CIHM
 Microfiche Series
 (Monographs)

ICMH Collection de microfiches (monographies)

Canadian Institute for Historical Microredroductions/Institut canadien de microreproductions historiques

Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.

Coloured covers /
Couverture de couleur
Covers damaged /
Couverture endommagée

Covers restored and/or laminated /
Couverture restaurée et/ou pelliculée
Cover title missing / Le titre de couverture manqueColoured maps / Cartes géographiques en couleurColoured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations /
Planches etou illustrations en couleurBound with other material /
Relié avec d'autres documents

\square
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

\square
Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from filming / II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.Additional comments /
Commentaires supplémentaires:

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées etou pelliculées
Pages discoloured, stained or foxed /
Pages décolorées, tachetées ou piquées
\square Pages detached / Pages détachées

Showthrough / Transparence

Quality of print varies /
Qualité inégale de l'impression

Includes supplementary material /
Comprend du matériel supplémentaire
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.
\square Opposing pages with varying colouration or discolourations are filmed twice to ensure the best possible image / Les pages s'opposant ayant des colorations variables ou des décolorations sont filmées deux fois afin d'obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below /
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thenks to the generosity of:

National Library of Canada

The images eppeering here are the best quality possible considering the condition and legibility of the originel copy end in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover snd ending on the lest pege with a printed or illustrated impres. sion. or the back cover when appropriate. All other originel copies are filmed beginning on the first pege with a printed or illustrated impres. sion, and ending on the last page with a printed or illustrated impression.

The last recorded freme on eech microfiche shall contein the symbol - (meaning "CON. TINUED"), or the symbol ∇ (meening "END"). whichover applies.

Maps, pletes, cherts, etc., may be filmed st different reduction retios. Thase too large to be entirely included in one exposure are filmed beginning in the upper lett hand corner, left 10 right and top to bottom, es many frames as required. The following diegrems illustrete the method:

Lexemplaire filmd fut reproduit gráce a la générosiza de:

Bibliothèque nationale du Canada

Les imeges suiventes ont did reproduites avec le plus grand soin, compre renu de le condition et de te nerterd de l'exempleire filme. ot en conformité avec les conditions $d u$ contret de filmage.

Les exemplaires originaux dont le couversure en pepier est imprimée sont filmd́s en commençant par le premier plat er en terminent soir par la dernidre pege qui comporte une empreinte d'impression ou d'illustretion. soir per le second plat, selon le cas. Tous les eutres exemplaires originaux sont filmús on commençant per le premidre page qui comporte une empreinte d'impression ou d'illustretion et en terminent par le dernidre pege qui comporte une telle emprainte.

Un des symboles suivents appereitre sur la dernidre imege de cheque microfiche. selon le cas: le symbole \rightarrow signifie "A SUIVRE". le symbole ∇ signifie "FIN".

Les certes, planches, sableeux, eic., peuvent étre filmés à des reux de réduction différents. Lorsque le document est trop grand pour être reproduit on un seul clichd. il est filmd à partir de l'engle supdrieur geuche. de geuche à droire. et de heut en bes. en prenent le nombre dimages ndeesseire. Les diegremmes suivents illustrent le méthode.

1	2	3
4	5	6

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART Na. 2)

APPLIED IMAGE Ine
1653 East Main Street
Rochester. New York 14609
(716) 482-0300-Phane
(716) 288 - 5989 - Fox

THE ONTARIO

HIGH SCHOOL PHYSICS

31
F. W. MERCHANT, M.A., I).PaEd., Director of Technical and Industrial Education for Ontario

Authorized by the Minister of Education for Ontario for use in the Middle School

TORONTO

THE LOP. CLARK COMPANY, LIMITED

9898

Copyright, Canada, 1011, hy Tur Corf, Clark Company, Jimited, Toronto, Ontario.

Finst Edition, 1911.

1RENA('E

In the printing of this look two sizes of type have been mainly used. The portion printed in large type ($\$ 1$ for exmuple) is intended to cover the course in Physics at present prescribed for the chasses of the Middle School. The sections in smaller type ($\$ 24$ for example), have been included in order to render the treatment of the subject more complete.

In dealing with the varions branches of the subject an attempt has been made to illustrate its primeiples and laws by reference to numerous applications in ordinary life. Other illustrations are taken from the chief applications of Physics to industry and commerce, especially those to be seen in our own country.

Practical questions and prohlems are proposed in comection with important topies in the text. The materials for these exercises have been selected with the purpose, not only of illustrating and applying the principles discussed, but also of stimulating the interest of the student in the physical phenomena with which he is faniliar.

Attention is directed to the diagrams and other drawings, of which there is an exceptionally. large number. These have all been prepared especially for this work, and great pains have been taken to have them clear and easily understood.

The portraits of some of the great scientific investigators mall the historical references which have beon wowen into ahoost exery chapter, will, it is hoperi, awaken a real haman interest in the subject.
'Thronghont the rork appear concise tables of physical eonstants, which have been taken from the simithrmian. Physieral Tuldex, published ly the Sinithsonian Institation, Washington, D.C.

In the preparation of the book the authons have received courteous assistance from mony firms and imbividuals regarding certain indnstrial applications of Physies. They are also indehted to many friends engnged in the practical tenehing of the subjeet in secondary sehools and colleges; but they are espeeinlly indehted to Dr. A. L. Clark, Professor of Physies at Queen's University, Kingston, and to Dr. W. E. MeElfresh, Professor of Physics nt Williams College, Williamstown, Mass, who earefilly read the proof-sheets and offered many valuable suggestions.

A Leborator!y Manuel has been prepared to aceompany this book. It contains a large number of exercises, with full instructions for the student's guidance.

Toronte, June, 1911.

CONTENTS

Part I-Inthoduction

cllapter
1.-Measurement
pagr 1
Part II-Mechanich of Solides
II. - Displacement, Velocity, Acceleration 17
III. -Inertia, Momentum, Force 33
Iv. - Moment of \boldsymbol{n} Force ; Composition of Parallel Forces : Equilibrium of Forces 44
v.-Gravitation 50
vi.-Work and Energy 54
vir.-Centre of Gravity 60
vili. - Friction 64
IX.-Machines 67
Part III-Mecilanica of Fluids
x.-Pressure of Liquids 82
xi. - Buoyancy of Fluids 92
xil.-Determination of Density 96
xiIf.-Pressure in Gases 101
xiv.-Applications of the Laws of Gases 119
Part IV-Some Properties of Matter
xv. - The Molecular Theory of Maiter 131
xvi.-Molecular Forces in Solids and Liquids 142
xvil. - Phenomena of Surface Tension and Capillarity 150

CUNTENTS

> Part V-Wate Motion and Sound
chaitrk
xvili.-Wave Motion
xvili.-Wave Motion PAGR PAGR
xix.-Production, Propagation, Velocity of Sound 168
xx.-Pitch, Musicul Scales 179
xxi--Vibrations of Strings, Rods, Plates and Air Columms 187
xxin--Quality, Vibrating Flames, Beats 200
xxinl-Musical Instruments-The Plonograph 209
Part Vi-Heat
xxiv.-Nature ani Source of Heat 214
xxy.-Expansion through Heat 217
xxvi.-Temperature 222
xxvir- - Relation between Volume and 'Yemperature 229
xxviil.-Measurement of Heat 238
xxix.-Change of State 243
xxx.-Heat and Mechanical Motion 267
xxxi.-Transfurence of Heat 274
Part VII-Lieht
xxxil.-The Nature of Light ; its Motion in Straight Lines 287
xxxiif.-Photometry 294
xxxiv.--The Velocity of Light 300
xxxv.-Reflection of Light : Plane Mirrors 302
xxxyi- Reflection fron Curved Mirrors 309
xxxyii- Refraction 319
xxxviil,-Lenses 330
xxxix.-Dispersion, Colour, the Spectrum, Spectrum Analysis 339
xL.-Optical Instruments 356

Part VIII-Electricity and Magnetism

Chaptrir
Pag:
XLi.- Magnetism 367
xhil.-Electricity at Rest 380
ximi.-The Electric Current 396
xliv.- Chemical Effects of the Electric Current 408
xlv.-Magnetic Relations of the Current 419
xhyi. - Induced Currents 435
xlvil.-Applications of Induced Currents 442
xlvili.-Heating and Lighting Effects of the Electric Current 457
xux.-Electrical Measurements 462
L.-Other Forms of Radiant Energy 479
Answers to Numerical Problems 492
Index. 495

TABLE OF EQUIVALENTS OF UNITS

Length

$$
\begin{aligned}
& 1 \mathrm{in.}=2.54 \mathrm{~cm} . \\
& 1 \mathrm{ft} .=30.48 \mathrm{~cm} . \\
& 1 \mathrm{yd} .=91.44 \mathrm{~cm} . \\
& 1 \mathrm{mi} .=1.609 \mathrm{~km} .
\end{aligned}
$$

$1 \mathrm{~cm} .=0.3937 \mathrm{in}$.
$1 \mathrm{~m} .=39.37 \mathrm{in} .=1.094 \mathrm{yd}$.
$1 \mathrm{~km} .=0.6214 \mathrm{mi}$.
$1 \mathrm{~km} .=1000 \mathrm{~m} ., 1 \mathrm{~m} .=100 \mathrm{~cm} .$, $1 \mathrm{~cm} .=10 \mathrm{~min}$.

Surface

$1 \mathrm{sq} . \mathrm{in} .=\quad 6.4514 \mathrm{sq} . \mathrm{cm}$.	SURFAcE
$1 \mathrm{sq} . \mathrm{ft}=929.01 \mathrm{sq} . \mathrm{cm}$.	$1 \mathrm{sq} . \mathrm{cm} .=0.1550 \mathrm{sq} . \mathrm{in}$.
$1 \mathrm{sq} . \mathrm{yd} .=8361.3 \mathrm{sq} . \mathrm{cm} .=0.83613 \mathrm{sq} . \mathrm{m}$.	$1 \mathrm{sq} . \mathrm{m} .=10.764 \mathrm{sq} . \mathrm{ft}$.
	$1 \mathrm{sq} . \mathrm{m} .=1.196 \mathrm{sq} . \mathrm{yd}$.

Volume

$$
\begin{array}{ll}
1 \mathrm{c} . \text { in. }=16.387 \text { c.c. } & 1 \text { c.c. }=0.061 \mathrm{c} . \mathrm{in} . \\
1 \mathrm{c} . \mathrm{ft} . & =28317 \mathrm{c.c.} \\
1 \mathrm{c} . \mathrm{yd} .=0.7645 \mathrm{cu} . \mathrm{m} . & 1 \mathrm{cu} . \mathrm{m} .=1.308 \mathrm{c} . \mathrm{yd} .
\end{array}
$$

$$
\begin{aligned}
1 \text { Imperial gallon } & =10 \mathrm{lb} . \text { water at } 62^{\circ} \mathrm{F} . \\
& =277.274 \mathrm{c} . \mathrm{in} .=4.546 \mathrm{l} . \\
1 \text { Inperial quart } & =1.136 \mathrm{l} . \\
1 \text { U.S. gallon } & =231 \mathrm{c} . \mathrm{in} .=3.784 \mathrm{l} . \\
\text { 1. } & =1.7598 \text { Imperial pints. }
\end{aligned}
$$

Mass

1 lb . av. $(7000 \mathrm{gr})=.453.59 \mathrm{~g}$.
$1 \mathrm{~kg} .=2.205 \mathrm{lb} . \mathrm{av}$.
$1 \mathrm{oz} . \mathrm{av} . \quad=28.3495 \mathrm{~g}$.
$1 \mathrm{gr} . \quad=0.0648 \mathrm{~g}$.

Abereviations

$\mathrm{in} .=$ inch ; $\mathrm{ft} .=\mathrm{foot} ; \mathrm{yd} .=$ yard ; mi. $=$ mile ; sq. = square $;$ c. or cu. = cubic ; m. = metre ; mim. $=$ millimetre ; cm. $\xlongequal{\text { sq. }=\text { centimetre } ; ~}$ $\mathrm{km} .=$ kilometre; c. cm. or c.c. $=$ cubic centimetre; $1 .=$ litre; lb. av. $=$ pound avoirdupois ; gr. = grain ; g. = gran ; kg. = kilogranı.

PART I-INTRODUCTION

CHAPTER I

Measurement

1. Physical Quantities. The varions operations of nature are continually before our eyes, and thus by the time that we definitely enter upon the study of physics, we have gathered a store of observations and experiences.

We all admire the beauty of a water-fall, but we recognize that there is more than beauty in it when we see it made to turn our mills. In recent years the world's great waterpowers have been used to generate electricity, which, after being transmitted over considerable distances, supplies motivepower for our great factories or our street railways. The sun continual!y sends forth immense quantities of heat and light, conveying to us warmth and cheer, and preserving life itself. We see the giant ship or the railway train, driven by the power of steam, transporting the commerce of the nations. And in the near future we shall probably see multitudes of aeroplanes circling about in the air and carrying passengers from place to place.

When asked to describe how these various physical effects are produced we usually reply in vague and general terns. The study of physics is intended to give definiteness to our descriptions, and to enable us clearly to state the relations between successive pliysical events.

In order to do this we must understand the numerous operations met with in mechanics, heat, electricity, and other
branches of physics: and our knowledge of these matters can hardly be considered satisfactory muless we are able actually to measure the various physical quantities involved. We must not be content with silyiag simply that a certain substance was present, or that a result of a certain kind was obtained; but we should be able to state how much of that substance was present, or the precise relation of the result obtained to the causes producing it.
2. Measuring a Quantity. In measuring a quantity we determine how many times a magnitude of the same kind, which we call a unit, is contained in the fuantity to be measured.

Thus we speak of a length being 5 feet, the unit chosen being a froot, and 5 expressing the number of times the unit is contained in the given length.
3. Fundamental Units. There will be as many kinds of u lits as there are kinds of quantities to be measured, and the size of the units may be just what we choose. But there are three units which we speak of as fundamental, namely the units of length, mass and time. These units are fundanental in the sense that each is independent of the others and cannot be derived from them; also we shall find that the measurement of any quantity,-such as the power of a stean engine, the speed of a rifle-bullet or the strength of an electric curreut,-can ultimately be reducel to measurement of length, mass and time. Hence these units are properly considered fundameutal.
4. Standards of - th,-the Yard. There are two standurls of length in use in English-speaking countries, namely, the yard and the metre.

The yard is said to have represented, originally, the length of the arm of King Iemry I., but such a definition is not by any means accurate enough for present-day requirements. It
is now defined as the distance between the centres of two transverse lines ruled on two gold plugs in a bronze bar, which is preserved in London, England, in the Standards Office of the Board of Trade of Great Britain.

The bronze bar is 38 inches long and has a cross-section one inch square (Fig. 1). At a, a, wells are sunk to the mid-depth of the bar, and at the bottom of each well is the gold plug or pin, about $\frac{1}{10}$ inch in dianeter, on which the line defining the yard is engraved.

Fig. 1.- Bronze yard, 38 in . long, 1 in . sq. in section. a, a are small welle in bar, sunk to mid-depth.

The other units of length in ordinary use, such as the inch, the foot, the rod, the mile, are derived from the yard, though the relations between them are not always simple.
5. The Metre. The metre came into existence through an effort made in France, at the end of the 18th century, to replace by one standard the many and confusing standards of length prevailing throughout the country. It was decided that the new standard should be called a metre, and that it should be oite ten-millionth of the distance from the pole to the equator, measured through Paris. The system was provisionally established ly law in 1793, and the standard bar representing the length was completed in 1799. This bar is of platinum, just a metre from end to end, 25 millimetres (about 1 inch) wide and 4 millimetres (about $\frac{1}{6}$ inch) thick.

As time passed, great difficulty was experienced in making exact copies of this platinum rod, and as the demand for such continually increased, it was decided to construct a new standard bar.

Following the great "World's Fairs" held in London in 1851 and in Paris in 1867, proposals were made for international
cooperation in the probuction of the new standards; and after several preliminary conferences, in 1875 there was convened in Paris an International Committee of delegates officially appointed by varions national grovermments. By this Committee the International Bureau of Weights and Measures Was established at Sêrres, near Paris, and the different nations contribute ammally towards its maintenance. By this bureau 31 standard metres and 40 stamlard kilograms, known as prototype metres and kilograms, have been constructed.

The new metre bars are made of a hard and durable alloy composed of platimm 90 per cent. and

Fio. 2. - View of end and cross section of the standard 'prototype' metre lars. The line defining the end of the metre is a short mark on the surface midway betwe n the top and hottoni of the iridium 10 per cent., and have the form shown in Fig. 2. The section illustrated here was chosen on accomet of its great rigidity, and also in order that the crosslines whieh define the length of the metre might be placed on the face which is just mid-way between the upper and lower faces of the bar. The bars are 102 eentimetres in length over all, and 20 millimetres square in section. Thus the lines which define the metre are one centimetre from each end of the bar.
All the bars were completed in 1889. They were made as nearly as possible equal in length to the original platinum one of 1799 , but of conuse minute differences existed between them-perhaps one patt in one hundred million. So the one whieh appeared to agree most perfectly with the old standard was taken as the new International Prototype Standard. The new kilogrann (see § 11) was also chosen from all that had been made. These were adopted as the new international standards on Sept. 26, 1889, by the International Committee. They are kept in a special vault in the International Bureau
secured by three locks, the keys of which are kept by three different high officials. The rault is opened not oftener than once n year, at which time all three officials must be present.
6. National Standards. The metre rod kept in the vault at Sêvres is the standard for the world. Each nation contributing to the International Burenu is entitled to a prototype metre and kilogram. Great Britain and the United States have their copies. In the former country all the standards are kept in the Standards Office in London; in the latter, they are preserved in the Bureau of Standards in Washington.

In the United States the metre is taken as the primary standard of length, and by law

$$
1 \text { yard }=\frac{3090}{337} \text { of a metre. }
$$

The standard yard and the standard metre at present in use in Canada are both of bronze, of the form illustrated in Fig. 1. They were obtained from England in 1874. Quite recently, however, Canada has been admitted to the International Committee as an autonomous nation, and so is entitled to receive one of the prototype metres and one of the prototype kilograms constructed by the International Bureau. No doubt these will soon be secured. The Canadian standards are kept in the Standards Office of the Department of Inland Revenue, Ottawa.

7. The Metre Independent of the Size of the Earth.

 Great care was taken to have the original metre exactly one ten-millionth of the distance from the pole to the equator; but when once the standard had been constructed it became the fixed standard unit, no further reference being made to the dimensions of the earth.Indeed, later measurements and calculations have shown that there are more than ten million metres in the earthquadrant, and hence the metre is a little shorter than it
was intended to be. The difference, however, is very small about 1^{1} I mm., which is perhaps a hair's breadth.
8. Sub-divisions of the Metre. The metre is divided decimally, thus:-

$$
\begin{aligned}
1_{0}^{1} \text { metre } & =1 \text { decimetre (dm.) } \\
{ }_{10}^{1} \text { dm. } & =1 \text { centimetre }(\mathrm{cm} .) \\
1_{0}^{1} \mathrm{~cm} . & =1 \text { millimetre }(\mathrm{mm} .) \\
1 \mathrm{~m} . & =10 \text { dm. }=100 \mathrm{~cm} .=1000 \mathrm{~mm} .
\end{aligned}
$$

For greater lengths, multiples of ten are used, thus:-

$$
\begin{aligned}
10 \text { metres } & =1 \text { decametre. } \\
10 \text { decametres } & =1 \text { hectonetre. } \\
10 \text { hectometres } & =1 \text { kilometre }(\mathrm{km} .) \\
1 \mathrm{~km} . & =1000 \mathrm{~m} .
\end{aligned}
$$

The decametre and the hectometre are not often used.
9. Relation of Metres to Yards. In Great Britain the relation between the metre and the inch is officially stated to be

$$
1 \text { metre }=39.370113 \text { inches; }
$$

in the United States, by law,

$$
1 \text { metre }=39.37 \text { inches. }
$$

The difference between these two statements of length of the metre is only rot $\frac{1}{\sigma \sigma}$ inch, and the British and United States yards may be considered identical.

The following relations hold:-

$$
\begin{aligned}
& 1 \mathrm{~cm} .=0.3937 \mathrm{in} . \\
& 1 \mathrm{in} .=2.54 \mathrm{~cm} . \\
& 1 \mathrm{ml} .=39.37 \mathrm{in} .=1.094 \mathrm{yd} . \\
& 1 \mathrm{ft} \text {. }=30.48 \mathrm{~cm} \text {. } \\
& 1 \mathrm{~km} .=0.6214 \mathrm{mi} \text {. } \\
& 1 \mathrm{mi} .=1.609 \mathrm{~km} . \\
& \text { Approximately } 10 \mathrm{~cm} .=4 \mathrm{in} . \\
& 30 \mathrm{~cm} .=1 \mathrm{ft} \text {. } \\
& 8 \mathrm{kni} .=5 \mathrm{mi} \text {. }
\end{aligned}
$$

In Fig. 3 is shown a comparison of centimetres and inches.

F10. 3. - Comparison of inches and centimetres.
10. Derived Units. The ordinary units of surface and of volmme are at once dednced from the lineal units. The imperial gallon is defined as the volnme of 10 pounds of witer at $62^{\circ} \mathrm{F}$., or is equal to 277.274 cm . in. (The U.S. or Winchester gallon $=231 \mathrm{~cm}$. in.). The litre contains $1,000 \mathrm{ccm}$.

The following relations hold :-

$1 \mathrm{scf} . \mathrm{ycl} .=0.836 \mathrm{scg} . \mathrm{mm}$.	$1 \mathrm{c} .1 \mathrm{~cm} .=61.024 \mathrm{c} . \mathrm{in}$.
1 syj mı. $=10.764 \mathrm{srj} . \mathrm{ft}$.	1 gal . $=4.546 \mathrm{l}$.
$1 \mathrm{cu} . \mathrm{in} .=16.38{ }^{\text {\% c.c. }}$	1 l . $\quad=1.76$ qt.

PROBLEMS

(For table of values see opposite page 1)

1. How many millimetres in $2 \frac{1}{2}$ kilometres?
2. Change 186,330 miles to kilometres.
3. How many square centimetres in a rectangle 54×60 metres?
4. Change 760 mm . into inches.
i. Reduce 1 cubic metre to litres and to cubic centimetres.
5. Lake Superior is 602 feet above sea level. Express this in metres.
6. Drodging is done at 50 cents per cubic yard. Find the cost per cubic metre.
7. Air weighs 1.293 grams per litre. Find the weight of the air in a room $20 \times 25 \times 15$ metres in dimensions.
8. Which is cheaper, milk at 7 cents per litre or 8 cents per quart?
9. Express, correct to a hundredth of a millimetre, the difference between 12 inches and 30 centimetres.
10. Standards of Mass. By the muss of a body is meant the quantity of matter in it. Matter may change its form,
but it can never be destroyed. A lump of matter may be tramsorted to my place in the universe, bitt its mass will remain the same.

There are two mits of mass in ordinary nse, namely, the pound and the killarfrem.

The stamiand pound avoirdupois is a certain piece of phatinum preserved in the Standards Office in London,

Fig. 4.-1mperial Standard Pound Avoirdu. pois. Made of piatinum. lleight 1.35 inches; diameter 1.15 inches. "P.S." stands for par. liamentary standard. Engrlanl. Its form is illustrated in Fig. 4. The grain is roto of the pound, mid the omnce is 1 is of the pound or 437.5 grains.

The kilogram is the mass of a certain lunp of platinum carefully preserved in Paris, mud called the "Kilogramme des Archives." It was constructed by Borda (who also made the origimal platinum metre), and was intended to represent the mass of 1000 culic centimetres (1 litre) of water when at its maximum density (at $4^{\circ} \mathrm{C}$.).

Although the objection which had been raised against the phatinum metre (namely, difficulty in reproducing it), did not hold in the case of the platinum kilogram; still the platinumiridium alloy is harder and more durable than pure platinum, and so the International Committee decided to make new standards out of this alloy. As already stated (in §5), the International Bureau constrncted 40 stmndard kilograms. These were all made as nearly as possible equal to the original platinum kilogram, and indeed as they do not differ amongst themselves by more than about one part in one lundred million, they may be considered identical.

One of these was adopted as the new International Prototype kilogran, and is preserved along with the International

UNIT OF TIME

metre at Sêvres. The others, as far as required, have been distributed to various nations, and are known as National Prototype kilograms.

These new standards are phain cylinders, almost exactly $1 \frac{1}{2}$ inches in diameter, and of the same height. (Figs. 5 and 6.)

The relation of the pound to the kilogram is officially stated by the British government as follows:-

$$
\begin{array}{ll}
1 \text { kilogram }(\mathrm{kg} .) & =2.2046223 \text { pounds avoir. } \\
1 \text { gram }(\mathrm{gm.}) & =15.4323564 \text { grains. } \\
1 \text { pound avoir. } & =0.45359243 \mathrm{kg.} . \\
1 \text { ounce avoir. } & =28.349527 \text { grams. }
\end{array}
$$

Fio. 8. - Prototype kilogram, made of als alloy of platlnum and irldlum. Height and dia. meter each 1.5 inches.

In transforming from kilograms to pounds, or the reverse,

Fio. 6. -United States National Kilogram "No. 20." Kept under two glass bell-jare at Washington. it will not be necessary to use so many decimal places r o given here. The e, ivalent values may be taken from the table opposite page 1.
Approximately $1 \mathrm{~kg} .=2 \mathrm{~g}$ lbs . $; 1 \mathrm{oz} .=28 \frac{\mathrm{f}}{\mathrm{gm}}$.
12. Unit of Time. If we reckon from the time when the sun is on our meridian (noon), until it is on the meridian again, the interval is a solar day. But the solar days thus determined are not all exactly equal to each other. This, as is explained in works on astronomy, is due to two causes,
(1) the earth's orhit is an ellipse, not a eirele, (2) the plane of the orbit is inelined to the plane of the earth's equator. In order to get an invariable interval we take the average of all the solar days for an entire year, and call the day thus obtained n mean solar dey. Dividing this into 86,400 equal parts we call cach in mem solar second. This is the quantity which is "ticked off" by our watches and elocks. It is used universally by scientitic men as the fundamental unit of time.
13. The English and the O.G.S. System. In the so-called English system of units the foot, the pound, and the second are the mits of length, mass and time, respectively. In mother system, which is used almost universally in purely scientific work, the units of length, mass and time are 1 contimetre, 1 gram and 1 reconel, respectively.

The former is sometimes enlled the F.P.S. system, the latter the C.G.S. system, the distinguishing letters being the initials of the units in the two cases.
14. Measurement of Length. A dry-goods merchant unrolls his eloth, and, placing it alongside his yard-stick, measures off the quantity ordered by the customer: Now the yard-stiek is intended to be an accurate copy of the standard yard kept at the capital of the country, and this latter wo know is an accurate copy of the original preserved in London, England. In order to ensure the accurncy of the merchant's yard-stick a government officinl periodically inspects it, comparing it with a standard yard which he carries with him.

Suppose, next, that we require to know aecurately the diameter of a wire, or of a sphere, or the distance between
two marks on a photographic plate. We chonse the most suitable instrument for the purpose in view. For the wire or the sphere a serew gauge would be very convenient. One of these is illuatrated in Fig. 7. A is the elad of a serew which works in a nut inside of D. The serew can be moved back and forth by turning the cap C to which it is attached, and which slips over D. Upon D

Pio. 7.-Mlicrometer wiro gauge. is a senle, and the end of the cap C is divided into a number of equal parts. By turning the cap the end A moves forward until it reaches the stop B. When this is the case the graduations on D and C both read zero.

In order to mensure the diameter of a wire, the end A is brought back until the ire just slips between A and B. Then the senles on D and C indicate the whole number of turns made by the screw and also the fraction of a turn. Hence if we know the pitch of the screw, which is usually $\frac{1}{80}$ inch, we can at once calculate the dianneter of the wire.

To measure the photographic plate the most convenient instrument is a microscope which can be moved back and forth over the plate, or one in which the stage which carries the plate can be moved by screws with graduated heads, much as in the wire gauge.

There are other devices for accurate measurement of lengths, but in every case the scule, or the screw, or whatever is the essential part of the instrument, must be carefully compared with a grood standard before our measurements can be of real value.
15. Measurement of Mass. In Fig. 8 is shown a balance. The pans A and B are suspended from the ends of the beam CD, which can turn easily abont a "knife-edge" at \boldsymbol{E}.

This is usually a sharp steel eflge resting on a steel or an agate plate. The bearings at C and D are made with

Fig. 8 - A simple and convenient balance. When in equilibrium the pointer r stands at zero on the scale O. The nut n is for adjusting the balance and the mall weights, fractions of a gram, are obtained by sliding the rider r along the beam which is graduated. The weight W, if substituted for the pan A, will balance the pani R. very little friction, so that the bee in turns very freely. A long pointer P extends downwards from the middle of the bean, and its lower end moves over a scale 0 . When the pans are balanced and the beam is level the pointer is opposite zero on the scale.

Suppose a lump of matter is placed on pan A. At once it descends and equilibrium is destroyed. It goes downward because the earth attracts the matter. Now put another lump on pan B. If the pan B still remains up we say the mass on A is heavier than that on B; if the pans come to the same level and the pointer stands at zero the two masses are equal.

It is the attraction of the earth upon the masses placed upon the pans which produces the motion of the balance. The attraction of the earth upon a mass is called its weight, and so in the balance it is the weights of the bories which are compared. But, as is explained in Chapter V, the weight of a body is direstly proportional to its mass, and so the balance allows us to compare masses.
16. Sets of Weights. We have agreed that the hump of platinum-iridium known as the International Prototype Kilogram shall be our standard of mass. (§ 11.)

In order to duplicate it we simply piace it on one pan of the balance, and by careful filing we make another piece of matter which, when placed on the other pan, will just balance it.

Again, with patience and care two masses can be constructed which will be equal to each other, and which, taken together, will be equal to the original kilogram. Each will be 500 grams.

Continuing, we can produce masses of other denominations, and we may end by having a set consisting of

$$
1,000,
$$

$$
500,200,200,100
$$

$$
50,20, \quad 20,10
$$

5, 2, 2, 1
.5, .2, .2, . 1 grams
and even smaller weights.
If now a mass is placed un pan A of the balance, by proper combination of these weights we can balance it and thus at once determine its mass.

The balances and the weights used by merchants throughout the country are periodically inspected by a government officer.
17. Density. Let us take equal volumes of lead, aluminium, wood, brass, cork. These may conveniently be cylinders about $\frac{1}{2}$ inch in diameter and $1 \frac{1}{2}$ or 2 inches in length.
By simply holding them in the hand we recognize at once that these bodies have different weights and therefore different masses. With the balance and our set of weights we can accurately determine the masses.
We describe the difference between these bodies by saying that they are of different densities, and we define density thus:-

The devsity of a substance is the mass of unit volume of that substance.

If we use the foot and the pound as units of length and mass respectively, the density will be the number of pounds in 1 cubic foot.

In the C.G.S. system the units of mass and volume are 1 gran and 1 c.c. respectively, and of course the density will be the number of grams in 1 c.e.

But 1 litre of water has a mass of : kilogram, or 1000 c.c. " " " 1000 gmu., or 1 c.c. " " " 1 gm .
This is the system generally used in scientific work. The densities of some of the ordinary substances are given in the following table:-

> Tahle of Densities

	Pounds per Cubic Foot.	Grams per Culic Centimetre.
Water (at $4^{\circ} \mathrm{C}$.)..	62.4	1.00
Iron.	439 to 445	7.03 to 7.13
Copper.	555	8.90
Silver	658	10.56
Lead.	708	11.34
Mercury	848	13.60
Gold.	1207	19.34
Plativum	1340	21.50
Iridium	1399	22.42
White Pine.	22 to 31	0.35 to 0.50

Note also that since the density is the mass in unit volume, we have the relation,

$$
\text { Mass }=\text { Volume } \times \text { Density. }
$$

Thus, if the volume of a piece of cast aluminium is 150 c.c., since its density is 2.56 , the

$$
\begin{aligned}
\text { Mass } & =150 \times 2.56 \\
& =384 \text { grams } .
\end{aligned}
$$

18. Relation between Density and Specific Gravity. We have seen that the number expressing the density of a substance differs according to the system of units we use.
Specific gravity is defined to be the ratio which the weight of a given volune of the substance bears to the weight of an equal volume of water.

As this is a simple ratio, it is expressed by a simple number, and is quite independent of any system of units.

First, however, suppose we have a cubic foot of a substance. Let it weigh W lbs.

Le the weight of 1 cubic foot of water be w lbs.
Then specific gravity $=\frac{W}{w}$,

$$
=\frac{\text { density of substance }}{\text { density of water }}
$$

We see at once that this ratio is the same no matter what volume we use.

Agrain, since in the C.G.S. system the density of water is 1 , it follows that in this system the number expressing the specific gravity is the same as that expressing the density.

For example, suppose we have 50 c.c. of cast iron. Then, using the balance, we find

$$
\begin{aligned}
& \text { Weight of } 50 \text { c.c. of iron }=361 \mathrm{gm} . \\
& \text { But " " } " \text { " water }=50 "
\end{aligned}
$$

Therefore the specific gravity $=\frac{3 A 1}{50}=7.22$, which is simply the weight in grams of 1 c.c. of iron, or the density in the C.G.S. system.

PROBLEME

1. Find the mass of 140 c.c. of silver if its density is 10.5 gm . per c.c.
2. The specific gravity of sulphuric acid is $\mathbf{1 . 8 5}$. How many c.c. must one take to weigh 100 gm .?
3. A rolled aluminium cylinder is 20 cm . long, 35 mm . in diameter, and its density is 2.7 . Find the weight of the cylinder.
4. The density of platinum is 21.5 , of iridium is 22.4 . Find the density of an alloy containing 9 parts of platinum to 1 part of iridium. Find the volume of 1 kg . of the alloy.
5. A piece of granite weighs 83.7 gm . On dropping it into the water
 in a graduated vessel, the water rises from 130 c.c. to 161 c.c. (Fig. 9). Find the density of the granite.
161 6. A tank 50 cm . long, 20 cm . wide and 15 cm . deep is 130 filled with alcohol of density 0.8 . Find the weight of the alcohol.
6. A rectangular block of wood $5 \times 10 \times 20 \mathrm{~cm}$. in dimensions weighs 770 grams. Find the density.
Fia. 9. 8. A thread of mercury in a fine cylindrical tube is 28 cm . long and weighs 11.9 grams. Find the internal diameter of the tube.
7. Write out the following photographic formulas, changing the weights to the metric system:-

Developer

PART II-MECHANICS OF SOLIDS

CHAPTER II

Displacement, Velocity, Acceleration

19. Position of a Point. If we wish to give the position of a place on the surface of the earth, or of a star in the sky, we first choose some reference lines or points, and then state the distance of the place or the star from these. In geograpliy a place is precisely located by stating its longitude east or west from a certain meridian which passes through Greenwich, in England, and its latitude north or south of the equator. Thus Toronto is said to be in longitude $79^{\circ} 24^{\prime}$ west and latitude 43° 40^{\prime} north. In astronomy a similar method is used, the corresponding terms being right ascension and declination.

In the same way we can locate the position of a house by referring it to two intersecting streets or roads.

Suppose we wish to state the position of a point P. Draw two lines of reference $O X, O Y$. (Fig. 10.) Then if we know the

Fra. 10.-Lacating a point by means of two lines of refer. ence.

Fre. 11.-Locating a point by means of a length and an angle.
lengths x, y, of the two perpendiculars from P upon $O Y, O X$ we know the position of the point P with respect to the lines $O X, O Y$, or to the point O.
Again, if the length $O P$ (Fig. 11), and the angle made with the line of reference $O X$ be known the position of P is definitely fixed.
20. Displacement. If a body is moved from O to P we say

Fis. 12. - The addition of displacements. it has suffered a displacement $O P$. (Fig. 12.) Next let it be displaced from P to Q. It is evident that if we consider only change of position, the single displacement $O Q$ is equivalent to the two displacements $O P, P Q$, though the length of path from O to Q by way of P is greater than that from O to Q directly.

The displacement $O Q$ is the resultent of the two displacements $O P, P Q$, eaeh of whieh is called a component displacement.

Next let a point suffer displacements represented in direction and magritude by the lines $O P^{\prime}, P^{\prime} Q$, $Q R, R S$; then $O S$ is the resultant of all these displacements. (Fig. 13.)
21. Velocity. Daily observation shows that to produce a displatement time is always reguired. When we travel on a railway we pay for the amount of our displacement but we are also coneerned with the time

Fic. 13.-The addition of tour displacements. consumed. This brings us to the idea of velocity or speed.

Velocity is the rute of chunge of position, or in other words, the time-rate of displacement.

Veloeity involves the idea of direction. When we speak of the rute without reference to direetion it is better to use the term speed.

If we travel 300 miles in 10 hours, our average speed is 30 miles per hour.

Fio. 14. - Average velocity is equal to the space divided by the tlune.

Let a body travel the distance $A B$, s centimetres, in t seconds; then

Average velocity $=\frac{s}{t}=v$ centimetres per second.
22. Uniform Velocity in a Straight Line. The velocities we have to deal with are usually not constant. On a longr level track a railway train goes at an approximately uniform speed, though this changes when starting from, or approaching, a station. If the velocity is uniform in a straight line we have

Space	$=$ Velocity \times Time
or s	$=v t$.
Thus if n	$=150$ centinetres per second,
and t	$=20$ seconds,
Then s	$=150 \times 20=3,000$ centimetres.

problems

1. Find the equivalent, in feet per second, of a speed of 60 miles per hour.
2. An eagle flies at the rate of 30 metres per second; find the speed in kilometres per hour.
3. A sledge party in the arctic regions travels northward, for ten successive days, $10,12,9,16,4,15,8,16,13,7$ miles, respectively. Find the average velocity.
4. If at the same time the ice is drifting southward at the rate of 10 yards per minute, find the avcrage velocity northward.
5. Acceleration. If the velocity of a particle is not uniform we say that the motion is accelerated. If the velocity increases, the acceleration is positive; if it decreases, the acceleration is negutive. The latter is sometimes called a retardation.

Let a body move in a straight line, and measure its velocity. At one instant it is 200 cmin. per second; 10 seconds later it is 350 cm . per second. The increase in the velocity acquired in 10 seconds is 150 cm . per second, and if this lias been gained uniformly the increase per second will be 15 cm . per second. This is the acceleration.

If the velocity had decreased in 10 seconds to 50 cm . per second the loss of velocity would have bean 150 cm . per second, and the loss per second would have been 15 cm . per secom. In this case the acceleration is $\mathbf{-} \mathbf{1 5} \mathrm{cm}$. per second per second.

Observe the two time phrases "per second, per second." The first is used in stating the velocity gained (or lost), the second gives the time in which the velocity is gained (or lost).

Acceleration is rete of chunge of velocity.

PROBLEMS

1. A railway train changes its velocity uniformly in 2 minutes from 20 kilometres an hour to 30 kilometres an hour. Find the acceleration in centimetres per second per second.
2. A stone sliding on the ice at the rate of 200 yards per minute is gradually brought to rest in 2 minutes. Find the acceleration in feet and seconds.
3. Change an acceleration of 981 cm . per second per second into feet per second per second. (See Table, opposite page 1.)
4. Uniformly Accelerated Motion. Suppose the velocity of a particle at a given instant to be u centinetres per second, and let it have a uniform acceleration $+a$; i.e., it gains in each second a velocity of a centimetres per second.

Here the gain in velocity in 1 second is a con. per second; the gain in t seconds is at cin. per second; and the velocity at the end of the t seconds is the original velocity + the gain, i.e.,

$$
v=u+a t \text { cm. per sec. }
$$

The change in the velocity due to uniform acceleration is equal to the product of the acceleration and the time.

If the initial velocity is zero we have $u=0$, and

$$
v=a t \mathrm{~cm} . \text { per sec. }
$$

25. Average Velocity. Let a body start from rest and move for 10 sec , with a miform acceleration of 8 cm . per sec. per sec. Then the velocities at the ende of the

1 st. 2 md .3 rd. 4 th. 5 th. 6 th. 7 th. 8th. 9 th. 10 th. sec. $\begin{array}{llllllllllll}\text { are } & 8 & 16 & 24 & 32 & 40 & 48 & 56 & 61 & 72 & 80 & \mathrm{~cm} .\end{array}$ per sec., respectively.
Thus, at the beginning the velocity is 0 cm . per sec.; at the end of 5 secs., 40 cm . per sec.; and nt the end of 10 sec ., 80 cmI . per sec. The increase during the first half of the time is the same as that during the last half, and so the average velocity is one-lalf the sum of the initial and final velocities, i.e., $\frac{1}{2}(0+80)$ or 40 cm . per sec.
If the initial velocity had been 5 cm . per sec. the velocitics at the ends of the successive seconds would have been, respectively,

$$
13,21,29,37,45,53,61,69,77,85 \mathrm{~cm} . \text { p } \epsilon . \text { sec. }
$$

The avernge velocity is thit possessed by the body at the middle of the time, or 45 cm . per sec., and this $\left.=\frac{1}{2}(5)+85\right)$, or is equal to one-half the sum of the initial and final velucities, as before.
26. Space Traversed. First, het the initial velocity be zero. In t seconds, with an acceleration $a \mathrm{~cm}$. per sec. per sec., the final velocity $=a t \mathrm{~cm}$. per sec.
The average or mean velocity $=\frac{1}{2}$ (Initial + Final velocity $)$.

$$
\begin{aligned}
& =\frac{1}{2}(0+a t) . \\
& =\frac{1}{2} \text { at em. per sec. }
\end{aligned}
$$

This is the velocity when one-half the time has elapsed.
Now the space passed over

$$
=\text { average vclocity } \times \text { tims } ;
$$

hence if s represents space,

$$
s=\frac{1}{2} a t \times t=\frac{1}{2} a t^{2} \mathrm{~cm} .
$$

Next, let the initial velocity be $u \mathrm{~cm}$. per sec. Then we have:
Initial velocity $=u \mathrm{~cm}$. per sec.
Final " $\quad=u+a t$ cin. per sec.
Average " $=\frac{1}{2}(u+u+a t) \mathrm{cm}$. per sec.
$=u+\frac{1}{2} a t$
Then space $s=$ average velocity \times time

$$
=\left(u+\frac{1}{2} a t\right) t=u t+\frac{1}{2} a t^{2} \mathrm{~cm} .
$$

In this expression note that ut expresses the space which would be traversed in time t with a uniform velocity u, and $\frac{1}{2} a t^{2}$ is the space passed over when the initial velocity $=0$. The entire space is then the sum of these.
27. Graphical Representation. The relations between velocity, acceleration, space and time in miformly accelerated motion can be shown ly a geometrical figure.

Fio. 15. - Space traversed can be represented by an area.
Let distance from 0 along the horizontal line $O X$ represent time in seconds, $O R$ representing t seconds, $O L$, one half of this or $\frac{1}{2} t$ seconds. Vertical lines represent velocities. The velocity at the beginning ${ }^{\prime \prime}$. is represented by $O M$; that at the end of t seconds by $R P$; nnd so on. At the middle of the time the velocity is $L Q$.

The velocity at the beginning is $u=O M$. At the end of t seconds it is $u+u t=R P$. Hence $N P=a t$. The mean velocity is $u+\frac{1}{2} u t=L ?$.

If the velocity is uniform (withont ucceleration), the space triaversed is ut.

Now in the figure, $"=O M$ and $t=O R$,
Hence $u t=O M \times O K=$ aren of rectangle $M K$, and the space traversed is represented by the area of the rectangle.

Again with accelerated motion the space traversed is

$$
\begin{aligned}
\text { But } \quad\left(u+\frac{1}{2} u t\right) \times t & =u t+\frac{1}{2} u t^{2}, \\
\text { and } & u t
\end{aligned}=\text { area of rectangle } M R,
$$

Hence the space traversed is represented by the area of the figure OMPR.
28. Motion under Gravity. The most fumiliar illustration of motion with uniform acceleration is a borly falling freely. Suppose a stone to be dropped from a height. At once it acquires a velocity downwards, which continually increases as it falls; and in a second or two it will be moving so fast that the eye can hardly follow it. In order to test experimentally the laws of motion we must devise some means of reducing the acceleration. The following is a simple and effective method of doing this.*

[^0]In a luaril 5 or \boldsymbol{i}^{2} feet long make n circular groove 4 inches wide and having a radius of 4 inches (Fig. 16). Paint the surface

Fio. 16. - Apparatus to iliustrate motion with uniform acceleration.
back and make it very smooth. Along the middle of the groove seratch or paint a straight line; and near one end of the board fasten a strip of lrass, accurately at right angles to the length of the growe and extending just to the middle of it.
Lay the board flat on the floor, and place a sphere (a steel lanll 1 in . to $1 \frac{1}{2} \mathrm{in}$. in diameter), at one side of the groove and let it go. It will run back and forth across the hollow, performing oscillations in approximately equal times. By connting a large number of these and taking the average, we can obtain the time of a single one.
Next let one end of the board be raised and over the groove dust (throngh 4 or 5 thiclanesses of mushin) lycopolium powder. Put the ball alongside the brass strip at one side of the groove and let it go. It oscillates across the groove and at the same time rolls down it, and the brass strip insures that it starts downwards withont any initial velocity. By blowing the lyeopodimm powder away a distinct curve is shown like that in the upper part of Fig. 16.
It is evident that while the ball rolls down a distance $A B$ it rolls from the centre line out to the side of the groove and back again; while it rolls from B to C, it rolls from the centre line to the other side of the groove and back again. These times are equal; let each be τ sec. (about $\frac{1}{3}$ sec.). In the same way $C D, D E, E F$ and $F G$ are each traversed in the same interval.

Now, $s=\frac{1}{2} a t^{2}$, where s is the space, a is the acceleration and t is the time ($\$ 26$).

Hence $A B=\frac{1}{2} / \tau^{2}$,

$$
\begin{aligned}
& A C=\frac{1}{2} a(2 \tau)^{2}=4 \times \frac{1}{2} a \tau^{2}=4 \times A B, \\
& A D=9 \times \frac{1}{2} a(3 \tau)^{2}=9 \times \frac{1}{2} a \tau^{2}=9 \times A B, \\
& A E=\frac{1}{2} a(4 \tau)^{2}=16 \times \frac{1}{2} a \tau^{2}=16 \times A B, \text { etc., }
\end{aligned}
$$

i.e., the spaces $A B, A C, A D, A E$, etc., are proportional to $1,4,9$, 16, ctc.; or the distance is proportional to the square of the time.

By laying in metre senle along the middle of the: groove these results cun be tested experimentally.
The following are sample measurements oltaninel with 1 inch and $1]$ inch batls, rolling down a lomer 6 feet long. In the third, fifth and seventh colmmes are shown the ratios of $A / A, A C, A D, A E$, AF, aml A ($;$ to $A / 1$.

	1 incly ball. Finl raised 20 (.nll.		$1 \mid$ inull lall. Eul raised :hy cin.		If inch ball. Finl raised 22.2 cm	
	cill.	Inatio.	cm.	Ratio.	cıI.	Ratio.
A 1	4.6	1.0	4.40	1.0	4.45	1.0
$1{ }^{\prime}$	1880	4.1	18. 3	4.2	18.65	4.2
d 11	40. 10	8.9	39.60	0.0	40.25	0.0
A E	711.28	15.4	71.90	16.1	72.9\%	:3.4
I \boldsymbol{F}^{\prime}.	111.10	24.6	108.45	24.6	111.00	24.9
18.	1i1].00	35.4	157.10	35.7	161.00	36.2

These ratios are very close to thie theoretical values $1,4,9,16$, 25, ete, the diserepancies being due to unavoidable imperfections in the board, small inaccuracies in measurement, ete.
29. To Measure the Acceleration of Gravity. The acceleration given to a falling booly loy the attraction of the earth is usually demited by the letter g. If we gradtall: increase the height from which a body is allowed to fall until at last it just reacles the ground in 1 second, we find the distance is about 16 feet. Now the measure of the acceleration is twice that of the space fallen through in the first second, and hence $g=32$, approximately.

The most accurate methorl of measuring the value of g is by means of the peudulum. In this way it is found that, using feet and seconds, $g=32.2$; and using centimetres and seconds, $g=981$.

These values vary slightly with the position on the earth's surface. At the equator $y=978.10$; at the pole, 983.11 ; at Toronto, 980.6 .
30. All Bodies have the same Acceleration. Galileo asserted that all bodies, if unimpeded, fall at the same rate. Now, common observation shows that a stone or a piece of iron, for instance, falls much faster than a piece of paper or a feather. This is explained by the fact that the paper or the feather is more impeded by the resistance of the air.

From the top, of the Laning 'lower of Pian (sere : 70), (inlikeo allowal balls mule of varions imaterials to fall, mal he showed that they foll in prowically the sane time. Sixty yous later, when the air-punipland laren inventerl, the statement remarling the resistance of the nir was verified in the following why. A coin andela feathor were phaced in a tule (lig. 17) funi or five foret lomg bund the nir was exhansterl. 'IMen, on inverting the tulte, it was fonmel that the two fell to tho other end together. The mone fully the air is removed from the tube the closer together do they fall.

31. Relation between Velocity and Space. We have found

$$
\begin{align*}
& v=u t, \text { or } t=\frac{v}{\imath} ; \tag{s,4}\\
& \text { ulso } s=\ell \text { ut }^{2} . \tag{s96}
\end{align*}
$$

Patting in this hater equation the value of t from the former we have

$$
\begin{aligned}
s & =1 u\left(\frac{v}{a}\right)^{2}=\frac{1}{2} \frac{v}{a} \\
\text { or } \quad v^{2} & =2 \pi s .
\end{aligned}
$$

Also, we have

$$
\begin{aligned}
v & =u+\boldsymbol{a t}, \text { ur } t=\frac{v-u}{u} ; \\
\text { nuld } v & =u t+\frac{1}{2} \boldsymbol{r} t^{2} .
\end{aligned}
$$

Fi6. 17. - Tuhe to nhow that a coln and a feather fall in a vactum with the same acceleratlon.

Puiting in the latter equation the value of t from the former, we obtain

$$
v=u\left(\frac{v-u}{a}\right)+\frac{1}{2} u\left(\frac{v-u}{a}\right)^{2}
$$

and on simplifying this expression we have

$$
v^{2}=u^{2}+2 a s
$$

NUHERICAL EXAMPLES

The meaning of the relations between velocity, acceleration, time ar. ${ }^{\lambda}$ space, expressed by formulas in $\$ \mathbf{\$} \mathbf{5 4}, 26,31$, can best be eomprehended by considering some numerical examples.

1. A person at the top of a tower throws a stone downwards with a velocity of 8 nm . per see., and it a arches the ground in 3 sec . Find the velocity with which the stone strikes the ground, and the height of the tower.

Here we have $"=800 \mathrm{~cm}$. per second,

$$
t=3 \text { sec., }
$$

$u=980$ em. per second per second.
But $r=n+\pi t$,
that is $=8(0)+980 \times 3=3740 \mathrm{~cm}$. per sec.
Agrain $s=u t+\frac{1}{2} u t^{2}$.
that is $=800 \times 3+\frac{1}{2} \times 980 \times 9=6810 \mathrm{~cm}$. (Height of tower).
If the stone is simply dropped instend of being thrown downards, and reaches the ground in i sec., we hare

$$
u=0 ;
$$

also $r=u t=080 \times 3=2940 \mathrm{~cm}$. per sec.,
and $s=\frac{1}{\frac{1}{2}} \mathrm{ut}^{2}=\frac{1}{2} \times 980 \times 9=4410 \mathrm{~cm}$.
2. A bullet is shot upwards with a velocity of 15 m . per scc. How high will it rise? How long will it take to reach the ground again?

In this case $u=1500 \mathrm{~cm}$. per sec.,
$a=-980$ (acceleration is negative).
The bullet continues to rise mutil, on reaching its highest point, its velocity is zero.

Hut. $\quad r^{2}=u^{2}+2$ us (§ 31);
and putting $r=0, u=1500, u=-980$,
we have $0^{2}=(1500)^{2}+2 \times(-980) \times s$;
from which $s=1148$ (nearly) cm. (Height of path).
Again, the bultet luses every second 980 cm . per sec. of its velocity. But by the time it reaches the top of its path it has lost its entire velocity of 1 j 00 cm . per sec.

Henee the time going up $=\underset{980}{1.57 n}=1.53 .$. seconds.
The bullet will then begin to desce:. 1 , and as it will gain 980 em. per see. during every second of its fall, it will require the same time to fall as it did to rise, and it will hare, on reaching the ground, a velocity as great as it had on starting upwards, but in the opposite direction.

Hence the time which has elapsed from its leaving the gromed until it returns is $2 \times 1.53=3.06$ seconds.

In both these examples the resistance of the atmosphere has heen disregarded, though its effect is considerable in the case of rapidly-moving or light bodies.

In all examples involving the metric system of mits it will generally be found advisable to express all lengths in contimetres, all masses in grams and all times in seconds.

PROBLEMS

Unless otherwise stated, take as the measure of the aceeleration of gravity, with centimetres and seconds, 980 ; with feet and seconds, 32.

1. A body moves $1,3,5,7$ feet during th:e 1 st, 2nd, 3 rd, 4th seconds, respectively. Find the averarge speed
2. Express a speed of 36 kilom ires per trour i:n em. per seeond.
3. A body fills freely for 6 se mils. Find the velocity at the end of that time, and the space passed wor
4. The velucity of a body at a cerciaio. :...nant is 40 cml . per sec., and its acceleration is 5 em. per see. per sec. What will be its velocity half-aminnte later?
5. What initial speed upwards must be given to a body that it may rise for 4 seconds ?
6. The Eiffel Tower is 300 metres high, and the tower of the City Hall, Toronto, is 305 it . high. How long will a body take to fall from the top of each tower to the earth ?
7. On the moon the acceleration of gravity is approximately one-sixth that on the earth. If on the moon a body were thrown vertically upwards with a velocity of 90 feet per second, how high would it rise, and how long would it take to return to its point of projection?
8. A bolly moving with miform accelcration has a velocity of 10 feet per second. A minute later its velocity is 40 feet per second. What is the aceeleration?
9. A body is projected vertically upward with a velocity of 39.2 metres per seeond. Find
(1) how long it will continne to rise ;
(2) how long it will take to rise 34.3 metres ;
(3) how high it will rise.
10. A stone is dropped down a deep mine, and one seend later another stone is dropped from the same point. How far apart will the two stones be after the first one has been falling $\overline{0}$ seconds?
11. A balloon ascends with a uniform acceleration of 4 feet per seeond per seeond. At the end of half-a-minute a body is released from it. How long will it take to reach the gromid?
12. A train is moving at the rate of $i 0$ miles an hour. On rounding a curve the engineer sces another train $\frac{1}{4}$ mile away on the track at rest. By putting on all brakes a retardation of 3 feet per second per second is given the train. Will it stop in time to avoid a collision?
13. Motion in a Circle. Lat a louly $I /$ be made to revolve

Fiu. 18.-- Motion in a cirile. miformly in a cirele with centre 0 and ratins r. A familiar illnstation of this motion is seen when a stome at the coul of a string is whirled abent.

In this case the bength of the line MO does not alter, and yet $/ /$ has a velocity with respect to 0 . This arises from the comtimal change in the direction of the line $1 / O$. Every time the boly describes a cirele its direction changes through 360°.

If the string were ent and $1 /$ were thus allowed to contime with the velocity it possessed, it womld move off in the tangent to the circle ${ }^{1 / T}$ T. This eftect is woll illustrated by the chops of water flying off from the wheels of a bicyele, or the sparks from a rapilly rotating comery wheel.

Wre sere, then, that our paint has a velocity with respuect to another whrn the line joinins thrm changes in magnitude or divection.

In the above case there is a change of whecity (heing a contimal change from motion in one tansent to motion in another), and hence there is an acoleration; and as the change in the velocity is miform the aceleration is constant. The acceleration is always directed towards the centre of the circle.
33. Translation and Rotation. If a boly move so that all points have the same sperel and in the same dierection we say that it has a motion of transiation. Examples: the cal of an elevator, on the pistom of an engine.

If. howerer. a borly move so that all

Fir. 19. - Showing motion of translation. points of it move in cirelos having as contre a point callem the centre of mass, or centre of gravity, ${ }^{*}$ the motion is a perre rotation. Example: a wheel on a shaft, such as the whed of a sewing-mathine or a tly-wherl.

Fin. 20. - Showing motion of rota. tion.

Usually, however, both motions are present, that is, the body has both tamslation and rotation. Examples: the motions of the planets, of a carriage wheel, of a buly thown inp in the air.

If a boly is rotating abont an axis through a puint O in it, it is eviflent that those points which atre ncar O, such as P, (Fig. Ol), have smaller speeds that have those points such as R, S, which are farther away.

But they all desmibe circles about 0 in the same time and hence their angular mocitios are all equal.

Again, consider the motions of A and l; with respect to each other. 'T'o a person at A the point $/ \$$ will revolve about him in the same time as the lroly rotates about 0 . Alsu, a person at $l ;$ will see A revolve about him in the same time.

For instance, suppose the body to rotate once in a second. All lines in the body will change their directions in the same manner, tmrning through 360 degrees, and returning to their former positions at the end of asecond.
34. Composition of Velocities. Suppose a passonger to be travelling on a railway train

Fio. ©l. In at rotating body all points have the same angular
velocity. which is moving on a straight track at the rate of 15 miles per hour, or 2 feet per second. While sitting quietly in his seat he has a motion of translation, in the direction of the track, of 2.1 feet per second.

Next let the passenger rise and move directly across the car, going a distance of 6 feet in $\stackrel{3}{2}$ seconds. His velocity across will be 3 feet per second.

In lig. $\geq 0, A$ is the position of the passenger at first. If the train wore at rest, in 2 seconds he wonld move from 1 to C, 6 fee:;

Fio. シ2.-Mution of a passenger walking across a moving railway rar.
while, if he sat still the train in its motion would cary him from A to $l f$ in 2 secombls, a distance of 44 foot. It is evident, then, that if the train nowe forward and the passenger move across at the: same time, at the end of 2 seconds he will be at D, i.e., $4 t$ feet forward and 6 feret across.

Moreower at the end of 1 secomel he will he $2 \cdot$ feet forwatd and 3 feet across, that is, half way from A to D. 'T!e motions which he has will camy him along the line $A D$ in 6 seconds.
35. Law of Composition. Another exanple will perhaps make

Fic. 23. - Showing how to add toyether two motione of a ring on a rod. eleamer this principle of comprounding velocities.

Let a ring h slide with uniform velocity along a smooth rod A / B, moving from ato k in 1 second. At the same time let the rod be moved in the direction $A C$ with a uniform velocity, reaching the position $C D$ in a second. The ring will be at D at the end of a second.

At the emp of half-aseremel from the lewiming the ring will be halfway along the rok, and the real will he in position (.') halfway between I I ind ('D). It is evident that between the two motions the ring will move miformly along the line i D, travelling this distrance in 1 second.

From these illustrations we can at once deduce the law of composition of velocities.

Let a particle possess two veloceties simultaneously, one represented in direction and magnitude by the line $A B$, the other by $A C$.

Complete the parallelogram al Fine et, The parallelogram of velocities. $I C$. Then the diagonal $A D$, will represent in magnitude and direction the resultant velocity.

Hence to find the resultant of two simultaneous velocities we have the following rule:-

Construct a parallelogram whose abujacent sides represent in magnitude awl clivertion the two velocities; theron the diagonal which lips between them will represent their resultant.

Each velocity $A B, A C$ is called a F : component; $A D$ is the resultant.

If there are more than two component velocities, such as $A B, A C$, $A D, A E$, proceed in the following way.

Find the resultant of $A P$ and $A C$; it is $A F$. Next, the resultant of $A F$
 and $A D$ is $A\left(\sigma^{\prime}\right.$; and finally, the re- Fla. 55.--How to combine more than sultans of $A G$ and $A E$ is $A l I I$. Thus A / I is the resultant of the four velocities $A B, A C, A D, A E$.
36. Resolution into Components. Suppose now a body to

Fig. 26. -If a velocity be represented
lye the diagonal of a parallelogram,
the adjacent sides will represt-nt its
19. 26. - If a velocity be represented
by the diagonal of a parallelogram,
the adjacent sides will represent, its
to. 26. - If a velocity be represented
by the diagonal of a parallelogram,
the adjacent sides will repress $-n$, its components. have a velocity represented by the line $A B$. This may be any length we choose. Int us describe a parallelogram having $A B$ as its diagonal. It is evident that the velocity represented by $A B$ is the resultant of the velocities represented by $A C, A D$. In this way we are said to resolve the velocity $A B$ into components in the directions $A C, A D$

NUMERICAL EXAMPLES

1. Suppose a vessel to steam directly east at a velocity of 12 miles pur hour, while a north wind drifts it sonthward at a velocity of 5 miles an hour. Find the resultant velocity.

Draw a line $A B, 12 \mathrm{~cm}$. long, to represent the first component velocity ; $A C, 5 \mathrm{~cm}$. long, to represent the second. (Fig. 27.)

Completing the parallelogram, which in this case is a rectingle, AI) will

Fio. 27.-Illustrating the motion of a vessel. represent the resultant velocity.

Here we have $\overline{A D}^{2}=A B^{2}+B D^{2}=12^{2}+5^{2}=169=13^{2}$.
Hence $A D=13$, i.e., the resultant velocity is 13 miles per honr in the direction represented by $A D$.
2. A ship moves east at the rate of $7 \frac{1}{2}$ miles per hour, and a passenger walks on the deck at the rate of 3 feet per second. Find his velocity relative to the earth in the following three cases, (1) when he walks towards the bow, (2) towards the stern, (3) across the deck.
3. A ship sails east at the rate of 10 miles per hour, and a north-west wind drives it south-east at the rate of 3 miles per hour. Find the resultant velocity.

To calculate the resultant accurately requires a simple application of trigonometry, but the question can be solved approxinately by drawing a carefnl diagram. Draw a line in the easterly direction 10 inches long, and lay off from this, by means of a protractor, a line in the south-east direction, 3 inches long. Complete the parallelogram and measure carefully the length of the cliagonal. (13.92 miles per hour.)
4. Find the resultant of two velocities 20 cm . per second and 50 cm . per second (c) at an angle of 60°, (b) at an angle of 30°. (Carefully draw diagrams, and measure the diagonals.)
5. A purticle has three velocities given to it, namely, 3 feet per second in the north direction, 4 feet per second in the east direction, and 5 feet per second in the south-east direction. Find the resultant. (Carefully dhaw a diagram.)
37. The Triangle and the Polygon of Velocities. The law for conıpounding velocities may be stated in a somewhat different form.

Let a particle have two velocities represented by $A B, C D$,
Fia. 23. - Representation of two velocities. respectively (Fig. 28). If we form a parallelogram having $A B, C D$
ats anljuent sides, thon we know that the diagomal represents the resinltant. (f゙ig. !!).)

Fhi. :).--Purallelogran) of velocities.

Fia. 30. -Triangle of velocilies.

Sinpose, however, that we diaw the line representing the velocity $C D$, not from A but from l (Fig. 30). 'Ihrin on joining $A D$ we form a triangle which is just ome hailf of the parallelogram in Fig. 29, and the side $A /$) of the triansie is equal to the diagonal of the praballohgram. It represents therefore the resultant of $A B, C D$.

We have then the following law :
If a borly hure two simullaneons velocities, and we represent them by the tro sides $A \mathrm{I}, \mathrm{I}, \mathrm{C}$ of a trimmle, taken in order, then the resmlant of the tro relucities will be represented by the third side $A C$ of the triangle.

Next, let the burly have several simmitaneous velocities, represented by the lines $d, l i, C, D$.

Fig. 31.- Polygon of velorities.
Place lines representing these velocities end to end so as to form fonr sides of a polygom, as in Fig. 3l. Then the resultant of A and B is c, the resnltant of c and C is d, and the resultant of d and D is e, which is therefore the resultant of A, B, C, D.

Hence we have the following law:
If a borly have several. simnltuneons velocities, and we represent - them as sides of a polygon, taken in order, then the closing side of the polygon will represent the resultant of all the relocities.
38. Composition of Accelerations. A body may possess simultaneous accelerations, and as these can be represented in the same way as displacements and velocities, they may be combined in precisely the same way as displacements and velocities.

In fact any plysical quantities which c n be represented in magnitude and direction by straight lines may be combined according to the polygon law. Such directed quantities are known as vectors.

CHAPTER III

Inertia, Momextlim, Fonce

39. Mass, Inertia. The mess of a body has been defined (§ 11) as the quantity of matter in it. Just what muller is no one can say. We all understand it in a general way, bat we camot exphin it in terms simpler than itself. We must ohtain our knowledge regarding it by experience.

When we see a young mankick a football high into the air we know that there is not much mutter in it. If it were filled with water or sand, so rapid a motion could not be given to it so easily, nor would it be stopped or caught so easily on coming down. A camnon ball of the same size as the football, and moving with the same speed, would simply plough through all the players on an athletic field before it would be hrought to rest.

In the same way, by wateining the behaviour of a team hitched to a wagon loaded with barrels, we can tell whether the barrels are empty or filled with some heary substance.

To a person accustomed to handling a utensil made of iron or enamelled-ware, one made of ahminium seems singulaty easy to move. A bottle filled with ortinary liquids is picked up and handled with ease, but one never fails to feel astonished at the effort required to pick up a bottle filled with mercury.

In every instance that body which demands the expenditure of a great effort in order to put it in motion, or to stop it, has much mutter in it, or has a grecet muss.

Onr experience thus leads us to conclude,
Finst, that it requires an effort to put in motion matter which is at rest, or to stop matter when in motion;

Secomil, that the amount of the effort depends on the amonnt of matter, or the nasss of the borly, which is put in motion or brought to rest.

When we say that cull mutter possesses inertice we mean just what the first of the above statements says; while the second states that the inertia of a body is proportional to its mass.
40. Momentum. We have seen that the greater the mass of a borly the more difficult it is to set it in motion or to stop it when it is in motion. Now, very little consideration will lead us to recognize that we must also take into account the velocity which a body has. It requires a much greater effort to impart a great velocity to a borly than to give it a small one; and to stop a rapidly moving body is much harder than to stop one moving slowly. We feel that there is something which depends on both mass and velocity, and which we can think of as quentity of motion. This is known in physies as momentum. It is proportional to both the mass and the velocity of the body, thus

$$
\begin{aligned}
\text { Momentunn } & =\text { mass } \times \text { velocity } \\
& =m \mathrm{~m}
\end{aligned}
$$

where m is the mass of the borly and r its, velocity of t:anslation.

Momentum is a directed quantity, and hence ($\$ 38$) momentio can be compounded hy the parallelogram or polygon law.

QUESTIONS AND PROBLEMS

1. Why are quoits made in the shape of a ring and not as dises cut from a metallic sheet?
2. Why is it that in the balance wheel of a watch most of the material is placed near the rim?
3. Compare the momentum of a ca: weighing 50,000 hilograms and moving with a velocity of 30 kilometres an hour with that of a camon bill weighing 20,000 grams and moving with a velocity of $50,000 \mathrm{~cm}$. per second.
4. A man weighing $1 \mathbf{1 0 0}$ pombls and rmoning with a velocity of if feet per second collides with a hoy of 80 pmmes moving with a velocity of 9 fuet per secoml. Comprate the momenta.
5. Newton's Laws of Motion: the First Law. In his "Principia,"* published in 1685 , Sir Isatac Newton stated, with a precision and clemmess which cammot be improved, the fundamental laws of motion.
'The First Lau' is as follows:-
Erray body continues in its stetr of rest, or of uniform motion in a straight line, unless it lo comprilled by extermal force to chanige that stute.

This Law states what happens to : l loxly when it is left to itself. Now, on the surface of the earth it is very difficult, impossible indeed, to leave a body entirely to

Sir lsaac Nifutos ($1642-17: \%$) at the age of s3. Demonstrated the law of kravilation. The greatest of mathematical physicists. itself, but the more nearly we cone to doing so the more nearly do we demonstrate the truth of the Law.

This Law is but a statement, in precise form, of the principle of inertia as explained in $\$ 39$.

42. Illustrations of the First Law.

(ic) A lump of dead matter will not move itself.
(b) A ball rolling on the grass comes to rest. The external force is the friction of the ball on the grass. If we roll it on a smooth pavement the motion persists longer, and if on smonth ice, longer still. It is seen that as we remove the extermal force (of frietion), and leave the boxly more and more to itself the motion continues longer, and we are led to believe that if there were no friction it weuld cuntinue uniformly in a straight line.
(c) An ordinary wheel if set rotating soon comes to rest. But a well-adjusted bicycle wheel if put in motion will contime to move

[^1]for a long time. Hare the extermal forme-the friction at the axleis made very small, and the motion prisists for a long time.

As illustrations of the haw of inertia we may eonsider the following.
(a) When a loromotive, ruming at a high rate of speed, leaves the a ils amel is rapilly hrought to a standstill, the cars lechind do mot inmordiately stop, bont continue plowshing ahemel, and usually do sovat damage luffore coming to rest.
 into the air, and his lnely persisting in its motion reaches the wther sille.
(r) In an earthquake the buildings tomed to remain at rest white the barth shaker umber them, and thay are broken and crumble down.

The evidence supporting the First Law is of a nongative character; and since in all wur experience we have never found anything contrary tw it, but as, on the other hand, it is in accordance with all our experience and observation, we camot but conclude that it is exactly true.
43. Newton's Second Law of Motion. C'luen!fr of mımentum is propen!iomel the the impressed forcer emel hakes phace in the direction in which the forree certs.

If there is a change in the condition of a borly (i.e., if it does not remain: at rest or in uniform motion in a straight line), then there is a change in its momentum, that is, in the quecutity of modion it possesses. Any such change is due to some external influence which is called fores and the amount of the change in a givon length of time is proportional to the impressed force. It is evident, also, that the total effect of a force depends on the length of time during which it acts. Agrin, force acts in some direction, and the change of momentum is in that direction.

The word force is used, in ortinary conversation, in an almost endless number of meanings, but in Physics the meaning is definite. If there is a chmerge of momentum, force is acting.

Sometimes, however, a body is nut free to :move. In this rase firre would trad to prextuee a chathe in the momentum. We emandela such cases by framing onr definition thas:

Fonce: is that whirh trods to chatuge momentum.
It is to be olsiserved that there is mosuggestion as to the canse or somree of force. Whatever the mature of the extermal influence on the boxly may be, we simply look at the effect: if there has been a change of momentum, then it is due to force.

It is evident, also, that the total effect of a force depends mon the time it acts.

Thus, suppense a certan force to act upon a boxly of mass me for I sreond, and let the velocity generated be r, i.f., the momentum prodnced is $m m$. If the force contimes for another second it will generate additional velocity v, or $2 v$ in all, and the momentimn produced will be $2 m e$; and so on.

Let us state this result in symbols.
Let F represent the force,
and t see. be the time dmring which it acts.
At the end of t sec. the force will have gencrated a certain momentum, which we may write me:

Then

$$
\begin{aligned}
\text { Force } \times \text { time } & =\text { momentmn produced, } \\
\text { or } F^{\prime} t & =m: \\
\text { Hence } F^{\prime} & =\frac{m \cdot \prime}{t}, \\
& =m \times \frac{v}{t^{\prime}} \\
& =\text { mut. } \\
\text { i.e. } \quad \text { Force } & =\text { mass } \times \text { accelcration. }
\end{aligned}
$$

It should be remarked that this equation hohds only when we choose proper units. However, F is always proportional to the guantity ma.
44. Units of Force. In further explamation of the action of furee, ennsifer the following arrangement.

F'ur. $3:-1$ ntretrlicel elautic cord exerting torce on a mass.
A mass of m grams rests on a smonth surface (that is, a surface which exrrts no friction as the mass moves over it), mod to it is attached an elastic cord the matural length of which is 20 col. Let now the cord le stretehed until its leugth is 2.5 cin., then 11 force will be exerted upon m and it will at ouce beriol to move.

If the hand continually moves forward fast enough to keep the lougth of the eord always 25 cm ., then the same foree will contimally net nикоn m.

Ther officet of the force will be to give a velocity to m, i.e., to gencrate momentum.

At the cund of 1 second let the velocity be $a \mathrm{~cm}$. per second; at the end of 2 secomds it will be $2 a \mathrm{~cm}$. per second; at the end of 3 secomls, $3 a \mathrm{~cm}$. per second; and at the end of t seconds, at em. per secoud. In this case there is given to the mass m an acceleration of $a \mathrm{~cm}$. per second per second.

If now the mass is 1 gram and the gain in velocity every sicond is 1 em. per second (or, in other words, the acceleration is $\mathbf{1} \mathrm{cm}$. per secomd per second), then the force which produced this is culled a dyme.

If the mass is 1 gram and the acceleration is $a \mathrm{~cm}$. per second per second, the force a dynes.

If the mass is m grams and the acceleration is a centimetres per scoonl per second, the force is m a dynes. If F represent this force, then

$$
\boldsymbol{F}^{\prime}=m \mathrm{c},
$$

or Force $=$ mass \times acceleration, as obtained in $\S 43$.

Let this velocity lee v feet pur sucond.

$$
\begin{aligned}
\text { Then } \frac{F t}{m \prime} & =1, \ldots P \prime=m v \\
\text { mul } F^{\prime} & =\frac{m \prime}{t}=\text { mue, ns before. }
\end{aligned}
$$

A poundat in thet force which urting on. 1 lb. muss for 1 sre. gencreles a velucily of 1 fl. per sec.
45. Average Force. If the momentun genernted in the interval t be mer, then

$$
\begin{aligned}
F^{\prime} t & =m v \\
\text { and } F & =\frac{m v}{t}
\end{aligned}
$$

If the force has not been constant all the time the above value is the cuenner forme acting during the interval.

PROBLEMS

1. A mass of 400 grams is acted on by a force of 2000 dynes. Find the acceleration. If it starts from rest, find, at the end of 5 sec., (1 , the velocity generated, (2) the momentum.
2. A force of 10 dynes acts on a body for 1 min., and produces a velocity of 120 cm . per see. Find the mass, and the acceleration.
3. Find the force which in 5 sec. will change the velocity of a mass of 20 grams from 30 cm . per sec. to 80 cm . per see.
4. A foree of 50 poundals acts on a mass of 10 lb . for 15 sec . Find the velocity produced, the acceleration and the momentum.
5. Gravitation Units of Force. The force with whose rffects we are most faniliar is the forrer of grucuitnliom, and we shall expross the dyoue anl pmondal in terms of it.
'Take a hmp of matter the mass of which is 1 gram. The carth pulls it downward with a force which we call a gramforce.

If now it is allowerl to fill firely, at the end of 1 secomel it will have a velocity of 980 (appoximately) centimetres per secomel.

Wre see then that
1 gm. force acting on 1 цm.mass for 1 sec. gives a velocity of 880 cm . per sec.; but 1 dyrue "

$$
\text { Hence } 1 \text { dyne }=\operatorname{anc}_{x}^{1} \text { of a gram-force. }
$$

The gram-force is a small yumatity, while the dyne is ano of this and so is a rery small quantity.

Using poomds and feet as units we have

$$
\begin{aligned}
\text { Hence } 1 \text { ponndal } & =: \quad p^{1} \text { pound-foree } \\
& =\frac{1}{2} \text { ounce-force. }
\end{aligned}
$$

Here 980 and $3 \mathbf{2}$ are ouly approximate values of the acceleration of grabity; they vary with the position on the rarth's surflicer. Ont the other hand the dyne and the poundal are quite indrpendent of position in the universe, and they are therefore known ats whsolute units of force.
47. Composition and Resolution of Forces. Since acceleration is a directed yuantity, and $F=m a$, it follows that force is also a directond quantity, and can therefore be represented in magnitude and dieretion by a straight line.
Just as displacements, velocitios, accelerations and momenta may be combined and resolved according to the parallelogram or pulygon law, so may forces.
48. Independence of Forces. It is to he olserved that each force proxluces its own effect, measured by change of momentum, quite independently of any others which may be acting on the borly.
Suppose now a person to be at the top of a tower 64 feet high. If he drops a stone it will fall vertically downward and will reach the ground in 2 seconds. Next, let it be thrown outward in a horizontal direction. Will it reach the ground as quickly?

By the Sicomed Law the force which gives to the stone an outurard velocity will act quite independently of the force of gravity which gives the dwoweard velocity. A horizontal velocity can have no effect on a vertical one, either to increase or to diminish it. Hence the laxly should reach the ground in 2 seconds, just the same as if simply dropped.

This result can be experimentally tested in the following way:
A and B are two upright sulpurts through which a ronl R can slide. S is a spring so arranged that when R is pulled back and let go it flies to the right. D is a metal sphere through which a hole is lared to allow it to slip wer the euld of $R . C$ is ano ther sphere, at the same rio. 33.-The ball C, following a curved palh reacheat the heishlt alove the flow as D. floor al the same time as D which falls verlically.

The rof R is just so long that when it strikes C, the sphere D is sit free. Thus C ' is projected horizontally ontwards while $/ /$ drops directly down.

By pulling R back to different distances, different velocities ean he siven to C, and thus different paths deseriber, as shown in the figure:

It will he found that no natter which of the curved paths C takes it will reach the floor at the same tine as D.

PROBLEMS

1. From a window 16 ft . above the groumd a ball is thrown in a hori\%intal direction with a velocity of 50 ft . [er seconc. Where will it suithe the ground?
[It will reach the ground in 1 sec., and will therefore strike the ground in) fect from the homse.]
2. A eannon is discharged in a horizontal direction over a lake from the top of a eliff 19.6 m . above the water, and the ball strikes the water 2500 m . from shore. Find the velocity of the bullet outwards, supposing it to be uniform over the entire range.
3. In problem 2 find the velocity downwards at the moment the ball reaches the water; then draw a diagram to represent the horizontal and vertical velocities, and calculate the resultant of the two.
4. Newton's Third Law of Motion. The Third Law relates to actions between bodies, and is as follows:

To every action there is always an equal and opposite reaction.
The statement of this law draws our attention to the fact that force is a two-sided phenomenon. If a body A acts on a body B, then B reacts upon A with equal force.

When we confine our attention to one body we look on the other body as the seat of an external force; but when we take both bodies into account we see the dual nature of the force.

If one presses the table with his hand, there is an upward pressure exerted on the hand by the table.

A weight is suspended by a cord: the downward pull exerted by the weight is equal to the upward pull exerted by the support to which the cord is fastered.

In the first of these examples action and reaction are both pressures; in the second they are tensions.

If motion takes place the action and reaction are measured by the change of momentum.

Thus, when a person jumps from a boat to the shore the momentum of the boat backward is equal to the momentum of the person forward.

When an apple falls to the earth, the earth moves upward to meet the apple, the momentum in each case being the same; but the mass of the earth is so great that we cannot detect its velocity upward.

When a pole of one magnet attracts or repels a pole of a second magnet, the latter exerts an equal attraction or repulsion on the first. In this case we cannot detect any material cord or rod connecting the two poles, along which is exerted a tension or a pressure; but it is probable, nevertheless, that there is something in the space between which transmits the action.

The following experiment will illustrate the third law: . A and B are two exactly similar ivory or stecl balls, suspended side hy side. A is drawn aside to C, and then allowed to fall and strike B. At once A cones to rest, and B moves off with a velocity "qual to that which A had.

Here the action is seen in the forward momentum of B, the reaction in the epual momentum in opposite direction which just brings A to rest. Of course, if we

Fig. 34.-The action of A on B is equal to the resction of B on A. call the latter the action, the former is the renction.

Suppose now A and B to be sticky putty balls so that when they collide they stick together; they will both move forward with onehalf the velocity which A had on striking. The student can easily amalyse the phenomenon in this case into action and reaction.

PROBLEMS

1. If the sphere B (Fig. 34) lats a mass twice as great as A, what will

Fin. 3.i.-An irnu ball eus. pended by a thread. happen (1) when A and B are of ivory? (2) when they are of sticky putty?
2. A h. low iron sphere is filled with gunpowder and exploded. It hursts into two parts, one part leing one quarter of the whole. Find the relative velocities of the fragments.
3. Suspend an iron ball (Fig. 3ō) about 3 inches in diameter with ordinary thread. By pulling slowly and steadily on the cord below the sphere the cord above breaks, but a guick jerk will break it below the ball. Apply the third law to explain this.
4 A rifle weighs 8 lbs . and a bullet weighing 1 oz . leaves it with a velocity of 1500 ft . per sec. Find the velocity with which the rifle recoils.
5. Sometimes in putting a handle in an axe or a hanmer it is accomflished hy striking on the end of the handle. Explain how the law of inertia applies here.

CHAPTER IV

Monent uf a Furcl: Cumposifion of Parallel Forces; Equilamicim of Forces
50. Moment of a Force. In stormy weather, in order to

Fig. 33.-The momicuf of a forer rlepends on the force keep the ship on her eonnse the wheelsman grasps the wheel at the rim (i.e., as far as possible from the axis), mal exerts a force at right angles to the line joining the axis to the point where he takes hold. (Fig. 36.)

From our experience we know that the turningrg effect upon the wheel is propontionitl to the force excrted and also to the distance, from the axis, of the point where the foree is applied.

Let $F^{\boldsymbol{F}}=$ the force applied,
$P^{\prime}=$ the perpendicular distance from the axis to the line $A B$ of the applied force.
Then the pronhet F_{1}) measures the tendency of the wheel to turn, or the tendency to produce angular momentam. This product is the moment of the jorer, which is detined ins follows:

The moment of a foise is the temdency of thet force to prouluce rotution of a berly.

If the direction of the foree F^{\prime} is not perpendientar to the line joining its point of applieation to the axis, the moment is not so great, since part of the force is spent uselessly in pressing the whel arginst its axis. In Fig. 36 , if $A C$ is the new direction of the foree, then p^{\prime}, the new perpendicular, is shorter than p^{\prime}, inn hence the prohet $F^{\prime} p^{\prime}$ is smatler.
51. Experiment on Law of Moments. We can experimentally trit the liw of moments in the following way:
$A l$ is a rod which can move freely about a pindriven in a lmaded at O, and two eonds attached to the emels A and β fists over pulleys at the edge of the boirl. Adjust these until the perpendieuliur distances from O upon the strings are 3 inches and 5 inches. Then if the
 wright $l^{\prime}=10$ o\%., the weight ($)$, to Fio. 37.-Apparatus for testing the halance the other, must $=60 \%$. law of moments.

> Here moment of force l ' is $10 \times 3=30$
> and " " $\quad \|$ is $6 \times 5=30$

For equilibrinm of the two moments, the promlucts of the forces by the perpendi alar distances must lie the same, and they must tend to prorluce rotations in opposite directions.
52. Forces on a Crooked Rod. For a body shapel as in Fig. 38,

Fin. is.- Balancing forces on a rod which is not straight. with forces P and ${ }^{\prime}$ acting at the ends A and P, the moment of P about O is $l_{1}^{\prime \prime}$, that of U is $\left(Y_{I}\right.$; but it is to be olserverl that they thm the rod in opposite directions. If we call the first positive, the other will le negative, and the entire tendency of the rod to rotate will be

$$
P_{p}-Q_{q}
$$

If $I^{\prime} / \prime-(!y=0$, the rod will be in equilibrium.
53. Composition of Parallel Forces. The behan r of pamallel forces acting on a rigid buly mity be invest.gnted ryprimentally in the following wiv:

M is a metre stick (Fig. 39) with a weight V suspended at its centre of gravity, and two spring balances j_{1}, l_{3}, held up by the
roll $A C$, support the stick and the weight. The eareful to have the balances hanging vertically.

Thake the readings of the balances l_{1}, B_{3}; let them be P and Q, respertively. Also, measime the distances $R S, S 7$ '.
Then we shall find that if the weight of the stick and W together is

$$
P+Q=U \text { and } P \times R S=Q \times S T .
$$

Again, if we take moments alout k we should have

$$
U \times R S=Q \times R T
$$

By shifting the position of R and 7 , various readings of the balances will be ohtained.

PROBLEMS

1. A rod is 4 feet long (Fig. 40) and one end rests on a rigid support. At distances 12 inches and 18 inches from that end weights of 20 lbs . and 30 llss ., respectively, are hung. What furce must be exerted at the other end in order to suppint these two weights?
Fio. 40.- What force is required to lift the weights? (Neglect the weight of the rod.)
2. An angler hooks a fish. Will the fish ajpear to pull harder if the rod is a long or a short one ?
3. A stiff rod 12 feet long, projects horizontally from a vertical wall. A weight of 20 liss. limg on the end will break the rod. How far along the pole may a boy weighing 80 llss . go hefore the pole breaks ?
4. Unlike Parallel Forces.- Couple. Let l^{\prime}, l^{\prime} be two equal parallel forces acting un a berly in opposite directions (Fig. 41). The entire effect will be to give the body a motion of rotation without motion of translation.

Such a pair of furces is called a couple, and the moment of the couple is measured by the product of the force into the perpendicular distance between them. Thus if d is this distance, the magnitude of the couple is $P^{\prime} d$. 'This measures the rotating power.

Fia. 41.-Two equal opposite parallel forces produce only rotation.

Next suppose there are two unlike parallel forces P, Q and
that Q is greater than P. Then the forces P and Q are equivalent (1) a couple tencling to cause a rotation in the direction in which the hands of a clock tum, and to a force tending to proclnce a motion of thanslation in the direction of Q, that is, to the left land (Fig. 42).

This can be seen in the following way. Divide Q into two forces P and $Q-P$. The portion P, along with P acting at the other end of the rud furms a couple, while the force $Q-P$ will give a motion of trimslation to the borly in its direction.

Fig. 42.-Two oppoelte parallel lut unergual forces proaluce both rotation and translatlon.
55. Experimental Verification of the Parallelogram Law. By means of an experiment we can test the truth of the law of the Parallelogrum of Forces, which states that if two forces are represented in magnitude and direction by two sides of a parallelogram, then their resultant will he represented, in magnitude and direction, by the diagonal between the two sides.

In Fig. 43, S, S^{*} are two spring balances hung on pins in the bar Alb, which may conveniently be above the blackboard. Three

Fic. 43. - How to test the law of parallelogram of forces.

Fio. 44.-The triangle of forces.
strings of unequal length are knotted together at O, and the ends of two of them are fastened to the hooks of the balances. A weight, II ounces, attached to the third string makes it hang vertically downward.

Thus three forces, namely, the tensions of the strings, pull on the knot O. The magnitude of the forces acting along the strings, $O S$, $O S^{\prime \prime}$, which we shall denote by P, Q, will be given by the readings on the balances, in ounces, let us suppose. The magnitude of the force acting along $O W$ is, of course, W ounces.

The three furcess P, Q, W act upon the knot O, and as it does not move, these forcess must he in equilibrium. The force W^{W} may he lowked upmas balameing the other forces 7 , 8 : and hence the resmitant of P, Q must be equal in magnitude to W but opposite in sense.

Draw now on the blackloard, immediately hehind the apparatus or in some other convenient place, lines parallel to the strings $O S$, O S", and make (OC, OI) as many units long as there are ounces shown on s', s', respect: $\quad \because$

On completing the parallelogram $O C E / 1 /$ it will be found that the dingmal (1N' is yertical, and that it is as many units long as there are ounces in Ir .
56. The Triangle of Forces. A slight variation will illustrate the triangle of forees.

On the lhackioard, or on a sheet of paper, draw a line $O D$, parallel to $O S^{\prime \prime}$, to represent the force Q (Fig. 44). From /) draw DC' parallel to OS and represonting P ' on the same scale. Then $O C$ will be foun.l to be parallel to $O W$, and will represent, on the same scale, the force II, lut in the opposite sense.
57. The Polygon of Forces. Next let five strings be knotted together on attached to a small ring, and passed over pulleys at

Fio. 45.-Experimental verification of the polygon of forces.
the edge of a circular board held vertically. To these attach weights $P,(U, R, S, 7$. In Fig. 45 these are taken to le $5,5,7$, 6, 4 ounces, respectively.

Since these forees are in eqnilibrinm we may look upon the force T as balancing the other four forces; and hemee the resnitant of $I,(), R, S$ is a foree eqnal to I but acting in the opposite direction.

On the blackboard draw n line $A B$ to represent P^{\prime} in magnitude and direction. From B draw $B C$ to represent $(Q$, from C draw $(')$ to represent R, and from J (law $1 / E$ to represent S.

If the figure hiss heen carefully drawn it will he found that the line joining l^{\prime} to A is parallel to T and proportional to it.

Thus if a number of fores neting on a particle are in equilibrium, they can be represented in magnitnde and direction by the sides of a polygon taken in order.

CHAPTER V

Ghavitation

58. The Law of Gravitation. One of our earliest and most faniliar obsemvations is that it leoly which is not supported falls towards the earth. 'lhis effect we attrilate to the rellinection of the enerth.

The rates at which borlies move whilst falling were diseovered hy Galileo (1564-1642), lot the genemal principle according to which the falling takes phee was first demonstrated by Newton.

Copernicus (1473-1543) had shown that the sun is the centre of our solar system, bint it was Newton who gave a reason why the varions bodies of the system move as they do. He showed that if we suppose the sun, the planets and their satellites to attract each other according to a simple law, now usnally known as the Newtonian Law, he could accomit not only for the revolution of the planets about the sun and the satellites abont the planets, lont also for some minute irregularities which on close exanination are fonnd to exist in their motions.

Having found his Law true for the heavenly boties, he went one step finther and extended it to all matter.
59. The Newtonian Law. Let m, m^{\prime} be the masses of two particles of matter, r the distance between them. Then Newton's Law of Universal Gravitation states that the attraction between m and m is proportional directly to the prodnct of their masses and inversely to the square of the distance between them.

$$
\cdots r^{\prime}=k \cdot \frac{m m m^{\prime}}{r^{2}}
$$

where k is a mmerical constant.
If $m, m c^{\prime}$ are senall spheres, each containing 1 gram of matter and r, the distance between their centres, is 1 centimetre, then $F^{\prime}=0.0000000648$ dynes. This is an excerdingly small quantity, and thens we see that between orlimary masses of matter the attractions are very small. Indend it is only by means of experiments made with the utmost care and delieacy that the attruction between bodies which we can ordinarily handle can be detected.

It is to be remarked that thongh the Newtonian Law states the manner in which masses behave towards each other, it does not offer any explanation of the action. The remsem why the attraction takes place is one of the mysteries of nature.
60. The Weight of a Body. Consider a mass m at A on the earth's surface (Fig. 46). The attraction of the earth on the mass is the weight of the mass. The mass also attracts the earth with an equal force, since aetion and reaction are equal.

If m is a pound-mass, the attraction of the earth on it is a pound-force; if

Fig. 46. - Altraction of the earth on a mass oul its surface and ilso twice as far away from the centre. it is a gram-mass, the attraction is a grem-force.

Now it can be shown by mathematical ealculation that a homogeneous sphere attracts as though all the matter in it were concentrated at its centre. We see then that if the whole mass of the earth were condensed into a particle at C and a pound-mass were placed 4000 miles from it the attraction between the two would be 1 pound-force.

 surfince womld $l_{n}!$ of n nomul-fares.

Fou, 47. Attraction of lhe mplere on a Inase within it.

If it Were 2000 miles from the earthis surfuce 146 6000 miles firm its centre, this distance is "an" "ar of of its former distmene, and the foree of attraction

$$
=\frac{1}{(\vdots)^{2}}={ }_{3}^{1} \text { of } 1 \text { [minnl-force. }
$$

61. Attraction within the Sphere. Let

Als be a homurgmems shell (like a hollow rubluer hatl) mul m a mase within it. It can be shown that the attraction of the sholl in any direction on m is \%ero. The "pull" exerom loy the protion at the side $/$; is just balanemb hy that at the side A.

Nuw let uy supprse the pomul-mans to be some distance-saty, o(0) miles-below the anth's surface (Fig. 4N), and we wish th find the attraction towarils the centre. Cinsider the parth divided into two parts, a splurer 2060 milas in radius, amd a shell sutside this stor milos thick. From what has just herom said, the attrantion of the shell onl the promd mass in erro, and so we need only find the attiaction of the inmor sphere.

Lat us assmme that the demsity of the math is miform. Then sime the ralins of the imme spliere is ! the matlis matins, its volume and also

Fio. 48. -Atiraclion on a mase hall-way 10 the earth's centre is one hail the attrac. (ion) at the surlace. its mase is: that of the sarth.

Hener if the mass only were cmusidered the attration wruld be ${ }_{4}^{1}$ |nemil-foree.

But the distance also is changed. It is now $\frac{1}{2}$ as great and the attration on that acemont should be increased $\boldsymbol{2}^{2}$, 4 times.

Hence, taking looth of those fictors into aceomet, we find that the attraction towards the centre upon the pomil-mass

$$
=4 \times \frac{1}{8}=\frac{1}{2} \text { pound-force. }
$$

Thus, on going down half-wny to the centre, the attraction is $\frac{1}{2}$ as great. If the distance were $\frac{1}{4}$ the distance from the centre, the attaction on the prund-miss would be $\frac{1}{4}$ prund force; and so on.
62. Attraction on the Moon. Lat us calculate the weight of n pound-mass on the surface of the memen.

The mom's diameter is 2163 miles and the earth's is 7 - .es, but for ease in calculation we shall take theso mumbers an 2000 and 8000 respectively.

Assuming, then, the ralius of the mom to be that of the earth, its volume is at that of the earth, mad if the two lanties were mually dense the moon's mass would also bee ait.

In this cave the attraction on a pound-mass at a distance of 4010 miles from its centre would he ha of a pound force.

Fis. 49.-dtiraution on the minon is one-biath that ofl the earlh.

But the distance is 1000 miles, or \ddagger of this, and the attraction on this necount would be f^{2} or 16 times as great.

Heace, attraction $=16 \times \frac{1}{81}=1$ pound-force.
But the density of the moon is only in that of the earth; and so the attraction

$$
=A_{i s}^{A} \times 1={ }_{i}^{A}=1, ~ a p p r o x i m a t e l y . *
$$

Hence if we could visit the menn, retaining our muscular strength, we would lift 600 pounds with the same ease that we lift 100 on the carth. If you can throw a base-ball 100 yards here, you could throw it 600 there.

On the surface of the sun, so immense is that boly, the weight of a pound-mass is 27 pounds-force.

QUESTIONS AND PROBLEMS

1. If the enrth's mass were doubled withont any change in its dimensims, how would the weight of a pomed-mass vary?
Could one use ordinary balances and the sime weights as we nse now?
2. Find the weight of a lody of mass 100 kilugrams at (i(10), 8000 , 10,000 miles from the earth's centre.
3. The dianeter of the phanet Mars is $\mathbf{4 2 3 0}$ miles and its density is ${ }^{7}$ If that of the eartl. Find the weight of a pound-mass on the surface of Mars.
4. The attraction of tho earth on a mass at one of its poles is she greater than at the equator. Why is this?
e. A spring-balance wonld hitce to be used to emprare the weight of a berly on the sum or the menn with that on the earth. Fixplain why.
[^2]
CHAPTER VI
 Wonk and Exemay

63. Definition of Work. When one draws water from a cistern hy means of a bucket on the end of a rope; or when bricks are hoisted during the erection of a building; or when land is phoghed up; or when a blacksmith files a piece of iron: or when a carpenter planes a board; it is recognized that urmit is done.

We recognize, tow, that the amome of the work done depends on two factors:-
(1) 'The anomit of water in the bucket, or the number of bricks lifted, or the force exerted to draw the plough, push the tile or drive the phate.
(2) The distance through which the water or bricks are lifted or the plough, tile or plane is moverl.

In every instance it will be observed that a force acts on a body and canses it to move. In the cases of the water and the bricks the forces exerted are sufficient to lift them, i.f., to wereome the attraction of the earth upon them; in the other cases, sulficiont firce is exerted to cause the plough or the tile or the plane to move.

In physics the term work denotes the quentity oldained wha are multiply the forre by the distance in the direction af the faree throulell which it rets.

In order to do work, force must be exerted on a booly and the lorly monst move in the direction in which the force acts.
64. Units of Work. By choosing varions mits of force and of length we obtain different units of work.

If we take as mit of foree a pound-fore and as unit of length a foot, the unit of work will be a foot-pond.

If 2000 pomnds mass is raised throngh 40 feet the work done is $2000 \times 40=80,000$ foot-pomils.

In the same wiy, a kilogram-metre is the work done in raising a kilogram throngh a metre.

If we take a centimetre as mit of length and a dyne as mit of foree the mit of work is a dyne-centimetre. To this has been given a special nime, erg.

$$
\text { Now } 1 \text { gram-force }=!\text { dynes } ;
$$

Hence 1 gram-eentimetre $=\boldsymbol{g}$ ergs.
To raise 20 grams throngh 30 em. the work required is $20 \times 30=600$ gran-centimetres $=600 g$ ergs $=600 \times 980$ or 588,000 ergs.
65. How to Calculate Work. A lag of flour, 98 pounds, has to be carried from the foot to the top of a cliff, whieh has a vertical face and is 190 feet high.

There are three patas from the base to the smmmit of the eliff. The first is by way of a vertical ladder fastened to the face of the eliff. The second is a rig-\%ing path 300 feet long, and the third is also a rig-rag ronte, 700 feet long.

Here a person might strap the mass to be earried to his baek and climb vertienlly up the laider, or take either of the other two routes. The distances passed throngh are 100 feet, 300 feet, 700 feet, respectively, but the result is the same in the end, the mass is raised throngh 100 feet.

The foree required to lift the mass is 98 pomnds-foree, and it acts in the vertical direction. The distance in this dirmtion through whieh the booly is moved is 100 feet, mad thereiore the

$$
\text { Work }=98 \times 100=9800 \text { foot-pounds. }
$$

Along the rigr-zan pathe the effort required to carry the mass is not so great, but the length of path is greater and so the total work is the same in the end.

PROBLEMS

1. Find the work done in exerting a force of 1000 dynes through a spitee of 1 metre.
2. A hock of stome rests on a horizontal pavement. A spring balance, inserted in a rope attached to it, shows that to drag the stone reguires a furce of 90 pomils. If it is dragged through 20 feet, what is the work done?
3. The weight of a pile-driver, of $\mathbf{2 5 0 0}$ pounds mass, was raised through 20 feet. How much work was repuired?
4. A coil-spring, naturally 30 centimetres long, is compressed until it is 10 centimetres long, the aremge force exerted being 20,000 dynes. Find the work done. Find its value in kilogram-metres ($y=980$).
$\overline{5}$. Two mell are cotting logs with a cross-cut saw. To move the saw requires :a force of $\mathbf{5 0}$ pomis, and in strokes are made per minute, the length of each being 2 feet. Find the annomt of work done by each man in one hour.
5. To push his cart a hamana man must exert a force of $\mathbf{6 0}$ pounds. How much work dones he do in travelling 2 miles?
6. Definition of Energy. A log, known as it pile, the lower emb of which is pointed, stands upright, and it is desired to push it into the carth. To do so requires a great force, and therefore the performane of great work.

The methorl of doing it is faniliar to all. A heavy block of irom is raised to a considerable height and allowed to full "pon the top of the log, which is thus pushed downwards. sinecessive blows drive the pile further and further into the earth, until it is down far enough.

Ihre work is done in thrusting the pile into its place, and this work is supplied by the pile-driver weight. It is evident then, that a heary borly raised to a height is able to do work. dhility to do rood is called ExEluiy.
The iron block in its elevated position has energy. As it desecmes it gives up this high pesition, ind wepuires volocity. Just brome striking the pile it has a great veloeity, and this velocity is used up in pushing the pile into the earth. It is char, then, that a borly in motion possesses energy.

We see, thus, that there are are two kinds of energy :
(1) Energy of position or putrntirel energy.
(2) Energy of motion or linctic energy.
67. Transformations of Energy. Energy may appear in different forms, but if closely amalysed it will be found that it is always either energy of position, i.e., potential energy, or energy of motion, i.f., kinetic energy.

The various effects lue to lieat, light, sound and electricity are manifestations of energy, and one of the greatest achievements of modern seience was the demonstration of the Principle of the Conservation of Energy. Aceording to this doctrine, the sum totul of the energy in the universe remains the valme. It may change from one form to another, but none of it is ever destroyed.

A pendulum illustrates well the transformation of energy. At the lighest point of its swing the energy is entirely potential, and as it falls it gradually gives up this, until at its lowest position the energy is entirely kinetic.
68. The Measure of Kinetic Energy. Suppose a mass m grams to lie lifted through a height h centimetres. (Fig. 50.)

The force required is m grams force or $m g$ dynes, and hence the work done is mgh ergs.

Suppose now the mass is allowed to fall. Upon reaching the level A it will have fallen through a space h, and it will have a velocity v such that

$$
r^{2}=2!h . \quad(\S 31 .)
$$

Fig. 50. - The potential energy at height B is equal to the kinetic energy on reaching A.

The potential energy possessed by the body when at B is $m g h$ orgs, and as this energy of prosition is changed into energy of motion, its kinetic energy on reaching A must also be mgh ergs.

But

$$
g^{h}==\frac{d}{d} v^{2}
$$

and so the kinetic energy $=\frac{!}{2} m v^{2}$ ergs.

Hence a mass m grams moving with a velocity $v \mathrm{~cm}$. per second has kinetic energy $\frac{1}{2} m v^{2}$ ergs.

If the mans is m ths, and the velocity $v \mathrm{ft}$. per sec., the kinetic energy $=1!m^{2} \mathrm{ft}$.-poundals $=!\frac{m r^{2}}{g} \mathrm{ft}$.-pounds, since 1 pound-force $=y$ poundals, where $g=32$. (See $\$ 46$.)
69. More General Solution. This result can be obtained in a somewhat more general way.

Let a force F dynes act for t seeonds on a mass m grams initially at rest.

Fig. 51.-The calculation of kinetic en ergy.
Let the velocity produced be $v \mathrm{~cm}$. pe: sec., and the space traversed be 8 cm .

The force F dynes acts through a space 8 cm ., and so does $F s$ ergs of work. The braly then at the end of the time possesses ''s ergs of $^{\prime}$ energy.

But its velocity $=r$ im. per sec.
Since, no ${ }^{\prime}$, the velocity at first $=0$, and at the end $=v$, the average velocity $=\frac{1}{2} v \mathrm{~cm}$. per sec.; and in time t seconds the space traversed,

$$
s=\frac{1}{2} v t \text { centimetres. }
$$

Also, the force F dynes acting for t seconds generates $F t$ units of mumentum. Bui the momentum $=m \mathrm{~m}$.

$$
\begin{aligned}
\text { Therefore } F t & =m v, \quad(\text { See } \S \S 43,44) \\
\text { and } F & =\frac{m v .}{\epsilon} .
\end{aligned}
$$

But the kinetic energy $=F_{8}$,

$$
\begin{aligned}
& =\begin{array}{c}
m \\
t
\end{array} \times \frac{1}{2} v t, \\
& =\frac{1}{2} m r^{2} \mathrm{ergs} .
\end{aligned}
$$

70. Matter, Energy, Force. There are two fundamental propositions in science:-Matter cannot be destroyed, energy cannot be destroyed. The former lies at the basis of
analytical chemistry; the latter at the latsis of physies. It is to be observed, also, that matter is the vehicle or receptacle of encrgy.

Force, on the other hand, is of all entirely different naturc. On pulling a string a tension is exerted in it, which disappears when we let it go. Energy is bought and sold, force cannot be.

Again consider the formula $s=r t$. Writing it thus, $v \quad{ }_{-t}^{s}$, we say that velocity is the time-rate of traversing space.

$$
\begin{aligned}
\text { Similarly Work } & =\text { Force } \times \text { Space }, \\
\text { or } W & =\text { Fs. }
\end{aligned}
$$

Writing this formula thus, $F={ }_{8}^{W}$, we can say that force is the space-rate of change of energy.
71. Power. The power or activity of an agent is its rate of doing work.

A horse-power ($\boldsymbol{H} .-\boldsymbol{P}$.) is that rate of doing work which would accomplish 33,000 foot-pounds of work per minute, or 550 foot-pounds per second.

In the centimetre-gram-second system the unit of power would naturally be 1 erg per second.

But this is an extremely small quantity, anl instead of it we use 1 watt which is defined thus :

$$
1 \text { watt }=10,000,000 \text { ergs per second. }
$$

It is found that

$$
\begin{aligned}
746 \text { watts } & =1 H .-P . \\
\text { and if } 1 \text { kilowatt } & =1000 \text { watts, then } \\
\frac{746}{1000} \mathrm{~K} . W . & =1 \mathrm{H} .-\mathrm{P}
\end{aligned}
$$

CHADTER VII

Centre of Gibatity

72. Definition of Centre of Gravity. Each particle of a boty is acted on by the force of gravitation. The line of action of each little force is towards the centre of the earth, and hence, strietly speaking, they are not absolutely parallel. But the angles between them are so very simall that we usually speak of the weights of the various particles as a set of parallel forces.
These forces have in single resultant, as can be seell in the
 following way.

Consider two forces F_{1}, F_{2}, acting at A, B, respectively (Fig. 52). These will have a resultant acting somewhere in the line $A B$ which joins the points of application.

Next, take this resultant and mother foree; they will have a single resultant.

Fig. 5y-The weight of a loxly acts at its centre of gravity. Soce; thay will hare ne

Continuing in this way, we at last come to the resultant of all, acting at some detinite point.

The sum of all these forces is the weight of the booly, and the print (i) where the weight rects is called the CENTRE of rikavity of the buly. If the boly be supported at this point it will rest in equilibrimn in any position, that is, if the body is put in any prosition it will keep it.

73. To find the Centre of Gravity Experimentally.

 Suspend the body hy a cord attached to any point A of it.Then the weight acting at G and the tension of the string acting upwards at A will rotate the berly until the point G comes directly beneath A, and the line $G W$ is coincident with the direction of the supporting cord (Fig. 5.3).
Thus if the body is suspended at A, and allowed to come to rest, the direction of the supporting cord will pass through the centre of gravity.

\&'10. 63. -llow 10 find the centre of gravity of a lody of ans formb.

Next let the body be supported at B. The direction of the supporting cord will arain pass throngh the centre of gravity. That point $i_{s,}$, therefore, where the two lines mert.

In the case of a flat boly, such as a sheet of metal or a thin

Fu. 1.4π

Fin. itb

How to fian the centre of grasity of a that lurts. brard, let it he smpported at A (Fig. 5tat) by a pin or in some other concenient way. Have a cord attached to A with a small weight on the end of it.

Chalk the cord and then smap it on the plate: it will make a white line across it.

Next, support the body from B (Fig. $54 b^{\prime}$) and oltain another chalk line. At G, the point of intersection of these two lines, is the centre of gravity.
74. Centre of Gravity of some Bodies of Simple Form. The centre of gravity of some borlies of simple form can often be dednced from geometrical considerations.
(1) For a straight uniform latr $A B$ (Fig. 5:), the centre of gravity is unidway between the ends.
(2) For a parallelogram, it is at the intersection of the diaromals. (Fing 5ti.)

Fin. s. - Centre of gravity of a paralleloprain and a triaugle.
(3) For a cube or a sphere, it is at the centre of figure.
(4) For a triangle, it is where the three median lines intersect. (Fig. 56.)
75. Condition for Equilibrium, For a boxly to rest in equilibrium on a plane, the line of action of the weight must fall within

Fis. si.- A and C are in atabie equiiibrium ; B is not, it will topple over ; D is in the critical position.
the supporting base, which is the space within a cord drawn about the points of support. (Nee Fig. 57.)

Fig. 63.-The leaning Tower of l'isa. It overlinags its base more than $1: 3$ feet, lut it is stahile. (1)rawn (romt a photograph.)

The fanons Leaning Tower of Pisa is an interesting case of stability of equilibrium. It is circular in plan, 51 feet in diameter and 172 feet high, and has eight stages, including the belfry. Its construction was begun in 1174. It was founded on wownlen piles driven in boggy ground, and when it had been carried up 35 feet it legan to settle to one side. The tower overhanys the base upwards of 13 feet, but the centre of gravity is so low down that a vertical through it falls within the base and hence the equilibrium is stable.
76. The three States of Equilibrium. The centre of gravity of a borly will always descend to as low a position as prssible, or the potential energy of a loxly teuds to become a minimum.

Consider a borly in equilibriun, and suppose that by a slight motion this equilibrium is disturbed. Then if the borly tends to return to its former position, its equilibrium is said to be stable. In this case the slight motion raises the centre of gravity, and on letting it go the booly tends to return to its original position.

If, however, a slight disturbance lowers the centre of gravity the bonly will not return to its original position, but will take up a new ponition in which the centre of gravity is lower than before. In this case the equilibrium is said to le unstable.

Sometimes a body rests equally well in any position in which it may be placed, in which case the equilibrium is said to be nentral.

An egg standing on end is in unstable equilibrium; if resting on
its side the equilibriun is stable as regarls motion in an oval section and neutral as regards motion in a circular section. A uniform sphere rests anywhere it is placed on a level surface ; Fio. 69.-Stable, unatnble and neutral its equilibriuin is neutral. (Fig. 59.)

A round pencil lying on its side is in neutral equilibrium; balanced on its end, it is unstable. A cube, or a brick, lying on a face, is stable.
The amount of stability possessed by a body resting on a horizontal plane varies in different cases. It increases with the distance through which the centre of gravity has to be raised in order to make the borly tip over. Thus, a brick lying on its largest face is more stable than when lying on its suallest.

QUESTTONS AND PROBLEMS

1. Why is a pyramid a very stable structure?
2. Why is ballast used in a vesself Where should it be put?
3. Why should a passenger in a canoe sit on the brittom?
4. A pencil will not stand on its puint, but if two pen-kuives are fastened to it (Fig. 60) it will balance on one's finger. Explain why this is so.
5. A uniform iron bar weighs 4 pounds per foot of its length. A weight of 5 pounds is hung from one end, and the rod balances ahout a point which is 2 feet from that end. Find the length of the har.
the ${ }^{60 .-W h y ~ i n ~}$ equilitorium?
6. Illnstrate the three states of equilibrimu by a cone lying on a horizontal table.

('HAP'TER VIII

Frmerins

77. Friction Stops Motion. A stone thrown along the ice will, if "l.ft to itself," come to rest. A railway-train on n level track, or an ocean stemmont will, if the stemin is slat off, in time come to rest. Here much energy of motion disappears and in gain of energy of pusition takes its phere. In the same way all the machinery of a fictory when the "power" is themed alf same cone to rest.

In all these casises the rimerge simply seems to disappear and be worled. As we shall sere latrer, it is transformed into energy of another form, namely, heat, lint it is done in such a way that we cannot utilize it.

The stopping of the motion in avery instance given is clue to firiction. When one lanly slides or colls ower another there is always friction, which acts as a force in opposition to the motion.

It may be observed, however, that if there were not firiction betwern the mils mud the wherls of the locomotive, the latter conld not start to move.
78. Every Surface is Rough. The smoothest smrface, when examined with a powerful microseope. is seen to have numerous little proFio. 61.-Roughness of a surtace jections and cavities on it (Fig. 61), as setti urder a miteroserye. Hence when two surfaces are pressed together there is a kind of interlocking of these irregularities which resists the motion of one over the other.
79. Laws of Sliding Friction. Friction depends upon the nature of the sulbstances and the roughness of the surfaces in rontact; and as it is impossible to avoid irregularities in surfaces. nccurate experiments to determine the laws of friction nre very difticult. By means of the apparatus shown in Fig. 62, the laws of sliding friction can be investignted.
M is a flat block resting on a plane surface. A coril is attuched to it and passes over a pulley. On the end of the cord is a pan holding weiglits.

Let the entire weight on the pan be F^{\prime}; then the tension of the corrl, which is the furce tending to move the block M, is equal to F.

Nuw let F be increased antil the blow M moves uniformly over the surface. The friction developed just lailances the furce F. If $\boldsymbol{\prime}$ were greater than the friction it wonld give an aceeleration to M.

Suppose that the weight on the block is doubled. In oriler to give it uniform motion to M we shall have to add double the weight to the pan.

Thus the ratio \boldsymbol{F} / W is constant ; it is called the coeficient of friction between the block M and the surface.
For dry pine, smooth surfaces, the coefticient is about 0.25 , i.e., a 40 -pound block would require a 10 -pound force to drag it over a horizontal pine surface.

For iron on iron, smooth but not oiled, the coefficient is about 0.2 ; if oiled, about 0.07 . This slows the use of oil as a lubricant.

The following laws have been extablishes by experiment:
(1) Friction varies directly as the pressure between the surfaces in contact.
(2) Friction is independent of the extent of the surfaces.
(3) Friction is independent of the rate of motion.
(4) The friction at the instant of starting is greater than in a state of uniform motion.
80. Rolling Friction. When a wheel or a sphere rolls on a plane surface the resistance to the motion produced at the pint af contact is said to be due to rolling friction. This, however, is very different from the friction just discussed, as there is no sliding. It is also very much smaller in magnitule.

Aftre a railn, when mome rust has formed on the rails, the power reguiral to draw a traill were them is comsiderably gronter than when they are dry and sumenth, since the conelieient of frietion is higher.

In ortinary whucels, however, sliding friction is not a veided. In the conse of the luhb of a carringe (Fig. 6:3) therw is slisting friction at the point ('.

F10. 63. - Rection through a earriaze hul. whowing an orlinary bearing.

Finct. - Rection of tise crainh of a bicyere. The culp which holde the lallis and the enne on which they on are shown memarately elow. Here the linly pointe and the cone in one it it a "three point" bearing.

In ball-bearings (Fig. 64), which are much used in bicycles, nutomobiles null other high-class bearings, the sliding friction is almost completely replaced by rolling friction, and hence this kind of temring has great advantages over the other.

QUEETIONS AND PROBLEME

1. Fxplain the utility of frietion in
(11) Lecmutive wheels on a railway tr :is.
(b) Leather belts for tramsmitting power.
(c) Brakes tu stup a noving car.
2. The current of a river is less rapid near its hanks than in mid-strenm. Can you explain this?
3. What horizontal furce is required to drag a trunk weighing liso pounds acruss a flow, if the coefticient of friction between trink and floor is 0.3 ?
4. Give two reasons why it is mure diffienle to start a heavily-talen cart than tw keep, it in motion after it has started.
ธ. A briek, $2 \times 4 \times 8$ inches in size, is slid over ice. Will the distance it moves dejend on what face it rests upon?

(:HAP'IER IX

Mamines

81. Object of a Machine. A machine is a device by which energy is transferred from one phee to another, or is transformed from one kind to another.

The six simplest machines, unaally known as the mechanical powers are, the lever, the pulley, the whed and axke, the inchined plane, the wedge and the screv:. $\quad 1 i$ ' other machines, $n 0$ matter how complicated, are but comberations of these.

Since energy camot to created of Amanowl, hat imply
 ing friction, the amoment of work $i^{\prime \prime \cdot}$: ith in amolime i. . 'pual to the amount which it will delicer.
82. The Lever; First Olass. 'Thr lins is a riciid rokl movable about a fixed axis called the "ilw? I Lever are of three classes.

First Class. In Fig. $65 A B$ is a rigid mow which can tmon

Fig. 65.-Lever of the firnt clase.
about O, the fulcrum. By applying a force F at A a force W is exerter at B against a heavy body, which it is desired to raise.
$A O, B O$ are called the $a r m \times$ of the lever.
Then by the principle of moments, the moment of ase force F about O is equal to the moment of the force W alont 0), that is,

$$
\begin{aligned}
& F \times A O=W \times B O \\
& W=\frac{A O}{B O} \\
& \boldsymbol{F}^{\prime}
\end{aligned}
$$

$\frac{\text { Force obtained }}{\text { Force applied }}=$ Inverse ratio of lengths of arms.
This is called the Law of the Lever, and the ratio W/F is called the mechanical alvantage.

Supnese, fir instance, $A 0=31$ inchers, $B 6=4$ inches.

There are many examples of levers of the: first class. Among them are, the common balance, a pmin hande, a pair of seissoms (lig. 66t), a claw-hammer (Fig 67).

Filth Ali. Nheary, liver of life first clang

Filu. 67. Alow hanimir, oned as a lever of the Itrut illusw.

The law of the hower ratn be oltained by aplyine the primeiphe al "torms.

Fiu. 6s
and the emil 13 thromphat distance b. It is evidnont that

$$
\ddot{B}=\frac{A O}{B O}
$$

Now the work dome by the foree F^{\prime}, arding thomgha distance "is $\boldsymbol{k}^{\prime} \times$ ", whild the work done ly Il^{\prime} anting thromert a distanese b is $\| \times b$.

Nompecting all considemations of friction or of the weight of the lover, the work dome hy the appliad foree f mont be enplal to the work atemplishal by the foree: W.

Honce $\operatorname{Fit}^{\text {l }}=\mathrm{Wb}$,
aml the mechanical mbantage $\frac{\|^{\circ}}{F^{\prime}}==\frac{\prime \prime}{\prime \prime}=\frac{A 0}{B O^{\prime}}$
Which is the latw of the lever:
83. The Lever; Second Class. In levers of the secomd class the weight to be lifted in phaced letwern the point where the force is applien and the fulermo.

As before, the force F is uplied at A (Fig. (i9), but the foree produced is exerted at B, hetween A and the fulermin O.

Fio. 70.-Thenry of the lever of the second clase.

Fin. 68. - Lever of the seconil clasm.
Here we have, by the principle of moments,

$$
F \times A O=W \times 130
$$

and the meehnicul mantage $\frac{W^{\gamma}}{\boldsymbol{F}^{\prime}}=\frac{A O}{B O}$, which in levers of this chass is always greater thum 1.

Or, hy upplying the principle of energy (Fig. 70), work done by F is $F \cdot 1$, by W is $W \%$.

Hence $F_{1 \prime}=W b$,

$$
\text { or } \quad \frac{W}{F}=\frac{(t}{b}=\frac{A O}{B O^{\prime}} \text { the law of the lever: }
$$

Examples of levers of the second class: nut-crackers (Fig. 71), trimming fomed (Fig. 72), safety-vulve (Fig. 73), wheclbarrow, oar of a rowboat.

Fio. is.-Trimming board for cutting paper or candhoard; lever of the second class.

Fig. 71. -Nut-crackere, lever of the second clase.

Fie. 73. - A nafely-valve of a utean: foller. (liever of the eerond clam.) L it the feverarm, V the valve on which the pressure is exerted, W the welght which io litted, F the fulcrum.
84.-The Lever ; Third Class. In this case the force \boldsymbol{b} is applied betwen the fulcrum and the weight to be lifted. (Fig. it.) As before, we have

$$
F \times A O=W \times B O
$$

or $\begin{aligned} & \mathrm{ll} \\ & r^{\prime}\end{aligned}=\frac{A 11}{}{ }^{\prime \prime}$, the line of the lever:
Nutice that the wright lifted is always hess than the foree applied, or the mechanical advantage is less than 1.

Fx:mplas of horems of this class: sugar-tongs (Fig. 75), the homan forearm (Fig. 76); treadle of a lathe or a sewing machine.

Fia. : $5,-$ Sugar.tongw, lever of the third claws.

fint if.-lluman forearm, lever of the thiril class. Ine end of the licepo mitsele Is attached at the shoulder. the other is attached to the radial bone near the elbow, and ezerta a force to raise the weight in the hand.

PROBLEME

1. Explatin the action of the steelyaris (F'is. 7.). TH, which chass of levers does it helonge ? If the distance from 1 i to 0 is 1 inches, and the sliding weight I when at a diatance: 6 inches from 11 hatalleres a mase of 5 Il . oll the hook. what must be the weight of I '

If the mase oll the howk is tow great In I, halame bel I. what adlitional attachimity wonld be required in orther to weigh It !

Fiu. 77. - The ateelyarda.
2. A hand-barrow (Fig. 78), with the mass loaded on it weighs 210 pounds. The centre of gravity of the harrow and load is 4 feet from the front handles and 3 feet from the back ones. Find the amount each man carries
3. To draw a nail from a piece of wool requires a pull of 200 pounds. A claw-hammer is used, the nail being 12 inches from the fulcrum O (Fig. Bi) and the hand being

Fin. 78. -The hand-barrow. 8 inches from 0 . Find what force the hand must exert to draw the nail.
4. A cubical block of granite, whose edge is 3 feet in length and which weighs 4500 lbs , is raised by thrusting one end of a crowbar 40 inches long under it to the distance of 4 inches, and then lifting on the other end. What force must le exerted?
85. The Pulley. The pulley is used sometimes to change the direction in which a force acts, sometimes to gain mechanical advantage, and sometimes for both purposes. We shall neglect the weight and friction of the pulley and the rope.

A single fixed pulley, such as is shown in Fig. 79, can

Fin. 79.-A fixed pulley simply changer the direction of force. change the direction of a force bit cannot give a mechanical advantage greater than 1 . F, the force applied, is equal to the weight lifted, W.

By this arrangement a lift is changed into a pull in any convenient direction. It is often used in raising materials during the construction of a building.

By inserting a spring balance, s, in the rope, hetween the hand and the pulley, one can show that the force F^{r} is equal to the weight W.

Suppose the hand to move throurh a distance a, then the

fir. sis. With a movable pulley the force exertel
is only half as Great as the weight lifterl. weight rises throngh the same distance.

$$
\text { Hence } \begin{aligned}
\vec{F} \times u & =W \times \| \\
\text { or } \vec{\prime} & =W \text {, }
\end{aligned}
$$

ans tested by the spring lulance.
86. A Single Movable Pulley. Here the weight W (Fig. 80) is supported by the two portions, B and C, of the rope, and hence each portion supports half of it.

Thus the force F is copual to $\frac{1}{} W$, and the mechanical alvantuge is 2.

This result can also le obtained from the prineiple of energy.
Let " be the distance through which W rises. Then each portion, B and C, of the rope will be shortened a distance a, and wor \boldsymbol{F} will move through a distance 2 (

Then, since

$$
F^{\prime} \times 2 a=W \times u
$$

$\boldsymbol{W} / \boldsymbol{F}=2$, the mechanical alvantage.
For convenience a fixed pulley also is generally used as in Fig. 81.

Here when the weight rises 1 inch, B and ${ }^{\circ}{ }^{\circ}$ each shorten 1 inch and hence A lengthens 2 inches. That is, F moves through twice ats far as W, and $W=2$, as before.

F'10. 81.-With a nxed aid a movable pulley the lorce is changed in direction and reduced one-half.
87. Other Systems of Pulleys. Varions combinations of pulleys may be used. Two are shown in Figs. 82, 83, the latter one being very commonly seen.

Here there are six portions of the rope supporting W, and hence the tension in each portion is : W.

Hence $\boldsymbol{r}^{\prime}=\mathbf{!} \mathbf{W}$,
or a force equal to $\frac{1}{8} W$ will hold \quad up W. This entirely neglects friction, which in such a system is often considerable, and it therefore follows that to prevent W from descending, less than $\frac{f}{6}$ W will be required. On the other hand, to actually lift W the force F must be greater than of W. In every case friction acts to prevent motion.

Let us apply the principle of energy to this case. If W rises 1 foot each portion of Fia, sol - Contination the rope supporting it must
 of s pulleys: A times the force lifted.

Fic. 83. - A Iamiliar combination for multiplying the force 6 times. shorten 1 foot and the force F will move 6 feet.

Then, work done on $W=W \times 1$ foot-pounds

$$
" \quad " \quad b_{y} F^{\prime}=F \times 1
$$

These are equal, and hence

$$
W=6 F
$$

or $W / F=6$, the mechanical alvantage.

PROBLEM8

1. A clock may he driven in two ways. First, the weight may be attached to the end of the cord ; or secondly, it may he attached to a pulley, movablo as in Fig. 80, one end of the cord being fastened to the framework, and the other being wound about the barrel of the driving wheel. Compare the woights required, and also the length of time the clock will run in the two cases.
2. Find the mechanical advantage of the system shown in Fig. 84. This arraugement is callud the Spanish Barton.
3. What fraction of hin weight must the man shown in Fig. 85 exert in order to raise himself?

Fig. 84. The spanish barton.

Fir. 85. -An easy niethol to mise one's self.

Fin. 86. - Find the pressure of the feet on the flow?
4. A man weighing 140 pommels pulls up a weight of 80 pummels by means of a fixed pulley, miler which ho stands (Fig. 86). Find his pressure on the floor.
88. The Wheel and Axle. This machine is shown in Figs.

Fico. 87. -Tl wheel Fico. 88.-Diagram to explain the wheel and axle. 87,88 . It is evident that in one complete rotation the weight \boldsymbol{F} will descend a distance equal to the circonference of the wheel, while the weight W will rise a distance equal to the ciremmineree of the axle.

Hence $F \times$ circumference of wheel $=W \times$ circminference of ave. Lat the ratio be R and r, respectively; the circumferfences will be $2 \pi R$ and $2 \pi r$, and therefore

$$
\begin{aligned}
F^{\prime} \times 2 \pi R & =W \times 2 \pi r \\
\text { or } F R & =W \cdot \\
\text { ind } W & =r, \text { the mechanical monantage. }
\end{aligned}
$$

This result can also be seen from Fig. ss. The wheel and axle turn alone the enate C. Now W nets nt B, a distance r from C, and F^{\prime} acts at A, a distance R from C.

Then, from the principle of the lever

$$
\boldsymbol{h}^{\prime} \times \boldsymbol{R}=W \times r, \text { as before }
$$

89. Examples of Wheel and Axle. The windlass (Fig. 89) is a common example, but, in place of a wheel, handles are used. Forces are applied at the handles and the bucket is lifted by the rope, which is wound about the axle.

If $F^{\prime}=$ applied force, and $W=$ weight
lifters, $W=\begin{aligned} & \text { length of crank } \\ & \boldsymbol{F}^{\prime} \\ & \text { radius of axle }\end{aligned} . . . ~$

Fico. 69. - Windlass used in draw. ing water from a well.

The capstan, used on board ships for raising the anchor, is mother example (Fig. 90).

Fig. 90. - Raising the ahipis anchor by a capstan!.

The sailors apply the force by pushing against bars thrust into holes near the top of the capstan. Usually the rope is too long to be all coiled up on the barrel, so it is passed about it several times and the end A is held by a man who keeps that portion taut. The friction is sufficient to prevent the rope from slipping. Sometimes the end B is fastened to a post or a ring on the dock, and by turning the capstan this portion is shortened and the ship is drawn into the dock.
90. Differential Wheel and Axle. This machine is shown in Fig. 91. It will be seen that the rope wines off one axle and on the other. Hence in one rotation of the crank the rope is lengthened (or shortened) by an mom int equal to the difference in the eiremmferences of the two axles; but since the rope passes rom ad a movable pulley, the weight to lee lifted, attached
 to this pulley, will rise only one-half Fro. 01.- Differential wheel the diflerenes in the cireunferenees.

Thoms by making the two drmms which form the axles ne:nly ental in size we can make the difference in their firmmferonees ms suall as we plonse, mud the mechanical IMvantage will be as grent as we desire.
91. Differential Pulley. 'This is somewhat simihr to the
 last deseribyd machine. (Figs. 92, 93.)

Two pulleys, of different radii (Fig. 92), wre fistened together and thon with the sme angular velocity. Grooves are cut in the pulleys so ns to receive an entless chain mond prevent it from slipping.

Suppose the chuin is pulled at F^{\prime} until the two pulleys huve
 tion in flue action mate a complete roution. Then aprearame of the of the differemial \boldsymbol{F} will have moved throngh Ω
 pulles. diderentiai pulley. distance equal to the circumference of A, minl it will have done work

$$
=F \times \text { ciremuference of } A
$$

Also, the chmin between the mpper and the bower pulley will be shortened by the ciremoference of A but lengthened hy the ciremmference of B, and the net shortening is the diffirener between these two circmmferences.

But the weight W will rise only half of this differenee. Hence work done by W

$$
=W \times \frac{1}{2} \text { diffirence of eircumferences of } A \text { and } B,
$$

P203L5us

1. A man weighing $\mathbf{t e n}$ pounds is drawn up out of a wall by means of a windlass, the axle of which is 8 inches in diameter, and the crank it

Fig. H.- Wimblam, with gearing, such as is um al will a pile -driver.
2. Calculate tho mechanical advantage of the windlass shown in Fig. 94. The length of the crank is $\mathbf{1 6}$ inches, the small wheel has 12 teeth and the large one 120), and the diameter of the dram about which the rope is wound is 6 inches.

If a force of (iO prumils lee applied to each crank how great a weight can le raised? (Neglect friction.)
92. The Inclined Plane. I st it lati mass, such as a burred
 inclined plate $A($: (Fig. 95) whose length is l ail light h, by mans of a fore e b ', parallel to the plane. 'The work dolls is $F \times l$.

Agram the weight is miser through a height $/ 1$ null so, nowheding friction,

foo. Wo. -Theory of the inclined plane. the work done $=\| \times h$.

$$
\begin{aligned}
\text { Hence } & F^{\prime}=W \prime, \\
\text { mull } & W \\
F^{\prime} & =h^{\prime}
\end{aligned}
$$

that is, the mechanical advantage is the ratio of the length to the height of the plane.

The inclined plane, in the form of a plank or a skid, is used in loarling granls on a wagom or a railway car.

Thking frietion intu necomat, the mechanien mivantege is not wo great, and to renhee the frietion as much as pmaible the loorly may le rolled up the plane.
93. The Wedge. The welge is designed to overcone great

Fis. ! b , - The wellue, an applluation of the Inclined plane. resistance through a small spmece. Its most faniliar use is in splitting worl. Kuives, axes and chisels are also exauples of werlges.

The resistance W (Fig. 96) to he overcme acts at right angles to the slant sides $B C^{\prime}$, $D C^{\prime}$, of the wedge, and when the wedge has lnen driven in as slown in the figure, the work done in pmaning lack ome side of the split block will be $W \times A \mathrm{~F}$, ame hence the work for looth siles is $\|^{\prime} \times 2 . A B$.

But the applied force F acts through a space $A\left({ }^{\prime}\right.$, and so does work $h^{\prime} \times A^{\prime}$:

$$
\text { Hence } \begin{aligned}
I K \times 2 A V & =F \times A C^{\prime} \\
\text { and } \frac{V}{F^{\prime}} & =\frac{A U}{2 A E}
\end{aligned}
$$

This is the mechanical montage, which is evidently greater the thimare the wedge is.

This result is of little practical value, as we have not taken friction into necount, nor the fact that the force F is applied as a hlow, not as a steady pressure. Both of these factors are of great importance.
94. The Screw. 'The screw consists of a growed cylinder which turns within n hollow eylinder or mut which it just fits.
 The distance from one thread to the Fion gi.-The jarkerem. next is called the pitch.

The law of the serew is easily oltained. Lat I be the lonerth of the lanalle by which the serew is turned (Fig. 97) and F^{\prime} the foree exerted on i. In one rotation of the nerew the ead of the handle describes the ciremiference of a circle with radius l, that is, it moves throngh a distance $2 \pi l$, and the work done is therefore

$$
f \times 2 \pi l .
$$

Lat IV the the force exerted upwards as the screw rises, and Il be the pitch. In one rotation the work dome is

$$
\begin{aligned}
& \|\times\| \text {. } \\
& \text { Hence } W \times \|=F \times 2 \pi l \text {, } \\
& \text { or } \quad \frac{W}{h^{\prime}}=\frac{2 \pi l}{l},
\end{aligned}
$$

or the mechamical alvantage is equal to the ratio of the cirennference of the circle traced out by the end of the haadle to the pitch of the screw.

In actual practice the alvantage is much less than this on aceonit of frietion.

The screw is really an application of the inclined plane. If a triangular piece of paper, as in Fig.
 88, is wrapped abont a cylinder

Fic. $98-$ Diagram to show that the screw is ans application of the in. cilned plane. (a lemd pencil, for instance), the hypotennse of the triangle will trace ont a spiral like the thread of a screw.

Examples of the screw are seen in the letter press (Fig 99), and the vice (Fig. 100).

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

ILLUSTRATIVE PROBLEMS

1. Why should shears for cutting metal have short blades and long handles?
2. In the driving mechanism of a self-binder, shown in Fig. 101, the

Fig. 101.-The driviug part of a self-binder. The driving-wheel A is drawn forward hy the horses. On its axis is the sprocket-wheel B, and this, by nreans of the chain drives the sprocket-wheel C. The latter drives the cog. wheel \boldsymbol{D} which, ngain, drives the cog-wheel \boldsymbol{E}^{\prime}, and this causes the shaft F^{\prime} with the crank G on its end to rotate. driving-wheel A lias a dianeter of 3 feet, the sprocket - wheels B and C have 40 teeth and 10 teeth, respectively. The large gear-wheel D has 37 teeth and the small one E has 12 teeth, and the crank G is 3 in. long. Neglecting friction, what pull on the driving-wheel will be required to exert a force of 10 pounds on the crank G ?
3. Explain the action of the levers in the scale shown in Fig. 102.

If $H F^{1}=12 \mathrm{ft} ., F^{1} D^{1}=4$ inches, $M N=36$ inches, $K M$ $=3$ inches, what weight on N would balance 2000 pounds of a load (wagon and contents)? In the scale $E^{1} F^{1}=E^{2} F^{2}$, and $F^{1} D^{1}=F^{2} D^{2}$, so the load is simply divided equally between the two levers.

Fta. 102.-Diagram of multiplying levers In a scale for welghing hay, coal and other heavy loads. In the figure ls ghown one hall of the system of levers, as seen from one end. The platform P rests on knife-edges $D 1, D^{2}$, the former of which Is on a long lever, the latter on a short one. The knife-edgen $F^{\prime}, F^{\prime 2}$ at the ends of these levers are supported by suspension from the brackets C, C which are rigidly connected with the earth.

PART III-MECHANICS OF FLUIDS

CHAPTER X

Pressure of Liquids
95. Transmission of Pressure by Fluids. One of the most characteristic properties of matter is its power to transmit force. The harness comects the horse

Fia. 104.-Pressure applied to the platon transmitted in ali directions by the liquid within the globe. with its load: the piston and comecting rods convey the pressure of the steam to the driving wheels of the locomotive. Solids transmit pressure only in the line of action of the force. Fluids act differently. If a globe and cylinder of the form shown in Fig. 104, is filled with water and a force exerted on the water by means of a piston, it will be seen that the pressure is tromsmitted, not simply in the direction in which the force is applied, but in ull directions; becanse jets of water are thrown with velocities which are apparently equal from all the apertures. If the conditions are modified by connecting U-shaped tubes partially filled with mercury with the globe, as shown in Fig. 105, it will be found that when the piston is inserted, the change in level of the mercury, caused by the transmitted pressure, is the same in each tube. This would show that the pressure applied to the piston is transmitted equally in all directions by the water.

This principle, which is true of gases as well as liquids, may be stated as follows:-

Fig. 105.-Transmission hown to be equal in all directions by pressure gauges.

Pressure crerted anywhere on the mass of afluid is trensmitted umdimimistied in "ll directions, coml acts with the. sume force on all equel surfuces in a direction at right amgles: to them. The prineiple was first enmeiated by Pascal, and is generally known as Pascai's Law.*
96. Practical Applications of Pascal's Principle. Paseal himself pointed out how it was possible, by the applieation of this prineiple, to multiply force for practieal purposes. By experimenting with pistons inserted into a closed vessel filled with water, he showed that the pressures exerted on the pistons when made to balance were in the ratio of their areas. Thus if the area of piston A (Fig. 106) is one square centimetre,

Fig. 106. - Force multiplied by transmission of pressure.
and that of B ten times as great, one unit of force applied to A wili transmit ten units to B. It is evident that this principle has almost unlimited application. Pascal remarks, " Hence it follows that a vessel full of water is a new principle of Mechanics and a new machine for multiplying forees any degree we choose." Since Pascal's time tire "new machine" has taken a great variety of forms, and has been used for a great variety of purposes.
97. Hydraulic Press. One of the most common forms is that known as Bramah's lyydraulic press, whiel is ordinarily used whenever great force is to be exerted through short distances, as in pressing goods into bales, extracting oils from seeds, making dies, testing the strength of materials, etc. Its construetion is shown ${ }^{\circ} \eta$ Fig. 107. A and B are two eylinders

[^3]commeterl with each other and with a water cistern by pipes closed by values V_{1} and V_{9}. In these cylimane work pistons P_{1} and P_{2} throngh water-tight collars, P_{1} being

Fit. 107.-1bramah's hydraulic press. moved ly a lever. The bodies to be pressised are hell between plates C and I. When P_{1} is raised by the lever, water flows up from the cistern through the valve V_{1} and fills the cylinder A. On the downstroke the value V_{1} is closed and the water is forced through the valve V_{2} into the cylinder B, thus cxerting a force on the piston P_{2}, which will be as many times that applied to P_{1} ass the area of the cross-section of P_{2} is that of the cross-section of P_{1}. It is evident that by decreasing the size of P_{1}, sud increasing that of ρ_{2}, an immense force may be developed by the machine. While this is true, it is to be noted that the upward movencent of 1 ? will be very slow: because the action of the machine must conform to the law enmeiated in $\S 81$, that is,
the force acting on $P_{1} \times$ the distance throngh which it moves $=$ the foree acting on $P_{: 2} \times$ the distance through which it moves.
98. The Hydraulic Elevator. Another

Fig. 108. - Hydraulic elevator. important application of the multiplication of force through the principle of equal transmission of pressure by fluids is the hydraulic elevator, used as a means of conveyance from
floor to floor in buildings. In its simplest form it consists of a cuge A, supported on a piston P, which works in a long cylindirical tube C. (Fig. 108.) The tube is connected with the water mains and the sewers by a three-way valve D which is actuated by a cord E passing through the cage. When the cord is pulled up by the operator, the vatve takes the position shown at D, and the cage is forced mp by the pressure on P of the water which rushes into 1 : from the mains. When the cord is pulled down, the valve takes the position shown at F (below), and the cage desecnds by its own weight forcing the water out of C into the sewers.

When a higher lift, or increased speed is required, the cage is commected with the piston by a system of pulleys which multiplies, in the movement of the cage, the distance travelled hy the piston.

Fig. 109.-Ilydraulle lift-lock at Yeterhorough, Ont., capalle of lifting a 140-100t steamer 65 feet.
99. Canal Lift-Lock. The hydraulic lift-tock, designed to take the place of ordinary locks where a great difference of level is found in short distances, is another applieation of the prineiple of equal transmission. Fig. 109 gives a general view of the Peterborough Lift Loek, the largest of its kind in the

Fig. 110.-Principle of the lift-lock. world, and Fig. 110 is a simple diagrammatie section showing its prineiple of operation. The liftlock consists of two immense hydranlie elevators, supporting on their pistons P_{1} and P_{2} tanks A and B in whieh float the vessels to be raised or lowered. The presses are comnected by a pipe containing a valve R which can be operated by the lockmaster in his eabin at the top of the central tower. To perform the lockage, the ressel is towed into one tank and the gates at the end loading from the eamal are closed. The upper tank is then made to descend by being loaded with a few inches more of water than the lower. On opening the valve the additional weight in the upper tank forces the water from its press into the other, and it gradually deseends while the other tank is raised. The action, it will be observed, is automatic, but hydranie maehinery is provided for forcing water into the presses to make up pressure lost through leakage.
100. Pressure due to Weight. Our common experiences in the handling of liquids give us evidence of force within their mass. When, for example, we pierce a hole in a waterpipe or in the side or the bottom of a vessel filled with water, we find that the water rushes out with an intensity whieh we know, in a general way, to depend on the height of the water above the opening. Agrain, if we hold is cork at the bottom
of a vessel containing water, and let it go, it is forced up to the surface of the water, where it remains, its weight being supported by the pressure of tho liquid on its under surface.
101. Relation between Pressure and Depth. Since the lower layers of the liquid support the upper layers, it is to be expected that this force within the mass, due to the action of gravity, will increase with the depth. 'To investigate this relation, prepare a pressure gauge of the form shown in Fig. 111 by stretching a rubber membrane over a thistle-tube A, which is comected by means of a rubber
 tube with a U-shaped glass tube B, partially filled with water. The action of the gange is shown by pressing on the membrane. Pressure transmitted to the water by the air in the tube is measured by the difference in level of the water in the branches of the U-tube.

Now place A in a jar of water (which should be at the temperature of the room), and gradually push it downward (Fig. 112). The changes in the level of the water in the branches of the U-shaped tube indicate an increase in pressure with the increase in depth. Careful experiments have shown that this pressure increases from the surfuce downward in direct proportion to the depth.
102. Pressure Equal in all Directions at the same Depth. If the thistle-tube A is made to face in different directions

Fio. 112.-Investigation of pressure within the mass of a liquid by pressure gauge. while the centre of the membrane is kept at the same depth, no change in the difference in level of the water in the U-shaped tube is observed. Evidently the magnitude of the force at any point within the fluid mass is independent of the direction of pressure. The upurard, downurerd, and lateral pressures are equal at the.
103. Magnitude of Pressure due to Weight. The downwarl pressure of a liquill, say water, on the bottom of a vessel with vertical sides is obviously the weight of the liquid. But,

Fic. 113.-Pressures on the bottoms of vessels of different shapes and capacitles. if the sides of the vessel are not vertieal, the mugnitude of the force is not so apparent. The apparratus shown in Fig. 113 may be used to investigate the question. A, B, C, and D are tubes of different shapes but marle to fit into a common base. E is a movable bottom hell in position by a lever and weight. Attach the cylindrical tube to the base, and support the bottom E in position. Now place any suitable weight in the scale-pan and pour water into the tube until the pressure detaches the bottom. If the experiment be repeated, using in succession the tubes A, B, C, and D, and marking with the pointer the height of the water when the bottom is detached, it will be found that the height is the same for all tubes, so long as the weight in the scale-pan remains unchanged. The pressure on the bottom of a vessel filled with a given liquid is, therefore, dependent only on the depth. It is independent of the form of the vessel and of the anount of liquid which it contains. This conclusion, is sometimes known as the hydrostatic prerulox; because it would seem impossible that a small quantity of liquid, like that contained in tube D, could exert the sane force on the bottom as that exerted by the larger quantity contained in B.
104. Explanation of the Paradox. similar to that just describel Pascal first denonstratel the truth of his Principle, and also showed how to apply it to explain the apparent contradiction.

Take, for example, the case of a vessel of the form D (Fig. 113). The pressure on the bottom $D F^{\prime}$ (Fig. 114) is equal to the weight of the water in $C D F^{\prime} E$, together with the pressure due to the water in L.ABK. Now on the lower faces of $C K$ and $R E$ there is an upward pressure (which is that due to a depth $A B$ of the water), and these surfaces exert upon the water a reaction downwards, which is transmitted to the base. If the spaces $/ / K$ and $A E$ were filled with water the pressure downwards on $C K$ and $B E$ would just balance the upward pressure on them.

Hence the entire pressure on the bottom is equal to the weight of the water in $A D F G$, or the pressure on the buttom is the same as if the vessel had vertical sides.

Fio. 115. - Expianation of hy. drostatic paradox. r, presoure of liquid at 4 ; p, vertical component; q, horizontal component.

Now take the case of the funnelshaped vessel B (Fig. 113). Since the pressure at any point in the wall is perpendicular to the wall, it may have a vertical component which is batanced by the reaction of the wall at the point (Fig. 115). Hence the weight of the water is supported in part by the sides of the vessel, the bottom supporting only the vertical column $B C D E$.

105. Surface of a Liquid in Con-

 necting Tubes. If a liquid is poured into a series of connecting tubes (Fig. 116), it will rise to the same horizontal plane in all the tubes. The reason is apparent. Consider, for example, the tubes A and B. Let a and b be two points in the same horizontal plane. The liquid is at rest only on the condition that the

Fio. 116. - Surface of a liquid in connecting tubes in the same horizontal plave.
pressure at a in the direction
ab) is equal to the pressure at b in the direction lue: but since the pressure at either of these points varies as its depth on:ly, and is independent of the shape of the vessel, or of the quantity of the liquill in the tubes, the height of the liquid in A above a must be the same as the height in B above b.

This principle, that "water seeks its own level," is in a variety of ways, of practical importance. Possibly the common method of supplying cities with water furnishes the most striking exmmple. Fig. 117 shows the main fentures of a

Fio. 117.-Water supply ayatem. A, source of water supply; B, pumping station; C, standpipe: D, house supplierl with water ; E, fountain ; F, hydrant for fre hose.
moderu system. While there are various means by which the water is collected and forced into a reservoir or standpipe, the distribution in all cases depends on the principle that, however ranified the system of service pipes, or however high or low they may be carried on streets or in buildings, there is a tendency in the water which they contain to rise to the level of the water in the original source of supply connected with the pipes.

Fie. 118.-Artesian basin. A, impermeable strata. B, permeable atratum. C, C, points where permeable atratumi reaches the surface. W, artesian well.
106. Artesian Wells. The rise of water in artesian wells is also due to the tendency of a liquid to find its own level.

These wells are bomed at the bottom of emp-shaped basions (Fig. 118), which are frequently muny miles in width. The: upper strata me impermeable, but lower down is fouml a stratuin of loose sand, gravel, or broken stone containing water which has run into it at the points where the permeable stratum reaches the surface. When the upper strata are pierced the water temis to rise with a force more or less grent, depending on the height of the head of water exerting the pressure.

PROBLEMS

1. A closed vessel is filled with liguid, and two circular pistons, whose diameters aro respectively 2 cm , and 5 cm . inserted. If the pressire on the smaller piston is 50 grams, find the pressure on the larger piston when they lalance each other.
2. The dianeter of the large piston of a hydraulic press is 100 cm , and that of the smaller piston 5 cm . What force will be exerted by the pross whon a force of 2 kilograms is applied to the small piston?
3. The dianneter of the piston of n hydraulic elevator is 14 inches. Neglecting friction, what lond, inchuding the weight of the cage, can be lifted when the pressure of the water in the nains is $\mathbf{7 5}$ pounds per sq. inch ?
4. What is the pressure in grans ןer sq. cm. at a depth of 100 metres in water? (Density of water one gram per c.c.)
5. The area of the cross-section of the piston P (Fig. 119), is 120 sq. cm. What weight must be placed on it to maintain equilibrium when the water in the pipe B stands at a height of 3 metres above

Fig. 119. the height of the water in A ?
6. The wrter pressure at a faucet in a house supplied with water by pipes connceted with a distant rescrvoir is 80 pounds per sq. inch when the water in the system is at rest. What is the vertical height of the surface of the watcr in the rescrvoir above the faucet? (1 lb . water = 27.73 c.c. ; sce Table opposite page 1.)

CHAPTER XI

Beosanci of Fuuds

107. Nature of Buoyancy. When a boly is immersed in a liguid every point of its surface is subjected to a pressure which is perpendicular to the snrface at that point, and which varies as the depth of that point below the surface of the liguid. When these pressures are resolved into horizontal and vertical components, the horizontal components balance etch other; and since the pressure on the lower part of the borly is greater than that on the upper part, the resultant of all the forees acting upon the body must be vertical and act upward. This force is termed the resultant vertical pressure or buoyancy of the fluiel.

Consider, for example, the resultant pressure on a solid in the form of a cube, whose cllge is 1 cm ., immersed in water with its upper face horizontal at

Fir. 120.- Buoyant force of a liquid on a solid. a depth of, say, 1 cm. below the surface. (Fig. 120). Obviously the pressures on the vertical sides balance. The resultant foree, which is vertical, is the difference between the pressure on the top and that on the bottom; but the pressure on the top is the weight of a column of water 1 $s q$. cm . in scetion and 1 cm . long, and the pressure on the bottom is the weight of a similar column 2 cm . long ($\$ 102$). Hence the cnbe is buoyed up with a force which is the weight of a column of water $1 \mathrm{sq} . \mathrm{cm}$. in section and 1 cm . long, or the weight of water equal in volume to the solid, that is, 1 gram.
108. To determine experimentally the amount of the Buoyant Force which a Liquid exerts on an Immersed Body. Tuke a brass cylinder A, which tits exactly into a hollow sucket B. Hook the cylinder to the bottom of thesocket and counterpoise them on a balance. Surround thecylinder with water (Fig. 121). It will be found that the cylinder is buoyed up by the water, but that equilibriun is restored when the socket is filled with

Fia. 121.-Determination of buoyant force. water. Hence the buoyant force of the water on the cylinder equals the weight of a volume of water equal to the volume of the cylinder.

In general terms, the buoyant force exerted by a fluid upon a body immersed in it, is equal to the weight of the fluid clisplaced by the borly; or a borly when weighed in a fluid loses in apparent weight un amount equal to the weight of the fluid which it displaces. This is known as the Principle of Archimedes.

Archimedes had been asked by Hiero to determine whether a crown which had been made for him was of pure gold or alloyed with silver. It is said that the action of the water when in a bath suggested to him the principle of bnoyaney as the key to the solution of the problem. The story is that he leaped from his bath, and rushed through the streets of Syracuse, crying "Eurekn! Eureka!" (I have fonnd it, I have found it.)
109. Principle of Flotation. It is evident that if the weight of a body immersed in a higuid is greater than the weight of the licuid displaced by it, that is, greater than the buoyant force, the borly will sink; but if the buoyant force is greater, it will continue to rise until it reaches the surface. Here it will come to rest when a portion of it has risen above the surface and the weight of the liguid displaced by the immersed portion equals the weight of the body. For example, consider again the cube referred to in Fig. 120. If its weight is less than one gram, for definiteness say 0.6 gram, it will float in water. In this case the downward pressure on the top has disappeared and the weight of the cube alone is supported by the pressure on the bottom, which equals the weight of a column of water 1 sq . cm. in section and 0.6 cm . deep.

The conditions of flotation may be demonstrated experimentally by placing a light body, a piece of wood for example. on the surface of water in a graduated tube (Fig. 123). If the volume of water displaced is noted and its weight calculated, it will be found to be equal to the weight of the body.

PROBLEMS

1. A cubic foot of narble which weighs 160 pounds is innmersed in water. Find (1) the buoyant force of the water on it, (2) the weight of the marble in water. ($1 \mathrm{c} . \mathrm{ft}$. water $=62.3 \mathrm{lbs} . \$ 17$).
2. Twelve culic inches of a metal weigh 5 pounds in air. What is the weight when immersed in water?
3. If 3,500 c.c. of a substance weigh 19 kg , what is the weight when immersed in water?
4. A piece of aluminium whose volume is 6.8 c.c. weighs 18.5 grams. Find the weight when immersed in a liquid twice as heavy as water.
5. One cubic decimetre of wood floats with $\frac{3}{5}$ of its volume immersed in water. What is the weight of the cube?
6. A cubic centimetre of cork weighs 250 mg . What part of its volume will be immersed if it is allowed to float in water?
7. The cross-section of a boat at the water-line is $\mathbf{1 5 0} \mathbf{s q}$. ft . What additional luad will sink it 2 inches?
8. A piece of wood whose mass is 100 grams floats in water with $\frac{3}{4}$ of its volume immersed. What is its volume?
9. Why will an iron ship float on water, while a piece of the iron of which it is made sinks?
10. A vessel of water is on one scale-pan of a balance and counterpoised. Will the equilibrium be disturbed if a person dips his fingers into the water without touching the sides of the vessel? Explain.
11. A piece of coal is placed in one scale-pan of a balance and iron weights are placed in the other scale-pan to balance it. How would the equilibrium be affected if the balance, coal and weights were now placed under water? Why?
12. What is the least force which must be applied to a cubic foot of woud whose mass is 40 lbs. that it may be wholly immersed in water?
13. Referring to Fig. 110, answer the following question : If the depth of the water in the press A is the same as that in the press B which contains the vessel, which press will be the heavier?

CHAPTER XII

Determination of Density

110. Determination of the Density of a Solid Heavier than Water. To determine the density of a body it is necessary to ascertain its mass and its volume.

The mass is determined by weighing. The volume is, as a rule, most easily and accurately found by an application of Archimedes' Principle.

For example, if a body whose mass is 20 grams, weighs 16 grams in water, the mass of the water displaced is $20-16=$ 4 grams. But the volume of 4 grams of water $=4$ c.c. The volume of the borly is, therefore, 4 c.c. Hence the density, or mass per unit volume, of the substance must be $20 \div 4=5$ grams per c.c.

Next, let m grams $=$ weight or mass of a body in air, and $m_{1} \quad$ " = its weight in water.
Then $m-m_{1}$ " = loss of weight in water,
$=w t$. of water equal in vol. to loody.
Now, mass of a body $=$ its volume \times its density; and since in the C.G.S. system the density of water $=1$,
$m-m_{1}$ c.c. $=$ vol. of water equal in vol. to boty,
$=$ volume of body.
That is, the volume of a body is nunerically equal to its loss of weight in water.

Hence, density (in gms. per c.c.)

$$
=\frac{\text { mass (in grams) }}{\text { loss of wt. in water }(\text { in } \text { gm.s. })}
$$

The number thus obtained also expresses the specific gravity of the body. (§ 18.)

If the solid is soluhle in water its density may be obtained by weighing it ii : uid of known density, in which it is not soluble, and determining, as above, the ratio of its nass to that of an equal volume of the liquid, and then multiplying the result by the density of the liquid.

111. Determination of the Density of a Solid Lighter than

 Water. If a solid is lighter than water, its density may be determined by attaching to it a heavy body to cause it to sink beneath the surface.The following method may be used :-
1st. Weigh the body in air. Let this be m grams.
2nd. Attach a sinker and weigh both, with the sinker only in wuter. Let this be m_{1} grams.
3rd. Weigh both, with both in water. Let this be m_{2} grams.
Now the only difference between the second and third operations is that in the former ease the borly is weighed in air, in the latter in water. The sinker is in the water in both cases.

Hence $m_{1}-m_{2}=$ buoyaney of the water on the body, and the density (in grams per c.c.) $=\frac{m}{m_{1}-m_{2}}$.

The number thus obtained expresses also the specific gravity of the body.
112. Density of a Liquid by the Specific Gravity Bottle. As in the case of solids, the problem is to determine the volume and the mass of the liquid.

The volume of a sample of the liquid may be obtained by pouring iv into a bottle so constructed as to contain at a specified temperature a given volume of liquid, usually 100 c.c. at $15^{\circ} \mathrm{C}$. To render complete filling easy, the bottle is provided with a closely-fitting stopper perforated with a fine bore through which excess of liquid escapes (Fig. 122).

Fio. 122.-Speoitc gravity bottle.

The mass of the liquid is obtained by taking the difference between the weights of the bottle when filled with the liquid, and when empty.

If m denotes the mass of the liquid and v the volume of the bottle, density of liquid $=\frac{m}{v}$.

If the volnme of the bottle is not given, it may be found by taking the difference between its weight when empty and when filled with water.

113. Density of a Liquid by Archimedes' Principle.

Archimedes' Principle may also be applied to determine the densities of liquids.

Take a glass sinker whose mass is, say m grams, and weigh it first in the liqnid whose density is to be determined, and then in water. If m_{1} grams denotes the weight of the sinker in the liguid and $m_{\text {a }}$ grans its weight in water,
$m-m_{1}$ grams $=$ mass of liquid displaced by sinker,
$m-m_{2}$ grams $=$ mass of water displaced by sinker.
Hence volune of the sinker $=m-m_{2}$ c.e.,
and density of liquid (in granus per c.c.) $=\frac{m-m_{1}}{m-m_{2}}$.
114. Density of a Liquid by means of the Hydrometer. The hydrometer is an instrument designed to indicate directly the density of the liguid by the depth at which it floats in it.

The prineiple underlying the action of this instrument may be illustrated as follows. Take a rectangular rod of wood $1 \mathrm{sq} . \mathrm{cm}$. in section and 20 cm . long, and bore a hole in one end. After inserting sufficient shot to comse the rod to float upright in water (Fig. 123) plug up the hole and dip the rod in hot paraffin to render it inpervions to water. Mark off on one of the long iaces a centimetre scale. Now place the rod in water, and suppose it to sink to a depth of 16 cm . when floating. Then the weight of the $\operatorname{rod}=$ weight of water displaced $=16$ grams.

Again, suppose it to sink to a depth of 12 cm. in a liquid whose density is to be determined.

Then, since the weight of liquid disphaced equals weight of the rod,

12 c.c. of the liquid $=16$ grams, And density of the liquid $=\frac{10}{12}$ grum per c.c. Or, density of the liquid $=\frac{\text { vol. of water displaced by a floating body }}{\text { vol. of the liquid displaced by the same body }}$

A hydrometer for commercial purposes is usually constructed in the form shown in Fig. 124. The weight and volume are so adjusted that the instrument sinks to the division mark at the lower end of the stem in the densest liquid to be investigated and to the division mark in the upper end in the least dense liquid. The scale on the stem indicates directly the densities of liquids between these limits. The float A is usually made much larger than the stem to give sensitiveness to the instrument.

As the range of minstrument of this chass is necessarily limited, special instruments are

Fig. 124.-The hydrometer. constructed for use with different liquids. For example, one instrument is used for the densities of milks, another for alcohols, and so on.

Problems

(For table of densities see 17)

1. A body whose mass is 6 graus has a siuker attached to it and the two together weigh 16 grams in water. The sinker alone weighs 24 grams in water. What is the density of the body?
2. A body whose nass is 12 grams has a sinl:or attached to it and the two together displace when subinerged 60 c.c. of water. The sinker alone displaces 12 c.c. What is the density of the body?
3. A body whose nass is 60 grams is dropped into a graduated tube containing 150 c.c. of water. If the body sinks to the botton and the water rises to the 200 c.c. mark, what is the density of the body?
4. If a body when floating in water displaces 12 c.c., what is the density of a liquid in which when floating it displaces 18 c.c. ?
5. A piece of metal whose mass is 120 grams weighs 100 grams in water and 104 grams in alcohol. Find the volume und density of the metal, and the density of the alcohol.
6. A hydrometer floats with $\frac{2}{3}$ of its volume submerged when floating in water, and $\frac{3}{} \frac{1}{}$ of its volune submerged when floating in another liquid. What is the density of the other liquid?
7. A cylinder of wood 8 inches long floats vertically in water with 5 inches sulmerged. (a) What is the suecific gravity of the wood? (b) What is the specific gravity of the liquid in which it will float with 6 inches subnerged? (c) To what depth will it sink in alcohol whose specific gravity is 0.8 ?
8. The specific gravity of pure milk is $\mathbf{1 . 0 8 6}$. What is the density of a mixture containing 500 c.c. of pure milk and 100 c.c. of water?
9. How much silver is contained in a gold and silver crown whose mass is $\mathbf{4 0 7 . 4 4}$ grams, if it weighs 385.44 grams in water? (Density of gold 19.32 and of silver 10.52 grams per c.c.)

CHAPTER XIII

Pressure in Ganes

115. Has Air Weight? This question puzzled investigators from the time of Plato and Aristotle down to the seventeenth century, when it was answcred by Galileo and Guericke.

Galileo convinced himself that air had weight by proving that a glass globe filled with air under high pressure weighed more than the same globe when filled with air under ordinary conditions. Guericke, the inventor of the air-pump, showed that a copper globe weighed more when filled with air than when exhausted.

The experiments of Galileo and Guericke may be repeated with a glass flask (Fig. 125) fitted with a stop-cock. If the flask is weighed when filled with air under ordinary pressure, then weighed when the air has been compressed into it with a bicycle pump, and again when the air has been exhausted from it with an air-pump, it is found that the first weight is less than the second but greater than the third.

Since the volume of a mass of air varies with changes in temperature and pressure, the weight of a certain volume will be constant only at a fixed temperature and

Fic. 120.-Globe for weighing air. pressure. Exact quantitative experiments have shown that the mass of a litre of air at $0^{\circ} \mathrm{C}$. and under normal pressure of the air at sea level (760 mm . of mercury) is 1.293 grams.
116. Pressure of Air. It is evident that since air las weight it must, like liquids, exert pressure upon all bodies with which it is in contact. Just as the bed of the ocean sustains enormous pressure from the weight of the water resting on it, so the surface of the earth, the bottom of the
nerinh ocenn in which we live, is subject to a pressure due to the weight of the air supported by it. This pressure will, of comrse, vary with the depth. Thins the pressure of the atmosphere at Victorin, B.C., on the sen-level is greater than at points on the momatains to the east.

The pressure of the air miny be shown by many simple experiments. For example, tie a piece of thin sheet rubber

Fict. 126.-Rubber mem. lirane forced inwards by pressure of the air. over the mouth of a thistle-tube (Fig. 126) and exhanst the air from the bulb by suction or by connecting it with the airpump. As the nir is exhausted the rubber is pushed inward by the pressure of the outside air.

Again, if one end of a straw or tube is thrust into water and the air withdrawn from it by suction, the water is forced up into the tube. This phenomenon wus known for ages but did not receive an explanation until the facts of the weight and pressure of the atmosphere were established. It was explained on the principle that Nature had a horror for empty space.

The attention of Galileo was called to this problem of the horror vacui* in 1640 by his patron, the Grand Duke of Tuscany, who had fonnd that water could not be lifted more than 32 feet by a suction pump. Galileo inferred that "resistunce to vacuum" as a force had its limitations and could be measured; but although he had, as we have seen, proved that air has weight, he did not see the connection between the facts. After his death the problem was solved by his pupil, Torricelli, who showed definitely that the resistance to a vacuum was the result of the pressure of the atmosphere due to its weight.
117. The Torricellian Experiment. Torricelli concluded that since a water column rises to a height of 32 feet, and since mercury is about 14 times as heavy as water, the

[^4]corresponding mercury column should be it as long as the water colmm. To contirm his inference an experiment similar to the following was performed under his direction by Vincenzo Viviani, one of his pupils.

Take a glass tube about one metre long (Fig. 127), closed at one end, and fill it with mereury. Stopping the open end with the finger, invert it and place it in a vertical position, with the open end under the surface of the mercury in another vessel. Remove the finger. The mercury will fall a short distruce in the tube, and after oscillating will come to rest with the surface of the mercury in the tube between 28 and 30 inches above the surface of the mercury in the outer vessel.

Torricelli concluded rightly that the column of mercury was sustained by the pressure of the air on the surfnce of the mercury in the outer vessel. This conclusion was confirmed by

Fis. 127.-Mercury column sustained by the premeure of the alr. Pascal, who showed that the length of the mercury column varied with the altitude. To obtain decisive results he asked his brother-in-law, Périer, who resided at Clermont in the south of France, to test it on the Puy de Dôme, a near-by mountain over 1,000 yards high. Using a tube about 4 ft . long, which had been filled with mercury and then inverted in a vessel containing mercury, Périer found that while at the base the mercury column was 26 in . $3 \frac{1}{2}$ lines* high, at the summit it was only 23 in .2 lines, the fall in height being 3 in .,

[^5]1! limes (over 8 cm .). This resilt, he remarks, " ravinhed us nll with admiration mod mastmismment." Later, Puseal tried the experiment at the base mad the summit of the tower of Saint-Jacques-le-ln-Boucherie, in Paris, which is about 150 ft . high. He found π difference of more than 2 lines (about $\$ \mathrm{~cm}$.).

gugations and probleys

1. Fill a tmmbler aul hold it inverted in a dish of water as slown in Fig. 128. Why does the

Fic. 128. water not run out of the tumbler into the dish?
2. Fill a bottle with water and place a sheet of writing paper over its mouth. Now, holding the paper in position with the palin of the hand, invert the bottle. (Fig. 129.) Why does the water re-

Fis. 129. main in the bottle when the hand is removed from the prper ?
3. Take a bent-glass tube of the form shown ill Fig. 130. The upper end of it is elosed, the lower opelı. Fill the tuhe with water. Why does the water not rin out when it is held in a vertical position?
4. Why must an opening be made in the upper part of a vessel filled with a liquid to secure a proper flow at a faucet inserted at the bottom?
5. Fill a narrow-neeked bottle with water and hold it mouth downward. Explain the action of the water.
6. A flask weighs 280.60 gm . when empty, 284.19 gil. When filled with air and 3060.60 gm . when filled with water. Find the weight of 1 litre of air.
Fis. 130.

[^6]118. The Barometer. Torricelli pointed out that the ohject of his experiment was " not simply to prodnee a vacuum, but

Fio. 131. -The cis teris barometer. to make an instrument wiich shows the mutations of the air, now heavier and dense, now lighter and thin." "The modern mercury burometer designed for this purpose is the same in principle as that eonstructed by Torricelli. With this instrument the pressure of the atmosphere is measured by the pressure exerted by the column of mernury which bulances it, and elanges in pressure are indicated by corresponding changes in the height of the mercury column.

Two forms of the instrument are in common use.
119. The Cistern Barometer. This form applies dircetly to the original Torric 'lian experiment. The vessel or cist, 1 and tube are permanently mounted, and an attuelaed scale measures the height of the surface of the mercury in the tube above the surface of the inercury in the cistern.

A convenient form of this instrument is shown in Figs. 131, 132. The cistern has a flexible leather bottom which can be inoved up and down by a serew C in order to adjust the

Fio. 132.Nection of the cistern. mercury level. Before taking the realing, the surface of the mercury in the cistern is brought to a fixed level indieated by the tip of the pointer P, whieh is the zero of the baroneter scale. The height of the colunn is then read directly from it seale, engraved on the case of the instrument. A vernier \dagger

[^7]is usually employed to determine the reading with exactness.

Fig. 138.-Siphon barometer.
120. The Siphon Barometer. This barometer consists of a tube of the proper length closed at one end and bent into U-shape at the other. (Fig. 133.) When filled and placed upright the mereury in the longer branch is supported by the pressure of the air on the surface of the mercury in the shorter. A scale is attached to each branch. The upper scale gives the height of the mercury in the closed branch above a fixed point, and the lower scale the distance of the mercury in the open branch below the same fixed point. The sum of the two readings is the height of the barometer cohmm.
121. Aneroid Barometer. As its name implies,* this is a barometer constructed without liquil. (Fig. 134.) In this form the air presses argainst the flexible corrugated cover of a circular, air-tight, metal box A, from which the air is partially exhausted. The cover, which is usually supported by a spring S, responds to the pressure of the atmosphere, being forced in when the pressure is increased, and springing out when it is decreased. The movement of the cover is multiplied and transmitted to an index hand B by a system of delicate levers and a chain or by gears. The circular scale is graduated by comparison with a meremy barometer.

Fig. 134. - Anerold barometer.

The aneroid is not so accurate as the mercury barometer, hat, on accomnt of its portability mol its, sensitiveness, is

[^8]coming into very common use. It is specially serviceable for determining readings to be used in compnting elevations.

122. Practical Value of the Barometer; Atmospheric

 Pressure. By the barometer we ean determine the pressure of the atmosphere at any point. For example, to measure the pressure per sq. em. of the air at a point where the mercury barometer stands at 76 cm ., we have but to find the weight of the eolum of mercury balanced by the atmospherie pressure at this point; that is, we have to find the weight of a colmmn of mercmry 1 sitl. em. in section and 76 em. high. The volmue of the cohmm is 76 e.e., and taking the density of mereury as 13.6 gram per c.e., this weight will be$$
76 \times 13.6=1033.6 \text { grams. }
$$

In general terms, if a is the area pressed, and h the height of a barometer, using a liquid whose density is d, $a / h=$ volume of higuid in barometrie eolmm, alid $=$ = weight of liquid in barometric colmm, $=$ pressure of atmosphere on area a, and $\quad h d=$ pressure of atmosphere on unit area.
123. Variations in Atmospheric Pressure. By comtinmally observing the height of the barometer at any place we learn that the atmospherie pressme is eonstantly changing. Sometimes a deeided change takes place within an hour.
Again, by comparing the simultaneous readings of barometers distributed over a large stretch of comery we find that the pressure is different at different places.
124. Oonstruction of the Weather Map. The Meteorological Service has stations in all parts of the comntry at which observers regularly record at stated hours of each day the prevailing meteorolugical comditions. Twice ach day these simultaneous observations are sent by telegraph to the head office at Toronto. These reports inchele:--The barometer reading, the temperature, the direction and
velocity of the wind, and the rainfall, if any. The information thus received is entered upon a map, such as that shown in Fig. 135. Places having equal barometric pressures are joinell by lines called isolners,* the successive lines showing difference of pressure dne to ${ }^{1} 0$ inch of mercury. The circles show the state of the sky and the arrows indicate the direction of the wind.

The Map given shows the comlitions existing at 8 p.m., February 15th, 1910 . It will be seen that there were certain areas of low and of high pressure enclosed by the isobars. For instance a "low" was central over Michigan while a "high" was central over Dakota and southem Saskatchewan. In all weathor maps there are found sets of these areas, but no two maps are ever quite the same.

On account of the difference in pressure there is a motion of the air inwards towards the centre of the "low," and outwards from the contre of the "high." But these motions are not directly towards or away from the centre. An examination of the arrows on the map will show that there is a motion about the centre. In the case of the "low" this motion is contrary to the direction of motion of the hands of a clock, while in the ease of the "high " the motion is with the hambs of the clock. Through a combination of the motions the air moves spirally inwards to the centre of low pressure and spirally outwards from the centre of high pressure. The system of winds abont a centre of low pressure is called a cyclone; that about a centre of high pressme, an anti-cyrlone. The disturbance in the eychone is usually much greater than in the anti-cyclone.

At the centre of low pressure the barometer is low because at that place there is an ascending current of air, which rises until it reaches a groat height, when it Hows over into the surrounding regions. In the case of the area of high pressure there is a flow of air from the upper levels of the surrounding atmosphere into the centre of high pressure, thus raising the barometer.

It will be observed, also, that while the air in an area of low or high pressure may be only three or four miles high, these areas are humdreds of miles across.

Now it has been found that within the tropies, in the trade-wind zomes, the drift of the atmosphere is towards the west and south, and disturbances are infrequent; but in higher latitudes the general drift is eastward, and disturbances are of frequent oecurence, especially during the colfer months. Thus in Camada and the

[^9]

Note.- The storm Indicated in the arpan nf iow presmre, at tho centre of the map, dewelmped during Frbruary nimht of the 14th in mortinwestern States and moved southeast to Nebriaka, whire it was celitred on the

 (rritnry ami Markemzie River Valley.

United states the areas of high :uml low pressure mowe eastward; the latter, however, trawel faster than the fomer.
125. Elementary Principles of Forecasting. In using the weather map the chief aim is to foresce the movenent of the areas of high and low pressure, and to prediet their positions at some future time, say 36 hours hence. It is also essential to judge rightly what changes will oecur in the energy of the areas shown on the matp, as these changes will intensify or otherwise modify the atmospheric conditions.

As the cyclone moves eastward, the first indication of its approach will be the shifting of the wind to the eastward. The direction in which the wind will veer depends on whether the sterm centre passes to the northward or the sonthwarl; and the strength of the wind will depend on the closeness of the isobars. If they are close tugether, the wind will be strong. If the centre passes nearly over a plare, the wind will chop romed to the westward very suddenly; while if the centre is at a cansiderable distance the change will be more gradual.

The precipitation (rain or snow) in connection with a cyclonic area is largely dependent on the energy of the disturbance, and on the temperature and moisture of the air towards which the centre is advancing. It must, of course, be remembered that rain cannot fall muless there is moisture, and moisture will not be precipitated unless the volume of the air containing it is cooled below the dew-point ($\$ 295$). This cooling is caused by the expansion of the air as it ascends.
Occasionally we have a rain with a northerly wind succeeding the passage of a centre of low pressure. In this case the colder and horavier air flows in under the warmer air, lifting it to a height sullieient to caluse the condensation of its moisture.

The duration of precipitation, and of winds of any particular direction, depends on the rate of movement of the stoms and of the areas of high pressure. Temperature changes in any given region can be arrivedat only by an accurate estimation of the distance and direction from which the air which passes over has been transferred by wind mevement.

Abnomally warm weather results from the incoming of warm air from more southern latitudes; and cold waves do not develop in lower middle latitudes (such as Ontario), but are the result of the rapid flow southward of air which has been cooled in high latitndes.
126. Determination of Elevation. Since the pressure of the air decreases gradually with increase in height above the sea-level, it is evident that the barometer may be utilized to determine changes in eleration. If the density of the air were uniform, its pressure, like that of liquids, would vary directly as the depth. But on account of the compressibility of air, its density is not uniform. The lower layers, which

Fig. 136. - Atmospheric pressure at different heights. sustain the greater weight, are denser than those above thim. For this reason the law giving the relation between the barometric pressure and altitude is somewhat complex. For small elevations it falls at an approximately uniform rate of one inch for every 900 feet of elevation. Fig. 136 shows roughly the conditions of atmospheric pressure at various heights.
127. The Height of the Atmosphere. We have no means of determining accurately the height of the atmosphere. Twilight effects indicate a height of about fifty miles; above this the air ceases to reflect light. But it is known that airmust extend far beyond this limit. Metcors, wheh consist of sr all masses of matter, made incandescent by the heat produced by fiction with the atmosphere, have been known to become visible at heights of over 106 miles.
128. Oompressibility and Expansibility of Air. We have alrealy refered to the well-known fact that air is

Fw. 107.-Aircomuressed within a closed tule by pressure applied to pis. compressible. Experiments might be multiplied indetinitely to show that the volme of air, or of any gas, is decreased by pressure. The air within a hollow rubber ball may be compressed by the hand. If a tightlyfitting piston be inserted into a tube closed at one end (Fig. 137) the air may he so compressed as to take up bit a small fraction of the space originally ocenpiend by it.

Again, if mercury is pomed into a U-tule closed at one end (Fig. 138) it will be fomed that the higher the column of the mercury in the open branch, that is, the greater the pressure due to the weight of the mercury, the less the volume of the air slant up in the closed branch becomes.

Fia. 138. -Aircompressed within a cloned tube by welght of mer. cury in the long branch.

On the other hand gases manifest, under all conditions, a tendency to expand. Whenever the pressure to which a given mass of air is subjected is lessened, its
 volume increases. The compressed rubber ball takes its original volnme and shape when the land is withdrawn, and when the applied force is removed the piston shoots outwards. If a toy balloon, partially

Fis. 140. - Water forced out of the rlosed bottle hy the expansan of the air above it.

Fra 139-Expansion of filled with air, is placed under the receiver air when pressure is removed. hausted from the receiver, the balloon swells out and if its
walls are not strong it lursts. When a bottle partly filled with water, closed with a perforated eork, and comected by a bent tube with an uncorked bottle, as shown in Fig. 140, is placed under the receiver of the air-pump, and the air exhausted from the receiver, the water is forced into the open bottle by the pressure of the air shut up within the corked bottle. This tendency of the air to expand explains why frail hollow vessels are not crushed by the pressure of the air on their outer walls. The pressure of the air within cominterbalances the pressure of the air without.

Fio. 142.

QUESTIONS AND PROBLEMS

Fig. 141.
Fra. 141

1. Arrange apparatus as shown in Fig. 141. By suction remove a portion of the air from the flask, and keeping the rubber tube closed by pressure, place the open cund in a dish of water. NC. ${ }^{(}$open the tube. Explain the action of the water.
2. Guericke took a pair of hemispherical cups (Fig. 142) about 1.2 ft . in diameter, so constructed that they formed a hollow air-tight sphere when their lips were placed in contact, and at a test at Regensburg before the Emperor Ferdinand III and the Reichstag in 1654 showed that it required sixteen horses (four pairs on each hemisphere), to pull the hemispheres apart when the air was exhausted by his air-pump. Account for this.
3. If an air-tight piston is inserted into a cylindrical vessel and the air exhausted through the tube (Fig. 143) a heavy weight nay be lifted as the piston rises. Explain this action.

129. The Relation between the Volume and the Pressure

 of Air-Boyle's Law. The exact relation between the volume of a given mass of gas and the pressure upon it was firstdetermined by Robert Boyle (1627-1691), lorn at Lismore (instle. Irelaml, who devoted a great doal of attention to

Fiu. 14t.-Boyle's apparatus. the study of the mechanics of the air. In enteavomring to show that the plenomenon of the 'Torricellian experiment is explained by "the spring of the air," he hit upon a method of investigation which confirmed the hypothesis he had made, that the volume of a given quantity of air varies inversely as the pressure to which it is subjected. He took a U-tube of the form shown in Fig. 144, and by pouring in enough mercury to fill the bent portion, inclosed a definite portion of air in the closed shorter arm. By manipulating the tube he

Korbrt Borle ($165 \mathrm{~g} \cdot 1691$). Published his Law in $166 i!$. One of the earliest of English scientists basing their investigations upon experiment.
adjusted the merem'y so as to stand at the same height in each arm. Under these conditions the imprisoned air was at the presscre of the outside atmosphere, which at the time of the experiment would support a colum of mercury about 29 inches high. He then poured mercury into the open arm mutil the air in the closed arm was compressed into one-half its volume. "We observel," he says, " not without delight and satisfaction, that the quicksilver in that longer part of the tube was 29 inches higher than the other." This difference in level gave the excess of pressure of the inclosed air over that of the outside atmosphere. It was
clear to him, therefore, that the pressure sustained hy the inclosed air was doubled when the volume was rednced to onehalf. Contiming his experiment, he showed, on using a great vamiety of volumes and their corresponding pressures, that the product of the pressmee $1 ;$ the volume was approximately a constant quantity. His conchasion may be stated in general terms thus:-

Let V_{1}, V_{2}, V_{3}, etc., represent the volumes of the inclosed air, and P_{1}, P_{2}, P_{3}, etc., represent corresponding pressures;
Then $V_{1} P_{1}=V_{2} P_{s}=V_{3} P_{3}=K ; \pi$ constant quantity.
That is,
If the temperature is kept comstant, the volume of " given mess of air varics inversely as the pressure to which it is suljected. This relation is generally known as Bovle's Law. In France it is called Mariotte's Law, becanse it was independently discovered by a French physicist naned Miniotte (1620-1684), fourteen years after Boyle's publication of it in Eng'and.

PROBLEMS

v1. A tank whose capacity is 2 cu. ft. has gas forced into it until the pressure is 250 pounds to the sq. inch. What volume would the gas occupy at a pressure of 75 pounds to the sq. inch?
v2. A gas-holder contains 22.4 litres of gas when the barometcr stands at 760 mm . What will be the volume of the gas when the birometer stands at 745 mm .?
3. A cylinder whoze intemal dimensions are: length 36 in., diameter 14 in ., is filled with gas at a pressure of 200 pounds to the sq. inch. What volume would the gas vecupy if allowed to escapc into the air when the barometer stands at 30 in ? (For density of mercus; see page 14.)
4. Twenty-five cu. it. of gas, measured at a pressure of 29 in . of melury, is compressed into a vessel whose capacity is $1 \frac{1}{2} \mathrm{cu} . \mathrm{ft}$. What is the pressure of the gas?
B. A mass of air whese vohme is $\mathbf{1 5 0}$ c.c. when the barometer stands at 750 mm . has is vohume of $\mathbf{2 0 0}$ c.c. when carried 11 to a certain height in a ballown. What was the reading of the lamoneter at that height?
6. A piston is inserted into a cylindrical vessel 12 in . long, and forced down within 2 in. of the lmotom. What is the pressure of the inchosed air if the barometer stands at $2: 1$ in.?
7. The density of the nir in n gas-bag is 0,0001203 grams per c.c. when the burmoter stands at 660 mm.; find its density when the baronetric height is 740 mm ?
8. An open vessel contains 100 grams of air when the barometer stands at 745 mm . What mass of nir does it contain when the barometer stands at 75.5 mm .?
9. Oxygen gas, used fur the 'lime-hight,' is stured in steel tanks. The volume of n tank is $\mathbf{6} \mathbf{c n}, \mathrm{ft}$., and the pressure of the gas at first was $\mathbf{1 0}$ atmospheres. After some had been used the pressure was 5 atmonspheres. If the gas is sold at 6 cents n cı. ft ., measured at atmospheric pressure, what shoukd be charged for the amomit consumed?
130. Buoyancy of Gases. If we consider the cause of buoyancy we must recognize that Archimedes' principle applies to gases as well as to liquids. If a hollow metal or glass globe A (Fig. 14.5), suspended from one end of a short balance beam and counterpoised by a small weight B at the other end, is placed

Fic. 145.- Buoyaney of air. unler the receiver of an air-pump and the air exhausted from the receiver, the globe is seen to sink. It is evident, therefore, that it was supported to a certain extent by the buoyancy of the air.

A gas, like a liquid, exerts on any body immersed in it, a bnoyant force which is equal to the weight of the gas displaced by the body. If a body is lighter than the weight of the air equal in volume to itself, it will rise in the air, just as n cork, let free at the bottom of a pail of water, rises to the surface.
131. Balloons. The use of air-ships or balloons is made possible by the buoyaney of the air. A balloon is a large, light, gas-tight bug filled with sone giss lighter than air, usually hydrogen or illuminating gas. Fig. 146 shows the construction of an air-ship devised by Count Zeppelin in Germany. By memas of propellers it can be driven in any desired direction.

A bulloon will eontinue to rise so long as its weight is less than the weight of the uir whieh it displaces, und when there

Fil. 146.-Zeppelin's air-ship, over 400 ft . long and able to cany 30 passengers.
is a balanee between the two forces it simply floats at a constant height. The aeronaut maintains his position by adjusting the weight of the balloon to the buoyaney of the air. When he desires to ascend he throws out ballast. To descend he allows gas to escape and thus decreases the booyancy.

QUESTKON AND PROBLETS

1. Why should the gas-bng be ambject to an incrensed atrain from the pressure of the gan wit hin as the bullesin ascends?
2. Aermants rejort that lanlowins have grenter buoynncy during the day when the nun in shining nom them than at night when it is coll. Account for this fact.
3. If the volnme of a ballonn remmins constant, where whonld its boyancy be the greater, near the entris's nurface or in the mper sitmata of the air? (iive reasons for your answer.
4. The wohme of a ballown is 2600 cm . 1 m . and the weight of 'ie gasbag and car in 100 kg ; find its lifting power when filled witi. drogen gan, the clensity of which is 0.0000895 grams per c.c. while that of air is 0.001293 grams per c.c.

CHAlTER XIV

Appheations of the Laws of giaes

132. Air-Pump. Fig. 147 Nhows the construction of one of the most common forms of pumps used for exhausting air from a vessel. When the piston P^{\prime} is raised, the valve V_{1} is closed by its own weight and the pressure of the air above it. The expansive force of the air in the receiver lifts the valve V_{2} and a portion of the air flows into the lower part of the barrel.

Fro. 147-Common form of air-pump. $A B$, cylin. drical harrei of pump ; R, recefver from which air Is to be exhausted) ; C, pipe connecting harrel with recelver; I, pintor of pump: V_{1} and V_{3}, vaives When the piston descends, the valve V_{2} is closed and the air in the barrel passes up throngh the valve V_{1}. Thus at each double stroke, a fraction of the air is removed from the receiver. The process of exhaustion will cease when the expmanive force of the air in the receiver is mo longer sufficient to lift the value V_{0}, or when the pressure of the air below the piston fails to lift the valve V_{1}. It is evident, thercfore, that a partial vacmmn only can be obtained with a pamp of this kind. To secure more complete exhaustion, pumps in which the valves are opened and closed automatically by the motion of the piston are frequently used, but even with thesc all the air cannot be removed from the receiver. Theorotically, a perfect vacmun cannot be obtained in this way, because at each stroke the air in the recciver is reducel only by a fruction of itself.
133. The Geryk or Oil Air-Pump. This is a very efficient punip recently invented but wir'ely used. (Figs. 148, 149.) Its

Fio. 148.-An oil air-pump with two cylinders. action is as follows. The piston J, made air-iight by the leather. whsher C and by being covered with oil, moves up-and-down in the barrel. The tube A, opening into the chamber B surrounding the barrel, is connected to the vessel from which the air is to be removed. On rising the piston pushes before it the air in the barrel, and on reaching the top it pushes up G about $\frac{1}{4}$ inch, thus allowing the imprisoncd air to eseape through the oil into the upper part of the cylinder, from which it passes out by the tule D.

When the piston descembls the spring K, acting upon the packing I, closes the upper part of the cylinder, anl the piston on reaching the bottom drives whatever oil or air is beneath ont through the tube F, or allows it to go up through the valve E, into the space above the piston.

Oi] is introduced into the cyimder at L. When the pump has two cylinulers they are conneeted as shown in Fig. 149. With one cylinder the pressure of the air can be redued to $\frac{1}{4}$ min. of merenry, while with two a reduction to sto 1 mm. cim be quickly obtained. These pmups are msed for exhansting electric light bulbs and in some cases for X -ray tubes.

Fin. 140. - Vertical section of a cyiinder of an oil alr-pump.
134. Mercury Air-Pump. When the highest possible vacum is required, use is made of some form of the meremry air-pump devised by Sprengel. The principle of its action may be understood by reference to Fig. 150. As the mereury which is poured into the reservoir A falls in a beoken stream through the nozale A into the tula: $B 3$, it carries air with it busalice each If let of mercury acts as an aii-inght piston and bears a small pertion of air before it. The density of the air in C and R is thus grudually deereased. The mercury which overflows into D is poured back into A. A vacuun: as high as $0.000,007$ mm. has been ohtanned with a mercury pmop. It requires a good pump of the valved type to give an exhaustion of 1 mm . 135. Bunsen Jet Pump. Bunsen devised a moditied form of

Flo. 150. - Sprengel airpurup. A. reeervoir into Which mererury is pourrel. B, flase tuhte of snalii hore, about one metre lonk: R. veasel from
 the Sprengel pump, which is much used in laboratories where a moderate exhaustion is required, as for hastening the process of filtration. In this pmop (Fig. 151) water under a pressure of more than one atmosphere is forced into a jet through a tube nozzle N. The air is carriod along by the water and is thus withdrawn from any vessel connected with the offset tube A. 136. The Hydraulic Air-Compressor. An application of the principle involved in the instruments just described is to be seen in the great air-compressor at Ragged Chutes, on the Montreal River, eight miles south-west from Cobalt, the centre of the great mining region in northern Ontario.

A cement dam 660 feet long across the river raises the level of the water. By a large tube A (Fig. 15:2) the water is led

Fia. 152.--Taylor air-compressor at Ragred Chutes on Montreal kiver (section).
a vortex in the mouth of each pipe through which air is drawn down into the shaft below. Thus air and water are mixed together. At b the pipe is reduced to 9 feet and near the bottom, at c, is enlargell to $11 \frac{11}{2} f$ eet in diameter.

The water drops $3: 50$ feet, falling on a stecl-covered cone B, from which it rushes into a horizontal tumel owrer 1000 feet long, the farther end d of which is 42 feet high. In this large chamel the water loses much of its sperd and the air is rapidly set free, collecting in the upper part of the tumel. At e the tumel narrows and the water races past and enters the tail-shaft $T, 300$ feet high, from which it flows into the river again.

The air entrapped in the tunnel is under a pressure due to about 300 feet of water, or abont 125 pounds pere square inch. From d a 24 -inch steel pipe leads to the surface of the earth and from here the compressed air is piped off to the mines.

Other air-compressors on the same principle are to be found at Magog, Quebec ; at Ainsworth, B.C.; at the lift-lock at Peterborough (see $\S 97$); and at the Victoria Mines in Michigan; but the one near Cobalt is the largest in existence.
137. Air Condenser. It is obvious that the air - pump could be used as an air-comprossor or Condenser if the valves were marle to open inwards instead of outwards; but a pmop with a solid piston is commonly employed for this purpose. Fig. 153 shows the arrangement of the valves. When the piston is raised, the inlet valve V_{1} opens and the barrel is filled with air from the outside, and when the piston is pushed down the inlet valve is closed and the air is forced into the tank through the outlet valve $V_{y,}$, which closes on the up-stroke and thus retains the air within the tank. Hence at each double stroke a barrelful of air is forced into the tank. For rapid compression a double-action puinp of the form shown in Fig. 159 is used.
Exercise.-Obtain a small bicycle pump, take it apart, and study its construction and action.
138. Uses of Compressed Air. The air-brakes and diving apparatus are described in the next two sections. Another useful application is the pneumatic drill, used chiefly for boring holes in rock for blasting. In it the steel drill is attached to a piston which is made to move back and forth in a cylinder by allowing compressed air to act alternately on its two faces. The pneumatic hammer, which is similar in principle, is used for riveting and in general foundry work. Stean could be used, but the pipes conveying it would be hot and water would be formed from it. By means of a blast of sand, projected by a jet of air, castings and also discoloured stone and brick walls are cleaned. Figures on glass are engraved in the same way: Tubes for transmitting letters or telegrams, or for carrying cash in our large retail stores, are operated by compressed air. Many other applications camot be mentioned here.
139. Air-Brakes. Compressed air is used to set the brakes on railway cars. Fig. 154 shows the principal working parts of the Westinghonse air-brakes in common use in this comntry. A steam-driven air-compressor pimp A and $a \operatorname{tank} B$ for compressed air are attached to the locomotive. The equipment on each car consists of (1) a cylinder C in which works a piston P directly comnected, by a piston-rod D and a system of levers,

Fig. 154.-Air brakes in use on railway trains.
with the brake-shoe, (b) a secondary tank E, and (c) a system of comnecting pipes and a special valve F which automatically comects B with E when the air from B is almitted to the pipes, but which comects E with the cylinder C when the pressure of the air is removed.

When the train is running, pressure is maintained in the pipes, and the brakes are free, but when the pressure is decreased either by the engineer or the accidental breaking of a connection, the inrush of air from E to C forces the piston P forward and the brakes are set. To take off the brakes, the air is again turned into the pipes when B is connected with E and the air in C is allowed to escape, while the piston P is forced into its original position by a spring.
140. Diving Bells and Diving Suits. Compressed air is also usil as a reserve supply for individuals cut off from the atmosphere, as in the case of men engaged in submarine
wor:. The diving leells and puemmatic caissons used in laying the foundations of bridges, piers, etc., are simply vessels of varions shapes and sizes, open at the bottom, from which the water is kept out and workmen within supplied with air by compressed air forced in through pipes from above. (Fig. 155.) The air fills the tank complete$l y$, thus excluding the water, and escapes at the lower ellges.

Fig. 155.-Section of a Pneumatic Caisson. The sides of the caisson are extended upward and are stronciy braced to keep back the water. Masonry or concrete, C, D, piaced on top of the caisson, press it down upon the bottoin, while compressed workinge chamber a pipe I, drives the water out of the up and passes through the open caisson the workman ciimils The door B is then ciosed open cloor B into the air. iock L, from L untii it is at atmospheric pressure. Then door A is opened. In order to enter, this process is reversed. Materiai is hoisted out in the sanie way or is sucked out ly a mud pump. As the earth is removed the caisson sinks untii the rock is reached. The entire caisson is then filied with soild concrete, and a pernianent foundation then filied
or bridge is thus ohtained.

The modern diver is incased in an air-tight weighted suit.

Fla. 156.-ibiver's suit. (Fig. 156.) He is supplied with air from above through pipes or from a compressed-air reservoir attuched to his suit. The air escapes through a valve into the water. Manifestly the pressure of the air used by a diver or a workman in a caisson must balance the pressure of the outside air, and the pressure of the water at his depth. The deeper he descends, therefore, the greater the pressure to which he is subjected. The ordinary limit of safety is about 80 feet; but divers have worked at depths of over 200 feet.
141. Water Pumps. Fronn very carly times pmops were employed for raising water from reservoirs, or for forcing it throngh tules. It is certain that the suction pmop was in use in the time of Arisfotle (born 384 B.C.). The forcepump wis probably the invention of Ctesibins, a mechamieim who flomished in Alexandria in the secoml century B.C. To Ctesihins is also attributed the aneient fire-cngine, which consisted of two connected force-punps, spraying altermately.
142. Suction or Lift-Pump. The construction of the common suetion-pump is shown in Fig. 157. During the first

Fia. 15\%.-Suction-pump. $A B$, cylindrical larrel; $B C$, suction-pipe; P, piston: V_{1} and V_{2}, valves opening upwaris: R, reservoir from which water is to be lifted. strokes the suction-pump acts as an air-pump, withdrawing the air from the suction pipe BC. As the air below the piston is removed its pressure is lessened, and the pressure of the air on the surface of the water outside forces the water up the suction pipe, and throngh the valve V_{1} into the barrel. On the downstroke the water held in the barrel by the valve V_{1} passes up through the valve V_{2}, and on the next upstroke it is lifted up and discharged through the spont G, while more water is forced up through the valve V_{1} into the barrel by the external pressure of the atmosphere. It is evident that the maximum height to which water, under jerfect conditions, is raised by the pressure of the atmosphere cannot be greater than the height of the water column which the air will support. Taking the relative density of mercury as 13.6 and the height of the mercmry burometer as 30 inches, this
height would le ${ }_{i=10}^{30} \times 13.6=34$ feet. But an ordinary shetion-punp will not work satisfactorily for heights above 25 feet.
143. Force-Pump. When it is necessary to raise water t_{0} a considerable height, or to drive it with force through a nozzle, as for extinguishing fire, a force-pump is used. Fig. 158 shows the most common form of its construction. On the upstroke a partial vacuum is formed in the barrel, and the air in the suction tube expands and passes up through the valve V_{1}. As the plunger is pushed down the air is forced out through the valve V_{0}. The pump, therefore, during the first strokes acts as an air-punp. As in the suctionpump, the water is forced up into the suction pipe by the pressure of the air on the surface of the water in the reservoir. When it enters the barrel it is forced by the plunger at each down-stroke through the valve V_{2} into the discharge pipe. The flow will obviously be intermittent, as the

Fig. 158.-Forre.pump. $A B_{\text {a }}$ cylindrical larrel: $B C$, suction-pipe ; \dot{P}, piston: F, air chumber: $V{ }_{1}$ valve in suction-pipe; $V_{\text {: }}$ valve in outlet pipe: 6 , discharge pipe: R, reservoir from which water is
taken. outflow takes place only as the plunger is descending. To produce a continuous, strean, and to lessen the shock on the pipe, an air chamber, F is often inserted in the discharge pipe. When the water enters this chamber it rises above the outlet G which is somewhat smaller than the inlet, and compresses the air in the chamber. As the plunger is ascending the pressure of the inclosed air forces the water out of the chamber in a continuous strean.
144. Double Action Force-Pump. In Figg. 15\% is shown the construction of tha donble-action foree-pump. When the piston is moverl forward in the

Fiw. 159. - Double action force-pump.
 direction of the arrow, water is drawn into the batek of the cylinder throngh the valse V_{1}, while the water in front of the piston is forced out through the value V_{3}. On the backwayd stroke water is drawn in through the valve V_{2} and is forced ont throngh the valve V_{4}. Pumps of this type are used as fire engines, or for any purposes for which a large contimuons strean of water is required. They are usually worked by steam or other motive power.

QUESTIONS AND PROBLEMS

1. The capacity of the receiver of an air-pump is twice that of the barrel; what fractional part of the original air will be left in the receiver after (1) the first struke, (i) the third stroke?
2. The capacity of the barrel of ann air-pmmp is one-fourth that of the receiver ; compare the density of the air in the receiver after the first struke with the density at first.
3. The capacity of the receiver of an air-compressor is ten times that of the barrel ; compare the density of the air in the receiver after the fifth stroke with its density at first.
4. How ligh can alcohol be mised ly a lift-puny when the mercury barometer stands at 760 mm . if the relative densities of alcohol and merenry are 0.8 and $1: 3.6$ respectively!
5. Commect a glass model pmop, with a flask, as shown in Fig. 160. Fill the flask (1) full, (b) partially full of water, and endeavour to pump the water. Account for the result

Fis. 160. in each case.
145. Siphon. If a bent tube is filled with water, placed in a ressel of wuter mol the conls unstopped, the water will flow freely from the tube, so long as there is a difference in level in the water in the two vessels. A bent tube of this kind useal to transfer a liquid from one ressel to mother at a lower level is called a siphon.

To understand the cmine of the flow comsider Fig. 161.

The pressmre at I tending to move

Fia. 161.-The siphon. the water in the siphon in the direction $A C$
$=$ the atmospheric pressme - the pressure due to the weight of the water in $A C$;
and the pressure at B tending to move the water in the siphon in the direction $B D$
$=$ the atmospheric pressure - the pressure the to the weight of the water in $B D$.
But since the atmospheric pressure is the same in both cases, and the pressure dhe to the weight of the water in $A C$ is less than that due to the weight of the water in $13 D$, the force tending to move the water in the direction $A C$ is greater than the force tending to move it in the direction $B D$; consequently a flow tukes pluce in the direction ACDIB. This will continue until the vessel from which the water flows is empty, or until the water comes to the same level in each vessel.
146. The Aspirating Siphon. When the liquid to be transferred is dangerous to Fia. 169.-The aspira-handle, as in the case of some acids, an aspirating siphon is used. This consists of an orrlinury siphon to which is attached an offiset tube and
stopenek, as shown in Fig. 162, to facilitate the process of filling. The end B is closed by the stopeoek and the lignid is drawn into the siplum by suction at the month-piece A. The stopeock is then opened and the flow begins.

QUESTIONS AND PROBLEms

1. Cjon what does the limit of the height to whieh a hiquid can be

F'U. 163.

Fig. 165. raised in a siphom depend?
2. Over what height eall (1) mercury, (l) water, le made to flow in a siphon?
3. How high can sulphuric acid be raised in n

Fio. 164.-An intermittent spring. siphon when the mercury barometer stands at 29 in ., taking the specific gravities of sulphuric aeid and mercury as 1.8 and 13.6 respectively?
4. 'pon what does the rapidity of flow in the sipion depend!
5. Arrange npparatus as shown in Fig. 163. Let water from a tap run slowly into the bottle. What takes place? Explain.
©. Natural reservoirs are sometimes found in the earth, from which the water call run by natural siphons faster than it flows into them from ahove (Fig. 1(64). Explain why the discharge through the siphon is intermittent.
7. Arrange apparatns as shown in Fig. 105. Fill the Hask A partly full of water, insert the cork, and then invert, placing the short tube in water. Explain the cause of the phenomenon observed.

PART IV-SOME PROPERTIES OF MATTER

CHAP'TER XV

The Moleculah Theory uf Matter

147. Why we make Hypotheses. In order to accomnt for the observed behaviour of bolies the hnman mind finds satisfaction in making hypotheses as to the manner in which material bodies are built up. In this way we attempt to "explain" and to trace a connection between various natural phenomena. But it must be remembered that our hypotheses are only methorls of picturing to ourselves what we know of the belaviour of substances. Of the real mature of matter we still remain in complete ignorance.

We are all familiar with matter in its three ordinary forms -solid, liquid, gaseous-and a multitude of observations have led to the universal belief that it is composed of minnte separate particles. These particles are called molecules. The molecules of some elements and of compound substances can be still further divided into atoms, but in this way the nature of the substance is altered,-in other words this is not a physical subdivision but a chemical change. Thns, the oxygen molecule has two atoms, and the water molecule consists of two atoms of hydrogen and one of oxygen.
148. Evidence suggesting Molecules. Water will sork into wood, or into beans, peas or other such seeds. On mixing 50 c.c. of water with 50 c.c. of alcohol the resulting
volun! is not 100 c.e., hut muly alsult 17 c.c. When copper anll tin are mixed in the ratio of 2 of colpru to 1 of tin, which gives an mhlog used for making mirrors of reflecting telesonges, there is a shrinkinge in volune of 7 or 8 jere
cent.

Again, various gases may be inclosed in the same space, and grases nay be contained in higuids. Fish live by the oxygen which is dissolved in the water:

A simple exphnation of these phenomena is that all bodies are made up of molecules with spuces between, into which the molecules of other bodies may enter. As we shall soe, the molecules and the spuces between are nueh too small to be observed with our most powerful microscopes. The magnifying power would have to be incrensed several thousand times, but even thoug!. this repuisite mugnification were obtained it is probable that the molecules could not then be seen, since there are good ε rounds for believing that they are constantly moving so rapidly that the eye could not follow then.

That there are pores or chamels between the molecules was nently proved by Bacon,* who filled a leaden shell with water, closed it, and then hammered it, hoping to compress the watcr within. But the water cane through, appearing on the ontside like perspiration. Afterwards the scientists of Florence tried the experment with a silver shell, and also with the same shell thichly gilded over, but in both cases the water escaped in the salue way. Many other illustrations of porosity could ber given. \dagger

[^10]149. Diffusion of Gases. The intermingling of molecnles is best illustrated in the behaviour of geses. In order to investignte this question the French chemist, Berthollet, used apparatus like that illus ated in Fig. 166. It consisted of two glass globes provirled with stopeocks, which conlld be securely screwed together. The upper one was tilled with hydrogen and the lower with carlonic acid gras which is 22 times as dense. They were then serewed together, placed in the cellar of the Paris Observatory and the stopoocks opened. After some time the contents of the two globes were tested and fommd to be identical, the gases had become miformly mixed.

When the passage connecting the two vessels is small, hours may be repmired for

Fig. 166,-Twn glase gloles. one tilled with hydrogen. the other with carlonic acid ras. The two gasef nix until the contents of the two globes are Identi. cal. perfect mixing; but when it is large a few minutes will suffice.

A simpler expe:iment on diffision is the following. Fill one wide-monthed jur with hydrogen and a similar one with oxygen, which is 16 tines as heavy, covering the vessels with glass plates. Then put them together as

Pia, 167.-11jdrogen in one ressel ruickly mixes with oxygen in the other. shown in Fig. 167 and withdraw the glass plates. After allowing them to stand for some minntes separate them and apply a matcl. At once there will be a similar explosion from each, showing that the two gases have become thoronghly mixed.*

It is through diffusion shat the proportions of nitrogen mad oxygen in the earth's atmosphere are the same at all elevations. Though oxygen is the heavier constituent there is no excess of it at low levels.

[^11]150. Diffision of Liquids and Solids. Liquids diffinse into each other, though not nearly so rapilly as do gases.

If coloured alcohol (density 0.8) is carefully poured on the top of clear water in a tumbler (or if water be introduced muder the alcohol), the mixing of the

Fig. 163.-Copper sulphate solution in a hottle, placed in a vexsel of water. In time the blue solution spreands all through the water. two will be seen to commence at once and will proceed quite rapidly.

Let a wide-mouthed bottle a (Fig. 168) be filled with a solution of copper sulphate and then placed in a larger vessel containing clear water. The solution is denser than the water but in time the colour will be distributed uniformly throughout the liguid.
Diffusion takes phace also in some metals, though very slowly at ordinary temperatmres. Roberts-Austen found that the diffinsion of goll through lead, tin and bismuth at $550^{\circ} \mathrm{C}$. was very marked: and that even at ordinary temperatures there was an appreciable diffinsion of gold through solid lead. In his experiments dises of the different metals were kept in close contact for sereral weeks.
151. Motions of the Molecules; the Kinetic Theory. An explamation of such results as these is the hypothesis that all bodies are male up of molecules which have considerable freedom of motion, especially so in the case of gases.

The laws followerl by gases, which are much simpler than those of solids and liquids, are satisfactorily accounted for by these molecular motions.

The distinguishing featme of a gas is its power of indefinite expansibility. No matter what the size of the vessel is into which a certain mass of gas is put, it will at once spread out and occupy the entire space. The particles of a gas are practically independent of their neighbours, moving freely about in the enclosure containing the gas.

A gas exerts pressure against the walls of the ressel containing it. This can be well illustrated as follows. Place a toy balloon or a half-inflated football rubber under the receiver of an air-pump and work the puinp. (Fig. 169.) As the air about the bag is continually removed the bag expands; and when the air is admitted agrain into the receiver the bag resumes its original volmme.

We may consiller the bag as the seat of two contending factions,- the troops of molecules within endea voming to keep

Fia. 169. When the air is removed from the receiver the toy balloon expands. hack the invaling hosts of molecules without. Incessantly they rush back and forth, continually striking against the surface of the bag. As the enemies are withdrawn by the action of the pump, the defenders within gain the advantage and, pushing forward, enlarge their boundary, which at last however becomes so great that it is again held in check by the outsiders.

Or, we may compare the motion of the molecules of a gas to the motions of a number of bees in a closed vessel. They continually rush from side to side, frequently colliding with each other. The never-ceasing striking of the molecules of the gas against a borly gives rise to the pressure exerted by the gas. This riew of a gas is known as the Kinetic Theory.
152. Explanation of Boyle's Law. According to Boyle's Law (§ 129), when a gas is compressed to half its volume the pressure which it exerts against the walls of the vessel containing it is doubled. This is just what we would expect. When the gas is made to occupy a space half as large, the particles in that space will be twice as numerous, the blows against its sides will be twice as numerous as before, and consequently the pressire will be doubled.
153. Effect of a Rise in Temperature. If we place the rubber hag used in § 151 in an oven it expands, showing that the pressure of the gas is increased by the application of heat. Evidently when a gas is heated its molecnles are made to move with greater speed, and this produces a greater pressmre and canses the gas to expand.
154. Molecular Velocities. On accomit of numerous collisions the molecules will not all have the sane veloeity, but knowing the pressure which a gas exerts and also its density, it is possible to calculate the mern velocity of the molecnles. In the following table the mean velocity,* at atmospheric pressure and freezing temperature, is given for some gases.

Table of Moheftlar Velocitifas

Hydrogen	1843 m . or 6046 ft . per second.
Nitrogen	493 mm , or 1618 ft .
Oxygen	462 m . or 1517 ft .
Carbon Disxide	393 mm or 1291 ft .

It will be seen that the hydrogen molecules move fastest of all, being abont fom times as rapid as the molecules of nitrogen and oxygen, the chief constituents of the atmosphere. This is becanse it is much lighter. Each gas, by means of the bombardment of its molecules, is able to produce a pressure as great as that of any other gis, and henee as hydrogen is much lighter its molecular veloeity must be much higher. The velocity is inversely proportional to the sipuare root of the density of the gas.

[^12]
155. Passage of Hydrogen through a Porous Wall. As

 the velocities of the hydrogen molecules are so great, they strike much more frequently against the walls of the vessel which contains them than do the molecules of other gases. Hence, it is harder to confine hydrogen in a vessel than another gas, and it diffiuses more rapidly. This is well illustrated in the following experiment.An unglazed earthenware cup, A, (such as is used in galvanic batteries) is closed with a rubber or other cork impervious to air, and a glass tube connects this with a bottle nearly full of water (Fig. 170). A small glass tube B, drawn to a point, also passes through the cork of the bottle and reaches nearly to the bottom of the bottle.

Now hold over the porous cup a bell-jar full of dry hydrogen, or pass illuminating gas by the tube C into the bell-jar. Very soon a jet of water will spurt from the \imath abe B, sometimes with considerable force. After this ac-

Fig. 170.-Experiment thowing rapid passage of hydrogen through a porous wall. tion has ceased remove the bell-jar, and bubbles will be seen entering the water through the lower end of the tube B.

At first the space within the porous cup and in the bottle above the water is filled with air, and when the hydrogen is placed about the porous cup its molecules pass in through the walls of the cup much faster than the air molecules come out. In this way the pressure within the cup is increased, and this, when transmitted to the surface of the water, forces it out in a jet. When the jar is removed the hydrogen rapidly escapes through the porous walls and the air rushing in is seen to bubble up through the water.
156. Molecular Motions in Liquids. In liquids the motions of the molecules are not so unrestrained as in a gas, but one can hardly doubt that the motions exist, however. Indeed, some direct evidence of these motions has been obtained. Brown, an English botanist, in 1827, with the assistance of a inicroscope, observed that minute particles like spores of plants when introduced into a fluid were always in a state of agitation, dancing to and fro in all directions with considerable speeds. The smaller the particle the greater was its velocity, and the motions were apparently due to these partieles being struck by molecules of the liquid. More reeently a method has been devised for demonstrating the presence of particles which are too small to be seen with Ω microscope, and by means of it the particles obtained on making an emulsion of gamboge in water (which are too small to be observed with a microscope) have been shown to have these same Brownian motions. It is natural to infer that these motions are caused by the movement of the molecules of the liquid.

The spaces between the inolecules are much smaller than in a gas and so the collisions are much more frequent. Moreover the molecules exert an attractive force on each other, the force of cohesion, but they glide about from point to point throughout the entire mass of the iqquid. Usually when a molecule comes to the surface its neighbours hold it back and prevent it from leaving the liquid. The molecules, however, have not all the same velocity, and occasionally when a quick-moving one reaches the surface the force of attraction is not sufficient to restrain it and it escapes into the air. We say the liquid evaporates.

When a liquid is heated the molecules are made to move more rapidly and the collisions are more frequent. The result is that the liquid expands and the evaporation is more rapid.

In the case of oils the molecules appear to have great difficulty in escaping at the surface, and so there is little evaporation.
157. Osmosis. Over the opening of a thistle-tube let us tie a slieet of moistened parchment or other animal membrane (such as a piece of bladder). Then, having filled the funnel and a portion of the tube with a strong solution of copper sulphate, let us support it as in Fig. 171 in a vessel of water so that the water outside is at the same level as the solution within the tube.

In a few minutes the solution will be seen to have risen in the tube. The water will appear blue, showing that some of the solution has come out, but evidently more water has entered the tube. The rise in level continues (perhaps for two or three hours) until the hydrostatic pressure due to the difierence of levels stops it.

This mode of diffusion through mem-

Fia. 171.-Ommonis. branes is called osmosis, and the difference of level thus obtained is called osmotic pressure.

Substances such as common salt and others which usually form in crystals are called crystulloids. These diffuse through membranes quite rapidly. Starch, gelatine, albumen and gummy substances generally, which are usually amorphous in structure, are called colloids. These diffuse very slowly.

Osinosis plays an important part in the processes of nature.
158. Molecular Motions in Solids. As las be stated in $\S 150$, evidences of the diffusion of the molecules of one solid into another have been observed, but the effect is very slight.

If a lump of sugar is dropped into a cup of tea it soon dissolves, and in time its molecules spread to every part of the liquid, giving sweetness to it. In this instance the molecules of water enter into the lump of sugar and loosen the bonds
which holl the molecules of sugar together. The molecules thus set free spread throughont the liquid.

Drop a minute piece of potassium permanganate into a quart jar full of water and shake the jar for a moment. The solid disappears and the water soon becomes of a rich red colour, showing that the molecules of the solid have spread to every part.

Agrain, ice gradually disappears even when below the freezing point. Camphor and iodine when gently heated readily pass into vapour without melting. Indeed, if a piece of camphor is cut so as to have sharp corners the wasting away at ordinary temperatures will be seen by the rounding of the corners in a very few days. This change from solid to vapour is called sublimution.

The motions of the molecules of a solid are much less free than those of a liquid. They vibrate back and forth about their mean positions, but as a rule are kept well to their places by their neighbours. When heated, the molecules are more vigorously agitated and the body expands, and if the heating is intense enough it becomes hquid.

Since when a solid chnnges to a liquid its volume is not greatly changed we conchule that in the two states of matter the molecules are abont equally close together. But in gases they are much farther apart. A cubic centimetre of water when turned into steam occupies about 1600 c.c.
159. Viscosity. Tilt a vessel containing water; it soon comes to its new level. With ether or alcohol the new level is reached even more quickly, but with molasses much more slowly.

Although the molecules of a liquid or of a gas move with great freedom amongst their fellows some resistance is encomntered when one layer of the fluid slides over another. It is a sort of intemal friction and is known as viscosity.

Ether and alcohol have very little viscosity; they flow very freely and are called mobile liquids. On the other hand, tar, honey and molasses are very viscous.

Stir the water in a basin vigorously and then leave it to itself. It soon comes to rest, showing that water has viscosity: The viscosity of gases is smaller than that of liquids, that of air being about $\frac{1}{6 \sigma}$ that of water.
160. Distinction between Solids and Liquids We readily agree that water is a hquid and that glass is a solid, but it is not easy to frame a definition which will discriminate between the two kinds of bodies. A hiquid offers no permenent resistance to forces tending to change its shape. It will yield to even the smallest force if continuously applied, but the rate of yielding varies greatly with different fluids, and it is this temporary resistance which constitutes viscosity.

Drive two pairs of nails in a wall in a warm place, and on one pair lay a stick of sealing-wax or a paraffin candle, on the other a tallow candle or a strip of tallow (Fig. 172). After some days (perhaps weeks), the tallow will still be straight and unyielding while the wax will be bent.

Fia. 172.-A paraffin candle bend but a tallow one keepe stralght.

Lord Kelvin describes an experiment which he made many years ago. On the surface of the water in a tall jar he placed several corks, on these he laid a large cake of shoemakers' wax about two inches thick, and on top of this again were put some lead bullets. Six months later the corks had risen and the bullets had sunk half through the cake, while at the end of the year the corks were floating in the water at the top and the bullets were at the bottom of the vessel.

These experiments show that at ordinary temperatures wax is a liquid, though a very viscous one, while tallow is a true solid.

CHAPTER XVI

Molectiali Forces in Sulibs anib Liquids

161. Cohesion and Adhesion. When we attempt to separate a solid into pieces we experience difficulty in doing so. The molecules cling together, refusing to separate mess compelled by a considerable effort. This attraction between the molecules of a body is called colesion, and the molecules must be very close together before this force comes into play. The fragments of a por elain vessel may fit together so well that the eye camnot detect any c:acks, but the vessel falls to pieces at the touch of a finger.

Some substances can be made to weld together much more easily than others. Clean surfaces of metallic lead when pressed together cohere so that it requires considerable force to pull them apart; and powdered graphite (the substance nsed in 'lead' pencils), when submitted to very great pressure, becomes once more a solid mass.

Cohesion is the natural attraction of the molecules of a borly for one another. If the particles of one body cling to those of wother borly there is said to be alliesion between them. The forces in the two cases are of the same nature, and there is really no good reason for making a distinction between them.

The force of cohesion is also present in liquids, but it is much weaker than in solids. If a clean glass rod is dipped in water and then withdrawn a film of water will be seen clinging to it ; but if dipped in mercury no mercury adheres. This shows that the adhesion between glass and water is greater than the cohesion between the molecnles of water, but the reverse holds in the case of inercury and glass.
162. Elasticity. When a body is altered in size or shape in any way, so that the rehative positions of its parts are changed, it is said to be struined. A ship may be tossed about by tise waves and suffier no ham, but if it runs on a sand-bar and one portion is moved with respect to the rest it becomes strained and very serious results me sure to follow.

Let us strain a boly, bend it, for instanee. It exerts a resistance, and on setting it free, (if the strain has not been too great), it returns to its original shape. This resisting force is due to the elesticity of the body. We apply an extermal foree and thus strain the body, and this strain arouses an internal foree whieh is preeisely equal in magnitude and opposite in direction to the external force. The internal forces in a body are called stresses, and the stress is proportiomal to the strain which accompanies it.

Strain is of two kinds,-change of form and change of volume, and there are corresponding elasticities of form and of volume. Solids have both kinds of elasticity, while liquids and gases have only elastieity of volume,-they offer no resistance to change of form.

Steel, glass and ivory are solids which strongly resist change of form and are said to have high elasticity; on the other hand, india rubber, while easily stretched, has small elastic force.
163. How to Measure Elasticity. From a strong bracket placed high on a wall hang near together two wires A, B (Fig. 173). To the end of A attach a weight to keep the wire taut, and to the end of B attach a hook on which weights may be laid. On B a cardboard scale is fastened and on A a picce of cardboard bearing a mark (or preferably a vernier), by which any change
 in the length of B can be measured.

First place on 13 a weight sutficient to kerep the wire tant, and take the realing on the seale. 'Then add I kilos and take the reading again. Le't the incrense in length be ar anm. Then add another X kilos, and find the new extemsion. It will be fonnd to be x man. By continning the process we shall find that the ertensiom is proportional to the stretching force. This is known as Hooke's Law from its discoverer, Robert Hooke (1635-1703), a corrtemporary of Newton.

The object of having the wire A to hold the index mark is to eliminate any change in the wires throngh a change in temperature, or any error arising throngh dany 'give' in the snpport as weights are aldeel to B. As both wires will change in the same way the extension will be given by roaling the scale.

Hooke's Law holds also in the case of a coiled spring (such as used in spring balances), and also in the bending of a bar. The amome of the benting is proportional to the force producing it.

In performing experiments on elasticity the weights used must not be too large, otherwise the bexly will not return to its original condition, but will take a permanent 'set.' In this case the bonly will have been staamed beyond the limits of perfect elasticity.
164. Elasticity of Various Metals. Steel has the greatest elasticity of all the metals, and hence it is used rely extensively in bridges and other structures. 'loo streteh a rod of steel 1 m . long and one sif. cm. inr section so that it is $1 \mathrm{~m} . \mathrm{m}$. longer (i.e., to increase its lengtlı by fö̃o) requires 20 kilos. Steel is perfectly elastic within comparatively large limits. Suppose a connecting rod 10 ft . long and 1 sq . inch in section to be exposed to a tension of 10,000 pounds; the extension would be $\frac{1}{2}$ is inch. For copper a like extension would be produced with $\frac{4}{10}$ of this force.
165. Shearing Strain. In building a bridge the emls of the braces are held in place by lolts or rivets; and lussides the fear of a rond leing stretehed beyond its elastic limit, there is danger of the bolt or rivet being cut right across its section (Fig. 174). In this case a section slides past the neighbouring section, and the strain is said to be a shear. When we cut a sheet of paper with scissors we shear it. For steel the resistance to shearing is very high.

Fia. 1\%4. - llow a bolt in the end of a lirace is wheared.

166. Other Properties Depending on Cohesion. A body is

 said to be plastic when it can be readily monlded into any form. The more plastic the borly. the smaller is the elastic force exerted to recover its form. Clay and putty are good examples of plastic bodies.A malleable body is one which can be beaten into thin sheets and still preserve its continuity. Gold is the best example. The gold leaf employed in 'gilding' is extremely thin. Between the fingers it crumples almost to nothing.

The process of making it demands much patience and skill. First, a piece of gold, by means of powerful smonth rollers, is rolled into a thin sheet, l ounce making a ribbon $1 \frac{1}{2}$ inches wide and 10 feet long. Its thickness is then about I 8 oo inch, thinuer than the thinnest writing paper. The ribbon is cut into about 75 pieces, which are then placed between leaves of vellum or of a special tough paper, and are beaten with a heavy nallet until their area is multiplied about 6 times. Then each sheet is cut into 4 pieces, which are placed between sheets of gold-benters' skin and beaten until the area is ahout 7 times as great. Each sheet is agnin cut into 4 pieces, and these, on being placed between goldbeaters' skin, are beaten until they are about 34 inches square. In the end the leaf is ordinarily about eno ${ }^{2}$ hass been beaten until but зп7न00 inch thick. Silver and aluminium are also very malleable, but being less valuable, they are not made
so thin as gold.

A ductile substance is one which can be drawn out into fine wires. Phamm, gold, silver, copper and iron are all very ductile. By julicious work platinum can be drawn into a wire гоб mm . in dianeter. Glass is very ductile when heated, as also is quartz, though to soften the latter a much higher temperature is repuired.

A frichle or brittle substance is one casily broken under a blow. Glass, dimmond and ice are brittle substances.

Relative harduess is tested by determining which of two bodies will scratch the other. The following is the scale of hardness given by Mohs,* and generally adopted:-1. Tale, 2. (iypsum, 3. Calcite, 4. Fhorspar, 5. Apatite, 6. Feldspar, 7. Quartz, 8. Topaz, 9. Supphire, 10. Diamond. A substance with hardness $7 \frac{1}{2}$ would scratelı quartz and be as easily scratched by topaz.
167. The Size of Molecules. The problem of determining the size of the molecules of matter is one of great interest, but also one of extreme difticulty. The question has been approached in various ways, and the fact that the results obtained by processes entirely different fron each other agree satisfactorily is evidence that they are somewhere near the truth.

According to Avogadro's Law all gases when under the same pressure and temperature have the same number of nolecules in equal volumes; hence if we know the number of molecules in a cubic centimetre of one gas we have the number for all gases, and if we know, in addition, the density of the gas we can at once calculate the mass of a single molecule.

Experiments have been made to find out the very sinallest amount of matter which can be detected by our senses of sight, smell and taste; and it is astonishing what small quantities of some substances can be recognized.

On dissolving magenta dye it has been found that $\frac{1}{10,0 \text { meve }}$ of a grain or 3.5×10^{-9} grams can be detected by the eye; and 3×10^{-11} grains or 1×10^{-12} grams of mercaptan, a very strong-smelling substance, can be recognized.

Glass when softenel in a flame can be drawn ont into fine threads ; and Prof. C. V. Boys, an Euglish physicist, has succeeded

[^13]in obtaining very fire threads of quartz. First he melted some quarta in an oxy-hydrogen thame. Then he fastenerl another piecen to an arrow, dipped it into the molten quarta, some of which adhered to i t, and then shout the arrow from n cross-brw. This drew out a fibre of quart\% so fine that its smallest porti. il not be seen with the best microscops. Boys estimated that .a . : meter was not greater than $\frac{1}{1, \text { mame }}$ inch. One cubic inch of quartz would make over $20,000,000$ miles of such fibre. If we supposed this to be wound on a reel and then unwound by an express train moving at the rate of a nile a minute, over 38 years wonld be required. It is quite certain that n section of this fibre must contain a large number of molecules, but for simplicity let us suppose the fibre to tee composed of a single row of molecules in contuct. A sphere $\frac{1}{\text { innve.unv }}$ incl in diameter made frons quartz would weigh $3.5 \times 10^{-10} \mathrm{grains}$ or 1.23×10^{-17} grams. The molecule of quartz mist weigh less than this. But the molecule of quartz is 60 times as heavy as that of hydrogen, and so the latter must weigh less than 2×10^{-19} grams. Now 1 c.e. of hydrogen weighs 0.00009 or 9×10^{-5} grams. Hence the number of hydrogen molecules in 1 c.c. nust be greater than $\left(9 \times 10^{-5}\right) \div$ $\left(2 \times 10^{-12^{11}}\right)=4.5 \times 10^{14}$. As we shall see presently, there are likely 100,000 times as many.
In recent years a wonderful property has been discovered to belong to certain substances, which las been named radiontetivity (see S582). Substances which are radio-active are nble to fog a sensitive photographic plate even though it be securely packed in a box, they can discharge an electrified body and do other extraordinary things. Uranium and thorium are two of these substances, but radium and polonium appear to be the most powerful of them. These substances are exceedingly scarce and hence are extremely expensive.

The radiation which radium is continually giving out has been most carefully investigated by Rutherford,* and has been fomed to consist of three parts, which he named the Alpha, Beta and Gnimma Rays. \dagger Further examination has shown that the Alpha rays are made up of small particles, or corpuscles, travelling at a very great speed, each carrying a small charge of electricity, and when these corpuscles are collected in a vessel they are found to be the gas helium. Each corpuscle is a molecule of helium charged with electricity !

[^14]
148

Now Rutherford and Geiger have devised a methorl by which the passage of a single Alpha corpuscle into a suitable receiving vessel can be detected, and by actual count mid calculation they have foumd that 1 gram of radium semels out 13.6×10^{10} particless per second. But it has also been found that 1 gram of radime prosluces 0.46 c . n m . of the gas helium per day which is $5.3 \pm \times 10^{-6} \mathrm{c}$. mm. per second. It follows then that in $5.32 \times 10^{-6} \mathrm{c}$. mm. of helimm gas there are 13.6×10^{10} molecules

Hence,

$$
1 \text { c.c. of the gas contains } \frac{13.6 \times 10^{10} \times 10^{3}}{5.32 \times 10^{-6}}=2.56 \times 10^{19}
$$

molecules, and from Avogadro's Law this is the number of molecules in 1 c.e. of all gases at standard pressure and temperature.
Since 1 c.e. of helium weighs 0.00000174 or 1.74×10^{-6} grams, we at once deduce that 1 molecule of helium weighs $6.8 \times 10^{2} 9$ grams. Also, the average distance apart of the molecules $=3.4 \times 10^{7}$ cm.

Kutherford has given several other methonds of calculating the number of molecules, and taking the average of them all he finds

1 c.e. of gas at ordinury pressure and temperature contains 0.77×10^{19} molecules.
Lord Kelvin has also calculated in several ways the size of molecules, and he gives the following illustration. "Jinagine a

8in Jomerf Thownon. Born in Manchester 1850. Cavendish Irofessor of Experlmental Phyaien at Cambridge Univervity. England. ruin-drop, or a globe of glass as large as a pea, to be magnified up to the size of the earth, each constituent molecule being magnified in the same proportion. The magnified structure would be more coarse-grained than a heap of small shot, but probably less comrse-grained than a heap of cricket balls.'

168. Nature of the Molecule.

 In the discussion given above, molecules have been treated as simple bits of matter, like grains of wheat in a bushel measure, though reasons have been given for believing that they are in motion. The view ordinarilyheld has been that a compound body is made up of molecules, and that each molecule can be broken up into elementary atoms (§ 147).

But in recent years the investigations of various physicists, the most distinguished of whom is Sir Joseph Thomson, have led to the belief that the atom itself is a complex organization. According to this theory the atom of a substance has a certain amount of positive electricity as its nucleus, and about this a large number of very minute negatively-charged corpuscles or electrons revolve. Indeed the construction of the atom has been compared to that of our solar system, which has the sun as its centre and the planets revolving about it. Though the evidence in favour of some such view is undisputed, the theory is at present in a speculative stage and need not be considered further in a book like this.

CHAPTER XVII

Phenomena of Surface Tension and Capillarity

169. Forces at the Surface of a Liquid. On slowly forcing water out of a medicine dropper

Fig. 175. - A drop of water assumes the slobular form. we see it gradually gather at the end (Fig. 175), becoming more and more globular, until at last it breaks off and falls a sphere. When mercury falls on the floor it breaks up into a thousand shining globules. Why do not these flatten out? If melted lead be poured through a sieve at the top of a tower it forms into drops which harden on the way down and tinally appear as solid spheres of shot.

A beantiful way to study these phenomena was devised by the Belgian physicist Platean.* By mixing in the proper proportions water and aleohol (about 60 water to 40 alcohol), it is posisible to obtain a mixture of the same density as olive ail. By mams of a pipette now introduce olive oil into the mixture (Fig. 176). At once it assmmes a globular form. In this case it is freed from the distorting action of gravity and rests :mywhere it is put.

When the end of a stick of sealing-wax or of a rex of ghass is heated in a flame it assumes a rommed form.

Fia. 176.-A sphere of olive oil in a mixture of water and alcohol.

These netions are dhe to cohesion. A little consideration wonld lead nis to expect the moldenles at thee surface to act in

[^15]a manner somewhat different from those in the interior of a liguid. Let a be a molecule well within the liquid (Fig. 177). The molecule is attracted on all sides by the molecules very close to it, within its sphere of action (which is extremely small, see § 161), and as the attraction is in all directions it will remain at rest. Next consider a molecule

F's. 177. - Behaviour of molecules within the liquid and at its sur. face. b winch is just on the surface. In this case there will be no attraction on b from above, but the neighbouring molecules within the liquid will pull it downwards. Thus there are forces pulling the surface molecules into the liquid, bringing them all as close together as possible, so that the area of the surface will be as small as possible. It is for this reason that the water forms in spherical drops, since, for a given volune, the sphere has the sinallest surface.

The surface of a liquid behaves precisely as though a rubber membrane were stretched over it, and the phenomena exhibited arc said to be due to surfuce tension.
170. Surface Tension in Soap Films. The surface tension of water is beautifully shown by soap bublles and films. In these there is very little matter, and the force of gravity does now interfere with our experimenting. It is to be observed,

Fig. 178. -Soap-bubble blowing out iandle. too, that in the lubbles and films there is an outside and an inside surface, each under tension.

In an inflated toy balloon the rubber is under tension. This is shown by pricking with a pin or untying the moutlipiece. At once the air is forced out and the balloon becomes flat. A similar effect is obtained with a soap bubble. Let it be blown on a funnel, and the small end be held to a candle flane (Fig. 178). The

152 PIIENOMENA OF SURFACE TENSION AND CAPILLARITY

outrushing air at once blows ont the flame, which shows that the bubble behaves like an clastic bag.

There is a difference, however, between the balloon and the bubble. The former will shrink only to a certain size; the latter first shrinks to a film across the mouth of the fumel and then runs up the fumel handle ever trying to reach a smaller area.

Agrin, take a ring of wire about two inches in diameter with a handle on it (Fig. 179). To two points on the ring tie

Fio. 179. - A loop of thread on a soap film. a fine thread with n loop in it. Dip the ring in a soap solution and obtain a film across it with the loop resting on the film. Now, with the end of a wire or with the point of a pencil, puncture the film within the loop. Inmerliately the film which is leit assumes as small a surface as it can, and the loop becomes a perfect circle, since by so doing the area of the tiin: becomes as small as possible.
171. Contact of Liquid and Solid. The surface of a liquid resting freely under gravity is horizontal, but where the liguill is in contact with a solid the surface is usually curvel. Water in contact with clean ghass curves upward, mer-

Fio. 180.-Water in a glass vessel curves up, mercury curvesdown. cury curves downward. Sometimes when the glass is dirty the curvature is absent.

These are called appillory phenomena, for a reason which will som apperas. The angle of contact A (Fig. 180) between the surfaces of the liguid and solid is called the capillary angle. For perfectly pure water mad clean glass the angle is zero, but with slight contamination, even sueh as is caused by exposure to atir the angle may become 25° or more. For pure merenry and clean glass the angle is about 148 ", but slight eontamination rednees this to 140° ar less. For turpentine it is 17°, and for petroleum 26°.
172. Level of Liquids in Capillary Tubes. In § 105 it was stated that in any momber of commmicating vessels a lipuid stands at the same level. The following experimont gives an apparent exception to this law. La't a series of capillary* tubes, whose intirnal diancters range from say 2 mm . to the finest obtainable, be held in a vessel containing water (Fig. 181). It will be fomd that in earr of them the level is ahove that of tu ater in the vessel, and that the

Fio. 181. - Showing the elevation of water in capiliary tules. inc. the tube the higher is the level. With alcohol the hignid is also clevated, (though not so much), but with mercury the

Fig. 182. - Contrasting the behaviour of water (left) and mercury (right).

F'is. 183.-Water riven between the two jlatem of glass which touch along one elles.
liquid is depressed. The behaviour of mercury can conveniently be shown in a U-tube as in Fig. 182.

Another convenient method of showing capillary action is illustrated in Fig. 183. Take two square pieces of window glass, and place them face to face with an ordinary match or other small object to keep them a small distance apart along one edge while they meet together along the opposite edge. They may be held in this position by an elastic bund. Then stand the plates in a dish of coloured water. The water at once creeps up between the plates, standing highest where the plates meret.

[^16]
154 Phenomena of surface tension and capillairity

When a glass rol is withdrawn from water some water clings to it, and the liquid is said to wet the glass. If dipped in mercury, no mercury adheres to the glass. Mercury does not wet glass.

The following are the chief laws of capillary action:-
(1) If a liquill wets a tube, it rises in it ; if not, it fulls in it.
(2) The rise or depression is inversely proportional to the diumeter of the tube.
173. Explanation of Capillary Action. Capillary phenomena depend upor the relation between the cohesion of the liquid and the allesion between the liquid and the tube.

In all cases the surface of a liquid at rest is perpendicular to the direction of the resultant force which acts on it. Usually the surface is horizontal, being perpendicular to the plumb-line, which indicates the direction of the force of gravity. In the case of contact between a solid and a liquid the forces of adhesion and cohesion must be taken into account, since the force of gravity acting on a particle of matter is negligible in comparison with the attraction of neighbouring particles upon it.

Cousider the forces on a small particle of the liquid at 0 .

Fiu. 184.-Diagrams to explain capillary action. (Fig. 184.) The force of adhesion of the solid will be represented in direction and magnitude by the line A, that of the cohesion of the rest of the liquid by the line C. Compounding A and C by the parallelogram law ($\$ 55$) the resultant force is R. The surface is always perpendicular to this resultant. When C greatly exceeds A the liquid is depressed ; if A greatly exceeds C, it is elevated.

In the case of capillary tubes the column of liquid which is above the general level of the liquid is held up by the adhesion
of the glass tube for it. The total force exerted varies directly ans the length of the line of contact of the liquid and the tube, which is the inner circunference of the tube; while the quintity of liquid in the elevated (or depressed) column is proportional to the area of the inner cross-section of the tube. If the diameter of the tube is donbled the lifting force is doubled and so the quantity of liquid lifted is doublerd ; but as the area is now four times as great the height of the colmmn lifted is one-half as great.

Hence the elevation (or depression) varies inversely as the diameter of the tube.
174. Interesting Illustrations of Surface Tension and Capillarity.* It is not easy to pour water from a tumbler into

Fig. 185. - How to utilize surface tension in pour. ling a liquid. a bottle without spilling it, but by holding a glass rod as in Fig. 185, the water runs down into the bottle and none is lost. The glass rod may be inclined but the elastic skin still holds the water to the rod.

Water may be led from the end of an eave-trough into a barrel by means of a pole almost as well as by a metal tube.
When a brush is dry the hairs spread out

Fig. 186. - Surface tension holds the hairs of the brush together. as in Fig. 186\%, but on wetting it they cling together (Fig. 186c). This is due to the surface film which contracts and draws the hairs together. That it is not due simply to being wet is seen from Fig. 186b, which shows the brush in the water but with the hairs spread out.

A wire sicve is wet by water, but if it is covered with parattin wax the water will not cling to it. Make a dish out

[^17]of copper galuze having abont twenty wires to the inch; let its diameter be alout six inches and height ome inch. Bind it with wire to strengthen it. Dip it in melted paraffin was, and while still hot knock it on the table so as to shate the wax out of the holes. A growl sized pin will still pass throngh the holes and there will be over 10,000 of them. On the loottom of the dish lay a small piece of paner and pour water on it. Fully half a tumblerful of water can be poured into the vessel and yet it will not leak. The water las a skin over it which will suffer considerable stretching before it breaks. Give the vessel a jolt, the skin breaks and the water at once runs out. A vessel constructed as described will also Hoat on the surface of water.

Capillary action is seen in the rising of water in a cloth, or in a lump of sugar when tonching the water; in the rising of oil in a laup-wick and in the absorption of ink by blotting paper.

175. Small Bodies Resting on the Surface of Water.

 By careful manipulation a needle may be laid on the surface of still water (Fig. 187). The surface is made concive by laying the needle on it, and in the endeavour to contract and smooth out the hollow, sufficient force isFig. 18\%.-Nectle on the aurface of water kept up by suriace tension. exerted to support the needle, though its density is $7 \frac{1}{2}$ times that of water. When once the water has wet the needle the water rises against the metal and now the tendency of the surfice to thatten out will draw the needle downwards.

If the neorlle is marnetizerl, it will act when Hoating like a compass needle, showing the north and south direction.

Some insects run over the surface of water, freppuently very rapidly (H ig. 188). These are held up in the

Fte. 188. - Insect supported by the surface tension of the water. ame way as the needle, namely, by the skin on the surface, to rupture which requires some force.

PART V WAVE MOTION AND SOUND

CHAPTER XVIII

Wave Motion

176. Oharacteristic of Wave-Motion. It is very interesting to stand on the shore of a large booly of water and watch the waves, raised by a stiff breeze, as they travel majestically along. Steadily they move onward, until at last, crested with foam, they roll in upon the beach, breaking at our feet. The great ridges of water appear to be moving bodily forward towards us, but a little observation and consideration will convince us that such is not the case.

By watching a \log, a sen-fowl or any other definite object floating on the surface, we see that, as the waves pass along, it simply moves np und down, not coming appreciably nearer to us.

We see, then, that the motion of the water is handed on but not the water itself. In the case of a flowing stream the water itself moves and, perhaps, turns our water-wheels. Equally certain it is, however, that energy (that is, ability to do work), is transmitted by waves. A small boat, though at the distance of several miles from the course of a great steaner; will, sometime after the latter has passed, experience a violent motion, produced by the "swells" of the large vessel. The water has not moved from one to the other, but it is nevertheless the mediun by which considerable energy has been transmitted.

The motion of each particle of water is similar to that of a pendulum. It is drawn aside, then swings through its ne:an position, at which place its motion is most rapil, and its momentun carries it forward to the farthest part of its course. Here it comes to rest and then it returns through its mean position to its starting-point.

A peealiar characteristie of wave-motion is that, while the particles of water, or other medim, never move far from their ordinary positions of equilibrium, yet energy is transmitted from one place to mother by means of the motion.

When, further, we learn that the sound of the rolling and breaking waves is conveged to our ears by a wave-motion in the atmosphere about us; and that the light by which we see these and other wonlerfnl things, is also a wave-motion, of a kind still more difficu!t to comprehend, proluced in a mediun called the ether, which is believed to fill all space, penetrating even between the purticles of ordinary matter, our interest is inereased; and we realize how necensary it is to understand the laws of wave-mation. The subject, however, is a very extensive one, mad only the simplest outline of it will be given here.
177. Oause of Waves on Water. Water in Ω state of equilibrium nssmmes the lowest possible level. If then an elevation or a depression in the surface be prolueed at any point, waves will be excited and will spread out from that point.

Let a stone be thrown into the water. It makes an opening in the water, at the same time elevating the surface of the water surrounding it. At once the neighbouring water rushes forward to fill up the vacant space, but on arriving there its momentum does not aliow it to come to rest at once. The water, coming in from all sides, now raises a hoap where the stome entered. This falls back, and the motion continues, until at last it dies away through friction.

Fils. 180. - The water from the troughs has lieen rained into the creste, thus Increasingr the potential energy and causing wave-motlon.
Suppose SS (Fig. 189) to be the artural level surface of the water when in equilibrimm. It is evident, when there is such
a wave-motion as here illustratel, that by some means the Whter has been taken out of the 'troughs' $B C, D E$, etc., and rised into the 'crests' $A B, C D, E F$, etc., and thus the potential energy has been increaserl. At once the crests begin to fall, but on account of their momentum they will sink below the position of equilibrium, and thus an oscillation is produced. In this cuse the continued motion is due to the force of gravity.

However, there is another source besides gravity which procluces motion of the surfnce of a liquid. In $\S 169$ it was stated that a liquid behaves as though there is an elastic skin stretched over its surface, which tends to reduce the surface to as small dimensions as possible. This skin gives rise to the phenomena of surfue tension.

Consider now liguid at rest in a vessel,-a cup of tea, for instance. If any object is touched to that surface its area will be increased and surface tension will endeavour to prevent this. Now it is evident that if by a current of air (or in any other way) the surface which is naturally level as SS (Fig. 190) is given the wavy form shown in the figure, the area of the surface is increased, and

Fic. 190.-Small waves, or ripplee, on a liquid, due chiefly to surface tension. surface tension will strive to reduce this and to bring about equilibriun again.

Thus surface tension as well as gravity is competent to protuce waves on the surface of a liquid. Indeed it has been found that in the case of short waves surface tension is much more effective than gravity, while in large waves the reverse holds.

These small waves, chiefly due to surface tension, are known as ripules.
178. Definition of Wave-length. A continnoms meries of waves, such is one can prodnce by moving a padtle buck-andforth in the water, or by lifting up and down a block flonting on the water, is called a viluce-truin. The number of waves in such a train is indetinite; there may be few or many.

If now we look along such a train we can select portions of it which are in exactly the same stage of movement, that is, which are moving in the arme way at the aame time. The distance between two successive similar pointe iy called a wave-length. It is usmal to measme from one crest to the next one, but any other similar points may be chosen.

Particles which are at the same str of the movement at the same time are said to be i in the eme pherse; and so we cin define a wave-length as the shuritest distance between any l wo purticles whore motions are in the sume phase.
179. Speed of Waves on Water. We have seen that the circumstnices of the motion on the surfince of a liguid depend on gravity and on surface tension. If the wave-length is great the surface tension may be neglected, while if the waves are very small it is all-important and the action of gravity may be left out of account.

Now for long gravity waves the sped of transmission is higher, the greater the wave-length, the speed being proportional to the square-ront of the wave-length.

On the other hand, for sumbll waves muler surface tension, the speed of transmission increases as the wave-length diminishes.
180. Wave-length for Blowest Speed. On the deep sea, waves which are 100 feet from crest to crest travel at the rate of 15 inites per hour. Those with wave-length 300 feet will therefore move at the rate of $15 \sqrt{3}$ or 26 miles per hour, and so on. Atlantic storm waves are often 500 or 600 feet long, and these travel at the rate of 34 mid 38 miles per hour, respectively.

If a wiro-a knitting needle, for instance-is moved through water, ripples are formed before it (Fig. 191), and the faster the motion of the wire, the closer are the ripples together (Fig. 1916), i.e., the shorter is the wave-length.

It is evident that for every liquil! there is some critical whe-lengit for which the waves travel most slowly. For water this is 0.68 inch anll the speed of travel is 9 inches a second. If the waves are longer,

Fiu. 1w1.- Ripples formed on moving a wire through water: (a) law opped, (b) high-ujued ripples. gravity will make them travel faster; if shorter, surface tension will cause them to move faster.

 mentally in the following way

Fio. 102-Apperatus to show that waves travel faster In deep than in shallow water. font wile n nd deep. It one end of each trough an empty his cull or a block of wom is heid in such a way that it can rise and fill but not move along the trough.

Let one trough be filled to the depth of 6 inches, the other to the depth of 3 inches. By mems of a double padlle, as shown in the figure, Ω solitary wave is started in each trough at the same instunt. The flont on the deeper water will easily be seen to rise first, thus showing that the wave has travelled faster in the deeper water.
182. Motion of the Particles of Water. It may be rem ked that in water waves the particles do not simply move up and cin wn. In deep water they move in circles, but as the water becones shallow these circles are flattened into ellipses with the long axes horizontal.

Also, the oscillatory motion of the particles rapidly diminishes with the depth. At the clepth of a wavelength it is less than sin of that at the surface. At a few hundred fret down-a distance small compared with the depth of the ocean-the water is quite still, even though the surface may be in very violent motion under fearful storms. A submarine boat, by descending a hundred feet, could pass from the midst of a terrific tempest to a region of perfect quit.
183. Refraction of Water Waves. It has often been observed that when waves approach a shallow beach the crests are usually approxi-

Fico. 193. - Diagram illustrating how a wave changes it a direction of motion as it gets into shallower water, and is refracted. matey parallel to the shore line. In Fig. 193, A, B, C, etc., represent the successive positions of a wave approaching the shore. The dotted lines indicate the depth of water. It is seen that the end of the wave nearest the shore reaches shallow water first, and at once travels more slowly. This continues until at last the wave is almost parallel to the shore line. This clanging of the direction of the motion of the waves through a change in their velocity is called refraction.
184. Reflection of Waves. If, however, a train of water waves strike a precipitous shore or a long pier, they do not stop there, but start off again in a definite direction. This is illustraterl in Fig. 194. The waves advance along $A B$, strike the pier and are reflected

Figs. 191. - Water waves striking a long pier arc reflected. in the direction $B C$, the lines $A B, B C$ making equal angles with $B D$ the perpendicular to the pier. In sound and light we meet with many illustrations of reflection and refraction.
185. Study of Waves in a Cord. Let one euld of a light chain or rubber tule, 8 feet or more in length, be fastened to the ceiling or the wail of a romin. Then, by slunking from side to side the free enl, waves will be formed and will pass freely along the tube. A rope or a length of garden hose lying on the floor many be used, but the results will not be so satisfactory.

We shall examine this motion more closely. Let us start with the tube straight as shown in (1), Fig. 195. The end A is quickly drawn aside through the space $A B$. The end particles

Fio. 105.-Dhagram to show how a wave in formell and travels alony a cord.
ding the aljacent ones after them; these drag the next ones, and so on; and when the end ones have been pulled to B the tube then has the form shewn in (b).

Instead of keeping the enl at B, however, let it be quickly brought buck to A, that is, the motion is from A to B and B to A without waiting at B. Now the particles between B and P have been given an upward movement, and their inertia will carry them further, each pulling its next neighbour after it, until when the end is brought back to A the tube will have the form $A Q$, shown in (c).

Suppose, next, that the motion did not stop at A, but that it continued on to D. On arriving there the tube vill have the form (d). Inmediately let the end be brought back to A, thus completing the 'round trip.' The tube will now have the form show it in (e).

Notice (1) that the end has made a complete vibration, (2) that one wave lins been formed, and (3) that the motion has travelled from A to S, which is a wave-length.

If the motion of the end comsed now, the wave would simply move forward along the tuls:. If, howrere, the end contimerd to vibrate, waves would continue to form and move along the

Fio. 10\%.-Three waves in a cord.
tube, as seen in Fig. 196, where three full waves are shown, moving in the direction of the mrow.
186. Relation between Wave-length, Velocity and Frequency. The time in which the end A executes a complete vibuation is called its perionl, and the mmber of periods in a secomd is called its frequency, or vibration-mumber.

We have just seen that during one period the wave-motion travels one wave-length.

Let the frequency be n per second; then the period T will be 1 'n seecomid.

$$
\begin{aligned}
& \text { If } l=\text { wave-length, } \\
& \text { and } v=\text { velocity of transmission of the wave-motion; } \\
& \text { then } l=r T \text {, } \\
& \text { or } v=u l \text {. }
\end{aligned}
$$

This is a very important relation.
The "minditule of a vilnation is the range on one side or the other of the midhle peint of the emmsis. Thus $A B$ or $A D$ (Fig. 195) is the amplitule of the motion of the particle A.
187. Transverse and Longitudinal Waves. In the wavemotion just considered the direction of the motion of the particles is across, or at right angles to, the direction of propagation. Such are callenl transverse waves. In addition to the illustrations of these wases which have ahready been given, it may be remarked that in an earthquake disturbance the motions which do the great danage are iong, transverse waves which travel along the earth's crust at the rate of from 1.6 to 4 kin. per sucomil.*

[^18]Let us now consider a long spiral spring (Fig. 197). The spiral shomlel be: 2 or 3 m . loug and the diameter of the coils muy be from 3 to 8 cim. Ore end muy be secmrely attachorl to the hottom of a light box (a clalk-crayon box). Then, holding the other end firmly in the hand, insert a knife-blate

Fia. 197. - Portion of a apiral apring to lliusi rate the transminelon of a wave. It shoullil be 2 or 3 ml . lonk ; if of No. $\$ 2$ wire the coild may lie 3 or 4 cm . in rilameter: if of heavier wire the coils should be larger. between the turns of the wire and quickly rake it along the spiral towards the box.

In this way the turns of wire at B, Fig. 198, in front of

Fia. 198 - A wave consists of a condenastion B, and a rarefaction A. the lamol are corowiled together, and the turns behind, for abont the same distance, are pulled wider apart. The crowied part of the spiral may be called a comilensition, the stretched part a rureficetiom.

Now watch closely and yon will see the condensation, followed by the rarefaction, run with graat spred along the spiral, and on reaching the end it will give a sharp thmup ngainst the box. Here it will be reflecterl, and will return to the hand from which it may be reflected and again retarn to the box.

If a light object be tied to the wire at any place, it will be seen, as the wave passes, to receive a sharp jerking notion forward and backward in the direction of the length of the spiral.

On a closer examination we find that the following is what takes place.

By applying force with the hand to the spiral we produce a crowding together of the turns of wire in the section B, and a separation at A. Instantly the elastic force of the wire canses B to expand, crowding togethor the turns of wire in front of it (in the section C), and thas camsing the condensation to be transmitted forward. But the coils in B do not
stop when they have recovered their origimal position. Sike "prolulmm they swing beyond the position of rest, thans prodneing a rarefaction at B where immediately lefore there was a condensation. Thus thr pulse of comlensation as it moves forward will be followed by one of rarefaction.

Such a vibation is called Iongitndinal: the motions of the particles are parallel to the direction of transmassion.
188. Length and Velocity of Waves in a Cord. Let us expuriment further with the stretched rubber tube.

Make the cul to vibate faster: the waves proluced are shorter. Sireteh the tube more: the waves become longer, and travel faster.

Notice, also, that on renching the farther end the wave is reflected as it was in the long spiral.
189. Nodes and Loops. Next, let ins keep the end of the rubber tube in continual vibration. A train of waves will stemblily pass along the tube, and being reflected at the other end, a train will steadily retmrn along it. These two trains will meet, eath one moving as thongh it alone existerl.

As the tube is miler the action of the two sets of waves, the direct and reflected trains, it is easy to see that while a direct wave may pash downwarl any point on the tube a reflected one may lift it up, and the net result may be that the point will not move at all. The two waves in such a case are said to interfere.

That is just what does happen. By properly timing the vibrations of the end

Fra. 100.- Standing waves in a comi. At A. C, D, E, B are
 of the tube the direct and reflected trains interfere and certain points will be continnally at rest.

If the end A (Fig. 199) is vibrated slowly the tube will assume the form (a).

On dombling the frequency of vibration, it will take the form (b). By increasing the frequency other forms, such as shown in (c) and (l) may be obtained. In these cases the points A, B, C, D, li, are continually at rest and are called mores. The portion between two noxles is called a ventril segmont, and the middle point of it we shall call a lnop. The distance between two successive nodes is half a wave-lengtl.
Such waves are called stationury or standim! waves As we have seen, they are cansed by continual interference between the direct and the reflected waves.
190. Method of Studying Standing Waves. The most satisfactory method of prolucing the vibrations in a cord is to use a large timing-fork, so arranged that the cord (which should be of silk, light and tlexible) may be attacherl to one prong. In the absence of this the armgement slown in

Fig. 200 may be used. 'The gong and the hammer of a harge electric bell are removed. One end of the cord is attached to the armature and the other passes over a pulley and has a pan to hold weights attached to it. In this way the length and the tension of the cord can be varied and the resulting standing waves studied.

The following law has been found to hold :-The number of loops is inversely proportional to the square root of the tension.

Instend of having the string pass over a pulley, it might be allowed to hang vertically with the weight tied on the end, the electric vibrator then being turned so that the armature is vertical. This arrangement, however, is not quite so satisfactory.

CHADTER XIX

Prodection, Propaciation, Ielocity of Soend
101. Sound arises from a Body in Motion. The sensution of somul aises from varions kinds of somrees, but if we take the tronble to traee the somed to its origin, we always find that it comes from a material larly in motion.

A violin or a guitar string when emitting a somed has a hazy ontline, which becomes: perfectly definite when the somad dies away. A bit of paper, donbled and long on the string, is at once thown off. On phacing the lamed upon a somading lell we fool the movemont, which, howeror, at once ceases, as also dowe the somul. On tomehing the surface of water with the prong of a sommling tuningrifork the water is formed into ripples, or splashes up in spray. A light ball or hollow bead suspermen by a tine throme. if hehl against the somding bell of tuming-fork is thrown off vigormsly.

Y/l our experionce leads as to conchule that in every case sr ul crines from muller in mepid eilmation.
2. Conveyance of Sound to the Ear. In orker that a somi I may be prevised by ome mas it is evident that some sort of medimm minst fill the space between the somree and the ear: Usmally air is this medium, but other substances can coms. the somml grite as well.

By holding the mar aganat ond end of a worken rox even a light serateh with a pin at the far end will be hoard distinctly. Whe can detact the rmbling of a distant tailway toain by laying the ean \quad ין plains could, by putting the air the the gromme, detect the tranping of envaly t tes far off to be seell. If two stomes be struck together under water, the somd perceived by an
ear under water is louder than if the experiment had been performed in the air.

Thus we see that solids, liquids mad gases all transmit sound. Finther, we can show that some one of these is necessiny:

Under the reeeiver of an air-pmup place an electric bell, supporting it as slown in Fig. 201. At first, on closing the cirenit, the somond is heard easily, but if the receiver is now exhausted by a goxal air-pump it becomes feebler, contimatly beeoming weaker as the exhaustion proceeds.

If now the air, or any other gas, or my vilonir, is almitted to the reeeiver the sound at onev grets louler.

In performing this experiment it is likely that the somud will mot entirely disappear, as there will always be some nir in the reeeiver,

Fio. 201.- Electric bell In a Jar connected to an slr-pump. On exhausting the alr from the Jar the sound became weaker. and in aldition, a slight motion will be transmitted to the pmop by the suspension ; but we are justified in believing that a vibrating bexly in a perfeet vacuun will not excite the sensation of somud.

In this respect sommed ditlioss from light and hent, which eome to us from the sim ind the stans, passing freely through the perfect vacmum of space.
193. Velocity of Sound in Air. It is a commom ohservation that sound repmires an appreciable time to travel from one place to anothor. If we watch a carpenter working at a distaner we distinctly see his hammer fall before we hear the somad of the blow. Alsi, stemm may been coming from the whistle of a lecomotive or stemmbat several seconds before the somme is henrd, and we continne to hom the sound for the sime lengrth of time after the stean is shout ofl:

Some of the best experiments for determining the velocity of sound in air were male in 1822 by a commission appointed by the French Acaldong: The experiments wore made lx.tweeen Monthéry and Villcjuif, two phaces a little south of Paris and 18.6 kilometres (or 11.6 miles) apart.

Each station was in charge of three eminent scientists and provided with similar camons and chronometers. It was fomed that the interval latween the moment of seeing the flash and the arrival of the somad was, on the average, 54.6 seconds. This gives a velocity of 340.9 m . or 1118.1 i ft. per second. Now the temperature was 15.9 C ., and as the velocity increases aboint 60 cm . per second for a rise of $1^{\circ} \mathrm{C}$. this velocity womld be 3331.4 mi . per secomel at $0^{\circ}(\%$. Other experimenters linve obtained slightly different results.

The velacity at - $50^{\circ} F$ ' was determined by Gerely during his explorations in the aretic regions, 1882-3.
194. Nature of a Sound-Wave. The vilmations in sumulwaves are longitudimal, the mature of which is explained ill $\$ 187$.
 held in a rigid smpport. Draw it aside, amd let gro. As it moves forward it eombloses the air before it, and on its return the air is rarefioll. With each complete vibration a wave of condensation and rarefaction is proluced, and during that time
the somme will have travelled one wave-length, I. If the atrip vilarates 17 times a second the space theversed in one second will be

$$
n l=\ell \text {, the velocity of sound per secoml. }
$$

The: sounl, lowever, dones not go in just one direction us shown in Fig. 202, but it spreads out in all directions, us

Fi6. 202. - As the strip vibrates the air is allernalely ionviensed and rarefiel.
illustrated in Fig. 203, where spherical waves move out from the sounding bell ins their centre.
195. An Air-Wave Encircling the Earth. A wonderful example of the spreal of an nir-wave oceurred in 1883 . Krakatoa is a small island between Java and Sumatra, in the East Indies, long known as the sent of an active volenno. Following a series of less violent explosions, a tremendous eruption ocenred at $10 \mathrm{a} . \mathrm{m}$. of

Fiu. 203.- Illuntrating the tranominalon of sound in apherical August 27. The effects were stupenlous. Great portions of the land, alove the sea and benenth it, were displaced, thus cansing an immense sen-wave which destroyed 36,000 human lives, at the same time produeing a great air-wave, which at once began to traverse the earth's atmosphere. It sprend out circularly, gradually enlarging until it became a great cirele to the earth, ind then it contracted until it came tugether at the antipodes of Krakatom, a point in the northern part of South America. It did not stop there, however, but enlarging again, it retraced its course back to its source. Again it startel out, went to the antipodes and returned. A third time this course was taken, and indeed it continued until the energy of the wave was spent.

The course taken ly the wave was traced by moans of selfregistering barometers located at various observing stations throughout the world. As the wave passed over a station there was a rise

172

and then afall in the lawometer, and this was recorted by photo gruphic monns. In many places (Toronto included) the:e were four recorils of the wave ns it moved from Krakitor to the antipodes, and three of its returı. In Fig. 204 is shown the rise in the barometer at Toronto caused by the second outward trip of the wave

Fio. 204. - A portion of the photographic recorl of the height of the barometer at
 the baronneter tule siove the neercury ayainat senaltized paper which is on a drum liehlmi the baroneter. Kvery iwo hours the light is cut of aml a white line is prodiced on the recond. Shortly aller 2 an.m., August 28 , there was a rise, and at about t. 40 there was another. The former was due to the pamage over Toronto of the wave on the merond Journey frow frakatoa to the antlpales: the fatter was due to the serond retirn from the antipodes to Toronto. (From the reconds of the Mefeorological Hervice, Toronto.)
and the second return. The time reguirel to go to the antiposless and return to Kraknton was approximately 36 hours.

The stumil of the explosion was actunlly heard, four hours after it happened, hy human ears at Rodriguez, at a distance of over $\geq, 900$ miles to the south-west. At the funeral of Queen Victoria, oII l'ebruary 1, 1901, the discharges of cannon were heard 140 miles away.
196. Intensity of Sound. 'The intensity' of somme depends on three thimgs:-
(1) The Jrusity of ther Mrelium in which it is furolucenl. It is fomme that workmell in a tmmol, in which the nir is malar pressme, thangh commoning matarally, apporar to anch othor tospeak in umsually lond tomes, while ballomists and momatain climbers have difficulty in making thomselves hemerl whell at great heights. The denser the medium, the lominer is the somme.
 cmory mulinten por seromd is proportional th the square of the amplitude of the vilorating body.
(3) The Distrome of the Eirer firm the simending Brely. Suppase the sommel th lue mutinting froill U (trig. 20.i) in contio, unll let it truvel a distance (OA in one sucomil. The energy will be distributed amongst the air particles on the nphere whise centre is 0 mul ındins OA.

In two seconde it will reach n distmence $O R$, which is twice OA, and the energy which was on the smaller sphere will now the spremd

Fius. 2xis.-i)lakpain to show that the internity of monnd dinuinimhen with the ilistance froun the entirce. over the sarface of the larger one. Bat this surface is four times that of the smaller, since the surface of n sphere is proportional to the square of its ralins. Hence the intensity at B can be only one-fourth that at A, and we have the law that the intensity of a sound veries inversely as the square of the rlintance firm the sunerce.
197. Transmission by Tubes. If, however, the somad is contined to a tule, esprecially n stroight and smonth one, it may be transmittel great distancers with little loss in intensity: Being prevented from expmoling, the loss of the enorgy of the sound-waves is cansed chiefly by friction of the air against the sides of the tube.
198. Velocity of Sound in Solids by Kundt's Tube. Having determinel the velocity of sound in nir we can determine it in other gases and in solids by a method devised by kundt in 1865.

Fhe. z00. - The ilttie heape of powder in the tube are produced by the vibrations of the dive \boldsymbol{D}.
$B D$ (Fig. 206) is a brass rod about 80 or 100 cm . long and 8 or 10 min . in diameter, necurely clampel at the middle. To the end β is attached a disc of cork or other light substance which fits loosely into a glass tube about 30 or 35 mm . in diameter. A is n rod on the end of which is a dise which slides snugly in the tube, thus

MICRCCOPY RESOLUTION TEST CHART

(ANSI ond ISO TEST CHART No. 2)

allowing the distance between A and $1 ;$ to be varied. Dried pre"ipitated silica, or simply powder male ly filing it baked cork, is seattered along the lower side of the tube.

Now with a dry cloth or piece of chamois skin, on which is a little powdered rosin, stroke the outer half of the robl. Witha little practice one can make the rod emit a high musical note. At the same time the powder in the tube is agitated, and by careful adjustment of A, the powder will at last gather into little heaps at regular intervals.

We must now carefully measure the length of the rod and also the distance between the heaps of powder, taking the average of several experiments.

By stroking the half $C D$ of the rod we make it alternately lengthen and shorten, and the half $B C$ elongates and shortens in precisely the same way. Thus the mid-point of the rod remains at rest, while all other portions of the rod vibrate longitudinally, the ends having the greatest anplitude.

It is evident that the middle of the rod is a node and the ends loops ($\$ 189$), and hence if we had a very long rod and each part of it of lengtl $B D$ were vibrating in the same way we would have standing waves in the luass rod and $B D$ would be one-half the wave length.

Again, as the piston at B moves forward it compresses the air in front of it and as it retreats it rarcfies the air. These air-waves travel along the tube and are reflected at A and return. The two sets of waves thus meet and interfere profucing stationary waves as explained in $\$ 189$. The powder gathers at the nodes, and hence the distance between the nodes is one-half the wave-length in air of the note emitted by the brass rod.

$$
\begin{aligned}
\text { Let } \begin{aligned}
L & =\text { length of brass rod, } \\
V & =\text { velucity of sound in brass, } \\
n & =\text { frequency of note emitted, } \\
\text { then } 2 L & =\text { wave-length, and } V=n \times 2 L .
\end{aligned} \text {. } \quad \text {. } \quad \text {. }
\end{aligned}
$$

Again, if $l=$ length between the heaps of powder,
and $v=$ velocity of sound in air,
then $u=$ frequency, and $v=u \times 2 l$.
Hence $\frac{V}{v}=\frac{n \times 2 L}{n \times 2 l}=\frac{L}{l}$,
and $V=\frac{L}{l} \times v$.
By measuring L, l, and knowing v we can at once deduce V, the velucity in bruss.

Note that $2 L=$ wave-length in brass, $2 l=$ wave-length in air, where $l=$ length between adjacent heaps.

On using rods of other metals we can find the velocity in each of theill.
199. Velocity in Different Gases. The same apparatus can he used for different gases. To do so it is arranged as shown in

Fta. 207.-Kundt's method of inding the velocity of sound in different gases.
Fig. 207. For this purpose a glass rod is preferable. It vibrates more easily by using a damp woollen cloth. It is waxed into the cork through which it passes. The piston D must be reasonably tight.

As lefore, measure the distance between aljacent heaps when the tule is fillell with air. Let it be a. Now fill it with carbonic acid gas and let the distance be c.

Then we have, velocity in air $=N \times 2 a$, and velocity in carbon dioxide $=N \times 2 c$.

Hence $\frac{\text { velocity in carbon dioxide }}{\text { velocity in air }}=\frac{N \times 2 \boldsymbol{c}}{N \times \frac{c}{2}}=\frac{c}{a}$,
and velocity in carbon dioxide $=\frac{c}{a} \times r$.
Velocity of Sound in Sulins, Liquids and Gases

Substance.	Temper ature.	Velocity.		Sulstance.	Temperature.	Velocity.	
	${ }^{\circ} \mathrm{C}$.		$\overline{\text { ft. per }}$	Water. Carbon diox ide..	${ }^{\text {¢ }}$ ¢ 9	$\begin{aligned} & \hline \begin{array}{l} \text { mecr } \\ \text { sec. } \\ 1435 \end{array} \end{aligned}$	ft. pe 4708
Aluminium		5104	16740				
Brass.		3500	11480				
Copper.	20	3.300	11670		0	261.6	858
	100	3290	10800	Illuminating			
Iron.	20	5130	16829	gas.	0		
Maple		4110	134\%	Oxygen	0	317.4	1041

200. Reflection of Sound. Everyone has heard an echo. A slarp sound made before a large isolated building or a steep cliff, at a distance of 100 feet or more, is returned as an echo. The sound-wares strike the flat surface and are reflected back, to the ear.

When there are several reflecting surfaces at different distances from the source of sound a succession of echoes is heard. This phenomenon is often met with in mountainous regions

In Europe there are many places colebated for the number and beanty of their echees. An ceho in Woolstiock Park (Oxfordshire, England) repeats 17 syllables by day and 20 by night. Tyndall says: "The sound of the Alpine horn, echoed from the rocks of the Wetterhom or the Jungfran [in Switzerland] is in the first instance heard roughly. But by successive reflections the notes are rendered more soft and flute-like, the gradual dimination of intensity giving the impression that the source of some is retreating fiarther and farther into the solitnde of ice and snow."

The laws of reflection of sound are the same as those of light (see $\S 3+6$). Let a watch be hmig at the foens of a large

Fro. 208. -A watch is held in the focus of one concave reflector and the ticking is heard at the focus of the other. (The foci can le located by means of rays of light.) concave mirror (Fig. 208). The waves strike the mirror and are returned as shown in the figure, being brought to a focus again by a second mirror. On holding at this focus a fumel from which a rubber tube leads to the ear the somad may be heard, even though the mirrors are a considerable distance apart.

In the Whispering Gallery of St. Paul's Cathedral in London, England, the faintest sound is conveyed from one side of the dome to the other, but is not heard at any intermediate point.

The Mormon Tabernacle at Salt Lake City, Utah, is an immense auditorium, elliptic in shape, 250 feet long, 150 feet wide and 80 feet high, with seating accommodation for 8000 people. A pin dropped on a wooden railing near one end, or a whisper there is heard 200 feet away at the other end with remarkable distinctness.

The bare walls of a hall are good reflectors of sound, though usually the dimensions are not great enough to give a distinct echo, but the numerous reflected sonnd-waves produce a reverberation which appears to make the words of the speaker run
into each other, and thas prevents them being distinctly hemrl. By means of enshions, canpets and cmetans, which absom the sound which falls mon them insteal of reflecting it, this reverberation can be largely overcome. The presence of an audience has the same effect. Hence, a speaker is heard much better in a well-filled auditorium than in an empty one.
201. The Submarine Bell. A valuable application of the fact that water is a goom conductor of sound is made in a methorl recently introduced for

Fio. 209.-Subma. rine bell. worked by compressed alr supplled from the shore. The mecnanism for moving the hammer of the bell is contained in the upper cham. ber. warning ships from dangerous places. Lighthouses and fog-horns have long been used, but the condition of the atinosphere often renders these of no avail. Submarine signals, however, can be depended upon in all kinds of weather.

The submarine bell, which sends out the signals (Fig. 209), is hung from a tripod resting at the bottom of the water or is suspended from a lightship or a buoy. The striking mechanism is actuated by compressed air or electricity supplied from the shore or

Fre. 210. - The sound from the bell is recelved by two tanks placed In the forepeak of the ship, one on each side. The tank is flled with salt water, and the shlp's outer skill forms one of its sldes. In the water are two microphones, which are connected by wires A, A to two tele. phone recelvers up in the pllot. house. the lightship.

The receiving apparatus is carried by the ship. Two iron tanks are located in the bow of the vessel, one on each side (Fig. 210). These tanks are filled with salt water, and the ship's outer skin forms one side of the lank. Suspended in each tank are two inicrophones ($\$ 537$), which are connected to two telephone receivers up in the pilot-house. The officer on placing these to his ears can hear sounds from a bell even when more than 15 miles away; and by listening alternately to the sounds from the two tanks he can accurately locate the directio of the bell from him. Signal stations are to be found on the shores of varions countries, several being located in the lower St. Lawrence and about the maritime provinces of Canada.

QUESTIONS AND PROBLEMS

1. Calculate the velocity of somnd in air at $\pi^{\circ}, 10^{\circ}, 40^{\circ} \mathrm{C}$. (See Ş, 193.)
2. An air-wave travelled about the earth (diameter 8000 miles) in 36 hours. Find the velocity in feet per second.
3. A thunder-clap is heard 5 seconds after the lightning flash was seen. How far away was the electrical discharge? ("emperature, $15^{\circ} \mathrm{C}$.)
4. The velocity of a bullet is 1200 feet per second, and it is heard to strike the target 6 seconds after the shot was fired. Find the distance of the target. (Temperature, $20^{\circ} \mathrm{C}$.)
5. At Carisbrook Castle, in the Isle of Wight, is a well 210 feet deep and 12 feet wide, the interior being lined with smooth masonry. A pin dropped into it can easily be heard to strike the water. Explain.

Find the interval between the moment of dropping the pin and that of hearing the sound. (Temperature, $15^{\circ} \mathrm{C} ., \mathrm{g}=32$.)
6. Why does the presence of an audience improve the acoustic properties of a hall?
7. Explain the action of the ear-trumpet and the megaphone or speaking-truinpet.
8. If all the soldiers in a long colamn keep time to the music of a band at their head will they all step together?
9. A man standing before a precipice shouts, and 3 seconds afterwards he hears the echo. How far away is the precipice? (Temperature, $15^{\circ} \mathrm{C}$.)
10. In 1826 two boats were moored on Lake Geneva, Switzerland, one on each side of the lake, 44,050

Fig. 211a.-Apparatus for producing the sound, in Lake Geneva. feet apart. One was zupplied with a bell B (Fig. 211a), placed under water, so ar: anged that at the moment it was strick a torch m lighted some grupowder in the pot P. The somnd was leard at the other boat by an observer with a watch in his hand and his ear to an ear-trumpet, the

Fia. 211b.-Listening to the sound from the other side of the Lake.

The sound was heard 9.4 seconds after the flash was seen. Calcnlate the velocity of sound in water.
11. In a Kundt's tube a brass rod is 1 m . long, and five of the intervals between the dust-heaps equal 49.5 cm . Find the velocity of sound in brass.
12. When a Kundt's tube is filled with hydrogen the dust-heaps are 3.8 times as far apart as with air. Find tho velocity of sound in hydrogen. (Temperature, $20^{\circ} \mathrm{C}$.)

CHAPTER XX

Pitch, Musical Scales

202. Musical Sounds and Noises. The slam of a door, the fall of a lammer, the crack of a rifle, the rattling of a carriage over a rough pavement,-all such discomnected, disagreeable sounds we call noises; while a note, such as that yielded by a plucked guitar string or by a flute, we at once recognize as musical.

A musical note is a continuous, uniform and pleasing sound; while a noise is a shock, or an irregular succession of shocks, received by the ear.

Against the teeth on a rotating dise (Fig. 212) hold a card. When the speed is slow we hear each separate tap as a noise, but as it is increased these taps at last blend into a clear musical note.

Fia. 212. - Toothed wheels on a rotating machine. On holding a card against the teeth a musical sound is heard.

The same result, with a rather more pleasing effect is obtained by sending a current of air through holes rasiarly
 spaced on a circle near the circumference of a rotating dise (Fig. 213). The little puffis through the holes blend into a Fig. 213.-Air is hlown through pleasing note.
the holes in the rotating plate.

It is possible for a number of musical notes to be so jumbled together that the periodic nature is entirely lost, and then the result is a noise. If the holes in the dise (Fig. 213) are irregularly spaced we get a noise, not a musical note.

A musical tome is slue to mupul prionlis: matiom uf a

203. Pitch. There are three features by whieh musical tones are distinguished from ench other, manely:(1) Intensity ar Lamulnoss, (2) Pitchl, (3) Quality.

The intensity of a sound depends on the amplitude of the vibrations of the air particles at the ear, and has alrealy been discussed (§ 196).

The pitch of a sound depends on the mumber of vibrations per secoml, or what amoments to the same thing, upon the number of sound-waves which enter the car in a second.

This can be tested very easily by means of the toothed wheel or the perforated dise jnst described. When the speed of rotation is slow, and hence the number of vibrations per second few, the pitch is low, and when it is increased the pitch becomes higher.
204. Determination of Pitch. The number of vibrations corresponding to any given pitch may be determined by varions devices. One is the toothed wheel shown in Fig. 212. Suppose we wish to find the number of vibrations of a tuningfork. The speed of rotation is inereased until the sound given by the wheel is the same as that by the fork. Then the speed is kept constant for a certain time-say half a minute-and the number of torns of the crank in this time is counted and the rotations of the wheel deduced. Then on multiplying this number by the number of teeth on the wheel we can at once deluce the number of vibrations per second. The perforated dise may be used in the same way.

A more satisfactory instrument is that shown in Fig. 214 and known as a siren. It was invented by Cagniarl de la Tour in 1819.

A perforated metal dise B rotates on a vertical axis, just above a cylindrical air-chamber C. The upper end of the chamber and also the dise are perforated at equal intervals along a circle which has as centre the axis of rotation. The upper and lower holes correspond in number, position and size, but they are drilled obliquely, those in the dise sloping in a direction opposite to those in the end of the chamber. The tube D is connected with a beilows or other blower.

When the air is forced into the chamber Fis. ${ }^{244 .-T h e ~ s i r e n . ~ A i r ~}$ and passes up through the holes, the dise is made to rotate by the air-current striking

enters the chamber Cly way of the pipe D, and on escaping causes the diso B to rotate. against the sides of the holes in the dise, and the more powerful the air-current the more rapid is the rotation.

Vibrations in the air are set up by the puffs of air escaping above the dise as the holes come opposite each other; and by controlling the air supply we can cause the dise to rotate at any speed, and thus obtain a sound of any desired pitch.

Having obtained this sound, a mechanical counter, in the upper part of the instrument, is thrown in gear and, keeping the speed constant for any time, this will record the number of rotations. The number of vibrations is obtained at once by multiplying the number of rotations by the number of holes in the dise and dividing by the number of scconds in the interval.

A method depending on the principle of resonance is described in § 221.
205. Limits of Audibility of Sounds. Not all vibrations, even though perfectly periodic, can be recognized as sounds, the power of detecting these varying widely in different persons. For ordinary ears the lowest frequency which canses the sensation of a musical tone is about 30 per second, the highest is between 10,000 and 20,000 per second

In music the limits are from abont 40 to 4000 vibrations per second, the piano having approximately this range. The range of the human voiee lie: between 60 and 1300 vibrations per second, or more than $4 \frac{1}{2}$ octaves; a singer ordinarily has about two octaves.
206. Musical Combinations or Ohords. A mmsical note is pleasing in itself, but certain combinations of notes are especially agreeable to the ear. These have been recognized amongst all mations from the earliest tinnes, laving been developed purely from the nesthetic or artistic side. The older musieians knew nothing about sound waves and vibration numbers; they only knew what plased the heart and expressed its emotions.

But on measuring the frequencies of the notes of the pleasing combinations, we find that the ratios between them are peculiarly simple, and indeed that the more pleasing any eombination is the simpler are the ratios between the frequencies of the notes.
207. The Octave. Pitch depends only on the number of vibrations per second; but as we compare notes of different

Fig. 215. - Central part of a piano key-board. The notes marked tral part of a plano key-board. The
$C_{2}, C_{1}, C_{0} C_{,}, C^{\prime}$, go up by octaves.
pitch with one another-for instance the notes on a pianowe are struck with the faet that when we have gone a certain distanee npwards or downwards, the notes appear to repeat themselves. Of conse the piteh is different but there is a wonderfin similarity between the notes.

On investigation, a remarkable relation between the vibration-fequeneies of the notes is revealed. Thus one note appeas to be the repetition of another when their vibrationfrequencies are as 2 to 1 , and one is said to be an octace above
the other. The combination of a note and itw octave is the mont pleasing of all.

Between the note mal its octne custom has intronluced six motes, the eight notes thus obtained usually being rlesigmated in music thus:-

$$
C H E F G A B C^{\prime}
$$

As we pass from C^{\prime} to $C^{\prime \prime}$ by these interpolated notes we do so by steps which are universally recognized as the mons pleasing to the ear. This series of notes is called the natural or major rlistonic seale.
208. Intervals of the Major and Minor Diatonic Scales. By actual experiment it has been found that, whatever the absolute pitch may be,- whether high up in the treble, or low down in the bass,- the ratios between the vibration-frequencies of the different notes are constmint.

Suppose the note C las a frequency 256. The entire scale is as follows:-
$\begin{array}{llllllll}C & D & E & F^{\prime} & G & A & B & C^{\prime \prime}\end{array}$ $256288: 320341\} 3 \times 4426 \% 480 \quad 512$, the ratios being $1 \quad \frac{11}{8} \quad \frac{8}{4} \quad \frac{4}{3} \quad \frac{3}{2} \quad \frac{5}{3} \quad 15 \quad 2$.

These matios hold, whatever the absolute frequency may be. By international agreement the frequency of middle C of the piano is taken as 261, that of the A string of a violin being 435 vibrations per scoond. The numbers for the scale are then,

$$
\begin{array}{llllllll}
261 & 293.6 & 326.2 & 348 & 391.5 & 43.5 & 489.4 & 522 .
\end{array}
$$

The interial between two notes is measured by the improper fraction obtained on dividing their freduencies.
Thus the interval C to D is $\frac{988}{508}=\frac{9}{8}$

$$
\text { " " " } D \text { to } E \text { is } \because \because 0=1, " \text {; and so forth. }
$$

Hence the intervals between the successive notes of the scale are :-

This sale is called the Major Diatonic Scale. Another scale is also nsed in munic, known ans the Minor Scale. In it the matios and intervals are:-

As a matter of fact, in modern music the minor seale is not always used in precisely this form, the principal difference being in the slarpening of the 7th or leading note. The major semle has a cheerful exciting tendency; the minor, to most hearers, is melancholy and pathetic.
209. Musical Ohords. Two or more notes sounded simultaneonsly constitute a chimel. If the effect is agreenble it is called comoorl; if disagreeable, discortl.

The most perfeet ememrd is $C, C^{\prime \prime}$, the interval between the notes being if or 2. The next is C, G, the interval being ? It will be ohserved that in expressing these intervals we use only the small numbers $1,2,3$.

When the notes C, E, G are sounded together the effect is extremely plensing. This combination is called the Major Triad, and when ${ }^{\prime \prime}$ is alded to it we get the Major Chord. The frequencies of the trial have the ratios:

$$
C: E: G=4: 5: 6
$$

A close exmmination of the Major Sale shows that it is made up of repetitions of this triard. 'Thus $C, E, G, F, A, C^{\prime}$ and

G, B, D^{\prime} are all major triads.
210. The Scale of Equal Temperament. In musical composition C is not always nsed as the first or key-mote of the scale, but any note may be chosen for that purpose. On caleulating the frepneneies of the different notes of the major
seale when C, D and B are key-notes (taking $C=\mathbf{2 5 6}$), we find thein to be as follows:-

$$
\begin{array}{llllllllllll}
C & D & E & F & G & A & B & C^{\prime} & D^{\prime} & E^{\prime \prime} & b^{\prime \prime} & G^{\prime}
\end{array}
$$

 Key of D $270 \left\lvert\, \begin{array}{llllllllllllllllllll} & 288 & 324 & 360 & 380 & 432 & 480 & 540 & 576 \mid 648 & 720 & 760\end{array}\right.$ Key of E 266n $300\left|320 \quad 360 \quad 400426 \frac{2}{3} 480 \quad 533 \frac{1}{3} 600640\right| 720800$

Comparing the first two scales together, we see that the second requires 5 notes not in the first; the third scale requires 3 notes not found in either of the others. With each new scale additional notes are required. To use the minor scale still more would be needed. Indeed, so many would have to be introduced that it would be quite inpracticable to construct an instrument with fixed notes, such as the piano or organ, to play in all these keys.

The difficulty is overcome by temprring the seale, i.e., by slightly altering the intervals. In the serte of equal temperament, which is the one usmally adopted, the oct ave contains 13 notes, the intervals between adjacent notes all being equal. Each is equal to $\sqrt[3]{2}=1.059$, and is zalled a semi-tone. On multiplying the frequency of a note by this ratio, the note next above is obtained. From the chromutic scale of 13 notes thus obtained, the intervals of the major seale are:Between the 1st and $2 n d, 2 n d$ and 3 rd, 4 th and 5 th, 5 th and 6th, 6th and 7th, each two semi-tones or a whole tone, i.e., $(1.059)^{2}$; between the 3 rd and 4th and the 7th and 8th, each a semi-tone.

The following table shows the difference between the true or natural and the tempered seale :-

	C	D	E	F	G	A	B	C^{\prime}
True	256	288	320	$341 \frac{1}{3}$	384	$426 \frac{2}{3}$	480	512
Tempered	256	287.3	322.5	341.7	383.6	430.5	483.2	512

The natural scele is more agreeable than the equallytempered. On a violin an accomplished performer can obtain
true intervals by properly placing his fingers; and a choir of picked voices, when singing unaccompanied, uses true intervals.
211. The Harmonic Scale. When a note is sounded on certain musical instruments a practised ear can usually detect, in addition to the fundamental or principal tone, tones of other freguencies. These are much less intense than the principal tone. If the frequency of a tone is represented by 1 , those tones with frequencies corresponding to $2,3,4,5 \ldots$ are said to be harmonies of the tone 1 which is called their fundamental. The entire series is known as the Harmonic scale.

The tones which are present in a note are members of such a harmonic scale, but they are not necessarily harmonics of the lowest note heard. Their fundamental may be a still lower tone. They are often referred to as overtones of the fundamental.

In the piano these harmonics are prominent. In the tuningfork when properly vibrated, the harmonics almost instantly disappear, leaving a pure tone.

QUESTIONS AND PROBLEMS

1. From what experience would you conchde that all sounds, no matter what the pitch may be, tratvel at the same rate?
2. If the vibration number of C is 300 find those for F and A.
3. The wave-length of a sound, at temperature $15^{\circ} \mathrm{C}$., is 5 inclies. Find its frequency.
4. Why does the sonnd of a circular saw fall in pitch as the saw enters the wood?
5. Find the wave-length of $D^{1 v}$ (i.e., four octaves above L) in air at $0^{\circ} \mathrm{C}$., taking the frequency of C as 261.
6. Find the vibration numbers of all the C s on the piano, taking middle O as 261.
7. If the frequency of A were 452 what would be that of C ?
8. Which note has 3 times the number of vibrations of C ? Which has 5 times?
9. Find the wave-lengths in air at $20^{\circ} \mathrm{C}$. of the fundamental notes of the violin $G_{1}, D, A, E^{\prime} . \quad(A=435$ vibrations per second.)

CHAPTER XXI

Vibrations of Strings, Rods, Plates and Air Columns
212. The Sonometer. The vibrations of strings are best studied by means of the sonometer, a convenient form of which is shown in Fig. 216. The strings are fastened to steel

Fig. 216.-A sonometer, consisting of stretched strings over a thin wooden box. By means of a bridge we can use any part of a string.
pins near the ends of the instrument, and then pass over fixed bridges near them. The tension of a string can be altered by turning the pins with a key, or we may pass the string over a pulley and attach weights to its end. A novable bridge allows any portion of a string to be used. The vibrations are proluced by a bow, by plucking or by striking with a suitable hanmer.

The thin wooden box which forms the borly of the instrument strengthens the sound. If the ends of a string are fastened to massive supports, stone pillars for instance, it ennits only a faint sound. Its surface is small and it can put in motion only a suall mass of air. When stretched over the light box, however, the string communicates its motion to the bridges on which it rests, and these set up vibrations in the worklen box. The latter has a considerable surface and impresses its motion upon a large mass of air. In this way the volume of the sound is multiplied nany times.

The motions which the bridges and the box undergo are said to be forcerl vibrations, while those of the string are called frere vibrations.
213. Laws of Transverse Vibrations of a String. First take away the movable bridge and phack the string. It vibrates as a whole and gives out its fundementul note. Then place the bridge under the middle point of the string, and phock again, thas setting one-half of the string in vibration. The note is now an octave aloove the former note.* We thus obtain twice the number of vibrations by taking half the length of the string.

If firther we take lengths which are $\frac{4}{3}, \frac{4}{5}, \frac{3}{4}, \frac{2}{3}, \frac{3}{6}, 1^{2} 5$ of the full length of the string we seenre six notes which, with the fumbanental and its octave, comprise the major scale. Now from $\S 208$ we see that the relative frepnencies of the notes of the scale are proportional the the reiprocals of these frantions, and hence we dednce the following important

Law of Levgrus.-The number of vibrations of in string is imeorsely proportiomel to its lonyth.

Next, let the tension of one of the strings be so altered that it emits the same note as does that one with the weight on the end of it. Then let us keep adding to the weight until the string gives a note which is one oetave higher, that is, the note now obtained is in unison with that obtained from the other string when the movable bridge is put under its middle point.

It will be fomen that the new weight is fom times the old one. Thus we see that in order to obtain twice the number of vibrations wablad to multiply the tension 4 times. In order to obtain 3 times the mmber of vibrations we must multiply the tension 9 times; and so on. In this way we obtain the seeond important law, namely, the

Law of Tensioss.-The mumber of vibrations is proportional to the squure root of the stretching weight.

[^19]Now let us see what is the effect of making the string thicker. Let us nse a string of the same material but of twice the diameter. We find that the mmber of vibrations obtained is one-half as great. If the diameter is made three times as great, the number of vibations is reduced to onethird ; and so oll. In this way we obtain the

Law of Dianeters.-The number of vibrutions is inversely propentional to the diumeter of the string.

Finally, on testing strings of different materials we would reach the

Law of Densities.-The number of vibrations per second is inversely proportional to the square root of the density.

For example:-The density of steel wire is 7.86 and of platinum wire is 21.50 g . per c.c. Hence if we take wires of steel and platinum of the same diameter, length and under the same tension, the number of vibrations executed by the steel wire will be $\sqrt{\frac{2150}{8 \cdot 56}}=1.65$ times that by the platinum.
214. Nodes and Loops in a Vibrating String. The production of nodes and loops in a vibrating string can be beautifully exhibited on the sonometer.

Place five little paper riders on the wire at distances $\frac{1}{8}, \frac{1}{4}, \frac{3}{8}, \frac{1}{2}, \frac{5}{8}$ of the wire's length fiom one end. Then while a tip of the finger or a feather is gently held against the string at a distance $\frac{1}{4}$ of the length from the other end, carefully

Fig. 217.-Obtaining nodes and loops in a vibrating
string. The paper riders an are thrown of at the loops. .are thrown of at the loopg.
vibrate the string with a bow. The string will break up into nodes and loops, as shown in the figme, the little riders keeping their places at the nodes but being thown off at the loops. The note emitted will be 2 octaves above the fundamental, with a frequency 4 times that of the latter.

In the sime way, though somewhat more easily, the string can be make to break np into 2 or 3 segments. To obtain 2 regments, touch the string at the middle-point; for 3 segments, tonch it $\frac{1}{3}$ of the string's length from the end. In both cases, of conse, the paper riders must be properly placed.
215. Simultaneous Production of Tones. When a string

Fig. 218. - How a string vibrates when giving (a) its fuldamental, (b) its first harmonic, (c) both of these together. vibrates as a whole, as shown in Fig. 218ı, it emits its fundamental tone. To emit its first hamonic or overtone it should assume the form shown in (b). In the same way the forms assumed when giving the higher overtones can easily be drawn.

Now it is practically impossible to vibrate the string as a whole without, at the same time, having it divide and vibrate in segments. Thus with the fundamental tone of the string will be mingled its various harmonics.

The relative strengths of these harmonies will depend on he mamer in which the string is put in vibration,-whether by a bow, by plucking or by striking it at some definite point. The sound usmally described as "metallic" is due to the prominence of higher harmonics.

In Fig. 218c is shown the actual shape of the string obtained by combining (a) and (b), that is, by adding the first harmonic to the fundamental.
216. Vibrations of Rods. The vibration of a rod clamped at its middle and stroked longitudinally has been described in § ${ }^{\text {nng }}$, in connection with Kundt's tube.

But a rod may vibrate transversely

Fig. 219.-Vibrations of a rod clamped at one end. also. Let it be clamped at one end, and the other end be drawn aside and let go. Ordinarily it will vibrate as in

Fig. 219a, in which case it prohnces its fimdamental tone. Bat it may vibrate as ilhstrated in (b) and (c), emitting its overtones.

The vibrations are due to the elasticity of the rorl. The investigation into these tronsverse vibrations is somewhat complicated and difficult, but the following simple law has been found to be true.

Law of Transverse Vibrations of Rods:-The number of vibrations vuries inversely as the square of the length of the rod and directly as its thickness.

The triangle and mmsical boxes are examples of the transverse vibrations of rods.
217. Tuning-Fork. A tuning-fork may be considered as a rod which is bent and held at its middle point. When it vibrates the two prongs alternately approach and recede, while the stem has a slight motion up and down. Why this is so may be seen from Fig. 220. In I, N, N

Fig. 220.-How a tuning-fork vibrates. represent the nodes when the straight bar is made to vibrate. As the bar is bent more and more the nodes approach the centre, and when the fork is obtained (as in $I I$) the nodes are so close together that the motion of the stem is very small. That it exists, however, can be readily shown.

If a fork, after being set in vibration, is held in the hand it will continue in motion for a long time. It gives up its energy slowly and so the sound is feeble. But if the stem is pressed against the table the sound is much louder. Here the stem produces forced vibrations in the table, and a large mass of air is thus put in motion. In this case the energy of the fork is used up rapidly and the sound soon dies away.

Tming-forks are of great importance in the study of sound. When sut in motion ly grentle bowing, the overtones, if present at all, die away very repidly.

With a rise in temperature the elasticity of the steel is diminished and the pitch is slightly lowered.
218. Vibrations of Plates. The plates used in the study of sound are generally made of brass or ghass, and are ordinarily square or cireular in shape. The plate is held by a suitable clamp at its centre, and is made to vibrate by a violin bow drawn across the edge.

Let us scatter some sand over a square plate, and while a

Fig. 221. -Sant-figures showing nodal lines in vibrating plates. finger-nail touches it at the middle of one side draw the bow across the edge near one corner. At once a clear note is given, and the sand takes up the figure shown in Fig. 221a. If the corner is damped with the finger-tip and the bow is applied at the middle of a side, the form shown in b is assumed, and the note is higher than the former. By damping with two finger-tips the form c is obtained and a much higher note is produced.

The sand is tussed away from certain parts of the surface and collects along the nodal lines, that is, those portions which are at rest.

Some of the forms assumed by the sand when a circular plate is vibrated are shown in d, e, f. The sand-figures always reveal the character of the vibration, and the more complicated the figure, the higher-pitched the note.
219. Vibrations of Air Columns ; Resonance. Let us hold a tube about 2 inclues in diameter and 18 inches long with its lower end in a vessel containing water (Fig. 222); and over the open end hold a vibrating tuning-fork. Suppose the fork to make 256 vibrations per second.

By moving the tube up and down we find that when it is at a certain deptli, the sound we hear is greatly intensified. This is due to the air column above the water in the tube. It must have a definite length for each fork. On measuring it for this one we find it is approximately 13 inehes, With higher-pitched forks it is smaller than this, being always inversely proportional to the frequency of

Fig. 292.-Air column in resonance with a tuning-fork. the fork.

The air column is put in vibration by the fork, its period of free vibration being the same as that of the fork. The air column is said to be in resonance with the fork.
220. Explanation of the Resonance of the Air Column. The tuning-fork prong vibrates between the limits a and b (Fig. 223). As it moves forward from a to b it produces a condensation which runs down the tube and is reflected from the bottom. When the fork retreats from b to a a rarefaction is produced which also travels down the tube and is reflected.

Now for resonance the tube must have such a length that in the time that the prong moves from a to b the condensation travels down the tube, is refleeted, and arrives baek at b ready to start up, along with the fork, and produce the rarefaction. Thus the vibrations of the frrk and of the air column are perfectly synchronous; and as the fork continues to vibrate
the motion of the air in the tube acemmatates and spreads abrome in the rom, proslucing the marked increase of somend.

221. Determination of the Velocity of Sound by Resonance.

 From the explanation given of the resonance of the air columm in a tube, it is seen that the somad-waves tavel from A to B and back again while the fork is making half of a vibration. During a complete vibration of the fork the waves will travel four times the length of the air columin; but we know that while the fork is making one vibation the sound-waves travel a wave-length. Thus the length of the air column is onefourth of a wave-length of the somind emitted by the fork.*If we know the frequency of the fork we can, by measuring the length of the resonamee collum, at once deduce the velocity of sound. Also, if we know the length of the resonance column and the velocity of sound we can deduce the pitch.

For example, using the values just obtained,

$$
\begin{aligned}
\text { Frequency } n & =2 \overline{5} 6 \text { per second, } \\
\text { Wave-length } l & =4 \times 13=52 \text { inches ; } \\
\text { Then } v & =n l=256 \times 52 \\
& =1109 \text { feet per second. }
\end{aligned}
$$

222. Forms of Resonators. A resonator is a hollow vessel

Fio. 224. - Two forms of resonators. The one on the right can be adjusted for different tones. tuned to respond to a certain definite pitch. Two forms are shown in Fig. 224. In each case there is a large opening, to be placed near the source of the sound, while the smialler opening is either placed in the ear, or a rubber tube leads from it to the ear. The volume is carefully adjusted so as to be in resonance with a tuning-fork (or other body) vibrating a definite number of times per second.

These resonators are used to analyse a compound note. We can at once test whether there is present a tone corresponding

[^20]to that of the resomator, by simply holding the instrument near the somuling lonly; if the air in the resomator respomds, that tone is present, if it deres mot responl, the tome is absent.

The spherical form was nsed largely by the great Geman scientist Hehololt\%; the other, which can tre aljusted to several tones, was intronheed by Koenig. 'They are nsually made of glass or hrass, bat quite servicuable ones can be made in cylindrical shape out of heary paper. (See also § 234.)
Tuning-forks which are used in aconstics are generally momated on a light box of definite size (see Fiyg. 238). This is so constructell that the air within it is in resomence with the fork. If a fork is held with its stem resting on the table, the table is forced to vibrate in comsonance with the fork.
223. Resonance of an Open Tube. Let us take two tubes, abont two inches in diameter, one of them slipping closely over the other. Each may be 15 or 18 inches long.

Now vibrate the fork whose frequency is 256 per second and hold

Fio. 225.-The length of an open tube when in resonance with a tuningfork is one-hall the wave-length of the sound. it over the end of the tube, varying the length at the same time.

At a definite length the air within the tube vigorously responds, and there is a marked increase in the somod. On measuring the length of the tube we find it is 26 inches, just twice the length of the tube when one end is closed.

But we found that the closed tube was one-fonrth the wavelength of the sound to which it responded; hence an open tube is one-half the wave-length of the sound given by it.

The relation between the notes emitted by an open and a closed pipe of the same length can easily be illustrated by blowing across the end of n tube (say $\frac{1}{2}$ inch in diameter and 2 inches long), and observing the note produced when the tube is open and when a finger is held over one end of it. The former note is an octave higher than the latter.
224. Mode of Vibration in an Open Tube. Whell n rowl is clamped at the middle and one half is stroked,

Fra. 220.-Explaining how an open plpe vlbrates. as in $\$ 198$, we tind that lmoth halves lengthen and shorten. In this case there is a monle at the midhle, which is always at rest, and a loop at ench emol.

The air in an open tube vibrates quite similaty; imleed it lehaves like two closed tubes placerl end to end. (Fig. 226.)

The layer of air across the middle of the open tube remains at rest while those on each side of it crowd np to it mal then separate from it again. The layers at either end swing back and forth, without nppreciably approaching those next to them.

Fig. 227.-Seotion of a wooren organ plpe.

There is the greatest change of density at the middle of the tube, or the bottom of the closed tulse, -i.e., at the norle,--while the air particles execute the greatest swing back-and-forth (without change in the density of the air), at the open enls. There is a loop at ench end.
225. Organ Pipes. The most familine application of the vibuntions of air columms is in organ pipes. They are made either of wood or metal. If of wood, pine, cedar or mahogany is used; if of

Fio. 228, - A metallic organ pipe. metal, tin (with some lead in it) or ainc.

In Fig. 227 is shown a section of a rectangular wooden pipe; in Fig. 228 is a metallic cylindrical pipe. Sometimes the pipes are conical in shape.

Air is blown through the tube T into the chamber C, and escuping from this by a narrow slit it strikes agranst a thin lip D. In doing so a perioslic motion of the air at the lip is prolucel, mul this sets in motion the air in the pipe, which then gives ont its proper note.

Organ pipes are of two kinds,-open and closed. In some open pijes reeds are used (§238.) Firon the discussion in § 223 it will be clear that the note yielded by an open pipe is an octave higher than that given by a closed pipe of the same length.
226. Overtones (or Harmonics) in an Organ Pipe. The vibrations of the open and closed pipes which have been described in § 219 are the simplest which the aircolumn can make, and they give rise to the lowest or fundamental notes of the pipes. In order to obtain the fundamental the pipe must. be blown gently. If the strength of the air-current is gradually increased,
 other tones, namely, the Flos. 229, 230, 231, 232, 233, 234. overtones of the pipe, will also be heard.

Showing the notes and loops in open and closed orgau pipes with diferent atrongthe of alr-currenta.

In Figs. 229, 230, 231 are represented the divisions of the air column in a stopped pipe corresponding to different strengths of the air-current. In Fig. 229 we have the fundamental vibration; here the column is undivided. The only node present is at the closed end, and there is a loop at the lip-end. In Fig. 230 is shown the condition of the air column corresponding to the first overtone of the pipe. There is a node at the closed end, and another at a distance $\frac{1}{3}$ of the

108 VIBRATIONS: STRINGS, lODN, PIATES, AIR COIUMNS

length of the pipe firm the lip-em:. Thas the distance from a monde to a bonp is: that in Fig. 229!, and the wave-lemgth of the onote is: that of the fundamental. This is called the thimed hamonic, the fimdanental being eomsidered the first.

In Fig. 2:31 there are three norles and three loops, in the phaces indiented. From a norle to a lenp the distance is $\frac{1}{8}$ of the length of the pipe, and henee the ware-length of the sommel is: thant of the fundamental. This is the fifth harmonic. The next hamonies producel would be the seventh, the ninth, ete. Thus we see that in a closed pipe the even harmonics are absent, the ord ones only being present.

Next consider the open pipe. For the fundamental the air column divides ass shown in Fig. 232, with a mode at the middle and a loop at ench end. With stronger bowing there is a loop at the middle as well as at ench end and norles halfway between (Fig. 233). In this case the wave-length is $\frac{1}{2}$ that of the fundmental, and the hamonic is the second.

In Fig. 234 is shown the next monle of division of the air cohme. It will be seen that the wave-keng is ! that of the fundmanental amd the hammone is the third. By using still stronger enrrents of air we get the fourth, fifth, sixth, etc., hammonics. Thus in mopen pipe all the harmonics (or overtones) can be produced; in the closed pipe only the odd harmonies of the series are possible.

QUESTIONS AND PROBLEMS

1. Why is it alvisable to strike a piano-string near the end rather than at the middle?
2. As water is ponred into a deep bottle the sound rises in pitch. Explain why.
3. A sterpred fipe is 4 feet lung and an unan one 12 feet long. Compare the pitch and the cquality of the two pipes.
4. What would be the effect on an "ryan pipe if it were filled with carbonic acid gas? What with hydrogen?
b. Find the length of n wopped pipe whose fundamental has a frequency of 52e. (Temperature, $20^{\circ} \mathrm{C}$.)
5. A glann tube, 80 cm . long, held at its centi, nul vihrated with a wet cloth gives out a nute whose frequency is 2540. Calculate the velocity of sound in glans.
6. If the tensint of n string emitting the note A in 20 ? ounds, find that regured to produce $C^{\prime \prime}$.
7. What effect will a rine in temprature have on the notes of a pipe organ ?
D. One wire in twice as long as another (of the mame material nad diametor), and ita tension is twice as groat. Compare tho vibrntion numbers.
8. Find the length of an air column in resonance with k. (Temperature, $20^{\circ} \mathrm{C}$.; $C=261$.)

CHAPTER XNII

Qtality- Vhbiting Flames-Beats

227. Quality of Sound. It is a familiar and remarkable faet that thongh sommls having the sime pitch and intensity may be proluced on the piano, the orgim, the cornet, or with the human voice, the sonree of the somen in each case ean be easily recognized. That peculiarity of somnd which allows us to make this distinction is called quility.

The cause of this was not explained mutil, in fuite recent times, Hehmholtz showed that it depends on the co-existence with the fundamental of secondary vibrations which alter the forms of the somd waves. These secondary vibrations are the overtones or hamonics, and thio mmber and prominence determine the peculiar chameteristics of a mote.

In general, those notes in whieh the fundamental is relatively

Fic. 235.-The manometric flame and mirror. A sectlon of che gas chamber is shown separately ahove. On speak. ing into the funnei the flanie dances rapidly up and down, and this motion is ohserved ln the square mirror which Is rotated ly hand. strong and the overtones few and fechle are said to be of a 'mellow' eharacter; but when the overtones. are nmmerons the note is harsher and has a so-cialled metallic sound. If a musical string is struck with a hard boly the high harmonies come out prominently.

When a violin string is bowed the first seven overtones are present, and give to the sound its piereing character. In the case of the piano the 1st, 2nd and 3rd overtomes are fairly strong while the 4th, 5 th and 6 th are more freble.
228. Vibrating Flames. 'I'le canse of quality was investigated by Helmholtz by means of spherical resonators (Fig. 224). But a very beautiful and simple way of investigating the
complex nature of sound-waves is by means of the manometrie, or $1^{\text {messure-measuring, flame devised by Koenig. }}$

A convenient form of the upparatus is shown in Fig. 235. A small chamber is divided into two compartments by a thin membrane* m. Gas enters one compartment as shown in the figure, and is lighted on leaving by a fine tip. The other compartment is conneeted by means of a rubber tube with a fumnel-shaped monthpiece.

The somnd-waves enter the fummel and their condensations and rarefactions produce variations in the density of the air beside the membrane. This makes the membrane vibrate back and forth, and the gas-flame dances up and down. But these motions are so rapid that the eye camot follow them, and in order to separate them they are viewed by reflection in a rotating minors.

The appearmee of varions images of the flane is given in Fig. 236. When the mirror is at rest the image is seen as at A. If now the mirror is rotated while the flame is still, the image is a band of light, B. On singing into the conical mouthpiece the sound of $o o$ as in tool, or on holding before it a vibrating mounted tuningfork the gas-jet's motion appears in the mirror like C. If the note is sung an octave higher there will be twice as many little tongues in the same space, D. When these two tomes are shlug together imagres as in E are

Fro. 236.-Flame pictures seen in the rotating mirror. A, when mirror is at rest; B, when flame is at rest and mirror rotating; C, when a tuning fork is heid before the mouthpiece; D. same as C but an octave higher ; F, when C and D are combined: F, obtained with vowel e at pitch $C^{\prime} ; G$, with vowei δ at the same pitch.

[^21]given. On singing the vowel e at the pitch C^{\prime} we obtain images as at F; and G is oltained on singing \bar{o} at the same pitch.

From the figures it will be seen that the last three notes are complex sounds. These dancing images have been successfully photographed on a moving filn by Nichols and Merritt.

A simple form of the above apparatus can be constructed by

Fig, 237.-A simple form of manometric flame capsuie. AA is a cork holiowed out, M is the thin membrane. anyoue (Fig. 237). Hollow out a piece of wood or a cork (2 iucies in dianteter), A, and across the opening stretch the membrane, M, keeping it in place by screwing or pinuing a ring B against it. Gas enters by the tule C and leaves by the tul): !). No mouthpiece is necessary but a fumel, shaped as shown in the dotted line, will increase the effect. In place of the rotating mirror a piece of mirror 6 by 8 inches square, held in the hand ahost vertical and given a gentle oscillatory motion will give goorl results.
229. Sympathetic Vibrations. Let us place two tuningforks, which have the same vibration numbers, with the open ends of their resounce boxes facing each other and Ω short distance apart (Fig. 238). Now vibrate one of them vigorously by means of a bow or by striking with a soft mallet (a rubber stopper on a haulle), and after it has been soumding for a few seconds bring it to rest by
 placing the hand upon it. The 10. 238.-Two tuning.torks arranged to siow sympathetic vibrations. Wher one is vibrater the other responis. sound will still be hearl, but on cxamination it will be found to proceed from the other fork.

This illustrates the phenomenon of sympathetic vibrations. The first fork sets up vibrations in the resonance box on which it is mounted, and this produces vibrations in the inclosed air column. The wares procced from it, and on reaching the resonance box of the sccond fork its air columm is put in vibration. The vibrations are communicated to the box and then to the fork, which, having considerable mass, continues its motion for some time.

A single wave from the first fork would have little effect, but when a long series comes in regular succession each helps on what the one next before it has started. Thus the effect accumulates until the second fork is given considerable motion, its sound being hearl over a large room.

For this experiment to succeed the vibration numbers of the ro forks must be accurntely equal.
230. Illustrations of Sympathetic Vibrations. The pendulum of Ω clock has a natural period of vibration, depending on its length, and if started it continues swinging for a while, but at last comes to rest. Now the works of the clock are so constructed that a little push is given to the pendulun: t each swing and these, being properly timed, are sufficient to keep up the motion.

Again, it is impossible by a single pull on the rope to ring a large bell, but by timing the pulls to the natural perion of the bell's motion, its amplitude continually increases until it rings properly.

When a borly of soldiers is crossing a suspension bridge they are usually made to break step for fear that the steady tramp of the men might start a vibration agreeing with the free period of the bridge, and which, by continual mulitions, might reach dangerons proportions.
231. Beats. We shall experiment further with the two unison forks (Fig. 238). Stick a piece of wax* on each prong
*The soft modelling wax sold as "plasticine" is very convenient.
of one fork; we camot get sympathetic vibrations now, but on vibrating the two forks at the same time a pecnliar wavy or throbhing somul is hearl, cansed by alternate rising and sinking in Joudness. Each recnrrence of maximmm loudncss is called a beat.

We at once recognize that this effect is due to the interaction of the waves from the two forks, resulting in an alternate increase and decrease in the londness of the sonnd.

Each fork prodnces condensations and rarefactions in the air, and since in a condensation the air particles have a forverrd motion while in the rarefaction the motion is backward, it is evident that if a condensation from one fork reaches the car at the same time as a rarefaction from the other they will oppose their effects and the ear-drunt will have little motion-the sound will he faint. If, however, a condensation from each or a rarefnction from each, arrives at the same time, the action on the ear-drum will be increased and the sound will he louder.

Consider the curves in Fig. 239. Between A and B are 8 complete waves, and between C and D, taking up the same distance, are 9 waves.

Fig. 239.-llustrating the production of beate. The combinction of $A B$ with $C D$ gives $E F^{\circ}$. The dotted curve in $A B$ is the arme as the curve $C D$. At M the motion is H1, at N it is clown, alll these added give us motion as at I. At the beginning at A and C, the waves are in the same phase; this is the case also at the end, at B and D. But halfway betwecn, at M and N, the phases are opposite.

By arding the motions represented in $A B$ to those represented in ('D we olbtain the motion illustrated by $E k$.

These enrves can represent the motions in souml-waves if we agree that a erest in the fignre shall correspond to a
condensation in the sound-wave, and hence a trough shall correspond to a rarefaction.

For simplicity let us suppose that one fork in a second gives out the 8 waves in $A B$ while the other gives the 9 waves in $C D$. The combined effect, as shown in $E F$, will move to the ear. At first the effect will be intense, then it will be a mininum (corresponding to P), then intense again ; and so on during the next second. Thus there would be one beat per second.

If the forks give 8 and 9 vibrations, respectively, in onehalf second, i.e., 16 and 18 per second, there will be one beat each half-second or two per second. To produce beats the forks should not differ greatly in pitch.

We arrive then at the simple law that the number of beats per second due to two simple tomes is equal to the difference of their respective vibrution numbers.
232. Tuning by Means of Beats. Suppose we wish to tune two strings to unison. Even the most unmusical person can do it. Simply vary the tension, or the length, of one of them until as they approach unison the beats are fewer per second. If one beat per second is heard, there is a difference of only one vibration per second in their frequencies. Let us alter a little more until the beats are entirely gone. The strings are then in unison.

In the same way other sounding bodies, for instance two organ pipes, or a pipe and tuning-fork, may be brought to unison.
233. Interference of Sound-Waves. The production of beats is but one of the many phenomena due to the interference of sound-waves. Let us consider two others.

In Fig. 240 are shown the extremities of the two prongs of a tuning-fork. They vibrate in such a way that they move alternately towards and a way from each other. Thus while they produce a condensation in the space a between

Fig. 240.-Interference with a tuning fork. them, they produce a rarefaction at b and c on the opposite
sides. In this way each prong starts out two sets of waves, which are in opposite phases. These waves travel out in all directions, and it is evident that we can find points such that when the two sets of waves arrive there they will be in opposite phases and so, at cach point, will counteract each other's effects. Such points are located on two curved surfaces, of which $f y$, $h k$ are horizontal sections.

This can be demonstrated by holding a vibrating fork near the ear and then rotating it slowly. When the ear is in the positions b, c, d, e the sound is heard clearly; while if it is on either of the curved surfaces $f y$, $h k$ no sound is heard.
234. Interference with Resonators. Another interesting experiment can be performed with two wide-mouthed (pickle) bottles. Vibrate a tuning-fork (256 vibrations) over the mouth of one of the bottles, and slip a microscope slide over the mouth until the air in the bottle responds vigorously. Fasten with wax the glass in the position when the bottle resounds most loudly. The bottle is then a resonator tuned to the fork.

Tune the other bottle in the

Fig. 241.-Interference with two resonators. same way and then arrange them, with their mouths close together, as shown in Fig. 241. Make the fork vibrate, and then, holding it horizontally, bring it down so that the space between the prongs is opposite the moutl of the upright bottle. As it is brought into place you will observe that the sound first increases, and then suddenly fades away or disappears entirely.
The reason for this is easily understood. The air in one bottle is put in vibration by the air from between the prongs,
while that in the other is put in vibration by the air on the other side of the prongs; and these, as we have seen, are in opposite phases. Hence they interfere and produce silence.

If a card is slipped over the mouth of one of the bottles, that bottle's vibrations are shut off and the other sings out loudly.
235. Doppler's Principle. Suppose a body at A to be emitting a note of n vibrations per second. Waves will be excited in the surrounding air, and an observer at B will receive n waves each second. He will recognize a sound of a certain pitch.

Next suppose that the observer approaches the sounding body ; he will now receive more than n waves in a second. In addition to the n waves which he would receive if he were stationary he will meet each second a certain number of waves, since he is nearer the sounding body at the end of a second than he was at its beginning. He will receive those waves which at the commencement of the second occupied the space he has moved. As he will now receive more than n waves per second the pitch of the sound will appear to be higher than when there was no motion.

If the observer noves away, the number of waves received will be smaller and the pitch will be lowered.

If the observer remains at rest while the sounding body approaches or recedes similar results will be obtained; and if we can determine the change in pitch we can calculate the speed of the motion. This phenomenon is known as the Doppler effect and the explanation given is known as Doppler's principle.

The Doppler effect can be observed when a whistling locomotive is approaching or receding at a rapid rate. An automobile sounding its horn is a still better illustration as its motion makes less noise. When the machine is approaching the sound is distinctly higher in pitch than when it is travelling away. Doppler's effect is referred to again in § 406.

QUEsTIONS AND PROBLETE

1. What are the fourth and fifth overtones to C ?
2. A tuning-fork on a resonance box is moved towards a wall, and a 'wavy' sound is heard. Explain the production of this.
3. Hold down two adjacent bass keys of a piano. Count the beats per second and deduce the difference of the vibration-frequencies.
4. If a circular plate is made to vibrate in fuur sectors as in d, Fig. 221, and if a cone-shaped fumel is connected with the car by a rubler tube, and the other ear is stopped with soft wax, ao somal is heard whell the centre of the mouth of the cone is placed over the centre of the plate; but if it is moved outward along the middle of a vibrating sector, a sound is heard. Explain these results. (For a phate 6 inches in dimmeter the mouth of the funnel should be $2 \frac{1}{2}$ inches in dimmeter. 'Thy the experineut.)

CHAPTER XXIII

Musical. Instruments--'lif: Plonograph

236. Stringed Instruments. In the piano there is a separate string, or a set of strings, for each note. The strings are of steel wire, and for the bass notes they are overwound with other wire, being in this way made more massive without losing their flexibility. When a key is depressed a combination of levers causes a soft hammer to strike the string at a point about $\frac{7}{4}$ of the length of the string from the end. If the instrument gets out of tune it is repaired by re-adjusting the tensions of the strings.

The harp is somewhat similar in principle ts the piano, but it is played by plucking the strings with the fingers. By pressing pedals the lengths of the strings may be altered so as to sharpen or flatten any note.

The guitar has six strings, the three lowerpitched ones being of silk over-wound with fine wire. The strings are tuned to

$$
E_{1}, A_{1}, I, G, B, E^{\nu}
$$ where D is the note next

Fig. 242. -The quitar. With the left hand the stringe, are shortened by pressing them against the 'frets,' while the note is obtained by plucking with the right hand. above middle C and has 293.6 vibrations per second. There are little strips across the finger-board colled 'frets,' and by pressing the strings down by the fingers against these they are shortened and give out the other notes (Fig. 242).

There are only fonr strings on the violin, and they are timed to

$$
\left(i_{1}, 1\right), A, E^{\prime \prime},
$$

where D is next above middle $C(A=435$ vibrations per second). The other notes are obtained by shortening the strings by means of the fingers, but as

Fig. 243. The flute. there are no 'frets' to gnide the performer, he must juige the correct positions of the tingers himself.
237. Pipe Organ and Flute. The action of organ pipes has heen explained in $\S \S 225,226$. In large organs they vary in length from 2 or 3 inches to abont 20 feet, and some of them are conical in shape.

In Fig. 243 is shown a flute. This is an instrument of great antiquity, though the modern form is quite unlike the old ones. By driving a current of air across the thin elge of the opening, which is near one end, the air column within is set in vibration much as in an organ pipe. In the tube there are holes which may be opened or closed by the player, opening a hole being equivalent to cutting off the tube at that place. The overtones are also used, being obtained by blowing harder.

The fife and the piccolo resemble the flute, both being open at the further end. Whistles, on the other hand, are usually closed.
238. Reed Instruments. In the ordinary organ, the mouthorgan, the accordion and some other instruments the vibrating
borly is a reed, such as is shown in Fig. 245. The tongue A vibrates in and out of an opening which it accurately fits, the motion being krpt up by the current of air which is directed through the opening.

In some organ pipes reeds are

Fio. 245.-An organ reed. The tongue A mores lin and out of the opwing. This in called a free reed. phaced, but the note promuced is due chiefly to the air column in the pipe, the reed simply serving to set it in vibration.

In Fig. 244 is shown a chrinet. This instrmment has holes in the tube which are covered by keys or by the fingers of the player. 'The air in the tube is put in vibration by means of a reed made of cane shown in Fig. 246. The reed is very flexible, and the note

Fio. 246.-Mouth piece of the heard is that of clarinet. The roed R covers the opening. the air column, not of the reed. In this case the reed simply

Fto. 247.-Automobite 'honk.' The reed R is shown separately above. It is liserted at r, where the flexible and lirass tubes unite. covers and uncovers the opening in the mouthpiece, being too large to pass into the opening. It is called a striking reed, that in the orgat (Fig. 245) being a free reed.

A reed is used in a similar way in the mouthpiece of the oboe, saxophone and other instrmments of that chass.

In the automobile 'honk' (Fig. 247) a striking reed is used. It is inserted at r, where the Hexible tube joins on the brass portion. On pressing the bulb the reed sets in vibration the air column in the brass portion.
239. Instruments in Which the Vibrations are Produced by Player's Lips. These all consist essentially of an opern conical tube, the larger emf terminating in a $\ln \cdot l$ while at the smaller end is a cup, carrying it rommed edge, uganst which the tense lips of the player are stemdily pressed. The lips thus constitnte a reed and by then vibrations wases are set up in the air within the tube.

In this way the fumlamental and the varions harmonies of

Fios. 2tis. - The bugle. the nir columm in the tube are pronneed, and all bur the extreme buss sounds at. ased in the scale.

In the French hom the total length of tube is nlout 17 feet, and hence the fumbmental mote is very deep. The production of the hamonie series depends entirely on the varied tension of the lips.

The bugle is illustrated in Fig. 248. The length of tube is fixem, and the motes producible are the fundamental and about 5 overtomes. Its. compass is much smatler than that of the lirench horn.

In the cornet, by means of three valven a, b, c (Fig. 249), the air column may be
 divided intorliffer- Fio. 249.-By the valves a, b, c, the air column is divided into ent lengrths, and a different lengthe. series of overtones is obtained with each length.

In the trombone, on the other hand, besides obtaining overtones by suitable blowing, the pitch is varied by altering the
length of the culke. This is done liy means of a U-shnped portion, AB (Fig. 250), which can slide with gentle friction

Fio. esin, - \mathbf{A} alide trombone.
upon the body of the instrument.
240. The Phonograph. This instrmment, unw so fnmilinr, was invented ly kilismin in 187 . Its construction, like that of the telephone receiver, is extremely simple, and one is axtonished that such wonderinl results can be obtained in so simple a nianner.

A cylinder (C, Fig. 251), of comparatively hard wax is made (insually by clockwork), to rotate and at the name time move parallel to its axis. Resting on this is a sharp steel point (1 , Fig. 252), attached to a thin diapliragm,

Fro. 251. -The phonograph. C in the cylinder on whirh the epiraigroove is made. A cylinder is shown (eniarged) bevide the indtrument. which covers the lower end of the cone, l i. In this way, as the cylinder rotates, a long spital groove is scratched on its surface.

Sounds are spoken or sung into the rone, which collects then and leads them to the diaphuagm. The varying pressures of the waves cause this to move lank and forth, alternately

Fio. 252.-Point and diaphragm of the phonograph. increasing and decreasing the pressure of the point upon the wax. In this way hollows of different depths and forms are carved at the bottom of the growe.

If now the point* is made to rma along the gronve again the diaphragm will execnte precisely the same motions once more, the motion will be imparted to the air and this the ariginal sonnd will be reproduced with surprixing filelity.

In place of the eylinder a dise may be ased; and hy suitable processes duplicates of the cylimder or the dise can be made in more permanent smbstance than the original wax.

[^22]
PART VI HEAT

CHAPTER XXIV

Natione and Sordee of Heat

241. Nature of Heat. It is a matter of every day experience that when motion is checked ly feiction or collision, heat is developed in the benties concernect. Thus if a button is rubbed rigorously on a piece of cloth it may be made too hot to be handled. A drill used in boring steel quickly becones heated. A leaden bullet shot against an iron target may be melted by the impact. The aborigines obtained tire by rmbbing two dry sticks together.

From very early times such effects were supposed to be dne to a subtle impoulerable flum which entered the bodies, and prodnced the various phenomena of heat. Although certain philosophers, notibly Descartes, Boyle, Franeis Bacon and Newton, evidently hard in a vagne way anticipated the theory of heat as a mode of motion, yet the conception of heat as a material agent was gencrally accepted up to the begimning of the nineteenth century.

The first serions attack upon the theory was made by Count Runford,* in 1798. In this he was supported by Sir Humphry Davy and others during the early years of the last century, but it was near the middle of the century before the modern dynamical theory of heat was firmly established. It was then shown by Jonle that a definite amount of mechanical work corresponds to a definite quantity of heat, from which it is manifest that heat must be a form of energy.

[^23]There would appear to be in each of the illustrations given above a loss in energy due to the loss in velocity of the body whose motion is checked, but, according to the nodern view of heat, the loss is only apparent, not real. The energy which disappears as onward motion re-appears as increased molecular motion. To be definite. hect is a form of energy possessed by a borly in virtue of $: ?$ e mon inn of its molecule..
242. Sources of Feat. Since beat is a form of encrgy it must be derived fren sme othe: form of energy. The process of the development oif nuat is a transformation of energy.
243. Heat from Friction, Percussion and Compression. We have ahready noted that heat is prodnced when onward motion is arrested through friction or percussion. It is also developed by compression. If a piece of dry tinder is placed in a tube closed at one end containing air, and a closely-fitting piston is pushed quickly into the tube (Fig. 253), the tinder may be lighted by the heat developed by the compression of the air. The cylinders of air-compressors (a bicycle pmup for instance) become heated by the repenterl compression of the air drawn into them.

Conversely, if a compressed gas is allowed to expand its temperature falls. The stean which has done work by its expansion in driving forward the piston of a stean engine escapes from the cylinder at a lower temperature than that at which it entered it.

Fig. 2E3.-Fire Syringe.
244. Heat from Chemical Action. The potential energy of chemical separation is one of onr most common sources of heat. Combnstible borlies, such as coal and wood, possess energy of this kind. When raised to the ignition point they unite chenically with the oxygen of the air, and their union
is aecompanied by the development of heat. So far this has been the chicf source of artiticial heat used for cooking our fork and warming our dwellings.
245. Heat from an Electric Current. When an electric eurrent is made to pass through a conductor which offers resistance to it, heat is developed. For example, if the teminals of a battery consisting of three or four galvanic eells joined in series are connected with a short piece of fine platinum or iron wire, it will be heated to a white heat. Electric lamps also furnish examples of this transfomation of energy, the source of the radiation in them being boties heated to incandeseence by an electric enment. Electric heaters and electric cookers in their simplest forms are but eoils of resistance wire heaterl by an electric eurrent.
246. Heat from Radiant Energy. "The sum is our source of natural heat," but the heat is natural only in the sense that it comes from our most abmulant somee of supply. The heat, does not, as we might at first suppose, come unehanged from the sun to the earth. The air extends to but a relatively short distance above the earth, and it is certain that matter, as we understand it, constituted of molecules, camot extend throughout space. The direct transference of molecular motion from the sun to the earth is, therefore, an impossibility. To account for the transmission of energy the physicist assumes the existence of a medium called the ether, which he conceives to pervade all space, intermolecular as well as interstellar. The vibrating molecules of a hot borly cause disturbances in the ether, which are tramsmitted in all directions by a species of wase-motion. When the ether waves fall upon matter, they tend to accelerate the motion of its molecules. Aceording to this theory the heat of the sun is first changed into redicul encot!y, or the energy of ether vibration, and the ether waves which fall upon the earth are transformed into heat. The subject is further diseussed in $\S \S 325,326$.

CHAPTER XXV

Expansion Througif Heat

247. Expansion of Solids by Heat. In discussing the mokenlar constitution of matter we saw ($\$ 153$) that one effeet of the application of heat to a borly is to cause it to expand. The theoretical explanation was discussed at some length, and need not be again referred to here. Moreover, examples of the expansion of borlies through heat are so numerous and so commonly observed that fulness in

Fig. 2.54.-Expansion of ball by heat.

Fig. 255.-Expansion of rod by heat.
illustration is unnecessary. If a brass ball (Fig. 254) which can just pass through a ring when cold is heated it will then be fomd to be too large to go through. If we heat a metal rod which is fixed at one end while the other is made to press against the short arm of a bent lever (Fig. 255) an elongation of the rod is shown by a movement of the end of the long arm over a scale. When a compond bar, made by riveting together strips of copper and iron (Fig.

Fio. :56.-Bending of compound lar by unequal expansion of its parts. 256) is heated uniformly it bends into the form of an are of a circle with the copper on the convex side, because the copper
expands more than the iron. If phaeed in a cold bath it curves in the opposite direction.

These experiments ilhstrate a vory wrmeral law. Solids with very few execptions expand when heated and contract when cooled, but different solids have different rates of expansion.
248. Expansion of Liquids and Gases by Heat. Liquils also expand when heated. The amonnt of expansion varies

Fif. 257.-Expansion of liquids by heat. with the liquid, but on the whole, it is much greater than that of solids. Let us enclose a liquid within a flask and eomeeted tube, as shown in Fig. 257, and heat the flask. The liquid is seen to rise in the tube

The same apparatus may be used to illustrate the expansion of gases. When the flask and tube are filled with air only, insert the open end of the tube into water (Fig. 258), and heat the Hlask. A portion of the air is seen

Fio. 258.-Expansion of gas by heat. to bubble out throngh the water. If the flask is cooled, water is forced by the pressure of the onter air into the tube to take $u p$ the space left by the air as it contraets.

Unlike solids and liquids, all gases have, at the ordinary pressure of the air, approximately the sime rates of expansion.

249. Applications of Expansion-Compensated Pendulums.

 A clock is regulated by a pendulum, whose rate of vibration depends on its length. The longer the pendulum, theslower the beat; and the shorter, the faster. Changes in temperature will therefore cause irregularities in the running of the clock, unless some provision is made for keeping the pendulum constant in length through varying changes in temperature. 'Two forms of compensation are in common use. The Graham pendulum (Fig. 259) is provided with a bob consisting of a jar of mercury. Expansion in the rod lowers the centre of gravity of the bob, while expansion in the mercury raises it. The quantity of mercury is so adjusted as to keep the centre of gravity* always at the same level.
In the Harrison, or gridiron pendulum (Fig. 260) the bob hangs from a framework of brass and steel rods, so connected that an increase in length of the steel rods (dark in the figure), tends to lower the bob, while an increase in the length of the brass ones tends to raise it. The lengths of the two sets are $\begin{gathered}\text { Fiag . } 260 .- \text { Harri. } \\ \text { on pendulun. }\end{gathered}$ adjusted to keep the resultant length of the pendulum constant.
250. Chronometer Balance Wheel. A watch is regulated by a balance wheel, controlled by a hairspring (Fig. 261). An increase in temperature tends to increase the diameter of the wheel and to decrease the elasticity of the spring. Both effects would cause the watch to lose time. To counteract the retarding effects, the rim of the balance wheel in chronometers and high-grade watches is

Fig. 261.-Balance wheel of watch. constructed of two metals and mounted in sections, as shown

[^24]in lig. 261. The outer metal is the more expansible, and the effect of its expansion is to turn the free ends of the rim inwards, and thus to lessen the effective diancter of the wheel.
251. Thermostats. The fact that a bar composed of two metals laving unequal expansion tends to curl up with increased temperature finds practical application also in the construction of thermostats.

Thermostats are used mainly for controlling the temperature in buildings heated by hot-air furnaces or boilers. In most

Fig. 262.-Anelec tric thernostat. systems of control, dampers or steam valves are opened and closed by electricity or compressed air. The object of the thermostat is to set free the current of electricity or the compressed air to close the valves or dampers when the temperature reaches a certain point. Fig. 262 shows an electric thermostat and Fig. 263 shows a pneumatic thermostat. The essential part of each is the same, the compound bar b. On the electric thermostat, the bending of the bar by heat closes the clectric current at a. On the pneumatic thermostat, the bending of the bar closes a small aperture at a through which the compressed air

Fig. 263.-A pneumatic thermostat. escapes slowly by a by-pass. The air thus held back enters the bellows c, which on expanding opens a valve and this allows the main current of compressed air to have access to the regulators in the furnace room.

QUESTIONS

1. A glass stopper stnck in the neck of a bottle may be loosened by subjecting the neck to friction by a string. Fxplain.
2. Builer plates are put together with red-hot rivets. What is the reason for this?
3. Why does a blacksanith heat a wagon-tire before adjusting it to the wheel?
4. Why are the rails of a railroad track laid with the ends not quite touching?
5. Why does change in the temperature of a room atrect the tone of a pianu?
6. Glass vessels are liable to break when suddenly heated or cooled in one part ouly. Give the reason.

CHAPTER NXVI

'Temperature

252. Nature of Temperature. When the backsmith throws the red-hot iron into a tub of cold water to cool it, the iron evidently loses heat, while the water gains it. When two borlies like the inon and water are in such a condition that one grows warmer and the other colder when they are brought in contact, they are said to be at different temperatures. The borly which gains heat is said to be at a lower temperature than the one which loses it. If neither grows wamer when the bodies are honght tugether, they are said to be at the same thonperatmes. Trmperolure, therefore, may be dotinedas the romblilion of a lunly considered will refigence to its poneer. of orreivinal leal from, or communicuting heat to, another borly.
253. Temperature and Quantity of Heat. A pint of water takell from a vat is at the same temperatme as a gallon taken from the same source. They will ako be at the sume temperatme when both are brought to the boiling point, but if they me heated by the same gas flame, it will take much longer to bring the gallon up to the boiling point than to raise the pint to the same temperature. The change in temperature is the same in each, but the quentity of heut absorbed is different. A large radiator, filled with hot water may, in cooling, supply sufficient heat to wam up a romm, but a small pitcher of water loses its heat with no apparent effect. The quantity of heat possessed by a body evidently depends on its mass as well as its temperature.
254. Determination of Temperature. Up to the time of Galileo, no instrumental means of determining temperature had been devised. Differences in the temperature of bolies were estimated by comparing the sensations resulting from 222ㄴ
contact with them. But simple experiments will show that onr temperature sense camot be relied upon to determine temperature with any degree of accuracy. Take three vessels, one contaning water as hot as can be borne by the hand, one containing ice-cold water, and one with water at the temperature of the room. Hold a finger of one hand in the cold water and a finger of the other in the hot water for one or two minutes, and inmediately insert both fingers in the third vessel. To one finger the water will appear to be hot, and to the other, cold. The experiment shows that our estimation of temperature cupenas, to a certain extent, on the temperature of the sensitive part of the borly engaged in making the determination. Our ordinary experiences confirm this conclusion. If we pass from a cold room into one moderately heated, it apperis warm, while the room at the same temperature appears coll when we enter it from one that has been overheated.

Again, our estimation of the temperature of a body depends on the nature of the boly as well as upon its temperature. It is a well-known fact that on a very cold day a piece of iron exposed to frost feels much colder than a piece of wood, althongh both may be at the same temperatire.
255. Galileo's Thermometer. So far as known, Galileo was the first to construct a thermometer: He conceived that since changes in the temperature of a body are accompanied by changes in its volume, these latter changes might be made to measure, indirectly, temperature. He selected air as the body to be employed as a thermometric substance.

Fig. 264.-Galileo's air thermometer.

His thermometer consisted simply of a glass bulb with a long, slender, glass stem made to dip into water, us shown in Fig. 264. By warming the bulb, a few bubbles
of air were driven out of the stem, mul on corling the lalb the water rose part way up the stom. Any incmase in temperatme was then whown by fall of the water in the tabe, and a decrease loy a rise. Sinch a thermometor is imperfect, as the height of the colmm of lignid is affected by changes in the pressure of the outside air; as well as by changes in the temperature of the nir within the bulls. According to Viviani, one of Gialileo's pmpils, 1593 was the date of the invention of the instrmene: t.
256. Improvements on the Thermometer. Alout forty years later, Jem Rey, a French physician, improver the instrument by making use of water instead of air as the expansible substance. The bulb and a part of the stem were filled with water. Further inprovements were made ly the Florentine academicims, who made use of alcohol instead of water, sealed the tulne, and attached a graduated scale. The first merenry thermometer was constructel by the astronomer, Ismaël Boullian, in 1659.
257. Construction of a Mercury Thermometer. Alcohol is still used to meaniare very low temperatures, hat merenry is now fonnd in most thermometers in common use. This liquid has been selected for Ω variety of reasons. Among others, the following may be noted.

It can le used to measure a fairly wide range of temperatures, becanse it freezes at a low temperatare and boils at a comparatively high temperature. At any definite temperature it has a constant volune. Slight changes in temperature are readily noted, as it expands rapidly with a rise in temperature. It does not wet the tube in which it is enclosed.

To construct the themometer a piece of thick-walled glass tubing with a uniform capillary bore is chosen, and a bulb is blown at one end. Bulb and tube are then filled with mercury. This is done by heating the bulb to expel part of
the air, and then dipping the opron emin of the tule into moremry. As the bill conls, meremry is forced into it by the prosumre of the ontside air. The liguid within the bull is buiterl to expe: the remaining air, and the end of the tube is agion inmersed in merenry. On ecoling, the vipomr condenses mod bulb and tulse are completely fillond with mercury. The tulte is then souled off'.
258. Determination of the Fixed Points. Since we can describe a purticular temperature only by stating how mueh it is above or below some tempenture assmmed as a stambard, it is neeessary to fix upon standards of temperature and also muits of difference of temperature. This is most comseniently dome by selecting two fixed points for a thermometric senle. The standarls in almost universal use are the "freezing point" and the "boiling point" of water.

To detemnine the freezing

Fio. 265, - Determina.
tion of freezing point. point, the thermometer is surronnded with moist pulverized ice (Fig. 265), and the point at which the merenry stands when it becomes stationary is marked on the stem.

The boiling point is determined by exposing the bulb and stem to stean rising from pure water boiling under a

Fia. 266.-Determination of toiling point. pressmre of 76 cm. of mercury (Fig. 266). As before, the height of the mercury is marked on the stem.
259. The Graduation of the Thermometer. Having marked the freezing and boiling points, the next step is to graduate the thermoneter. Two scales are in common use, the Centigrade scale and the Fahrenheit scale.

Thu: Centigmale seake, first proposed by Celsins, it Swedish melontixt, in 1740, mul smbse, mently monlified

Fin. -617. Thirmometer н'йн. by his eollengne Miirten Stromer, is now miversally employerl in seientitic work. The spure intervening letween the freding $p^{\text {mint }}$ and the boiling point is divided into one handred equal divisions, or degrees, and the ero of the seale is phaced at the freesing puint, the granhations leinge extembed both alkne mal below the \%oro peint.*

The Fianrenheit seale is in common nse anmer English-spenking perple for honsehold purposes. It was propessed by Gabricel Daniol Pahrenhoit (16xi-1736), a (Gemman instroment make: The space between the frovering puint and the lailing point is divided into one humend mad eighty eforal divisions, each ealled a degree, mod the moro is placed thintytwo divisions below the fiecraing point. The freezing point, therefore, rembs 32° and the suiling puint 212° (Fig. 267). This gero point was chosen, it is snid, becmse Fahrenheit believed this temperature, obtained from a mixture of melting iee and ammoniun chloride oo sea-salt, to be the lowest attainable.
260. Comparison of Thermometer Scales. If the tempernture of the room at the present moment is 68°, the temperature is $6 x-32$, or 36 degrees nhove the freezing point; but since 180 Fahrenheit degrees $=100$ Centigrade degrees, or 9 Fahrenheit degrees $=5$ Centigrale degrees, the temperatme of the room is : of 36,020 Centigmale degrees nlave the frowing point; that is, the Centigrale thermometer will rend 20°.

The rehtion between corresponding readings on the two thermometers may be obtained in the following way. Let a

[^25]certain tomperature le representerl ly F^{\prime} on the Finhemheit mad (.' on the Centignale seale. 'Th. this temperatine is
 ulsu C' Contigioule degrees abose the froming puint. Hance

But 9 Fahr. legrees correnpoud to 5 Cent. degrees,
Therefore s $\left(\boldsymbol{r}^{\prime}-32\right)=C$.
261. Maximum and Minimum Thermometers. A maximum thermometer is one which recorils the highest temperature rrached thring a certain time. One form is shown in Fig. 268. It is a mercury thermometer with a constriction fixel in the tule just alove the lulh (c, Fig. 2(6)). As the temperaturs

Fis. 208. - A maximum thermometer (as umen in the Meteorologival Service). rises the mercury expanls and goes past the constrietion; but when it contructs the thread breaks at the constriction, that portion below it contracting into the bulb, while the mercnry in the tulse remains in the position it had when the temperature was highest. Hy gently tapping or shaking the thermometer the mercury can be forced past the constriction, ready for use again.

The clinical thermometer, with which the physician takes the temperature of the body, is constructed in this way.

In another kind of maximum thermometer a small piece of iron is inserted in the stem alnove the mercury (Fig. 269), and is pushed forward as the mercury expands. When the mercury contracts the iron is left hehind and thus indicates the lighest point reached by the mercnry. In the minimum thermometer, which registers the lowest temperature reached, alcohol is used. Within the alcolol a small glass index is placed (Fig. 270). As the alcohol contracts, on account of its surface tension (\$169) it drags the index back, but when it expands it flows past

Fig. 270. - A minimum therwometer (as used in the Meteoroloyical Servies). It is hugg in a frortzertal position. the index which is thus left stationary and shows the lowest temperature reached. By tilting the thermometer the index slips down to the surface of the alcohol column, ready fur use again.

PROBLEMS

1. To low many Fabrenheit degrees are the following Centigrade degrees equivalent: $-\overline{5}, 18,27,65$?
2. To how many Centigrade degrees are the following Fuhrenheit degrees equivalent :-20, 27, 36, 9i ?
3. How many Fahrenheit degrees above freezing point is $\mathbf{6} 5^{\circ} \mathrm{C}$. ?
4. How many Centigrade degrees above freezing point is $60^{\circ} \mathrm{F}$.?
5. Convert the following realings on the Fahrenheit scale to Centigrale readings : $-0^{\circ}, 10^{\circ}, 32^{\circ}, 45^{\circ}, 100^{\prime},-20^{\circ}$, and -40°.
6. Convert the following readings on the Centigrade scale to Fahrenheit readings : $-10^{\circ}, 20^{\circ}, 32^{\prime}, 75^{\circ},-20^{\circ},-40^{\circ}$, and -273°.
7. Find in Centigrade degrees the difference between $30^{\circ} \mathrm{C}$. and $16^{\circ} \mathrm{F}$.
8. In the Réaumur scale, (which is used for household purposes in some countries of Europe), the freezing point is marked 0^{\prime} and the boiling point 80°. Express
(a) $12^{\circ} \mathrm{C} .,-10^{\circ} \mathrm{C} ., 5^{\circ} \mathrm{F} ., 36^{\circ} \mathrm{F}$. in the Réaumur scale.
(b) 16° R., 25° R., -6° R. in buth the Centigrade and the Fahrenheit scale.

CHAPTER XXVII

Relation between Volume and Temperature
262. Coefficient of Expansion of Solids. We have scen ($\$ 247$) that a rise in the temperature of n body is usually accompanied by an increase in its dimensions, and that different substances have different rates of expansion. In the case of solids we are usually concerned with change in length, while with liguids and gases it is chiefly change of volume which we lave to consider.

The coefficient of linear expansion may be defincd as the increase in length experienced by a rol of unit length when its tempercture is raised one degree.

Let l_{1} be the tirst length of a rod and $t_{1}{ }^{\circ}$ its temperature. Raise the temperature to $t_{2}{ }^{\circ}$ and let the length then be $l_{\text {. }}$. The total increase in length is $l_{2}-l_{1}$ for a rise of $t_{2}-t_{1}$ degrees in temperature, and so the increase for one degree $=\frac{l_{2}-l_{1}}{t_{2}-t_{1}}$. But this is the increase in length of a rod whose length at first was l_{1}.

Hence the increase per unit length per degree $=\frac{l_{2}-l_{1}}{l_{1}\left(t_{2}-t_{1}\right)}$.
This is the coefficient of linear expansion, and to determine it we must measmre $l_{1}, l_{1,}, t_{1}, t_{2}$ and put them in this expression. As the change in length is always small it must be measured with accuracy. This may be donc as follows:-A long, straight bar of the substance, whose coefficient is to be determined, is taken and a fine line drawn across it near each end. The bar is then supported in a bath, the temperature of which can be determined, and changed at will. By means of a micrometer-microscope and a scale, the distance between the marks is measured when the bar is at the initial temperature. The bath is then heated. When the temperature of the whole is again steady, the distance between the marks is again measured and the temperature noted. Data are thus furnished for calculating the coefficient of linear expansion of the metal.

The following table gives the coefficients of linear expansion of some common substimees. The volume confficient of expansion of a solid is usually determined by a calculation from the linear cocfficient.

Coefficients of Linear Expansion for $1^{\circ} \mathrm{C}$.

Substance.	Coefficient.	Substance.	Coefficient.
Aluminium.	0.00002313	Nickel.	
Brass..	0.00001900	Platinum..	0.00000890
Copper	0.00001678	Silver....	0.0000890 0.00001921
Glass.	0.00000899	Steel..	0.00001921
Gold.	0.00001443	Tin	0.00002234
Iron (soft)	0.00001210	Zine.	0.00002918

An alloy of nickel and steel (36 per cent. of nickel) known as "invar," has a coefficient of expansion only one-tenth that of platinum.
263. Coefficient of Expansion of Liquids. Like solids, different liquids expand at different rates. Many liquids also are very irregular in their expinsion, having different coeffi-

Fin. 271.-Determination of the coefficient of ex. pansion of a liquid. cients at different temperatures.
The coefficient of expansion of a liquid may le determined with a fair degree of accuracy by a modification of the experiment described in $\S 248$. The liquid is enclosed in a bulb and graduated capillary tube, shown in Fig. 271. The bulb is heated in a bath, and the position of the surface of the liquid in the tube corresponding to various temperatures is noted. Now, if the volume of the bulh in terms of the divisions of the stem is known, the expansion can be calculated. To be accurate, corrections should be made for changes
in the eapaeities of the bulh and tube through elanges in temperature.
264. Peculiar Expansion of Water; its Maximum Density. If the bulb and tube slown in Fig. 271 is filled with water at the temperature of the room-say $20^{\circ} \mathrm{C}$.-and the bulb placed in a cooling bath, the water will regularly contract in volume until its temperature falls to $4^{\circ} \mathrm{C}$., and then it will expand until it comes to the freezing point. Conversely, if water at $0^{\circ} \mathrm{C}$. is heated it will contract in volume until it reaches 4° C., and then it will expand.* Henee, a given mass of water has minimum volume and maximum density when it is at $4^{\circ} \mathrm{C}$.

An experiment devised by Hope slows in a simple manner that the maximum density of water is at $4^{\circ} \mathrm{C}$. A metal reservoir is fitted about the middle of a tall jar, and two thermometers are inserted, one at the top and the other at the bottom, as shown in Fig. 272. The jar is filled with water at the temperature of the room, and a freezing mixture of iee and salt is placed in the reservoir. The upper thermometer remains station :y and the lower one contimmes to fall until it indientes a temperature

Fig. 272.-Hope's ap- of $4^{\circ} \mathrm{C}$. The lower one now remains stationary and the upper one begins to fall and eontinues to do so until it reaches the freezing point.

The experiment shows that as the water about the centre of the jar is cooled it beeomes denser and continues to deseend matil all the water in the lower part of the jar has reached the maximum density. On further cooling the water in the middle of the jar it beeomes lighter and aseends.

The experiment illnstrates the behaviour of large bodies of water in eooling as winter approaehes. As the surface layers

[^26]cool they become denser and sink, while the warmer water lelow rises to the top. This process continues until the whole mass of water reaches a uniform temperature of $4^{\circ} \mathrm{C}$. The colder and lighter water then remains on the surface, where the ice forms, and this protects the water below.

PROBLEMS

1. A stcel piano wire is 4 feet long at a temperature of $16^{\circ} \mathrm{C}$. What is its length at $20^{\circ} \mathrm{C}$.?
2. A brass scalc is exactly one metre long at $0^{\circ} \mathrm{C}$. What is its length at $18^{\circ} \mathrm{C}$.?
3. A pane of glass is 12 inches long and 10 inches wide at a temperature of $5^{2} \mathrm{C}$. What is the arca of its surface at $15^{\circ} \mathrm{C}$.?
4. The bars in a gridiron perdulum are made of iron and copper. If the iron bars are 80 cm . long, what should be the length of the copper bars ?
5. The height of the mercury column in a barometcr was 760 mm . when the tcmperature was $0^{\circ} \mathrm{C}$. What would be the height at $20^{\circ} \mathrm{C}$., heing given that the volume-coefficient of expansion of mercury is $\mathbf{0 . 0 0 0 1 8 7}$? If the height was observed by nicuns of a brass scale which was correct at $0^{\circ} \mathrm{C}$., what would be the apparent reading on the scale?
6. At temperature $15^{\circ} \mathrm{C}$. the barometric height is 763 mm . as indicated by a brass scale which is correct at $0^{c} \mathrm{C}$. What would be the reading if the temperature fell to $0^{\circ} \mathrm{C}$. ?
7. Explain where the ice would form and what would happen if water continued to contract dewn to 0^{c} C., (1) if solidification produced the same expansion as it does now ; (2) if contraction accumpanied freezing.
8. Ooefficient of Expansion of Gases-Charles' Law. It has been shown by the experiments of Charles, Gay-Lussac, Regnault,* and other investigators, that under constant pressure all gases expand equally for equal increases in temperature. In other words, all gases have approximately the same coefficient of expansion. Further, it was shown by Charles, that under constant pressure the volume of a given mass of gas increases by a constant fraction of its volume at $0^{\circ} \mathrm{C}$. for each increass of $1^{\circ} \mathrm{C}$. in its temperature. Charles roughly determined this ratio, which was afterwards more accurately measured by Gay-Lussac, whose researches were published in 1802.
[^27]The general statement of the principle is usually known as Charles' Law, but sometimes as Guy-Lussuc's Law. It is given in the following statement:-The volume of a given mass of any gas at constant pressure increases for each rise of $1^{\circ} \mathrm{C}$. by a constant fraction (about $\frac{1}{2} \frac{1}{3}$) of its volume at $0^{\circ} C$.

It has also been shown that if the volume remains constant, the pressure of a given mass of gas increases by the same constant fraction (about $\frac{1}{2} \frac{1}{7}$) of its pressure at $0^{\circ} \mathrm{C}$. for each rise in temperature of $1^{\circ} \mathrm{C}$. That is to say, the volume-coefficient, and the pressurecoefficient of a gas are numerically equal. Practically, this is but a statement, in other terms, of the fiaet that, in obeying Charles' Law, gases also obey Boyle's Law.

The volume-coefficient and the pres-swre-coefficient may be detemined experimentally by the apparatus devised by Regrault (Fig. 273). The gas is inclosed in the bulb N, whose volme

Fig. 273.-Regnault's apparatus for finding the coenficient of expantion of a gas. is known. The bnlb is placed first in melting ice, and then in stemm rising from boiling water, the pressure being kept constant by keeping constant the difference in 1 . lof the mercury in the tubes A and B. The increase in volnme is calculated by the ehange in height in the mercury column in A. Given the volmme of the bulb and the tule, and having determined the inerease in volme for a ehange in temperature from 0° to 100°, the expansion-coefficient is fomd loy a simple calculation.

To determine the pressure-coefficient the bulb, as before, is placed alternately in melting ice, and in steam. The volume
is kept eonstant by keeping the surfaee of the mercury in the tube A at a fixed level a. This is done by aljusting the height of the mereury eolumn in B. The inerease in pressure is measured by the incrensed differenee in the level in the mercury eolumns in A and B.
266. Gas Thermometer. The Regnault apparatus is used as a gas thermometer. The bulb is filled with a gas, usually hyrlrogen. The position of the mereury level in B is marked 0° when the bulb is in melting ice and the surfaee of mercury in A is at a fixed point a; it is marked 100° when the bulb is in steam and the mercury level in A is at the same fixed point. The space between 0° and 100° is divided into 100 equal divisions, and these are eontinued below 0° and above 100°. To use the instrument the tube B is adjusted to bring the inercury level in A to the fixed point α, and the temperature is read directly from the seale plaeed behind B.

In the gas thermometer changes in temperature are measured, not as in the thermometers already deseribed, by the enanges in volume, but by the eorresponding ehanges in pressure when the volume is kept constant.

The nitrogen gas thermometer is the most perfeet instrument of its kind. It has been ehosen by the International Bureau of Weights and Measures as the standard for temperature measurement. For eonvenience, mercury thermometers are employed for most purposes. The gas thermometer is used mainly for standardizing mereury thermometers and for measuring very low and very high temperatures.
267. Absolute Temperature. In the gas thermometer the volume of the gas is kept eonstant, while a change in the temperature is determined by the change in the pressure which the gas exerts.

Let the gas at first be at $0^{\circ} \mathrm{C}$. If its temperature is raised to $1^{\circ} \mathrm{C}$. its pressure will increase $\frac{1}{2} \frac{1}{73}$, that is, at $1^{\circ} \mathrm{C}$. the
pressure will be $\frac{2}{2} \frac{7}{3} \frac{4}{3}$ of that at $0^{\circ} \mathrm{C}$. At $2^{\circ} \mathrm{C}$. the pressure exerted by the gas will be $\frac{2 \pi}{2} \frac{7}{7} \frac{3}{3}$; at $100^{\circ} \mathrm{C}$. the pressure will be $\frac{3}{2} \frac{3}{7} \frac{3}{3}$ of that at $0^{\circ} \mathrm{C}$. ; and so on.

Again, at -1° C. the pressure will be diminished $\frac{1}{2} \frac{1}{7}$, that is, the gas will exert a pressure $\frac{2}{2} \frac{2}{3}$ of that at $0^{\circ} \mathrm{C}$.; at $-2^{\circ} \mathrm{C}$. the pressure will be $\frac{27}{2} \frac{7}{7}$; at $-20^{\circ} \mathrm{C}$. it will be $\frac{2 \pi}{2} \frac{3}{3}$; and so on.

If we could continue lowering the temperature and reducing the pressure in this same way, then at $-273^{\circ} \mathrm{C}$. the pressure would be nothing. But before reaching such a low temperature the gas will change to a liquid, and our methodof measuringtemperature by the pressure of the gas would then fail.

However, calculations based on the kinetic theory of gases ($\$ 151$) lead to the conclusion that at $-273^{\circ} \mathrm{C}$. the rectilinear motions of the molecules would

Lord Krlvin (Sir William Thomeon) (1824-1907). Made important investigations in aimost every branch of physics. Famous as eiectrician of Atiantic cabiels. cease; which would mean that the substance was completely deprived of heat and at the lowest possible temperature. This point is hence called the absolute zero, and temperature reckoned from it is called absolute temperature. Thus a Centigrade reading can be converted into an Absolute reading by adding 273 to it.

The method of measuring temperature on an absolute scale was proposed by Lord Kelvin in 1848.
268. Further Statement of Charles' Law. Let V_{0}, V_{1}, V_{2}, etc., represent the volumes of a given mass of gas, under constant pressure, at temperatures, respectively, $0^{\circ}, 1^{\circ}, 2^{\circ}$, ete., C.,
that is, $273^{\circ}, 274^{\circ}, 275^{\circ}$, etc., Absolute, then according to Charles' Law

$$
\begin{aligned}
& \text { = 273: 274: } 275 \text { : etc. }
\end{aligned}
$$

Stating this result in words, the volume of a given mass of gres at a constant pressure vuries directly as the absolute temperuture.

This mamer of stating the law is often convenient for purposes of calculation.

PROSLEME

1. If the absolute temperature of a given mases of gas is doubled while the pressure is kept constant, what change takes place in (1) its volume, (b) its mass, (c) its density?
2. The pressure of a given mass of gas was doubled while its volune reinained constant. What change must have taken place in (a) ita absolute temperature, (b) its density ?
3. The pressure remaining constant, what volume will a given mass of gas occupy at $75^{\circ} \mathrm{C}$. if its volume at $0^{\circ} \mathrm{C}$. is $\mathbf{2 2 . 4}$ litres ?
4. If the volume of a given mass of gas is 120 c.c. at $17^{\circ} \mathrm{C}$, what will be its volume at $-13^{\circ} \mathrm{C} . ?$

- 5. A gauge indicates that the pressure of the oxygen gas in a steel gas tank is 150 pounds per square inch when the temperaturs is $20^{\circ} \mathrm{C}$. Supposing the capacity of the tank to remain constant, find the pressure of the gas at a temperature of $30^{\circ} \mathrm{C}$.
: 6. An empty bottle, open to the air, is corked when the temperature of the rom is $18^{\circ} \mathrm{C}$. and the baromoter indicates a pressure of 15 pounds per sfuare inch. Neglecting the expansion of the bottle, find the pressure of the air within it after it has been standing for some time in a water bath whose temperature is $67^{\circ} \mathrm{C}$.

7. An uncorked flask contains 1.3 grams of air at a temperature of $-13^{\circ} \mathrm{C}$. What mass of air does it contain at a temperature of $27^{\circ} \mathrm{C}$. if the pressure remains constant !
8. The volume of a given mass of gas is one litre at a temperature of 5° C. The pressure remaining constant, at what temperature will its volume be (a) 1100 c.c., (b) 900 c.c.?
9. At what temperature will the pressure of the air in a bicycle tire be 33 pounds to the square inch, if its pressure at $0^{\circ} \mathrm{C}$. is 30 pounds per square inch? (Assmme no change in volunie.)
10. A certain mass of hydrogen gas occupies a volume of 380 c.c. at a temperature of 12° C. and 80 cm . pressure. What volume will it vecupy at a temperature of $-10^{\circ} \mathrm{C}$. and a preasure of $\mathbf{7 6} \mathrm{cm}$.?
(1) Change in volume for change in temperature.

Since the volume varies directly as the absolute temperature and the temperature is reduced from $12^{\circ} \mathrm{C}$. to $-10^{\circ} \mathrm{C}$. the volume will be reduced to become $\frac{273}{2}-19$ or $\frac{29}{25}{ }^{9}$ of the origiual volune.
(2) Clange in volume for change in pressure.

Since the volume varies inversely as the pressure, and the pressure is reduced from 80 cm . to 76 cm . the volume will be increased to become $\frac{8}{8}$ of the original volune.
Hence, taking into account the changes for both temperature and pressure, the volume required will be,

$$
380 \times \frac{3}{2} \frac{9}{88} \times \frac{8}{7 f}=369.12 \text { c.c. }
$$

11. A mass of oxygen gas occupies \boldsymbol{n} volume of 120 litres at a temperature of $20^{\circ} \mathrm{C}$. when the barometer stands at 74 cm . What volume will it occupy at standard temperature and pressure? (0° C. and 76 cm . pressure.)
12. The volume of a certain mass of gas is $\mathbf{5 0 0}$ c.c. at a temperature of $27^{\circ} \mathrm{C}$. and a pressure of 400 grams per $\mathrm{sy} . \mathrm{cm}$. What is its volume at a temperature of $17^{\circ} \mathrm{C}$. and a pressure of $\mathbf{6 0 0} \mathrm{grams}$ per sq. cm . ?
13. The weight of a litre of air at standard temperature and pressure is 1.29 grams. Find the weight of 800 c.c. of air at $37^{\circ} \mathrm{C}$. and 70 cm . pressure.
14. The density of hydrogen gas at standard temperature and pressure is 0.0000896 grams per c.c. Find its density at 15° C. and 68 cm . pressure.

CHAPTER XXVIII

Measurement of Heat

269. Unit of Heat. As already pointed out (§ 253), the temperuture of a body is to be distinguished from the quantity of hrat which it contains. The thermometer is used to determine the temperature of a body, but its reading does not give the quantity of heat possessed by it. A gram of water in one vessel may lave a higher temperature than a kilogram in another, but the latter will contain a greater quantity of heat. Again, a pound of water and a ponnd of merenry may be at the sume temperature, but we have reasons for believing that the water contains more heat.

In order to measure heat we must choose a suitable unit, and by common consent, the mmount of heat required to raise by one degree the temperatnre of a unit mass has been selected as the most convenient one. The unit, will, of course, have different inagnitudes, varying with ihe units of mass and temperature-difference chosen. In connection with the metric system the unit called the calorie has been adopted for scientific purposes. It is the amount of heat required to raise a mass of one gram of water one degree Centigrade in temperature.
For example,
to raise 1 gram of water through $1^{\circ} \mathrm{C}$. requires 1 calorie,
to raise 4 grams of water through $5^{\circ} \mathrm{C}$. requires 20 calories, and to raise n grams of water from $t_{1}{ }^{\circ}$ to $t_{2}{ }^{\circ} \mathrm{C}$. requires $m\left(t_{2}-t_{1}\right)$ calories.

In engineering practice, the British Thermal Unit (designated B. T. U.) is in common use in English-speaking countries. It is the quantity of heat required to raise one pound of water one degree Fahrenheit in temperature.

PROBLEM

1. How many calorien of hent must enter a mans of 6 grams of water to change its temperathre from 10° C. $115^{\circ} 5^{\circ}$ C. 1
2. How many calories of heat are given ont by the cooling of 120 grams of water from $85^{\circ} \mathrm{C} . \operatorname{tof} 60^{\circ} \mathrm{C} . ?$
3. If $\mathbf{1 4 0 0}$ calories of hent enter a mass of 175 grains of water what will be its final temperature, supposing the origimal to be $15^{\circ} \mathrm{C} .3$
'4. A hot whter coil containing 100 kilograms of water gives off $1,000,000$ calories of heat. Neglecting the heat lost hy the iron, find the fall in temperature in the water.
4. On mixing 65 grams of water at $75^{\circ} \mathrm{C}$. with 85 grams at $60^{\circ} \mathrm{C}$., what will be the temperature of the mixture?
5. Thermal Capacity-Specific Heat. The amount of heat required to change a unit-mass of a substance through one degree in temperature varies with different substances. Tc illustrate, if we place equal masses of turpentine and water at the same temperature in similar beakers and add to each the same mass of hot water we shall find, on determining the temperature of the mixture witl a thermometer, after stirring, that, although approximately the same number of calories of heat has been added to each, the inerease in temperature of the turpentine mixture is greater than the increase in temperature of the water. Thus we find that more heat is required to raise a certain mass of water one degree than to warm the same mass of turpentine to the same extent.

Next, heat equal masses of water, aluminium (wire) and mercury to the same temperature by placing them in separate test-tubes immersed in a bath of boiling water (Fig. 274). Now provide thrce beakers containing equal masses of water at the temperature of the room, and pour the hot water into the first, the aluminium into the seeond, and the mercury into

Fie.274. -The heating of equal masses of diferent mbitanoes to the same temperature in a water bath. the third. After stiming, take the temperature in each case.

The temperatmes are puite diffirmit, the watur in the finst leing the hotest, and the contronts of the thind bing the coldest.

These exproments indicate, that the momint of heat abmolited or given out by a lakly lin a given change in temperature depends ont the nutheg of the laxly, as well as upon ity mass mad change in tempratare.

The number of heat mits required to raise the temperature of a booly one degree, is called its thrimul cuprecily. The thermal capacity per unit-miss is called specific neat. Specific heat, accomlingly, may be detinmel as the mumbor of hent wits requireal to meise the temperalure off anit-mass of the sulusturre, one dicgrere.

Hence, the quantity of hent required to warm in mass of m grams of a substance from a temperatme of t_{1} " to a temperature of $t_{2}{ }^{\circ}=m\left(t_{2}-t_{1}\right) \mathrm{N}$, when s is the specitic lout of the substance.
271. The Specific Heat of Water. From the lefinition of heat unit, it follows that the specific heat of water is 1 ; lont. the leat required to warm a mit-mass one degree differs slightly with the temperature of the water.

Of all known sulsitances except liydrogen, water has the greatest thermal capacity, which fact is of great inpentance in the distrilnation of heat on the surfince of the earth. For example, land meas smromuled by lage berlies of water are not so subject to extremes of temperature. In smmmer the water absorbs the hent, and as it wams very slowly, it remains cooler than the land. In winter, on the other hamd, the water gralually gives up its store of heat to the land, thus preserving an equable temperature.
272. Determination of Specific Heat by the Method of Mixture. The method depenis on the principle that the amount of heat lost by a hot body when phaced in cold water is equal to the amomit of heat gained by the water. Let us apply the method to find the specific heat of lead.
 in sternin firon bxiling water to a terinperinture of 100° C. (Fig. 275). Now place 100 grans of water at the temperatinge of the roon-suly $20^{\circ} \mathrm{C}$.-in a beaker mad surgounu it with wosh or lutting to kerp the leat frons escaping. Ponr the shot into tho water mul, after stirring, take the temperature. Leet it be $50^{\circ} \mathrm{C}$. Then the beat gained ly the water

$$
=100\left(50^{\prime \prime}-20^{\circ}\right) \mathrm{cul} .=3000 \mathrm{cul} .
$$

If now no heat liss escaped, 190 granse of leat inust, in fulling from 100° to 50°, lume lost 3000 cal. of hest. Or 1 gisint of lead in firlling 1° loses $\mathbf{3 0 0 0} \div(190 \times 50)=.0817$

P1. 275.-Determi. nation of ayeelice heat of a solld. calories.

A general formula may be obtained as follows:-
Let $m=$ the mass of the substance,
and $t=$ its temperature ;
$m_{1}=$ the mass of the water,
and $t_{1}=$ its temperature.
Let $\boldsymbol{t}_{\mathbf{2}}=$ resulting temperature after mixing.
Then, leat gained by water $=m_{1}\left(t_{2}-t_{1}\right)$,
and heat lost by the substance $=m\left(t-t_{2}\right) s$, whers s is its specific heat ;
Therefore $m\left(t-t_{3}\right) s=m_{1}\left(t_{2}-t_{1}\right)$,

$$
\operatorname{or} s=\frac{m_{1}\left(t_{2}-t_{1}\right)}{m\left(t-t_{2}\right)}
$$

The method of mixture applies equally well to other substances than water, and to heat lost by water as well as gained by it.

> Specifi- Heats of Some Common Substances

Aluminium..... 0.214	Ice ($\left.-10^{\circ} \mathrm{C}.\right) \ldots 0.50$	Paraffin 0.694
Brass 0.090	Iron. 0.113	Petroleum. . . . 0.511
Copper 0.004	Lead. 0.031	Platinum. 0.032
Glass (crown).. . 0.16	Marile 0.216	Silver. 0.056
Gold. 0.032	Morcury 0.033	Zinc. 0.093

PBOBLEMS
 (For specific heats see table just alove)

1. What is the thermal capacity of a glass beaker whose mass is 35 grams?
2. Which has the greater thermal capaeity, 68 grams of mercury or 2 grams of water?
3. It requires $\mathbf{3 6 0}$ calories of heat to mise the temperature of a body 10 degrees. What is its thermal capacity?
4. The thermal capacity of $\mathbf{5 6}$ grams of copper is $\mathbf{5 . 2 6 4}$ calories. What is the specific heat of copper ?
5. It requires 902.2 calories of heat to warm 130 grams of paraffin from $0^{\circ} \mathrm{C}$. to $10^{\circ} \mathrm{C}$. What is the specitic leat of parattin!
6. How much heat will a body whose thermal capacity is 320 calories lose in conling from 40° to $10^{\circ} \mathrm{C}$.?
7. What is the quantity of heat required to raise 120 grams of aluminium from 15° to $52^{\circ} \mathrm{C}$. ?
8. How many calories of heat are given off by an iron radiator whose mass is 25 kgms ., in cooling from 100° to $20^{\circ} \mathrm{C}$.?
9. A lead bullet whose mass is 12 grams had a temperature of $25^{\circ} \mathrm{C}$. before it struck an iron target, and a temperature of $100^{\circ} \mathrm{C}$. after impact. How many calorics of heat were added to the bullet?
10. Into 120 grams of water at a temperature of $0^{\circ} \mathrm{C} .150$ grams of mercury at $80^{\circ} \mathrm{C}$. are poured. What is the resulting temperature?
11. If 95 grams of a metal are hented to $100^{\circ} \mathrm{C}$. and then placed in 114 grams of water at $7^{\circ} \mathrm{C}$, the resulting temperature is $15^{\circ} \mathrm{C}$. Find the specific heat of the metal? What metal is it I
12. A picce of iron, whose mass is 88.5 grams and temperature $90^{\circ} \mathrm{C}$., is placed in 70 grans of water at $10^{\circ} \mathrm{C}$. If the resulting temperature is $20^{\circ} \mathrm{C}$., find the specific heat of iron.
13. A mass of zinc, weighing 5 kgms . and having a temperature of $80^{\circ} \mathrm{C}$., was placed in a liquid and the resulting temperature was found to be $15^{\circ} \mathrm{C}$. How much heat did the zinc impart to the liquid?
14. Find the resulting tentperature on placing 75 grams of a substance laving a specific heat of 0.8 and heated to $90^{\circ} \mathrm{C}$. in 130 grams of a licuid at $10^{\circ} \mathrm{C}$. whose specific heat is 0.6 .
15. On mixing 1 kgm . of a substance having a specific heat of 0.85 , at a temperature of $12^{\circ} \mathrm{C}$., with 500 grams of a sceond substance at a temperature of $120^{\circ} \mathrm{C}$., the resulting temperature is $45^{\circ} \mathrm{C}$. What is the specitic heat of the second substance?

CHAPTER XXIX

Change of State

273. Fusion. Let us take some pulverized ice at a temperature below the freezing point and apply heat to it. It gradually rises in temperature until it reaches $0^{\circ} \mathrm{C}$., when it begins to melt. If the ice and the water formed from it are kept well stirred, no sensible change in temperature takes place until all the ice is melted. On the further application of heat, the temperature begins again to rise.

The change from the solid to the liquid state by means of heat is called fusion or melting, and the temperature at which fusion takes place is called the melting point.

The behaviour of water is typical of crystalline substances in general. Frsion takes place at a temperature which is constant for the s.e substance if the pressure remains invariable. Amorphous bodies, on the other hand, have no sharply defined melting points. When heated, they soften and pass through various stages of plasticity into more or less viscous liquids, the process being accompanied by a continuous rise in temperature. Paraffin wax, glass and wrought-iron are typical examples. By a suitable control of the temperature glass can be bent, drawn out, moulded or blown into various forms, and iron can be forged, rolled or welded.
274. Solidification. The temperature at which a substance solidifies, the pressure remaining constunt, is the same as that at which it melts. For example, if water is gralually cooled, while it is kept agitated, it begins to take the solid form at 0° C., and it continues to give up leat without falling in temperature until the process of solidification is complete.

But it is interesting to mote that a lignid which under
 and carefinlly cooled, be lowered sevemal degreas below its normal temperathre of solidifieation. The phenomenon is illnstrated in the following experiment. Ponr some pure water, boiled to free it from air bubbles, into a test-tule. Close the tube with a perforated stopper, through which a thermometer is inserted into the water. Place the tube in a freezing mixtmre of ice and salt. If the water is kept quiet it may be lowered to a temperature of $-55^{\circ} \mathrm{C}$. withont freezing it, but the condition is mastable. If the water is agitated or crystals of iee are droppacl in, it suldenly turns into ice and the temperature rises to $0^{\circ} \mathrm{C}$.
275. Ohange of Volume in Fusion. Most smbstances suffer an increase in volume in passing from the solid to the liquid state, bat some which are crystalline in strmeture, such as ice, lismoth, and antimony are exceptions to the rule.

The expansive force of ice in freczing is well known to all who live in cold climates. The eartl is mpheaved and rocks are disintegrated, while vessels and pipes which contain water are burst ly the action of the frost.

Only from metals which expand on solidification can perfeetly shaped castings be oltained. The reasons are obvious. Antimony is alded to lead and tin to form type-metal beeanse the alloy thas formed expands on solidifying amb conforms completely and sharply with the ontlines of the mould.
276. The Influence of Pressure on Melting Point. If a substance expands on melting, its melting point will be raised by pressure, while if it contracts its melting point will be lowered. We would expect this. Since extra pressmre applied to a body which takes a larger volume on melting would tend to prevent it from expanding, it womld be reasonable to suppose that a higher temperature would be necessury to bring about
the change; on the other hand, if the body contracts on melting, increased pressure would tend to assist the process of change, and a lower temperature should suffice.

An interesting experiment shows the effect of pressure on the melting point of ice. Take a block of ice and rest it on two supports, and encircle it with a fine wire from which hangs a heavy weight (Fig. 276). In a few hours the wire will cut its way through the ice, but the bloek will still be intact. Under the pressure of the wire the ice melts, but the water thus formed is below the normal freeaing point.

Fra. 276.-Kegelation of ice. Hence it flows above the wire and freezes again as the pressure there is normal. The process of melting and freezing again under these conditions is called regelation.
277. Heat of Fusion. We have seen (in § 273) that during the process of melting a crystalline borly like ice, no change in temperature takes place, although heat is being continuously applied to it. In earlier times, when hent was considered to be a kind of substance, it appenred that the heat applied becane hidden in the borly and it was called latent heat.

Accorling to modern idens, there is simply a transformation of energy. When a boxly in fusing ceases to rise in temperature, although heat is still being applied, the heat-energy is no longer occupied in increasing the average kinetic encrgy and to some cxtent the potential energy of its molecules, but is doing work in overcoming the cohesive forces which bind these molecules together in the boxly as a solid.

A definite gmantity of heat, varying with the substance, is reguired to mult a detinite mass of at solis. The anount of heat required to melt one groun of a substance without a change of temperature is called its hert of jusion. For
example, the heat of fusion of ice is 80 calories, which means that 80 calories of heat are required to melt one gram of ice.
278. Determination of the Heat of Fusion of Ice. The methed of mirture ($\$ 272$) may be used to determine the heat of fusion of ice. For example, if 100 grams of dry snow or finely broken ice are dropped into 500 grams of water at 90° C., and the mixture is rapidly stirred matil all the ice is melted, it will be found that the resulting tenperature is about 62' C .

Then the amount of heat lost by 500 grams of water in cooling from $90^{\circ} \mathrm{C}$. to $62^{\circ} \mathrm{C}=500(90-62)=14,000$ calories.

This heat melts the ice and then raises the temperature of the resulting water from 0° to $62^{\circ} \mathrm{C}$. But to raise the resulting 100 grams of water from 0° to $62^{\circ} \mathrm{C}$. requires $100 \times 62=6200$ calories.

Hence the heat required to melt the 100 grams of ice $=$ $14,000-6200=7800$ calories, and the heat required to melt 1 gran of ice $=78$ calories.

A general formula is obtained as follows:-
Let $n=$ the mass of water (in grams),
$t_{1}=$ its initial temperature,
$t_{2}=$ its final temperature,
$m_{1}=$ the mass of the ice (in grams),
$x=$ the heat of fusion.
Thicu heat lust liy water in falling from t_{1} to $t_{2}=m\left(t_{1}-t_{3}\right)$ cal.
Heat required to melt n_{1} grams of ice $=m_{1} x$ cal.
Heat required to raise m_{1} grams of water from 0° to $l_{2}=m_{1} t_{2}$ cal.
But the hent lost lyy the water is used in melting the ice and raising the temperature of the resulting water from 0° to t_{2}.

$$
\text { Hence, } \begin{aligned}
m_{r}\left(t_{1}-t_{2}\right) & =m_{1} x+m_{1} t_{2}, \\
\text { and } r & =\frac{m\left(t_{1}-t_{2}\right)-m_{1} t_{2} .}{m_{1}}
\end{aligned}
$$

279. Heat given out on Solidification. All the heat repuired to melt a certuin mass of a substance without change
in temperatnre is given out again in the process of solidification. Thins, every gram of water, in freering, sets free 80 calories of heat. The formation of ice tends to prevent extremes of temperature in our lake regrions. Heat is given out in the process of freczing during the winter, and absorbed in melting the ice in spring and early summer.
280. Heat Absorbed in Solution; Freezing Mixtures. Change of state through the action of a solvent is also associated with thermal clanges. In cases of orlinary solution, as in dissolving sugar or salt in water, heat is absorbed. If a handful of salt is dropped into a beaker of water at the temperature of the room, and the mixture is stirred with a thermometer, the mercury will be seen to drop several degrees.

The result is much more marked if ice and salt are mixed together. Both become liquid and absorb heat in the transition. This is the principle applied in preparing freezing mixtures. The ordinary freezing mixture of ice and salt can be made to give a fall in temperature of about $22^{\circ} \mathrm{C}$.

Query.--What is the heat absorbed from?

QUESTIONS AND PROBLEMS

1. Why is it impossible to weld together two pieces of cast-iron?
2. Water is sometimes placed in cellars to keep vegetables from freering. Explain the action.
3. Why is a quantity of ice at $0^{\circ} \mathrm{C}$. more effective as a cooling agent than an equal mass of water at the same temperatnre !
4. If two pieces of ice are pressed together under the surface of warm water they will be found to be frozen together on removing them from the water. Account for this.
5. If we pour just enough cold water on a mixture of ammonic chlorida and ammonic nitrate to dissolve them, and stir the mixture with a small test-tuhe, into the bottom of which has been poured a little cold water, the water in the tuhe will be frozen. Explain.
[In the following problems take the heat of fusion of ice as $\mathbf{8 0}$ calories per gram.]
-6. What quantity of heat is required to melt 3° grans of ice at $0^{\circ} \mathbf{C} . ?$
6. How much heat is given off by the freeaing of 15 kgms of water ?
7. Find the resulting temperature when 40 grams of ice are dropped into $\mathbf{1 8 0}$ grams of water at $90^{\circ} \mathrm{C}$.
8. How much ice must be placed in a pail containing 10 kgms . of drinking water at $20^{\circ} \mathrm{C}$. to reduce the temperature to $10^{\circ} \mathrm{C}$.?
9. What mass of water at $80^{\circ} \mathrm{C}$. will just melt 80 grams of ice ?
10. How much heat is required to change 23 grams of ice at $-10^{\circ} \mathrm{C}$. to water at 10^{\prime} C. 1 (Specitic heat of ice $=\mathbf{0 . 5}$.)
11. What nass of water at $\mathbf{7 0}^{\circ} \mathrm{C}$. will convert 120 grams of ice into water at $10^{\circ} \mathrm{C}$.?
12. What mass of ice nust be dissolved in a litre of water at $4^{\circ} \mathrm{C}$. to reduce the temperature to 3° C.?
13. What is the specitic heat of brass if a mass of 80 grams at a temperature of $100^{\circ} \mathrm{C}$. melts 9 grams of ice?
14. Fifty grams of ice are phaced in $5^{2} 0$ grams of water at $19.8^{\circ} \mathrm{C}$. and the temperature of the whole becomes $11.1^{\circ} \mathrm{C}$. Find the lieat of fusion of ice.
15. Vaporization. Trunsition from a lignid to a vaponr is a familiar phenomenon. Water in a shallow dish exposed to a dry atmosphere gradually diseppears as a vapour into the air. If leat is applied and the water is made to boil, the change takes place more rupidly. The process of converting a liguid into a vapour is called vaporizution. The quiet vaporization taking place at all temperatures at the surface of a lignid is known as recemration.

In ebullition, or boiling, the prodnction of vaponr takes place throughout the mass, and the process is accompanied by an agitation of the liguid, due to the formation of bulbles of vapour within the liquid and their movement upward to the smrface.
282. Rate of Evaporation. The rate of evaporation depends on the natnre of the liguid. A little ether placed on the palm of the hand disuppens almost at oner, while the hand remains wet with water for a considerable time. Some dense oils can scareely be said to evapmate at all. Liquids which evaporate readily are said to be colutile.

Tromprature alsw affeets the mate of evaporation. Other conditions loning the same, the rate of evaporation increases with the temprrature. Clothes and wot romls dry more rapidly on a warm day than on a coll one, if the atmosphere is equally dry on the two days.

Further, the rate of evapmation is affiecterl hy the amount of vaponr of the liguid in the surrombling natee and also by the presence in this space of other gases.
283. Pressure of a Vapour. Let us consider the case of evaporation in an inelosed space. When a few drops of ether are introduced, by moms of a medieine dropper with a curved stem, into the tube of a cistern barometer and allowed to rise to the surface of the mereury, evaporation begins at onee, and the pressure exerted by the vapour formed depresses the mereury (Fig. 277). The mercury soon comes to rest at a height $a b$, which remains constant so long as the temperature is unchanged.

If the volume of the vapour is deereased by lowering the tube in the cistern, or inereased by raising it, the difference in level

Fis. 277. - Pressure conditions of evaporation within en in. clowed space. $u b$ will not be permanently altered. It is evident, therefore, that, under these conditions, the pressure of a vapour is independent of its volume, when the temperature is constant, provided some liquid is always present.
284. Molecular Explanation of Evaporation. According to the kinetic theory (§151) the moleeules of a liquid are in rapid motion, and some of these arrive at the surface with sufficient velocities to escape from the attraction of the neighbouring moleeules. These molecules constitute the vapour of the liquid. When the ether enters the tube, the
closed space nhove the mercury at onee begins to be filled with mole ules moving alomet in straight lines. These bombarl the walls of the tule and the sarfaee of the liquid itself. Many of these mobenles, as thair number inerenses, come again within the muge of attmetion of the moleenles at the surface and re-enter the lipnind. Evapmontion ceases when the number of the moleenks entering the lignid in a given time efruals the momber whieh eseupe. When the tube is lowered and the vapmer made to take less volume, the density is momentinily inerensed. The number of moleenles now entering the liquid is greater than that lemving it. In other words, some of the vapour is being condensed to as liguid. The process ceases when the former pressure and density are restored.

When the volume of the vapour is increased by lifting the tube, the density and pressure are momentarily decrensed, and the number of molecules escoping per seeond from the liguid lncomes greater than the number entering it. Evapomation eontinues until the vapour density and pressmre again reach the maximum. Equilibrium is very quickly restored.
285. Saturated Vapour. When a vapour has its maximum density for any given temperature it is said to be saturated, and the corresponding maximmon pressure is catled the saturetion pressure. Whenever a saturated vapomer is either cooled or compressed, condensation tatkes place. For saturation, some of the liguid must be present.

The temperature being constant, the satumation pressure varies with the volatility of the liquid. This may be shown by introrlueing other liquids-say alcohol or water-into barometer tubes, and moting the pressure as indieated by the depression of the mercury. It $20^{\circ} \mathrm{C}$. the depression for alcohol is about 44 mm . and for water 17.5 mm .
286. Evaporation into Air. The amount of evaporation into a cloned npace is pratically the same whether the spuce is filled with air or is a vacuunn; but the presence of the air
materially retarls the mate of exnemomen. When the ether is intrenherd intes the haromater tulne, tho merenry rapirlly fulls as far as it will go, but when ether is enchosed in a tule alongg with nir over meveny, it will be several hours before equilihnimen is restomeal. The depression in the ral, howreve, will represent a vapour pressure the same an in the tule void of nir.

It is olvions that there cun lee no limit to the anomut of evapmation when a lignin is axpered in int open vessel. Witer left in a lasin in time disuppents. But the presence of vipumr in the layem of air inmedintely alsove the liguid arreste the process, and the action of the air currents in enrying away vipomrlanden nir lanstens eviporation. Wet articless dry very rapidly on a windy day.
287. Ebullition-Boiling Point. When heut

Fia. 278. -Detemination of the loiling point of a lizuid. is appliarl to water (Fig. 278) it grabully rises in temperature until vupour is disenguged in bulbles from the mans of the liquid. No further increase in

Fia. 973. Foilint point of a liqrid raised hy means of pressure. temperature takes phace, lowever rapidly the process of boiling is muintained.

The temperature at which a liguid boils, or gives off bubles of its own vapour, is called its briling print.
288. Effect of Pressure on the Boiling Point. The boiling point varies with the pressure. If the pressure of the escaping steann is incerased by leauling the ontletpipe to the loottom of a vessel of water as nhown in Fig. 279, the temperature of the boiling water is increased. On the other hand, a decrease in pressure
is accompanied by n lowring of the tomperature. This is shown hy a faniliar but striking experiment.

Half till a tlask with wator and buil for a minnte or two in order that the esmping stamin many ont the air. While the water is boiling romove the flame, and at the sume instant close the flask with a stopper. Invert the flask and support it on a retort stanl (Fig. 280), and

Fig. 280. - Boiling point of a liquid loweren by ilecrease of preswure. pour cold water ower the flask. The tempernture of the watur in the flask is below $100^{\circ} \mathrm{C}$., but it buils vigoronsly. The action is explained as follows. The chilling of the flask condenses the vapour within and thas redines the pressure on the surface of the water. The watur, relieved of this pressure, bwils at a lower temperature. If we discontinue the cooling and allow the vapour to accumulate and the pressure to increase, the boiling censes. The process may he repeated sinvernl times. In fact, if care is taken in expelling the air at the begiming, the water may be male to boil even when the temperature is rednced to that of the room.

The reason why the boiling point depemls upon the pressure is readily fomm. Bubbles of vipour begin to form in the liquid only when the pressure exerted by the vapour within the bubble bulanees the pressure on the surface of the liquid (Fig. 281). Were the pressure in the bubble less, the bubble would collapse. But the pressure of a vapour in contact with its liquid in an enclosed spuce varies with the temperature.

Fic. 281. - Balance between external pres. mure of the air and the presaure exerted by the vapour within a bubble.

Hence, a liquid
will be upon the point of boiling when its temperature has risen sutliciently high for the pressure of the saturated vapour of the hignid to lee equal to the pressure sustained by the surfice of the liguid. Therefore, when the pressure on the snrfince is high, the boiling point must be high, and vice versa. 'The

Filu. 2s9.-Curve chowing the relation between the presoure and the boiling point of water.
accomparying diagram (Fig. 282) shows graphically the relntion between the pressure and the boiling point of water, ranging from 1 to 25 atmospheres.

It is to be noted that the stean bubbles begin in the small air or gas bubbles present in the water, and when these are removed by prolonged boiling the liquid boils very irregularly (bmmps). Geyser phenomena oesur because of great hydiostatic pressure due to the water.

Since the boiling point is dependent on atmospheric pressure, a liquid in an open vessel will boil at a lower temperature as the elevation above the sea-level increases. This decrease is roughly $]^{\circ}$ C. for an increase in elevation of 293 metres ($=901$ feet). The boiling point of water at the smmmit of Mont Blanc (15,781 feet) is about 85° C., nnd at Quitu (9520 feet), the highest city in the worll, it is $90^{\circ} \mathrm{C}$.

In surfl high altitmene the Imiling pmint of water is $\mathrm{I}_{\mathrm{x} \cdot \mathrm{l} / \mathrm{w}}$
 and antiticial buans of miving the temparatme lase to ln :
 using clased cesseds with saliety devides to prevent explosions. Sometimes longer lailing is all that is reguined.*

In the atase of ligninls liable to burn, evaporation may be proxhecerl in "vacomm pans" in which Iniling takes phace
 This motugrount is userl, for example, in combensing milk allul slygitl syrulus.
289. Heat of Vaporization. Whenever a given miss of a

 of encrigy ceases to exist is lavit, and (in a manner similar to fusion) becomes protential enorey in the rapour. In acconlance with the law of Comsomation of Encorey, all heat which thans disappears is recoverel when the vapor conlenses.

The cemonut of hest required to rhemge one gram of any liguil into vagour wifhout

Fio. 283. - Determination of heat of vaporizalion of waler. A, Hask to comain water; $H_{\text {, (rap to erate }}$ water condensel in the tithe: \subset. veesel with known mass of wafer. chunging the temproture is called the heat of vaporiyation, or sometimes the lufent heat of vajorization. Fon example, the heat of vaporization of water is 536 calories, hy which we mean that when water is boiling under the stimblard atmospheric pressure (76 cm. of mereury) 536 calories of heat are repuired to mporize one gram without change of temperature.
"Figes cant the toitell haril in an open vesset on Pihe's l'eak, 1t, 10 fi, high.
290. Determination of Heat of Vaporization. 'Illu' lient of vapurization of water may la determined an follows:-By
 for a fow minntes into a ginatity of water in a vessel C. Thke the weight and the telngeratime of the water lefore and after the stann is conroreyl into it mal find the incronse in mass mid temperatinre dine to the comblensation "f the stemin.

Supgese the mass of water in C at first to fre 120 grims and the incrane in mass dne to monlensation to be 5 grame; :and suppose the initial mul fime' 1 whp eratures of the water to Ine $10^{\prime \prime}$ C. and 35^{7} C. respecti $\cdot \cdots!$!

We cm make onr calculatina : follow:-
Heat gninet ly the original inter.un of ator $=120(3,-10)=3000$ cal.
This henat comes from two stiurt :,
 $100^{\circ} \mathrm{C}$. to water at $100^{\circ} \mathrm{C}$.
(1) The heat received from the f:ll in irmpra , ine of 5 grams of water

Hence, the heat set free by the cumbinsition of ij grams of steam $-30 M 0-325=2075 \mathrm{cnl}$.
And the heat set free in the condensation of 1 gran of stean $=\mathbf{2 0 7 5}$ $\div \mathbf{5}=\mathbf{5 3} \mathbf{5}$ cal.

QUEETIONS AND PROBLEME

1. The singing of a tea kettle just lefure boiling is said to be due to the collapse of the first bubbles formed in their upwnrd motion through the water. Kxplain the cause of the collapse of these bu! hles.
2. When water is boiling in a deep vessel the lubbles of vapour are whervel to increase in size as they approach the surface of the water. (iive a reason for this.
3. Why does not a mass of liguid air in an open vessel immediately change into gas when brought into a room at the ordinary $1:$ iuperature?
4. Why is it necessary to take into account the pressure .s the air in fixing the loiling p ioint of a thermometer 1
[lis the following problems take the heat of vaporization of water as 5:3i calories per gram.]
b. How much heat will be reguired to vapurize :if grime of water?
5. How many calories of heat nre set free in the enndensation of 340 grams of steam at 10$)^{\circ} \mathrm{C}$. into water at $100^{2} \mathrm{C}$.?
6. How much heat is repuired to raise 45° grans of water froma $15^{\circ} \mathbf{C}$. to the boiling point and convert it into stean?
7. How much heat is givell up in the change of : anis grams of stemm at 100° to water at $4^{\circ} \mathrm{C} .1$
8. What is the resnlting temperature when 45 grame of stean at 100° C. are passed into $\mathbf{6 0 0}$ grans of ice-cold water?
9. How many grams of stean at $100^{\circ} \mathrm{C}$. will be required tor raise the temperature of 300 grams of water from $20^{\circ} \mathrm{C}$. to $40^{\circ} \mathrm{C} .6$
10. Huw many grams of stean at $100^{\circ} \mathrm{C}$. will just uelt ${ }^{\circ} \mathrm{F}$ grmus of iee at $0^{\circ} \mathrm{C}$. ?
11. Huw much heat is necessary to change 30 grmas of iee at $-10^{\circ} \mathrm{C}$. to stealı at $100^{\circ} \mathrm{C} .7$ (Sprecitic heat of ice $=\mathbf{0 . 5}$.)
12. An iron radiator whose mass is 55 kgins. and temperature 100° is shat off when it contains 100 grims of stean at a temperatnre of $1(0)^{\prime} C$. How mnch heat is imparted to the romin by the eomensation of the stean! and the conling of the water and the radiator to a temperature of $40^{\circ} \mathrm{C}$.? (Specitic heat of iron $=\mathbf{0 . 1 1 3}$.)
13. If 34.7 grams of steam it $100^{\circ} \mathrm{C}$. are conveyed into 500 granis of water at 20° C., the resulting temperature is $60^{\circ} \mathrm{C}$. Find the heat of vaporization of water.
14. Cold by Evaporation. In order to change a lipnin into viponr, heat is alwiys required. Water placed over a fanme is turned into vaponr, the heat required leing supplied liy the flame. If a little efler is poned on the pahm of the hand it vaporizes at once. Here the heat to prodnce vaporigation is supplied by the hand, whieh thorefire ferls cohl. For a similar mason wet garments are cold, especially if drying rapinlly on a windy day.

Similar results are shown in a
But it is sometimes possible to proluce vaporization without smpplying heat from an outside source. In this case the heat cones from the liquid itself, which must therefore fall in trmperature. Indeed, it is possible, by prolncing evaporation, to lower the temperature of water so much that the water will actually freeze. This is well shown in Leslie's experinent. A small quantity of cold water in a watch glass is enclosed in the receiver of an air-pump over a dish of strong sulphuric acid (Fig. 284). The air is then exhnusted from the receiver. When the pressure is reduced sufficiently, the water begins to boil, and

Pig. 284.-Lesile's expertment: freezing water by fo own elapration. as the vapour is reinoved from the receiver, partly by being carried off with the air by the punp, and partly by absorption into the sulphuric aeid, the process continues until the water is frozen.

Fio. 285. - Freezing of carbon-dioxide by evaporation from the liquid form.

292. Practical Applications of Cooling by Vaporization. Vinorization is omr chief source of "artificial cold." The applications are numerous and varied. Fever patients are
sponged with valatile liguids to reduce temperature. Fther sprays are used for freering matrial for mierosengic seetions. Evaporation is also utilized in making artificial ice, in conding cold-stonare lmillings, and in freering shifting guicksamds for enginecring jurposes. 'Ithe liguid most commonly used for the latter purposes

Fia. ess.- lice-naking machine. (it, hish presaure gataje: (i,, low-pressure gauge: A, pump, for exhausting low: premante coils fonl connlensiug gas ; B, condenmer coils coolell ly ruminge water from a pipe placed alove them; \boldsymbol{H}. regulating valie: $l l$, low pressure coils; C, tank containing lurine ; \boldsymbol{A}, can comtaning water to be frozell. is ammonia lignetied by pressure. This is convenient for the
 gas ligueties at orclinary temperature under relatively moderate pressure (about 10 atmosphores), and it aboorls a great amount of heat in evaporation. Fig. 286 shows the essential parts of an ice-making machine. The ammonia gis is foreal ly the pump into the combenser eoils and liguetiod there ly prossure, the heat given out in comblensation leing carrion off ly the water circulating on the outside of the coils. The lignid mmomia esenpes slowly through the regnlating valse into the low-pressure coils, where it evaporates, prombeing intense eold. In conserpuence the brine which survounds the coils is cooled below the freming peint of water, and the water to le frozen, placed in cans sulmerged in it, is comverted into ice.

It will he observed that the process is continuous. The pump) which forces the ammonia into the comlenser coils recrives its supply of gas from the low-pressure coils. 'The s:ane ammonia is thins used over anl ower agran.

In some cold-stomuge plants, the brine conled as described abose, is mate by a force-pmop to circulate in coils distributed at suitable centres thronghout the building. (Fig. 287).

The temperature of the air in the cold-stonage romins is

Fig. 2x\%.-(Onhl-storage plant.
ly similar coils containing lout water or stemm.
293. Condensation-Oritical Temperature. Wie have serill that a viponr in a combition of satmmation is combensed if its t-mperature is lowered or its pressme is incerased. At this pmint ann interesting phestion mrises. Can an unsatmaterl vapmer at any given comdition of temperatnere le relneed to a lignid hy increase of pressme alone? The question has heen answored experimentally. It has been fommed that for evory vapome there is a temperatme alove which pressure alone, however great, is ineffectual in prolncing eombensation. This tomprenture is known as the critical temperature, and the pressure necessury to promace condensation at this temperat ture is called the critionl prossure. For example, Andrews,* to whom we owe an exhanstive study of the sulgoet, fomm that to reduce carbon-dioxide to a liguid the temperature amst be lowered to at least 30.92^{7} C., and that nimose that temperature IIO anoment of pressure wonld convert it into liquid form.

The critical temperatime of water, alcohol, ammonia, and carbm-dioxide are above the average temperature of the air, white those of the gases oxygen, hydrogen and air are much below it. The critical temperature of water is $365^{\circ} \mathrm{C}$ and of air $-140^{\circ} \mathrm{C}$.
"Thomas Audrews (1818-1886) I'rotemor of Chemisiry, Queen's Colleye, Belfast, 1846-18:9.

Below the critical tempernture a firther lowering of the tomperature lessens the pressure ancesssury to condensation. For exmmple, a pressure of 73 atmospheres is necessary to condense earlxm-dioxide at the critical temperature, but 60 atmonpheres is sufficiont at a temperature of 21.5° and 40 atmospheres at a tempernture of 13.1°. Again, a pressure of 200 atmospheres is necessary to combense steman at the critical temperature ($365^{\circ} \mathrm{C}$.) ; at $100^{\circ} \mathrm{C}$. it condenses under a pressure of one atmosphere.
294. Liquefaction of Air. The apparatus generally used to coulense air into a liquid depends on the fuct that when a gas is

Fis. ess.-Bissential parts of a liquid-air machine.
compressed its temperature rises, nud when it expands, thus doing work, its temperature falls. In Fig. 288 is shown the essential parts of a liquid-air machine.

To one sile of the punp P is joined one end of a coil of pipe A which is within J, a jacket through which cold water is always running, entering at K and leaving at I. The long coil to the right is duable. A small pipe runs within a harger one. In the figure the second and third turns (from the top) of the larger pipe are shown cut away, exposing the smaller pipe within. The smaller pipe enters the larger one at ($(1$, passes on to /) and down to r. Here it emerges and goes over to k ' where its end may be closed by at value \boldsymbol{e}^{2}.

The action is as follows: 'The pump l' lraws in air from the large pipe R, aud forces it, at a pressure of about 200 atmospheres, through the coil A, where it is cooled to the temperature of the water. 'The air passes on to B and then to C, and going through the inner eosil it descends to F 'and then to E. Through the slightly opened valve (r) it expands into the vessel Theing therehy conled. From here it 'Intris the end of the larger pipe of the coil and aseends, it reaches I) and then C, whenee it groes down to enter the pump again.

Now the air on expancling into T was cooled, and hence as it ascends through theonter eoil it emols the air in the inner coil. As this process is continued the air in the inner coil gets coller and rolder until at last it hecomes lignid and collects in 7 'at a temperature of alout - $182^{\circ} \mathrm{C}$. From this it is drawn off by the tap V.

To make 1 cu . inch of liquill about one-half a cu. foot of air is repuired, and when the liquefaction has begun fresh air must be supplicd. It is introluced at d^{\prime} from an auxiliary compressor at a pressure of about 200 atmospheres.
295. Condensation of Water-Vapour of the Air-Dewpoint. Evaporation is comstantly taking place from water at the surfice of the earth, and consecpuently the atmosphere always contains more or less water-vapour. This vopour will be on the point of comdensation when its pressure approtches the satmration pressure. Now, since this pressure varies with the temperatme, the nemmess to saturation at any given time will depend on the temperature as well as upon the amount of vapmor present pror mit volume. Accorlingly, the amount of vapour which a given space will contain rises rapidly with the tompriature. Thas a given space will hold more than three times as much vapour at $30^{\circ} \mathrm{C}$. as at $10^{\circ} \mathrm{C}$.

If the amount of vopour in a given apace remains constant and the temperature is lowered gradually, a temperature will at length be reached at which condensation will begin to take pluce. This temperature is called the Dew-Point.

The dew-point may be determined experimentally by Regramit's method as follows. In the apparatiss shown in lig. 289 the lower portions of the glass tubes are covered with polished metal, and through the corks thermometers and
rommeting thes are inserterl. Pome wher into the vessel fitterd with thentomizor hill mull foreeair thengh

F10. 298. - Iretermination of the dew-juint. it. This agitation of the ether makes it asapmate rapially mul thas the tomperature is lowered. Note the tompreatme nt which the $\boldsymbol{j}^{\text {wh lished }}$ surface morounding the ethore Incemmes dimmed with dew. Comse foreingr the air mad main mote the tempratne at which the moisture diverpenrs. The mem of the two temperntures is taken as the dew-pmint.

The second vessel amahes the elnerver, ly comparisem, to determine more wadily the exact moment when eomblensation Ingins. The thermometor in this vessil gives the temperature of the air in the romo at the time of the experiment.
296. Relative Humidity. The trom limmitity, wrearive: nombors, is userl to dennte the metio of the messs of
 charation at the seme: temperature. The air is said to be ry dry when the ratio is low, aml danp when it is high.
hese terms, it shombline ohsorverl, have wformer, not to the ansolnte anmont of vapmer pesent, but to the relative degree sathation at the given tomperatmre. At the present 6. Hont the air ontside may be raw and damp, lait after
 conis, it "pnams in the laboratory comparatively dry. It is not to be inforred that the air has lost miny of its vaponr; mathor that in being heated it has mepuired the capacity of taking up morr, becanse the satmation pressure has been miserd by the increase of tompratme.

Ther relative lmmidity is manally expressend in a precontage

For example, when a cubic centimetre of air eontains bat onehalf of the moment of water-vapome meersminy for suturation, its hmmidity is sulel to be 50 prer cent.

Ilhis percentage is most aecurately determined by a calculation from the dew-point. Trake a proticular cxample. Suppese the dew-puint to ine 12^{2} C. when the temprature of the air in the romm is $20^{\circ} \mathrm{C}$. Fiomin table of comstants it is learned that saturated water vapmrat 120 C. contains 0.0000106 grams per culic centimetre, and at 20 degrees, 0.0000172 gromes per culic centimatre. Then since one cubic centimetre actually contains at $20^{\circ} \mathrm{C}$. jnst the amount of vapour necessary for satimation at $12^{\circ} \mathrm{C}$. the degree of saturntion is $\frac{10}{17} \frac{9}{2}$ or 61.6 per cent.

The hmmidity moy also be determined ly the Wet-and-Dry-Bulb Hygrometer. The instrument eonsists of two similar thermometers monnted on

Fig. gon - Wot. and.firy lyulb hysrometer. the same stand (Fig. 290). The bulb of one of the thermometers is covered with muslin kept moist by a wick immersed in a vessel of water. Exaporation from the wet bulb lowers its temperature, and since the ratio of evaporation varies with the dryness of the atmosphere, it is evident that the diflerences in the realings of the themometers may be used as an inlirect means of estimating the relative humidity of the atmosphore. The percentages are given in tables prepared by comparison with results determined from dewprint calculations.
297. Relation of Humidity to Health. Humidity lus an important relation to health mad comfort. When the relative limmility is high, a hot day becomes oppressive lecanse the danimess of the atmosphere interferes with free evaporation from the bexly. On the other hand, when the air becomes ton Wry the amount of this craponation is tome great. This condition very frequently prevails in winter in houses artificially
heater. Undere normal comditions the relative homidity should be from 50 to 60 prer cellt.
298. Fog and Clouds. If the nir is chillord lwhow the temproatare for saturation, vapmur comblensis alout dust partiches suspromed in the nir. If this comblensation takiss phace in the strata of air immodiately alme the surface of the corth, we lave a fieg: if in a higher remion, a rlomis. 'The: cending urecosenry for forg formation is due to the chilling etliectes of cold masses at the surface of the onth; in the upree region, a clond is formed when a stontum of wamm moist air has its temperature lowered by its own expunsion under raluced pressure. It would apperir from recont inventigations that under all conditions dinst purtiches are necessary an nuclei for the formation of cloud ghobmles.
299. Dew and Frost. On a watil smmune day derps of water collect on the nurface of a piteher containing iev-wnter, bechnse the air in inmediate contact with it is chilled below the dew-point. This action is typieal of what goes on on a large senle in the deposition of drw. After sumsert, especially when the sky is clear, small lankies at the earth's surface, such as stones, blades of grass, leaves, cobwelis, and the like, conol more rupidly than the surromating air. If their temperature falls below the temperature of satmation, dew is deposited on the:m from the condensation of the vapome in the films of air which envelupe them. If the dew-point is lefow the freezingpoint the moisture is depositer as frost.
300. Rain, Snow and Hail. The cloud globules gravitate sowly towards the earth. If they meet with conditions favomrable to vaporization they change to vapour again, but if with conlitions favomable to condensation they incrense in size, unite, and fall as rain.

When the combensation in the upper air taken place at a temperature below the freezing-point, the moisture crystallizes
 trimesformed into ice prellots and deseenols as heil. 'Ihe: lailstomes usially contain at eore of closely packerl nomen ergetals, but the exnet conditions under which they are formed are not yat filly imderstorel.
301. Distillation. Distillation is a process of vaporization mul combensation, maintaned nsmally for the purpose of freeing a lignid fiom dismolverl solids, or for wepmoting the constituents of n mixture of liquids. Fig. 291 shows a simple form of distillation appurntus. The liguid to be distilled is c:миmoratell in the flawk A, and the prowlict of the comulomsation of the

Pin. 901.-Disilifialion apmaratus. raponr is collected in the recriver 1 . The pipe emmeting a and B is kept cold by cold water imme to circulate in the jacket which sumromuls it.
'The sepmation of lignids by distillation depends on the principle thant diffirent liguids have differont lugiling points, and conserpurntly moe vaporizal and can be collected in a ragular order. For exmole, whon coude petrolemon is hoated in a still the dissolved gaseons hydrocmbons are driven off first; then follow the lighter oils, maphtha, grasoline and benzind ; in turn come the kemonne of fombing oils; and later the henvior gas and fine oils, de. 'lo ohtain a dmantity of may mo constiturnt of a mixtmes in a rolativaly pure state, it is meessary to resort to ivertiomel distilletion. The fraction of the distillate which is known to contan mosst of the lignid desired is redistillorl, aml n fraetion of the distillate again taken for further distillation, and so on.

QUESTIONS AND PROBLEME

 rimin?
2. As exhanatime of air proceeds, a clomil is fropuenily seen in tho reveiver of an air- [mull. Explain.
3. linler what comditiona will "foming" coel the fac ?
4. Why em ono "seo his hrentlo" on a cold day?
b. In eastern comutries and at hight elevntions water io purroll into puromes eart henware jars mad placed in a draught of nir to, comb. Explain the canse of enoling.
6. Dew dnew mot usually form on a pitehor of ice water stmoling in a roun win a cold winter day. Eiplain.
7. Why dres a morning figg freplemety disniplenr with increased strongth of the smin's rays?

Fo. 2se-Cryophorus.
8. A tule having a hullo at ench end has one of its louline filled with water, the remaining spaice comitaining mothing but water vapour. The empty bulb, is surromided ly a freezing mixture (Fig. ceper), nul after a time it is fumud that the water in the other limib is frozen. Eixplain. (Such n tube in callerl a ryyphorus, which means frost-rturier.)

(:HAJTER NXX

Mear and Mrehanical. Muthen

302. Mechanical Equivaleat of Reat. Wis luve referrel ($\$ 2+1$) t) the finct thut during the first laif of the nincteenth century tho kinutic therry of hent, mlvocatexl by Comit Rumford aud Sir Humpliry Dinvy, gradually muperwerled the old imiterinlistic conception. The moxlern theory was regnriled as established when Joule, alont the middle of the century, demonstritial that for every unit of mechmaime energy which dimppeners in the trmasformation of meelmaicul motion into heat n definite and constant quantity of hent is developed. The vilue of the lant unit expressed in units of mechunical energy is culled the mecheniend equiculent of heat.
303. Determination of the Mechanical Equivalent of Heat. The essentinl fentures of Junle's appunatus for determining the unclumical equivalent of hent are illustruted in Fig. 293. A pulde-wheel was mude to revolvo in a vessel of water by a falling weight comnecterl with it by pulleys and corls. Joule measnred the hent proluced by the motion of the padille and the corresponding monnt of work done by the deseembing weight. He culculated

Fio. Man. - Irrinctple of Joule's apo paratus lor determining the me. chanical equivalent ol heat. that one B.T.U. of hent wis equivalent to 772 foot-pounds of

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

mechanical energy. Later investigations by Rowland and others placed the constant at 778 foot-pounds for one B.T.U. of heat, which is equivalent to 4.187 joules ($41,870,000$ ergs) or 427 gram-metres of work for one caloric of heat.
304. Steam-Engine. Mechanical motion arrested by friction or percussion becomes transformed into heat energy. On the other hand, heat is one of our chief sourees of mechanical motion. In fact, it is commonly said that modern industrial development, had its beginning in the invention of the steam-cngine. The development of the engine as a working machine is due to James Watt, a Scottish instrument-maker, who constructed the first engine in 1768.
The essential working part of the ordinary type of steam-engine is a cylinder in which a piston is made to move backwards and forwards by the pressure of steam applied alternately to its two faces (Fig. 294). The steam from the boiler is eonveyed by a pipe F into a valve-chamber, or

Fig. 294.-Steam engine. A and B, ports; D, slide valve; E_{H}, steam chest; H, pipe to boiler; G, eccentric rod; H, eccentric. steam-chest, E. From the steam-chest the steam is admitted to the eylinder by openings ealled ports, A and B, at the ends of the eylinder. The exhinst steam escapes from the cylinder by the same ports. The admission of the stean to the eylinder, and its escape after it has performed its work, is controlled by the operation of a value D. This valve is so adjusted that when the port A is connected with the stean-chest, B is comnceted with an exhaust pipe l ', learling to the open air or to a condenser; and when B is commected with the cylinder, A is connected with the exhaust pipe. The upper figure shows the stean entering at A and escaping at B. The piston, therefore, is being forced to the right, while the valve D is being pushed in the opposite direction by the motion of the
eccentric rod G. When the piston reaches the end of the stroke, the valve lias moved to the position slown in the middle figure. Steam is now entering at B and escaping at A, and the piston is leing forced to the left. In the meantime the valve is heing moved to the original position as shown in the upper figure. A to-and-fro motion of the piston is thins kept up. This motion is transformed into a rotary motion in the shaft liy the crank mechanism. The balancewheels serve to give steadiness to the motion and to carry the engine over the "dead centres" at the ends of the strokes.
305. High and Low Pressure Engines. In the common "high pressure" engine, the steam escapes from the cylinder. directly into the air. In the low pressure or conclensing engine the exhaust is led into a chamber (Fig. 295), where it is condensed by jets of cold water. The water is removed by an "air-pump."

Since a more or less perfect vacuum is maintained in the condensing chamber of a low pressure engine, it will work under a given load at a lower steam pressure than the high pressure engine, because its piston does not encounter the opposing

Fia. 29:. - Condenser of "low pressure" steamengine. force of the atmosplieric pressure.
306. The Compound Engine. When the pressure maintained in a boiler is high the steam escapes from the cylinder of an engine with energy capable of further work. The purpose of the compound engine is to utilize this energy latent in exhaust steam. In this type, two, three or even four cylinders with pistons connected with a common slaft are so arranged that the steain which passes out of

Fig. 296.-Action of steam on the lilades of the drum in a turbine engine. the first cylinder enters the next, which is of wider diameter, and so on until it finally ascapes into a condensing chamber connected with the last cylinder.

The compound engine is used mainly in large power plants and for marine purposes, when economy in fuel consumption is a first consideration.
307. Turbine Engine. Lately a new type of engine known as the stean turbine has been developed. In it a drum attaclied to the main shaft is made to revolve by the impact of steam directed by nozzles against blades attached to its outer surfaces as shown (Fig. 296).

In another type of turbine, nozzles and blades are so adjusted that the stean after striking the first series of blades is reflected by a similar series of stationary blades against a second set of moving blales, and so on until the full working force of the stean is exhansted. (Fig. 297.)
So far the turbine engines have been used mainly for
 marine purposes and in some large electric power plants. The Carmania, which came out in December, 1905, was the first Atlantic liner to be propelled by steain turbines. The first vessel in our inland waters to be fitted with turbine engines was the Turbinia, plying between Toronto and Hanilton. The turbine engine takes up less roon than the orrlinary form of reciprocating engine, and runs with much less vibration.
308. Gas Engines. Gas engines are coming into very general use as a convenient power for launches, automobiles, and power plants of moderate capacity.

In this form of heat engine, the fuel is burnt in the cylinder of the engine itself, and the piston is driven forward by the expansion of the heated gaseous products of the combustion. The fuel most commonly used is fuel-gas, or gasoline vapour, mixed with a sufticient quantity of air to form an explosive mixture.

A charge of the combustible mixture is drawn into the cylinder through an ir let valve during the forward motion of the piston, and compressed into about one-third the space by the return stroke. At a properly timed instant, the compressed clarge is ignited by an electric spark at the points of a spark-plug, connected with an induction coil and battery, and the piston is forced forward by the expansion of the inclosed gas. On the backward motion of the piston an exhaust valve is opened, and the burnt gases escape from the cylinder. At the end of this stroke the engine is again on the point of taking in a new charge of fuel. It will be noted that the piston receives an impulse at the end of every fourth single stroke. The engine is accordingly described as a four-stroke, or four-cycle engine.

The momentum given the balance-wheel at each explosion serves to maintain the motion until the piston receives the next impulse. To cause the pressure to be more continuous in high-speed engines, two or more cylinders have frequently their pistons connected to a common shaft. The action of the four-stroke elgine may be understood by referring to the accompanying diagrams of a fourcylinder, four-stroke engine.

Fic. 293. - The working parts of a modern four-cylinder automobile or launch eugine. A, main shaft: W, balance-wheel connected to main shaft ; $P_{1}, P_{2}, P_{3}, P_{4}$, plstons ; $V_{1,} V_{3}$, V_{5}, V_{7}, Inlet valves; $V_{2}, V_{4}, V_{0}, V_{n}$, exhaust valves; R_{1}, R_{3}, etc., valve stems; S_{1}, S_{z}, etc., springs by which valves are closed; B, cam-shaft for operating valves, run by gears from main shaft; C_{1}, C_{2}, etc., cams for lifting valves; D, space to contain circulating water for coollng cylinder. The small diagram in the upper lelt-hand corner shows the connectlon between the valve-chamber and cy'inder. E_{1}, Inlet port ; E_{2}, exhanst port ; F, pipe by which cooling water enters; G, outlet for water. Two spark plugs are shown Inserted at the top of each cylinder. One la connected with a battery system ol lynition, the other with a magneto or dynamo. The electrical conneotions are so made that elther may be used at will.
The balance-wheel and pistons are moving in the directions of the arrows. A charge is being drawn into cylinder No. 4 through the inlet valve V_{1}, raised for the purpose by the pressure of the cam C_{1} on the valve stem R_{1}. The charge which has been drawn in during the previous single stroke is being compressed in cylinder No. 2. The piston P_{1} is being forced down by the expansion of the gases which have just been ignited in cylinder No. 2. The burnt gases from the previous explosion are escaping from cylinder No. 3 through the exhaust valve V_{4}, raised by the action of the cam C_{4}.

During the next single stroke, No. 3 will be drawing in a charge, No. 4 will be compressing, No. 2 will be exploding, and No. 1 will be exhausting; and so on for succeeding strokes.
Expresse.-Trace the action in any one cylinder for four successive single strukes.

The two-stroke (ur two-cycle) engine differs from the four-stroke, in that the piston receives an impulse at the end of every second

Fig. 299.

Working parts of a two-stroke gas eugine. P, piston; S, main shaft ; C, crank pin; A, inlet port to crank char ber; B, inlet port to cylinder ; D, exhaust port; W, counter, юoise weight. single stroke. This is accomplished as follows:Consider the pistom in the position slown in Fig. 299. During the first part of the first single stroke, the burnt gases of the previous explusion escape by the port D, and a clarge stored in the crank chamber enters by the port B. In the second part of the first single stroke, the inlet and exhaust ports are covered by the piston and the sharge is compressed in the cylinder, while a new clarge is drawn into the crank chamber from the fuel tani through the port A (Fig. 300). The charge in the cylinder is ignited and the piston is forced forward in the second half-stroke giving an impulse to the fly-wheel, and compressing the new charge in the crank chamber. The action then goes on as before.
309. Efficiency of Heat Engines. All heat engines are wasteful of energy. The best types of compound condensing steam engines transform only about 16 per cent. of the heat of combustion into useful work, while the ordinary high-pressure steam engine in every-day use utilizes not more than 5 per cent. of the energy latent in the fuel.

The best steam turbines equal in efficiency the most economical forms of reciprocating engines.

The efficiency of the gas engine is much higher than that of the steam engine. Under good working conditions it will transform as high as 25 per cent. of heat energy into mechanical energy.

PROBLEMS

1. The average pressure on the piston of a stcam engine is 60 lbs . per sif. inch. If the area of the pistom is 50 sif . in. and the length of the stroke 10 in., find (a) the work done in one stroke by the piston ; (1) how much heat, measured by I. T. U., was lost ly the steam in moving the piston.
2. The coal used in the furnace of a stean pmoning-engine furnishes on an average 7000 calories of heat per gram. How mamy litres of water can le raised to a height of 20 metres loy the consmuption of 500 kg . of cosl, if the efficiency of the engine is 5 per cent.?
3. Supposing that all the energy of onward motion possessed by a hullet, whose mass is 20 grams and velocity 1000 metres per sec., is thansfumed into heat when it strikes the target, find in calories the amomit of heat developed.
4. A train whose mass is 1000 tons is stopped by the friction of brakes. If the train was moving at a rate of 30 miles per hour when the brakes were applied, how much heat was developed?
5. How much coal per honr is used in the furnaces of a steamer when the screw excrts a pushing force of 1000 kgms . and drives the vessel at a rate of 20 km . per honr if the efficiency of the engine is 10 per cent., and the coal used gives on the average 6000 calories of heat per gram.?
6. A locomotive whose efficiency is 7 per cent. is developing on the averige 400 horse power. Find its fuel comsumption per hour if the coal furnishes $\mathbf{1 4 , 0 0 0}$ B.T.U.'s of heat per pound.

CHAPTER XXXI

Transferfence of Heat

310. Conduction of Heat. The handle of a silver spoon becomes warmed when the bowl is allowed to stand in a cup of hot liquid; the uncovered end of a glass stirrer, under similar cumbitions, remains practically unchanged in temperature. Heat creeps along an is as poker when one ent is thrust into the fire; while a wooden rod conveys no heat to the hand.

The transference of heat from hotter to colder parts of the same body, or from a loot borly to a colder one in contact with it, is called comduction, when the trmamission takes phace, as in these instances, without any perceptible motion of the parts of the bodies concerned.
311. Conducting Powers of Solids. The above examples show clearly that solids differ widely in their power to condnct heat. The tendencies manifest in silver and iron are typical of the metals; as compared with non-metals, they are good conductors. Organic fibres, such as wool, silk, wood, and the like, are poor conductors.

The metals, however, differ widely among themselves in conductivity. This may be shown roughly as follows:-Twist

Fia. 301.-Difference in conductivity of in Fig. 301. By means of drops metals. two or more similar wires of different metals-say copper, iron, German silver-together at the ends and mount them as shown of wax attach shot or bicycle balls or small nails at equal intervals along the wires. Heat the twisted ends. The progress of the heat along the wires will be indicated by the melting of the wax and the dropping of the balls. When the line of separation between the melted and ummelted drops of wax ceases to move along the wire it will be found that the copper has melted wax at the greatest distance from the source of heat, the iron comes next in 274
order, and the German silver last. If the wax were distributed uniformly, and wires heated equally at their ends the conductivities of the wires would le approximately proportional to the squares of these distances.

The following table gives the relative conductivities of some of the more commonly used metals referred to copper as 100 .

Relative Coniuctivities of Metals

Copper. 100	Ironı 23	Platinuı. . . . 12
Aluninium... 47	Lead. 11	Silver. 1:33
Brass 32	Magnesinnı . . 51	Min.......... 21
Gold. $\quad 1$	Mercury. 2.4	Vinc. 42

312. Conduction in Liquids. If we except mercury and molten metals, liquids are poor conductors of leat. Take water for example. We may boil the upper layers of water held in a test-tube over a lamp (Fig. 302) without perceptibly heating the water at the bottom of the tube.

The poor conductivity of water is also

Fig. 302. Water is a poor conductor of heat. strikingly shown in the following experiment.

Fig. 303.-Iliuatration of the non-conductivity of water. at the surface.

Pass the stem of a Galileo airthermometer (§ 255) through a perforated cork inserted into a funnel as shown in Fig. 303. Then cover the bulb of the thermometer to a depth of about $\frac{1}{2} \mathrm{~cm}$. with water. Now pour a spoonful of ether on the surface of the water and set fire to it. The index of the thermometer shows that little, if any, heat is tramsmitted by the water to the bulb from the flame
313. Conduction in Gases. (hases are extremely jwor condinetors of heat. The condnetivity of air is extimated to be only alout $0.000,049$ of that of copper. Many sulstances, such as wool, fur, down, etc., owe their jror conductivity to the fact that they are porons and contain in their interstices air in a finely dividen state. If these sulstances are compressed they become better conductors.

Light, freshly fallen snow encloses within it large quantities of nir, and consequently forms a warm blanket for the earth, protecting the roots of plants from intense frost.

Heat is conducted with the grentest difficulty through a vacuum. For holding liguid air lewar introluced glass Hasks with hollow walls from which the air has been removed. I'lee imer surfaces of the walls are silvered to prevent radiation (§ 570). The familiar "Thermos" bottle is constructed in this way. When contained in such a vessel a hot substance will renain hot and a cold one cold for a long time.
314. Practical Significance of Conduction in Bodies. The usefulness of a substance is frequently determined by its relation to heat conduction. The materials used to convey heat, such as those from which furnaces, stean boilers, utensils for cooking, etc., are constructed must, of comse, be good conductors.

On thie other hand, substances used to insulate heat, to shut it in or keep it out, should be non-conductors. A house with double walls is warm in winter and cool in summer. Wool and fur are utilized for winter clothing because they refuse to transmit the heat of the body.

Ia this connection the action of metallic ganze in conducting heat should be noted. Depress upon the flame of a Bunsen Burner a picee of fine wire ganze. The flame spreads out under the gauze but does not pass through it (B, Fig. 304). Again, turn off the gas and hold the ganze about half-mi-incle above the burner and apply a lighted matel above the gauze (A, Fig. 304). The gas burns above the gauze. The explanation is that the metal of the gauze conducts away the heat so rapidly that the gas on the side of the gauze opposite the flame is never raised to a tem-

Fig. 30s.-Action of metallio gauze on a gad-fame. perature sufficiently high to light it. This principle is applied in the constraction of the Davy safety lamp for miners. A jacket of wire ganze encloses the

Fio. 305.-Davy safety lamp. lamp, and prevents the hent of the flame from igniting the combustible gas on the outside. (Fig. 305.)
315. Conductivity and Sensitiveness to Temperature. We have already referred to the fact that onr sensations do not give us reliable reports of the relative temperatures of bodies.

This is in part due to the disturbing effects of conduction. To take an example, iron and wood exposed to frost in winter or te the heat of the sun in summer have, under the same conditions, the same temperature; but on touching them the iron appears to be colder than the wood when the temperature is low, and hotter when it is high. These phenomena are due to the fact that the intensity of the sensation depends
on the rate nt which hent is trmasferven to or from the hand. When the trmperatme of the iron is low, hent firm the hand is distributed rapidly thronghent its mass; when hot, the hent current flows in the opposite direction.

The woml, when coll, takes from the hand only sufficient heat to warm the film in immerinte contact with it ; when hot, it mats with heat from this filmonly. In consequence, it never feels murkedly cold or hot.

Questions

1. If a cylinder, half lrass and half wond, he wrapped with s shect of paper and held in the flame (Fig. 306), the paper in contact with the woral will soon be scurched but that in enntact with
 the brass will not be injured. Explain.
2. Why are utensils nsed for cowking frequently supplicd with womicn handles?
3. Tee stored in ice-houses is usinally packed in snw-dust. Why use saw-dust?
4. Why, in making ice-cream, is the freezing mixture placerl in a wooden vessel and the cream in a metal one?
5. Water may he boiled in an orilinary paper oyster-pail over an open flame without burning the paper. Explain.
6. The so-called fireless cooker consists of a woorlen loox lined with felt or other nom-comductor. The fool is heated to a high temperature and shut up in the dox. Why is the cooking process continned under these conditions?
7. Two similar cylindrical rods, one of copper and the other of lead, are covercd wit. wax, and an end of each is inscrted through a cork in the side of a ressel containing boiling water. At first the melting advances more rapidly along the lead rod, but after a while the melting on the copper overtakes that on the lead, and in the end it is 3 times as far from the hot water. Account for these phenomena. Compare the conductivities of copper and lead.
8. Oonvection Currents. The water in the trest-tube (\$ $\$ 312$) remains cold at the bottom when heated at the tep. If the havit is applied at the bottom, the mass of water is furickly warmed. The explanation is that in the latter case the heat is distributed by currents set up, within the fluid.

The presence of these currents is readily seen if n few crystals of potassinm permanganate are dropped into a beaker of water and the tip of a

Fin. 307.-Convection currents in water heated by gas-flame piaced at one side of botton. gas-flame allower to come in contact with the botton either at one side as in Fig. 307 or at the centre as in Fig. 308.

Such currents are called convection currents. They arc formed whenever incqualitics of temperatur. are maintained in the parts of a fluid. To refer to the

Fia. 308. - Convection currente in water heated by gan-fama placed at centre of bottom. example just cited, the portion of the water in proximity to the gas-flame is heated and its density is reduced by expansion. The borly of hot water is, therefore, buoyed up and forced to the top by the colder and heavier portions which seek the bottom.
317. Transference of Heat by Convection. The transference of heat by convection currents is to be distinguished from conduction. In conduction, the energy is passed from molecule to molecule throughout the conductor; in convection, certain portions of a fluid beceme heated and change position within the masss, distributing their acquired heat in their progress. The water, heated at the bottom of the beaker, rises to the top carrying its heat with it.
318. Convection Currents in Gases. Gases are very sensitive to convection currents. A heated body always canses disturbances in the air about it. The

Fig. 309.-Convection currents in air ahout a heated flat-iron. rising smoke shows the direction of the air-cmrrents above a fire. Hold a hot iron-say a flat-iron-in a clond of floating dust or smoke particles (Fig. 309). The air is seen to rise from the top of the iron, and to flow in from all sides at the bottom.

Make a box fitterl with a glass front and chimneys as slown in Fig. 310. Place a lighted candle under one of the chimmeys, and replace the front. Light some tomeh paper * and hold it over the other climmey. The air is observed to pass down one chimney and up the other.

Frg. 310.- Convection currents in heated air.
319. Winds. While air-currents are molified by varions forces and agencies, they are, as we have seen (§ 124), all traceable to the pressure differences which result from inequalities in the temperature and other conditions of the atmosphere.

The effects of temperature differences are but manifestations, on a large seale, of convection currents, like those in the air abont the heated iron. For varions causes the earth's surface is unequally heated by the smm. The air over the henated arens expands, and becoming relatively lighter, is forced upward by the buoyant pressure of the colder and henvier air of the surrounding regions.

Trade winds furnish an example. These permanent airenrents are primarily due to the unequal heating of the atmosphere in the polar and the equatorial latitudes.

[^28]We have an example also, on a much smaller scale, in land and sea breezes. On accomit of its higher specitic heat, water warms and cools much more slowly than land. For this reason the sea is frequently cooler by day and warmer by night than the surrounding land. Hence, if there are no disturbing forces an off-

Fig. 311,-Illustration of land and sea breezes. A direction of movement in sea breeze. B, direction of movement in iand breeze. sea breeze is likely to blow over the land during the day and an off-land breeze to blow out to sea at night (Fig. 311). Since the causes producing the changes in pressure are but local, it is obvious that these atmospheric disturbances can extend but a short distance from the shore, usually not more than 10 or 15 miles.
Queky.-Why do we, when turning on the draught of a stove or a furnace, close the top and open the bottom?
320. Application of Convection Currents-Cooking-Hot Water Supply. The distribution of heat for ordinary cooking operations such as boiling, steaming, and oven roasting

Fig.312.-Illustration of the principle of heating water hy convection cur. rents. and baking obviously involves convection currents.

When running water is available, kitchens are now usually supplied with equipment for maintaining a supply of hot water for culinary purposes. The common method of heating the water by a coil in the fire-box of a stove or furnace is illustrated in the following experiment. Use a lamp chimney as a reservoir and

Fig. 313.-Connection in a kitchen water heater. A is the hot-water tank and B is the water-front of the stove. The arrows show the direction in which the water moves.
fit up the connecting tubes as shown in Fig. 312. Drop a
crystal or two of potassium permanganate to the bottom of the reservoir to show the direction of the water currents. Fill the reservoir and tubes through the funnel C and heat the tube B with a lamp. A current will be observed to flow in the direction of the arrow. The hot water rises to the top of the reservoir and the cold water at the bottom moves forward to be lieated.

Fig. 313 shows the actual connections in a kitchen outfit. The cold water supply pipe C is comnected with a tank in

Fig. 314.-Illus. tration of the principle of heating buildings by hot water. the attic or with the water-works service pipes. The hot water is drawn off through the pipe D.
321. Hot-Water Heating. Hot-water systems of heating dwelling houses also depend on convection currents for the distribution of heat.

The principle may be illustrated by a modification of the last experiment. Connect an open reservoir B with a llask, as shown in Fig. 314. Taking care not to entrap air-bubbles, fill the flask, tubes, and part of the reservoir with water. To show the direction of the currents colour the water in the reservoir with potassium perman-

Fia. 815. - Hot-water heating gystem. A, furnace ; C, C, C, pipes leading to radia: tors R, R and expansion tank $B ; D, D$, pipes returning water to furnace after passing through radiatorp. ganate. Heat the flask. The coloured water in the reservoir almost immediately begins to move downwards through the
tube D to the bottom of the flask and the colourless water in C appears at the top of the reservoir.

In a hot-water heating system (Fig. 315) a boiler takes the place of the flask. The hot water passes through ralliators in the various apartments of the house and then ruturns to the furnace. An expansion tank B is also connected with the system. Observe that, as in the flask, the hot water rises from the top of the heater and returns at the bottom.
322. Steam Heating. Steam also is employed for heating buildings. It is generated in a boiler and distributed by its own pressure through a system of pipes and radiators. The water of condensation either returns by gravitation or is pumped into the boiler.
323. Heating by Hot-Air Furnaces. Hot-air systems of heating are in very common use. In most cases the circulation of air depends on convection currents. The developinent of such currents by hot-air furnaces depends on the principle that if a jacket is placed around a heated body and opernings,are made in its top and its bottom, a current of air will enter at the bottom and escape at a higher temperature at the top. For example, a lamp shade of the form shown in Fig. 316 forms such a jacket about a hot lamp chimney. When the air around the lamp is charged with smoke a

Fis. 316.-Air currento produced by placing a jacket around hented body. current of air is seen to pass in at the base of the shade and out at the top.
A hot-air furnace consists simply of a stove with a galvanized-iron or brick jacket A aboui it. Pipes connected with the top of the jacket convey the hot air to the rooms
to be heated. The cold air is led into the base of the

Fic. 317.-Hot-air heating and ventilating system. A, stove-jacket; B, sinoke flue: C, warn-air pipes; D, cold-air pipe from outside ; E, cold air pipe from room; $F_{\text {, }}$ vent flue ; V_{1}, valve in pipe $\boldsymbol{E} ; \dot{V}_{2}$, valve in pipe from outside.
324. Ventilation. Most of the methods allopted for securing a supply of fresh air for living rooms depend on the development of convection currents.

When a lighted candle is placed at the bottom of a wide-mouthed jar, fitted with two tubes, as shown in B (Fig. 318), it burns for a time but goes out as the air becomes deprived of oxygen and vitiated by the products of combustion. If one of the tubes is pushed to the bottom A (Fig. 318), the candle will continue to burn brightly, because a continuous supply of fresh air comes in by one tube and the foul gas escapes by the other.
The experiment is typical of the means usually adopted to secure ventilation in dwelling houses. A current is made to fiow between supply pipes and vents by heating the air at on ${ }^{-}$or more points in its circuit.

A warm-air furnace system of heating provides naturally for ventilation, if the air to be warmed is drawn from the outside

FTc. 318.-Illustration of principle of ventilation. The tubes should be at least $\frac{1}{}$ inch in diameter. and, after being used, is allowed to escape (Fig. 317). To support the circulation the vent flue is usually heated. The
figme shows the vent flue phaced abongsitle the smoke flue from which it receives heat to create a dranght.

The supply pipes and vont flues are, as a rule, fitted with valves V_{1}, V_{2}, to control the air currents. When the inside supply pipe is closed and the others opened Ω current of fresh air passes into and out of the house; when it is opened and the outside supply pipe and vent flue closed, the circulation is wholly within the house and the rooms are heated but not veritilater.

With a hot water or stemm-heating plant ventilation must lne effected indirectly. Sometimes a supply pipe is led in at the base of each radiator and fresh air drawn in by the upward current produced by the heated coils. More frequently coils are provided for warming the air before it enters the rooms. The coils are jacketed and the method for maintaining the current differs from the furnace system only in that the air is warmed by steam coils instead of by a stove. To secure a continuous circulation in large buildings under varying atmospheric conditions, the natural convection currents are often re-inforced and controlled by a power-driven fan placed in the circuit.
325. Transference of Heat by Radiation. There is a third mode by which ineat may be transferred, namely by rudiation. It is by radiation that the sun warms the earth. By getting in the sladow we shield ourselves from this direct effect; and the face may be protected from the heat of a fire by holding a book or paper between. A hot body emits radiation in all directions and in straight lines. This is quite different from convection and conduction. Transmission by convection always takes place in one direction, namely by upward currents; and conduction is not restricted to straight lines, for a bent wire conducts as well as a straight one.
326. Heat from the Sun. It mast be carefnlly observed that the heating does mot take phace until the radiation which has come from a hot borly falls upm a material borly. The space between the hot somrce and the receiving borly is not heated by the passage of the radiation through it.

The heat required to support life on the earth is received by radiation from the sun, but not until it reaches the earth is the heating effect produced. Our atmosphere, and especially the moisture in it, are of great importance in this connection. It acts like a protecting blanket, mitigating the intensity of the smis direct rays, and also preventing the earth from quickly radiating into space the heat which it has received.

On a high mountain or up in a balloon the air is so rare and contains so little moisture that its protective action is negligible. In such cases the sun's rays produce intense heat in what they fall upon, but the air and any object in the shade are extremely cold.

The sulbect is further discussed in $\S \S 397$ to 330 and 547 to 552 .

PART VII-LIGHT

CHAPTER XXXII

The Nature of Light; its Motion in Stragift Lines
327. Light Radiation. The ear is the organ for the reception of somnd, the eye that for light. The investigation of the sensation of vision lies with the physiologist and psychologist; in physics light is taken to be the external agency which, if allowed to act upon the eye, produces the sensation of hminosity.

For the transmission of sound, the nir or some other material medium is necussary (§ 192), but such is not the case with light. Exhausting the air from a glass vessel does not impede the passage of light throngh it, but rather facilitates it. Again, we receive light from the sun, the stans and other heavenly bories, and as there is no matter out in those great celestial spaces, the light must come to us through a perfect vacuum. Indeed it travels millions of millions of miles without giving up any appreciable portion of its energy to the space it comes through.

We do not understand the process by which we obtain the sensation, but it is quite certain that to produce it work inust be done. We see then that the source of light,--the sun, a candle, an electric light,-radiates energy, which upon reaching the eye is used up in producing the luminous sensation.
328. How is Light Transmitted? We have been able to suggest only two methods by which energy can be transinitted from one place to another. A rifle bullet or a cannon ball has great energy, which it gives up on striking its ain. Here the energy is transferred by the forwarci bodily motion of a material body. But, as explained in $\S(176,177$, energy can be handed on without transference of matter, namely by wave-motion.

Now the first muthon, which is commonly callerl the 'Emission Theony;' was docolepect and strongly uphede by Sir Isatac Newtom* and by others following him, but it has been found to be unsat isfactory: There are some experimental results contrary to it, and others which it camot explain. If then we must discard it, we necessarily turn to the second methol, which has been called the 'Wiave 'Theorg:' It was irst propomuded by Huygenst, lint was raily demonstrated by Yonng and Fresnel in the early years of the last century. The wave theory of light is now miversally accepted by scientific men.
329. The Ether. But we camot have waves without laving a mediun for them to travel in, and as the light-bearing medium is not ordinary matter we are led to assume the existence of another merlimn which we call the ether. Light is simply a motion in the ether.

This ether must fill the great interstellar spaces of the universe; it minst also pervade the space between the molecules and the atoms of matter, since light passes freely throngh the varions forms of matter,--solids, lipuids and gases. We cannot detect it by any of our orlinary senses, we camot see, feel, hear, taste, smell or weigh it, but as we camot conceive of any other explanation of many phenomena, we are driven to believe in its existunce. The mure ow investigates the brhaviour of light and other rudiutions, the more firmly does he become assured of the reality of the ether.
330. Associated Radiations. It may be well to state here that the radiations which affect the eye never travel alone. Indeed those very radiations can also produce a heating effect and can excite chemical action,-in the photographic plate, for instance. But associated with the light radiation are others

[^29]which do not affect the eye at all, but which assist healthy
 for life, proxnce chemical effects as revented in the coloum of mature, or give us communication by wireless telegraphy.

These and many other effects are due to undulations of the ether, the chief difference among them being in the lengths of the waves.

We can see the waves moving on the surface of water or along a cord; we can feel the air, and with some effort, perhaps, can comprehend its motions; but to form a notion of how the ether is constructed and how it vibutes is a matter of excessive difficulty and indeed hagely of pure conjecture. A very useful picture to have in one's mind is to think of the eye as joined to a source of light by cords of cther, and to consider the source as setting up in these cords transverse vibrations, which travel to the eye and give the laminous sensation.
331. Waves and Rays. Though light is a form of energy, and is transferred from place to place by means of wrives, we usually speak of it as passing in rays.

Let the light spread out in all directions from a source A (Fig. 319). The waves will be concentric spheres S_{1}, S_{2}, $S_{3} \ldots$, but the light will pass along the radii $R_{1}, R_{2}, R_{3} \ldots$, of these spheres. The rays thus are the paths along which the waves travel, and it is seen that the ray is perpendicular to the wave-surface.*

If we consider a number of rays moving out from A (Fig. 320) we have

Fig. 319.-The waves are spheres with 4 as centre: the rays are radii of these spheres. what is known as a divergent pencil a, and the waves are concentric spheres continually growing larger. If the rays are coming toge ther to a point we have a convergent pencil l,

[^30]and the waves are concentric sphores continually growing smaller. If now the mas are purallel, as in c, we have a

Fig. 320.-A convergent pencil, b; a divergent pencil, a; a parallel beam, c.
parallel hean, and the waves are phane surfaces, perpendicular to the rays. Snch rays are obtaned if the somrce is at a very great distance, so great that a portion of the sphere described with the source as centre might be considered a plane.

Qukuy. - What becomes of the waves of a convergent pencil (b, Fig. 320) after they come to a point?
332. Light Travels in Straight Lines. In n homogeneous medium the rays are straight lines. We assume the truth of this in muny every-day operations. The carpenter conld not judge that an edge was straight nor conld the marksman point his rifle properly were he not sure that three objects are precisely in a straight line when the light is juat prevented from passing from the first to the third by the object between.

When light is admitted into a darkened room-a knot-hole in a barn, for instance-we can often trace the straight course of the rays by the dnst-particles in the air. The rays, themselves, camot be seen, but when they fall upon the particles of matter these are illuminated and send light-waves to the eye.
333. The Pin-hole Camera. All interesting application of the fact that light moves in straight lines is in the pin-hole camera. Let $M N$ (Fig. 321) be a box having no ends. In front of it place a candle, or other bright object, $A B$, and over the front end stretch tin-foil. In this prick a hole O with a pin, and over the back of the box stretch a thin shect of paper.

Fio. 321.-Pin-hole camera. C is a small hole In the front and an In. verted image of the candle ΔB is seen on the back of the box.

The lightit from tha varions pritions of $A B$ will pass throngh the hole (8 and will form on the perpor an image 10 e, of the candle. This can be seen best by throwing over the heal and the lox Ω dark clath. (Why ?) The inmge is inverted, since the liglit travels in straight lines, and the rays cross at C.

If now we remove the paper, and for it substitnte a sensitive photugraphic plate, a 'negative' may be obtained jnst as with an ordinary cannera; indeed the perspective of the scene photographed will be triner than with most cameras. The chicef objection to the use of the pin-hole camerat is that with it the exponme required, compared to that with the ordinary cancra, is very long.

It is evident that to secure a sharp, clear image the hole C must be small. Suppose that it is made twice as large. Then we may consider each half of this hole as forming an image, and as these inages will not exactly coincide, indistinctness will result. On the other hand the hole must not be ton small. As it is reduced in sizs other phenomena, known . diffraction effects, are obtainel. These effecte show that, in all strictness, the light does not travel precisely in straight lines after all. The size of the hole required depends on the wave-length of light and the length of the camera box.
334. Theory of Shadows. Since the rays of light are straight, the space behind an opayue object will be screened from the light and will be in the shudow. If the source of the light is small the shadows will be sharply defined, but if it is of some size the edges will be indistinct.

Let A (Fig. 322) be a small source,-an arc lamp, for instance, -and let B be an opaque ball. It will cast on the screen $C D$ a circular shadow with sharply defined edges. But if the source is a body

Fia. 322.-If the source be small the shadow will be sharp. A ls the source, B the object, $C D$ the shadow.
of considerable si\%c." smelh as the sphere S (Fig. 323), then it is evident that the only protion of spuee which recerives mo light at all is the eome lahinul the opmpe sphere E. 'This is

Fio. 3:3.-S lo a large brixht source, and fo an oprujue oljject. The dark portion in the shatove. ojuajue oliject. The dark portion
the lighter portion the yenumbra. enllent the \mathbf{u} mbine or simply the ahuetow, while the portion beyond it which receives n part of the light from S is the proumbre. Suppone $d /$ is a body revolving alont E in the direction indicated. In the position 1 it is just entering the penmana; in the second position it is entirely within the shadow.

If S represents the sum, E the earth, and M the moon, the figure will illustrate an eclipse of the monn. For an eelipse of the sun, the moon must cone between the earth and the

Fra. 31. - Showing how an eclipse of the sun ls proluced. A person at a cannot see the sun.
sum, as shown in Fig. 324. Only a simall portion of the earth is in the shanlow, aml in orlor to see the sun totally eclipsed an olserver must be at "on the narrow "track of totality."
335. Transparent, Opaque and Translucent Bodies. Transparent borlies, such as glass, mica, water, etc., allow the light to pass freely through them. Opaque substances entirely obstruct the passage of light; while translucent bodies, such as gromnd-glass, oiled paper, etc., seatter the light which fa!ls upon them, but a portion is allowed to pass through.

[^31]QUEGTOAS AND FROELBMS

1. A photograph is made by means of a pin-hole camern, which is 8 inches long, of a houne 100 feet away and $\mathbf{3 0}$ seet high. Find the height of the image ?
2. Why does the image in a pin-hole canera bucome fainter as it heenmes larger (i.e., by using a longer box, or pulling the screen lawk)?
3. Why is the shadow obtained with a naked are lanp, sharp and welldelined? What diflerence will there be when a ground-glass glole is placed around the are !
4. On holding a hair in sunlight close to a white screen the shadow of the hair is seen on the screen, but if the hair is a few inches away, scarcely any trace of the shadow can be ubmerved. Explain this.
5. The sun's diameter is 864,000 miles, that of the earth, 8,000 mites. If the distance from the carth to the sun is $03,000,000$ miles, find the length of the earth's shadow (Fig. 323). Calculate the diameter of this sladow at the mean distance of moon from the earth. This distance is appruximately 240,000 miles.
6. The earth when nearest the sun (whirh occurs about January 1) is 91t millions of miles away, and the moon when nearest the earth is at a distance of 221,600 miles. These distancen are from the centre of the earth. Supposing an eclipse of the sun to take place under these circumstances, find the width of the shaduw (1, Fig. 324) cast on the earth, taking the diameter of the moon to be 2,160 miles.

CHAPTER XXXIII

Photometry

336. Decrease of Intensity with Distance from the Source. Let a small sfuare of carlloward $B C$ be held at the distance of one foot from a small source of light A (Fig. 325), and one foot

Fia. 325,-Area of $D E$ is + times, and area of $F^{\prime}(\dot{B}$ is 9 times that of BC. behind this place a white screen $D E$. The shadow cast by $B C$ on $D E$ is a square, each side of which is twice that of $B C$, and hence its area is four times that of $B C$. Next, hold the screen at $F G$, one foot further away, or three feet from A. The shadow of $B C$ will now have its linear dimensions three times those of $B C$ and its area nine times that of $B C$; and so on. The area of the shadow varies as the square of the distance from the source A.

Suppose, now, a white screen, (a piece of paper), be held at $B C$. The light A will illuminate it with a certain intensity which we shall denote by I_{1}. If the screen is held at $D E$ the same light which fell on one square inch when at $B C$ will now fall on fonr square inches, and hence the intensity of illumination I_{2}, will be ${ }_{4}^{1}$ of I_{1}. If placed at $F G$ the same amount of light will be spread over 9 square inches, and the illumination I_{3} is equal to $\frac{1}{3}$ of I_{1}. If the screen be n times as far from A as $B C$ is, the illumination I_{n} will be $n^{\frac{1}{2}}$ of I_{1}. Thus we obtain the law: The intensity of illuminution varies inversely as the sq uire of the distance from the source of light.

This is the fundamental law upon which all methorls of comparing the powers of different sources of light are based.

It should be carefully observed that for this law to hold, the source of light must be sinall and must radiate freely in
all directions. The headlight of a locomotive, for instance, projects the light mostly in one direction, and the decrease in intensity of illumination will not vary according to the above law.
337. Rumford's Photometer. To compare two sources of light we require some convenient method of determining equality of illumination, and various instruments, known as photometres, have been devised for this purpose. Suppose we wish to compare the illuminating powers of the two lamps L_{1} and L_{2}. The metlod introduced by Rumford is to stand an opaque rod R (Fig. 326) vertically before a screen $A B$, and allow shadows from the two lamps to be cast on the screen.

If the screen is of ground-

Fic. 3:6.-Rumford's shadow photometer. The lights L_{1}, L_{8} are adjusted until the shadows cast by a rod R on the screen shade equally dark. glass it should be viewed from the side away from the lanps; if of opaque white paper (white blotting paper is best) the observer should be on the same side as the lamps.

It is evident that the portion $a b$ is illuminated only by the lamp L_{1}, and the portion be only by the lamp L_{2}.

Now move the lamps milil the portions $a b, b c$ are equally bright (or equally dark), and then measure the distance of L_{1} from $a b$ and of L_{2} from $b c$. Let these distances be d_{1}, d_{y}, respectively. We can now calculate the ratio between the illuminating powers of the lamps.

Let the distances d_{1}, l_{2}, he given in feet. Hold a piece of paper 1 foot from L_{1}; let the intensity of illumination be I_{1}. In the same way when held 1 foot from L_{2} let the intensity of illumination be I_{2}.

It is evident then that

$$
\frac{I_{1}}{I_{2}}=\frac{L_{1}}{L_{2}} .
$$

Now the lamp L_{1} produces a cortnin intensity of illumination on the portion ab which is distant d_{1} fect from L_{1}. Let this be I. Then

$$
\frac{I}{I_{1}}=\frac{1}{\left(d_{1}\right)^{2}} .
$$

Similarly, since the intensity of illumination of $l c$ is the same as of ϵb, it also is I, and we :nust have

$$
\begin{aligned}
& I_{\text {I }}^{I}=\underset{\left(I_{2}\right)^{2}}{1} \\
& \text { Hence } \stackrel{I}{I_{2}^{-}} \div \frac{I}{I_{1}^{-}}=\frac{1}{\left(d_{i}\right)^{2}} \div \frac{1}{\left(d_{1}\right)^{2}}, \\
& \text { Or } \quad \begin{array}{l}
I_{1} \\
I_{2}
\end{array}=\binom{d_{1}}{l_{2}}^{2} \text {. } \\
& \text { But } \begin{array}{l}
I_{1} \\
I_{2}
\end{array}=\begin{array}{l}
L_{1} \\
L_{2}
\end{array}, \text { and so } \begin{array}{l}
L_{1} \\
L_{2}
\end{array}=\left(\frac{d_{1}}{d_{2}}\right)^{2} .
\end{aligned}
$$

338. The Bunsen Photometer. The essential part of this photometer is a piece of unglazed paper with a grease-spot on it. Such a spot is more translucent than the ungreased paper, so that if the paper is held before a lamp the grease-spot appears brighter than the other portion, while if held bchind the lamp it appears darker.

Now move the grease-spot screen between the two light-

Fig. 327.-The Bunsen grease spot photometer. sources L_{1}, L_{2} (Fig. 327) to be compared until it is equally bright all over its surface. Then it is evident that what illumination the screen loses by the light from L_{1} passing through is precisely compensated by the light from L_{2} transmitted through it. Thus the intensity of illumination due to each
lanp is the same. Hence, if d_{1}, d_{2} are the distances from the screen of L_{1}, L_{3}, respectively,
as before.

$$
\frac{L_{1}}{L_{2}}=\binom{d_{1}}{d^{2}}^{2},
$$

339. Joly's Diffusion Photometer. Two pieces of paraffin wax, each about 1 inch square and $\frac{1}{4}$ inch thick are cut from the sime block of paraffin, carefully made of the same thickness and then put together with tin-foil between them (Fig. 328). This is adjusted between the two lamps to be compared, until the two pieces are equally illuminated, at which time the line of separation disippears.

This is a cimple and very useful photometer. The block of paraffin shoald be viewed through a tube, using a single eye.

For the block of paraffin one may substitute a wooden prism having two faces covered with unglazed paper, and the edge being turned towards the experimenter.

Fig. 328.--Joly Difition Phota lleter, consisting of twosimil. blocks of paraffin, set close to. gether.

All photometric work should be done in a darkened room, and the eyes shoukd be shielded from the direct light from the limps which are being compared. There will usually be difficulty in adjusting the photometer due to a difference in the colour of the lights. This cannot be avoided, however.
340. Verification of the Law of Inverse Squares. To do this let us use the Joly photometer (Fig. 329). Place 1 candle

Fio. 329.- If the hlocks are equally llluminated the 4 cantles are twice as far from the photometer as the single candle. at one end of a board and 4 candles at the other. Now move the photometer until the line between the paraflin blocks disalpens, and mensure its distance from the 1 candle and the 4 candles. The latter will

PHOTOMETRY

be twiee the former. Next, replace the 4 candles by 9 and adjust as before. The distance from the 9 eandles will be 3 times that from 1.

Thus if the distance is doubled the illumination is redueed to $\frac{1}{4}$, since it requires 4 times as many candles to produce equality. In the same way if the distance were n times as great we should require n^{2} eandles to produce an illumination equal to that given by the single eandle.
341. Standards of Light. By the photometer we can acemrately compare the strengths of two sourees of light, but to state definitely the illminating power of any lamp we shonld express it in terms of some fixed standard unit. We have definite standard units for measuring length, mass, time, heat, and most other quantities met with in physics; but no perfectly satisfactory standard of light has yet been devised.

The one most commonly used is the candle. The British standarl candle is made of spermaceti, weighs 6 to the pound avoirdupeis, and burns 120 grains per hour. The strength varies however with the state of the atmosphere and with the details of the manufieture of the wiek. Yet, notwithstanding this inemstaney, it is usmal to express the illumimating power of a somee in terms of the stambard candle.

A standard muelr used in seientific work is the Hefner limp

Fis. 330. - The Ilefner standarl lamp. Tlit
attachment aceurately adjusting, the height of the flami: (Fig. 330). This is a small metal spiritlamp with a cylindrieal bowl 7 cm. in diameter and 4 em. higlr. The wick-holder is a German-silver tube 8 mm . in interior diameter, 0.15 mm. thiek, and 25 mm . high. The wiek is earefully made to just fit the tule, and the height of the flame is adjusted to be 4 cm . The liqnid burned is pure amy! acetate. The lanp is very constant, and is power is given as 98 per cent. of the British candle.

QUEETIONS AND PROSLEMS

1. Distiuguish between illuminuting pover and intensity of illumination.
2. When using a Rumford photometer (Fig. 326) the distance $L_{1} b$ was foumd to be 20 inches and $L_{.} b$ was 50 inchcs. Compare the illuminating powers of L_{1} and L_{2}.
3. Two equal sources of light are placed on opposite sides of a sheet of pierer, one 12 inches and the other 20 inehcs from it. Compare the intensity of illumination of the two sides of the paper.
4. A lamp and a candle are placed 2 m . apart, and a paraftin-bluck is in aljustment between them when 42 em. from the candle. Find the candle-power of the lamp.
5. For comfort in realing the illumination of the printed page shonld he not less than 1 candle-font (i.e., 1 eandle at a distance of 1 foot). How far might one read from a 16 candle-power lamp and still have sufficient illumination?
6. A candle and a gas-flame which is four times as strong are placed 6 feet npart. There are two positions on the line joining these two sources where a sercen may be placed so that it may be equally illuminated by each source. Find these positions.

CHAPTER XXXIV

The Velocity of Light

342. Roemer's Great Discovery. Galileo constructed the telescope in 1609 and the first fruit of ite use was the diseovery that Jupiter was attended by four moons. At present we know that the planet has eight moons, but while the four first diseovered can be seen with a small telescope, the last four are very small bodies and very difticult to see.

Roemer, a young Danish astronomer, while at the Paris Observatory, made an extended series of observations on Jupiter's First Satellite; and inequalities in these observations led him to announee

Fig. 331. - Illustrating the eclipse of Jupiter's satellite. S is the sun, E the earth, J Juplter, and M its satellite. When the satellite passes in.to the shadow cast by J it cannot be seen from k. in 1675 the discovery that light travelled with a finite velocity.

In the figure (Fig. 331) let S be the sun, $K_{\mathrm{o}}^{\prime}, E^{\prime \prime}, E^{\prime \prime}, E_{\mathrm{c}}$ the earth in various positions in its orbit, J_{1}, J_{2} the planet Jupiter in two positions, and M the moon under observation. In the position $S E_{0} J_{1}$, in which the planet and the sun are on opposite sides of the earth, Jupiter is said to be in opposition, while in the position $E_{\mathrm{c}}^{\prime} S . J_{2}$ in which the planet and the sun appear to be a straight line, as seen from the earth, Jupiter is said to be in conjunction.

Every time the moon revolves alout Jupiter it plunges into its shadow and is eclipsed. Now the First Moon is neither the hargest nor the brightest, but as it makes a revolution in $42 \frac{1}{2}$ hours its motion is rapid, and the time of an eclipse can be determined with considerable accuracy.

Suppose we olserve successive ectipses near the time of opposition. We thins obtain the interval between them, and by taking multiples of this we can tabulate the times for future eelipses. Now Roemer fround that the olserved and tabulated times did not agree,--that as the earth moved to $k^{\prime \prime}, E^{\prime \prime \prime}$ and E_{c}^{\prime}, continuatly getting fartier from the planet, the observed time lagged more and more behind the tabulated time, until when at E_{c}, and Jupiter at J_{2}, the difference
bet ween the times had grown to 16 m .40 s . or 1000 seconls.* As the arth moved ronnd to opposition again the inequality disappeared and the times ohserved and talmated coincided.

Roemer explained tho peculiar olservations hy saying that at comjunction the light travels the distance $E_{1}, J_{2,}$, which is greater than the distance b_{0}^{\prime}, J_{1} travelled at opposition by the diancter of the carth's orbit, and hence the observed time at E_{6} shonld be later than the tabulated time by the time requited to travel this extra distance. Taking the diameter of the orbit to be $186,000,000$ miles, the velocity is

$$
\frac{186,000,000}{1000}=186,000 \text { miles per second. }
$$

343. Other Determinations. Roemer's explanation was not generally accepted until long after his deatly (1710). In 1727 Bradley, the Astronomer Royal of England, discovered the "aberration of light," and fully eonfirmed Roemer's results. In more recent times the velocity of light has been directly ineasured on the earth's surface. In 1862 Foucault, a French plysicist, actually measured the time taken by light to travel 40 m ., the entire experiment being performed in a single darkened room. Very accurate measurements have been made by others, especially by Michelson and Newcomb in the United States and Cornu and Perrotin in France, and the result is 299,860 kilometres or 186,330 miles per second.
344. Illustrations of Velocity of Light. The speed of light is so enormous that one can hardly appreciate it. It would travel aluout the earth $7 \frac{1}{2}$ times in a single second. The distance from the earth to the sun is $93,000,000$ miles. A celestial railway going 60 iniles an hour without stop would require 175 years to traverse this distance, but light comes from the sun to us in $8 \frac{1}{3}$ minutes! And ye ${ }^{2}$ the time taken for the light to reach us from the nearest of the lixed stars (named Alplıa Centauri) is 4.3 years. Froin Sirius, our brightest fixed star, the time is 8.6 years, while from the Pole Star it is 44 years. That star could he blotted out and we would not know of it until 44 years afterwards.
345. Velocity in Liquids and Solids. Michelson measured the velocity of light in water and in carbon bisulphide, and found it less than in air in both cases. Indeed the velocity in air is $1 \frac{1}{3}$ times that in water and 13 times that in carbon bisulphide. These results will be referred to again, when dealing with refraction. We shall find that the velocity in all transparent solids and liquids is less than in air.
[^32]
CHAPTER NXXV

Reflection of Light: Plane: Mirrors
346. The Laws of Reflection. Lett a lighted candle, placed in front of a sheet of thin plate grlass, stand on a paper

Fig. 332.-A lighted canille stands in front of a sheet of plate glase (not a mirror). Its inage is seen by the experinienter, who, with a mecond lighted candle In his hand, is reaching round behind and trying to place it 80 as to colncide in posltion with the lngage
of the first candle. (or other) scale arranged perpendicular to the surface of the glass (Fig. 332). We see an image of the candle on the other side. Now move a second candle behind the ghass until it coincides in position with the image.

On exmmining the scale it will be found that the two candles are both on the paper scale and at equal distances from the glass plate. We can state the law of heflection, then, in this way:-
If an object be placed before a plune minurn its image is as fur behind the mirror as the object is in from of it, and the line joining object and image is prepematicular to the mirror.

Thus light goes from the candle, strikes the mirror, from which it is reflected, and reaches the eye as though it came from a point as far behind the mirror as the candle is in front of it. Of course the inage is not real, that is, the light does not actually go to it and come from ii -it only appears to do so. But the deception is sometimes perfect and we take the
image for a real object. This illusion is easily prohnced if the mirror is a good one and its elges are hidden by drapes or in some other way.*

This law of reflection can be stated in another way. Let $M N$ (Fig. 333) be a section of a plane mirror. Light proceeds from A, strikes the mirror and is reflected, a portion being reeeived by the eye E. To this eye the light apprates to come from B, where $A M=M B$ and $A B$ is perpendicular to $M N$.

Consider the ray $A C$, whieh, on reflection, goes in the direetion $C F$.

In the triangles $A M C, B M C$ we

Fio. 333.- $A C$ is an in.cident ray; $C F$ the reflected ray, and $C f$; the normal to the aurface MN. Then anyle of incidence $A C P^{\prime}$ is equal to angle of reffection ${ }^{\prime}{ }^{\prime} C P$. have $A M=M B, M C$ is common to the two trinagles, and angle $A M C=$ angle $B M C$, each being a right-angle.

Hence the triangles are equal in every respect, and so the angle $A C M=$ angle $B C M$.

But angle $B C M=$ angle $F C N$, and henee the angles $A C M$ and $F C N$ are equal to each other.

From C let now $C P$ be drawn perpendieular to $M N$. It is called the normull to the surface at C. At once we see angle $A C P=$ angle $F C P$.

Now $A C$ is defined to be the incident ray, $C F$ the refleeted ray, $A C P$ the angle of incidence and $F C P$ the angle of reflection. Hence we can state our law of refleetion thus:

The angle of incidence is equal to the angle of \therefore Hection.
This statement of the law, whieh is precisely equivalent to the other, is sometimes more convenient to use.

[^33]Another law slomid tee added, manely,-
 surjiere are all in ome plater.
347. Law of Reflection in Accordance with the Wave Theory. The law of reflection, which we obtained experimentally, is just what we shonld expect if light is a

Fio. 334.- Waves on still water reflected trom a plank lying on its surface. wave-motion. Let a stone be thrown into still water. Waves, in the form of concentric circles, spread out from the place A (Fig. 3:34) where it entered the water. If a phank lies on the surface near by, the waves will strike it and be reflected from it, moving off as circular waves whose centres B are as far behind the reflecting edge as A is in front of it. In the figure the dotted circles are the reflected waves. $A M$ is an incident and $M R$ the reflected "ray."

The reflection of circular waves is well illustrated in Fig. 335, which is made from an instantaneous photorraph* of waves on the surface of mercury. The waves were produced by attaching a light "style" to one prong of a tuningfork and making it vibrate with the end just touching the surface. A triangular piece of glass lies on the surface and from it the waves are reflected, their

F1a. 335.- The circular waves on the surface of mercury spread out and are rettelled froma glass plate. (From a jhotograph.)

[^34]centres being as far behind the reflecting elge ns the somrce is in front of it.
348. Regular and Irregular Reflection. Nirrors are usmally made of polished metal or of sheet ghass with a coating of silver on the back surface. When light falls on a mirror it is reflected in a definite direction and the reflection is said to lee reguler. Reflection is also regular firon the still surfaces of water, nercury and other linjuids.

Now an unpolished smrface, such as paper, although it may appear to the eye or the hand as quite smooth, will exhihit decided inequalities when examined unter a microscope. The surface will appear somewhat as in Fig. 336, and hence the normals at the various parts of the surface will not be parallel to each other, as they are in a well-

Fio. 336. - Ncattering of light from a sough vurface. polished surface. Hence the rays when reflected will take various directions and will be scattered.

It is by menns of this scattered light that objects are made visible to us. When sumlight is reflected by a mirror into your eyes you do not see the mirror but the image of the sun formed by the mirror. Again, if a bean of sumlight in a dark romm falls on a plate of polished silver, practically the entire beam is diverted in one definite direction, and ne light is given to surromuling bodies. But if it falls on a piece of chalk the light is diffused in all directions, and the chalk can be seen. It is sometimes difficult to see the smooth surface of a pond surrounded by trees and overhung with clouds, as the eye considers only the reflected images of these oljects; but a faint breath of wind, slightly rippling the surface, reveals the water.
349. How the Eye receives the Light. An oljact $A B$ (Fig. 3:37) is placed before a phane

Fie. 387.-llow an eye sees the Image of an oljject beforen a plane unlrror. mirror $M M$, and the eyo of the obnerver is at E. Then the image $A^{\prime} B^{\prime}$ is ensily drawn. The light which reaches the eye from A will appear to come from A^{\prime}, which is the image of A and which is as far behind $M M$ as A is before it.

It is therefore by the pencil $A_{\prime} A$ that the point A is scen. In the same way the point B is seen by the small pencil $B b, E$, , and similarly for all other points of the olject.

It will be observed that when the ege is phaced where it is in the figure, the only portion of the mirror which is used is the small space bet ween a and b.

An interesting exercise for the student is to draw a figmre showing that, for a person standing before a verticnl mirror to see hinself from head to foot, the mirror need be only half his height.
350. Lateral Inversion. The image in a plane mirror is not the exact counterpart of the object prod: ${ }^{9} 9$ it. The right hand of the object becomes the left hand of the image. If a printed page is held before the mirror the letters are erect but the sides are interchanged. This effect is known as lateral inversion. By writing a word on a sheet of paper and at once pressing on it a sheet of clean blotting-paper the

Fis. 338. - Illustrating "lateral inversion" by a plane mirror. writing on the blottingpaper is inverted; but if it is hell before a mirror it is

REFLECTIONS FROM BAHALLELL MIRRORS

winvorted and becones legible. The eflect is ilhustatem in Fige 333, showing the innge in a plane mirror of the worl st'AR. It may be remarioel, therefore, that on lowking in a mi:ror we lo not 'see ourselves as others nee us.'
351. Reflections from Parallel Mirrors. Let us stand two mirrors on a table, parallel to ench other, and set a lighted cindle between them. An eye looking over the top of one mirror at the other will see a long vista of inages stretching awny behind the mirror. These are produced by successive reflections.

In Fig. 339, I and $I I$ are the mirre s ind O the candle. A_{1} is

the image of O in I, A_{2} the image of A_{1} in $I I, A_{3}$ that of A_{2} in I, and so on. Also B_{1} is the imnge of O in $I I, B_{2}$ that of B_{1} in I, B_{3} that of B_{2} in $I I$, and so on. The path of the light which profluces in the eye the third inage A_{3} is also shown. It is reflected three times, namely, at m, n and p, and from the figure it will be seen that the actual path: 0 monpe, which the light travels, is equal to the distance $A_{3} E$, from the inage to the eye.
352. Imeges in Inclined Mirrors. Let the mirrors M_{1}, M_{2} (Fig. 340) stand at right angles to each other and O be a candle hetween. There will be three imares, A being the first inage in M_{1}, B the first image in M_{2}, while C is the image of A in M_{2} or of R in M_{1}, these two coinciding.
353. The Kaleidoscope. If the

Fio. 340.-Imacges produced by $t \cdots n$ mirror phaced at right angles. mirrors are inclined at 60° the inagres will be formed at the
phaces shown in Fig. 341. They are all loented on the circumferconce of a circle having the intersere-

Fig. 341. - Images produred liy mirrors molinetl at an angle of E : 0°. tion of the mirrons as its centre, and an inspection of the fignre will show how to datw them.

The kalieidoseope is a toy consisting of a tube having in it three mirrors forming an equilateral triangle, with bits of coloured ghass between. The multiple images prodnce some very pleasing hexagomal tigures. It was invented in 1816 by Sir Jatvid Brewster and ervated a great sensation.

QUESTIONS AND PROBLEMS

1. Why is a room lighter when its walls are white than when covered with dark Iaper?
2. The sum is 30° ahove the horizon and you see its image in still water. Find the size of the angles of incilence and retlection in this case.
3. Two mirrors are inclined at 45° and a camdle is placed between them. By means of a figure show the position of the inages. Do the same for mirrors inclined at 92°.
4. Two mirrors are inelined at an angle of 60°. A ray of light travelling parallel to the first mirror strikes the second, from which it is reflected, :und, falling on the first, is reflected from it. Show that it is now moving parailel to the second mirror.
5. The object O between two mirrors standing parallel to each other (Firg. 3 B!) is 8 inches from A and 12 inches from b. Find the distimees $A_{1} B_{1}, A_{2} B_{2}, A_{3} B_{3}$.

CHAPTER XXXVI

Reflection from Curven Mibiohs

354. The Curved Mirror: used in Ontics; Definitions. The curved wirrors used \mathbf{j} mpties are gencrally serments of splus s. If the reflection is from the onter surtace of the sphere the mirror is said to be convex; if from the imer surface, concuve.

In Fig. 342 M $A N$ represents a sec-

Fio. 342.-A section of a spherical mirror. tion of a spherical mirror. C, the centre of the sphere from which the mirror is cut, is the centre of curveture, and CM, $C A$ or $C N$ is a radius of cumetur:; $M N$ is the lincter, and $M C N$ the angulur, aperture; A, the midille point of the face of the mirror is the erertex; C.A is the primeipul uxis, and $C D$, any other straight nirror line through C, is a secondury axis.
355. How to Draw the Reflected Ray. The laws of reflection hold for curved as well as for plane mirrors. Let $Q R$ (lig. 343) be a ray incident on the concave mirror at R. By joining R to C we obtain the normal at R, and by making CRS (the angle of reflection) equal to CRQ (the angle of ineidence), we have $R S$, the reflected

Fio. 314.-Reflection froun a convex nirror. ray.

In Fig. 344 is shown the construction for a convex mirror, QR being the incident and $R S$ the reflected ray.
356. Principal Focus. In tig. 345 let $Q R$ be a ray

Fit. 345.--The ray QR, barallel to the principal avis af: oll rittertion pisses through the principul focus F : parallel to the principal axis; then, making the angle $C R S=$ angle $C R Q$, we have the reflected ray RS. But since $Q R$ is parallel to d C, angry C R ($=$ angle $R^{\prime} C^{\prime} F^{\prime}$. Hence angle $F^{\prime} R C^{\prime}=$ angle $F^{\prime} C^{\prime} R$, and the sides $F^{\prime} R, F^{\prime} C^{\prime}$ are equal.
Now if R is not far from A, the vertex, $F R$ and $F A$ are nearly equal, and hence $A F^{\prime}$ is approximately equal to $F^{\prime} C^{\prime}$, i.e., the reflected ray cuts the principal axis at a point approximately midway betwere A and C :

It is evident, then, that a bean of rays parallel to the principal axis, striking the mirror near the vertex, will be converged by the concave mirror to a point F, midway between A and C. This point is

Fig. 346. - A beam of rags parallel to the principal axis passes, on rehention, through r, the princjpal focus. called the principul focus, and $A H^{\prime}$ is the focoll length of the mirrot. Denoting $A F^{\prime}$ by f^{\prime} and $A C$ ly r, we have $f=r \cdot 2$.

In the case shown in Fig. 346 the rays atually pass through F^{\prime} which is therefore called a real focus.

Rays which strike the mirror at some distance from A do not pass preeisely through F. For instance, the ray $Q . V /$ euts the axis at G; this u'rmilering from F is called aberrution, which anounts to $F G$ for this ray.

For a convex mirror the same method is followed. In Fir.

fith. :ity. - Nhowing reflection of a parallel beam from a eonsex mirror. 347 a bean parallel to the principal axis is incident near the vertex. The reflected rays diverge in such a way that if produced backwards they pass through F, the principal focus. In this case the rays do not actually $\mathrm{I}^{\text {pass }}$ through F, but only appear to come from i.

For this reason F is called a virtual focus. In the figure is atso shown a ray $Q M$, which strikes the mirror at some distance from the rertex. Upon reflection this appears to come from G, and $F G$ is the aberration.
357. Experimental Determination of the Focal Length. Hohl a concave mirror in the sun's rays or in a parallel bean from a projecting lamp, and shake chalk-lust in the air. In this way one can see how the light passes through the air, strikes the mirror, converges to a point and then spreads out again. This point is the principal focus, and by placing a picee of paper there its position can be well deternined. Its distance from the vertex is the focal length required.

If n sheet of paper with a hole cut in it is placed over the mirror so as to use only those rays which strike the mirror near its vertex, the light will converge more accurately to a point but the image will not be so bright.

For a convex mirror the method is not quite so direct. Make a round paper dise to cover the face of the mirror, and in it cut two slits at a measured distance apart (1 , Fig. 348). Use a screen like that shown (b, Fig. 348). Now let the sun's rays pass through the hole in the sereen and strike the small uncovered spots m, p, of the mirror. Then $n m$ is the incident ray, which is reflected along $m L$, and $q p$, that which is reflected along piM. There will be two Fia. 348-mingernting a method bright spots at L, M, on the back smface
 of finaing the focal length of a convex mirror. of the sereen. Move the mirror until the distance $L M=2 \mathrm{mp}$.

Now, from the fignre we see that $L F^{\prime} V$ and $L m m$ are similar triangles, and if $L . V=\because S m$, then $F N=\Omega m n=\Omega A N$, or $t .1=A N$, anl hence the focal lengch is equal to the distance of the screen from the mirror.
358. Explanation by the Wave Theory. The behaviour of curved mirrors cim be casily accomuted for by means of the

Fig. 319.-Showing how plane waves by reflection at a roncave mirror are changen to spherical waves. wave theory. In Fig. 349 ab, $a_{1} b_{1}, a_{2} b_{3}, \ldots$ represent plane wawes moving forward to the concave mirror. The waves reach the onter portions of the mirror first and are turned back, in this way being changed into spherical waves which contract, pass throngh l^{\prime} ind then expand again.

This action of a concave mirror is well illustrated in Fig. 350 from an int stant:meons photograph of ripples on the surface of mercury. The plane waves were produced by a piece of glass fastemed to one prong of a tun-ing-fork. They move forward and mect a concave reflector, by which they are changed intocirenlar waves conversing
 to the principal fia. 350.-lustantanems photorraph of waven on the surface of forens. They pass mercury: (By J. 11. Vincent.)
thourh this and then expand agrian.
Exbmelse. - Draw fur a concex mirror the figure corresponding to Fig. 349.
359. Conjugate Foci. Wr have seen that light rays moving panallel to the principal axis are bronght to a focus, real or virtual, by a spherical minror', but a focus canl be obtained as woll with light not in parallel rays. For instance, let the light divore foom P (Fig. 351) ;

Fio. 351. - Conjugate foci in a concave mirror. P and P^{\prime} are conjugate. after reflection from the concave mirror it converges to P^{\prime}.

Now it is crident that if the lightoriginated at l^{\prime}, it would be converger] by the minror to l. Each point is the image of the other and they are called conjugute foc i.

In the case shown in Fig. 351 both foci are real, since the rays which come from one actually pass through the other.

Fig. 352.-Conjugate foci in a concave reffector, one lueing virtual. It is possible, however, for one of them to be virtual. Such a case is shown in Fig. 352. Here P^{\prime} is conjugate to P, but is virtual. It will be noticed that P is between the mirror and F. Under these circminstances the conjugate focus is virtual, under all others it is real.

Exemoise. - Draw the urur's in these and in other cases of conjugate foci, taking I^{\prime} at various positions on the axis.
360. Illustrative Experiments. Into a darkened room take a concave mirror, and at the other end of the room place a lighted candle facing the mirror. The position of the inage can be found by catching it on a small screen. It will be very near the principal focus, and will be real, inverted and very small. Now carry the candle towards the mirror. The inage moves out from the mirror and increases in size, but it remains real, inverted and sinaller than the candle, until when the
candle reaches the centre of cmrvature, the imare is there also and is of the same size.

Next, bring the candle nearer the mirror ; the image moves farther and farther away, and is real, invertenl and enlarged. Whea the candle roaches a cortain place near the prineipal focus, the image will be seen on the opposite wall, inserted, and much enlangenl: bint when the camble is at the foens, the light is reflectel from the mirror in parallel rays,-the image is at intinity.

When the candle is still nearer the mirror, i i.e, between the principal focus and the vertex, the reflected rays diverge from virtual foci behind the mirror (see Fig. 352). No real image is formed, one camot receive it on a screen, but on looking into the mirror one sees a virtual, erect and magnified inage.

If the candle is hed before a convex mirror the image is always virtual, erect and smatler than the candle. A simple example of such a mirror is the outer surface of the bowl of a silver spoon.
361. To Draw the Image of an Object. Suppose $P Q$ to be a small bright object placed before a concave minror (Fig. 353).

Fig. 353. - How to locatc the image produced by a concave mirror. The light which starts out from P will, after reflection, converge to the focus conjugate to P. Again $Q C T$ is a secondary axis, and rays starting out from Q will converge to a point on $Q C T$ which is the conjugate focus of Q. P and Q are only two points of the object, but by similar reasoning we see that every point in $P Q$ has a conjugate real image. We wish to draw the real image of $P Q$.

Now wll the rays from Q after reflection pass through its inage, and it is clear that we can locate the position of this inage if we can draw any two rays which ${ }_{l}$ iss through it.

Draw a my QR, parallel to 1 'A; this will, upon reflection, pass through F^{\prime}. Also, the ray (CC will strike the mirror at right angles, and when reflected will return upon itself. The two reflected rays intersect at Q^{\prime} which is therefore the image of Q. Drawing $Q^{\prime} P^{\prime}$ perpendicular to $A C$ we obtain P^{\prime}, the image of P, and $P^{\prime} Q^{\prime}$ is the image of $P^{\prime} Q$.

It is evident that the ray $Q F$ will, after reflection, return parallel to the axis $A\left(C^{\prime}\right.$, and will, of course, also pass through Q^{\prime}.

By drawing any two of the thrice rays $Q R, Q C, Q F$ we can always find Q^{\prime}, the image of Q. It should be observed, however, that all the other rays from Q as well as those drawn will after reflection pass through Q^{\prime}.

It will be very useful to draw the image of an object in several positions. In Fig. 354 the object $P Q$ is between A and F. By drawing $Q R$, parallel to the axis, and QT, which passes through the centre of curvature, we obtain the image

Fig. 354. How to draw the image when the object is between the principal focus and the vertex. $P^{\prime} Q^{\prime}$. It is virtual and behind the mirror.

Fie. 355. -How to draw the image produced by a convex mirror.

In Fig. 355 the mirror is convex, and the image $P^{\prime} Q^{\prime}$ is virtual, erect, behind the mirror and smaller than $P Q$. It is always so in a convex mirror. and $P^{\prime} Q^{\prime}$ its image in a concave mirror (Fig. 356). The ray $Q A$, which strikes the mirror at the

362. Relative Sizes of Image and Object. Let $P^{\prime} Q$ be an objet

Fig. 356. -The size of the object $P Q$ is to that of the image $P Q^{\prime}$ as their distances from the mirror.
vertex, is reflected along $A Q^{\prime}$, and the angle $Q A P=Q^{\prime} A P^{\prime}$.

Also, the mingle $A I^{\prime}\left(Q=\right.$ angle $A I^{\prime}\left(Q^{\prime}\right.$, each loing a right angle, and henee the two triangles $A I^{\prime} Q, A I^{\prime}\left(Q^{\prime}\right.$ are similar to each other.

Ther ratio of the length of the image to that of the object is called the men! nifuction. Hence we have,

$$
\text { Magnifieation }=\frac{P^{\nu} Q^{\prime}}{P Q}=A I^{\nu}=\begin{gathered}
\text { distance of inage from mirrur }
\end{gathered} .
$$

In the case illustrated in the figure the magnitication is less thinn one.
363. The Rays by which an Eye sees the Image. In § 361 a graphical methol is given for loeating the image of an object, but the actual rays by which an eye sees the image are usually not at all those shown in the figures.

FIG. 35i.-llow the rays pass from the object to the eye. (Real image in concave mirror.)

In Figs. 357, 358, 359 are shown actual rays from points P and Q which reach the eye. In each figure the inage is supposed to have been obtained by the graphical method. The image is real and inverted in Fig. 357, virtual and erect in the other two cases.

Fig. 358.- llow the rays go from the object to the eye. (Virtual image in concave mirror.)

Fin. 359.- How the eye sees an object in a a convex mirror. (image always virtual.)

Now in each instance the light enters the eye as thongh it came from $P^{\prime} Q^{\prime}$. Join Q^{\prime} to the outer edge of the pupil of the eye, forming thus a small cone with vertex at Q^{\prime}. This cone meets the mirror at S, and it is clear that the light starts from Q, meets the mirror at S, is reflected there and then passes
through Q^{\prime} (really or virtually), and reaches the eye. In the figures are shown also mys starting out from P^{\prime}, the other eml of the object. They meet the mirror at h, where they are r llected and then received by the eye. In the same way we can draw the rays which emanate from any point in the olject.

It will be seen that for the eye in the position E, shown in the figures, the only part of the minror which is used is that spuce from R to S. The ays which fall on other parts of the mirror pass above or below ur to one side of the eye.
364. Parabolic Mirrors. In the case of a spherical mirror only those rays parallel to the axis which are incident near the vertex pass accurately through the principal focus; if the angular aperture is large the outer rays after reflection pass through points some distance from the focus (see Fig. 346). Conversely, if a source of light is placed at the principal focus, the rays after reflection will not all be accurately parallel to the axis, but the onter ones (lig. 360) will converge inward, and later on after meeting will of comse spread ont. Hence at a great distance the light will be scattered and weakened.

Fic. 360.- If a source of light is placed at the principal focus of a hemispherical inlrror the outer rays conserge and afterwards diverge again.

Now a parabolic mirror overcomes this spreading of the rays. In Fig. 361 is shown a parabola. All rays which emanate from the focus, after reflection are parallel to the axis, no matter how great the aperture is. Parabolic mirrors are used in searchlights and in locomotive

Fia. SG1.- How a parabolic reflector sends out parallel rays. headlights. If a powerful source is used a beam can be sent ont to great distances with little loss of intensity.

QUESTIONS AND PROBLEMS

1. Distingnish between a real and a virtual inage.
2. Prove that the focal length of a comox spherical mirror is equal to half its radius of curvature.
3. Show by diagrams that the inuge of a candle placed before a convex mirror can ne er be inverted.
4. Find the focus conjugate to each of the following points:
(c) the centre of curvature ;
(b) a puint on the axis at an infinite distance ;
(c) the vertex ;
(1) the principal focus.
[By means of diagrams catrefully drawn to seale solve the following three problems.]
5. An olject 5 cm . high is placed 30 cm . fiom a concave mirror of radius 20 em. Find the position and size of the image.
6. If the object is 8 cm . from the mirror, find the position and size of the image.
7. An olject 6 cm . heh is held 15 cm . in front of a convex mirror of radins 60 cm . Find the position, nature and size of the inage.

CHAPTER XXXVII

Reprameton

365. Meaning of Refraction. Suppose a my of light $P A$, (Fig. 362), travelling throngh air, to arrive at the surface of mother medinm, water for instmice. Some of the light will ber reflected, and the remainder will enter the medimm, but in doing so it will abruptly change its direction. This bending or lrreaking of its path is called refractiom.

The angle i, between the incident ray and the normal, is the angle of incidemes and the angle r, between the refracted ray and the normal, is the angle of refruction.

In the figure, the angle r is smaller than i. This always happens when the second medinm is denser than the first. The term dense, however, as used in optics is not synonymous with that used in mechanics

Fig. 362.-Illistratins refraction from air to water. ($\$ 17$). Thus oil of terpentine (sp. gr., 0.87), or olive oil (sp. gr., 0.92), is less dense than water as defined in mechanics; and yet a ray of light when passing from air into oil of turpentine or olive oil is refracted more than it is when passing into water. We say that these substances are opticully denser than water.
366. Experiments Illustrating Refraction. Place a coin $F Q$ on the bottom of an opaque vessel (Fig. 363), and then

Fio. 363.-The bottom of the ressel appeare raised up by refraction. move back until the coin is just hidden from the eye E by the side of the vessel. Let water be now poured into the vessel. The coin becomes visible again, appearing to be in the position $P^{\nu} Q^{\prime}$. The bottom of the vessel seems to have risen and the water looks shallower than it really is.

 away from the nomm, ultimately antringer the "ye an thongh
 at the surfines, and will enter the rye as thengh they came from I^{\prime}.

Another familiar illustration of wfraction is the appenance of a atick-an oar, for ex-

Fio. 364. -The stick appears broken at the surface of the water. muple-when hede ohliguely in the water (Fig. 36t). A perncil of light coming from any point on the stick, upon ennergence from the water, is refracted downwards and enters the eye as though it came from a point nearer the surface of the water. Thas the part of the stick immersed in the water appears lifted up.
367. Explanation of Refraction by Means of Waves. First, let us consider what might naturally happen when a regiment of soldiers passes from smooth ground to rough ploughed land. It is evident that the rate of marching over the rough land should be less than over the smooth. Let the rates be 3 and 4 miles an hour, respectively:

In the figure (Fig. 365) are shown the ranks of soldiers moving forward in the direction indicated by the arrows. The rank $A B$ is just reaching the boundary between the smooth and the rough lant, and the

Wha. 3ar, - 1llaxtratimir hüt a change in direction of motion may be due to change in speed. pace of the men at the end A is at once reduced. A short
 the: rongh and the rest still on thes smonth gromme. Next, it maches the penition "d, mil then the whole mank remones the pesition ('l), entirely on the rough lame. If mow it procerels in a direction at right anghes to the mank, nes shown hy the arrows, it will move off in a direction gnite different from the original one. The anceeding ranks, of conse, follow in the same manner, mod the new direction of motion is $J f 6$:

Now it is clear that the spmee P? D of smesth gromod is mareled over in the same tibe as the space Af of romgh humd, and as the rates mre 4 miles and 3 miles minour, respectively, we have

$$
\frac{B D}{A C^{\prime}}=\frac{4}{3}
$$

We have used ranks of soldiers in the illustration but waves belave very similarly. In Fig. 366 is reproduced a photograph of waves on the surface of water. These waves were produced by attaching a piece of thin glass to one prong of a timingfork and then viornting it, jnst tunching the surface. The waves move forward in the direction slown loy the arrow, but on renching the shallower water overa piece of glass lying on the bottom

Fig. 388. - Plane waves on passing into anallower water are refracted as shown by the arrow. (Photograph hy J. H. Vincent.) of the vessel, their speed is diminished ($\$ \$ 181,183$) and the wave-fronts swerve around, thus abruptly changing the direction of propagation.
368. The Laws of Refraction. In Fig. 367 GD is a ray

Fla. 367. - Diapram to explain the law of refraction. The length of $G H$ is to that of $F^{\prime} H^{\prime}$ as the veloclty in air is to that in water. incident on the surface of ghiss, $D E$ is the corresponding refracted ray, and i and r are the angles of incidence and refraction, respectively. With centre D describe a circle, cutting the incident ray at G and the refracted ray at E. $G H$ and $E F$ are perpendiculars upon $H F$, the normal to the surface at the point D.
Then the angles i and r bear a definite relation to each other. Another lay, with a different i, will give rise to a refracted ray with a different r, but the relation between the two angles will be the same as before. We wish to discover what this relation is.

Let us consider the passage of the waves from the air to the glass. $A B$ is a wave in the air just entering the glass, while $C D$ is the position of the same wave when it has just got within the glass. Remember that the rays are perpendicular to the waves. Then from $\S 367$ we have

$$
\frac{B D}{A C}=\frac{\text { Velucity in air }}{\text { Velucity in glass }}
$$

Now compare the two triangles $G H D$ and $A B D$. The angles $G H D$ and $A B D$ are equal, each being a right angle. Also, since $G I I$ is parallel to $A D$ and $G D$ meets them, the angle $H G D=$ angle $A D B$. Hence also the angle $G D H=$ angle $D A B$.

Also, the side $G D=$ side $A D$. Thus the two triangles $G H D, A B D$ are eqmal in every respect, the site GH being equal to side $B D$.

Again $A D F$ and $C D E$ are right angles, and if we take from each the angle $C D F$, which is common to both, we have imgle $A / O:=$ angle $E D F$. In the same way as before we can show that the two triangles $A D C$ and $E D F$ are equal in every respect, and that the side $A C=$ side $E F$.

$$
\text { Hence } \frac{G H}{E F}=\frac{B D}{A C}=\begin{aligned}
& \text { Velocity in air } \\
& \text { Valueity in glass }
\end{aligned}
$$

Now the ratio between the velocities is a numerical constant. It is usually denoted by the Greek letter μ (pronounced mū) and is called the index of refruction from the first medium into the second.

We find, then, that the angles of incidence and refraction are related to each other in the following way. Describe a circle having as its centre the point where the incilent ray strikes the surface of the setond medium, and let this cut the inculent and refrected rays. If now from these points of intersection perprodiculars be dropped upon the normal to the surficce, then the rutio between the lengths of these nerprodiculars is a numerical constant amd is linown us the iudrex of refruction from the first medium into the second.

This is the first Litw of Refruction. It cam be expressed much more simply by using the trigonometrical term called the sine, and is sometimes referred to as the sine law.*

The secomd Latw of Refreetion is:-The iucident ray, the refructed ray and the normal to the surface are in the same pline.
369. Table of Indices of Refraction. The following table gives the values of the indices of refraction from air into various substances. If the first mediun were a vacumm we would have the absolute index, but as the velocity of light in air differs very little from that in a vacuum the absolute indices differ very slightly from the values given here.

[^35]It must be noted, however, that the indices are not the same for lights of all colomrs, those for bine light being somewhat. greater than for red. The vahes given here are for yellow light, such as is ohtaines on bmming sordim in a Bunsen or spirit flame.

Indices or Refratition

Crown-glass....... 1.514 to 1.560	Hydrochloric acid (at 20° C.).1.411
Flint-glass. 1.608 to 1.792	Nitric acid (at $20^{\circ} \mathrm{C}$) 1.402
Rock salt. 1.544	Sulphuric acid (at $20^{\circ} \mathrm{C}$). . . 1.437
Sylvine (fotassium chloride).1.490	Oil of turpentine (at $20^{\circ} \mathrm{C}$.).1.472
Fluor spar. 1.434	Ethyl alcohol (at $20^{\circ} \mathrm{C}$) . . . 1.358
Diamond. 2.42 to 2.47	Carbon bisulphide (at $20^{\circ} \mathrm{C}$.).1.6 28
Canada balsanı1.ñ8	Witer (at $20^{\circ} \mathrm{C}$)... 1.334

370. Refraction Through a Plate. A plate is a portion of a medium bounded by two parallel planes. In Fig. $368, P Q R S$ shows the course of a ray of light

Fia. 368.-Showing the course of a ray of light through a glass through a plate of ghass. It is refracted on entering the plate and again on emerging from it. Since the nomals at Q and R are parallel, the angles made with these by $Q R$ are equal. Each of them is marked r. Then since the angles of incidence and refraction depend on the velocities of light in the two media, and if we send the light along $S R$ it will pass through by the conse $R Q P$ it is evident that the angle between $S R$ and the normal at R is equal to that between $P Q$ and the normal at Q. Each of these is marked i.

It is clear, then, that the incident ray $P(Q$ is parallel to the emergent ray RS, and therefore that the direction of the ray is not changed hy passing through the plate, though it is laterally displaced by an amount depending on the thickness of the plate.
371. Vision Through a Plate. Let P be an object placed behind a glass plate and seen by an eye E (Fig. 369). The peneil of light will be refracted as shown in the figure, $R E$, $I^{\prime} F^{\prime}$ loing parallel to $I^{\prime} Q, P S$, respeetively. The oljgeet appears to be at l^{\prime}, nearer to the eye than l^{\prime} is.

This effeet is well illustrated by laying a thiek plate of glass over a printed page. It makes the print seem nearer the eye, and the plate appears thinner than it really is.
Exercise.-Draw the waves as they pass from P to the eye.
372. Total Reflection. Up to the present we have dealt mainly with the refraction

Fig. 369.-Showing why, when viewed through class plate, an object appears nearer. of light from a medium such as air into one whieh is optically denser, sueh as water or glass. When we consider the light passing in the reverse direction we come upon a peculiar phenomenon.

Let light spreal out fism the point l, under water

Fit. 370.- $P B$ is the critical ray, and $P B n$ (which is equal to $B P m$) is the critical angle for water and air. (Fig. 370). 'The ray $P m$, which falls perpendicularly upon the surfaee, emerges as $m A$, in the same line. The rays on each side are refracted as shown in the figure, but the ray $P B$ upon refraction just skims along the surface. What beeomes of a ray such as $P C$? It cannot emerge into the air, and so it is reflected bark into the water. Moreover, sinee none of the light escapes into the air, it is totally refficted.

It is evident that all rays beyond $P B$ are totally reflected. Now the angle of incidence of the ray $P B$ is $P B n$, which
is equal to $B P M$. Hence if the angle of incidence of any ray is greater than $P B n$ it will suffer total reftection. This angle is called the critical angle which may be defined thus:-

If a rey is tracelling in reny medium in such e direction thret the emergent ruy just grazes the surface of the medium, the angle which it makes with the normal is called the critical angle.
373. Values of Critical Angles. It is evident that the denser or more refractive a medimm is, the smaller is its critical angle, and conseguently the greater will be the anount ci light totally reflected. The dianond is very refractive, and its brilliant sparkling is largely due to the great anount of total reflection within it.

The values of the critical angles for some substances are approximately as follows:-

Water.4812 ${ }^{\circ}$ Crown-glass .. $40 \frac{1}{2}^{\circ}$ Carbon Bisulphide. . 38°
Alcohol47⿺辶 $\frac{1}{2}$ Flint-glass..... $36 \frac{1}{2}$ Diamond............. $24 \frac{1}{2}$
374. Total Reflection Prisms. Let $A B C$ (Fig. 371) be a

Fig. 371.-A total. reflection priam. glass prism with well-polished faces, the angles A and B each being 45°, and C therefore 90°. If light enters as shown in the figure, the angle of incidence on the face $A B$ is 45°, which is greater than the critical angle. It will therefore be totally reflected and pass out as indicated. Another form of total-reflecting prism is shown in Fig. 372 in which the angle B is $135^{\circ}, A$ and C ench $67!^{\circ}$. The course of the light is shown. Such arrangements are the most perfect reflectors known, and are frequently used in optical instruments.

Fic. 372. - Another form of total-reflection prism.

This principle is also used in one form of the so-called 'Luxfer' prisms, two patterns of which are slown in Fig. 373. They are firmly fastened in iron frames which are let into the pavement. The sky-light enters from ahove, is reflected at the hypothenusal faces, und effectively illuminates the dark basement rooms.

Fia. 373.-'Luxfer' prisms, useful In lighting basements.
375. Colladon's Fountain of Fire. Another beautiful illustration of total reficction is seen in the

Fia. 374.-The 'fountain of fire.' The talling water seems to be on fre. angle it is totally reflected from side to side. The light imprisoned within the jet gives the water the appenrance of liquid fire. Coloured glasses may be inserted at D, and beautify the effect.
376. Atmospheric Refraction. As we ascend in the atmosphere its density gradually

F10. 375. - Showing how the atmosphere changes the apparene poaition of a heavenly body. diminishes, and hence a ray of light on passing from one layer to another must gradually change its direction. Let the observer be at A (Fig. 375), and let $A Z$ be the
direction of the plumb-line. Z is then the observer's zenith. The plane through A, at right angles to $A Z$, is the horizon. A star at Z will appear in its proper direction since the light from it strikes the atmospheric strata perpendicularly and its direction is not altered. But the light from any other star, such as $I B$, passes obliquely through the strata, and as it passes fron, the rarer to the denser, it will be curved downwards until, on arrival at A, it will appear to come from $l^{\prime \prime}$. Thus this star will seem to be nearer the zenith than it really is. For a similar reason the body S-the sun, say-though actually below the horizon, appears to be at S^{\prime}, above it. In this way the period of daylight is made, in our latitude, from four to eight minutes longer than it would be if there were no aimosphere.

In all astronomical observations of the positions of the heavenly bodies allowance must be made for this change of direction due to refraction, but it may be remarked that the change is not nearly so great as is shown in the figure.
377. Refraction Through Prisms. A prism, as used in optics, is a wedge-shaped portion of a refracting substance,

Fic. 376.-The path of light through a contained between two plane faces. The angle between the faces is called the refructing angle, and the line in whieh the faces meet is the pllye of the prism.

In figure 376 is shown a section of a prism the refracting angle A of which is 60°, and $P Q R S$ is a ray of light passing through it. The angle L between the original direction $P Q$ and the final direction $R S$ is the angle of deviation. The deviation is always aucey from the edge of the prism.

By holding a prism in the path of a bean of light from the sun or from a projecting lantern one ean easily exhibit the original and final directions of the

Fio. 377.-The ray is deviatcd more when it passes unsymmetrically through the pi ism. light, and also the angle of deviation; and by rotating the
prism it will be fond that there is one position in which this

Fin. 379. - The plane face is on the outside.

QUESTIONS AND PROBLEMS

1. If the index of refraction from air to diamond is 2.47 , what is the index from diamond to air?
2. The index of refraction from air to water is $\frac{4}{3}$, and from air to crownglass is $\frac{3}{2}$. If the velocity of light in air is $\mathbf{1 8 6 , 0 0 0}$ miles per second find the velocity in water and in crown-glass; also the index of refraction from water to crown-glass.
3. Explain the wavy appearance seen above hot bricks or rocks.
4. A lighted candle is held in the beam of a projecting lantern. Explain the smoky appearance seen on the screen above the shadow of the candle.
j. In spearing fish ono must strike lower than the apparent place of the fish. Draw a figure to explain why.
5. A strip of glass is laid over a line on a paper, (Fig. :188). When observed obliquely the line appears broken. Explain why this is so.

Fig. 378. - Why does the line appear broken?
7. The illumination of a room by daylight depends to a great extent on the amomit of skylight which can enter. Show why a plate of prism glass, having a section as shown in Fig. 379 placed in the upper portion of a window in a store on a narrow street is more effective in illuminating the store than ordinary plate-glass.
8. Light passes from air into water, with an angle of incidence of 60°. By means of a carefully drawn figure and a protractor find the angle of refraction $\left(\mu=\frac{5}{3}\right)$.
0. The critical angle of a substance is 41°. By means of a drawing determine the index of refraction.

CHAPTER XXXVIII

Lenses

378. Lenses. A lens is a portion of a transparent refracting medium bounded either by two curved surfaees or by one plane and one curved surface.

Almost withont exception the medium used is ghass and the curved surfaces are portions of spheres.
379. Kinds of Lenses. Lenses may lee divided into two classes:
(a) Convex or converging lenses, which are thicker at the
convehgisg

HIVRMGING

nucave. Plane Fic. 380.-Lenses of different types. eentre than at the elge.
(b) Concave or diverging lenses, which are thimer at the centre than at the edge.

In Fig. 380 are shown sections of different types of lenses. The concavo-convex lens is sometimes called a converging meniscus, mul the convexo-coneave a diverging meniscus. A meniscus is a crescent-shaped body.
380. Principal Axis. The principal axis is the straight line joining the centres of the spherieal surfaces bounding the lens, or if one surface is plane, it is the straight line drawn through the eentre of the sphere and perpendicular to the plane surface.
381. Action of a Lens. Let a peneil of rays parallel to the principal asis fall upon a convex lens (Fig. 381). That ray whieh passes along the prineipal axis meets the surfaces at right angles, and hence passes throngh without snffering any deviation. But all other rays are bent from their original paths, the deviation

Fic. 381.-Parallel rays converged to the principal locus \boldsymbol{F}. being grenter as we approach the edge. The result is, the 330
rays are converged approximately to a point F^{\prime} on the principal axis. This point is called the principel foceos, and in the case shown in the figure, since the rays actually pass through the point, it is a real focus.

A parallel beam, after passing through a coneave lone (Fig. 382) is spread out in sueh a way that the rays

Fin. 382.-In a diverxing the principal focus F 'is virtual. "llperer to come from F, which is the principel focus and which, in this case, is evidently virtucl.
382. Focal Length and Power of a Lens. The forel longth of a lens is tha distance from the principal focus to the lens, or more aceurately, to the centre of the lens.

The more strongly converging or diverging a lens is, the shorter is its focal length and the greater is its power. Hence if f is the focal length and P the power of a lens, we have

$$
P=\frac{1}{f} .
$$

If a lens has a focal length of 1 metre its power is said to lee 1 dioptre; if the focal length is $\frac{1}{2}$ metre the power is 2 dioptres; and so on. Conversely, let us suppose a lens to have a power of 2.5 dioptres, we must have

$$
\text { Focal length, } f=\frac{1}{2.5} \mathrm{~m} .=40 \mathrm{~cm} .
$$

In preseribing speetaeles the oculist usually states in dioptres the powers of the lenses required.
383. Experimental Determination of Focal Length. By holding varions lenses in sumlight or in a parallel beam from a projecting lantern, and shaking chalk-dust in the air, the nature of a lens can easily be observed.

If it is convex the principal focus is casily found by moving ${ }^{\text {a }}$ paper, or a gromid-glass sereen, baek and forth in the light until the brightest and smallest image is found. Then simply measure the distance from it to the lenis.

As the focus of a concave lens is virtual the determination of its focal length is not so simple, but it may be found in the following way, which is similar to that used for a convex nirror (§357).

Make two slits m, p in a cireular dise (1, Fig. 383) of paper

Fin. 383.-Finding the focal length of a concave lens. just large enough to cover the lens. Muisten the paper, stick it on the lens, and allow parallel rays to fall on the lens. Now move a screell back and forth until the two bright spots L, M, made by the light passing through the slits, are just twiee as far apart as the slits in the paper dise; that is, $L M=2 \mathrm{mp}$, and $L N=2 \mathrm{~mA}$.
Then the distance of the screen from the lens is equal to the focal length.

From the figure it is cvident that $L F^{\prime} N$ and $m F^{\prime} A$ are similar triangles, the former lanving just twice the linear dimensions of the latter. Hence $F N=2 F A$, and therefore $F A$ or $f=A N$.

This is not a very good method; a better one is deseribed in the next section.*
384. Combinations of Lenses. Since the action of a convex lens is opposite to that of a coneave lens, one converging white the other diverges the light, if we call one powitive we should eall the other negretive. Let us take the convex lens to be positive.

Consider two converging lenses of focal lengthe f_{1}, f_{2} and powers P_{1}, P_{2}^{\prime}. Then $P_{1}=$ ${ }_{f_{1}}^{1}, P_{2}=\frac{1}{f_{2}}$. Let us put them elose together (Fig. 384). Then

Fid. 381.-Combination of two converging lenses. the eonvergency produced by the first is inereased by the

[^36]sucoml, and the power of the combinution is $P_{1}+P_{5}$ The final lemgth of the eombination will be $\frac{1}{P_{1}+P_{2}}$.

Next, consider the combined action of n convex and a (onleave lens (Fig. 385). Let the numerien values of the powers be $P_{1} P_{2}$. I'hen, since the concave lens diverges, while the convex converges, the power of the combination is $P_{1}-P_{2}$,

Fio. 385.-Combination of a converging and a diversturg lens. and the focial length of the combination is $\frac{1}{P_{1}-P_{2}}$.

From this result we can deduce a method for finding the fucal length of a concove lens.

First, find the focil length of a convex lens; let it be f_{1}. Then place the conenve lens beside the convex one and find the focnl length of the combination; let it be f. Then if f_{2} is the focal length of the concave lens, we have
$f_{1}^{1}=P_{1}$, the power of the convex lens,
$\frac{1}{f_{2}}=P_{2}$, the power of the concave lens (numerically),
$\frac{1}{j}=P$, the power of the combination.
Now $P=F_{1}-P_{2}$,
that is, $\frac{1}{f}=\frac{1}{f_{1}}-\frac{1}{f_{3}}$ and therefore $\frac{1}{f_{2}}=\frac{1}{f_{1}}-\frac{1}{f}$.
In order to use this method the convex lens should be considerahly more powerful than the concave one.
For example, let the focal length of the convex lens be 20 cm ., and that of the combination be 60 cm .

$$
\text { Then } \frac{1}{f_{2}}=\frac{1}{20}-\frac{1}{d 0}=\frac{1}{3 v} \text { and } f_{2}=30 \mathrm{~cm} \text {. }
$$

385. Conjugate Foci. (a) Converging Lens. If the light is moving parallel to the principal axis and falls upon a convex lens it is converged to the principal focus (Fig. 381). Next, let it emanate
from a peint P, on the principal axis (Fig. Bsfi). 'The homs mow comverge it to the peint $P^{\prime \prime}$, also on the principal axis and farther from the lane than b.

Agnin, lat ans comsider the direction of the light an reversed, that is, let it start from $l^{\prime \prime}$ and pass throngh the lens. It is wident that it will now converge to P. Hence P^{\prime} and l^{2} are two points such that light coming from one is comverged by the lens to the other. Such pairs of points are called comju!gete finci, as in the canse of curved mirroms.

As P is taknomen mene lens its congingate focus P^{\prime} moves farther firm it. If P^{\prime} is at r^{\prime}, the principal focns, the mys leave the lens parallel to the principal axis (Fig. 387), and when P is closer to the lens than F^{\prime} (Fig. 388) the lems

Fio. 387.-Liwht emanating from the principal focun comes from the lens in parallel raye.

F'u, 3s8.-Here ip the focus conjugate to flis virtial.
converges the rays somewhat and they move off apparently from $P^{\prime \prime}$ which in this case is a virtual foems.
(b) Diverging Lens. In the cane of a diverging lens, if the incident light is parallel to the principal axis it leaves the lens diverging from the principal focus F^{\prime} (Fig. 382). Let the light

start from the point P (Figs. 389, 390). The light is made still more divergent by the lens, and on emergence from it
appear e to move off from I^{ν} which is conjugate to P^{\prime} mad is virtual.
386. Explanation by Means of Waves. The theory t light consists of waves easily accounts for the action of lenses, us suppose that waves of light travelling through the air pass through. a glans lens.

In Fig. 391 plane waves (parallel rays) fall on the lens. Now their velocity in glass is only $\frac{2}{3}$ that in air, and that part of the waves

Wis. 301. -Plane waves mole spherical by a converging lena. which passes through the central part of the convex lens will be delayed behind that which traverses the lens near its edge, and the result is, the waves are concave on emerging from the lens. They continue moving onward, continually contracting, until they pass through F, the principal focus, and then they enlarge.

In Fig. 392 spherical waves spread out from P. On traversing the central portions they are held back by the thicker part of the

Fro. 302, - Wares expanding from P are changed by the lens into contracting spherical waves.
lens, and on emerging they are concave, but they do not converge as rapidly as in the first case.

In Fig. 393 is shown the effect of

Fig. 393. - Waves going out from P are made more curved by the lens, and appear to have I^{\prime} as their centre. a concave lens. The outer portions of the lens being thicker than the central, retard the waves most, with the result that the convexity of the waves is increased, so that they move off having P^{\prime} as their centre.

These results are further illusrated in a striking and beautiful manner by using an air lens in an 'atmosphere' of water. Such a lens can be constructed without difficulty by cementing two 'watcl-glasses' into a turned wooden

LeNses.

or ebonite rim. In Fig. $39+$ is shown a louble-concave lens inmersed

Fio. 394,- A concave air lens in an atmosphere of water converye the ligh. in water contained in a tank with $\mu^{\text {late ghass sides. }}$

Plane waves from a lantern pass int,l the water, and on entering the lous the onter portions, since they hravel in the air, rush forward ahead of the centrial part, thus rendering the waves concave and converging to a focus F. Thus a concave air lens in water is converging ; in a similar way it can be shown that a convex air lens in a water atmosphere is diverging.
387. Experimental Illustrations. The relative pusitions of object and image can be easily exhibited experimentally, in a way similar to that used in the case of curved mirrors ($\$ 360$).

First place a comex lens on the talde, and as far from it ans possible set a candle. Then by moving a sheet of paper back and forth bohind the lens the small bright inage is found. Examine it closely and you will see that it is inverted.

Now bring the candle slowly up towards the lens, at the same time moving the screen so as to keep the image on it. We find that the image gradually moves away from the lens, continually inereasing in size as it does so.

At a certain place the image is of the same size as the object, but inverted. By measurement we find that each is twice the focal length from the lens.

Bring the candle still nearer to the lens. The image retreats, and when the candle is at the principal focus the image is at an infinite distance,the rays leave the lens parallel to the principal axis.

Finally, hold the candle between the principal focus

Fhg. 3ut. -An optical bench, for studying object and image. and the lens; no real image is formed (Fig. 388).

For making measurements of the distances of object mad mare foo the lens the most comoniont armament is an optical bench, one form of whee! is show in Fig. 395.

On using a concave loans we cannot obtain a real image of the object. If we view the candle through a concave hans we always see an erect image smaller than the candle, apparently between the lens and the candle. It is always virtual (see Figs. 389, 390).
388. How to Locate the Image. Lat $I^{\prime} Q$ (Fig. 396) he an object placed before a convex lens A. The position of the image call be very easily located in the follow-

Fig. 33t, - towing how to locate the inmate of $P Q$. ing way.

From Q draw a ray parallel to the principal axis; on emerging from the lens i. ill pass through F, the principal focus. Again, the ray $Q A$ which passes through the centre of the lens is not changer l in direction. Lat it meet the former ray in Q '. 'Then Q^{\prime} will he the point on the image corvespending to Q on the object. Draw $Q^{\prime} P^{\prime}$, perpendicular to the principal axis. This is the image of $Q P$. Also, the ray $Q F^{*}$, which passes through the principal facies on the nearer side, will, after passing through the lens, proceed parallel to the principal axis and will pass though Q^{\prime}.

Fig. 397 .- How to draw the image when the object is letween the lens and the principal focus.
'The position of Q ' can always be located by drawing two of these three rays.

In Fig. 397 is shown the case in which the object is between the lens and the principal focus. The rays drawn parallel to the axis and through the centre of the lens do mot meat after passing
through the lens, but on proheing them back wards they inter-

Fut. ill3.- How to draw ilve intayc in a concave letis. sect at Q^{\prime}. $Q^{\prime} l^{\prime}$ is the image of $Q P$. It is virtnal, erect and harger than the objeet.

For a concave lens we have the construction shown in Fig. 398. The inage is virtnal, erect and simaller than the object.
389. Magnification. On examining Figs. 396-8, it will be seen that the triangles $Q . A P^{\prime}, Q^{\prime} A I^{\nu}$ are similar, and as before ($\$ 362$) calling the ratio of the length of the inage to that of the ohject the mugnification, we have

Magnification $=\frac{P^{\prime} Q}{P Q}=\frac{A T^{\nu}}{A P^{P}}=\frac{\text { distance of imnge from lens. }}{\text { distance of olject from lens. }}$.
390. Visicn Through a Lens. In § 383 is explained a methoul of tinding the position of an image prohnced by a lens but it shonld be remombered that this is simply a geometrieal constrnction and that the rays shown there are usually not those by whieh the eye sees the image. Let us draw the rays which actually enter the eye.

In Fig. $399 P^{\prime} Q^{\prime}$ is the (real) image of $P Q$, and E is the eye. From Q^{\prime} draw rays to fill the pupil of the eye. Then produce these back wards

Fio. 380. - Showing the rays by which the eye sees the image of an to mert the lens and finally join them to Q. Thins we obtain the pencil by which Q is seen. In the same way we trace the

Fig. 400. - The rays reach the eje by the paths shown. light from P to the eye.

In Fig. $400 P^{\prime} Q^{\prime}$ is virtual, but the construction is the same as before. The student should draw other cases. The method is similar to that explainel for curvel mirrors ($\$ 363$).

391. Another Refraction Phenomenon. In Chap. XXXVII we have explaned various phenomena of refraction, but there is one,-a very important one, too,-which we have not disenssed at all. When white light passes obliquely from one medinm into another of different refractive power, the light is found, in the second medium, to be split up into parts which are of different colours. This separation or sprenuling out of the constituents of a bem of light is called dinpersion.
392. Newton's Experiment. Newton was the first to examine in a really scientific way the dispersion produced by a prism, and Fig. 401 illustrates his methorl of experimenting. He admitted sunlight through in hole in a window-shutter, and phaced a flass prism in the path of the beam. On the opposite wall, $18 \frac{1}{2}$ feet from the prism, he observed an oblong inage, which haul parallel sides and semi-circular ends, $2 \frac{1}{8}$ inches

Fic. 401. - Lisht enters through a hole in the window-shutter, passes through a prism and is received on the opposite wall. wide and $10 \frac{1}{4}$ inches long. 'That end of the image farthest from the origimal direction of the light was violet, the other end red.

This image Newton ealled the spectrum. On careful inspection he thought he could recognize seven distinct colours, which he named in order:-red, orange, yellow, green, bhe, inligo, violet.

It should be noted, howerer, that there are not seven separate colomed banls with detimitoly marked dividing lines betwern them. 'Ihe aljoining colons bland into each other, and it is impossible to saly where one embls and the next treqins. Very often indigo is omitted from the list of coloms, as not being distinct fron: blae and violet.

From Newton's experiment we ennclade:-
(1) That white light is not simple hint compensite, that it incholes constitnents of many colomes.
 light therongh a prism.
(3) That lights which differ in colome diffio also in thegrees of refrangilility, violet being wefacterl most and real least.

It will now be understons w!, $\mathfrak{i n} \S 369$, when giving the indices of refraction for vimions substances, it was mecessury to specify t:, what colonr the values referred.
393. A Pure Spectrum. It is often inconvenient to use smaght for this experiment,

Fio. 402.-Showing how to proluce a pure spectrum. and we may sulstitnte for it the light from a projeeting lantern.

A suitable armanement is illustrated in Fig. 402. The light emerges from a narow vertical slit in the nozale of the lantern, and then passes tirough a converging lins, so placed that an image of the slit is prolhced as far away as is the sereen on which we wish to have the spectim. Then a prism is placed in the path, and the spectrom appeass oll the sereen.

The spectrum thas produced is perer than that obtained by Newton's simple method. Imagine the round hole used by Newton to be divided up into narrow strips parallel to the alge of the prism. Each strip will produce a spectrum of its own, but the successive spectra overlap, and hence the colour proluced at any place is a mixture of adjacent spectral colours. Thons to obtain a pure spectrum, that is, one in which the colours are not mixtures of several colours, we repuire a narrow slit as our source. In addition, the lens must be used to focus the inage of the slit on the screen, and the prism should lee placed in the position of minimum deviation ($\$ 377$).
394. Colours of Natural Objects. Let us produce the spectrum on the screen by means of the projecting lamp; we ohtain all the colours as in a, Fig. 403. Next place over the slit a red glass; the bean now trinsmitted consists numinly of red light, a little orange perhaps

Fig. 403.-A red glase tranomite only red and nome orange. being present (b, Fig. 403). The glass does not owe its colour to the introduction of anything into the spectrum which did not previously exist there, but simply because it absorbs or suppresses all bat the red and a little orange. We obtain similar results with green, yellow, or other colours. It is to be noted, however, that scarcely any of the transmitted colours are pure. Several colours will usually be found present, the predominating one giving its colour to the glass.

Next loold a bit of red paper or ribbon in different portions of the spectrum. In the red it appears of its natural colour, but in every other portion it looks black. This tells us that a red object appears red becanse it absorbs the light of all other coloms, reflecting or scattering only the red. In order to proluce this absorption and seattering, however, the light must penctrate some distance into the object; it is not a simple surface effect. Similarly with green, or blue, or violet
riblons, but, as in the case of the coloured glass, the colours will usually be far from pure. Thus a blue ribbon will orlinarily reflect some of the violet and the green, though it will probably appear quite black in the red light.

Let us think for a moment what happens when sunlight falls on various natural ohjects. The rose and the poppy appear red because they reflect mainly red light, absorbing the more refrangible colonrs of the spectrum. Leaves and grass appear green because they contain a green colouring matter (chlorophyll) which is able largely to absorb the red, blue and violet, the sum of the remainder being a somewhat yellowish green. A lily appenrs white because it reflects all the component colours of white light. When illuminated by red light it appears red; by blue, bluc.

A striking way to exhibit this absorption effect is by using a strong sodium flame in a well-darkened room. This light is of a pure yellow, and borlies of all other colours appear black. The flesli tints are entirely absent from the face and hands, which, on this account, present a ghastly appearance.

We see, then, that the colour which a body exhibits depends not only on the nature of the body itself, but also upon the nature of the light by which it is seen.

At sunrise and sunset the sun and the bright clouds near it take on gorgeous red and golden tints. These are due chiefly to absorption. At such times the sun's rays, in order to reach us, have to traverse a greater thickness of the earth's atmosphere than they do when the sun is overhead (compare Fig. 375), and the shorter light-waves, which form the blue end of the spectrum, are more absorked than the red and yellow, which tints therefore predominate.

In § 19.5 rofnomee was mude to the stupendous volcanic eruption at Krakaton in 1883. For many weeks after this the atmosphere was filled with dust, and sunsets of extraordinary magniticence were observed all over the world.

Somewhat similar absorption effects are produced in the neighbourhood of great forest fires, the ashes from which are conveyed by winds over considerable areas.
395. Recomposition of White Light. We have considered the decomposition of white light into its constituents; let us now explain several ways of performing the reverse operation of recombining the various spectrum colours in order to obtain white light.
(1) If two similar prisms be placed as shown in Fig. 404, the second prism simply reverses the action of the first and restores white light. The two prisms, indeed, act like a thick plate (§ 370).

Fia. 404.-The second prism counteracts the first.
(2) By means of a large convex lens, preferably a cylindrical one (a tall beaker filled with water answers well), the light dispersed by the prism may be converged and united again. The image, when properly focussed, will be white.
(3) Next, we may allow the dispersed light to fall upon several suatl plane mir-

Fig. 405.-The light alter passing through the priem falle on epveral mmall mirrors which reflect it to one place on the screen. rors, and then by adjusting these properly the various colours may be reflected to one place on the screen, which then appears white (Fig. 405).

In place of the several small mirrors we may mivantageously use a single strip of thin plate glass (German mirror), say 2 feet long by 4 inches wide. First, hold this in the path of the dispersed light so as to reflect it
mon the opposite wall of the room. Then, by taking hold of the two cuds of the strip, gently bend it until it becomes eoncave enough to converge the varions coloured rays to a spot on the sercen.
(4) In all the above cases the coloured lights are mixed together ontside the eye. Each colour gives rise to a colonrsensation, and a methorl will now be explained whereby the various colonr-sensations are combined within the cye. The most consenient method is by means of Newton's dise, which consists of a cirenlar dise of cardbonrd on which are pasted sectors of coloured paper, the tints and sizes of the sectors being chosen so as to correspond as nearly as possible to the coloured bands of the spectrum.

Now put the dise on a whirling machine (Fig. 406) and set

Fis, t/ki, - Newtolis dies on a rotating marhine. it in rapid rotation. It appears white, or whitish-gray. This is explained as follows:-

Luminous impressions on the retina do not vanish instantly when the source which exeites the sensation is removed. The average dhration of the impression is $\frac{1}{10}$ second, but it varies with different people and with the intensity of the impression. If one looks closely at an incandescent electric lamp for some time, and then eloses his eycs, the impression will stay for some time, perhiplsi a minute. With an intense light it will last longer still.

If a live eral on the emb of a stick is whirled abont, it appears as a hminous circle; and the bright streak in the sky prohecerl by a "slusting star" or by a rising rocket is due to this persistence of hmumons impressions. In the sanne way, we camot deteet the in liwidnal spokes of a rapidly rotating wheel, but if illuminated by im electric spark we see them
distinetly. The duration of the spark is so short that the wheel does not move appreeiably while it is illuminated.

Jn the faniliar "moving pietures" the intervals between the snecessive pietures are about $-\frac{1}{-1}$ - seoond, and the continuity of the motion is perfect.

If then the dise is rotated with sufficient rapidity the impression proxluced by one colonr does not vanish before those prollaced by other eolours are received on the sane portion of the retina. In this way the impressions from all colonrs are present on the retina at the same tine, and they make the dise appear of a miform whitish-gray. This gray is a mixture of white and blatek, no colour being present, and the stronger the light falling on the dise the more nearly does it appronch pure white.
396. Complementary Colours. Let us cut out of black carlboard a dise of the shape shown in Fig. 407, and fasten it on the axis of the whirling machine over the Newton's dise so that it just hides the red sectors. On rotating, the colours which are exposed produce a hluish-green. It is evident, then, that this colour and red when added together will give white. Any two colours which by their uniom proluce white light are

Fic. 407.-Dieo to put over Newton's dine to cut outany desired colour. relled complementery. From the way it was produced we know that this blue-green is not a pure colour, but the eye cannot distinguish it from a blue-green of the same tint chosen from a pure spectrum. By covering over other colours of the Newton's dise we can obtain other complementary pairs. A few of these pairs are given in the following talble:-

Comilqmetary Coloura

Red	Orange Green-blue	Yellow	Green-yellow	Green
Bluish-green	Blue	Violet	Purple	

In Fig. 408 these nee urrmiged ninat n circle. Note that

Fio. 406. - The radially npymile colnurn are complementary. the complament of green is pmple, which is mot n simple spectinl colour lout n compomed of red annl viold.
397. Mixture of Pigments. On rotuting a dise with jellow mad blue sectors,* ам indicated in Fig. 409, we oltain white. On the other hand, if we mix togrther yellow ind blne pigments we get a green pighent. Wherein is the diffirnee? It arises from the fact that the mixing of eolomed lights is a true allitiom of the sepurate effrets, while in mixing pigments there is a sulternetion or chaonplion of the constituents of the light whieh falls on them.

Ordinarily bhe puint absorbs the red and the

Fio. 409.-A complementary colour disc. yellow from the incident light, reflecting the blue and wome of the ndjucent colomrs, mumbly green and violet. Yollow paint absorbs all bat the yellow and some red and green. Honce When yellow and has puints are mised the only colomed constituent of the incident light which is not nbsorbed is green, and so the resulting effect is green.

Thus mixing pigments and mixing eolours are processes entirely unlike in nature, and we should not le surprised if the results prodneed are quite dissimilnt. Indeed the result obtained on mixing two pigments does not even suggest whit will happen when two colomred lights of the same name are alded together.
398. Achromatic Lenses. The focal lenglh of a lens depends on the index of refraction of the material from which the lens is made, and as the index varies with the wave-length, or the colomr, the foral length is not the same for all colonrs.

As the violet rays are refracted more than the recl, the focal length for violet is shorter than for rerl. Thins, in Fig. 410, the

[^37]violet rays come to a focus at V while the red comverge to R, the fred for the other colours lying between V and $R 1$. A somon hell at A will show circular patch of light enged with rol, while if at B it will show a patch erlged with violet. This inability to converge all the constituents of a lean of white light to a single point is a serious lefect in single lenses,

Fin. 41n.- The fori for wiolet and real raye are fuite meparated. and is known as chromatic aberration.

Thus there is no single point to which all the light converges, and in determining the principal focus it is usual to find the forcus for the yellow rays, which are brightest.

Newton endervoured to devise a combination of lenses which would be free from chronntic aberration, lat he fuiled. He concluded that if a second lens coun:aracted the dispersion of the first it would also colloternct its re-

Pio. 411.-An achromatic comilination of lenses. fraction or lembling of the rays, in which case the two lenses would not act as a lens any longer. In this he wasmistnken, however. In 1757 Dollond, a London optician, discovered a combination of lenses which was free from chromatic aberration. The arrangement is shown in Fig. 411. Flint-glass is more dispersive than crown-glass, and a crownglass converging lens is connbined with a flint-glass diverging lens of less power. The crown-glass lens wonld converge the red rays to R and the violet to V, while the flint-glass then diverges both of these so that they come together at F.

Such compound lenses are said to be arhromatic. They are used in the construction of all telescopes and microscopes. In the

Fis. 412-A pection of an apmehromatic microscope olyjective made ly \%eiss. moderil microscope olbjective, howower, the simple combination of two lenses dows not sutfice to give an image perfectly free from all defects, and many wher. combinations are used. In some high-power objectives there are as many as ten single lenses, made of various kinds of glass and having surfaces of various curvatures. (Fig. 412.)
399. The Rainbow. In the rainlnow we hawe a selar apeetrum on a grant seale. It is prowheed through the refruetion and disper-

P10. 418. - Illustrating how the rainbow is produced. sjoul of sualight by rail-drups. Ill orrler to seo it the observer nust lenk towards falling rain, with the suli InChind hill and not inowe than 49° almoe the horizons. Frepuenitly tivo la,ws are visible, tho frimary low nud the seco hery low. The fot.. r is violet on the inside mind red on theontside; while in the secomilary low which is larger and fainter, theorilor of the colours is reversed. Both lrows are ares of circles having a common centre ((C, Fig. 413), which is on the line which passes through the sim and the eye of the ohserver.

A line drawn from the cye to the primary low makes un angle of alnout 41° with this line, while a line to the secondary low makes an angle of about 50° with it.

In Fig. 413 is shown the relative gositions of the sun, the raindrops mat the ol-

Fig. 414. -Showing how the light inaters to forin the primary lrow. server, while in Figs. 414,415 is shown the manner in which the sun's rays pass through the drops. For the primary bow the rays are refracted

Fis. 415.-Showing how the light paners to form the wecondary (outer) bow. into the drop at A (Fig. 414), reflected at R, and refracted out at C. For the secondary, the light enturs at A (lig. 415), is reflected first at B and then at C and is refracted out at D.*
400. The Spectroscope. In §393 a methorl was explained for projereting a pure speretrmu upou the sererin. This cmin be dome when the somere: is very bright (such as the sme, the arclanup or the lime-light), but for a faint light the metherl is not praticable. It is necessary to remive the light, after disper-

[^38]sion, direetly into the are, which is mavellomsly sensitive. or oll a photographic plate.

The simplest methox of all is illustrated in liy. +1fi, in which S^{\prime} is a slit ${ }^{\prime} \sigma$ or $\mathbf{u}^{\prime} \sigma$ ineh wide in a shect of metal, and whehind it is phaced L the moures of light to be examined. This maty be a Bunsen or aleohol tlmme (which are themselves colourless), in which mubstances are burnt, or my other comvenient mource. The experimenter then stames at a distmen. of 10 feet or mone from the slit and olswerves it throngh a prism

 the slit to the prism in a narow parallif 1 :an mind how lins of the eye focusses it upon the retina.

Fiu. 11s - A horizontal rection of a single-prismi apectroscope.
If a small telescope is placed betwren the prism and the eye, and foenssed on the slit, the spectron will be seen to lnetter advantage.

But the most satisfictory methorl is to use a spectroscope, which is an instrment especially designeal to examine the spectra of virions sonrees. A simple form is ilhstrated in Fig. 417 and a sectional plan is given in Fig. 418. The tube
($:$ Known as the collinator, has a slit S at one end and a lens I at the other: The slit is at the forens of the lens, so that the light cmorging from the tulse is a parallel bean. It then pmise a thongh the prism I^{\prime}, and is receiven in a telescope I', the: heris O of which foensses the spectom in the phane cels. It is lhen viewerl hy the eyr-piece E :

The light to be examined is pheed before N. Usmally a thicil talne R, is aldeal. This has a small transparent seale m at one emid and a hens at the other. A hamp is phared before the seahe, and the light pusses through the tule, is refleeted from a face of the pism and then enters the telescope, an imige of the sarale leing prohlaced at als, above the spectrom. By whring to this seateany pecentiarities of the spectrmo the light which is moder examimation con be leantized or identitied.
401. Direct-vision Spectroscope. By using three prisms, one of thint and two of erown-ghass (fig. 419), it is possible to

Fib. 119.-A ilirent 1 ision mpeciroscope. gret rid of the deviation of the middle rays: of the speetrum while still dispersing the colours. Such a combination is userl in pocket *pretroseopes. The slit \mathbb{S}^{\prime} mbints the light and a conver lens combers the light into a purallel heman, which, after traversing the prisus, is seen hy the eye at E. One tule can be shil wer the other in orter to fecus the slit for the eye.
402. Kinds of Spectra By means of omr spectroscope let ns investignte the nature of the spectra given by varions sources of light.

First, take an electric light. It gives a continums coloured band, extending from real to violet withont a break. A gas-flame, an wil lanp on the lime-light gives a prevely similar spectrom.

Nixt, place a colourless Bumsen or aledol Hants lefore the slit, and in it lmon some salt of smplima, (chloride or earbomate of sislime. fur instance). The flane is now bright yellow, and the spectrum shown in the spectroscope :s a single bright yellow line.* Using

[^39]strontinm nitrate the flame is criason, nad the spectrua consists of several red nud orange lines and a blue one. The salts of hariunn, putassium and other metuls give similar results, each however with its own partiendar arrangement of lines.

Again, place an electric lamp before the slit of the instrument, and then letween it and the slit place a vessel with plateglass sides containing a dilute solution of permanganate of potasil. The spectrum is now continuous except that it is crossel by tine dark lxands in the green. Using a dilute solntion of human blood we get a continuous spectrum except for well-markel dark bands in the yellow and the green.

After long experimenting on light sources of various kinds we have been led to divide spectra into three classes:-
(1) Continuous Spectra. In these there is present light of every shade of colour from the red to the violet, with nogaps whatever in the lsum. Such spectrn are obtained frounall white-hot solids or liquids (molten metain for instance), and from gases under great pressure. The flame of gas or of a candle gives a continuous spectrum. 'This is due to the white-hot purticles of carbon present. These may be collected by holding a piece of culd glass or porcelain over the tlame.
(2) Discontinuous or Bright-line Spectra. These consist of bright lines on a dark background, and are given by glowing vapours and by gases under smaller pressure. The gas is generally enclosed in a glass tube such as is shown in Fig. 4:0, the pressure being a few millimetres of merchry, and the tulse being rendered lnuinous by an induction coil (s)
(3) Absorption or Dark-line Spectra. These are just the reverse of those in class 2 . Usually all the colours are present but the continuity is broken by dark bunds, sometimes marrow and well-lefined, at other times wide and diffuse. The background is bright and the distinctive lines or lands across it are dark. Sitch spectra are giveil by the sum, the moon, the planets and lyy the stars.
403. Spectrum Analysis. Nuw each element, when in the form of a vapour, hisw its own peculiar spectrme, the arrangement of the bright lines in no iwo spectra leing exactly alike. Hence by means of

8in. 430. - A lule for holding a sas to lue exumined by the epertro. sope. its spertran the presence of a substance can be recognized. If several elenents are present their spectra will all he shown and the elements can be thus recognized. This method of detecting
the presence of an element is known as spectram analysis. It is an extremely sensitive methox of malysis. Thus the presence of inn
 is suthicient to show the lines chancteristic of these elements. This methol enables the chemist to apply a delicate test for the presence of a substance, and by it the astronomer has wonderfally extended our knowledge of the niture and the motions of the heavinly lexlies.
804. The Solar Spectrum. In 1802, Wollastom, a Iandon physician, while examining the sunlight by means of it prism, observed four dark lines across its spectrum. Some years later, Fraunhofer, a scientific optician of Munich, nsing a prism and telescope* (the second methoil described in $\S 400$), discusered not

Fic. 421. - Showing some of the 'dark lines' in the speotrum of suniligh). just four lout a multitude of dark lines. With great care and skill he mapped over 500 of these dark lines, maming the chief ones after the first letters of the alphabet, A, a, H, (i, D, L', b, F, CH, I/ (Fig. 421); Jut they are often ealled Frannhofer's lines. They always have the sime position in the spectrum, and are conveniant 'landmarks' from which to make measurements.

Thus we see that the solar spectrom is all absorption spectrum, the dark lines being numerous nad tine. Photographs lave revealed the existence of at least 20,000 of these lines.
405. The Meaning of the Dark Lines. It wis long folt that the interprotation of these dark lines was a matter of great import. ance, amil the mystery was at hast solved in 1859 ly kirchholl.

In the oringe-yollow of the solar spection is a prominent dark line,-or rather a pair of limes vory chase tugether,-maned D by Fraunhofer. Now sonlinm vapour shows two fine bright yellow lines, which, by refermee to the seales of our spectroseope, we see co.incide in position with tho solar D dark lines. Indeed, by means of a small lotal-reflection prism wilh which the slitend of the spret roscrpe is usually supplied, it is possible to olserve the spectrum of the sun and of semliun vapom at the sume time, one spectrum Isiug abose tho othor, and ly this arangement the coincidence in prition is sern to lre exact. From this result we would at onee sinspect that the D lines in the sun mast have sone eonmeetion with uxlime.

[^40]Just what this connection is nay be shown in the following way. First place before the slit of the spectroscope in intense source of light, such as the are or the lime-light. This gives a continums spectrum with no dark lines at ill. Now, while observing this, introduce letween the intense sonme and the slit a Bunsen flame full of sexliuni vapour. This mdition of yellow light we woukt niturally expect to make the yellow prition of our spectruni more intense, but that is not what happens at all! On the contrary, we see two dark nbsorption lines in precisely the position where the Iright sodium lines are proluced. By sercening off the intense source the bright sodiun lines are seen.

A simple methol of performing this experiment is shown in Fig. 40.2. Here the origin of the light is an me hamp. In order to obtain solium rapomr one end of it wire is made into n ring, about which msestos wick is wripped, whilo the other end is eoniled so as to fit over a linnsen burner. The ashestos is dipperl in a strong solution of common sialt and allowed tudry. When placed in position on the hurner it givesinstrong yellow flane. Metalic sodiunr burned on a platinum sponn in the thane gives an even intenser yellow flame. The ege is placed behind it simple directvision spectroscope (\$401).

We thus see that when light from an intense source passes trough the (conler) soxlium vipour thow: riys are absorbed by the -apour which it, itself, anits. The rest of the continuous spectrum is unaffected by the suxlimm ripmor.

We conclude that the dark D lines in the sum's spectrmin are che to the fact thint the light which winld nuturally appear

Fin. 42:. - Limpt from the are lanp passes thronkh endinne
 Mpectros ope. A dark hanal fin the fellow is seen. whre they are has been absorbed hy sodimu vapour, and it once we obtain evidence of the constitution of the sun.

The inner portion of the sun is intensely hot and mulonhtedly emis light of all colums or wave-lengths, which would proulnce a profaty combinuous spectrum. On coming thromgh the vapours of denonts which are in the solare atmosplere the light is rohbed of some of its constituents, and the absence of these is shown by the darklines. Thus we believe sodinn: to exist in the sun's ntmosphere.

If comparing the pesitions of the dark sutre lines with tho pusit ons of bright limes obtained by vapmizing varions substances
in our laboratories, it has been shown that sorlimm, iron, calcium, hydrogen, silver, titanium and alnout 30 more elements with which we are acquainted certainly "xist in the sun. Others will probally be recognizen. In the case of the gas helimin the onder of its discovery was resersed. For many years a momarkably intense line in the spectrum of the outer portion (the chmomosphere) of the sma had leeen observed, and as it did not correspond to any known substance on the earth it was provisionally said to lee due to heliam, which manss "solar substance."* In legat, however, the chemist Ramsay discovered the long-sought substance in a rare mineral called cloveite.
The dark lines in the spectra of the mona and the planets are the same as those in the smm, shosing that these luplies shine by retlected sunlight. In recent times the spectroscope has been applied to the stars. These are self-luminems behlies like our sun, and many terrestrial sulstances have leen recognized in them. Thus the spectroseope reverals a wonderful mity in the entire miverse. It is lelievel, also, that we can trace in the spectra of the stans tho course of their formation, development and decay,-in other words, their life-history.
406. Effect of Motion of the Radiating Body. As explained in $\$ 235$, if a body which is eluitting waves of any kind is in motion towards or away from the observer the wave-length of the radiation is thereby shortened or lengthened.

Now light is a wave-motion. Hence if n star is appronching is the lines in its spectrum will appear to le displaced towards the Mue end; if it is receding from us the lines are displaced towads the red end. The actual displacements of the lines measured on he photographs of the star's spectrum are extremely small, but by ntilizing espercially mapted instruments, and exercising great are the motions of many of the stan's relative to our solar system lave heen determined with considerable aceuracy, For instance it has been found that the pole star is approaching us at the rate of 16 niles per second, while Capella is receding from us at 15 miles per seond.

Many other wonderful results have been deduced througl the same principle. Camplell, of the Lick Olservatory (on Mt. Hamilton, California), has shown that our entire solar systm is moving through space, ahnost towards the bright star Vega, t the rate of about 12 miles per seconal. It may be remarked, hoever, that though we move at this great rate continually towards the star we shall require 310,000 years to make the journey thither. \dagger

[^41]
QUESTIONs AND PROBLEMS

1. A riblan purchased in daylight apmared blue, but when seen by gas-light it looked greenish. Explain this.
2. One piece of glass appears dark red and another dark green. On hohling them together you camot see through them at all. Why is this?
:i. Where would you low for a ranbow in the evening? At what time call one nee the longest bow? Wher what circumstances could one see the low as a complete circle?
3. Au achromatic lens is eomposed of a converging lens of foral length 10 cm . and a diverging lens of foeal length 10 cm . What is the focal length of the combination? (\$: 884.)
4. On ohserving the spectrmon of sondimm vapour in a spectroseope two fine lines are seen close together. What will be the effect of widening the slit?

CHAPTER NI.

OIMTCAI. INsimentents

407. The Eye. The most important as well as the most womlerful of optical instruments is the homan eye. In form it is

Fio. 4U3, - lloriminal serion of a right eye. A.ll ueous humour: li.s., yellow ypot F3.G., Hlilul ypot. almost spherical (Fig. 4:3). The lomy onter covrring the "white of the eyr," is callerl the arlerotic coat. The frome prortion of this protrudess like n wateh face and is called the corrert. Within the selerotic is the chorouid cont, and within this, again, is the retirice.

The portion of the choroid coat visible throngh the comen is called the iris. This forms ath oparge circular diaphrarm, which is variously colonerd in ditheront eyes. The aperture in it is called the propil, and the size of the pupil alters involuntarily wsuit * unount of light which entors the eye. When the light is fectole pupil is large. On passing frome darkmess inte a brilliantly-d shed romen the eye is at lirst davalen, but the pupil sonn contrats and keops out the excessive supply of light.
lehend th pupil is the doubleconvex crystalline lons. The radii
 rompertively: hat hey meins of the museless attiched to the ealge of
 can be changed at will.

The portion of the age between the lens and the comen is filled
 lens and the retima is a transparent jelly like sulstance calleal the ritreous hemour.

The retinn is a semitmasparent metwork of merve-fiberes formed by the sprembing out of the tommation of the optice nerver Neme the centre of the retinat is anmall momel deprescion known as the gellone spot, and vision is most distinct if the innage of the object
lowked at is formed at this places. When ome desires to see an

 apot, which is the place where the optie merve enters the cye. This - junt is insonsitive to light.

The existence of this blind sput ean emsily be shown experi-
 to the riglit of it make it circle O. Now cower the loft cye, and while leoking intently on the X, vany the distance of the pinker from the eye. At a cornin distance (7 or 8 inches) from tho eve the 0 will he invisible, while at a greator or less distamed it will be sern. It Ineonues invisible when its iname falls on the blind spot, the imange of the X bring kije on the yollow spot all the time.
408. The Image on the Reting. The cye us a whole acts like a romverging lens. It forms ont the retinn an inverted real image of the whonet lware it. The fact that it is inverted can be shown in the following way.

Sowh at the sky through n pin-liole in a visiting card lochl alout an incll from the eye, and then lowl a pin-luend lextween the eye mul the smali illumimated nperture mad as mear to the eye as pmaible (Fig. 4: f). It is clear that in this cnse the imatge* on the retinn is arect, and gat it seems to be invorterl. This slows that the brain recognizes as the lighest pirt of an oljeet that which gives rise th the lowest part of the imnge on the retina.

Fin. 421 - ilow to show that the inagre on the relina is inverted.
409. Accommodation. The eye when at rest is aljusted so that parallel ruys entering it ure focussed on the retina, that is , it is inljusted for viewing distant ohjects. Uulor these circumstances light from an object near at hamd would be lyought to a focus
 Hose at hand wo involuntarily nltor the comature of the surfareschicily the forwnot surfine of the crystalline lens, making it more comvex, so that the innage is bronght ingen the retimn nud wo see it distinctly. This alteration of the converging pwor of the eye th adapt itself for near or distant olijects is knowit as accommoration.

[^42]In order to see an oliject distinctly wo mathrally lring it mear th the cye. As it appromhes, our vision of it improses matil it gets within a cortain distamere, athl then we have to strain the ryo to sic it clearly, and when it gets ton elose the imane is hhrrent. The shortost distances from the eye at which rlistiant vision can $\mathrm{l}_{\text {g }}$ ohtained without st mining the eye is known as tho lenst distame of givelure rixion. This rlixtance for persmens of nommal vision is from 25 to 30 cill. (10 to 12 inchess).

The magnifying power of an optioal instrument. depremels on this quantite, and in calculating the magnifirntion it is taken as 05 cm. or 10 inehes, althongh as n matter of fact it is quito variable with different ryes.
410. Why we have Two Eyes. Tlu imnges of a solill object, formed on the retinas of the two ryes, are not itentionl. (n) account of the distance betwren the eyes the right eye cith see somewhint more of the right side of an ohject thin is visilile to the left eyc. I'hus we ohtain an iclea of the depth of the ohject.

The effect of depth or solidity to a picture is given by the stereoseope. 'Two photographis, taken from slightly ditierent proints of view, nre

Fro. 425, -The alercoscope. mounted side by sirle, and are then viewel in the sterooscope. In this instrument there are two portions of a convex lens, or a kiul of prismatic lens, placed with the edges towarl each othor (Fig. 4:51).
Einch leas gives an cularged view of the picture, as in the simple microscope ($\$ 414$), and the instrument is aljusted until theso are proluced on corresponding portions of the retinas of the two eyes. Uuler these circumstances they are seen as one, with the sane effect as is ohtained with the two eyes. The picture is no longer a flat lifeless thing, hut the various olpeets in it stand ont in relief.
411. Defects of the Eyes. A prison puissessing normal vision can ser distimetly ohjeres at all distanos varying from 8 or 10 inches up tu intinity. lhut, ns we woll know, there are many eyes with defects, the chiof uf which arre shart-sighterluess, Imeng-sighterduese, and nstiymmetisu.

A short-sighterl rye cantut see olijects at any consideralule distance from the aye. The imare of an object mear nt hand is prodnced on the retim, Int the eye rannot accommanate itself for one farther off. In such a case the image is formed in front of the retina, and to the
uhervor it appears hhrred. In a short-sighted rye the lens is ton strongly convargent, and in oriley to rempily this we minst nse spretarles prohneing the opposite eflinet, that is having diverging lenses.

A lomgesighed eyc, in its presive comblition, brings parallel rays of light to a forus twhind tho retima. Such an eve ran merommintate itsolf for distant oljoerts, bringing the imnge forwad to the retina; but for nenr oljects its puwar of necommonlation is mot sumiciont. In this rase the rrystalline fons is uot conrerging allomsh, nall in order tonsuist it spectuelous

Fin. 496. - In a mivor-mighted eye parallel rase converge to a p minat herfore the relina; in a longesighled eye, lebihint live prlina. with converging lemses should he nsed. As a person grows older there is nsmally a loss of the prower of necommorintion, and tho eyo becomes long-sighted, remuiring the nse of converging spertaches. In Fig. 406, F^{\prime} is the position of the foens for parallel rays in a normal eye, $b_{\text {, for a short- }}$ fin sighted und F_{2} for a loug-sighted rye. 'Ihese distancers from the retina are graatly exngigated in the dingran for the sake of clininess.

The defect known as astigmatisin is dine to a lack of symmetry in the surfees of the cormeanal the loms, hat principally in the former. Orlinarily these are spliericnl, lont sometimes

Fi6. 48\%. - Iliagram for tenting for astigma. tism. the curvature is groater in olle plane than in others. If a diagranl, as shown in Fig. 418, he drawn about one foot in diameter and viewed from a distance of alsout 15 feet an astignatic rye will see some of the rulii distinctly, while those in a perpenticular direction will be hlurrel. In most enses the vertical section of the conea of an astigmatic eye is more curved thann a horizontal seetion. The proper spectacles to nse are those in whieh one surfare of the lens is n part of a cylinder insteal of n splieme.
412. The Photographic Camera. The pin-lole camern was lescribed in $\$ 333$.

This would lo quite satisfactory for taking photograplis, exerptifor the fact that, as the pin-lole is very small, little light cin get through it and so the time of expesine is long. This serinus defect is overcome hy making the hole larger nnd putting in it a converging lens. The greater the nperture of this lens is, provided the focal length is not increased, the shorter the exposure required.

In Fig. 128 is illustrated an ordinary calm. In the tula A is the lens, sum e at the other end of the apparatus is a framer comtainilig n piece of grounill gloss. ley mex ins

Fin. 42R, - A photographic riviera. of the bellows /i this is mosel lack amur! forth until the score to In e photogronphert is sharply focussed en the ground glass. Then \because lowlier containing a sensitive plate or film is insinterl in front of the froe C, the senslimn! surface taking exactly the position previously occupied lis the ground surface of the glass.

The exposure is thill male, that is, light is ulnitionl through the lens to the sensitive plater, after which, in a lark refill, the plate is removal from its holder, developed mol pixel.

Only in the cheapest cameras is a single convex lens used, a "omblination of two lenses laving omblinarily found. If we wish to secure n picture which is perfectly focussed all over the plate, and tu have a fry short exposure, wo must use one of the moklerin objectives, which have lx em bought to a high degree of efficiency. I section of ono of these is shown in Fin. 429 , in which it will be seen there are four separate lenses combineal. Others contain even more lenses, and as those are made from special! kinds of

Foo. 4×3. Pelion of a Revive "T Tumar " photo. graphic objective. The light enters in the direcLIon shown by the arrow. hons atli have surfaces with specially compouted curvatures, they are expensive. (ireat effort and marvellous ingenuity lave been expended in pronlucing the extremely compact and efficient cameras now sol familiar to us.
413. The Projection Lantern. In Fig. 430 is shown a vertical suction of 14 projecting lantern. Its two essential parts are the source of light A mull the propering lens, on sol of lenses, II.

The sore

Fin. 4:3n. Diagram illuatrnturg the action of a projection lantern. should be as intense an possible. [Why ? In the figure it
is an electric are lmap, but the lime-light (is eypinder of lime manle white-lat by the oxy-layilrogen thame), an acetylene jet or a strong oil linnp many be used. The light diverging from the sonnce is directed by mems of the so-called comelenaing lensw B upou the ohject C which we wish to exhibit on the wereen E. This objeet is usmally a plotugrapla on ghass, and is known as Ω luntern slide.

In \boldsymbol{a} tulne is 1) the projecting lens. By moving this nemrer the slife or farther from it a real and mach enturged inage of the pieture on the slide in profluced on the sereen. The slite mul the serven are conjugate foci ($\$ \$ 385,388$). As the image on the sereen is arect, mud wince the projecting lens inverts the inage, it is evident that the slide C must be placed in its carrier with the pieture on it upside down.
414. The simple Microscope or Magnifying Glass. In orler to sec an oljeet well, that is, to recognize details of it, we bring it near to the eye, but wo linve lemoned (\$ 409) that when it gits within a certain distance the innge is blarred. By placing a single comvex lens before the eye (which is equivalent to moking the eye shart-sighted) we are emmbel to briag the oljeret quite close to the eye and still lave the image of it on the retime distinct.

How this is done is slewn in Fig. 431. (See also Figs. 396400.) The olgect $I^{\prime}(Q$ is pheed within the priseipul foens F. The image $l^{\prime \prime}$ is virtual, erect aud enlarged (see Fig. 397). The lens is moved back mul forth until the inage is formsed, in which case the image is at the least distance of dis-

Fia. 431.- Illusirailing the action of the simple mileromerne. tinct vision from the eye. The magnitication is greatent when the eye is close to the leus.

(ANSI and ISO TEST CHART No. 2)

APPLIE \square IMAGE Inc

Ros3 East Main Street
Rochester, New Yark 14609 USA
(716) $482-0300-$ Phone
(716) $288-5989-$ Fax

415. Magnifying Power of Simple Microscope. Let us find the magnification. The apparent size of an object is determined hy the size of the angle subtended

Fıa. 432. -The magnifiration is the ratio of $p q$ to $P Q$. at the rye by the olject. Con. sider the eye to coincide in position with the lens. Then in Fig. 43: the angle subtended at the eye by the olject $P^{\prime}()$ is $I^{\prime}(O)$, that subtended by the image $p q$ is $p O q$. These angles ars identical and at first sight we might think there was no magnification. It must be noted, however, that if we were looking at $I^{\prime}(Q$ directly, without using the lens, we would place it at $l^{\prime} Q$, at the same distance from O as $\eta \eta$, and the angle then subtended at the eye is $P^{\prime} O{ }^{\prime}$ '.

Hence magnification $=\frac{\text { angle } \eta^{\prime \prime} \eta_{\eta}}{\text { angle } P^{\prime \prime}\left(O Q^{\prime}\right.}=\stackrel{M q}{P^{\prime} Q^{\prime}}$ (approx. $)=\stackrel{\eta^{\prime \prime} q}{P Q_{q}}$.
Now $O P Q$ and $O_{P M}$ are similar triangles, and $O C, O E$ are perpendiculars from 0 upon corresponding sides $P(Q, p q$.

$$
\text { Hence } \frac{P q}{P Q}=\frac{O F}{O U}
$$

Again $P Q$ is always placed neat the principal focus of the lens, and if f is its focal length, $O C^{\prime}=f$ approximately. Also putting $O E=\Delta$, the least distance of distinct vision, we hine

$$
\text { Magnification }=\frac{\Delta}{f}
$$

For example, if focal length $=1 \mathrm{~cm}$. and $\Delta=25 \mathrm{~cm}$, then magnification $=25 \div 1=25$.

It might be noted that since P, the power of a lens, is inversely proportional to its focal length (S 3s?)

$$
\text { Magnification }=\Delta \times r
$$

The smaller the focal length the greater is the power and also the magnification. The grentest magnification, however, which can be olstained is about 100 .
416. The Compound Microscope. For higher magnifications we must use a combination of comvex lenses known as a componnd microscope. In its simplest form it consists of two lenses, the objective and the eyepiece, the action of which is illustrated in Fig. 433.

The object $P Q$ is placed at A, before the objective O and just beyond its principal focus. Thas a real enlarged inverted image $I^{\prime} Q^{\prime}$ is proluced at B, and the eyepiece E is so placed that $I^{\prime} Q^{\prime}$ is

Fig. 4:3.-Diagram iiiustrating the compound microscope.
just within its focal length. The eyepiece E then acts as a simple microseope inagnifying $P^{\prime} Q^{\prime}$. It forms an enlarged virtual image $p q$ at the distance of distinct vision from the eye. This distance is approximately the length L of the microscope tule.

We see, then, that the objective and the eyepiece both magnify the object, and the total magnification is obtained by componuding (i.e., multiplying) these two magnifications.

The magnification produced by the objective

$$
=\frac{P^{\prime} Q^{\prime}}{P Q}, \text { which }=\frac{R O}{A O}(\text { see } \& 389) .
$$

Now $A O=F$, the focal length of objective, approximately,
and $B O=L$, the length of the mieroseope tube, approximately.

$$
\text { Hence } \frac{P^{\prime} Q^{\prime}}{P^{\prime} Q}=\frac{L}{F} \text {, approximately. }
$$

Also, if $f=$ focal length of eyepicee (in cm.),
Magnifiention by eyepiece $=\frac{25}{f}$ (3,415)
and total magnifiention $=\frac{L}{F} \times \frac{2 \pi}{f}-\frac{25 L}{F f}$.
417. The Astronomical Telescope. The arrangement of the lenses in the astronomical telescope is the same in principle as in the compound microscope. In the case of the latter, however, the object to be observed is near at hand and we can place it near the
ohjertive. Cinter these circumstances a lens of short focal length is best to use.

But the objects viewed by the teleseope are far away, and we

Fig. 434. - Showing why the objective of an astronomical telescope should have a long focus. must use an oljective with as great a focal length as possible. The reason for this will be evident from Fig. 434. Let $A C$ be a ray from the upper part of the object looked at, passing through the centre C of the oljjective O.

Now the image of an object at a great distance is formed at the principal forns. If then F_{1} is the principal focus $P_{1} Q_{1}$ is the inage, and if P_{2} is the principal focus $P_{2} Q_{2}$ is the image. It is clear that $P_{2} Q_{2}$ is greater than $P_{1} Q_{1}$, and indeed that the size varies directly as the focal length. Hence the greater the focal length of the objective the lirger will be the image produced by it.

Further, since the celestial bodies (except the sunt are very faint, the diameter of the objective should be linge, in orter to collect as much light from the body as possible.

A diagram illustating the action of the teleseope is given in Fig. 435. The objective forms theimageat its principal focus B, that is U / B $=\boldsymbol{F}$, its focal length. This is further magni-

FIG. 435.- The astronomical telescope. fied by the eyepiece E, which forms the image at $m q . B$ is just within the principal focus of the eyepiece, and so $O E$, the distance between objective and eyepiece, is approximately equal to $\vec{r}+j$ the sum of their focal lengths.

The magnification produced by the telescope is equal to r^{\prime} / f, tlongh we canmot here delluce this formula.*

In the great telescope of the Lick Ohservatory the dianeter of the objective is 36 inches and its foesal length is 57 feet. On using an eyppiere of focal length $\frac{1}{2}$ inch the haguifeation is $\mathbf{1 3 6 8}$. The Thameter of the Yorkes teleserpe (belonging to the University of (hicaur() is 40 inches and its focal length is 62 feet.

[^43]418. Objectives and Eyepieces. In telescopes the objective usually consists of an achronatic pair of lenses as shown in Fig. 411, the lenses being sometimes cemented together, at others times separated a small distance. Some objectives are now made up of three lenses. The oljective of the microscope is frequently a complicated system of lenses (Fig. 412).

There are two chief types of eycpieces, known as positive and negative. The simplest example of the form. is that devised ly Ramsden. It consists of two plano-convex lenses of equal focal

Ramsden

Kellner

Monocentric

Orthoscopic

Fig. 436.-Some mociarn eyepieces.
length and $\frac{2}{3}$ of that length apart. Other more modern eyepieces are shown in Fig. 436. These are used in telescopes when we wish to make measurements, such as the space between two stars or the diameter of a planet. They can be used as simple microscopes, as the principal focus is outside the lenses.

The Huygens eyepiece has two plano-convex

Fia. 437.-The Huygens еуеріесе. lanses (Fig. 437), the one next the eye having a focal length $\frac{1}{3}$ that of the other, and the distance between being twice the focal length of the shorter. This eyepiece is ordinarily found in microscopes, and it cannot be used as a simple microscope.
419. The Opera Glass. The opera glass has a convex lens for oljective and a concave lens for eyepiece (Fig. 438). Light from

Fig. 438.-A section of the ordinary opera glass. the object passes through the It was devised by this great man, and with it he discovered the first four satellites of Jupiter (1610), and also Saturn's Ring.

Ordinary opera or field-glasses consist of two Galilean telescopes, one for each eye. Such telescopes are simple in construction, of
convenient length and give an image riglt-side-up, but their field of view is not very great and they are not very serviceable for high nagnitication.
420. Terrestrial Telescope. When an ordinary telescope is to be used for terrestrial purposes it is inconvenient to have the inage inverted, anl to overcome this an "erecting eyepiece" is employed. This contains, in addition to the ordinary eyepicee, two lenses of equal foeal length phaced so that they simply erect the image without otherwise altering it. Such an eyepiece also increases the field of view.
421. The Prism Binocular. In recent years there has come into use the prism binocular, which combines the eompact form of the Galilean telescope with the wide field of view of the terrestrial telescope.

Its construction is illustrated in Figs. 439 and 440. The former shows the appearance of the instrument, white the latter shows the optical arrangement. The lenses are precisely the sane as in an astronomical telescope, but the compactness is obtained by using two reflection prisms. The light traverses the length of the instrument three times, which reduces the necessary length, while the reflections from the faces of the prisms erect the image. The field of view is from 7 to 10 times as great as with ordinary field-glasses of the same power.

Fig. 43\%.-The prism binocuiar.

Fiu. 440.-Showing the path of the light.

The use of prisms was devised by Porro about 60 years ago, lut on account of difticulties in their manufacture they did not come into use until quite recently.

In the form shown in Fig. 439, that made by Zeiss, a further advantage is in the enhanced stereoscopic power. It will be seen that the distance between the objectives is about 13 times as great as between the eyepieces, and hence the stereoscopic power is multiplied that many times

PART VIII-ELECTRICITY AND MAGNETISM

CHAPTER XLI
 Magnetism

422. Natural Magnets. In virrions comntries these is found an ore of iron which possenses the remarkable power of attracting shatl bits of iron. Sjucinems of this ore are knowi as metural magnets. This name is derived from Magnesia, a town of Lydia, Asia Minor, in the vicinity of which the ore is supposed to have been abundant. Its modern name is mugnetite. It is composed of iron and oxygen, the chemical formula for it being $\mathrm{Fe}_{3} \mathrm{O}_{4}$.

If dipped in iron filings many will cling to it, and if it is suspended by an untwisted

Fig. 441.-Iron filings clinging to a natural maynet. fibre it will cone to rest in a definite position, thus indicating a certain direction. On account of this it is known also as a lorlestone, (i.e., leading-stone) Fig. 441.
423. Artificial Magnets. If a piece of steel is stroked over a natural magnet it becones itself a magnet. There are, however, other and more convenient methods of magnetizing pieces of steel ($\$ 502$), and as steel magnets are much more powerful and mre convenient to handle than natural ones, they are always used in experimental work.

Permanent steel magnets are asually of the bar, the horse-

Fig. 44:-Liar-magnets.

Fie. 443.-A horse shoe magnet. shoe or the compass neodle shape, as illustrated in Figs. 442, $443,444$.
424. Poles of a Magnet. Iron filings when scattered over a bar-magnet are seen to adhere to it in tufts near the ends,
none, or sarcely any, being fomm at the middle (Fig. 445).
 to be concentrated in certain places near the ends; these places are called the peles of the magnet, and

Fio. 445. -The filings cling mostly at the poles.
Fig. 44t.-A compass-needle magnet.
astraight line joining them is callerl the aris of the magnet. If the magnet is suspended so that it can turn freely in a horizontal plane (Fig. 444) this axis will asmme a definite north-and-south direction, in what is known as the maynetic meridiun, which is usmally not far from the geographical meridian. That end of the magnet which points north is called the morth-seeliing, or simply the N-pole, the other the southsceking or S-pole.
425. Magnetic Attraction and Repulsion. Let us bring the S-pole of a bar-magnet near to the N-pole of a compatss needle (Fig. 446). There is an attraction between them. If we present the sallue pole to the S-pole of the needle, it is repelled. Reversing the ends of the magnet, we find that its N-pole now attracts the

Fig. 446. -The S-pole of one magnet attracts the N-pole of another. S-pole of the needle but repels the N-pole.

We thus obtain the law:-Like mugnetic poles repel, unlike attruct euch other.

This experiment can be repented with very simple means. Magnetize two sewing-needles by rubbing them, always in the same direction, against one pole of a magnet. Then thrust them into corks floating on the surface of water. On pashing one over near the other, the attractions and repulsions will be beautifully shown.

It is to be ohserved that ummanetized iron or sted will be attracted by bofle ends of a magnet. It is only when both bonlies are magnetized that we cin obtain repulsion.
426. Magnetic Substancer. A magnetic sulnstance is one which is attranted by a marget. Iron and steel are the only substances which exhibit magnetic effects in a marked manner. Nickel and cobalt are also magnetic, but in a much smaller degree. In recent years Hensler, a German physicist, has discovered a remarkable serius of alloys possessing magnetic properties. They are componed of mangannse (about 25 per cent.), almminium (from 3 to 15 per cent.) and copper. These sulbstances taken singly we non-magnetic, bont when melted together are able casily to atfict the magnetic needle.

On the other hand, bismuth, mimony and some other substances are actually repelled by a magnet. These are said to be diamugnetic substances, but their action on a manget is very weak. For all practical purposes iron and steel may be considered to be the only magnetic substances.
427. Induced Magnetism. If a piece of iron rod, or a nail,* be held near one pole of a strong magnet, it becomes itself a maynet, as is seen by its power to. attract iron filings or small

Fig. 447.-A nall if held uear a magnet heconne itself a magnet by lnduction. tacks placed neir its lower end (Fig. 447). If the naii be allowed to touch the pole of the magnet, it will be held there.

Fig. 448. - A chain of masnets by in. ductlon. A second nail may be suspended from the lower end of this one, a third from the second, and so on. (Fig. 448.) On removing the magnet, however, the chain of nails falls to pieces.

We thus see that a piece of iron becomes a temporary magnet when it is brought near one pole of a permanent steel magnet. Its polarity can be tested in the following way:-

[^44]Suspemla bit of soft-iron (it namow strip of timed-iron is very suitabler), and place the $N_{\text {-pole of a }}$ bar-magnet metre it
 the curl 1 of the strip, finthest from the

tilu. 449.-Polarity of induced maknetism. tirst magnet. It iswerflerl, showing that it is a A-pole. Next hring the S-pule of the secomd magnet slowly towards the amb of the strip. hipmlsion is matin observed. This shown, as we shonded expeet from the law of manetic att raction amb repulsion ($\$ 425$), that the induced pole is opposite in kinl to that of the permanent magnet aljacent to it.
428. Retentive Power. The bits of iron in Figs. 447, 448, 449, retain their magnetism only when they are near the magnet; when it is removed, their polarity disippears.

If hard-steel is nsed instemd of soft-iron, the steel also becomes magneti\%ed, but not as strongly as the iron. Howerer, if the magnet is removed the steel will still retain some of its magnetism. It has become a promonent magnet.

Thans steel offers great resistance both to being made a magnet and to losing its magnetisho.. It is said to have great irtentice pumer.

On the other hand, soft-iron has small retentive power: When placed near a magnet, it becomes a stronger magnet than a piece of steed wonkl, but it parts, with its magnctism quite as casily as it gets it.
429. Field of Force about a Magnet. The spate ahomt a magnet, in any part of which the force from the magnet can be detected, is called its muy.urtic jiell.

One way to explore the field is by means of a small compass needle. Place a bar-magnet on a sheet of paper and slowly move a small compass meedle abment it. The action of the two poles of the magnet on the proles of the needle will camse the latter to set itself at varions points along lines which in-

Fig. 450.- Positlon assumed by a needle near a bar-magnet. dicate the direction of the force from the magnet. These
curves rum from one pale to the other. In Fig. 4:50 is shown the direction of the nealle at several points, as well as a line of force extmoling from one pole to the other.

Another way to map the fied is by means of iron tilings. This is wery simple and very dftective. Place a shaet of piperro owr the nagnet, anl sift from a mustin bag iron tilings evenly and thinly over it. 'lap the paper gently. Each little bit of iron becomes a magnet by induction, and tappingr the paper assists them to arrange themselves along the magnetic lines of force. Fig. 451 exhibits the field about a bar-magnet,

Fig. 45l. - Field of lorce ol a har magnet. while Fig. 452 shows it about similar poles of two bar-magnets

Fic. 452. - Field of force of two unlike poles. standing on end.

The nagnetic force, as we have seen, is greatest in the neighbourhood of t pules and here the curs. shown by the filingare closest together Thus the direction the curves indicat the direction of t. lines of force, atid their closeness together at any point indicates the strength of the magnetic force there.

There are several ways of making these filings figures permannit. Some photergraphic presess gives the best resmites, but a comsenient way is to proxhace the tignres on paper which has bern dipped in mottel parallin, and then to hent the peper. The filinge sink into the was and are held timely in it wen it cools down.
430. Properties of Lines of Force. The lines of force belonging to a manet are com-

F14. 453. The lines of force run (rom the $N \cdot$ pole through the silurounding medium to the s pole, and thell through the magnet back to the starthug polut. sidered to begin at the N-pole, pass through the surrounding space, enter at the St -pile and then comtinue through the magnet to the N-pole agnin (Fig. 453). Thus ench line of foree is a closed curve. It is evident, nlso, that if we conld detach a N-pole from a magnet and place it on any line of force, at A for instance, it would move along that line of fonce until it would come to the sipole.

Great use is male of the conception of lines of force in computations in magnetism and electricity, for exmmple, in designing dynamos. This methex of dealing with the subject was intronluced by Firraday about 1830.
431. Magnetic Shielding. Most substances when placed in a magnetic fieltl make no apprecable change in the force, lont there is one pronounced exception to this, namely iron.

Place a bar-magnet with one

Midiakl faraday (1791-1867). Bord and lived in london. The greates: of experinent: 1 scientists. Ills discoveries form the basis of all our applicationg of electricity. pole about 10 cm . from a large compass needle (Fig. 454).

Pull aside the needle and lit it go. It will continne vibrating fore some time. Cinnt the number of vibrations per minute. Then purh the marnet up mutil it is 6 em. from the needle, and agrin time the vibrations. They

Fu. 434.-Arrangement for tetting magnetic shleiding. will be found to lie mueh faster. Next, put the magnet 3 cm . from the needle; the vibrations will be still more rupid. Thus, the stronger the force of the magnet on the needle, the faster are the vibrations.

Now while the magnet is 3 cm . from the needle place between then a boarrl, a shect of ghass or of brass, and determine the period of the needle. No change will be observed. Next, insert a plate of iron. The vibrations will be much slower, thus showing that the iron has shieded the needle from the force of the magnet.

The lines of force upon entering the iron simply spread thronghont it, meeting less resistance in doing so than in moving out into the air ugnin. A space surromded by a thick shell of iron is effectually protected from external magnetic force.
432. Magnetic Permeability. The lines of force pass more easily tirongh iron than through air. Thus iron has greater permeralility than nir, and the softer the iron is the greater is its permeability. Hence when a piece of iron is placed in a magnetic field, many of the lines of force are drawn together and pass through the irou. This explains why soft-iron becomes a stronger magnet by induction than does hard-steel.
433. Each Molecule a Magnet. On magnetizing a knitting needle or a piece of clock-spring (Fig. 4.55) it exhibits a pole at eneh end, but no magnetic effects at the centre. Now break it at the middle. Each part is a magnet. If
we break these portions in two, each fraghaent is again a magnet. Continuing this, we find that each free end always

Frg. 455. - Each portion of a magnet is a magnet. gives us a magrotic pole. If all the parts are closely joined again the aljacent poles neutralize each other and we have only the poles at the ends, as before. If a magnet is gromend to powder each fragment still acts as a little magnet and shows polarity.

Again, if a small thbe filled with iron filings is stroked from end to end with a magnet it will be fomen to possess polarity, whieh, however, will disappar if the filings are shaken up.

All these facts lead ns to beliese that cach moleenle is a little magnet. In an umagnetized iron har they are arranged in an irregular, haphazard, fashion (Fig. 456), and so there is

Fio. 456.- Haphazard arrangement of molecules of iron ordinarily.

Fio. 4.57.-Arrangement of moleculen of iron when magnetized to enturation.
no combined action. When the iron is magnetized the moleenles thrn in a definite direction. Striking the rod while it is being magnotized assists the moleenles to take up their new positions. On the other hand rongh usuge destroys a magnet. When the magnet is made as strong as it ean be the moleenles are all arranged in regnlar order. as ilhnstated in Fig. 4:5.

The molecnlas of suft-iron ean be brought into aligmment more easily than can those of steel, but the latter retain their positions much more tenacionsly.
434. Effect of Heat on Magnetization. A magnet loses its magnetisn when raised to a bright red heat, and when iron is heated sufficiently it ccases to be attracted by a magnet. This can be nicely illustrated in the following way. Heat a castiron ball, to a white heat if possible, and suspend it at a little distance from a magnet. At first it is not attracted at all, but on cooling to a bright red it will be suddenly drawn in to the magnet.

The Heus!er alloys, mentioned in $\$ 426$, behave peculiarly in respect to temperature. Alove a certain temperature they are entirely non-marnetic. The temperature depends upon the proportions of almuinium and manganese present.
435. Mariner's Compass. In the modern ship's compass several magnetized needles are placed side by side, such a compound needle being fomd more reliable than a single one. The card, divided into the 32 "points of the compass," is itself attached to the needle, the whole being delicately poised on a sharp iridium point.
436. The Earth a Magnet. The fact that the compass needle assumes a definite position suggests that the carth or some other celestial brely exerts a magnetic action. William Gilbert,* in his great work entitled De. Magnote (i.e., "On the Magnet"), which was published in 1600 , demonstrated that our earth itself is a great magnet.

In order to illustrate his views Gilhert had sone lodestones cut to the shape of sphores; and he fomm that small magnets tumed towards the poles of these morlels just as compass neelles hehave on the cartl.
The magnetic poles of the earth, however, do not eoincide with the grographical poles. The north magnetic pole was

[^45]fomml ly Sir Jimmes Ross* on Jume 1, 18:31, on the west side of benthiai Filix, in N. Latt. $70^{\circ} 5^{\prime}$, W. Long. $96^{\circ} 46^{\prime}$. In 190t-5 Roald Amundsen, a Norwegiam, explored all abont the pole. Its present position is about N. Jat. $\mathbf{7 0}{ }^{\circ}$, W. Long. 97°, not far from its carlicr position.

The south magnotic pole was only recently attained. On Jimuary 16, 1909, three members of the expelhtion led by Sir Ernest Shackleton diseovered it in S. Lat. 72 25', E. Long. $155^{\circ} 16^{\prime}$. In both cases the magnetic pole is over 1100 miles from the geographical pole, and a straight line joining the two marinctic poles passes about 750 miles from the centre of the earth.
437. Magnetic Declination. We are in the hathit of saying that the needle prints north and somth, but it has long been known that this is only appoximately so. Indeed, knowing that the magnetic polez are fire from the geographical poles, we would not expect the needle (execpt in particular places) to point to the true north. In addition, deposits of iron ore and other camses proluce local variations in the needle. The angle which the axis of the needle makes with the true north-and-south line is called the magnetic Itelimution.
438. Lines of Equal Declination or Isogonic Lines. Lines upon the earthis simface throngh places having the same drelination are called iergom ic lines; that one along which the declination is zero is celled the afmem \dagger line. Along this line the needle points exactly north and south.

On Jamary 1, 1910, the declination at Toronto was $5^{\circ} 55^{\prime}$ W. of true north, at Montreal, $15^{\circ} 4^{\prime} \mathrm{W}^{2}$., at Wimiperg, $14^{\circ} 4^{\prime} \mathrm{E}$., at V'ietoria, B.C., $24^{\prime} 25^{\prime} \mathrm{E} .$, at Hallifax, $21^{\circ} 14^{\prime} W$. These values

[^46]are sulyject to slow changes. At Lomlon, in 1580, the declination was $11^{\circ} 17^{\prime} \mathrm{E}$. 'This slowly deereased, until in 16.57 it was $0^{\circ} 0^{\prime}$. After this it became west and increased until in 1816 it was $24^{\circ} 30^{\prime}$; since then it has steadily decreased and is now $15^{\circ} 3^{\prime} \mathrm{W}$.

In Fig. 458 is a map showing the isogonic lines for the United States and Cimada for Jamuary 1, 1910.

Fia. 458. -Isogonic Lines for Canaila and the United States (January 1, 1910).
The dala for regions north of latitude 55° are very meagre and discordant; the regions west of Hudson Bay where recent determinations have been made show considerabie local disturbance; the lines north of latitude 70° are drawn largely from positions calculated theoretically, but modiffed where recent obwervations have been made. The ahove map was kindiy drawn for this work by the Department of Research in Terrestial Magnetism of the Camegie Institution of Washington.
439. Magnetic Inclination or Dip. Fig. 459 shows an instrument in which the magnetized needle can move in a vertical plane. The needle before being magnetized is so adjusted that it will rest in any position in which it is placed, but when magnetized the N-pole (in the northern hemisphere) dips down, making a considerable angle with the horizon. If the magnetization of the needle is reversed, the other end dips down. Such an instrument is called a dipping needle. When using it the axis of rotation should point east and west (i.e., at right angles to the

Fa. 460.-A simple dipping needle. mugnetic meridian), and the needle should move with the least possible friction.

The angle which the needle makes with the horizon is called the inclination or dip. At the maynetic equator the dip is zero (or the needle is horizontal), but north or south of that line the dip increases, until at the magnetic poles it is 90°. Indeed the location of the poles was determined by the dipping needle.

At Toronto the dip is $74^{\circ} 37^{\prime}$; at Washington, $71^{\circ} 5^{\prime}$.
440. The Earth's Magnetic Field. As the earth is a great magnet it must have a magnetic field about it, and a piece of iron in that field should becone a magnet by induction. If an iron rod (e.g., a poker, or the rod of a retort stand) is held nearly vertically, with the lower end inclined towards the north, it will be approximately parallel to the lines of force and it will become magnetized. If struck smartly when in this position its magnetism will be strengthened. (Why?) Its magnetism can be tested with a compass needle. Carefully move the lower end towards the S-pole; it is attracted.

Move it near the N-pole; it is repelled. This shows the rod to be a magnet.

Now when a nagnet is produced by induction its polarity is opposite to that of the inducing magnet. Hence we see that what we call the north magnetic pole of the earth is opposite in kind to the N-pole of a compass needle.

Iron posts in buildings and the iron in a ship when it is being built become magnetized by the earth's field.

CHAPTER NLII

Electricity at kest

441. Electrical Attraction. If a stick of sealing-wax or a rod of chonite (hamd rubber) be rubhed with flamel or with cat's fur and then held near small bits of paper, pith or other light bodies, the latter will spring towarls the wax or the chonite. A ghass roxl when rubbed with silk aets in the same way.*

As early as 600 b.c. it was known that amber possessed this wonderful attractive power on being rubbed. The Greck name for amber is elfectron, and when Gilhert (see $\S 436$) found that many other substances behaved in the same way le called them all electrics. The bodies which have aequired this attractive power are said to be clectrifivi or to be churged with electricity. In later times it has been shown that amy two different bodies when rubbed together become electrified.

A good way to observe the force of attraction is to use a

Fig. 460.- A pith ball on the end of a silk thread drawn towards the electrifled rod. small ball of elder pith or of cork, lung by a silk thread (Fig. 460). On holding the rubbed glass near it the ball is drawn towards it.
It can also be

Fig. 461.-T:ıe electrified rod movel towirds the hand. shown that the electrified borly is itself attracted by one that has not been electrified. Let us rub a glass rod and hang it in it wire stirrup supported by a silk thread (Fig. 461). If the

[^47]hand (or other lunly) lex held ont towards the sumpendend luxly the latter will thm alont ame apporach the hame A rend of sealing-wax or of elsmite when rubleal aete similarly:
442. Electrical Repulsion. Suppose, however, we allow the pith ball (Fig. 460) to touch the electrified glass rod. It clings to it for a monent and then flies off. If the end of the rosl is bronght near to it, the ball continually moves away from it. There is repulsion between the two. Next, rub an ebonite rod with flannel and hold it to the pith ball. It is attracted. Thiss the glass now repels the pith ball, but the - bonite attracts it.

Agnin, hold a rubbed glass rod near the suspended glass rod (Fig. 461); they repel each other. Two elonite rods behave similarly. If, however, we hold a rubbed ebonite rod near the grlass rod there is attraction between them.
443. Two Kinds of Electrification. It is evident from these experiments that there are two kinds of electrification or of electrical charge, and it is customary to call that produced on rubhing glass with silk positive; that probluced on rubling ebonite or sealing-wax with flannel, neyutive. The pith ball on tonching the glass became charged positively.

The above and numberless other experiments allow us to formulate the following:-

Law of Electrical Attraction and Repulsion.-Electricul charges of lilie kime reprel euch other', those of unlike kind uttruct each other.
444. Conductors and Non-conductors. We may rest a piece of electrified ebonite on another piece of ebonite or on dry glass, or sulphur or paraffin, and it will retain its electrification for some time; but if it is passed through a flame, or is gently rubbed over with a damp cluth, or simply with the
hand, it loses its electrification at once. The ebonite, the glass, the sulphur and the paration are said to te nom-romaluctors of electricity; while the damp eloth and the hand are said to be comhecturs of electricity, the electric charge escaping freely by way of them.

If we hold a piece of brass tube in the hand and rub it with fur or flmmel or silk it will show no signs of electrification; but fasten it to an ebonite hanulle and flick it with dry cat's fur and it will be negatively electrified. Approach it to a suspended mbbed ebonite roxl (Fig. 461) and it will repel it. In the first case the brass was electrified, but the electrical charge immediately escaped to earth by way of the experimenter's booly. In the second case the escape was prevented by the elomite handle, and the metal remained electrified. It is to be motel, tors, that a nom-condnctor exhibits electrification only where it is rubbed, while in a metal the charge is spread all over its surface.

Those substances which leadi off an electrical charge quickly are called coulurtors, while those which prevent the charge from escaping are called mon-comuluctors or insulutors. If a conductor is held on a non-conducting support it is said to be ins"'lated. Thus, telegraph and telephone wires are held on glass insulators; and a man who is attending electric street lamps often stands on a stool with glass feet, and handles the lamps with rubber gloves.

Good Condectors: metals.
Fair Condcetons: the human body, solutions of acids and salts in water, carlon.
Poor Condectors : dry paper, cotton, wood.
Bad Condectors, or Good Inselators: glass, porcelain, sealing-wax, mica, dry silk, shellac, rubber, resin, and vils generally.
445. The Gold-leaf Electroscope. The object of the electroscope is to detect an electric charge and to determine
whether it is positive or negative. A metal rod with a knob or dise at the top (Fig. 462) extemels through a well-insulated cork into a flask. From its lower end two leaves of gold or of aluminium leaf hang by their own weight. The rod may pass throngh a glass tube, well conted with shellac, which is inserted through the cork. The flask should be also varnished with shellac, as this improves the insulation greatly. If a

Fíc. 482,-The Gold-Jent Eiectioscope. charge, either positive or negative, is given to the electroscope, the two leaves, being charged with electricity of the sane kind, repel each other and separate.

Another form of electroscope is shown in Fig. 463. The

Fis. 463.-Another form of electromcope. protecting case is of wood with front and back of glass. The sides of the case are lined with tin-foil, to which a binding post is commected. By this the case may be joined to earth and thus be kept constnutly at zero potential (see § 455). The rod supporting the leaves passes through a block of unpolished ebonite or other gool insulator, and the small dise on top may be removed if desired.
The electroscope may be charged by touching a charged borly to the knob, or by connecting it to the knob by a conducting wire. But sometimes it is more convenient to use a proof-phene (Fig. 464) which is simply a small metal dise on an insulating handle. This is touched to the charged body and then to the knob of the electroscope.

Fig. 464. - A proot-plane.
446. Electrification by Induction. Let us slowly bring a rubbed ebonite rod towards the knob of the electroscope. The
leaves are seen to sepmate ewoll thongh the wol be a foot or mure away. This axpriment shaws that the mope pesene of an eleetritiod bunty is sulliciont to proshee electritiention in meighambing combetars. The chatge is said to be protuceal by aremonstatic ingluernee or indurtion. As somm an the charged bexly is removed the leaves eollapse again.

This experiment also impresses the fact that an electrified boly excrts an ation on luslies in the space almont it. This spaee is called its elerfairal firld of fiure. It can be shown, too, that the mannitude of the foree exirtend depouls on the materinh filling the spaee. For instanee, if the chectrition loxly is immersed in petrolemm the foree it exmen on mother luxly is only alout one lanf that in air. Indeed it is leflievorl that the foree exhihited is dhe to aetions in the smroumbing medim, whieh is known as the diedernir.
447. Nature of Induced Electrification. Let A and B (Fig. 465) be two metallic lxalies pheed near together on

Fro. 465.-Explaining Induced elertrification. well-insulated supports.* Charge A positively by mbling over it a glass roul mbled with silk.

First, tonch A with a proof phane and carry it to the elcetroseope. The leaves will show a separation. Repeat and get a greater separation. Next, touch the proof plane to a, that end of B nearest A, and eary it to the electroseope. The leaves emme elosur together, showing that the eharge on the end 14 is negutive, that is, of the opposite kind to that on A.

Next, touch the proof-plane to the end l, whieh is finthest from A, and convey the charge to the electroscope. It makes the leaves diverge further, showing that the eharge is of the same kind as that on A.

We find, therefore, that the two ends have charges of opposite signs, the eharge on the end of B nearest to A being

[^48]of the oppesite sigu to that oll A. It is to lar ohmerverl, alsin, that the electritieation on $/ 8$ denes mot in any way diminish the charge on A.
448. Induced Charges are Equal. Jhnee Two insuhted conductors A and B in contact mul hold a positively charged rod near (Fig. 466). The combluctor A will be charged negntively and B positively. While the rod is in position separate the conductors, mind then remove the roxl. The buly A is now chargel with negative nad B with positive ehectricity:

Bring them together carefully: A spark will he hourd to pass betwren throm and they will be entirely discharged. The two

Fin. *16. - Two mefal lomlipe on Insulating ntaillus. Thu cloargen ond anl /iare iclual. chureres have neutralized each other, which shows 11 it they must have been equal.
449. Charginf. brought near an

Fia. 467.-Hlow to charge by induction.

Induction. Let an electrified roxl be sulated conductor (Fig. 467). A migative charge will be it 'and on the end a and a positive or will be repelled to the end b. suppose now the conductor is touched with the finger or is joined to earth* by a wire (sec §4.55). We must now consider the conductor and the earth to be in single conductor, and while the negrative charge will remain on 1 , "lomend" to the charge on the rod the "free" positive charge will escape to the er, th. Now remove the finger and then the rod. The conductor will be charged negatively.

In this way it is casy to give a charge of any desired kind and magnitude to an flectroseope. Suppose we wish to give a positive charge. Rub an ebonite rod with cat's fur

[^49]and bring it towards the knob of the elsectroseope. The knoh will be charged positively and the leaves negatively by induction. Now tomech the electroseoper ral with the finger ; the negative charge will escone. 'Then remove the finger mal after that the elomite rexl. 'The pexitive charg, will remain on the electroseope, prolucing in sepmution of the lenver.
450. Charges Reside on the Outer Surface. Place a tall metral vessel on a goxil insulator (Fig. 468), anl electrify it

Fie. 468. - A tell metal vermel jolned to an electrical machine. Romoving the wire ilisconisecte it. either by mu elonite rexl or hy wn electricul machine ($\$ 461$). Diseomect from the machine. Lower a metal ball, suspended by a sil:- thead, into the versel and let it toneh the inner surface. Then apply the ball to the electroscope; it shows no chmuge. Next, touch the ball to the ontside of the vessel and tent with the eleetroscope. It now shows a charge. Fimully charge the ball by the machine, then lower it into the metal vessel and toneh the inner surfaee with it. Then test it with the electroncope. It will be fommd that its charge is entirely gone; it was given to the inctal vessel, on the onter surface of which it now is.

In Fig. 469 is shown a metal sphere on an insulating stand, and two hemispheres with insmlating handles which just fit over it. First, charge the sphere as strongly as possible. Then, taking hold of the insulating handles, fit the hemispheres over it, and then remove them. If now the sphere is tested with the electroscope no trace of electricity will be found on it.

Fis. 409.-Apparatus to nhow that the charre residea only on the surface of a conductor.
451. Distribution of the Charge; the Action of Points. Though the electric charge resides only on the outer surface
of a corductor it is not always minnlly dense all over it. The distribution dipumes on the slape of the combertor, ame experiment alawes that the charge is grenter at sharp

riu. diu. - Nhowing the distribution of an electrle charge on comdurtorn of alfiferent whapet. algus.

On a sphere the charge is uniformly distributed over the surface (11 , Fig. 470). On a cylinder with rommed ends the charge is denser at the conds than at the middle (1 , Fig. 470) ; and on a pear-shuped conductor it is mach denser at the small cind.

The force with which in charge tends to escape from a conduetor increases with the density of the charge, and it is for

Fie. 471, - " Flectrio wind " From a pointed conductor blowing andie a candle thame. this reason that a pointed condhetor soon loses its charge. If a pointed wire is placed on a conductor attached to an

 from it may blow anide a wind." candle flame (Fig. 471); or an "electric whin" (Fig. 472) nicely balanced on a sharp point when phaced on an electrical machine is made to rotate by the reaction as the air-particles are pushed away from the points. It rotates like a lawnsprinkler.
452. Lightning 2ods. In a thunderstorm the clouds becone charged with electricity and by induction a charge of the opposite sign appears on the surface of the carth just benenth. The points on the lightning rools, in the place where this charge is, allow the induced charge to escape quietly into the air. It is evident, then, that the owe: end of a lightning rod should be buried deep enough to ve in moist eurth always, since dry earth is a poor conductor.
453. Electrical Potential. Lat us take two insulated conductors A and B, two motal balls on silk threads, for instimee, and lat one of them be changed and the other not, or let one lee charged to a greater degree than the other. Then when they are bronght together there is some action between them, and we describe it by sitying that there has $\mathrm{l}_{\text {sern }}$ a flow of elentrixity from one to the other. We wish to learn on what this glowe depemels.

It cam best be explainel by considering amalogios in other branchess of seienee.

Water will flow from the tank A to the tank 13 (Fig. 473) through the pipe C comecting them if the water is at a higher

Fig. 473, - Water flows from the higherlevel level in A than in B; or, what amomnts to the same thing, if the hydrostatic pressure at π is greater than that at b. The tamk B may alrearly have more water in it, but the flow does not depend on that. It is regnlated hy the difference botween the pressures at the two ends of the pipe and it will contime until these pressures become equal.

Or, consider what happens when two gas-bags filled with compressed air are joined by a tube in which is a stop-cock. If the pressure of the air is the same in each there will be no How from one to the other on opening the stop-cock. If there is a difference, there will be a flow from the bag at high pressure to that at low.

Again, when two bodies at different temperatures are bronght together, there is a flow of hent from the one at the higher temperature to that at the lower temperature.

Correspomding to pressure in hydrostaties and to temperature in the science of heat, in electricity we use the term
potential, (or sometimes pressure). If two points of a conductor are at different potentials there will be a flow from the point at high potential to that at low potential. This potential differenee (for whieh P.D. is an abbreviation), is usually measured in volt.s, a definition of whieh will be given in the next chapter ($\$ 471$).
454. Nature of Electricity. So far no reference has been made to the nature of eleetrieity; indeed it is very diffieult to make a hypothesis whieh will explain satisfactorily all the observed phenomena.

We speak of a flow of electricity, but certainly nothing of the nature of ordinary matter moves, though just as certainly there is a transference of energy. In the case of conduction of heat we do not know the preeise nature of heat, but here again we are sure that there is a transference of energy.

But we have eleetrieity of two kinds, which appear simply to neutralize each other. In eonsidering the flow of electricity it is usual to confine our attention to the positive electrieity. A flow of negative electricity in one direction in a conductor is equivalent to the flow of an equal amount of positive electricity in the opposite direetion.

It is best, however, not to be too fixed in our views as to the precise nature of electricity, though we ran be sure that when we say there is a flow of electricity, there is a transfer of energy. It is well to remember, too, that the electrieal energy is not all within the conductor. On the other hand, it has been demonstrated that the energy resides ehiefly in the surrounding space and that the conductor simply acts as a guide to it.
455. Zero of Potential. In stating levels or heights we usually refer them to the level of the sea. The ocean is so large that all the rain which it receives does not appreciably
alter its level. In a somewhat similar way, the earth is an large that all the electrical charges which we can give it do not appreciably alter its electrieal level or potential, and so we take the earth to be our zero of potential.

Lake Superior is 602 feet above the level of the sen, and the Dead Sea, in Palestine, is 1,300 fert below it. There is a eontinual flow from Lake Superior to the ocran; and if a tube joined the two, there would be a flow from the ocean to the Dead Sea.

Bodies which are charged positively are considered to be at a potential higher than that of the earth, and those charged

Fig. 474.-Four tanks with water at diferent negatively to be at a potential below : hat of the earth.

Consider the fonr tanks in Fig. 474. The levels of A and B are above, and those of C and D below that of the earth. A How would take place from A or B to the earth, or from the earth to C or D, or from any one tank to another at lower level.
456. Electrical Capacity. On pouring the same guantity of water into different vessels we observe that it rises to different levels; and that vessel into which we must pour the most water in order to raise its level by any amomet, say 1 em., is said to have the greatest capacity. If a vessel has a small eross-section, like a narrow tube, it will not take much water to make a great change in its level ; and its capacity is sinall.
There is something analogous in the seience of electrieity. It requires different amomes of eleetricity to raise the potentials of different conductors by one unit, and so we say there is a difference in the electrical carpucities of conductors,
457. Electrical Condenser. In Fig. $475 A$ and B are two metal plates on insulating bases. They may be of tin-plate about 10 or 12 inches square, hent at the boccom and resting on paraffin hlocks, C, C, with metal blocks D, D, to keep them in place. First let B be at some distance from A, and charge A. The greater the charge, the higher rises the

Fig. 475. - A and B are two metal plates on insu. lating bases. A is joined to an electroscope and B to earth. potential and the wider diverge the gold-leaves. Continue charging until the leaves are far apart.

Then, with the plate B joined to earth (simply keeping a finger on it will (lo), push it up towards A. As the plates get ieparer together the leaves begin to fall, showing that the potentia if A has fallen through the presence of B. If now we add positive elcctrieity to A by means of a proof plane we shall find that several times the original amount of electricity must be added to A in order to obtain the original separation of the leaves, that is, to raise it to the original potential.

The two plates and the air between them constitute a condenser.

The explanation of the action of the condenser is as follows. Let the charge on A be positive. When the plate B is brought up the charge on A induces on B a negative charge repelling the equal positive charge to earth. The attration of the charge on B draws the charge on A to the face nearest B, thus reducing the amount on the electroscope and making room for additional charges. The two charges on the plates A and B are " bound" charges.
458. The Dielectric in a Condenser. Push the plates A and B (Fig. 475) near together, and charge the plate A until the soparation of the leaves is quite decided. Now insert between A and $B a$ sheet of thick plate glass, sliding it along B, being careful not to touch A, and observe the effect on the elcetroseope. The leaves come closer together, showing that the potential has fallen and the capacity has inereased. Elonite or pmratfin may be used as a dieleetric instead of the glass, but the effeet will not be so pronomeed.
459. Leyden Jar. This is the most usual kind of con-

Fig. 476.-A Leyden denser. It consists of a wide-mouthed bottle (Fig. 476), the sides and bottom of which, both within and without, are coated with tinfoil to within a short distance from the neck. The glats above the tin-foil is varnished to maintain the insulation. Through a wooden stopper passes a brass rod, the upper end of which carries a knob, the lower a chain whieh touches the inner coating of the jar. The two coatings form the two plates of the condenser, the glass being the rielectric.

To charge the jar the onter coating is eommeeted to earth (or held in the hand), and the knob is joined to an electrieal machine. To diseharge it, connection is made between the inner and outer coatings by diseharging tongs (Fig. 477). Usually the discharge is accompanied by a brilliant spark and a loud report. (It is wisest not to pass the discharge through the body.)

Condensers used in electrical experinents are often made of a number of sheets of tin-foil separated from each other by sheets

Fte. 477.-Discharsing tongs. The handles are of glass or of ebonite. of paraffined paper or mica. Alternate sheets of the tin-foil are connected together.
460. The Electrophorus. By means of this instrmment, whieh was invented by Volta, in 1775, we can eleetrify a conduetor without using up its charge.

It consists of a cake \boldsymbol{A} of elonite or of resinous wax resting oun metal phate, and a metal cover* B, of rather smaller dimmeter, provided with an insulating handle. (Fig. 478.) First, the eake is rebled with cat's fur, and thus it obtains a negative charge. Then the cover is. put on and touched with the finger. If it is liftel up by the handle it will be found to be positively ehargerl, and on presenting it to the knuekle a spark,

Fio. 479.-The electrophorus. sometimes half-an-inch long, is obtained, and the cover is diseharged. The gas may be lighted with this spark; and if the eover is presented to the knob of an electroseope the latter will be charged. The process may lee repeated any number of times without renewing the charge on the eake.
Query.-Every time the cover is discharged energy disappears; where
did it come from?

Fig. 479.-The Wimshurat electrical machine.

The aetion is explained thus:When the cover is placed on the eake, which is a non-couductor, it rests npon it on a few points ouly and so does not remove its eharge. But the negative eharge on A induees on the lower fuee of is a "bound" positive charge, repelling to the upper face a "free" negative charge, which eseapes when the finger touches $i t$. When the cover is lifted the positive eharge beeomes "free" and spreads over its surface.

461. Wimshurst Influence Machine. The electrieal maehines

 in common use are simply convenient arrangements for utilizing the prineiple of influence so well illustrated in the eleetrophorns.In Fig. 479 is shown a Wimshurst machine. It eonsists of two varnished glass plates a, a^{\prime}, placed as close together as possible and driven by

[^50]belts b, b^{\prime} in opposite directions. Each plate has an even number of metal sectors cemented on its outer face. A neutralizing conductor c, c^{\prime} is fixed diametrically across each plate and fine wire lurushes on the ends just touch the metal sectors as the plates rotate. These conductors are set almost at right angles to each other.
Two collecting combs e, e^{\prime} with their teeth turned towards the rotating dises encircle them at each side of the machine. These are insulated from the frame of the machine by ebonite rods r, r^{\prime}. From them rm up a pair of adjustable discharging rods d, d^{\prime}, ending in knobs. A pair of Leyden jars j, j are usually added, and when these are charged a powerful spark passes.
462. Explanation of the Action of the Machine. The action of the machine can best be explained by a diagronn (Fig. 480),

Fra. 480.-Diagram of a Wimshurst machine. in which, for greater clearness, the two rotating dises are represented as though they were two cylinders of glass, one inside the other and rotating in opposite directions as shown by the arrows.* The neutralizing brushes n_{1}, n_{2} touch the sectors on the back plate, while n_{3}, n_{4} touch the front sectors. In the diagram a section of the cylinders is supposed to be seen, and the metal sectors are represented by the dark heavy lines on the outer and inner surfaces.

Suppose now that one of the sectors x on the front plate (near the top of the diagram) has a slight positive clarge. As it rotates towards the left it will be brought opposite a sector x^{\prime} on the back plate at the moment when this is in contact with the brush n_{1}. This latter sector then acquires by influence a negative charge, the sector z^{\prime} at the other end of c receiving a positive charge while the sector z opposite it, on the other plate, receives by influence a negative charge.

As the rotation continues the induced negative charges on x^{\prime} and z are carried to the right hand comb e^{\prime} by which they are collected, the positive charges on x and z^{\prime} to the left-hand comb e, which collects them.

[^51]Again, the negative charge on x^{\prime} and the positive charge on z^{\prime} are brought opposite \dot{n}_{3} and n_{4}, respectively, and these are connected by c^{\prime}. The sector which n_{3} touches acquires a positive charge and that which n_{4} touches acquires a negative charge, and these are carried on to the collecting combs.

In this way all the sectors become more and more highly charged, and the front sectors at the top and the back sectors at the bottom are carrying positive charges to the comb e, while the other sectors are carrying negative charges to the comb e^{\prime}.

Thus large charges may be accumulated on the combs and in the jars connected with them (not shown in Fig. 480), and powerful sparks may be obtained between the knobs on the discharging rods d, d.

CHAPTER XLIII

The Electhe Cumient

463. Nature of the Electric Current. As exphained in §453, when two herin's at different potentials are joined by a combuctor, there is a passigre of electrieity from one to the other, and this we spatak of as an electric current.

The terms we use in dealing with electric currents are sugrgested by a study of the flow of liguids in pipes, but we must not push the malogy between the two cases too far. As to what electricity renlly is we are in entire ignorance. There may be no actual motion of anything through the condnetor, thongh recent investigations somewhat favour that view, but since the current cmin do work for us we recognize the presence of energy.

464. An Electric Current Known by the Effects it will

 Produce. 'The electric current makes the eonductor and the

Fin. 481. - The pressiure of an electric current shown by its power to mag. netize steel. region surromading it acpuire new properties, one of the most striking of these being a change in magnetie conditions. This is illustrated in the following experiment.
lisert an ummagnetized knitting needle into n small glass tube and wind copper wire in a coil about it. Connect one end of the wire with the outer coating of a powerfully charged Leyden jar, and the other with a diseharger as shown in Fig. 481 Discharge the jar through the wire. On testing the knitting needle with a mangetic compass it will be fomm to be magrotized. Evidently the coil of wire in earrying the charge had the power to magnetize the steel.
465. The Volt: ic Cell. The current in the wire emmecting the two coatings of the Leyden jau lasts but for an instant, the
contings ahmost at once assmming the same potontial. In ordar to prodnce a continums enrront a constant difference of petential must be: maintained between the rades of the comductor: This cim be done by memen of the cialerenic or Volluic C'ell.
Galvani* discovered by accident that the discharge of an electric machine comected with a skimued frog produced con-
 vulsions in the legs; and on further research he found that the same effect could be produced without the electric maehine, but simply by touching one end of a branched fork of copper and silver wires to the muscles in the frog's leg, and the other end to the lumbur nerves (Fig. 482). He attributed the result to "animal magnetism."

Volta, a fellow-countryman, conceived that the electric chrrent had its origin, not in the frog's legs, but in the contact of Alugseandro Yolta (1745.1827). Profegsor of lihysice at the liniversity of Pavia, Italy. linvented the voltair cell. the metals, and in a series of investigations he was led to the invention of the voltaic cell.

Volta diviled conductors into two classes:-First, simple substances such as the metallic condnctors, silver, copper; zinc, etc. Secomd, liquids such as dilute acids and solutions of metallic salts. These are now known as electrolytes, and are

Fio. 482-Galvani's experiment. decomposed when an electric current passes through them.

[^52]He found that it was impossible to produce a cmrent by

Fio. 483.-Conductors of the first class connected in a oiroult ; no ourrent produced. joining comelnctors of the first chass in any orver whitew in a circuit (Fig. 48:3); lunt that a current was developerd whenever a combluetor of the second class was introluced between two different condnctors of the first class. For exmmple, he found that when dises of copper and zinc were sepmated by a dise of cloth moistened with common salt brine, and joined extermally by a condnctor as in Fig. 484, a cmrent passed through the circuit. Similarly he found that a curvent was generated when the platey thas commected were immersed in dihute

Fio. 484.-Conductors of the Arat and second clasyes connected in a circuit. \%, zinc: C, copper: A, cloth moisiened with brine. sulphmric acid (Fig. 485). This combination is a voltaic cell in its simplest form.

The essential parts of an ordinary voltaic cell are two different conducting plates immersed in an electrolyte which acts chemically on one of them.
466. Plates of a Voltaic Cell Electrically Oharged. Since an electric cinrent flows through a conductor joining the plates of a voltaic cell, we would infer that the plates are electrically charged when discomected. This can be shown to be the case by means of a condensing electroscope, which consists of an ordinary gold-leaf electroscope combined with a suitable condenser.

A convenient arrangement is illustrated in Fig. 486. It is unsatisfactory to work with a single voltaic cell. Three or four should be joined "in series" as shown at B. These cells may be small glass tubes
or bottles containing dihite sulphuric neid, with strips of copper and rinc soldered together and dipping in then. The condenser consists of two perfectly that brass phates. The lower one M is supported on min elxonite stem, and the upper one N is furnished with a hundle. A sheet of paraftined puper or dry writing paper or very thin mica is

Fie. 486. -The condenaing electroscope.
placed between the plates. The binding-posts ρ and f are joined to the electroscope, which is the same as shown in Fig. 463, with the dise removed. Its binding-post is joined to n gas-pipe or other good earth-connection. The end zinc plate Z of the battery is joined to a and the end copper plate C is joined loosely by the wire w to the binding post b.

When the connections have been nade as described, there is a charge on the gold leaves, but it is so slight that they do not diverge appreciably.

Now by means of a glass or ebonite rod remove the wire w from the binding post b, and then lift off the upper plate N of the condenser. The leaves now diverge.

This action nay be explained thus:-When the connections are as shown in the figure, Z and N are both joined to earth and hence are at zero potential. The lower plate M is charged positively by the battery. This charge attracts a bound negative charge to the lower face of N, repelling the corresponding free charge to earth. Thus there is a considerable chnrge of electricity in the condenser though the potential is not high.

But when "10 is remowel and the phate X lifterl the plate B

 spromes to the elactroncope and canses the havers to diverame

In a voltaic cell the phate which is mot atheked chemically is always fomad to lase a positive charge, while the active plate is alwings found to have a negative charge.

467 An Electric Oircuit-Explanation of Terms. A

 comp. . e circhit is necessary for a stanly flow of electricity: This circuit comprises the entire path traversed hy the enrront, inchuling the extermal combluctor, the phates, and the electrolste. The current is regarded as flowing from the copper to the gine plate in the extromel combluctor, and from the zinc to the copper phate within the Huid (Fig. 485).When the plates are joined by a conductor, on a series of condnct. as, without a bratak, the cell is sain to be of er ilnseld cireuit; when the circnit is interrupted at any [mint, the cell is om en opren cirmit. By joining together a number of cells a more powerfnl flow of electricity may he obtained, mad wneh a combination is called a buttory.

That plate of the cell or battery from which the current in led off is anlled the positire pole, the other the negution pole. Also, in an interrupted cirenit, that end from which the current will flow when the commection is complered is satid to be a positive pole or temimal, the other a negative pole or terminal.
468. Chemical Action of a Voltaic Cell. When plates of copper and pure aine are placed in dilute sulphuric acid to form a voltaic cell, the aine begins to dissolve in the acid, but the action is soom checked by a coatting of hydrogen which gathers on its surface. If the upper endes of the plates are connected by a comblucting wire, or are tomeborl together, the zine contimes to dissolve in the acid, forming zine sulphate, and hydrogen is libemted at the copper phate.

Commereial sine will dissolve in the aed even when meonneeterl with another plate. 'The fare that the impure zine wastes away in onthengy that the impurities, principally irom and rarbon, take the phace of the copper phate, fond as a comsequenee currents are ret up between the rine and the impurities in electrieal contnet with it.
469. Source of Energy in the Cell. In: order to proluce a flow of electricity energy is required. The commonly nceepted whemical theory of the action of a edll will be given in the next ehmpter: but for the present we may think of the eell as a kind of furnace in which aine is burned up chemienlly in order to obtain eleetric energy.

When the cirenit is open, jnst enough energy is exerted to kecp the poles at a certain difference of electrical lasel or potential, but when the poles are comected by a conductor the eurrent flows and the zinc is continually eonsment.
470. Electramotive Force. The term electhomotive force is applied to that which tends to prombere a tramsier of elertricily. Consider, for example, a voltaie cell on an open circuit. Its electromotive force is its power of prolueing eleetric pressure, and this is obviously equal to the potential difference between the phates.

This conception can be illustrated by the analogy to two tanks of water maintnined at different levels (Fig. 473). Just as the difference in level gives rise to a hydrostatic pressure which would eause a transfer of water if the tanks were conneeted by a pipe, so a difference of potential in the plates of the eell is regarded as produeing an electrical pressure, or elcetromotive force, whiel would cause a transfer of eleetricity if the plates wi.e connected by a eonduetor. (Read $\$ 4.53$ again.)
471. Unit of Electromotive Force. The difference of potential between two bolies is measured by the work done in transferrin-: : certain quantity of eleatricity from one to
the other. Tlie pratical mit of potential difference, and hence of electrometive foree (E.M. F.), is known as the well, an this may be taken as approximately the E. M.F. of a \%incerpper eell.
472. Flectromotive Force, Current Strength, :ud Resistance. The water analogy may ansist us still fu firi.

The strength of the water current, that is, the quitity of water which will flow past a point in the pipe in one second, obviously depends upon the pressure resulting from differences of level, and upon the resistance which the pipe offers to the flow of water. Similarly the strength of the current which passes throngh the conductor joining the plates of a cell depemds upon the electromotive forre of the cell aril the resistance of the circuit.

The strength of the current may be increased, cither by increasing the electromotive force, or redneing the resistance of the circuit. The exact relation between these quantities will be discussed at a later stage ($\$ 546$).
473. The Electromotive Force of a Voltaic Cell. The E.M.F of a cell containing a given electrolyte depends on the nature of the plates. Thus the E.M.F. of the zinc-carbon cell is about twice as great as that of the zinc-copper cell, when dilute sulphuric acid is the eleetrolyte.

When the materials used are constant, the E.M.F. is independent of the size and shape of the plates or their distance apart.

Theoretically, a comparatively large number of substances might be selected as plates to constroct a voltaic cell. Consider, for cxample, the following elements in the order given:-
Magnesium | Zinc | Lead | Tin | Iron | Copper | Silver | Gold | Platinum | Carbon
If any two of these elements are nsed as plates in a voltaic cell the current will How in the outer circuit from the second
to the first named. Moreover, the potential difference between any pair dopemls upon their distance apart in the series. Such a series is known as an electromotice, or potential, series.
474. Oersted's Experiment. We have referred to the fact that an electric current has the power of produeing magnetic effects ($\$ 4(54$). This important principle was discovered by Oersted* in 1819. In the course of some experiments made with the purpose of discovering an identity between electricity and margetism, he chanced to bring the wire joining the phates of a voltaic battery over a magnetic needle, and was astonished to see the needle turn round and set itself ahmost at right angles to the wire. On reversing the direc. ${ }^{\text {on }}$ of the current the ncedle turned in the opposite dircetion (Fig. 487). If the battery is held over the wire the needle is deflected, thus showing that the current flows through the battery too.

Fig. 487.-Oersted's experiment.
475. Detection of an Electric Current. Ocrsted's experiment furnishes a ready means of detecting an elcetric current. A feeble current, flowing in a single wire over a magnetic needle produces but a very slight deflection; but if the wire is

Fic. 488. - Simple galvanoscope. The wire passes geveral times around the frame, and wound into a coil, and the current made to pass several t: $\%$ in the same direction, either ar or under the needle, or, bettcr still, if it passes in one direction over it and in the opposite direction under it, the effect will be magnified (Fig. 488). Such an arrangement is called a Gulvanoscope. It may be used not only to detect the presence of

[^53]emrents, bat also to compare roughly their strengeths, by moting the relative deflections prowheed.
476. Local Action. We have moted that a plate of commercial zinc dissolves when immersed in dihte acid, becanse electric currents are ot up between the zinc and the impmities in electrical contact with it. Such cnrrents are known as local curremts, and the action is known as local uction. This local action is wastefing. It may, to a great extent, be prevented ly comulymuting the rinc. This is done by washing the plate in dilute sulphuric acid, and then mbbing mercmry over its surface. The meremy dissolves the zinc, and forms a clem miform layer of zine amalgan ahont the plate. The zinc now dissolves only when the cirenit is closed. As the zinc of the amalgann goes into the solntion, the mercury takes up more of the zine from within and the impurities float ont into the limnid (see $\S 468$). Thins a homogeneons surface remains always exposed to the acid.
477. Polarization of a Cell. If the plates of a zinc-copper cell are comected with a galvanoseope the cmrent developed by the cell will be seen gradually to grow weaker. It will also be observed that the weakening in the cmrent is accompanied by the collection of bubbles of hydrogen on the copper plate. To show that there is a comection between the change in the surface of the plate and the werkening in the current, bunsl a way the bmbles and the cument will be fomad to grow stronger: A cell is said to be polemized when the current becomes feeble from a deposition of a film of lydrogen on the plate forming the positive pole.

The allhesion of the hydrogen to the positive pole weakens the cmrrent in two ways. First, it decreases the potential difference between the plates; because the potential difference bet weell zinc and hydrogen is much less than between zinc and copper or carbon. Second, it increases the resistance which
the current encounters within the cell, because it diminishes the surfuce of the plate in contact with the fluid.

Polarization may be reduced by surrounding the positive pole by a chemical agent which will combine with the hy hogen and prevent its appearmee on the plate.
478. Varieties of Voltaic Cells. Voltaic cells diffier from one mother mainly in the remedies adopted to prevent polarization. Several of the forms commonly deseribed have now only historic interest. Of the cells at present used for commercial purposes, the Leclanché, the Dimiell, the Dry and the Edison-Lalande are among the most important.
479. Leclanche Cell. The construction of the cell is slown in Fig. 489. It consists of a zinc rox immersed in a solution of ammonic chloride in an outer vessel, and a earbon plate surrounded by a mixture of small vieces of carbon and powdered ma, mese dioxide in an imer porors cup. The zinc dissolves in the ammonic chloride solution, and the hydrogen which appears at the carbon phate is oxidized by the manganese dioxide.

As the reduction of the manganese dioxide goes on very slowly, the cell

Fig. 489.-I folanché cell. C. car. bon: D, porous cup: Z, zinc; M, carbon and powdered manLanese; S, solutlon of ammonlc chlorlde. soon beeomess polarized, but it recovers itself when allowed to stand for a few minutes. If used intermittently for a minute or two at a time, the cell does not require renewing for months. For this reason it is especially adapted for use on electric bell and telephone circuits. Its E.M.F. is about 1.5 volts.
480. Daniell Cell. The Dimiell cell consists of a copper plate immersed in a concentrated solution of eopper sulphate
contained in an outer vessel and a zinc plate immersed in a

Fig. 490.-Daniell oell. Z, elnc ; P, porous cup; C, oarhon ; \boldsymbol{A}, solutlon of zlnc sulphate ; B, solutlon of copper sulphate. zinc sulphate solution in an inner porons cup (Fig. 490).

In a form of the Daniell cell known as the Gravity Cell the porous cup is dispensed with and the solutions are separated by gravity (Fig. 491). The zinc plate, which is usunlly of the form shown in the figure, is sup)ported near the top of the . vessel and the copper plate is placed at the bottom. The copper sulphate being denser than the zine sulphate, sinks to the bottom, while the zinc sulphate floats above about the zinc plate. The copper sulphate solution is kept concentrated by placing crystals of the salt in a bnsket in the outer vessel (Fig. 490), or at the bottom about the copper plate (Fig. 491).

The Daniell cell is capable of Fio, 491.-Gravity oefil. Z, zinc plate; giving a continuous current for an indefinite periol if the materials A, zinc sulphate solutlon; B, copper sulphate solutlon : C, cryatala of copper sulphate. are renewed at regular intervals; but the strength of the current is never very great because the internal resistance is high.

These cells are adapted for closed circuit work, when a comparatively weak current will suffice. The gravity type has been extensively used on telegraph lines, but in the larger installations the dynamo and the storage battery plants are now taking their phee.

The E.M.F. of the cell is about 1.07 volts.
481. The Dry Cell. The so-called $d r y$ cell is a modified form of the Leclanché cell. The carbon plate C (Fig. 492) is closely surrounded by a thick paste, A, composed chiefly of powdered carbon, manganese dioxide and anmonic chloride. This is all contained in a cylindrical zinc vessel, Z, which acts as the negative pole of the cell. Melted pitch, P, is poured on top in order io prevent evaporation,

Fic. 192.-A dry cell. i ie., to prevent the cell from becoming really $d r y$.
482. Edison-Lalande Cell. In this cell one plate consists of compressed finely-ground copper oxide powder fited in a light copper frame. On each side of this is a plate of zinc well amalgamated. The exciting lipuid consists of one part of caustic soda dissolved in three parts by weight of water. To prevent it from being acted upon by the carbonic acid of the air it is covered with a layer of petroleum.

The E.M.F. is low, about 0.7 volt, but the internal resistance is also low; such a cell can deliver a powerful current (10 to 20 amperes) for a considerable time (15 to 30 hours).

Questions

1. The bichromate cell, once very commonly used in laboratories,
 chromate cell consists of two connected carbon plates C and a zinc plate Z between them, immersed in a solution of potassium bichromate in water mixed with sulphuric acid S. (Fig. 493.) Explain the action of the cell.
2. The Grove cell, used before the dyuamo was perfected, to furnish energetic constant currents, consists of a zinc plate immersed in dilute sulphuric acid and a platinum plate immersed in nitric acid, the fluids being kept apart by a porous cup. The Bunsen's cell differs from the Grove's cell in substituting a carbon plate for the platinum one. Explain the action of those cells.

(HAP'TER NLIV

Chemical Effects of the Electhe Cubrent
483. Electrolysis. In the preceding chapter we have discussed the pronluction of an electric curnent throurh the action of an electrolyte on two dissimilar phates. If the action is reversed and a current fiom some external sombe is passed through an electrolyte, reactions similar to those within the voltaic cell take place. As an illustration take the action of an electric current on hydrochloric acid. Connect the poles of a voltaic battery comsisting of three or fonr cells to two centon rods A and B (Fig. 494), and immerse these in the acid. The eurrent thows in

Fig. 494.-Electrolysis of hydrochlorlo acid. The electrodes A and B are carbon rod, fitted in rulber stoppers. the direction indicated by the arrows, and the roll A behich it enters the electrolytic cell is called the comele, the rod B by which it leaves is called the cuthende. A and B are spoken of as electrodes. Gases will collect at the electrodes. On testing, that liberated at A will be foum to be chlorine, and that at B, hydrogen. This process of decompesition by the electric current is called electrolysis (i.c., electric cumelysis).
484. Explanation of Electrolysis. According to the theory at present most commonly accepted, an electrolytic salt or acid, when in solution, becomes more or less completely dissociated. The respective parts into which the molecules divicle are known as ions. When, for eximple, common salt is dissolved in water, a percentage of the molecules (NaCl)
break up to form sodimn (Na) and chlorine (Cl) ions. Similarly, if sulphmrie aed is dihted with water, some of its molecules ($\mathrm{H}_{2} \mathrm{SO}_{4}$) dissociate into hydrogen (H) ions and sulphion (SO_{4}) ions.

A definite elarge of electrieity is associated with each ion, and when ic loses this charge it eeases to be an ion. The hydrogen and sollime atoms, and the atoms of metals in general, as ions, bear positive charges, while ehlorine atoms and sulphion are types, respeetively, of the elements and radicals which bear negative charges.

The ionization theory furnishes a simple explanation of the typical results deseribed in the preeerling section. When commeeted with the terminals of the battery the eleetrodes immersed in the hydrochloric aeid become eharged, the anode positively, and the cathode norgatively. As a consequenee, the positively charged hydrogen ions are attracted to the cathode, and the negatively charged elikorine ions to the anode. This 'migration' of positively charged ions in one direetion, and negatively charged ions in the other, oonstitutes the current in the clectrolyte.

The ions give up their eharges to the electrodes, and combine to form molenles. The gases are, therefore, liberated at these centres.

The positive eharges whieh the hydrogen ions bring to the cathode tend to diminish the negative charge of the cathode, while the negative charges of the chlorine tend to diminish the positive charge of the anode; but a constant difference of potential between the electrodes is kept up by the current maintained in the external conductor by the battery.
485. Theory of the Action of a Voltaic Cell. We have seen that chemical changes accompany the production of the current in the voltaic cell (\$468). These take place in accordance with the same principles as the changes in the electrolytic cell as described in sections 483 and 484, the main difference being that in the electrolytic cell the source of the current is without the cell, while in
the woltaic cell the current originates within the coll itself. Various theories have heren propmsel to aceonit for the cause of the current in the vollaie cell. Possibly the application of the imization theory as proposed by Nornst gives the most plausible explanation of its origin.

Acrorling to this theory every metal immersed in an electrolyte has a errtain pressure, known as its solntion tension, tending to project its particles into solntion in the form of ions. The magnitude of this pressure is the greater the nearer the metal to the pusitive limit in an electromotive series ($\$ 473$). Tlie metallic ions also have a temency to give up their charges and to deposit themselves on metals inmersed in the electrolyte, this lendency being the stronger the nearer the metal to the negative limit in an electromotive series. When the former of the forces is the stronger the solntion about the metal in acpuiring positive ions becomes positively chargerl in its relation to the metal. On the other hand, when the tendeney of the ions to deposit thenselves is the greater, an exeess of deposition over solution takes placo, and the netal in comparison with the solution becomes positively chargel. In the first case the metal becomes lower in potential than the solution, and in the second case higher.

To apply this theory to the simple cell in which zinc and copper are the plates and dilute sulphuric acid is the electrolyte, consider

Fia. 495. - Diagram illustrating the theoryot the action of a voltaic cell. first the zinc plate. Since zinc is near the positive limit in the electromotive series, the tension driving ions into solution is greater than the tendency towards deposition; hence zinc ions go into solution carrying positive charges. By experimental determination the zinc is found to be 0.62 volts lower in potential than the solution. Now consider the copper. As copper is towards the negative side of the series, the tendency of the ions to deposit themselves is the greater of the forces and the plate becomes positively charged by the deposition of positively charged hydrogen ions. The plate can be shown to be 0.46 volts higher in potential than the solution. The difference in potential, therefore, between the copper and zinc plates is $0.46+0.62=1.08$ volts.

When the proses are connceted a current flows through the wire from the copper to the zinc, tending to diseharge them; lont, as rapilly as they are discharged the ginc throws more ions into solution and more hydrogen ions are forced against the copper, retaining a permanent difference of potential between the metals and producing a contimous flow of electricity until the zinc is all dissolved or the hydrogen ions all driven out of the electrolyte. The migration of positively charged ions towards the copper plate (cathode) anll of the negatively charged ions towards the ainc plate (anole) constitute, as in the electrolytic cell, the current in the electrolyte.
486. Secondary Reactions in Electrolysis. If the hydrochloric acid is replaced by a solution of common salt (NaCl), chlonine as lefore appens at the anome, but the sorlimm atoms, whish have parted with their charges to the cathole, instead of combining to form molecules, displace hydrogen atoms from molecules of water in order to form sorlium hydroxide. Hence, hydrogen, and not sodium, is liberated at the cathode. The presence of the hydroxide in solution can be shown by adding sufficient red litmus to colour the solution. As soon as the current begins to pass, the liquid about the cathore is turned blue. The bleaching of the litmus about the anome indicates the presence of chlorine.

The above experiment is

Fia. 406. - Eiectrolyuis of water. typical of a large number of cases of electrolytic decomposition where secondary reactions, depending on the chemical relations of elements involved, take place. The electrolysis of water, possibly, furnishes another example.
487. Electrolysis of Water. Insert platinum electrodes into the bottom of a vessel of the form shown in Fig. 496. Partially fill the vessel with water acidulated with a few drops of sulphuric acid. Fill two test tubes with acidulated water and invert them over the electrodes. Comnect the clectrodes with a battery of three or four voltaic cells. Gases will be seen to bubble up from the electrodes, displacing the water in the test tubes.

412

On testing cach gas with a lighted splinter, that collected at the anorle will be fomed to be oxygen, and that at the cathosle, hydrogen. It will also be ohserved that the volmme of the hydrogen collected is twice that of the oxygen.

In this case, as in the electrolysis of hydrochloric acid, there is a migration of hydrogen ions in the direction of the current, and the gas is given off at the cathorle; but the liberation of the oxygen is probahly due to secoudary reactions. The sulphion (SO_{4}) ions move to the anole, where they part with their charges and combine with the hydrogen of the water, thos forming again sulphuric acid, and liberating oxygen. The quantity of the acid, therefore, remains unchanged and water only is decomposed.
488. Electroplating. Alvantage is taken of the deposition of a metal from a salt by electrolysis in order to cover one metal with a layer of another, the process being known as electropluting.

Comsider, as an example, the process of silver-plating. The objects to be plated are immersed in a bath containing a solntion of a silver salt, usually the

Fie. 487.-Bath and elertrical connection for eiectroplating. cyanide ($\Lambda_{\mathrm{g} C N}$). $\quad \Lambda$ plate of silver is also immersed in the bath (Fig. 497). A current from a battery or dynamo is then passed through the bath, from the silver plate (the anode), to the ohjects (the cathode). The positively charged silver ions are urged to the ohjects, and on giving up their charges, are deposited as a metallic film upon them. Meanwhile the negatively cliarged cyanogen (CN) ions migrate towards the silver plate, from which they attract into solution additional silver ions. Thus the metal is transferred from the plate to the objects, while the strength of the solution remains constant.

The process of plating with other metals is similar to silver-plating. 'The elcetrolyte must always be a solution
of the salt of the metal to le decomposen; the amole is a plate of that metal, and the cathorle the oljecet to bee plated.

For copper-plating, the bath is usually a solution of copper sulphate; for gold- and silver-plating, a solution of the cyat nides; and for nickel-phating, a solution of the double sulphate of nickel and ammoniun.
489. Electrotyping. Books are now usually printed from electrotype plates instend of from type, as the type womh som wear away. An impression of the type is made in a wax mould, the face of which is then covered with powdered plambago to provide a conducting surface upon which the metal can be deposited. The mould is then flowed with a solution of copper sulphate, and iron filings are aprinkled over. it. The iron displaces copper from the sulphate, and the plumbago surface is thus covered with a thin filn of copper. The iron filings are washed off, and the monld imnersed in in buth of nearly concentrated copper sulphate solution, slightly acidulated with sulphuric acill. The copper surface is then comected with the negative pole of a battery or dynano, and a copper plate which is connected with the positive pole is immersed in the bath.

When the layer of copper has become sufficiently thick it is removed from the bath, backed with melted type-metal and mounted on a wooden block. The face is an exact reproduction of the type or engraving.
490. Electrolytic Reduction of Ores; Electrolysis Applied to Manufactures. Electrolytic processes are now extensively used for reducing certain metals from their ores. A soluble, or fusible salt is formed by the action of chemical reagents, and the metal is deposited from it by electrolysis. For example, alummium is reduced in large quantities from a fused mixture of electrolytes. Sodium is prepared in a similar mamer.

The metallurgist also resorts to electrolysis in separating metals from their impurities. Copper, for example, is refined in this way.

414 CHEMICAI. EFFEOTS OF THE ELEETHIO CURRENT

The: murefined coplyer is made the amole in a bath of copper mulphate,
 fall tor the Instonn of the lath.

Currents of electricity are also employed in the propuration of many chemical pronlucts for commercinl purjoses. Canstic soxha and braching lipmose are mamfactured on a lange seate by electrolytic menns.
491. Polarization of Electrodes. If, in the procens of the decompenition of water ($\$ 4 \times 7$), we disemmert the wires from the buttery when the games are

Fro. 409. - Flectrio connention In an experiment to illustrate the polarl. zalion of elect roden. coming aff [reely, and commet thelin with a galvanoseope, we shall firl that n current will flow in a direction opposite to that which liberated the hydrogen and oxygen. The experiment may bo readily performed by comecting the lattery 13 , the electroly tic cell A, and the galvanowenpe fi, as shown in Fig. 498, mercury cups or keys lwing provided for opening and closing the circuits at C and D. When the circuit is closed at C but open at D the electrolysis proceeds, and the galvonoseope indicates the direction of the current. If the battery is cut out by opening C, and the circuit is closel at D, a momentary curvent is found to pass in a direction opposite to the origime current.

The reverse current is explained on the principle that the films of hydrogen and oxygen which collect abont the electronles ciuse a difference in potential between them, which develops an E.M.F. in a direction opposite to that which produced the original current. The electroles are then said to be polarized.

It is ohvious that to decompose water, the E.M.F. of the battery used must be greater than the counter-electromotive
force, which is alont 1.47 volts, sat μ ly the difference in potential between the eleetronles when the gases are being liberated.
492. Storage Oells or Accumulators. If leul cleetroles are substituterl for the platinum in the experiment of the preceding seetion, and the battery current is made to pass through dilute sulphuric acid (1 of acid to 10 of water) for a few minutes, hydrogen will be liberated as before at the cathole, and the other lead phate, the anode, will be ohserved to turn a dark brown, but no oxygen will be set free at its surface.

On cutting out the battery by opening the circuit at C, and connecting the lead plates with the galvanoscope by closing the cirenit at D, a reverse current, much stronger than that generated by the polarization of the platinum electroles, will pass through the galvanoscope. Moreover, this current will last mueh longer.

This experiment illustrates the prineiple of action of all storuige eells or cucumulutors.

When the current is passed throngh the dilute acid from one plate to the other, the oxygen freed at the anode unites with the lead, forming oxide of lead. The composition of the noode is thus made to differ from the cathore, mid in eonsequence there arises n difference in potential between them whieh causes n current to flow in the opposite direction whon the plates are joined by a conduetor.

This current will eontime to flow mutil the plates again become alike in composition, and hence in potential.
493. Oonstraction of Lead Cell and Edison Cell. Instead of using plates of solid load, perforated plates or "grids" made of lead, or some alloy of leal, are frequently employed. The boles in the plates are filled with a paste of lead oxides (red lead on the positive, litharge on the negative plate), which forms the active
material (Fig. 499). When the plates are immersed in the dilute sulphuric acid and the current passerl through the cell, these oxides

Fia. 499.-A storage cell with one positive and two negative plates. Two positive and three negrative, three poaitive and four negative, or even more plate may be used. are changed to peroxide $\left(\mathrm{PlO}_{2}\right)$ in the positive plates and reduced to spongy lead in the negative.

During the process of discharge both the plates are converted into lead sulphate, and a part of the sulphuric acid disappears, thus lowering the density of the electrolyte. When the cell is being charged, the sulphion ions combine with lead sulphate and water to form the lead peroxide and sulphuric acil, and the liydrogen ions react upon the lead sulphate forming spongy lead and sulphuric acid.

In the Edison storage battery, which has recently obtained some prominence, the positive plate consists of perforated steel tubes heavily nickel-plated, filled with alternate layers of nickel hydroxide and pure metallic nickel in very thin fiakes. The negative plate is a grid of nickel-plated steel lolding a number of rectangular pockets filled with powdered iron oxide. The electrolyte is a 21 per cent. solution of caustic potash in distilled water, with a small percentage of lithia. The battery jar is made from nickel-plated steel. Its voltage is 1.2 and it weiglis about one-half as much as a lead battery of equal capacity.
494. Laws of Hectrolysis. Faraday discovered the Laws of Eidectrolysis and formulated them in 1833. They may be summed up in the following statements:-

1. The amount of an ion liberated at an electrole in a given time is proportiomal to the strength of the current.
2. The weights of the clements sepuruted fiom the electrolyte by the same electric current are in the proportion of their. chemical equivalents.
3. Measurement of Current Strength by Electrolysis. In accordance with the laws of electrolysis the amount of the ions liberated per unit time may be taken as an exact measure of the strength of n current passing through an electrolyte.

The practical unit of current strength is called the umpere and is defined as the current which deposits siluer at the rute of 0.001118 grams 1 pr secomal (see § 54it).

The same current deposits copper at the rate of 0.000328 grams, and hydrogen at the rate of 0.000010384 grams per second.

Other elements may be used in defining the unit, but in practice when the strength of a current is to be estimated by electrolysis, it is usually determined by ascertaining the amount of silver, copper, or hydrogen which is deposited in a specified time. If W_{1}, W_{3}, W_{3} is the mass in grans of silver, copper and hydrogen, respectively, deposited in t seconds, and C the strength of the current in amperes. Then

$$
C=\frac{W_{1}}{t \times 0.001118}=\frac{W_{2}}{t \times 0.000328}=\frac{W_{3}}{0.000010384} .
$$

496. Voltameters. An electrolytic cell used for the purpose of measmring the strength of an electric current is called a voltameter.

For silver, the cell consists of a platinum lowl, partially filled with a solution of silver nitrate in which is suspended a silver disc (Fig. 500). When the voltameter is placed in the circuit, the platinum bowl is made the cathode and the silver disc the anode. When the current has been passed through the solution for the specified time the silver dise is renoved, the solution poured off, and the bowl washed, dried and weighed. The increase in weight gives the mass deposited.

The copper voltameter consists of two copper electrodes immersed in a solution

Fie. 500.-A standard silver voltameter. Oathode, a platinum bowl not leat than 6 cm . in diameter and 4 cm . deep. It reats on a metal ring to ensure good connection. Anode, a dime of pure silver uppuorted by a bilver rod riveted through its centre. Electrolyte, 15 parts by weight of tiliver nitrate to ${ }^{3} 5$ parts of water. Filter paper is wrapped ahout the anode to prevent loome particlem of silver from falling on the cathode. of copper sulphate. The cathode is weighed before and after the passing of the current. The difference in weight gives the amount of copper deposited in the given time.

The hydrogen, or water, voltameter is simply the apparatus used for the decomposition of water ($\$ 487$). For the purpose of measuring the current, the hydrogen alone is collected in a graduated tube. The current to be measured is passed through the acilulated water until the liquid in the tube stands at the same level as the liquid in the vessel. The time during which the current was passing is then noted. The temperature of the gas and the barometric pressure are also taken. The volume of the hydrogen liberated is read from the graduated tube, reduced to standard pressure and temperature, and the mass corresponding to this volume calculated.
The process of measuring the strength of a current by a voltameter is slow. We shall discuss in the next chapter a more convenient method by the use of galvanometers. Voltameters are now used mainly in standardizing these instruments.

QUESTIONS AND PROBLEMS

1. Why can a single Daniell cell not be used to decompose water?
2. Plates of copper and platinum are dipped into a solution of copper sulphate, and a current is passed through the oell from th copper to the platinum. Describe the effects produced, also what happens when the current is reversed.
3. How long will it take a current of one ampere to deposit one grain of copper from a solution of cepper sulphate?
4. A constant current is passed through a silver voltameter for a period of 20 minutes and it is found that 6.508 grams of silver have been deposited. What is the strength of the current?
5. The same current is passed through three electrolytic cells, the first containing acidulated water, the second a solution of copper sulphate, and the third a solution of silver nitrate. What weight of hydrogen and what weight of oxygen will be liberated at the first cell ; and what weight of copper will be deposited at the cathole of the second cell; when 11.18 grains of silver are deposited on the cathode of the third cell?
6. What transformations of energy take place (1) in charging a secondary cell, (2) in discharging it ? Is anything "stored up" in the cell $?$ If so, what?
7. Why is it possible to get a much stronger current from a storage cell than frow a Daniell cell ?

CHAPTER XLV

Magnetic Relations of the Current

497. Discovery of Electromagnetic Phenomena. The discovery by Oersted of the effect of an electric current on the magnetic needle ($\$ 474$) gave a decided impetus to the sturly of electromagnetic phenomena. The investigations of Arago, Ampère, Davy, Faraday and others during the next ten years led to the discovery of practically all the principles that have had important applications in modern electrical development.
498. Magnetic Field Due to an Electric Current. In 1820, a year after Oersted's great discovery, Arago proved that a wire carrying a strong current had the power to lift iron filings, and hence concluded that such a wire must be regarded as a magnet. Two years later Davy showed that the apparent attraction was due to the fact that the particles of iron became nagnets under the influence of the current, and that on account of the mutual attractions of the opposite poles they formed chains about the wire.

The action of the current on the filings may be shown by

Fia. 601.-The presence of a magnetio field about a wire carrying an electrio current shown by action oll iron filings. passing a thick wire vertically up through a hole in a card, and sprinkling iron filings from a muslin bag on the card. If the card is gently tapped while a strong current is passing through the wire, the filings arrange themselves in concentric rings about it. (Fig. 501.)

If a small jeweler's compass is placed on the card, and moved from point to

F10. 802.-The presence of a magnetic field sbout a wire carrying an electrio current shown by the action on t compaes needje. point about the wire, it is found that in every position the needle tends to set itself with its axis tangent to a circle whose
centre is the wire (Fig. 502). On reversing the direction of the current the direction in which the needle points is also reversed.

These experiments show that a wive through which an electric current is flowing is surrounded by a murgnetic firld, the lines of force of which form circles aromend it. Thus the wire throughout its entire length is surrounded by a "sort of enveloping magnetic whirl."

The direction in whieh a pole of the magnetic needle tends to turn depends on the direction of the current in the wire. Several rules for remembering the relation between the direction of the cmrent and the behaviour of the needle have been given, two of them being as follows:-

Fio. 503 -Direction of lines of force alout a conductor.

1. Suppose the right hand to grasp the wire carriging the current (Fig. 503) so that the thrumb points in the direction of its flow; then the N-pole will be urged in the direction in which the fingers point.
2. Imagine a man swimming in the wire wITH the current and that he turus so us to face the needle; then the N-pole of the neelle will be deffected towards his Lert hand.
3. Magnetic Field about a Circular Conductor. Sinee

Fig. 604.-Line of force about a circular loop.
the lines of force encircle a conductor, it would appear that a wire in the form of a circular loop, carrying a current (Fig. 504) should act as a dise of steel magnetized so as to have one face a N pole, the other a S-pole. That such is the case can be demonstrated by a simple

Fic. 506. - Experiment to thow that a circular loop carrying a current behave as a diac magnet. experiment. Take a pieee of copper wire and bend it into the
form slown in Fig. 505, making the circle about 20 cm . in dianeter. Suspend the wire by a long thread, and allow its cnds to dip into mercury held in receptacles made in a wooden block of the form shown in the figurc. (The inner receptacle should be about 2 cm . in diameter and the outer one 2 cm . wide with a space of 1 cm . of wood between them.) Pass a current through the circular conductor by connecting the poles of a battery with the mercury in the receptacles. For convenience in making connections, the receptacles should be connected by iron wires with binding posts screwed into the block.

Now, if a bar-magnet is brought near the face of the loop, the latter will be attracted or repelled by its poles, and behave in every way as if it were a flat magnetic dise with poles at its faces. Indeed, if the current is strong, and the ends of the wire moves freely in the mercury, it will set itself with its faces north and south under the influence of the earth's magnctic field.

In taking this position it obeys the general law that a magnet when placed in the field of force of another magnet always tends to set itself in such a position that the line joining its poles will be parallel to the lines of force of the field in which it is placed.

To fulfil this condition the plane of the coil must become perpendicular to the direction of the lines of force of the field.
coil carrying a current, therefore, always tends to set itself in the position in which the maximum number of lines of force will pelss through it.
500. Magnetic Conditions of a Helix. Anpère showed that the magnetic power of a wire carrying a current could be intensified by winding it into the form of a spiral. The magnetic properties of such a coil can be demonstrated by simple experiments.

Make a helix, or coil of wire, about three inches long, by winding insulated copper wire (No. 16 or 18) about a
lead-pencil. Connect the ends of the wire with the poles of a

Fit. 51%.- A helix carrying a current behaves like a bar-magnet. voltaic cell, and with a magnetic needle explore the region surrounding i^{\prime}.

Next make a helix somewhat larger in diameter, say about three-guarters of an inch, and place it in a rectangular opening made in a sheet of cardbuard (Fig. 506). This can be done by cutting out two sides and an end of a rectangle of the proper size and then passing the free end of the strip lengthwise through the helix, and replacing the strip in position. Sprinkle iron filings from a muslin bag on the cardboard around the helix and within it. Attach the ends of the wire to the poles of a battery and gently tap the cardboard.

In these experiments the helix through which the current is passing behaves exactly like a magnet, having N and S poles and a neutral equatorial region. The field, as shown by the action of the needle and the iron filings, resembles that of a bar-magnet. (Compare §429.)
501. Polarity of the Helix and Direction of the Current. There is a fixed relation between the poles of the coil and the direction of the current passing through the wire. Looking at the
 south pule of the helix, the electric cur- Pia. 507 .-Relation of polarrent puesses throuyl the coils in the direction $\begin{gathered}\text { ity of helli to the direction } \\ \text { of the eurrent }\end{gathered}$ of the lunds of a clock (Fig. 507); or, we can give a "righthand" rule similar to that in $\S 498$ as follows:--If the helix is grusped in the right luend, us shown in Fig. 508, with the finyers pointing in the direction in which the current is moving in the coils, the thumb will point to the N-pole.
502. Flectromagnet. Arago and Ampère magnetized steel needles by placing them within a enil of wire carrying a current. Sturgeon, in 1825, was the first to show that if a core of soft-iron is introluced into such a coil (Fig. 509) the magnetic effect

Fiv. 503.-The essential parte of an electromagnet. is inereased, and that the core loses, its magnetism when the cirenit is opened. The combination of the helix of insulated wire and a soft-iron core is called an electromuentet.
503. Why an Electromagnet is More Powerful than a Helix without a Core. When the helix is used without a core, the greater number of the lines of force pass in circles around the individual turns of wire, comparatively few running through the helix from end to end and back again outside the coil; but when the iron core is inserted the greater number of lines of force pass in this latter way, because the permeability of iron is very much greater than that of air. Whenever a turn of wire is near the core, the lines of force, instead of passing in closed curves around the wire, change their shape and pass from end to end of the core. The effect of the core, therefore, is to increase the number of hines of foree whieh are concentrated at the different poles, and consequently to inerease the power of the magnet.

The strength of the magnet may be still further increased

Fin. 510. - An elcetro-magnet-horse-shoe form. by bringing the poles
close together so that the lines of force may pass within iron throughout their whole course. This is done either by bending the core into horse-shoe form, as shown in

Fic. 511. -An electromagnet -yoke form.

n

Fig. 511. The lines of force thus pass from one pole to the other through the iron loxly hell against them.
504. Strength of an Electromagnet. The strength of an electromagnet deperils equally on the strength of the cinrent and on the number of turns of wire which encircle the core.

Andet Marrs Ayphri (1775-1836). Born at Lyons, France, Discovered the action of one current upon another. This law is generally expressed ly saying that the strength is proportional to the compereturns which surromed the corre, meaning that the strength varies as the proluct of the number of turns of wire about the core and the strength of the current measured in amperes.

This law is true only when the iron core is not near to being magnetized to saturation.

It should also be observed that when an electromagnet is used with a battery, or other source of current where the ends of the wire are kept at a constant difference of potential, an increase in the number of turns of the wire may not necessarily add to the strength of the magnet, becanse the loss in magnetizing force through loss in current caused by increased resistance may more than counterbalance the gain throngh the increased number of turns of wire.

Query.-In what circuit should a "long coil" electromagnet (one with a great number of turns of fine wire) be used, -one in which the remaining resistance is great or small as compared with the resistance of the magnet ? (See § 510.)
505. Action of one Electric Current on Another.-Ampère's Laws. Oersted's discovery of the action of an electric current on the magnetic needle ($\$ 474$) led Ampère to investigat. the actions of currents on one another. The results of his ohservations are formulated in two statements, generally known as Ampère's Laws.

ACTION OF ONE ELECTRIC CURRENT ON ANOTHER 425

Fin. 513.-Connection for demonatrating Amperee's Lans. Farallel currents in opposite dircctions repel each other.

1. Parrillel currents in the same direction attrect ench other; parrillel currents in opposite directions repel euch other:
2. Angulier currents teme to become pemellel remel to fow in the sume direction.

The laws may be veritied in a simple mamer by the following experiments:-

Wind insulated magret wire (N o. 20) into coils of the forms A and B in Fig. 512. A is about 25 cin. square and contains five convolutions of wire. It may be made by winding the wire around the edge of a square board, tying the strands together at a number of pwints with thread, and renoving the board. B may be made in a similar manner. It is reetangular, 20 cm . by 10 cm . and contains also five convolutions.

F1. 612.-A pparatue and connection for demonatrating Ampere's lawe. Paraliel currente in the same direotion attract each other.

Suspend A by a long thread nud allow the ends of the wire to dip into the merenry reeeptacles, as shown in Fig. 505. Conneet the wires as shown in Fig. 512 so that a current from a battery of three or four cells will pass in one continuous current through the two coils.

Bring one edge of B near one of the vertical edges of A with the planes of the coils at right angles to ench other, in suel a position that the current in the adjacent portions of the two coils will flow (1) in the same direction (Fig. 512); (2) in the opposite direction (Fig. 513).

In the first position the coils attract each other and in the second they repel each other.

Now, holl B within A as shown in Fig. 514, armaging the comnecting wires in such a way that \boldsymbol{A} is free to furn romul. The coil A tums almort and tends to set itself in the

Fie. b14. - Connertions for denionat rating AII. pérés Lawe Anguiar currents tend to hecome parailel and flow In the same direction. pasition in which the currents are parallel and flow in the sane direction.

The reason for the lehaviour of the coils is obvious. When the currents flow in the sane direction, their magnetic fichls tend to merge, and the action in the medium which surrounds the wires tends to draw thein together, but when the Fia. ins. Magnetioneld of two curcurrents flow in opposite directions

these actions tend to push the wires further apart (see $\S 499$). The directions of the lines of force in the fields may be shown by passing two wires through the card as in the cxperiment of $\S 498$, and causing the current to pass (1) in the same direction through cach wire (Fig. 515); (2) Fig. 516.-Mngnetio field of currents in opposite directions (Fig. 516).
in opposite directone.
606. Practical Applications of the Magnetic Effects of the Current. No sooner were the principles of clectronagnetism made known by the researches of the carly investigators than their practical applications began to be recognized.

Schweigger modified Ocrsted's experiment by bending the wires in coils about the magnetic needle, and applied the device to detecting electric currents and comparing their strengths.

Ampere, in 1821, suggested the possibility of transmitting signals by electromagnetic action. Joweph Henry used an electromagnet at Albuny, in 1831, for prorlueing audible signals. In 1837, Morse devised the system hy which dots and dashes, representing letters of the alphahet, were made on a ntrip of moving paper by the action of an electromagnet. Abont the sume period, also, the possibility of producing rotury motion by the action of electromagnets was demonstrated by the experiments of Henry, Jacobi, Davenport, and others At the present time electromagnets are used for a great varicty of practical purposes. The following sections contain deseriptions of some of the more common applications.
807. The Electric Telegraph. The elcetric telegraph in its simplest form is an electromagnet operated at a distince by a battery and connecting wires. The circuit is opened and closed by a key. The clectromagnet, fittei to give sigmals, is called a sounder. When the current in the circuit is not sufficiently strong, on account of the resistance of the line, to work a sounder, a more sensitive electromagnet called a reliy is introduced which closes a local circuit containing a battery directly connected with the sounder.
508. The Telegraph Key. The key is an instrument for closing and breaking the circuit. Fig. 517 shows its construction. Two platinum contact points, P, are connected with the binding posts A and B, the lower one being connected by the bolt C which is insulated from the frame, and the upper one being mounted on the lever

Fio. 617.-Telegraph key. L which is connected with the binding post B by means of the frame. The key is placed in the circuit by connecting the ends of the wire to the binding posts.

When the lever is pressed down, the platinum points are brought into contact and the circuit is completed. When the
lever is not depressed, it spring.V keeps the peints apart. A switeh S is nsed to commet the linding poats, und close the circuit when the instrment is not in use.
609. The Telegraph Sounder. Fig. 518 shows the construc-

Fic. 812 -Telegraph counder. tion of thic sounder. It consints of min clectronagnet E, above the poles of which is a soft-iron armature A, monnted on a pivoted beam B. The bean is raised mid the armuture held by a spring S, alove the poles of the mannet at a distance regralated by the serews C and D. The emis of the wire of the magnet are connected with the binding powts.
510. The Telegraph Relay. The relny is an instrument for closing automatically a lexal circuit in an office, when the current in the nuin circuit, on account of the great resistance of the line, is too weak to work the sounder. It is a key worked by an electromaguet instead of by huud. Fig. 519 shows its construction. It consists of a

Fig. 619.-Telegraph relay. "long coil" electromagnet R, in front of the poles of which is a pivoted lever L carrying a soft-iron armature, which is held a little distance from the poles by the spring S. Platinum contact points, P, are connected with the lever L and the serew C. The ends of the wire of the electromagnet are connected with the binding posts B, B, and the leyer L and the screw C are electrically connected with the binding posts B_{1}, B_{1}.

Whenever the magnet R is magnetized the armature is drawi toward the poles and the contact points P are brought together and the local circuit completed.
611. Connection of Instrument in a Telegraph System. $\mathrm{Fi} \cdot 1$ shows a telegraph line passing through three oflicen

Fia. $\mathbf{6 2 0}$.- Oonnection of Inatrumenta in a tolegraph errouit.
A, B, and C, and indicates how the comnections are made in each otlice.

When the line is not in use the switch on each key K is closed and the current in the main circuit flows from the positive pole of the main battery at A, across the switches of the keys, and through the electromagnets of the relays, to the negative pole of the main battery at C, and thence through the buttery to the ground, which forms the return circuit, to the negative pole of the main battery at A. The magnets R, R, R, are magnetized, the local circuits completed by the rehas, and the current from each local battery flows throngh the magnet E^{\prime} of the sounder.

When the line is being used by an operator in any office A, the switch of his key is opened. The circuit is thus broken and the armature of the relay and of the sounder in each of the offices is released.

When the operator depresses the key and completes the main circuit, the armature of the relay in each office is drawn in, and the local circuit is completed. The screw D of each sounder is then drawn down against the frame, producing a 'click.' When he breaks the circuit at the key, the local
circuit is again opened and the beam of each sounder is drawn up ly the spring against the serew $C^{\prime \prime}$, prolucing another 'click' of different somml. If the cirenit is completerl and broken quickly by the operator; the two 'clicks' are very close together, and a "lot" is formed; but if an interval intervenes between the 'clicks' the effect is called a "dash." Different combinations of dots and dashes form different letters. The transmitting operator at A is thus able to make himself understood by the receiving operator at B or C. 512. The Electric Bell. Electric bells are of various kinds.
 Fig. 521 slaows the construction of one of the most common forms. It consists of an electronagnet M, M, E, in front of the poles of which is supported an armature A by a spring S. At the end of the armature is attached a hammer H, plad in such a position that it will strike a bell B when the armature is drawn to the poles of the magnet. A current breaker, consisting of a phatinum-tippet spring D, attached to the arnature, is placed in the circuit as shown in the figure.

When the circuit is completed by a pushbutton P, the cmrrent from the battery passes from the screw C to spring D and

Fia. 521.- Electric bell amit ite connections. At $1 f$ is showin section of the push. button. The figure showe the lelll when the bution is not pressed. The current may pase in either direction through the bell.

through the electromagnet to the battery. The armature is drawn in and the lell struck by the hammer; but by the
movement of the armature the spring D is separated from the serew C, and the circuit is broken at this point. The magnet then released, the armatnre with its spring S causes the hammer to fall back into its original position when the circuit is again completed. The action goes on as before and a continuous ringing is thus kept up.
513. Galvanometers. Since the magnetic effect of the current varies as its strength, the strengths of different currents may be compared by comparing their magnetic actions. Instrunents for this purpose are called Gelvanometers. There are two main types of the instrument.

In the first type the strength of the current is measured by the deflection of a magnetic needle within a fixed coil, made to carry the current to be measured; in the sccond, the strength is measured by the deflection of a movable coil suspended between the poles of a permanent magnet.

The Galvanoscope described in $\S 475$ is of the first type.
514. The Tangent Galvanometer. A more useful instrument of the first type is the tangent galvanometer. It consists of a short magnetic needle, not exceeding one inch in length, suspended, or poised at the centre of a large open ring or circular coil of copper wire not less than ten inches in diameter. A light pointer is usually attached to the needle, and its deflection is read on a circular scale placed under the pointer (Fig. 522).

This is called a 'tangent' galvanometer because when the cuil

Fie. 62\% - Tangent galvanometer. is placed parallel with the earth's magnetic meridian and a current passed through it the
intensity of the curvent will vory as the 'trengent' of the amyle of deffection of the meedle.

Thus, if the current corresponding to any angle of deflection, say one ampere, is known, the current corresponding to any other angle of deflection can be determined by referring to a table for the tangent of the angle, and making the necessany calculations.
515. The D'Arsonval Galvanometer. Galvanometers of the second type are generally known as I 'A issmonl gral ranometers.

Fig. 523. - The es. sential parts of a U'Armonval galvanometer. In this form the permanent magnet remains stationary, and a suspended coil rotates through the action of the current in the field of the permament magnet. Fig. 523 shows the essential parts of the instrument, and in Fig. 527 a complete instrument is seen. N and S are the poles of a permanent magnet of the horse-shoe type. C is an elongated coil suspended ly the wires A and B, which leal the current to and from the coil. The betlection of the coil is indicated either by a light pointer and a scale, or by a mirror D attached to the upper part of the coil to reflect a beam of light, which serves as a pointer to indicate the extent of the rotation.

The coil is bronglit to the zero by the tension of the suspension wires. When the current is passed through it, the coil tends to turn in such a position as to include as many as possible of the lines of force of the field of the permanent magnet, and the deflection is approximately proportional to the strength of the current. Instruments of this type may be male exceedingly sensitive.
516. Ammeters and Voltmeters. A galvanometer with a scale graduated to read amperes is called an commoter: The
coils are of low resistance, in order that the instrument may be placed directly in the circuit without sensibly affecting the strength of the current.

If the galvanometer is to be used to measure potential differences between points in a circuit it should have high resistance; and if the scale is graduated to read directly in volts, the instrument is called a voltmeter.

The best portable voltmeters and ammeters used for commercial purposes are of the movable coil type. Fig. 524 shows an instrument of this class. The coil C, having a soft-iron cylinder within it, is pivoted on jewel hearings, and is liehl between the poles N and S of a permanent magnet of great constancy. It is brought to the zero

10. 624.-Ammeter or voltmeter. C, movable coil ; sp, one of the springe; N, S, poles of the permanent magnet; p, pointer. position by a cuil spring op.

When the current is passed through the instrument, the coil, to which a pointer p is attached, reacts against the spring and turns abont within the fied of the magnet.

Each instrument is calibrated loy comparison with a standard instrument phaced simultaneously in the same circuit with it.

QUESTIORE

1. If you were given a voltaic cell, wire with an insulating covering, and a bar of soft-iron, one end of which was marked, state exactly what arrangements you would make in order to magnetize the iron so that the marked end might be a N-pule. Give diagram.
2. A current is flowing through a rigid copper rol. How would you place a small piece of iron wire with respect to it so that the iron may be magnetizul in che direction of its length? Assuming the direction of the current, state which end of the wire will be a N-pole.
3. A telegraph wire runs north and south along the magnetic meridian. A magnetic needle free to turn in all directions is placod over the wire. How will this needle act when a current is sent through the wire from sonth to north? Supposing the wire to rin east and west, how would you detect the direction of the current with a magnetic needle?
4. An insmlated wire is wound round a wooden cylinder from one end A to the other end B. How would you wind it back from B to A (1) so as to increase, (2) so as to diminish, the magnetic effects which it produces When in current is passed through it ? Illustrate your answer by a diagram drawn on the assumption that you are looking at tha end B.
5. A small coil is suspended between the poles of a powerful horse-shoe magnet, and a current is made to flow through it. How will the coil behave (1) when its axis is in the line joining the polus of the magnet? (2) when it points at right angles to that line?
6. If it were true that the earth's magnetisun is due to currents traversing the earth's surface, show what would be their general direction.
7. An elastic spiral wire hangs so that its lower end just dips into a vessel of mercury. When the top of the spiral is connected with one pole of a bittery, and the mercury with the other, it vibrates, alternately breaking and closing the circuit nt the point of contact of the end of the wire and the mercury. Explain this action.

CHAPTER XLVI

Induced Currents

517. Faraday's Experiments. Much of the life of the great investigator Faralay was occupied in endeavours to trace relations between the various "forces of nature,"-gravitation, chemical affinity, heat, light, electricity and magnetism. Sceing that magnetic effects could be proluced by an electric current, he felt sure that an electric current could be oltained by means of a magnet. During seven years (1824-31), he devoted considerable time to securing experimental proof of this, and at last, in August, 1831, was successful.

He took a ring of soft-iron and on it wound two coils A, B, of wire. The ends of one coil he joined to the terminals of a battery C, the ends of the other to a galvanometer G (Fig. 525). He noticed tlat on closing the battery circuit the needle of the galvanometer was de-

Fie. 625.-Current induced in a circuit by opening or closing another circuit. flected, but that after oscillating a while it returned again to its zero. However, just when the circuit was opened the

Fia. 626.-Current in. duced in a circult by moving it within the fieid of a permanent magnet. needle was again deflected, settling down to rest as before after a few oscillations.

On September 23rd he wrote, "I am busy just now again on electromagnetism, and think I have got hold of a good thing, but can' say. It may be a weed instead of a fish that I may at last pull up." The following day lie phaced a coil of wire wound over an iron core, with its ends connected to a galvanometer, between the poles of bar-magnets as slown in Fig. 526. Whenever the magnetic contact at N and S was made or broken the needle of the galvanometer \boldsymbol{G} was disturbed.

On October 1st he again molified his experiments by winding two coils of insulatell wire on the same block of wool, connecting one with the galvanoneter, and the other with the battery. As lefore, he fonnd that whenever the battery circnit was closerl or opened a current was produced in the galvanomeler cireuit, and that the needle was deflected in one direction on closing the circuit, in the opposite on opening it; but that in this case, as in his previons experiments, the cnrrent in the galvanometer cirenit was only momentary.

It remained only to invent a method of making these momentary currents continnons. This has been worked out by others and has given us the dynano. Thas, in the discovery of the principle of prolucing a current by induction, Faralay made possible all the monern applications of electricity in industrial development.
518. Production of Induced Currents. Faraday's discoveries may be summel up in the following statement:Whencere, from ally cruse, the number of murguet ic lines of forep pmaxiay thromalh a closed circouit is changent, an electric current is pronlacerl in that riveuit.

Sueh a current is known as an inlucell current.
519. Illustrations of Induced Currents. Faraday's original experiments are simple and cin be performed by anyone without difficulty. The coils connected with the gal vanometer should be wonnd with many thris of tine insulated wire, and the galvanombter used should be sensitive; one of the D'Armonval (§ 515) type answers well.

A great variety of experiments might le added to illustrate the phenomena of induced currents, becanse any device whatever which will alter the number of lines of force passing through a coil will induce a current in it.

Let us take a coil of very fine insulated wire wound on a hollow spool of the form shown in Fig. 527 and connect thic cuds of the wire to the galvanometer. Thrust the pole of a bur-magnet into it, and then withdraw it; slip the coil over one pole of a horse-shoe magnet, and then remove it. In looth cases the galvanometer indicates a current, in one direction when the pole passes within the coil, and in the opposite direction when it is withdrawn, but in each ease the curvent hests only while the unc!uet cund coil

F1e. 627.-Aplaratus for showing that when a magnet is thrust into or withdrawn from a closed coil a current is induced in the coll. are in motion relative to pach other.

If the coil usel in the preceding experiments is slipped over the pole of an electromagnet comected with a battery, as shown in Fig. 528 and then withdrawn, effects similar to those observed in the case of the permanent magnet will be seen.
520. Explanation of Terms. The cuil connected with the

Fik. 528.-Currents in. duced in n ciosed coil hy moving it in the fiein of an electromagnet. battery is called the primary coil, and the current which flows through it is called the primuey current; the coil connected with the galvanometer is called the secoudury coil, and the momentary currents made to flow in it, secomdury currents. When the secondary currents flow in the same dircction as the primary, they are said to be direct, or to flow in a positive direction; but when the secondary currents flow in the opposite direction, they are said to be inverse, or to flow in a negative direction.
521. Laws of Induced Ourrents. Lat us repeat the last experiment, and take care to trace the relative directions of the primary and secomblary currents when the number of magnetic lines of force passing through the space inclosed by the secondary coil is (11) increasing, (1) decreasing. It will be found that whimorer a nechease in the momber of limes of
 rement is iudural in this circuit, flenvin! in the seme direc-
 fiche, thent is, e Dinect curvent is prelluced; and thet whenperr un INCREASE $i n$ the number of limes of force tokies phece,
 "plowite in dimertion to thet artiong, that is, un inverse curvert is prenluced.

Remember therefore,
A derverene gives a dimet current,
An increcese gives an iunerse current.
Also, by moving the coil up to the pole of the magnet, at one time rapilly, and at another slowly, and observing the effects on the galvanometer of the change in the rate of the motion, it has been shown that the tofal electromotive forre imblucerl in any circuit at a given instront, is equal to the lime-rete of the variutiom of the flow of muynetic lines of force through that circuit.

Ii is evident that when a circuit is not closed it is impossible ${ }^{-}$ to produce a current in it by a change in the number of lines of force which pass through it; but it should be ohserved that, as in the case of a voltaic cell in open circuit, a potential difference is established between the terminals of the conductor. In other words, an electromotive force is developed in the circuit.

It should be noted, also, that the moition of a conductor within a magnetic field does not necessarily develop an
E.M.F. in it. It does so only when it cuts the lines of force, and it is obvious that it does not do so when the eomluctor is moved in the direetion parallel with the lines of force of the field. This may be slown by connecting the coil used in the previous experinents with the galvanometer and moving it in various directions about the poles of a horse-shoe magnet. The needle is undisturbed when the coil is moved to and fro between the poles, in the position shown in Fig. 529; but if the eoil is moved up and down, or placed leetween the poles and tumed about a hoizontal or a vertical axis, or moved in any other way which causes the number of lines of force

519. 620.-Chunge in the nuniler of ilnee of foroe cutting a coll necemary to the production of Induced currenta. pessing through it to chanye, a current is generated.
522. Lenz's Law. We liave found (1) that parallel currents in the same direction attract each other (\$505), (1) that on moving a current from a conducting circuit an induced current is prowluced in the secondary in the same direction as the primary, ($\$ 521$). We have also found (c) that parallel currents in opposite directions repel each other, and (b) that on noving a current temverrls a conducting circuit an induced current is proluced in the secondary in the opposite direction to that in the primary.

Hence, in all cases of electromagnetic induction, the direction of the imluced current is aluays such that it monluces a mugnetic firle which opposes the motion or chenge which induces the current. This is known as Lenz's Law.
523. Self-Induction. If an electromagnet containing many turns of wire is connected with a battery and the circuit elosed and opened by touching the two ends of the connecting wires together and then separating them, a spark will be observed at the ends of the wires when they are separated,
and if the hands are in contact with the late wires, a shock will powsilly be felt.

The effects observed we due to what is known as selfinduction.

We have seen that, in the case of two distiact coils of wire near each other, when in current is started or stopped in one n current is induced in the other. This is due to the fact that the number of magnetic lines of foree passing through the second coil is thereby altered. But we can have this inductive effect with a single coil. Euch turn of the wire of the coil will exert an inductive action on all the other turns.

The magnetic lines of force surrounding a current, in circulating around a wire, pass, especially when the wire is coiled, across contiguons parts of the same circuit, and any variation in the strength of the current canses the cmurent to act inductively on itself. On completing the circuit, this current is inverse; and on breaking it, direct.

The divect induced curvent in the primary wire itself, which tends to strengthen the current when the circnit is broken, is callet the extre current.

This self-induced current is of high E.M.F., and therefore jumps across the air space as the wires are separatel, thus producing the spark.

QUEstiOns

1. You have a metal hoop. By nesus of a diagram describe some arrangenent by which, without touching the hoop, you can make electric currents pass around it, first one way, and then the other.
2. A coil about one foot in diameter, made of $\mathbf{4 0 0}$ or $\mathbf{5 0 0}$ turns of fine insulated wire, is connected with a sensitive galvanometer. When it is held with its plane facing north and sonth, and then turned over quickly, the needle of the galvanometer is disturbed. Give the reason for this.
3. A tar of perfectly soft-iron is thrust into the interior of a coil of wire whose terminals are comected with a galvanometer. An induced current is observed. Could the coil and har be placed in such a position that the above action might nearly or entirely disappear? Explain fully.
4. Around the outside of a deep cylindrioal jar are coilod two soparate pieces of fine silk-covered wire, ench consinting of many turns. The ends of oue coil are joined to a battery, those of the other to a sensitive galvanometer. When an iron bar in thrast into the jar a momentary current is observed in the galvanometer coils, and when it is druwn out another momentary current (but in an opposite direction) is observed. Account for thene results.
5. A mall battery was joined in circuit with a coil of fine wire and a galvanometer, in which the current wam found to produce a steady but anall deflection. An unmagnetized iron bar was now plungod into the hollow of the coil and then withdrawn. The galvanometer needle was observed to recede momentarily from its first position, then to roturn and to swing beyoud it with a wider are than before, and finally to nettle down to its original deflection. Explain these actions, and atate what was the source of the energy that moved the needle.
6. The polen of a voltaic battery are connected with two mercury cupm. These cups are connected succensively by:-(1) A long straight wire. (2) The anne wire arranged in a close spiral, the wire being covered with some insulating material. (3) The anne wire coilod around a soft-iron core. Describe and discuss what happens in each case when the cirouit is broken.

CHADIER XLJH

Aprlications of Inducein Cuments

624. The Principle of the Dynamo. In its simplest form, a dynmo is a coil of wire rotated abont an axis in a magnetic field. The principle may be illnstrated by commecting to the frelvammeter the coil used in the experiments on current induction and rotating it about a vertical axis between the poles of a horse-shoe magnet. Contimous rotation in ons: direction is prevented by the twisting of the connecting witacy about each other. In a working dynamo this difficulty is overcone by joining the ends of the wires to rings, irom

Fio. 530 - Principle of the which the current is taken by bruslies bearing upon them. A study of Figs. 530-533 will show how the current is generated in the coil and how it is made to flow from

Fre. B81.-Principle of the brush to brush through the external conductor.

Let alcel be a coil of wire, having one end attached to the ring A and the other to the ring B; and suppose the coil to rotate about a horizontal axis between the poles N and S.

Now the maxinum number of lines of force pass through the coil when it is in the position shown in Fig. 530 and 532, and the minimun number when it is in the position shown in Figs. 531 and 533. In the first quarter-turn, that is, in the change from the position shown in Fig. 530 to the position shown in Fig. 531, the number of lines of force passing through the coil is decreasing, and a direct current (flowing clockwise viewed from N^{\prime}) is induced in it. During the next
 throngh the coil is increming，und in inverse current（connter－

W1．632．－－Principle of the dynamo． clockw： J ）is induced in it； but us the oppowite face of the coil（viewed from \boldsymbol{N} ）is presented to the view，it is evi－ dent that the current Hows in the same

Fia．68s．－Princlple of the ．1．Inte direction in the coil as during the first quarter－turn． In ！in mane way it can be shown that the current continues to How，in one direction in the coil during the second half－turn （ 以上，$_{2}, 532,533,531$ ）．But as the sides ab and chl of the cuil have changed places，this direction will be opposite to that of the curent in the coil during the first hulf－turr．．The current in tho coil，therefore，changes direction at the end of each half revolution，but the complete circuit includes the wires joining the brushes bearing on A and B ；hence a current which clanges direction at regular intervals is produced in the external conductor．Such is known as an alternating current．

525．The Armature of the Dynamo．We have，for simpli－ city，considered in the preceling section the case of the revolution of a single coil within the magnetic field．In o．nary pratice a number of coils are connected to the same collecting rings or plates．These coils are wound about a soft－iron core，which serves to hold them in place and to increase the number of lines of force passing through the space inflosed by them．The coils and core with the attached connection a constitute the armuture of the dynamo．

The armatures vary in type with the form of the cu．n and the winding of the coils．A single coil wound in a grcove abont a soft－iron cylinder（Fig．534）forms a shuttle arinature； when a number of coils are similarly wound about the same
iron cylinder the armature is said to be of the drum type. Fig. 535 shows a Girmmer-rimy armature, in which $\boldsymbol{\Omega}$ series of coils are wound about an iron ring. To provent the generation of "edrly cur-

Fia. 534,-Ninttle armature.

510. 535.-Gramme.ring armature. (Invented hy (iramnie in 1868.) overheat the machine, the armature core is built up of thin soft-iron dises insulated from one mother.
526. Field Magnets. In small generators, used to develop

Fic. 636.- Bipolar field. high tension (or potential) currents, permanent inagnets are smmetimes used to supply the fields. The machine is then called a murifucto. In all ortinary dymanos the field is furnished

Fia. bst.-Multipolar tield. by electromagnets known technically us field-mugnets. These magnets are either bipolar (Fig. 536) or multipolar (Fig. 537). In the inultipolar type two or inore pairs of poles are arranged in a ring about a circular yoke A.
627. The Alternating Current Dynamo. When an altermating current is used for electric lighting or power thasmission, the alternations range from 25 to 60 per second. Now such a current camost be generated in a bipolar field exeept ly unduly increasing the rupidity of the revolutions of the armature, because the current changes direetion bit twiee alach revolution. The requisite number of alternations is secured by increasing the number of pole-picces in the
field-magnets. In the altemators in common use, the armature coils $A, A \ldots$ (Fing. 538) revolve in a multipular ficld. 'They are womd in alternate directions and commected in series with the two free ends of the wire brought to two collecting rings, C and D, as shown in the figure.

To sturly the action, suppose the ring of armature coils to be opposite to the ring of the field coils, and to be revolving in either direction. Since

Fise. 884 . - Bemential parto and electrical connectionsin the altemating current dynaııo. the armatine coils lenving positions opposite N-poles in the

Fis. 539.-A self-exelting alternating current dynaul, driven by the pulley P. There are four feld-magnetw, m, m, m, m, connected by the yoke B. A is the armature. In thly came it really consiste of two armatures wound topether. Une is jolies to a rommutator d, on which reat four lorushes b, b, b (one not seen). Thls generates a direct current (see next sectlon) which is uned to exelte the fleld-magnets. The other armature is joined to the three collecting ring c, c, c, from whlch the three-phace alternating current is let ofl. field have currents indnced in them opposite in direction to those in the coils leaving S-poles, and since these coils are wound alternately to the right and the left, it is evident that the induced current in each coil will be in such a direction as to produce a continuous cnrrent in the whole series, which will How from one collecting ring to the other: It is evident, also, that the direction of this current will be reversed the instant the field and amature coils agnin face ench other.
Since the number of alternations of this current for each revolution of the armature equals the momber of poles in
the fielf-manget, the monlsor of altermations per minnte is rpinal the the number of pules in the firlif-mugnet multipliand
 minute.
528. Production of a Direct Current-The Commutator. When an electric eurrent flaws continuously in one direction it is said to be a direct current. The corrent in an armature coil changes directian, as we have seen, at regular periods. 'I'a proluce a direct enreent with a dymmo it is neeessury to provide a device for conmming the alternating into n direct current. 'This is dane by means of a commutator: It consists of a collecting ring made of segments called commuefition phetres, or lums, insulated from one amather. 'Ihe terminals of the coils are camected in order with the snccessive phates of the ring. 'Take, for example, the case of a single coil revolved in a bipolar field, us considered in (\$524). The

Arrangetuents for Iransforming the alternating current in the armature into a direct entrent in the external cinvit. cannmetritor consists of twa semi-circular phates, (Figs. 540 and 541), and the brashes are no placed that they rest njem the insulating material between the plates at the instant the current is changing direction in the coil. Then since the cammentator platess change position every time the current changes dieretion in the coil, the emrrent always flows in the satne direction from brinsh ta brush in the extermal circuit.
529. Direct Current Dynamo. Thre essential parts of a direct current dy namo with 'ring' armature and bipalar field are shown in Fig. 542. 'The coils ure womed contimansly in one direction alsont the corre, and arre camecten with commmetator
plates P, P, \ldots as indicatel. For simplicity, suppose that tha ring contains but fonr coils, $C_{1}, C_{2}, C_{3}^{\prime}, C_{4}$, and that they

Fio. 642.-Pesential parts and oleotrical connections in the direct current dynamo. are in the typical positions shown in the figure.

Consider the conditions of the coils as viewed from one point, say N, along the lines of force in the direction N to S.

The maxinumn number of lines of force pass throngh a coil when it is crossing the line $A B$, and the minimum when it is crossing a line drawn from N to S; hence, if the ring is revolving clockwise, as shown by the arrows, olserve:-

1. The number of lines of force passing throngh the space inclosed by the coil $C_{1} i$, decreasing, and a d^{2} rect (clockwise) current is induced in it.
2. The number of lines of force through the coil \boldsymbol{C}_{2} is increasing, ant an inverse (contra-clock wise) current is induced in it; but as the coils present opposite ends when viewed fron! N, it is evident that the current flows in the same absolute direction in C_{1} and C_{2}.
3. The mumber of lines of force through the coil C_{3}^{\prime} is decreasing, and a direct (clockwise) curret is induced in it.
4. The number of lines of force through the coil C_{4} is increasing, and an inverse current (contra-clockwise) is induced in it; but ass C_{3} and C_{4} present opposite ends when viewed from N, the currents flow in the same absolute direction in each, but in a direction opposite to that in the coils C_{1} and C_{2}.

Similarly with any number of coils, the currents in all coils on one side of the line $A B$ flow in one direction while those, in the eoils on the other side of $A B$ flow in the opposite direction.

Hence, if the rmls of the wires of the eails are comected to the comminator phates, and the brushes lean nomin these phates at the points E and F^{\prime} as slown in the figure, n direct, or continuous, current will flow from F to b throngh a cominetor

Fio. 543.- Modern direct-current dynamo. A, Drum armature ; B, multjpolar fiell ; C, djnamo complete. which joins the linushes.

The action in a 'drmo' armature is similar. The coils are so womml that the cmirents on luoth sides flow in the armatme away from one binsh ind to the other brish.

It is obvions that in a maltipolar fiedd, there most be as many pairs of collecting brushes as there are pairs of poles. Fig. 543 shows a motern directcurrent dynamo with domm armatmre and mombipolar field.
630. Excitation of Fields in a Dynamo. In the alternatingcurvent dymano the electromagnets which form the fields are sometimes excited by a small direct-cmrent dymamo belted to the shaft of the machine (nee also Fig. 539); in the directcurrent dymamo the fields are magnetized ly a current taken from the dymmo itself. When the full emrent gemerated in the armature (Fig. 544) passes throngh the field-magnets, which are womnd with conrse wire, the dynamo is satid to be rerips-uroume. A dynamo of this class is nsed when n constant cmrent is required, as in are lighting. When the fieds wre energized by a small fraction of the current, which passes directly from brush to brush
through many turns of fine wire in the field coils, whil: the main current does work in the extemal cirenit (Fig. 545), the dymuno is shant-urmond. This type is userl where the output of current required is continually changing, but where the potential difference letween the brushes must be kept constant, as in incundescent lighting, power distribnting, etc. The regulation is ncconplished by suitable resistance placed in the shmet cirenit to vary the amonnt of the exciting current.

The reguintion is more nearly antumatic in the compoumd-uoneml dymuno. In this form the fiedds contain both serios und shunt coils.

Fin. 645. - Shunt-wothul dy namo.

The ficld-magnets, of course, lose their strength when the current ceases to flow, but the cores contain sutticient residual

The. 646. - Resential parta and electrical connecHonn in the direct-current electric motor. magnetism to canse the machine to develop sufticient current to "pick up" on the start.
631. The Electric Motor. The purpose of the electric motor is to transform the energy of the clectric current into mechanical motion. Its construction is similar to that of the dymano. In fact, any direct-current dynano may be used as a motor. Consider, for example, n shunt-wound bipolar machine with Grmmme-ring armature (Fig. 546) connected with an external power circuit.

The enrrent supplied to the motor divides at d, part flows throngh the fichlomanet coils, mid part enters the armatme roils by the brosh B at the point b, where it divides, one prition passing through the cuils on one side of the ring, and amother throngh the coils on the other side. The currents through the armatnre coils ie-mite at 1 , pass out by the brush B_{1}, and me joined at e by the part of the main current which Hows through the field-magnet coils.

Both the field-magnet mil the armature cores me thus magnetizel, and the poles are formed according to the law stuterl in §501. The poles of the field-magnet are as indicated in the figure. Each half of the iron core of the nrmature will be min electromagnet of the horse-shoe type, having a S-pole at s and a N-pole at n. The mutual attractions and repulsions betwen the poles of the amature and of the field-magnet canse the armature to revolve.
632. Counter-Electromotive Force in the Motor. As the armatmre of the motor is revolved it will, as in the dymano, dovelop an E.M.F. opposite to that of the current cansing the motion. The higher the velucity of the amature, the greater is this comiter-E.M.F. The electric motor is, therefore, self regulating for different londs. When the low is light, the speed breomes high and the incrense in the counter-E.M.F. rednces the amome of current passing through the motor; on the other hand, when the lond is heavy the velocity is decrensed ambl the comiter-E.M.F. is lessened, allowing a greater current for increased work.

When the motor starts from rest there is, at the beeriming, no comiter-E.M.F., and the current must be admitted to the armature coils gromally through in rheostat, (a set of resistance coils) to prewont the overheating of the wires and the burming of the insulation.

QUEETIONS AKD PROELEMS

1. Vpmen what in the putential iliference leatween the hrushes of a dynamo depenitent?

巳. To, what is the internal resistance of a dynamo due 1
3. How shomild a dynnino be womd to prowluce (1) currents of high H.M.F.; (2) a current for electroplating?
4. A dynamo is running at constant ap ged ; what effect will be produced on the strength of the fiehd-mugnets by decreasing the revistance in the external circuit (1) when the dynamo is series-wound ; (b) when it is shunt-wonnd?
5. What would be the effect of shord-circuiting (1) a series-dynamo; (2) a shmit-dynamo? Explain. (A dynamo may he short-eircuited by joining the brushes, or the main wires from them, by a conchactor of low resistance.)
6. An alternating current dynamo has 16 prolen, and its armature makes 300 revolutions per min.; finl the number of alternations per sec.
7. Why wonld an armature made of coils womed on a wooden core mot be as effective ans one with an irom core?
8. What would be the effect upon the protential difference between the brashen of a dynamo of moving them backward nad forward aronnd the ring of commutator plates? Explain.
9. What would be the effect upon the working of a dynamo, of connecting the commmtator phates by binding a bare copper wire aronnd then, (1) if the field-magnets are in a shunt cirenit; (2) if the fiehmonguet is excited by a separate dynamo? Wonhl a current be generated in either of these cases? If so, where wonld it fluw?
633. The Transformer. If two independent coils are wound about the amme iron core, as in Faralay's original experiment on induced currents ($\$ 517$), it is obvions that an alternating current in one coil will proxluce an altermating corrent in the other if it is closed, becanse the core becomes magnetized in one direction, then demagnetized, and magnetized in the opposite direction at each change in the direction of the current in the primary cirenit; lines of force are thas male to pass through the mecomdary eoil in altermate directions.

This is the principhe of the trmasformer, a device for chaming an altomating comrent of one chetromotive force to that of inother.

Whan the change is from low E.M.F. to ligh, the transformer is called a strp-up transformer, aml when from high to low, a atrp-lown trinsformer. There are many forme of thim instrument but the essential parta are all the same-two cuils and a lanimited softion corre, wh phend that as muny as possible of the lines of furce proxheal by the current in one coil will pase through the namer inclesed hy the others.

In transformes used for commercial parpones, the coils

Fig. 647.-The transformer. are usually womml almont a core whaped in the form of \boldsymbol{D}. Ihe inmer coils (Fig. 547) are the primary, and the onter the mecondary. The electimmetive force of the enrent ginneraterl in the mecondary coil is to that of the primury curvent mearly in the ratio of the mominer of turns of wire in the meenmary coil to the momber in the primary:
634. Uses of the Alternating Current. (In account of the fucility with which the E.M.F. of an altermeting curvent may be clanged by a transformer, altomating curvents are now usually elmplojed whenever it is fommed neessury or conveniont to change the tension of a corront. The most common illustrations are to $l_{\text {e }}$ foum in the case of the long distance transmission of electricity, where the chrrents generated by the dymanos are trmaformed into corrents of very high E.M.F. to overconme the resistance of the transmission wires,* and again intocurrents of lower tension for use at the centres of distribution; and in the case of inconlesceent lighting, where it is mavalle to have curronts of faily high

[^54]tension on the ntreet wirem lint. for the sake of safety und ecomomy. cmirenten of low F. M. F. in the lmupe nud home comnections.

In the Hydro-electric system which smpplies many centren of Outnrio with clectric energy, the current when first generated at Ningara Fulle is at a protentinl of 12,000 volts. It is then trmasformed to 110,000 volts nud transmitted over well-insulated lines. On mrriving at its destination it is transformed down ugain for use in lighting, power und heating.
635. The Induction Coil.* In the induction coil currents of very lighl electromotive forer are provlued by the inductive action of an interrupted current. (Fig. 548.)

The ensentinl parts of the instionment are slown in Fig. 549. It differs from an ordinaty thens-

Fie. 648, The Induotion coll. former mainly in linving iddenl to the primary circuit a

Fus. 640.-The eveential partm and electrical conneations in the induotlon ooll. cirrent-breaker and a condenser. The prinury coil consists of a few turns of stout insulated wire wound about a woft-iron core. The secomdary coil, consisting of a great number of turns of very fine insulated wire, surrounds the primary coil. Its terminals are attached to binding powts placed above the coil. The current-brenker is usumlly of the type illustrated in the electric bell ($\$ 512$), but other forms are often enployed. The condenser C C C 政 made up of altemate layers of tinfoil and paraffined pmper or mica, comectell with the spring A and

[^55]serew B of the arrent-breaker in wach it manner that one of the ohll mus. The core is a bundle of moftirom wires insulated from (ure mother bye shellac. Such a core cant mognetized and lemagnetizal mone ravily than one of milid iron.
636. Explanation of the Action of the Ooil. Whell the primary cirenit is completed the hattery enrrent passes thromgh the coil and magnetizes the core. This draws in the hammer H, anl the cirenit is broken between the spring A and the serew 13 . Tho: hammer then Hies back, the circuit is again completenl and the action is repanted. An intermpted current is thins sent throngh the prinury eoil, which induces currents of high electromotive force in the recombary.

Self-indncend inrents in the primary circuit interfere with the action of the coil. Oncompleting the primary circuit, the current due to self-intuction opposes the rise of the primary curvents and thus diminishes the inluctive effect. Similarly, the extru-enrent inducel in the primary coil when the cirenit is broken passes across the broak in the form of a spark and prolongs the time of fall of the primary current, again lessening the inductive action. The condenser is intronluced to prevent this latter injurious effect. When the circuit is broken the extra-current flows into the condenser and clarges it, but as the two contings are joined between A and B through the primary coil and the buttery, the combenser is immediately discharged, giving rise to a current in the opposite direction Which flows hack through the primary eoil and instantaneonsly demagnetizes the woft-iron core. The direct current induced in the primary coil, therefore, beeomes shorter and more intense.

The potential difference between the terminals of the secondary coil cant thms be made sufficiently great to cause a spark to pass between them, the length of the spark depending
on the capucity of the coil. Cuils giving sparks from 18 t1 $2 t$ inches are fropmently manufactured.

The monaller coils are used extensively for physiologieal purpomes and for gas engine ignition (neo $\oint 308$), mul the larger for exciting vacumin tules and for wireless telegruphy (see \$575).

B87. Telophome. The telephone, as invented by Alexamer Graliani Bell, elmploys the priaciple of induced currentes for reproblucing nound waves.

The transmitter and receiver firnt used werv alike. Bach consisted of an iron diaplaragne C, supported in front of one end of a permanent bar-magnet A, nlxut which was woumd a coil of fine insulated wire B, as shown in Fig. 550.

Fis. 850. The cmontial parte and electrleal conneotione in the orisinal Eioll telephone.
The termiats of the transmitter and receiver coile are connectel by the line wires. The mound waves falling upon the diaphragn of the transmitter canse it to vibrate, and these vibrations produce fluctuations in the mumer of lines of force passing through the coil, which canse inducel currents to surge to and fro in the circuit. The curvents alternately strengthen and weaken the magnet of the receiver and thus set up vibrations in the diaphragm similar to thone in the diaphragnt of the transmitter.

The Bell receiver is very sensitive and is still used on all telephone systems, but a magnet of the horse-shoe type is now usually enployed instend of the burmagnet used in the origimal form. The tranminitter was not found satisfactory,

Fin. 651. - The microphone iranemitter used in the Hell syotern. especially on long distance lines, and has been replaced by one of the microphone type (Fig. 551).

MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO TEST CHART No. 2)

At the back of the monthpiece is a metallic diaphragm D, B is a carbon button attached to the diaphragn, and B^{\prime} another carbon button attached to the frame of the instrument, opposite to 13 . The space between the carbon buttons is loosely packed with coarse granulated carhon. (See upper small figure.)

The commections of the instruments in the complete circuit are shown in Fig. 552. The transmitter acts on the principle

Fig. 559. - Electricai connections in teiephone circuit. $V_{\text {, mouthpiece of }}$ Iransmitter: B, B_{1}, carbon buttons; D, diaphragm of receiver, and M itu permanent bar-magnet. I is a transforiner.
that the conductivity of the gramular carbon varies with the varying pressure exerted upon it by the button B, as the diaphragm vibrates mer the action of the sound waves. The current passing from the battery through the prinary coil of a transformer T will, therefore, be fluctuating in character and will induce a corrent of varying strength and varying direction, but of higher electromotive force, in the secondary coil which is connected in the main line with the receiver. This current will cause corresponding variations in the magnetic state of the electromagnet of the receiver and thus set up vibrations in its diaphragm, which will reproluce the somm waves that caused the diaphragm of the transmitter to vibrate.

CHAPTER XLVIII

Heating and Lightiva Effects of the Electric Current
538. Heat Developed by an Electric Current. In discussing the sources of heat ($\$ \S 242-24.5$) we referred to the fact that whenever an electric current meets with resistance in a conductor heat results. Now, as no body is a perfect conductor of electricity, a certain anount of the energy of the electric current is always transformed into the energy of molecular motion. Joule, who investigated this subject, found by comparing the results of numerous experiments that in a given time the number of hent units developed in a conductor varies as its resistance and us the square of the strength of the current.
539. Practical Applications. Resistance wires heated by an electric current are used for various purposes, such as performing surgical operations, igniting fuses, cooking, heating electric cars, etc. In electric toasters and flat-irons the resistance wire is an alloy of nickel and chromiun. This can be kept at a red heat for weeks without injury, whereas an iron wire would soon deteriorate.
640. Hectric Furnace. In Fig. 553 is shown one kind of electric furnace. Carbon rods C, C pass through the asbestos walls of a chamber about 4 in . long, $2 \frac{1}{2}$ in. wide and $1 \frac{1}{2}$ in. high. Between them is a small crucible, and the space about is packed

Fia. 653.-Electrio resistance furnace. with granular carbon (arc lamp carbon rols broken into pieces about as large as coarse granulated sugar). The 457
furnace is joined to an electric-lighting circuit through a rheostat. The resistance of the granulated carbon is considerable, and sufficient heat can be generated to melt pieces of copper in the crucible. This is a resistunce furnace. Carborundum is produced from coke, sand, salt and sawdust in a furnace of this type.

In the $a r c$ furnace the heat is produced at a break in the circuit, as illustrated in the are lanp (§544).
541. Electric Welding. Rods of metal are welded by pressing thein together with sufficient force while a strong current of electricity is passed through them. Heat is developed at the point of junction, at which place the resistance is greatest, and the metals are softened and become welded

Fiu. 5.54 . -The incan. deacent lamp. A, carbon siament ; \boldsymbol{B}, conducting wires
fused in glase; C breas base to whloh one wire is soldered. together. But the most important application of the heating effects of the electric current is to be found in electric lighting.
542. Incandescent Lamp. The construction of the incandescent lamp in common use is shown in Fig. 554. A carbon filanent made by carbonizing a thread of bamboo or cotton fibre at a very high temperature, is attached to conducting wires and inclosed in a pear-shaped globe, from which the air is then exhausted. The conducting wires where they are fused into the glass are of platinum. When a sufficiently strong current is passed through the carbon filament, which has a high resistance, it is heated to incandescence and yields a bright steady light. The carbon is infusible, and does not burn for lack of oxygen to unite with it.

Lamps are now also being used in which the filanent is fine wirc of the netal tungsten.

The Nernst lump differs from the ordinary incandescent lanp in that the substance made incandescent consists of a small rod known as a glower, composed of oxides of the rare earths. Since chese oxides are incombustible the glower is not incloser? in an exhansted globe. Its chicf drawback is that the glower is a non-conductor when cold, and must be heated before the current will pass through it. Both the tungsten and Nernst lamps give much more hight than the ordinary carbon filament lamp for the same current.
543. Grouping of Lamps. All the incandescent lamps to be used in the same circuit are so constructed as to give their proper candle power when the same potential-difierence is maintained between their terminals. This is generally from 100 to 110 volts. The lamps are connected in multiple, or perallel, that is, the current from the leading wires divides, and a part flows through each lamp, as shown in Fig. 545. The dynamo is regulated to maintain a constant potential difference between the leading wires.
544. The Arc Light. If two carbon rods, connecterl by conductors to the poles of a sufficiently powerful battery or dynamo, are touched together and then separated a short distance the current continues to flow across the gap, developing intense heat and raising the terminals to incandescence, thus producing a powerful light, generally known as the are light.

When the carbon points are separated by air only, the potential difference between then, when connected with the poles of an ordinary arc-light dynamo, is not sufficient to cause a spark to pass, even when they are very close together; but if they are in contact and then separated while the current is
passing through them, the "extra-current" spark proluced on sepuration ($\$ 523$) volutilizes n smmll qunntity of the carbon between the points, und a comducting medium, consisting of carbon vapour and heated air, is thus proluced, through which the current continues to How.

Fta. 856.-The aro light.

Since this mediun has a high resistance, intense heat is developed and the carlom points become vividly incandescent and burn away slowly in the air. When a direct current is used, the point of the positive carbon becomes hollowed out in the form of a crater, and the negntive one becomes pointed, as shown in Fig. 555. The greater part of the light is rudiated from the carbon points, the positive oine being the brighter.
545. The Inclosed Arc-The Arc-light Automatic Feed. The open urc is now being largely superseded by the "inclosed arc," a form in which the carbon points are inclosed in a glass or porcelain globe with an air-tight joint at the bottom (Fig. 556), and with but sufficient opening at the top to give the upper carbon freedom. Since the oxygen in the globe soon becomes exhausted, and the absence of draft prevents its renewal, the carhons of the inclosed are burn away very slowly. Ordinarily they last about ten times us long as when burning in the open air.

In Fins. $556,557, A$ and B are the terminals by which the current entors and leaves the lamp. Let it enter at A, and suppose the switch to be open so that it camot pass nlong x directly to B. The current goes to B by two puths. In the
first, it passes throngh the magnet m, down through the carbons u and

Fy. 5 56. - Showing the nechanism of the inclosed are iump. The automatic feed is nuch the same in all are iampe. l, and then to B by way of g. In the second, it traverses the magnet n and then goes on to B. The strength of current in each case will depend on the resistance of the path.

When m is magnetized the plunger c is drawn up, and this raises d which is attached to one end of the

Fic. 657.-Diagram showing the connections in the inciosed are lamp. The iamp ifiustraledi in this and the iast figure is intended to be joined in series with others on an alternating current circuit, but they are all similar in principie.
rocking-arm i :
This again lifts the clutch e which raises the upper carbon u. If the carbons get too far apart the resistance increases and more current passes through n, which draws up its plmger f. This raises the other end of r, sets free the clutch, and the carbon drops. In this way the carbons are kept at the proper distance apart.

The resistance s carries some of the current on starting; when d rises it is cut out. An almost air-tight plunger in h prevents too abrupt motions of c.

CHAP'TER XLIX

Eleictical Meastrements

546. Ohm's Law. We have learned that the strength of a current, or the quantity of electricity which flows past a

Georg Simon Oth (1789-1854). Born at Erlangen; died at Munich. Discoverer of Ohn's Law. point in a cireuit in one second, depends on the E.M.F. of the current and the resistance of the circuit. The exact relation which exists between these quantities was first enuncinted by G. S. Ohin in 1826. It may be thus stated:-

The current curies directly as the electromotive force und inversely as the resistunce of the circuit. From a practical point of view this is one of the most important generalizations in electrical science. It is known as Ohm's Law.
547. Practical Electrical Units. It is evident that if units of any two of the three quantities involved in the relation stated in Olm's Law are adopted and defined, the unit of the third quantity is also determined. This was the procedure followed at the International Congress on Electrical Units which met in Londen in 1908.

The following definitions of units were adopted:-
The Unit of Resistance. The Internationul Ohm is the resistunce offired to an unvarying current by a column of mercury at the temperuture of melting ice, $14.45 \geqslant 1$ grums in muss, of a constant cross-sectional area, and of a length of 106.300 cm .

Unit of Current Strengith. The Intermatiomal Ampere
 a selution of silepr nitmere uneler certrin statesl comditions,

Unit of Electiomotive Force. The Intpruational Volt is the cherbiocal pursasure which when atendily appliesh to a combluctor, whose resisthnce is one Internutional Ohm, will proklues se curvent of one Internutiomal Ampere.

Then, if C is the measure of a current in amperes; R, the resistance of the cirenit in ohms; and E, the electronotive force in volts, Ohm's Law may be expressed as follows:-

$$
C^{\prime}=\frac{E^{\prime}}{R^{\prime}}
$$

PROBLEMS

1. The electromotive force of π battery is 10 volts, the resistance of the cells 10 ohms, and the resistance of the external circuit 20 ohms. What is the current?
2. The difference in potential between a trolley wire and the rail is 500 volts. What current will How through a conductor which joins them if the total resistance is $\mathbf{1 0 0 0}$ ohms?
3. The potential difference between the terminals of an incandescent lamp is 104 volts when one-half an ampere cf current is passing through the filament. What is the resistance?
4. A dynano, the E.M.F. of which is 4 volts, is used for the purpose of copper-plating. If the resistance of the dynamo is $\frac{1}{b} \sigma$ of an ohm, what is the resistance of the bath and its connections when a current of 20 amperes is passing through it?
5. What must be the E.M.F. of a battery in order to ring an electric bell which requires a current of I^{1} ampere, if the resistance of the bell and connection is 200 ohms, and the resistance of the battery 20 ohms?
6. What must be the E.M.F. of a battery required to send a current of $\frac{1}{100}$ of an ampere through a telegraph line 100 miles long if the resistance of the wires is 10 ohms to the mile, the resistance of the instruments being 300 ohms, and of the battery 50 ohms, if the return current through the earth neets with no appreciable resistance?
7. The potential difference between the carbons of an arc lamp is 50 volts and the resistance of the are 2 olnns. If the arc exerts an oppowing E.M.F. of its own of 30 volts, what is the current passing through the carlons?
8. A dyuario, of which the F.M.F. is 3 volts, is used to deconnonse water. What is the tutnl resistance in the circuit when a current of onehalf an ampere passes through it, if the counter electronotive force of polarization of the electrodes is 1.0 volts?
9. Fall of Potential in a Oircuit. If π battery or dynamo is generating a current in n circuit, it is evident that the E.M.F. required to maintain this current in the whole circuit is greater than that reguirel to overcome the resistance of only a part of the circuit. For example, if the total resistance is 100 ohnis, and the E.M.F. is 1000 volts, the current in the circuit is 10 amperes. Here an E.M.F. cf 1000 volts is required to manintain a current of 10 amperes agninst a total resistance of 100 ohms; mmifestly to maintain this current in the part of the circuit of which the resistance is, say 50 ohns, an E.M.F. of but 500 volts will be required. This is usually expressed by sayins, that there is a fall in potential of 500 volts in the part of the circuit whose resistance is 50 olins.

In general, if there is a closed circuit through which a current is flowing, the fall in potential in any portion of the circuit is proportional to the resistance of that portion of the circuit.

PROBLEME

1. The end A of the wire $A B C$ is connected with the earth, and the difference in potential between the other enl C and the earth is 100 volts. If the resistance of the portion $A B$ is 9.6 ohms and that of $B C 2.4$, what current will flow aloug the wire, and what will be the potential difference between the point B and the earth?
2. The poles of a battery are connected by a wire 8 metres long, having a resistance of one-half ohm per metre. If the E.M.F. of the battery is $\mathbf{7}$ volts and the internal resistance 10 ohms , find the distance between two points on the wire such that the potential difference between them is 1 volt. What is the current in the wire?
3. The potential difference between the hrushes of a dynamo supplying current to an incandescent lamp is 104 volts. If the resistance in the
wires on the streot lealing from the dynamo to the honse in 2 ohms, that of the wiren in the honse 2 ohns, and that of the lamp, 214 chmas, what is the fall in putentinl in (1) the wires on the street, (2) the wiren in the house, and what is the potential differenen betwoen the terminals of the lamp?
4. A dynamo is used to light an incandoscent lamp which requirea a current of 0.6 nmpere and n potential difference between its torminuls of 110 volts. If the wires comecting the dynano with the lamp have a resistance of th olmas, find the potential differences which must be muintained letween the terminals of the dynamo to light the lamp properly?
5. A cell has an internal resiatnuce of 0.3 ohun, and ita E.M.F. on open circuit is 1.8 volts. If the poles are connected by n conductor whose resistance is 1.2 ohma, what is the current prolnced, and what is the potential difference hatween the poles of the cell?
6. If the E.M.F. of a cell is 1.75 volts, and its resistance 3 ohms, find the internal drop in potential when the circuit is closed ly a wire whose resistance is (c) 4 ohms, (b) 32 ohms.
7. Quantity of Blectricity. Let us refer again to the flow of witer through a pipe ($\$ 453$). The current strength is the rate of flow. It depends upon the difference of pressure at the ends of the pipe, and the resistance of the pipe. But we often wish to know the quantity of water passing in a given time. Obviously we have the relation,

$$
\text { Quantity }=\text { rate of flow } \times \text { time of How. }
$$

We inight measure rate of flow in gallons-per-second, anl quantity in gallons.

In electrical ineasurements there is somett ify similar. We may think of the quantity of electricity jum ng a cross-section of a circuit in a given time, and as before we have the relation, Quantity of electricity $=$ current strenutiti x the time
If we measure current strength in an. as, and time in seconds, the quantity will be given in ${ }^{\text {ans }}$; and we have the definition:-A Coulomb is the a. to of electricity which pusses a point in a circuit in one scond when the. strength of the current is one ampere.

The ampure corresponds to gallons-per-seran the coulomb to gallous.

 then () 1%

I'ractiend electricians frerpurnty emplay the ampore-hour as the: mit inantity, as for example, in extimating the capmeity of a starage cell. A matery continins 100 anpere-henurs, when it will fiminds it cmrent of one mopere for 100 homs, or 2 mimperes for 50 hours, etc.
550. Work Done in an Electric Oircuit. The water analogy will nssist us again in getting a clearer grasp of the principle ly which the energy expended in an electric circuit may be expressed.
Just as the work done by a strean depends on the quantity of water and the distance through which it fulls, so the work done in any portion of an electric circuit depends on the quantity of electricity which passes through it and the difterence in potential between its terminuls. One joule, or 10^{7} ergs, of work is done, when one coulomb of electricity falls through one volt.

Hence, if Q is the quantity of electricity passing through a wire

A

Fig. 568. - Portion of an electric clrcult.
$A B$ (Fig. 558) and V denotes the fall in potential from A to B, the work done by the current $=Q V^{\circ}=C V^{\prime} t$.
551. Rate at Which Work is Done in an Electric Oircuit. The power or rate at which work is done in an electric circuit is estimated in joules per sec., that is, in wectls (\$71).

Thus if a current of C amperes flows through a circuit in which there is a drop of potential of V volts, energy is being delivered at the rate of $V C$ watts.

Hence W (power in watts) $=$ fall in potential (in volts) \times current (in anperes).

Since one horse-power $=\mathbf{7 4 6}$ watts $(\$ 71)$.
Power (in horse-power) $=\frac{\text { Potential diff. (in volts) } \times \text { current (in amperes) }}{746}$
552. Relation Between Heat Energy and the Energy of the Electric Current. The mechanical equivalent of heat is 4.2 joules per calorie, that is one calorie $=0.24$ joules. Hence if an electric current of C amperes is flowing in a circuit in which there is a fall in potentia! of V^{\prime} vults, and all the energy of the current is
transformed into heat, $I^{\prime \prime} \times\left(^{\prime} \times 0.24\right.$ calories will be developed every secoml.

More frequently, however, tho quntity of heat pronluced by a current is expressed in terms of the current and the resistance. Hy Ohm's Law, $V=C^{\prime} \times R$; therefore the heat developed in n circuit, whose resistance is R Ohms by a current of C amperes is $\ell^{\prime} R K \times 0.24$ calories per secund, or in t seconds the heat pruduced $=C^{2} R \ell \times 0.24$ caluries. This accords with results determined experimentally by Juule (§ 538).
653. Work Done in an Electric Lamp. The efficiency of an electric lamp is usually determined in watts per candle power.

Thus if a 16 -candle power incaudescent lamp requires a current of $\frac{1}{2}$ anpere in a 110 volt circuit, its efficiency is $\frac{110 \times \frac{1}{2}}{16}$ or 3.4 watts per candle power.

For commercial purposes, the energy consumed by a lamp in a given time is usually neasured in watt-hours. For example, if a customer has a lamp of the above description burning for 100 hours per month, he pays montlly for 55×100, or 5500 watt-huurs of energy.

PROBLEMS

1. A current of 10 amperes flows through an arc light circuit. What gnantity of electricity will pass across the are of one of the lamps in a night of $\mathbf{1 0}$ hours?
2. The difference in potential between a trolley wire and the rail which carries the return circuit is $\mathbf{5 0 0}$ volts, and the motor of a car takes an average current of 25 amperes. How much work is done each hour in the circuit joining the trolley wire and the rail?
3. Find the horse power necessary to run an electric light installation taking 125 amperes at 110 volts.
4. The resistance of the filament of an incandescent iamp is 200 ohms and it carries a current of 6 amperes. Find the amount of heat (in calories) developed in this filament per minute.
5. A 25 -candle power tungsten lamp, when used in a 25 -volt circuit takes one ampere of current. Find its efficiency.
6. The potential difference between the wires entering a house is 104 volts, and an average current of 8 amperes flows through them for 4 hours per day. How many watt-hours of energy must the househ ' 'der pay for in a month of 30 days? Find the cost at 8 cents per kilowatt-hour. (1 kilowatt $=1000$ watts.)
7. Resistance Boxes. The stindiud resistance was defined in §547. It is obvious that for the purpose of comparing resistances it would be inconvenient to use mercury columns in orlinary experiments. In practical work resistance coils are used for this purpose. Lengths of wire of known resistance are wound on bobbins and connected in sets in resistunce. boxes. Fig. 559 shows the common method of joining the
 coils. A current in passing from A to B meets with practically no resistance from the heavy metallic bar when all the plugs are inserted. To introduce a given resistance, the plug short-circuiting the proper coil is removed and the current

F19. 559.-Conne tion in resistance box. is made to traverse the resistance wire. For convenience in calculation the coils are usually grouped very much as weights are arranged in boxes. For example, a set of coils of $1,2,2,5,10,10,20,50,100,100,200,500$ ohnns may be combined to give any resistance from 1 to 1000 ohms.
555. Determination of Resistance ; Method of Substitution. If the current strength and electromotive force of a current are known or can be determined with m ammeter and a voltmeter, the resistance in the circuit can be calculated from Olm's Law $R=E / C$.

To determine an unknown resistance, when these factors are not known, the conductor is placed in a circuit with a cell of constant E.M.F. and a sensitive galvanometer. The deflection of the needle of the galvanometer is noted, and the unknown resistance then replaced by a resistance box. The coils are adjusted so as to bring the needle to its former position. The resistance thus placed in the circuit is evidently the resistance of the conductor.

This method, which is usually known as the method of substitution, was employed by Ohm in his first experiments.

Obviously variations in the E.M.F. of the cell used will introduce errors in the determination.
556. The Wheatstone Bridge. Wheatstone, who was a contemporiry of Ohm and had followed his experimenta, invented what is known as the " Wheatstone Bridge," an arrangement of coils which makes the determination independent of changes in the E. M. F. of the cell. The coils are arranged in three sets A, B, and C, with connections for a battery, a galvanometer and the resistance to le measured, as shown in Fig. 560.

Fio. 560.--Electrical connections in the Wheatstone Bridge.
They are mounted in a box and the changes in the resistance are made in the usual way, by inserting or withdrawing conducting plugs, as shown in Fig. 559.

The branches A and C usually have three coils each, the resistances of which are respectively 10,100 and 1000 ohns, and the branch B has a combination of coils, which will give any number of units of resistance from 1 to 11,110 ohms. The conductor, whose resistance X is to be measured is inserted in the fourth branch of the bridge (Fig. 560), and the resistances A, B and C adjusted until the galvanometer connecting M and N stands at zero when the keys are closed.

Then the current from the battery is flowing from P, partly through X and C, and partly through B and A to Q, and since
no current flows from M to N, the potential of M mnst be the same as that of N; therefore the fall in potential from P to N in the circuit $P N Q$ is the same as the fall from P to M in the circuit $P \mathrm{MQ}$; but the fall in potential in a part of a circuit is proportional to the resistance of that portion of the circuit.

$$
\text { Hence, } \quad \frac{X}{C}=\frac{B}{A} \text { or } X=\frac{B \times C}{A} \text {. }
$$

The resistances A, B and C are read from the instrument, and the value of X is calculated from the formula.
557. Laws of Resistance. The resistances of conductors under varying conditions have been determined by various investigators with great care. The general results are given in the following laws:-

1. The resistanee of a conduetor varies directly as its lenyth.
d. The resistance of a comductor varies inversely as the area of its croxs-wection. In a romml cominctur, therefore, the resistavee varies inversely as the sqmare of the diameter.
2. The risistance of a combluctor of given length and cross-section depends mpon the menterial of which it is made.

Hence, if l denotes the length of a conductor, A the area of its cross-section and R its resistance,

$$
R=\rho \frac{l}{A},
$$

where ρ is a constant depending on the material of the conductor and the units of measurement used. The constant ρ is known as the Specific Resistance of the material. For scientific purposes the specitic resistances is usually expressed as the resistance in microhms or millionths of an ohm, of a cube of this material, whose edge is one centimetre in length, when a current is made to flow parallel to one of its edges.

The following table gives the specific resistances in microhms of some well-known substances at 0 C .

Table of Resistances at $0^{\circ} \mathrm{C}$.

luminiun wire. 2.91	Platinum wire (annealed). 9.04
Copper wire (ammealed). . 1.58	German Silver wire 20.89
Carbon (lamp fiament) . . 4000	Iron (tclegraph wire)..... 9.70
Mercury 94.07	Silver wire (ammenled).... 1.46
Nickel wire (annealed)... . 12.43	Steel (rails) 12.00

558. Resistance and Temperature. If we connect a piece of fine iron or platinum wire in a circuit with a voltaic cell and a galvanometer and note the deflection of the needle, we shall find on heating the wire with a lamp that the galvanometer indicates a weakening in the current. The rise in the temperature of this wire must, therefore, have been accompanied by an increase in its resistance. This action is typical of metals in general.

The resistance of nearly all pure inctals increases about 0.4 per cent. for each rise in temperature of $1^{\circ} \mathrm{C}$. The resistance of carbon on the other hand diminishes on heating. The filanent of an incandescent lamp, for instance, has when hot only about one-half the resistance which it has when cold. The resistance of an electrolyte also decreases with a rise in teinperature.

QUESTIONS AND PROBLEMS

1. What is the resistance of a column of mercury 2 metres long and 0.6 of a square millimetre in cross-section at $0^{\circ} \mathrm{C}$?
2. The resistance at 0° of a colnmn of mercury 1 netre in length and $1 \mathrm{sq} . \mathrm{mm}$. in cross-section is called a "Sientens' Unit." Find the value of this unit in terms of the ohm.
3. Copper wire $\frac{1}{12}$ inch in dianteter has a resistancc of 8 ohnis per mile. What is the resistance of a inile of copper wire the diameter of which is $\frac{1}{76}$ inch?
4. A mile of telegraph wire 2 mm . in diameter offers a resistance of 13 ohins. What is the resistance of 440 yards of wire 0.8 mm . in diameter made of the same material?
5. What length of copper wire, haviug a diameter of 3 mm ., has the same resistance as 10 metres of copper wire having a diameter of $2 \mathbf{m m}$.?
6. On measuring the rosistance of a picce of No. 30 B.W.G. (covered) coplice wire 18.12 yards long I found it to have a rosistance of 3.02 ohms. Another coil of the same wire had a resistance of 22.65 ohms. What leugth of wire was there in the coil?
7. Two wircs of the same length and material are found to have resistances of 4 and 9 ohus respectively. If the diametcr of the first is 1 mm ., what is the dianeter of the second?
8. What must the the thickness of copper wire, which, taking equal lengths, gives the same resistance as iron wire 6.5 mm . in diameter, the specific resistance of iron being six times that of copper ?
9. Find the length of an iron wire 13 inch in diameter which will have the same resistance as a copper wire of inch in diametcr and 720 yards long, the conducting power of copper being six times that of iron.
10. A wire made of platinoid is found to have a resistance of 0.203 olm per metrc. The cross-section of the wire is $0.016 \mathrm{sq} . \mathrm{cm}$. Express the specific resistance of platinoid in microhms.
11. Taking the specific resistance of copper as 1.58 , calculate (1) the resistance of a kilometre of copper wire whose diameter is 1 mm ., (2) the resistance of a copper conductor $1 \mathrm{sq} . \mathrm{cmu}$. in arca of cross-section, and long enough to reach from Niagara to New York, reckoning this distance as 480 kilometres.
12. A current flows through a copper wire, which is thicker at one end than the other. If there is any diffcrence either (1) in the strength of the current at, or (2) in the temperature of, the two ends of the wire, state how they differ from each other, and why.
13. Resistance in a Divided Circuit. When a current is divided and made to flow from a conduetor A to another B through two parallel eireuits (Fig. 561),
\Rightarrow At is often necessary to determine the resistance of a single wire, which will Fro. 561 .-Divided circuit. be equivalent to the two in parallel, and to find the fraction of the total current whieh flows through each wire.

Let E denote the difference in potential between A and B and R_{1} and R_{2} the resistances of the wires.

Then the current through the irst wire $=\frac{E}{R_{1}}$ (Ohm's Law), and " " " second " $=\frac{E}{R_{2}}$.
Total current through the two wires $=\frac{E}{R_{1}}+\frac{E}{R_{2}}$.
But the total current $=\frac{E}{R}$, where R is the resistance of a single wire equivalent to the two.

$$
\begin{array}{ll}
\text { Therefore } & \frac{E}{\mathscr{R}}=\frac{E}{R_{1}}+\frac{E}{R_{2}} \\
\text { that is } & \frac{1}{\mathscr{R}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} .
\end{array}
$$

Again, the fraction of the total current in the first wire

$$
=\frac{\frac{E}{R_{1}}}{\frac{E}{\overline{R_{1}}}+\frac{E}{R_{2}}}=\frac{R_{2}}{R_{1}+R_{2}} .
$$

Similarly, the fraction of the total current in the second wire

$$
=\frac{R_{1}}{R_{1}+R_{2}}
$$

560. Shunts. When it is undesirable to send the whole current to be measured through a galvanometer or other current-measuring instrument, a definite fractional part of the current is diverted by making the strument one of two
 parallel conducu is in the circuit, as Fias 502-Ganvanometer and shown in Fig. 562.

The conductor R "in parallel" with the galvanometer G is called a shunt.

If G is the resistance of the galvanometer, R the resistance of the shont, and C the total current, the amount of current throngh the galvanometer $=\frac{R}{(\gamma+R} \times C^{\prime}(\S 559)$.

For the sake of facility in calculation, it is usual to make R $\frac{1}{3} \frac{1}{7}$, or $\frac{1}{3}$ 第 of G, when, by the above formula, the current through the galvanometer will be $\frac{1}{1 \sigma}, \frac{1}{0} \sigma$, or $\frac{1}{10} \frac{1}{\sigma}$, , espectively, of the total current to be measured.

PROBLEMS

1. The poles of a voltaic battcry are connected by two wircs in parallel. If the resistance of one is 10 ohms and that of the other 20 ohms, find (1) the resistance of a single wire equivalent to the two in parallel ; (2) the proportion of the total current passing throngh cach wire.
2. Find the total resistance when the following resistances are joined in scries: $-3 \frac{1}{2}$ ohms, $2 \frac{1}{3}$ olmms, 24 ohms. What would be the joint resistance if the resistances were joined in parallel?
3. What must be the resistance of a wire joined in parallel with a wire whose resistance is $\mathbf{1 2}$ ohms, if their joint resistance is 3 ohms ?
4. The joint resistance of ten similar incandescent lamps connected in multiple is 10 ohms. What is the resistance of n single lamp?
5. Four incandescent lamps are joined in parallel on a 100 -volt circuit. If the resistances of the lamps are respectively 100 ohms, 200 ohms, 300 ohms and 400 ohns, find (1) the total current passing through the group of lamps; (2) the proportion of the total current passing through the first lamp; (3) the resistance of a single lamp which wonld take the same current as the gronp.
6. A galvanometer whose resistance is 1000 ohms is used with a shunt. If ${ }_{11}^{1}$ of the total current passes through the galvanometer, what is the resistance of the shunt?
7. If the shunt of a galvanometer has a resistance of $1 / n$ of the galvanometer, what fraction of the total current passes through the galvanometer?
8. The internal resistance of a Daniell's cell is $\mathbf{1}$ ohm ; its terminals are connected (a) by n wire whose resistance is 4 ohms, (b) by two wires in parallel, one of the wires having a resistance of 4 ohms, the resistance of the other wire being 1 ohm . Compare the currents through the cell in the two cases.
9. Grouping of Cells or Dynamos. Electrical generators may be commected in various ways to give a current in the same circuit.

They are connected in. series or tandem when the negative terminal of one is comected with the positive terminal of the next (Fig. 563), and
 in multiple, or murullel, when all the positive terminals are connected to one conductor and all the negatives to another (Fig. 564). Fla. neesed - Cells con-
neot
in series. Sometimes combinations of these

Fig. E04.-Cells connected in multiple. methods of arrangement are employed as shown in Figs. 565, 566.
562. Current Given by Series Arrangement. If n cells are arranged in series, and r is the internal resist-

Fig. 6 e5.

Fig. 560. ance of each cell, it is evident that the resistance of the group $=n r$, because the current has to pass through a liquid conductor n times as long as that between the plates of a single cell.

If the potential-difference between the plates of a single cell (Fig. 563) is c, the potential-difference between Z_{1} and C_{1} is e; but when C_{1} and Z_{2} are connected by a short thick conductor there is practicaly no fall in potential between them, therefore the potential-difference between Z_{1} and Z_{2} is e. Again, the potential-difference between Z_{2} and C_{2} is e, therefore the potential-difference between Z_{1} and C_{2} is $2 e$. Similarly, for 3,4 , etc., cells the potential-differences are respectively $3 e$, $4 e$, etc. Hence, the E. M. F. of n cells in series is $n e$.

Let E denote the E.M.F. and R the resistance of this group, and let R_{1} denote the external resistance in this circuit.

By Ohm's Law, $\quad C=\frac{\boldsymbol{E}}{\boldsymbol{R}}$,
but $E=u \rho$, and $R=u r+R_{1}$;

$$
\text { Hence } \quad C=\frac{n e}{u r+R_{1}}
$$

563. Ourrent Given by Multiple Arrangement. If n cells are arranged in multiple, and r is the internal resistance of a single cell, the intermal resistance of the group $=\frac{r}{n}$, because the current in passing through the liquid from one set of plates to the other has n paths opened up to it, and therefore the sectional area of the column of liquid traversed is n times that of one cell, hence the resistance is only $\frac{1}{n}$ of that of one cell ($\$ 557$). When all the positive plates are connected they are at the same potential ; for a similar reason all the negative plates are at the same potential, hence the E.M.F. of n cells in multiple is the same as that of one cell.

This method of grouping is equivalent to transforming a number of single cells into one large cell, the Z plates being united to form one large Z plate, and the C plates to form one large C plate. It must be remembered that the potentialdifference between the plates of a cell is independent of the size of the plates. (§473.)

If E is the E.M.F., R the resistance of the group, and R_{1} the external resistance,

$$
C=\frac{E}{R+R_{1}}=\frac{\rho}{\frac{r}{n}+R_{1}}
$$

564. Current Given by Multiple-Series Arrangement. Finally let us consider an arrangement of the cells, partly in series and partly in parallel. Suppose them to be divided equally into sets, and let the cells in a set be joined in series while the sets themselves are arranged in parallel (see Figs. 565, 566).

Let each set cortain n cells, and let there be m sets. There are $m n$ cells in all.

Let e volts be the E.M.F. of each cell, r ohms its internal resistance, and R_{1} ohms the external resistance of the circuit.

Then since n cells are joined in series, the E.M.F. of each set is $n e$ volts. The internal resistance of each set is $n r$ olmms, but as there are m sets arranged in parallel, the total resistance of the battery is $\frac{1}{m}$ of this, that is, $\frac{n r}{m}$ ohms. Hence the resistance of the entire circuit is $\frac{m r}{m}+R_{1}$ ohms, and the

$$
\text { Current } C=\frac{n e}{\frac{m r}{m}+R_{1}} \text { amperes. }
$$

565. Best Arrangement of Cells. It is manifest that when the external resistance is very great as compared with the internal resistance, in order to overcome the resistance the electromotive force must be increased, even at the expense of increasing the internal resistance, and the series arrangement of cells is the best. When the external resistance is very low as compared with the internal resistance, the object of the grouping is to lower as far as possible the internal resistance, and the multiple arrangement is the best. Between these extremes of high and low external resistance some form of multiple-series grouping gives the strongest current.

It can be shown that for a given external resistance the maximum current from a given number of cells is obtained when the cells are so connected that the internal resistance of the battery is as nearly as possibie equal to the external resistance.

PROBLETM

1. If the E.M.F. of a Grove cell is $\mathbf{1 . 8} \mathbf{v}$ volts and its internal resistance is 0.3 ohm, calenate the strength of current when $\mathbf{5 0}$ Grove cells are united in series and the circuit is completed by a wire whose resistance is 15 ohms.
2. If 6 cells, each with $\frac{1}{2}$ olnu internal resistance, and 1.1 volts E.M.F., are connected (1) all in series, (b) all in parallel, (c) in two parallel sets of three cells each (F ig. 565) ; calculate the current sent in each case through a wire of resistance 0.8 chm .
3. Ten voltaic cells, each of internal resistance 2 ohms and E.M.F. 1.6 volts, are connected (1) in a single series, (b) in two series of five each, the like ends of the two series being joined together. If the terminals are in each case commected ly a wire whose resistance is $\mathbf{1 0}$ ohms, find the strength of the current in the wire in each ease.
4. The current from a battery of 4 similur cells is sent through a tangent galvanometer, the resistance of which, together with the attached wires, is exactly equal to that of a single cell. Show that the galvanoneier deflection will be the sume whether the cells are arranged all in multiple or all in series.
5. Calculate the number of cells required to produce a current of 50 milli-anperes (1 milli-ampere $=1000$ ampere), through a line 114 miles long, whose resistance is $12 \frac{1}{2}$ ohms per mile, the available cells of the battery laving each an internal resistance of 1.5 olnns, and an E.M.F. of 1.5 volts.
6. You have a battery of 48 Dnniell cells, each of 6 ohms internal resistance, and wish to send the strongest possible current through an external resistante of 15 ohms. By means of dingrams show various ways of arranging the cells and calculnte the strength of current in each case. Find also in each case the difference of potential between the poles of the battery, assuming that the E.M.F. of a Daniell cell is 1.07 volts.
7. A circuit is formed of 6 similar cells in series and a wire of 10 olmms resistance. The E.M.F. of each cell is 1 volt and its resistance 5 ohms. Determine the difference of potential between the positive and the negative pole of any one of the cells.

CHAPTER L

Other Forma of Radiant Eneray

566. Beyond the Visible Spectrum. As has been pointed out (Chap. XXXIX), when white light is passed through a prism it is thereby separated into its constituent parts, and on a screen placed in its path (see Fig. 402), we observe a apectrum, with its colours ranging from violet at one end to red at th. other. The wave-length of the extreme red is $0.000,8 \mathrm{~mm}$. 1 about $\operatorname{sov}^{\frac{1}{2}} \mathbf{0}$ inch; that of the extreme violet is $0.000,4 \mathrm{~m}$ or about $\bar{\sigma} \frac{1}{0} 0 \boldsymbol{0}$ inch. If we considered these waves as w do sound waves we would say that the visible radiation corresponds to one octuve.

The question arises, are there radiations beyond those whiclis gi . 'зe to the red and the violet sensations?

5i.. Waves beyond the Violet. In order to investigate this question let us receive the $\mathrm{s}, \quad \mathrm{mm}$ upon a photographic plate. Upon developing it we finu t while it has beem scarcely affected by the red and the yellow light, the biue and the violet have produced strong action, and furthe that decided action has been produced beyomel the violet By suitable means photographic action has been traced to wavelengths not greater than $0.000,1 \mathrm{~mm}$., that is, to about two 'octaves' above the violet.
568. Beyond the Red. If we wi -1 to explore beyond the red we must use a sensitive detect. . of heat. Let us obtain the spectrum of the sun, and then through it, going from blue to red, pass an air thermoscope (Fig. 264), the bulb of which has been coated with lamp-black. The thermoscope will show a heating effect which increases as we go towards the red, but the heating does not cease there. Beyond the red the effect is
still pronounced. By mems of special instrmments heat waves 0.061 mm . long lave been detected and measured. Such waves are about seven 'uctaves' below the longest red waves.

Bodies at ordinary temperatures emit heat waves, and as the temperature is raised they give out, in addition, those waves which affiect the eye.
569. Radiant Energy. These waves of various lengths are simply undulations of the ether. They are all forms of radiant energy. While phssing from one place to another they all travel with th. a speed of light, and it is only when they fall upon some form of matter that their energy is transformed into those physical effects which we recognize as heat, light. and in other ways. It is to be observed that tho wiee free from matter through which these waves pass is 11 heated by their passage.

Another form of radiant energy is seen in electric wives, referred to in the following sections.
570. Absorption and Radistion. When ether waves fall upon a body, more or less of their energy is absorbed and the temperature of the body rises. Some bodies have higher absorbing powers than others. A surface coated with lampblack or platinum-black absorbs practically all the ether waves which fall upon it, and may be taken as a perfect absorber. On the other hand, a polished metal surface has a low absorbing power. Much of the ether energy which falls upon it is reflected from the surface instead of being absorbed by it.

This can easily be tested experimentally. Take two pieces of bright tin-plate about 4 inches square, and coat a face of one with lamp-black. Then stand them parallel to each other and abont 5 inches apart. They may conveniently be supported in saw-cuts in a board, and the blackened face should be turned towards the other plate. Attach with wax a buliet
to the centre of the outer face of each plate. Now place midway between the plates a hot metal ball. Soon the bullet on the blackened plate will drop) off while the other remnins unaffected. If the blackened plate is touched with the finger it will be found unpleasantly hot, while the other one will show a comparatively small rise in temperature.

On the other hand, a blackened surface is a good radiator while a polished surface is a bad one. To show thit. experimentally use an apparatus like that :llustrated in Fig. 567. It consists of two blackened bulbs connected to a U-tube in which is coloured water. Now place between the bulbs a well-polished vessel, one half of which is blackened, and fill it with hot water. On

Fhe. 307.-.The blackened hall of the vescel radl. atee more than the pollohed hall. observing the change in the level of the coloured water it will be seen that the blackened surface is radiating much more lieat than the polished half.

QUESTION:

1. Explain why a sheet of zinc protects woodwork from a stove better than a sheet of asbeatos. Would bright tin-plate be better still?
2. A kettle to be heated by being hung before a fire-place should have one side blackened and the other polished. Why?
3. A sign consisted of gold-leaf letters on a board painted black. It was found, after a fire on the opposite side of the street, that the wood between the letters was charred while that under them was uninjured. Explain this phenomenon.
4. Why is a frost more to be feared with a clear sky than with a cloudy one?
5. Why is there a greater deposition of dew on grass than upon bare ground 1
6. In the Sahara the c d at night and the hat by day are equally painful to bear. Explain why.
7. Covering a plant with paper often prevents it being frozen. Why?
8. Phenomenon of the Electric Spark. Let A and B (Fig. 568) be two knobs attached to in induction coil or an influcnce machine. On putting the apparatus in

Fia. 508.-Diagram illustrating how the electric waves spread out from a spark.gap. operation the potential of one knob rises until a spark passes between the knobs. Ordinarily one thinks simply that a quantity of electrieity has junped from one knob to the other in order to ammul the difference of potential between A and B. But there is more in the phenomenom than that. As a matter of fact there is a rush across from A to B, then one baek from B to A, then another from A to B, and so on, until the energy of the charge is dissipated. Thins, instead of a single spark there is a series of sparks between A and B. This has been demonstrated by photographing their images in a rapidly rotating mirror.

If a pail of water be quickly dumped into one end of a trough, the water mishes to the other end where it is refleeted. It then retmons to the first and is reflected. After travelling back and forth for some time the motion dies away through friction and the water all comes to the same level.

When a tming-fork is vibrated, air-waves spread ont in all directions, and if a mison fork is placed not too far away (Fig. 238) the incident waves will excite easily observed vibrations in it (see § 229).

In a similar way the electrical surgings from knob to knob excite a disturbance in the smrromuling ether, and etherwaves spread out in all directions (indicated by the wavy lines in Fig. 568).
572. Sympathetic Electrical Oscillations. It is possible to exhibit electrical resonance quite analogous to that obtained with the unison tuningforks. Let us take two precisely similar Leyden jars A and B (Fig. 569), and let a wire run from the outer coating of A and end in a knob c^{\prime} near to the knob c which is attached to

Fio. 569.-Arrangement to show eleetrical the inner coating. Join these knols to an influence machine or an induction coil.

Also let the inner and outer coats of B be connected by a wire loop Bulef, the portion de being so arranged that by sliding it along the other wires the area inclosed by the wire brlef may be made equal to that of the fixed loop on the other jar. From the inner coating of B a strip of tin-foil is brought down to s within about 1 mm . of the outer conting.

Now cause sparks to pass between the knobs c, c^{\prime}. Then if the two wire loops are edual in area there will be a little spark at s whenever a spark passes at c, c^{\prime}. If the wire de is, slid back or forth the equality of the areas will be destroyed and the sparks will cease at 8 .

When the spark passes at c, c^{\prime} there are electrical surgings back and forth between the outer and inner coatings of A. These canse disturbances in the surrounding ether which spread out and set up oscillations in the simitar circuit attached to the other jar. The nutural period of the two circuits must be equal (or nearly so) for the sympathetic oscillations to be set up.

In such an arrangement as here described the number of oscillations is ordinarily several millions per second.
573. Electric Waves. As early as 1864 Maxwell*, by mathematical reasoning based on experimental results obtained by Faraday, showed that electric waves in the ether must exist; but they were first detected experimentally by Hertz, \dagger a young German physicist. Hertz showed that they are real ether-waves travelhing through space with the speed of light, that they can be reflected and refracted, and that they also possess other properties similar to those possessed by lightwaves.

It is now firmly established that the short photographic waves, the waves which proluce tl:e colours of the spectrum, the longer heat-waves and the $s:$ l longer electric waves are all of the same nature. They are all undulations of the ether, differing only in wave-lengtl.
574. The Coherer. Various methods besides that illustrated in § 572 have been devised for detecting the presence of electric waves. The simplest of these is the colerer. Let us take a glass tube 6 or 8 inches long and $\frac{1}{2}$ inch in diameter, fill it loosely with turnings of cast-iron or other metal, and through corks in each end insert copper wires. Then join the tube in

Fig. 570. -7 is a tube flled with iron turniugs, G is a galvanometer and B a battery. series with a dry cell B, and a sensitive galvanometer G (Fig. 570). Ordinarily the resistance of the tumings is so high that the needle of the gralvanometer is not noticeably deflected. If now an influence machine be operated in the neighbourhood the galvanometer at once shows a deflection. The bits of metal, when the electric waves aroused by the machine fall upon them, appear to collere, the resistance at onee decreases and a current flows through the galvanometer.

[^56]By simply tapping the tube the filings are decohered and are ready for action again.

In the coherer shown in Fig. 571 the tube is about 3 inches long and has an internal dianeter of about $\frac{1}{8}$ inch. The plugs P, P snugly slide

Fia. 571.-A form of coherer intro. duced by Marconi. in the tube, and n small amount of filings is placed between them. Marconi has used a mixture of 95 per cent. nickel and 5 per cent. silver.
 electricity up and down A are produced. These excite disturbances in the surrounding ether, the energy of which is carried by ether-waves in all directions.

At some distance away is the receiving apparatus. E is a coherer. From one pole of it a wire B runs up in the air; from the other pole a wire leads to earth. In eireuit with the coherer are a battery F and an electric bell G. The eleetric waves travel from A with the speed of light and on reaching B they excite oseillations in it. These cause the resistance of the colserer to fall, and the bell responds.
676. Arrangement of the Receiving Apparatus. In actual experimenting the simple reeeiving apparatus shown in Fig. 572 is not satisfactory. A better arrangement is illus-

Fin. 673.-Receiving apparatus for wireless trated in Fig. 573.

The coherer C is joined in series with a battery B and a sensitive relay E (§ 510). When the resistance of the coherer falls, the armature F of the relay is drawn over against the stop S. This completes a circuit, in which are the battery H and the electric bell G, which is so placed that the hammer, besides striking the bell, taps the coherer and decoheres the filings, making them ready for another signal.

For sending signals across a roon or from one roon to another only a small eoil and wires but a few feet high are required; but if the distance to be covered is great very powerful transinitters and very delicate receivers must be used.

Wireless telegraphy is very useful in communicating signals from the shore to a ship or from one ship to another: By means of it many lives and much property have been saved.
577. Passage of تlectricity through Gases. In investigating this subject the gas is usually contained in a glass tube (Fig. 574) into the ends of which platinum wires are sealed.

The terminals u, u^{\prime} of an induction coil are joined to a

Fig. 574.-Arrangement to study the pasage
of electricity through a gas. and c, the electrodes of the tube. Let the electricity enter the tube at a and leave at c; these are, then, the anorle and cuthode, respectively. Sometimes one electrode has an aluminium dise upon it. By comecting a side tube b to a good air-pump the air can be exhausted from the tube.

At first, when the air in the tube is under ordinary atmospheric pressure, the discharge passes between n and n^{\prime}, but as the pressure is reduced it begins to pass between a and c; and as the exhaustion is continued some very beautiful effects are produced.

If, however, the exhaustion is pushed still further, until the pressure within the tube is about one millionth of an atmosphere, phenomena of a different class are produced. As Sir William Crookes was the first to study these phenomena in great detail, these very highly exhausted tubes are known as Crookes Tubes.

From the cathode something is shot off which travels through the tube in straight lines and with great speed. This has been shown to consist of very small particles charged with negative electricity, and the streams of these particles are known as cuthode rays.
578. Röntgen Rays. In 1895, Röntgen, a German physicist, while experimenting with Crookes tubes, discovered a new kind of radiation, which he called X-rays, but which is more often known as Röntgen rays.

In Fig. 575 is shown a tube suitable for producing the Röntgen rays. The electrodes a and

Fic. 375.-A Röntgen ray tube. c are joined to a large induction coil. From the concave surface of the cathote e the cathode rays are projected, and when they strike the platinum plate m (or any other solid body) they give rise to the Röntgen rays, which spread out as shown' in the figure, easily passing through the walls of the tube.
579. Photographs with Röntgen Rays. The Röntgen rays can affect a photographic plate just as light does. They can also pass through substances quite opaque to light, such as wood, cardboard, leather, flesh, but they do not so easily penetrate denser substances such as lead, iron and brass. If the hand be held close to a photographic plate and tion exposed to the Röntgen rays, the rays easily pass through the flesh but are considerably hindered by the bones. Consequently when the plate is developed that part which was behind the tlesh is much more blackened than that behind the bones. When a print is made from the 'negative' we obtain

Fic. 576. - From an Xray photograph of the human hand. a picture like that in Fig. 576.

In place of a photographic plate we may use a paper screen coated with crystals of barium-platino-cyanide. When the rays fall upon this it shines with a peculiar yellow-green shimmering light. It is said to fluoresce. The shadow of an opaque borly is clearly seen by this light.
680. Other Properties of the Röntgen Rays. If the hand or any other portion of the body is continually exposed to the Röntgen rays serious injury may result.

Another striking characteristic of the rays is their ability to discharge an electritied body. If the air is thoroughly dry a well-insulated electroscope ($\$ 445$) will hold its charge for many hours; but if it is placed in the path of the Röntgen rays the charge at once leaks away. For this to take place the air surrounding the gold leaves must become a conductor of electricity.
581. Oonduction of Electricity through Air: It is believed that electricicy is conducted through a gas nuch as it is through a liquid. The latter was explained in § 484.

Let C and D (Fig. 577) be two parallel metal plates placed a few cin. apart, and let C be joined to one pole of a battery, the other pole being joined to earth. E is an electrometer. This is a delicate instrument which measures the electrical charge given to it. First, suppose the tube T not to be in action;

Fig. 577.-An arrangement to exhibit the conduction of electricity by air. The X-raya ionize the air.
the needle of the electrometer will be at rest. Then let the tube be started, and let the Röntgen rays pass into the air between the plates C and D. At once the electrometer begins to receive a charge, showing that electricity has passed across from C to D and thence by the wire w to the electrometer.

When the X-rays pass through a gas they cause the molecules of the gas to be broken up into positively and negatively charged car-iers of electricity called icins. This process is called ionization. When a molecule is ionized it is broken up into two ions, the electrical charges of which are equal in
magnitude but of opposite sign. The positive ions are repelled from C to D and the negntive ions are attracted by the plate C. In this way the electricity is trimsferred from C to D.
582. Radio-activity. In 1896, n French physicist named Becquerel discovered that the element urmium and its various compounds emitted a radintion which could affect a photographic plate; and soon afterwards it was shown that, like the X-rays, it could ionize the air. A little later it was discovered that thorimn and its compounds acted in the same way. Thoriun is the chief constituent of Welsbach mantles. All such bodies are said to be rudio-active.

In searching for other radio-active bodies, Madanc Curie observed that pitchblende, a mineral containing uranium, was more radio-active than pure uranium. After a very laborious chemical research she succeeded in separating from scveral tons of pitchblende a few milligrans of a substance which was more than a million times as radio-active as uranium. To this substance the name of rulium was given.

In experimenting purc radium is not used, but radium bromide. Other radio-active substances lave been discovered, polonium and uctinium being the names given to two of the most powerful.

It is easy to illustrate radio-activity. Lay some crystals of a salt of uranium or thorium (uranium nitrate or thorimn nitrate, for instance, upon a photographic plate securely wrapped in black paper and allow thein to remain there for some hours. When the plate is developed it will be found to be fogged. Or if the substance be held near a charged elcetroscope the charge will at once leak away.
583. Different Kinds of Rays. Rutherford has shown that there are three cypes of rays emitted by radio-active bodies (see §167). Thesc he named the α (alpha), the β (beta) and the γ (gamina) rays. The a rays are powerful ionizers of a
gas, and it in now believed that the a particles are positivelycharged atoms of helium. It takes very little to stop them. A sheet of aluminium $\frac{1}{20} \mathrm{~mm}$. thick completely cuts then off. The β rays are much more active photographically than the a rays, but not so powerful in ionizing a gas. They consist of negatively-charged particles and behave much like cathode rays. The γ rays can pass through great thicknesses of solid matter, but their precise nature has not yet been determined. They resemble Röntgen rays.
During recent years investigations into radio-activity have led to new views regarding the nature of atoms, regarding the relations between electricity and matter, and regarding the manner in which one substance is disintegrated and another is formed.

ANSWERS TO NUMERICAL PROBLEMS

Part I-Introduction

Page 7. 1. $2,500,010 \mathrm{~mm}$. 2. $299,804.97 \mathrm{~km}$. 3. $30,400,000 \mathrm{ml}$. cm . $021 \mathrm{in} 5.1 \mathrm{cu} . .\mathrm{m} .=1,000 \mathrm{l} .=1,000,000$ c.c. 6. 183.49 m .7 .65 .4 8. 9697.5 kg . 9. The former. $\quad \mathbf{1 0 .} 4.79 \mathrm{~mm}$.

30 16. 1. $1.47 \mathrm{~kg} . \quad 2.54 .05$ c.c. 3.519 .75 grams. 4. 21.59 ; 46.318 c.c. 5. 2.7 grams per c.c. 6.12 kg .7 .0 .77 gm . per c.c. 8. $1.99 \mathrm{~mm} . \quad$ 9. $283 . \mathrm{f}$, $0.5,1.9,7.1,14.3$ grams ; 1814.4, 453.6, 141.7,14.2, 85.0, 28.3 grams. (Correct to first decimal place ; accurate enough for photography).

Part II-Mectanics of Solids
Page 19. 1. 88 ft . per sec. 2. 108 kni . per hr. 3. 11 miles per day. 4. 1 mile per day.

Page 20. 1. $2 \frac{1 子}{3} \mathrm{crr}$. per sec. per sec. 2. $-\frac{1}{2} \mathrm{ft}$. per sec. per sec. 3. 32.185 ft . per sec. per sec.

Page 27. 1. 4 ft. per sec. 2. 1000 cm . per sec. 3. 576 ft . or 176.4 m . 4190 cm . per sec. 5. 128 ft . per sec. 6. $7.82 \mathrm{sec} ; 4.37 \mathrm{sec}$. (qpprox.). 7. 750 务 ft ; 333 sec . 8. $\frac{1}{2} \mathrm{ft}$. per sec. per sec. 9. 4 sec ; 1 sec ; 78.4 m . 10. 144 ft . or 44.1 m . 11.15 sec . 12. Yes ; 20 ft . to spare.

Page 31. 2. $14,8,11.4 \mathrm{ft}$. per sec. 4.62 .45 cm . per sec. ; 68.06 cm . per sec. 5. 7.55 ft . per sec.

Page 34. 3. $125: 3$.
Page 39. 1. 5 cm . per sec. per sec. ; 25 cm . per sec.; 10,000 units. 2. 5 grams; $\mathbf{2} \mathrm{cm}$. per sec. per sec. 3. 200 dynes. 4.75 ft . per sec. ; 5 ft. per sec. per sec ; 750 units.

Page 41. 2. $1,250 \mathrm{~m}$. per sce. 3. 19.6 m . per sec. ; $1,050.15 \mathrm{~m}$. per scc.
Page 43. 4. 11.72 (nearly) ft. per sce.
Page 46. 1. 164 pounds. 3. 3 fcet.
Page 53. 1. Doubled. 2. $44 \frac{4}{6}, 25,16 \mathrm{~kg} .3 .0 .37$ pounds.
Page 56. 1. 100,000 ergs. 2. $1,800 \mathrm{ft} \cdot-\mathrm{pds}$. 3. $n 0,000 \mathrm{ft}$.-pds. 4 . sts kg.-m. 5. $150,000 \mathrm{ft}$.-pds. 6. $528,000 \mathrm{ft}$.-pds.

Page 63. 5. 5 ft.
Page 66. 3. 45 pourds.
Page 70. 1. $1 \frac{1}{4}$ pounds. 2. 90 pounds, 120 pounds. 3. $37 \frac{1}{2}$ pounds. 4. 29.5 pounds.

Page 73. I. Twice as great ; twice as long.
2. 4. 3. 4. 4. 60 pounds.

Page 77.

1. $26 \frac{2}{3}$ poumds.
2. 6,400 pounds.

Page 80. 2. $20 \frac{5}{6}$ pounds. 3. $4 \frac{1}{2} \frac{1}{7}$ pounds. 4. rita pound; $\frac{1}{2} \frac{1}{5}$ pound.

Part Ill-Mrchanics of Fluids

Page 91. 1. 3121 g. 2. 800 kg . 3. 11,050 pound. 4. 10,000 . 5. 38 kg . 6. 184.87 ft nearly.

Page 94. 1. 62.3 pounds (at $62^{\circ} \mathrm{F}^{\prime}$.) ; 07.7 pounds. 2. 4.57 pounds. 3. 2.6 kg . 4. 4.9 kg . $5.600 \mathrm{~g} .6 . \frac{1}{2} .7 .1,5.57 .5$ poundm. 8. 133 c.c. 12.22 .3 pounds.

Paye 99. I. $\$$ g. perc.c. 2. 1 g . per c.c. 3. 12 g . per c.c. 4. g . per c.c. 5. 20 c.c.; 6 g. perc.c.; 0.8 g. per c.c. 6. g. per c.c. 7. 8.g. $=\mathbf{1}$; n.g. $=1$; $0 \frac{1}{}$ inches. 8. 1.072 (nearly) g. per e.c. 9. Gold, 386.4 g. ; nilver, 21.04 g .

Page 104. 6. 1.291 g .
Page 115. 1. 63 c. ft. 2. 22.85 l. 3. $75,314.7$ c. in. 4. 483 mercury. 5. $562 \frac{1}{\mathrm{y}} \mathrm{mm}$. 6. 174 in . of meroury. 7. 0.0001250 (nearly) per c.c. 8. 101.34 g . 9. $\$ 3.60$.

Page 118. 4. 2908.75 kg .
Page 128. 1. $\mathrm{I}_{\text {; }} \frac{17}{\frac{17}{2} . ~ 2 . ~ 5 . ~ 3 . ~} 1 \frac{1}{2}$. 4. 12.92 m .
Page 130. 1. (b) 13.6 times ht. of mercury barometer. 2. 2191 in .

Part V-Wave-Motion and Sound

Page 178. 1. $335,338,356 \mathrm{~m}$. per sec. 2. 1024.3 ft . per nec. 3. 5,595 ft . 4. $3,490.2 \mathrm{ft}$. 5. 3.81 sec . (nearly). 9. $1,678.5 \mathrm{ft}$. $10.4,707.4 \mathrm{ft}$. per sec. 11. $11,404 \mathrm{ft}$. per sec. $\left(t=20^{\circ}\right.$ C.). 12. $4,290.2 \mathrm{ft}$. per sec.

Page 186. 2. 400,500 . 3. $2,685.6$. 5. 4,698 . 6. $32 \frac{1}{8}, 65 \frac{1}{4}, 130 \frac{1}{2}, 261$, 522, 1,044, 2,088, 4,176. 7. 271.2. 8. $G^{\prime \prime}, E^{\prime \prime} .9 .69 .2,46.1,31.1,20.8 \mathrm{in}$. (approx.).

Page 198. 5. 6.49 in. 6. $4,064 \mathrm{~m}$. per sec. 7. 6 pound. 9. $\sqrt{2}: 1$. 10. 10.38 in . if closed at one end ; 20.76 in . if open.

Page 207. I. $C^{\prime \prime}, L^{\prime \prime}$ onnating C as the first.

> Part Vi-Heat

Page 228. 1. 9, 32.4, 48.6, 11%. 2. $11 \frac{1}{6}, 15,20,52 \%$ 3. 117. 4. 154. 5. $-177^{\circ},-12 \xi^{\circ}, 0^{\circ}, 77^{\circ}, 377^{\circ},-313^{\circ},-40^{\circ}$. 6. $50^{\circ}, 68^{\circ}, 89.6^{\circ}, 167^{\circ},-4^{\circ}$, $-40^{\circ},-459.4^{\circ}$. 7. 388° cent. deg. 8. (a) $9.6^{\circ},-8^{\circ},-12^{\circ}, 17^{\circ}$. (b) $20^{\circ} \mathrm{C}$, $68^{\circ} \mathrm{F} . ; 311^{\circ} \mathrm{C} ., 88 i^{\circ} \mathrm{F} . ;-7 \frac{1}{2}^{\circ} \mathrm{C} ., 181^{\circ} \mathrm{F}$.

Page 232. 1. 4.0002 ft. 2. 1.000342 m .3 .120 .0216 mq . in. (nearly). 4. $\quad 57.69 \mathrm{~cm}$. (nearly). 5. 762.84 mm ; 762.55 mm .6 .761 .07 mm .

Page 236. 3. 28.55 l. 4. 107.59 c.c. (nearly). 5. 155.1 pds. per sq. in. 6. 17.53 pds. per sq. in. (nearly). 7. 1.127 g . (nearly). 8. $32^{\circ} .8 \mathrm{C} .,-22^{\circ} .8 \mathrm{C}$. 9. $27.3^{\circ} \mathrm{C}$. I1. 108.87 l. (nearly). 12. 322 c. c.c. 13. 0.837 g .14 .0 .0000760 g. per cm. (nearly).

Page 239. I. 1,625 cal. 2. 3,000 cal. 3. $23^{\circ} \mathrm{C} .410$ cent. deg. 5. $661^{\circ} \mathrm{C}$.
Page 242. 1. 5.6 cal. 2. Mercury, 2.244 cal ; water, 2 cal. 3. 36 cal. 4. 0.094 . 5. $0.694 .6 .9,600 \mathrm{cal}$. 7. 950.16 cal . 8. $226,000 \mathrm{cal}$. 9. 27.9 cal. 10. $3.17^{\circ} \mathrm{C}$. (nearly). 11. Sp. ht. 0.113 (nearly); iron. 12. 0.113 (nearly). 13. $30,225 \mathrm{cal}$ 14. $47.0^{\circ} \mathrm{C}$. (nearly). 15, 0.748.

Page 247. 6. 2,800 ual. 7. $1,200,000 \mathrm{cal}$. 8. $501^{1} \mathrm{r}^{\circ}$ C. 9. 1,1111 grams.
 14. 0.09. 15. 79.38.

Page 255. 5. $10,482 \mathrm{cal}$. 6. $1 \times 2,240 \mathrm{cal}$. 7. 27,045 cal. 8. $230,080 \mathrm{cal}$. 9. $44.37^{\circ} \mathrm{C}$. 10. 10.07 g . (nearly). 11. $3.14 \mathrm{~g} . \quad 12.21,705$ eal. 13. 432,500 cal. 14. 836.4 cal. per gram (nearly).
Page 278. 1. (1) 2,501 ft. $\cdot \mu \mathrm{ls}$.; 3.21 13. T. U. 2. 3,736,250 1. 3 . $2,388.34 \mathrm{cal}$. 4 - $77,768.5 \mathrm{l3}$. T. U. 5. 78.064 kg . 6. $1,038.77 \mathrm{lhm}$.

Pabt VII-Liuht

Page. 3. 1. 2.4 inchen. 5. 869,$154 ; 8,791$ miles (nearly). 6. 105.4 miles.
Page 299. 2. $4: 25.3$. 2i:9. 4. $14.15 \mathrm{c} . \mathrm{p} .5 .4 \mathrm{ft}$. 6. 2 ft . from the candle towards the gas. Hame and 6 ft . from the candle in oppowite direction.

Page 308. 2. 60°. 5. 40, 80, 120 inches.
Page 318. 5. 15 cm . from vertex, in fruit of mirror: 2.5 cm . high. C. 40 cm. from vertex, sehind mirror; 25 cm . high. 7. 10 cm . from vertex, lwehind mirror ; virtual ; 4 cm . high.

Pase 329. у. 0.405 nearly. 2. $139,500 \mathrm{mi}$. per sec. ; $124,010 \mathrm{mi}$. per nec.; 9/8. 8. $40 \mathfrak{h}^{\circ}$. 9. 1.52.

Page 36 i. 4.30 cm .

Part VIII-Eleotricity and Manetism

Page 418. 3. 3,049 нес. (nearly). 4. 5 amp. 5. H, 0.10384 g ; $\mathbf{O}, 0.83072 \mathrm{g}$. ; Cu., 3.28 g .

Page 451. 7. 80 per aec.
Page 463. 1. amp. 2. $\frac{1}{1}$ amp. 3. 20 ohins. 4. 0.19 ohm. 5. 22 volls. $5: 3.5$ volts. 7. 10 amp . 8. 3 ohmm.

Page 464. 1. $81 \mathrm{amp} ; 80$ volts. 2. $\frac{1}{2}$ amp. ; 4 m . 3. 1 volt, 1 volt, 102 volts. 4. 113 volts. 5. 1 f amp ., 量 volt. 6. i^{3} volt, $\mathrm{i}^{\circ} \mathrm{f}$ volt.

Page 467. 1. 360,000 coulombs. 2. $45,000,000$ joules. 3. $18.75 \mathrm{~K} . \mathrm{W} .=$ 18.43 H. P. 4. 108,650 cal. 5. 1 c.p. per wa.t. 6. 99,841 watt-hours ; 87.99.

Page 471. 1. 3.13 ohmis. 2. 0.9407 ohms. 3. 72 ohms. 4. 20.31 ohms. 5. 22. 5 m. 6. 135.9 yds. 7. 0.6 mm . 8. 2.653 mm . 9. $1,080 \mathrm{yds}$. 50.3 .04. 11. 20.1 ohns : 75.84 ohmis.
 ohmis. 5. 2_{1}^{1} amp.; 13 ampl.; 48 ohms. 6. 100 ohms. 7. $\frac{1}{n+1}$. 8. $9: 25$.
 case. 5-50 cells. 6. Let $u=$ No. of cells in a group, $m=$ No. of groups in parallel. For $n=1, m=48, C=0.071$ anp., P.D. $=0.019$ volt ; $n=2, m=24$, $C=0.138, P . D_{1}=0.069 ; n=3, m=16, C=0.199, P . D .=0.224 ; n=4, m=12$, $C=0.252, P . D .=9.504 ; n=6, m=8, C=0.329 . P . D .=1.48 ; n=8, m=6$, $C=0.372, P . D .=2.98 ; n=12, m=4, C=0.359, P . D .=7.00 ; n=16, m=3$, $C=0.364, P . D .=11.69 ; n=24, m=9, C=0.295, P . D .=21.24 ; n=48, m=1$, $C=0.169 . P . D .=48.67 . \quad 7.0 .75$ vollt.

INDEX

A

Aberration, 310 ; chromatic, 347 .
Absolute tempernture, 234.
Absorption, of light, 341; of radiant energy, 480.
Acceleration, definition of, $\mathbf{2 0}$; uniform, 20.
Accelerations, composition of, 32.
Accummlators, 415.
Achronatic lenses, 3410.
Actinimn, radio-activity of, 490.
Adhesion, 142.
Agonic line, 376.
Air, weight of, 101 ; prensure of, 101; variat،ons in pressure of, 107 ; compressibility and expansibility of, 112 ; the usel of compressed, 123.
Air-braken, 124.
Air-pump, 119; the Geryk, 120 ; the mercury, 121 ; the Bunsen jet, 121.
Alternating current, uses of, 452.
Alteruating current dymamo, 444.
Ammeters, 432.
Ampere, the international, 463.
Ampère's laws of current, 424.
Alerture of mirror, 309.
Archimedes' principle, 93.
Arc ha: ρ, 459 ; the inclosed, 460 ; regulation of, 461.
Armature, of a dynamo, 443; shuttle, 443 : Gramme-ring, 444 ; drun, 444.

Artesian wells, 80.
Atmosplere, varintions and pressure of, 107 ; height of the, 111. Automobile 'honk,' 211.
Axis of mirror, 309.

B

Balance, description of, 11.
Balloons, 117.
Barometer, the, 105 ; the cistern, 105 ; the siphon, 106 ; the aneroid, 108; practical uses of, 107.

Beats, 203 ; tuning by means of, 205.

Bell, electric, 430.
Boiling point, 251 ; effect of pressure on, 251.
Boyle's law, 113; explanation of, 135.

Brittleness, 146.
Bugle, 212.
Buoyancy, uanture of, 92 ; to determine force of, 03 ; of gases, 116.

0

Caissons, pneumatic, $12 \overline{0}$.
Camera, the pin-hole, 200; the photographic, 359.
Capacity, electrical, 390.
Capillary action, 152 ; explanation of, 154 ; illustrations of, 155.

Cell, the voltaic, 39 ; Leclanché, 405 ; Daniell, 4vis ; gravity, 406 ; the dry, 407 ; Edison-Lalande, 407.

Centre of curvature of mirror, 309.
Centre of gravity, definition of, 60 ; to find, experimentally, 60 ; of some bodies of simple form, 61.
Charges, induced, equal, 385 ; reside on outer surface, 386.
Charles' law, 232, 23 .
Chords, musical, 182, 184.
Clarinet, 211.
Clouds, 264.
Coefficient, of expansion of solids, 229 ; of expansion of liquids, 230 ; of expansion of gases, 232.
Coherer, the, 484.
Cohesion, 142.
Cold storage, 258.
Colladon's fountain of fire, 327.
Colours, by dispersion, 339 ; of natural objects, 341.
Complementary colours, 345.
Compressed air, uses of, 123.
Condensation of water-vapour of the air, 261.
Condenser, the air, 123; the steam, 269 ; electrical, 391.
Conduction of heat, 274 ; in solids, 274 ; in liquids, 275 ; in gases, 276 ; practical significance of, in bodies, 276.
Conductors, electrical, 381.
Conjugate foci, of mirror, 313 ; of lens, 333.
Conservation of mass and energy, 58 . Convection currents, 279 ; in gases, 280 ; applications of, 281.
Cooling by vaporization, 256, 257.

Cornet, 212.
Coulomb, 4(ij.
Couple, 46.
Critical angle, 326 ; values of, 326.
Critical temperature, 2π ?

D

Daniell's cell, 405.
D'Arsonval galvanometこ: , "12.
Declination, magnetic, 376.
Densities, table of, 14.
Density, definition of, 13 ; measurement of, 14 ; relation to specific gravity, 15 ; of a solid heavier than water, 96 ; of a lighter than water, 97 ; of a liquid by the specitic gravity bottle, 97 ; of a lıquid by Archimedes' principle, 98 ; of a liquid by means of a hydrometer, 98.
Dew, 264.
Dew-point, 261.
Diatonic scale, 183.
Diffusion, of gases, 133 ; of liquids and solids, 134.
Dip, magnetic, 378.
Direct current dynamo, 446.
Direct vision, 350.
Dispersion of light, 339.
Displacement, definition of, 18 : resultant, 18 ; component, 18.
Distillation, 265.
Diving bells and diving suits, 124.
Doppler's principle, 207.
Dry cell, 407.
Ductility, 146.
Dynamo, the principle of, 442 ; the armature of, 443 ; field magnets of, 444 ; the alternating current, 44‥ , urrect current, 446.
Dyne, the, 38.

E

Earth, a magnet, 375 ; magnetic field about, 378.
Ebullition, 248, 2 ō1.
Echoes, 175.
Edison-Lalande cell, 407.
Efficiency of heat engines, 272.
Elasticity, definition of, 143 ; measurement of, 143 ; of varions metals, 144.
Electricity, nature of, 389 ; quantity of, 465 ; passage of, through gases, 487.
Electrical, attraction, 380 ; repulsion, 381 ; law of attraction and repulsion, 381 ; potentıal, 388 ; capacity, 390 ; condenser, 391.
Electrical units, 462.
Electric bell, 430.
Electric circuit, explanation of terms, 400 ; work done in, 466.
Electric current, nature of the, 396; known by its effects, 396 ; detection of, 403 ; heat developed by, 457.
Electric furnace, 457.
Electric lamps, 458, 459.
Electric motor, 449; counter electromotive force in, 450.
Electric spark, plenomenon of, 482.
Electric telegraph, 427.
Electric waves, 484.
Electric welding, 458.
Electrification, kinds of, 381 ; by induction, 383.
Electrolysis, 408 ; explanation of, 408 ; secondary reactions in, 411 ; of water, 411 ; applied to manufactures, 413 ; laws of, 416 ; measurement of current strongth by, 416

Electromagnet, 423; strength of, 424.

Electromotive force, 401 ; unit of, 401 ; of a voltaic cell, 402.
Electrophorous, the, 393.
Electroplating, 412.
Electroscope, the gold-leaf, 382.
Electrotyping, 413.
Energy, definition of, 56 ; transformations of, 57 ; measurement of, 57 ; conservation of, 58.
Equilibrium, conditions for, 62 ; three states of, 62.
Erg, the, 55.
Ether, 288.
Evaporation, 248 ; rate of, 248 ; molecular explanation of, 249 ; into air, 200 ; cold by, 256.
Expansion, of solids by heat, 217 ; of liquids and gases by heat, 218 ; applications of, 218 ; coefficient of, of solids, 229 ; coefficient of, of liquids, 230 ; of water, 231 ; coefficient of, of gases, 232.
Eye, construction of the, 356 ; image on the retina of, 357 ; accommodation of, 357 ; defects of, 358 .

F

Faraday's experiments, 435
Field glass, 365 ; the pris : nocular, 366.
Field magnets, of a dynamo, 444 ; excitation of, 448.
Field of force, 370 ; due to electric current, 419 ; about a circhlar conductor, 420.
Flotation, principlo of, 94.
Flute, 210

Focal length of mirror, $\mathbf{3 1 0}$; determination of, 311.
Foeus of mirror, 310.
Fog, 264.
Force, definition of, $3 t i$; units of, 37 ; gravitation units of, 39 ; moment of $\mathrm{a}, 44$.
Forces, composition and resolution of, 40 ; composition of parallel, 45 ; parallelogram of, 47 ; triangle of, 48 ; polygon of, 48 ; at the surface of a liq̣uid, 150.
Fieezing mixtures, 247.
French horn, 212.
Friction, dehinition of, 64; laws of sliding, $6 \overline{5}$; rolling, $6 \overline{5}$.
Frost, 264.
Fusion, 243 ; change of volume in, 244 ; heat of, 245.

a

Galvanometer, 431; the taigent, 431 ; the D'Arsonval, 432.
Galvanuscope, 403.
Gases, buoyancy of, 116; diflusion of, 133.
Gas engines, 270.
Gas thermometer, 234.
Gay-Lussuc's law, 232.
Gravitation, law of, 50.
Gravity cell, 406.

H

Hail, 264.
Hardness, 146.
Harmonics, 186 ; in a string, 190 ; in an organ pipe, 197.
Heat, nature of, 214 ; source of, 215 ; unit of, 238 ; specific, 239 ; given out in solidification, 246 ; absorbed in solution, 247.

Heating, by hot water, 282 ; by steam, 283 ; hy hot-air furnaces, 283.

Heat of fusion, 945 ; determination of, of ice, 246.
Heat of vaporization, $2 \overline{5} 4$; determination of, 254 .
Helix, magnetic conditions of $a, 421$; polarity of the, 422.
Hooke's law, 144.
Horse-power, 59.
Hot-water heating, 282.
Humidity, 262 ; relation of, to health, 263.
Hydraulic air compressor, the Taylor, 121.
Hydraulic elevator, the, 84.
Hydraulic lift-lock, the, 86.
Hydraulic press, the, 84.
Hydrometer, the, 98.
Hydrostatic paradux, 88.
Hygrometer, 263.

I

Ice-making machine, 258.
Iniages, in plane mirror, 302, 306 ; in parallel mirrors, 307 ; in inclined mirrors, 307 ; to draw, in curved mirrors, 314 ; relative sizes of innge and olject in curved mirrors, 315 ; to draw, in lenses, 337.

Incandescent electric lamp, 458.
Inclination, magnetic, 378.
Inclined plane, the, 77.
Induced currents, production of, 436 ; illustrations of, 436 ; laws of, 438.
Induced magnetism, 369.

Induction, magnetiz:tion by, 369 ; electrification ly, 383 ; electrical charging by, 385.
Induction coil, 453 ; explanation of the action of, 454.
Inertia, definition of, 33.
Intensity, of sound, 172 ; of light, 294.

Interference of sound-waves, 205 ; with resonators. 206.
Intervals of the major diatonic scale, 183.
Isogonic lines, 376.

J

Joule, the, 267, 466.

K

Kaleidoscope, $3{ }^{1 "}$
Kilogram, standa. 3 ; prototype, 9 .

L

Lantern, the projection, 360.
Latent heat, 245.
Lateral inversion by a mirror, 306 .
Leclanché cell, 405.
Length, stimdards of, 2.
Lens, 330 ; principal axis of, 330 ; action of, 330 ; focus of, 331 ; focal length of, 331 ; power of, 331 ; deternination of focal length of, 331 ; conjugate foci of, 333 ; magnification by, 338.
Lenses, kinds of, 330 ; combinations of, 332 ; achromatic, 346
Lenz's law, 439.
Lever, the first class, 67 ; second class, 68 ; third class, 70.
Leyden jar, 392.

Light, radiation, 287; how transmitted, 287 ; waves and rays of, 289 ; travels in straight lines, 290 ; desernination of velocity of, 300,301 ; illustrations of velocity of, 301 ; velocity in liquids and solids, 301 ; laws of reflection of, 302 ; refraction of, 319 ; laws of refraction of, 322 ; total reflection of, 325 ; dispersion of, 339 ; absorption of, 341.
Lightning rods, 387.
Lines of force, properties of, 372.
Liquid, surface of, in connecting tubes, 89 ; diffusion of, 134 ; distinction between liquids and solids, 141.
Liquefaction of air, 260.
Local action in a cell, 404.
Loops, 166 ; in a vibrating string, 189.

Luxfer prisms, 327.

MI

Machine, object of $a, 67$.
Magnet, naturil, 367 ; artificial, 367 ; poles of a, 367 ; retentive power of, 370 ; field of force about, 370 ; the earth $\mathrm{a}, \mathbf{3 7 5}$.
Magnetic, laws of, attraction and repulsion, 368 ; substances, 369 ; shielding, 372 ; permeability, 373; declination, 376 ; inclination, 378.
Magnetism, induced, 369.
Magnetization, explanation of, 373; effects of heat on, 375.
Magnification by lens 338.
Malleability, 145.
Mariner's compass, 375.

Mariotte's haw, 115.
Mass, standards of, 7 ; definition of, 7, 33.
Matter, molecular theory of, 131.
Maximum density of water, 231 .
Maximum thermoncters, 227.
Measurement, of a quantity, 2; of leugth, 10 ; of mass, 11 ; of density, 14 ; of acceleration due to gravity, 24 ; of weight, 51 ; of work, 55 ; of energy, 57 ; of elasticity, 143 ; of currcut strength, 416.
Mechanical equiralent of heat, determination of, 267.
Mciting point, 243 ; influence of pressure on, 244.
Metre, the standard, 3 ; the prototype, 4; sulb-divisions of, 6; relation to yard, 6.
Microscope, the simple, 361 ; magnifying power of, 362 ; the compound, 362.
Minimum thermometers, 227.
Mirrors, plane, 302 ; curved, 309 ; centre of curvature of, 309; radius of curvature of, 309 ; aperture of, 309 ; axis of, 309 ; focus of, 310 ; parabolic, 317 ; conjugate foci of, 313.
Molecules, description of, 131 ; evidence suggesting, 131 ; motions of, 134 ; velocities of, 136 ; motions in liquids, 138 ; motions in solids, 139 ; size of, 146; nature of, 148.
Moment of a force, 44.
Moments, law of, 45.
Momentum, definition of, 34.

Motion, 18 ; under gravity, 22 ; in a circle, 28 ; translation and rotation, 28 ; Newton's first law of, 35 ; Newton's second law of, 36 ; Newton's third law of, 42.
Multiple arrangement of cells or dynamos, 470.
Musical sounds and noises, 179

N

Nodes, 166 ; in a vibrating string, 189.

Non-conductors, electrical, 381.
0
Oboe, 211.
Octave, the, 182.
Oersted's experiment, 403.
Ohm, the international, 462.
Ohm's law, 462.
Opaque bodies, 292.
Optical bench, 336
Organ pipes, 196.
Osmosis, 139.
Overtones, in a string, 190 ; in an organ pipe, 197.

P

Parabolic mirrors, 31\%.
Pascal's principle. 63.
Permeability, magnetic, 373.
Phonograph, 213.
Photometer, Rumford's, 295 ; the Bunsen, 296 ; Joly's diffusion, 297.

Piccolo, 210.
Pipe organ, 210.
Pitch, 180 ; determination of, 180.
Plasticity, 145.

Point, position of a, 17 .
Polarization, of a cell, 404 ; of electrodes, 414.
Poles of a magnet, 367.
Polonium, radio-activity of, 490
Position, of a point, 17.
Potential, electrical, 383 ; zero of, 389 ; fall of, in a circuit, 434.
Ponnd, standard, 8.
Poundal, the, 40.
Power, definition of, 59 ; units of, 59.

Pressure, transmission of, by fluids, 82 ; due to weight, 86,88 ; relation between pressure and depth, 87 ; equal in all directions at the same depth, 87.
Primary currents, 437.
Pulley, the, 71 ; a single inovable, 72 ; differential, 76.
Pulleys, systems of, 72.
Punıps, lift-pump, 126 ; force-pump, 127 ; double action force-pımp, 128.

Q

Quality of sound, 200.
Quantities, physical, 1.
Quantity, measuring a, 2.
Quantity of electricity, unit of, 465.

B

Radiant energy, forms of, 216, 287, 479.

Radiation, transference of, by heat, 285 ; of light, 287, 480.
Radio-activity, 490.
Radium, radio-activity of, 490.
Radius of curvature of mirror, 309.

Rain, 264.
Rainbow, 348.
Recomposition of white light, 343.
Reflection of light, lnws of, 302 ; regular and irregular, 305 ; from parallel nirrors, 307 ; from inclined mirrors, 307 ; total, 325.
Reflection of sound, 175.
Refraction of light, meaning of, 319; experiments illustrating, 319 ; explanation of, by means of waves, 320 ; laws of, 322 ; table of indices of, 323 ; through a plate, 324 ; atmospheric, 327 ; through prisnis, 328.
Regelation, 245.
Resistance, deterınination of, 468 ; laws of, 470 ; specific, 470 ; and temperature, 471 ; in a divided circuit, 472.
Resistance boxes, 468.
Resistances, table of, 471.
Resonance, 193 ; of an open tube, 195.

Resonators, forms of, 194.
Röntgen rays, 487 ; photographs with, 488 ; properties of, 488.

8

Saxaphone, 211.
Scale, diatonic, 183 ; of equal temperament, 184 ; the harmonic, 185.

Screw, the, 78.
Secondary currents, 437.
Self-induction, 439.
Series arrangement of cells or dynamos, 475.
Shadows, theory of, 291.

Shunts, 473.
Siphon, 19!) ; the aspirating, 129.
Snow, 264.
Soliditication, 243.
Solids, distinction between liquids and solids, 141.
Sonometer, the, 187.
Sound, origin of, 168 ; conveyaneo of, 168 ; velucity of, in air, 169 ; intensity of, 172; transmission of, by tubes, 173 ; velocity of, in solids, 173 ; velncity in different gases, 175 ; reflection of, 175 ; determination of velocity of, liy resonance, 194 ; quality of, 200.
Sounl-waves, nature of, $\mathbf{1 7 0}$; interference of, 205.
Specitie heat, 239 ; of water, 240; determination of, by mothod of mixtures, 240.
Spueifie heate of some common substances, 241.
Specifie resistance, 470.
Spectra, kinds of, 350 ; continnous, 351 ; discontinuous, 351 ; absor 1^{1-} tion, 351.
Spectrosceje, 348.
Spectrum, 839; a pure, 340 ; analysis of, 351 ; the solar, $3 \mathbf{3 2}$; meaning of dark lines of, 352.
Standards, of length, 2 ; national, 5 ; of mass, 7 ; of light, 208.
Steam-engine, 268 ; high and low pressure, 269 ; the eompomil, 269 ; the turbine, 269.
Steam heating, 283.
Storage cells, $41 \overline{5}$.
Strain, 143 ; Shearing, 140
Stresses, 143.
Stringed instruments, 209.

Sullimation, 140.
Sulnarine lell, 177.
Surface tension, 151 ; illustrations of, 15%.
Sympathetie electrical oscillations, 483.

Sympathetie vibrations, 202 ; illustrations of, 203.

T

Tangent galvanometer, 431.
Telegraph, the electric, 427 ; key, 427 ; sounder, 428 ; relay, 428 ; wireless, 48 จ̄.
Telegraph system, connection of instruments in, 429.
Telophone, 455 ; transmitter, 45̄5; receiver, 455.
Telephone circuit, connection of instruments in, 456.
Teleseope, the astrononical, 363 ; objectives and eyopicees, $36 \overline{\text { an }}$; the terrestrial, 366.
Temperature, nature of, 222 ; and quantity of heat, 222 ; determination of, 222; absoiute, 234; critieal, 259.
'Thermal capacity, 239.
Thermometer, Galileo's, 223 ; construction of a mercury, 224 ; determination of the fixed points of, 225 ; graduation of, 225 ; com. parison of scales of, 226 ; gas, 234.
Thermometers, maximum and mininum, 227.
Thermostats, 220.
Time, unit of, 9.
Tones, musical, 180 ; sinnultaneous production of, 190 ; fundamental, 186; fundamental in a string, 188.

Torricellian experiment, 102.
Total retlection, of light, 325 ; prisms, 326.
Transfcrence of heat, by comluction, 274 ; by convection, 279 ; by radiation, 28 .̀.
Transformer, the, 451.
Translucent bodies, 292.
Transparent bodies, 292.
Trombone, 212.
Tuning-fork, 191.
Turbine engine, 269.

U

Units, fundamentel, 2 ; derived, 7 ; of time, 9 ; the English and the C.G.S. system, 10 ; of force, 37 ; of work, 54 ; of power, 59 ; of heat, 238 ; of electromotive force, 401,463 ; of resistance, 462 ; of current strength, 463 ; of quantity of electricity, 465.
Uranium, radio-activity of, 490.

V

Vaporization, 248.
Vapour, pressure of, 249 ; satırated, 250.
Velocities, composition of, 29; resolution of, 30 ; triangle and polygon of, 31.
Velocity, dcfinition of, 18 ; uniform, 19 ; average, 21 ; of sound in air, 169 ; of sound in solids, 173 ; of sound in gases, 175 ; determinations of, of light, 300,301 ; illustrations of, of light, 301 ; of light in liquids and solids, 301.

Ventilation, 284.
Vertex of a mirror, 309.
Vibrating flames, 200.
Vibration number, 164.
Vibrations, period of, 164 ; frequency of, 164 ; laws of, of a string, 188 ; of rods, 190 ; of plates, 192 ; of air columns, 193 ; mode of, in all open tube, 106; sympathetic, 202.
Viscosity, 140.
Volt, the international, 463.
Voltaic cell, 396 ; plates of n, clectrically charged, 398 ; chenical action in, 400 ; source of energy in, 401 ; electromotive force of, 402 ; polarization of, 404 ; theory of the action of, 409 ; gronping of, 475.
Voltameters, 417.
Voltmeters, 432.

W

Watt, the, 59, 466.
Watt-hour, the, 467.
Wave-leugth, definition of, 160 ; relation among wave-length, velocity, and frequency, 164.
Wave-motion, characteristics of, 157.

Waves, cause of, oll water, 158 ; speed of, on water, 160 ; speed dependent on depth, 161 ; refraction of, 162 ; reffection of, 162 ; transverse and longitudinal, 164 ; in a cord, 163 ; method of studying standing, 167.
Weather, elementary principles of forecasting, 110.
Weather map, 107.

Wedge, the, 78.
Woight, definition of, 12 ; measurement of, 51.
Weights, 12 ; metric, 13.
Wheatstone bridge, 469.
Wheel and axle, the, 74 ; examplen of, 75 ; differential, 75.
Winshurst, influence machine, 393 ; explanation of action of, 394.
Winds, 280.

Wireleas telography, 485.
Work, definition of, 54 ; unite of, 54 ; measurement of, 55.

X-rаун, 487.
lard, ntandari, 2.

1

1

[^0]: *Devised by Prof, A. W. Duff, of the Polytechnic Institute, Worcester, Mass.

[^1]: Mathe fuli title of the look is "Principia Mathematica Naturalis Philosophia,", i.e., "The

[^2]: * A more aocurate calculation is

[^3]: * It appears in Pascal's Traité de l'f́quilibre dex liqueurs, written in 1653 hut first published In 1603, one year after the author's death

[^4]: * Horror of a vacuum.

[^5]: *The Frenoh inch then used $=28 \mathrm{gm}$. , and 1 line $=\frac{1}{1} \frac{1}{2}$ inch.

[^6]: * "Ce qui nous ravit tous d'admiration et detonnement." This eccount is taken from Perier's letier to Patcal, dated September 22, 1648.

[^7]: "Rivtract from letter written by Torricelli, in 1644 , to \mathbf{M}. A. Ricci, in Kome, frat published
 in le63. tAn expla this book.

[^8]: -Greek, $a=$ not, neror $=$ wet.

[^9]: * Greek, ivos - equal, baros - weight.

[^10]: "Francis Bacon, 1:601-16id.
 +Sec Tail's "Properties of Matter." 98.100 .

[^11]: * In performing thiv experiment wrap a cloth about each jar for safcty.

[^12]: *Strictly speaking it is the square root of the mean equare velocity which is given iere.

[^13]: * German mineralogist (1773-1830).

[^14]: Now of the Univeralty of Manchenter, England. For ten years Professor of Physics at Mcalll Univeraity, Montreal.
 ta (alpha), β (beta), γ (gamma), are the first three letters of the Greek alphabet.

[^15]: *Horn 1801, died 1853 . From 18:0 his eyesight gradually deteriorated, and It failed entirely in 1843.

[^16]: *Latin, Capillus, a hair.

[^17]: - Many beautlful experiments are deacribed In "Soap Bubbles and the Forces whlch Mould Them," by C. V. Boya.

[^18]: In the dewtructive Jewsima earthyuake, December 28,1908 , the epeerl of tranmimion surerifit : s : Km . (or 2 mi) per second.

[^19]: * By running up the nuccessive notes of the scale the ear will recognize the octave when the tring is just half the entire length.

[^20]: *More accurately the quarter wave-length of the sound is equal to the distance from the surface of the water to the top 0 : the tube +0.8 of the radius of the tube.

[^21]: *This may be very thin mica or rubber or goid-beater's skin.

[^22]: Different conew and points are used for recording and reproducing the sounds.

[^23]: - Beujamin Thompson was Liorn at Wohmrn (uear lBoston, Mass.) in 1ins. In 1775 he went to
 White engazed in boring cannon at Munich he marle his experiments on heat. lle died in France in 1814.

[^24]: *Strictly speaking, it is a point called the centre of oscillation (which nearly coincides with the centre of gravity) whose distance from the point of suspension shouid be kept constant.

[^25]: * Celsius at first marked the boiling-point zero ard the freeaing point 100. It is asid that the great botanist Linnaeus prompted Celsius and Stromer to invert the acale.

[^26]: * In an actual experiment the contraction of the glase must be allowed for.

[^27]: * Charles (1746-18v3), Gay-Lussac (17\%8-1850), Regnault (1810-1878) were all French acientisto.

[^28]: * Made by dipping blotting paper in a solution of potassium nitrate and drying it.

[^29]: *"Are not the Rays of Light rery small bodies emitted from shlning Substances?" Newton's Opticks (1704.)
 †Christian lluygens presented his Treatise on Light to the Royal Academy of Sciences, tChristian lluygens presented his Treatise on Ligh
 Paris, In 1678 . It was published in leyden in 1680 .

[^30]: *This discussion refers to homogeneous or isotropic matter.

[^31]: * A lamp with a spherical porceiain shade may be used.

[^32]: *This is the modern value; lloemer'e result was 22 m .

[^33]: "Wordsworth in "Yarrow Unvisited" refers to a case of perfect reflection:
 "The awan on still St. Mary's lake Floate double, swan and shadow."

[^34]: *Taken, with the aid of an electric spark, by J. H. Vincent, of London, Enyland.

[^35]: *Since $\sin i=\frac{G H}{G D}$, and $\sin r=\frac{E F}{E D D^{*}}$, then $\frac{\sin i}{\sin \boldsymbol{r}}=\frac{\sigma H}{E F^{\prime}}-\mu$, the index of refraction.

[^36]: * A third method ls given in the Laboratory Manteal designed to accompany this work.

[^37]: We might use single eector of blue and one of yellow but the apeed of rotation would then heve to be doubled.

[^38]: - For further informatlon more milvanced worke must be consulted.

[^39]: - There are really liey narrow liney sery clove logether, which can be seen aven with some pucket spect roscopes.

[^40]:

[^41]: - Greek Helion =an.
 t Lirtht requires du jeard to cone from Vega to ua.

[^42]: - It is not a true image, but a shadow cast upon the relina.

[^43]: *See Ganot's Shysics; or Watson's Physics, p. 492.

[^44]: *Ordinary steel nails are not very satisfactory. Use clout nailw or short pieces of stove-pipe wire.

[^45]: *Gilhert ($1.540 .16 n: 3$) was physician to Queen Filizabeth, and was England's first great experimental scientist.

[^46]: * The cost of the arctic expedition, which was male hy John loss and his nephew James, was defrayed ly a wealthy Eurlishman mamed Felis lionth.
 \dagger lireck, isos $=$ equal, gonia $=$ angle; $a=$ not, jonia $=$ angle.

[^47]: *In these experiments the substances should be thoroughly dry. They succeed better in winter since there is much less molsture in the alr then.

[^48]: *The bodies may be of wool covered with tin-foil, and may rest on blocks of paraffin.

[^49]: *Connect to a gas or water-pipe. Connection may lee male to any part of the conductor.

[^50]: *Thle may be a wooden disc covered with tin-foil.

[^51]: *This method of explanation is due to Prof. S. P. Thompson ; see his Elementary Leasons in Electricity and Magnetism, p. 63.

[^52]: *Aloisio Galvani (1737-1793), a l'hysician and l'rofessor of Anatomy in the University of
 Bologna.

[^53]: " llans Christian Oersted (1777-1851), Professor in the University of Coperhagen.

[^54]: -There la also lese waste through the heating of che comluching wire when ligh tenalon is

[^55]: *The Induction coil was grencly Improverl by Ruhmikort (1903.1877), a famous manulacturer of ecteatide apperatus In Parts, and to often called the Ruhmkorit coll.

[^56]: * James Clerk Maxwell, a very distlngulshed physlcist. Born in Scotland 1831, died 1879. \dagger Heinrich Hertz died on January 1, 1894, in his 37 th year.

