rapidity, and make off into the thicket, with her mate and female offspring. Tbe young male remaining behind, sbe soon returned to the rescue. Sbe ascended and took him in her arms, at whicb moment she was shot, the ball passing through the forearm of the young one, on its way to the heart of the mother. . . .
"In a recent case, the mother, when discovered,
remained upon the tree with her offispring, watching intently the movements of tbe hunter. As he took aim, she motioned with her hand, preciseiy in the manner of a human heing, to have him desist and go away. When the wound has not proved instantiy fatal, they bave heen known to stop the flow of hiood by pressing with the band upon the part, and when this did not succeed, to appiy leaves and grass. . . . When shot, they give a sudden screech, not unlike that of a human heing in sudden and acute distress."
The ordinary voice of the Chimpanzee, however, is affirmed to he hoarse, guttural, and not very ioud, somewhat iike " whoo-whoo" (l. c. p. 365).

The analogy of the Chimpanzee to the Orang, in its nest-huilding habit and in the mode of forming its nest, is exceedingly interesting; while, on the other hand, the activity of this ape, and its tendency to bite, are particulars in which it rather resemhies the Gibbons. In extent of geographical range, again, tbe Chimpanzees-which are found from Sierra Leone to Congo-remind one of the Gibhons, rather than of either of the other man-like apes; and it seems not unlikely that, as is the case with the Gihhons, tbere may he several species spread over the geographical area of the genus.

The same excellent ohserver, from whom I have borrowed the preceding account of tbe habits of the adult Chimpanzee, published, fifteen years ago,* an account of the Gorilin, which has, in its most essential points, heen confirmed hy suhsequent ohservers, and to which so very littie has really heen added, that in justice to Dr. Savage I give it aimost in full.
" It should be horne in mind that my account is based upon the statements of the aborigines of that region (the Gaboon). In this connection, it may also be proper for me to remark, that baving heen a missionary resident for several years, studying, from hahitual intercourse, the African mind and character, I felt myself prepared to discriminate and decide upon the prohability of their statements. Besides, heing familiar with the history and habits of its interesting congener (Trog. niger, Geoff.), I was abie to separate tbeir accounts of the two animals, which, having the same locality and a similarity of habit,

[^34]
OF THE MAN-LIKE APES

Fig. 10.-The Gorilla (after Woim).
"The tribe from which our knowiedge of the animal is derived, and whose territory forms its habitat, is the Mpongwe, occupying both banks of the River Gaboon, from its mouth to some fifty or sixty miles upward. . . .
"If the word 'Pongo' be of African origin, it is probably a corruption of the word Mpongwe, the name of the tribe on the banks of the Gaboon, and hence applied to the region they Inhablt. Their local name for the Chimpanzee is Enché-eko, as near as it can be Anglicized, from which the common term 'Jocko' probahly comes. The Mpongwe appellation for its new congener Is Enge-ena, prolonging the sound of the first vowel, and silghtly sounding the second.
"The hahltat of the Engé-ena is the Interior of lower Gulnea, whilst that of the Enche-eko is nearer the seahoard.
" Its helght is ahout five feet; it is disproportionately hroad across the shoulders, thickly covered with coarse hlack hair, which is said to be slmilar In Its arrangement to that of the Enche-eko; with age it hecomes grey, which fact has given rise to the report that both animais are seen of different colours.
" Head.-The prominent features of the head are, the great width and elongation of the face, the depth of the molar region, the branches of the lower jaw heing very reep and extending far backward, and the comparative sinallness of the craniai portion; the eyes are very large, and said to be like those of the Enché-eko, a bright hazel ; nose broad and flat, slightiy elevated towards the root; the muzzle hroad, and prominent lips and chin, with scattered grey hairs; the under llp highly mobile, and capable of great elongation when the animal is enraged, then hanging over the chin; skin of the face and ears naked, and of a dark hrown, approaching to hlack.
" The most remarkahle feature of the head is a high ridge, or crest of hair, In the course of the sagittal suture, which meets posterlorly with a transverse ridge of the same, but less prominent, running round from the back of one ear to the other. The animal has the power of moving the scalp freely forward and back, and when enraged is said to contract it strongly over the brow, thus bringing down the hairy ridge and pointing the hair forward, so as to present an Indescribably ferocious aspect.
" Neck short, thick, and hairy; chest and shoulders very hroad, said to be fully double the size of the Encheekos; arms very long, reaching some way helow the knee -the fore-arm much the shortest; hands very large, the thumbs much larger than the fingers. . . .
"The galt is shuffing; tbe motion of tbe body, which is never uprigbt as in man, but bent forward, is somewhat rolling, or from side to side. The arms being ionger tban the Chimpanzee, it does not stoop as much in walking; like that animal, it makes progression by thrusting its arms forward, resting the hands on the ground, and tben giving tbe body a balf jumping half swinging motion hetween them. In this act it is said not to flex the fingers, as does the Chimpanzee, resting on lts knuckles, but to extend them, making a fulcrum of the hand. When it assumes the walking posture, to which lt is said to he much inclined, it balances lts huge hody hy fiexing its arms upward.
" They iive In hands, hut are not so numerous as the Chimpanzees: the females generally exceed the other sex in numher. My informants all agree in tbe assertion that hut one adult male ls seen in a band; that when the young males grow up, a contest takes place for mastery, and tbe strongest, hy killing and driving out the others, establlshes himself as the bead of the

Fig. 11.-Gorlla walking (after Wolif). community."

Dr. Savage repudiates the stories ahout the Gorillas carrying off women and vanquishing elephants, and then adds:
" Tbeir dwellings, if they may he so called, are similar to tbose of the Chimpanzee, conslsting slmply of a few sticks and leafy hranches, supported hy the crotches and llmhs of trees: they afford no shelter, and are occupled only at night.
"They are exceedingly ferocious, and always offenslve In tbeir bablts, never running from man, as does the Chimpanzee. Tbey are ohjects of terror to the natives, and are never encountered hy.them except on the defensive. The few that bave heen captured were killed by elephanthunters and native traders, as tbey came suddenly upon tbem while passing through the forests.
"It is sald that when the male ls first seen he gives a terrific yell, that resounds far and wide througb tbe
forest, something like kh-ah ! kh-ah I prolonged and shrill. His enormous jaws are widely opened at each expiration, his under iip hangs over the chin, and the hairy ridge and scalp are contracted upon the brow, presenting an aspect of indescribabie ferocity.
"The females and young, at the first cry, quickly disappear. He then approaches the enemy in great fury, pouring out his horrid cries in quick succession. The hunter awalts his approach with his gun extended: if his aim is not surc, he permits the animal to grasp the harrei, and as he carries it to his mouth (which is his hahit) he fires. Should the gun fail to go off, the barrel (that of the ordinary musket, which is thin) is crushed hetween his teeth, and the encounter soon proves fatal to the hunter.
" In the wild state, their habits are in general like those of the Troglodytes niger, bullding their nests loosely in trees, living on similar fruits, and changing their place of resort from force of circumstances."

Dr. Savage's ohservations were confirmed and suppiemented by those of Mr. Ford, who communicated an interesting paper on the Gorilla to the Philadelphian Academy of Sciences, in 1852. With respect to the geographical distribution of this greatest of all the man-like Apes, Mr. Ford remarks :
"This animal inhahits the range of mountains that traverse the interior of Guinea, from the Cameroon in the north, to Angoia in the south, and about 100 miles inland, and called by the geographers Crystal Mountains. The iimit to which this animal extends, either north or south, I am unable to define. But that limit is doubtiess some distance north of this river [Gaboos.]. I was abie to certify myself of this fact in a late excursion to the headwaters of the Mooney (Danger) River, which comes into the sea some sixty miles from this place. I was informed (credibly, I think) that they were numerous among the mountains in which that river rises, and far north of that.
"In the south, this spccies extends to the Congo River, as I am told by native traders who have visited the coast hetween the Gaboon and that river. Beyond that, I am not informed. This animal is only found at a distance from the coast in most cases, and, according to my best information, approaches it nowhere so nearly as on the south side of this river, where they have been found within ten
miles of the sea. This, however, is only of iate occurrence. I am informed hy some of the oidest Mpongwe men that formeriy he was only found on the sources of the river, hut that at present he may he found within haif-a-day's waik of its mouth. Formeriy he inhabited the mountainous ridge where Bushmen aione inhabited, but now he hoidly approaches the Mpongwe plantations. This is doubtiess the reason of the scarcity of information in years past, as the opportunities for receiving a knuwiedge of the animai have not heen wanting; traders having for one hundred years frequented this river, and specimens, such as have heen brought here within a year, could not have heen exhibited without having attracted the attention of the most stupid."

One specimen Mr. Ford examined weighed 170 ihs., without the thoracic, or pelvic, viscera, and measured four feet four inches round the chest. This writer describes so minutely and graphicaliy the onslaught of the Gorillathough he does not for a moment pretend to have witnessed the scene-that I am tempted to give this part of his paper in fuli, for comparison with other narratives:
" He aiways rises to his feet when making an attack, though he approaches his antagonist in a stooping posture.
" Though he never lies in walt, yet, when he hears, sees, or scents a man, he immediateiy utters his characteristic cry, prepares for an attack, and aiways acts on the offensive. The cry he utters resemhies a grunt more than a growi, and is similar to the cry of the Chimpanzee, when irritated, hut vastiy iouder. It is said to he audibie at a great distance. His preparation consists in attending the females and young ones, hy whom he is usually accompanied, to a littie distance. He, however, soon returns, with his crest erect and projecting forward, his nostrils dilated, and his under-lip thrown down; at the same time uttering his characteristic yell, designed, it would seem, to terrify his antagonist. Instantiy, unless he is disahied by a well-directed shot, he makes an onset, and, striking his antagonist with the paim of his hands, or seizing him with a grasp from which there is no escape, he dashes him upon the ground, and facerates him with his tusks.
" He is said to seize a musket, and instantly crush the barrel between his teeth. . . . This animal's savage nature is very well shewn hy the impiacahie desperation of a young one that was brought here. It was taken very young, and
kept four months, and many means were used to tame it ; but it was incorrigible, so that it bit me an hour before it died."

Mr. Ford discredits the house-building and elephantdriving stories, and says that no well-informed natives believe them. They are tales toid to children.

I might quote other testimony to a similar effect, but, as it appears to me, iess carefuily weighed and sifted, from the ietters of MM. Franquet and Gautler Laboullay, rppended to the memoir of M. I. G. St. Hilaire, which I have already cited.

Bearing in mind what is known regarding the Orang and the Gibbon, the statements of Dr. Savege and Mr. Ford do not appear to me to be justly open to criticism on a priori grounds. The Gibbons, as we have seen, readily assume the erect posture, but the Gorilla is far better fitted by its organization for that attltude than are the Gibbons: If the iaryngeal pouches of the Gibbons, as is very likely, are important in giving voiume to a voice which can be heard for half a ieague, the Gorilla, which has similar sacs, m. -e largely developed, and whose bulk is fivefoid that of a Gibıon, may well be audible for twice that distance. If the Orang fights with its hands, the Gibbons and Chimpanzees with their teeth, the Goriiia may, probabiy enough, do either or both ; nor is there anything to be said ugainst either Chimpanzee or Gorilla building a nest, when it is proved that the OrangUtan habitually performs that feat.

With all this evidence, now ten to fifteen years oid, before the world, it is not a little surprising that the assertions of a recent traveller, who, so far as the Gorlla is concerned, really does very iittie more than repeat, on his own authority, the statements of Savage and of Ford, shouid have met with so much and such bitter opposition. If subtraction be made of what was known before, the sum and substance of what M. Du Chaillu has affirmed as a matter of his own observation respecting the Gorilla, is, that, in advancing to the attack, the great brute beats his chest with his fists. I confess I see nothing very improbable, or very much worth disputing about, in this statement.

With respect to the other man-like Apes of Africa, M. Du Chaillu tells us absoiuteiy nothing, of his own knowicdge, regarding the common Chimpanzee; but he informs us of a bald-headed spccies or variety, the nschiego mbouve, which builds itself a shelter, and of another rare kind with a
comparatively small face, large facial angie, and peculiar note, resembling " Kooioo."

As the Orang sheiters itself with a rough eoveriet of leaves, and the common Chimpanzee, aecording to that eminently trustworthy observer Dr. Savage, makes a sound like "Whoo-whoo,"-the grounds of the summary repudiation with which M. Du Challu's statements on these matters have been met is not obvious.

If I have abstained from quoting M. Du Challiu's work, then, it is not because I diseern any inherent improbability in his assertions respecting the man-ike Apes; nor from any wish to throw suspicion on his veracity ; but because, in my opinion, so iong as his narrative remains in its present state of unexpiained and apparently inexpilicabie confusion, It has no claim to original authority respeeting any subject whatsoever.

It may be truth, but it is not evidence.

ON THE RELATIONS OF MAN TO THE LOWER ANIMALS

Multis videri poterit, majorem ease differentiam Simice et Hominis, quam diel et noctis; verum tamen hl, comparatione instituta inter summos Europse Heroes et Hottentottus ad Caput bone spel dogentes, dimcillime sibi persuadebunt. has cosdem habere natales; vel si virginem nobllem aulicam, maxime comtam et humanisaimam, conferre vellent cum homine sylvestri et sibi relicto, vix augurari possent, hunc et illam ejusdem esse speciel.-Linnei Amoentlates Acad. "Anthropomorpha."

This question of questions for mankind-the problem which underlies all others, and Is more deeply Interesting than any other-ls the ascertainment of the place which Man occuples in nature and of hls relations to the universe of things. Whence our race has come; what are the limits of our power over nature, and of nature's power over us; to what goal we are tending; are the problems which present themselves anew and with undiminished interest to every man born into the world. ist of us, shrinking from the difficultles and dangers whil seset the seeker after orlginal answers to these riddles, a:e contented to ignore them altogether, or to smother the Investigating spirit under the featherbed of respected and respectable traditlon. But, in every age, one or iwo restless spirits, blessed with that constructlve genlus, which can only build on a secure foundation, or cursed with the mere spirlt of scepticism, are unable io follow in the well-worn and comfortable track of their forefathers and contemporarles, and unmindful c^{\bullet} thorms and stumbling-blocks, strike out into paths of thei. own. The sceptics end in the infldellty which asserts the problem to be Insoluble, or in the atheism which denles the existence of any orderly progress and governance of things: the men of genlus propound solutions which grow into systems of Theology or of Philosophy, or velled In muslcal language whlch suggests more than it asserts, take the shape of the Poetry of an epoch.

Each such answer to the great question, Invariably asserted by the followcrs of its propounder, if not by himself, to be complete and final, remains in high autbority and enteem, it may be for one century, or it may be for twenty : but, as invariably, Time proves cach reply to have been a mere approximation to the truth-tolerable chicfly on account of tbe ignorance of thosc by whom it was accepted, and wholly intolerabie when tested by the larger knowicdge of their successors.

In a well-worn metaphor, a parallel is drawn between the ilfe of man and the metamorphosis of the caterpiliar into the butterfly; but the comparison mav be more just as well as more novel, il for its former term we take tbe mental progress of the race. History shows tbat tbe human mind, fed by constant accessions of knowledge, periodicaily grows too large for its theorctical coverings, and burats tbem asunder to appear in new habiliments, as the feeding and growing grub, at Intervals, easts its too narrow skin and assumes another, itself but temporary. Truly the imago state of Man seems to be terribly distant, but cvery moult is a step gained, and of such tbere bave been many.

Since tbe revival of learning, whereby the Western races of Europe were enabled to enter upon that progress towards true knowledge, which was commenced by the phllosophers of Greece, but was almost arrested in subsequent long ages of inteilectual stagnation, or, at most, gyration, the human larva bas been feeding vigorously, and moulting in proportion. A skin of some dimension was cast in the 16 th century, and another towards tbe end of the 18tb, while, within the last fifty years, the extraordinary growth of every department of physical science has spread among us mental food of so nutritious and stimulating a eharacter that a new eedysis seems imminent. But this is a process not unusually accompanied by many tbroes and some sickness and debility, or, It may be, by graver disturbances; so that every good eltizen must feel hound to facilitate tbe process, and even if he bave nothing but a scalpel to work witbal, to ease the cracking integument to tbe best of his ability.

In this duty lies my excuse for tbe publication of these essays. For it will be admitted that some knowiedge of man's position in the animate vorid is an indispensable preliminary to tbe proper understanding of his relations to the walverse-and this again resolvis itself, in the long run, into an inquiry into the nature and tbe closeness
of the ties which connect him with those singuiar creatures whose history "has heen sketched in the preceding pages.

The importance of such an inquiry is indeed intuitively manifest. Brought face to face with these hiurred coples of himself, the least thoughtfui of men is conscious of a certain shock, due perhaps not so much to disgust at the aspect of what looks liko an Insulting caricature, $a=$ to the awakening of a sudden and profound mistrust of timehonoured theories and strongly-rooted prejudices regarding his own position in nature, and his relations to the underworld of lifc ; while that which remains a dim suspicion for the unthinking, hecomes a vast argument, fraught with the deepest consequences, for all who are acquainted with the recent progress of the anaiomical and physiological sciences.

I now propose hriefly to unfold that argument, and to set forth, in a form intelligible to those who possess no special acquaintance with anatomical science, the chief facts upon which all conclusions respecting the nature and the extent of the honds which connect man with the houte world must he based: I shall then indicate the one amediate conclusion which, in my judgment, is justified by those facts, and I shall finaliy discuss the hearing of that concluslon upon the hypothcses which have heen entertained respecting th. Origin of Man.

The facts to which I would first direct the reader's attention, though ignored by many of the professed instructors of the publlc mind, are easy of demonstration and are universally agreed to hy men of science; whlle their signiflcance is so great, that whoso has duly pondered over them will, I think, find little to startle him in the other revelatlons of Biology. I refer to those facts which have heen made known by the study of Development.

It is a truth of very wide, if not of universal, appllcation, that every llving creature commences its existence under a form different from, and simpler than, that which it eventually attains.

The oak is a more complex thing than the iittie rudimentary plant contained in the acorn; the caterpillar is more complex than the egg; the hutterfly than the caterpillar ; and each of these heings, in passing from its rudi-

[^35]mentary to its perfect condition, runs through a series of changes, the sum of which is calied Its Development. In the higher animals these changes are extremely complleated ; hut, wlthin the last half-century, the labours of such men as Von Bacr, Rathke, Relchert, Blachof, and Remak have almost completciy unravelled them, so that the successive. stages of development which are exhibited hy a Dog for example, are now as well known to the emhryologlst a: -ir the steps of the metamnrphosls of the silkworm moth to the school-hoy. It will be uscful to conslder with attention the

Fig. 12.-A. Egg of the Dog, with the vitelline membrane burst. 20 es to elve exit to the yelk, the germinal vesicle (ω), fir. ${ }^{\text {I }}$ its lacluded spot (b).
B. C. D. E. F. Succeanive changes of th veif Indicine in the text. After Bischoff.
nature and the order of the stages of canific \therefore urcluperant, as an exampie of the process in the higher animals ge iereily.

The Dog, like all animals, save the very lowe (ir 1 further inquiries may not improhably remove the s, parent exceptlon), commences its existence as an egg: as a hody which is, in every sense, as much an egg as that of a hen, but is devold of that accumulation of nutritive matter which confers upon the hird's egg its exceptional size and domestic utility ; and wants the shell, which wan not only he useless to an animal incubated within the L viny of its parent, but would cut it off from access to the source of that nutiment which the young creature requires, but which the mlnute egg of the mammal does not contain withln itself.

Tbe Dog's egg is, in fact, a iittle spberoidal bag (Fig. 12), formed of a delicate transparent membrane calied the vitelline membrane, and about riso to idoth of an inch in diameter. It contains a mass of viscid nutritive matter -tbe 'yelk'-within whicb is inclosed a second mucb more delicate spheroidal bag, called the 'germinal vesicle' (a). In this, iastiy, iies a more soiid rounded body, termed the 'germinal spot ' (b).

The egg, or ' Ovum,' is originally formed within a gland, from wbich, in due season, it becomes detacbed, and passes into the living cbamber fitted for its protection and maintenance during the protracted process of gestation. Here, wben subjected to the required conditions, this minute and apparently insignificant particle of living matter becomes animated by a new and mysterious activity. The germinal vesicle and spot cease to be discernibie (tbeir precise fate being one of the yet unsoived probiems of embryoiogy), but the yelk becomes circumferentially indented, as if an invisibie knife bad been drawn round it, and tbus appears divided into two bemispberes (Fig. 12, C).
By the repetition of this process in various pianes, these bemispheres become subdivided, so that four segments are produced (D) ; and tbese, in like manner, divide and subdivide again, until tbe whoie yelk is converted into a mass of granules, eacb of whicb consists of a minute spberoid of yelk-substance, inclosing a central particle, the so-called ' nucleus' (F). Nature, by this process, bas attained much tbe same result as tbat at whicb a human artificer arrives by his operations in a brickfeld. Sbe takes the rough piastic material of the yelk and breaks it up into well-sbaped, toierabiy even-sized masses, handy for building up into any part of tbe living edifice.
Next, the mass of organic bricks, or 'cells' as they are tecbnically calied, tbus formed, acquires an orderiy arrangement, becoming converted into a bollow spberoid with doubie walls. Tben, upon one side of this spberoid, appears a tbickening, and, by and bye, in tbe centre of tbe area of thickening, a straight shallow groove (Fig. 13, A) marks the central iine of the edifice which is to be ralsed, or, in other words, indicates the position of the middie iine of the body of the future dog. Tbe substance bounding tbe groove on eacb side next rises up into a fold, tbe rudiment of the side wall of that iong cavity, which will eventually iodge the spinal marrow and the brain; and in the floor
of this chamber appears a solid cellular cord, the so-calied ' notochord.' One end of the inclosed cavity dilates to form the head (Fig. 13, B), the other remains narrow, and eventually becomes the tail; the side walis of the body are fashioned out of the downward continuation of the walis of the groove; and from them, by and bye, grow out ilttle buds which, by degrces, assume the shape of limbs. Watching the fashioning process stage by stage, one is forclbly reminded of the modelier in clay. Every part, every organ, is at first, as it were, pinched up rudeiy, and

Fx. 13.-A. Earliest rudiment of the Dog. B. Rudiment further advanced, showing the foundations of the head, tail, and vertebral column. C. The very young puppy, with attached ends of the Idlesec and allantois, and invested in the amnion.
sketched out in the rough ; then shaped more accurately ; and only, at fast, receives the touches which stamp its finai character.
: Thus, at length, the young puppy assumes such a form as is shown in Fig. 13, C. In this condition it has a disproportionately large head, as dissimilar to that of a dog as the bud-like iimbs are unlike his iegs.

The remalns of the yeik, which have not yet been applied to the nutrition and growth of the young animal, are contained in a, sac attached to the rudimentary intestine, and termed the yelk-sac, or 'umbillcat vesicle.' Two membranous bags, intended to subserve respectively the
protection and nutrition of the young creature, have been developed from the skin and from the under and hinder surface of the body; the former, tbe so-called ' amnion,' ls a sac filled witb fluid, which invests the wbole body of tbe embryo, and plays the part of a sort of waterbed for 1t; the otber, termed tbe 'allantois,' grows out, loaded with blood-vessels, from the ventral region, and eventually applying itself to the walls of tbe cavity, in wblch the developing organlsm ls contained, enables tbese vessels to become the channel by wblcb the stream of nutriment, required to supply the wants of tbe offspring, is furnished to lt by the parent.

The structure wblch ls developed by tbe interlacement of the vessels of the offspring witb those of the parent, and by means of whicb the former is enabled to recelve nourishment and to get rid of effete matters, is termed tbe ' Placenta.'

It would be tedious, and it is unnecessary for my present purpose, to trace the process of development further; suffice it to say, that, by a long and gradual series of cbanges, the rudiment bere deplcted and described becomes a puppy, is born, and then, by still slower and less perceptible steps, passes into the adult Dog.

There is not mucb apparent resemblance between a barndoor Fowl and the Dog wbo protects the farm-yard. Nevertbeless the student of development finds, not only tbat tbe chlck commences lts existence as an egg, primarily identical, in all essential respects, with tbat of the Dog, but that the yelk of this egg undergoes division-tbat the primitive groove arises, and tbat the contiguous parts of tbe germ are fashioned, by precisely similar methods, into a young chlck, which, at one stage of lits existence, ls so like the nascent Dog, tbat ordinary inspection would hardly distinguisb the two.

The blstory of the development of any otber vertebrate animal, Lizard, Snake, Frog, or Flsh, tells the same story. There ls always, to begin with, an egg baving the same essentlal structure as that of the Dog:-the yelk of tbat egg always undergoes division, or 'segmentation' as lt ls often called: tbe ultimate products of tbat segmentation constitute tbe bullding materials for the body of the young animal; and thls ls built up round a primitive groove, in the floor of whicb a notocbord is developed.

Furthermore, there ls a period in which the young of all these animals resemble one another, not merely in outward form, but in all essentials of structure, so closely, that the differences between them are inconslderabie, while, in their subsequent course, they diverge more and more widely from one another. And it is a general law, that, tbe more closeiy any animals resemble one another in adult structure, the ionger and the more intimately do their embryos resembie one another: so that, for example, the embryos of a Snake and of a Lizard remain iike one another longer than do those of a Snake and of a Bird; and the embryo of a Dog and of a Cat remaln like one another for a far longer period than do those of a Dog and a Bird; or of a Dog and an Opossum ; or even tban tbose of a Dog and a Monkey.

Thus the study of development affords a clear test of closeness of structural affinity, and one turns with impatience to inquire what results are yielded by the study of tbe development of Man. Is he something apart? Does he originate \ln a totally different way from Dog, Bird, Frog, and Fish, thus justlifying those who assert him to have no place in nature and no real affinity with tbe !ower world of animal life? Or does be originate in a similar germ, pass through the same slow and gradually progressive modifications,-depend on the same contrivances for protection and nutrition, and finally enter tbe world by the help of the same mecbanism? The reply is not doubtful for a moment, and has not been doubtful any time these thirty years. Wlthout question, tbe mode of origin and the early stages of the deveiopment of man are Identlcal with those of the animals immediately below him in the scale :-wltbo r.. a doubt, in these respects, he is far nearer the Apes, than tbe Apes are to the Dog.

The Human ovum is about $\frac{1}{188}$ of an inch In diameter, and might be described in the same terms as that of the Dog, so that I need only refer to the figure illustrative (14 A) of its structure. It leaves the organ in which lt is formed in a similar fashlon and enters tbe organic chamber prepared for its reception in the same way, the conditions of lts development being in all respects tbe same. It has not yet been possibie (and only by some rare chance can it ever be possibie) to study tbe buman ovum in so eariy a developmental stage as that of yelk divislon, but tbere is every reason to conciude that the

252

changes it undergoes are identlcal with those exhibited hy the ova of other vertehrated animals; for the formatlve materials of which the rudimentary human body is composed, in the eariiest condltions in which it has heen obsericd, are the same as those of other animals. Some of these earifest stages are figured beiow, and, as will he ssen, they are strictly comparabie to the very eariy states of the Dog; the marvellous correspondence between the two which is kept up, even for some time, as deveiopment advances, hecoming apparent by the simple comparison of the figures with those on page 249.

Fia. 14,-A. Human ovum (after Kbiliker).
a. germinal vedcle. b. germinal apot.
B. A very early condition of Man, with yelk-sac, allantols, and amnion (original).
C. A more advanced atage (after Koliker), compare fig. 13, C.

Indeed, it is very long hefore the body of the young human heing can be readily discriminated from that of the young puppy; but, at a toierably early perfod, the two hecome distinguishabie hy the different form of their adjuncts, the yelk-sac and the allantols. The former, In the Dog, hecomes long and spindle-shaped, while in Man it remains spherical ; the latter, in the Dog, attains an extremely large size, and the vascular processes which are developed from it and eventually give rise to the formation of the piacenta (taking root, as it were, in the parental organism, so as to draw nourishment therefrom, as the root of a tree extracts it from the soil) are arranged in an encircling zone, while in Man, the allantols remains comparatively small, and its vascular rootiets are eventually
restricted to one disk-like spot. Hence, while the piacenta of the Dog is like a girdle, that of Man has the cake-like form, indicated by the name of the organ.

But, exactly in those respects in which the developing Man differs from the Dog, he resembies the ape, which, like man, has a spberoidal yelk-sac and a discoidalsometimes partially iobed-piacenta.

So that it is only quite in the iater stages of deveiopment that the young human being presents marked differences from the young ape, while the iatter departs as much from the dog in its development, as the man does.

Startling as the last assertion may appear to be, it is demonstrabiy true, and it alone appears to me sufficient to place beyond all doubt the structural unity of man with the rest of the animal worid, and more particulariy and closely with the apes.

Thus, identical in the physical processes by which he originates-identical in the eariy stages of his formation -identical in the mode of his nutrition before and after birth, with the animals which lie immediately below him in the scale-Man, if his adult and perfect structure be compared with theirs, exhibits, as might be expected, a marvellous likeness of organization. He resembies them as they resembie one anotber-be differs from them as they differ from one anotber.-And, though these differences and resembiances cannot be weighed and measured, their value may be readily estimated ; the scale or standard of judgment, touching that value, being afforded and expressed by the system of classification of animals now current among zoologists.

A careful study of the resembiances and differences presented by animals has, in fact, ied naturalists to arrange them into groups, or assembiages, all the members of each group presenting a certain amount of definabie resembiance, and the number of points of similarity being smaller as the group is iarger and vice versa. Thus, all creatures whicb agree only in presenting the few distinctive marks of animality form the 'Kingdom' Animalia. The numerous animals which agree only in possessing the special characters of Vertebrates form one 'Sub-kingdom' of this Kingdom. Then the Sub-kingdom Vertebrata is subdivided into tbe five ' Classes,' Fishes, Amphibians, Reptiles,

Birds, and Mammals, and these into smaller groups called ' Orders '; these into 'Families' and 'Genera'; while the iast are finally broken up into the smallest assembiages, which are distinguished by the possession of constant, notsexual, characters. These ultimate groups are Species.

Every year tends to bring about a greater uniformity of opinion throughout the zooiogical worid as to the iimits and characters of these groups, great and small. At present, for exampie, no one has the ieast doubt regarding the characters of the classes Mammalia, Aves, or Reptilia ; nor does the question arise whether any thoroughly wellknown animal should be placed in one class or the other. Again, there is a very general agreement respecting the characters and iimits of the orders of Mammals, and as to the animals which are structurally necessitated to take a piace in one or another order.

No one doubts, for exampie, that the Sioth and the Ant-eater, the Kangaroo and the Opossum, the 'Tiger and the Badger, the Tapir and the Rhinoceros, are respectiveiy members of the same orders. These successive pairs of animals may, and some do, differ from one another immenseiy, in sucb matters as the proportions and structure of their limbs; the number of their dorsal and iumbar vertebra; the adaptation of their frames to climbing, leaping, or running; the number and form of their teetb; and the characters of their skulls and of the contained brain. But, with all these differences, they are so closely connected in all the more important and fundamental characters of their organization, and so distinctiy separated by these same characters from other animals, that zooiogists find it necessary to group tbem together as members of one order. And if any new animal were discovered, and were found to present no greater difference from the Kangaroo and the Opossum, for exampie, than these animals do from one another, the zooiogist would not only be logically compelled to rank it in the same order witb tbese, but he would not think of doing otberwise.

Bearing this obvious course of zooiogical reasoning in mind, let us endeavour for a moment to disconnect our tbinking seives from the mask of humanity; let us tmagine ourseives scientific Saturnians, if you will, fairly acquainted witb such animals as now inhabit tbe Eartb, and empioyed in discussing the reiations they bear to a new and singular ' erect and featheriess biped,' which some
enterprising traveller, overcoming the diffeulties of space and gravitation, has brought from that distant pianet for our inspection, well preserved, may be, in a cask of rum. We should all, at once, agree upon piacing him among the mammalian vertebrates; and his iower jaw, his molars, and his brain, would ieave no room for doubting the systematic position of the new genus among those mammals, whose young are nourished during gestation by means of a placenta, or what are called the ' piacental mammals.'

Further, the most superficial study would at once convince us that, among the orders of piacental mammals, neither the Whales nor the hoofed creatures, nor the Sioths and Ant-eaters, nor the carnivorous Cats, Dogs, and Bears, still iess the Rodent Rats and Rabblts, or the Insectivorous Moies and Hedgehogs, or the Bats, could claim our ' Homo' as one of themseives.

There would remain then, hut one order for comparison, that of the Apes (using that word in its broadest sense), and the question for discussion would narrow itseif to this-is Man so different from any of these Apes that he must form an order by himseif? Or does he differ iess from them than they differ from one another, and hence must take his piace in the same order with them?

Being happily free from ali real, or imaginary, personal interest in the results of the inquiry thus set afoot, we should proceed to weigh the arguments on one side and on the other, with as much judicial caimness as if the question reiated to a new Opossum. We should endeavour to ascertain, without seeking either to magnify or diminish them, all the characters hy which our new Mammal differed from the Apes; and if we found that these were of iess structural value, than those which distinguish certain members of the Ape order from others universally admitted to he of the same order, we should undoubtediy piace the newiy discovered tellurian genus with them.

I now proceed to detall the facts which seem to me to leave us no choice but to adopt the last mentioned course.

It is quite certain that the Ape which most neariy approaches man, in the totality of its organization, is either the Chimpanzee or the Gorilla; and as it makes no practical difference, for the purposes of my present argument, which is seiected for comparison, on the one
hand, with Man, and on the other hand, with the rest of the Primates,* I shall select the latter (so far as its organizatlon is known)-as a hrute now so celebrated in prose and verse, that all must have heard of htm, and have formed some conception of his appearance. I shall take up as many of the most important points of difference between man and this remarkable creature, as the space at my dlsposal will allow me to discuss, and the necesslthes of the argument demand; and I shall inquire into the value and magnltude of these differences, when placed side hy slde with those which separate the Gorilla from other antmals of the same order.

In the general proportions of the body and limbs there Is a remarkable difference between the Gorilla and Man, which at once strikes the eye. The Gorilla's brain-case is smaller, lts trunk larger, lits lower limhs shorter, lts upper limbs longer in proportion than those of Man.

I find that the vertehral column of a full-grown Gorilla, in the Museum of the Royal College of Surgeons, measures 27 inches along lts anterior curvature, from the upper edge of the atlas, or first vertehra of the neck, to the lower extremlty of the sacrum; that the arm, without the hand, is $31 \frac{1}{2}$ inches fong; that the leg, wlthont the foot, ls $26 \frac{1}{2}$ inches long; that the hand is 9 inches long; the loot $11 \nmid$ lnches iong.

In other words, taking the length of the spinal column as 100 , the arm equals 115 , the leg 96 , the hand 36 , and the foot 41.

In the skeleton of a male Bosjesman, in the same collection, the proportions, hy the same measurement, to the spinal column, taken as 100, are-the arm 78, the leg 110, the hand 26, and the foot 32 . In a woman of the same race the arm ls 83 , and the lez 120, the hand and foot remalning the same. In a European skeleton 1 find the arm to be 80, the leg 117, the hand 26, the foot 35.

Thus the ieg is not so different as lt looks at fir': ight, in its proportions to the splne in the Gorilla and the Man-heing very slightly shorter than the spine inis the former, and between io and $\frac{1}{6}$ longer than the spine in the fatter. The foot is longer and the hand much longer in the Gorilla; but the great difference is caused by the

[^36]asme, which are very much longer than the splne in the Gorllia, very much shorter than the spine In the Man.

The question now arises how are the other Apcs related to the Gorilla in these respects-taking the length of the spine, measured in the same way, at 100. In an adult Chimpanzee, the arm is only 96 , the leg 90 , the hand 43 , the foot $39-50$ that the hand and the leg depart more from the human proportion and the arm less, while the foot is about the same as in the Gorilla.

In the Orang, the arms are very much longer than in the Gorilla (122), while the lege are shorter (88); the foot 15 longer than the hand (52 and 48), and both are much longer in proportion to the spine.

In the other man-like Apes again, the Gibhons, these proportions are still further altered; the length of the arms heing to that of the spinal column as 19 to 11 ; while the legs are also a third longer than the spinal column, so as to be longer than in Man, instead of shorter. The hand is halt as long as the spinal column, and the foot, shorter than the hand, is about iI ${ }^{8}$ ths of the length of the spinal column.
Thus Hylobates is as much longer in the arms than the Gorilla, as the Gorilla ls longer in the arms than Man; while, on the other hand, it is as much longer in the legs than the Man, as the Man is longer in the legs than the Gorilla, so that it contains within litself the extremest deviations from the average length of hoth pairs of limhs (see the lllustration on page 196).

The Mandrill presents a mlddle condition, the arms and legs belng nearly equal in length, and hoth being shorter than the spinal column; while hand and foot have nearly the same proportions to one another and to the spine, as in Man.

In the Spider monkey (Ateles) the leg is longer than the spine, and the arm than the leg; and, finally, in that remarkable Lemurine form, the Indri (Lichanotus), the leg is about as long as the spinal column, while the arm is not more than fol of length; the haull having rather leas and the foot rather more, than une-third the length of the spinal column.
 suffice to show that, In whatever proportion of lts limbs the Gorilla differs from Man, the other Apes depart still more widely from the Gorilla, and that, consequently, 60-1

258

such differences of proportion can have no ordinal value.

We may next consider the differences presented by the trunk, consiating of the vertebral column, or backbone, and the ribs and pelvis, or bony hip-basin, which aro connected with it, in Man and in the Gorilla respectively.

In Man, in consequence partly of the disposition of the urticular surfaces of the vertebre, and largely of the ciastic tension of some of the fibrous bands, or ligaments, whicb connect these vertebre together, the spinal column, as a whole, has an eiegant S-like curvature, belng convex forwards in the neck, concave in tbe back, convex in the loins, or iumbar region, and concave again in the sacral region; an arrangement which gives much elasticity to the whole backbone, and diminishes the jar communicated to the spine, and through it to the bead, by locomotion in tbe erect position.

Furthermore, under ordinary circumstances, Man has seven vertebree in bis neck, wbicb are called cervical; tweive succeed tbese, bearing ribs and forming tbe upper part of the back, whence tbey are termed dorsal; five lie in the loins, bearing no distinct, or free, ribs, and are called lumbar; five, united together into a great bone, excavated in front, solidiy wedged in between the hip bones, to form the back of the pelvis, and known by tbe name of tbe sacrum, succeed tbese; and finally, three or four little more or less moveable bones, so small as to be insignificant, constitute tbe coccyx or rudimentary tall.

In the Gorilla, the vertebral column is similarly divided into cervical, dorsal, lumbar, sacral and coccygeal vertebree, and tbe total number of cervical and dorsal vertebre, taken together, is the same as in Man; but tbe deveiopment of a pair of ribs to the first Iumbar vertebra, whicb is an exceptional occurrence in Man, is the rule in the Gorilla; and hence, as lumbar are distinguisbed from dorsal vertebre only by tbe presence or absence of free ribs, the seventeen "dorso-lumbar" vertebre of the Gorilla are divided into thirteen dorsal and four iumbar, while in Man tbey are twelve dorsal and five lumbar.

Not only, however, does Man occasionally possess fourteen paira, while an Orang-Utan akeieton in the Museum

Gition

Fic. 15.-Front ant slde vews of the bony pelvis of Man, the Gorilla and Gibbon: reduced from drawings pelvis of Man, the Gorilla same absolute length, by Mr. Waterhouse Hawlins.
*"More than once," says Peter Camper, "have I met with more than six lumbar vertebre in man. ... Once I found thirteen
of the Royal College of Surgeons has iwelve dorsal and inve lumbar vertebres, is in Man. Cuvier notex the same number in a Hylobales. On the other hand, amone the lower Apes, many possess twelve dorsal and sis or seven iumbar vertebre; the Douroucoull has fourteen dorsal and eight Jumbar, and a Lemur (Stenops lardigradus) has fifteen dorsal and nine lumbar vertebris.

The vertebral column of the Gorlla, as a whole, difiers from that of Man in the less marked character of lis curves, especially in the sllghter convexity of the lumbar region. Nevertheless, the curves are present, and are quite obvious in young akeletons of the Gorilla and Chlmpanzee which have been prepared without removal of the digaments. In young Orangs similarly preserved, on the other hand, the spinal column is either straight, or even concave forwards, throughout the Jumbar region.

Whether we take these characters then, or such minor ones as those which are derivable from the proportional iength of the spines of the cervical vertebre, and the like, there is no doubt whatsoever as to the marked difference bet ween Man and the Gortlla; but there is as itttle, that equally marked differences, of the very same order, obtaln between the Gorilia and the iower apes.

The Pelvis, or bony girdle of the hips, of Man is a strikingly human part of his organization; the expanded haunch boncs affording support for bis viscera during his habltually erect posture, and giving space for the attachment of the great muscles which enabie him to assume and to preserve that attitude. In these respects the peivis of the Gorilla dlfers very considerabiy from his (Fig. 15). But go no lower than the Gibbon, and see how vastly more he differs from tbe Gorilla than the iatter does from Man, even in this structure. Look at the flat, narrow haunch bones -the iong and narrow passage-the coarse, outwardly curved, ischiatic prominences on which the Gibbon habitually rests, and which are coated by the so-called "callosities," dense patches of skin, wholly absent in the Gorilla, in the Chimpanzee, and In the Orang, as in Man I
ribs and four lumbar vertebree." Falloplus noted thirteen pair of ribs and only four lumbar vertebre; and Eustachius once found eleven dorsal vertebre and six lumbar vertebre.-Gzuores de Plerre Camper, T. 1, p. 42. As Tyson states, his 'Pygmie' had thirteen palr of ribs and five lumbar vertebre. The question of the curves of the spinal column in the Apes requires further invertigation.

In the lower Monkeys and in the Lemurs the difference becomen more striking still, the pelvis acquiring an altogether quadrupedal character.
But now let us turn to a nobler and more charact ardath, orgap-that by which the human frame seems to b minded ts, so strongly distinguished from all oth 1 mean the skull. The differences between Go.it altull and a Man's are truly immense (Fig. 1ii). In the former, the face, formed largely by the massive jaw-bones, predominates over the brain case, or cranlum proper: in the fatter, the proportions of the two are reversed. In the Man, the occipital foramen, through which passes the great nervous cord connecting the brain with the nerves of the body, is piaced just beilud tire centre of the base of the skull, which thus becomes evenly halanced in the erect posture ; in the Gorllla, It iles in the poseterior third of that base.. In the Man, the surface of the skull is comparativoly smooth, and the supraciliary ridges or brow prominences usually project but Iltule-while, in the Gorlla, vast crests are developed upon the skull, and the brow ridges overhang the cavernous orbits, like great penthouses.

Sections of the skulls, however, show that some of the apparent defects of the Gorilla's cranium arise, in fact, not so much from deffiency of brain case as from excessive development of the parts of the face. The cranial cavity is not ill-shaped, and the forehead is not truly flattened or very retreating, its roally well-formed curve being stmply disguised by the mass of bone which is built up against it (Fig. 16).
But the rools of the orbits rise more obliquely into the cranial cavity, thus diminishing the space for the lower part of the anterior lobes of the brain, and the absolute capacity of the cranium is far less than that of Man. So far as I am aware, no human cranlum belonging to an adult man has yot been ohserved with a ioss cubical capacity than 62 cubic inches, the smallest cranium ohserved in any race of men by Morton, measuring 63 cuhic inches ; while, on the other hand, the most capacious Gorilla skull yot measured has a content of not more than $34 \frac{1}{\frac{1}{2}}$ cubic inches. Let us assume. for simplicity's sake, that the lowest Man's skull has iwice the capacity 0^{-6} hat of the highest Gorilla.*

[^37]No doubt, this is a very striking difference, but it loses much of lts apparent systematic value, when viewed by the light of certain other equally indubltable facts respecting cranial capacities.

The first of these ls, that the difference in the volume of the cranlal cavity of different races of mankind is far greater, absolutely, than that between the lowest Man and the highest Ape, while, relatlvely, it ls ahout the same. For the largest human skull measured by Morton contained 114 cuble inches, that is to say, had very nearly double the capacity of the smallest ; while its absolute preponderance, of 52 cuble inches-is far greater than that by which tbe lowest adult male human cranium surpasses the largest of the Gorillas $\left(62-34 \frac{1}{2}=27 \frac{1}{2}\right)$. Secondly, the adult cranla of Gorillas which have as yet been measured differ among themselves by nearly one-third, the maximum capacity being 34.5 cublc inches, the minimum 24 cuble Inches ; and, thirdly, after making all due allowance for difference of size, the cranial capacities of some of the lower Apes fall nearly as much, relatlvely, below those of the hlgber Apes as the latter fall below Man.

Thus, even in the important matter of cranial capacity, cubic inches. The minimum capacity which I have assumed above, bowever, is based upon the valuable tabies publisbed by Professor R. Wagner in his "Vorstudien zu einer wisson-chaftlichen Morphologie und Pbysiologie des menschlichen Get inss." As the result of the careful weighing of more than 900 nuusian brains, Professor Wagner states that one-haif weighed between 1200 and 1400 grammes, and that about two-ninths, consisting for the most part of male brains, exceed 1400 grammes. The lightest brain of an adult male, with sound mental faculties, recorded by Wagner, weighed 1020 grammes. As a gramme equals 15.4 grains, and a cubic inch of water contains 252.4 grains, this is equivaient to 62 cubic inches of water; so that as brain is heavier than water, we are perlectly safe against erring on the side of diminution in taking this as the smallest capacity of any adult male human brain. The only adult maie brain, weighing as little as 970 grammes, is that of an idiot ; but the brain of an adult woman, against the soundness of whose faculties nothing appears, weighed as littie as 907 grammes (55.3 cubic inches of water); and Reid gives an adult femaie brain of still smaller capacity. The beaviest brain (1872 grammes, or about 115 cubic inches) was, however, that of a woman; next to it comes the brain of Cuvier (1861 grammes), then Byron (1807 grammes), and then an insane person (1733 grammes). The ligbtest adult brain recorded (720 grammes) was that of an idiotic femaie. The brains of five children, four years old, weighed between 1275 and 902 grammes. So that it may be safely sald, that an avcrage European child of four years old has a brain twice as large as that of an adult Gorilla.

Men differ more widely from one another than they do from the Apes; while the lowest Apes differ as much, in proportion, from the highest, as the latter does from Man. The last proposition is still better illustrated by the study of the modifications which other parts of the cranium undergo in the Simian series.

It is the large proportional size of the facial bones and the great projection of the jaws which confers upon the Gorilla's skull its small faclal angle and brutal character.
But if we consider the proportional size of the facial bones to the skull proper only, the littie Chrysothrix (Flg. 16) differs very widely from the Gorilla, and in the same way as Man does; While the Baboons (Cynocephalus, Flg. 16) exaggerate the gross proportions of the muzzle of the great Anthropoid, so that its visage looks mild and human by comparison with theirs. The difference between the Gorilla and tbe Baboon is even greater than It appears at first sight ; for the great facial mass of the former is largely due to a downward development of the jaws; an essentlally human cbarciter, superadded upon that almost purely forward, essentially brutal, development of the same parts which cbaracterizes the Baboon, and yet more remarkably dlstinguisbes the Lemur.

Similarly, the occipltal foramen of Mycetes (Flg. 16), and still more of the Lemurs, is situated completely in the posterior face of the skull, or as much further back than that of the Gorilla, as that of the Gorilla Is further back than tbat of Man; while, as if to render patent the futillty of the attempt to base any broad classificatory distlnction on such a character, the same group of Platyrhine, or American monkeys, to whlch the Mycetes belongs, contains the Chrysothrix, whose occipltal foramen ls situated far more forward tban ln any other ape, and nearly approacbes tbe position it holds in Man.

Again, the Orang's skull is as devoid of excessively developed supraciliary prominences as a Man's, though some varieties exhlbit great cresis elsewhere (see pp. 231, 232); and in some of the Ceblne apes and in the Chrysothrix, the cranium is as smooth and rounded as that of Man bimself.

What is true of these leading characteristics of the skull, holds good, as may be imagined, of all minor features ; so tbat for every constant difference between the Gorilla's skull and the Man's, a similar constant difference of the same order (that is to say, conslsting in excess or defect of the

Fic. 16. -Sections of the skults of Man and various Apes, drawn 50 as to give the cercbral cavity the same length in each case, thereby displaying the varylng proportions of the faclal bones. The hine b indicates the plane of the tentorlum, which separates the carebrum from the cerebellum; d, the axis of the occipital outlet of the skull. The extent of cerebral cavity behind c, which is a perpendicular erected on b at the point where the tentorium is attached posterioriy, indicates the degree to which the cercbrum overlaps the cerchollum -the space occupied by which ia roughly indicated by the dark shadine. In comparing these diagrems, it must be recollected, that figures on so amall a zeale a these simply exemplify the statements In the text, the proof of which is to be found in the objectes themselves.
same quality) may be found between the Gorilla's skull and that of some other ape. So that, for the skull, no less than for the skeleton in general, the proposition holds good, that the differences hetween Man and the Gorilla are of smaller value than those between the Gorilla and some other Apes.

In connection with the skuli, I may speak of the teeth -organs which have a peculiar classificatory value, and whose resemhiances and difierences of number, form, and succession, taken as a whole, are usually regarded as more trustworthy indicators of affinity than any others.

Man is provided with two sets of teeth-milk teeth and permanent teeth. The former consist of four incisors, or cutting teeth; 'wo cenines, or eye-teeth; and four molars, or grinders, in each jaw-making twenty in all. The latter (Fig. 17) comprise four incisors, two canines, four small grinders, called premolars or false molars, and six large grinders, or true moiars, in each jaw-making thirtytwo in all. The internal incisors are iarger than the external pair, in the upper jaw, smaller than the external pair, in the lower jaw. The crowns of the upper molars exhibit four cusps, or biunt-pointed elevations, and a ridge crosses the crown ohilquely, from the inner, anterior, cusp to the outer, posterior cusp (Fig. $17 \mathrm{~m}^{2}$). The anterior lower molars have five cusps, three external and two internal. The premoiars have two cusps, one internal and one external, of which the outer is the higher.

In all these respects the dentition of the Gorilla may be described in the same terms as that of Man; but in other matters it exhibits many and important differences (Fig. 17).

Thus the teeth of man constitute a regular and even series-without any hreak and without any marked projection of one touth above the ievel of the rest ; a peculiarity which, as Cuvier long ago showed, is shared hy no other mammal save one-as diffrent a creature from man as can well be imagined-namely, the iong extinct Anoplotherium. The teeth of the Gorilla, on the contrary, exhibit a hreak, or interval, termed the diastema, in hoth jaws: in front of the eye-tooth, or between it and the outer incisor, in the upper jaw ; behind the eye-tooth, or between it and the front false molar, in the iower jaw. Into this hreak in the series, in each jaw, fits the canine of the opposite jaw ;
the size of the eye-tooth in the Gorilla being so great that it projects, like a tusk, far beyond the general level of the other tecth. The roots of the false molar teeth of the Gorilla, again, are more compiex than in Man, and the proportional size of the moiars is different. The Gorilla has the crown of the hindmost grinder of the lower jaw more complex, and the order of eruption of the permanent teeth is different; the permanent canines making their appearance before the second and third moiars in Man, and after them in the Gorilla.

Thus, while the teeth of the Gorllla closely resemble those of Man in number, kind, and in the general pattern of their crowns, they exhiblt marked differences from those of Man in secondary respects, such as reiative size, number of fangs, and order of appearance.

But, if the seeth of the Gorilla be compared with those of an Ape, no further removed from it than a Cynocephalus, or Baboon, it will be found that differences and resembiances of the same order are easily observabie; but that many of the points In which the Gorilia resembies Man are those in which it differs from the Baboon; while varlous respects in which it dlffers from Man are exaggerated in the Cynocephalus. The number and the nature of the teeth remaln the same in the Baboon as in the Gorilla and in Man. But the pattern of the Baboon's upper moiars is qulte different from that described above (Flg. 17), the canines are proportionally ionger and more knife-like ; the anterior premolar in the iower jaw is specially modified ; the posterior molar of the iower jaw is still larger and more complex than In the Gorilia.

Passing from the old-world Apes to those of the new worid, we meet with a change of much greater importance than any of these. In such a genus as Cebus, for exampie (Fig. 17), it will be found that while in some secondary points, such as the projection of the canines and the diastema, the resemblance to the great ape is preserved; in other and most important respects, the dentition is extremely different. Instead of 20 teeth in the milk set, there are 24: instead of 32 teeth in the permanent set, there are 36, the false moiars being lncreased from elght to tweive. And in form, the crowns of the molars are very unlike those of the Gorilla, and differ far more widely from the human pattern.

The Marmosets, on the other hand, exhibit the same
number of teeth as Man and the Gorilla ; but, notwithstanding this, their dentition ts very different, for they have four

Fio. 17.-Lateral views, of the same length, of the upper Jaws of varlous Primates. f , Incisors ; c , canines; pm , premolars: m , molars. A Iine is drawa through the first molar of Man, Garilla, Cynocephalus, and Cebus, and the grinding surficee of the second molar is shown in each, its anterlor and internal angle betigg just above the in of ma. more false molars, like the other American monk sys-but as they have four fewer true molars, the total remains the same.

And passing from the American apes to the Lemurs, the dentition becomes still more completely and essentially different from that of the Gorilla. The incisors begin to vary both in number and in form. The molars acquire, more and more, a many-pointed, Insectivorous character, and in one Genus, the Aye-Aye (Cheiromys), the canines disappear, and the teeth completely simulate those of a Rodent (Fig. 17).

Hence lt is obvious that, greatiy as the dentition of the highest Ape differs from that of Man, it differs far more widely from that of the lower and lowest Apes.

Whatever part of the animal fahric-whatever serles of muscles, whatever viscera might be selected for com-parison-the result would be the same-the lower Apes and the Gorilla would differ more than the Gorilla and the Man. I cannot attempt in this place to follow out all these comparisons in detail, and Indeed it is unnecessary I should do so. But certain real, or supposed, structural distinctions between man and the apes remain, upon which so much stress has heen laid, that they require careful conslderation, in order that the true value may be assigned to those which are real, and the emptiness of those which are fictitious may he exposed. I refer to the characters of the hand, the foot, and the hrain.

Man has been defined as the only animal possessed of two hands terminating his fore limbs, and of two feet ending his hind limbs, while it has heen said that all the apes possess four hands; and he has heen affirmed to differ fundamentally from all the apes in the characters of his hrain, which alone, it has heen strangely asserted and re-asserted, exhibits the structures known to anatomists as the posterior lobe, the posterlor cornu of the lateral ventricle, and the hippocampus minor.

That the former proposition should have gatned general acceptance is not surprising-indeed, at first sight, appearances are much in lts favour: but; as for the second, one can only admire the surpassing courage of its enunclator, seeing that it is an innovation which is nct only opposed to generally and justly accepted doctrines, but which is directly negatived by the testimony of all original inquirers, who have specially investigated the matter: and that It neither has heen, nor can be, supported by a single anatomlcal preparation. It would, in fact, he unworthy of serious
refutation, except for the general and natural helief that deliberate and reiterated assertions must have some foundstion.

Before we can discuss the firat point with advantage we must consider with some attention, and compare together, the structure of the human hand and that of the human foot, so that we may have distinct and clear ideas of what constitutes a hand and what a foot.

The external form of the human hand is familiar enough to every one. It consints of a stout wrist followed hy a hroad palm, formed of flesh, and tendons, and skin, hinding together four bones, and dividing into four long and flextble digits, or fingers, each of which hears on the hack of its iast joint a hroad and flattened nail. The iongest cleft hetween any two digits is rather less than half as iong as the hand. From the outer side of the hase of the palm a stout digit goes off, having only two joints instead of three; so short, that it only reaches to a little beyond the middie of the first joint of the finger next it ; and further remarkabie by lts great mohility, in consequence of which it can be directed outwards, almost at a right angle to the rest. This digit is called the 'pollex,' or thumb; and, like the others, lt hears a flat nail upon the hack of its terminal joint. In consequence of the proportions and mohillty of the thumb, it ls what is termed "opposabie"; in other words, its extremity can, with the greatest ease, be hrought into contact with the extremities of any of the fingers; a property upon which the possibility of our carrying into effect the conceptions of the mind so largely depends.

The external form of the foot differs widely from that of the hand; and yet, when closely compared, the two present some singular resemblances. Thus the ankle corresponds in a manner with the wrist; the sole with the palm; the toes with the fingers; the great toe with the thumh. But the toes, or digits of the foot, are far shorter in proportion than the digits of the hand, and are iess moveabie, the want of mobility being most striking in the great toe-whlch, again, is very much iarger in proportion to the other toes than the thumb to the fingers. In considering this point, however, it must not be forgotten that the civilized great toe, confined and cramped from childhood upwards, is seen to a great disadvantage, and that in uncivilized and
harefooted people it retains a great amount of moblifty, and even some sort of opposability. The Chinese bontmen are said to be able to pull an oar, the artisans of Bengal to weave, and the Carajas to steal fishhooks, by tis help: though, after all, it must he recollected that the structure of its joints and the arrangement of its bones, neccuarlly render its prehensile action far less perfect tham that of the thumh.
But to galn a precise conception of the nemblances and differences of the hand and foot, and of the distinctive characters of each, we must look bolow the sitin, and compare the hony franework and lts motor apparatus in each (Flg. 18).

The sleleton of the hand exhibits, in the region which we term the wrist, and which ls techatcaliy called the carpus -two rows of closely fitted polyconal bones, four in each row, which are tolerably equal in slze. The bones of the first row with the hones of the forearm form the wrist joint, and are arranged side by side, no one greatly exceeding or overlappling the rest.

The four hones of the second row of the carpus bear the four long bones which support the palm of the hand. The fifth bone of the same character is articulated in a much more free and moveable manner than the others, with its carpal hone, and forms the hase of the thumh. These are called metacarpal hones, and they carry the phalanges, or hones of the digits, of which there are two in the thumh, and three in each of the fingers.

The skeleton of the foot is very like that of the hand in some respects. Thus there are three phalanges in each of the lesser toes, and only two in the great toe, which answers to the thumb. There ls a long bone, termed metatarsal, answering to the metacarpal, for each digit; and the tarsus, which corresponds with the carpus, presents four short polygonal hones in arow, which correspond very closely with the four carpal bones of the second row of the hand. In other respects the foot differs very widely from the hand. Thus the great toe ls the longest digit but one ; and its metatarsal is far less moveably articulated with the tarsus, than the metacarpal of the thumb with the carpus. But a far more important distinction lies in the fact that, Instead of four more tarsal hones there are only three; and that these three are not arranged slde by slde, or \ln one row.

One of them, the os calcis or heel bone (ca), lles externally, and sends back the large projecting heel; another, the astragalus (as), rests on this by one face, and by another,

Fro. 18.-The skeleton of the Hand and Foot of Man reduced from Dr. Carter's drawinge in Gray's 'Anatomy.' The hind is drawn to a larger ecale than the foot. The line a a in the hand indicates the boundary between the carpus and the metacarpus $; b b$ that befween the latter the roximal phalanges ; ccmarks the ends of the distal phalarges. The line $a^{\prime} a^{\prime}$ in the foot indicates the boundary betweea the tarmus and metatarsus ; $b^{\prime} b^{\prime}$ marks that between the metataryus and the proximal phalanges ; and $c^{\prime} c^{\prime}$ bounds the ends of the dintal phalanges; $c a$, the calcaneum; $a s$, the astragalus ; m, the seaphofd bone in the tarsus.
forms, with the bones of the leg, the ankle joint ; while a third face, directed forwards, is separated from the three inner tarsal bones of the row next the metatarsus by a bone called the scaphoid (sc).

Thus there is a fundamental difference in the structure

ON THE RELATIONS OF MAN

of the foot and the hand, observable when the carpus and the tarus are contrasted; and there are difierences of degree noticeable when the proportions and the mohility of the metacarpals and metatarsals, with their respective digits, are compared together.

The same two classes of differences become obvious When the muscles of the hand are compared with those of the foot.

Three principal sets of muscles, called "flexars." bend the fingers and thumh, as in clenching the lat, and three sets-the extensors-extend them, as in straightening the fingers. These muscles are all "long muscles"; that is to say, the fieshy part of each, lying in and heing fized to the hones of the arm, is, at the other end, continued into tendons, or rounded cords, which pass into the hand, and are ultimately fixed to the bones which are to be moved. Thus, when the fingers are bent, the fleshy parts of the flexors of the fingers, placed in the arm, contract, in virtue of their peculiar endowment as muscies; and pulling the tehdinous cords, connected with their ends, cause them to pull down the hones of the fingers towards the palm.

Not only are the princlpal flexors of the fingers and of the thumh long muscles, hut they remain quite distinct from one another through their whole length.
In the foot, there are also three principal fiexor muscles of the digits or toes, and three princlpal extensors; hut one extensor and one flexor are short muscles; that is to say, their fleshy parts are not sltuated in the leg (which corresponds with the arm), hut In the back and in the sole of the foot-reglons which correspond with the hack and the palm of the hand.
Again, the tendons of the long flexor of the toes, and of the long flexor of the great toe, when they reach the sole of the foot, do noi remain distinct from one another, as the flexors \ln the palm of the hand do, but they hecome united and comningled in a very curious manner-while their unlted tendons recelve an accessory muscle connected with the heel-bone.

But perhaps the most absolutely distinctlve character about the muscles of the foot ls the existence of what is termed the peronæus longus, a long muscle fixed to the outer hone of the leg, and sending lts tendon to the outer ankle, behind and below which it passes, and then crosses

TO THE LOWER ANIMALS

the foot obliquely to $\mathrm{l} / 3$ attached to the base of the great toe. No muscle in the hand exactly corresponds with this, which is eminently a foot muscle.

To resume-the foot of man is distinguished from his hand by the following absolute anatomical differences:-

1. By the arrangement of the tarsal bones.
2. By having a short fiexor and a short extensor muscle of the digits.
3. By possessing the musele termed peronerts longus. And if we desire to ascertain wbether the terminal division of a limb, in other Primates, is to be called a foot or a hand, it is by the presence or absence of these characters that we must be guided, and not by the mere proportions and greater or lesser moblity of the great toe, whieh may vary indefinitely without any fundamental alteration in tbe structure of the foot.

Keeping these considerations in mind, let us now turn to the limbs of the Gorilia. The terminal division of the fore limb presents no diffeuity-bone for bone and muscle for muscle, are found to be arranged essentialiy as in man, or with such minor differenees as are found as varieties in man. The Gorilla's hand is clumsier, heavier, and has a thumb somewbat shorter in proportion tban that of man; but no one bas ever doubted its being a true hand.
At first sight, the termination of the hind limb of tbe Gorilla looks very hand-like, and as it is still more so in many of the iower apes, It is not wonderful that the appellation "Quadrumana," or four-banded creatures, adopted from the oider anatomists * by Biumenbaeh, and unfortunately rendered current by Cuvier, should have

[^38]As this passage was published in 1699, M. I. G. St. Hilaire is clearly in error in ascribing the invention of the term "quadrumanons" to Bnffon, though "bimanous" may beiong to hilm. Tyson uses "Quadrumanus" in several places, as at p. 91. ... "Our Pygmie is no Man, nor yet the common Ape, but a sort of Animal between both; and though a Biped, yet of the Quadru-manus-kind: though some Men too have been observed to use their Feei like Hands. as I have seen several."

MICROCOPY RESOLUTION TEST CHART

(ANSI ond ISO TEST CHART No. 2)

APPLIED IMAGEE Inc
(716) 288 - 5989 - Fox
gained such wide acceptance as a name for the Simiar group. But the most cursory anatomical investigation at once proves that the resembiance of the so-calied " hind hand" to a true hand, is only skin deep, and that, in all essential respects, the hind iimb of the Gorilia is as truly terminated by a foot as that of man. The tarsal bones, in all important circumstances of number, disposition, and form, resembie those of man (Fig. 19). The metatarsals and digits, on the other hand, are proportionally longer and more siender, while the great toe is not only proportionally shorter and weaker, but its metatarsal bone is united by a more moveabie joint with the tarsus. At the same time, the foot is set more obliqueiy upon tbe ieg than in man.

As to the muscles, there is a short flexor, a short extensor, and a peronæus longus, while the tendons of the iong flexors of the great toe and of the other toes are united together and with an accessory fieshy bundle.

The hind limb of the Gorilla, therefore, ends in a true foot, witb a very moveabie great toe. It is a prehensile foot, indeed, but is in no sense a hand : it is a foot which differs from that of man not in any fundamental character, but in mere proportions, in the degree of mobillty, and in the secondary arrangement of its parts.

It must not be supposed, however, because I speak of these differences as not fundamental, that I wish to underrate their value. They are important enough in their way, the structure of the foot being in strict correlation with that of the rest of the organism in each case. Nor can it be duubted tbat the greater division of physiological iabour in Man, so that the function of support is thrown wholiy on the ieg and foot, is an advance in organization of very great moment to him ; but, after all, regarded anatomicaliy, the resemblances between the foot of Man and the foot of the Gorilla are far more striking and important than the differences.

I have dwelt upon this point at lengtb, because it is one regarding which much delusion prevails; but I might have passed it over without detriment to my argument, which oniy requires me to show that, be the differences between the hand and foot of Man and those of tbe Gorilla what they may-the differences between those of the Gorilia and those of the lower Apes are much greater.

It is not necessary to descend lower in the scale than the Orang for conciusive evidence on thls head.

The thumb of the Orang differs more from that of the Gorilla than the thumb of the Gorilla differs from that of Man, not only by its shortness, but by the absence of any special iong flexor muscie. The carpus of the Orang, like that of most lower apes, contains nine bones, while in the Gorilla, as in Man and the Chimpanzee, there are only eight.

Fra. 19.-Foot of Man, Gorilla, and Orang-Utan of the same abeolute length, to show the differences in proportion of each. Letters as in Fig. 18. Reduced from original drawings by Mr. Waterhouse Hawlins.

The Orang's foot (Flg. 19) is stili more aberrant; its very long toes and short tarsus, short great toe, short and ralsed heel, great obiiquity of articulation in the leg, and absence of a long flexor tendon to the great toe, separating It far more widely from the foot of the Gorilla than the iatter is separated from that of Man.

But, in some of the iower apes, the hand and foot diverge still more from those of the Gorilla, than they do in the Orang. The thumb ceases to be opposabie ln the Amcricau monkeys; ls reduced to a mere rudiment covered by the
skin in the Splder Monkey; and is directed forwards and armed with a curved claw like the other digits, in the Marmosets-so that, in all these cases, there can he no doubt hut that the hand is more different from that of the Gorilla than the Gorilla's hand is from Man's.

And as to the foot, the great toe of the Marmoset ls still more Inslgnificant ln proportion than that of the Orangwhile in the Lemurs it is very large, and as completely thumh-llke and opposahle as \ln the Gorilla-but in these animals the second toe ls often irregularly modiffed, and in some species the two principal hones of the tarsus, the astragalus and the os calcis, are so lmmensely elongated as to render the foot, so far, totally unlike that of any other mammal.

So with regard to the muscles. The short flexor of the toes of the Gorilla differs from that of Man by the circumstance that one slip of the muscle ls attached, not to the heel bone, but to the tendons of the long flexors. The lower apes depart from the Gorilla by an exaggeration of the same character, two, three, or more, slips hecoming fixed to the long flexor tendons-or by a nultipllcation of the sllps.-Again, the Gorilla differs slightly from Man in the mode of interlacing of the long flexor tendons: and the lower apes differ from the Gorilla in exhibiting yet other, sometimes very complex, arrangements of the same parts, and occasionally \ln the absence of the accessory fleshy bundle.

Throughout all these modifications it must be recollected that the foot loses no one of lts essentlal characters. Every Monkey and Lemur exhlblts the characterlstlc arrangement of tarsal bones, possesses a short flexor and shorit extensor muscle, and a peroneus longus. Varied as the proportions and appearance of the organ may he, the terminal division of the hind limh remalns, in plan and princlple of constructlon, a foot, and never, in those respects, can he confounded with a hand.

Hardly any part of the bodily frame, then, could be found better calculated to illustrate the truth that the structural differences between Man and the highest Ape are of less value than those between the highest and the lower Apes, than the hand or the foot, and yet, perhaps, there is one organ the study of which enforces the same conclusion in a still more striking manner-and that is the Brain.

But before entering upon the precise question of the amount of difference between the Ape's brain and that of Man, it is necessary that we shouid cleariy understand what constitutes a great, and what a small difference in cerebral structure; and we shali be hest enahied to do this hy a brief study of the chief modifications which the braln exhihits in the scries of vertehrate animals.

The hrain of a fish is very smali, compared with the spinal cord into which it is continued, and with the nerves which come off from it : of the segments of which it is com-posed-the oifactory iohes, the cerebral hemisphere, and the succeeding divisions-no one predominates so much over the rest as to ohscure or cover them ; and the so-called optic iohes are, frequently, the iargest masses of ali. In Reptiles, the mass of the hrain, reiativeiy to the spinal cord, increases and the cerebral hemispheres hegin to predominate over the other parts; while in Birds this predominance is still more marked. The brain of the iowest Mammals, such as the duck-hilied Piatypus and the Opossums and Kangaroos, exhibits a stili more definite advance in the same direction. The cerebral hemispheres have now so much increased in size as, more or iess, to hide the representatives of the optic iohes, which remain comparativeiy smali, so that the hraln of a Marsupial is extremeiy different from that of a Bird, Reptile, or Fish. A step higher in the scaie, among the piacental Mammals, the structure of the brain acquires a vast modification-not that it appears much altered externaliy, in a Rat or in a Rahbit, from what it is in a Marsupial-nor that the proportions of its parts are mr changed, hut an apparentiy new structure is found hetween the cerebral hemispheres, connecting them together, as what is calied the 'great commissure: or 'corpus caliosum.' The subfect requires careful reInvestigation, but if the currently received statements are correct, the appearance of the 'corpus callosum' in the placental mammals is the greatest and most sudden modification exhibited hy the brain in the whoie series of vertebrated animals-it is the greatest ieap anywhere made by Nature in her brain work. For the two halves of the hraln beling once thus knit together, the progress of cerebral compiexity is traceabie through a compiete serles of steps from the iowest Rodent, or Insectivore, to Man; and that complexity consists, chiefly, in the disproportionate develop-
ment of the cerebral hemispheres and of the cerebellum, but especially of the former, in respect to the other parts of the brain.

In the iower piacental mammals, the cerebral hemispheres leave the proper upper and posterior face of the cerebellum compietely visible, when the brain is viewed from above, but, in the higher forms, the hinder part of each hemisphere, separated only by the tentorium (p. 281) from the anterior face of the cerebellum, inclines backwards and dowrwards, and grows out, as the so-called " posterior lobt, 10 as at iength to overiap and hide the cerebellum. In all Mammals, each cerebral hemisphere contalns a cavity which is termed the 'ventricle,' and as this ventricle is proionged, on the one hand, forwards, and on the other downwards, into the substance of the hemisphere, it is said to have two horns or 'cornua,' an ' anterior cornu,' and a 'descending cornu.' When the posterior iobe is weli deveioped, a third proiongation of the ventricuiar cavity extends into it, and is called the " posterior cornu."

In the iower and smailer forms of placental Mammals the surface of the cerebrai hemispheres is either smooth or evenly rounded, or exhibits a very few grooves, which are technically termed 'sulci,' separating ridges or ' convoiutions' of the substance of the brain; and the smuller species of all orders tend to a similar smoothness of brain. But, in the higher orders, and especially the farger members of these orders, the grooves, or sulci, become extremeiy numerous, and the intermediate convoiutions proportionateiy more complicated in their meanderings, until, in the Eiephant, the Porpoise, the higher Apes, and Man, the cerebral surface appears a perfect labyrinth of tortuous foidings.

Where a posterior iobe exists and presents its customary cavity-the posterior cornu-it commonly happens that a particular sulcus appears upon the inner and under surface of the iobe, parellei with and beneath the floor of the cornu-which is, as it were, arched over the roof of the sulcus. It is as if the groove had been formed by indenting the floor of the posterior horn from without with a biunt instrument, so that the floor should rise as a convex eminence. Now this eminence is what has been termed the 'Hippocampus minor'; the 'Hipposampus major' being a larger eminence in the floor of the descending cornu.

Man.

Fic. 20.-Drawings of the internal casts of a Man's and of a Chimpanzee's skull, of the same absolute length, and piaced in corresponding positions, A. Cerehrum ; B. Cerchellum. The former drawing is taken from a east in the Museum of the Royal Coliego of Surgeons, the latter from the photograph of the cast of a Chimpanzee's skull, which illustrates the paper by Mr. Marshall - On tho Brain of tho Chimpanzee' in the Notural History Review for July, 1861. Tha sharper definition of the lower edgo of the east of the cerebral ehamher In thr: Chimpanzeo arises from the eircumstanee that the tentorium remained in that skuli and not in the Man's. The cast moro accurately represents the brain in Chimpanzee than in the Man; and the great backward projection of the posterior lobes of the eerebrum of the former, beyond the cerebelium, is conspicuous.

What may be the functional importance of either of these structures we know not.

As if to demonstrate, by a striking cxampie, the impossibility of erecting any cerebrai barrier between man and the apes, Nature has provided us, in the iatter animals, with an almost compiete serles of gradations from brains little higher than that of a Rodent, to brains iittle iower than that of Man. And it is a remarkabie circumstance that though, so far as our piesent knowiedge extends, there is one true str 'ural break in the series of forms of Simlan brains, this 1 itus does not lie between Man and the man-like apes, but between the lower and the iowest Simians; or, in ether words, between the nid and new worid apes and monkeys, and the Lemurs. Every Lemur which has yet been examined, in fact, has its carebeilum partially visible from above, and its posterior lobe, with the contained posterior cornu and hippocampus minor, more or less rudimentary. Evcry Marmoset, American monkey, oid-worid monkey, Baboon, or Man-like ape, on the contrary, has its cerebellum entirely hidden, posterioriy, by tbe cerebral iobes, and possesses a iarge posterior cornu, with a weli-deveioped hippocampus minor.

In many of these creatures, such as the Saimiri (Chrysothrix), the cerebral iobes overiap and extend much further behind the cerebeilum, in proportion, than they do in man (Fig. 16)-and it is quite certain that, in all, the cerebellum is compieteiy covered behind, by well-deveioped posterior iobes. The fact can be verifed by every one who possesses the skull of any oid or new worid monkey. For, inasmuch as the brain in all mammals compieteiy fills the cranial cavity, it is obvious that a cast of the interior of the skuli will reproduce the general form of the brain, at any rate with such minute and, for the present purpose, utteriy unimportant differences as may result from the absence of the enveioping membranes of the brain in the dry skull. But if such a cast be made in piaster, and compared with a similar cast of the ${ }^{f}$ terior of a human skull, it wili be obvious that the cast of the cerebral chamber, representing the cerebrum of the ape, as compicteiy covers over and overiaps the cast of the cerebellar chamber, representing the cerebellum, as it does in the man (Fig. 20). A careiess observer, forgetting that a soft structure ilike the brain ioses its proper shape the moment it is taken out of
the skull, may indeed mistake the uncovered condition of the cerebellum of an extracted and distorted brain for the natural relations of the parts ; but his error must become patent even to himself if he try to replace the braln within the cranial chamber. To suppose that the cerebellum of an ape is naturally uncovered behind is a miscomprehension comparabie only to that of one who shouid imagine that a man's lungs always occupy but a small portion of the thoracic cavity-because they do so when the chest is opened, and their clasticity is no longer neutralized by the pressure of the air.

And the error ts the less excusabie, as it must become apparent to every one who examincs a section of the skull of any ape above a Lemur, without taking the troubie to make a cast of it. For there is a very marked groove in every such skull, as in the human skull-which indicates the ilne of attachment of what is termed the tentortuma sort of parchment-like sheif, or partition, which, In the recent state, is interposed between the cerebrum and cerebellum, and prevents the former from pressing upon the latter (see Fig. 16).

This groove, therefore, indicates the line of separation between that part of the cranial cavity which contains the cerebrum, and that which contalns the cerebellum; and as the brain exactly filis the cavity of the skull, it is obvious that the relations of these two parts of the cranial cavity at once informs us of the relations of their contents. Now in man, in all the old-world, and in all the new-world Simia, with one exception, when the face is directed forwards, this line of attachment of the tentorium, or impression for the iateral sinus, as it is technically called, is i.eariy horizontal, and the cerebral chamber invariably overiaps or projects behind the cerebeliar chamber. In the Howier Monkey or Mycetes (see Fig. 16), the line passes obilquely upwards and backwards, and the cerebral overlap is almost nil ; while in the Lemurs, as in the lower mammals, the iine is much more Inclined in the same direction, and the cerebellar chamber projects considerably beyond the cerebral.
When the gravest errors respecting points so easily settled as this question respecting the posterior lobes can be authoritatively propounded, it is no wonder that matters of observation, of no very complex character, but still requiring a certaln amount of care, should nave fared worse. Any one who cannot see the posterior lobe in an

Fig. 21.-Drawings of the cerebral hemispheres of a Man and of a Chimpanzee of the same iength, in order to show the relative proportions of the parts: the former taken from a specimen, which Mr. Flower, Conservator of the Museum of the Royal Coliege of Surgeons, was good enough to dissect for me; the latter, from the photograph of a similarly dissected Chimpanzee's braln, given in Mr. Marshail's paper above referred to. a, posterior lobe; b, iateral ventricle; c, posterior cornu: x, the hippocampus minor.
ape's brain is not iikeiy to give a very valuable opinion respeeting the posterlor cornu or the hippocainpus mir.or. If a man cannot see a church, it is preposterous to take his opinion about its altor-piece or painted window-so that I co not feci boul 1 to enter upon any discussion of these points, but content myseif with assuring the reader that the posterior co:nu and the hippocampus minor, hove now been seen-usuaily, at ieast as wrii deve,oped os in man, ond often better-not oniy in the Chimponzee, the Orang, and the Gibbon, but in all the genero of the oidworic baboons and monkeys, and in most of the newwerid forms, Including the Marmosets.*
In fact, all the abundont and trustworthy evidence (consisting of the resuits of corefui Investigations directed to the deterr ination of these very questions, by skiiled anatomists) which we now possess, ieads to the ennviction that, so, far from the posterior iobe, the posterior cornu, and the hippocampus minor, being structures peculiar to and characteristic of man, as they have been over and over agair asserted to \dot{e}, even after the publication of the clearest demonstration of the reverse, it is preciseiy these structures which are the most marked cerebrai characters common to man with the apes. They are among the most distinctly Simian pecuilarities which the human ofsuiaism exhibits.

As to the convoiutlons, the brains of the apes exhibit cvery stage of progress, from the almost smooth brain of the Marmoset, to the Orang ond the Chimpanzee, which lall but iittle beiow Man. And it is most remarkabie that, as soon as all the principal sulei appear, the patiern according to which they arc arranged is identical with that of the corrcsponding sulci of man. The surface of the brain of a monkey cxhibits a sort of skeleton map of man's, and In the man-like apes the details become more and noore filled in, u.til it is oily in minor characters, such as the greater excavation o: the anterior iobes, the constant presence of nssures usualiy absent in man, and the different disposition and proportions of some convoiutlon: 'hat the Chimpanzee's or the ©.'ang's brain can be structurally distinguished from. Man's.
So far as cerebral structure goes, therefore, it is ciear that Man differs iess from the Chinipanzee or the Oraug,

[^39]than these do even from the Monkeys, and that the difference between the brains of the Chimpanzee and of Man is almost insignificant, when compared with that hetween the Chimpanzee brain and that of a Lemur.

It must not be overiooked, however, that there is a very striking differenee in the absolute mass and weight between the fowest human brain and that of the highest ape-a difference which is all the more remarkable when we recollect that a full grown Gorilia is probably pretty neariy twice as heavy as a Bosjes man, or as many an European woman. It may be doubted whether a healthy human aduit brain ever weighed less than thirty-one or two ounees, or that the heaviest Gorllia brain has execeded twenty ounces.

This is a very noteworthy cireumstance, and doubtless will one day hcip to furnish an explanation of the great gulf which intervenes hetween the lowest man and the highest ape in inteliectual power; * but it has little

- I say help to furnish : for I by no means believe that it was any original difference of cerebral quallty, $0:$ quantity, which caused that divergence between the human and the pithecoid stirpes, which bas onded in the present enormous guif between tiem. It is no doubt perfectiy true, in a certaln sense, that all difference of function is a result of difference of structure; or, in other words, of difference in the combination of the primary molecular forces of fiving substonce : and, staring from thls undeniabie axicm, objectors occasionally, and with much seening plausibility, argue the ${ }^{4}$ the vast intellectual chasm between the Ape and Mon implies icc aponding structural chasm in the organs of the intellectual fuucticrs; so that, it is soid, the non-discovery of such vost differences proves, not that they are absent, but that Science is incompetent to detect them. A very iftle consideration, however, will, 1 think, show the fallacy of this reasoning. lis valldity hangs upon the assumption, that intellectnal power depends aitogether on the braln-whereas the brain is only one condition out of many on which intellectual manifestations depend; the others being, chielly, the organs of the senses and the motor apparatuses, especialiy those which are concerned in prebension and in the production of articuiate speech.

A man horn dumb, notwithstanding his great cerebral mass and his inhericonce of strong inteliectual instincts, would be capabie of fere higher intellectual manifestations than an Orang or a Chimpanzee, if he were conifined to the society of dumb associates. And yet there might not be the slightest discernibie difference between his brain and that of a highiy inteillgent and cuitivated person. The dumbness might be the result of a defective structure of the mouth, or of the tongue, or a mere defective innervation of these parts; or it migbt resuit froan congenitai deafness, caused by some minute defect of the internal ear, which only a careful anatomist could discover.
systematic value, for the simple reason that, as may be coneluded from what has been already said respecting cranial capacity, the difference in welaht of brain between the highest and the forest men is far greater, both refatively and absolitely, than that between the lowest man and the highest apc. The fatter, as has been seen, is represented by, say, twelve ounces of eere ral substance absolutely, or by $32: 20$ relatively; but as the largest recorded human brain welghed betwcen 65 and 66 ounees, the former difference is represented by more than 33 ounces absolutely, or by $65: 32$ r.latively. Regarded systematleally, the cerebral differences of man and apes are not of more than generle value-his Family distinction resting chlefly on his dentition, his pelvis, and his lower limbs.

Thus, whatever system of organs be studied, the comparison of their modificatlons in the ape series lea's to one and the same result-that the structural differences which separate Man from the Gorilla an't the Chimpanzee are not so great as those which separa' . the Gorilla from the fower apes.

But in enunclating thls Important truth I must guard myself against a form of misunderstanding, whieh is very grevalent. I find, in fact, that those who endeavo $: i^{\circ}$ to teach what nature so cleariy shows us in thls matter. :re Hable to have tbeir opinions misrepresented and .jir pbraseoiogy garbled, until tbey seem to say tbat the structural differences between man and even the highest apes are smali and insignificant. Let me take this oppor-

The argument, that because there is an immense diference between a Man's intellgence and an Ape's, therefore there must be an equally immense diference between their brains, appears to me to be about as well based as the reasoning by which one sbould endeavour to prove that, because there is a "great gulf" between a watch tbat keeps accurate time and another that will not go at all, there is therefore a great structural hiatus between the two watches. A halr in the balance-wheel, a little rust on a pinion, a bend in a tooth of the escapement, a something so allight that only the practised eye of the watchmaker can discover it, may be the source of all the difference.
And belleving, as I do, with Cuvier, that the possession of articulate speech is the grand distinctive character of man (wbether it be absolutely peculiar to him or not), I And it very easy to comprehend, that some equally inconspicuous structural difference may bave been the primary cause of the immeasurabie and practically infinite divergence of the Human from the Simian Stirps.
tunity then of distinctiy asserting, on the contrary, that they are great and significant ; that every bone of a Gorilla bears marks by which it might be distinguished from the corresponding bone of a Man; and that, in the present creation, at any rate, no intermediate link bridges over the gap between Homo and Troglodytes.

It wouid be no less wrong than absurd to deny the existence of this chasm ; but it is at least equelly wrong and absurd to exaggerate its magnitude, and, resting on the admitted fact of its existence, to refuse to inquire whether it is wide or narrow. Remember, if you will, that there is no existing Iink between Man and the Gorilia, but do not forget that there is a no less sharp ine of demarcation, a no iess complete absence of any transitional form, between the Gorilla and the Orang, or the Orang and the Gibbon. I say, not less sharp, though it is somewhat narrower. The structural differences between Man and the Man-like apes certainly justify our regarding him as constituting a family apart from them ; though, inasmuch as he differs less from them than they do from other families of the same order, there can be no justification for piaclng him in a distinct order.

And thus the sagacious foresight of the great iawgiver of systematic zoology, Linnæus, becomes justifled, and a century of anatomical research brings us back to his conclusion, that man is a member of the same order (for which the Linnean term Primates ought to be retained) as the Apes and Lemurs. This order is now divisibie into seven families, of about equal systematic value: the first, the Anthropini, contains Man alone; the second, the Catarhini, embraces the oid-worid apes; the third, the Platyriini, all new-worid apes, except the Marmosets; the fourth, the Arctopithecini, contains the Marmosets; the fifth, the Lemurini, the Lemurs-from which Cheiromys should probabiy be excluded to form a sixth distinct family, the Cheiromyini ; while the seventh, the Galeopithecini, contains only the flying Lemur Galeo-pithecus,-a strange form which aimost touches on the Bats, as the Cheiroin:ys puts on a rodent clothing, and the Lemurs simulate Insectivora.

Perhaps no order of mammals presents us with so extraso the he I h "t is 0 int kin way A from the crown and summit of the animal creation down
to the lowest, smallest, and least intelligent of the placental Mammalia. It is as if nature herself had foreseen the arrogance of man, and wlth Roman severity had provided that his intellect, by its very triumphs, should call into prominence tbe slaves, admonlsbing the conqueror that he is but dust.

These are the chlef facts, thls the immedlate conclusion from them to which I adverted in the commencement of thls Essay. The facts, I belleve, cannot be disputed ; and if so, the conclusion appears to me to be Inevitable.

But if Man be separated by no greater structural barrier from the brutes tban they are from one another-tben It seems to follow that if any process of physical causation can be discovered by which the genera and famlles of ordinary animals have been produced, that-process of causation is amply sufficlent to account for the origin of Man. In other words, If it could be shown that the Marmosets, for example, have arisen by gradual modification of the ordinary Platyrhinl, or that both Marmosets and Platyrhini are modified ramlficatlons of a primitive stock-then, there would be no rational ground for doubting that man migbt have orlginated, in the one case, by the gradual modiffcation of a man-like ape; or, \ln the other case, as a ramification of the same primitive stock as those apes.

At the present moment, but one such process of physlcal causation has any evidence in lts favour; or, In other words, there is but one hypothesls regarding the orlgin of specles of animals in general whlch has any sclentific existence-that propounded by Mr. Darwin. For Lamarck, sagaclous as many of bls vlews were, mingled them witb so mucb tbat was crude and even absurd, as to neutrallze the benefit which hls orlginallty might bave effected, had he been a more sober and cautlous thinker; and though I have heard of the announcement of a formula touching "the ordalned continuous becoming of organle forms," It is obvious that it is the first duty of a hypothesls to be intelligible, and that a qua-qua-versal proposition of this kind, which may be read backwards, or forwards, or sldeways, with exactly tbe same amount of slgnification, does not really exist, tbough it may seem to do so.

At the present moment, therefore, the question of the relation of man to the lower animals resolves ltself, In
the end, into the larger question of the tenablity or untenability of Mr. Darwin's views. But here we enter upon difficult ground, and it behoves us to define our exact position with the greatest care.

It cannot be doubted, I think, that Mr. Darwin has satisfactorily proved that what he terms selection, or selective modification, must occur, and does occur, in nature; and he has also proved to superflulty that such selection is competent to produce forms as distinct, structurally, as some genera even are. If the animated world presented us with none but structural differences, I should have no hesitation in saying that Mr. Darwin had demonstrated the existence of a true physical cause, amply competent to account for the origin of living species, and of man among the rest.

But, in addition to their structural distinctions, the species of animals and plants, or at least a great number of them, exhibit physiological characters-what are known
a common stock are fertile, and thelr progeny are fertile wlth one another, that link wili be wantling. For, so long, selectlve breeding wiii not be proved to be competent to do all tiat is required of it to produce natural species.

I have put this conclusion as strongiy as possible before the reader, because the iast position in which I wish to find myself is that of an advocate for Mr. Darwin's, or any other views-if by an advocate is mcant one whose business it is to smooth over reai difficulties, and to persuade where he cannot convince.

In justice to Mr. Darwin, howevcr, it must be admltted that the conditions of fertility and sterility are very iil understood, and that every day's advance in knowiedge leads us to regard the hiatus in his evidence as of iess and less importance, when set against the muititude of facts which harmonize with, or recelve an expianation from, his doctrines.

I adopt Mr. Darwin's inypothesis, therefore, subject to the production of proof that physioiogical species may be produced by seiective breeding; just as a physicai philosopher may accept the unduiatory theory of iight, subject to the proof of the existence of the hypothctlcal ether ; or as the chemist adopts the atomic theory, subject to the proof of the existence of atoms; and for exactiy the same reasons, nameiy, that it has an immense amount of prima facie probabillty; that it is the oniy means at present within reach of reducing the chaos of observed facts to order ; and iastly, that it is the most powerful Instrument of investlgation whlch has been presented to naturalists slnce the Invention of the naturai system of ciassification, and the commencement of the systematic study of embryoiogy.

But even leaving Mr. Darwin's vicws aside, the whoie anaiogy of naturai operations furnishes so conplete and crushing an argument against the intervention of any but what are termed secondary causes, in the production of ail the phenomena of the universe; that, in view of the intimate relations between Man and the rest of the llving world; and between the forces exerted by the iatter and ali other forces, I can sce no excuse for doubting that all are co-ordlnated terins of Nature's great progression, from the formiess to the formed-from the inorganic to the organle-from biind force to conscious inteilect and will.

Sclence has fulfiled her funciion when she has ascertained and enunclated trutb; and were tbese pages addressed to men of science only, I should now close this essay, knowing that my colleagues have learned to respect nothing but evidence, and to belicve that their highest duty lies \ln submitting to lt , however lt may jar against their inclinations.

But desiring, as I do, to reach the wider circle of the intelligent pub.'c, It would be unworthy cowardice were I to lgnore tbe repugnance with which the majorlty of my rcaders are likely to meet the concluslons to which the most careful and conscientious study I have been able to give to this matter, has led me.

On all sldes I shall hear the cry-" We are men and women, not a merc better sort of apes, a littie longer In the leg, more compact In the foot, and bigger in braln than your brutal Chimpanzees and Gorillas. Tbe power of knowiedge - the consclence of good and evil - the pitiful tenderness of human affectlons, raise us out of all rcal fellowship with the brutes, however ciosely they may seem to approximate us."

To this I can only reply that the exclamation would be most just and would have my own entire sympathy, if it were only relevant. But, it ls nct I who seek to base Man's dignity upon hls great toe, or insinuate that we are lost If an Ape has a hippocampus minor. On the contrary, I have done my best to sweep away this vanlty. I have endeavourcd to show that no absolute structural line of demarcation; wider than that between the animals which immediately succeed us in the scale, can be drawn between the animal world and ourselves; and I may add the expression of my belicf that the attempt to draw a psychical distinction is equally futile, and that cven the highest facuities of feeling and of intellect begin to germinatc in lower forms of life.* At the same time, no one is

- It is so rare a pieasure for me to find Professor Owen's opinions in entire accordance with ny own, that I cannot forbear from quoting a paragraph whi. appeared in his Essay "On the Characters, etc., of the Cia. Mammalia," in the Journal of the Proceedings of the Linnean Sociely of London for 1857, but is unaccountably omitted in the " Reade Lecture" delivered before the University of Cambridge two years iater, which is otherwise ncarly a reprint of the paper in question. Prof. Owen writes:
" Not being abic to apprcciate or conceive of the distinction between the psychical phenomena of a Chimpanzee and of a Boschis-
more strongly convinced than I am of the vastncss of the gulf between civilized man and the brutes; or ls more certain that whetber from them or not, he ls assuredly not of them. No one is less disposed to think llghtly of the present dignity, or despalringly of the future hopes, of the only consclously lntelligent denizen of thls world.

We are indeed toid by those who assumc authority ln these matters, that the two scts of opinions are incompatible, and that the bellef in the unity of origin of man and brutes Involves the brutalization and degradation of the formcr. But ls thls rcally so ? Could not a sensible child confute, by obvious arguments, the shallow rhetorlcians who would force thls conclusion upon us? Is it, indeed, true, that the Poet, or the Philosopher, or the Artlst whose genius is the glory of his age, is degraded from hls high estate by the undoubted historical probability, not to say certainty, that he is the direct descendant of some naked and bestial savage, whose inteiligence was just sufficient to make him a iittie more cunning than the Fox, and by so much more dangerous than the Tiger? Or is he bound to howl and grovel on all fours because of the wholly unquestionabie fact, that he was once an egg, which no ordinary power of discriminatlon couid distinguish from that of a Dog? Or is the philanthropist or the salnt to give up his endeavours to iead a nobie life, because the simpiest study of man's nature reveals, at its foundations, all the seifish passions and ficrce appetites of the merest quadruped? Is mother-love vile hecause a hen shows it, or fideity base because dogs possess it ?

Tbe common sense of the mass of mankind will answer tbese questions without a moment's hesitation. Healthy humanity, finding ltseif hard prcssed to escape from reai sin and degradation, will icave the brooding over specuiative poilution to the cynics and the 'righteous overmuch "

[^40]who, disagreeing in everything eise, unite in biind insensibillty to the nobieness of the vislble world, and in inability to appreciate the grandeur of the piace Man occupics therein.

Nay more, thoughtful men, once escaped from the biinding influences of traditional prejudice, will ind in the lowiy stock whence man has sprung, the best cvldence of the spiendour of his capacities ; and will discern ln his long progress through the Past, a reasonable ground of falth in his attainment of a nobler Future.

They will remember that in comparing civilized man with the animal world, one is as the Alpine traveller, who sees the mountalns soaring into the sky and can hardiy discern where the deep shadowed crags and roseate peaks end, and where the clouds of heaven begin. Surely the awe-struck voyager may be excused if, at first, he refuses to believe the geologist, who tells him that these glorious masses are, after all, the hardened mud of prlmeval seas, or the cooled slag of subterranean furnaces-of one substance with the dullest clay, but ralsed by lnward forces to that place of proud and secmingly lnaccesslbie glory.

But tife gcologist is right; and due reflection on his ieachings, instead of dimlnishing our reverence and our wonder, adds all the force of intellectual subllmity to the mere æsthetle intultion of the uninstructed belioider.

And after passlon and prcjudlce have dled away, the same result will attend the teachings of the naturalist respectling that great Alps and Andes of the llving worldMan. Our revercnce for the nobility of manhoud will not be lessened by the knowledge, that Man is, in substance and in structure, one wlth the brutes; for, he alone possesses the marvelious endowment of lntelliglble and ralional speech, whercby, In the secular pcriod of his existence, he has slowly accumulated and organized the experience whlch is almost wholly lost wlth the cessation of every individual life in other animals; so that now he stands raised upon lt as on a mountain top, far above the level of hls humble fellows, and transfigurcd from his grosser nature by reflecting, here and therc, a ray from the infinite source of truth,

A succinct IIstory of the Controversy respecting the Cerebral Structure of Man and the Apes

Up to the year 1857 all anatomists of authority, who had occupici themselves with the cerebral structure of the Apes-Cuvier, Tieciemann, Sandifort, Vrolik, lsidore G. St. Hilaire, Schroeder van der Kolk, Gratiolet-were agreed that the brain of the Apes possesses a postenton lobe.

Tiedemann, In 1825, figured and acknowleciged in the text of his lcones the existence of the postrnion connu of the lateral ventricle in the Apes, not only under the title of ' Scrohiculus parvus loco cornu posterioris' - fact wilich has been paracied-but as 'cornu posterius' (Icones, p. 54), a cireumstance which has beea, as sedulously, kept in the background.

Cuvier (Lecons, T. ili. p. 103) says, " the anterior or lateral ventrieles possess a digital cavity [posterior cornu] oniy in Man and the Apes . . . Its presence depends on.that of the posterior lobes."

Schroeder van der Kolk and Vrolik, and Gratiolet, had also figured and described the posterior cornu in various Apes. As to the Hippocampus minon Tiedemann had erroneously asserted Its absence in the Apes; wut Seiroeder van der lioik and Vroiik had pointed out the existence of what they considered a rudimentary one in the Chimpanzee, and Gratioiet had expressly aflimed its existence in these animals. Such was the state of our information on these subjects in the year 1856.

In the year 1857, however, Professor Owen, either in ignorance of these weil-known facts or eise unjustifiably suppressing then, submitted to the Linnæan Society a paper "On the Characters, Principies of Division, and Priuary Groups of the Ciass Mammalia," which was printed in the Society's Journal, and contains the foliowing passage :-" In Man, the hrain presents an aseensive step in deveiopment, ihigiter and more strongiy marked than tiat by wilicir tho preeeding sub-ciass was distinguished from the one beiow it. Not only do the cerebrai hemispieres overiap the oifactory iobes and cerebeilum, but they extend in advauce of tise one and further back than the other. The posterior deveiopinent is so marked, that anatomists have assignedi to titat part tine charneter of a third lobe; it is peculiar to the genus Homo, and cqually peculiar is the postcrior horn of the lateral ventricle and the 'hippocampus minor,' which characlerise the hind lobe of each hemisphere."-Journal of the Proceedings of the Linnaean Society, Vol. ii. p. 19.
As the essay in witich this passage stands had no less ambitious an aim than the remodeiling of the ciassification of the Mammatia, its author might be supposed to havo written under a sense of peculiar responsibility, and to have tested, with especial eare, tho statements he ventured to promulgate. And even if this be expeet-

Ing too much, hastiness, or want of opportunity for due deliberation, cannot now be pieaded in extenuation of any shorteomings ; for the propositions eited were repeated two years afterwards in the Reade Leeture, delivered before so grave a body as the University of Cambridge, in 1859.

When the assertlons, which I have italieised in the nbove extraet, frat eame under my notice, I was not'a littie astonished at so nat a contradiction of the doctrines current among well-Informed anatomists ; but, not unnaturally lmagining that the delliberate statements of a responsibie person must have some foundaiion in laet, I deemed it my duty to Investigate the subjeet anew before the time at wbleh it wouid be my business to leeture thereupon came round. The result of my inquiries was to prove that Mr . Owen's tbree assertions, that "the third lobe, the posterior horn of the lateral ventricle, and the hippocampus minor," are "peculiar to the genus Homo," aro contrary to the plainest faets. I communicateci this conclusion to the students of my class; and then, having no deslre to embark in a controversy which could not redound to the honour of British science, whatever lts lssue, 1 turned to more eongenial occupations.

- The time speedily arrived, however, when a persistence in thls reticence would have involved me in an unworthy paltering with truth.
At the meeting of the British Assoelation at Oxford, in 1800, Professor Owen repeated these assertions in my presence, and, of eourse, I immediately gave them a direet and unqualified contradietion, pledging myself to justify that unusual proeedure elsewhere. I redeemed that pledge by publishin!' in the January number of the Natural History Review for 1861, an article wherein the truth of the three foliowing propositlons was fuliy demonstrated (1. c. p. 71):-
" 1 . Tbat the third lobe is neither peeuliar to, nor charaeteristie of, man, seeing that it exists in all the higher quadrumana."
" 2. That the posterior cornu of the latcral ventricle is neither peeuliar to, nor characteristic of, man, inasmuch as it also exists In the higher quadrumana."
"3. That the hippocampus minor is neither peculiar to, nor characteristie of, man, as it is found in certain of the higher quadrumana."

Furthermore, this paper eontains the following paragraph (p. 76):
"And lastiy, Schroeder van der Koik and Vroilk (op. cit. p. 271), tbough they partieuiariy note that ' the lateral ventricie is distingulsbed from that of Man by the very defectlve proportions of the posterior cornu, wherein only a stripe is visibic as an Indication of the hippoeampus minor ;' yet the Figure 4, in their second Plate, sbows that this posterior cornu is a perfectly distinet and unmistakeable structure, quito as large as it often is in Man. It is the more remarkable that Professor Owen should have overlooked the explicit statement and figure of tbese anthors, as it is quito obvious, on comparison of the figures, that his woodeut of tho
brain of a Chimpanzee (1. c. p. 10) is a reduced copy of the second figure of Messrs. Schroeder van der Kolk and Vrollk's first Fiate.
"As M. Gratlolet (l. c. p. 18), however, is careful to remark, - unfortunately the brain which they have taken as model was greatly altered (profondement affaiss'), wbence the general form of the braln is given in these plates in a manner which is altogether Incorrect.' Indeed, it is perfectly obvious, from a comparison of a section of the skull of the Chimpanzee with these figures, that such is the case; ani It ls greatly to be regretted that so Inadequate a figuro should have been taken as a typical representation of the Chimpanzee's braln."

From this tlme forth, the untenablity of hls position might have been as apparent to Professor Owen as it was to every one else; but, so far from retracting the grave errors lnto whlch he had fallen, Professor Owen has persisted In and relterated thein ; first. In a lecture delivered before the Royal Institution on the $\mathbf{1 9 t h}$ of March, 1861, whlch is admitted to bave been accurately reproduced In the Athensum for the 23rd of the same month, In a letter addressed by Professor Owen to that journal on tia? 30th of March. The Athenaum report was accompanied by a diagram purporting to represent a Gorilla's brain, but in reality so extraordinary a nisrepresentation, that Professor Owen substantiaily, though not explleitly, withdraws it in the letter in question. In aniending this error, however, Professor Owen fell Into anotber of much graver Import, as his communicatlon concludes with the following paragraph: "For the true proportion in which the cervirum covers the cerebellum In the highest Apes, reference should be made to tbe figure of the undissected brain of the Chlmpanzec In iny Reade's Lecture on the Classiflcation, elc., of the Mammalla, p. 25, fig. 7, 8vo, 1859."

It would not be credible, if it were not unfortunately true, that this figure, to which the trusting public is referred, wlthout a word of quallfcation, " for the true proportion in whish the cercbrum crvers the cerebelium In the hlghest Apes," is exactly that unacknowledged copy of Schroeder van der Kolk and Vrolik's figure whose utter lnaccuracy had been pointed out years before by Gratiolet, and had been brought to Professor Owen's knowiedge by myself in the passage of my article In the Natural History Review above quoted.

I drew public attention to this circumstance again In my reply to Professor Owen, published In the Athensum for Aprll 13th, 1861; but the exploded figure was reproduced once more by Professor Owen, without the slightest allusion to Its inaccuracy, in the Annals of Natural History for June 1861 I

This proved too much for the patience of the original authors of the figure, Messrs. Schroeder van der Kolk and Vrolik, who, In a note addressed to the Academy of Amsterdam, of which they ware members, declared tbemselves to be, though declded opponents
of all furms of the doetrine of progressive development, above all things, lovers of truth: and that, therefore, at whatever risk of seening to lend support to views which they disliked, tirey feit it tieir duty to toko the first opportunity of publlely repudlating P'rofessor Owen's milsuse of thelr authority.
in this note they frankly admilted the Justice of the critlelsms of M. Gratlolet, quoted above, and they lilustrated, by new and eareful figures, tine posterior lobe, the posterior cornu, and the hippocampus minor of the Crang. Furthermore, having demonstrated tiie parts, ot one of the sittings of tise Academy, they add, " la présence des partles contestées y a été universeliement reconnue par les anatomistes presents à la scanee. Le seul doute qul soit resté se rapporte au pes flipiocampi ininor. . . . A l'état frais i'indiice du petit pied d'flippocompe étall plus pronnncé que malntenant."

Professor Owen repented his erroneous assertions at the meeiling of the Britisli Association in 186t, and ogain, without ony obvlous necessity, and without addueing a single new faet or new argument, or being able in any way to meet the erusiing evidence from orginal dissections of numerous Apes' brains, which had in the meanwhile ieen brought forward by Prof. Roileston," F.R.S., Mr. Marsinall, \dagger f.,R.S., Mr. Flower, \ddagger Mr. Turner, ρ and myseif, |l revived the subject at the Cambridge meeting of tise same body in 1862. Not content with the tolerably vigorous repudlation which these unprecedented proceedings met with In Seetlon D, Professor Owen sanctioned the publication of a crsion of hls own staterients, accompanied by a strange misrejresentation of mine (as may be soen by comparison of the Timrs report of the discussion), In the Medicai Times for October 1ith, 1862. I subjoin the conclusion of my reply in the some Journof for October 25th.
" If this were a question of opinion, or a question of interpretation of parts or of terms,-were it even a question of ohservotion in which the testimony of my own senses alone was pitted against that of another person, f should odopt a very different tone in discussing this matter. if sbould, in all humiiity, admit the likelihood of faving myself erred in Judgment, failed In knowledge, or been blinded by prejudice.
" But no one pretends now, that the controversy is one of terms or of opinions. Novef and devoid of authority as some of Professor

* On the Aminities of the Brain of the Orang. Nat. Ilisl. Review, Aprii, 186 f.
\dagger On the Broin of a young Chimpanzee. Ibid., July, 1861.
\ddagger On the Posterior lobes of the Cerebrum of the Quadrumaria. Philosophical Transoctions, 1862.
δ On the onatomical Relations of the Surfaces of the Tentoriumi to tinc Cerebrum and Cerebellum in Man and the fower Mammals. Proceedings of the Royoi Sociely of Edinburgh, March, 1862.

IIOn tbe Broin of Ateles. Proceedings of Znifngicol Socirig, 1861.

Owen's proposed dielnilions may have been, they inifin'. be accepted without chonging the great feotures of the caso. Itence, though upecial investigations into theso inotters have been undertaken during the lost two years by Dr. Alien Thomsan, by Dr. Rolicston, by Atr. Atnrshnili, and by Atr. I-iower, ali, as you are aware, anntomists of reputo in this country, and by Professars Schrocier Van der Koik, and Vrolik (whom Professor Owen incaulionsiy tried to press inta his own service) on the Continent, ail t dobio and consciciations observers have with ano acenrd testifled to the accurocy of my statements, ant to the utter baseiessness of tho assert!ons of Professor Owen. Even the venerabie Iludolph Wagner, whom no man will noruse of progressionist procilvities, has raised his volee on tho same side; whilic not o single onatomist, great or smail, has supported Professor Owen.
"Now, I do not mean to suggest that selentinc differences shoutd be settied by universat suffrage, but I do conceive that solid proofs must bo met by something more than empty and unsupporied assertions. Yet during the two years tioreugh which this preposterous controversy has dragged its weory iength, Professor Owen has not ventured to wring forward a singlo preparation l's support of this often-repeoted assertions.
"Tho case stands thus, therefare:-Not oniy are tho statements made by wie in consanance with the doctrines of tho best oider suthorities, and with those of oit recent Investigators, but 1 am quite ready to demanstrate them on the first monkey that coines to hand; white Professor Owen's assertions are not oniy in dianictrieat epposition to both otd ond new nuthorities, but he hos not produced, and, I will add, cannot produce, a singio preparation which justiles them."

I now teave this subject, for the present.-For the credit of my catiling I shoutd be gtod to be, hereafler, for over sitent upon it. But, unfortunoteiy, this is a matter upon which, after alt that has occurred, no mistoke or confusion of terms is possibte-ond in affrming thot the posterior lohe, the posterior cornu, and the hippocampus minor exist in certain Apes, I am staling elther that which is true, or that which I must know to be faise. The question has thus become one of personat veracity. For myseif, I wift necept no other issue than this, gravo as it is, to the present controversy.

ON SOME FOSSIL REMAINS OF MAN

I have endeavoured to show, in the preceding Essay, that the Antmopini, or Man Family, form a very well defned group of the Primates, betw,en which ay the immed^{\prime} tely following Family, the Catanisini, there is, in the c. ting world, the same entire absence of any transitional form or connecting link, as between the Cataritins and platyahini.

It is a commonly received doctrine, however, that the structural intervals ketween the various existing modifcations of organic beings may be diminished, or even obliterated, If we take into account the long and varied succession of animais and plants which have preceded these now living and which are known to us only by their fossilized remains. How far this doctrine is well based, how far, on the other hand, as our knowledge at present stands, It is an overstatement of the real facts of the case, and all exaggeration of the conclusions fairly deducible from them, are points of grave importance, but into $t e d i s-$ cussion of which I do not, at present, propose to enter. It is enough that such a view of the relations of extinct to living beings has been propounded, to lead us 10 inquire, with anylety, how far the recent Uscoveries of Iuman remains in a fossil state bear out, or oppose, that view.

I shali confine myself, in discussing this question, to ihose fragmentary Human skulis from the caves of Engis in the valley of the Meuse, In Belglum, and of the Neanderthal near Dusseldorf, the geological relations of which have been examincd with so much care by Sir Charles Lyell; upon whose high authority I shall take it for granted, that the Engls skull belonged to a contemporary of the Mammoth (Eiephas primigenius) and of the woolly Rhinocero: (Rhinocerus tichorhinus), with the bones of which It was found assoclated ; and that the Neanderthal skull is of great, though uncertain, antiquity. Whatever be the geological age of the latter skull, I concelve it is quite sate (on the ordinary principles of paleontological reasoning) to assumẹ
that the former takes us to, at icast, the further side of the vague biologieal limit, which separates the present geoiogical epoch from that which immediately preceded It. And there can be no doubt that the physical geography of Europe has ehanged wonderfully, slnee the bones of Men and Mammoths, Hyanas and Rhinoceroses were washed peil-mell Into the eave of Engls.

The skull from the eave of Engis was originaliy diseovered by Profeasor Schmerling, and was described by him, together with other human remalns dlsinterred at the same time, In hls valuable work, Recherches sur les ossemens fossilies découverls dans les cavernes de la Province de Llege, puhilished in 1833 (p. 59, et seq.), from whlch the following paragraphs are extracted, the preelse expressions of the author helng, as far as posslhie, preserved.
" In the first place, I must remark that these human remalus, willch are in my possession, arc charaeterized, like the thousands of honcs whleh I have lately heen disinterring, by the extent of the decomposilion which they have undergone, which ls precisely the samc as that of the extirict speeies : all, with a tew exceptlons, are broken; some fcw are rounded, as is frequently found to be the case in fossil remalns of other speeles. The fractures are vertleal or ohilque; none of them are eroded; thelr colour does not differ from that of other fossil boncs, and varies from whitish yellow to hlacklsh. All are ilghter than reeent licnes, with the exception of those whleh have a calcareong inciustation, and the cavities of which are filied with such matter.
"The cranium whleh I have caused to be figuicd, Plate 1., Flg3. :, 2, is that of an oid person. The sutures are beginning to he effaced : all the faclal hones are wantling, and of the temporal honcs only a fragment of that of the right slde Is pressrved.
" The face and the hase of the cranium had heen detached before the skull was deposited in the cave, for we wcre unuhle to find those parts, though the whole eavern was regularly searched. The cranlum was met with at a depth of a metre and a half [five feet ncarly], hldden under an osseous hrecela, composed of the remains of small animals, and contalning one rhinoceros tusk, with several. teeth of horscs and of ruminants. This breecla, which has been spoken of above (p. 30), was a metre [3 t feet about] wide, and rose to the height of a metre and a hall ahove the fioor of the cavern, to the walls of which it adhered strongly.
" The earth which contalned this human skuil exhibited no trace of dlsturbance: teeth of rhinoceros, horse, hyæna, and bear, surrounded it on ail sides.
"The famous Blumenbach * has directed attention to the differences presented by tine form and the dimenslons of human cranla of dlfferent races. This important work would have asslsted us greatiy, if the face, a part cssential

Fio. 22. The skull from the cave of Engis-viewed from tbe right side. a glabella, b occipital protuberance, (a to b glabello-occipltal line), c auditory foramen.
for the determlnatlon of race, with more or less accuracy, had not bcen wanting \ln our fossii cranium.
" We are convinced that even if the skull had been complete, it would not have been posslbie to pronounce, wlth certainty, upon a single spccimen; for indlvidual variatlons are so numerous in the cranla of one and the same race, that one cannot, without laylng oneself open to large chances of error, draw any inference from a single fragment

* Decas Collectionis suæe craniorum diversarum gentium illustrata. Gottinge, 1790-1820.

ON SOME FOSSIL REMAINS OF MAN 301

of a cranlum to the general form of the head to which it belonged.
" Nevertheless, ln order to neglect no polnt respecting the form of thls fossil skull, we may obscrve that, from the first, the elongated and narrow form of the forehead attracted our attentlon.
" In fact, the sllght elevation of the frontal, Its narrowness, and the form of the orblt, approximate it more nearly to the cranlum of an Ethloplan than to that of an European: the elongated form and the produced oeclput are also characters whlch we helleve to be observable ln our fossil cranlum ; but to remove all doubt upon that subjeet I have eansed the contours of the cranlum of an European and of an Ethioplan to be drawn and the forehcads represented. Plate II., Figs. 1 and 2, and, In the same plate, Flgs. 3 and 4, wlll render the differences easily distingulshable; and a slngle glance at the figures will be morc instructive than a long and wearisome description.
" At whatever coneluslon we may arrive as to the orlgin of the man from whence thls fossll skull proceeded, we may express an opinlon without exposing ourselves to a frultless controversy. Eaeh may adopt the hypothesls which seems to him most probable: for my own part, I hold it to be demonstrated that this cranlum has belonged to a person of llmited Intellectual facultles, and we conclude thence that It belonged to a man of a low degree of civillzation : a deductlon whlch is borne out by contrasting the capaclty of the frontal with that of the occlpital region.
" Another cranium of a young lndivldual was dlscovered In the floor of the cavern beside the tooth of an elephant ; the skull was entlre when found, but the moment It was lifted It fell into pieces, whlch I have not, as yet, been able to put together again. But I have represented the bones of the upper jaw, Plate I., Flg. 5. The state of the alveoll and the teeth, shows that the molars had not yet plerced the gum. Detached milk molars and somc fragments of a human skull procced from this same place. The Flgure 3 represents a human supcrior Inclsor tooth, the size of whlch Is truly remarkable.*
" Figure 4 is a fragment of a superior maxillary bonc,

[^41]the moiar teeth of which are worn down to the roots.
" I possess two vertebra, a first and last dorsal.
" A clavicie of the ieft side (see Plate III., Fig. 1); although It belonged to a young individual, this jone shows that he must have been of great stature.*
" Two fragments of the radlus, badly preserved, do not indicate that the height of the man, to whom they belonged, cxceeded five feet and a balf.
"As to the remains of tbe upper extremitles, those which are in my possesslon conslst merely of a fragment of an ulna and of a radlus (Plate III., Figs. 5 and 6). -
" Figure 2, Piate IV., represents a metacarpal bone, contained ln tbe breccla, of whlch we have spoken; it was found \ln the iower part above the cranium : add to thls some metacarpai bones, found at very diffcrent distances, ?lalf-a-dozen melatarsals, three phalanges of the hand, and one of tbe foot.
"This is a brief enumeration of the remains of human bones coilected in the cavern of Engls, which has prescrved for us the remains of three individuals, surrounded by those of the Eiephant, of the Rhinoccros, and of Carnivora of species unknown in the present creation."

From the cave of Engihoul, opposite that of Engis, on the right bank of the Meuse, Schmerling obtalned the remains of three other individuals of Man, among which were only two fragments of parietal bones, but many bones of the extremities. In one case, a broken fragment of an ulna was soldered to a like fragment of a radius by stalagmite, a condition frequently observed among the bones of the Cave Bear (Ursus spelæus), found in tbe Belgian caverns.

It was in the cavern of Engis that Professor Schmering found, Incrusted with staiagmite and joined to a stone, the polnted bone implement, which he has figured in Flg. 7 of his Piate XXXVI., and worked flints were found by him in all those Beigian caves, which contained an abundance of fossii bones.

A short letter from M. Geofiroy St. Hilaire, pubished in the Comples Rendus of the Academy of Sciences of Paris, for July 2nd, 1838, speaks of a visit (and apparently

[^42]a very hasty onc) paid to the coliection of Professor 'Schermidt ' (which is presumably a misprint for Schmerling) at Liege. The writer briefly criticises the drawings which lliustrate Schmering's work, and aflims that the " human cranium is a iittic ionger than it is reprcsented" in Schmering's figure. The oniy other remark worth quoting is this:-"The aspect of the human bones differs iittic from that of the cave bones, with which we are familiar, and of which there is a considerabie coliection in the same place. With respect to their special forms, compared with those of the varieties of recent human crania, few certain conclusions can be put forward; for much grater differences exist between the different specimens of well-characterized varieties, than between the fossil cranium of Liege and that of onc of those varicties selected as a term of comparison."

Gcoffroy St. Hilaire's remarks are, it wlli be observed, littie but an echo of the philosophic doubts of the describer and discoverer of the remains. As to the critique upon Schmeriing's ngures, I find that the side view given by the iatter is really about $\frac{3}{10}$ ths of an inch shorter than the original, and that the front view is diminished to about the same extent. Otherwise the representation is not, in any way, inaccurate, but corresponds very well with the cast which is in my possession.

A piece of the occipital bonc, which Schmering seems to have missed, has since been fitted on to the rest of the cranium by an accompilished anatomist, Dr. Spring, of Liege, under whose direction an cxcelient plaster cast was made for Sir Charies Lyeli. It is upon and from a dupilicate of that cast that my own observations and the accompanying figurcs, the outlines of which are copied from very accurate Camera lucida drawings, by my friend Mr. Busk, reduced to one-half of the natural size, are made.

As Professor Schmerling observes, the base of the skuil is destroyed, and the facial bones are entirely absent; but the roof of the cranium, consisting of the frontal, parietal, and the greater part of the occipital bones, as far as the middie of the occipital foramen, is entire or neariy so. The left temporal bone is wanting. Of the right temporal, the parts in the immediate neighbourhood of the auditory foramen, the mastoid process, and a considerabie portion of the squamous element of the temporal are well preserved (Fig. 22).

304 ON SOME FOSSIL REMAINS OF MIAN

The lines of fracture whicil remain between the coadjusted pieces of the skuil, and are faithruily dispiayed in Schmeriing's figurc, arc readily traceable in ticc cast. Tiie sutures arc aiso dlscernibie, but the complex dlsposition of their serrations, shown in the figure, is not obvious in the cast. Though the ridges which give attaciment to muscles are not excessivcly prominent, they are weii marked, and taken together with the apparently well developed frontal sinuscs, and the condition of the sutures, ieave no doubt on my mind that the skuil is that of an adult, if not middie-aged man.

The extreme length of the skuii is 7.7 inches. Its extreme breadth, winich corresponds very ncariy with the interval between the parietal protuberances, is not more than 5.4 inches. The proportion of the iength to-the brcadth is therefore very nearly as 100 to 70 . If a iine be drawn from the point at which the brow curves in towards the root of the nose, and which ls cailed the 'glabella' (a) (Fig. 22), to the occipltai protuberance (b), and the distance to the hlghest point of the arch of the skuil be measured perpendiculariy from this line, it wili be found to be 4.75 inches. Vlewed from above, Flg. 23, A, the forehead presents an evenly rounded curve, and passes into the contour of the sides and back of the skull, which describes a tolerably reguiar ciifiptlcal curve.

The front vlew (Fig. 23, B) shows that the roof of the skull was vcry reguiarly and elegantly arched in the transverse direction, and that the transverse diameter was a littlc less below the parietal protuberances, than above them. The forchcad caunot be calied narrow in relation to the rest of the skull, nor can it be cailed a retreating forehead; on the contrary, the antero-posterior contour of the skull ls weli arched, so that the distance along that contour, from the nasal depression to the occipital protuberance, measures about 13.75 inches. The transverse arc of the skuil, measured from cne auditory foramen to the other, across the middle of the sagittai suture, is about 13 inches. The sagittal suture itseif is 5.5 inches iong.

The supracillary prominences or brow-ridges (on each side of a, Fig. 22) are wcll, but not excesilvely, deveioped, and are separated by a medlan depression. Their principal elevation is disposed so obllqucly that I Judge tiem to be due to large frontal sinuses.

If a iine joinlng the glabcila and the occipltal protuber-
ance (a, b, Fig. 22) be madic horlzontal, no part of the occlpital region projects more than ibth of an ineh behind the posterlor cxiremilty of that lline, and the upper calge of the audltory foramen (c) is almost in contact with a llne drawn parallel with thls upon the outer surface of the skull.

A transverse lline drawn from one audltory foramen to the other traverses, as usual, the forepart of the oecipltal foramen. The capacity of the Interior of this fragmentary skull has not been ascertalned.

The history of the Human remains from the eavern in the Neanderthal may best be glven in the words of thelr orlginal describcr, Dr. Sehaaffhausen,* as transtated by Mr. Busk.
"In the early part of the year 1857, a human skeleton was discovered In a limestone cavc in the Neanderthal, ncar Hochdal, between Düsseldorf and Elberfeld. Of this, however, I was unable to procure more than a plaster east of the cranlum, taken at Elberfcld, from whleh I drew up an arcount of Its remarkable conformation, which was, In the first Instance, read on the 4th of February, 1857, at the meeting of the Lower Rhinc Mcdleal and Natural History Soclety, at Bonn. \dagger Subsequently Dr. Fuhlrott, to whom sclence Is Indebted for the preservatlon of these bones, whleh were not at first regarded as human, and Into whose possession they afterwards came, brought the eranlum from Elberfeld to Bonn, and cntrusted it to me for more aecurate anatomical examinatlon. At the Gereral Mecting of the Natural History Soclety of Prussian Rhilneland and Wcstphalia, at Bonn, on the 2nd of June, 1857, \ddagger Dr. Fulilrott himsclf gave a full account of the locality, and of the clreumstanecs under which the discovery was made. He was of opinion that the bones mlght be regarded as fossil; and in coming to this eonelusion, he laid cspeclal stress upon the existence of dendritie deposits, wlth which their surface was covered,

[^43]

Fig. 23.-The Engti isull viewed trom above (A) and in front (B)
and which were first noticed upon them by Professor Meyer. To this communication I appended a brief report on the results of my anatomical examination of the bones. Tbe conclusions at which I arrived werc:-1st. That the extraordinary form of the rkull was due to a natural conformation hltherto not known to exist, even in tbe most barbarous races. 2nd. That these remarkabie human remains beionged to a period antecedent to the time of the Celts and Germans, and were in ail probabillty derived from one of the wild races of Northwestern Europe, spoken of by Latin writers; and which were encountered as autochthones by the German immigrants. And 3rdly. That it was bcyond doubt that these human reifics werc traccable to a period at which the latest animals of the diluvium stlll existed; but that no proof of this assumption, nor conscquentiy of their so-termed fossil condition, was afforded by the circumstances under wbicb the bones were discovercd.
"As Dr. Fuhirott has not yet pubilished hls descriptlon of these circumstances, I borrow the following account of them from onc of his letters. 'A small cave or grotto, higb enough to admit a man, and about 15 feet decp from the entrancc, whicb is 7 or 8 feet wide, exists in the southern wall of the gorge of the Neanderthal, as It is termed, at a distance of about 100 feet from the Dussel, and about 60 feet above the bottom of the valiey. In Its earlier and uninjured condition, this cavern opened upon a narrow plateau lying in front of it, and from which the rocky wall descended almost perpendicularly into the river. It could be reachcd, though with diffcuity, from above. Tbe uneven floor was covercd to a thickness of 4 or 5 feet wlth a deposit of mud, sparingly intermixed with rounded fragments of chert. In the removing of this deposit; the bones were diseovered. The skull was first notlced, placed nearest to the entrance of the cavern ; and further in, the other bones, lying in the same horizontal plane. Of thls I was assured, in the most positive terms, by two labourers who were empioyed to ciear out the grotto, and wbo were questloned by me on the spot. At first no idea was entertained of the bones belng human ; and it was not tili several weeks after their discovery that they were recognised as such by me, and placed in security. But, as the lmportance of the discovery was not at tbe time perccived, the iabourcrs werc very careiess in tbe collecting,
and secured chlefly only the larger bones; and to thls circumstance It may be attributed that frapments merely of the probably perfect skeleton came Into my possesslon.'
" My anatomical examination of these bones aflorded the following results :-
"The cranlum is of unusual size, and of a long elliptlcal form. A most remarkable pecullarlty is at once obvious In the extraordlnary development of the frontal slnuses, owing to whlch the supercllary ridges, which coalesce completely \ln the middle, are rendered so prominent, that the frontal bonc cxhllilts a consldcrable hollow or depresslon above, or rather bchind them, whllst a decp depression ls also formed In the sltuation of the root of the nose. The forchead is narrow and low, though the middle and hinder portlons of the cranlal arch are well developed. Unfortunately, the fragment of the skull that has been preserved conslsts only of the portlon sltuated above the roof of the orblts and the supcrior occlpltal rldges, whlch are greatly devcioped, and almost conjolned so as to form a horizontal cminence. It lncludes almost the whole of the frontal bonc, both parictals, a small part of the squamous and the upper-third of the occlpltal. The recently fractured surfaces show that the skull was broken at the tlme of its dlsinterment. The cavlty holds 16,876 gralns of water, whence lts cublcal contents may be estimated at 57.64 Inches; or 1033.24 cuble centimetres. In making thls estimatlon, the water Is supposed to stand on a level with the orbltal plate of the frontal, with the deepest notch \ln the squamous margin of the parietal, and wlth the superior semlcircular rldges of the occlpltal. Estimated \ln drled mllet-sced, the contents equalled 31 ounces, Prusslan Apothecarles' welght. The semlclrcular llne Indicating the upper boundary of the attachment of the temporal muscle, though not very strongly marked, ascends nevertheless to more than half the height of the parletal bone. On the right superclllary ridge is observable an obllque furrow or depression, Indlcatlve of an Injury recelved during life.* The coronal and sagittal sutures are on the extcrlor nearly closed, and on the Inside so completely osslfied as to have left no traces whatever, whilst the lambdoidal remains quite open. The depresslons for the Pacchlonlan glands are dcep and numerous; and there

[^44]
ON SOME FOSSIL REMAINS OF MAN

ts an unusually deep vascular groove immediately behind the coronal suture, whieh, as it terminates in a foramen, no doubt transmilted a vena emissaria. The course of the frontal suture is indicated externally by a sllght ridge ; and Where it jolns the coronal, this ridge rises into a small protuberance. The course of the sagittal suture is grooved, and ahove the angle of the occipltal hone the parletals are depressed.

The length of the skull from the nasal process of the frontul over the vertex to the superior semicirenlar lines of the occipital measures
Cireunference over the orbital ridges and the superior semicireuiar lines of the occipital
Width of the fromtal from the mididle of $590(590)=23.37^{\circ}$ or 23°. the temporal line on one sile to the same point on the opposite
Length of the frontnl from the nasal process to the coronal suture
$10.1(114)=4.1^{\circ}-4.5^{\circ}$.
Extrems width of the frontal sinuses
Vertleal heigit ahove a line joining the deepest notches In the squamons border . of the parietals
Width of hinder part of sknll from one parietal protuberance to the other
Distance from the upper angle of the $303(300)=12.0^{\circ}$.
mm.
ocelpital to the superior semietreniar lines
Thickness of the bone at the parietal protuberance

| protuberance | |
| :--- | :--- | :--- |
| at the angle of the occipital | 8. |

-at the superior semicircliar fine of the ocalpital
"Besldes the eranium, the following bones have been secured:-

$$
10
$$

$$
=0.3^{\circ}
$$

$133(125)=5.25-5$
$25^{5}(23)=1.0^{\circ}-0.9^{\circ}$.
$70=2.75^{\circ}$.
$138(150)=5.4^{\circ}-5.9^{\circ}$.
$51(60)=1.9^{\circ}-2.4^{\circ}$.
.
"1. Both thigh-bones, perfect. These, like the skull, and all the other bones, are characterized by thelr unusual thickness, and the great development of all the elevations and depressions for the attaehment of muscies. In the Anatomical Museum at Bonn, under the designation of 'Glant's-bones,' are some reeent thigh-bones,

[^45]
310 ON SOME FOSSIL REMAINS OF MAN

with which in thickness the forcgoing pretty nearly correspond, although they are shorter.

Glant's bones. Fonsll bones. mm. mm .
Length $542=21.4^{\circ}$. $438=17.4^{\circ}$
Dlameter of head of femur , . $54=2.14^{\circ}$. $53=2.0^{\circ}$
" of lower articular end, from
one condyle to the other $\quad . \quad .89=3.5^{\circ} . .87=3.4^{\circ}$
Dlameter of femur in the middlo $\quad .33=1.2^{\circ} \ldots 30=1.1^{\circ}$
"2. A perfect right humcrus, whose size shows that it beiongs to the thigh-bones.
Length \quad. \quad. $312=12.3^{\circ}$
Thickness in the middle \quad. \quad. $26=1.0^{\circ}$
Dlameter of head . $\quad 49=1.9^{\circ}$
" Aiso a pcrfect right radius of corresponding dimensions, and the upper-third of a right ulna corresponding to the humerus and radius.
" 3. A ief: humerus, of which the upper-third is wanting, and which is so much sienderer than the right as apparently to beiong to a distinct individual ; a ieft ulna, which, though compictc, is pathoiogicaliy deformed, the coronoid process being so much enlarged by bony growth, that flexure of the elbow beyond a right angle must have been impossible; the anterior fossa of the humerus for the reception of the coronoid process being also filled up with a similar bony growth. At the same time, the oiecranon is curved strongly downwards. As the bone presents no sign of rachitic degeneration, it may be supposed that an injury sustained during life was the cause of the anchyiosis. When the left uina is compared with the right radius, it might at first sight be conciuded that the bones respectively belonged to different individuais, the ulna being more than haif an inch too short for articulation with a corresponding radius. But it is cles', "hat this shortening, as weil as the attenuation of the ie"t humerus, are both consequent upon the pathological condition above described.
"4. A ieft ilium, almost pcrfect, and beionging to the femur; a fragment of the right scapula; the anterior extremity of a rib of the right side; and the same part of a rib of the ieft side; the hinder part of a rib of the right side ; and, lastly, two hinder portions and one middle portion of ribs, which, from their unusuaily rounded shape,
and abrupt curvature, more rescmbio the ribs of a carnivorous animal than thoso of a man. Dr. H. v. Meycr, however, to whoso judgment I defer, wili not venturo to declare them to be ribs of any animal; and it only remains to supposo that this abnormal condition has arisen from an unusualiy powerfui deveiopment of the thoracic muscies.
" Tho bones adhere strongly to the tonguc, although, as proved by tho use of hydrochiorie acid, the greater part of the cartllago is stili retaincd in them, which appears, however, to have undergone that transformation into geiatino which has been observed by v. Bibra in lossii bones. The surface of ali the boncs is in many spots covered with minute biack specks, which, more especialiy under a iens, are scen to be formed of very delicato dendrites. These deposits. which were first observed on the bones by Dr. Meyer, aro most distinct on the inner surface of the cranial boncs. They consist of a ferruginous compound, and, from their biack coiour, may he supposed to contain manganese. Similar dendritic formations aiso occur, not unfrequentiy, on laminated rocks, and are usualiy found in minute fissures and cracks. At tho meeting of the Lower Rhine Society at Bonn, on the 1st Aprii, 1857, Prof. Meycr stated that he had noticed in the museum of Poppeisdorl similar dendritic crystalizations on sevcral fossil bones of animais, and particuiariy on those of Ursus spelaus, but stili more abundantiy and beautifully dispiayed on the fossll bones and teeth of Equus adamilicus, Elephas primigenius, etc., from the caves of Boive and Sundwig. Faint indications of simllar dendrites were visible in a Roman skuil from Sicgburg; whilist other ancient skuils, which had lain for centuries in the earth, presented no trace of them.* I am indebtcd to H. v. Meyer for the following remarks on this subject :-
'The incipient formation of dendritic deposits, which were formeriy regarded as a sign of a truiy fossil condition, is interesting. It has even bcen supposed that in diluvial deposits the presence of dendrites might be regarded as affording a certain mark of distinction between bones mixed with the diluvium at a somewhat later period and the true dlluvial relics, to which aione it was supposed that these deposite were confined. But I have long been convinced that n cher can the absence of dendrites be regarded as indicative of recent age, nor their presence as

[^46]
312 ON SOME FOSSIL IRLMAINS OF MAN

sufficient to e:stablisht the great anllejulty of the objects upon whilel they oceur. I have myself noticed upon paper, which could seareely be moro than a year old, dendrilie deposits, whilh could not he disilngulshed from those on fossil bones. Thus I possess n tog's skuli from the Roman colony of tho nelghbouring Heddersheim, Castrum Hadrianum, which is In no way distingnishable from the fossil bones from the lirankish enves; it presents the same colour, and adheres to the tongne just as they do ; so that thls character also, which, at a former meeting of German naturallsts at Bonn, gave rise to amusing seenes between Buekland and Schmerilng, is no ionger of any value. In disputed eases, therefore, the condiltion of the bone can scarcely afford the means for determining with eertainty whether it be fossill, that is to say, whether it belong to geoiogleal antiquity or to the historleai period.'
"As we cannot now look upon the priml!lve world as representing a wholly different condition of things, from whieh no transition exists to the organle life of the present time, the designation of fossil, as applled to a bone, has no longer the sense it conveyed In the time of Cuver. Suflieient grounds exist for the assumption that man cocxisted with the animals found in the diluvi::n: and many a barbarous race may, before nil historical time, have disappeared, together with the animais of the ancient worid, whilst the races whose organization is improved have contlnued the genus. The benes willeh form the subject of this paper present characters which, although not decisive as regards a geologleal epoch, arc, nevertheless, such as indicate a very high antiquity. It may also be remarked that, common as is the occurrence of dlluvial animal bones in the muddy deposits of caverns, such remalns have not hiltherto heen met with in the caves of the Neanderthai ; and that the bones, which were covered ly a deposit of mud not more than four or flve fect thick, and without any protective eovering of stalagmite, have retained the greatest part of their organic substance.
"These eireumstances might be adduced agalnst the probabillty of a geoiogleai antlquity. Nor shouid we be justified in regarding the cranlal conformation as perhaps representing ti.e most savage primitive type of the human race, since crania exist among living savages, which, though not exhihiting, such a remarkable conformation of

ON SOME POSSIL REMAINS OF MAN 313

the forchead, which gives the sknil somewhat the aspect of that of the large apes, still in other respects, as for instance in the greoter depth of the temporol lossoc, the crest-ike, prominent temporai ridges, and o generaliy iess capacious croniai cavity, exhibit on equaily fow stoge of deveiopment. There is no reason for supposing thot the deep frontai hoilow is duo to ony ortincioi finttening, suci os is practised in various modes by barborous notions in tho Oid ond New Worid. The skuil is quite symmetrical, ond shows $n o$ indication of counter-pressure at the occiput, wilist, according to Morton, in the Fiot-hends of the Coiumbia, the frontal and porietal bones ore aiways unsyinmetricoi. Its conformalion exhibits the sparing development of the anterior part of the head which has been so often observed in very nncient cranio, and offords one of the most striking proofs of the influence of cuiture and civilization on the form of tho human skuil."

In o subsequent passage, Dr. Sciaaffhousen remarks :
" There is no rcoson whatever for regarding the unusuai deveiopment of the frontri sinuses in the remarkabie skuli from the Nenndertial os an individual or pathoiogical deformity; it is unquestionabiy a typical race-choracter, and is pilysiologicaily connected with the uncommon thickness of the other boncs of tie skeleton, which exceeds by obout one-haif the usuai proportions. This expansion of the frontal sinuses, which are appendages of the airpassages, oiso indicates an unusual force ond power of endurance in the movements of the body, as may be conciuded from the size of all tife ridges and processes for the nttacinnent of the muscies or bones. That this conclusion may be drawn from the existence of iarge frontal sinuses, ond a prominence of the lower frontal region, is conflmed in many ways by other observations. By the same charocters, according to Pailas, the wild horse is distinguished from the domesllcated, and, occording to Cuvier, the fossil cave-bear from every recent species of bear, whilst, according to Rouiln, the pig, which has become wild in America, and regained a resembiance to the wild boar, is thus distinguished from the same animal in the domesticated state, as ls the chamols from the goat ; and, lastly, the bull-dog, which is charocterlsed by its inrge bones and strongiy-deveioped muscles from every other kind of dog. The estimation of the faciai angle, the determination of whicin, according to Professor Owen, is also dimeuit in

314 ON SOME FOSSIL REMAINS OF MAN

the great apes, owing to the very prominent supra-orbital ridges, in the present case is rendered stiil more difficuit from the absence both of the auditory opening and of the nasal spine. But if the proper horizontai position of the skull be taken from the remaining portions of the orbital piates, and the ascending line made to touch the surface of the frontal bone behind the prominent supra-orbital ridges, the faciai angie is not found to exceed $56^{\circ} .+$ Unfortunateiy, no portions of the faciai bones, whose conformation is so decisive as regards the form and expression of the head, have been preserved. The cranial capacity, compared with the uncommon strength of the corporeal frame, wouid seem to indicate a smail cerebral development. The skuii, as it is, hoids about 31 ounces of milict-seed ; and as, from the proportionate size of the wanting bones, the whoie cranial cavity shouid have about 6 ounces more added, the contents, were it perfect, may be taken at 37 ounces. Tiedemann assigns, as the cranial contents in the Negro, 40,38 , and 35 ounces. The cranium hoids rather more than 36 ounces of water, which corresponds to a capacity of 1033.24 cubic centimctres. Huschke estimates the craniai contents of a Negress at 1127 cubic centimetres; of an oid Negro at 1146 cubic centimetres. The capacity of the Malay skuis, estimated by water, equalled 36, 33 ounces, whilst in the diminutive Hindoos it falls to as iittie as 27 ounces."

After comparing the Neanderthal cranium with many others, ancient and modern, Professor Schaaffhausen conciudes thus:-
" But the human bones and cranium from the Neanderthal exceed ali the rest in those peculiarities of conformation which lead to the conciusion of their beionging to a barbarous and savage race. Whether the cavern in which they were found, unaccompanied with any trace of human art, were the piace of their interment, or whether, like the bones of extinct animals eisewhere, they had been washed into it, they may still be regarded as the most ancient memorial of the eariy inbabitants of Europe."

Mr. Busk, the translator of Dr. Schaaffhausen's paper, has enabied us to form a very vivid conception of the degraded character of tbe Neanderthal skull, by piaciag

[^47]side by side wlth its outlinc, that of the skuli of a Chimpanzee, drawn to the same absolute slze.

Some time after the publleation of the transiation of Professor Schaafthausen's Mwioir, I was led to study the cast of the Neanderthal canium wifi more attention than I had prevlously besto red upon 1 t in consequence of wlshlng to supply Sir Cindes Lyeil with a diagram, exhlblting the special peculi "ities nf tals skull, as compared with other human skulls. In order to do this it was necessary to identify, with precision, those polnts \ln the skulis compared which corresponded anatomically. Of thesc points, the glabelia was obvious enough; but when I had distinguished another, deflned by the occlpltal protuberance and superlor semlclrcular line, and had piaced the outllne of the Neanderthal skuli against that of the Engis skull, In sueh a positlon that the glabella and occipltal protuberance of both were intersected by the same straight line, the difference was so vast and the flattening of the Neanderthal skull so prodlgious (compare Flgs. 22 and 24, A.), that I at first lmaglned I must have fallen Into some error. And I was the morc Inelined to suspect thls, as, In ordinary human skulls, the oceipltal protuberance and supcrior semieircular curved line on the exterlor of the occlput correspond pretty ciosely with the ' lateral slnuses' and the line of attachment of the tentorium internally. But on the tentorlum rests, as I have sald in the preceding Essay, the posterlor lobe of the brain; and hence, the oceipital protuberance, and the curved ilnc in question, Indieate, approximately, the lower llmits of that lobe. Was it possible for a human belng to have the brain thus flattened and depressed; or, on the other hand, had the muscular ridges shifted thelr position? In order to solve these doubts, and to decide the question whether the great supraeillary projectlons did, or dld not, arlse from the development of the frontal slnuses, I requested Sir Charles Lyell to be so good as to obtain for me from Dr. Fuhlrott, the possessor of the skull, answers to certain queries, and if possible a cast, or at any rate drawings, or photographs, of the interlor of the skull.

Dr. Fuhlrott replied with a courtesy and readiness for which I am infinitely indebted to him, to my Inquirles, and furthermore sent three excelient photographs. One

316 ON SOME FOSSIL REMAINS OF MAN

Fig. 24.-The skull from the Neanderthal cavern. A. slde, B. front, and C. top vlew. One-third the natural slze. The outilnes from camera lucida drawings, one-half tho natural slie, diy Mr. Busk: the detalls from the cast and from Dr. Puhlroti's photographs. e glabella; bocelpital protuberance ; d lambdoidal suture.
of these gives a side view of the skuil, and from 1t Fig. 24, A. has been shaded. The second (Fig. 25, A.) exliibits the wide openings of the frontal sinuses upon the inferior surface of the frontal part of the skuil, into wilich, Dr. Fuilirott writes, " a probe may be introduced to the deplh of an inch," and demonstrates the great extension of the thickened supraciliary ridges beyond the cerebral cavity. The third, lastiy (Fig. 25, B.), exilibits the edge and the Interior of the posterior, or occipital, part of the skuli, and shows very cicariy the two depressions for the iateral sinuses, sweeping inwards towards the middie line of the roof of the skull, to form the longitudinal :inus. It was ciear, therefore, that I had not erred in my interpretation, and that the posterior lobe of the brain of the Neanderthai man must have been as much flattened as I suspected lt to be.

In truth, the Neanderthal cranium has most extraordinary characters. It has an extreme leugth of 8 inclies, while its breadth is only 5.75 inches, or, in other words, its iength is to its breadth as $100: 72$. It is exceedingly depressed, measuring oniy about 3.4 inches from the glabelio-occipital line to the vertex. The iongitudinal are, measured in the same way as in the Engis skull, is 12 inches; the transverse are cannot be exactly ascertained, in consequer. it the absence of the temporal bones, but was prob : - bout the same, and certainly exceeded 104 inches. ste horizontal circumfercnce is 23 inches. But this great eircuunterence arises largely from the vast deveiopment of the supraciliary ridges, though the perimeter of the brain ease itself is not small. The large supraciliary ridges give the forchead a far more retreating appearance than its internal contour would bear out.
To an anatomical eye the posterior part of the skuil is even more striking than the anterior. The occipital protuberance oceupies the extreme posterior end of the skull, when the glabelio-occipital line is made horizontal, and so far from any part of the occipitai region extending beyond it, this region of the skuil slopes obliquely upward and forward, so that the lambdoidal suture is situated well upon the upper surface of the cranium. At the same time, notwlthstanding the great length of the skull, the sagittai suture is remarkabiy short ($4 \frac{1}{8}$ Inches), and the squamosal suture is very straight.

318 ON SOME FOSSIL REMAINS OF MAN

In reply to my questlons Dr. Fuhirott writes that the occlpitai bone "is in a state of perfect preservation as far as the upper semicircular line, which is a very strong rldge, linear at lts extremities, but eniarging towards the middie, where lt forms two rldges (bourrelets), urilted by a llnear continuation, which is slightly depressed \ln the mlddle."

B

F10. 25. - Drawings from Dr. Fuhirntt's pholographs of parts of the interior of the Nicanderthai cramum. A. view of the under and inner surface of the frontal region, showing the inferior npertures of the frontai sinuses (a). B. corresponding riew of the occipital region of the skuil, showing the Impressions of the lateral sinuses (a a).
" Below the left rldge the bone exhlblts a: obllquely Incllned surface, six lines (French) long, and twelve ilnes wide."

Thls last must be the surface, the contour of which is shown in Fig. 24, A., below b. 'It ls particulerly interesting, as it suggests that, notwithstanding the flattened condition of the occlput, the posterior cerebral lobes must have projected conslderably beyond the cerebellum, and as it
constitutes one among several points of similarity between the Neanderthal cranium and certain Australian skuils.

Sucal arc the two best known forms of human cranium, which have been found in what may be fairly termed a fossil state. Can either be shown to fili up or diminish, to any appreciabie extent, the structural intervai which exists between Man and the man-like apes? Or, on the other hand, does neither depart more wideiy from the average structure of the human cranium, than normally formed skulis of men are known to do at the present day ?

It is impossible to form any opinion on these questions, without some prelininary acquaintance witit the range of variation exhibited by human structure in generala subject which has been but imperfectly studied, while even of what is known, my limits will nccessarily allow me to give only a very imperfect sketch.

The stident of anatomy is perfectly well aware that there is not a single organ of the human body the structure of which does not vary, to a greater or less extent, in different individuals. The skeleton varies in the proportions, and even to a certain extent in the connexions, of its constituent bones. The muscles which nove the bones vary largely in their attachments. The varieties in the mode of distribution of the arteries are carefully classified, on account of the practical importance of a knowiedge of their shiftings to the surgeon. The characters of the brain vary immenscly, nothing being less constant than the form and size of the cerebral hemispheres, and the richness of the convolutions upon their surface, while the most changeable structures of all in the human brain, are exactly those on which the unwise attempt has been made to base the distinctive characters of humanity, viz. the posterior cornu of the lateral ventricle, the hippocampus minor, and the legree of projection of the posterior lobe beyond the cerebellum. Finally, as all the world knows, the hair and skin of human beings may present the most extraordinary diversities in colour and in texture.

So far as our present knowiedge goes, the majority of the structural varieties to which allusion is here made, are individual. The ape-like arrangement of certain muscies which is occasionally met with * in the white

[^48]
320 ON SOME FOSSIL REMAINS OF MAN

races of mankind, is not known to be more common among Negroes or Australlans : nor becnuse the braln of the flottentot Venus was found to be smoother, to have lts convolutlons more symmetrieally dlsposed, and to be, so far, more ape-llke than that of ordlnary Europeans, are we justlined \ln coneluding a llke condlion of the braln to prevall unlversally among the lower raees of mankind, however probable that conclusion may be.

We are, In fact, sadly wanting in liformation respecting the dlsposillon of the soft and destructlble organs of every Race of Manklnd but our own ; and even of the skeleton, our Muscums are lamentably deflelent In every part but the cranlum. Skulls enough there are, and slnce the thine when Blumenbach and Camper first called attention to the marked and singular differenees which they exhllilt, skull collecting and skull measuring has been a zealously pursued branch of Natural History, and the results obtalned have been arranged and elassified by varlous writers, among whom the late actlve and able Retzlus must always be the first named.

Human skulls have been found to differ from one another, not merely in thelr absolute size and in the absolute capaclty of the brain easc, but in the proportlons which the dlameters of the latter bear to one another; in the relative slze of the bones of the face (and more partlcularly of the jaws and teeth) as sompared with those of the skull; In the degree to which the upper jaw (whlch is of course followed by the lower) is thrown laekwards and downwards under the fore-part of the brain case, or forwards and upward; in front of and beyond 1t. They differ further In the relations of the transverse diameter of the faee, taken throught the cheek boncs, to the transverse dlameter of the skull; in the more rounded or more gable-llke form of the roof of the skull, and in the degree to which the hinder part of the skill is flattened or projects beyond the ridge, lnto and below which, the museles of the neck are inserted.

In some skulls the brain ease may be sald to be 'round,' the extreme length not execeding the extreme breadth by a greater proportion than 100 to 80 , while the difference may be much less.* Men possessing such skulls were termed by Retzlus 'brachycephalic,' and the skull of a

[^49]Calmuck, of which a front and slde vlew (reduced oulline coples of which are glven In Flgure 26) are depleted by Von Baer in his excellent " Crania selcela," affords a very adinlrable example of that kind of skull. Other skulls, such as that of a Negro copled In Fig. 27 from Mr. Busk's 'Cranla typlea,' have a very different, greatly elongated form, and may be termed 'oblong.' In this skull the extreme length is to the extreme breadth as 100 to not more than 67, and the transverse diameter of the human skull may fall below even this proportlon. People having such skulls were called by Retzlus ' dollchocephalic.'

The most cursory glance at the side views of these two skulls will suffec to prove that they differ, In another respect, to a very striking extent. The pronle of the face of the Calmuck is almost verlleal, the faclal bones belng thro:va downwards and under the forepart of the skull. The profic of the face of the Negro, on the other hand, Is slagularly incilned, the front part of the jaws projectling far forward beyond the level of the fore part of the skull. In the former case the skull is sald to be 'orthognathous. ir straight-jawed; In the latter, it is called 'prognathous,' a term which has been rendered, wllh more force than eleganec, by the Saxon equivalent,-' snouty.'

Various methods have been devlsed in order to express with some accuracy the degree of prognathlsm or orthognathism of any given skull ; most of these methods being essientially modlications of that devised by Peter Camper, In order to attaln what he called the 'faclal angle.'

But a llttle consideration will show that any facial angle' that has been devlsed, can be compctent to express the structural modificatlons involved in prognathism and orthognathism, only in a rough and general sort of way. For the lines, the intersection of which forms the faclal augle, are drawn through poluts of the skull, the position of each of whlch is modificd by a number of circumstances, so that the angle obtained is a complex resultant of all these circumstances, and is not the expression of any one definite organic relation of the parts of the skull.

I have arrived at the convlction that no comparison of cranla is woith very much, that is not founded upon the establishment of a rciatlvely fixed base line, to which the measurements, in all cases, must be referred. Nor do I think it is a very diffeult matter to decide what that base line should be. The parts of the skull, like those of the 66-K

322 ON SOME FOSSIL REMAINS OF MAN

rest of the animal framework, are developed in succession the base of the skull is formed before its sides and roof;

Fra. 26.-side and tront views of the round and orthognathous klull of © Calmuck, alter Von Baer. One-third the natural siza.
it is converted into cartilage eariler and more completely than the Bides, and rcof : and the cartilaginous base ossi-
fles, and becomes soldered lnto one piece long before the roof. I conceive then that the base of the skull may be demonstrated developmentally to be lts reiatlvely fixed part, the roof and sides belng reiatlvely moveable.

The same truth is exempilfed by the study of the modificatlons whlch the skull undergoes \ln ascendlng from the lower anlmals up to man.

In such a mammal as a Beaver (Flg .28), a line (a. b.) drawn through the bones, termed basioccipital, baslsphenold, and presphencld, is very long \ln proportlon to the extremc length of the cavlty which contalns the cerebral hemlspheres (g. h.). The plane of the occlpltal foramen (b. c.) forms a sllghtly acute angle with thls 'baslcranlal axls,' while the plane of the tentorlum (i. T.) Is inclined at rather more than 90° to the 'baslcranlal axis'; and $s 0$ ls the piane of the perforated plate ($a . d$.), by whlch the flaments of the olfactory nerve leave the skull. Agaln, a llne drawn through the axls of the face, between the bones called ethmold and vomer-the "baslfaclal axis" (f. e.) forms an exceedingly obtuse angle, where, when produced, lt cuts the ' basicranlal axls.'

If the angle made by the llne b. c. wlth a. b., be called tbe ' occipltal angle,' and the angie made by the llne $a . d$. with a. b. be termed the ' oifactory angle,' and that made by i. T. wlth a. b. the 'tentoriai angle,' then ali these, in the mammal in question, are nearly right angles, varylng between 80° and 110°. The angle e. f. b., or that made by the cranlal with the faclal axis, and whlch may be termed the 'cranlo-faclal angle,' is extremciy obtuse, amounting, In the case of the Beaver, to at least 150°.
But if a serlcs of sectlons of mammalian skulis, Intermediate between a Rodent and a Man (Flg. 28), be examined, it will be found that \ln the higher crania the basicranlal axls becomes shorter relatively to the cerebral length; that tire 'olfactory angle' and 'occlpital angle, become more obtuse; and that the 'cranio-facial angle, becomes more acute by the bending down, as it were, of the faciai axis upon the cranial axis. At the same time, the roof o: the cranium becomes more and more arched, to allow of the lncreasing height of the cerebral hemispheres, whlch is eminently characteristlc of man, as well as of that backward extenslon, beyond the cerebellum, which reaches its maximum \ln the South Amizica Monkeys. So that, at iast, in the human skuii (Flg. 29),

324 ON SOME FOSSIL REMAINS OF IIAN

the cerobral length is between twice and thrice as great as the length of the baslcranlal axis; the olfactory plane is

Fic. 27.-Oblong and prognathous skull of a Negro: side and front views, One-third of the natural size.
20° or 30° on the under side of that axis; the occipital angle, instead of being less than 90°, is as much as 150°
or 160°; the cranio-facial angle may be 90° or less, and the vertical height of the skuil may have a large proportion to lts lengts.

It wiil be obvinus, from an inspection of the diagrans, that the basicraniai axis is, in the ascending series of Mammalln, a relatlveiy fixedilinc, on which the bones of the sides and roof of the cranlai cavily, and of the face, may be sald to revoive downwards and forwards or backwards, according to their position. The are described by any one bone or pianc, however, is not by any means aiways in proportion to the are described by another.
Now coincs tise important question, can we ellscern, between the iowest and tise higinest forms of the human cranium anything answering, in however silgitt a degree, to this revolution of the side and roof boncs of the skuli upon the basicraniai axis observed upon so great a scaic In the mammalian series? Numerous obscrvations lead me to believe that we must answer this question in the amrmative.

The diagrams in Figure 29 are reduced from very carcfuliy made diagrams of sections of four skuils, two round and orthognathous, two long and prognathous, taken longitudinally and verlicaily, through the middie. The sectional diagrams have then been superimposed, in such a manner, that the basal axes of the skuils colncide by their anterior ends, and in their direction. The deviations of the rest of the contours (which represent the interinn of the skuils only) show the differences of the skulis an one another, when these axes are regarded as relatively fixed lines.

The dark contours are those of an Australian and of a Negro skull: the llght contours are those of a Tartar skuil, in the Museum of the Royai Coilege of Surgeons; and of a well deveioped round skull from a cemetery in Constantinople, of uncertaln race, In my own possession.

It appears, at once, from these views, that the prognathous skulls, so far as their jaws are concerncd, do really differ from the ortiognathous in much the same way as, though to a far less degree than, the skulls of the lower mammais differ from those of Man. Furtherriore, tise plane of the occipltal foramen (bc) forms a somewhat smaller angle with the axis in these particular prognathous skulls than in the orthognathous; and the like may be siightly true of the perfo-ated piate of the ethmoid-

Fio. 2n,-Longtiudinal and vertical sections of the whulis of a Beaver (Caslor Canadensis), a Lemur (L. Catta), and a Baboon (Cynocephalus Pap(o), o b, the basleranial axls i b e, the occlpital plane; $1 T$, the tentorial plane; od, the olfoctory plene: $/ \mathrm{e}$, the basfacial axis; e b o, ocelpltal angle; \mathbf{T} f 0 , tentorial angle : $d a b$, olfaetory angle: ef b, cranlo-faclal angle; o h, extreme length of the cavity whieh lodgee the eerebral hemlepheres or "eerehral length." The length of tha basieranial axis as to this length, or, In other words, the proportional length of the line or to that of ob taken as 100 , In the three skulls. is as follows:-Beaver 70 to 100; Lemur 110 to 100; Baboon 144 to 100 . In an adult male Gorilla the eerebral length is as $\mathbf{t 7 0}$ to the bealcranial axis taken as 100, In the Negro (Fig. 29) as 236 to 100. In the ConstantInople skull (FIg. 29) as 266 to 100. The eranial difference between the highest Ape's skull and the lowest Man'a is therefore very stridingly brought out by these measurementa.
In the dlegram of the Bahoon's skull the d Ited lines di dz, etc., give the angles of the Lemur's and Beaver's skull, ss laid down upon the basteranial axis of the Baboon. The line of has the same length In each dlagram.

ON SOME FOSSIL REMAINS OF MAN

though this point is not so clear. But it is singuiar to remark that, in another respect, the prognathous skuils are less ape-like than the orthognathous, the cerebrol cavity projecting decidedly more beyond the anterior end of the axis in the prugnotious, than in the orthognothous, skuils.

It wili be observed thot these dlagroms reveol on Immense range of voriation in the capocity and rciative proportion to the craniol oxis, of the different regions of the covity which contains the brain, in the different skuils. Nor is the diffcrence in the extent to which the cerebral overiops the cerebeiior cavity less singuior. A round skull (Fig. 20, Const.) may have o greoter posterior cerebral projection than a iong one (Fig. 29, Negro).

Untl human cronio have been largely worked out in a monner similiar to that here suggested-untll it sholi be on opprobrium to on ethnological coliection to possess a single skuil which is not bisected longitudinoily-untii the angles and measurements here mentioned, together with a number of others of which I cannot speak in this piace, are determined, and tabuloted with reference to the bosicraniol oxls os unity, for large numbers of skuils of the different races of Monkind, I do not think we shali liave any very sofe basis for thot ethnological craniology wilch ospires to give the anotomical characters of the cranla of the different Races of Mankind.

At present, I belleve that the generol outilncs of what may be sofely said upon that subject may be summed up In o very $\mathrm{f} \in \mathrm{w}$ words. Draw 0 line on a giobe from the Goid Coast in Western Africa to the steppes of Tartary. At the southern and western end of that line there live the most doilchocephailc, prognathous, curiy-halred, darkskinned of men-the true Negroes. At the northern and eastern end of the same ilne there live the most brachycephaiic, orthognathous, straight-haired, yeliow-skinned of men-the Tartars and Calmucks. The two ends of this imaginary line are indeed, so to speak, ethnological antlpodes. A line drawn at right angles, or nearly so, to this polar line through Europe and Southern Aslo to Hindostan, would give us a sort of equator, around which round-headed, ovai-headed, and oblong-headed, prognathous and orthognathous, fair ond dark races-but none possessing the excessively marked characters of Calmuck or Negro-group themselves.

328 ON SOME FOSSIL REMAINS OF MAN

It is worthy of notice that the regions of the antipodal races are antipodal in climate, the greatest contrast the world affords, perhaps, being that between the damp, iot,

Fio. 29.-Sections of orthognathous (light contour) and prognathons (dark contour) skulls, one-third of the natural size. a b, Bastcranial axis ; $b c, b^{\prime} c^{\prime}$, plane of the occipital foramen; $d d^{\prime}$, hinder end of the palatine bone; e é, tront end of the npper jaw : $T \mathbf{T}$ ', insertion of the fentorium.
steaming, alluvial coast plains of the West Coast of Airica and the arid, elevated steppes and piateaux of Central Asia, bitteriy coid in winter, and as far from the sea as any part of the world can be.

From Central Asia eastward to the Pacific Islands and
subcontinents on the one hand, and to America on the other, brachycephaly and orthognathlsm gradually diminish, and are repiaced by doilchocephaly and prognathism, iess, however, on the Ainerican Continent (throughout the whoie length of which a rounded type of skuil prevails iargely, but not cxciusiveiy) * than In the Pacific reglon, where, at iength, on the Austraiian Continent and In the adjacent isiands, the obiong skuli, the projecting jaws, and the dark skin reappear; with so much departure, In other respects, from the Negro type, that ethnologists assign to these peopie the special title of ' Negritoes.'

The Australian skuii is remarkabie for its narrowness and for the thlekness of its walis, especiaily in the region of the supracillary ridge, which is frequentiy, though not by any means invariabiy, solld throughout, the frontal sinuses remalning undeveioped. The nasal depression, again, is extremciy sudden, so that the brows overhang aisd give the countenance a particulariy iowering, threatening expression. The occipitai region of the skull, also, not unfrequentiy becomes less prominent; so that it not oniy fails to project beyond a ilne drawn perpendicuiar to the hinder extremity of the glabelio-occlpitai ine, but even, in some cases, begins to sheive away from It, forwards, almost immcdiately. In consequence of this circumstance, the parts of the occipital bone which lie above and below the tuberosity make a much more acute angle with one another than is usual, whereby the hinder part of the base of the skuli appears obllqueiy truncated. Many Australlan skuils have a considerabie height, quite equal to that of the average of any other race, but there are others In which the cranlal roof becomes remarkably depressed, the skuil, at the same time, elongating so much that, probabiy, its capaclty is not diminished. The majority of skulls possessing these characters, whlch I have seen, are from the neighbourhood of Port Adeiaide In South Australia, and have been used by the natives as watcr vesseis; to which end the face has been knocked away, and a string passed through the vacuity and the occipital foramen, so that the skuil was suspended by the greater part of its basis.

Figure 30 represents the contour of a skuii of thls kind from Western Port, with the jaw attached, and of the Nean-

[^50]derthal skull, both reduced to one-third of the size of nature. A small additlonal amount of fattening and lengthening, wlth a corresponding increase of the supraclllary ridge, would convert the Australlan brain case into a form Identical with that of the aberrant fossil.

And now, to return to the fossll skulls, and to the rank which they occupy among, or beyond, these exlsting varleties of cranial conformation. In the first place, I

Fig. 30.-An Australian skull from Western Port, In the Museum of the Royal Coliege of Surgeons, with the contour of the Neanderthal skull. Both reduced to one-third the natural size.
must remark, that, as Professor Schmerllng well observed (supra, p. 300) In commenting upon the Engls skull, the formatlon of a safe judgment upon the questlon ls greatly hindered by the absence of the jaws from both the cranla, so that there ls no means of decidlng, wlth certainty, whether they were more or less prognathous than the lower existling races of mankind. And yet, as we have seen, lt is more ln thls respect than any other, that human skulls vary, towards and from, the brutal type-the brain case of an average dollchocephallc European differing far less from that of a Negro, for example, than hls jaws do. In the absence of the jaws, then, any judgment on the relations of the fossil skulls. to recent Races must be accepted with a certain reservation,

But taking the evidence as it stands, and turning first to the Engis skull, I confess I can find no character ln the remalns of that cranium which, if it were a recent skuli, would give any trustworthy clue as to the Race to which it might appertain. Its contours and measurements agree very weli with those of some Australian skulls whlch I have examined-and especially has it a tendency towards that occipital flattening, to the great extent of which, in some Australian skuils, I have aliuded. But all Australian skulls do not present this flattening, and the supracillary ridge of the Engis skuli ls quite unlike that of the typical Australians.

On the other hand, its measurements agree equaliy weli with those of some European skuils. And assuredly, there is no mark of degradation about any part of its structure. It is, in fact, a fair average human skull, which might have beionged to a philosopher, or might have contalned the thoughtiess brains of a savage

The case of the Neanderthal skuli is very different. Under whatever aspect we view this cranlum, whether we regard its vertical depression, the enormous thickness of its supraciliary ridges, its sloping occiput, or its long and straight squamosal suture, we meet with ape-ilke characters, stamping it as the most pithecold of human crania yet discovered. But Professor Schaaffhausen statcs (supra, p. 308), that the cranium, in its present condition, hoids 1033.24 cuble centimetres of water, or about 63 cubic inches, and as the entire skuli could hardiy have heid less than an additional 12 cubic inches, its capaclty may be estimated at about 75 cublc inches, which is the average capaclty glven by Morton for Polynesian and Hottentot skuils.

So large a mass of brain as thls, would alone suggest that the pithecoid tendencles, Indicated by this skull, dld not extend deep into the organization; and thls concluslon is borne out by the dimensions of the other bones of the skeieton given by Professor Schaaffhausen, which show that the absolute helght and reiatlve proportlons of the llmbs were quite those of an European of mlddle stature. The bones are indeed stouter, but this and the great deveiopment of the muscular ridges noted by ilr. Schaaffhausen, are characters to be expected \ln savagcs. The Patagonlans, exposed without shclter or protection to a cllmate possibly not very dissimilar from that of Europe at the time during

332 ON SOME FOSSIL REMAINS OF MAN

which the Neanderthal man lived, are remarkable for the stoutness of their limb bones.

In no sense, then, can the Neanderthal bones be regarded

Fic. 31.-Ancient Danlsh skull from a tumulus at Borreby: onethird of the natural slze. From a camera lucida drawing by Mr. Huak.
as the remains of a human being intermediate between Men and Apes. At most, they demonstrate the existence of a man whose skull may be said to revert somewhat towards the pithecoid type-just as a Carrier, or a Pouter, or a Tumbler, may sometimes put on the plumage of its primitive
stock, the Columba livia. And indeed, though truly the most pithecold of known human skulls, the Neanderthal cranlum is by no means so isoiated as it appears to be at first, but forms, in rcallty, the extreme term of a series leading gradually from it to the highest and best deveioped of human crania. On the one hand, it is closely approached by the flattened Australian skulis, of which I have spoken, from which other Australlan forms lead us gradually up to skulis having very much the type of the Engis cranlum. And, on the other hand, it is even more ciosely affined to the skulls of certaln ancient people who Inhabited Denmark during the 'stonc period,' and were probably elther contemporaneous with, or later tban, the makers of the 'refuse heaps,' or ' Kjokkenmöddings' of that country.

The correrpondence between the iongitudinal contour of the Neancierthal skuli and that of some of those skulls from the tumuil at Borreby, very accurate drawings of which have been made by Mr. Busk, is very close. The occlput is quite as retreating, the supracillary ridges are nearly as prominent, and the skuli is as low. Furthermore, tbe Borreby skuil resembles the Neandertbal form more closely tban any of the Australian skulls do, by the much more rapid retrocesslon of the forehead. On the otber hand, the Borreby skulls are all somewhat broader, in proportion to their length, than the Neanderthai skull, while some attain that proportlon of breadth to length ($80: 100$) which constitutes brachycephaly.

In conclusion, I may say, that the fossii remains of Man hitherto discovercd do not seem to me to take us appreclably nearer to that lower pithecold form, by the modification of which he has, probably, bccome wbat he ls. And considering what is now known of the most anclent races of men ; seelng that they fashloned flint axcs and flint knlves and bone-skewers, of much the same pattern as those fabrlcated by the lowest savages at the present day, and that we have every reason to belleve the habits and modes of living on such peoplc to have remalned the same from the time of the Mammoth and the tichorhine Rhinoceros till now, I do not know that thls resuit is otber than might be expected.

Where, then, must we look for primæval Man? Was tbe oldest Homo sapiens pllocene or miocene, or yct more ancient? In still oider strata do the fossilized bones of

334 ON SOME FOSSIL REMAINS OF MAN
an Ape more anthropoid, or a Man more pithecoid, than any yot known await the researches of some unborn paleontologist?

Time will show. But, in the meanwhile, it any form of the doctrine of progressive development is correct, we must extend by long, epochs the most liberal estimate that has yet been made of the antiquity of Man.

ON THE
ADVISABLENESS OF IMPROVING
NATURAL KNOWLEDGE

ON THE ADVISABLENESS OF IMPROVING NATURAL KNOWLEDGE*

This time two hundred ycars ago-in the beginning of January, 1666-those of our forcfathers who inhabited this great and ancient city, took breath between the shocks of two fearful calamities : one not quite past, although its fury had abated; the other to come.

Within a few yards of the very spot on which we are asscmbled, so the tradition runs, that painfui and deadiy malady, the piaguc, appeared in the latter months of 1664 ; and, though no new visitor, smote the peopie of England, and especialiy of her capitai, with a vioience unknown before, in the course of the foliowing year. The hand of a master has pictured what happened in those dismai months; and in that truest of fictions, The History of the Plague Year, Defoe shows death, with every accompaniment of pain and terror, stalking through the narrow streets of old London, and changing their busy hum into a silence broken oniy by the walling of the mourners of fifty thousand dcad; by the woful denunciations and mad prayers of fanatics; and by the madder yelis of despairing profigates.

But, about this time in 1666, the death-rate had sunk to neariy its ordinary amount; a case of plague occurred only here and there, and the richer citizens who had flown from the pest had returned to their dwellings. The remnant of the peopie began to toil at the accustomed round of duty, or of pleasure ; and the stream of city life bid fair to flow back along its oid bed, with renewed and uninterrupted vigour.

The newiy kindied hope was deceltfui. The great piague, indeed, returned no more ; but what it had done for the Londoners, the great fire, which broke out in the autumn of 1666, did for London ; and, in September of that year, a heap

[^51]of ashes and the indestructlble energy of the pcople were all that remalned of the glory of five-sixths of the elty wlthin the walls.

Our forp thers had thelr own ways of accounting for each of these calamitics. They submitted to the plague \ln humillty and \ln penitence, for they belleved lt to be the judgment of God. But, towards the fire they wcre furiously Indlgnant, interpreting lt as the cffect of the me', 减 of man,as the work of the Republicans, or of the Paplsts, according as their prepossesslons ran in favour of loyalty or of Puritanlsm.

It would, I fancy, have fared but ill with one who, standlng where I now stand, In what was then a thlekly peopled and fachlonable part of London, should have broached to our ancestors the doctrine which I now propound to youthat all their hypotheses were allke wrong ; that the plague was no more, In their sense, Dlvine judgment, than the fire was the work of any polltical, or of any rellglous, sect ; but that they were themsclves the authors of both plague and fire, and that they must look to themselves to prevent the recurrence of calamities, to all appearance so pecullarly beyond the reach of human control-so evldently the result of the wrath of God, or of the craft and subticty of an enemy.

And one may plcture to one's self how harmonlously 'n3 holy cursing of the Purltan of that day would have chl:. \& in with the unholy cursing and the cracklling wit 0^{\prime} ine Rochesters and Sedleys, and with the revilings of the pollilical fanatics, if my imaglnary plain dealer had gone on to say that, if the return of such mlsfortunes were ever rendered imposslble, it would not be \ln virtuc of the victory of the falth of Laud, or of that of Milton; and, as littie, by the triumph of republlcanlsm, as y that of monarchy. But that the one thing needful for compassing thls end was, that the peopie of Englanc . hould second the efforts of an insignificant corporation, the establlshment of which, a few years before the epoch of the great plague and the great fire, had been as llttie noticed, as they were consplcuous.

Some twenty years before the outbreak of the plague a few calm and thoughtful students banded themselves together for the purpose, as they phrased it, of " improving natural knowiedge." The ends thcy proposed to attain cannot be stated more clearly than in the words of one of the founders of the organization :-
" Cur business was (preciuding matters of theology and state affairs) to discourse and consider of philosophical enquiries, and such as rciated thereunto:-as Physick, Anatomy, Geometry, Astronomy, Navigation, Staticks, Magneticks, Chymicks, Mcchanicks, and Natural Experiments; with the state of these studies and their cuitivation at home and abroad. We then discoursed of the circuiation of the biood, the valves in the veins, the venæ facter, the lymphatic vesseis, the Copernican hy pothesis, the nature of comets and new stars, the sateilites of Jupisnr, the oval shape (as it then appeared) of Saturn, the spots on the sun and its turning on its own axis, the inequaities and seienography of the moon, the several phascs of Venus and Mercury, the improvement of telescopes and grinding of glasses for that purpose, the weight of air, the possibility or impossibility of vacuities and nature's abhorrence thercof, the Torriceliian experiment in quicksilver, the descent of heavy bodies and the degree of acceicration thercin, with divers other things of like nature, some of which were then but new discoveries, and others not so generaliy known and embraced as now they are; with other things appertaining to what hath been called the New Philosophy, which from the times of Galileo at Florence, and Sir Francls Bacon (Lord Verulam) in England, hath been much cuitivated in Itaiy, France, Germany, and other parts abroad, as well as with us in England."

The learned Dr. Wallis, writing in 1696, narrates in these words what happened half a century before, or about 1645. The associates met at Oxford, in the rooms of Dr.Wiikins, wio was destined to become a bishop; and subsequentiy coming together in London, they attracted the noticc of the king. And it is a strange cvidence of the taste for knowiedge which the most obviousiy worthiess of the Stuarts shared with his father and grandfather, that Charier, the Second was not content with saying witty things about his philosophers, but did wisc things with regard to them. For he not only bestowed upon them such attention as he couid spare from his poodlcs and his mistresses, but, being in his usual state of impecuniosity, begged for them of the Duke of Ormond; and, that step being without effect, gave them Chelsea College, a charter, and a macc : crowning his favours in the best way they could be crowncd, by burdening them no further with royal patronage or statc interference.

Thus it was that the half-dozen young men, studious of the "New Philosophy," who met in one another's lodginys in Oxford or in London, in the middic of the seventeenth century, grew in numerical and in real strength, until, in Its latter part, the " Royal Society for the Improvement of Natural Knowiedge" had alrcady become famous, and had acquired a ciaim upon the veneration of Englisimen, which it has ever since retained, as the principal focus of scientific activity in our isiands, and the chicf ampion of tho cause it was formed to support.

It was by the aid of the Rony! Socicty that Newton published his Principia. If sil the books in the worid, execpt the Philosopincal Transactions, were destroyed, it is safe to say that the foundations of physical science would remain unshaken, and that the vast intelicetuai progress of the last two ecnturics would be largely, though incompletely, recorded. ivor have any signs of haiting or of decrepitude manifcst "d themseives in our own times. As in Dr. Walis's days, 30 in these, " our business is, preciuding theology ar.d state affairs, to discourse and consider of phillosophical caquiries." But our " Mathematick " is one which Newton would have to go to school to learn; our "Statleks, Mechanicks, Magneticks, Chymicks, and Natural Experiments "constitute a mass of physical and chemical knowledge, a glimpse at which wouid compensate Galieo for the doings of a score of inquisitorial cardinais ; our " Physick" and "Anatomy" have cmbraced such infinite varieties of being, have laid open such new worids in time and space, have grappied, not unsuccessfully, with such compiex probiems, that the eyes of Vesalius and of Harvey might be dazzled by the sight of the tree that has grown out of their grain of mustard seed.

The fact is perhaps rather too much, than too little, forced upon one's notice, nowadays, that all this marveilious inteliectual growth has a no less wonderfui expression in practical life; and that, in this respect, if in no other, the movement symboilized by the progress of the Royal Society stands without a paralici in the history of mankind.

A scries of volumes as buiky as the Transactions of the Royal Sociely might possibiy be fllied with the subtle speculations of the Schooimen; not Improbabiy, the obtaining a mastery over the products of medieval thought might necessitate an even greater expenditure of time and of energy than the aequirement of the "New Philosophy":
but though such work engrossed the best inteliects of Europe for a longer time than has ciapsed since the great fire, its effects were "writ in water," so far as our social state is concerned.

On the other hand, if the noble first President of the Royal Soeiety could revisit the upper air and once more gladden his eyes with a sight of the familiar maec, he would Ind himseif in the midst of a material eivilization more different from that of his day, than that of the scventeenth was from that of the first century. And if Lord Brouneker's native sagacity had not deserted his ghost, he would need no long reflection to discover that all these great ships, these rallways, these teiegraphs, thesc factories, these printingpresses, without which the whoie fabric of modern English society would coliapse into a mass of stagnant and starving pauperism, -that all these plliars of our State are but the rippies, and the bubbics upon the surface of that great spiritual stream, the springs of which, only, he and his fellows wcre privileged to sec ; and seeing, to recognise as that which it behoved them above all things to keep pure and undeflied.

It may not be too great a nigit of imagination to conceive our noble revenant not forgetfui of the great troubies of his own day, and anxious to know how often London had been burned down since his time, and how often the piague had carried off its thousands. He would have to learn the?, aithough London contains tenfoid the inflammable wi: : : that it did in 1606; though, not content with n! 'rig mar rooms with woodwork and light draperics, we mi:1 nerils lead inflammabic and expiosive gases into every euã.:。 our streets and houscs, we never allow even a street to burn down. And if he asked how this had come about, we shouid have to expiain that the improvement of natural knowiedge has furnished us with dozens of machines for throwing water upon fires, any one of which would have furnished the ingenious Mr. Hooke, the first " curator and experimenter " of the Royal Society, with ampie materials for discourse before half a dozen meetings of that body ; and that, to say truth, except for the progress a itural knowiedge, we shouid not have been able to make even the toois by which these machines are constructed. And, further, it would be necessary to add, that although severe fires sometimes occur and infiet great damage, the loss is very generally compensated by socicties, the operations of
which have been rendered posslble only by the progress of natural knowledge in the direction of mathematics, and the accumulation of wealth in virtue of other natural knowledge.
But the plague? My Lord Brouncker's observation would not, I fear, lead him to think that Englishmen of the nineteenth century are purer \ln life, or more fervent in rellglous falth, than the generation which could produce a Boyle, an Evelyn, and a Milton. He might find the mud of society at the bottom, instcad of at the top, but I fear that the sum total would be as deserving of swift judgment as at the time of the Restoration. And lt would be our duty to explaln once more, and thls time not without shame, that wc have no reason to belleve that lt ls the improvement of our falth, nor that of our morals, which keeps the plague from our clty ; but, again, that it is the improvement of our natural knowledge.

We have learned that pestilences will only take up their abode among those who have prepared unswept and un: garnlshed resldences for them. Their cltles must have narrow, unwatered streets, foul with accumulated garbage. Their houses must be ill-dralned, ill-lighted, ill-ventilated. Their subjects must be ill-washed, ill-fed, ill-clothed. The London of 1665 was such a clty. The cities of the East, where plague has an enduring dwelling, are such clties. We, in later times, have learned somewhat of Nature, and partiy obey her. Because of this partial improvement of our natural knowledge and of that fractional obedience, we have no plague; becausc that knowledge is still very imperfect and that obedience yet incomplete, typhus is our companion and cholera our visitor. But lt is not presumptuous to express the bellef that, when our knowledge Is more complete and our obedience the expresslon of our knowledge, London will count her centurles of freedom from typhus and cholera, as she now gratefully reckons her two hundred years of lgnorance of that plague which swooped upon her thrice in the first half of the seventeenth century.

Surely, there ls nothing ln these expianations which is not fully borne out by the facts? Surely, the princlples Involved in them are now admitted among the fixed bellefs of all thinking men? Surely, it is true that our countrymen are less subject to fire, famine, pestilence, and all the evils which result from a want of command over and due anticlpation of the course of Nature, than were the countrymen of Milton ; and hcalth, wealth, and well-belng are more
abundant with us than with them? But no less certainiy is the difference due to the improvement of our knowiedge of Nature, and the extent to which that improved knowledge has been incorporated with the househoid words of men, and has suppiled the springs of their daily actlons.

Granting for a moment, then, the truth of that which the depreciators of natural knowiedge are so fond of urging, that its improvement can only add to the resources of our material civilization; admitting it to be possibie that the founders of the Royal Society themseives looked for no other reward than this, I cannot confess that I was guilty of exaggeration when I hinted, that to him who had the gift of distinguishing between prominent events and important events, the origin of a combined effort on the part of mankind to improve natural knowiedge might have ioomed larger than the Plague and have outshone the glare of the Fire; as a something, fraugbt with a wealth of beneficence to mankind, in comparison with which the damage done by those ghastly eviis wouid shrink into insignificance.

It is very certaln that for every victim siain by the piague, hundreds of mankind exist and find a fair share of happincss in the worid by the aid of the spinning jenny. And the great fire, at its worst, couid not have burned the suppiy of coal, the daily working of which, in the boweis of the eartb, made possibie by the steam pump, gives rise to an amount of weaith to which the millions iost in oid London are but as an old song.

But spinning jenny and stcam pump are, after ail, but toys, possessing an accidental value; and natural knowledge creates muititudes of more subtie contrivances, the praises of which do not happen to be sung because they are not directly convertibie into instruments of creating wealth. When I contempiate natural knowiedge squandering such gifts among men, the oniy appropriate comparison I can find for her is, to liken her to such a peasant woman as one sees in the Alps, striding ever upward, heavily burdened, and with mind bent only on her home; but yet, witbout effort and without thought, knitting for her children. Now stockings are good and comfortable things, and the children will undoubtedly be much the better for them ; but surely it would be short-sighted, to say the least of it, to depreciate this toiling mother as a mere stocking-machine-a mere provider of physical comforts?

However, there are blind leaders of the biind, and not a few of them, wbo take this view of natural knowiedge, and can see nothing in the bountifui mother of humanity but a sort of comfort-grinding machine. According to tbem, the improvement of natural knowicdge always has been, and always must be, synonymous with no more than the improvement of the material resources and tbe increase of the gratifications of men.

Naturai knowledge is, in their cyes, no reai mother of mankind, bringing them up with kindness, and, if need bc, wlth sternness, in the way they should go, and instructing them in ali things needfui for their weifare; but a sort of fairy godmother, ready to furnlsh her pets with sboes of swiftness, swords of sharpness, and omnipotent Aladdin's lamps, so that they may have telegraphs to Saturn, and sce the other side of the moon, and thank God they are better tban thelr benlghted ancestors.

If thls talk were true, I, for one, should not grcatly care to toil in the service of natural knowledgc. I think I wouid just as soon be quietly chipping my own filnt axe, after the manner of my forefathers a few thousand years back, as be troubied wlth the endless malady of thought which now infests us all, for such reward. But I venture to say that such views are contrary alike to reason and to fact. Those who discourse in such fashlon scem to me to be so intent upon trying to see what is above Naturc, or what is behind her, that they are bllnd to wbat starcs titem in the face, in her.

I shouid not venture to speak thus strongly if my justification were not to be found in the slmpicst and most obvious facts,-if it needed more than an appeal to the most notorious truths to justify my assertion, that the improvement of natural knowiedge, whatever dircetion it has takén, and however iow the alms of those who may have commenced it-has not only conferred practical benefits on men, but, in so doing, has effected a revolution in their conceptions of the universe and of themseives, and has profoundly aitered thelr modes of thinking and tbeir views of right and wrong. I say that natural knowiedge, seeking to satisfy naturai wants, has found the ideas which can aione still spiritual cravings. I say that natural knowiedge, in desiring to ascertain the laws of comfort, lias been driven to discover those of conduct, and to lay the foundations of a new morallty.

Let us take these points separatcly ; and, first, wiat great ideas has natural knowiedge introduced into men's minds?

I cannot but think that the foundations of afi naturai knowiedge were iaid when the reason of man first came face to face with the facts of Nature : when the savage first learned that the fingers of one hand are fewer than those of both; that it is shorter to cross a stream than to head it ; that a stone stops where it is uniess it be moved, and that it drops from the hand which iets it go ; that iight and heat come and go with the sun; that sticks burn away in a fire; that piants and animals grow and die; that if he struck his feliow-savage a biow he wouid make him angry, and perhaps get a biow in return, while if he offered him a fruit he wouid piease him, and perhaps receive a fish in exchange. When men had acquircd this much knowiedge, the outiines, rude though thcy werc, of mathematics, of physics, of cnemistry, of bioiogy, of moral, economical, and poiitical sciencc, were sketched. Nor did the germ of religion fall when science began to bud. Listen to words whicb, unsugh new, are yet three thousand years oid :-

> "Look beatiful, when all the stars about the moon And every helght eonies out, and jute laid, And valley, and the immeasurabie heavensak Break open to their highest, and all the stars Shinc, and the shepherd gladdens in his heart." -

If the half-savage Grcek could share our feciings thus far, it is irrational to doubt thiic he went further, to find, as we do, that upon that brief gadness there follows a certain sorrow,-the iittie iight of awakened human intelligence shines so mero a spark amidst the abyss of the unknown and unknowabie; scems so insufficient to do more than illuminate the imperfections that cannot be remedied, the aspirations that cannot be realized, of man's own nature. But in this sadness, this consciousness of the limitation of man, this sense of an open secret which he cannot penetrate, lies the essence of all reiigion; and the attempt to embody it in the forms furnished by the inteliect is the origin of the higher theologies.

Thus it seems impossibie to imagine but that the foundations of all knowiedge-sccular or sacred-were faid when

[^52]inteliigence dawned, though the superstructure remained for iong ages 80 slight and feehie as to he compatibie with the existence of almost any general view respecting the mode of governance of the universe. No doubt, from the first, there wcre certaln phenomena which, to the rudest mind, presented a constancy of occurrence, and suggested that a fixed order rulen, at any rate, among them. I douht if the grossest of Fetish worshippers ever imagined that a stone must have a god within it to make it fali, or that a frult had a god within it to make it taste sweet. With regard to such matters as these, lt is hardly questionabie that mankind from the first took strictly positive and scientific views.

But, with respect to ail the iess ianiliar occurrences whlch present themselves, uncultured man, no douht, has always taken himself as the standard of comparison, as the centre and measure of the worid; nor could he weil avoid doing so. And finding that his apparently uncaused wili has a powerful effect in giving rise to many occurrences, he naturaily enough ascrlhed other and greater events to other and greater volltions, and came to iook upon the world and all that therein is, as the product of the voiltions of persons like himself, hut stronger, and capahie of heing appeased or angered, as he himseif might he soothed or irritated. Through such conceptions of the pian and working of the universe ali mankind have passed, or are passing. And we may now consider, what has heen the effect of the improvement of natural knowledge on the views of men who have reached this stage, and who have hegun to cuitivate natural knowiedge wlth no desire hut that of " increasing God's honour and hettering man's estate."

For example, what couid seem wlser, from a mere material point of view, more lnnocent, from a theological one, to an ancient peopie, than that they should learn the exact succession of the seasons, as warnings for their hushandmen; or the position of the stars, as guides to their zude navigators? But what has grown out of thls search for naturai knowledge of so merely usefui a character? You all know the repiy. Astronomy, -which of all sciences has filed men's minds with general ideas of a character most foreign to thelr daily experience, and has, more than any other, rendered it impossible for them to accept the hellefs of their fathers. Astronomy, -which telis them that this so vast and seemingly solid earth is but an atom
among atoms, whiriing, no man knows whither, through ilimitabie space; which demonstrates that what we cali the peacefui heaven above us, is but that space, nlied by an infinitely subtle matter whose particles are seething and surging, ilke the waves of an angry sea; which opens up to us infinite regions where nothing is known, or ever seems to have been known, but matter and force, operating according to rigid ruies; which ieads us to contempiate phenomena the very nature of which demonstrates that they must have had a beginning, and that they must have an end, but the very nature of which also proves that the beginning was, to our conceptions of time, infiniteiy remote, and that the end is as immeasurabiy distant.

But it is not aione those who pursue astronomy who ask for bread and receive ideas. What more harmiess' than the attempt to iift and distribute water by pumping it ; what more absoiuteiy and grossly utilitarian? But out of pumps grew the discussions about Nature's abhorrence of a vacuum ; and then it was discovered that Nature does not abhor a vacuum, but that air has weight ; and that notion paved the way for the doctrine that all matter has weight, and that the force which produces weight is co-extensive with the universe,-In short, to the theory of universal gravitation and endiess force. While iearning how to handle gases ied to the discovery of oxygen, and to modern chemistry, and to the notion of the indestructihility of matter.

Again, what simpler, or more absolutely practical, than the attempt to keep the axle of a wheel from heating when the whcel turns round very fast? How usefui for carters and gig drivers to know something about this; and how good were it, if any ingenious person wouid find out the cause of such phenomena, and thence educe a generai remedy for them. Such an ingenious person was Count Rumford; and he and his successors have ianded us in the theory of the persistence, or indestructibility, of force. And in the infinitely minute, as in the infiniteiy great, the seekers after naturai knowiedge, of the kinds caller physical and chemical, have everywhere found a definite drder and succession of events which seem never to be infringed.

And how has it fared with "Physick" and Anatomy? Have the anatomist, the physioiogist, or the physician, whose business it has been to devote themselves assiduousiy
to that eminently practical and direct end, the alleviation of the sufferings of mankind,-have they been able to confine tbeir vision more absolutely to the strictly useful ? I fear they are worst offenders of all. For if the astronomer has set before us the Infinite magnitude of space, and the practical eternity of the duration of the unlverse; If the physical and chemical philosophers have demonstrated the Infinite minuteness of its constltuent parts, and the practical eternity of matter and of force; and if both havo alike proclaimed the universallty of a definite and predicable order and succession of events, the workers in biology have not only aceepted all these, but have added more startling theses of their own. For, as the astronomers dlscover in the earth no centre of the universe, but an eccentric speck, so the naturalists find man to be no centre of the living world, but one amidst endless modifications of life; and as the astronomer observes the mark of practically endiess time set upon the arrangements of the solar system so the student of life finds the records of ancient forms of existence peopling the worid for ages, whleb, in relation to human experience, are Infinite.

Furthermore, the physlologist finds Ilfe to be as dependent for its manifestation on partlcular molecular arrangements as any physleal or chemical phenomenon ; and, wherever be extends his researches, fixed order and unchanging causation reveal themselves, as plainly as in the rest of Nature.

Nor can I find that any other fate has awaited the germ of Rellgion. Arising, like all other kinds of knowledge, out of the actlon and Interaction of man's mind, with that which is not man's mind, it has taken the intellectual coverings of Fetlshism or Polythelsm; of Theism or Atheism; of Superstition or Rationallsm. Wltb these, and tbeir relative merlts and demerits, I have nothing to do ; but thls it is needful for my purpose to say, that if the rellgion of the present differs from that of the past, It is because the theology of the present bas become more selentifie than that of the past ; because It has not only renounced Idols of wood and Idols of stone, but begins to see the necessity of breaking in pleces the ldols built up of books and traditlons and fine-spun ecelesiastical cobwebs: and of eberishing the noblest and most buman of man's emotions, by worship " for the most part of the silent sort ". at the altar of the Unknown and Unknowabic,

Such are a few of the new conceptions impianted in our minds by the improvement of natural knowiedge. Men have acquired the ideas of the practicaliy infinite extent of the universe and of its practical eternity; they arc familiar with the conception that our earth is but an infinitcsimal fragment of that part of the universe which can be seen; and that, nevertheicss, its duration is, as compared with our standards of time, infinite. They havc further acquired the idea that man is but onc of innumerabic forms of life now existing in the giobe, and that the present existences are but the last of an immeasurable scries of predecessors. : Moreover, every stcp they have made in natural knowicdge has tended to extend and rivet in their minds the conception of a definite order of the universewhich is embodied in what are calicd, by an unhappy metaphor, the laws of Nature-and to narrow the range and loosen the force of men's bcief in spontaneity, or in changes other than such as arise out of that defnite ordcr itself.

Whether these Ideas are well or III founded is not the question. No one can deny that they exist, and have bcen the inevitable outgrowth of the improvement of natural knowiedge. And if so, it cannot be doubted that they are changing the form of men's most cherished and most important convictions.

And as regards the second point-the extent to which the improvement of natural knowiedge has remodelied and altercd what may be termed the inteliectual ethics of men, -what are among the moral convictions most fondly heid by barbarous and semi-barbarous pcopic.

They are the convictions that authority is the soundest basis of belief; that merit attaches to a readiness to believe ; that the doubting disposition is a bad one, and scepticism a sin; that when good authority has pronounced what is to be believed, and faith has accepted it, reason has no further duty. There are many cxcelient persons who yet hoid by these principics, and it is not my present business, or intention, to discuss their views. All I wish to bring cicarly before your minds is the unquestionabie fact, that the improvement of natural knowledge is cffected by methods which directly give the lie to all these convictions, and assumo the exact reverse of each to be true.

The improver of natural knowiedge absolutciy refuses to

350 ON IMPROVING NATURAL KNOWLEDGE

acknowiedge authority, as such. For him, scepticism is the highest of duties ; bind faith the one unpardonabie sin.' And it cannot be otherwise, for every great advance in natural knowiedge has involved the ahsolute rejection of authority, the cherishing of the keenest scepticism, the annihllation of the spirlt of hind faith; and the most ardent votary of science hoids his firmest convictions, not because the men he most venerates hoid them; not hecause therr verity is testified by portents and wonders ; hut because his experience teaches him that whenever he chooses to hring these convictions into contact with their primary source, Nature-whenever he thinks it to test them by appealing to experiment and to ohservationNature wlli conflrm them. The man of science has learned to beileve in justification, not hy falth, hut hy verification.

Thus, without for a moment pretending to despise the practical results of the improvement of natural knowiedge, and its heneficial influence on material civilization, it must, I think, be admitted that the great ideas, some of which I have indicated, and the ethical spirit which I have endeavoured to sketch, in the few moments which remalned at my disposal, constitute the real and permanent significance of natural knowiedge.

If these ideas he destined, as I hellieve they are, to be more and more firmiy estabilished as the world grows oider ; If that spirit he fated, as I helieve it is, to extend itself into all departments of human thought, and to hecome. co-extensive with the range of knowledge; 11 , as our race approaches its maturity, it discovers, as I helleve It will, that there is but' one kind of knowiedge and but one method of acquiring it ; then we, whu are still children, may justiy feel it our highest duty to recognise the advisableness of improving natural knowiedge, and so to ald ourselves and our successors in their course towards the nohie goal which lies before mankind.

ON
THE STUDY OF ZOOLOGY

ON THE STUDY OF ZOOLOGY *

Natuml Histoay is the name familiarly applied to the study of the propertles of such natural hodles as minerals, plants, and animals; the sciences which emhody the knowledge man has acquired upon these suhjects are commonly termed Natural Sclences, In contradistinction to other so-calied "physical" sciences ; and those who devote themselves especially to the pursuit of such selences have heen and are commonly termed "Naturalists."

Linnæus was a naturalist in this wide sense, and his Systema Nalure was a work upon natural history, in the hroadest acceptation of the term ; in It, that great methodizing spirit embodied all that was known in his time of the distinctive characters of minerals, animals, and plants. But the enormous stimulus which Linnæus gave to the investigation of nature soon rendered it impossible that any one man should write another Syslema Nature, and extremely diffcult for any one to hecome a naturalist such as Linnæus was.
Great as have been the advances made hy all the three hranches of science, of old included under the titie of natural history, there can he no doubt that zoology and hotany have grown in an enormously greater ratio than mincralogy ; and hence, as I suppose, the name of " natural history" has gradually become more and more definitely attached to these prominent divisions of the subject, ahd by " naturalist" people have meant more and more distinctly to imply a student of the structure and function of living beings.
However this may be, it is certain that the advance of knowledge has gradually widened the distance between mineralogy and Its old associates, while it has drawn zoology and botany closer together; so that of late years It has been found convenient (and indeed necessary) to associate the sclences which deal with vitality and all lts phenomen under the common head of "blology"; and

[^53]the biologists have come to repudiate any blood-relationship wlth their foster-brothers, the mineralogists.

Certain broad laws have a general appilcation throughout both the animal and the vegetable worlds, but the ground common to these kingdoms of nature ls not of very wide extent, and the multipllelty of detulls 1830 great, that the student of llving beliggs finds hiniself obliged to devote his attention cxclusively elther to the one or the other. If he elects to study piants, under any aspect, we know at once what to call him. He is a botanist, and hls sclence ls botany. But if the investigation o! animal life be hls choice, the name gencrally applled to him will vary according to the kind of animals he studles, or the particular phenomena of anlmal life to which he confines hls attentlon. If the study of man is his object, he is called an anatomist, or a physlologist, or an etbnologist ; but 18 he dlssects animals, or examines into the mode in which their functions are performed, he ls a comparative anatomist or comparative physlologist. If he turns his attention to fossil anlmals, he is a palcontologist. If his mind is more particularly directed to the specific descriptlon, discrimination, classification, and distribution of animals, he is termed a zoologist.

For the purpose of the present discourse, however, I shall recognlse none of these tities save the last, which I shall employ as the equivalent of botanlst, and I shall use the term zoology as denoting the whole doctrine of animal life, In contradistinction to botany, which slgnifies the whole doctrine of vegetable life.

Employed in thls sense, zoology, like botany, is divislble into three great but subordinate sclences, morphology, physlology, and distribution, each of which may, to a very great extent, be studled independently of the otber.

Zoological morphology ls the doctrine of animal form or structure. Anatomy is one of lis branches; development ls another; while classification ls the expression of the relations which different animals bear to one another, in respect of their anatomy and their development.

Zoological distribution is the study of animals in relation to the terrestrial conditions whlch obtaln now, or have obtained at any prevlous epoch of the earth's history.

Zoological physlology, lastly, is the doctrine of the functions or actions of animals. It regards animal bodies as machines impelled by certain forces, and performing an

ON THE STUDY OF 200LOGY

amount of work which can he expressed In terms of the ordinary forces of nature. The Anal ohject of physlology Is to deduce the facts of morphology, on the one hand, and those of distribution on the other, from the laws of the molecular forces of matter.

Such is the scope of zoology. But If I were to contcit mysolf with the enunciation of these dry definitions, I shculd ill exempilfy that method of teaching this branch of physical science, which it is my chlef business to-night to recommend. Let us turn away then from abstract defnitions. Let us take some concrete llving thing, some animal, the commoner the hetter, and let us see how the application of common sense and common logic to the ohvious facts it presents, in-. evitahly leads us Into all these branches of :uvlagical science.

I have before me elobster. When I examine it, what appears to he the mort striking character it presents? Why, I observe that this part which we call the tail of the lobsiter, is made up of six distinct hard rings and a seventh terminal plece. If I separate one of the middle rings, say the third, I find It carries upon Its under surface a pair of ilmbs or appendages, each of which consists of a stalk and two terminal pleces. So that I can represent a transverse section of the ring and Its appendages upon the diagram board in this way.

If I now take the fourth ring I find It has the same structure, and so have the fifth and the second ; so that, in each of these divisions of the tail, I find parts which correspond with one another, a ring and two appendages ; and In each appendage a stalk and two end pieces. These corresponding parts are called, in the technical language of anatomy, "homologous parts." The ring of the third division is the "homologue" of the ring of the fifth, the appendage of the former is the homologue of the appendage of the latter. And, areach division exhiblts corresponding parts in corresponding places, we say that all the divisions are constructed upon the same pian. But now iet us consider the sixth division. It is similar to, and yet different from, th: others. The ring is essentially the same as in the other divisions; but the appendages iook at first as If ti: y were very differert; and yet when we regard them closeiy, what do we (t..)? A stalk and two terminal divisions, exactiy as in the oiners, hut the stalk is very short and very thick, the terminal divisions are very broad and fat, and one of them is divided into two pleces.

ON THE STUDY OF ZOOLOGY

I may say, therefore, that the sixth segment is like the others in pian, hut that it is modiffed in its details.

The first segment is like the others, so far as its.ring is concerned, and though its appendages differ from any of those yet examined in the simplicity of their structure, parts corresponding with the stem and one of the divisions of the appendages of the other segments can he readily discerned in them.

Thus it appears that the iobster's tall is composed of a series of segments which are fundamentally similar, though each presents peculiar modifications of the pian common to ali. But when I turn to the fore part of the body I see, at first, - nothing hut a great shield-iike shell, called technically the "carapace," ending in front in a sharp spine, on elther side of which are the curious compound eyes, set upon the ends of stout movahie stalks. Behind these, on the under side of the hody, are two pairs of iong feelers, or antenne, foliowed by six pairs of jaws foided against one another over the mouth, and flve pairs of fegs, the foremost of these heing the great pinchers, or claws, of the iobster.

It looks, at first, a iittle hopeless to attempt to find in this complex mass a series of rings, each with its pair of appendages, such as I have shown you in the abdomen, and yet it is not difficult to demonstrate their existence. Strip of the iegs, and you wili find that each pair is attached to a very definite segment of the under wail of the body; hut these segments, instead of heing the iower parts of free rings, as in the tail, are such parts of rings which are all solidly united and hound together ; and the like is true of the jaws, the feeiers, and the eye-stalks, every pair of which is borne upon its own special segment. Thus the conciusion is gradually forced upon us, that the body of the iobster is composed of as many rings as there are pairs of appendages, nameiy, and movabie, while the fourteen front rings become firmiy soidered together, their hacks forming one continuous shieid-the carapace.

Unity of pian, diversity in execution, is the iesson taught hy the study of the rings of the body, and the same instruction is given still more emphatically by the appendages. If I examine the outermost jaw I find it consists of three distinct portions, an inner, a middle, and an outer, mounted upon a common stem; and if I compare this jaw with the legs hehind it, or the jaws in front of it, I find it quite easy
to see, that, in the iegs, it is the part of the appendage which corresponds with the inner division, which becomes modilied into what we know familiariy as the " leg," while the middle division disappears, and the outer division is hidden under the carapace. Nor is it more difficuit to discern that, in the appendages of the tail, the middle division appears again and the outer vanishes; while, on the other hand, in the foremost jaw, the so-called mandibie, the inner division only is left; and, in the same way, the parts of the feelers and of the eye-stalks can be identified with those of the fegs and jaws.

But whither does ali this tend? To the very remarkable conclusion that a unity of pian, of the same kind as that discoverable in the tall or abdomen of the iobster, pervades the whole organization of its skeicton, so that I can return to the diagram representing any one of the rings of the tall, which I drew upon the board, and by adding a third division to each appendage, I can use it as a sort of scheme or pian of any ring of the body. I can give names to all the parts of that figure, and then if I take any segment of the body of the lobster, I can point out to you exactly, what modification the general pian has undergone in that particular segment; what part has remained movable, and what has become fixed to another; what has been excessively deveioped and metamorphosed and what has been suppressed.

But I imagine I hear the question, How is all this to be tested? No doubt it is a pretty and ingenious way of fooking at the structure of any animal, but is it anything more? Does Nnture acknowiedge, in any deeper way, this unity of pian we seem to trace?
The objection suggested by these questions is a very valid and important one, and morphology was in an unsound state so long as it rested upon the mere perception of the analogies which obtain between fully formed parts. The unchecked ingenulty of speculative anatomists proved itseif fully competent to spin any number of contradictory hypotheses out of the same facts, and endless morphological dreams threatened to suppiant scientific theory.

Happily, however, there is a criterion of morphoiogical truth, and a sure test of all homologies. Our fobster has not always been what we see it; it was once an egg, a semifluid mass of yoik, not so big as a pin's head, contained in a transparent membrane, and exbibiting not the least

358

 ON THE STUDY OF ZOOLOGYtrace of any one of those organs, whose multiplicity and complexity, in the adult, are so surprising. After a time a dellcate patch of cellular membrane appeared upon one face of this yolk, and that patch was the foundation of the whole creature, the clay out of which it would be mouided. Gradually investing the yoll, it became subdivided by transverse constrictions into segments, the fore-runners of the rings of the body. Upon the ventral surface of each of the rings thus sketched out, a pair of bud-like prominences made their appearance-the rudiments of the appendages of the ring. At first, all the appendages were alike, but, as they grew, most of them became distinguished into a stem and two terminal divisions, to which, in the middle part of the body, was added a third outer division; and it was oniy at a iater period, that by the modification, or absorption, of certain of these primitive constituents, the limbs acquired their perfect form.

Thus the study of development proves that the doctrine of unity of plan is not merely a fancy, that it is not merely one way of looking at the matter, but that it is the expression of deep-seated natural facts. The legs and jaws of the lobster may not merely be regarded as modifications of a common type,-in fact and in nature they are so,-the leg and the jaw of the young animal being, at first, indistinguishable.

These are wonderful truths, the more so because the zooiogist finds them to be of universal application. The investigation of a polype, of a snail, of a fish, of a horse, or of a man, would have led us, though by a less easy path, perhaps, to exactly the same point. Unity of pian everywhere lies hidden under the mask of diversity of structure -the compiex is everywhere evoived out of the simple. Every animal has at first the form of an egg, and every animal and every organic part, in reaching its adult state, passes through conditions common to other animals and other adult parts ; and this leads me to another point. I have hitherto spoken as if the iobster were alone in the world, but, as I need hardly remind you, there are myriads of other animal organisms. Of these, some, such as men, horses, birds, fishes, snails, slugs, oysters, corals, and sponges, are not in the least ilke the lobster. But other animals, though they may differ a good deal from the lobster, are yet elther very like it, or are like something that is ilke it. The fray fish, the rock lobster, and the prawn, and the

10
ki
la:
dl
fir
by
ar
of
se
sp
is
ho
lik
de
res
sp
fis
fea
ass
bla
wh
Ag
un
wa
ott
lar
exi
spi
the
fin:
low
age
1
iob
a
Prc
the
Cae
typ
uni
she
shrimp, for exampic, however different, are yet so like lohsters, that a cilld wouid group them as of the iobster kind, in contradistinction to snalls and siugs; and these last again would form a kind by themseives, in contradistinction to cows, horses, and shcep, the cattie kind.

But this spontaneous grouping into "kinds" is tiec first essay of the human mind at classification, or the calling by a common name of those things that are alike, and the arranging them in such a manner as best to suggest the sum of tbeir likenesscs and unlikenesses to other things.

Those kinds which inciude no other subdivisions than the sexes, or various hreeds, are calied, in tcchnical ianguage, species. Tbe Englisb iobster is a species, our cray flsh is another, our prawn is another. In other countries, however, there are iohsters, cray fish, and prawns, very iike ours, and yet presenting sufficient differences to deserve distinction. Naturaiists, therefore, express this resemhlance and tinis diversity by grouping them as distinct species of the same "genus." But the iobster and the cray fish, though beionging to distinct genera, have many features in common, and hence are grouped together in an assemblage which is called a family. More distant resemblances connect the lohster with the prawn and the crab, which are expressed hy putting ali these into the same order. Again, more remote, hut still very definite, resemblances unite the lobster with the woodlouse, the king crab, the water flea, and the harnacle, and separate them from ali other animals; whence tbey coilectiveiy constitute the larger group, or class, Crustacea. But the Crustacea exhibit many peculiar features in common with insects, spiders, and centipedes, so that these are grouped into the still larger assemhiage or " province" Articulata; and, finally, the relations which these have to worms and other lower animais, are expressed by combining the whole vast aggregate into the sub-kingdom of Annulosa.

If I had worked my way from a sponge instead of a lobster, I shouid have found it associated, by iike ties, with a great numher of other animals into the sub-kingdom Protozoa; if I had seiected a fresh-water poiype or a corai, the members of what naturalists term the sub-kingdom Coelenterata would have grouped themselves around my type; had a snail been chosen, the inhabitants of ali univalve and bivaive, land and water, shciis, the lamp shells, the squids, and tbe sea-mat would bave gradually
linked themseives on to it as members of the same subkingdom of Mollusca; and finally, starting from man, I should have heen compelied to admit first, the ape, the rat, the horse, the dog, into the same class; and then the bird, the crocodile, the turtie, the frog, and the fish, into the same sub-kingdom of Vertebrata.

And if I had followed out all these various lines of classification fuliy, I should discover in the end that there was no animal, either rccent or fossil, which did not at once fali into one or other of these sub-kingdoms. In other words, every animal is organized upon one or other of the five, or more, pians, whose existence renders our classification possihie. And so definitely and precisely marked is the structure of each animal, that, in the present state of our knowiedge, there is not the ieast evidence to prove that a form, in the siightest degree transitional between any of the two groups Verlebrata, Annulosa, Mollusca, and Coelenterata, eitier exists, or has existed, during that period of the earth's history which is recorded hy the geoiogist. Nevertheless, you must not for a moment suppose, because no such transitional forms are known; that the memhers of the sub-kingdoms are disconnected from, or independent of, one another. On the contrary, in their earifest condition they are all alike, and the primordial germs of a man, a dog, a bird, a fish, a beetie, a snail, and a polype are, in no essentiai structural respects, distinguishabie.

In this broad sense, it may with truth be said, that ail living animals, and all those dead creations which geoiogy reveals, are bound together by an all-pervading unity of erganization, of the same character, though not equal in degree, to that which enabies us to discern one and the same plan amidst the twenty different segments of a iohster's body. Truiy it has heen sald, that to a clear eye the smallest fact is a window through which the Infinite may be seen.

Turning from these purely morphoiogical considerations, let us now examine into the manner in which the attentive study of the iohster impeis us into other iines of research.

Lohsters are found in all the European seas; but on the opposite shores of the Atlantic and in the seas of the southern hemisphere they do not exist. They are, however, represented in these regions by very closeiy allied, but distinct forms-the Homarus Americanus and the Homarus Capensis : so that we may say that the European has one species of Homarus ; the American, another ; the African,
another; and tbus the remarkable facts of geograpbical distribution begin to dawn upon us.

Agaln, if we examine the contents of the earth's crust, we shali find in the latter of those deposits, which have served as tbe great burying grounds of past ages, numberless lobster-ilke animais, but none so similar to our iiving iobster as to make zoologists sure that they beionged even to the same genus. If we go still further back in time, we discover, in the oidest rocks of all, the remalns of animals, constructed on tbe same general plan as the iobster, and beionging to the same great group of Crustacea; but for the most part totally different from the iobster, and indeed from any otber living form of crustacean; and thus we gain a notion of tbat successive change of the animal population of the globe, in past ages, whicb is the most striking fact revealed by geology.

Consider, now, where our inquiries bave led us. We studied our type morphoiogicaily, when we determined its anatomy and its deveiopment, and when comparing it, in these respects, with other animais, we made out its place in a systcm of classification. If we were to examine every animal in a similar manner, we sbouid establisb a compiete body of zooiogical morphoiogy.

Again, we investigated the distribution of our type in space and in time, and, if the iike had been done with every animal, the sciences of geographical and geoiogical distribution would have attained their limit.

But you will observe one remarkabie circumstance, that, up to this point, the question of the life of tbese organisms has not come under consideration. Morpboiogy and distribution might be studied almost as weil, if animals and plants were a peculiar kind of crystals, and possessed none of those functions which distinguish living beings so remarkabiy. But the facts of morphoiogy and distribution have to be accounted for, and the science, wbose alm it is to account for them, is Physiology.
Let us return to our iobster once more. If we watched the creature in its native eiement, we should see it climbing activeiy the submerged rocks, among which it deiights to. ilive, by means of its strong legs; or swimming by powerful strokes of its great tail, the appendages of whose sixth joint are spread out into a broad fan-ilike propeller: seize it, and it will show you tbat its great claws are no mean weapons of offence; suspend a plece of carrion among its.
haunts, and it will greedily devour it, tearing and crushing the fiesh by means of its multitudinous jaws.

Suppose that we had known nothing of the iobster but as an inert mass, an organic crystal, if I may use the phrase, and that we could suddenly see it exerting ali these powers, what wonderful new ideas and new questions would arise in our minds ! The great new question would be, " How does all this take place?" the chicl new idea would be, the idea of adaptation to purpose,-the notion, that the consitituents of animal bodies are not mere unconnected parts, but organs working together to an end. Let us consider the tail of the iobster again from this point of view. Morphology has taught us that it is a series of segments composed of homologous parts, which undergo various modifications-beneath and through which a common pian of formation is discernibie. But if I look at the same part physiologically, I see that it is a most beautifuliy constructed organ of iocomotion, by means of which the animal can swiftiy propel itself either backwards or forwards.

But how is this remarkable propulsive machine made to perform its functions? If I were suddenly to kill one of these animais and to take out all the soft parts, I should find the shell to be perfectiy inert, to have no more power of moving itseif than is possessed by the machinery of a mill when disconnected from its steam-engine or waterwheei. But if I were to open it, and take out the viscera only, leaving the white fesh, I should perceive that the iobster could bend and extend its tail as well as before. If I were to cut off the tail, I should cease to find any spontaneous motion in it ; but on pinching any portion of the flesh, I should observe that it underwent a very curious change-each flbre becoming shorter and thicker. By this act of contraction, as it is termed, the parts to which the ends of the flbre are attached are, of course, approximated; and according to the refations of their points of attachment to the centres of motions of the different rings, the bending or the extension of the fail recuits. Ciose observation of the newiy-opened iobster would soon show that all its movements are due to the same cause-the shortening and thickening of these fleshy fibres, which are technically called muscles.

Here, then, is a capital fact. The movements of the lobster are due to muscular contractility. But why does
a musele contract at one time and not at another? Why does one whoic group of muscies contract when the iobster wishes to extend his tail, and another group when he desires to bend it? What is it originates, directs, and controis the motive power?

Experiment, the great instrument for the ascertainment of truth in physical science, answers this question for us. In tbe head of the lobster there lies a small mass of that pcculiar tissue which is known as nervous substance. Cords of similar matter conneet this brain of the lobster, directiy or indirectly, with the muscles. Now, if these communicating cords are cut, the brain remaining entire, the power of exerting what we call voluntary motion in the parts below the section is destroyed; and on the otber hand, if, the cords remaining entire, the brain mass be destroyed, the same voluntary mobility is equally lost. Whence the inevitabie conclusion is, that the power of originating tbese motions resides in the brain, and is propagated along the nervous cords.

In the higher animals the phenomena which attend this transmission have been investigated, and the exertion of the peculiar energy which resides in the nerves has been found to be accompanied by a disturbance of the electrical state of their molecuies.

If we couid exactiy estimate the signification of this disturbance; if we could obtaln the value of a given exertion of nerve force by determining the quantity of electricity, or of heat, of which it is the equivalent; if we could ascertain upon what arrangement, or other condition of the molecules of matter, the manifestation of the nervous and muscular energies depends, (and doubtiess science will some day or otber ascertain these points,) pbysiologists would have attalned their ultimate goal in this direction ; they would have determined the reiation of the motive force of animals to the other forms of force found in nature ; and if the same process had been successfully performed for all the operations which are carried on in, and by, the animal frame, physioiogy would be perfect, and tbe facts of morphology and distribution would be deducible from the laws which physiologists had established, combined with those determining the condition of the surrounding universe.

There is not-a fragment of the organism of this humble animal whost study would not lead us into regions of
thought as large as those which I have hrielly opened up to you; but what I have heen saying, I trust, has not only enahied you to form a conception of the scope and purport of zoology, hut has given you an imperfect example of the manner in whlch, $\ln \mathrm{my}$ opinion, that science, or indeed any physical sclence, may be best taught. The great matter 18 , to make teaching real and practica, by fixing the attention of the student on particular thets; but at the same time lt should he rendered hrond and comprehensive, hy constant reference to the eneralitations of which ali partleular facts are lllustrations. The lohster has served as a type oi the whoie animal kingdom, and lts anatomy and physiology have illustrated for us some of the greatcst truths blology. The student who has once seen for himself the facts which I have described, has had their relations expialned to him, and has clearly comprehended them, has, so far, a knowledge of zoology, whlch is real and genuine, however limited it may be, and which is worth more than all the mere reading knowledge of the science he could ever acquire. His zoological information is, so far, knowledge and not mere hcar-say.

And if it were my business to fit you for the certificate in zoological sclence granted hy this department, I should pursue a course precisely similar in principle to that which I have taken to-night. I should seiect a fresh-water sponge, a fresh-water polype or a Cyanea, a fresh-water mussel, a lohster, a fowl, as types of the five primary divisions of the animal kingdom. I should explain their structure very fully, and show how each illustrated the great princlples of zoology. Having gone very carefully and fully over this ground, I should fecl that you had a safe foundation, and I should then take you in the same way, but less minutely, over similarly selected illustrative types of the classes; and then I should direct your attention to the speclal forms enumerated under the head of types, in this syllahus, and to the other facts there mentioned.

That would, speaking generally, he my plan. But I have undertaken to expiain to you the hest mode of acquiring and communicating a knowiedge of zooiogy, and you may therefore fairiy ask me for a more detailed and precise account of the manner \ln which I should propose to furnish you wlth the information I refer to.

My own impression is, that the hest model for all kinds of training in physical science ls that afforded by the
method of teaching anatomy, in use in the medical schools. This method consists of three elements-lectures, demonstrations, and examinations.

The object of lectures is, in the first place, to awaken the attention and excite the enthusiasm of the student; and this, I am sure, may he effected to a far greater extent by the oral discourse and hy the personal influence of a respected teacher than in any other way. Secondiy, lectures have the douhie use of guiding the student to the sailent points of a suhject, and at the same time forcing him to attend to the whoie of It, and not merely to that part which takes his lancy. And lastiy, lectures afford the student the opportunity of seeking expianations of those dificulties which wili, and indeed ought to, arise in the course of his studies.

But for a student to derive the utmost possihic value from fectures, several precautions are necdfui.

I have a strong impression that the better a discourse is, as an oration, the worse it is as a lecture. The flow of the discourse carries you on without proper attention to its sense; you drop a word or a phrase, you lose the exact meaning for a moment, and whlle you strive to recover yourself, the speaker has passed on to something else.

- The practice I have adopted of late years, in lecturing to students, is to condense the substance of the hour's discourse into a few dry propositions, which are read slowiy and taken down from dictation; the reading of each heing foliowed by a free commentary, expanding and lilustrating the proposition, expiaining terms, and removing any difficuities that may be attackabie in that way, hy diagrams made roughly, and seen to grow under the lecturer's hand. In this manner you, at any rate, insure the co-operation of the student to a certain extent. He cannot leave the lecture-room entirely empty if the taking of notes is enforced; and a student must be preternaturally dull and mechanical, it he can take notes and hear them properly expiained, and yet iearn nothing.
- What books shail I read? is a question constantiy put by the student to the teacher. My repiy usually is, "None : write your notes out carefully and fully ; strive to understand them thoroughly ; come to me for the explanation of anything you cannot understand ; and I would rather you did not distract your mind hy reading." A properly composed course of lectures ought to contain fully as much
matter as a student can assimilate in the time occupied hy Its delivery; and the teacher should always recolleet that his husiness is to feed, and not to cram the intellect. Indeed, I bellieve that a student who gains from a course of lectures the simpie habit of concentrating his attention upon a definitely limited series of facts, until they are thoroughly mastered, has made a step of immeasurahie importance.
But, however good lectures may be, and however extensive the course of reading hy which they are followed up, they are hut accessories to the great instrument of scientife teaching-demonstration. If I insist unweariedly, nay fanatically, upon the importance of physical selence as an educational agent, it is hecause the study of any hranch of science, if properly conducted, appears to me to 811 up a vold feft hy all other means of education. I have the greatest respect and love for ilterature; nothing would grieve me more than to see ilterary training other than a very prominent hranch of education : indeed, I wish that real ilterary discipline were lar more attended to than it is ; hut I cannot shut my eyes to the fact, that there is a vast difference het ween men who have had a purely literary, and those who have had a sound scientific, training.

Seeking for the cause of this difference, I imagine I can find it in the fact that, in the worid of letters, fearning and knowiedge are one, and hooks are the source of hoth; whereas in sclence, as in Hie, learning and knowledge are distinct, and the study of things, and not of hooks, is the source of the latter.

All that Iterature has to hestow may he ohtained hy reading and hy practical exercise in writing and in speaking; hut I do not exaggerate when I say, that none of the hest gifts of science are to he won hy these means. On the contrary, the great henefit which a scientific education hestows, whether as training or as knowledge, is dependent upon the extent to whick the mind of the student is hrought into immediate contact with facts-upon the degree to which he fearns the habit of appealing directiy to Nature, and of acquiring through his senses concrete images of those properties of things, which are, and always will be, hut approximately expressed in human language. Our way of looking at Nature, and of speaking ahout her, varies from year to year; but a fact once seen, a relation of cause and effect, once demonstratively apprehended, are posses-
dions whlch nelther change nor pass away, but, on the contrary, form fixed centiss, about whicb other trutbs aggregate by natural aflinity.

Therefore, the great buslness of the sclentlic teacher 1 s , to imprint the fundamental, irrefragable facts of his sclence, not only by words upon the mind, but by sensible impressions upon the eye, and ear, and touch of the student, in so complete a manner, that every term used, or law enunclated, should afterwards call up vivid images of the partlcular structural, or other, facts which furnished the demonstration of the law, or the llustration of tbe term.

Now thls important operation can only be achleved by constant demonstration, whlch may take place to a certain imperfect extent during a lecture, but which ought also to be carried on independently, and which should be addressed to eacb individual student, the tencher endeavouring, not so much to show a thling to the learner, as to make him see lt for himself.

I am well aware that there are great practlcal dimcullics in the way of effectual zoological demonstrations. The dissectlon of animals is not altogetber pleasant, and requires mucb time ; nor is lt easy to secure an adequate supply of the needful specimens. The botanist has here a great advantage; hls specimens are easily obtained, are clean and wbolesome, and can be dissected in a private bouse as well as anywhere else ; and hence, I belleve, tbe fact, that botany ls so much more readlly and better taught tban Its sister sclence. But, be it difficult or be it easy, if zoological science is to be properly studied, demonstration, and, consequently, dlssection, must be had. Without it, no man can havo a really sound knowledge of animal organizatlon.

A good dcal may be done, bowever, wlthout actual dlssection on the student's part, by demonstration upon specimens and preparatlons; and in all probability it would not be very difficult, were the demand sufficient, to organize collections of such objects, sufficlent for all the purposes of elementary teacbing, at a comparatively cheap rate. Even witbout these, mucb might be effected, if tbe zoological collections, whicb are open to the publlc, were arranged according to wbat bas been termed tbe "typical princlple"; tbat is to say, if the specimens exposed to public view were so selected tbat the publle could learn comething from them, instead of being, as at present,

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART Na. 2)

APPLIED IMAGE Inc

1653 Eost Main Street
Rochester. New York 14609
USA
(716) 482-0300-Phone
(716) 288 - 5989 - Fox
merely confused by their multlpllelty. For example, the grand ornlthological gallery at the British Museum contalns between two and three thousand specles of birds, and sometimes five or six specimens of a species. They are very pretty to look at, and some of the cases are, indeed, splendid; but I will undertake to say, that no man but a professed ornlthologist has ever gathered much informatlon from the collectlon. Certainly, no one of the tens of thousands of the general public who have walked through that gallery ever knew more about the essential peculiarities of birds when he left the gallery than when he entered lt. But if, somewhere in that vast hall, there were a few preparations, exemplifying the leading structural peculiarltles and the mode of deveiopment of a common fowl ; if the types of the genera, the leading modifications in the skeleton, in the plumage at various ages, in the mode of nldificatlon, and the like, among birds, were displayed; and if the other specimens were put away In a place where the men of sclence, to whom they are alone useful, could have free access to them, I can concelve that this collection might become a great instrument of scientific education.

The last implement of the teacher to which I have adverted is examination--a means of education now so thoroughly understood that I need hardly enlarge upon it. I hold that both written and oral examinatlons are indlspensable, and, by requiring the description of specimens, they may be made to supplement demonstration.
Such is the fullest reply the time at my disposal will allow me to give to the question-how may a knowledge of zoology be best acquired and communicated?

But there is a previous question whlch may be moved, and which, In fact, I know many are inclined to move. It Is the question, why should training masters be encouraged to acquire a knowledge of this, or any other branch of physical science? What is the use, lt is sald, of attempting to make physical science a branch of primary educatlon? Is it not probable that teachers, in pursuing such studies, will be led astray from the acquirement of more important but less attractive knowledge? And, even if they can learn something of sclence without prejudice to their usefulness, what ls the good of their attempting to instil that knowledge into boys whose real business is the acquisition of reading, writlng, and arithmetic ?

These questions are, and will be, very commonly asked,
for they arise from that profound ignorance of the value and true position of pbysical science, which infests the minds of the most highiy educated and inteiligent classes of the community. But if I did not feel weil assurcd that they are capabie of being easily and satisfactorily answered; that they bave been answered over and over again ; and that the time will come when men of iiberal education will biush to raise such questions,-I shouid be ashamed of my position here to-night. Without doubt, it is your great and very important function to carry out eiementary education; without question, anything that shouid interfere with the faithfui fulniment of that duty on your part wouid be a great evil; and if I thought that your acquirement of the eiements of physical science, and your communication of those eiements to your pupils, involved any sort of interfcrence with your proper dutics, I siouid be the first person to protest against your being encouraged to do anything of the kind.

But is it true that the acquisition of such a knowledge of science as is proposed, and the communication of tbat knowiedge, are caiculated to weaken your usefuiness? Or may I not rather ask, is it possibie for you to discharge your functions properiy without these aids?

What is the purpose of primary inteifectual education? I apprehend that its first object i, to train the young in the use of those toois whercwith men extract knowiedge from the ever-shifting succession of phenomena which pass bcfore their eyes; and that its second object is to inform them of the fundamental laws which have been found by experience to govern the course of things, so that they may not be turned out into the world naked, defenceiess, and a prey to the events they might controi.

A boy is taught to read his own and other ianguages, in order that he may have access to infinitely wider stores of knowiedge than couid cver be opened to him by oral intercourse with his fellow men; be learns to write, that his means of communication witb the rest of mankind may be indefinitely eniarged, and that he may record and store up the knowiedge he acquires. He is taught elementary mathematics, that he may understand all those reiations of number and form, upon which the transactions of men, associated in complicated societies, are built, and that he may have some practice in deductive reasoning.
. All these operations of reading, writing, and clphering,
are intellectual toois, whose use should, before ail things, be learned, and learned thoroughiy; so that the youth may te enabied to make his iife that which it ought to be, a continual progress in iearning and in wisdom.

But, in addition, primary education endeavours to fit a boy out with a certain equipment of positive knowiedge. He is taught the great laws of morallty ; the rellglon of his sect ; so much history and geography as wlli teli him where the great countries of the worid are, what they are, and how they have become what they are.

Without doubt ali these are most fitting and excellent things to teach a boy; I should be very sorry to omit any of them from any scheme of primary inteiiectual education. The system is exceilent, so far as it goes.

But if I regard it closely, a curious reflection arises. I suppose that, fifteen hundred years ago, the child of any well-to-do Roman citizen was taught just these same things; reading and writing in his own, and, perhaps, the Greek tonguc ; the elements of mathematics; and the reilgion, morality, history, and geography current in his time. Furthermore, I do not think I crr in affirming, that, If such a Christian Roman boy, who had finished his education, could be transpianted into one of our public schoois, and pass through its course of instruction, he would not meet with a single unfamiliar line of thought ; amidst all the new facts he wouid have to iearn, not one would suggest a different mode of regarding the universe from that current in his own time.

And yet sureiy there is some great difference between the civilization of the fourth century and that of the nineteenth, and stili more between the intellectual habits and tone of thougnt of that day and this ?
And what has made this difference? I answer fearlessiy, -The prodigious development of physical science within the last two centuries.

Modern clvilization rests upon physical science; take away her gifts to our own country, and our position among the leading nations of the world is gone to-morrow; for it is physical science oniy, that makes intelligence and moral energy stronger than brute force.

The whole of modern thought is steeped in science; it has made its way into the works of our best poets, and even the mere man of letters, who affects to ignore and desplse science, is unconsciously impregnated with her spirit, and
indebted for hls best products to her methods. I belleve that the greatest intellectual revolution mankind has yet seen ls now slowly taking place by her agency. She ls teaching the world that the ultlmate court of appeal Is observation and experiment, and not authorlty; she is teachlng lt to cstimate the value of evldence; she ls creating a firm and llving falth \ln the cxlstence of Immutable moral and plysilcal laws, perfect obedience to whlch is the hlghest posslble alm of an lntelligent belng.

But of all this your old stereotyped system of education takes no note. Physlcal science, lts methods, lts problems, and its difficultles, wlll meet the poorest boy at every turn, and yet we educate him in such a menner that he shall enter the world as lgnorant of the existence of the methods and facts of sclence as the day he was born. The modern world ls full of artillery; and we turn out our children to du battle $\ln 1 t$, equlpped wlth the shleld and sword of an anclent gladlator.

Posterlty will cry shame on us if we do not remedy thls deplorable state of thlngs. Nay, if we live twenty ycars longer, our own consclences will cry shame on us.

It ls my firm convlction that the only way to remedy it is, to make the elements of physical sclence an integral part of primary education. I have endeavoured to show you how that may be done for that branch of science whlch it is my business to pursuc; and I can but add, that I should look upon the day when every schoolmaster throughout thls land was a centre of genuinc, however rudimentary, sclentiflc knowledge, as an epoch in the history of the country.

But let me entreat y oo remember my last words. Addressing myself to you, us teachers, I would say, mere book learning in physlcal science ls a sham and a deluslonwhat you teach, unless you wish to be impostors, that you must first know; and real knowledge in science means personal acquaintance with the facts, be they few or many.*

[^54]
372

ON THE STUDY OF ZOOLOGY

by his own knowiedge, can describe them with so much vividness as to eaable his audience to form competent liceas concerning them. The system which I repudiate is that which allows teachers who have not come into direet contact with the leading facts of a science to pass their second-hand information on. The scientific virus, like vaceine lymph, if passed through too long a succession of organisms, will lose all its effect in protecting the young against the intellectual epidemics to which they are exposed.

GEOLOGICAL CONTEMPORANEITY AND

 PERSISTENT TYPES OF LIFE
GEOLOGICAL CONTEMPORANEITY AND PERSISTENT TYPES OF LIFE*

Merchants occaslonally go through a wholesome, though trouhlesome and not always satlsfactory, process whlch they term " taklng stock." After all the exeltement of speculation, the pleasure of gain, and the paln of loss, the trader makes up hls mind to face facts and to learn the exact quantlty and quality of hls solld and rellahle possesslons.

The man of selence does well sometlmes to imltate thls procedure ; and, forgettling for the tlme the importance of his own small wlnnings, to re-examine the common stock in trade, so that he may make sure how far the stock of hullion in the cellar-on the faith of whose existence so much paper has heen circulating-ls really the solld gold of truth.

The Annlversary Meeting of the Geological Soclety seems to he an oceaslon well sulted for an undertaking of thls kind-for an Inquiry, In faet, Into the nature and value of the present results of palcontological investlgation; and the more so, as all those who have paid close attention to the late multltudinous dlscusslons in whlch paleontology Is implleated, must have felt the urgent necesslty of some such serutiny.

First in order, as the most definite and unquestlonahle of all the results of paleontolugy, must he mentioned the immense cxtenslon and impulse given to botany, zoology, and comparative anatomy, by the Investigation of fossil remains. Indeed, the mass of hlological facts has been so greatly increased, and the range of hlological speculation has heen so vastiy widened, hy the researches of the geologist and paieontologist, that it ls to he feared there are naturalists in existence who look upon geology as Brindley regarded rivers. "Rivers," said the great engineer, " were
*The Anniversary Address to the Geological Society for 1862.
made to fced canals "; and geology, some seem to think, was soiciy created to advance comparutive anatomy.

Were such a thought : stiflabic, it couid hardiy expect to be received with favour by this assembiy. But it is not. justinabic. Your favourite science has her own great aims independent of ail others; and if, notwithstanding her steady devotion to her own progress, she can scatter such rich alms among her sisters, it shouid be remembered that her charity is of the sort that does not impoverish, but " biesscth him that gives and him that takcs."

Regard the matter as we will, however, the facts remaln. Neariy 40,000 species of animals and piants have been added to the Systema Nature by paleontoiogical research. This is a iiving population equivalent to that of a new continent in mere number; equivalent to that of a new hemisphere, if we take into account the smali popuiatio:. of insects as yet found fossil, and the large proportion and peculiar organization of many of tie Vertebrata.
But, beyond this, it is peichaps not too much to say that, cxcept for the necessity of interpreting paleontological lacts, the laws of distribution wouid have received iess caroful study; while few comparative anatomists (and thos: not of the first order) would have been induced by mere iove of detall, as such, to study the minutia of osteology, were it not that in such minutiæ iie the only keys to the most interesting riddies offered by the extinct animal worid.

These assurediy are great and solid gains. Sureiy it is matter for no small congratuiation that in half a century (for paleontology, though it dawned eariier, came into fuii day only with Cuvier) a subordinate branch of bioiogy should have doubied the vaiue and the intcrest of the whole group of sciences to which it beione:

But this is not all. Alied with geology, paleontology has estabiished two laws of inestimabie importance: the first, that one and the same area of the earth's surface has been successively occupied by very different kinds of iiving beings; the second, that the order of succession estabilished in one iocality hoids good, approximateiy, in all.

The first of these laws is universal and frreversibie ; the second is an induction from a vast number of observations, though it may possibiy, and even probabiy, have to admit of exceptions. As a consequence of the second law, it follows that a peçuiar reiation frequently subsists betwe?n
scrics of strata, containing organic remains, in different localitics. The series rescmble one another, not only in virtue of a general resemblance of the organic remains in ha two, but also in virtue of a rescmbiance \ln the order sharacter of the serial suceesslon in cach. There is a
sembiance of arrangement; so that the scparate terms if each serics, as well as the whole serics, exhibit a correpondence.
Succession implies time; the fower memhers of a series of sedimentary rocks are certainly olvicr than the upper; and when the notion of age was once introduced as the equivafent of succession, it was no wonder that correspondence in succession came to be looked upon as a corrcspondence in age, or "cont ..nporaneity." And, indeed, so long as reiative age oniy is spoken of, correspondence in succession is correspondence in age; it is relalive contemporaneity.

But it would have bee.s very much bettcr for gcology If so loose and ambiguous a word as "contemporaneous" had been excluded from her terminology, and if, in its stead, some term exprcssing similiarity of serial reiation, and excluding the notion of tlme altogether, had bcen employed to dengte ccrrespondence in position in two or more series of strata.

In anatomy, where such correspondence of position has constantly to be spoken of, it is denoted by the word " homology " and its derivatives; and for Geology (which a. I all is only the anatomy and physioingy of the eartl) It m!ght be well to invent some single word, such as "homotaxis" (similarity of order), in order to express an essentialiy similar idea. This, however, has not been done, and most probably the inquiry will at once be made-To what end burden scle.zce with a new and strange term in place of one old, familiar, and part of our common language?

The reply to this question will become obvious as the inquiry into the results of paleontology is pushed further.

Those whose business it is to acquoint themselves specially with the works of paleontologisic, in fact, will be fuliy aware that very few, if sny, would rest satisfied with such a statement of the conclusions of their branch of biology as that which has just been given.

Our standard cepertories of paleonto'ogy plufess to teach us far higher things-to disclose the intire succession of living forms upon the surface of the globe; to tell us
of a whoily different distribution of cifmatic condilions in ancient times; to reveal the character of the first of all living cxistences; and to trace out the law of progress from them to us.

It may not be unproftable to bestow on thesc professions a somewhat more critical excmination than they have hitherto received, in order to asccrtain how far they rest on an irrcfragable basis; or whether, after ail, it might not be well for paleontologists to learn a little morc carefully that scientific "ars artium," the art of saying "I don't know." And to this end let us define somewhat more cxactiy the extent of thesc pretensions of palcontology.

Every one is aware that Professor Bronn's Untersuchungen and Professor Pictet's Tralle de Paleontologle are works of standard authority, familiarly consulted by every working paleontologist. It is desirabie to speak of these excellent books, and of their distinguished authors, with the utmost respect, and in a tone as far as possible removed from carping criticism; indeed, if they are specialiy cited in this place, it is mercly in justification of the asscrition that the following propositions, which may be found impifitly, or expicittly, in the works in qucstion, are regarded by the mass of palcontologists and gcologists, not only on the Continent but in this country, as expressing some of the bcst-established results of paleontology. Thus:-

Animals and plants began their cxistence together, not iong after the commencement of the deposition of the sedimentary rocks ; and then succeeded one another, in such a manncr, that totally distinct faunz and flore occupied the whole surface of the earth, one after the rthe', and during distinct epochs of time.

A geological formation is the sum of all the strata deposited over the whole surface of the earth during one of these epochs : a geological fauna or flora is the sum of ali the species of animals or piants which occupied the whole surface of the globe, during one of these epochs.

The population of the earth's surface was at first very similar in all parts, and oniy from the middle of the Tertiary epoch onwards, began to show a distinct distribution in zunes.

The constitution of the original population, as well as the numerical proportions of its members, indicates a warmer and, on the whole, somewhat tropical climate, which remained tolerably equabie throughout the year.

The subsequent distribution of living beings in zones is the result of a gradual lowering of the general temperature, whlch Arst began to be feit at the poles.

It is not now proposed to inquire whether these docirines aie true or false; but to direct your attentlo- to a much simpler though very essentlai preilminary questionWhat is thelr logical basis? what are the fundamental assumptions upon which they all logicaliy depend" and what is the evidence on which those fundamental pruposltlons demand our assent?
These assumptions are two : the first, that the commencement of the geological record is coev-l with the commencement of life on the globe; the second, that geological contemporaneity is the same thing as chronological synchrony. Without the first of these assumptions there weuld of course be no grouid for any statement respecting the commencement of III. . without the second, all the other statements cited, every one of which implies a knowledge of the state of different parts of the earth at one and the same time, will be no less devold of demonstration.

The first assumptlon obvlously rests entirely o negatlve evidence. This is, of course, the only evidenc hat ever can be avaliabie to prove the commencement or any series of phenomena; but, at the same tlme, it must be recollected that the value of negative evidence depends entirely on the amount of positive corroboration it receives. If A B wishes to prove an alibi, it is of no use for him to get a thousand witnesses simply to swear that they did not see him in such and such a place, unless the witnesses are prepared to prove that they must have seen him had he been there. But the evidence that animal life commenced with the Linguia-flags, e.g., would seem to be exactly of this unsatisfactory uncorroborated sort. The Cambrian witnesses simply swear they "haven't seen anybody their way"; upon which the counsel for the other side immediateiy puts in ten or tweive thousand feet of Devonian sandstones to make oath they never saw a filsh or a mollusk, though all the worid knows there were pienty in their time.

But then It is urged that, though the Devonian rocks in one part of the world exhibit no fossils, in another they do, while the lower Cambrian rocks nowhere exhibit

380

GEOLOGICAL CONTEMPORANEITY

fossils, and hence no living being could have existed in their epoch.

To this there are two replies : the first, that the observational hasis of the assertion that the lowest rocks are nowhere fossiliferous is an amazingly small one, seeing how very small an area, in comparison to that of the whole world, has yet been fully searched; the second, that the argument is good for nothing unless the unfossiliferous rocks in question were not only contemporaneous in the geological sense, hut synchronous in the chronological sense. To use the alibi illustration again. If a man wishes to prove he was in neither of two piaces, \mathbf{A} and B, on a given day, his witnesses for each place must be prepared to answer for the whole day. If they can only prove that he was not at A in the morning, and not at B in the afternoon, the - idence of his ahsence from hoth is nil, hecause he mignt have heen at B in the morning and at A in the afternoon.

Thus everything depends upon the validity of the second assumption. And we must proceed to inquire what is the real meaning of the word "contemporaneous" as employed hy geoiogists. To this end a concrete example may be taken.

The Lias of England and the Lias of Germany, the Cretaceous rocks of Britain and the Cretaceous rocks of Southern India, are termed hy geologists " contemporaneous " formations; hut whenever any thoughtful geologist is asked whether he means to say that they were deposited synchronousiy, he says, "No,-only within the same great epoch." And if, in pursuing the inquiry, he is asked what may he the approximate value in time of a "great epoch "-whether it means a hundred years, or a thousand, or a million, or ten million years-his repiy is, "I cannot tell."

If the further question he put, whether physical geology is in possession of any method by which the actual synchrony (or the reverse) of any two distant deposits can be ascertained, no such method can he heard of ; it heing admitted hy all the hest authorities that neither similarity of mineral composition, nor of physical character, nor even direct continuity of stratum, are absolute proofs of the synchronism of even approximated sedimentary strata: while, for distant deposits, there seems to he no kind of physical evidence attainable of a nature competent to decide
whether such deposits were formed simultaneousiy, or whether they possess any given difference of antiquity. To return to an example already given: All competent authorities will probably assent to the proposition that physical geoiogy docs not enabie us in any way to repiy to this question-Were the British Cretaceous rocks deposited at the same time as those of India, or are they a million of years younger or a million of years oider?

Is paleontology able to succeed where physical geoiogy fails? Standard writers on paleontology, as has been seen, assume that she can. They take it for granted, that deposits contalning similar organic remains are synchronous -at any rate in a broad sense; and yet, those who will study the eleventh and tweifth chapters of Sir Henry De la Beche's remarkabie Researches in Theoreiical Geoiogy, pubiished now neariy thirty years ago, and will carry out the arguments there most iuminousiy stated, to their logleal consequences, may very easily convince themseives that even absolute identity of organic contents is no proof of the synchrony of deposits, while absoiute diversity is no proof of difference of date. Sir Henry De la Beche goes even further, and adduces conciusive evidence to show that the different parts of one and the same stratum, having a similar composition throughout, containing the same organic remains, and having similar beds above and below it, may yet differ to any conceivable extent in age.

Edward Forbes was in the habit of asserting that the similarity of the organic contents of distant formations was primd facie evidence, not of their similarity, but of their difference of age; and hoiding as he did the doctrine of single specific centres, the conclusion was as iegitimate as any other; for the two districts must have been occupied by migration from one of the two, or from an intermediate spot, and the chances against exact coincidence of migration and of imbedding are infinite.

In point of fact, however, whether the hypothesis of single or of multipie specific centres be adopted, similarity of organic contents cannot possibly afford any proof of the synchrony of the deposits which contain them; on the contrary, it is demonstrably compatibie with the lapse of the most prodigious intervals of time, and with interposition of vast changes in the organic and inorganic worids, between the epochs in which such deposits were formed.

382

 GEOLOGICAL CONTEMPORANEITYOn what amount of similarity of their faunse is the doctrine of the contemporaneity of the European and of the North American Silurians based? In the iast edition of Sir Charies Lyell's Elementary Geology it is stated, on the authority of a former President of this Society, the iate Danicl Sharpe, that between 30 and 40 per cent. of the species of Silurian Moilusca are common to hoth sides of the Atlantic. By way of due allowance for further discovery, iet us double the lesser number and suppose that 60 per cent. of the species are common to the North American and the British Silurians. Sixty per cent. of species in common is, then, proof of contemporaneity.

Now suppose that, a million or two of years hence, when Britain has made another dlp heneath the sea and has come up agaln, some geoiogist appilies this doctrine, In comparing the strata iaid hare hy the upheaval of the bottom, say, of St. George's Channel with what may then remain of the Suffoik Crag. Reasoning in the same way, he will at once declde the Suffoik Crag and the St. George's Channel heds to ;be contemporaneous; although we happen to know that a vast period (even in the geological sense) of time, and physical changes of almost unprecedented extent, separate the two.

But if it be a demonstrabie fact that strata containing more than 60 or 70 per cent. of species of Mollusca in common, and comparativeiy ciose together, may yet he separated hy an amount of geological time sufficient to aliow of some of the greatest physical changes the world has seen, what becomes of that sort of contemporaneity the sole evidence of which is a similarity of facles, or the identlty of half a dozen species, or of a good many genera?

And yet there is no better evidence for the contemporaneity assumed by all who adopt the hypotheses of universal faunæ and floræ, of a universally uniform cimate, and of a sensihie cooling of the globe during geoiogical time.

There seems, then, no escape from the admission that neither physical geoiogy, nor paleontoiogy, possesses any method by which the ahsolute synchronism of two strata can be demonstrated. All that geology can prove is local order of succession. It is mathematically certain that,
in any given vertical iinear scction of an undisturbed series of sedimentary deposits, the bed which lics iowest is the oidest. In many other vertical iinear sections of the same series, of course, corresponding beds wili occur in a simiiar order; but, bowever great may be the probabiiity, no man can say with absoiute certainty that the beds in the two sections were synchronousiy deposited. For areas of moderate extent, it is doubticss true that no practical evil is iikeiy to result from assuming the corresponding beds to be synchronous or strictiy contemporaneous; and there are multitudes of accessory circumstances which may fuliy justify the assumption of such synchrony. But the moment the geologist bas to deal with iarge areas, or with compieteiy separated deposits, tbe mischief of confounding that " homotaxis" or " similarity of arrangement," which can be demonstrated, with "synchrony" or " identity of date," for which there is not a shadow of proof, under the one common term of "contemporaneity" becomes incalcuiabic, and proves the constant source of gratuitous speculations.

For anything that geoiogy or paleontoiogy are abie to show to the contrary, a Devonian fauna and flora in the Britisb Isiands may have been contemporaneous witb Silurian iife in North America, and with a Carboniferous fauna and flora in Africa. Geographical provinces and zones may have been as distinctly marked in tbe Paleozoic epocb as at present, and those seemingiy sudden appearances of new genera and species, which we ascribe to new creation, may be simpie resuits of migration.

It may be so; it may be otherwise. In the present condition of our knowiedge and of our methods, one verdict -" not proven, and not proveabie"-must be recorded against ali the grand hypotheses of the paleontoiogist respecting the general succession of iife on the giobe. The order and nature of terrestriai iife, as a whoie, are open questions. Geoiogy at present provides us with most valuabie topograpbical records, but sbe has not the means of working tbem into a universal history. Is such a universal history, tben, to be regarded as unattainabie? Are all tbe grandest and most interesting probiems which offer themseives to the geoiogical student essentially insoiubie? Is he in the position of a scientific Tantalus -doomed aiways to thirst for a knowiedge whicb be cannot obtain? The reverse is to be boped; nay, it may
not he impossibie to indicate the source whence help will come.

In commencing these remarks, mention was made of the great obiggations under which the naturalist lies to the geoiogist and paleontoiogist. Assurediy the time wili come wben these obilgations wili he repaid tenfoid, and when the maze of the worid's past history, through which the pure geologist and the pure paleontologist find no guidance, will he secureiy thrcaded by the clue furnished by the naturalist.

All who are compet:nt to express an opinion on the subject are, at present, agreed that the manifoid varieties of animal and vegetabie form have not either come into existence hy chance, nor resuit from capricious exertions of creative power; but that tiney have taken piace in a definite order, the statement of which order is what men of science term a natural iaw. Whetber such a iaw is to he regarded as an expression of the mode of operation of natural forces, or wbether it is simpiy a statement of the manner in which a supernatural power has thought fit to act, is a seqondary question, so iong as the existence of the iaw and the possibility of its discovery hy the buman intellect are granted. But he must be a half-hearted philosopher who, beilieving in that possibility, and having watcbed the gigantic strides of the bioiogical sciences during the last twenty years, doubts that science will sooner or fater make this further step, so as to become possessed of the law of evoiution of organic forms-of the unvarying order of that great chaln of causes and effects of which all organic forms, anclent and modern, are the links. And then, if ever, we shall he abie to hegin to discuss, with profit, the questions respecting the commencement of iife, and the nature of the successive populations of the globe, which so many seem to think are already answercd.

The preceding arguments make no particular claim to noveity; indeed they have been floating more or iess distinctiy before the minds of geoiogists for the last thirty years ; and if, at the present time, it has seemed desirabie to give them more definite and \because stematic expression, it is hecause paleontology is every day assuming a greater importance, and now requires to rest on a basis the firmness of which is thoroughiy well assured. Among its funda-
mental conceptions, there must be no confusion between What is certain and what is more or iess probabie.* But, pending the construction of a surer foundation than paleontoiogy now possesses, it may be instructive, assuming for the nonce the general correctness of the ordinary hypothesis of geoiogicai contemporaneity, to consider whether the deductions which are ordinarily drawn from the whole body of paleontoiogical facts are justifiabie.

The evidence on which such conclusions are based is of two kinds, negative and positive. The value of negative evidence, in connection with this inquiry, ilas been so fuily and cleariy discussed in an address from the chair of this Society, \dagger which none of us have forgotten, that nothing nead at present be said about it ; the more, as the considerations which have been iaid before you have certainiy not tended to increase your estimation of such evidence. It wili be preferabie to turn to the positive facts of paleontoiogy, and to inquire what they teii us.

We arc ali accustomed to speak of the number and the extent of the changes in the iiving popuiation of the globe during geoiogical time as something enormous: and indeed they are so, if we regard oniy the negative differences which scparate the oider rocks from the more modern, and if we iook upon specific and generic changes as great changes, which from one point of view they truiy arc. But ieaving the negative differences out of consideration, and iooking only at the positive data furnished by the fossil worid from a broader point of view-from that of the comparative anatomist who has made the study of the greater modifications of animal form his chief businessa surprise of another kind dawns upon the mind; and under this aspect the smaliness of the total change becomes as astonishing as was lts greatness under the other.

There are two hundred known orders of piants; of these not one is certainly known to exist exciusively in the fossil state. The whoie iapse of geologicai time has as yet yieided not a single new ordinal type of vegetabie structure. \ddagger

The positive change in passing from the recent to the * "Le plus grand service qu'on puisse rendre à la science est d'y faire place nette avant d'y rien construire."-Cuvier.
\dagger Anniversary Address for 1851, Quart. Journ. Geol. Soc. vol. vii.
\ddagger See Hooker's Introductory Essay to the Flora of Tusmania, p. xxili.
ancient animal worid is greater, but still singulariy small. No fossil animal is so distinct from those now living as to require to be arranged even in a separate class from those whicb contain existing forms. It is only when we come to the orders, which may be roughiy estimated at about a hundred and thirty, that we meet with fossil animals so distinct from those now iiving as to require orders for themselves; and these do not amount, on the most iiberal estimate, to more than about 10 per cent. of the whoie.

There is no certainly known extinct order of Protozoa; there is but one among the Coelenterata-that of the rugose corals; there is none among the Moliusca; there are three, the Cystidea, Biastoidea, and Edrioasterida, among the Echinoderms; and two, the Trilobita and Eurypterida, among the Crustacea; making altogether five for the great sub-kingdom of Annuiosa. Among Vertebrates there is no ordinally distinct fossil fish: there is only one extinct order of Amphibia--the Labyrinthodonts; but there are at least four distinct orders of Reptilia, viz. the Ichtbyosauria, Plesiosauria, Pterosauria, Dinosauria, and perbaps another or two. There is no known extinct order of Birds, and no certainly known extinct order of Mammals, the ordinal distinctness of the "Toxodontia" being doubtfui.

Tbe objection that broad statements of this kind, after all, rest largely on ncgative evidence is obvious, but it has less force than may at first be supposed; for, as might be expected from the circumstances of the case, we possess more abundant positive evidence regarding Fishes and marine Mollusks than respecting any othcr forms of animal ife ; and yet these offer us, tbrough the whoie range of geoiogical time, no species ordinally distinct from tbose now iiving; while the far less numerous class of Echinoderms presents three, and the Crustacea two, sucb orders, though none of tbese come down iater than the Paieozoic age. Las dy, the Reptilia present the extraordinary and exceptional phenomenon of as many extinct as existing orders, if not more; the four mentioned maintaining their existence from the Lias to the Chalk inclusive.

Some years ago one of your Secretaries pointed out another kind of positive paleontological evidence tending towards the same conclusion-afforded by the existence of what he termed "persistent types" of vegetabie and of
animal life.* He stated, on the authority of Dr. Hooker, that there are Carboniferous piants which appear to be genericaily identical with some now living; that the cone of the Ooiitic Arauearia is hardly distinguishabic from that of an existing species; that a true Pinus appears in the Purbecks, and a Juglans in the Chaik; while, from the Bagshot Sands, a Banksia, the wood of which is not distinguishabie from that of specles now living in Australia, had been obtained.

Turning to the animal kingdom, he affirmed the tabulato corals of the Silurian rocks to be wonderfuily iike those which now exist ; while even the families of the Aporosa were all represented in the oider Mesozoic rocks.

Amnng the Molluska similar facts were adduced. Let it be lorne in mind that Avicula, Mylalls, Chllon, Nallea, Paiella, Trochus, Discina, Orbleula, Llingula, Rhynchonella, and Nautllus, all of which are existing genera, are given without a doubt as Silurian in the iast edition of Sllurla; while the highest forms of the highest Cephalopods are represented in the Lias by a genus, Belemnoteuthls, which presents the closest relation to the existing Loligo.

The two highest groups of the Annulosa, the Insecta and the Arachnida, are represented in the Coal, either by existing genera, or by forms differing from existing genera in quite minor peculiarities.

Turning to the Vertebrata, the only paleozoic Elasmobranci Fish of which we have any compiete knowiedge is the Devonian and Carboniferous Pleuraeanthus, which differs no more from existing Sharks than these do from one another.

Again, vast as is the number of undoubtedly Ganoid fossil Fishes, and great as is their range in time, a large mass of evidence has recentiy been adduced to show that almost ali those respecting which we possess sufficient information, are referabie to the same sub-ordinal groups as the existing Lepliosieus, Polypterus, and Sturgeon; and that a singuiar reiation obtains between the oider and the younger Fishes; the former, the Devonian Ganoids, being almost all members of the same sub-order as

[^55]Polypterus, whlle the Mesozole Ganoids are almost all similarly ailled to Lepidosteus.*

Agaln, what can be more remarkable than the singular constancy of structure preserved throughout a vast period of time by the family of the Pyenodonts and by that of the true Coiacanths: the former persisting, with but Inslgnificant modifications, frum the Carbonlferous to the Tertlary roeks, inciusive; the latter existing, with still iess change, from the Carbonlferous rocks to the Chalk, incluslve?

Among Reptiles, the highest llving group, that of the Crocodllla, Is represented, at the carly part of the Mesozole epoch, by species Identical in the essential characters of their organlzatlon with those now llving, and differing from the latter only in such matters as the form of the articuiar faects of the vertcbral centra, in the extent to which the nasal passages are separated from the cavity of the mouth by bonc, and \ln the proportlons of the iimbs.

And even as regards the Mammalia, the scanty remains of Triassic and Oclltec specles afford no foundation for the suppositlon that the organization of the oldest forms differed nearly so much from some of those which now live as these differ from one another.

It is neediess to multipiy these Instances ; nough has been sald to justify the statement that, in view of the immense ¿.versity of known animal and vegetabie forms, and the enormous lapse of time Indleated by the accumulatlon of fossiliferous strata, the oniy circumstance to be wondered at is, not that the changes 0° ilfe, as exhiblted by positlve evidence, have been so great, but that they have, been so smali.

Be they great or smali, however, it is desirable to attempt to estimate them. Let us; therefore, take each great division of the animal worid in succession, and, whenever an order or a family can be shown to have had a prolonged existence, let us endeavour to ascertain how far the later members of the group differ from the eariier ones. If these later members, in ail or in many cases, exhlblt a certain amount of modifica'ion, the fact is, so far, evidence In favour of a general law of change; and, In a rough way,

[^56]the rapidity of that change will be measured by the demonstrabic amount of modification. On the other innci, it must be recoliected that the absence of any modificalion, whic it may leave the doctrine of the existence of a iaw of change without positive support, cannot possibly disprove ali forms of that doctrinc, though it may afford a sufficient refutation ur many of them.

Tice Protozon.-The Protozoa are represented througiout tite wholic range of geoiogical scries, Irom the Lower Siiurian formation to the present day. The most aneient forms rceentiy made known by Ehrenberg are excecdingiy like those which now cxiss: no onc has ever pretended that tire difference between any ancient and any modicrn Foraminifera is of more than gencric valuc, nor are the oldest Foraminifera cither simpicr, morc cmbryonic, or less differentiated, than the existing forms.

The Coleenterata.-The Tabuiatc Corals have existed from the S!lurian cpoch to the present day, but I am not awar: that the ancient Heliolites possesses a single mark of a morc cubbryonic or iess differentiated character, or icss high organization, than the existing Heliopora. As for the Aporose Corals, in what respeet is the Silurian Paleocyclus less inighiy organized or more embryonic than the modern Funyia, or the Llassic Aporosa than the existing members of the same families?

The Mollusca.-In what sense is the ilving Waldheimla less cmbryonic, or more specialized, than tinc paleozoic Splrlfer ; or the cxisting Rhynchonellx, Cranix, Discinze. Lingule, than the Silurian species of the same genera? In what sense can Loligo or Spirula be said to be more speciaiized, or less embryonic, than Belemnites; or the modern species of Lameiiibraneh and Gasteropod genera, than the Silurian species of the same genera?

The Annulos a.-The Carboniferous Insecta and Arachnida are neither iess specialized, nor more embry nic, than these that now live, nor are the Liassic Cirripedia and Macrura; wihie sevcral of the Braehyura, which appear in the Chaik, beiong to existing genera; and none exhilit either an intermediate, or an embryonic, character.

The Vertebrata.-Among fishes I have referred to the Coeiacanthini (comprising the genera Colacantlus, Holophagus, Undina, and Macropoma) as affording an exampie o: a persistent type; and it is most remarkable to note the smalliness of the differences between any of these fishes
(affecting at most the proportions of the body and ins, and the character and scuipture of the scales), notwithstanding their enormous range in time. In all the essentials of Its very pecullar structure, the Macropoma of the Chalk is Identical with the Calacanthus of the Coal. Look at the genus Lepldolus, again, persisting without a modification of Importanee from the Llassic to the Eocene formations inclusive.

Or among the Teleostel-In what respect is the Beryx of the Chalk more embryonie, or less differentiated, than Beryx linealus of King George's Sound?

Or to turn to the higher Veriebrata-in what sense are the Llassic Chelonia Interior to those whileh now exist? How are the Crotaceous Iehthyosauria, Plesiosauria, or Pterosauria less embryonic, or more differentiated, species than those of the Llas ?

Or lastly, in what elrcumstance is the Phiscolotherlum more embryonic, or of a more gencralized type, than the modern Opossum ; or a Lophiodon, or a Paleolherlum, than a modern Taplrus or Hyrax ?

These cxampics might be aimost indefinitely muitiplied, but surely they are suffeient to prove that the only safe and unquestionable testlmuny we can procure-positive evidence-falls to demonstrate any sort of progressive modifieation towards a less embryonic, or iess generallsed, type in a great many groups of animals of long-continued geological existencc. In these groups there is aioundant evidence of variation-none of what is ordinarily understood as progression ; and, if the known geological reeord is to be regarded as even any considerable fragment of the wholc, it is ineoneelvable that any theory of a necessarily progressive deveiopment ean stand, for the numerous orders and families clted afford no trace of such a proeess.

But it is a most remarkabie laet, that, while the groups which have been mentioned, and many besides, exhiblt no sign of progressive modification, there are others, eo-existing with them, under the same conditions, in which more or iess distinet indleations of such a process seems to be traeeabie. Among such indieations I may remind you of the predominance of Hoiostome Gasteropoda in the older roeks as eompared with that of Siphonostome Gasteropoda in the iater. A ease less open to the objection of negative evidenee, however, is that afforded by the Tetrabranchiate Cephaiopoda, the forms of the shells and of
the septal sutures oxhiblting a eertain increase of eomplexity In the newer genera. Here, liowever, ono is met at once with the occurrenco of Orthoceras and Baculltes at the tro ends of tho series, and of the fact that ono of the simpiest genera, Naullus, is that which now exists.

The Crinoldea, in the abundance of staiked forms in the anclent formations as compared with their present rarity, seem to present us with a fair case of modification from a more embryonle towards a icss embryonic condition. But then, on eareful consideration of the fact the objection arises that the stulk, calyx, and arms of the paleozoic Crinold are exeeedingly different from the corresponding organs of a iarvai Comaiula; and it might with perfect Justice be argued that Actinocrinus and Eucalypiocrinus, far example, depart to the fuil as widciy, in ono direction, from the staiked embryo of Comaiula, as Comaiula Itseif does in the other.

The Echinidea, again, are frequently quoted as exhiblting a gradual passage from a more generalived to a moro speciaiized type, seeing that the eiongated, or ovai, Spatangoids appear after the sphcroidal Echinoids. But here it might be argued, on the other hand, that the spheroidal Echinoids, in reailty, depart further from the general pian and from the embryonie form than the eiongated Spatangoids do; and that the pecuilar dental apparatus and the pediceilarix of the former arc marks of at icast as great dificrentiation as the petaloid ambuiacra and scmite of the iatter.

Once more, the prevalence of Maerurous hefore Brachyurous Podophthaimia is, apparentiy, a fair piece of evidence in favour of progressive modification in the same order of Crustacea; and yct the case will not stand much sifting, secing that the Maerurous Podophthalmia depart as far in one direction from the common type of Podophthalmia, or from any embryonic condition of the Brachyura, as the Brachyura do in the other; and that the middle terms between Macrura and Brachyura-the Anomura-are Ilttle better rcpresented in the oider Mcsozvic rocks than the Brachyura are.

Nonc of the cases of progressive modification which are cited from among the Invertebrata apear to me to hatc a foundation less open to eriticism than these; and if this be so, no carefui reasoner wouid, I think, be inclined to lay very great stress upon them. Among the Vert $\therefore \therefore$,
bowever, there are a few examples which appear to be far less open to objectlon.

It is, In fact, true of several groups of Vertebrata which have llved through a considerable range of time, that the endoskeleton (more partlcularly the spinal column) of the older genera presents a less ossificd, and, so far, less differentiated, condllion than that of the younger genera. Thus the Devonlan Ganolds, though almost all members or the same sub-order as Polypterus, and presenting numerous important resemblances to the existing genus, whlch possesses blconclave vertebre, are, for the most part, wholly devold of osslficd vertebral eentra. The Mesozolc Lepldostcldæ, again, have, at most, bjeoncave vertcbre, while the existling Lepldoste is has Salamp old, oplsthocclous, vertebree. So, none of the Palcozole sharks have sh n themselves to be possessed of ossified vertebre, whic the majorlty of modern Sharks possess such vertebre. Agaln, the morc anclent Crocodilla and Lacertilla have vertebre wlth the artlcular facets of thelr centra flattened or blconenve, whlle the modern members of the same group have them proccelous. But ihe most remarkable examples of progresslve modilication of the vertebral column, in correspondence with geological age, are those afforded by the Pyenodonts among fish, and the Labyrinthodonts among Ainphibla.

The late alle lehthyologlst Heckel pointed out the fact, that, while the Pyenodonts never possess true vertebral centra, they difer in the degrec of expanslon and extenslon of the ends of the bony arches of the vertebre upon the she:th of the notochord ; the Carbonlferous forms exhlbltlagi hardly any such expanslon, whlle the Mesozole genera present a greater and greater development, untis, in the Tertlary forms, the expanded ends 1 come suturally innlted so as to 10 rm a sort of false vertebra. Hermann von Meyer, agaln, to whose lumlnous researchcs we are indebted for our present large knowledge of 'he organization of the older Labyrinthodonts, has proved that the Carboniferous Archegosaurus had very imperfectly developed vertebral centra, whlle the Trlassic Mastodonsaurus had the same parts completely ossified.*

[^57]The regularlty and evenness of the dentition of the Anoplotherlum, as contrasted with that of existing Artiodactyles, and the assumed nearer approach of the dentition of certaln anclent Carnlvores to the typleal arrangement, have also been clted as exempilfcations of a law of progressive development, but I know of no other cases based on positlve evldence which are worthy of partlcular notice.

What then does an Impartlal survey of the posituvely ascertalned truths of palcontoiogy testliy in relation to the common doctrincs of progresslve modification, which suppose that modification to have taken place by a necessary progress from more to less embryonle forms, or from more to less gencrallzed types, within the llmits of the period represented by the fossiliferous rocks?

It negatives those doctrines; for lt either shows us no evidence of any such modification, or demonstrates it to have been very silght ; and as to the nature of that modification, it ylelds no evidence whatsocver that the carller members of any long-contInued group were more generailzed in structure than the later oncs. To a certaln cxtent, indecd, it may be said that Imperfect ossification of the vertcbral column is an cmbryonic character; but, on the other i.and, it would be extremcly Incorrect io suppose that the vertebral coiumns of the oider Vertebrata are in " r ". sense embryonle in thelr whole structure.

Jbviousl ${ }^{\circ}$. If the earilest fossiliferous rocks now known e coêval with the commencement of ilfe, and if their - itents give us any just conception of the nature and the ex int of the eariiest fauna and fiora, the insignificunt amount of modification which can be demonstrated to have taken place in any onc group of anlmals, or piants, is quite incompatible with the hypothesis that ali iiving forms are the results of a necessary process of progressive development, entlreiy comprised within the time represented by the lossillfcrous rocks.

Contrarlwlse, any admiss!ble hypothesis of progressive modification must be compatible with persistence without progression, through indefinite perlods. And shouid such an hypothesls eventualiy be proved to le true, in the only way in whlch it can he demonstrated, viz. by obscrvation and experiment upon the existing forms of life, the conclission will inevltably present Itseif, that the Paleozoic, Mesozoic, and Calnozole faunæ and floræ, taken together, bear somewhat the same proportlon to the whole series of

394

 PERSISTENT TYPES OF LIFEliving beings which have occupied this globe, as the existing ta 12 and flora do to them:
Such are the results of paleontoiogy as they appear, and have for some years appeared, to the mind of an inquirer who regards that study simpiy as one of the applications of the great biological sciences, and who desires to see it piaced upon the same sound basis as other branches of physical inquiry. If the arguments which have been brought forward are valid, probably no one, in view of the present state of opinion, will be inclined to think the time wasted which has been spent upon their ciaboration.

CORAL AND CORAL REEFS

CORAL AND CORAL REEFS*

The subject upon which I wish to address you to-night is the structure and orlgin of Coral and Corai Reefs. Under the head of "coral" there are Inciuded two very different things; one of hem is that substance whlch I lmaglne a great number of us have champed when we were very much younger than we are now,-the common red coral, wh ls used so much, as you know, for the edification and the delectation of children of tender years, and is also employed for the purposes of ornament for those who are much oldcr, and as some think might know better. The other klnd of coral is a very different substance ; it may for distinction's sake be cailed the white coral; It Is a materlal whlch most assuredly not the hardest-hearted of baby farmers would give to a baby to chew, and lt is a substance which is to be scen only in the cablnets of curlous persons, or in museums, or, may be, over the mantelpieces of sestfaring men. But although the red coral, as I have mentloned to you, has access to the very best society ; and although the whlte coral ls comparatively a desplsed product, yet in this, as in many other cases, the humbler thing Is in reallty the greater; the amount of work whlch is done in the worid by the white coral belng absolutely infinte compared with that effected by lts delicate and pampered namıuake. Each of these substances, the white coral and the red, however, has a reiatlonship to the other. They are, in a zoologlcal sense, cousins, each of them belng formed by the samc kind of animals in what ls substantially the same way. Each of these bodics 1s, In fact, the hard skeleton of a very curlous and a very simple animal, more comparabie to the bones of such animals as ourselves than

[^58]to the shelis of oysters or crcatures of that kind; for it is the hardening of the internal tissue of the creature, of its internal substance, hy the deposit in the hody of a material which is exceedingly common, not only in fresh hut in sea -vater, and which is specialiy ahundant in those waters whicit we know as "hard," those waters, for exampie, which ieave a "fur" upon the hottom of a tea-kettie. This "fur" is carbonate of lime, the same sort of substance as iimestone and chalk. That matcriai is contained in soiution in sea water, and it is out of the sea water in which these coral creaturcs iive that they get the iime which is necded for the forming of their hard skeieton.

But now what manner of creatures are these which form these hard skeictons? I dare say that in these days of keeping aquaria, of iocomotion ta the sea-side, most of those whom I am addressing may have seen one of those creatures which used to he known as the " sea anemone," receiving that name on account of its general resembiance, in a rough sort of way, to the flower which is known as the " anemone"; but being a thing which lives in the sea, it was qualificd as the " sea anemone." Weii, then, you must suppose a body shaped like a short cylinder, the top cut off, and in the top a hoie rather oval than round. All round this aperture, which is the mouth, imagine that there are piaced a number of feeiers forming a circle. The cavity of the mouth ieads into a sort of stomach, which is very unlike those of the higher animals, in the circumstance that it onens at the iower end into a cavity of the hody, and ali the digested matter, converted into nourishment, is thus distributed through the rest of the hody. That is the gencral structure of one of these sea ariemones. If you touch it it contracts immediateiy into a heap. It iooks at first quite like a flower in the sea, hut if you touch it you find that it exhihits all the peculiarities of a living animal; and if anything which can serve as its prey comes near its tentacies, it cioses them round it and sucks the material into its stomach and there digests it and turns it to the account of its own hody.

These creatures are very voracious, and sot at all particular what they seize; and sometimes it may be that they iay hoid of a shelifish which is far too big to he packed into that interior cavity, and, of course, in any ordinary animal a proceeding of this kind would give rise to a very
severe fit of indigestion. But this is by no means the case in the sea anemone, because when digestlve dilliculties of thls kind arise be gets out of them by splltting himself In two; and then each half bulld. itself up into a fresh creature, and you have two polypes where there wes prevlousiy one, and the bone which stuck in the way lying between them! Not only can these creatures multiply In thls fashlon, but they can multlply by buds. A bud will grow out of the side of the body (I am not speaking of the common sea anemone, but of alled creatures) just like the bud of a plant, and that will fasblon ltself into a creature like the parent. There are some of them in which these buds remain connccted together, and you will soon see what would be the result of that. If I make a bud grow out here, and another on the opposite slde, and each fashlons Itself Into a new polype, the practical effect will be that before long you will see a single polype converted into a surt of tree or bush of polypes. And these will all remain associated together, llke a kind of co-operatlve store, whicb Is a tbing I belleve you understand very well here,-each mouth will belp to feed the body and each part of the body help to support the multifarious mouths. I think that is as good an example of a zoological co-operatlve store as you can well bave. Such are these wonderful creatures. But they are capable not only of multiplying in this way, but in other ways, by having a more ordlnary and regular kind of offspring. Little eggs are produced in the bodies of these creatures, and those eggs are hatched and the young are passed out by the way of tbe mouth, and they go swimming about as llttle oval bodies covered with a very curlous kind of bairlike processes. Each of these proccsses is capable of striking the water like an oar; and tbe consequence ls that tbe young creature is propelled through the water. So that you have the young polype floating about in this fashlon, covered by lts vibratile cilia, as these long filaments, which are capable of vibration, are termed. And thus, although the polype Itself may be a fixed creature unable to move about, it is able to spread its offspring over grcat areas. For these creatures not only propel themselves, but while swimming about in the sea for many hours, or perbaps days, It will be obvious that they must be carried hither and thither by the currents of tbe sea, which not enfrequently move at the rate of one or two r an hour. Thus, in the course of a few days, the offisprir this itatiunary creature may be
carried to a very great distance from its parent ; and having been so carried it loses these organs by which it is propelled, and settles down upon the bottom of the \& and grows up again into the form and condition of lts parents. So ihat If you suppose a slingle polype of thls kind settled upon the bottom of the sea, it may by these various methods-that is to say, by cutting ltscif in two, which we call "flission," or by budding; or by sending out these swimming embryos,multlply itself to an enormous extent, and give rise to thousands, or millions, of progeny in a comparatively short tlme ; and these thousands, or millions, of progeny may cover a very large surface of the sea bottom; in fact, you wlli readlly percelve that, give them time, and there is no limit to the surfacc whlch they may cover.

Having understood thus far the general nature of these polypes, which are the fabricators both of the red and white coral, let us conslder a little more particularly how the skefetons of the red coral and of the whlte coral are formed. The red coral polype perches upon the sea bottom, it then grows up into a sort of stem, and out of that stem there grow branches, each of which has its own polypes; and thus you have a kind of tree formed, every branch of the tree terminated by lts polype. It is a tree, but at the end of the branches there are open mouths of polypes instead of flowers. Thus there is a common soft body connecting the whole, and as it grows up the soft body deposits in its interlor a quantity of carbonate of lime, whlch acquires a bcautiful red or flesh colour, and forms a kind of stem running through the whole, and it is that stcm which ls the red coral. The red coral grows principally at the bottom of the Mediterranean Sea, at very great depths, and the coral fishers, who are very adventurous scamen, take their drag nets, of a pecullar kind, roughly made, but efficient for their purpose, and drag them along the bottom of the sea to catch the branches of the red corai, which become entangled and are thus brought up to the surface. They are then allowed to putrefy, in order to get rid of the animal matter, and the red coral is the skefcton that is left.

In the case of the white coral, the skeieton is more complete. In the red coral, the skefeton beiongs to the whole; in the white coral there is a special skeleton for every one of these polypes in addition to that for the whole body. There is a skeleton formed in the body of each of them, like a cup divided by a number of radiating partitions
towards the outside; and that cup is formed of carbonate of lime, oniy not stained red, as in the case of the red coral. And all these cups are joined together into a common branch, the result of which is the formation of a beautiful coral tree. This is a great mass of madrepore, and in the living state every one of the ends of these branches was terminated by a beautiful little polype, like a sea anemone, and all the skeleton was covered by a soft body which united the polypes together. You must understand that all this skeleton has bcen formed in the literior of the body, to suit the branched body of the polype mass, and that it is as much its skeieton as our own bones arc our skeieton. In this next coral the crcature wblch has formed the skeleton has divided itself as it grew, and consequently bas formed a great expansion; but scattered all over this surface there were polype bodics like those I prcviously described. Again, when this great cup was allve, the wbole surface was covered with a beautiful body upon which were set innumerabie smali polype flowers, if we may so call them, often brilliantiy coloured; and the whole cup was built up in the same fashion by the dcposlt of carbonate of lime \ln the interior of tbe combined polype body, formed by budding and by fission \ln the way I described. You will perceive tbat there ls no necessary ilmit to thls process. There is no reason why we should not have coral three or four times as blg; and tbere are certaln creatures of this kind tbat do fabricate very large masses, or hall spheres several feet in diameter. Tbus the activity of tbese animals in separating carbonate of lime from the sea and building it up into definite sbapes is very considerable indced.

Now I tblnk I have said sufficient-as much as I can witbout taking you into technical details, of the general nature of these creatures which form coral. The animals whlch form coral are scattered over tbe seas of all countrics in the world. The red coral ls comparativeiy limited, but the polypes which form the white coral are widely scattered. There are some of them which remain single, or wbich give rlse to only small accumulations; and tbe skeletons of these, as they die, accumulate upon the bottom of the sea, but they do not come to much; thcy are washed about and do not adhere together, but become mixed up with the mud of the sea. But there are certain parts of the worid in which the coral polypes which live and grow are of a kind which remain, adhere togetber, and form
great masses. They differ. from the ordinary poiypes just in the same way as those plants which form a peat-bog or meadow-turf differ from ordinary piants. They have a habit of growing together in masses in the same piace; they are what we call "gregarious" things; and the conscquence of this is, that as they die and ieave their skcictons, those skeietons form a considerabie soild aggregation at the bottom of the sea, and other polypes perch upon them, and begin bullding upon them, and so by degrees a great mass is formed. And just as we know therc are some ancient cities in which you have a British city, and over that the foundations of a Roman city ; and over that a Saxon city, and over that again a modern city, so in these iocalities of which I am speaking, you have the accumulations of the foundations of the houses, if I may use the term, of nation after nation of these coral polypes; and these accumulations may cover very considerabie space, and may rise in the course of time from the bottom to the surface of the sea.

Mariners have a name which they apply to all sorts of obstacies consisting of hard and rocky matter which comes in their way in the course of their navigation; they call such obstacies "reefs," and they have long been in the habit of calling the particular kind of reef, which is formed by the accumulation of the skeietons of dead corals, by the name of "coral recfs," therefore, those parts of the worid in which these accumulations occur have been termed by them "coral reef areas," or regions in which coral reefs are found. There is a very notabie example of a simple coral reef about the isiand of Mauritius, which I dare say you all know, lies in the middle of the Indian Ocean. It is a very considcrabie and beautiful island, and is surrounded on all sides by a mass of coral, which has been formed in the way I have described; so that if you could get upon the top of one of the peaks of the island, and look down upon the Indian Ocean, you would see that the beach round the Isiand was continued outward by a kind of shaliow terrace, which is covered by the sea, and where the sea is quite shallow; and at a distance varying from three-quarters of a mile to a mile and a half from the proper beach, you would see a line of loam or surf which iooks most beautiful in contrast with the bright green water in the inside, and the deep blue of the sea beyond. That linc of surf indicates the point at which the waters
of the ocean are breaking upon the coral reef which surrounds the lsland. You see lt sweep round the Island upon all sldes, except where a river may chance to come down, and that always makes a gap \ln the shore.

There are two or three polnts which I-wish to bring clearly before your notlce about such a reet as thls. In the first place, you percelve lt forms a kind of fringe round the island, and is therefore called a " irlnging rect." In the next place, if you go out \ln a boat, and take soundings at the edge of the reef, you find that the depth of the water is not more than from 20 to 25 fathoms-that is about 120 to 150 feet. Outslde that point you come to the natural sea bottom; but all Inside that depth is coral, built up from the bottom by the accumulation of the skeletons of innumerabie generations of coral polypes. So that you see the coral forms a very considcrablc rampart round the Island. What the exact circumference may be I do not remember, but lt cannot be less than 100 miles, and the outward helght of this wall of coral rock nowhere amounts to less than about 100 or 150 feet.

When the outward face of the recf is cxamincd, you ind that the upper edge, which ls exposed to the wash of the sea, and all the seaward face, Is covered whth those living plant-like flowers which I have described to you. They are the coral polypes which grow, flourlsh, and add to tbe mass of calcareous matter which already forms tbe reef. But towards tbe lower part of the reef, at a depth of about 120 feet, these creatures are less active, and fewer of them at work; and at greater depths than that you find no living coral polype at all; and It may be lald down as a rule, derived from very extensive observation, that these reefbuilding corals cannot llve in a greater depth of water than about 120 to 150 feet. I beg you to recollect that fact, because it ls one I shall have to come back to by and by, and to show to what very curious conscquences that rui 'eads. Well then, coming back to the margin of the reel, , u find that part of lt which lies just within the surf to be coated by a very curious plant, a sort of seawecd, which contains in its substance a very great deal of carbonate of lime, and looks almost like rock; this is what is called the nulli pore. More towards tbe land, we come to the shallow water upon the inside of the reef, which has a particular name, derived from tbe Spanlsh or the Portuguese-it is called a " lagoon," or lake. In this lagoon

404

 CORAL AND CORAL REEFSthere is comparativciy little living corai ; the bottom of it is formed of coral mud. If we pounded this corai in water, it wouid be converted into calcareous mud, and the waves during storms do for the coral skeletons exactly what we might do for this coral in a mortar; the waves tear off great fragments and crush them with prodigious force, until they are ground into the merest powder, and that powder is washed into the interior of the iagoon, and forms a muddy coating at the bottom. Beside that, there are a great many animais that prey upon the coral-fishes, worms, and creatures of that kind, and ali these, by their digestive processes, reduce the coral to the same state, and contribute a very important eicment to this fine mud. The iiving coral found in the lagoon, is not the reef building coral ; It does not give rise to the same massive skeietons. As you go in a boat over these shaliow poois, you see these beautifui things, coioured red, blue, green, and ali coiours, building their houses; but these are mere tenements, and not to be compared in magnitude and importance to the masses which 'are built by the reel-builders themseives. Now, such a structure as this is what is termed a " fringing reef." You meet with fringing reefs of this kind not oniy in the Mauritius, but in a number of other parts of the worid. If these were the only recis to be seen anywhere, the probiem of the formation of coral reefs would never have been a dimcuit one. Nothing can be easier than to understand how there must have been a time when the coral polypes came and settied on the shores of this island, everywhere within the 20 to 25 fathom ine, and how, baving perched there, they gradualiy grew until tbey built up the reef.

But these are by no means the only sort of coral reefs in the worid ; on the contrary, there are very large areas, not only of the Indian ocean, but of the Pacific, in whicb many many thousands of square miles are covered eitber with a peculiar kind of reef, which is calied the " encircling reef," or by a still more curious reef which goes by the name of the " atoll." There is a very good picture, which Professor Roscoc bas been kind enou, to prepare for me, of one of these atolls, which wili enable you to form a notion of it as a landscape. You bave in the foreground the waters of the Pacific. You must fancy yourself in the middle of the great ocean, and you will perceive that there is an almost circuiar island, with a low beach, which is formed entireiy of coral
sand; growing upon that beach you have vegelation, which takes, of course, the shape of the clrcular land; and then, In the Interlor of the clrcle, there is a pool of water, which is not very dcep-probably \ln thls case not more than elght or nine fathoms-and which forms a strange and bcaullful contrast to the deep blue walcr outside. Thls circular island, or atoli, with a lagoon in the middje, is not a complete circle; upon one slde of it there is a brcak, exaclly llke the entrance Into a dock; and, as a matter of course, these clrcular lslets, or atolls, form most efficlent breakwaters, for if you can only get luside your shlp is in perfect safety, with admirable anchorage In the interlor. If the ship were lying within a mile of that beach, the water would be one or two thousand feet decp; therefore, a section of that atuil, with the soundings as deep as this all round, would give you the notlon of a great cone, cut ofl at the top, and with a shallow cup In the middle of It. Now, what a very singular fact this 1 l , that we should have rising fron: the bottom of the decp ocear. a great pyramid, beslde which all human pyramids sink lnto the most utter Inslgnlficance I These slngular coral Ilmestone struclures are very bcautiful, especlally when crowned with cocoa-nut trees. There you see the long llne of land, covered wilh vegetation-cocoa-nut trees-and you have the sea upon the Inner and outcr sldes, wltb a vessel very comfortably rlding at anchor. That is one of the remarkable forms of reef In the Paclific. Another is a sort of half-way house, between the atoll and the fringing reef; It is what-ls called an "encircling reef." In this case you see an lsland rising out of the sea, and at two or tbree mlies distance, or more, and separated by a deep channei, which may be eight to twelve fathoms deep, there ls a reef, which encircles lt like a great glrdle; and outslde that again the water is one or two thousand feet deep. I spent three or four years of my life \ln crulsing about a modiffcation of one of these encircling reefs, calied a " barrier reef," upon the cast coast of Australla-onc of the most wonderful accumulations of coral rock \ln the world. It is about $\mathbf{1 , 1 0 0}$ miles long, and varles in width from one or two to many miles. It ls separated from the coast of Australla by a channel of about 25 fathoms:deep; while outside, looking toward America, the water is two or three thousand feet deep at a mile from the edge of the reef. This is an accumulation of limestone rock, built up by corals. ${ }^{\circ} \mathrm{n}$. whlch we bave no parallel any-

Where else. Imagine to yourself a heap of thls material more than one thousand miles long, and several milles wide. That is a barrier reef; but a barrier reef is merely as it were a fragment of aa encircling reef running parallel to the coast of a great cuntinent.

I told you that the polypes whlch bullt these reefs were not able to llve at a greater deptb than 20 to 25 fathoms of water; and that is the reason why the fringing reef goes no farther from the land than lt docs. And for the same reason, if the Paclfic could be lald bare we should bave a most singular spectacle. There would be a number of mountalns with truncated tops scattered over 1 t , and those mountalns would have an appearance just the very reverse of that presented by the mountains we see on shore. You know that the mountains on shore are covered wltb vegetatlon at thelr bases, whlle their tops are bara on or covered wlth snow ; but these mountalns would be perfectly bare at their bases, and all round their tops they would be covered with a beautifui vegetation of coral polypes. And not oniy would thls be the case, but we sbould find that for a considerable distance down, all the material of these atoll and encircling reefs was built up of precisely the same coral rock as the fringing recf. That is to say, you have an enormous mass of coral rock at a depth below the surface of the water where we know perfectly well tbat tbe coral animals could not have lived to form lt. When those two facts were first put together, naturalists were quite as much puzzed as I daresay you are, at present, to understand how these two seeming contradictions could be reconciled; and all sorts of odd hypotheses were resorted to. It was supposed that the coral did not extend so far down, but that there was a great chain of submarine mountains stretehing through the Paclfic, and that the coral had grown upon them. But only fancy what supposition that was, for you would have to imagine that there was a chain of mountains a thousand miles or more long, and tbat tbe top of every mountain came within 20 fathoms of the surface of the sea, and nelther rose above nor sunk beneath that level. That is highly improbabie: such a chain of mountains was never known. Then bow can you possibly account for the curious circular form of the atolls by any supposition of this kind? I believe tbere was some one who imagined that all these mountains were volcanoes, and that the reefs bad grown round the rops of the craters, so we all stuck
fast. I may say "we," though it was rather before my time. And when we all stick fast, it is Just the use of a man of genius that he comes and shows us the meaning of the thing. He generally gives an expianation whieh is so Hdicuiousiy simpie that everybody is ashamed that he did not find it out before; and the way such a discoverer is often rewarded is by finding out that some one had made the discovery before him I I do not mcan to say that it was so in this partieular instance, because the great man who played the part of Columbus and the egg on this oceasion had, I believe, always had the fuli credit which he 80 well descrves. The discoverer of the key to these probiems was a man whose name you know very well in conneetion with other matters, and I shouid not wonder if some of you have heard it said that he was a superficial kind of person who did not know much about the subject on which he writes. He was Mr. Darvin, and this briliiant discovery of his was made public thirty years ago, iong before he became the cciebrated man he now is ; and it was one of the most singuiar instances of that astonishing sagacity which he possesses of drawing consequences by way of deduction from simpie principies of natural science -a power which has served him in good stead on other occasions. Well, Mr. Darwin, looking at these curious diffculties and having that sort of knowiedge of natural phenomena in general, without which be could not have made a step towards the solution of the probiem, said to himself-" It is perfectly clear that the coral which forms the base of the atolls and fringing reefs could not possibly have been formed there if the level of the sea has always been exactiy where it is now, for we know for certain that these polypes cannot build at a greater depth than 20 to 25 fathoms, and icre we find them at 50 to 100 fathoms."

That was the first point to make clear. The second point to deal with was-lif the polypes cannot have bull there while the ievel of the sea has remained stationary, then one of two things must have happened-either the sea has gone up, or the iand has gone down.

There is no escape from one of thcse two alternatives. Now the objections to the notion of the sea having gone up are very considerable indeed; for you will readily pereeive that the sea couid not possibly have risen a thousand feet in the Pacific without rising pretty much the same distance everywhere else; and if it had risen
that height everywhere eise since the reefs hegan to he formed, the geography of the worid in general must have been very different indeed, at that time, from what it is now. And we have very good means of knowing that any such cise as this certainiy has not taken piace in the ievei of the sea since the time that the corals have been building their houses. And so the oniy other alternative was to suppose that the land had gone down, and at so slow a rate that the corals were abie to grow upward as fast as it went downward. You will see at once that this is the solution of the mystery, and nothing can be simpier or more obvious when you come to think about it. Suppose we start with a coral sea and put in the middie of it an isiand such as the Mauritius. Now let the coral polypes come and perch on the shore and build a fringing reef, which will stop when they come to 20 or 25 fathoms, and you wili have a fringing reef iike that round the island in the iliustration. So iong as the iand remains stationary, so iong as it does not descend so iong will that reef be unabie to get any further out, bccause the moment the poiype embryos try to get beiow they die. But now suppose that the iand sinks very gradually indeed. Let it subside by siow degrees, until the mountaln peak, which we have in the middle of it, alone projects beyond the sea level. The fringing reef would be carried down also; hut we suppose that the sinking is so siow that the coral poiypes are ahie to grow up as fast as the iand is carried down; consequentiy they will add layer upon layer untii they form a decp cup, because the inner part of the reef grows much more siowly than the outer part. Thus you have the reff forming a bed thicker upon the flanks of the isiand; but the edge of the reef will he very much further out from the iand, and the lagoon will he many times deeper; in short, your fringing reef wili be converted into an encircling ref. And if, instead of this heing an isiand, it were a great continent like Australia, then you wiil have the phenomenon of a harrier reef which I have described. The harrier reef of Australia was originaliy a fringing reef; the iand has gone siowiy down; the consequence is the lagoon has deepened until its depth is now 25 fathoms and the corals have grown up at the outer edge until you have that prodigious accumulation which forms the barrier reef at present. Now let this process go on further stili; let us.take the land a further step down, so as to submerge

CORAL AND CORAL REEFS

even the peak. The coral, still growing up, will cover the surface of the land, and you will have an atoil reef; that is to say, a more or less circuiar or oval ring of corai rock with a lagoon in the middle. Thus you see that every pecullarity and phenomenor ui tinse different forms of coral reef was explained at wise by the inpicst of ali possibie suppositions, nameiy, $\mathbf{l} y$ supposing that the land has gone down at a rate not gieater than that at which tie coral poiypes have grown up. icu cun!ain a Fringing Reef as a recf which is formed round land comparatively stationary ; an Encircing Recf as one which is formed round land going down; and an Atoli as a reef formed upon land gone down; and the thing is so slmple that a child may understand it when it is once expiained.

But this would by no means satisfy the conditions of a scientific hypothesis. No man who is cautious wouid dream of trustling to an expianation of thls kind simpiy because it explained one particular set of facts. Bcfore you can posslbiy be safe in dealing with Nature-who is very properiy made of the fcminine gender, on account of the astonlshing tricks which she piays upon her admirers ! -I say before you can be safe in dealing with Nature, you must get two or three kinds of cross proofs, so as to make sure not only that your hypothesis fits that particular sct of facts, but that lt is not contradicted by some other set of facts which is just as ciear and certaln. And it so happens, that in this case Mr. Darwin supplied the cross proofs as weil as the immediate evidence. You have all heard of voicanoes, those wonderful vents in the surface of the earth out of which pour masses of lava, cinders and ashes, and the iike. Now, it is a matter of observation and experience that all voicanoes are piaced in areas in which the surface of the earth is undergoing eievation, or at any rate is stationary; they are not placed in parts of the worid \ln which the level of the iand is being iowered. They are all indlcations of a great subterrancan activity, of a something belng pushed up, and therefore naturaliy the land elther gives way and iets it come through, or else is raised up by lts violence. And so Mr. Darwin, being desirous not to merely put out a flashy hypothesis, but to get at the truth of the matter, said to himscif, " If my notion of this matter is rlght, then atolls and cncircling reefs, inasmuch as they are dependent upon subsldence, ought not to be found in company with volcanoes; and,
vice versd, volcanoes ought not to be found in company with atolls, but they ought to be found in company with fringing reefs." And if you turn to Mr. Darwin's great work upon the coral reefs, you will see a very beautiful chart of the world, whleh he preparcd with great palns and labour, showing the distrlbution on the one hand of the reefs, and on the other of the voicanoes; you will find that In no case does the atoll accompany the volcano, or the volcano burst up among the atolls. It ls most lnstructive to look at the great area of the Paclific on the map, and see the great masses of atolls forming in one region of it a most enormous belt, running from north-west to southeast; while the volcanoes, which are very numerous in that region, go round the margin, so that we can pleture the Pacific to ourselves a section of a klnd of very shallow basin-shallow ln proportion to lts width, wlth the atolls rising from the bottom of it, and at the margins the volcanoes. It ls exactly as if you had taken a fiat mass and liftcd up the edges of it; the subterranean force which lifted up the edges shows ltself in volcanoes, and as tbe edges have been raiscd, tive mlddle part of the mass has gone down. In other words, the facts of physlcal geography precisely and exactly correspond with the hypothesis which accounts for the infinlte varietles of coral reefs.

One other polnt, before I conclude, about this matter. Thesc reefs, as you have just percelved, are in a most singular and unexpected manner indications of physical changes of elevatlons and depresslons going on upon the surface of the globe. I dare say it may have surprlsed you to hear mc talk; In thls familiar sort of way of land going up and down; but lt is one of the universal lessons of geology that the iand ls going down and going up, and has been golng up and down, in all sorts of places and to all sorts of distances, through all recorded time. . Geologists would be qulte rlght in maintaining the sccming paradox that the stable thing \ln the world ls the fluld sea and the shiftling thing is the solld land. That may sound a very hard saying at first, but the more you look lnto geology, the more you will see ground for bclleving that it is not a mere paradox.

In an unexpected manncr, again, these reefs afford us not only an lndication of change of place, but they afford an Indication of lapse of time. The reef is a timekeeper of a very curious character; and you can easily understand.
why. The coral polype, iike everything else, takes a certain tiree to grow to its fuil size; it does not do it in a minute ; just as a child takes a certain time to grow lnto a man so does the embryo polype take time to grow into a perfect polype and form its skeieton. Consequently every particle of coral limestone is an expression of time. It must have taken a certain time to separate the lime from the sea water. It is not possibie to arrive at an accurate computation of the time it must have taken to form these cora! isiands, because we lack the necessary data; but we can form a rough calculation, which ieads to very curious and striking resuits. The computations of the rate at which corals grow are so excecdingly variable, that we must aliow the widest possible margin for error; and it is better in this case to make the allowance upon the side of exccss. I think that anybody who knows anything about the matter will teil you that I am making a computation far in excess of what is probabie, if I say that an inch of coral iimestone may be added to one of these reefs in the course of a ycar. I think most naturalists wouid be inclined to iaugit at me for making such an assumption, and would put the growth at certainly not more than half that amount. But supposing it is so, what a very curious notion of the antiquity of some of these great living n^{-1} mids comes out by a very simpie calculation. There . ., doubt whatever that the sea faces of seme of the. fuily a thousand feet high, and if you take the reckuning of an inch a year, that will give you 12,000 years for the age of that particuiar pyramid or cone of coral fimestone; 12,000 long years have these crcatures been labouring in conditions which must have been substantially the same as they are now, otherwise. the polypes couid not have continued their work. But I belleve I very much understate both the height of some of these masses, and overstate the amount which these animals can form in the course of a ycar; so that you might very safeiy doubie the period as the tlme during which the Pacific Ocean, the generai state of the climate, and the sea, and the temperature has been substantiaily what it is now ; and yet that state of things which now obtains in the Pacific Ocean is the yesterday of the history of the iife of the giobe. Those pyramids of coral rock are built upon a foundation whlch is itseif formed by the deposits which the geologist has to deal with. If we go back in time and search through the series of the rocks, we find at cvery

412

 CORAL AND CORAL REEFSage of the worid's history which has yet been examined, accumuiations of limestone, many of which have certainly been buill up in just the same way as those coral reefs which are now forming the bottom of the Pacific Ocean. And even if we turn to the oidest periods of geoiogic history, aithough the nature of the materials is changed, although we cannot appiy to them the same reasonings that we can to the existing corals, yet still there are vast masses of limestone formed of nothing eise than the accumulations of the skeictons of similar animals, and testifying that even in those remote periods of the worid's histry, as now, the order of things impiies that the earth had already endured for a pcriod of which our ordinary standards of chronoiogy give us not the siightest conception. In other words, the history of these coral reefs, traced out honestly and carefuliy, and with the same sort of reasoning that you wouid use in the ordinary affairs of ife, testifles, like every fact that I know of, to the prodigious antiquity of the earth since it existed in a condition in the main similar to that in which it now is.

YEAST

YEAST

I fave selected to-night the partlcular subject of Yeast for two reasons-or, rather, I should say for three. In the first place, because it is one of tbe slmplest and the most familiar objects with which we are acquainted. In the second place, because the facts and phenomena which I have to descrlbe are so slmple that it ls possible to put them before you without the help of any of those pictures or diagrams which are needed when matters are more complicated, and which, if I had to refer to them here, would involve the necessity of my turning away from you now and then, and thereby increasing very largely my difficulty (already sufficiently great) in maklng myscli heard. And thirdly, I have chosen thls subject because I know of no familiar suisiance forming part of our every-day knowledge and experience, the examination of which, with a little care, tends to open up such very considerable issues as does this substance-yeast.

In the first place, I should like to call your attention to a fact with which the whole of you are, to begin with, perfectly acquainted, I mean the fact that any liquid containing sugar, any liquid which is formed by pressing out the succulent parts of tbe fruits of plants, or a mixture of honey and water, if left to ltself for a short time, begins to undergo a pecullar change. No matter how clear it might be at starting, yet after a few hours, or at most a few days, if the temperature is high, this liquid begins to be turbld, and by-and-by bubbles make their appearance in it, and a sort of dirty-looking yellowisb foam or scum collects at the surface; while at the same time, by degrees, a similar kind of matter, which we call the "lees," sinks to the bottom.

The qua atity of this dirty-looking stuff, that we call the scum and the lees, goes on increasing until it reaches a certain amount, and then lt stops; and by the time lt stops, you find the liquid in which thls matter has been formed bas become altered in its quality. To begin with it was a mere sweetish substance, having the flavour of whatever might
be the plant from which it was expressed, or having merely the taste and the absence of smeli of a solution of sugar ; but hy the time that thls change that I have been briefly describing to you is accomplished the llquid has become completeiy aitered, it has acquired a pecullar smeil, and, what is still more remarkable, it has gained the property of intuxleating the person who drinks li. Nothing can be more innocent than a solution of sugar ; nothing can be iess innocent, if taken in excess, as you all know, than those fermented matters whlch are produced from sugar. Weil, again, if you notice that bubbilng, or, as it were, seething of the llquid, which has accompanied the whole of this process, you will find that it is produced by the evolution of little bubbles of air-like substance out of the iiquid; and I dare say you all know this alr-iike substance is not like common alr; it is not a substance which a man can breathe with impunity. You often hear of accldents which take place in brewers' vats when men go in careiessly, and get suffocated there without knowing that therc was anything evll awalting them. And if you tricd the experiment with this llquid I am tclling of while it was fermenting, you wouid find that any small animal let down into the vessei would be similarly stifled; and you would discover that a light iowered down into it would go out. Well, then, lastly, if after this liquid has bcen thus altered you expose it to that process which is called distillation; that is to say, if you put it into a still, and collect the matters which are sent over, you obtain, when you first heat it, a clear transparent liquid, which, however, is something totally different from water; it is much lighter; it has a strong smeli, and it has an acrid taste ; and it possesses the same intoxicating power as the orlginal liquld, but in a much more intense degree. If you put a ilght to it, it burns with a bright flame, and it is that substance which we know as spirits of wine.

Now these facts which I have just put before you-all but the last-have been known from extremely remote antiquity. It is, I hope, one of the best evidences of the antiquity of the human race, that among the earlicst
, records of all kinds of men, you find a time recorded when they got drunk. We may hope that that must have been a very late period in their history. Not only have we the record of what happened to Noah, but if we turn to the traditions of a different peopie, those forefathers of ours who
llved in the high lands of Northern India, we find that they were not less addicted to intoxlcating liquids ; and I have no doubt that the knowledge of this process extends far beyond the llmits of hlstorlcally recorded timc. And it is a 0 y curlous thing to observe that all the names we have of this process, and all that belongs to it , are names that have their roots not in our present language, but in those older languages which go back to the tlmes at whlch this country was peopled. That word "fermentation" for example, which is the titie w? upp!y to the whole process, is a Latin term; and a term which is evidently based upon the fact of the effervescence of the iiquid. Then the French, who are very fond of caliing themseives a Latin race, have a particular word for ferment, which is levare. And, in the same way, we have the word "ieaven," those two words having reference to the heaving up, or to the raising of the substance which is fermented. Now those are words which we get from what I may cali the Latin slde of our parentage; but if we turn to the Saxon side, there are a number of names connected with this process of fermentation. For example, the Germans call fermentation-and the oid Germans dld so - "gähren; " and they cali anything which is used as a ferment by such names, such as "gheist" and " geest," and finally in iow German, " yest ; " and that word you know is the word our Saxon forcfathers used, and is almost the same as the word which is commoniy empioyed in this country to denote the common ferment of which I have been speaking. So they have another name, the word "hefe," which is derived from their verb "heben," which slgnifes to raise up; and they have yet a third namc, which is also one common in this country (I do not know whether it is common in Lancashire, but it is certalniy very common in the Midland counties), the word " barm," which is derived from a root which signifles to ralse or to bear up. Barm is a something borne up; and thus there is much more real reiation than is commonly supposed by those who make puns, between the beer which a man takes down his throat and the bier upon which that process, if carrled to excess, generally iands him, for they are both derived from the root signifying bearing up; the one thing is borne upon men's shoulders, and the other is the fermented liquid which was borne up by the fermentation taking place in itself.

Again, I spoke of the produce of fermentation as " spirit 66-N
of wine." Now what a very curious phrase that is, if you come to think of It. The old alchemists talked of the finest essence of anything as if it had the same sort of relation to the thing itself as a man's spirit is supposed to have to his body; and so they spoke of this fine essence of the fermented Iiquld as being the spirit of the liquid. Thus came about that extraordinary ambigulty of language, in virtue of which you apply precisely the same substantive name to the soul of man and to a glass of gin 1 And then there is still yet one other most curious plece of nomenclature connected with this matter, and that is the word "alcohol" itself, which Is now so famillar to everybody. Alcohol originally meant a very fine powder. The women of the Arabs and other Eastern people are in the hablt of tinging their eyelashes with a very fine black powder which is made of antimony, and thav call that "kohol;" and the "al" is slmply the article put in front of It, so as to say " the kohol." And up to the 17th century in this country the word alcohol was employed to slgnify any very fine powder; you find in Robert Boyle's works that he uses "alcohol " for a very fine subtle powder. But then trie name of anything very fine and very subtle came to be s:cially connected with the fine and subtle spirlt obtalncd from the fermentation of sugar ; and I belleve that the first person who fairly fixed it as the proper name of what we now commonly call spirits of wine, was the great French chemist Lavolsler, so comparatively recent is the use of the word alcohol in this specialised sense.

So much by way of general Introductlon to the subject on which I have to speak to-nlght. What I have hitherto stated is simply what we may call common knowledge, which everybody may acquaint himself with. And you know that what we call scientific knowledge is not any kind of conjuration, as people sometimes suppose, but lt is simply the appllcatlon of the same princlples of common sense that we apply to common knowledge, carried out, if 1 inay so speak, to knowledge which is uncommon. And all that we know now of this substance, yeast, and all the very strange issues to which that knowledge has led us, have simply come out of the invetcrate hablt, and a very fortunate hablt for the human race it is, which scientlic men have of not being content until they have routed out all the different chains and connections of apparently simple phenomena, until they have taken them to pleces and underst od the condi-
tinns upon which they depend. I will try to point out to you now what has happened in consequence of endcavouring to appiy this process of " anaiysis," as we call it, this teazing out of an apparently simple fact into ail the ittic facts of which it is made up, to the ascertained facts reiating to the barm or the yeast ; secondiy, what has come of the attempt to ascertain distinetiy what is the nature of the products which are produced by fermentation; then what has come of the attempt to understand the relation between the yeast and the products ; and lastiy, what very curious side issues If I may so call them-have branched out in the course of this inquiry, which has now occupied somewhere about two centuries.

The first thing was to make out precisely and cleariy what was the nature of this substance, this apparentiy mere scum and mud that we call yeast. And that was first commenced seriousiy by a wonderfui oid Lutehman of the name of Leeuwenhoek, who lived some two hundred years ago, and who was the first person to invent thoroughiy trustworthy microscopes of high powers. Now, Leeuwenhoek went to work upon this yeast mud, and by appiying to it high powers of the microscope, he discovered that it was no mere mud such as you might at first suppose, but that it was a substance made up of an enormous muititude of minute grains, each of which had just as definite a form as if it were a grain of corn, although it was vastiy smalier, the fargest of these not beind more than the two-thousandth of an inch in diameter ; thing, and the very smallest of these particies were not more than the seven-thousandth of an inch in diameter. Leeuwenhoek saw that this muddy stuff was in reailty a iiquid, in which there were fioating this immense number of defiritely shaped particles, all aggregated in heaps and iumps and some of them separate. That discovery remalned, so to speak, dormant for fuily a century, and then the question was taken up by a French discoverer, who, paying great attention and having the advantage of better instruments than Leeuwenhoek had, watched these things and made the astounding discovery that they were bodies which were constantly being reproduced and growing; that when one of these rounded bodies was once formed and had grown to its full size, it immediately begen to give ofl a iittic bud from one side, and then that bud grew out until it had attained the full size of the first, and that, in this way, the yeast particie was
underg ng a process of multiplication by buiding, Just as cffectual and just as compicte as the process of multiplication of a plant by budding ; and thus this Frenchman, Cagniard de la Tour, arrived at the conclusion-very creditable to his sagaclty, and which has been conflrmed by cvery obscrvation and reasoning since-that this apparently muddy refuse was nelther more nor less than a mass of plants, of minute Ilving plants, growing and multiplying in the sugary fluid in which the yeast is formed. And from that time forth we have known this substance which forms the scum and the lecs ar the ycast plant; and it has rccelved a sclentifc namewhich I may use without thinking of $1 t$, and which I will thercfore give you-namcly, "Torula." Well, this was a capital discovery. The next thing to do was to make out how this torula was related to other plants. I won't weary you with the whole course of Investigation, but I may sum up its results, and they are these-that the torula is a particular kind of a fungus, a particuiar state rather, of a fungus or mould. There are many moulds which under certain conditions give rise to this torula condition, to a substance which is not distinguishable froria yeast, and which has the same properties as ycast-that is to say, which is able to decompose sugar in the curious way that we shall consider by-and-by. So that the yeast plant Is a plant belonging to a group of the Fungl, multiplying and growing and IIving in this very remarkable manner in the sugary fluid which is, so to speak, the nidus or home of the yeast.

That, in a fcw words, is, as far as Investigation-by the help of one's eye and by the help of the microscope-has taken us. But now there is an observer whose miethods of observation are more reflned than those of men who use their $e^{e} e$, even though it be alded by the microscope; a man who sees indirectly further than we can see directly that is, the chemist ; and the chemist took up this question, and his discovery was not less remarkable than that of the microscopist. The chemist discovered that the yeast plant being composed of a sort of bag, like a bladder, inslde which is a peculiar soft, semifluid material-the chemist found that -his outer bladder has the same composition as the substance of wood, that material which is called "cellulose," and which consists of the elements carbon ana hydrogen and oxygen, without any nitrogen. But then he also found (the first person to discover !t was an Italian chemlst, named

Fabroni, in the end of the iast cenlury) that the inner matier which was contained in tho bag, which constitutes the ycast piant, was a substance containing tho eiements carbon and hydrogen and oxygen and nitrogen; that it was what Fabroni calicd a vegcto-animal substance, and that it had the pecuifaritics of wbat arc commonly calied "animal products."

This again was an excecdingly remarkabio discovery. It iay neglected for a time, until it was subsequentiy taken up by the great chemists of modern times, and they, with tiiclr delicate methods of analysis, have finaliy decided that, in ali cssentiai respects, the substance which forms the chlef part of the cointents of the yeast plant is identical with the materiai which forms the chief part of our own muscies, which forms tho chicf part of our own blood, which forms the chicf part of the white of the egg; that, in fact, although this IIttlc organism is a piant, and nothing but a piant, yct that its active ilving contents contain a substance which is called "protein," which is of the same naturo as the subtance which forms the foundation of cvery animal organism whatever.

Now we come next to the question of the anaiysis of the products, of that which is produced during the process of fermentation. So far back as the beginning of the 16th century, in "'e times of transition between tis oid alchemy and the modern chemistry, there was a remarkabie man, Von Heimont, a Dutchman, who saw the difference between tho air which comes out of a vat where something is fermenting and common air. He was the man who invented the term "gas," and he called this kind of gas "gas silvestre"-so to speak gas that ilis wid, and lives in out of the way placeshaving in his mind the identity of this particuiar kind of air with that which is found in some caves and celiars. Then, the gradual process of investigation going on, it was discovered that this substance, then calied "flxcd air," was a poisonous gas, and it was finaliy identifled with that kind of gas whicb is obtained by burning charcoal in the air, which is calied "carbonic acid." Then the substance alcohol was subjected to examination, and it was found to be a combination of carbon, and hydrogen, and oxygen. Then the sugar wbich was contained in the fermenting liquid was examined and tbat was found to contaln the three elements carbon, hydrogen, and oxygen. So that it was clear there were in sugar the fundamental elements whicb are contained in the

YEAST

carbonic acid, and in the alcohoi. And then came that great chemist Lavoisier, and he examined into the subject carefully, and possessed with that brilliant thought of his which happens to be propounded exactly apropos to this matter of fermentation-that no matter is ever iost, but that matter only changes its form and changes its combinations-he endeavoured to make out what became of the sugar which was subjected to fermentation. He thought he discovered that the whoie weight of the sugar was represented by the weight of the alcohoi produced, added to the weight of the carbonic acid produced ; that in other words, supposing this tumbier to represent the sugar, that the action of fermentation was as it were the spiitting of it, the one half going away in the shape of carbonic acid, and the other half going away in the shape of alcohoi. Subsequent inquiry, careful research with the refinements of modern chemistry, have been appiied to this probiem, and they have shown that Lavoisier was not quite correct; that what he says is quite true for about 95 per cent. of the sugar, but that the other 5 per cent., or neariy so, is converted into two other things : one of them, matter which is called succinic acid, and the other matter which is calied glycerine, which you all know now as one of the commonest of househoid matters. It may be that we have not got to the end of this refined analysis yet, but at any rate, I suppose I may say-and I speak with some little hesitation for fear my friend Professor Roscoe here may pick me up for trespassing upon his province-but I beiieve I may say that now we can acount for 99 per cent. at ieast of the sugar, and that that 99 per cent. is spilt up into these four things, carbonic acid, alcohoi, succinic acid, and glycerine. So that it may be that none of the sugar whatever disappears, and that only its parts, so to speak, are re-arranged, and if any of it disappears, certainly it is a very small portion.

Now these are the facts of the case. There is the fact of the growth of the yeast piant; and there is the fact of the splitting up of the sugar. What reiation have these two facts to one another?

For a very iong time that was a great matter of dispute. The eariy French observers, to do them justice, discerned the real state of the case, nameiy, that there was a very close connection between the actual life of the yeast piant and this operation of the splitting up of the sugar; and that one was in some way or other connected with the other. All

Investigation subsequently has confirmed this original idea. It has heen shown that if you take any measures hy which other plants of like kind to the torula would he killed, and by which the yeast piant is killed, then the yeast loses its efficlency. But a capital experiment upon this subject was made hy a very distinguished man, Helmhoiz, who performed an experiment of this kind. He had two vesseis-one of them we will suppose full of yeast, but over the hottom of it, as this might be, was tied a thin film of hiadder ; consequently, through that thin film of biadder all the iiquid parts of the yeast would go, but the solid parts would be stopned hehind; the torula would be stopped, the iiquid parts of the yeast would go. And then he took anotber vessei containing a fermentabie soiution of sugar, and he put one inside the other ; and in this way you see the fluid parts of the yeast were abie to pass through with the utmost ease into the sugar, hut the solid parts couid not get through at all. And he judged thus: if the fluid parts are those which excite fermentation, then, inasmuch as these are stopped, the sugar will not ferment ; and the sugar did not fcrment, showing quite cleariy, that an immediate contact with the soild, living torula was absoiutely necessary to excite this process of spifting up of the sugar. This experiment was quite conclusive as to this particular point, and has had very great frults in otber directions.

Well, then, the yeast piant heing essential to the production of fermentation, where does the yeast piant come from? Here, again, was another great probiem opened up, for, as I said at starting, you bave, under ordinary circumstances in warm weather, mereiy to oxpose some fluid containing a solution of sugar, or any form of syrup or vegetabie juice to the air, in order, after a comparatively short time, to see all these phenomena of fermentation. Of course the first obvious suggestion is, that the torula has been generated within the fluid. In fact, it seems at first quite absurd to entertain any other conviction; hut tbat heilief would most assurediy he an erroneous one.

Towards the heginning of this century, in the vigorous times of the oid French wars, there was a Monsieur Appert, who had his attention directed to the preservation of things that ordinarily perish, such as meats and vegetahies, and in fact he iaid the foundation of our modern method of preserving meats; and he found that if he holled any of these substances and then tied them so as to exclude the air, that
they would be preserved for any time. He tried these experiments, particulariy witb the must of wine and with the wort of beer; and he found that if the wort of beer had been carefully boiled and was stopped in such a way that the air could not get at it, it would never ferment. What was the reason of this ? That, again, became the subject of a iong string of experiments, with this ultimate result, that if you take precautions to prevent any soild matters from getting into the must of wine or the wort of beer, under these cir-cumstances-that is to say, if the fluid has been boiled and piaced in a bottle, and if you stufl the neck of the bottle full of cotton wool, which allows the air to go through, and stops anythlng of a solld character however fine, then you may let it be for ten years and it will not ferment. But if you take that plug out and glve the air free access, then, sooner or fater fermentation will set up. And there is no doubt wbatever that fermentation is excited only by the presence of some torula or other, and that that torula proceeds in our present experience, from pre-existing toruix. These little bodies are excessively light. You can easily imagine what must be the weight of llttle particles, but slightly heavier than water, and not more than the twothousandth or perhaps seven-thousandtb of an inch in diameter. Tbey are capable of floating about and dancing like motes in tbe sunbeam; they are carried about by all sorts of currents of air; the great majority of them perish ; but one or two, which may chance to enter into a sugary solution, immedlately enter into actlve life, find tbere the conditions of their nourishment, increase and multiply, and may give rise to any quantlity whatever of this substance yeast. And, whatever may be true or not be true about thls "spontaneous generation," as it is called, in regard to all other kinds of living things, it is perfectly certain, as regards yeast, tbat it always owes its origin to this process of transportation or inoculation, if you like so to call it, from some other living yeast organism ; and so far as yeast is concerned, the doctrine of spontaneous generation is absolutely out of court. And not only so, but the yeast must be alive in order to exert these peculiar properties. It it be crusbed, if it be heated so far that its life is destroyed, that peculiar power of fermentation is not excited. Thus we have come to this conciusion, as the result of our inquiry, that the fermentation of sugar, the splitting of the sugar into alcohoi and carbonic acid, glycerine, and succinic acid,
is the result of nothing but the vital activity of this little fungus, the torula.

And now comes the further exceedingly difficult inquiry how is it that this piant, the torula, produces this singular operation of the splitting up of the sugar ? Fabroni, to whom I referred some time ago, imagined that the effervescence of fermentation was produced in just the same way as the effervescence of a sedlitz powder, that the yeast was a kind of acid, and that the sugar was a combination of carbonlc acid and some hase to form the alcohoi, and that the yeast combined with this substance, and set free the carhonio acid ; just as when you add carbonate of soda to acid you turn out the carbonic acid. But of course the discovery of Lavoisier that the carbonic acid and the alcohoi taken together are very neariy equal in weight to the sugar, compietely upset this hypothesis. Another view was therefore taken hy the French chemist, Thenard, and it is still heid hv a very eminent chemist, M. Pasteur, and their view is this, that the yeast, so to speak, eats a litule of the sugar, turns 2 littie of it to its own purposes, and by so doing gives such a shape to the sugar that the rest of it breaks up into carbonic acid and alcohoi.

Weli, then, there is a third hypothesis, which is maintained by another very dlstinguished chemist, Liebig, which denies either of the other two, and which declares that the particies of the sugar are, as it were, shaken asunder by the forces at work in the yeast piant. Now I am not going to take you into these refinements of chemical theory, I cannot for a moment pretend to do so, but I may put the case before you by an analogy. Suppose you compare the sugar to a card house, and suppose you compare the yeast to a child coming near the card house, then Fabroni's hypothesis was that the child took half the cards away; Thénard's and Pasteur's hypothesis is that the child pulls out the hottom card and thus makes it tumhie to pieces; and Liebig's hypothesis is that the child comes by and shakes the tahie and tumhies the house down. I appeal to my friend here (Professor Roscoe) whether that is not a fair statement of the case.

Having thus, as far as I can, discussed the general state of the question, it remains only that I should speak of some of those collateral results which have come in a very remarkable way out of the investigation of yeast.' I told you that it was very eariy observed that the yeast piant consisted of a bag made up of the same material as that which composes
wood, and of an interior semifluid mass which contains a substance, identical in its composition, in a broad sense, with that which constitutes the flesh of animals. Subsequentiy, after the structure of the yeast plant had been carefully observed, It was discovered that all plants, high and low, are made up of separate bags or "cells," as they are called ; these bags or cells having the composition of the pure matter of wood; having the same composition, broadiy speaking, as the sac of the yeast plant, and having in their interior a more or less fluid substance containing a matter of the same nature as the protein substance of the yeast plant. And therefore this remarkable result came outthat however much a plant may differ from an animal, yet that the essential constituent of the contents of these various cells or sacs of which the plant is made up, the nitrogenous protein matter, is the same in the animal as in the plant. And not only was this gradually discovered, but it was found that these semifluld contents of the plant cell had, in many cases, a remarkable power of contractulity quite like that of tie asubstance of animals. And about 24 or 25 years ago, iamely, about the year 1846, to the best of my recollection, a very eminent German botanist, Hugo Von Mohl, conferred upon this substance which is found in the interior of the plant cell, and which is identical with the matter fiund in the inslde of the yeast cell, and which agaln contains an animal substance similar to that of which we ourselves are made up-he conferred upon this that tities of "prot plasm," which has brought other people a great deal of trouble since $!$ I beg particularly to say that, because I find many people suppose that I was the inventor of that term, whereas it has been in existence for at least twenty-five years. And then other observers, taking the question up, came to this astonishing conclusion (working from this basis of the yeast), that the differences between animals and plants are not so much in the fundamental substances which compose them, not in the protoplasm, but in the manner in which the cells of which their bodies are bullt up have become modified. There is a sense in which it is true-and the analogy was pointed out very many years ago by some French botanists and chemists-there is a sense in which it is true that every plant is substantially an enormous aggregation of bodies stmilar to yeast cells, each having to a certain extent its own independent life.. And there is a scnse in which it is also perfectiy true-although

It would be impossible for me to give the statement to you with proper quallfications and limitations on an occasion like this-but there is also a sense in which it is true that every animal body is made up of an aggregation of minute particies of protoplasm, comparable each of them to tho individual separate yeast plant. And those who are acquainted with the hlstory of the wonderful revolution which has been worked in our whole conception of these matters in the last thlrty years, will bear me out in saying that the first germ of them, to a very great extent, was mado to grow and fructify by the study of the yeast plant, which presents us with living matter in almost its simplest condition.

Then there is yct one last and most lmportant bearing of this yeast questlon. There ls one direction probably \ln which the effects of the careful study of the nature of fermentation will y!eld results more practically valuable to mankind than any other. Let me recall to your minds the fact which I stated at the beginning of this lecture. Suppose that I had here a solution of pure sugar with a little mineral matter in It ; and suppose it were posslble for me to take upon the point of a needle one slingle, solltary yeast cell, measuring no more perhaps than the three-thousandth of an inch in diameter-not blgger than one of those little coloured specks of matter \ln my own blood at thls moment, the weight of which it would be difficult to express in the fractlon of a grain-and put lt into this solution. . From that single one, if the solutlon were kept at a fair temperature in a warm summer's day, there would be generated, in the course of a week, enough torule to form a scum at the top and to form lees at the bottom, and to change the perfectly tasteless and entirely harmless fluid, syrup, into a solution impregnated with the polsonous gas carbonic acid, impregnated with the poisonous substance alcohol ; and that, in virtue of the changes worked upon the sugar by the vital activity of these infinitesimally small plants. Now you see that this is a case of infection. And from the time that the phenomenon of fermentation were first carefully studied, it has constantly been suggested to the minds of thoughtful physicians that there was a something astoundingly slmilar between this phenomena of the propagatlon of fermentation by infection and contagion, and the phenomena of the propagation of diseases by infection and contagion. Out of this suggestion has grown that remark-
ahie theory of many diseases which has been called the "germ theory of disease," the idea, in fact, that we owe a great many diseases to particles having a certain life of thcir own, and which are capabis of being transmitted from one living heing to another, exactly as ihe yeast plant is capable of heing transmitted from one tumhier' of saccharine suhstance to another. And that is a perfectiy tenabie hypothesis, one which in the present state of mediclne ought to he absoiutely exhausted and shown not to he true, until we take to others which have iess analogy in their favour. And there are some diseases most assuredly in which it turns out to be perfectly correct. There are some forms of what are calicd malignant carhuncle which have been shown to he actually effected by a sort of fermentation, if I may use the phrase, by a sort of disturhance and destruction of the fluids of the animal body, set up hy minute organisms which are the cause of this destruction and of this disturbance; and only recentiy the study of the phenomena which accompany vaccination has thrown an immense iight ip this direction, tending to show by experiments of the same general character as that to which I referred as performed hy Heimholz, that there is a most astonishing analogy hetween the contagion of that healing disease and the contagion of destructive diseases. For it has heen made out quite cleariy, hy investigations carried on in France and in this country, that the oniy part of the vaccine matter which is contagious, which is capahie of carrying on its influence in the organism of the child who is vaccinated, is the solid particles and not the fluid. By experiments of the most ingenious kind, the solid parts have heen separated from the fluid parts, and it has then been discovered that you may vaccinate a child as much as you like with the fluid parts, but no effect takes piace, though an excessively small portion of the solid particles, the most minute that can he separated, is amply sufficlent to give rise to all the phenomena of the cow pock, by a process which we can compare to nothing hut the transmission of fermentation from one vessel into another, by the transport to the one of the torula particles which exist in the other. And it has heen shown to be true of some of the most destructive diseases which infect animals, such diseases as the sheep pox, such diseases as that most terribie and destructive disorder of horses, glanders, that in these, also, the active power is the living solid particle, and that
the inert part is the fluid. However, do not suppose that I am pushing the anaiogy too far. I do not mean to say that the active, soild parts in these diseased matters are of the same nature as living yeast piants; but, so far as it goes, there is a most surprising analogy betwcen the two ; and the value of the analogy is this, that by following it out we may some time or other come to uncerstand now these diseases are propagated, just as we understand, new, about fcrmentation; and that, in this way, some of the greatest scourges which afflict the human race may bc, if not prevented, at ieast iargeiy alleviated.

This is the conclusion of the statements which I wished to put before you. You see we have not bcen able to have any accessories. If you wili come in such numbers to hear a lecture of this kind, all I can say is, that diagrams cannot be made big enough for you, and that it is not possible to show any experiments iliustrative of a lecture on such a subject as I have to dcal with. Of coursc my friends the chemists and physicists are very much better off, bccause they can not only show you experiments, but you can smell them and hear them I But in my case such aids arc not attainabic, and thercfore I have taken a simpie subject and have dealt with it in such a way that I hope you ali understand it, at least so far as I have been abic to put it before you in words; and having once apprehended such of the ideas and simpie facts of the case as it was possibie to put before you, you can see for yourseives the great and wonderful issues of such an apparently homeiy subject.

WILLIAM HARVEY

AND THE

DISCOVERY OF THE CIRCULATION OF THE BLOOD

Rad 21-mug 86

the circulation of the blood*

I desire this evening to give you some account of the life and the labours of a very nobie Englishman-William Harvey.

Willam Harvey was born in the year 1578, and, as he Hived until the year 1657, he very nearly attained the age of 80 . He was the son of a smali landowner in Kent, who was sumfientiy wealthy to send this, his eldest son, to the University of Cambridge ; while he embarked the others in mercantile pursuits, in which they ali, as time passed on, attained riches.

Wiliiam Harvey, after pursuing his education at Cambridge, and taking his degree there, thought it was advisable -and justly thought so, in the then state of University education-to proceed to Italy, which at that time was one of the great centres of intellectual activity in Europe, as all friends of treedom hope it will become again, sooner or later. In those days the University of Padua had a great renown ; and Harvey went there and studied under a man who was then very famous-Fabricius of Aquapendente. On his return to England, Harvey became a member of the College of Physicians in London, and entered into practice; and, I suppose, as an indispensabie step thereto, proceeded to marry. He very soon became one of the mosc eminent members of the profession in London; and, about the year 1616, he was elected by the Coliege of Physicians their Professor of Anatomy. It was while Harvey heid this offee that he made pubic that great discovery of the circulation of the biood and the movements of the heart, the nature of which I shall endeavour by-andby to expiain to you at iength. Shortly afterwards, Charies the First having succeeded to the throne in 1625, Harvey beceme one of the king's physicians; and it is much to the credit of the unfortunate monarch-who, whatever his

[^59]
434 THE CIRCULATION OF THE BLOOD

faults may have been, was one of the few English monarchs who have shown a taste for art and selence-that Harvey became his attached and devoted friend as well as servant ; and that the king, on the other hand, did all he could to advance Harvey's investigations. But, as you know, evil times came on ; and Harvey, after the fortunes of his royal master were broken, being then a man of somewhat advanced years-over 60 ycars of age, in fact-retired to the soclety of his brothers in and near London, and among them pursued his studies until the day of his death. Harvey's career is a ilfe which offers no sallent polnts of Interest to the blographer. It was a llife devoted to study and investigation ; and it was a life the devotion w: which was amply rewarded, as I shall have occasion to point out to you, by lts results.

Harvey, by the diversity, the varicty, and the thoroughness of his invertigations, was enabled to give an entirely new direction to at least two branches-and two of the most important branches-of what now-a-days we call Blological Science. Dn the one hand, he founded all our modern physiology by the discovery of the exact nature of the motions of ${ }^{2}$ lie heart, and of the course in which the blood is prop ded through the body; and, on the other, he lald the icundation of that study of development which has been so much advanced of late years, and which constitutes one of the great pillars of the ciuctrine of evolution. This doctrine, I need hardly tell you, is now tending to revolutionise our conceptions of the origin of living things, exactiy in the same way as Harvey's discovery of the circulation in the seventeeth century revnlutionised the conceptions which men had previously entertained with regard to physiological processes.

It would, i regret, be quite impossible for me to attempt, in the course of the time I can presume to hoid you here, to unfold the history of more than one of these great investigations of Harvey. I call them "great investigations," as distinguished from " large publications.", I have ln my hand a littie book, which those of you who are at a great distance may have some difficulty in seeing, and which I value very much. It is, I am afrald, sadiy thumbed and seratched with annotations by a very humble successor and follower of Harvey. This littie book is the edition of 1651 of the Exercitationes de Generatione; and II. you were to add another littic book, printed in the same small

THE CIRCULATION OF THE BLOOD

type, and about one-seventh of the thickncss, you would have the sum total of the printed matter which Harvey contributed to our literature. And yet in that sum total was contained, I may say, the materlals of two revolutions in as many of the main branches of biological science. If Harvey's published labours can be condensed into so smail a compass, you must recoliect that it is not because he dld not do a great deal more. We know very well that he did accumulate a very considerable number of olscrvations on the most varied topics of medicine, surgery, and natural history. But, as I mentioned to you just now, Harvey, for a time, took the royal side in the domestic quarrel of the Great Rebellion, as it is called; and the Parliament, not unnaturally resenting that actlon of his, sent soldiers to seize his papers. And while I inagine they found nothing treasonable among those papcrs, yet, in the process of rummaging through them, they destroyed all the materials which Harvey had spent a laborious life in accumulating ; and bence it is that the man's work and labours are represented by so little in apparent bulk.

What I chiefly propose to do to-night is to lay before you an account of the nature of the dlscovery which Harvey made, and which is termed the Discovery of the Circulation of the Blood. And I desire also, with some particularity, to draw your attention to the methods by which that dlscovery was achieved ; for, in both these respects, I think, tbere will be much matter for profitable reflection.

Let me point out to you, in tbe first place, with respect to this important matter of the movements of the heart and the course of tbe blood in the body, tbat there is a certain amount of knowledge whicb must bave been obtained witr out men taking the trouble to seek it-knowledge whis: must have been taken in, in the course of time, by everybody wbo followed the trade of a butcher, and still more so by those people who, in anclent times, professed to divine the course of future events from the entrails of animals. It is quite obvious to all, from ordinary accidents, that the bodies of all the higher animals contain a bot red fluidthe blood. Everybody can see upon the surface of some part of the skin, underneath that skin, pulsating tubes, which we know as the arterles. Everybody can see under the surface of the skin more delicate and $s ?$ looking tubes, which do not puisate, whicb are of a bluisi colour, and are termed the veins. And every person who
has seen a rccently killed animal opened knows that these two klnds of tubes to which I have just referred, are connected with an apparatus which ls placed in the chest, which apparatus, in recentiy killed animals, Is still pulsating: And you know that in yourselves you can feel the pulsation of this organ, the heart, between the fifth and sixth ribs. I take it that this much of anatomy and physlology has been known from the ofdest times, not only as a matter of curlosity, but because one of the great objects of men, from their earllest recorded cxistence, has been to kill one another, and it was a matter of considerable importance to know which was the best place for hitting an enemy. I can refer you to very ancient records for most precise and ciear Information that one of the best places is to smite him between the fifth and slxth ribs. Now that is a very good plece of regional anatomy, for that is the place where the heart strikes in its pulsations, and the use of smiting there Is that you go stralght to the heart. Well, all that must have been known from time immemorial-at least for 4,000 or 5,000 years before the commencement of our era -because we know that for as great a period as that the Egyptians, at any rate, whatevcr may have been the case with other people, were in the enjoyment of a highly developed civillsation. But of what knowledge they may have possessed beyond this we know nothing; and in tracing back the springs of the origin of everything that we call " modern science" (which ls not merely knowing, but knowing systematically, and with the intention and endeavour to find out the causal connection of things)-I say that when we trace back the different lines of all the modern sciences we come at length to one epoch and to one country -the epoch being about the fourth and fifth centuries before Christ, and the country being ancient Greece. It is there that we find the commencement and the root of every branch of physlcal science and of scientific method. If we go back to that time we have in the works attributed to Arlstotle, who flourished between 300 and 400 years before Christ, a sort of encyciopædla of the scientific knowledge of that day-and a very marvellous collection of, in many respects, accurate and precise knowledge it is. But, so far as regards this particular tople, Aristotie, it must be confessed, has not got very far beyond common knowledge. He knows a little about the structure of the heart. I do not think that his knowledge is so inaccurate as many

THE CIRCULATION OF THE BLOOD
people fancy, but it does not amount to much. A very few years after his time, however, there was a Greek philosopher, Erasistratus, who lived about three hundred

Fra. 1.-The apparatus of the circulation, as at present known. The capillary vessels, which connect the arteries and velus, are omilted, on account of their moall size. The shading of, the "venous system" is given to all the vessels which contaln venous blood; that of the "arterial syatem " to all the vessels which contoin arterial blood.
years before Christ; and who must have pursued anatomy with much care, for he made the important discovery that there are membranous flaps, which are now calied "valyes," at the origins of the great vessels; and that

438

THE CIRCULATION OF THE BLOOD

there are certain other valves in the interior of the heart itsclf.

I have here (Fig. 1) a purposeiy rough, but, so far as it goes, accurate, diagram of the structure of the heart and the course of tbe hiood. The heart is supposed to he divided into two portions. It wouid he possibie, by very carefui dissection, to spilt the heart down the middie of a partition, or so-calied septum, which exists in it, and to divide it into the two portions whicb you see here represented; in which case we shouid have a left heart and a right heart, quite distinct from one another. You will observe that there is a portion of eacb heart which is what is called the ventricle. Now the ancients applied the term heart simply and soiely to the ventricles. They did not count the rest of the heart-wbat we now speak of as the auricles-as any part of the heart at all; but when they spoke of the heart they meant the icft and the right ventricies; and tbey descrihed those great vesseis, which we now call the pulmonary veins and the vena cava, as opening directly into the heart itself.
What Erasistratus made out was that, at the roots of the aorta and the pulmonary artery (Fig. 1) tbere were valves, which opened in the direction indicated hy the arrows; and, on the other hand, that at the junction of what he called tbe veins witb the heart there were other valves, which also opened agaln in the direction indicated by the arrows. This was a very capital discovery, hecause it proved that if the heart was fuli of fluid, and if there were any means of causing tbat fluid in the ventricles to move, then the fluid couid move only in one direction; for you will observe that, as soon as the fluid is compressed, the two valves hetween the ventricles and the veins will he shut, and the fluid will he obliged to move into the arteries; and, if it tries to get hack from them into the heart, it is prevented from doing so hy the valves at the origin of the arteries, which we now call the semilunar valves (half-moon shaped valves); so that it is impossibie, if the fluid move at all, that it should move in any other way than from the great veins into the arteries. Now that was a very remarkable and striking discovery.

But it is not given to any man to he altogether right (that is a reflection which it is very desirabie for every man who has had the good iuck to be neariy right once, always to bear in mind) ; and Erasistratus, while he made this capital and

THE CIRCULATION OF THE BLOOD

important discovery, made a very capital and important error in another direction, although it was a very natural error. If, in any animal which is recently killed, you open one of those pulsating trunks which I referred to a short time ago, you will find, as a general rule, that it either contalns no biood at all or next to none; hut that, on the contrary, it is full of air. Very naturally, therefore, Erasistratus came to the conciusion that this was the normal and natural state of the arteries, and that they contained air. We are apt to think this a very gross hiunder; but, to anyhody who is acqualnted with the facts of the case, it is, at first sight, an exceedingly natural conclusion. Not only so, hut Erasistratus might have very justly imagined that he had seen his way to the meaning of the connection of the feft side of the heart with the iungs; for we find that what we now call the puimonary vein is connected with the lungs, and branches out in them (Fig. 1). Finding that the greater part of this system of vessels was filled with air after death, this anclent thinker very shrewdly concluded that its real business was to receive air from the fungs, and to distribute that air all through the hody, so as to get rid of the grosser humours and purify the blood. That was a very natural and a viry ohvious suggestion, and a highly ingenious one, though it happened to he a great error. You will observe that the only way of correcting it was to experiment upon ilving animals, for there is no other way in which this point could be settled.

And hence we are indebted, for the correction of the error of Erasistratus, to one of the greatest experimenters of ancient or modern times, Claudius Galenus, who ilved in the second century after Christ. I say it was to this man more than any one eise, because $\mathrm{i}: \mathrm{knew}$ that the only way of soiving physiological problems was to examine into the facts in the living animal. And because Galen was a skilfui anatomist, and a skiliful expcrimenter, he was abic to show in what particulars Erasistratus had erred, and to build up a system of thought upon this subject which was not improved upon for fuliy 1,300 years. I have endeavoured, in Fig. 2, to make clear to you exactly what it was he tried to establish. You will observe that this diagram is practically the same as that given in Fig. 1, only simplified. The same facts may be looked upon by different peopie from different points of view. Galen icoked upon these facts from a very different point of vicw from that which we ourseives occupy;

THE CIRCULATION OF THE BLOOD

but, so far as the facts are concerned, they were the same for him as for us. Well then, the first thing that Gaien did was to make out experimentally that, during lifo, the arteries are not full of air, but that they are full of blood. And he describes a great variety of experiments which he made upon living animals with the view of proving this point, which he did prove effectually and for all time; and that you will observe was the only way of settling the matter. Furthermore, he demonstrated that the cavities of the left side of the heart-what we now call the left auricle and the left ventricie-are, like the arteries, full of blood during iife, and that that biood was of the scarlet kind-arterialised, or as he called it "pneumatised," biood. It was known before, that the puimonary artery, the right ventricle, and the veins, contain the darker kind of biood, which was thence called venous. Having proved that the whoie of the left side of the heart, during life, is full of scariet arterial biood, Galen's next point was to inquire into the mode of commun!cation between the arteries and veins. It was known before his time that both arteries and veins branched out. Galen maintained, though he could not prove the fact, that the ultimate branches of the arteries and veins communicated together somehow or other, by what he called anastomoses, and that these anastomoses existed not only in the body in general but also in the iungs. In the next place, Galen maintained that all the veins of the body arise from the liver; that they draw the blood thence and distribute it over the body. Peopie laugh at that notion now- Ω-days; but if anybody will iook at the facts he will see that it is a very probabie supposition. There is a great vein (hepatic vein-Fig. 1) which rises out of the liver, and that vein goes straight into the vena cava (Flg. 1) which passes to the heart, being there joined by the other veins of the body. The liver itself is fed by a very iarge vein (portal vein-Fig. 1), which comes from the alimentary canal. The way the ancients iooked at this matter was, that the food, after being received into the alimentary canal, was then taken up by the branches of this great vein, which are called the dena portee, just as the roots of a plant suck up nourishment from the soll in which it lives ; that then it was carried to the liver, there to be what was called "concocted," which was their phrase for its conversion into substances more fitted for nutrition than pre: viously existed in it. They then supposed that the next thing to be done was to distribute this fluid through tho

THE CIRCULATION OF THE BLOOD

body ; and Galen, like his predecessors, imagined that the "concocted" blood, having entered the great vena cava, was distributed by its remifications all over the body. So that, in his view (Fig. 2), the course of the blood was from the intestine to the liver, and from the iiver into the great vena cava, including what we now cali the right auricle of the heart, whence it was distributed by the branches of the veins. But the whole of the biood was not thus disposed of. Part of the blood, it was supposed, went through what we now call the pulmonaryarteries (Fig. 1), and, branching out there, gave exit to certain " fuliginous " products, and at the same time took in from the air a something which Galen calls the pneuma. He does not know anything about what.we call oxygen; but it is astonishing how very easy it would be to turn his language into the equivalent of modern chemical

Fio. 2.-The Course of the Blood according to Galen (A.D. 170). theory. The old philosopher had so just a suspicion of the real state of affairs that you could make use of his language in many cases, if you substituted the word "oxygen," which

442 THE CIRCULATION OF THE BLOOD

we now-a-days use, for the word pneuma. Then he imagined that the hiood, further concocted or altered by contact with the preuma, passed to a certain extent to the left side of the heart. So that Galen believed that there was such a thing as what is now called the pulmonary circulation. He helieved, as much as we do, that the hiood passed through the right side of the heart, through the artery which goes to the iungs, through the iungs themseives, and hack hy what we call the pulmonary veins to the ieft side of the heart. But he thought it was only a very small portion of the hiood which passes to the right side of the heart in this way; the rest of the hiood, he thought, passed through the partition which separates the two vehtricles of the heart. He describes a number of small pits, which really exist there, as hoies, and he supposed that the greater part of the hiood passed through these holes from the right to the ieft ventricie (Fig. 2).

It is of great importance you should cleariy understand these teachings of Galen, hecause, as I said just now, they sum up ali that anyhody knew until the revival of iearning; and they come to this-that the hiood having passed from the stomach and intestines through the iiver, and having entered the great veins, was hy them distributed to every part of the hody ; that part of the hiood, thus distributed, entered the arterial system hy the anastomoses, as Galen called them, in the iungs ; that a very small portion of it entered the arteries hy the anastomoses in the hody generally; but that the greater part of it passed through the septum of the heart, and so entered the ieft side and mingied with the pneumatised biood, which had heen subjected to the air in the iungs, and was then distrihuted hy the arteries, and eventualiy mixed with the currents of hiood, coming the other way, through the veins.

Yet one other point ahout the views of Galen. He thought that hoth the contractions and dilatations of the heartwhat we cali the systole or contraction of the heart, and the diastole or dilatation-Galen thought that these were both active movements; that the heart activeiy dilated, so that it had a sort of sucking power upon the fluids which had access to it. And again, with respect to the movements of the pulse, which anyhody can feei at the wrist and eisewhere, Galen was of opinion that the walls of the arteries partook of that which he supposed to he the nature of the walls of the heart, and that they had the power of alternately actively
contracting and activeiy dilating. So that he is careftal to say that the nature of the pulse is comparabie, not to the movement of a bag, which we fill by blowing into it, and which we empty by drawing the alr out of it, but to the action of a beliows, which is actively dilated and activeiy compresscd.

After Gaien's time came the collapse of the Roman Empire, the extinction of physicai knowiedge, and the repression of every kind of scientific inquiry, by its powerful and consistent enemy, the Church ; and that state of things iasted untu the iatter part of the Middle Ages saw the revival of iearning. That revival of iearning, so far as anatomy and physioiogy are concerned, is due to the renewed influence of the philosophcrs of ancient Greece, and, indeed, of Galen. Arabic commentators inad translated Gaien, and portions of his works had got into the ianguage of the iearncd in the Middle Ages, in that way ; but, by the study of the classical languages, the original text became accessibie to the men who were

Fic. 3.-The course of the blood from the right to the ieft aide of the heart (Realdus Columbus, 1559). then endeavouring to iearn for themselves something about the facts of nature. It was a century or more before these men, finding themseives in the presence of a master-finding that all their iives were occupied in attempting to ascertain for themseives that which was familiar to him -I say it took the best part of a hundred years before they could fairiy see that their busincss was not to follow him, but to follow his exampie-nameiy, to iook into the facts of nature for themselves, and to carry on, in his spirit, the work he had begun. That was first done by Vesalius, one of the greatest anatomists who ever iived; but his work does not specially bear upon the question we are now concerned with. So far as regards the motions of the heart and the course of the biood, the first man in the Middie Ages, and indeed the only man who did anything which was of

444 THE CIRCULATION OF THE BLOOD

reai importance, was one Realdus Columhus, who was professor at Padua in the year 1559, and puhlished a great anatomical treatise. What Realdus Columbus did was this ; once more resorting to the mcthod of Galen, turning to the living animal, experimenting, he came upon new facts, and one of these new facts was that there was not merely a subordinate communication between the hlood of the right side of the heart and that of the left side of the heart, through the lungs, but that there was a constant steady current of hlood, setting through the puimonary artery on the right side, tirough the luags, and back hy the pulmonary veins to the left side of the heart (Fig. 3). Such was the capital discovery and demonstration of Realdus Columhus. He is the man who discovered what is loosely called the pulmonary circulation; and it really is quite ahsurd, in the face of the fact, that twenty years afterwards we find Amhrose Pare, the great French surgeon, ascrihing this discovery to him as a matter of common notoriety, to find that attempts are made to give the credit of it to other people. So far as I know, this discovery of the course of the hiood through the lungs, which is called the pulmonary circulation, is the one step in real advance that was made between the time of Galen and the time of Harvey. And I would heg you to note that the word "circulation" is improperly employed when it is applied to the course of the biood through the iungs. The hlood from the right side of the heart, in getting to the left side of the heart, only performs a half-circle-it does not perform a whole circle-it does not return to the place from whence it started; and hence the discovery of the so-called "pulmonary circulation" bas nothing wbatever to do with that greater discovery which I shall point out to you hy-and-hy was made by Harvey, and which is alone really entitied to the name of the circulation of the hiood.

If anybody wants to understand what Harvey's great desert really was, I would suggest to him that he devote himseif to a course of reading, which I cannot promise shall he very entertaining, hut whici, in this respect at any rate, will he highly instructive-namely, the works of the anatomists of the iatter part of the 16th century and the beginning of the 17 th century. If anyhody will take the trouble to do that which I have tbought it my business to do, he will find that the doctrines respecting the action of the heart and the

THE CIRCULATION OF THE BLOOD

motion of the blood which were taught in cvery university In Europe, whether in Padua or in Paris, were essentialiy those put forward by Galen, plus the discovery of the pulmonary course of the blood which had becn made by Reaidus Columbus. In every chair of anatomy and physioiogy (which studies were not then separated) in Europe, it was taught that the blood brought to the liver by the portal vein, and carried out of the ilver to the dena cava by the hepatic vein, is distributed from the right side of the heart, through the other veins, to ali parts of the body ; that the blood of the arteries takes a like course from the heart towards the periphery ; and that it is there, by means of the anastomoses, more or less mixed up with the venous blood. It so happens, by a curious chance, that up to the year 1625 there was at Padua, which was Harvey's own university, a very distinguished professor, Spigelius, whose work is extant, and who teaches exactly what I am now telling you. It is perfectly true that, some time before, Harvey's master, Fabricius, had not only re-discovered, but had drawn much attention to certain pouch-iike structures, which are calied the valves of the veins, found in the muscular parts of the body, ali of which are directed towards the heart, and consequentiy impede the flow of the blood in the opposite direction. And you wili find it stated by people who have not thought much about the matter, that it was this discovery of the vaives of the veins which ied Harvey to imagine the course of the circuiation of the biood. Now it did not lead Harvey to imagine anything of the kind. He had heard all about it from his master, Fabricius, who made a great point of these valves in the veins, and he had heard the theories which Fabricius entertaincd upon the subject, whose impression as to the use of the valves was simply this-that they tended to take off any excess of pressure of the biood in passing from the heart to the extremitics; for Fabricius belleved, with the rest of the worid, hat the blood in the veins flowed from the hcart towards ie extremities. This, under the kircumstances, was ms bood a theory as any other, because the action of Valves depends aitogether upon the form and natire of the walls of the structures in which they are attached; and, Without accurate experiment, it was impossibie to say whether the tbeory of Fabricius was right or wrong. But we not only bave the evidence of the facts themselves that thesc could tell Harvey nothing about the circulation, but we have

THE CIRCULATION OF THE BLOOD

 his own distinct declaration as to the considerations which led him to the true theory of the circuiation of the blood, and amongst these the valves of the veins are not mentioned.Now then we may come to Harvey himseif. When you read Harvey's treatise, which is one of the most remarkabie scientific monographs with which I am acquainted-it occupies between 50 and 60 pages of a small quarto in Latin, and is as terse and concise as it possibly can be-when you come to look at Harvey's work, you will find that he had iong struggled with the diffculties of the accepted doctrine of the circulation. He had received from Fabricius, and from ali the great authorities of the day, the current view of the circulation of the biood. But he was a man with that rarest of all qualities-intellectual honesty ; and by dint of cultivating that great faculty, which is more moral than Intellectual, it had become impossibie for him to say he believed anything which he did not cieariy belicve. This is a most uncomfortabie peculiarity-for it gets you into all sorts of difficulties with all sorts of peopie-but, for scientific purposes, it is absoiutely invaluabie. Harvey possessed this peculiarity in the highest degree, and so it was impossibie for him to accept what all the authorities toid him, and he looked into the matter for himseif. But he was not hasty. He worked at his new views, and he lectured about them at the Coliege of Physicians for nine years; he did not print them until he was a man of fifty years of age; and when he did print them he accompanied them with a demonstration which has never been shaken, and which will stand till the end of time. What Harvey proved, in short, was this (see Fig. 4)-that everybody had made a mistake, for want of sumfiently accurate experimentation as to the actual existence of the fact which everybody assumed. To anybody who looks at the biood-vesseis with an unprejudiced eye it seems so natural that the blood should ali come out of the iiver, and be distributed by the veins to the different parts of the body, that nothing can seem simpier or more plain; and consequentily no one could make up his mind to dispute this apparently obvious assumption. But Harvey did dispute it ; and when he came to investigate the matter he discovered that it was a profound mistake, and that, all this time, the blood had been moving in just the opposite direction, namely, from the small ramifications of the veins towards the right side of the heart. Harvey.

THE CIRCULATION OF THE BI,OOD

further found that, In the arteries, the blood, as had previously been known, was travelling from the greater trunks towards the ramifications. Moreover, referring to the ideas of Columhus and of Galen (for he was a great student of ilterature, and did justice to all his predecessors), Harvey accepts and strengthens their view of the course of the blood through the lungs, and he shows how it flted into his general scheme. If you will follow the course of the arrows \ln Fig. 4 you will see at once that-in accordance with the views of Columbus - the blood passes from the right side of the heart, through the lungs, to the ieft side. Then, adds Harvey, wlth abundant proof, it passes through the arteries to all parts of the body ; and then, at the extremities of their branches in the different parts of the body, it passes (in what way he could not tell, for his means of investiga-

Fio. 4.-The circulation of the blood as demonstrated by Harvey (4.D. 1628). tion did not allow him to say) into the roots of the veins-then from the roots of the veins it goes into the trunk veins-then to the right side of the heart-and then to the lungs, and so on.

448 THE CIRCULATION OF THE BLOOD

That, you wil ohserve, makes a complote circult; and ft was precisely here that the originality of Harvey lay. There never yet has been produced, and I do not belleve there can be produced, a tittic of evidence to show that, before his time, any one had the silghtest suspicion that a single drop of blood, starting in the left ventricle of the heart, passcs through the whole artcrial system, comes back through the venous system, goes through the lungs, and comes back to the piace whence it started. But that is the clrculation of the blood, and It was exactly thls which Harvey was the first man to suspect, to discover, and to demonstrate.

But this was by no means the only thing Harvey did. He was the first who discovered and who demonstrated the true mechanism of the heart's action. No one, before his time, concelved that the movement of the blood was entirely duc to the mechanical action of the heart as a pump. There were all sorts of speculations about the matter, but nobody had formed this conception, and nobody understood that the so-called systole of the heart is a state of active contraction, and the so-calied dlastoie is a mere passive dilatation. Even within our own age that matter had been discussed. Harvey is as clear as posslble about It. He says the movement of the blood is entirely due to the contractions of the walls of the heart-that it is the propelling apparatus-and ail recent investigation tends to show that he was perfectly right. And from this followed the true theory of the pulse. Galen said, as I pointed out just now, that the arteries dilate as bellows, which have an active power of dilatation and contraction, and not as bags which are blown out and collapse. Harvey said it was exactly the contrary-the arteries dilate as bags simpiy because the stroke of the heart propels the blood into them ; and, when they reiax again, they reiax as bags which are no longer stretched, simply because the force of the biow of the heart is spent. Harvey has been demonstrated to be absoluteiy right in this statement of hls ; and yet, so siow is the progress of truth, that, within my time, the question of the active dilatation of the arteries has been discussed.
Thus Harvey's contributions to physiology may be summed up as follows: In the first place, he was the first person who ever imagined, and still more who demonstrated, the true course of the circulation of the biood in the body; in the second place, he was the first person who over under-

THE CIRCULATION OF THE BLOOD

stood the mechanism of the heart, and comprehended that Its contraction was the cause of the motion of the blood; and thirdly, he was the first perion who took a just view of the nature of the pulse. These are the three great contrlbutions which he made to the selence of physiology ; and I shali not crr \ln saying-I speak in the presence of distinguished physlologists, but I am perfectly certain that they will endorse what I say-that upon that foundation the whole of our knowiedge of the human body, with the exception of the motor apparatus and the sensc organs, has bcen gradually bullt up, and that upon that foundation the whole rests. And not only docs sclentific physlology rest upon it, but everything iike scientific medicino also rests upon it. As you know-I hope it is now a matter of popular knowledge-lt is the foundation of all rational speculation about morbid processes ; it is the only key to the rational interpretation of that commonest of all indications of disease, the state of the pulse; so that, both theoretically and practlcally, this discovery, thls demonstration of Harvey's, has had an effect which is

Fie. 5.-The junction of the arterien and velas by capillary tubes, discovered by Malpighi (A.D. 1664). absoiutely incalculable, and the consequences of which will accumulate from age to age until they result in a compiete body of physiological science.

I regret that I am unabie to pursue this subject much further; but there is one point I shouid mention. In Harvey's time, the microscope was hardiy invented. It is quite true that in some of his embryological researches he speaks of having made use of a hand glass; but that was the most that he seems to have known anything about, or that was accessibie to him at that day. And so it came about, that, although he examined the course of the biood in many of the lower animals-watched the pulsation of the heart in shrimps, and animals of that kind-he never could put the final coping-stone on his edifice. He did not know to the day of his death, although quite clear about the fact that the: arteries and the veins do communicate, how it is that they
communicate-how it was that the biood of the arteries passed into the veins. One is grieved to think that the grand oid man should have gone down to his tomb without the vast satisfaction it would have given to him to see what the Italian naturalist Malpighi showed oniy seven years later, in 1664, when he demonstrated, in a iiving frog, the actual passage of the biood from the ultimate ramifications of the arteries into the veins. But that absoiute ocular demonstration of the truth of the views he had maintained throughout his life it was not granted to Harvey to see. What he did experience was this: that on the pubilication of his doctrines, they were met with the greatest possible opposition; and I have no doubt savage things were uttered in those old controversies, and that a great many peopie said that these new-fangled doctrines, reducing living processes to mere mechanism, would sap the foundations of religion and morality. I do not know for certain that they did, but they said things very iike it. The first point was to show that Harvey's views were absoluteiy untrue ; and not being abie to succeed in that, opponents said they were not new ; and not being abie to succeed in that, that they didn't matter. That is the usuai course with all new discoveries. But Harvey troubied himscli very iittie about these things. He remained perfectiy quiet; for aithough reputed a hottempered man, he never would have anything to do with controversy if he could heip it ; and he only re?led to one of his antagonists after twenty years' intervai, aad then in the most charming spirit of candour and moderation. But he had the great satisfaction of living to see his doctrine accepted upon all sides. At the time of his death, there was not an anatomical schooi in Europe in which the doctrine of the circulation of the blood was not taught in the way in which Harvey had laid it down. In that respect he had a happiness which is granted to very few men.

I have said that the other great investigation of Harvey is not one which can be deait with to a general audience. It is very complex, and therefore I must ask you to take my word for it that, aithough not so fortunate an investigation, not so entirely accordant with later results as the doctrine of the circulation; yet that still, this littie treatise of Harvey's tas in many directions exerted an influence hardiy iess remarkabie than that exerted by the Essay upon the Circulation of the Blood.

THE CIRCULATION OF THE BLOOD

And now iet me ask your attention to two or three closing remarks.

If you iook back upon that period of about 100 years which commences with Harvey's birth-I mean from the year 1578 to 1680 or thereabouts-I think you will agree with me, that it constitutes one of the most remarkabie epochs in the whoie of that thousand years which we may roughiy reckon as constituting the history of Britain. In the commencement of that period, we may see, if not the setting, at any rate the declension of that system of personal ruie which had existed under previous sovereigns, and which, after a brief and spasmodic revival in the time of George the Third, has now sunk, iet us hope, into the iimbo of forgotten things. The iatter part of that 100 years saw the dawn of that system of free government which has grown and flourishod, and which, if the men of the present day be the worthy descendants of Eliott and Pym, and Hampden and Milton, wili go on growing as iong as this realm lasts. Within that time, one of the strangest phenomena which J. think I may sny any nation has ever manifested arose to its height and feil-I mean that strange and altogether marveiious phenomenon, English Puritanism. Within that time, England had to show statesmen iike Burieigh, Strafford, and Cromwell-I mean men who were real statesmen, and not intriguers, seeking to make a reputation at the expense of the nation. In the course of that time, the nation had begun to throw off those swarms of hardy coionists which, to the benefit of the worid-and as I fancy, in the iong run, to the benefit of England herseif-have now become the United States of America; and, during the same epoch, the first foundations were iaid of that Indian Empire which, it may be, future generations will not iook upon as so happy a product of English enterprise and ingenuity. In that time we had poets such as Spenser, Shakspere, and Miltor: we had a great philosopher, in Hobbes; and we had a ciever talker about philosophy, in Bacon. In the beginning of the period, Harvey revoiutionized the bioiogical sciences, and at the end of it, Newton was preparing the revoiution of the physical sciences. I know not any period of our historyI doubt if there be any period of the history of any nationwhich has precisely such a record as this to show for a hundred years. But I do not recall these facts to your recoliection for a mere valnglorious purpose. I myseif am of opinion that the memory of the great men of a nation is

THE CIRCULATION OF THE BLOOD

one of its most precious possessions-not because we have any right to piume ourseives upon their having cxisted as a matter of national vanity, but hecause we have a just and rational ground of expectation that the race which has brought forth such products as these may, in good time and under fortunate circumstances, produce the ilke agaln. I am one of those peopie who do not believe in the natural decay of nations. I helieve, to speak frankly, though perhaps not quite so politely as I could wish-but I am getting near the and of my iecture-that the whoie theory is a specuiation invented hy cowards to excuse knaves. My belief is, that so far as this oid English stock is concerned it has in it as much sap and vitality and power as it had two centuries ago; and that, with due pruning of rotten hranches, and due hoeing up of weeds, which will grow ahout the reots, the like products will he yieided again. The " weeds " to which I refer are mainly three: the first of them is dishonesty, the second is sentimentality, and the third is iuxury. If William Harvey had heen a dishonest man-I mean in the high sense of the word-a man who failed in the ideal of honesty-he would have helieved what it was easiest to believe-that which he received on the authority of his predecessors. He would not have feit that his highest duty was to know of his own knowiedge that that which he sald he believed was true, and we shouid never have had those investigations, pursued through good report and evil report, which ended in discoveries so fraught with magnificent results for science and for man. If Harvey had heen a sentimentalist-hy which I mean a person of false pity, a person who has not imagination enough to see that great, distant evils may he much worse than those which we can picture to ourseives, hecause they happen to be immediate and near (for that, I take it, is the cssence of sentimentalism)-if Harvey had heen a person of that kind, he, being one of the kindest men living, would never have pursued those researches which, as he teils us over and over again, he was obiliged to pursue in order to the ascertalnment of those facts which have turned out to be . of such inestimabie value to the human race; and I say, if on such brounds he had failed to do so, he wouid have failed in his duty to the human race. The third point is that Harvey was devoid of care either for wealth, or for riches, or for ambition. The man found a higher ideal than any of these things in the pursuit of truth and the henefit of his fellow-men. If we ali go and do likewise, I think there is no

THE CIRCULATION OF THE BLOOD
 453

fear for the decadence of England. I think that our children and our successors wili find themseives in a commonwealth, different it may be from that for which Eiiott, and Pym, and Hampden struggled, but one whici wiii be identical in the substance of its aims-great, worthy, and well to iive in.

THE PEOPLE'S LIBRARY

THE
 FIRST HUNDRED VOLUMES

Its 33, Now Rendy
36 to 50, March 13th, 1900
51 to 60, April 10 in, 1908
61 to 70, May 15th, 1900
71 to 100, Lowor

A LIST FOR REFERENCE

* THE PEOPLE'S LIBRARY

1. Stumure Inima and Fo

2. A intocren oition
3. 115
a TVmbe 1001

a Crams and riter, Dheo yoti Int 2 the Paition 100
4. कhemy of at

$$
5
$$

11. Olotuter and the incatoners
12. The Ohrititenar Bae
13. Tom Time DIO 4 48

14. Tinc folomon's Ithes

ETGCARD
15. Poums, 283-1835

DROWAME

17. Examiand othor Writinn
18. The Init on the Flow intor

10 whe inton the Fors fitor

24 ot arios ty shop mover
24. OLa Critodty shop Drot cis
20. Orymiond
7. Ailin Therer
28. Jowtion worls

C $\frac{11410}{1610 \%}$
29. Inet Day of Pornorit

81. Fride and Rrujudion
82. Towne of Iondion 4 Buyma

\&4. Int or the Rohtomins
85. The opitur Bater and other

40. Parnery Buço Dident

 4. Victr of Velronota and Poom

COKDS IMY
4. The Deve tajur 000 EH
45. Bemse nad Botrimity
46. Poums and songa buver
47. 2he yhat Mon poteur
48. the Ohanning
4. Tho Ingelatbs Ierunds
8. aitrer 2witinioter
varas Dratin
62. Bap zatm

38 ircirection
DTMOU AVETMD
64. Treatosomer other xovel

6. ane swo Rath and other
87. The Phthinder 00021
68. 2rinem axien har reppely IM 18
69. Woman in White cownतi
co. Dartot Bmartur and Enaz on Burna and soots

OBryt
61. It In Alover Too Into to ITand
02. Filgine's Jrogen Ein ID
63. Dinjue

801:1
8. yrim, roama, and bitwhy
66. Eupathe Dicrit

a. yoy ise of blsooyty
70. Eroen and Euro Forthta Luns con Gootho

वnच5t
7. Indereinn Iena
72. Oar Fille Enyoul
7. Oricha arpectes Dinvil
74. ahe Threo trantupenta

76. 5ho phit
77. Ancold
78. Ray E5ETO
20. Sumanow E BOTCTMS

81. Fiter dhowhere in oncito
on minem op rativeloun
 Amotis zom flatic
8. Whtherter Eifent broive
86. Cuy 7amariss
87. Brut Onch
88. Jirtedary
8. Pouns
breation

1. 2ingornamo propits
on Bant of Didothim So02z
2. Berrahentar Tommer
os puter Etrapla mporiog
3. K10 of Kitron

Coumile

97. Kifo of ohrist RABTis
co. Fung cols colin:
9. Buict Family Tobinean
100. Dompent Ander TMy0

H 9867 l

$$
1908
$$

[^0]: 66-c

[^1]: *The " Carricr," 1 learn from Mr. Tegetmeier, does not carry; a high-bred bird of this breed being but a poor nier. The blrds which Ay long distances, and come home, "homing." Thirds birds which conscquently used as carriers, are not " carriers "in birch, the fand are

[^2]: - I ley stress here on the praetteal signification of "Species." Whether a physiological test between species exist or not, it is hardly ever applicable by the practical naturalist.

[^3]: - And as I conceive with very good reason; but if any obfector urges that we cannot prove that they have been produced by artiActal or natural selection, the objer scoptical as.it is. But in science, : vsi im is a duty.

[^4]: * Macmillan's Magazine, December 1859.

[^5]: - The Westminster Review, April 1860.

[^6]: "I apprehend," says Professor Owen," "that few naturalists nowadays, in descrihing and proposing a name for what they call 'a new species,' use that term to signify what was meant hy it twenty or thirty years ago; that is, an originally distinct creation, maintaining its primitive distinction hy obstructive generative peculiarities. The proposer of the new species now intends to state no more than he actually knows ; as, for exampie, that the difierences on which he founds the specific character are constant in individuals of both sexes, so far as ohservation has reached; and that they aro not due to domestication or to artificially superinduced external circumstances, or to any outward infuence within his cognizance ; that the species is wild, or is such as it appears hy Nature."

 If we consider, in fact, that hy far the largest proportion of recorded existing species are known only hy the study

 * On the Osteology of the Chimpanzees and Orangs: Transactions of the Zoological Society, 1858,

[^7]: - Colonel Humphreys' statements are excee $\$$ ' xplicit on thls point :-" When an Ancon ewe is impregnate, a common ram, the increase resembles whelly elther the eve or the ram. The increase of the common ewe impregnated by an Ancon ram follows entirely the ene or the other, witheut biending any of the distinguishing and essentiai peculiarities of beth. Frequent instances have happened where commen ewes have had twins by Ancon rams, When one exhlbited the complete marks and features of the ewe, the other of the ram. The con :- 'ias been rendered singulariy striking, when one short-legged anu, wie leng legged jamb, produced at a birth, have been seen sucking the dam at the same ume."Philosophical Transactions, 1813, Pt. I. pp. 89, 90.

[^8]: *Recent investigations tend to show that this statement is aot strictly accurate.-1870.

[^9]: "Ce qu'll y a d'ćtonnant, est que pour arriver à ces connoissances 11 semble avoir perverti l'ordre naturei, puisqu'au lieu de s'attacher d'abord à rechercher l'origine de notre globe il a commencé par travailler à s'instruire de la nature. Mais á l'entendre, ce renversement de l'ordre a été pour lui l'effet d'un génie favorable qui l'a conduit pas à pas et comme par la main aux découvertes les plus sublimes. C'est en décomposant la substance de ce globe par une anatomie exacte de toutes ses parties qu'il a premidrement appris de quelles matiéres il était composé et quels arrangemens ces memes matières observaient entre elles. Ces lumiedres jointes à'esprit de comparalson toujours nécessaire a quiconque entreprend de percer les volles dont la nature aime à se cacher, ont servi de guide a notre philosophe pour parvenir à des connoissances plus intéressantes. Par la matiere et l'arrangement de ces compositions il prétend avoir reconnu quelle est la véritable origine de ce globe que nous habitons, comment et par qui 11 a été formé."Pp. xix. x.

[^10]: - See Phil. Zoologigue, vo1. 1. p. 222, ef seq.

[^11]: "The mode of investigation," says Mr. Mill, "which, from the proved inapplicablity of direct methods of observation and experiment, remains to us as the main source of the knowledge we possess,

[^12]: * 1 Hh Natural Histiva, Review, 1864. + Jic Fadiolarten: etre Monographie, p. 231.

[^13]: "The foregoing remarks lead me to say a few words on the protest lately made by some naturalists against the utilitarian doctrine that every detail of structure has been produced for the good of lits posscssor. They belleve that very mrny structures have been created for beauty in the eyes of man, or for mere variety. This doctrine, if true, would be absoluteiy fatal to my theory-yet I fully admlt that many structures are of no direct use to their possessor."

[^14]: " 4. A tendency of organisms to give rise to useful varieties, and a natural selection, do not exist.
 "The varieties which are found arise in consequence of manifold external influences, and it is not obvious why they all, or partially, sbould be particulariy useful. Each animal suffices for lts own ends,
 *Space will not allow us to give Professor Kolliker's arguments in detail ; our readers will find a full and accurate version of them in the Reader for August 13th and 20th, 1864.

[^15]: " 5. Pelzeln has also objected that if the later organisms have proceeded from the earlier, the whoie developmentai series, from the simplest to the highest, couid not now exist ; in such a case the simpler organisms must have disappeared."

[^16]: " It is obvious that my hypothcsis is apparently very sinllar to Darwin's, Inasmuch as I also consider that the various forms of animals have proceeded dircctly from one another. My inypotivesls of the creation of organisms by heterogeneous generation, however, is distingulshed very essentially from Darwin's by the entire absence of the principie of useful varlations and their natural seiection : and my fundamentai conception is this, that a great pian of deveiopment lies at the foundation of the origin of the whoie organie worid, impeiling the simpier forms to more and more compicx development :. How this law operates, what influences determine the development of the eggs and germs, and impei them to assume constantiy new forms, I naturaliy cannot pretend to say; but I can at least adduce the great analogy of the aitcrnation of generatlons. If a Bipinnaria, a Brachialaria, a Pluteus, is compctent to produce the Echinoderm, wifch is so wldely different from it; if a hydrold polype can produce the higher Medusa; if the vermiform Trematode ' nurse ' can develop within ltself the very unilke Cercaria, lt will not appear impossible that the egg, or cillated embryo, of a sponge, for once, under special conditions, might become a hydroid polype, or the embryo of a Medusa, an Echinoderm."

[^17]: * If, on the contrary; we follow the analogy of the more complex forms of Agamogenesis, such as that exlibited by some Tremaloda and by the Aphides, the Hyæna must produce, asexually, a brood of ascxual Dogs, from which other sexless Dogs must procecd. At the end of a certain number of terms of the scrles, the Dogs would acquire sexes and generatc young; but these young would be, not Dogs, but Hyænas. In fact, we have demonstrated, In Agamogenetic phenomena, that inevitable recurrence to the original type, which is asserted to be true of variations in general, by Mr. Darwin's opponents ; and which, if the assertion could be changed into a demonstration, would, In fact, be fatal to his hypothesis.

[^18]: " On imagine une élection nalurelle que, pour plus de ménagement, on me dit étre inconsciente, sans s'apercevoir que lo contre-sens iittéral est précisément là : élection inconsciente." (P. 52.)

[^19]: " Spontaneous generation is only a chimera. This point established, two bypotheses remain: that of pre-existence and that of epigenesis. The one of these hypotheses has as little foundation as the other." (P. 163.)
 "The doctrine of epigenesis is derived from Harvey : following by ocular inspection the development of the new being in the Windsor does, he saw each part appear successively, and taking the moinent of appearance for the moment of formation he imagined epigenesis." (P. 165.)

 On the contrary, says M. Flourens (p. 167), "The new being is formed at a stroke (tout d'un coup), as a whole,
 instantaneously; it is not formed part by part, and at different

[^20]: " "c Except this that their legges had no calves."-[Ed. 1626.] And in a marginal note, "These great apes are called Pongo's."

 + Purchas' note.-Cape Negro is in 16 degrees south of the line.

[^21]: * Purchas' marginal note, p. 982 :-"The Pongo a giant ape. He told me in conference with him, that one of these Pongoes tooke a negro boy of his which lived a moneth with them. For they hust not those which they surprise at unawares, except they look on them; which he avoyded. He said their highth was like a man's, but their bignesse twice as great. I saw the negro boy. What the other monster should be he hath forgotten to relate; and these papers came to my hand since his death, which, otherwise, in my often conferences, I might have learned. Perhaps he meaneth the Pigmy Pongo lillers mentioned."

[^22]: ""Mandrill" seems to signify a "man-like ape،" the word "Drill " or "Dril" having been anciently employed in England to denote an Ape or Baboon. Thus in the fith edition of Blount'a "Glossographis, or a Dictionary Interpreting the hard words of whatsoever language now used in our refned English tongue... very useful for all snch as desiro to nnderstand what they read; ; published in 1681 , I find, "Dril-a stone-cutter"s tool wherewtic he bores ittis holes fri marble, etc. Aiso a large overgrown Ape and Baboon, 80 called." "Drill" is used in the same rense in Charieton's "Onomasticon Zoicon," 1668. The eingular etymology of the word elven by Bnifon seems hardly a probable one.

[^23]: " Orang-outang nom de cet animal aux Indes orientales: Pongo nom de cet animal à Lowando Province de Congo.
 "Jocko, Enjocko, nom de cet animal a Congo que nous avons adopté. En est l'article que nous avons retranche."

[^24]: - Camper, Guvres, i. p. 56.
 \dagger Verhandelingen van het Bataviaasch Genootschap. Tweede Deel. Derde Druk. 1826.

[^25]: * "Briefe de Gotha, 1794."
 n v. "Wurmis und des H. Earon von Wollzogen.

[^26]: - See Blumenbach, Abbildungen Naiurhistorichen Gegensiände, No. 12, 1810; and Tilesius, Noturhisioriche Frïchte der ersten Katserlich-Russischen Erdumsegelung, p. 115, 1813.

[^27]: * Speaking broadly and without prejudice to the question, whether there be more than one species of Orang.
 \dagger See " Observations on the external characters and babits of the Troglodytes niger, by Thomas N. Savage, M.D., and on its organization, by Jeffries Wyman, M.D.," Boston Journal of Natural History, vol. iv., 1843-4 ; and "External characters, babits, and osteology of Troglodytes Gorilla," by the same authors, ibid., vol. v., 1847.

[^28]: - Man and Monkies, p. 423. † Wanderings in New South Wales, vol. 11. chap. viu., 1834.

[^29]: - Boston Journal of Natural History, vol. I., 1834.

[^30]: - See Mr. Wallace's account of an infant "Orang-utan," in the Annals of Natural History for 1856. Mr. Waliace provided his interesting charge with an artificial mother of buffalo-skin, but the cheat was too successful. The infant's entire experience led it to associate teats with hair, and feeling the latter, it spent its existence in vain endeavours to discover the former.

[^31]: *" They are the slowest and least active of all the monkey tribe, and their.motions are surprisingly awkward and uncouth."-Sir James Brooke, in the Proccedings of the Zoological Society, 1841.
 \dagger Mr. Wallace's account of the progression of the Orang almost exactly corresponds with this.

[^32]: - Sir James Brooke, in a letter to Mr. Waterhouse, puhlished In the proceedings of the Zoological Society for 1841, says :-" On the habith of the Orangs, as far as I have heen ahle to observe them, I may remark that they are as duil and slothful as can well he conceived, and on no occasion, when pursuing them, did they move so tast as to preclude my keeping pace with them easily through a moderately clear lorest ; and even when ohstructions below (such as wading up to the neck) allowed them to get away some distance, they were sure to stop and allow me to come up. I never ohserved the alightest attempt at defence, and the wood which sometimes rattled about our ears was hroken hy their weight, and not thrown, as some persons represent. If pusbed to extremity, however, the Pappan could not he otherwise than formidable, and one unfortunate man, who, with a party, was trying to catch a large one allve, lost two of his fingers, besides being severely hitten on the face, whilst the animal finally heat off his pursuers and escaped."
 Mr, Wallace, on the other band, athrms that he has several times ohserved them throwing down hranches when pursued. "It is trues he does not throw them al a person, hut casts them down vertically; for it is evident that a hough cannot he thrown to any distance from; the top of a lofty tree. In one case a female Mias, on a durian tree, kept up ior at least ten minutes a continuous shower of branches and of the heavy, spined fruits, as large as 32 -pounders, which most effectually kept as clear of the tree she was on. She could be seen hreaking them off and throwing tbem down with every appearance

[^33]: © On the Orang-Utan, or Mias of Borneo, Annals of Natural

[^34]: *Notice of the external characters and habits of Troglodytes Gorilla. Boston Journal of Natural History, 1847.

[^35]: - It will be understood that, in the preceding Essay, I have selected for notice from the vast mass of papers which have been written upon the man-like Apes, only those which seem to me to be of special moment.

[^36]: * We are not at present thoroughly acquainted with the brain of the Gorila, and therefore, in discussing cerebral characters, I shall take that of the Chimpanzee as my highest term among the Apes.

[^37]: - It has been afirmed that Hindoo crania sometlmes enntain as Iittle as 27 ounces of water, which would give a capacity of about 46

[^38]: * In speaking of the foot of his "Pygmie," Tyson remarks, p. $13:-$
 "But this part in the formation and in its function too, being liker a Hand than a Foot : for the distinguishing this sort of animals from others, I have thought whether it might not be reckoned and called rather Quadru-manus than Quadrupes, i.e. a four-handed rather than a four-looted animal."

[^39]: * See the note at the end of this essay for a succinct history of the controversy to which allusion is here made.

[^40]: man or of an Aztec, with arrested brain growth, as being of a nature so essential as to preclude a comparison between them, or as being other than a difference of degree, I cannot shut my eyes to the significance of that all-pervading similitude of structure-every tooth, every bone, strictly homolognus-which makes the determination of the difference between Homo and Pilfiecus the anatomist's difficulty."

 Surely it is a litule singular that the 'anatomist;' who finds it ' dimeult 'to' determine the difference 'between Homo and Pilhecus, should yet range them on anatomical grounds, in distinct subclasses 1

[^41]: * In a subsequent passage, Schmerling remarks upon the occurrence of an incisor tooth ' of enormous sizc 'from the caverns of Engihoul. 'ihe tooth figured is somewhat long, but its dimensions do not appear to me to be otherwlse remarkabie.

[^42]: - The figure of this clavicle measures 5 inches from end to end in a straight line-so that the bene is rather a small than a large one.

[^43]: - On the Crania of the most Ancient Races of Man. By Professor D. SchaalThausen, of Bonn. (From Mülier's Archiv., 1858, pp. 453.) With IReme.- and origin if Figures, taken from a Cast of the Neanderthal Cry History Review. Adril, By Geot e Busk, F.R.S., etc. Nalural \dagger Verhandl. d. Natur.u.
 Westinalens.,
 xiv. Bonn, 1857.
 \ddagger /b. Correspondenzblatt. No. 2.

[^44]: *This, Mr. Busk has pointed out, is probably the notch for the Srontal nerve.

[^45]: *The numbers in brackets are those which I should assign to the different measures, as taken from the plaster cast.-G. B.

[^46]: - Yerh. des Naturhisf. Vereins in Bonn, xiv. 1857.

[^47]: * Estimating the facial angle in the way suggested, on the cast I should place it at 64° to 67°.-G. B.

[^48]: - See an excelient Essay by Mr. Church on the Myology of the Orang, in the Natural History Review, for 1861.

[^49]: * In no normal huinan skuil does the breadth of the brain-case exceed its length.

[^50]: * See Dr. D. Wilson's valuable paper " On the supposed prevalence of one Crantal Type throughout the American aborigines."Ganadian Journal, vol. ii., 1857.

[^51]: - A Lay Sermon delivered in St. Martin's Hall on Sunday, January 7th, 1866, and subsequently published in the Fortnightiy, Review.

[^52]: *Need it we said that this is Tennyson's English for Homer's Greek ?

[^53]: - A Lecture dellivered at the South Kensington Museum in 1861.

[^54]: - It has been suggested to me that these words may be taken to imply a discouragement on my part of any sort of scientifle instruction which does not give an acquaintance with the facts at first hand. But this is not my meaning. The ideal of scientife teaching 1s, no doubt, a system by which the scholar sees every fact for himseif, and the teacher supplies only the explanations. Circumstances, however, do not often allow of the attainment of that ideal, and we must put up with the next best system-one in which the scholar takes a good deal on trust from a teacher, who, knowing the facts

[^55]: * See the abstract of a Lecture "On the Persistent Types of Animal Life," in the Nolices of the Meelings of the Royal Institution of Great Britain.-June 3, 1859, vol. iii. p. 151.

[^56]: * " Memoirs of the Gcological Survey of the United Kingdom. Decade x. Preliminary Essay upon the Systematic Arrangement of the Fishes of the Devonian Epoch."

[^57]: * As the Address is passing through the press (March 7, 1862), evidence lies before me of the existence of a new Labyrninodont (Pholidogaster), from the Edinburgh coal-field, with well-ossified vertebral centra.

[^58]: - A Lecture delivered in Manchester, November 4th, 1870.

[^59]: * A Lectirre delivered th the Free Trade Hill, November 2nds

