The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of tilming, are checked belows.

Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than Llue or black)/ Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-ftre uniques du point de vue bibliographique, qui peuvent modifier une image reprodute, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indıqués ci-dessous.Coloured pages/
Pages de couleur

Pages damaged/ Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées

\square
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées
$\triangle \begin{aligned} & \text { Showthrough/ } \\ & \text { Transparence }\end{aligned}$

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-téte provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

Capadian Agricnlta:al Societies.

Almovgh much has been witten upon a popular system of organizing Agricultural Societies, still, we apprehend, the suiject is, not well understood by the generality of the, farmers of this province. As this number, completes the current volume of the Cullivator, probably no topic could be discussed that would pruve more generally interesung to the agricultural reader, than the one we, have selected for our leader. The great ob-1 ject of A gricultural Societies is, to encourage the intioduction of a better system of ayriculture, and to promote such other objects, anly as have an influence in givang an inceased production of wealth to the country. Agricultural Institutions, based upon sound principles, if genarally established, might be made instrumental in adding ine million of pounds annually to the wealth of Western Canada; and indeed it would be extremely difficult to define limits to the good that might be effected through the agency of such asisociations. Entertaining such exalted views of these modern Institutions, for the improvement of agriculture and the mechaaical arts, no anology is necessary for so frequently recarring to this interesting theme.
quently recurring to this interesting theme. should take the entire controul of the Dis-
The organization cannot be complete with-, trict Society, by which means the friends of cieties. These should be styled Tuwashar, District, and Provincial. The three grides already exist, but the machinery by which they are set in motion is very imperfect, and to remedy the evii is probably rather a difficult task, especially as those who may volunteer their services to aid in bringing about any change for the better, in any Public Institution, are ofttimes susperied for being actuated in their conduct by improper motives, and that too by the very parties who would in the end receive the most benefit.
Township Societies, in our opinion, should exist in every District in the Province;and in the twenty Districts in Western C.tnada, not less than one hundred and twenty should be in being jefore the close of the present winter. One balf of the government money granted to every District should bee appropriated among the Townshtp societien, in proportion to the amount of subscription that they severally sase; and the remaining porton should be appropriated to the District Society. One representative chosen by every Township Society in the District, shopuld take the entire controul of the Dis,
improvement throughout the entire District wquld have unlimited confidence in the proceedings of the District Board. Intelligent farmers or manufacturers should be chosen to represent the interests of the townships in the District Board; or if the selections be made from other olosses, great care should be observed to select such only as have proved themselves true friends to the intercsts of the body. Township shows or exhibitions might with advantage take place both in the spring and fall, but for all practical purposes, the District Shows need not occur more than once per annum. To introduce something like system in the management of these shows, we would propose that the autumn township exhibition should take place from the $15 t$.to the $20 t h$ of September; the district exhibition from the 25 th to the $30 t h$ of September; and the Provincial Show in the first week in Oct. By this mode of management only the choicest products would be brought together at the District shows; and the successful competitors at the township and district shows might with some reason enter their prize articles for competition at the Provincial Exhibiton. We bave already stated, that the district societies should be governed by intelligent and otherwise well-qualified persons, chosen by the warious township societies in the district, who should meet in council a3.often as once a year; and as the duties they would necessarily have to perform would be onerous, and of great importance to the country, the mersbers should have a fair compensation for the services rendered. The most importart duties of district toards would be, the efficient government and management of district sacieties, and collecting and reporting the besh experiments and practice of agriculture, from the various townships in the district.

The Provincial Board of Agriculture, as the Board of Agrıculture will in all probabialready well understood, should consist of hity hold its first session before the close of two members from every district, to he elect- the present winter, and especially as the ed by the District Agricultural Society, or members of that Board wilt doubtless be preDistrict Board of Agric ulture, would be much befter. As the Froxincial Board of Agricul-
ture is intended to enconrage useful genius, in whatever walk of life it may be developed, and especially those ot agriculture and manufactures, one of the members of the Board from every district should either be a mechanic or directly interested in manufactaring operations, and the other an agriculturist. If the spirit of this suggestion be carried into practice, it will almost to a certainty prevent local jealousies, and be productive of much good to the courtry. The members of the Provincial Board, in all probability, will be composed of the most practical business men that are to be met wis't in the Province, whose time could ill be spared from their business; and owing to this consideration, together with the important duties they would have to pe:form, it is only right that their entire expenses should be paid; and besides, they should receive a fair compensation for the service they may render to their country. The duties of the members of the Provincial Board, in point of practical importance, would favorably compare with any public body inthe Province; and to secure the efficient. services of the gentlemen who may be elected to the Board, something more than mere honorary compensation will have to be granted to them.
It might not be out of piace to particularise some of the duties that should occupy the altention of the Yrovincial Board.

1st. The Management of the Provincial' Agricultural Society.-The control which the Board would exercise over this Association, would secure to it a general pattonage, and the benefits, as has already been stated, would be of the greatest importance to thecountry. Lt would be prea.ature, and proba-bly out of place, for us to submit our views in retation to the manasement of the Provin|cial Agricultural Society, at this period, as pared with welt-digested rules and regulations for the future guidance of the Institute.

2d. Agricultural College and Expersmental Farm.-One of the first steps to be taken by the Provincial Board, should he the establishment of an Institution of this kind.The wants of the country now demand it: and it shall not be the fault of the conductor of this magazine, if both the College and the Farm be not in full operation before the close of the year 1S47. A private enterprise under the patronage and partial direction of the Board would, when all things considered, be more likely to succeed, and be conducive of greater benefits, thian an Institution placed entirely under the control of either the Board or the Government. An Agricultural College and Experimental Farm, are Institutions of whicl the people of Canada have as yet but an imperfect knowledge, and to secure success to such an undertaking, men of Indomitable perseverance and of superior practical and scientific acquirements, will bave to be selected to superintend its management.

The views advanced by the Cullivator respecting the benefits that would be conferred upon the rising generation of Canada, were Educational Institutions ertablished in connection with a well-cultivated farm,where both the science and practice of agriculture would be taught, and where the cultivation of many new plants would be tested, and the most approved systems of agriculture practiced,-has attracted the attention of a number of the most learned men of this country and England; and it is with much satisfaction we are enabled to state, that-measures are being taken between parthes living in the Province and London, England, for the establishment of such an Institution in the neigiborhood of this city, in the early part of the ensuing spring. It is highly important that the Provincial Board of Agricuiture should meet before the close of the present wint-r, in order that the party who ithends to est.blish the Agricultural Institution should have the benefit of the advice and patronage of that body at the .commencement.

3d. Atracukural and Mechanical Museum. -The farmers and mechanics of Carada shopldibe glaced in the position that they
could avail themselves of every improvement that is made in their highly important calling; and among the means that is best calculated to promote this object, cone, probably, would be more efficient than 3 museun, where models of the most usefu! and labor-saving machines, geological and inineralogical specimens, and all other, curious or useful productions of the eountry could be deposited, and thrown open for public inspection. This 1 nstitution should bo placed under the entire contronl of the Previncial Board, and would require a liberal grant from Parliament, to keep it up in a respectable manner. The Canadian people are not a very inverive penple, and therefore they should be placed in possession oi all the discoveries made in other countries that would be calculated to develope the resources of the Province, or induce the inhabitants to exert their energies in improving this naturally fine cauntry.
4th. Publishing the Transactions.-There can be no valid reason assigned why farmers should not be as anxious to make themselves acquainted with the best systerns of agriculture, as the members of other professicns are, in oblaining the experience and views of the most celebrated men of their respective callings. No farmer will object to receive advice and direction in his business from a distinguished skilful cultivator, who may be a neighbor, or in whom he could place unlinited confidence. Experiments are none the less valuable because they happen to be made in a remote portion of the Plovince, or by what is generally termed an illiterate person. Som 3 of the brightest intellects that any country can boast of, are to be found, as it were, buried in the backwoods of Canada. What we are most anxions to see is, the development of native genius, let is be found in whatever walk of life it may. The syetem of organisation here submitted, if carefully put to the test, would in a very few years, have the influence of creating as great if not a greater spirit of emulation in usefui enterprise, than is to be met with in any other country. Among the numerous means for developing native genius, and creating a general spirit for improvement, none would have a more beneficial influence than that of publishing the proceedings of the Distric: and Povincial Boards of Agricuiture, provided that these Boarls woill, through their numerous agents, adopt efficient means to collect reports of the best experiments made in agriculture, logether wish the best. sy stems practiced in vatious par.s of the fio. yince.

Rearing of Stock
 propessor jomnston's legture at ait.

Suhject-Feeding of Slock.-Professor Johnsion commenced his lecture by referring to the composition of the vegutable food of man; in elucidation of which he directed attention to several tables, showing the composition of the different kinds of grain. Ite next came to conside: the composituon of the animals that lived upan this food. If they took a portion of any auimal-fo: instance a plece of mutton-and burned it in the fiie, they would find that there would be a small part that would not burn away. Thus liey would percesve there was a striking similanty estabished between the animal, the plant, and the sorl-that which burned away being calied the organic part, and that which did not burn arsay, the morganic part. The organic part of the anmal, consisted of two different sub-stances-the fat and the muscle. If, after sepa. rating the muscle from the fat and the bone, they were to take and wash it in water, as they had seen dune in his first lecture with the flour, they would find that the water would gradually become less coloured, and the dean muscle would become white. This moss, with the exception of a litile fat-which they could not separate by washing -comsisted of a substance to which chemists gave the name of fibrin. Chemically speaking, it was just the same thing as the gluten which they ob. tained from the flour. Then they had the fat, which formed a covering to certain parts of the body-somenimes interlarding itsalf among the muscles, separanng them one from the oither. This fatty matter was nearly identucal with that found in all the plants which they taised, in uhich it was present to a greater or lesser extent. There was also bone in the animal; which, if they burned, s large proportion would consume away, but a still larger proportion would remain. In bane they had a substance called cartilage. In cartilage they had nitrogen present. The fibrin and the cartilage were very like each other in their composition. So much with regard to the organic purt of the animal; and if a similarity existed between the general composition of the plant and the animal' they would learn by-andby, that there was as great an analogy between the inorganic part of the plant and that of the animal. Of what did the inorganic part of an animal consist? The proportion of the morganic
matter varied whith the part of the anmal at 12 varied with the part of the plant. If they looked to the composition of muscle, they would find is 10 be as follows, in every 100 lbs.-

Wal	77 lbe.
Fibrin, with a little fat,	22
Phosphate of Liane, -	1
Other Salsne Matter,	

And, again, if they locked to the composition of $0 x$ hones, they would find it to be as under- -

Cartilage,	$\quad-$	33.3
Phosphate of Lime,	-	57.4
Carbonate of Limesta,	-	2.0
Soda, with a litle Conimon Salt,	3.4	

As in the compraition of the inorganic part of the plant, they hod seen that is conssted of two general subsiances, the saliap sulstances and the phosphates, so was it in the anmal-the phosphate of lime farming nearly sixis per centage of the whole Bur, besides the sold part of the animal, it had in its body certain flutd paris. The blood was the most inportan ot these fards. It was almost identical, in its genetal composituon, with the muscular parts of the body; 100 Jbs of blood being nearly the same as 100 bs of muscle. They saw, therefore, that the whule anmal consisted essentially, in its organic part, of fat and fibrin, and in its orgnnic part, of saline substances and phosphates. The plant consusted of starch, gluthen and fat. The ammal consisted of gluten and fat, but no starcl. He came now to a most important point There was a difference -and a very imnortant one-between the nnimal and the plant. The animal comaned fat and gluten. The plant contained fat, starch, and gluten ${ }^{2}$ here was no starch in the anmal. It must, however, since it existed in such quantuy in the food of animals, serve some purpose in the animal creation. In order $t 0$ understand this, it would be necessary to explain the functions of the animal economy. The first fact he nouid notice was, that they all breathed. They inhaled into the lungs a differently constituted air froms what they gave out. Oniv a small quantity of carbonic acid was inhaled by the lungs, but a very large portion was exhaled. A very small quanity of this gas was in the atmospliere, as he had already shown them-only one gallon of it to 250) gallons of the common air. He likewise demonstrated to them that this carbonic acid was formed of carbon and oxygen. They had seen farther this 36 pounds of carbon, and 45 pounds of water,
formed 81 pounds of starch. This aubsiance therefore must be burned in the stomach, physi. ologists being of opinion that it serves the same purpese in the human body, as coal does in the production of heat in a room. This was an important practical point in reference to the economy of animal food. The plant, in order to sustain the animal, muet not only have what will sive it fat, muscle, and bone, but what will olso give it heat. The carbon given out by the lungs saries under different carcumstances. A litule man will respire five ounces of carbon in 2 day; but a tall man, with a capactous chest, whe takes percise, will respire as much as fifteen ounces, and an animal, such as a cow or a horse, foom five to six pounds. In order to respire five ounces of carbon per day, we must have about eleven ounces of starch, and the more extresse we take the more starch must we have. Thus was nothing wasted in nature, such 2 thing as wasung was not known in nature. There was no waste of starch or cartion from the lungs. If the anumal was cold more would be required to keep it warm, consequently, in the economy of food, a great deal depended on the warmth and condition in which the anirsal was kept. If their land was in a cold condition, the aninals which fed on it would be cold nlso-just in the same way as a person, when be entered a cold room, would become cold in proportion to the temperature of that room. Animale that are kept cold will also eat more food. In like manner, if they fid their eattle on an exposed situa'ion, they must eat more food; but if they kept them in a shed, or in folds dry and sheltered, they would eat less. It was not merely the result of the theory he had explained, on which this principle was founded; but it has been arrived at by actual experiment. The following table showed an experiment made on sheep:-

				ner. for ach 100 hs. of Roots,
	jbs.	th.	Ths. $\overline{\text { b }}$ -	
Unsheltered	108	1317	23.71912	2
In open Sheds,	$10 \pm$	1298	2841394	2.0
17o., but confined,	108	130.2	22.21238	1.8
Close Shed, dark	,102	132	278, 886	3.1
J)u., but confined,	111	131	20.31 8861	2.4

The original weight of the sheep was given in the first column, and the second contained the Deruse they made from the month of November
till the month of March, The anmal placed in an unsheltered mituation had increased 231be.; the one in the open ahed 2sibs. ; the one in the same description of shed, but confined in a crib: 221bs. ; the one in a close shed in the dark, 27lbs.; and the one kept in the same surt of shed, but confined, 201 bs . The increase was greasest whert the animal was kept in an open shed; but then the quantity of turnips consumed was double that of the animals kept in the close shed. From this table it was obvious, that in the dark sheds a gieat saving of food had been effected, which arose from the anmala bejng less disturbed, and therefore less restiess. Motion was fuund to be acconupanied by a waste of substance. Let them consides how the different purposes cuald be bess accomplished. If t were for the purpose of manufacturang dang, as in Innewinshare, that they kept catile, intending afterwaids, as shey did there, to sell them at nearly what they cost, it was not, in this case, of consequence to save food. They would not, of necessuy, give the catue rich food for effecung this purpose, but that kind of food of which they would consome the raost. They would also keep them in a cool place, and give them a great deat of exercise. Bat, suppose the farmer looked to something else-to lay on fat-lie would g.ve his catile those suhstances whet contained a large proporuon of fatty matter. Oil-cake was one of these. It was exactly on account of the qaantity of oll which it contange? that it was valuable for laying on fat. Bran was another thing. Many persons were surprised that bran should be so valuable for tatening pigs s but if they looked at ats composinon in the following table, they would find that it comamed abous five per cent of oil :-

Water,	-	13.1
Gluten,	-	19.3
Oil,	- -	4.7
Huek and a litte	Starch	55.6
Saline matter	-	7.3
		100

Oil, consequenily, was greater in amount in the hask of the wheat than in the wheat itsplf Oil also especially abounded in Indian corn; hence in the United States, and ohicr countries where it was grown, it was extensively used for thefattening of pigg. Professor Johnston then alluded to the differences which existed in oil-cake, son:e of whik was nuth better adapted for fattening than others. But suppose they kept their aimals, not for the purpose of laying on beefind taution

The animal, in this case, required what could m gtre it good muscie and bone. The food that would fatten it would not add to its aupply of muscle nad bone. In oata, bui especially in beans and peas, they had a large quantity of things necessary for this purpose. Hence bean-meal and peas-meal were given in young calves, inasmach as these contained the substances essential not only 10 aupply the bone but the muscle also. The young aninials must get food in which phoso phates piedominate. It had suggested to feed young atock upon asgo ; but his was very wrong, for sago scarcely coatained anything else but atarch. It was necessary to give a growing calf not only what would produce muscle, but what would add to its weight in the shape offat. Frofies. Johnsion then ehowed that the result of pes. tanng young cattle upon the soil was to deprive it of its posphates, which, anless replaced by magure in which these abounded, was sure ultimately so lead to is deterioration. He next adverted to che composition of milk, which he stated to be as andes:-

100.00

In oate there were aboat 16 per cent. of casein, or curd. In water this could easly bo dissolved from the oats; and if a little vinegar was applied, the curd could be turown down in the same manser as in milk. Beans and peaje contained from 24 to $\$ 8$ per cent. of this casein, which wan very searly identical with fibria, only that the latter contained a little phosphorus. In milk also they hod buner, which was similar to the fatty matter oi the food. It also contained sugar, which, like starch, consisted of carbon and water; and of saline matter there was about half-a-pound in every ten galloa of milk. The quantity of saline marter in $\mathbf{1 0 0 0}$ 3bs, of milk would appear from the following table:-

Phosphate of Lime,	3.44 lbs .
Phosphate of Magresia, .	065
Plicsphate of Peroxide of Iron,	007
Chloride of Potassium,	1.83
Chloride of Sodium,	034
Free Soda.	0.45
	6.77

must have an addicional amount of food, about a sixtieth part of jis entire weight. He then went on to demnnatrate that the quality of the milk varied with the food on which the cow was supporied; and illustrated this by stating that ths object of the town dairyman was toget as much milk as he could ; hence he gave the animal such food as put the greatest quantity of milk-thas saving his conscience, and, at the same time, the trouble of going to the pump. In a cheese ciistrict the object was to give the cow es much as it would take of those substances which formed the cure or casein, such as oats, beans and clover. The great end of all was to get as much as they could from the animal at a cheap rale, consisiontiy with its health. The enimal was a machine so delicately constructed, however, that they could not experiment with it as they could do with the soil. If they wanted butter, they would give it a food similar to that used in the fattening of animals --such as oil-cake, and oata in preference to other grain, because they contained more oil. The sustaining food was reduced :o the least possible point when the cow was giving milk. What is the effict of dairy husbandry on the land I Ifthe milk is carried away and sold in the large towns, or carried away in the form of batter or cheese, or in the form of pork when the whey is given to the pigs, what is the effect of this on the land 1 In asmuch as milk contained so much as the phosphates of lime and magnesia, if they went on cropping their land, this would ulumately come to effect a gradual deterioration of the land. It made such a market difference in the guality of the land in Cheshire, that it became much lees valuable; until, by accident, bones were tried, the application of which entirely renovated the old pasures, and their value had increased from $58 \cdot$ 20 303 an acre. They wouid thas see the necessity of supplying bones to land when it had been deprived of its phosphates. The Professor then casually adverted to the rearing of sheep; and atated that, as evety 100 lbs of wool contained 5 lbs , of sulphur, taken from the soil in theshape of sulphuric acid in conpostion with hme, forming gypsum, the same iujurious consequences would result to the land, unless gypsum was supplied to it in lieu of that carried away by the wool. The Professor, after referring to the value of farm-yard manure, went on to show the brautiful connection that subsisted between chemistry and In order that the cow might produce this milk, it lagriculture. Among the many means for making
a howsissge of agneultural chemisiry more diffueed, he advocated the property of the young men in the country forming themselves into small acieties, and either by reading or discussion on the many intetesting and important subjects ibat the science embraced, they would soon arrive at auch a knowledge as would be of great practical - ${ }^{-1} u$ ue in the cultivation of the land. He urged them, also, to call in to their aid the services, if possible, of the parish teacher. He did not shink that societies so large as the St. Quivox Club wrereso valuableas the one be had recommended, inasmuch as from the numbers presen: the majority were reluctent to express thumselves un the topics brought under considuration. He was giad to thear them in several of the parish schools in Ayrahire, Agricalcural Chemistry was already introduced as a branch of education. I'his, lie had no doubt, would be productive of sthe mos: beneficial results, and he hoped that the proprietars of the different psrishes would en. courage the schoolmasters in their praiseworthy efforts, by purchasing them chemical appartus for the prosecurion of this branch of knowledge. Ue by no means recommended the schoolmaster to follow up the subject to the extent of analysing the soil, because to enable him to do this he would be obliged so neglect his oiser duties; and, berides, as analysis was a most difficult art-reguiring many years of application to arrive at correct results--s chemical knowledre in this respect mightbe productive of the very worat cousequen. ces. Ife concluded by thanking them, in the name of the Assoctation of which be was the officer, íor the interest they had taken in the course of kelares which he had delivered.

Eagors in tae Prexivie List.--Hot Air Ap. naratus.-The first premium was awarded to. H Ruttan, Esq, of Coburg, and the Jadges in their report took especial notice of it, and recommend. ed it to the favorable consideration of the public.

Cobling Slove.-The first premion was award©d to Thomas Towers, Esq., of St. Catherines.

Door Scraper. - The first prize for this article was also awarded to Mr . Towers, of St . Cahes. ines.

Best Piece of Fulled Cioth.-The first priare was awarded to John Gibson, Esq., of St. Cath. eribeg, and the amant shauk have'deen 5210 s. instead of $15 s$.

Liff Mumbert of the Profincial Agricultural Aseo. clation.
The subscribers to the Cultivator must now be pretly well ecqusinted with the objects of the Proviacial Agricultural Aspociation; and as thesu objects cannot be accomplished unless the feople of the coumiry unite their energies and means, we trust that the potition we oscupy in tho sociels sill exorierate us from all censure, if we should be guilt: of pressing the importance of sustaining the Institution, by the Jiberal contributions of she friends of the novement, 100 frequently ujon their altention, If we be spared, wa expect to see the system of organization, and the improvements enumerated in the leading article of thus number, fully carried out in the Western pottion of this Province. But all who have thought on this subject, mi-i be fully sware, that these great improvements cannot be effected without some intle invearment of capital on the part of those who wish well to the movement, and who in reruin mag expect to receive either a direet or indirect benefis from the operations ct the Associatuon. The most feasible plan that could be devised, to secure a libesal patronage, is that of canvasing the country for Life Menibers. Tho payment of the small sum of $\mathbf{4} 2 \mathbf{1 0 8}$. will constitute an individual a Life Member of the Provincial Agricultural Absoctation, - and we hope to find hundreds in Canada who have a sufficient amount of patriotism to induce them to enjoll their names on ibe Society's list of Lute Members.
We shalipablish any adduonal names we may be favored whi, between this and the 25 th of December, in the January number of the Cultivator, and shall connmue adding to the published Inst from month to month as we may be favored with new meabere. We have good resson in believe, that there are eome scores of gentiemen residing in the Home District, who will become Life Members of the Provincial Asociation; but In a national movementlike this, we want th, se a numerous list of names from every District of Western Casads. The friends of the Association, we trust, will not forget the claims that shis Institution 4 as upon thas attention; and we hope that they will not only become members themselves, but press the matter upon the favorable consideration of olhers who are not so well acquainted with the objects of the Association.

Feed all fattening animnls with, perfect regu-larity-enough, but not too mach. Saveall youk straw well for litter and wuterfed.

On Breeds of Sheep.

The management and selection of any breed of sheep must, afier all, become mater ot pounde, shillugy, und pence. the quesuen the farmer - has to cunaider 13 , what descnption of sheep will in the long-run return the nues protit? and this question muss be viewed in atrici retation to the management he will be able to adopt on the particular tatm on wheth the may ve tecated. Is is not theretore a stuple, but a compound ques. tion. It is not merely which breed will make the most firsh and fat, but which whll make it in the shortest tume and on the lease food; which can bear the weather, or hard keep, or iraveting, or a particular mode of management, with the greatest impunity. All these colnsiderations mustenter into the farmer's mind before he can come to a sound conclusion. From the want of making these considerations many fatal nustakes have been made, and a flock hasbeen selected allogeter uneuitable to the soil, and incapable of beanng the severity of the weather.
The two breeds which oppear as nuals in their claims on public anentionare the New Laicesters and the South Downs. It cannat be doubred tint, as far as propensity to faten, an early matunty is considered, the Leficester will not only rival, but eclipse all others; for these quatures the former may justly be corandered as a model, and all other breeds will possess these quatities in a greater or lesser degrie, in proportion as they possess the similitude of the form and prints of the Letcester sheep. The South Down issili will nor be an exception to this rule, for if the improved and the neglected specimens be compared together it will be found that the excellencies of the former consist in those points which aprowmate most to the Leiceeter. The wool, to0, 13 also a consideration; for the fleece, from us greater lergit and weight, will bring in nearly dauble that of the Down. Where, therefore, the pasture is very fertile, and the sheep can be tended with much care, and without exposure, the Leicester may be jusily regarded as the most protitable of the pure breeds. Its drawback, however, are the ircapabilety of the animal for bearing exposure, or travelling, or hiving hard; in fast, us weaker consutution, and grearer habiluy to inflammatory disorders. It is thus unfited for the parposes if folding, or for the exposure of twe South Downs, and still more for contending with the severities of the Gramptan hills or the Welelh mountans. In such localities these sheep could not endire. Then again, the mutcon is by no means so yood as the Snuih Doun, which, hrwever, is parily, not wholly, owing to the early period (twency inonths) at which al ey are fit for the butcher, and partly to the very lugge proportion of tallow in proportion to the leon. Thus it is not a favourite in the London markets, and accordingly, of late years, the Leicester and the Down has been produced instrad of the Leicester; and it is contended that this first cross is the most profitable sheep that can be fattened, traking grenter and more rapis progress than ibe Down, which sign-mana-
al of their origin rendera them a greater favourite with the butcher.
The Snuth Down, or rather ihe improved Soush Down-lor there is a great difference between the iwo-posseses most valuatile quslises; wih a propenaity to fatten inernar only to he Lemcemer, but widh later maturi y (efirn 33 numbhe, though coneiderably ehortes than what it once was.) thes breed are excellent travellers, "ril ndapiril for folding, hardy compared with the Leccesinr, ant capable of having on short rasure, and perhaps the best of all breeds for the Down lams of the South of England. The multon, tho, is more esteemed ithan any ollier, with the excepptitin of the small mnumata sherp. Ferhaps there is no ancient pure breed of sheep $\$$ at has undergons so much improvement as the Sisuh Down, and it affords the owners of other breeds a properexample, showing what can be done hy cire amb attention, and the application of proper pruseples. Nothing can afford a betler proof of the stering quablies of this breed than the facts thas sotne twenty or thitry years since, the price of South Dowis wool rendered be firece a mather of great imporiance; and new, although the price is reduced to one-third, andil it can never expect to fealise mech advance, yet, notwhenaming this, the valuable qualities of the anmal, and the improvements thac have teen made have enabled the breed atill to retain a foremost rank in publie favour.
With these two raluable breeds, ench adnpted for different pastures, it may, perhape, be asked, What need is there of any other? It will, however, be found that in the marshes of Kent ond many other places, the superior harditiood of the nat:ve breeds has tendered them mure profitable than the Leicester, though, unquesuonabiy, cerszes with the latter have inuch umproved their value. And notwithatanding the eminent qualises of the Soust Down, they have been found not sufficiently hardy in endare the severities of the Grampian halls or the Welsh mountans. They have been tried and found wanumg ; vast numbers has. been destruged by the sigours of wimere in ellege bleak steyations, and the losses that have accrued 10 matiy partes, have deterred oihers irom following their example.

The Chevnt shepp possess many valuable qualities; decidedly interior to the South Down in therr fatrening powers and therr early maturut, they are superior in these printe of oll other mountain sheep, and, in hardihond, cren to the South Down, and are thus the brgt adopted is their native hills, and all other rastures of a similar chamac'er. When carried, however, to the exireme north and the istands of Zetiand and Oikney, it is sald that they are not sufficirnuly hardy fur these extra rigorousplaces, althousth it is probab'r, with a litte increase of care, they inglit be rendered so, and they would then be far more prufiable than the ungainly forms of the native breed.
These three breeds-the Leicester, the South Down, ant the Cheviot-mag be considered as
the prineipal pure breeds which the country posseases They are eseential to the variety of pastures which obtais, and wahout them the couniry could not be properly atecked. Other breeds, which it may be advantageous to adopt, sifher posess preuíar qualinies which render them| valuable, or have been croased extensively with, zome improved breeds. [Extracted by permaseion, form a forthconing work on sheep, by Mr. W.C. Sposmet, of Sauthanpton]-Ag. Gazette.

Tho Farcuer.

-

Messte. Editars- -If there is one man more Than another who has reason to te proud of has calling, that man is the farmer. Behold him in the morning rising with the sun and going cheerfully to has labor; as he gocs he 13 fanned by the cool and refieshing breeze that is gracefully waving the green clad tree, from amed whose leafy branches a hundred of nature's minstrels welcome bim with a light and cheetful heart to his work, with thetr mornang songs. A contented man is a happy man. Buz why should the farmer be a contented man above all others?
In the first place because his property is safe. The merchant knows not when he hes down at night but a storm may arse and send his ship! upon some ludden rock in the sea and she be! dashed in a thousand pieces, and her cargo buried is the d-phls of the ocean.
The man of business fears lest he may hear: crery monent of the failure of some extensive firm, that will sweep him trom the avails of a life of ansiety and toil.

Another whose property is in buildings, fears lest the raging fire should consume his all.
But the farmer tas none of these ansielies; storms may rage but they cannot sunk. his farmhouses may lall but that will not effect him-fires may rage, but there is very littie danger of their reachung him. The farmer can lie down to rest with the gsurance that his property is safe, and not only safe, but even while he sleeps his crops are growing, and his flocks and herds are increasing.

Another reason why the farmer should be contented, he is more independent than most othes men.
The elergyman is dependant upon his people He must preach, pray, and live to suit them; in short, he must have the fear of offending them continually before his eyes or be musi go.

The physician is every body's servant, he must be at every body's beck and call, when called
upon by night or day, in rain or thine, hot or coid, he must go ; he cannot consult his owa wiehes, or do that which is best for his own health, but the must go, or we will get some one else.
The mechanic is dependent upon hisemployer; he must tabor fur hum for whatever compensation hr eees fir to give, and tite his pay in what and when he pleases.
But the furmer is his own master; he is " lord of the soil," he can go and come when he pleasex. He is not obliged to do his woris to suit this one or hat one, but to suit himedr.
Ancther reason why the farmer should be conlented, 38 , he is always sure of a good living. Ohentmes mechanics cannot get employment; but the farmer is never out of employment. Les the times be ever so bad he is sure of a good living.
'That the farmer has more pitce of mind, or in other words is more contented than other men, would us urally fillow from the fact that his property is invested safer, that he is not in constant anxiety about losing it, and that he is more independent, and always sure of a living If the farmer has not reason to be happy, pray who has? Behold the farmer once more, as he teturns from lits work at nught; see him passing from one field to another surveying the worts of his hand One field is covered with wavigg com, another with rustling grain; anotner is covered with a ruch c:op of tall bending grass, ready for the mowers' scythe IIs trees give evidence of a bountiful supply of guod fruit; and his catle are quietly grazing upon a neighboring hill. As he approaches his thouse he is met by his pratling child, who has long been waiting his return, and who lispingly :-htes to him the trifing incidens of the day; and last, though by no means least, as he enters dis peaceful home he is greeted with an affectionate smile by his lovely wife. Whe would not be a farmer ?-Bost. Cult.

Liquid Pickle for Meat.-Brown sugar, bay sall, common salt, each, 5 pounds ; saltipetre, 1 pound, pimento (bruised), 5 ounces ; brack-pep. per (brussed), 3 ounces ; nuimegs (rasped), 1 ounce; bniling water, 5 gallons. Mix. This not only imparts a fine red colour to the mea;, but also gives it a most delicious flavour.

To Rennvate a Razor Strop.-Rub a litte alean tallow over the surface, and then put on it the light top part of the snuff of a candle; rub it smooth. Excellent.

Inaprovement mado in Agriculiare in the Westera Disiriot.
It gives us great pleasure in being able to publish the following spirited communication from George Bullock, Esq., Secretary to the Malden ard Anderdon Agricultutal Society. Prize lists of local exhibitions are entirely excluded from the columns of the Cultivator, and by adopting this course, we sitall not be liable to recieve censure from any. If we admit mere statistical information from one society, we must, in justice to other societies, admit all who requare it; and if the latter should be done, our magazine would become comparatively worthless as a work worthy of being bound as a book of reference. We make this explanation to satisfy our correspondent that his proposition could not be acceded to on our part. The report furnished us by Mr. Bullock is of that character, that all who read our journal will value it highly for the information it contains, and especially so, as it relates to a section of the province that is but very little known to a large share of our readers, and at the same time may be looked upon as the garden of Canada, in point of natural advantages.

Amherstburgh, Oct. 3, 1846.

Mr. Editor:

The second Agricultural Show of the Union Society of the Townships of Malden and Anderdon was held, in connection with the Fair, at Amherstburgh, on the lst inst.
The attendance, show of stock, grain, cheese, butter, fruits, vegetables, \&c. \&c., was excellent, notwithstanding the unfavorable state of the weather,-for the rain fell in torrents nearly the whole day. There was a marked improvement on this occasion over everything exhibited last year; and from the spirit manifested by the members, and even by the inhabitants generally, there can be no doubt of the prosperity of this society for the future-as every member left " this Fair with a full determination of doing' Fair, they could, as it were, kill two birds his utmost towards making the next Fall with one stone, and go from that Show to Show worthy the attendance of friends from a-distance.

Some young prize stock purchased by the Society at the New York State Fair, consisting of Duzham and Devon Calres, and Merino Sheep were sold by auction to the members of the society, and the prices realised were such as might induce the society to make a practice of importing young stock of the first class on a larger scale in future. Already, within the narrow bounds of our society, (only two townships, and one of them a very young one) we can boast of some of the purest stock of the Durham, Ayrshite, and Devon Cattle, and of the Southdown, Leicester, and Paulor Merino Sheepr besides numerous grades from thesa and others of improved breed.
The Fruit shown on this occasion was of the finest quality, and could not be equalled in Canada; the Grapes and peaches (grown by James Dougall, Esq.,) for which our soil and climate are so suitable, could hardly be excelled on the whole continent of America. Some of the peaches exhibited by that gentlemen, measured 1112 inches in circumference, and weighed as many ounces. They are called the montrous pompone. The grapes were golden chasselas, wbite sweet water, Jsabella, and Catawaba, all grown in open culture, without any artificial aid, and were acknowledsed to be of the largest size and of the finest flavor.

We are glad to learn that you have organised a Provincial Agricultural Society. If it were not far the lateness of the seasom some of our inembers would have shown, on the 21 st inst., a sample of the stock and produce of the Far Wesi. But the time was too Jate for us in this distant part of the Province, and I would beg to sugyest, that the best time for holding the Provincial Show in future, would be immediately after the New York State Fair-say about the 20 th of September. The weather is then usually good, and as many of the members of socicties from this part of the province attend that Fair, they could, as it were, kill two birds the Provincial one.

Finally, Mr. Editor, the farmera in thir

part of the Province are not discouraged at the withdrawal of protection in the English market. They are satisfied that they can take care of themselves; and if the wheat crop will not pay as formerly, there are other branches that will pay, if tightly managed, even better than that ever did: such as saising wool, stock, butter and cheese, the p. oduce of the dairy, for which this fine Distric is so admirably suited. Some of the spirited inhabitants of this place have built the largest propeller in Canada, and fitted lier out in a superb styile. She is now on her first trip to Kingston, and as soon as the canals are finished, she and others of her class, which will be shortly placed on the stocks here, will be able to take our produce, butter, cheese, fruits, \&c. to Montreal and Quebec direct, without transhipment, and in as short a time as it now takes from Toronto, which will give this distant section of the province a start, and enable it to compete advantagenusly with those places which are at present enjoying the privilege of being nearer to the large markets; and the facilities these propellers will give to emigrants or persons wishing to remove to the Western District, will no doubt be taken advantage of when the climate, soil, \&c. comes to be thoroughly known.

Geo. Bullock.
Trarisaivg Mactures.-Our Correspondent an Restigouche, New Branswick, who requested us ro forward kim a Thrashing Machine, may be surprised that we did not send him the one he ordered lost aztumn It is candid that we ghould give the reason, which was nothing more or less, than we had not suffic.ent confidence in tho mathine to send at 60 great a distance. As soon as we made up our mind respecting the character of the machine in question, we at once transmitted the order to a machinest in the City of New York, requesting bina to fulfil the order as speedily as possable. The reply we recerved was, that it was 100 late in the season 10 ship goods to New Branswick. We make this explanation to satisfy our correapondeat that we did our best to serve him.

Peaches killed ly Frost.-On cold frosty nighs the cold air settles into the valleys, and the air being aiso stiller, permits the ground to become much colder, by radiaung the heat to the clear aky above. Hence valleys are more liable to Irost than hills. Dr. Kertand of Ohio found that a thermoneter on a cool might, in the valley, sunk down to 27°, while on the neighbouring hill, only sixty feet higher, it never surk lower rian 32°, or the freezing point. There was a hard frost in the valley, but none on the hill.
Peach trees in warm valleys have their frait buds swollen soon by warm weather; then cool weather succeeding, destroys them. Hence it is often found that the peach crop on hills is good, but in low places is entirely destroyed. One cultivator tost only one crop in twenty years on his orchard which stood on a high hill, while bis neighbors, whose trees stood low, lost every third or fourth on an average.
An interesung case, showing the preceding principle, occurred lacely whthen the writer's observation, when a very severe and late epring frost killed entirely all the young leares on the lower part of hickory trees standing in hollows, winile those on the upper parts of trees were untouched by frost, and remained as fresk and green as ever.-Cult. Almanac.

When we are alone, we have our thoughte wo watch; in our families, our temper; and in society, our tongues.

Smoke Protector...-Mr. Wallace has exhibised and explamed to the Brash Association his Appataus for enabling persons to enter places on fire wathout danger from smoke, by means of treathing through water. A boxeltin, containing the water, is placed ona man's brek with tubes connected, forming a sing round the body and straps for the shoulders. A hood of Mrackintosh cloth, glazed in iront, is put on the bead, and being atioched to the side tubes, four gallons of w.ter will enable a persnn to bear the densest smoke for twenty minutee. The Protector resembles the diving apparatus in oppearance.

Mastic Varnish.-. 1 Gum maktic, 5 pmands: sp rits of turpenune 2 gallons. Mix with a moderate heat (carefully) in a close vesset, then adp pale surpentine varnish, 3 pims. Mix well.
2. Mastic, l pound; white wax, 1 ounce; oil of turpentine, 1 gallon. Reduce the wax and masti; small, then digeat in a close vessel, with hea, until dimolved.

Sefonob Facilitates Moner Goting.

Science, in its most comprehensive significa. tion, means knowledge. Knowledge is our cognition of material and spiritual thnges through the medium of our external s^{-}.-des, internal consciousness and reasoning taculties. To know, imphes, a use of our mental facultues, To know a hing is to comprehend it fully, in its essence, its propertues, its uses, and all its relations to other things. The field of science or knowledge : is boundless as the universe. It is wide enough : and broad enough to engrge all our faculies for-: ever, and conumually elevate them in the scale of developement. It needscarcely be menteaned here that the mind is progressive in strength and power,- - hat ins operations are all at first exceedingly limited and simple, but gather force and comprehenswe capacity until at becomes able to span the unverse and unfuid its mystenes. The chuld $2 s$ weak in body and mand, but the truly dereloped man is strong physically and mentally. But if a person grous up in the exercise of his bodily powersoniy, he will remam a child in men-1 tal manifestanons. His course through hate, as marked out by himself, will exhibit a chuldike rascillauon, in decision, unsteadiness of purpose, i and ignorance of the greatest advantage and profit. These truths are c.rhibued m daily experience, and acknowledsed by all. Scence gwes atrength, ; energy, achusy and foresight to the mind, and, hence is indispensable uniny.

1. The first pasmon I shall take, is, that education is as necessary to the farmer as to hum of any other parsurt-the learned professons are net excepted. Farmers and all, have seemed, and siill seem to acquesce in the rumous sent:ment, that a thorough education is only necessary for those who intend to obtan a livelhood through the medium of a profession. Hence they have agreed to let them monopolize all the learming of the age. A farmer sends his son to an Academy, or College, and this decated sufficient evidence; that he is destuned for some elevated siation where, be-can get a luving by his wit. Ask a farmer why ; he does nut prowde lirs sons wath the means of a good educstion, that is, more than is oblamed at a common school, and he witl generally reply, " 0 , thes are only going tit be farmers, and n is nseleas to waste money in giving them knowledge." Agounst this senument 1 protest, bere, now, and forever. Nothing can be more suicidai. Bat, says one, a farmer can chop, log, plow.
sow, threah and go to mill and market without much "lamin;" but how can the professional man get along without a good educationt A professional man can succeed as well, yea, even better without mental discipline, than the former. It is not known, that, while the peogle are uncultivated, humbug is more available for the lawyer, physician and cle-gymen, than real science. They are well aware of $i t$, and the world is running over with humbug. But does the farmer's Lusiness afford any chance for the successitul invessment of this species of capital? The ignorant Doctor can turn hambug to a profitable account, but the ignorant farmer caunor, and is a continual loser by his ignorance. Let, then, the sickly sentiment be banished. The farmer needs as much knowledge nsany other businessman. This point will be further elucidased by what follows:
2. But why is science nectssary to the farmer in money getting I I answer, for the sante reason that it is necessary for any other individual. whether in commercial or mercantile, or professional business. Taking monkind indiscriminately, the uneducated are rasely successfal in any branch of business. There may be many exanples to the contrary appearing, but all these it will bo found are educated in branches must necessary to their pursuit, if not by the instractions of ohhers, by their own activily, industry and eneray of houghi. Some, (but they are few) wht strong natural powers early learn to think, and make life a continual scene of study, especially in all matters persaining to their occupations. Small incidents, or apparently trifing circumstances will sometimes give the mind such a direction as will prove of incalculable advantage. It takes bat lithe in early life, to render many individuals favourites of fortune, or hise scallered sons of adversity. Hence it is no argument in tavour of ignorance that some unschooled individuals aro successulal in money geting. In any capactiy 10 which be may be called, a man sehs accord.ng to his power. There are two hinds of business power-knowledze and money. Moncy whinat knowledge is useless, and soon fies to the winds, but scirnce without money is produclave, and will soon command it if wanted. This is the infinte advanage of the former over the latuer,--hence money cannot be so profitably invested as in disciplaining or educating the young. One thousand dollars are worth, at least, one handred per cent more expended on the education ol a farmer's son,
than in leaving it to him at last with common ignorance. The mind is capable of infinite expansion, and ssable to reason, generalize and cunclude in proportion to i.s strength and knowledge. The naturally strong mind is doubly strengthened by discoiplme, and thus its reasonng connected, while the weaker mellect of him who would be the dupe and victim of the cunning, would be rendered mighty enough to cope wath the world, to succeed in busiuess, and maintan its rights. Hence, the weak need discipline, if anythong thore than the etrong. But it is difficult to discriminate in youth, and the safe rule ts, to educate all. In every business enterprise, there are many things to consider and forsee in order to ensure success. The farmer has as many difficutt problems to solve, and as many intricate calculations to make, as any other individual. The correctness of his solutions and the accuracy of his calculations. depend upon the strenget of his faculties, and the extent of his knowledge.
3. But wherein does science directly aid the farmer im money getting? It enables him 10 serze upon every hint, every new occurrence, and every phenomenon that sccurs in the range of his pursait, and turn them to proilable account Having a mind well dissiptined and fruifal in resources, he is able to take such advamage of even famliar thangsand perpetualiy recurring incidens, as would escape the atucntion of the ignorame. The falling of an apple was nothing new or extraordinary in the course of nature, yet a Newton seized upon the trivial occurrence and developed the great law which governs the universe. Almost all great discoveries have been occasioned in such a manner as to excre our astonishment that they were not thought of before, after being explained to us by the docoverer. Yes, "why where they not thoughe of before?" Simply becausp thepe had been no one who thought enough to shink of them. The unntelligent farmer does lithe more than follow an the foasteps of his father, and if the father labnared under disadvantages and met wath trequent tosses that might have been avoided he also is tollang tor nought, under this erronenus exampie, not knowing how to correct it. He doms not dream that sny improvement can be made and frequently persists in following the old practice long after others have made thousands by zdopting a new course. Many, too, liknwise ridieute what thes call "book farming." as though all the rou'ane of their businese were simple and lofiter end is view-the elevation of the chanc
known by every farmer's boy. To estimate the simplicity of agriculture, let us look a: it in its reality. Beaides embracing much of almost every branch of learning it draws extensively upon Chemistry, Mineralogy, Geology, Botany, and Meteorology. The first teaches the composition and properties of the different sorls, and species of vegetation, together whth that of hight and heat, air and moisture, and every material thing* The second teaches the description and classification of the extensive variety of minerals which make up the giobe, and coustitute the basis of the soil, while its hand-maid, Geology, teaches the manner in which they enter into formation of the earth, the signs by which different solls may be known, \&c. Botany describes to us everything that vegretates and blooms, and Meteorology directs our attention to the winds and the stormer and enables us to prognosticate the changes of the natural elemenis. To these may be added vegetable Physiology, which teaches the mftuence of lighr, heat, earth and water in producing vegetation By these sciences we are emabted to know asactly the adaptedness of different solls to differan graira, grapes and plants, before plantung, and hence the farmer call give each kind of seed nts most narural nurse wishout mecuring the loss and drlay of repeated failures. He is also thus enaluted to guard his farm, and keep each field in its original vigor and conslant prodactiveness. Had we time and space, we might gre some rdea of the simplicity of agricullure. With proper knowledze, the farmer might make more money with a pleasurable amount of toil than he now doesby consiant slavish labour. Ohio is not half as producive as she should be whth the same physical effor: She has animol strengh enough, all she needs is menial power.
th me then, the businiss of the farmer as ardaous, and does it not require as much varted learning as any other parsnit? And if disciphane and srience faciliate money getting in the professtons. will they not much more fachluate it in agrical. rore? The lawyer, doctor and cleggyman deak with man, while the famer deale wih nature. The study ${ }^{\circ}$ the hurnan character may be intricate, but the atudy of nature in her greatness and grandeur is not less so:
Bur let it not be understood that science and a cultivated mind are valuable only in fechetatag money getting. No, no, they have a nobler, Ifofiter end in view-the elevation of the chasac-
ter aad the promotion of human happiness. They have in charge the mighty spirit of them, and their sublime mission ts to exalt it above the dust of earth nnd the glitering darkness of gold and corrupung weath. They facihtate money getting only that man may have time and means to ennoble himself, and grow up into all perfection. This massion of sciences will be considered in my next Here I close fur the present, most earnestly commending to the aitention of the reader the only eternal interests of his being-the interosts of the glortous mind...-Ohio Cult.

Cincinnati, 0.

L. A. Hing.

The Provincial Advertuer. .

The friends of Canadian eni, sa will doubt. less rejotce to learn, that a Ne © - ب, yper is about beang estabished in the Province, to be devoted aimost exclusively to the advancement of their unterest. It publishing the Provincial Advertiser, we have only one great end in view, viz:the development, if possible, of every known source of wealth in this naturally highly favored country. Canada contains all the necessary facilutes to maintain a dense populaton in comfort; and indeed few couniries can boast of a more healthy climate, ferule soll, and greater lacilites for an honest, industrous man, of acquiring in independency from the fruts of has toils; and this being the case, it 18 important that the powerful engue-the Press should be em. ployed in promoting such objects as have a tendency to raise the character of the country and the people.
It is whth extreme regret, we are obliged to acknowl-dge, that, in many umportant particulars, the people of this Province are belind their neighbors; this should not be the case, and need not be, if all who have stake and influence in the country, would unte their exernous in bringing about salutary chonges 10 those laws that have a prejudicial bearing upon Agriculure, Trade, Commerce, or Manuactures. Holding the doctrine to be true, that every man has the power of exertung a beneficisl influence upon society, or, at least, in the immediate circle in which he moves, after much reflection, we have come io the conclusion, that the demands of the country rednired just such a Journal as we are about publishing; and as no ono else conld be induced to
publish it, we have resolved to perform the cask ourselves to the best of our ability.

The Provincial Advertiser, so long as we shath have the honor of conducting it, shall be a fearless advocate of truth; and without favor or er. fection, shall endeavour to encourage real merit. whether it be found in the highest or lowest waiks of life. The subjects discussed in its Editorias columns will be those that will have a direot bearing upon Domestic Manufactures, Emigration, Internal Improvemen's, Trade, and Commerce, and an occasional sketch of the improvements made in the Cities, Towns, Villages and Settements in the Province. The latter information will especially make the Advertiser valuable to those who wish their friends in other countries to be made acquainted with the actual state of things of here. In mony important partuculars the Advertiser shall difier from its conteqmoraries, and in none more widely than in its strict neucraluy to what is generally understood to be the party politics of the country. It shall bave but one object to accomplish-the development of the resources of wealth; and only one party to serve-the enure producing classes in the province. Any Journal that is calculated to bring about the ends contemplated by the Publisher of the Provincial Advertiser, should have "n extensive circulation; and in fact, should be read by every intelligent iusividual in Canada. The question at issue 1s, how can this object be srcured 1 The method by which we purpose to get th Provancial Advertiser into an extensive and very general circulation is, to put the subscription price so low that it shall virtually cost nothing to the subscriber.
The British American Cultivator, with its present circulation, remunerates its conductora to such a degree, that they not only feel encoaraged to persevere in the enterprise, but are determuned to give a bonus to each subscriber, in the shape of a Canadian Ne"sppper, to be issued once per month, on a sheet the size of one of the largest in the country.
Some individuals may object to a Newspaper being issued so seldom as once per month, but to show that this objection may be remedied, we are prepared $t 0$ make the following liberal offer ta our Patrons:-as soon ns the circulation of the Cultivator amounis to ten thousond subscribers the Provincial Adivertiser shall be sesued semimonthly; and when it amounts to fifteen thou-
eand subscribers, it shall be issued tri-monthly ; and when it amouns to twenty thousand, the Provincial Advertaser shall be sent to all the subscribers of the Cutticator once per week. It appears to us to be a most infling task tor any man who has any ulluence at all, to obtan twosty subecribera to a halfodollar Magazine, sontaining such a vast fund of pracucal usefut information as is comaraned in the Cultzvatur. It the six thuasand subseabers to this wark would set about the task in good earnest, they couid in a single day cbiatn even a greater number than we require to warrant us in tssung the Provinsial Advertiser once per week; and in all probability very many of our freends wilt put forth an effort to obtain as large a circulation as poss ble, in the hope, that brfore one half the coming year is elapsed, we shall be under the necessity of forwarding to each subschibes the Prubincial Adtertiser weehly.

The first swo numbers of the Provincial Advertiser shall be stiot to all the subscribers of the Cultivator for the year 1816, and the subsequent numbers to only the subscribers of our Magazine.

The foregoing announcemen: will serve to show, that the conducters of the Brtitsh Amert--san Callivator, are destrous of making their work not only a cheap, but an efficient organ for the Agricultural and Mnnufacturng classes. The friends of the euterprise wall evince, we trust, a dispostion to keep pace wath the improvements of the day; and the moment we are made sansfied that the people of this Province are anxious so be in possescion of the best experience and practice of agricuiture, shall we put forth renewed exertions to furdish thein wid all the information they could possibly desire. If uhe farmers of Canada destre the Bratzsh Amerzean Cultavator and Provinceal Advertser to be conducted wath much ability and spirit, they must paz thear shoulders to the wheel, and procare for these works a large curculation. We are willing to make any reasonable amount of risk and sacrifice for ther good, but in doung so, we want to see the classes whose organ we profess to be, alive to their own and their country's best interests.

Back Nombers of the Collivator.

Many of the subseribers of the Cultivator, for 1846, have failed in getting the work complete, by furnishing us with a list of the deficient numbern, hey shall be tranamitted by mail without
delay. The publistiers are most anxious that every subscriber shall get his full supply of numbers. We do not hold oarselves responsible for the arghgence of otbers. It a person pays his subscriphon to an Agricultural Society, or to an individual, with an understanding that certama benefits shall be derived, he thas a tull nght to look to the party who recelved the money for the proposed benefis, and not to others. It mught so happent, that strangers may go through the country and represent themsetves to be Agents for our work; and to guard aganst auch imposters, we wish it to be distnectly understood, that we have no travelling or paid Agents of any kind. Agricultural Societies that adopt the plan of supplyng their menbers wath the Cultroator, are our Agents; and where this system is not put into practice, any reepectable person moy use his influence in his neaghborhuod to get sulscibers at the reduced rate of 29 . 6 d . per copy.- Where the furner method is not put into practice, we hope that the tatcer will receive the favorable consadcrauon of an enightened public.

A gnod plan of making Manure.-A writer in the Southern Planter recommends the following plan of making manure, of which we highly ap-prove:-
" Have a pit thirty or forty feel equare, and two or three feet decp, wilh a good bank around it. In this pit let the malerials, viz: oak leaves, pine tags, earth, \&ec, be put in suitable layers; on which throw all the slop water, soap suds, yardsweepings, as ley, contents of chambers, and in short, every thing that can be conveniently got together. It may be at any convenient distance from the kitchen, so that the slop-water, soapsuds, \&c. may be conducted to it by a trough. Be sure that no water gets into it in any other way. If at any time it should beconre offensive, start your teams iminediately and cover it with sand or earth sufficient to prevent the escape of any effluvia." We say we approve of this plan of making manure; but we think it migh: lue improved by sowing plaster over each laver of the materials of which it is composed, ond ocrasionally, say at intervals of two or three wecks, sowing it over the surface, by which means all unpleasant smells would be avoided, and the enriching gases gaved to fatten the land. Anv pit which raay be made for the purpose should be protected from the weather.-Weat. Farmer.

Indian Oorn.

Having lived in America six years I can speak with confidence as to the use of Indian curn, fur the last fourteen years we have used it almost daily in our family, which is large I have lately been applied to for receipts, and to save trouble, and if possible to aid the spread of th's excellent aritcle of diet, I have had those which are most usefut printed. I have just seen Dr. Barlett's pamphlet, fram which I think no one would leain how to use corn in any shape. I send you a sheet of ny receipts, hoping you will further thi ir cirrulation by publishing them I sent some to Fa ther Matthe w, who tells me they are the plaiarst and most useful he has seen, and that he has caused a few thousand copies to be reprinted.- $B \quad H$.

Yellowe Corn is far mnre nutritious, ind tastes better than white corn. Indin corn meal must not be ground too fine; it generaliy requires to be sifted and the caarsest br in t, ken out; this when boled is good food for pizs. Bread cannot be made of Iadian me I alone: enr-third of me il to two-thirds of wheat flour is quite as much is the bread will bear; more meal would make it too sweet and sticky. To male bread, t ke f.rex mple, 7ibs. of Indian meal, and peur boiling w ter on it till it is all wet-it never knots like flour; then let it stand till it becomes malk-w:rm, and stir it in a stone : nd a I If of if ur with the hands; proceed then exactly as you would with wheaten bread; of course but little more witer will be required. It t kes r ther langer to bake than nhe iten bread.

Iadian Meal Dumpling; are made extety like suet dumplangs ; or if you prefer t'em without suet, naik them wi.h mill instead of water; they require longer time in boiling than four dumphings If any is left to be cold, it is good cut in slices and fried.

Johnny Cake, wheh is, in fact, a pudding, and eaten hot, is made thus: Take about two pints of Indian me i, ad mix withit about one tabe:e-spoonfut of melted park lard or clear becf dripping: dissolve one tea-spoorful of salt and half a teaspoontul of soda in a tea-cup, with cold water; pour milk into the meal till it forms a stiff batter; add the salt and water, and cne bea'en rgy. Giease a sinallow tin, such as is us-d for Yorkshire puddings, and pour the batter in. Bake it in a brisk oven for abjut two hours. You may make Jchnny Cak? without milk, by putting rather more lard mit; or it you please you may may make it with mills and water, as convenient.
N. P.--Johnny C ike should never be made thick; so inch deep is enough.

Mush is Indian meal stirred into cold water, or railk and water, quite thm, and thon bciled for bout ha'f an hour. It thickens very much, so that is necowary to stir it frequently, and to add cold water occasionilly It is :lsocilled Indianh asty pudding, and is usullly eaten with treacle or with milk.
Iried Mush.-If aoy mush be lef, stir in more

Indian meal till it is very stiff; cut it out of the pan in pieces about ha'f an inch thick, ind liy in be for pork lard. It is excellent.
Botled Indan Puddıng.-Make a stiff batter, Ly stirring Ludian mel 1 mo a quait ef milk or w ter. Add wo tuble spocinfuls if neur, thice of brown sug r, two ter spocnfuls of ginger, ard two of sall. If you make it with vater, mix in a litt'o chopped suet and one egg, but with milk these are not required. Tie rather lowse, and bal for thee hours at lesst.

Baked Indian Pudding - Boil three or four pints of mik, accerding to the size of the dish ycu mean to fill, ind stir in ludian meal thll it beecmes abuut as thick as suff bater. Stur in two cr thrce cuuces of butter, and hif a te cupful of brown sugar. Add accerding to taste cilhcr s litt'e gre ted lemen peel or any spice ycu like. Butter a shallow earthen baling dishl, and bake in a moderate cren for three-qu rters of an hour, or longer if needful. When cold th will casily turn cut, and this puddarg is better cold than hat.

Plain Indian Pudding --Fcald a quartce milk, and stir in seven tabli-spoonstul of Indian meat, one tea-spozaful of s it, one of ginger or cinnamon, and half a te - -cupful of tre cele. Grease a babing dish, and bake for about two heurs.

Indian Meal Gruel.-Stir a table-spoanful cr two of meal into cold water; boil it till it is thickened as much is you like.
Indzan Pancakes.-Mix about a pint of meal with sufficient mill or water, and cne beaten egg 10 make a thin batter; fry theminas small a quabtity of 1 rd as pessiblc.

Corn Cakes or Corn Bread.-Pour beiling water with a littee salt in it cn Indian meal; mix it an stifi as you can wilh the hands, rolit into balls the size of an crange, then flatten the balls, till tha cakes are about hif: n inch thick Fry them in a small quantity of betf lard, merely suffcient to prevent them stickar to the pan cr burning. They are to be taten hot, generally as a b calfast dish.
Sucept Con Cates.... Mix one quart of milk, tno beaten egr, a tea spocnful cf salf, and half as much sodn, - nd two table spocniulscf tre. cle. Pour this on meal and stir it well till it bercmes thoroughly mixed, and stiff enough to meke it ino fat calica like those in the last receipt. Fry t.em for fifteen or twenty minutes.

Light Corn Bread.-Stir Sour pints cf Indian meal into three pints ef tepid water; add cne large tea-spocnful of salt, let it rise fer five cr six hours, then stir it up with the hand; use as much dough in each roll as can be cenveniently shaped in the hand; make oblong rclls abcut an at ch and a haif or two inches thick; bake in a brisk cven.

Plaix Corn Bread -T ke six pints of Indian meal, one tea-spoonful of salt, four pints of het water, ind mix tho:oughly with the hands; let it st nd for holf an hcur or more, then firm it as in the 1 'st receipt, and bake it in a hol oven.
Remarks.-All kinds of corn bread require a hotter oven than flour bread. Never grind the corn too fine, or aift it through a fine sieve; no
matter how coarse the meal if the husk is removed. The hotter the oven or Dutch oven, so that it will not bura the dough, the sulter and sweeter will be the bread. Hunury is a dish hardig known in thas country, except by name. It is a westerti word, and a dish most cummon in the western States of America; it is simply "hulled corn." The way to pre準re it is thas - Send the corn to the mill and have it cracked or ground as coarss as possible, it there is any meal amougst at sift it out, and retain only the cracked corn for hominy. The mill will have disengaged the skin, so that the cook can wash it off, this should be done in old water, rubbing it wath the hands, and changing the water two ur three tunes. Another method of get'ing red of the shin is to soak the corn for about ten minu.es in soda and water, or in lye, and then pound it in a mortar; but this is too tedious. When the hominy is thus prepared, put it into a. large pot of cold water, and boul it steaduly for six or eight hours. Add hot water trequently whilst boulug, otherwise the hominy will burn and become dark. It shonld be perfectly white, like well boiled rice. Send it to table dry and hot. The usual way in the western States is to boil hominy twice a weeh, and set it by in aneasthen ressel for daily use. When wanted for breakfast or dinner, put a piece of butter into a baking dish, melt it, then fill the dish with hominy, well mashed down; let it heat thuloughly, and it is fit to cat. Some peoph allow the buttom to bake, then turning it topsy-turvy in the dish, the crust serves to keep it hot. For frying fish, use coarse Indinn meal instead of bread crumbs. For stuffing, use Indian meal instead of grated bread.-Ag. Gaz.

> Circular Saws.

It was may years after the invention and introduction of ctrcular saws in this country, before mechanics would be convinced that there was any utiluty n them; and even those who were induced to make a trial of them, generally abandoned them after a short time, as requiring more labour and attenuon to keep them in reparr than the value of the use of them; and even now, after this article has come into general use and is considered among the indispensibles there are many, and perhaps the most of those who have the mansgement of them, who still seem to be totaly ig. zorant of the true theory and scientic principled of managing the circular saw: they only know wimitite generally, those few who have by the
and of scrence and native gemus succeeded in reducing the management of these arucles, to th tolerable degree of perfecuon. In a majnrity of cases in which we have observed the management of circular saws, we have lound thattrom one half to three fourths of the power apphed to driying them was worse than wasted, -we say worse, because the saws and machnery were actually injured by the application of a useless surplus of power. The most common error consists in giving the saw too great speed, to remedy a deficiency occastoned by the uregularity, and wamt of unuformity in the teeth ot the saw. In most cases, 300 pr .-a hule short of one huise power -is amply sufficient fur driving an uswinary 18 inch saw, for shating seasoned planks, y=t it is not uncommon to see three tauss the puwer ezpended for that purpose, and the work but poorly done at that. Saws are uten driven 2000 revolutions per minute, when 200 would do much better.-It ofien appears, when a saw is driven wath vinlent speed, that not more than four or six teeth of the saw do any execuuon, while the others oy thear friction, use up the power to no purpose. or if all the teeth are of unform length, and all sharp, the wood is grouad into fine dust, like that produced by a common file.-And with the high speed above memioned, if there be bat one horse power applied, and the saw contains 80 teeth, of which ten are culuog at the time, then there can be but half a pound of force applied to each tooth, but if the same power be applied to woik but 300 revoluions per minute, then thers would be somethong more than three pounds applied to each tooth. sufficent to enable each, if properly adjusted and sharp, to cut one eightieth of an inch; or equal to cutung 300 inches in length per minute, which is about three times as rapid as the same saw, with the same power would perform under a speed of $2^{n} 00$. There can hardly be found such an artucle as a circular saw, whose teeth are perfectly uniform in lengit; yet it is not a difficult task 10 adjust them correctly, If the operator has a guage propenly adjusted and gives due attention to the subject. In general, the best policy in managing a circular saw is so have the teeth kept sharp and well adjusted and to give the saw a strong but moderate motion. Sci. Amer.

Rushlights.-Make them in the same way dip candles.

Ouring Provtalons.

4 Wrlter with the signature Zea, gives some direetions in the Montreal Witness in regard to curing provisio 3 for the E. glish n arket, whith may be both useful and interesting. He isinfavor α dry salting, as it is callcd, that is rubbiug the mext with salt, instead of putif git in brine. This mode, he thinks of great imporia ce; for he obseres, "it takes oway the bloed, cures the meat, condenses it, coagu'ates the albumen, and renders it not so liable either to sppil or to become salt. Fams and bicon, it is well known, cured with dry salt, can be kept perfectly well, thugh ot on.
quarter as salt as those prepared in the brine tub, indeed searcely to be considercd as salt food at all"

The quality of salt he deems of the next consequence. The sal rate in "the States, he thinks, is too often impure, though he says the manuif c thaci mighi refine it so as to be as good as any ther.

Cleanliness is another point which he consider: as deserving much attention. He says, " washing the meat in water before finally packing it up for sele, should never be neglected; and care should aloc be taken to avoid all kinhs of dirt. The people of Britnin, corrcelly enough, are very particular in this respect; they like to sce the colcr of meat, and so, partially, to be able 'n judge of its quality."
" "Beef," he says, "shio d lee cut into six pound pieces, and pork into f ur prund pi cers, the former to be packed in tiers es of 300 psunds, the latter in barrels of 200 pounds, each containing fifty pieces." "The reason for this," it is sad, " is that becf beiof generally served out to men at sea in greater quantities than pork, it is more convenient to have it in larger picees, nilhout weight g; pieces of trowe sizes are also more perfectif cured through than larger pieccs, and when of a unifcrmsize they pack better. The picces of beef heing larger than bose of pork, it is chrisusl; better th t larger casks be emplojed to hold them mere converiently. Even when intend $\because d$ for domestic use, uniformly sized pieces are more convenient than those of various dimensims, requiring to be cut before being uacd, the piece left being thrown back often carclowisy into the cask, and liable to get rusty in consequence."

Ho is not in faror of the use of saltpetre. Its only value, he thinks, is to give color to the meat. The points most deserving attention, he sums up as dellows:
" 1 . The pieces must corgist of, for beef, at pound pieces, and pork, four pound pieces.
"2. The salt must be good, and but very fitli" sallpetre must be employed.
"3. The meat must be dry rubbed for three or four days, at least orce a day, to extract a certah quantity of mater, and to chemically aller the meat.
"4. The meat must be pert into pickle, so as to cure it sufficiently; in this it should remain tes days, or until it is required to be packed.
" 5 . It must be well washed in water, if necessary scraped or cut.
"6. Packed away, if becf, in tierces; if pork, in barrels, with good coarse salt; the packages flled up with clean pickle.
"For dried or smoked meats, the dry selting alone should be empl yed; they will be found of a perfectly distict 1 , for from these cured alone is 'pickle; and although siightly salted, keeping far better than provisions so highly salted by the wat process, as to be scarcely ealable.
"The wse of sugar or molasses is daily gaining favor, among pockers; as proserving meat in a superior mamer, hasing a finer flavor, keeping bet ter, and never becoming rusty; and however old, never excessively salt. It has also been asserted on high medical authority, that the use of sugar in curing moat, would prevent that fearful disease sea scurvy. It has been used in curtig hams for a long period, indeed a gocd flavored ham cannot be propared without it; but it is of the greatest importance in curing beef, which is to be kept for a le gth of time, or which is required of a fine flavor.
It is used in the first process, along with the salt, for dried provistors-asay 0 e pound of sugar, or o.c pint of molasses to four peunds s.ith. With pickled meats, it is used in the last precess alons with salt, to pack up the meat in, the cask, say about hilf cf each, sugar anJ $=$ alt.
"As regards the kinds cf becf to be packed; the best description consists of prime mess, the gicces rejected from mess causing 100 great a loss to the packer. The coarse pieces of the leg, whick are rejected from prime mess, can be boned, dry salted, and dried; in which way they yicld as good a return as the rest.
"Owing to the great local demand, the mort do sirable description of porl consists of mess : the rib pieces of hngs weighing over two hundred pounds should be so packed: The 'ums and choeks, os falso the fore pert, consisting of the neck and whow
doe in 2 pioce, should be cured and dried; the rahion of removig the bones from the 1 ther is worthy of adoption, ss when the bone is leff the meat is much more apt to spoil, besides being an awkward joint. Prepared this way, the pieces rejected fetch as good a price as the rest. When the pig is too small for mess, but large enough for prime, the latter should be made, reserving the hams and checks; it too heary for prime, remore some of the rib pieces to add to the mess; prime mess neither suiting the Britush non Canadian markets; whereas prime suits the British and Wcst India demand beller than even moss."
It is known thit provisions are sometimes prezorred by being p cked in air-tight vessels. In relation to this process, the writer from which we quote cbsorves:
"Provisions are preserved in many places with. out salt, by putting them together with water into metal cases, putti g the crses i to water to boi', eonverting the water in the case ints steam, thus expelling the air, the metal case is the i soldered down. Provisions thus put up keep unaltered for eny length of time.
"The only objection is the expense, they having zeneralls been prepured at places where provisions are costly, and put up in small packages. By packing where provisions are cheaper, and usi-g large cannisters, I do not see 1 ry reason why they should cost more than if prepared with salt.
"But it has oflen occurred to me, that the preserving of animal focd might be simplified by filling up the pack iges with melted fat in lieu of water; that of the animal to be packed, being prefer bly employed, i , which case wooden c sks might be used, and bailing would not be necessary. The meat should be free from large bones, and inmersed in hot fat long c ough to expel the air, then put in a cask previously saturated, the fat pcured cn as clled.
"For sea use cr expart to the West Indies, this article would be invaiuable, and would be cheaper than the us al mede of curing in ila d places, -where sith is expensire, as all the mateial reguired rould be on the spot, the fat selling as well with the meat, as if, os usual, rendered into tallow, and
culinary purposes could be easily removed, *ther by exposure to the fire, or jmincision in leen!ing water."
"In the Liverponl Times, \bar{i} ì d ine afllawing paragraph under the head of " New Impartant 8 rom America:
"'Some barrels of fresh ports have arrived at this port from America, It is preserred fresh and wholesome, by filling up each barrel with arolted lard.' "-Alb. Cull.

Compound for Fattening Cattle.-Flaxreed and oul-cake have long been considered very valuable for fattening catile. The English farmers prize these articles bighly, and great quantisies are imported and used in the Briteshislands. Oibcake is even carried from this country to fatten English beef. One great advnntage which tho English farmer dinks he derives from the use of It, is the improved quality of tive manure, and this is considered of such consequence ns to balanee 2 large portion of the expense of the cake. Flazred or linseed oil has likewise been sometimes used, mixed with bran, se., for fattening animals, and the effect has been a very rapid. grin. W. have cccasionally used flax-seed for catile wikn good advantage, by boiling it and mixing with meal, cut hay, \&c. We recollect the practice of one man in particular, who, more then twenty years ago, was considered to have great succeso in fattening catte. He boiled a quantity of ground flar-seed, or instead of that, pulverised oil-cake, with potatoes, and scalded in meal, (either from barley or corn.) in such quantity that when the mixture was cold it could be cut oat in pieces, aui in that shape was given to the catte while they were in their stalls.-At. Cult.

Mixing Manure with the Soil.-A very great loss which most farmers sustain, is from a wanr of thorough admiviate of manure and soil. The manure is thrown on thr land, and spread in large lumps; the plow perhaps but hail covers them, and forms on'y a mixture of clods and unbraken masses of manure, eatirely unfited for the fion fibres of the roots.

One of the most useful practices is, to harmoso the surface of the sround from eight to tweivo times after the manure is spread, and before is iv plowed in, thus breaking it up as finely as possible and mixing it with the finely putverized soii. A farmer who has adupted this practice is of tho opinion that manure is thus of more than doabis the value to the first crop, that it is in the asad way of plowing in. When it cannot be plowed immediately nfter enpesting, the harrowing mixat it and prevents evaporation 1 nto the air-Cals. Almanaf.

Hove to talie "Glant" Aiparagus,

Mr. Editor.-There are sold in the seedstares several sorts of Asparagus, which claim to grow to unusual size, and produce grant staks. I have bought and planted these sorte, and have found them net perceptibly different from the common old sort.

I want to tell you and your readers, if you will have little paturnce with me, how I grow common Asparagus, so that it will always rivalany grant production, whether Brobdignag or Kentucky. Every one who has seen my beds, has begged mefor the seed-lhinking it a new sort-but I lave pointed to the manure heap-(the farmer's beat bank) and told them that the secret all lay there. The seed was only suth as might be had in every garden.

About the 1st of November-as soon as the rost has well blackened the Asparagus tops \sim I take a scythe, and mow all close down to the surface of the bed; let it lie a day or two, then sei fire to the heap of stalks; bum it to ashes, and spread the ashes over the surface of the bed.
'I then go to my barn-yard; I take a load of dean, fresh stable manure, and add thereto half a bushel of hen-dung; turning over and mixing the whole together, throughour. This makes a pretty powerful compost. I apply one such load to every twenty feet in leng'h of my Asparagus beds, which are sax feet wide. With a strong three ponged spud, or fork, I dig this dressing tuader. The whole is now leff for the winter.

In the spring, as early as possible, I turn the top of the bed over lighly, once more. Now, as the Aeparagus naturally grows on the side of the scean, and loves salt water, I give it an annual supply of its favourite condiment. I cover the turface of the bed about a quarter of an inch shick with fine packed salt; it is not too much. As the spring rains come down, it gradualiy dissolves. Every thing else, pig-weed, chick-weed, purslane, all yefuse to grow on the top of my briny Asparagus beds. But it would do your eyes good to see the strong, stont, tender stalls of he vegetable itself, pushing through the surface early in the season. I do not at all stretcha pomt, when I say that they are often as large round as my hoe handle, and as teader and succulent as any I ever tasted. The same round of creatment is given to niy bed every year.

I have a word to say about cutteng Aspatagus, lever from the point of the hip to the hock-jibint
and then I am done. Market gardeners, and I believe a good many other people, cut Asparagon as soon as the point of the shoot pushes an inch or two through the ground. They have then obout four or six inches of what grows below. The latter looks white and tempung; 1 suppoen people think that for the same reason that the white part of Celery is tender, the white part of Asparagus must be too. There is as much difference, as there is between a goose and a gandel. It is as tough"as a stich, and this is the reason why people, when it is bolled, thays are forced to eat the tops and leave the bottom of the shoote on their plates.
My way is, never to cut any shoots of Asparagus below the surface of the ground. Cut it as soon as it has grown to proper height, say five or six inches above ground. The whole is then green, but it is all tender. Served with a little drawn butter, it will melt in your mouth. If your readers have any doubt of this, from having been in the habit, all their lives, of eating hard sticks of white Asparagns, only let them cut it both waye, and boil it on the same day, keeping the two lots separate, and my word for it, they will never cus another stalk below the surface of the bed,
Yours, \&c. T. B.
-Horticulturist.

Polnts of a Good Eorse.

Col. S. Jacques' Remarks on the Prominent Points to be observed in the selection of a Useful Horse, mare particularly for a Roadster.
I prefer a lightish head, nearly set to the neck; the neck rising promptly and strong from the shoulders and withers, and sumewhat crowning or curving at the top, tapering to the head with a strong crest. Shoulders well latd m , spreading well back, something like a shoulder of mutton. Chest deep, and a litle projecting. Wuhers rising moderately high, and inclining well into the back. If the withers are low and flat on the top, the horse will be inclined toplunge to the ground, and when fatigued will stumble or fall. Neiher must the withers rise too high, as he will then appear as though on stilts; both extremes are serious impediments to fine and safe actuon. Ribs should be well rounded out. Back stratt and short, well coppeled, that is, the hips well thrown forward, forming a strong loin, and giving a long
of the hind leg. The horve should be a good length from the point of the ehoulder to the exweme point of buttock. Dock strong, and well covered with hair. Close and snug immediately under the dock. The muscles on the inner part of the thighs should be full and well shat togethe. If there is a large cavity under the dock, the horse will be inclined to scour, and is probably only a door-yard horse.

The neck, head and body form a lever, resting on the fore legs as a fulcrum, the head beng at the end of the lever. If the neck be very long and the head heary, or if the neek be quite short, and the head short and light, either of these extremes very much effects the regular clips and zotion. The whole machine should be of good proportion.

The fore-arm is a very important lever as regatds the safety of a roadster. The legs should be clean and free from blemish, and when in motion move true, and free from cutting or wabb. ling. The feet should be round and steep; heels broad; coronet and posteris of medium length. Shank or cannon, short, broad and flat, showing the tendons or sinews. The knee large and well dropped; the arm above the knee long, and the muscles large and full. The top of the shoulder where matched to the withers, should not be so heary loaded with muscles as to impede their nction. No objections to the fore-feet moving pretty cose, but not so as to cut.

Much depends on the form of the hind leg and the power of that lever, as regards strength and speed. The shank, hock and thigh should be broad and flat, something like that of an ox.Farmers Gazette.

Candles.-Prepare your wicks about half the usual size, wet with spirits of turpentine, put them into the sun until dry, then mould or dip your candies. Candles thus made last longer, and give a much clearer light. In fact they are nearly or quite eqral to sperm, in clearness of light.

For a Pain in the Ear.-Take half a pint of ciaret and a quarter of a pint of wine-vinegar; put in sage, rue, or rosemary; let it boll up, put $2 t$ nito a new mug, with a botle-mouth and hold your ear close, so that the steam may be sure to go in. As is cools, heat it again and again; and when the strength is pretty well wasted, wrap your head very warm and go into bed.

On the Choice of a Variety of Oats for Culth-vation.-Strongly suspecting that the real valus of different varieties of oat was unknown, and that weight by bushel was even less applicable to this grain than to wheal, I procured samples of nue sorns, carefully selected by Mesars. Lawson, of Edinburgh. I have not had them compared chemically; I leave that to those great and wealthy bodes, associated for the ostensible purpose of conferring benefits on the farmer. I have followed a simple mechancal process, which any one may follow. The weight of each sort per bushel having been ascertained, the following table was constructed according to the results:

Weight per bushel of lbs.

Siberian Oat	-	-	-45
Sandy -	-	-	-524
Kıldrummie	-	-	-42
Early Angus	-	-	-42
Hopetoun	-	-	-41
Potato -	-	-	-413
Early Dyock	-	-	$-40 \frac{1}{2}$
Late Angus	-	-	-403
Black Tartarian	-	-39.	

The usetul part of the oat beng the kernel, and it being probable that the proportion of the weight of the husk to that of the kernel might vary so much as to render the weight per bushel a deception, 100 parts by weight of each sort were taken, and the husk and lernel carefully separatod. The following table shows the result:

In 100 parts by weight.		
	Husk.	

It is curious that the oat at the head of the first table should be at the bottom of the second. There may be as great difference among oats as among wheats in regard to their nutrtive qualitees, and untl this shall have been ascertained by the chemust, we shall not know the real compara iive values. In the meantime, there need be no hesitation in preferring the sandy oa: over all others, as it is very early and very productive in grain aad stram.-Gar. Chron.

The Operation of Ilme as a Ferillisor.

Is now for the most part satisfactorily underzood. It infuence in certoin cases and not in chers-the equality of its effect, though applied sbundantly here and scarcely there-the opinion founded upon expenence which prevalls in some vistrict, that a large dose effect a permanent improrement and needs not to be repeated; and the idea, equally well founded, which obtains dsewhere, that the annual application of a small quantity is necessary to the imaintenauce of fer-wility-have all been satisfactorily explamed by the theory, as in now stands of the mode in which it actu.
We wish more particularly to make a remark - two on the applir tion of hme to nessly broken uplond. Whater. y may assert on the eabject, there is a rits almost universal fertilising influence in wit a case. Every body so aware of this fact, hut that they are ignorany - It explanation is evident, by the great abuse which is generally made of the practice. There ma be no doubl of the money value to the farmer of a knowledge of agriculturalit ary. From the ase and abuse of hime as a manure we conld bring many illustrations of this. Whether the necessty for its apphcation arse from a faulty texture of coil, which is would correct, or from the presence of noxious and compounds, wheh at would neutralise; whether it would act by inducing the tormation of useful organic or morganic compounds in the soll, or simply and durectly by supplying an absent element of food for phants, the merely practical man, who is ignorant of is thenry, necessarily makes in every case the same acreable application, and in thus very probably, at the very ulme that he may be boasturg of the supetionty of practice over throry, gualty of that whel to his more intelligent neighbour appears in the one case sa the most obvious parsimony, and in the other $2 s$ the grossest extravigance. A fact noticed last year on the form from which we write, throws some light on correct practice in this particular, especially as regords the appheatisn of time to newly broken up Grass lands.

All the fields on this farm, except those of shaljow soil on the limestone rock, have been limed at the rate of upwards of 200 bushels per acre; this was done generally in the second and third years after they were broknn out of Grass, and for the moat part because the aoil was aturally
destitute of or deficient in calcareons matier. In one of these fielde a sidge was left anlimed, end and that ridge last year (the field wat in Wheas) remained definitely marked out from the otken by its blank and serile apposrance in the midx of the heavy crop both ofsitraw and grain which surrounded it. What made the appearance moro remarkable was the circumstance that, since the application of the lime, now three years ago, the ploughing in that field had been altered-the direction of the furrows had been altered-so that the unl:med ridge stretched ocross the others and embraced a consiuc:nble variety of soil-all of them, from its appeatance agreeing in this thas not having bean limed, either they were postively barren, or thear ferulity remained latent. Nom this was the first year that this appearance had been noticed. And we may draw from that hat two things.

1. That newly-broken up land, though it be not manured with lime, contains suffictent storo of nutriment for same years' crops; and,
2. That it is better for newly broken up land to remain unlimed for two or three years except under special circumstances, for its readysuff. ciently fertile, and the expense for soine years is unnecessary: and the application would probably cnuse an excessure ferulity, if one may use that expression, such as would injure grain crops by an excessive growith of straw. Now the special circumstances to which we allude, occur in casee (1) where light land on a terrugmous subsoil bas remained lang under stagnont water, the soil is then tound to contain cornpounds of tron injurious to vegetation which are decomposed by an applicanon of caustuc lime, a:d the elenems of whieb under the is fuence of that appliention are induced to re-arrange themselves in forms no longer injurious. And (2) in cases where, as an effect of stag ant waier, peat has been furmed which, when draned, teaves a soll destutute of tue mineral elements necessary to ferihty; lime and clay are then uecessary applicatuon.
The farmer independenily of all thecry on this subject, will be perfectly safe in remembering that where lime has nor hitherso been applied, and where the land contains an excess of vegerable matter, or has tang been mpured by stagnam water, or is desmuted naturally of calcareona matter, then, whatever the mode in which it was, issure to have a fertilising influence. Appts lime therefore, a year or two after breaking up your Glass lands, and then mamtain the fertulty thus prodnced by growing each year on half ibe land crops for consumption on the land, by selling only grain and batchermeat off your farm, and by bringing on to it ollcake and olher food for cattle, sheep, and pige, you will thas enrich your cattle, sheep, and pigs, you will thas enrich y
manure and increase its quanity.-Af. Gax.

Agricalture as a Profossion.

What is the reason that there is so much wealth emongst manufacturers, and so litile among agrivilunsts? Who makes a fortune now-a-days by farnung? and why ahould so many be rande by manufacturers? What constitutes the difference. Theso thoughis have ofien occured to me since eircamstances have changed my residence from the country, and from the society of farmers, to this the stronghold of the manufacturers. Among many other reasons the following two may be adduced: educanon, and a proper spplication of capital. Suppose, for instance, a person has swo sons to provide for, be detertaines that one shall become a merchant and the other a farmer. Ine has ladd by, we sholl suppose, to start them in business 4000%, which he divides equally between them. If a fmer bimself, he ss now on the took oat for the firsi vacant farm; we shall suppose tue one ajjoning hisown becomes vacant-.." 450 acres; a hitie too large it ss true for his capital, but such a fortunate circumstance; I shall have tim near home, and such an opportunity seldorn occurs." Wthout any weiginter reason than the abcre, off he starts to the landlord, secure the farm for his son and a lease st 21 years. Hisson now enters on his duties; he was born and bred on his father's farm (ravely was from homs fursher than the next market town), of course pursues the eame course of management that his faither did; his capital he finds bareiy sufficient merely to stock the farm; it is not of question to attempt any improrements this year. "The crops are looking well." However, the disease attacks his Potatoes, or the epidemic his sheep, and he must defor the draining $n i l l$ another year; and so be moddles on the best way he can, trusung to the -casons.

How differeat is the case of the son intended for a meschant? "Tom," says the father," you must goand learn to be a merchant." Well 3 he takes him to Manchester; great care is taken to get him into one of the princtpal houses; he slays there, say five or six years, going through all the deparments, seeing and taking a part in the whole afstem; he thus acquires busness habits and gets an insight intodetalls. For the next two or three years he becomes a paid servant, acting as saleg. man orbuyer, aking a limle of the responsibility on his shoulders, and thus gets acquainted with the eastoners, \&c. He will next, perliaps, be induced to go abroad asagent, and in this way he becomes acquainted with the tone of the foreign markets. Ho 13 this way enabled to meet, being acquainted with, the wishes of customers; is inroroughly aequainted with the minutiæ of business, and has by this time acqured the necessary knowledge rhere and how he can invest his capital to most adrantage. He will not purchase an article which will atand on his hand ; but knowing what is most in demand, will sink his capltal at onge in its
purchase, and will be enabled to turn overhis tap ital feveral times in the course of the year. An this is the effect of education, Now contrast the two: the farmer embatks in his concern withone more knowledge than lus father posecssed before hun, and thoroughly content. If his farker bo not a farmer, he reques the supposed necessary knowledge by living a year, or ni mest two, with a friend who farms. The merchantbegins early in life, and his first ten years to taken up with lenrning how to anveat his money to advantage, and it would be sirange if, after that time, bo were not oble to turn it to advantage. The farmer,s caputal is at once abeorbed with purchasing the slock absotutely necessary for a farm which the has tahen there times toolarge fir bira. leavag nothing far improverments.

What is the remedy. Let the son, who is to be the fatmer, be sint at as early an age to the Agrucustural College (there will be more of theso by-and-bye, and let his first three or four years be taken up whh bemagrounded in those sciences which bear on agriculuure ; let him become intimately aequainted with the theory and practios of agricultute os untoided in the lecture of seen in the firld; let him put his band to the varione manual operations; get a knowledge in purchasing, raring, and managrment of stock. Altes doing this, let him go abroad to the best farmed countries, see the operationscarried nut on a larga scale; then, being now immately acquaintud with everything braring on the subject, let him take a farm in proportion to iss capital, and stass; and I am greatly mistaken of he does not double and treble the ninount of interest fur his capital which the would otherwise obtain It is as anconssient for the firmer to start business withous having thins acquired a knowiedge of the theory and practice of his profession, as it wonld be for the merchant to embark his whole capital on an article which he has not first ascertained will maet the views of his customers. The farmer rarely considers the ammunt of captal necessary; be unhesitaungly eners on a farm three times the size of the extent of capital he possesees torite proper management; and thus instead (as be shou'd it his capmal were sufficient) of putting the whole farm in the best possuble position in the first yeor of his lease, he is contented to dawdle oul doing bat by bis every year; his crops conunue by the same average quality, and ho thus realases no more than a low interess for his capital; whereas, it his arm had been in proportion to his captal, he might have, in the first two years, got all his improvements eflected, and durngig the rest of the term be in the receipe of good crops paying him a high per centoge for hiscapital. I would here remark that the espense of farming well cultivated and improved land is no more than that necessary to larm land in which the jmprovements necessary to insaze good crops have not been carried ont; so that the expenses in both cases are sumilar, while the relurns are in many cases double. This will illustrate the adrantage of beginning to inpape carly in the term.-Ag. Gaz.

A Ohapter on Bread Mablng.

Wheat Bread of potato yeast.-This is maie like bread made with home-brewed yeast, except that you may put in almost any quantity of the posato yeast vithout injury. Those who use potato yeast like it much better than any other. The only objection to is is, that in summer it taust be made often, as it will not keep sweet long. But is very easily renewed. The advantage is, that it rises quick, and never gives the sharp and peculiar taste so often imparted to wead and cake, by all yeast made with hops.

Poialo Bread.-Rub a dozen peeled boiled potatoes through a viry coarse sieve, and mix with them twice the guantity of hour, miaing very thoroughly. Put in a coffee cup, full of homebrewed, or of potato yeast, or half as much disiallery yeast; a!so, a tea-spoonful of salt. Add whatever water may be needed to make a dough ss stiff as for commion four bread.

An ounce or two of butter rubbed intos : Dlour, and an egg beat and put into the yeast, 3 i you ean have fine rolls or warm cakes for bre. fast.

Thiskind of bread is very moist, and keeps ell.
Eastern brown breat.- One quart of rye.
Two quarts of Iodiun meal ; iffresh and sivect, do not scald it-1f not, scald it.

IIalf a tea cup of molasses.
Two tes spoons full of salt.
One tea spoon full oi saleratus.
A tea cup of home-brewed yeast, or half as much distillery yeast.

Alake it as sult as cin be sitred wath a spoon with warm water. Let it rise from night till moming. Then put it in a large decp pan, and smooth the top with the hand dipped in cold water, and let i stand a while. Bake fire or six hours. If put in lute in the day, let it semain all night in the oven.

Rise bread.-A quart of water and as much milk.
Two tea spoons full of salt, and a tea cup of Indian meal.
A tea cup full of home-lurewed yeast, or halfas cut in strips, and braid it. Bake thirty minutes rauch distillery yeast.

Make it as stiff as wheat bread with rye four. A tea epoon full of salt.
A tea cup of home-brewed, or half as much distillery yeast.

Milk to make it so as to mould like wheat bread,
Ii.ce bread-No.2.--Three halt pinte of ground rice.

Two tea spoons full (not heaping) fásalt.
Two gills of home-brewed yast.
Three quarts ofmilk, or mulk and water. Mis the rice with cold mulk and water to a thin gruel, and boil it three minutes. Then stir in wheat llour till as stiff as can be stirred with a spoon. When blood warm, add the yeast. This keefs mbist longer than No. 1.

Bread of unbolted wheat, or Grahambread.--

 Three pints of warm water.One tea cup full of Indian meal, and one of wheat flour.

Three great spoons full of molasses, or a tea cun of brown sugar.

One tea spoon full ofsalt, and one tea spoon full of saleratus, dissulved in a litte hot water.

One tea cup of yeast.
Mix the above und stir in enough unbolted wheat flour to make it as stiff as you can work with 2 spoon. Some put in enough to mould it to loaves. Try both. If made with home-brewed yeast, put it to rise over night. If with distillery yeast, make it in the morning, and bake when light.
In loaves the ordanary size, bake one hour agd a half.

Walnut Hill's brown lread.-One quart oi sour milk, and one tea spoon tull of salt.

One tea spoon foll of puiverized saleratus, and one tea cup of molasses, put into the milk.

Thicken with unbolted wheat flour and bake imnediately, and you have first rate bread, with very hutle trouble.

Freuch holls, or Twists -One quart of lubewarm milk.

One tea spoon full of sals.
A large tea cup of home-brewed yeast, or balf as mueh distillery yeast.

Flour enough to make a siff batter.
Set it to rise, and when very light, work in one legg and two spoons tull of butter, aud knead in flour till stiff enough 10 roll.

Let it sise agsin, and when very light, roll out, $i_{\sim} n$ buttered tins.

Raised Biscuit.-Rub half a pound of butter . into a pound of flour.

One beaten egg.
A tea spoon full of salt.
Two great tes apeons full of distillery yeart, of liwies as munk home-brewed.

Wet it up with enough warm milk in make a soft dough, and then work in half p pound of butter. Wheat light, mould it into round cakes, or pll it out and cut it with a tuinbler.

Very Nice Rusk-One pint of milk.
One coffee cup of yeast; (potato is best.)
Four egga.
Flour enough to make it as thick as you can stir with a spron.
Let it rise till rery light, but be sure it is not shur : ifit is, work in half a tea spoon full of saleratus, dissolved in a wine glass of warm water.
When thus light, work together three quarters of a pound of sugar and nine ounces of butter; add more flour. if needed, to make it stiff enough to mould. Let it rise again, aud when very light, mould it into small cakes. Bake fitteen minutes in a quick oven, and anier taking it cut, mix a little milk and sugar, and brush over the rusk while hot, with a sinall swab of linen tied to a stick, and dry it in the oven. When you have weighed these proportuons once, then measure the quantity, so as in gave the trouble of weighing afterward. Write the measure in your receipt book, lest you forget.
Potato Eiscuit.-Twelve pared potatoes, bniled soft and mashed fine, and tivo tea spoons full of salt.
Mix with potatoes milk, add half a tea cun of yeast, and flour enough to mould them into stuall sekes, then let them stand in bnttered pans fiteen minutes before linking.

Crackers.-One quart of flour, wihh two ounces of bulter rubbed in.
One ren spoon full of saleratus in a wine glass of warm water.
Half a tea spoonful of salt, and miks enough to roll at out.
Beat it halfan hour with a pestel, cut it in thin sonnd cakes, prick them, and set them in the ovan when olherthings are taken out. Let them bake sill crisp.

Hurd Biscuit.-One quart of flour, and half a tea spoonful of salt.

Fuur great spounsful of butter, rubbed iuto twothirds of the flour.

Wet it up with milk till a dough; roll it out gesin and again, sprinkling on the reserved flour tull all is used.-Cut in.o round cakes, and bake in a quick oven en buttered tins.

Sour Milk Biscuit.-A pint and a half of sour milk, or buttermilk.

Tro tea spoons fall of salt.

Two rea spoons full of saleratus diasoived be four great spoons full of hot water.
Mix the milk in flour till nearly stiffenough oo roll, then put in the saleratus, ond add more flour. Mould up quicily, and bake immediately.

Shortening for raised biscuit or cakushould afj ways be worked in after it is wet up.

A gaod way to uss Sour Bread.-When a batch of bread is sour, let it stand ill rery light and use it to make biscuit for tea or break-fast, thus.
Work into a portion of it, sale:atus dissolved in warm water, enough to sweeten it, and a litte shortening, and mould it into small biscaite, bahe it, and it is uncommonly good. It is so much liked, that some persons allow bread to turn soor for the purpose. Bread can be kept on hand for this use any length of time.

For a violent Colic Pain in the Side...-Mx an equal quantity ol spirits of lavender, spirit of sal-ammoniac, add Hungary-watery; rub it in with a hot hand, and lay a flannel on as hot as you can bear it. Repeat this often.

For a Consumptive Cough.--Take half a ponad of double-refined sugar, finely beat and sifted, wet this with orange-flower water, and hoil it up to a candy height ; then stir in an onnce of cassia-carth finely powdered, and use it as with any other candy.

To Remove Flatulency after Eating.-Take a sponaful of the following misure in a little water as soon after eating as convenient; Magnesia, 3 drachms; carbonate of soda, 2 drachms, eatvolatile, 4 drachms ; rose water, 7 drachms. Mix, and well shake the bottle before taking a dose.

To Preserve Flosers in Salt.-Commonealk, 3 pounds; flowers, 10 gallons. Beat them so a paste and preserve it in wide-mouthed jarsor bostles. This plan furmishes the perfumer with flowers at any season of the year. The scent is not only much inproved, but the flowers rendered more suitable for the purposes of distulation.

Ointment for the Erool Rot.-Lard, 1 poand; turpentine, l pound; tallow, 1 pound; sulphate of copper (powered,) 1 pruad; rape oil, 1 prond; black resin, 1 pound. Melt, and mix well.

To tho Subscribers of tho Oultivator.

This number completes the current volame of the British American Cultivator, and in conformity with the system of advance payments, the ontract we entered into at the commencement of the year. We may not have pleased the whole of the patrons of the work, but we flatter ourselves that the experience we have had, and the knowledge we possess of the business, will ena. ble us to condurt the fortheoning volume in a manner that will give unlimited satisfaction to all who may parronise it. The various enterprises we are engaged in, make the task of catering for the public a eomewhat difficult one, but the cause of agriculture and manufactures are of so much importance, in our estimation, that we are willing to make any amount of sacnife to promote these great interests in the Province. The difficulties that we have had to contend with in establishing the Cultivator upon a sound footing, have been by perseverance surmounted, so what we have now the satustaction of stating, that the work before us appears pleasant, and shall in frture ever be considered so by us, so long as we have the confidence and support of the two great diasses whose interests we profess to advocate.

To do justice to the enterprise, we want an extensive patronage. By referring to the prospectus of the forthcoming volume, it will be seen that it our patrons should exert themselves to sheir utmost, and obtain for us a circulation of 20,000 copies of the B. A. Cultivator, that we would in relurn give tuen a boves of a Canddiax Weerly. the size of one of the largest Camadin Newspapers, uader the tute of "The Procincial Alvertiser." In point of original matter and general ability, we do not intend the Advertiser to be secend in comparison to any newspaper in the Province of Canada. It shall be, as have elsewhere stated, an unfinching friend of the producng classes, and shall especially be so to the Manulacturer and Emigrant. If our numerous friends and supporters through the country really have a desire to put ourability for condacting the Cultivator and Advertisen to the test, the only thing they have to do is, to put their shoulder to the wheel, and canvas manfully for the 20,000 sabscribers. ' In the remote townehip of Erse a lew friends resolved at the last snaual township meeting, that they would bring the claims that our Journal had uro the attention of the farmer, before the no ice "I the meit-
ng, and by a little exertion on the part of a tow pioitied individuals, upwards of suxtX subscribess were procured on the spot. We hope our friende through the country will take example from the -ownship alluded to, and at the general town meeting in the month of January next, will remember to go prepared to solicit subscriptions for the work, from all classes of the community.

The sabjecis discussed in our columns are of the utmost importance to all ; and where is thers a man, who, if solicited in a polite manner to become a member of an Agricultural Societyr would not pay the paltry sulscription of Firz. Sumunas, for which he would obtain all the benefits of the Society, and an Agricultural Magazine and Newspaper in the largain.
The Township of Whitby Society, the present year, obtained as large a share of the Government money as all the other Townsinp Societies in the District fiut together. This would not have been the case bad that society not adopted the system of supplying each of its membere with a free copy of the Cultioator, and also secured the voluntary services of active men to canvas every concession and side line of the township for members. If the other townships in Canasa West would adopt the system practiced by the two above-mentioned, a much greatercironlation would be secured than what we require to warrant us in issuing the Advertiser weckly.
The patrons of our work may with some res. son complain of the want of proper embellishments; but to satisfy them that the forthcoming volume will contain a nech display of valuable engravings, we would mention, that we have entered inte a contract with Mir. Lowe, our woodengraver, that we shall employ him to erecnie work to the value of $£ 50$, which will give. or. an average, about five engravings to each numher. We shall haze in the Agricultural Warebouse most of the improvements in Agricultural and Mechanical Machinery, and everyihng worthy of notice shall appear illustrated in the Cu tivator.

We wish orr friends to understand, that we are determ ned to make both the Cultivator and Adeertiser popular works, and in which tbey will find a store of valuable information rarely to be met with. In shori, it is our fulldetermin-ation to advance nothing :hat cannot be most advantargeously practiced, and to make our Jouruals worty y the estecm and patrongeg of. an e lighteied public.

CONTENTS.

	Intellectual improvement among Farmers - 45 ron, to prevent it from rusting - - - 307
Grafting . . . 241, 154 Iro	ron Vessels, cement for stopping
- Composition for 61	sures of - - - - 307
- Currants 191	
-Wax 1900 Ju	Justice - - - - - 297
Grain Cradle, patent	Jumbles, recipe for
Gripes, or Choltc in Horses, recipe for : 27 K	Kyranzing timber - . . - 84
Grooming. 26	Kindness - . - . - 147
Gruby in Hursea, recipe for . . . 157	
- and Botls 27 L	Lacker to give Tin the appearance of Brasa k \%
Guano in the St. Lawrence - ${ }^{\circ}$. 15 L	Laquier Apple - - $\quad-185$
Practical use for Spring Crops of Grain ${ }_{92}$ L	Land, clearing of - - - -18
Gutta, Pecha, a new substance : $\quad .84$	
Gypsum, or Hlaster of Paris, application of. 285	Lead, common white - - . 30
H.	- and Silver - . . - -312
Ilabit, force of - 53 L	Liquid Pickle for meat - - - 36I
Ham-smoking, Westphalia method . . 284	Leather, improvement in - - - 310
Harvest-home, the 287 L	Legs swelled - - - - - 120
prospects of the Crops 230	Leicestershire Sheep - - - -266
Hawks, to prevent depredation by . . 1111	Lessons from experience - - - 250
Hay 279 L	Lever, description of the - - - . 117
Hedge Fences 178 L	Liberality of the Canada Company * 347
Heads of Houses, paragraph for the . . 22 U	Lice on Catle, recipe for - - . 81
Heading down Fruit Trees . . . 251	Lightning, to escape the effects of - . 30
Healing wounds on Fruit Trees, art of . 204 1	Lime, use of - - - - 268
Heaves, or Broken-winded Horses, recipe for 183 L	Lining and Harrowing in the Spring - 75
Heel-ball for Leather 30 L	Linseed, use of - - - 172
Hens lay perpetually, how to make . . 30	- Oil, fictitous - - - 27
Hints to Correspondents - . - 206	Liniment for strains, bruises, burns, \&c. - 211
- to Country Honsekeepers - - - 254	Life Members of the Prov. Ag. Association 34G
- for Young Hen - - - - 296	List of successful Competitors at do do 338
Ifoarseness, recipe for - - - 271	List of Judges appointed at do do 344
Horse, points of a good - - - -372	Loaf Cake, recipe for - - - 306
Honey Bees, management of - - 246	Lockjaw, remedy for - - - 251
- of Roses - - - - - 30	Lotion for sore legs - - - - 304
- a method of taking, without destroying	Lucern - - - - - - 65
the Dees - - - - 283	
Honoring Parents - - - - 56	Mahogany-stain for woud - - - 125
Hoof Ointment - - - - 203	- recipe for taking stains oat - - 109
Horehound Candy, recipe for - - 156	Mange, ointment tor - - - 94
Horses, tounder in - - - - 28	Manufactures - - . 265,292,311
\rightarrow being teased by Fiir, how to prevent - 190	Manure 123, 188
Horse Distemper, a recipe for - - $=44$	- use of bones as 28
- diseases of the, an essay on - - 2216	- for fruit seed 267
House Paint, economical - - - 28,29	-the value of 119
Humilaty - - - - 237	- for turnip seed 299
Hustandry, sketch of Belgian - - 232	- prepared, effects on crops . . . 130
Hydrophibia, a recıpe for - - - 147	Manures and Cultivation . . . 130
I.	Maple Sugar 72
Ice House - - - 28	Minrsh Mud and Lime . . . 73
Indian Corn - - - - 368	Mashes, to make 30
Incrustation in Steam Boiless, how to prevent 211	(Measures - - - - 152
Indian Corn, experiments in growing - 144	1 Mechanical powers - - - 166
- Pudding - - - - 286	Merino Sheep, Col. Randall's - - 77
Industry - - - - 297	7 Metals, soldering - - - 308
Inflarmation of the Eye Lid, ointment for 310	10 Milch Cows, treatment of - - 48
Injury to Fruit, prevenied - - - 184	4 Model Farm of Ohio - - 52, 297
Ink, Indian - - - - 28	8 Moderation - - - 298
- Sympathetic - - - 30	0 Molasst's, Apple - - - 284
Indelible, for marking linen -- 30	O Mortar for cellar floors - - 349
Perpetual, for tomb-siones, marble, \&c. 122	2 Mos on buildings, how to prevent - - 205
for Ruling, recipe for making the best - 249	9 .-. on trees, how to destroy . . . 28
Insects on Trees and Shrubs, how to destroy 27	${ }_{2}$ Moths, to preserve fara from . - . . 30

