The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/ Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas étė filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.
$\square \begin{aligned} & \text { Coloured pages/ } \\ & \text { Pages de couleur }\end{aligned}$
$\square \begin{aligned} & \text { Pages damaged/ } \\ & \text { Pages endommagées }\end{aligned}$
$\square \begin{aligned} & \text { Pages restored and/or laminated/ } \\ & \text { Pages restaurées et/ou pelliculées }\end{aligned}$

Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-téte provient:

Title page of issue/
Page de titre de la livraisonCaption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison
\square Additional comments:/
Commentaires supplėmentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

THE

CANADIAN JOURNAL

OE

INDUSTRY, SCIENCE, AND ART:

CONDUCTED BY
the editing coiaitite of the canadian institute.

NEWSERIES.

WOIn III.

TORONTO:
PRINTED FOR THE CANADIAN INSTITUTE, by loyeil and gibson, tonge street, MDCCCLVIII.

CANADIAN INSTITUTE,

EDITING COMMITTEE, 1858.

GENERAL EDITOR . . . DAN. WILSON, LL.D.
I. Geology and Mineralogy : E. J. Chapman, Prof. of Geology and Mineralogy, Univ. Coll. Toronto.
II. Physiology and Natural History : Rev. Wm. Hincks, F.L.S., Prof. of Natural History, Univ. Coll. Toronto.
II. Ethnology and Archaology : Daniel Wilson, LL.D., Prof. of History and English Literature, Univ. Coll. Toronto.
IV. Agricultural Science : H. Y. Hind, M.A., Prof. of Chemistry, Trin. Coll. Toronto.
V. Chemistry: Henry Croft, D.C.L., Prof. of Chemistry, Univ, Coll. Toronto.
VI. Mathematics and Natural Philosophy: J. R Cherriman, M.A.s Prof. of Natural Philosophy, Univ. Coll. .coronto.
VII. Engineering and Architecture: Sandford Fieming, C.E.

THE CANADIAN JOURNAL.

NEW SERIES.

No. XIII.-JANUARY, 1858.

ON THE PROBABLE SUBDIVISION OF TEE LAUREN. TIAN ROCKS OF CANADA.

BY SIR Whifinme. logan, f. R. S., praector of the geological survey of cayada.

Read Zefore the American Association for the Advancement of Science, at Montreal, August 14th, 1857.

I have already indicated the prubable separation of the Laurention soeks of Canada into two great groups : that characterized by the presence of much lime and that without; but from recent investigation, the result of which has just been reported to the Canadian Government, it appears to me almost certain that the former of these tro great groups will be capable of subdivision, and that some of its bands of limestone, with their associate strata, are of sufficient importance to be represented separately on the map. Having followed out one of these bands of limestone through all its windings, for a distance of eighty miles, the object of the present paper is to exhibit to the Section its geographical distribution, and the forms it presents in the physical structure of the region which it characterises. What at first appear to be two bands of these limestones, emerge from beneath the I-ower Silurian scries in the township of Grenville, on the Ottama, and run iuto the interior parallel to one another, striking IN. N. E. They are about two miles separated from one another, and both, with the gneiss between, dip in one direction, which is N.N.W., vol. III.
at angles varying from about 50 to 70 degrees. Attaining the reat of the township, a distance of about ten miles, the two bands unite, and are found really to constitute but one, the thickness of which, as far as I can make it out, is from 500 to 1,000 feet. It is plain from this distribution that the limestone is part of the out-crop of an undulating sheet, the ridges of which have been worn down. But in the horizontal section of an undulating surface, similar forms in the distribution of the rim, may be derived from the anticlinal or synclinal part of the undulation, and as the dips on the opposite sides are both one way, it is a question to which part the area belongs. Within a short distance of the castern side of the limestone,--in fact touching it in one place,--an intrusive syenite makes its appearance belonging to a mass which occupics about thirty square miles in the townships of Grenvile and Chatham, and runs to a point in Wentworth. The intrusion of such a mass of igneous rock can scarcely fail tc have had a considerable effect in modifying the attitude of the strata which surround it. The crystalline condition of the syenite shews that it was slowly cooled under great pressure, and we camot now say whether it was a deep-seated part of an outburst which reached the surface, as it was then constituted, or whether it was originally overlaid by masses of gneiss and limestone, which have since been worn away. In either case the probability is, that it would give to the strata, now surrounding it, an anticlinal form. It seems probabie, therefore, that the western dip, belonging to the eastern band of linestone, where it approaches the syenite, is a true one, and that the form between the bands is synclinal. This appears to be corroborated by the fact that where transverse valleys occur between them, the wearing down of the intermediate gneiss widens the calcareous bands, particularly the east one, and narrows the interval.

The calcareous sheet haring thus the form of a trough, the western dip of the westerr out-crop must be an over turn; and two spurs of the rock which point out to one another, the one turning south from the western belt, and the other north from the eastern, must constitute a subordinate anticlinal. Without reference to minor corrugations, the general form of the area would be that of two troughs joined together, each about a mile and a half wide, with an overturn dip on the west side, the one trough running north and south, and the other, as far as unconcealed by the superior fossiliferous strata, south-south-west and north-north-east. The opposite sides of this calcareous trough run into two valleys, which unite atits morthern extremity. But though the limestone then crops out, the
valley continues northward into Harrington, and after a short interval shows an isolated patch of limestone of about a mile and a half in leugth, by a mile in breadth, possessing, of course, a synclinal form. Beyond this, the valley splits into two, and while one branch runs rather north of N. E., the other turns N. of E. Each of these valleys is paved with limestone, the distribution of which shews a continuation of the synclinal sorm, with a bend more to the eastward than before.

The calcareous band on the western side has been traced to the north bounlary of the township of Harrington, whence it crosses into Montcalm. It there appears to turn to the westward, but it has not yet been farther accurately examined. The eastern branch has been followed for between six and seven miles into Wentworth, when it appears to turn upon an anticlinal axis, and proceeding in a bearing S. S. W., for seven miles, it attains the southern boundary of the township, close upon the east side of the northern prolongation of the intrusive syenite. It runs in the same bearing for about three miles along this eastern side, into Chatham, and becomes deflected to the S. E. by the main body of the syenite, to which it runs parallel for about three miles. It then folds upon the axis of a synclinal, and runuing N. N. E. for upwards of five miles, returns into Wentworth, where it gradually bends round more to the eastward, and in about five miles reaches a position in the Gore of Chatham. It here folds over upon the axis of an anticlinal, and turning S.S. E. it maintains this course for about eight miles, in which it crosses into the Seigniory of Argenteuil and reaches the vicinity of Lachute, where it once more bends upon a synclinal axis, and proceeding eastward for about a mile, plunges under the Potsdam Sandstone and is lost.

In the winding course derived from the plications of the strata, the limestone usually presents a valley on the geographical surface; but to the west of all the folds that have been described, a bold ridge of gneiss runs from the front of Grenville to the rear of Earrington, the distance being about twenty miles and the bearing N. N. E. About midway, on the west side of this ridge, there are two areas about five miles long and broad, presenting the form of valleys, which are underlaid by linestone, so distributed as to render it probable that they are two outlying parallel troughs joined together, belonging to the same calcareous sheet as the one described. There would thus be four main synclinals and three main anticlinals, and the breadth they occupy altogether is about eighteen miles, giving. about four and a-half miles for the breadth of each undulation.

Bands of dolomite sometimes accompnny the limestone which is often interstratified with bunds of quartzite. The quartzites appear to be heariest near the junction of the limestone and gneiss, becoming thinner and less frequent as we recede from the calcareous rock. The greatest mass of quartzite met with, had a vertical measure of 400 feet, and it was in stratigraphical position beneath the limestone. The quartzite and the gneiss on each side of the limestonc are often very thickly studded with garnets, and in some cases the aggregation of these is so close as to constitute a granular garnet rock. In the Gore of Chatham a band of limestone about three-fourths of a mile to the north-west of the one described, has been traced running parallel with it for seven miles. If the form which has been attributed to the first band be correct, the second would overlie it, with a great mass of gaeiss between. A third band of limestone occurs about six miles north of the second; this has been traced for about four miles runuing east, which would be nearly parallel with the bearing of the second. In this bearing it has not yet been followed farther than to within a short distance from the line between the Seiguiory of Argenteuil and the township of Abercrombie, towards the rear of both.

Continuous exposures of limestone have been met with on the west side of the Rivicre du Nord, at St. Jerome. They have been followed for two miles with a aorth bearing, and the strike of the stratification between Saint Jerome and the rear of Abercrombie, is such as to make it probable that the St. Jerome rock will ultimately prove to be a part of the chird band. A feature common to both localities is the occurrence immediately near the limestonc, of immense masses of lime feldspar. North of the Argenteuil band, eight miles, examined across the stratification, consist alnost entirely of it, in the form of labradorite, of which masses of the opalescent variety are in some partsenclosed in a paste of mineral without any play of colors. These feldspars are accompanied mith hypersthene and ilmenite. This feldspar rock is abundant at St. Jerome, and its stratified character is conspicuously displayed, the beds ruming parallel with the limestone.

Mr. Elunt has traced a band of crystalline li:nestone for eleven miles, running diagonally across the tormship of Rawdon in a north bearing. On the west side of this, lime-feldspar forms the great buik of the rock exposures for twelve miles across the measures, and shows a well-marked stratification. It appears probable that the Rardon calcareous band is the same as the St. Jerome band, and that a synclinal axis exists between the two, the turn of the calcareous band on which is covered up by the fossiliferous rocks to the sonth.

In Chateau Richer below Quebec, a band of limestone occurs about a mile from the fossiliferous deposits, and to the north-west of it limefeldspar's present a breadth of eight miles. On an island near Parry's Sound on Lake IIuron, Dr. Bigsby observed the occurrence in situ of the opalescent variety of labradurite, and the name of the mineral reminds us of the existence of the rock beyoud the eastern end of the Province. It thus appears probable that a range of rock will be found winding irregularly from one end of the Province to the other, of sufficient importance to authorise its representation by a distinct color on the map, and a distinct designation in geological nonenclature.

ON DEDUCING TIIE MEAN FEMLPERATURE OF A MONTH.

1PY G. T. KINGSTON, M. A. PROFESSOR OF METEOROLOGY, UNIVERSITS COLLEGE, TORONTO.
Read before the Canadian Institute, December 12th, 1857.

The mean temperature of a day is commonly derived from the temperatures observed at three or more stated hours, by applying to their arithmetic mean a certain correction, the amount of which experiment has revealed: but as this method demands the personal attendance of the observer, at the stated hours-an incouvenience to which many people are unwilling to submit-it is very desirable that the maximum and minimum self-registering thermoneters be made available for the same end.

It was the practice formerly to consider the arithmetic moan betreen the highest and lowest temperatures of a day as its mean temperature -an estimation in which no regard was paid to the time that the several component temperatures continued. This was obviously a very serious omission; for if the mean temperature of a day be regarded as an index of the total effect produced by heat during that day, the duration of the separate component temperatures ought certainly not to be left out of consideration.

The mean temperature of a month, when the mean temperatures of the several days that compose it are obtained by the inaccurate
method referred to, will exceed the average daily minimum of the month by exactly half the average daily range ; or, in other words, by a quantity derived from the arerage daily range, by multiplying it by the factor $?$ or 5 . Now the true mean temperature of a month exceeds the arerage daily minimum by a quantity derived from the average daily range, by multiplying it by a factor which difiers somewhat from 5 , and has different values in different months and in different localities. The ralues of these factors for each of the twelve months have been calculated for Toronto, and are given herewith. A table is also furnished, shewing for each month and forall ranges, from 1° to 30°, the quantities to be added to the average minimum temperatures of a month, in order to give the true mean temperature of the month.

The geographical limits within which these tables are applicable cannot be stated with precision until similar investigations have been entered into at one or more distant stations Probably, however, they may be used throughout Opper Canada as far east as Brockville and Oitawa. I regret that, owing to the mamner of dividing the day, adopted in the obserrations on which the calculation of the tables was based, they can ouly be employed where the range is reckoned as the difference between the highest and lowest temperatures that occur during the period commencing and ending with 6 a.as. But as this mode is not couvenient for observers in general, I propose to carry on observations with a view of forming similar tables adapted to a more courenient mode of reckoning the daily range.

TABLE 7.

Giving the factors by which the average daily range of the month must bo muitijplied, in order to give the excess of the mean temperature of the month over the average daily minimum temperature:-

Montus.	Facrons.	Montus.	Factors.
Jamuary..	- 3942	July	- 4990
February	-585	August.	- 5206
March .	- 5772	September	-5270
April	- 54.90	October	-5456
Mray	- 5366	November.	- 5852
Jime	- 5254	December	-5712.

TABLE II.

Shewing for each mouth, aud for all ranges from 1° to 30°, the quantities to be added to the arerage daily minimum temperature of the monh, in order to give the true mean temperature of the month. The nine upper rows will serve, also, as a table of proportional parts for tenths and hundredths of a degree in the range, by moving the point one or two places to the left:

Range.	Jan.	Feb.	Mar.	April.	May.	Junc.	July.	Aug.	Sept.	Oct.	Nov.	Dec.
1	059	0.59	0.58	0.55	0.54	053	0.50	0.52	0.53	55	0.519	0.57
2	1.19	1.17	1.15	1.09	2.17	1.05	1.00	1.04	1.05	9	1.17	1.14
3	1.78	1.76	173	1.64	1.61	1.58	1.50	1.56	1.58	64	1.75	1.71
4	$\underline{2.35}$	2.31	2.31	$\underline{2.25}$	2.15	2.10	2.10	2.05	2.11	. 15	2.34	2.28
5	2.97	2.93	2.89	2.73	2.68	2.63	2511	260	2.64	2.73	2.93	0.86
6	3.57	3.51	3.16	3.98	3.22	3.15	9.94	3.12	3.16	3.27	3.51	3.43
7	416	4.10	4.64	3.52	3.76	3.65	3.19	3.64	3.69	3.82	4.10	4.00
S	4.75	4.69	4.62	4.37	4.29	4.20	3.99	4.16	4.23	4.36	4.65	4.57
9	5.35	5.27	5.19	4.91	4.83	4.73	4.49	4.69	4.74	4.91	5.27	5.14
30	5.94	5.66	5.73	5.46	5.37	5.25	4.99	5.21	5.87	5.46	5.8	5.71
11	1 6.54	6.44	6.35	6.01	5.90	5.78	5.49	5.73	5.80	6.00	6. 44	6.28
12	7.13	7.03	6.93	6.55	6.14	6.30	5.99	6.25	6.is2	6.55	7.02	6. 85
13	7.72	7.62	7.50	710	6.98	6.83	6.49	6.7\%	6.55	7.09	7.61	7.43
It	832	8.20	S.03	7.64	7.51	7.36	6.99	7.29	7.35	7.64	5.19	S. 00
15	8.91	8.79	8.166	5.19	S.4.5	7 SS	7.49	7.81	7.91	S.15	S.78	S. 57
16	$1{ }^{9} 911$	9.37	$9 \cdot 24$	S.74	8.59	541	7.98	833	8.43	8.73	9.36	9.14
17	10.10	9.96	9.51	9. 28	9.12	8.93	S. 4 S	S. 85	S. 96	9.25	9.95	9.71
15	10.70	10.54	10.39	9.83	$\bigcirc .69$	9.46	S.98	937	9.49	9.82	10.:33	11.25
39	111.29	'11.13	10.97	10.37	10.20	9.95	3.45	9.58	10.01	10.37	11.12	10.55
20	111.5s	, 11.72	11.51	10.92	10.73	10.51	9.93	10.41	110.51	- 10.91	11.70	11.45
21	12.4S	12.30	19.12	11.47	11.27	11.03	10.15	10.93	1107	11.46	12.29	1260
22	13.07	12 §	12.70	12.01	11.SI	11.56	10.95	11.45	11159	:19.00	112.97	12.57
23	113.67	13.47	13.28	12.56	12.34	12.08	11.48	11.97	12.12	12.55	13.45	13.14
24	$1+26$	17.06	13.85	13.10	12.SS	12.61	11.9S	12.49	12.65	13.09	1.+.at	13.71
25	1. 14 S6	12.65	1.p. 13	13.65	13.48	13.14	12.4S	13.02	13.18	13.64	1.4 .63	1.125
26	-15.45	15.23	15.17	14.20	1:3.95	13.66	12.97	13.54	13.70	14.19	15.20	14.55
27	1604	15. 2.	15.5.5	14.74	$14+9$	14.13	13.47	1406	1.4.23	14.73	15.80	15.42
$\stackrel{9}{5}$	16.6.t	, 16.40	16.16	15.29	15.0.12	\|14.71	13.97	1.1.5S	1-4.7i	15.25	116.39	15.99
29	178	1189	16.74	15.53	i.5. 50	1.512	14.17	15.10	15	15.85	16.47	? 6.30
30	177.83	17.57	17.32	16.35	16.10	1.5.76	14.97	15.62	15.Sl	16.37	17.50)	1714

NOTES ON LATLN INSCRIPTIONS FOUND IN BRITAIN.
PART 1.

Bi THIE REV. JOHN McCAUY, LK.D.,

Read before the Canadian Institute, 12th December, 1 Sö7.

(1.) Of the Roman remains, which are seattered over different parts of Elirope, there are probably none which presented so great difficulties to the antiquary as certain small greenish stones of a quadrilateral form, with intagliated inscriptions, in Latin, on their edges. Schmidt, in his work "Antiquitates Neomagenses" (the Antiquities of Nimiguen) seems to have been the first who directed attention to them, lut he nras himself uuable to decipher them, or to determine their use. Since
his time, however, the subjeet has been explained and illustrated by Spon, Chishull, Caylus, Saxe, Walche, Gough, Tochon, Sichet, Duchalais, Wray, and Simpson,* so that there now remains no doubt that they were medicine stamps used by the Roman physicians or empirics for marhing their drugs or preparations, especially for diseases of the eyes.

One of the most interestirg of these stones, inasmuch as it presents. very great difficulties in interpretation, is that which was found at Bath, in a cellar in the dbbey yard, in 1731. "It was shewn to the Sociecty of Antiguaries in Lomilon, at that time and twice afterwards. Mr. Lethecullier gave them a cast of it in plaster, and in 17.37, the stone itself was the property of Mr. Mitchell. It is square, of a greenish east and perforated." Dr. J. Y. Simpson, (Edinhurgh Medical Journal, March, 1851,) informs us that he "had attempted to trace out the present proprictor of the stamp, with a view of ascertaining, more correctly, the exact mature of the inseriptions; but that these efforts were quite unsucesssfui." Fortuately, however, "some manaseript notices of this l3ath stamp exist in the minute books of the Antiquarian Society, with an impression taken with ink from the inscriptions." From a comparison of these noties with the copies of the inseriptions given by Gough (Archeologia, rol. IN., p. 22N,) Dr. Simpson has determined the reading and interpretation of two of the legends with certainty, and of the third with some probability, whilst he states that the fourth side "offers the most puzzing of all the inseriptions hitherto found upon the Roman medicine stamps discovered in Britain." It is to this inseription that I now desire to direct attention. Mr. Gough (Archaeologia, vol. IX., p. 202, reads it:

T. IVNIANI IIOESYMAD V ge VMODBLICTA A MEDICIS.

and Dr. Simpson offers the following explamatory remaks:
"This furth legend on the Bath stome offers the most pugeling of all the inseriphions hitherto foumd upon the Roman medicine stamps disenrered in Britain. As Mr. Gough gives it. the last words of the inseription (DEl.IOTA A MEDICIS -esteemed by phesicime, are alone intelligible. The plaster cast, of this side of the seal, contained in the Museum of the Antiquarim Society of Somdon, contains an extremely imperfect copy of the second line, and not an over perfect one of the first: bat we see conogh of it, to be quite awame of the great earelessness with which Mr. Gough had originally eopied the whole inseription. The seeond last lefter in the line is not the Greek ρ, but the Iatin Q; and the mame of the

[^0]collyrium is not IIOFSOM, as ho gives it, but apparently PIOFIMUM. At all events there is a P, which he has onitted, before the II; and the two medial lettere, which he read FS, are seemingly ElB. Sueh is the conclo-ion in which the examination of the lettering of the cast itself foreses me; and what is much more important, because affording far stronger evidence than mine, Mr: Aherman reads this inseription in the same way. I may add that (as I am informed by the same genteman, the word is copied and writen as PIIOEBUM, in the several notices contaned in the minutebooks of the sutiguarian Society, and to which I have alrealy referred; and Guugh's p always given as ($)$.

Still, with all these emendations, I confers myself quite at a loss to decipher, satisfactorily, the inseription. The apelliar of ath the inseriptione on this stamp is execuled very carelessly,--as in crsomurlinum for crysumelinam; thalasor for thalasser ; and possibly the term QUECVMO may he a misespelliug, by the engraver, for LEUCOMA. If so, the iuseription would stand as

> T JUNLANI PlloEBUM ADIU
> ECOMA DEDIOLA A MEDICIS.

I an: mot aware that any of the old authors have deacribed a eollyrium under the mame of PIOEDSDS. But it lowkstike one of those high sommting titles which the oeulists were so fond of solecting and assuming, and we find deserined in their works collyria with such semi-astronomical appelations, as sol, Aslct. Jomen, Phos, is:

I hatl venture only one more remark, viz: the poscibility of the ferm being
 attenuating, attractive, and diseutient powers. They apply its serd\& mixed with honey to Leucoma, and it is believed to have the power of extracting spicula of wool.'

The obwious oljections to Dr. Simpson's interpretation are :-
lst. That we should have had delictum and not deficta.
2ad. That the partieiples dilecter or clelecta are conitued with delirta.
3rd. That his interpretation requires us to regard queremo as a misspelling for lencoma.

As the circumstances seem to warrant a resort to comjerture, I would suggest PIIOEDVM for PIIOEBVM, and QVECVMC for (QVECVMO; and read the whole legend thes:-

> T. IVNLANI PIIOPDVAL ADQV bevile dielicea a medidis.

i. c. T. IVNIANL PIOEDVM $A D$ QVECVMQ DELIOTA A MEIDICIS.

It will be observed that the only conjectural variations are D for B and Q for () .

PIIOEDTAI, I regard as the Latinized form of $\Phi O I \Delta O N$ or $\Phi \Omega I \Delta O N$,
 Aristophames, Plut. 535, and Hippocrates, Eem. p. i0t. Ed. Foes.
already cited by Liddell and Scott, and $\phi \hat{\omega} \delta 0$, given by Şuidas. QVECVMS I regard as a contracted form of quacumque, the E being used for AE , and the final Q for QVE, both of which uses are familiar to those conversant with Latin epigraphy. DELICTA is the participle of delinquere; or is used for derelicta from derelinquere, as in Eminis "delicto Coclite" (if that be the true reading) for "derelicto Coclite;" or it may be that the correct reading is RELICTA. The word thus admits of two interpretations, cither "badly treated" or "given up." The meaning of the inscription, according to the reading which I propose, may be expressed thus: "The blistering (collyrium) of Titus Junianus for such (hopeless) cases as have been given up by the physicians."

If PHOEBVII be the true reading, I am inclined to regard the designation as selected with a view to the supposed superiority of Apollo to his son Asculapius, and of course to the medici the sons of IEsculapius.

This universal specific was, perhaps, used on the principle of counterirritation. Another panacea is noticid on the stamp found near Cirencester (the ancient Corinium) in 1S18, and described by Buckman and Newmarch :

MINERYALIS MELINV [m]
 AD OMNEM DOLOREM.

It may; I think, be safely inferred from the Bath inscription, if my interpretation be correct, that the stamp did not belong to a regular medicus, but to an empiric, possibly one of the iatrolipte.

The difficulty in interpreting another legend on this stamp arises from the impossibiity of determining the true reading of one of the words. In the books of the Socicty of Antiquaries the legend is given thus:

T. IVNIANI DIEXVM AD VETCRES CICATRICES.

Dr. Simpson conjectures DIAMISSVIK (the name of a well known collyrium) for the inexplicable DIEXVM ; but from the copy by Gough it appears that the letters between D and M are in a rude Britamo-Roman character, and that "the disputed word may perhaps be more correctly read DRYCFM or DRYXFM," which Dr. S. interprets as a preparation from the bark, acorn, or galls of the Drys, i.e. oak. Can it be that the word is formed from Druidee or Dryides, and that both the appellation and the characters were adopted with a view to securing its sale amongst the mative population?
(2.) In Nether Mall is preserved a Roman altar, found in the camp at Maryport, (Olenacum,) which bears the follewing inseription:

DEAE
SETLO
CENIAE
I. ABAR
EvS CE
V.S. L. M.

Dr. Bruce, in his very interesting and learned description of "the Roman Wall" (2nd Edit. London, 1853, p. 400,) has figured it, and offers the following remark relative to the interpretation:
"Nothing is known of the goddess Setlocenia, to whom the altar seems to bave been dedicated by Lucius Abareus, a centurion."

Although I have not seen the stone, I have little doubt that Setlocenia, which has been regarded* as the name of an unknown goddess, is composed of significant parts, and should be expanded into SANCTAE ET LOCI GENIO.

It is impossible to determine. ' thout examination of the original, the exact appropriation of the \quad, \quad, but it seems to me plain that S is for Sancta, (as is frequently fo t, and et maltered, whilst it appears probable that LO is for loci; that C is a mistake for G , thus giving GEN for genio; that I is a mistake for L or T, the centurion's names being Lacius or Titus Alius Abareus; or GENI for genio, without any prenomen. CE is of course for Centurio, and V.S.L.M the usual final formula.

Another reading, which might be suggested, of GENIAE as the feminine form of genius, is liable to the objection, that the word never occurs, so far as. I am aware, in any ancient author or inscription. The only place in which I have seen it, is Heyne's note on Tibullus, IV. 6 l.
(3.) Some of the most interesting and abundant memorials of the military occupation of Britain by the Romans, are comected with the Tungrian auxiliaries, mentioned by Tacitus (Agric. 36,) in his description of the defeat of Galgacus by Agricola. Amongst the numerous altars erected by members of these cohorts are two, found at Birrens, (Blatum Butyium,) in Amnandale, Scotland, which present similar difficulties of interpretation. The inscriptions on them (as given in Stuart's "Calcdonia Romana," Edinburgh, 1852, p. 128, 2nd edition, by Prof. Thomson, King's College, Aberdeen, are:

[^1](1.)

DEAE VIRADES THI PAGYS CON DRVSTIS MILI
IN COH II TYN
GR. SVIB SIYO
AVSPICE PR
AEPE.
Stuart's observations on No. (1) are.:
" With some few alterations-and considerable allowanee made for the errors that may wecur in deciphering thuse time-worn legends-the [inscription] may be trabslated somewhat as follows:-"Io the godless (or deified) - - - , I'hiasus Pagus Condrustus, a soldier of the second Cohort of the Themgrian auxiliaries, commanded by Sivus Auspicius, Prefect, (dedicates this altar.) We are at a loss to diseover the meaning of the word VIRADES; perhaps it has been erroneously copied [by Penuant,] and ought to be read DRYADES or OREADES; in which case the difficulty vanishes, and we have the German soldier offering up his vows to a particuiar and perhaps tu, elary class of the Dew Nymphece."

On the inscription No. (2) Prof. Thomson offers the following note : "The allar apperts to be dedicated to some provincial deity, possibly Riengmena Beda by name, by a soldier of the Second Cohort of Tongrians, Pagus Vellaus, (vide Preh. Amm. p. 398,) or, to avoid impuing a serious grammatical error to the scilptor, by two soldiers, Vellaus and Pagus."

Subjoined is the passage in the "Prehistoric Amals of Scotland," to which reference is made in the note:
"It appears to be dedicated by Pagus Vellaus to one of those obseure local deities, apparently provincial names with Latin terminations, which are more familiar than intelligible to the antiquary. It belougs to a class of Romano-Briti-l relies which is peeuliarly interesting, notwithstanding the obscurity of thei: dedications, as the transition-link between the Roman and British mythology. These altars of the adopted native deities are generally rude and inferior in design, as of indicative of their having their origin in the piety of some provincial legionary subaltern. In the obseure gods and goddesses, thus commenarated, we most probably reeosnise the mames of favourite local divinities of the Romanised Britons. origiuating for the most part from the adoption into the toleraul. Pantheon of Rome of the older objects of mative superstitious reverence."

Henzen (in the 3rd vol. of Orelli's Inscrip. Lat. Turici, 18.jG) gives the first inscription from the 1st Edit. of Stuart's Caledonia Romana, and subjoins the brief notes:

[^2]PAGYS, in both inscriptions, I regard, not as a proper name, but as the ordinary term, used by Cosar and Tacitus, for "a district." Vide Cersar, B.G. i. 37 ; iv. 1 ; and Tacitus, Germ. 39. CONDRYSTIS (or perhaps CONDRVSTYS-a form used in the middle ages) and VELLAVS are, in my judgment, etlmic adjectives, the former derived from CONDIRUSI, the latter from VELLAI. The Condrusi and Fellai are both mentioned by Cæsar (B.G. ii. 4, and vii., 75.) The Condrusi were neighbours of the Elurones, who were succeeded by the "innyri. The Vellai, Vellari, Vellavii, Vellauni, or Velauni were a people of Gallia Celtica, or Aquitania, as the latter term was extended in signification under Augustus.

They are noticed by Strabo, (iv. 2.) and Pliny, (iii. 20,) and their name is found in inscriptions : c. gr.

> EIRVSCILLAE
> AVG• CONIVGI
> AVG• \bar{N}
> CIVITAS VELLAVOR
> LIBERA.

The Etruscilla mentioned in this inscription is IIcremuia Cupressenia Etruscilla, the wife of the emperor Trajanus Decius, which fixes the date to the middle of the 3rd century after Christ.

Libera of course indicates the independence of the Vellari, which they enjoyed, however, in the time of Strabo, although in that of Cossar, (B.G. vii. 75,) they were in subjection to the Arverni.

For other inscriptions relative to this people, ride Mem. des antiquaires de France, iv., pp. 87 and 528.

MILI (or MLILT) and MLIIT are ablureviations of militans-not of milifucil, as IIenzen states, for the verb is in the omited hnal formulaSIVO (or SHOH), the ancient form of the dative and ablative, as given in the illustration, is an crroncous reading of SLLVIO, as appears from the following inscription also found at Birrens:

> MARTI ET VICTO
> RIAE AVG• C RAE
> TIMIMIT IN COI
> II TVNGR CVI•
> pRAEEST SILVITS
> AVSPEX PRAEF.
> V S L M.

The names of the goddesses, as they appear in the inscriptions, I regard as VIRADESTIHI, (or VIRADETHI, as it is given in the lithographic representation in the "Caledonia Romana,") and RICAGMa

BEDAE, or perhaps the latter is formed of two words. Nothing is known of these deities. They may possibly have been, connected with the towns Virodnumm (rerdun) and Rigomagis (Remagen); and it appears to me more probable, that they were local deities of those who erected the altars, than that they were adopted from the Britons. If the reference to Rigomogus be correct, it may be inferred that the Vellavians, serving in a 'lungrian cohort, adopted a Tungrian deity.

According to the views which I have stated above, I should translate the inscriptions thus:
(l.) "To the goddess Viradesthi (or Viradethi) the Condrusian dis* trict, (i.e. the men from that distriet) serving in the Second Cohort of the 'Tungrians, under the command of Silvius Auspex Prefect."
(2.) "'To the goddess Ricagmabeda the Vellavian district, (i. e. the men from that district) serving in the Second Cohort of the Tungrians," \&c., ©c.

Since the foregoing remarks were written, I have seen the 3 rd vol., Partiv. of the "Collectanea Antiqua" by Mr. C. Roach Smith, in which that learned and ingenious antiquary offers his views relative to the two altars which have been under consideration. From these I find that he has anticipated me as to the interpretation of payus, the reference to Rigomagus, and the emendation of the prefect's name. After a careful consideration, however, of his interpretations, I see no reason for changing the opinions which I had previously expressed.

Subjoined are his remarks:
"I propose reading it (imscription 2,) thius: 'To the Goddess Ricamaga of the district (Fagus) of Beda, Vellaus, serving in the Second Cohort of the Tungri, in discharge of a vow, willingly dedicates.' The Bedre Pagus was a tract on the line of the Roman road, from Treves to Cologne, some trace of the original name of which is retained in that of its modern representative Bitburg. In this region was a station or town, called Rigomagus or Ricomagus; and to this place, I suspect, may the Goddess of the Birrens altar be referred; especially as the dedicator was a lungrian. The word payus is not unfrequently found in the sense in which it here appears in similar inscriptions. Mr. Stuart gives one, copied by Pennant, and also found at Birrens, which was erected also by a Tungrian, to the goddess of the Viradesthian (?) Pagus. Mr. Stuart's reading of the first pari is evidently crroneous; and equally so Sivus Auspicius, as we may be assured by fig. 2 of our plate" (giving the inscription already noticed,) "where we have the same prefect in the nominative case, Silvius Auspex."

A decisive objection to Mr. Moach Smith's interpretations is that they
are inconsistent with payus in the nominative case. II is reference to Bedre layus seems to confirm the conjecture, that Recaymbelle was composed of two words, of which the latter ledee was the name of the goddess. II nence 13 eda vicus, (now Bitburg), in the route a Treviris Alyrippinam, as given in the Itincrary of Antoninus, derived its appellation; and from it came l'ayus Bedensis, which is noticed in Wesseling's mote. Vide Vet. Rom. Itiner. Amstel. 1735, p. 373.

NOTE ON THE PROPOSITIONS OF PYTIIAGORAS AND PAPPUS.

Read before the Canadian Institute, Dec. 19th, 1857.
The following elegant construction is given by Prof. De Morgan in the Quarterly Mathematical Journal, (Vol. I. page 327,) as due to the Astronomer Royal.

Let $\mathrm{ABCD}, \mathrm{BEFG}$ be two squares forming a gnomon; take A II equal to BE; join IIF, H D. Trans late without rotation each of D the triangles A IID, HE E along the hypothenuse of the other (coming into the positions indicated by the dotted lines) : a square $\mathrm{H} K$ is then formed equal to the original two together.

Professor De Morgan remarks that the proof thus
 obtained of the Pythagorean Proposition (Euclid I. 47) is the simplest thrat has yet been devised. The original squares are plainly those on the sides of the right-angled triangle II E F, and the new square that on the hypothenuse.

Precisely the same method may be employed when, instead of squares, we have two parallelograms forming a gnomon: in this case the resulting figure will aiso be a parallelogram, and, adopting the same lettcr:s as in tlie figure, its other side will be equal and parallel to

E C. This affords an casy proof of the well known theorem of Pappus, of which the Pythagorean is a particular case. For, referring to the triangle II E F, (E being not now a right-angle, the parallelograms are those constructed on the sides It E, EF, and we can change them into any others oa the same bases and between the same parallels without altering their areas, the point C remaining also fixed. Also, if the parallelograms be constructed on the outside, the point corresponding. to C will be on $E C$ produced backwards to an equal length. Hence we have the following proposition which is that of Pappus slightly extended, "If on the two sides of a triangle as bases any two parallelograms be constructed, (both on the inside, or both on the outside,) they will together be equal to a parallelogram constructed on the base of the triangle and having its other side equal and parallel to the line joining the vertical angle of the triangle with the point which is the intersection of the sides which, in each of the two parallelograms, are opposite to the respective bases."

The following mode of dissecting the square on the hypothenuse so

as to fill up the squares on the sides of a right-angled iriangle is pro bably not new, though I have nowhere met wit. 1 it . It is at
once deducible from the preceling. In the figure, B is the right angle in the triangle $A B C$. The lines within the square on the hypothenuse are drawn parallel to the sides of the triangle and $D E$ is taken equal to $A D$ or $B C$. Precisely the same dissection serves for the proposition of Pappus, the parallelograms constructed on the two sides, and on the outside of the triangle, being first changed into two others (without altering their areas) having their sides coincident in direction with the sides of the triangle. DE is to be taken equal to that side of the parallelogram on whose production it lies, and the figure marked 5 in the parallelogram over the base is to be translated without rotation to its new position at the top of its parailelogram on the side, and not as represented in the figure which is correct ouly in the case of rectangles.
J. B. C.

REVIEWS.

The St. Lawrence and the Sayuenay, and other Pooms. By Charles Sangster. Kingston, C. W. : John Creighton and John Duff, 1856.

Zoems. By Alexander McLauchlan. Toronto: John C. Geikie, 1856. Oscar and other Foens. By Carroll Ryan : Hamilton, Franklin Press, 1 S57.
A Song of Chariťy [Canadian Elition.] Toronto: Andrew H. Armour \& Co., 1857.

Poetry is the natural progeny of a nation's youth. It is the eldest as well as the fairest, of the offspring of literature; if indeed it be not rather her parent, for songs were sung long before letters wore invented. Our Province, however, occupies a singular position in this its Canadian youth. Our schooling has been too much alongside of the elder of Europe's nations, and our individual thoughts partake too largely of the experience which centuries have accumulated around the old Saxon hearth, to admit of the lyrical or epic muse inspiring for us the lay that is born of nature in the true poet's heart. We are past the first poetic birth-time, which pertains to the vigorous infancy of races; we have yet to attain to the cra of refimement from which a high civilization educes new phazes of poctic inspiration. We cannot
yet respond, amid these charred stumps and straggling snake-fences of our rough cleariags, to IIiawatha's appeal to those :

> Who love the hants of nature, Love the sumsine of the meadow, Love the shadow of the forest, Love the wind among the branches, And the rain-shower and the suow-storm, Aud the rushings of great rivers, Through their palisades of pine-trees.

We want our pinc-trees for lumber, and so long as they spare us a surplus for kindling wood, we ask no kindling inspination from them. The rushing of our great rivers we estimate rejoicingly-for their water-privileges. The sunshine of the meadow is very welcome to us -in the hay-harvest; and the poctry of the snow-storm full of the music-of our sleigh-bells. As to our love for the shadow ${ }^{f}$ the forest, that pertains to the romantic simplicity of our squatter stage of infancy, from whence we emerge as fast as possible into the clearing we hew out of it, rejoicing at the crash of falling pines, and keeping time with the music of the axe to the crackling of the logging-pile. We do not mean to say that a poet is an imposibility, amid the rugged realism of this vigorously practical Canada. The ungenial Ayrshire farm of Mosgie] gave no greater promise of a crop of poctry from its bleak and exposed heights before it gave birth to its "Mountain Daisy." But we wonder what would be the estimate of the emigrant settler who should apostrophise the giants of the Canadian back-woods, as they bowed beneath his sturdy stroke, after the fashion of the Ayrshire bard tothe " wee, modest, crimson-tipped flower" over which he so reluctantly drove the ploughshare. We question much if our minister of agriculture could be induced to rescue from the rapidly dispersing ordnance reserves a Sabine farm for such a Canadian Virgil.

Such being the present prosjects of the poet amougst us, it is not greatly to be wondered at that such poetry as we do produce is less redolent of "the odors of the forest" than of the essences of the drawing-room; and more frequently re-echoes the songs that are to be gathered amid the leaves of the library-shelf, than under those with which the wind sports amoug the branches whereon song-birds warble their nuptial lays. To the class of poetry which thus repeats the old-world music and song we must assign Mr. Sangster's "St. Lawrence and the Saguenay." It is a pleasant and tasteful depiction of the scenas and associations of our noble river, written in the same stanza as "Childe IIarold," and with some echo of its mode of thought,
though lacking the foree and pathos of its passionate utterances. But, while we may casily cull from it many graceful versifications of such descriptions as the scencry naturally suggests, we have to search carefully through its hundred and ten stanzas to find any such as might be welcome to the jaded fancy of the old world because of their freshness of wild-wood imagery. Campbell has written, in the same stanza his "Gertrude of Wyoming," and sketched very pretty Indian pastorals, such as delighted the London drawing-rooms into the belief that "the mute Oneyda," and the savage Outallissi were the perfect embodyments of cur American Aborigines. They do not, however, awaken any very familiar associations for us to whom the scenery, and even the Savage of the wild West, are not unfamiliar. But the poet of " the St. Lawrence and the Saguenay," sees the river as it is, and not as it was. To him, with all its beauty, it is only the great navigable highway from Gntario to the Sea, with its daily steamers, its wooding stations, its locks and canals. If the Indian lingers among its vanishing woods, it is as the old panted British Druid haunts Avebury or Stonehenge. Here, for example, is the picturing of the thousand Isles:-

> Nany e tale of legendary lore Is told of these romantic Isles. The feet Of the Red Man have pressed each wave-zoned shore, And many an ese of beauty oft did greet The painted warriors aud their birchen fleet, As they returned with trophies of the slain. That race has pasecd away; their fair retreat In its primeval loneness smiles agein, Save where some vessel snaps the isle-inwoven chain:

Save where the echo of the huntsman's gun Startles the wild duck from some shallow nook, Or the swift hounds' deep baying, as they run, Rouses the lounging student from his book; Or where, assembled by some sedgy brook, A pic-nic party, resting in the shade, Spring pleasedly to their feet to catch a look At the strong steamer, through the watery glade, Ploughing, like a huge serpent from its ambuscade.

Were we to transport the scene to the firth of Clyde, or any other islanded home river, and change only a single term; that of the Red Man for the old Pict, or even the Red Gael, there is nothing in the description that would betray its new-world parentage, At best it is no true Indian, but ouly the white man dressed in his attire; strip
him of his paint and feathers, and it is our old-world familiar acquaintance. The lay of the Whip-poor-will, instead of some romantic Indian legent, is but a coinmonplace "Willic and Jeamic" love sung, though thus beralded by one of the best stanzas in the poem:

> The Whip-poor-will, among the slumberous trees, Fingeth her solitary triple ery Upon the busy lips of every breeze, That wafts it in wid echoes up the sky, And throtigh the answering wonds, incesantly. Surely some pale Ophelia's spirit wails In this remoreless bird's impassioned sigh, That like a lost soal hants the lonely dale! Maidn sing me one of thy picasing macrigals.

However much taste and refinement may be displayed in such echocs of the old thought and fancy of Europe, the path to success lies not in this direction for the poet of the new world. To Temyson this ninctenth century is as fresh an cl corado as America was to Cortes or Pizaro. To him it is a thing such as Spenser, or Dryden, or Pope, or Camplell, or Brron, hed no knowledge of. Its polities, its geclogy, its plilosophy, its utopian aspirations, its homely fishions and fancies, all yield to his poetie cye suggestive imegery rich with pregnant thought. And surely on new word is not less sugesesire. It is not a "Xliawatha" song we demand. The Indian Saraee is not the sole native product of the wilds, nor the only poetical thing that meets the eye in the clearings. Here is the Saxon doing once again, what Alla and Cerdic did in old centuries in that historic isle of the Britons. Science and polities, and many a pieturesque phaze of colonial life, all teem with inspiration sueh as might awake for a Canadian Temyson another "Slceping palace" liee that from whence he lee his happy princess:

> "When far across the hills they went; In that new woild which is the chis."

Poctry, howemer, is not the crop whel it can at all be expected, or indeed desired, that Canardian famers will culiwate at present. And if we can oniy reproduce cxotic thoughts in verse, it is better on the whole that we should take the foregen originals at first land. Faving, howerer, statel our feeling in resard to the absonec of that originality and individuality of character in "The St. Lawrence," which might have made of suth a virgin theme a poctic gem of rarest beanty; we may acreathelens, wefe with pleasure to some of its stamzas as grace-
fully commemorating historical features. Mere, for crample, is a good subject not discreditably dealt with :-

The incoustant moon has passed behind a cloud, Cape Diamond shows its sombre eolored bust, As if the mommful night had thrown a shroud
Over this pillar to a hero's dust.
Well may slee weep; hers is no trivial trist;
Ifis cemotaph may erumble on the phan,
Here stands a piie that dawes the rebel's lust
For spoliation: one that will remain-
A granite seal-brave Wolfe! set upon Vietory's fanc.

Quebec! how regally it crowns the height, Jike a tanued giant on a solid throne!
Unmindful of the sanguinary fight, The roar of camon mingling with the mom Of matiated sodiers years agome, That gave the phace a ghory aud a wame Amoner the mations. Franee was heard to groan; England rejoiced, but checked the proud acclamA. brave young chief had follen to vindicate her fame.

Wolfe and Montealm ! tro nobler names ne'er graced
The page of history, or the hostile plain;
No brater souls the stom of battle faced,
Regartless of the daneger or the pain.
They passd unto their rest without a stain
Upon their uature or thrir generous hearts.
One gracefil colum to the noble iwain,
Speatis of a nation's gratitude and starts
The tear that valor chame, and feeling's self imparts.
The poom is manifestly designed as a compmon, if not a guidebook, for the royage to the Saguenay; and though it has in it none of those magical passages wheh stix the heart like the sound of a trumpet, it will nevertheiess make on agreeable return to the tourist for the small space it elams in his baggage.

Of the poems issued from the Hamilton Franklin Press, the principal one, entitled "Oscur," is a picture of the Crimean War, writen by a comg Candian, who witnessed and bore a part in the seches he describes. The phan of his poem, howerer, embraces a sketeh of Canadian seenery, as noted by the imaginary hero, on his way to the seat of war, and so furnishes another view of the same pieturesque and historic lankeape which has been already drawn ly the poetic pen-
cil of Mr. Sangster. Here, for example, is Mr. Ryan's sketch of the Thousand Isles:-

Now Fairy Land is gained-the Thousabl Iales-
Amid whose cedar shades sweet Nature smiles
In all the beaty of a scene unchanged, As when the hadian warrior ranged From isle to isk, loug centuries ago, And clased, with swift canoe, the nimble doe. Those shady rocks the softest sound prolong, As when they cehoed to the Squaw's low songr Who dipped her paddle in the dancing stream, And watched the suns last lingering beam, As he, behind the forests of the west, In dazeling glory slowly samk to rest. Bach isle a memerald, eacls rock a gem, Which forms proud Nature's own bright diadem? Those wilds again the Indian be'er will know, Nor will those waters, in their jogous dow Bear satage forms unto the depths below.

Niagara is described, or rather soliloquised. Ontario, the St. Iartrence, its Rapids, and the seenes along its banks, all pass in review here, as in the former poem; and Camada itself is apostrophised in terms more loving than original, and with an occasional lameness in the prosody, here as elsewhere somewhat detrimental to the music of the verse:-

Mail ! Canada, my own, my mative land!
Land of a theusand floods sublimely grand!
Tpou this world, on nation, land, or clime,
Has mature lavished gifts more vild, sublime;
Nor blest with brighter hopes her fertile vales,
Or wafted over hills more healthy grales.
Thy boundless wilds as yet untrod, mbnown,
Industry soon will rear a joyous home;
Thase fertile tracts where axe wats never hemrt,
Where securely sings the native forest bird;
Where swiftly bounds the deer ocr leagues uatoid,
Wait but for man to yieh their hidden grold.
Oh! ghorious, happy West forc'er adien!
Whereer I wander I will tum to you,
And, in mem'ry, thy beautis call to view.
The patriotism is here, certainly preferable to the poetry, cen though the latter dous recall lines not less patriotic, with which the sixth canto of the " lay of the last Ministrel" is preluded. But, pass-
ing onward down the St. Lawrence, here is the younger poet's picturing of the historic associations of the heights of Cape Diamond:-

See noxv Quebec with mighty grandeur rear
Its gloomy head-loom sternly in the air? And from the awful height look proudly down Upon St. Lawrence with a watchful frown; Where, 'nenth its guarding slmede securely ride A thousand vessels on the heaving tide. dhis Oscar sam, and stood to view the height Where limser's chans had climbed that glorions night
Thp the cragey steep to Abraham's praides, And hid the verdant sod with bloody stains. The chivalrous Montealin, though hasty, brave, Fought well, his noble post and cause to save;
I'o every deadly charge his men led on, And nobly fought amid the clashing throng. Proudly be died, though not in victory's arms, Glorious he fell 'midst battle's wild alarms! Nor did Death's terrors his manly bosom mookHe died defeated nor survived the shock.

Peace to the wamior here's shadeBright be his wreath, its ghories never fade! Wolfe the true, the noble, gencrous, brave, Thou hast all earth can give-a hero's grave. For this have kings and mounrelis vainly sighed. The tyrant's tomb by deeper stains was dyed: A tear of joy, nol grief, bedews his pall, A prayer from earth thanks Heaven for his fall.
A lowly poct a chaplet fain would twine Into a name as bright and pure as thine.

Proud Britain's standard, praving from the heiglt O'enlooks the glorious seene with conscious might; Flag borne trimmphant over sea and land, And kise'd the brecze on every foreiga strand; Serenely spread out to the sweeping gale, Beholds the proud St. Lawrence' mighty vale. Its wide-spread folds, high above all unfuri'd
Bids stern defiance to the envious world.
Here a true patriot justly would exclaim,
Let Liberty aud Truth wash out the stain
That yet upou its mighty folds remain.
Long may true fieedom 'ncald its shade repose, Twined round her brow, the shamruek, thistle, rose.
As once it was, may it ne'er again be grasp'd
To mark blood and ruin where'er it passed.

From off point Diamond's peak a booming gun, With loud report, salutes the setting sun; Through the ambient air mellow, clear and sweet, The bugle's nete, re-echued, sumels retreat.

We would not willingly quarel with a Canadian poet inspired by loyal and patriotic sentiments such as these; but we venture to think that a prose narrative of the Crimean Campaign, from one of ourselves who had borne a share in its sufferings and its trimphs, would have won the suffrages of a thousand Canadian readers for one who will be tempted to the perusal of "Osear"s" poetic experiences. Nor would such a narrative have been the less welcome for his enthusiastic apostrophe to the beauties of our noble St. Lawrence, though uttered only in eloquent prose. We may be permitted to say here once more, in the words of "Aurora Leigh" :-

> Toung men
> Too ofter sow their widd oats in tame verse, Before they sit down under their own vine And live for use. Alas, near all the birds Wiil sing at dawn,-and yet we do not talie The chaifering swallow for the holy hars.

The poems of Alceander Mchacham are designated in the motto of their title page as "hamely rustic jingle," and as the former rolumes are composed after the model of English poets of the beginning of thecentury, this is a faint echo of Allan Ramsay and Fergusson,-we care scarce? say of Durns: though some of the subjects are probably suggested by his choice of themes, e.g. "The Griere; or the Lamentam tion of old Jambaws," which thus begins:

$$
\begin{aligned}
& \text { I dima ken what tempted me } \\
& \text { To venture owre the raging sea; } \\
& \text { To come awa to to thir back wuds, } \\
& \text { To lire in poverty and dulds. } \\
& \text { * * } \\
& \text { But here, éen those wha me the untion } \\
& \text { Are driving on some speculation; } \\
& \text { Aye, cen the bis parliamenter } \\
& \text { Win trade and cheat, like a tramp tinker. } \\
& \text { The biggest man thimks necht degrading- }
\end{aligned}
$$

This it will be seen is a gename, if not a rery poetical Camadiars ghimpse of things as they are, and the curious reader may find more of the like kind in the same volume.

Craving as we do a native poctry, if we are to have Canadian poetry at all, The "Song of Charity" takes us by guile. The dedication of the tastefully executed volume " to kind friends in Orillia, Canala West," tells us that the poem was "composed in chief part, during a summer's holiday, on the waters and amilst the islets of little Lahe Couchiching." Here accordingly is genuinc native inspiration. We are glieling, with the author in his birch canoe, over the picturesque lake, and hating the Indian as he silently paddles past us, under the lee of the wooded islands, from the prettily named Orillia-so called after a favorite mative flower, - to his own seattered Indian lodges at hama. We turn the page, and, as we expected, we are in the forest:

The forest's faëry solitude,
The violet's haunt be mine;
Where call the free in merry mood
From dawn till day's decline !
All gentle ereatures gather there
From leafy nest and mossy lair;
The little snakelet, golden and green, The pointed grass glides swift between; And there the quant-eyed Lizards play Throughout the long bright summer-day-
Ender the leaves in the gold sun-rain,
To and fro' they gream and pass,
As the soft wind stirs the grase
A moment and then sleeps again.
And there, the noontides, dream the deer Clese couched, where with crests upeusied,
The fragrant ferns a forest rear Within the outer forest-wond.
And many a petalled star peeps through
The ferny brake, when breathe anew
The soft wind-pantings. And there too, The lare and the tiny leverct
Betake them, and their fears forget--
Iazily watching with soft brown eje
The laden bees go sailing by,
With many a bright wiaged company
Of glitering forms that come and go,
Like twinkling waves in ceasless fiow,
Across those dreamy depths below.
And high above on the bending bough
Its gush of song unloosens now
some forest-bird. Wild, clear, and fice
Tipswells the joyous melody
In prond, quick bursts; and then, anou,
In the odorous sileuce, one by oue

> The thick notes drop, but do not die; Fur through the hush the soul keeps on With a music of its ownSo runs the forest minstrelsy! One other sound there soundeth only Out of the distance dim and lonely; Out of the pine-depths, murmuring ever, Nloweth the voice of the flowing river.

And we too, wend our way out of these pine-depths, following the windings of the flowing river, until we at length emerge andwhat see we? Not the rocky rapids of our Canadian Severn, or the woody solitudes of Chief"s Island, or the fringing "bush" that still skirts the shores of Lake Simeoe,-but an ancient home: .

> Beneath the shade
> Of those old trees so beat and sere; And there, with its stonework tracery, The quaint old house, as old as they, Still stood, and kept from year to year, With storm and frost and slow decay, A struggle for the mastery,

We are not then in Canada at all? Unless we have slept a sounder and longer nap than Rip Van Winkle: it would seem not. While we were imagining ourselves in the bush, and deceiving ourselves even to the fancying these hares and tiny leverets, were some native varicty that haunted the Georgian Bay, we were all the time amid the glades and the associations of Old Europe. We could even fancy ourselves once more under " the huge, broad-breasted old oak tree," bencath which we first made the acquaintance of "the lovely lady Christabel ;" for the rythi, and even something of the mode of thought, recall to us that most beautiful fragment of the dreamy Coleridge's muse. But it is Canadian poetry we are in search of, and we therefore leave the "Song of Charity," and betake ourselves to the additional poems which accompany it. And here, at length, is one of truly mative name and characteristics: "A Canadian Summer's Night." Now, at least, we are not deceised. We glide over the rippling waters of Lake Couchiching, and list to its forest voices:

Still callest thou-thou Whip-poor-will!
When dipped the moon behind the hill,
I heard thee and I hear the still.
But mingled with thy plaintive cry
A wilder sound comes ebbing by,
Out of the piuc-woods, sulemnly.

And hark, again! It comes ancwPiereing the dark pine-forest through, With its long too-hoo, too hoo!

Shoreward again we glide-and go
Where the sumach shadows flow Across the purple calm below.

There the far-winding creeks among, The frogs keep up, the summer long, The murmurs of their soft night-song.

A song most soft and musicalLike the lulled voice of distant fall, Or winds that through the pine-tops call.

And where the dusky swamp lies dreaming, Shines the fire-flies' fitful gleamingThrough the cedars-dancing, streaming!

Who is it hideth up in a tree Where all but the bats asleep should be, And with the whistling mocketh me?

Such quaint, quick pipings-two-aud-two:
Half a whistle, half a cooAh, Mister Tree-Frog! gare-ì-vous!

The owls on noisless wing gloom by, Beware, lest one a glimpse espy Of your grey coat and jewelled eye.

Now this is a genuine Canadian seene, such as no fire-side traveller or faney-visioned poet of old world wanderings or library book-dust, could possibly call into being. The dark recesses of the pine-woods and the charlows of the lake-fringing sumach, the monotonous call of the Whip-noor-will, the soft and musical night-song of the frogs, the fitful gleaming of the fire-fly dancing in the cedar-swamp, the prowling night owl noisclessly listening to the mocking note-half a whistle and half a cno,-of the tree-frog: each one of these shows the touch of a Camadian pencil, such as the most labored study of the home poet would in vain attempt. In this direction alone lies the path in which poctic success is worth welcoming among us; unless indeed it be fancied that we can look for some great Canadian-born Miltonic epic, not local or exclusive, but for other ages and generations than our own, -of which consummation it can only be said there appears at present no very discernible prospect.
D. W.

Climatology of the Cinited States and of the temperate latitudes of the Forth America: Continent, cmbracing a full conparison of these with the Climatolociy of the temperate latitudes of Europe and Asiu, and cosicceinlly in regard to ayricalture, sanitary investigations, and enfincering, with isolhermal and rain charts for each. season, the catreme months, and the year, including a summary of the statisties of meteorological observations in the United States, conlensed from recent scientific and oficial pablicalions: By Lomn Buonger, Member of the National Institute, Ec. Phindelphia, Lippincott \& Co.; Trübner \& Co., Iondon, 18 है7.

In the prosecution of meteorological enquiries the United States deservolly hold a high rank. In the collection of metcorological data by fised stations, as well as by surveying and exploring expeditions throughout the wide area of the union, an enlightened zeal has been erer manifestec iy the several public departments as well as by private individuals; aud in contributions descriptive or explanatory of particular phenomena, the scientific literabure of that country has been remark:bly fertile. We are not, however, aware that prior to the publication of Mr . Blodget's book any attempt has been made to present to the world in a connected whole the large mass of materials which the industry of so many observers has called into being.

On this aceount if on no other Sr. Dlodget, as pionece in the work of compilation, merits the thanks of seintific men and of the world at large. ILis book bears marks of great acumen as well as of industry; it abounds in important facts and is highly suggestive, and as such well deserves to be recommended for a close and careful examination.

In saying this we do not engage to endorse cevery opinion entertained by the author. In a science so essentially progressive as meteorology many riews must at best be held prorisionally, subject that is, to be discarded or to be matured by extended observation. In Mr. Blodget's book we have a stem round which the fruits of future research may appropriately cluster, and glad shall we be il the work of grafting as well as that of proming should fall to the lot of Mr. Blodget limself.

For the accomplishment of his task the author has brought experience of no common order: the apheses which he had exhibited for investigations of the kind procured for him some time ago the appointment of superintendent of the reduction of the metcorological observations made under the auspiecs of the Smithsonian Insti-
tution, in which capacity he was enabled to collect a large mass of data; and he has also apparently met wilh the utmust readiness on the part of the large body of observers throughout the continent to supply him with the results of their labors; so that as regards the temperate latitudes, to which his discussions are chiefly coufined, there has been no dearth of materials.

The general arrangement of the book is clearly set forth in its ample title pare: - it exhibits the geographical distribution of temperature and of the fall of rain and snow for the temperate regions of Forth America, it discusses the peculiarities of the two clinatological areas into which the continent is diviled by the Rocky Mountains, and draws a comparison between these and regions of analogous position in the old world. In conducting these comparisons regard is had to outline configuration, vertical clevation, an. other physital features. The whole is illustrated by a series of neaty executed charts, consisting of an isothermal chart of North America for each of the four seasons, and one for the year, together wihh as many corresponding charts of rain and snow. There is also a temperature chart and a rain chart for the whole north temperate zone, with a profile of comparative altitudes for both hemispheres.

The book opens with an cxhibition of the physical data upon which the author's subsequent discussions are based.

These data in the first place consist of the mean temperatures and the depths of xain at a large number of points both in has ohd and new world, arranged in tables for each month, the four seasons, and the year. In every case where it is practicable the latitudes and vertical elevations of the stations are given, together with the number of years from which the means are derived, and the actual dates at which the series commenced and terminated. For the old and new worlds the tables are arranged in separate groups. Bevides the foregoing, for a few stations of importance in the Crite:l States at which observations have been continued during a long series of years, additional tables are given separately for each station, showing the monthly and annual mean temperatures, with the precipitation of rain and snow for each year that the period embraces.

Following the abore mentioned and strictly meteoroiogical details, which occupy the whole of the first chapter to the extent of about cighty pages, is a chapter on physieal geography, which includes, in a tabular form, the rertical topography of the country east of the Rocky Mountains, arranged in belts perpendicular to the general direction of the Alleghmies. Amother list for the regions west of
the Rocky Mountains is also given, arranged in meridional belts 5° in width from the 100 th meridian westward.

In instituting a comparison between the old and new worlds, with respect to their physical geography, the author considers that there are features now sufficicnly apparent in North America which hitherto have been considered as peculiar to the older continents.
"The great point of interest lies in the new features of our physical geography, or in the riews which differ so far from those previously held, as to require a chauge in all deductions based upon surface and vertical contiguration, as all those of climatolugy must he to some extent. The most important of these recent determinations is that of a much greater altitude for the western interiur than was beforc assigued to it, and that high aul arid plateaus and hasius exist in nearly as great a proportion to the general area of the continent as in Asia and Europe. There are conditions of surface and configuration similar to those which have been thought peculiar to Europe and Asia belonging to great regions here, and we are to look fur correspondence in climate, and in vegetable and animal life, and if this last does not now exist, we aseertain such a correspondence to be possible, and may adapt our practical interests ascorlingly. Guyot, and other writers on physical geoglapity, have contrasted the temperate latitudes here with those of Europe and Δ sia, in the view that this is wanting in the high desert plateaus of these, and assuming for this less altitude, a greater proportion of phans, and, consequently, the analogies of sea clim.tes in contrast with the extreme continental peculiarities of Asial. Our recent surveys have shewn that lofy plateaus, lofty mountains, and extended districts of the most extreme continental character, exist here in nearly the same relation to the whole mass of the continent as in the old world, and the comparison of the two thus becomes much more direct and more necessary than before, as essential to a proper understandiug of our climatology. In short. we may compare the two as mainly equal and similar in the physical features of surface and configuration, and we must do so to correctly estimate the consequences upon climatol, ${ }^{2}$, which are alwaysmost directly dependent on physical seography." $\mathrm{pp} .84,8{ }^{5}$.

The Alleghanies hare been often considered as forming a line of demareation between two very different climatological areas: it would seem, however, from more recent investigations, that the elevation of these mountains has but little influence in interrupting the uniformity of climate, excepting in the moderate degree produced by altitude alone, and that it is the Rocky Jountains that we must regard as the true barrier between two regions climatologically distinct.

[^3]of California are mainly controlled by the mountains near them, aud if shat from the sea have arid climates, and, perlhaps, a denuded, andy, or alkaline surface; when if open to sea influences the reverse conditions prevail. These remarks apply more particularly to Oregou aud the coasts vorth of the 35th parallel, than elsewhere, as the const of Lower California is arid at all exposures." pp 88, 80.

This climatological division is again insisted on in the opening paragraph of the following chapter, descriptive of the general character of the Eastern Uuited States.
"It is neecssary to make a distinction of a very decided character between the parts of this continent separated by the Rocky Mountains, thourg the iden of this distiuction has hardly yet entered into the received views of the North American climate. It is still described under the characteristies which belong only to the area east of the great plains, and the homogeneous character belonging to much of this great extent of surface is that recugnized in Europe as the North American climate. Now that we have found this to differ so extremely from the interior and Pacific districts, it is necessary to describe it separately and to designate it as the easiern area of the United States.

So recently as the production of Guyotis able work on comparative physical Geography (Guyot's Darth and Man), the distinction made between the old world and the new was to assign to the new oscanic, and to the old world continental climates; the prevailing character of the Eastern States and the Mississippi Valley being taken as the type of the whole country. The great expanse of these plains gave reason for this distinction, in the then unknown condition of the interior and Pacific const, but it is uow clear that the proportion of arid and continental districts and climates is as great here as in the old world. The position of the plains exposed to oceanic influences is reversed, however, and instead of the extensive low areas belouging to the west of Europe our western coast is very narrow, and the hississippi plain is, to some extent, the equivalent of the European plaiv.

But the climate of the Mississippi Valley or plain, and of the eastern side of the continent generally, is not oceanic strictly; and it differs radically from the oceanic climates of the west of Europe. It has its equivalent ouly in a similar continental position, or in China; which is, unfortunatly, too little known to aid the illustration much. As a whole, the North American contivent differs little from the old world, except in the comparative areas embraced by the several divisions. Our oceanic districts on the west are very narrow and unimportant compared with the immeuse and fertile areas of like position and climate in Europe; our interior and extreme districts are differently placed from those of Asia, but in other respects they differ little; our eastern areas, which are properly neither interior nor oceanic, are comparatively larger and more important because of the existeuce here of a great interior plain opening southward to the tropical heat and moisture, and partaking to some extent of tropical peculiarities.

The carly distinction between the Athatic States and the Mississippi Valley has been quite dropped as the progress of observation has shewn them to be essentially the same, or to differ only in unimportant partienlars. It is difficult to desiguate any important fact entitling them to separate classification; they are slike subject to great extremes and to the same extremes, they both have marked
continental featares at some seasons, and decidedly tropical features at others, and these influence the whole district similarly, without showing any line of separation." pp. 125, 126.

One of the prineipal features alleged as belonging to this area, as a whole, is its adaptation to a great range of vegetable and animal life; another feature consists in this, that the wholo area is in communication as regards its atmospheric chamges: any agency that affects one point producing a corresponding thourh not necessarily a simultaneous, or equal, or even similar change throughout the area. In the words of the writer:
"As an associated feature of the uniformity just alluded to, the changes of temperature, and the oreillations of every sort, strike over the Eatsern United States as changes woud over any plane surfiee ; that is they are symmetrical and uniform, and knowing what they are at in few phaces we may casily infer what they have been at all. Thus, if a degree of cold occurs at St. Louis on one day, and at Philadelphia two days afterwards, or at any interval whaterer, we may be certain that the whole intervening district bas been similarly affected. So of a barometric deprescion or variation, or of a great storm, or of particularly severe winds. Though the chanses occurring in one part may not be felt at an oppusite point,as, though it may be twenty despees beluw the averare temperature fir any period at Charleston, it maty be as much above that man at Albany or Montreal-the conditions, whatever they are, affeet the ineervening districts symmetnically, and are participated in at all places acearding to the distance from the extreme points. This may be the case to some extent in other climates, or it muy be so with some of the great changes, but here it is characteristic of all, and it contrasts extremely with the almupt transitions, and the predominance of lomal change; in Southern and Central Curope, and on the West side of this continent as fur as known." p. 129.

This chapter abounds in matter for reflection, but as somewhat copious extracts have been already made from it, we must commend it to the study of those specially interested in the sulject, and content ourselves by quoting one more passage in which the general type of a storm is described. The deseription we leave to the experience, or to the future observation of our readers, to verify.
"Begiming at the northwest, or near Fort Saelling, the general succession of phenomens in the change from caln, average conditions, to the re toration of such conditions agran, is somethiug near the following: fir t, an inere se of temperature with winds from the south, south-west or south east, of duration proportioned to the measure of the change that is t. oceur, or of from one to four or five days; a fall of barometer; a rain with easi, north-east, or south east winds during the first half of its daration; a sudlen chouge of wind to soue westerly point with a rapid reduction of temperature, high winds and a risiag burometer; and, in conclusion, a period of comparatively cold and clear weather. The nuclens or central area of this phenomenon, regarding it as a whole, or, as it may be done for illustration as
a moving body, usually progreses enstward at the rate of three humdred miles in twenty four hours; and it is quite usually attended by a similar surewinn of clanges until it reaches the Athatic const." p. 131.

Fassing on to the west of the Rocky Mountains, we find one of the leading characteristics to be that of intense aridity. In illustration of this the temperature of evaporation, or that indicated by a wet bulb thermometer, will frequently remain for several days together 20° below the temperature of the air. At the dricst part of the day this difference will sometimes amount even to 25° or 30°, and will continue for several months without falling short of $20^{\prime \prime}$.

A remarkable effect of this dryness is the long resistance which animal substances offer to putrefaction, by which travellers are enabled to carry meat for almost an unlimited time without using salt or any preparative process.

Another remarkable feature in the Pacific climate is the extraordinary daily range of temperature, compared with that prevailing clsewhere, that sometimes takes place. Offecrs engaged in survejing have reported noon-day temperatures of 87° and 92°, followed at night by a depression below the freezing point, and in one locality a mean daily range during a fortnight of 55'. These extremes are doubtless chiefly due to the extreme clearness of the atmosphere, which its dryness produces, and which facilitates the absorption of heat by day and its loss by night.

The remarks on the Pacific climate are thus summed up:

[^4]Space will not admit of the introduction bere of further extracts; we must be content, therefore, with indicating-as portions of the book peculiarly adapted to interest the general reader-the chapter on winter storms, and the succeeding chapters on climate considered in reference to vegetable productions, and in its sanitary relations. Compelled, however, to bring this notice to a conclusion, we would regret indeed were our intercourse with the volume itselt to terminate
with egual abruptness. Wre have found our estimation of it increase as we augured a more familiar acquantance with its contents, and with this commendation we now leave its further stady to our seaders.
G. T. Fi.

In an ondinay conditions of the studious mind, it nust be confessec? dhat abentory or an Almanac, raks aloug with Dictionaries, Concorlmecs, Cowkry looks, Eniversity Calemlars, Eibrary Catalogues, Law Lists, (hal Dailey legisters, and the like highly useful compilations: as a cpecies of reading by no meas too seductive or fascimating. Waylad in a comtry inn on a rainy day, for lack of better, we have resorted to such rediag, where choice was small ; and the associations of the hook sem to chime in yery harmoniously with our recollections of the dreary drazle, and dull monotonous plash from the dripping eaves. Ticre, !emserer, comes belore onr editorial eye, a portly and well-conditioned Fohme, and-spite of all memories of sheh association with older members of the seme worthy but prosac family,-iusists on its merits, clams to be permitted an audience, and asserts rights that will not be gainsayed.
-had for a member of the aforesaid family, it must be omed that the Gandian birectery of 1457 , has a wonderfully prepossessing mamer and appearance. Sor, on closer aspuaintance, does is prove by any means of so dull and commomplace a chatacter as our cafored intereourse with some of the chler race or Directories had led us to anticipate; bet on the contrary it is full of information of a lighly varied and useful hind; and, albeit, like all its hith and kin, of an essentially practical two in the main, it does not cren refuse a little convenient by-play of sarcastic homour at a time.

The iden ordinarily attached to a birectory is one of those very convenime but ephemeral lists ni mames and addersses which lie on the desk of the Comenting house for the year, and are then consigned to the waste-hasket as vorthess, except for the paper on which they are minted. Sueh, however, involves a yery inalequate conecption of this handsome and bulky imperial octaro. It does indeed, emboly such an index to places of businese and private residences throughone the provines and, assuming the acemacy, whel we find on testing these by a few known references, to be gemeral throughout, this depart-
ment alome must have involved an anome of havor and expense which it is difinoult to precive how the small pien of so large a volune con repay. Sut bumbes this, and the Camelian and States adrertisements, -wheh wonh amost repure an apmendix already, to intiante what offect the recent commercinl erisis and Smencen National bankruptey have lad uron them,- the statement in the preface is filly borne out, that, in adeition to its value for the man of business, it is no exasereration to say, it is "a Gade-book for the man of pleasure, an Index for
 student, and an Amer-list for the militia oftere; while for the statesman and others comested with offenl lik, it is a Statistical Chronicle of the progese of the country in all hepartaments of enterprise."

The Comada Directory is amounct as a prodicel intended to be
 goonty octaro shall be deposed fron its desk-thone, to make way for its suceessor, we can fancy the gathering doubts with whel? reference will be mati. ho its alrcaly ontighated pares; matil hathoth we witness the ungracions heartizess of its dipowition: turned out of its repponsible jost cíhomor as meerommonsly as laris's old citizatheng of 1sth, was heothe into lis hachaty cab, and handed oat of the king-dom-litetum no more-hae so mush shot mbbish.

But there are other things besides gool wine wheh improve with ghe kequins, and dendope undeant of vintus in the sober mathity of their years. Vie have ofen comed ower, in bygone days, the thin lithe duodecino Directories of the amiquated Edinhurgh ot the 1.5 Sh century, comphat by the once fimoms Peter Williamson, who, after spending lis ander yems among the Indians of our North Anerican withs, e..ried boek some of the Fance enterprise with him, and set up a howse of entertament for the legal hangersom of the Scotish Tanliament Youse, designating hansolf somer hat mysterionsly "Pcter Willimena, fom the other world!" There lee establinhed the cadiest "pemy pert," or reeining local leter hex for the denord lust Once; sud there tee he was fhic first to pablish a strect Dinestory for the Scottion letropolis: which the curious still masarh-met in vain, Eor cridence of the lecal habitation of Johnson's Iozze, and many mother local and woald-angen celdmity of dald diechie. It is to this Scotish John Lovell of the cighteenth century, that the pret, Fergusson, thas ablade:, in his "hising of the Ession ;" i.e. the cluse of the Scottish legel tera :

> For a^{\prime} his china pirs are toom;
> Nor do we see

In wine the sonkar biskets soom As light's a flec.

Oid Directonies are, in truth, a farorite and much ralucd resort for the topos:ather, the local antiquary, and the curious biographer. Professor Masson, for cample, -sifting out the seatered fragments of incidents and surmises relative to the brief career of "the marrellous bor,"- remarks: "In what precise part of Shoreditch that house of Mr. Walmsley was where Chaterton lodged when he first came to London, and to which, on that memorahle day, he returned through many dark and strange streets, we do not know. London Directories of the year 1770 are not things casy to be found." And Peter Cumingham-more successful in his search after, and into the old Directories of the "Fog Babed,"一fishes upmany a hint from thence to give graphic individuality to the Sketches in his "IIandbook of London." And Canada too has her men already, we trust, about whom future topographers and biographers may have something to inguire; and has her clements of wider, and ever widening interest, about which the future historian will have many amxious questions to ask. The immediate use, and aparently all the value of Bir. Lovells labours past, on the superseding of this Directory by its successor of '59-60; the obselete columns of names and addresses, with business and banking records, local officialities, advertisements, and so forth, will seem stale and worthless, and, "dry, as the remainder biscuit after a royage." Nevertheless, stored away on the shelves of poblic and paizate libraries, the time will come when-in the few antiquated survirors of the present large and plentiful edition,-all this classified miscellaneous matter about Clerey and religious denominations; Universities, Colleges, and Schools; I'criodicals, and the Canadian press; Banks, Customs, ('rown Lands, and Railways; Trade, Dmigration, Population, and general statistics; shall prove to be possessed of the rery highest ralue. Some, indeed, of what seems most local and cphemeral in its character will, by and by, grow to be the most curious and widely interesting of its contents, and gather cobwebs of as eloquent antiquity as ever drapericd ancient wine hin, or world-famous infeidelberg tun. The quaint gossip of Old Sam. Peprsis not quainter than much of this will yet be. We hare only to tancy the possibility of getting hold or such a rolume compiled by some enterprising Juan Lorell, Spanish hidalan of the sixteenth century ; or by one of Raleigh's colonists of the Virein Queen Bess's cra; o: a prim and dumpy New England
quarto, as well stocked with clerical and lay statistics, aducrusements, and judicial detaiis, in the time of Increase Mather and the New England witeh trials. What a treasure would the volume prove to the Antignary and Inistorian. Ilow would the Ilistorical Societies of Salem, New Maven, Bostom, and Nantucket, contend for the honor of reprinting the precious document. What jealousies, and rivalrics, and boastful eurekas would there be? let, doubt it not good reader the days of our own Qucen Yictoria will come to be as ancient, and quaint, and full of curious mystery to other generations, as eser were, or will be, those of a Castilim Isabelh, or an English (queen Bess; and this portly volume has only to be kept long cnough, to look as strange and antique to the men of another century, as ever a dumpy, brass-clasped quarto of the old puritan days of New England. When the Canada of Ammo Domini 2058 looks back, with inquisitive wonder, on the Green-Youth of its mineteenth century, what a singular melange will these Directory adrertisements then appear, which now present to our familiar eyes so business like an air. Inow will the antiquarian book-wom of that unborn century gloat over the mysteries of these so matter-of-fact trading manifestos and pictorial derices. And yet, there is also an aspect searecly less strange and note-worthy, in the reproduction amil our new Canadian clearings of so much that pertains to an old-woid civilization, and luxurious ingenuity of extravagance. Amusing it is, indecd, to find here just such another inventory, begot by the new-born energies of young Camada, as tock the fancy of the poct of the "Task" in the Old England of the eighteenth century, mith its broad-sheet wilderness of strange but gay confusion:

> Roses for the ehecks, And lilies for the brows of faded age; Tecth for the teothless, ringlets for the bald, Heaven, earth, and ocem, plundered of their swects, Nectareous essences, Olympian dews, Sermons, and city feasts, and favorite airs, Eethereal journess, submariue caploits, And Katerfelo, wih his hair on end At his own wouders, wondering for his bread.

Truly there is nothing new under the sum; and yet one might fall upon much duller and less novel reading than some of these same adrectisements, set forth here in all the glories of fancy typorraphy and illustration, to show our Great Grandfathers and Great Grandmothers how we lived in the reign of good Queen Yietoria. Here for example, -sct forth by a graphic and most moving picture of au mfortunate
fair lady in tise transitional stome of rejus nesemen, with ler locks on one site white as snow, and on the other rivaling Mihoms "raven
 Tonic anl libBEDMON. , or Dalat of Cytheria, which mas proven at the late Boston ALechanies Gair, on the athority of De. Hayes the eminent Stato Ansayer, "over the choicest hair dees of the Gnion, to be the best in the world. It pementes to the cethatar tissue of the cuticle, and fores the Mair and Iloustaches to grow. It cures"-but we have not space for its many virtucs. It manitesty would le fatal to any lady's womanhood shoud it touch her chin; aud a very small pot of it may be warranted quite equal to the largest quantum of Bear's Greasi, for converting a common deal hox into the most comforable of hair tembs. Other coually gratifyine cridences of the world's progeres set forth "Professor If wods Matr Restorative: To mailen benty it is the finishing toteln; to manhood it is the symbol and warmat of strength and novility, to day, as in the lays of the Patriachs," Sc. Or, if possible to reach a perakerian chimax, we hare the new Cownectitoikermoniffat, or celebrated Machelors Yair D_{j}. "Its centrity has reached the whole circumference of the globe; every country where civilization exists hare patronised this sarpassingly excellent hair dye. Its practical application uron orer two hundred thousan! peroms, the Diphomas, sc., attest the fact that the superiority of this dye can never be lesseued. Ebberve the hameds of Dyes, so callel, pat forth to rival this gramd onginal-note the ridiculous dilemmas they lead the unortuntes into who ase then; The Rainbow Tints, the Blisters, the Fits, the . . .," \&c.! Sc.!! \&e.!!!

The moveltics of drinking advertisements agan fumish a highly moral inde: of the Maine liquor law reform. One bene solent New York dealer has provided himself with a stom of wines of the most healing and medicinal character. Ancther, a Dmgeist of Boston, disposes of his the old Whiskey "expresty for medecim? purposes;" and here asmin thet uscful public functionary the State Assayer, certifies the peculiar aptitude of the said Whisher for medicinal ase. It is accordingly put aj, in hoses, cach contaning one doza quart bottles, for the comenene of deliente insedids.

Tobmonn has its virtues set forth in atl the elogucuce of fancy type, and from one New York ageney we leam the somewhat note-worthy information that he has "constantly on hand Tobacees suited for the British provinces;" so that it woud seem we hate our own nicotians specialities, whatever these may be.
Iitcrature again, plaris-as becomes this highly enlightened age, -
a very prominent part．One cloquent hibiopole certifis of his punin－ eations，that＂ther corer every branch of haman laowledge，feme the dhild＇s I 3 C to the highest classicul and seientific manual in Gunver－ sities．＂But this is nothing to the Broalway Mrblisher who ahertise a Femily Library which vould seem to be a new and infinitele more aniversal Principia．It treats of：

Abstract

＂The Divine Origin of Families，and of their relations to Christ and tie Ciurcia； the noble and geuerous，as weil as tender enotions associated with marriage；the： sympaties of the howe－cirele ；domestic haphors；the pareutel and pariealat＇y the maternal relation ；family care，trinh，and vicissitades；the pinciphes of soartesy；family order and diseiphine；education of children；elegan acromphith enents；freside amusements and recreations；domectic virtues on Goepelpriuciphe： lome made happy；bonsereeping；cookery；carving：heallh，and the phitosophy of living ；sigit and hearing，how preserved and lost；the use and beanty of tha teeth；care of the sick；femily berearenemis；and Christian monuments to ine smemory of the deceased．＂

A Boston Publisher，whe sets forth the witues of his sione，and atl． Tertises＂The Moral Philosophy of Coutship and Marviage＂，and other＂most raluable books for all ages，sud both sceses，＂informs us of the fellowing highly spiced product of Judicial literary receation． nemed in the cause of public morals anong the descendanis of the Puritan Pilgrims：

[^5]So much for Literatwe．＂̈ru is Sciches orculooked．There are indeed corlo legs and arms，so scientifically perfect，that the wonder is． any body contimucs to wear their matual oncs：the Anglesey les，for example，çute an aristocratic substitute for any common－place plebeiar． limb，and worthy to rank with the world－renowned one of Miss hill． manseg．＂The Marquis of Anglesey，（from which it derives its namr．） Found sone equal to it，and wore it from the time he lost his Ley at the Battle of Waterloo till his deaih，in preference to all others．it has been tested in every possibie way by all chasses，male and female，and improvements added until is has attaned its present perfection，ant certificates can be shewn from numbers who are wearing pairs！＇But so get from the feet to the head and crowning seat of Science；a tempt－
ing prage allures to a wholesome self-examination, under the appropriate motto: "The proper study of Mankind is man." A cranium and physiognomy of Grecian perfection is pictorially mapped out as a phrenological chart. Towards the region of the lambdoidal suture we pereciec a cerebral organ which produces on the retima the sensational idea of a gentleman making a graceful bow to a lady, and on referring to the corresponding number in the inventory below, we find that this spot is the seat of an intellectual organ, known, it would seem, as Ipprobutiveness. Next, passing over a very touching representation of Priendship, we come to one marked (A) which, as it appears, is "Conjugal Love, or the pairing instiact;" while, in odd proximity, immediately alongside of it, a highly pugnacious scene of fisty-cuffs points cut the region of Comutatieness. The mental science has grown wonderfully since Lord Jeffery came into collision with Comb and Gall, and Spurzheim. Here we stumble over such psycological novelties as Continuity, Vitativeness, Alimentativencss, Sublimity, Spirituality, Suavity, and-oddest of all—Iruman Nature: whatever that may chance to mean as a mental faculty! We used to be of opinion that Phrenology had at least contributed some convenient terms for the use of the Mental Philosopher, whatever cise might lje set forth as its claims, but it would seem to have been indulging of late in transecendental flights, far beyond the reach of ordinary and uninitiated mortals.

Finally, we must by no means overlook the perfection to which the Science of Advertising has itself here attained. The glories of fance typography; the resthetics of pietorial hierography; the emphatic Italics; the lanky, dumpr, and excentric Sund-letters; the Script, the Great Primer, the Pica, the Bourgeois, the Minion, and Noupureil; with all the thousand arts of the compositor, are the mere frame-work of this Science of puffery. Some of the specimens already quoted may serre as samples. But unfortunately, like all other good things in this wieked world, it is liable to abuse. One benevolent N. Y. Philantrophist, who has deroted "years of study and labor to the discerery and preparation of the Gun-couted Forest Pill, to meet the wamts of suffering humanity," feelingly deplores the baseness of "unprincipled men who issue bogus spurious articles under the same name, to deceive the public." It is pleasant, howerer, to learn that "these. vile attempts to impose on a discerning public seldom met with success; while such as imocently became the rictims of Bogus imitations no sooner attempted to sell it than, to their disgrace, it was at once returned to thern." Nevertheless, the benevolent advertiser, as a simple daty he owes to mankind, wams the public, if it would not be taken
in with a Bogus Bolns, to "examine the label and purchase of men of interrity !" As will be observed in sundry examples quoted above, there is a pleasant indifference to the relations ordinarily supposed to subsist between grammatical nominatives and Yerbs, which frequently adds a novel and exceedingly striking effect to these highly seasoned specimens of our own nineteenth century commercial literature. Had we not indeed, already exhausted our available space, we could select specimens of "Canadian" and "American English.," such as we can suppose some future Trench, or Latham, or Gucst, puzzling his critical brains over, in the bewildering effort to invent the Grammatical rule which shall embrace an authority so high and in: 'isputable. But we leave the further investigation of the subject to the enterprising reader, who will find a whele library of truth and fietion, fact and fancy, cmbraced within the ample boards of Lovell's Canadian Directory, and extending through one thousand five houdred and fortyfour pages of as varied typugraphy as his eye is ever likely to travel over.

To such glimpses of this New World of ours, in the year of Grace 18.37, we can fancy the curious desecndant of our Canadian gencration, turning with no little wonder, in that coming century we have ventured to look forward to. If, however, any Map sarvives to tell him of the localities to which the rarious advertising sheets pertain, he will probably have penetration enough to perceive that the seience of advertising in all its superlative magnificence, pertaned to the Union Cities South of the Lakes; and that our Camadian enterprise confined its utterances, for the most part, to a much more homely and sober style in setting forth the virtues of its wares, being actuated possibly by the somewhat antiquated aim of-being believed.
D. W.

Annual Report of the Board of Regents of the Smithsanian Institution, showing the operations, expenditures, and condition of the Institution, for the year 1856, and the proceedings of the Board up to January 2sth, 1857. Washington: Cornclius Wandell, Printer. 1857. 3lth Congress, 3rd Session. Ilouse of Representatives. Mis. Doc. No. 55.

The progress of the Smithsomian Institution at Washington cannot fail to be watched with jealous interest by Scientific men, and especially by the countrymen of the founder, to whom it might be
permitted to regret that misunderstandings on one side and pique on the other had suffered so splendid an endowment to pass from its matural course into a foreign chamel. The funds left by will of Mr. Smithron, (an Englishanan, and an illegitimate son of tho Duke of Northunbertand, who had quarelled with the Royal Socisty after having oftered the endomment to them, amounted to over five hundred thousand dollars, and were accepted by the Government of the United States, in trust, " to found at Washington, under the name of the Smithsonian Institution, an establishment for the increase and diffusion of knowledge among men." Considering the fate which has befallen too many of the charitable bequests in the old world, it was an interesting qucstion to find how such a trust woth be erecuted in a case where no superior tribunal could exist to take enguisance of malversation, and where lack of specific definition in tho wording of the bequest left plausible openings for misappropriation, the ouly protection against which, was the honor of a govermment whose citizens have not been umiformly notorious for the best of faith torards creditors. When the Aet of Encorporation was before Congress, it was periaps natural that such schemes as the following should be suggested: the diffusion of popular information among the people of the Cuited States by the distribution of Practs-the foundation of a National University-the cstablistment of a large library at Washington, or of a National Museum. Of these, the first is simply ridiculous, and against the rest it was urged by some who, fortunately, took a wider and juster view of their duties as trustecs in the madagemeat of this eadowment, that the object designed by the founder was specific as regards the "increase of knowledge," and cosmopolitan as regards its "diffusion among men ;" that it was clearly never intonded by him morely to cducate the youth of the United States, nor to found monster establishments of books or specimens in a particular locality, which could only benefit citizens of the United States, and but few even of them. There was plain justice in this reasoning, for, however desirable and laudable these designs may be in themselves, they are only indirectly related to the design of the chdowment; would have been in their effects chiefly and primarily bencficial to the country in which they cxisted; and ought, if their existence is desired, to be provided for by that country itself. If institutions which shall rival the British Museum, the National Gallery, and the Universities of Great Britain are to exist on tinis side the Allantic, they should be raised by the people whose adrautage and glory they concorn, and not by the legacy of a stranger
who desired to found (in the paraphrase of Professor ireney) "an institution to promote the discovery of new truths, omd the dithision of them to every part; of the civilized world." Ihappily these riews precailed to some extent in Congress, and the result was a compromise whereby large discretion was left to the Board of Rements, although they were enjoined to establish museums of attural history, geology, and mineralogy; a chemical labonatory, a libray, and a gallery of art; also, to have lectures delivered, and a suitable building for these purposes provided. In accordance wiil these instruetions, the legents at first determined to divide cqually the ammal income between the carrying out of the designs thus specincel, and other plans which they considered more agreeable to the proper functions of the institution; they were also able, while complying with the letter of the Act of Congress in these respect:, to remder the accomplishment of the forenamed designs more in accordmee with the spinit of the fomder, and thus diminish the evils resulting from this imperfect legislation. ' Jhe Library was made chicfly to consist of the transactions of the rarious learned societies ; the collections for the Mruseum were made by the parties of the United States Surver; ${ }^{+h}$ he Labonatory and Apparatus were furnished in a jadicious spint of practicalne-s, and made to include a Inagelic Observatory ; and the Lectures (ilhe most cbjectionable feature of the plan) have also been the least expensirc. Still hater the Regents repealed the system of equal division, and the funds are uow appropriated as seans to them best from time to time; in this conduct, it is creditable to Congress that they have been sustained, though a stroug agita ton was raised against them. Oit the justice of this course, we, as forcigners, can entertain no doubt, and, still less when we find such passages as the following in the Secretary's report:-"The expense of this part. howerer, of the operations of the library is small in comparison with that which is in reality of little importance. I allude to the cost of keeping up a reading-room, in which the light publications of the dar, obtained througin the copy-right law, are perused principally br young persons. Aithough the law requiring a copy of each book for which a copy-right is granted, to be deposited in the librayy, was intended to benefit the Institution, and would do so were it designed to establish a general miscellaneous collection, yet as this is not the case, and as some of the principal publishers do not regard the lave, the enactment has proved an iujury rather than a benefit. The articles receired are primeipally clementary school manuals and the cphemeral productious of the teeming press, including labels for patent medicines,
perfumery, and sheets of popular music. The cost of postage, elerk hire, certilicates, shelf-room, tee, of these, far excects the value of the good works received. Indeed, all the books published in the United States, which might be required for the Library, could have been purchased for one-tenth of what has been expended on those obtained by the copy-right law. Included in the additions to the museum during the last few years from Govermment exploring parties and private individuals, have been a number of living animals. Among these were two bald cagles, an antelope, monkeys, raccoons, two wild cats, a jaguar, and a large grizaly bear, the latter from the Rocky liountains. It is neither compatible with the means of the Institution nor the duties of the Sceretary and his assistants to take the custody of specimens of this character. While such presents erince kind feelings, and are complimentary to the management of the Institution, the expenses of transportation have been in some cases rather a heary tax, and while we cannot very well refuse donations of this character, they would be much more acceptable were they received firee of esst.
The adverse effects of the early and consequently imperfect legislation ought as far as possible to be obviated, and this could readily be done if Congress would reliere the Institution from the care of a large collection of specimens, principally belonging to the Government, and purchase the building to be used as a depository of all the objects of natural history and the fine arts belonging to the nation. If this were done, a fow rooms would be sufficient for transacting the business of the Institution, and a larger portion would be free to be applied to the more immediate objects of the bequest. Indeed, it would be a gain to science could the Institution give away the building for no other consideration than that of being relieved from the costly charge of the collections."

The remaining or extra-congressional part of the plan adopted by the Regents, and that to which we may assume the main effurts of the Institution will in future be devoted, consists of the following details, having in view (1) the increase of knowledge, (2) its diffusion among men.

For the first, it is desigued to "stimulate men of talent to make original researches, by offering suitable rewards for memoirs containing new truths," and "to appropriate ammally a portion of the income for particular rescarches, under the direction of suitable persons." When re reflect on the immense success which has attended similar measures in the French Academy, the Royal and other
socicties, and the British Association, we camnot doubt the wisdom and foresight displayed in these regulations, and may already congratulate the Institution on the prosperous results of the former part of their design, as evinced by the valuable memoirs which have appeared from time to time in tha nine volumes known as the Smithsonian Contributions to Knowledge : the latter part will no r.uubt in duc time be more fully carried out than seems yet to have ? cen done, although the system of metcorological obscrvation inaugurated by the Institution is no mean effort.

The sccond part of the design, for the diffusion of knowledge among men, it is intended to promote by " the publication of a series of reports, giving an accomnt of the new discoveries in science, and of the changes made from year to year in all branches of knowledge not strictly professional," and, " by the publication of separate treatises on subjects of general interest." At present this portion of the plan has been very partially putinto execution, yot we do not know of any want which is more pressingly felt than some such method of making accessible at once to the cultivators of science every where the discoveries which are now being so rapidly made in almost all departments. Nuch has been effected by the excellent reports issued from time to time by the British Association; but it would be an inestimable boon if the contributions to knowledge now scattered through isolated and often inaccessible periodicals, or lost in the crowded transactions of sparse societies, were year by ycar collected and arranged in a form which would enable each detached worknan to see how far the building for thich he may be hewing stones is rising by other hands. Nothing is more striking and distressing in the history of science than to see the waste of labor and intellect, and the disputes and heartburnings that have been caused simply by ignorance of what has been simultaveously doing in other places. It is true that to carry out this proposal efficiently would require a larger staff than seems to be contemplated in the Institution : but perhaps this very circumstance makes in its favor, as thus affording a prorision (somewhat analagous to many examples in the old morld, and in which the Tuited States are lamentably deficient,) for maintaining a class of men who would make science their sole pursuit, and who would cultirate knowledge for its own sake and not as merely manure for the dollar tree. Certainly it would seem that the funds might be more propenly devoted for such a staff than for that necessary to furnish the store clerks of Washington with rail-car iterature, or even than to illuminate the city belles by the light
of popular lecturing. Howerer, when we consider that the Institution is eet in its infancy, having barely existed for ten years, and contomplate what has already been effected by it, we are justificd in hoping brightly for ils future progress ; and we would here record our grateful sense of the exertions of its noble Sreretary, Profersor Juseph Itemy, to whom manly all these resuits are due. He las fought the battle almost single-handed on behalf of science against marrer nationalism and political sgreed ; he has met with obloquy and persectetion, but may now look back with pile on the work he has done, and forward with hope on that whend is before him, secure that he possesses the sympathy and gratitude of his brethen in sedenee, whose interest he has so well served white at tho same time saviex the honor of his country.

We may brieity mention that the total amount of the beguest received into the Treasury of the United Statos was :515, 169; of the interest that accumalated on this before the Institution went into operation, a portion amounting to $\$ 325,000$ was devoted to building purposes, and the remainder of about $\$ 125,000$ hats been added to the principal, so that the anmal revenue is now about $: 10,000$, of which nearly the whole is expended in the manner above deseribed.

The tite at the head of this article is that of the Temth Annual Report of the Regents to Congress, containing, in addition to the busines matter of the Inetitution, an appendix, the contents of which are of a varied but generally useful character. Among these we may notice an abstract of lectures on architecture in comestion with rentilation, \&c., by Dr. Feid, whose lisputes with the architect of the New Ilouses of Parliament will be familiar to all the readers of Punch. Proicesor Menry's rery excellent artiele on "Acoustics applied to public buildings," (already given in this Joumal, Yol. II. pare 130, and his reports on the testing of building materials, are here : there is also by the same gentlman a syllabus of a course of lecturcs on Physies, which, starting from the ultimate properties of matter, carries us forward through the whole range of Nitural Philosophy along a track which, aithough well laid out, secms to us leas truly philosophical and less in accordance with the history of science thim the one pursted by Comtc. There is also a proposition for a work by the illistrious author of the ninth Bridgewater treatise, the maguitude of which is of starling dimensions: its surgested title is "The Constants of Nature and Art," and, in the words of the proposer, it "ought to contain all those facts which can be expressed by numbers, in the various sciences and arts." We are glad to obscrve
a detaled account of the Observatory at St. Jrartin's, crected and maintained by our esteemed contributor, Dr. Smallwood, of whom Canada may be proud, and to whose zeal and services a graceful recognition is here awarded. The translation of Muller's "diport on recent progress in Phrsies," commenced in the last report, is here continued by a difierent hand and, we are ghad to say, cxectised in a much better style; the paper itself is a most valuable one, and tho Regents have done well in selecting it for publication. On the wholo the present volume will not be found less valuable than the beet of its predecessurs, and ne trust it may be fullowed by many which will rival it in usefulucss.
J. D. C.

The Geography ant IIistory of British America, and of ine othen Colonics of the timpire; to which is added a shetch of the corious Indian tribes of Canala, and briaf biographical notices of aininent persons connected with the historly of Canala. By J. Georgo Hodgins. Toronto: Maclear \& Co., 1857.

We welcome, with sincere satisfaction, this useful little protnct of the Camadian Educational Press, as an atsempt-and in most remects a rery successful one-to supply a grave defect in the materiel for juvenile school training. Tre have anteady* commented on the highly oljectionable character of some of the most popular American Geographies and Mistorical Manuals as Bricish or Camadan School 3ooks. We have no desire that the rising gencration should be taught, in American fashion, to decry every other bation, and esteom thenselves the greatest, wiscst, mightiest, and most superlatively progressive people that the universe can boast of. Nevertheless we do think it becomes us as members of the British Empire to how is little of its Geography and Mistory ; and as Canadians to aequire our information from some less partial source than "Morse's Geography," and the like products of the American press, which still hold their place in so many of our schools, and derote more space to setting forth the glories of some single States of the Union than they can spare for all Britain and the Canadas together.
Mr. Hodgins' Colonial Ilistory and Geography will meet, at once,

[^6]one of the most obrious wants of our Scholastic system; and issued, as we may presume it to be, under the authority, or at least with the approbation of the Chief Superintendent of Public Instruction, we may anticipate its general adoption throughout the Common Schools of the Provijce. Should such be the case a new edition must soon be required; and this will afford the author an opportunity, which we trust he will avail himself of, to make a careful revision of the text, and remore from it sundry eridences of haste in the original composition, as well as of carelessness in the press-reading.

In case of such a revision, obher amendments may probably occur to the author. We very much question, for example, the fitness or good taste of introducing into a school-book biographical sketches of living celebrities, -political and ceclesiastical,-_some of whose names are still bandied about in our daily press, and associated with sectarian or party crics. That is not a direction in which te hare any reason to apprehend a want of instrucion for the rising generation. We can scarcely anticipate satisfactory results from such "school exercises" as the following : -" Give a sketch of the carcer of Sir Allan MacNab," or "The Hon. M. S. Bidwell," or "Sketch the Carcer of the Ilon. Francis Ifincks." These and other names introduced here are still the shibboleths of party politics; aud some of them, at least, are destined to be forgot as soon as they cease to be so. They must be as unacceptable to many parents' ears as ibey may be welcome to others. To sketch the carecr of living politicians is a ne: demand on the class form.

The shetel of the Indian tribes of Canada is concise, and, on the Whole, comprehensive in its brevits. On one or two points, howerer, it would be benefitied by revision. In the matter of Indian names, especially, we think the affected purism, which aims at a return to the aboriginal etymon, peculiarly out of place in a school-book. Now that the name Ottaca, for example, is fixed in the termonology of our Canadian geography, it can only lead to confusion to perpetuate such terms as Ciawas, Dtawawas, Odahras, de. Again, we hare Odjibuas and Π_{y} andots: the least familiar forms of the names of tribes, one of which still embraces the most numerous of our Epper Canadian Aborigines, while the other has bequeathed its more familiar designation to lake Ifurou. The accuracy wheh aims at including all the diverse terms, and crery variation of such names, as the sturent may chance io meet with in minute research, is worse than useless when presented to the indiscriminating and imretentive memory of a child. Iet him learn first to associate all his ideas on the subject rith one
definite, and if possible, simple and easily remembered name, and by and by all the rest will follow without labour or difficulty. To tell the child at sturting that the IIuron Indian is also the Wy-an-dot and the Qa-to-ghie; and that the Chippewa is the Od-jib wa, the O.jib-way, the Chep-e-wy-an, and the Chip-pe-way, may possibly disgust him with the whole subject : it certainly can not render it any clearer to his mind. For neanly similar reasons we conceive that the space devoted to the derivation and significance of Indian topographical nomenclature might be much more usefully employed. Some of the interpretations are certainly wrong, others of them are open to grave doubts; while the important element, dependent on the essential differences of the Indim languages from which they are derived, is eutirely overlooked. Such philological studies, even if correct, are premature, in such a rudimentary work as this. As we are suggesting amendments, we may also recommend the summary ejectiug from the otherwise appropriate conclusion, that everlasting "Moming Drum" of the Konorable Daniel Webster, which, however "beautiful and impressive" when first heard, begins to grow somewhat wearysome from the hard duty it is made to do in Canadian oratory : "iollorsing the sun, and keeping company with the höurs, with one continuous and unbroken strain" of trite grandiloquence.

We would not, however, wish to dwell on the partial Diemishes of a Eook which we hope to see, not only re-issued in a form altogether: satisfactory and acceptable as a most welcome addition to our school literature; but also made the model for a harger and more compreheusive rork suited for advanced students, and designed to leave a more detailed and consequently a more permauent impression on the mind. In such a work, though Canada may still claim the largest share, it will not occupy it quite so much to the exclusion of other colonies and possessions of the British crown. Were geography the sole object in vierr, it would perhaps be legitimate enough to clubs Gibraltar with Heligolaud, the Isle of Man, and the Chamnel Islands, in the minute segment of a concluding page here allotted to the whole; but for a work bearing on its tille page "The Geography and Iistory of the Empire," these themes are rich in historic associations dpmanding a much larger space. So also with British India, Ceylon, The Cape, Sc. Helena, and Malta, as well as other British dependencies, it would be difficult to conccive of subjects more suggestive of useful and attractive study for the beginner, just eutcring on the threshold of historical inrestigation. We deprecate, above all things, the infusion into the youthful minds of our provincial students of a
disproportionate and untruthful estimation of Canada. Such a proce sis of learning history has as much utility and beauty in it as the study of oneself in a conver mirror, where the nose swells to a size that rivals the remainder of the distorted features, and the face itself outbulks the whole drindled and tapering figure. Canada is not the greatest corner of the universe, nor Toronto the concentration of all that is sublime and exclusively select and magniaicent on our little planet. Aud as it is generally thought desirable that our young common-school pupils should have some idea that this Earth of ours is not quite so big as the Sun, and may even compare disparagingly with Jupiter or Saturn: we have an idea that there may be nothing unwise or unpatriotic in giving them equally truthful ideas of the political world at large; instead of merely substituting a Canadian "הinse" for the American one, which illustrates the Geography of Treland by the picture of a "Peeler distraining for rent;" and after expending some forty pages on its orn glorious "United States," generously spares a single page and a fraction for the whole of Britisls North America. Regarding as we do such teaching as peculiarly injurious to the minds of the rising generation, we congratulate Mr. Hodgins on setting the example of a system of schooling more in accordance with wise discrimination and true patriotism; and if sucls ample linowledge should teach young Canada to think less of our Province in comparison with the rest of the world, we feel well assured that its final effect will be to make the world at large think more, and with better reasom, of this the greatest of all the colonies of the Empire.
D. W.

SCIENTIFIC AND LITERARY NOTES.

JRITISE ASSGCIATION FOR THE ADVANCENENT OF SCIENGE.

 neference to tue plane of the eartirs onbit-mi mr. c. Fulbrook.
The author called atteation to an important difference in the amount of rain which falls in these latitudes at opposite parts of the moon's course with refercuce to the plane of the earth's orbit:-a result obtained by placing horizontally (from the daily register of Howard, in the vicinity of London) the amount of rain (wher
any) due to each day throughout a lunar course, - and so on for 100 courses ia due order. The fullowing table exhibits the result :-

Position of the Moon with reference to the Plane of the Earth's Orbit in its connexion with the fain-fall of London and its viemity, as deduced from a legister of the Weather during 100 comrses of that Luminary.

on a laty of temper.ture depliding upon lunar hafleence -imy hr. J. p. manrisoi.

The author commenced by sayiug that, although the question of lunar influence on the atmosphere of our planet was very geverally considered as set at rest by the investigations of MI. Arago, yet he felt very confilent that he was in a position to prove the law he was now about to announce without fear of contradiction. Ele had reduced and thrown into the form of tables and of curves $2 S 0$ lunations, with the corresponding mean temperatures: and the laws at which he had arrived were:-First, between the first and second octant the temperature immediatelyafter the first quarter, both on the average and also, with rare exceptions, in each individual lunation is higher than the temperature shortly before the first quarter; secondly, and more particularly: the mean temperature of the annual means of the second day after the first quarter (or the tenth day of the moon's age) is always higher than that of the third day before the first quarter (or the fifth day of the luation.)

ON THE EFFECT OF WIND ON THE INTENSITY OF SOUND.-MI PROF. G. G. STOKES.
The remarkable diminution in the intensity of sound, which is produced when a strong wind blows in a direction from the observer towards the source of sound, is familiar to everybody, but has not hitherto been explained, so far as the author is aware. At first sight we might be disposed to attribute it merely to the increase in the radius of the sound-wave which reaches the observer. The whole
mass of air being supposed to be carried uniformly along, the time which tire sound would take to reach the observer, and consequently the radius of the soundwave, would be inereased by the wind in the ratio of the velecity of somed to the sum of the relocities of somud ant of the wind, and the intensity would be diminished in the inverse duplicate ratio. But the effiect is much too great to be attributable to this cause. It would be a strong wind whene velueity was a twentyfourth part of that of sound; yet even in this case the intensity wonld be diminish ${ }^{\text {d }}$ by only about a twelfih part. The first volume of the "Amales de Chimie," (1816), contains a paper by 31. Delaruche, giving the results of some experiments made on this sulject. It appeared from the experiments,-First, that at small distances the wind hats hardly any perceptible effect, the sound being propagated amost equally well in a direction contrary to the wind and in the direction of the wind ; seoundy, that the dispanity between the interity of the sound propagated in these two directions becomes propurtionally greaber and greater as the distance increases; thirdly, that sound is propagated rather better in a direction perpendicular to the wind than evea ia the direction of the wiad. The explanation ofiered by the author of the present communication is as follows: If we imagine the whole maso of air in the neighbounhod of the source of disturbonee divided into horizontal strata, these strata do not all move with the same velocity. The lower stratu are retardel by friction against the earth, and by the various obstacles they meet mith; the upper by friction against the lower, and so on. Hence the velocity increases from the ground upwards, conformably with observation. This difference of velueity disturbs the spherical form of the sound ware, tending to make it somewhat of the form of an ellipsoid, the section of which by a vertical diametr:: . me pratlel to the directim of the wind is an ellipse meeting the gromed at an obtuse angle on the side towards which the wind is blowing, and su acute angle on the opposite side. Now, somed tends to propagate itself in a direction perpendicular to the sound-wave; and if a portion of the wave is intercepted by au obstacle of large size, the space behind is left in a sort of sound shadow, aud the only sound there heard is what diverges from the generat Tave after passing the obstacle. Hence, near the earth, in a direction contrary to the wind, the sound continaally tends to be propagated upwards, and consequently there is a continual tendency for an observer in that direction to be left in a sort of sound-shadow. Heuce, at a sufficient distance, the sound ought to be very much enfeebled; but near the source of disturbance this cause has not yet had time to operate, and therffore the wind produces no sensible effect, except what arises from the augmentation in the radius of the soumd-wave, and this is too small to be perceptible. In the emarary direction-i iat is, in the direction towards which the wind is blowing,-the sound tends to propagate itself downwards, and to be refiected from the surface of the earth; and both the direct and reflected wares contribute to the efiect perecired. The tro waves assist each other so much the better as the ange between them is less, and this angle vanishes in a direction perpendieular to the wind. Hence, in the latier direction the sound ought to be propagated a little better than even in the direction of the wiad, which agrees with the experiments of λ. Delaroche. Thus the effiet is referred to two known causes,--the increased velocity of the air in ascending, and the diffraction of sound.

REPOKT ON TIE DEVELOPMEN: OF IIEAT IN AGITATED W゙ATER, -BY MR. G. RENNIE.
Mr. Remie, in alluding to his furmer pitpurs on the subject, read before the Section last year, at Cheltenham, stated that the subject of the mechanical or dyumir force required to raise a given quantity of water oue degree of Farenheit had been the object of the research of philusophers, ever since Come Rumford, in his celebrated experiments on the evolution of heat in boring gruns when surrounded by iee or water, proved the power required to waise one pound of water one degree, and which he salued at the dy namic equivalent of $1,0.3 \mathrm{l}$ lbs. M. Moya was the first who amounced that heat evolved from agitated water. The sceond was Mr. Jomle, who announced that heat was covlved by water passing thrergh uarrow tubes, and by this method each degree of heat required for its evolution a mechanical force of 770 lbs . Suldsequently in 1845 and 1847 he arrived at a dymanical equivalent of 772 lbs . These experiments had since been confirmed by other philosophers on the Continuat. In the present paper Mr. Rennie stated his atiention was called to the sulject by observing the evolution of heat by the sein in a storm, and by the heat from water rumuing in sluices. He, therefore, prepared an apparatus similar to a patent churu, somewhat resemblag that adopted by Mr. Jouke, but on a large scale. In the first case he experimented on fifty gallons, or joulbs. of water, inclused in a cubical box, and diven by a steam engine intead of a weight falling from a given heirght, as in Mr. Joule's experiment; seenndly, on a smaller scale, by 10 lbs. of water inclosed in a box. The large machine or chme was driven at a slow velocity of eighty-cight revolutions per minute, and the smaller machiae at the rate of $2 \dot{e} 2$ revolutions per minute, so that the heat given off by the water in the lange box was only at the rate of three and a balf degrees per hour, incluling the heat lost by radiation; whereas the heat evolved by the ten gallons of water contained in the small bux agitated at 232 evolutions was fifty-six degrees Fahrenheit per hour. Thus the temperature of the water in the large bex was raised from sixty degrees to 144 degrees, and the temperature of the wat r in the small bux to boiling point. As an illustration, an egre was boiled hard in six minutes. Tine mechanical equivalent in the first case wis found to approximate nearly to that of Dry. Joule, but in the latter case it was considerably above his equisalent, arising, very probabty, from the dificulty of measuring accurately the retarding forces.
on some rifnompan in conaexion witil moleten substances.-by me. j. nasmith.
The author stated, on introducing the above subject to the notice of the Section, that his object in so doing was to direct the attention of scientific men to a cliss of phenomena which, although their main features might be familiar to practical men, yet appeared to hare escaped the attention of those who were more engaged in scientific research. The great fact which he desired to call attention to is comprised in the following general proposition,-wancly, tbat all substances in a molten condition are specifically heavier than the same substances in au umolten state. Hitherto water has been supposed to be a singular and special execption to the ordinary law,-namely, that as substauces were elevated in temperature they became specifically lighter, that is to say, water at temperature 52° on leang beated does on its progress towards temperature 40° beeome more dense and specifically bearier until it reaches 40°, after which, if we coutinue to elevate the kenperature,
its density progressively decreases. From the facts which Mr. Nasmyth brought, forward, it appears that water is not a special and singular exception in this respect, but that, on the contrary, the phenomena in relation to chauge of deusity (when near the point of solidification) is shared with every substance with which we are at all familiar in a molten state, so entirely so, that Mr. Nasmyth felt himself warranted in propounding, as a geueral law, the one before stated,-namely, that in every instance in which he has tested its existence, he finds that a molten substance is more dense, or specifically heavier, than the same substance in its unmolten state. It is on account of this if we throw a piece of solid lead into a pot of melted lead, the solid, or unmolten metal, will float in the fluid, or molten metal. Mr. Nasmyth stated, that he fumd that this fact of the floating of the unmolten substauce in the molten holds true with every substance on which he has tested the existence of the phenomenon in question. As, for instance, in the case of lead, silver, copper, iron, zinc, tin, antimony, bismuth, glass, pitch, rosin, wax, tallow, \&e.; and that the same is the case with respeet to alloys of metals and mixtures of any of the above-named substances. Also, that the normal condition as to density is resumed in most substances a little on the molten side of solidification, and in a few cases the resumption of the normal condition occurs during the act of solidification. He also stated that, from experiments which he had made, he had reason to believe that by heating molten metals up to a temperature far beyond their melting point, the point of maximum density was, as in the case of water, at 40° about to be passed; and that at such very elevated temperatures the normal state: as regards reduction of density by inerease of temperature, was also resmed, but that as yet he has not been able to test this point with such certainty as to warrant his alluding further to its existence.
a mithematical intestigation of the proportion between the lengti nequmed for an elfotric telegraple cable and its specific gravity.-by captain makelix.

The author showed, by the principles of the composition of motion, as a telegraph wire mas payed out from a ship, the velocity which gravity would give it would soon become uniform by the resistance of the water as its parts descended; therefore, the descending part of the cable from the adyancing ship to the part of the cable which had reached and was supported upon the bottom, as he showed, in very deep water, say two miles or more, might streteh back six or more miles from the ship. Now, unless a great strain was kept on the brake in the ship where the cable was paying out, a strain which in the case of the Atlantic cable had caused it to part, it was obvious from this demonstration that there must always be what the sailor termed "slack" in the cable when it reached and lay on the bottom, for the inclined leugth of the rope was always longer than the horizontal length of the bottom on which it was intended to lie. The author then proceeded to estimate, by mathematical formula, and uumerically, the cxact proportion of these in several supposed depths of soundings, rapidity of payiug out, and specific gravity of the cable, and came to the conclusion, that the only way of lessening an evil, which must never be expected to be entirely got rid of, was by increasing the speed of the vessel paying out the cable, and diminishing the specific gravity of the cable itself, so that it should sink gently to its final position.

The Atheneeum reporter, from whose notes wo derive the above abstract, rereports the following interesting discussion in the Section, to which it gave rise:-

Mr. Jamea Tlegmson did not concur in the view taken by the author, as he coneeived that in the method he proposed the cable would be apt to sink in festoons: a bend when ouce formed by its superior weight drageing down more rapidly than the parts on each side, yet horizontal, and thus the cable would have large folds, or even coils, when it reached the bottom.

During the conversation which arose in the Section afier the reading of this communication, a new light seemed to break upou the members, as it seemed to be universally admitted that it was mathematically impossible, uuless the speed of the vessel from which the cable was payed out could be almost infinitely incrensed, to lay out a cable in deep water (say two miles or more) in such a way as not to require a leugth much greater than that of the actual distance, as from the incliued direction of the yet siuking part of the cable, the successive portions payed out must, when they reached the bottom, arrange themselves in wavy folds; since the actual length is greater than the entire horizuntal distance. The fact, therefore, which, when noticed, led to the increasing of the strain on the Δ tlantic cable until it broke, ought to have been anticipated, and must be provided for in the future progress of that great national undertaking.
on the amount and frequency of the magnetic disturbances, and of the aurora at point barrow, on the shores on the polar sea.-by majorgeneral sabine.

Point Barrow is the most northern cape of that part of the American continent which lies between Behriog's Strait and the Mackenzie River. It was the station of H.M.S. Plover from the summer of 1852 to the summer of 1854, and to Captain Maguire, now in the Section, and the offieers of thatship, they were indebted for the very valuable series of observations which he was now about to lay before the Section, and in part discuss. They were furnished with supplics of provisions, \&c., for Sir John Franklin's ships, had they succeeded in making their way through the land-locked and ice-encumbered chauncl, through which they sought to effect a passage from the Atlantic fo the Pacific. In this most dreary and otherwise uninterestivg abode, Capt. Maguire and his officers happily found occupation during seventeen months, umremittingly, in observing and recording every hour the var${ }^{3}$ ations of the maguetic and concomitant natural phemomena, in a locality perhaps one of the most important on the globe for such investigations, Their observatory, placed on the sand of the shore, which for a long tract nowhere rose much above five fect above the sea, was constructed of slabs of ice, and lined with seal-skins throughout. The instruments had becu supplied by the Woolwich establishment, with the requisite instructions for their use; and the observations were made and recorded precisely in the same manuer as those of the Colouial magnetic observatories. These were seut by Captain Maguire to the Admiralty, and were in due course transmitted to General Sabine, by whom they were subjected to the same processes of reduction as those made in the Colonial observatories. The author then exhibited to the Section six long rolls, containing the results of this discussion, giving the reduced observations at each of the hours of the twenty-four. A sufficient body of the larger disturbances having been separated from the rest, it was
found at Point Barrow as elsewhere, wherever similar investigations had bees made, that in regard to the frequency of their occurrence, and the average amounts of easterly and westeriy deflections, the disturbances followed systematic laws depending on the hours of solar time. The laws of the easterly and mesterly were aiso found at Point Barrow, or elsewhere, to be distinct and dissimilar. The author explained how these observations, which manifestly related to those arising from what were called "storm," were separated from the rest; aud when that separation was effected, the law of the true solar variation was shown distinctly to be observed. But upon instituting a comparison between the disturbauce laws at Point Barrow and Toronto, it was found that the laws of the deflections of the same name at the troo stations did not correspond; but, on the other hand, there existed a very striking and remarkable correspoudence between the law observed by the easterly at Point Barrow and the westerly at Toronto, and between the law of the westerly at Point Barrow and easterly at Toronto; and this correspondence was shown to exist not in slight or oceasional particulars only, but througho:l, all the hours in well-marked characteristies of both elasses of phenomeua; aud it follors from the correspondence in the hours at which opposite disturbance deflections prevail, that the portion of the diurnal variation which depends upon the disturbances las opposite, or nearly opposite, characteristics at the two stations. The importance of eliminating these disturbances from the regular march of the solar variation was then pointed out in both: for when the diurnal variation is derived from the whole body of observations at Point Barrow, retaining the disturbances, the westerly extreme of the diurnal excursion, which, as is well known, occurs generally in the extra-tropical part of the northern hemisphere a litile after 1 p.ar.: is found to take place at 13 p.ar. ; but when these larger disturbances are omitted, the westerly extreme fallsat the same time as elsewhere-viz, 1 p.a.; and the author suggested the probability that the anomalies which have sometimes been supposed to exist in the turning hours of the solar diurnal variation in high latitudes may be susceptible of a similar explanation. It appears, then, by a comparison of the l'oint Barrow and Toronto observations, that in the regular solar diurnal variation the progression at the tro stations is similar, the easterly and weesterly extremes being each reached uearly at the same hours, whilst in the disturbance diurnal variation tbis progression is reversed. Another distinction exists in their maguitudes, which is found in the solar diumal variation to be as nearly as may be in the inverse ratio of the values of the horizontal force at the two stations, (which is the antagonistic force opposing all magnetic variation,) whilst on the other hand the iucrease in the ravge of the disturbance variation is many times greater than it would be according to the same proportion. It would appear, therefore, that the absolute disturbing force must be much greater at Point Barrow than at T'oronto. The author then proceeded to point out the concomitant oecurrences of the auroral manifestations. The olservers noted at each hour whether or not there was an auroral display: from 11 A.st, to 3 r.m. no auroral displays were ever observed; but the number of them was found progressively to increase from 3 p.ar. to 1 d.s.s., and then again in regular progression to decrease to 0 , at 11 a.s. The frequency of the occurrence of the amrora may be judged of, when it is said that during six months,-December, January and February of $1852-58$, and the same of $1553-54$,-the aurora was seen six days out of every seven, The hour of the day at which no auroral display is ever obzeryed corresponds rith the minimum of westerly disturbance, while the maximum
of both is found at the same hour of westerly disturbance-viz., 1 a.s. The frequency of the aurora, also, and the amount of westerly deflection of the magnet also accord; whilst on the other hand the auroral hours appear to have little or nothing in common with the turning hours or the progression of the easterly deflections. When Sir John Framklin was going out on the expedition which deprived his country of the invaluable services of himself and his brave conpanions, he had been furnished by the Almiralty both with instruments carcfully adjusted and compared with standard, and with full instructions for their use, and for the making and recording hourly observations of the utmost importance in the several stations he might occupy in these seas; and in the last letter which had ever been received from him, he had expressed his determination to put up those instruments at the several stations at which he should winter. Now when his ardour in these pursuits and that of Capt. Crozier, the secoud in command, and the other officers, were taken into account, there could remain no doubt that such observations had been made and recorded, and that these records still existed in some of the places he had last been in. When he (General Sabiae) was with Capt. Parry, in 1818, they had made observations with the pendulum for determining the figure of the carth, and others of great scientific importance, on their way towards Behring's Straits. They had been exposed to considerable risk of the ships being lost, and were about to take to the boats and proceed oveland, and in preparation for this they merely prepared to carry with them abstracts of the observations, leaving the original full records safely deposited in secure cases in the cabins of the ships, to be found by those who doubtless would be sent ont to look for them. Fe had, therefore, no doubt that if the ships of Sir John Franklin were still in existence, in their cabins were to be found those scientinc treasures; and this was one of the reasons why men of science were so anxious to lave the ships earefully looked for, and it was a sacred duty even to the memories of those who had sacrificed their lives in procuring such results, to do them the justice and honour of having them recovered if possible.
on certan planetary pertbrbations, and on a New pertcrbation on ences's Cometr.-BX THE REV. W. E. PENAY.

It appears that there are in the motions of sereral of the planets inequalities arising from the product of the disturbing forces of two planets, whichinequalities appear not to have been noticed hithorto, unless very lately, but which scem to be much larger than might have been expected, owing to the length of time during which they are accumulating. The most remarkable is one which exists in the motions of Mars and the Earth. Its period is about 1, 800 yenrs, or about twice that of the long inequality of Jupiter and Saturn. In the case of the Earth it appears to amount to about $7 \frac{1}{4}$ seconds, and is owing to the product of the disturbing forces of Jupiter and Mars, and in the case of Mars it seems to amount to about $45 \frac{3}{3}$ seconds, and is owing to the product of the disturbing forces of Jupiter and the Earth. It arises from the fact, that 4 times the mean motion of the Earth is very nearly equal to S times that of Mars minus 3 times that of Jupiter. Its value for the Earth is represented by the following equation:- $\delta 0=7 \% 93^{n} \sin$ ($8 n t-4 n t-3 n t+S \epsilon-4 \epsilon-3 \leqslant \div 75^{\circ} \cdot 14^{\prime}$) ; and for Mars by the equation:-

are the mean motions of the Earth, Mars, and Jupiter. This inequality is remarkable as being, if the work is correct, larger, and in the case of Mars very considerably so, shan any which arise from the simple pertmbation of a single planet, -the largest hitherto known in the case of the Earth amounting to only $7 \cdot 15^{\prime \prime}$, and in the case of Mars to $25 \cdot 5$. Also, there wili be a corresponding inequality in the motion of the Moon, which I have not yet examined, but which may, perhaps, be sensible; for, according to the investigations of M. Hansen, the inequality in the motion of the Earth discovered by Prof. Airy, amounting to $2 \cdot\left(4^{7}\right.$, with a period of 240 years, produces one of not less than $23^{\prime \prime}$ in the motion of the Moon, -so that, judging by audggy, there ought to be a sensible inequality in the present case also. Again, there seems to be an inequality in the motions of Jupiter, Saturn, and Uranus, with a period of somewhat more than 1,700 years, and amounting in the case of Jupiter to about $10^{\prime \prime}$; and in the case of Saturn to about $40^{\prime \prime}$, and in that of Uranus to $43^{\prime \prime}$. It arises from the fact, that 6 times the mean motion of Saturn is nealy equal to twice that of Jupiter plus 3 times that of Uranus. There are several others besides these, of less importance, arising from the product of two disturbing forces; and there is even one which results from the product of three forces, and appears to amount to nearly $7^{\prime \prime}$. There are also several inequalities of the same kind in some of the asteroids, which are very much larger thau any in the motions of the principal planets; but as the theory of the asteroids is considered to be of comparatively little interest, I have not communicated them.

But the most remarkable inequality of all of this kind is one which exists in the motion of the comet of Encke, and which is due to the product of the disturbing forees of Jupiter and Saturn. The meau motion of this comet is very nearly equal to 4 times that of Jupiter minus that of Saturn, or stated in other

$$
n-1 n+n
$$

words, _- 4^{4} is a very small quantity, -so that there will be a considerable n
inequality of the form $\mathrm{P} \sin (n t-4 n t+n t+\theta)$, and also another of the form $\mathrm{P}^{\prime} \sin \left(2 n t-\mathrm{Sn}_{4} t^{+}+\mathrm{n}_{5} t+\theta^{\prime}\right)$. This latter term, I find, appears to account for at least a very considerable part of the remarkable acceleration which hes been observed in the mean motion of this conct; but orring to peculiar difficulties which beset the question, I am rot able to say whether it accounts for the whole of it or not. There will also be a remarkable inequality, arising from a similar cause, in the motions of comets of short period.

ON TLE ELECTRIC FISIES AS TIIE MARLIEST ELECTRIC MACIINES EMPLOIED BE MAS-KIND.-BE GEORGE WIISOX, M.D., F.R.S.E., REGIUS PROFLSSOR OF TECINOLOGI, UNIVERSITY OF EDISBURGIF.

Were the question put to a circle of scientific men, "With what form of electrical apparatus were makind first acyuainted ?" we should be certain to hear much ingenious discussion concerning the date of Vou Kleist's carliesi Leyden jar (17.15), Hauksbee's glass friction-machine (1700), and Otto Von Guericke's famous sulphur ball (1660). Few inowever, rould so further back than this primitive instrument, unless the maguet were included among electrical apparatus, which in the form of the compass-ueedle it cannot be; and even if we dignified with the name of instre-
ments the pieces of amber and precious stones which the predecessors of Guericke rendered attractive and luminous by friction, we should gain nothing by going beyond 1600, when Gilbert, the introducer of the word electricity, published his truly scientific treaties "De Magnete." The discussion would thus range at utmost over ouly two centuries and a half; and as the Mageleburgh sphere of sulphur is the earliest artificial arrangement which cam be fairly called a machine, our oldest electrical instrument is apparently less than 200 years old.

Such, accordingly, has been the conclusion of our historians of Electricity; nor did il oceur to me, whilst prosecuting researches into the early history of electrical instruments, to doubt its accuracy. Tast summer however, I was directed towards a new channel of inquiry, by a paper read to the Archaological Iustitute at. its meeting in Edinburgh by my collengue Professor Simpson, in which he drew attertion to the application of the living torpedo as a remedial agent by the ancient Greek and Roman physicians, in demonstration of the antiquity of the practice of employing electricity therapeutically. I had not looked at the subject in this light before, but inquiry soon satisfied me that a living clectric fish was the earliest, and is still the most familiar, electric instrument employed by maukind. Before entering into the proof of this it is worth while noticing, that although the historians of Electricity have not overlooked the fact that the ancients were aware of the electrical powers of the torpedo, they have passed unnoticed the early therapeutic employment of the fish, as a truth which, however interesting to the vaturalist or the physician, had no significance for them. Priestley for example, in his "Mistory and Present State of Electricity," 1775, refers to the gymnotus as "possessed of a kind of natural electricity, but different from the common electricity, in that persons Tho touch it in water are shecked and stunned by it, so as to be in danger of drowning" and quotes Muschenbroeck's query, " whether the sensation communicated by the torpedo does not depend upon a similar electricity ?" But both references occur under "Miscellaneous Experiments," illustiating the then " present" state of electrical science, and no historical inportance is attached to them. This is the more remarkable, that when Priestley wrote, the ouly electrical power known to characterize the fishes which he names was that of giving the " shock;" and so me.vellous did this phenomenon appear to him, that he goes the extreme length of declaring, that " the electric shock itself, if it be considered attentively, will appear almost assurprising as any discovery that Sir Isaac Newton made; and the man who could have made that discovery by any reasoning a priori would have been reckoned a most extraordinary genius."

It seems strange, after these statements, that Priestley should have given no place in his history cither to the aucient recoguition of the shock-giving power of the torpedo, or to its application as a remedial agent; but the explanation of his sileace probably lies in the fact, that he was not fully satisfied that the shock of the torpedo or gymnotus was electrical. "It is to be regretted," he says, "that none of the persons who have made expeniments on these fishes should have endeavoured to ascertain whether they were capable of exhibiting the phenomena of attraction and repulsion, or the appearance of electric light, as experiments of this lind are of priveipal consequence, and must have been easy to make." Later historians of Electricity, especially those writing after the experiments thus referred to, had (in spite of difficulty, which Priestley quite undervalued) Deen successfully made, have not failed to quote the classical references to the torpedo, but have attached no importance to its medical use. and no Natural Philosopher, so far as I
am aware, has even hinted the chaim of the electric fishes to rank first in order of time among electrical instruments.

The suliject is one of greater interest to physicists than to baturalists, but 1 bring it before the Natural Listory Section of tiis Association rather than before the sections devoted to I'hysies and Chemistry, in the hope of inducing maturalists phaced in favourable localities to cuquire how far uncivilized uations familiar with electrie fishes employ their powers remedially.

The subject admits of a twofold division,--into, 1st, The antiquity of the practice of using the electrieal fishes as remedial arents; $2 d$, The extent or generality of that practice.

So far as I have yet ascertained, the fishes which have been or are thus employed are limited to different species of the torpedo, the gymnotus, and the silurus or malapterurus; the first a widely distributed marine genus, the second aboundins in man vithe rivers of South America, and the third in certain of those of dfrica. Of no of these fishes but the gymnotus can it with certainty be affirmed, that those who made use of them were aware that they were electrical instruments; and in the case of the gymmotus this remark applies only to its therapeutie use in very recent times. There is reason, indeed to believe that it had been employed for centuries by the South American savages as a mysterious hervic remedy; but in speaking of the zoo-electric machine as the earliest electric instrument, I must throughout be understood as looking at the living apparatus from a modern electrician's point of view.

The antiquity of the practice first concerns us, and must be rested chiefly on the torpedo, as employed by the civilized dwellers on the shores of the Mediteranean. From their writings we can trace the practice back for nearly two thousad years; certainly to before the Christian era.

On this point I shall mainly be content to quote the statements of the Rev. C. David Badham, IT.D. In his learned and most amusing volume, "Prose Halicutics, or Ancient and Modern Fish Tattle," he thas writes of the torpedo under its Greek name Nápro ;-"Besides those Sica̧iau Skate., there is one of much smaller imensions, but of far more marvellous power's, which long before Leyden phials were invented, or the principles of electricity were understood, had pressed this rednabtable arent into its service, and was wout to give practical lessons in the science to all who did not object to the • charge.' The peculiar purers of this fish are cursorily alluded to, or commemorated at length, by a whole host of ancient writers,-

> 'Quis nou edomitam mire torpedinis antem ludit et emeritas signatas nomiuc vires?
asks Claudian; Plato compares Socrates to a Narké, from that sage's well-known capabilities of electrifying his auditory; and its achievements have been anply detailed by Aristotle, Cicero, Plutarch, Pliay, Oppian, Elian, Atheneus, and Galen." So far as medical use is concerned, Dr. Badbam observes, that " the electric properties of this enchantress of the sea suggested to ancient practitioners to try its efficacy in the cure of headache aud painful nervous affectious, by applying it epidermically ; and Dr. Galea. whe seems to have been a stroug homoopathist, advises the numb)-fish (which he erroneously supposed to retain some electrical virtue atter death and stewing) as a dish to paralytio patients, with a view to cure their numbness: no doubt on the similia similibus principle."

Whether Galen held the theory which Dr. Badham, half in jest, half in earnest, nttribute; to him, it is interesting to know that the term torpedo (happily translated numb-figh), implizs that the Roman physicians were more struck by the ultimate paralyzing eflect of the torpedo's diselarge than by the carlier convulainer one. Craten, indeend, referred the powers of the fish to its exertion of "a torporific action peculiar to itself," so that we ean scareely say that ho booked upon an electric fish as a shoek-machine. We mu wishever, attach ton much importance to the mere name of the one electric fish known to the chassical waturalists and physi. ciams. The seneations excited by what a modern physician would call the discharge of electricity, great in quantity, and moderately high in intemsity, through the body, are in reality indeecribable; bat the ancient observers have depicted those sencutions, to the extent that they had experionced them, as fathfully as any modem hets done. We acknowledre, and (seape the dificulty of precise deseription, by calling the sensations in question as a whole, "an electric shock." And as the ancients were familiar with the "shock;" though they hat no single term for it, I count it no amachronism to say that the corped, was for them as for as, a living, electric shock-machine. The title, it will be obeervel, is a distinctive one, applicable only to a few creatures. The obecrvations of $G_{a l}$ vani, interprete i and greatly cateuled by Matteucei, Müller, Dubois Reymourl, mud others, have shown us that the hiepher animals, and probably all animals, are in a true sense electric machines, but not that they are shock-machines. Whey constantly develop electricity; but to the slight extent that it acts externally to their bodies, its quantity is too small, aud its intensity too low, to confer upon it the slightest shoek-giving power; the animal camot, by an act of volition, influence the electrical currents which it unconsciously develops. On the other hand, a few creatures, all sealeless inhabitants of the waters, develop eiectricity, great in quantity, high in intensity, and admitting, as the creature wills, of being retained batent, or set free with killing force. These fives thus correspond to our artificial therapeutic electric insteuments, such as the coil-machine, in the quantity and quality of the electricity they furnish. but differ from them in this important particular, that we camot compel them to give a shock any more than we can compel a leech to bite or to suck blood. So much are we at the meroy of their will in this matter. that in the case of the torpedo, Badham, speaking of himself, says, "We were not able, during a long sojourn at Naples, to obtain one shock in our own person; while many lazzaroni frie:ds, who did not seek $i t$, had frequently their arms 'astonished' (the word is Rénumat's) for a whole day after lugging a narke on board." Ifow far the ancients realized this fact, of which to some extent they must have been enguisant, and what devices they followed to induce the torpedo to give its shock, doos not appear very clearly from the Greek an. 1 Roman writings which have came down to us. Galen's aceription of similar properties to the dead as to the living torpedo, is not reconcilable with the belief that he was fully aware of the purely voluntary nature of the electric discharge. The same remark in all likelihood may be applied to the majority of the aucient practitionsrs who employed the torpedo in medicine. Nerertheless, it will be seen from their preseriptions, copied in the sequel, that they were renerally strict in requiring that the fish should be alive, and whaterer antiparalytic virtues Gaien may have attributed to its cooked body, be denies that it has any narcotic effect as a medicine, unless when applied alive." A similar conviction probably led to the crucl practice of boiling the living torpedo in oil, with a view to produce au anodyne liniment. On this point,
a: on others connected with the subject before us, we may look for more precise infornation than at present we possess, when the great work on the Greek aud Latin physicians, in course of publication at laris, has made further progress. Meanwhile, the following references to the torpedo, will sufficicutly illustrate the eiectro-practice of the ancient physicians. I quote them in chronological order, so far at least as centuries are concerned. Asclepiad's who flowished in the first century, b.c., employed the torpedo in inflammation; but unly fragments of his works have reached us.

Of the application of the torpedo as a stupefacient, we find mention in sereral writers anterior to Scribonius: Nicander alludes to it; aud Aselepiades, who practised medicine in Rome a century before Seribonitus, employed it in inflammation: and Anterus, a freedman of Tiberius, was successfully treated for gout through the application of a live torpedo, by advice of Charicles.

Pliny (first century) has many references to the torpedo. The following is one of the more general and speculative :-
"And then, besides, even if we had not this illustration by the agency of the solheucis, would it not have been quite sufticient only to cite the instauce of the trewedo, another iuhabitant also of the sea, as a manifestation of the mighty powers of nature? From a considerable distiance even, and if touched only with the end of a spear or staff, this tish has the property of benumbing even the most vigorous arm, and of riveting the feet of the runaer, however swift he may be in the race. If, upon considering this fresh illustration, we fund ourselves compelled to admit that there is in existence a certain power which, by the very exhalations, and as it were, cmantions thereftom, is enabled to affect the members of the human body, what are we not to hope from the remedial influences which nature has centered in all animated beings"

The succeding quotations illustrate more precisely the mode of applying the torpedo :-

Scribonius Larg is (first century) thus writes:-"Capitis dolorem quemvis veterem ct intolerabilam protinus tollit, et ia perpetuum remediat torpedo viva nigra, imposita co loco qui in dolore est, donec desivat dolor, et obstupescat ca pars; quod quam primum senserit, removeatur remedium, ne sensus auferatur ejus partis. Plures autem paraude sunt ejus generis torpedines, quia noununquam via ad duas tresve respondet curatio, id est torpor; quod signom est remediationis."

Galen (second century) refers in similar terms to the treatment of hendache: "Sed et torpedinem totam, dico autem animal marinum, capitus dolores sauare capiti almotam sedemque eversam coürecre it quibucdam est proditum. Verum ego quam utrumque essem experius, acutrum verum comperi. Eam igitur cum cogitassem vivam esse applicandam. cui caput doleret, posse cuim fieri ut hoc medicamentum anodynon esset, ac dolore liberaret similiter ut alia qua sensum obstupefaciunt, ita habere comperi. Putoque cum, qui primus est usus tali quapiam motum ratione caperiri agtressum."

Aetins, who wrote in the end of the fifh century, does little more than abbreviate the prescriptiens of his predecessors:-"Torpedo viva apposita diuturnum capitis dolore depellit, et prohabeatem sedem intró pellit mortua vero, aut omnino noi, aut modice hace facit."

Paulus Agineta (end of the sixth or the begiming of the seventh ceatury), who as his leamed commentator, Dr. Fraucis Adams, tells us, " continued to be looked
up to as one of the highest authorities in medicine and surgery during a long succession of ageg," thus condenses the opinions of his predecessors:-"Torpedo; when applied to the head. while still alive, in cases of headache, it procures relief, to the pais, probably by its peculiar property of producing torpor; and the oil in which the living animal has been boiled, when rubbed in, allays the most violent pains of the joints." The accomplished scholar, whose transtation I bave quoted, refers, in the relative commentary and elsemhere, to the general employment of the torpedo by the Greek, Roman, and A rabian physicians, adding the siguificant query-"Is not this an application of the principle of galvanism in medicine ?"

Marcellus (whom I quote out of order) prescribes standing on a live black torpedo, on a moist shore which has been washed by the sea, till torpor is felt through the feet up to the huee, as a cure for gout.

From these accounts, and especially from that of Scribonius Largus, it appears that in the treatment of severe and obstinate headache, the torpedo was laid on the achiug head, or aching part of the head, and left there till it had thoroughly benumbed it. The fish was probably wetied occasionally with sea-water (as Marcellus plainly intends), or immersed in it, otherwise it must soon have ceased to be "torpedo viva;" but whether dead or alive, its good effects must have freguently been owing as much to its acting as a cold poultice or wet bandage, as to its efficiency as an electric machine. It was faith, however, in its electrical powers that led to its therapeutic use; aud this is all that concerns the present inquiry.

How early the torpedo was emploged in medicine cannot be precisely determined. The labours of Daremberg and his colleagues will doubtless throw light on this point; but as Scribonius Largus, Pliny, and other writers of the first century, all describe the medical use of the torpedo, and Asclepiades and Nicander refer to it a century carlier, it at leat dates from before the Christian era. It is probable, also, that the ancient physicians borrowed their torpedinal remedy from the Mediterranean fishermen long after they had acquired faith in it; and altogether we may safely say, in round numbers, that the electrical machine, as embodied in the torpedo, is at least 2000 years old. It is probably very much older, for barbaric uations love what the French call " heroic" remedies; and the shock of the provoked torpedo is likely to have been beld medicinal by the carliest fishermen of the Mediterranean sea. It would be interesting to ascertain whether the Italian sailors of the present day have any traditional respect for the torpedo as a medicine. It is sold in the Neapolitan markets as an article of food; but I do not know if Galen's successors agree with him in imputing to it medicinal virtues after it is cooked. Apparently not; but the naturalists mad electricians of Italy, a country prodigal of both, will enlighten us on this not unimportant matter.

Another electric fish besides the torpedo was known to the civilized nations of antiquity, and to mations whose civilization is of much earlier date than that of the Grecks and hommens. The Nile breeds one electrical fish, if not more; and when we remember what an inquisitive, intelligent people the aucient Egyptians were, and that both their medical skill and their practice of ammal worship were likely to interest themi in the singular endowments of the electric fish, we may well expect to find its powers chronicled, if not cmployed, by their priests and physicians. As yet, however, nothing has been extracted from either the bieroglyphics or the paintings on the tombs to fulfil this expectation. A very eompetent authority, indeed, adduces the absence of pictovial representations of the Nile fish from the Egyption monuments as a proof of the special estecm rith

Which if was rexardol. "Th might reasomahy he expeoted," bays Sir J. Gardnot Wilkinson, "that the reded, or eleetric fish of the Nile, woukd be one of the most
 caught in the anciand fishing aomes." he add regating the ratal:" It is a small fish, and the one l suw mentured litate more than a foot long ly four inches in depth, but it hat the perwer of giving a very stroner shmek. It is the
 bisyptian antiquity is silent as tw the very existemee of an chectrie fivh: hat tha name be which the mitaptorurns is known to the modern Exyptime, has heen roferred :o as proving that their prederosens hat more or tess procisely asertained that, the s:me fore which is presemt in the thmoter-choud is presenti it: tho shoekgriving lish. If this view is well fommerd. it is dithent to saty how remote the period is to whith we mast eary back the commenement of dederical arience, if not also of elembeal atr. Mr. Mhmery embodies the guestionable view of this subjed in the statement, "the silurus of wheh wo have to speak is the siheres of the Nite (Mahotrourus chatriens), ealled maseh, or thomer-tish, by the Arabs."

Wilkiusm, referving to the same stijecel, says, "the mame rad 'thander' is very remakable, sine the modem bayphans are ; fuite ignomat of its pecoliar powers: and it ih was borewed by them, fiom their prederessors. the question anturally arises were they acquanted with clectricity " The author probably intends here by "predecsents." the more atheient Bapptians, on whose customs and character the has thrown so mach light. As the word rat, bowever, is Arabie, its origin, though ameient, maty be much hater than the latest of the Pharaohs. Assmiag. apparenty, this view, Alexamer Von lumboldt asks, "did am myenions and lively people, tho Arabians, gress from remote antiquity that the stme fore which ind mes the sant of hemen in stoms is the living the invisible werpon of inhabitate of the waters? It is said that the eloctre fish of the Sile bears a mane in lexypt that sigaites thomer." It, might be pleaded it behalf of this view that the satacions Arabian physician Arerrhees explicitly atimed of the forpedo, as Dr. Whtham notiees, that "the power which this fish poseseses of atteceing the skin, seens to be of a kind analogons to that by which the migret aets upon stee," and wouht hare extended this explamation to the sihmes. To what extent, howerer. this anbiguons utterane is to be maderstood as imphring the discovery by Areathes of tho bond which modern seience has shown to unite electricity an! magnetism, and the expression by himself or his comutramen of this truth in the name riven to the silurus, it is needless to inguire, till we have disposed of the phablogeal question, does the word rad really signify thander fish? The reply aust be in the nerative. Humboldt himseli beemo satisfich of this, mat states in a note to the p:ssage ahready quoted, " lt appears howerer that a distinetion is to be made between rahd, thander, and rohadh, the
 bling:"

Thequestion is one wibl only Ar:uic seholars can answer, and I have aceordingly weered it io Mr. Ehward Smaley Poole, a lenmed Orientalist, whose deeisive rephy give in tall:-"I fear the electric fish of the Nite will not sustain the eredit of my andent Eyphim friends for seientific knowielge. The Arabic appellation of the fish in question, namely abaide, is certamy given to it on accomt of its causiag trembling. This is sumiciently plaia, from a compatison of wrods from the same root; and is expressly asserted in an excellent Ambic work, 'Ab.
dollatiphi Historio Sgypti Compondiuns.' 'Tho Arabio appellation of thunder is somewhat diflerent (racel), and has ovidontly origimated from tho supposition that thander is a trombling, or a stato of agitation of tho clomes ; or fromits being a canse of hembling. Fior tho formor of these lwo deri vations wo have the nuthority of El-Buydaree, in his 'Oommentary on the Kur-in. 'Ran'id' is a generic noun, and ' Rabiddeh' is a noun of unity, menning a singlo fish of tho kind callod ' Ratike.' My reading of theso words admils of no donbl, and is well known to Arabis scholara."

Tho modern Arabic mamo of the Nilo electric fish thas dooe not juatify the conclusion, that the begyptima of past or present times belioved that tho shock of the fish was thas samo in naturo as a lightning-shock. A nume exactly equivalent in menning is given, as Itumbolitt incidently informs us, to tho gymmotus as well as tha torpedo, by tho South Amorionn Spuniards "who confound all olectric fishes mader tho name of temblatores, liturally "tremblers," or "producers of tromblimg."
dit the present day the silurus of the Nile is sold in the madsets of Cairo, and used as food.

The secomd point to be considered is tho catent or generality of the practice of using electrical fishos as shock-machines. In this, however, as in other muttere, it will be fomad that extension in space to a great degreo corresponds to duration in time.

In ancient epochs tho torpedo was probably employed modically on all the shores of tho Roman empire, including our own, which it visited, and traces of ity therapentio uso probably sarvivo in some of them to the present day. I am unable, however, to indicate any sudh traces more precise than that the shock-giving powers implied in its voruaculat titles, such as tho Malteso name of Maddayle, a term which hins reference to its benumbing powers; the French one, Ta I'rentble; and tho Euglish, specially expressive nancs crump-fish and numb-fish.

One modorn people, howevor, makes use of tho torpedo exactly as the ancients did, though whether as a tradition from the Meditermenan electro-physicians, or as au independent discovery, I have not the means of ascertaining. The Abyssininus, Dr. Bradly tells us, employ the torpedo (I presume from the Red Sea,) in the treatinent of ferver. "Whe patient is first strapped to a table, and the mumb-fish then applied successively over every organ of the body: the operation is reported to bo both very paiuful and successful."

Next to the torpedo, the gymuolus is the most famous among clectrical fishes, and it is by far the most powerful. The shock indeed, of a large gymuotus is so sovere, that no lover of heroic remedies, having one at command, need long for a-magneto-electric coil machine. Several species or varietics of the fishoceur, as Ifumbohdt tells ue, in the large rivers of Sunth America, the Orinoco, the Amazon and tho Meta, besides frequenting heir tributaries, and the smaller streams of an extensive bordering region. They have aceordingly been familiar for centuries to the Indinas, who are constantly reminded of their presence, even in rivers toodecp to let them be caurbit or freduently seen, by the shechs which they feel when batioing or swimming in the river. The shallower streams, also, and basins of staguatit water, near the sourees of the Orinoco nu:l elsewhere are, in this writers words, " dilled with electrical cels," so that their shock-giving powers are forced upon the attention of all visiting those districts; and we cnnnot but feel curious to know whether any therapeutic use has ever begen made of living machiacs so powerful.

At first sight it might appear that their very power had prevented their use. Humboldt mentions that "the dread of the shocks caused by the gymnoti is so great, and so exaggerated among the common people, that during three days we could not obtain one, though they are easily caught, and we had promised the Iudians two piastres for every strong, vigorous fish." And that this fear, however exaggerated, is in the main well founded, is rendered certain by the unexceptionable testimony of Humboldt himself, not only in his famous account of the battle between the wild horses of the savanuals and the gymnoti, whose favourite pools they reluctantly invaded, but also in his description of the effect of a gymnotusshock received in full force by himself.
" It would be temerity," says he, " to expose ourselves to the first shocks of a very large aud strougly-iritated gymnotus. If by chance a stroke be received before the fish is wounded or wearied by long pursuit, the pain and numbness are so violent that it is impossible to describe the nature of the feeling they excite. I do not remember having ever reccived from the discharge of a large Leyden jar a more dreadful shock than that whicin I experienced by having imprudently placed both my feet on a gymnotus just taken out of the water. I was affected during the rest of the day with a violent pain in the knees and in almost every joint. To be aware of the difference that exists between the sensation produced by the voltaic battery and an electric fish, the latter should be touched when they are in a state of extreme weakuess. The gymmotiand the torpedos then cause a twitching of the muscles, which is propagated from the part that rests on the electric organs, as far as the elbow. We seem to feel at every stroke an internal vibration, which lasts two or three seconds, and is followed by a painful numbness. Accordingly, the Tamanac Iudians call the gymnotus, in their expressive Ianguage, arimna, which means, something that deprives of motion."

We canot wonder, then, that the Indians who had experiences, such as Humboldt underwent, and who, unlike the philosopher, were unacquainted with the limits within which the shock-giving power of the gymnotus is restricted, should be unwilling to provoke its anger. This, however, has not kept them from employing it in medicine. All my information on this point is derived from Humboldt, and he does enter into details, but the following statement is sufficiently explicit:-
"In Dutch Guiana, at Demerara for instance, electric eels were formerly employed to cure paralytic affections. At a time when the physicians of Europe had great confidence in the effects of clectricity, a surgeon of Essequito, named Van der Lott, published in Holland a treatise on the Medical Properties of the Gymnotus. These electric remedies are practised among the savages of America, as they were among the Greeks."

I have not been able to obtain sight of Van der Lott's work, but Humboldt plainly records the Indian use of the gymnotus in medicine as a device of the Americans, not an imitation of European practice.

From a further statement it appears that the Spaniards had not taught this practice to the Indians, or borroved it from them. "I did not," observes Humboldt, "hear of this mode of treatment in the Spanish colonies which I visited; and I can assert that, after having made experiments during four hours successiveIy with gymnoti, M. Bonpland and myself felt till tho next day a debility in the muscles, a pain in the joints, and a general unensiness, the effect of a strong irritation of the nervous system."

On this point it remains to state, that even in Europe the gymnotus has been used as an electric machine in the end of last century. Ono sent from Surinam to Stockholm lived more than four months in a state of perfect health. "Persons afficted with rheumatism came to touch it in hopes of being cured. They took it at once by the neck and tail: the shocks were in this ease stronger than when touched with one hand only. It almost entirely lost its electrical power a short time befure its death." In this case, the gymnotus was known to yield electricity by those who employed it; but the practice was probably borrowed from the aborigines of its native country. At all events, it is quite certain that, alike without knowledge of artificial electrical machines, or acquaintauce with the therapeutic uses to which the Greeks and Romans put the torpedo, the wild Indian doctors had made trial of the healing electiric virtues of the living gymnotus.

Within the last three years a new electric fish has become known to us, belonging to the same genus as the silurus or malapterurus of the Nile. It is found in the muddy brackish water of the River Old Calabar, near Creek Town, which lies about sixty miles up that river. This stream empties itself into the Bight of Benin, within a short distance from the delta of the Niger, in lat: $5 \frac{1}{2}^{\circ}$ north, and long. 8° east. The fish, accordingly, has been named the Malapterurus Beninensis by Mr. Audrew Murray, who has described and figured it in the Edinburgh Pkilosophical.Journal for July 1855.

We are indebted to the zealous and intelligent missionaries of the United Presbyterian Church of Scotland, resident at different stations on the River Old Calabar, for our knowledge of the new species of electric fish. Quite recently they have sent home living specimens, some of which are now in Edinburgh : and through the kindness of Professor Goodsir and Mr. Murray, I, along with others interested in the electric energies of the animal, have had the opportunity of observing their shock giving powers. The shock is a sharp one, felt irom the fingers to the wrist, the elbow, or the shoulder, according to the activity of the animal, and the position in regard to it of the hands of the experimenter. The fish varies in length from two to twelve inches, is sluggish in its general movements, but retentive of vitality and electrical energy even in unfavourable circumstances.

As soon as my attention was turned to the remedial employment of electric fishes, I proceeded to inquire whether the Africans along the Old Calabar river made any therapeutic use of its malapterurus. But before my inquiries were completed, I learned that the natives did make this use of the fish. In truth, the fact had been published by Mr. Murray two years ago, but I bad overlooked the circumstauce. The statement which is quoted below, is the more interesting, that it was not furnished in reply to queries, but was volunteered by Mr. W. C. Thomson, who was stationed for several years at the Creek Town Mission station on the River Old Calabar. Mr. Murray says:-"Mr. Thomson tells me that the electric properties of the fish are made use of by the natives as a cure for their sick children. The fish is put into a dish containing water, and the child made to play with it: or the child is put in a tub or other vessel with water, and one or more of the fish put in beside it. It is interesting to find that a remedy which has only of recent years come into favour among ourselves should thave been already anticipated by the unlettered savage, who probably has had the remedy handed down. to him by tradition from remote generations."

Unaware of this rery precise announcement and inference, I applied to the Rev. W. Auderson, who brought from Old Calabar the living fishes at present in Edinburgh, and received the following answer:-
"In reply to your query, I have to state that I am not aware of any statement having been published in reference to the remedial properties of a shock from the fishes, neither have I ever seen them used in any way in sport ; but Mrs. Anderson, to whom belongs all the eredit of bringing the fishes home, testifics that the native mothers generally keep one of the fishes in a native-maide basin, and that on washing their infants in the morning the practice is to dip either the hands or the feet of the infant, so as to cause it to receive a shock. This is done, they say, for the purpose of strengthening the child. The strong and the healthy have to undergo the operation as well as the weak and sickly." And that the fish is not an inactive agent in this singular process may be safely inferred from what follows"So far as Mrs. Anderson's obserration goes, there is no liking for the affair on the child's part; plenty of struggling and squalling. The natives use the fish as food."

A thirr and independent account of the native usages in reference to the malapterurus has been furuished by Mr. John R. Wylie, recently a teacher at Creek Town, Old Calabar, butat present in Edinburgh ou sick leave. Mr. Wylic says: "The Calabar women use this fish in the folluwing manner: They put one or two, according to size, in a tub of water, and then wash their children (infants) in the tub with the fish and all. They must have a strong sense of the benefit derived from this, as in general they dislike doing anything which makes their infants cry; and this process makes them do so most lustily. They also make the children dink a great quantity of the water in which these fish have been. I have been in yards, and seen, on several occasions, the process described."

The ascription of remedial virtues to the water in which the malapterurus has been kept, is a fact of interest when taken in connection with the similar opinion entertained by the Grecks, accouding to Elian, in reference to the water in which a torpedo had lain.

After the triple testimony adduced, it will not be doubted that the employment, of the malapterurus as a remedial electric machine is an established practice among the natives oi Old Calabar; and few will question the justness of Mr. Murray's infercuce, that the practice is one of great antiquity among them.

It thus appears, that the nations bordering the Mediterranean, the Abyssinians, the Iudians of South America, and the dwellers on the westem rivers of Africa, have independently used the torpedo, the gymnotus, and the malapterurus as living shock-machines. The practice certainly dates from before the Christian era, so far as the first-named fish is concerned, and in all probability is of much earlier date for all the electric fishes.

Two couclusions, accordingly, seem unavoidable; namely, 1st. That the oldest electrical machine employed by mankind was the living electric fish; 2nd. That the clectric machine most familiar to mankind is also the electric fish. The latter conclusion is of much lessinterest to myself than the former; and daily asgaivanic batteries, and other electrical apparatus, are more widely kuown, it will become less significant. But as the present usages of uncivilized natious represent their pest ueages back eren to a remote antiquity, the light in which a barbaric people still regards creatures so remarkable as the elect:ic fishes is certain in most cases
to illustrate the history of electrical science and electrical art. Writing as a physicist, I would remind naturnlists, that it was the careful study of the powers of the torpedo that first enabled electricians to understand some of the most important latws of action of their artificial machines and batterics. I have elsewhere pointed out, that in Cavendisli's "Account of some Attempts to Imitate the Effects of the Torpedo by Electricity" will be found the first enunciation of that distinction between intensity and quantity as affecting electrical phenomena, which has sinee proved so important a guide to the explication of electrical problems. Faraday dirells largely on this poinl, nor does it admit of the slightest doubt, that inorganic electricity, buth as a science and an art, is very largely indebted to organic clectricity in it for the explanation of the laws which it obeys, and for the contrivauces by which it works.

AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE.

ON THE FORMATION OF CONTLNENTS.-BY RROFESSOR BENJAYIN PEIRCE, OF Cambridge, mass.

The interest which attaches to the comprehensive theory embraced in this important communication of Professor Peirce, tempts us to print the following unauthenticated abstract, in the absence of auy more trustworthy report. In justice to the author, however, it must be borne in remembrance that it is derived from the reports of the Montreal press; and, at best, only serves to indicate the author's line of argument.

Prof. Peirce remarked that the principle lines of the continents are ares of great circles tangent to the polar circles. Any globe will illustrate thi:. The eastern const of South America and the westeru const of Eurape are in such a line. So also are the eastern coasts of Africa, Asia, and North America. The western side of Hindostan is ta gent on the other side. So also are the lines of Sumatra, the westewn coast of America, and th: longer line of New Zealand. The western coast of Africa, he said, was no doubt fully parallel. There were other lines tangent to the tropics-the northern line of South America and the range of islands of the Pacific. This secmed to indicate that the sun had some infuence in forming the lines of continents. The difference of temperature caused by the sun's rays was very considerable; enough, azwe saw, to heep portions of the earth in a state of fluidity while others were solid. For a large portion of the year the sun was near one or the other of the tropics, and it might be expected to exhibit its power in this way by producing lines of cleavage, strorgly tending to form the outlines of continents, for the instant the earth should shriok so far that the crust should. be too large for $i t$, then the flexure must take place along the lines of natural cleavage. Then the phenomena of freezing showed that there was a tendency to lines perpeadicular to these, which would give lines nearly tangent to the tropics. One or the other of these lines would be the bottom of the ocean, and a corres-
ponding one the top of a continent. There would be no tendency to change, because the bottom of the ocean would keep cool from the superincumbent water, while the ridge of the continent would keep cool from its height, and the hottest places would be along the coast. We must expect these lines, therefore, to remain as a permanent condition, with only such modifications as would arise from currents and glacial action: a theory which geologists seemed inclined to adopt at present. He would draw attention to the effect which the trade winds produced by their friction upon the Pacific and Atlantir Oceans in gulf streams. The Gulf Streams, cotemporary with the first shaping of the American Continent, would throw warm water upon the European world and keep it in a fluid state for some time after the other continents were definitively formed. It was well known that the last portions of a fluid to freeze froze over most roughly; Europe, therefore, would be, as it was, the most broken up of the continents. Much criticism would arise from the known age-relations of different ranges of mountains. According to this view, we could hardly do otherwise than suppose that the first tendency to break should be along the line of the Pacific coast. Yet we know that this was one of the last to be upheaved. We must, however, remember that the first action was only a little flexure-just enough to give direction to a current which would afterwards throw the water over upon this side. This line, being the line of cleavage, would be the most subject to volcanic action, and would be the last as well as the first affected by it. The only ground of opposition to this was the theory of Elie de Beaumont, which traced long lines of wrinkling from very short lines of elevation in Europe. He thought that Elie de Beaumont had gone too far in making lioes so short the bases of such extended generalization. It was very much like taking 600 כr 700 miles of the Isthmus of Darien as a basis for determining the direction of the Andes and Rocky Mountains. We saw on examination that the lines of Elie de Beaumont were so close together, and so many of them were so nearly targential to the polar circle, that we were led to believe that they might be only slight variations.

THE ZODIACAL LIGIT.-BY THE REF. GEORGE JONES, U.S.N.
The following brief notice conveys a very imperfect indication of the report submitted by the author, of his laborious and protracted observations.

Rev. Mr. Jones said, that after his former publication on the Zodiacal Light, he had felt the want of accurate and sufficient data, and determined to go to Quito, Ecuador, as the most eligible spot for his purpose. It was near the Equator and more free from clouds than most equatorial regions, and its eleration above the surface of the carth was productive of considerable transparency in the atmosphere. So great was this transparency that Humboldt had been able to see his friend, Bonnland, with the naked eye, at $17 \underset{2}{ }$ miles distance.

During June, July, and August, the sky at Quito was perfectly clear. But in June, Mr. Jones had been detained at Washington, and in July he and his assistant had the fever at Paname. His friend died on board the English steamer in Guayaguil River and two other persons also dying, he had been prevented from landing, and had to go to Payti, Peru. Thus he did not visit Quito till the end of August, when the sky had become less clear. During his eight months' stay he was only enabled to make 128 observations, but these were valuable. When clear the sky was surpassingly beautiful. The smaller stars were so visible that they
seemed to crowd the firmament, while the milky way seemed to have descended quite near the spectator. There he had seen the Zodiacal light, not only at the horizon as before, but forming a complete arch across the shy, extending from the eastern to the western horizon, and this, too, at eve. y hour of the night. It was sometimes so bright as to look like another milky way, stretching aeross the heavens. He had brought back with him, he might state, some 115 plates exhibiting this luminous arch, giving its boundaries as seen among the stars and also the central line lengthwise. The brightness of the central portion was always greatest, diminishing towards the edges. He would also state that he had made dratrings of the relative brightness of the various parts, and taken observations of luminosity as compared with the Milky Way.

Mr. Jones made the following deductions from his observations:-
First, That the substance giving out the Zodiacal Light formed a complete circle. Several of his observations carried it round in a single night, so as to form a complete circle, with the exception of a portion apparently near the sun. On the 26 th and 27 th December for instance, he had taken five observations. The first of these traced the light to within 16 degrees of the setting sun, the last to within 18 degrees of the rising sun: thus forming a complete circle with the exception of 36 degrees.
Secondly. It is a great circle in the heavens, forming an angle of 3 deg. 20 min . with the eeliptic, the ascending node being at longitude 62 deg., and that descending at longitude 242 deg . As seen from the earth, it has a widu of about 28 deg.
Thirdly. It is a geocentric circle; for if it were heliocentric one portion would be much nearer the earth than that opposite, and consequently appear of much less breadth, which was not in accordance rith the facts of the case. And again, if heliocentric, the laws of the reflection of light would require that the portions next the sun should reflect less light than those near the zenith of the spectator, these appearances were not visible. Again, that portion of the light near the horizen showed an aftinity to the spectator's motions as he approached towards, or receded from the ring. And this could only happen in case of a body not very far off.
notice of túe longitude of fernandna, flomida, by cieronojreter exchanges, from savannah, georgia.-by A. d. bache, superintendent, and cerarles a. schott, assistant, v. s. coast survey.

(Abstract for the Canadian Journal, communicated by the Author.)

The longitude of Fernandina was required in order to know the direction of the line across the peninsula of Florida to the Cedar Keys, which was in a geueral way to be followed by the triangulation, to connect the Atlantic and Gulf Coast work. Reconaissance had shown a triangulation to be practicable, connecting the termini of the air line rail road. The longi+ude of Savannah had been cbtained by telegraph, and easy means existed for the transportation of chronometers between the two points.
The paper contains an account of the operations, and incidentally a discusaion of personal equation, and of the performance of chronometers under different circumstances. The final difference of longitude is given, which is of the greatest importance, as the two best authorities cuiffer some nine miles. The diagrams which accompany it slow the order of succession of the chronometer trips, the
results of different trials with different observers for personal equation, and the comparison of the ratio of the observing chronometers with the changes of temperature.

From the observed changes of rate of all the chronometers compared with the changes of temperature, corrections were obtained by the method of least squares, and applied to the rate of each instrument so as to reduce them to a mean tem. perature rate.

The rates of the chronometers when stationary and travelling were deduced, the first by observations between the times of arrival and departure from the two stations, the second by considering the trips to and from Sarannah and to and from Fernandina, and assuming equal travelling rates out and back. T'o these rates a correction was applied by the method of least squares, which, as was expected, turned out to be quite small. In determining this correction the hypothesis of equality of rates was dispensed with.

The two sets of chronometers each containing five instruments differing by nearly three-fourths of a second in the result for longitude, and consistently in the different trips, it was determined to transport them together so that they might be exposed to the same circumstances. This was dove without any change of the results.

In deducing the final longitude weights were allowed according to the inverse ratios of the squares of the chronumeter errors and also according to the duration of the trips.

The discussion gives 1 min .29 .76 for the difference of lougitude of the stations at Savannah and at Fernandina, with a probable error of 0.06 .

OS THE WINDS OF THE WESTERN COAST OF TIE UNITED STATES, FROM OBSERVATIONS IN CONNECTION NITH THE COAST SURVEY.-BY A. D. BACHE, SUPERINTENDENT.
(Abstract for the Canadian Journal, communicated by the Author:)
The observations were made in connection with those of the tides in 1855 under supervision of Lieut., now Professor Trowbridge.

They are reduced by the methods stated in the paper on the winds of Cat Island in the Gulf of Mexico, and read before the Association in 1851.

The diagrams representing the wiuds for each month, for the half year aud year, are plotted upou the compass rose, and show the quantities of wind. Others representing the hourly observations made each week are upon the ordinary rectangular system. They show better than any verbal descriptions, the whole of the phenomena of the winds at San Diego, San Francisco, and Astoria, during the jear 1 Sä5.

The following simple generalizations are dedueed:

1. The great prevalence of westerly winds representing a flow of air at the -rface from the ocean in upon the land.
.. The general absence of easterly winds showing the absence of a return current at the surface. The proportion of westerly to easterly winds is as 8 to $₹$.
2. The increase of westerly winds in the summer, and their decrease in the winter.
3. When easterly winds blow at all, it is as a rule during the winter.
4. The N., N. E. and E. winds blorr more frequently in the morning than in the crenieg hours.
5. The S. E. and S. W. winds are in general pretty equally distributed over the morning and ovening hours.
6. The N. W. is the prevailing direction of the ordinary sea breeze at Astoria, aud San Diego, and the W. at San Francisco.

Sometimes the W. wind has that character at the first named stations and sometimes the S . W. at the last named.

A close inspection of the same diagrams will lead to other interesting results.
Considering the quantities of wind at the three places for the whole year, (diagram No. 13,) San Diego and Astoria present remarkable similarities, there is more N. E., E and S wind at Astoria, and more N. W. wind at San Diego. At San Franciseo the TV. and S. W. winds give the character to the rose.

All show the same deficiency of easterly winds, and San Francisco is deficient also in southwardly ones.

The monthly eurves grouped in two periods, from November to March, both included, and from April to October, shor that the anuual curve has the summer type impressed upon it.

The N. W. wind prevails in August at Astoria and San Diego, and the W. and S. W. at San Franciseo.

There is scarcely any wind from points between North round ly east and south. The form of the ruse is execedingly simple, and the generalization very obvious.

The N. E., E., S. and S. W. winds are considerable at Astoria, and the N. W. winds, give the prominent feature to the rose curve.

As the winter is not the windy season, so the months of March and September. are not the wiody months. The quantities in the several months and in the several directions are shown on Plate B. On the contrary, July is one of the windiest months of the year.

The further particulars deduced for each of the places of observation cannot be clearly followed without the diagrams.
on the haigits of tides of the atlantio coast of the united states, from observations in the coast survey. bí a. d. bacie, superintendent.

(Abstract for the Canadian Journal, communicated by the Author.)

The generalizations resulting from a study of the Coast Survey observations of the tides from Cape Florida to Portland are given in this paper, and are extended by the obscrvatious of Admiral Bayficld and Captain Shortland to the coasts of Nova Scotia and New Brunswick.

The coast is developed into a straight line, and the tidal stations plotted upon it with their actual distances from each other. At each station an ordinate is erected proportional to the height of the tide. The extremities of these o:dinates are joined by a broken line, and a curve representivg the general average of the change of heights is drawn across this line. A model in which vertical wires proportional to the rise and fall of the tides are inserted upon a map of the coast, at points corresponding to the tidal stations, shows clearly the law of change of heights.

In obtaining the curve of heights only the points corresponding to the tidal stations of the outer const were joined; so, in the model, wires of different material represent the outer and inside tidal stations.

The least rise of tides is at Cape Florida, Cape Hatteras, and near the east end of Nantucket, the greatest at Tybec entrance, New York entrauce, Boston aud the Bay of Fundy stations.

The physical features of the coast clearly marked out are the great Southern Bay betweeu Cape Florida and Cape Hatteras, the great Middle bay between Cape Hatteras and Nantucket, and the Eastern bay between Nantucket and Cape Sable, which itself may be part of the great Eastern bay between Nantucket and Newfoundland. This form of the coast, has, of course, not escaped the attention of geographers.

The tides are lowest at the entrance of these bays and rise as they pass into and up them.

Massachusetts bay is a dependency of the eastern bay, and so is Fundy. These interior bays, as also the sounds freely open to the sea along the, coast present the same features in their tides. Chesapeake bay, widening and changiag direction from the entrance, is an exception to the rule. Nantucketand the Finyard Sounds, Buzzard's bay, Narragansett bay, Long Island Sound, New York Bay, and Delaware Bay, come under the rule.

NOTES ON THE MEASUREMENT OF A bASE FOR THE PRIMARY TRIANGULATION OF THE
EASTERN SECTION OF THE COAST OF THE UNITED STATFG, ON EPPING PLAINS, MAKNE.
BY A. D. BACHE, SUPERINTENDENT OF TEE U. B. COAST SURVEY.

(Abstract for the Canadian Journai, communicated by the I iuthor.)

The reconnoissance for a base of verification at the eastern extremity of the primary triangulation in section I. of the coast was cominenced by Chas. O'Boutelle, Esq., and Major Henry Prince, U. S. A., Assistants in the Const Survey in 1853; and continued through 1854 and 55 . The absence of long and straight beaches on this coast rendered it absolutely necessary to look for an interior site.

The reconnoissance resulted in the selection of Epping Plains, Penobscot Co., Me., as the most suitable site for the purpose, considering the character of the ground itsclf, and the facility of connecting the ends of the base with the primary triangulation.

In 1856 I examined the site and took steps to obtain the necessary estimate of the cost of preparing it for measurement. The profile of the road as graded gives a good general idea of the ground, as it varied but little from the natural profile.

The whole length of the line is about 8719 metres, or 5.4 miles. Its general direction is $\mathrm{E} 41^{\circ} \mathrm{N}$ (true bearing). From the eastern end for about 4 miles the plain is quite level, rising in the first mile pretty regularly about 15 feet, descending nearly as much in the sccond to rise by the same quantity in the third. It then runs along an elevated level for a fourth of a mile and descends gradunlly to the rougher part of the base which is included between the $8 \frac{3}{4}$ miles from the east end and western end of the base.

This line was skilfully graded by Mr. Boutelle so as to follow the natural surface Where the grades did not run above three degrees, and to give as long slopes as possible of the same grade for the convenience of measurement.

The graders partly consisted of the farmersind lumber men of the district, $\pi .0$ served with great cheerfulness and skill in the use of the heavy implements for rough grading. One of the greatest difficulties was the removal of such boulders
as were in the line, many of them being of such size as to require blasting to break them up, and some being actually removed to the required distance from the line by heavy blasts.

The base apparatus already described before the association and described and flgured in my report for 1854, by Licut. E. B. Hunt, of the Corps of Engineers, was used in this measurement.

The measurement was begun at the west end of the line on Saturday, the 18th of July, but the next week proved so rainy that it was only resumed in earnest on Monday, 27th.

The work of the first Saturday (24 tubes) was measured on the following Monday with precisely the same result as to length, the end measurement falling precisely on the marks which had been placed as terminating the first. The mark was placed and verified as all others of the same surt in one measurement by a transit placed at right angles to the line and at a moderate distance from it.

This was a descending slope of the strongest grade adopted, and there was a difference of temperature of some five degrees in the two measurements. On Tuesday alength of 18 tubes which had been measured on Monday was re-measured with an identical result. This was on an ascending slope.

On Monday the work was in part interrupted by the arrangements for photographing the apparatus, on Tuesday by a fog, and on Wednesday by showers in $i . / \wedge$ morning; we made, however, half a mile each day.

On Weduesday began a series of four unbroken days, during the first of which we measured $\frac{7}{8}$ of a mile, and on the three others a mile or more than a mile each day, reaching the east end of the Base on Monday evening.
Whole length of Base 28,607 feet, or about 5.4 miles.
Mean level of Base above mean tide 257 feet. Approximate correction for reduction to the level of the sea 4 inches nearly. No. of tubes inclined 647
" " level 810
Correction for versed sine for whole base, 9.2 feet to be subtracted.
Maximum inclination $3^{\circ} 14^{\prime}$
Greatest day's work 281 tubes, 1.05 miles, in 11 h .10 m . working time, averaging 1 tube in 2 m .27 s.
deposition of native getals m vein gissures, \&c., by electro-chemical agency. BY PROF. E. J. CHAPMAN, OF UNIVERSTTY COLLEGE, TORONTO.

From the known fact that solutions of various metallic salts may be decomposed by voltaic agency, and the metal obtained in the simple state, it has long been a favorite theory with many geologists, that depositions of native metals, in veins, \&c., are due to a similar cause. That such may be a perfectly legitimate conclusion in many instances, I am quite ready to admit; but, in applying this view to any particular case, it is necessary, unless the explanation is to be regarded as a mere theory of convenience, that certain collateral circumstances be not altogether excluded from consideration. If these circumstances oppose themselves to our theory, and remain by it altogethe: unanswered; nay, if but a single well-proved fact withold its concurrence from we conditions demanded-surely it is more consistent with our obligations to scientific truth, that we abandon the theory at once -however plausible in itself, and however convenient in its application-rather
than attempt to maintain it by keeping these opposing conditions out of sight, or by wilfully ignoriug their value. Norr, my object in the present brief communication, is simply to bring before the notice of the Sectiou, certain facts, experimental and otherwise, which appear to me to prove most incontestibly, that, in nine cases out of ten, the so-called electro-chemical theory as explanatory of the origin of uative metals in veins, is entirely fallacious.

We will take the case of native copper, under its known conditions of occurrence in the Lake Superior District and other parts of North America. The electro-chemical theory is constantly being brought forward in explanation of this particular case. As the copper is here, normally, in intimate association with vast masses of erupted trap, it might naturally be inferred that the presence of both trap aud copper was equally due to igneous action; * or, where the copper occurs in small striugs and arborescent masses apart from the trap, to a modification of this action, in volatilization and subsequent reduction of chloride of copper or some other volatile compoud. But the upholders of the electro-theory, find these views apparently too simple for their approral. It is rery possible that the copper may have originated by some other agency; but the following facts will, I think, shew that this unkuown agency was not the electro-chemical principle, whaterer else it may have been. The copper is very constantly found in the interior of zeolites or calc-spar, or surrounding crystals of the latter substauce in such a manner as to shew that the calc-spar was solid before the solidification of copper-the copper often presenting the most sharply-cut impressions, even to the minutest strix of the crystals of the calcarcous spar. I mention this well known condition of occurreuce first, because it is commonly: "urred to as affording a strong proof of the deposition of the copper according to the electro-chemical theory, although vothing can really be more fatal to the reception of this hypothesis.

The conditions of occurrence just alluded to, may, in the estimation of some, disprove the igucous origin of the copper; but equally do these conditions disprove ius origin acerrding to the other vier. In the first place, it must be remembered that the zeolites, and carbonate of lime also, are non-conducting bodes; and hence that no deposition of metal can be made to take place upon them, by the electro-chemical process, unless their surfaces be first coated mith graphite or some other conducting substance. This may be readily shown by the simple method of ascertaining the conductibility or non-conductibility of mineral bodies, employed by Von-Kobell. The substauce under ceamination is to be placed in a solution of sulphate of copper, and touched by a slip of zine, or a piece of zine bent into a kind of tongs may be used to lold the mineral. A deposition of metallic copper will rapidly take place upon couducting bodies, such as prites, galema, graphite, anthracite, de., de. ; but not upon non-conductors, as quartz, the feldspars, garnet, calc-spar, malachite, and other similar minerals.

This fact, when forced upou the attention of those who maintain the clectrochemical theory, has been allowed to be "an objection;" but that is not the proper term. It is an insuperable obstacle-nothing jess-to the legitimate adoption

[^7]of this theory; and until it can be satisfactorily explained amay, to attempt to account for the origin of the copper by reference to the principle in question, is surely, to say the leasi, a mere waste of words. A few other objections to this electro-chemical hypothesis may be briefly touched upon.
This hypothesis exacts necessarily a solution of the copper in some form or another. Naw, some of the minerals ansociated with these copper depositscarbonate of lime, for instance,-are readily altered by immersion in cupreots solutions; whereas the crgstals of carbovate of lime actually occurring with tho copper, as well as those met with in its inmediate neighbourhood, exhibit no appearance of alteration, but retain, on the contrary, their white color and original surface condition. By placing these same crystals for a short time in a solution of sulphate of copper, they become converted at the surface into malachite, or into a copper earbmate of similar aspect, more especially if the solution be kept at a moderately elevated temperature. \dagger Again if the enormons deposits of Lake Superior originated in this manner, might we not reasonably look for the presence of vast secondary products, the results of the chemical decompositions which must necessarily have taken place. It is asking almost too much to assume that these secondery products may, from their solutility, or from uther causes, have entirely disappeared, without leaving behind them very manifest traces of their former presence. But, yet again, if we assume this origin for the copper, we must necesarily assume aliso that the cuprems solution came from above: that is to say, from an overlying, not from an unikrlying source; as otherwise, from the filling up of the fissures, the supply.would quickly have beencut off. This involves manifold difficulties of an easily imagined character.

My object, in the present note, is not to propose thec.ies in explanation of the origin of these copper deposits, but simply to shem that if one of the hypotheses already advanced wiit this vie, -that which attributes the larger copper masses (in intimate association with the trap) to direct igueous action; and thesmaller, arborescent ant more distinct masses to gascous e: - ?uations as previously explain-edl-be not free from difficuly; the other, or socalled electro-chemical theory, is, in the cases wferred to, abvolutely nutenable; and, amongst other reasons, chefly for this, mancly: that the deposition of the copper on non conducting bodies is opposed to all kuown pinciples. It is to be hoject, therefore, that those who still feel inclined to alopt and maintain this theory of emrenic ee, will not forget to enlighten us as to the eanse of the peculiad departure from known lats exemplified in the cases under revierr.

THOLGITS ON SRECIES.—DI JAMES D. DANA.
While direct investigation of individual ohjects in nature is the true method of ascertaining the laws and limits of species, we have another source of suggestion aud authority in the comprehensive principles that perrade the universe. Tho snuree of doubt in this synthetic mode of reaching truth consists in our imperfect appreciation of universal law. But science has already searehed deeply enough into the differeot departments of nature to harmonize manay of the thoughts that are coming in from her wide limits; and it is well, as we go on in researeh, to compare the results of observations with these utterings of her unirersality.

[^8]I propose to present some thoughts on species from the latter point of view, reasoning from central principles to the circumferential, and, if I mistake not, we shall tind the light from this direction sufficiently clear to illumine a subject which is yet iuvolved in doubts and diffice!ties.
The questions before us at this time are-

1. What is a species?
2. Are species permancut ${ }^{8}$
3. What is the basis of variations in species?

1. What is a species?

It is common to define a species ag a group comprising such individuals as are alike in fundamental qualities; and then by way of elucidation, to explain what is meaut by fundamental qualities. But the idea of \mathfrak{a} group is nut essential; and moneover it tends to confuse the mind by binging before it, in the outset, the endless diversities in individuals, and suggesiang numberless questions that vary in nuswer for each lingdom, clas; or suburdiuate group. It is better to approach the subject from ia profounder point of view, search for the true idea of distinction anong species, and then proceed onward to a consideration of the system of variables.
Let us look first to inorganic nature. From the study of the inorganic world, we learn that each element is represented by a specific amount or lav of force; and we even set cown in uumbers the precise value of this foree as regards one of the deepest of its qualities, chemical attraction. Taking the lightest clement as a unit to mensure others by, as to their weights in combination, oxygen stauds in our books as 8 ; and it is precisely of this numerical value in its compounds: cach molecule is au S in its chemical force or lav, or some simple multiple of it. In the same way there is a specific number at the basis of other qualities. Whenever then the oxygeu amount and lind of force was concentrated in a molecule, in the act of creation, the species oxygen commenced to exist. And the making ef many such molecules instead of one. was only a repetition in each molecule, of the idea of oxygen.
In combination of the elements, as of oxygen and hydrogen, the resultant molecule is still equivalent to a fixed amment, condition, or law, of chemical force; and this law, which we express in numbers, is at the basis of our notion of the new species.
It is not necessarily a different amount of foree; for it may be simply a different state of concentration or different rate or law of action. This should be kept in mind in conuection with ahat follows.

The essential idea of a species, thence deduced is this: a species corresponds to a specific amount or condition of concentered force, defined in the act or law of creation.
Turn now to the orgavic world. The individual is involved in the germ-cell from which it proceeds. That cell possesses certain inherent qualities or powers, bearing a definite relation to external uature, so that, when laving its approprinte nidus or surrounding conditions, it will grow and develope out cach organ and member to the completed result, and this, both as to all chemical changes, and the cyolution of the structure which belongs to it as a subordinate to some kingdom, class, order, genus and species in nature. The gern-cell of an organic being developes a syecific result; and like the molecule of oxygen, it must correspond to
a measured quota or specific law of force. We cannot apply the measure, as in the inorganic lingdom, for we have learned no method or unit of comparison. But it must nevertheless be true, that a specific predetermined amount, or condition, or law of force, is an equivalent of every germ-cell in the kingdoms of life. I do not mean to say that there is but one lind of force; bat that whatever the kind or kinds, it has a numerical value or law, although human arithmetic may never give it expression.

A species among living beings, then, as well as inorganic, is based on a specific amount or condition of concentered force defined in the act or laus of creations.

Any one species has its specific value, or law of force; another, its value; and so for all: and we perceive the fundamental nution of the distiuction between species when we view them from this potential stand-puint. The species, in any particula: cabe, began its existence when the first germ-cell or individual was created; and if several germ-cells of equivalent force were created, or several individuals, each was but a repetition of the uther; the species is in the potential nature of the individual, whether one or many individuals exist.

Now in organic beings,-unlike the inorganic,-there is a cycle of progress involving growth and declinc. The oxygen molecule may be cternal as far as any thing in its nature goes. But the germ-cell is but an incipient state in a cycle of changes, and is not the same for two successive instants; and this cycle is such that it includes in its flow, a reproduction, after an interval, of a precise equivalent of the parent germ-cell. Thus an indefinite perpetuation of the germ-cell is in fact effected; yet it is not mere endless being, but like evolving like in an unlimited round. Hence, when individuals multiply from generation to generation, it is but a repetition of the primordial type-idea; and the true notion of the species is not in the resulting group but in the idea or potential clement which is at the basis of every individual of the group; that is, the speciic law of force, alike in all, upon which the power of each as an existence and agent in nature depends. Dr. Mortor presented nearly the same idea when be described a species as a primordial organic form.

Having reached this iciea as the starting point in our notion of a species, we must still, in order to complote and perfect our view, consider what is the true expression of this potentiality. For this purpose, we should have again in mind, that a living cell, unlike an organic molecule, has only an historical existence. The species is not the adult resultant of growth, nor the initial germ-cell, nor its condition at an. sther point; it comprises the whole history of the developement. Each species has its own special mode of developement as well as ultimate form or result, its serial unfolding, inworking and outflowing; so that the precise nature of the potentiality in each is expressed by the line of historical progress from the germ to the full expansion of its powers, and the realization of the end of its being. We comprehend the type-idea only when we understand the cycle of evolution through all its laws of progress, both as regards the living structure under developement within, and its successive relations to the external morld.

2. Permanczice of species.

What now may we infer with regard to the permanence or fixedness of species from a general survey of nature?

Let us turn again to the inorganic world. Do we there find oxygen blendieg by indefinite shadings .rith hydrogen or with any other elemeat? Is its combining
number, its potential equivalent, a varying number,-usually 8 , but at times 8 and a fraction, 9, and so on? Far from this the number is as fixed as the universe. There are no indefinite blendings of elements. There are combinations by multiples or sub-multiples but these prove the dominance and fixedness of the combining numbers.

But further than this, even numbers, definite in value and defiant of all destroying powers, are well known to characterize nature from its basement to its topstone. We find them in combinations by volume as well as weight, that is in all the relations of chemical attraction; in the mathematical forms of crystals and the simple ratios in their modifications,-evidence of a numerical basis to a cohesive attraction ; in the lams of light heat, and sound. Indeed the whole constitution of inorganic nature, and of our minds with reference to nature, as. Professor P.irce has well illustrated, involves fixed numbers; and the universe is not only based on mathematics, but on finite deitrminate numbers in the very natures of all its clemental forces. Thus the temple of nature is made, we may say, of hewn and measured stones, so that, although reaching to the hearens, we may measure and thus use the finite to rise toward the infinite.

This being true for inorganic nature, it is necessarily the law for all nature, for the ideas that pervade the universe are not ideas of contrariety but of unity and universality beneath and through diversity.

The units of the inorganic world, are the weighed elements and their definite compounds or their molecules. The units of the orgavic are species which exhibit themselves in their simplest condition in their germ-cell state. The kiugdoms of life in all their magnificent proportions are made from these units. Were these units capable of blending with one another indefinitely, they would no longer be unts, and species could not be recognized. The system of life would be a maze of complexities; and whatever its grandeur to a being that could comprehend the infinite, it would be unintelligible chaos to man. The very beauties that might charm the soul would tend to engender hopeless despair in the tinughtful mind instead of supplying his aspirations with eternal and ever-expanding truth. It would be to man the temple of nature fused over its whole surface and through its structure, without a line the mind could measure or compreliend.

Looking to facts in nature, we see accordingly every where, that the purity of species has been guarded with great precision. It strikes us naturally with wonder, that eveu in senseless plants, without the crnotional repugnance of instinct, and with reproductive organs that are all outside, the fiee winds being often the means of trnusmission, there should be rigid law sustaiued against intermixture. The supposed cases of perpetuated fertile hybridity are so exceedingly few as almost to condemn themselves, as no true examples of an abnormity so abhorrent to the system. They violate a principle so essential to integlity of the plant-kingdom, and so epposed to nature's whole plan, that we rightly demand long and careful study before admitting the exception.

A few words will explain what is meant by perpetuated fertile hybridity. The following are the supposeable grades of results from intermixture between two species:-

1. No issue whatever-i he usual case in nature.
2. Mules (baming thus the issue) that are wholly inferiile whether nmong themselves or in case of comnection with the pure or original stock.
3. Mules that are wholly infertile among themselves, but may have issue for a generation or two by emnection with one of the original stock.
4. Biules that are wholly infertile among themselves, but may have issue through indefinite generations by comection for each with an individual of the original stock.
5. Mules that are fertile among themselves through one or two gencrations.
6. Mules that are fertile among themselves through an indefinite number of generations.

The cases 1 to 5 are known to be established facts in uature; and each bears its testimony to the graud law of purity aud permanence. The examples uvder the heads 2 to 5 become severally less and less numerous, and art must geuerally use an unatural play of forees or arrangements to bring them about.

Again, in the animal kingdom, there is the same aversion in nature to intermixture, and it is enotional as well as physical. The supposed cases of fertile hylridity are fewer than among plants.

Moreover, in both kingloms, if hybridity be begun, nature commences at once to purify herself, as of an ulcer on the system. It is treated like a disease, and the energies of the species combine to throw it off. 'lhe short run of hybridity between the horse aud the ass, species very closely related, reaching its end in one single generation, instead of favoring the idea that perpetuated fertile hybridity is possible, is a speaking protest against a principle that would rum the system if allowed free scope.

The finiteness of nature in all her propurtions, and in the necessity of finiteness and fixeduess for the very existence of a kingdom of life, or of human seience its impress on finite mind, are heuce strong areunents for the belief that hybridity caunot seriously trifle with the true units of uature, and at the best cau only made temporary variations.

It is fair to make the supposition that in case of a very close proximity of species, there might be a degree of fertile hybridity allowed; and that a closer and a closer aftinity might give a longer and a longer range of fertility. But the case just now alluded tu seems to cat the hypothesis short; and moreover it is not reasonable to attribute such ludefiniteness to nature's outlines, for it is at variance with the spirit of her system.

Were such a case demonstrated by well established facts, it would necessarily be admit-ed ; and I would add, that investigations directed to this point are the most important that modern scicace can undertake. But until proved by argumeuts better than those drawn from domesticated animals, we may plead the general principle against the possibilities on the other side. If there is a law to be discovered, it is a wide and comprehensive hat, for such are all mature's principles. Nature will teach it not in one corner of her system ouly, but more or less in every part. We have therefore a right to ask for well defined facts, taken from the study of successive generations of the interbreeding of species known to be distinct.

Lenst of all should we expect that a l:w, which is so rigid among plants and the lower animais, should have its main execptions in the highest class of the animal liugdom, aud its most extravagaui violations in the genus Homo; for if there are more than one species of 2 la , they have become in the main indefinite by intermixture. The very crown of the kingdom has been despoiled; for a kingdom in nature is perfect only as it retaius all its original parts in their full symmetry, unde-
faced and unblurred. Man, by receiving a plastic body, in accordance with a law that species most capable of domestication should necessarily be mosi plinut, was fitted to take the whole earth as his duminion, and live under every zune. And surely it would bave been a very clumsy method of accomplishing the sane result, to have made him of many species, all alnitting of indefinite or nearly indefinite hybridization, in direct opposition to a graud principle elsewhere recoguized in the orgamic kingdoms. It would have been using a process that produces impotence or nothing among animals, for the perpetuation and progress of the human race.
There are other ways of accounting for the limited productiveness of the mulatio, without appealing to a distinction of species. There are causes, independeut of mixture, which are making the Indian to melt away before the white man, the Sandwich Islander and all savage people to sink into the ground beiure the power and energy of hipher intelligence. They disappear like plants beneath those of stronger root and growth, being depressed morally, intellectually and physically, contaminatul by new vices, tainted variously by foreign disease, and divindled in all their hopes, and aims, and means of progress, though an overshadowing race.

We have therefore reason to believe from man's fertile intermixture, that he is one in species; and that all organic species are divine appointments which cannot be obliterated, unless by annihilating the individuals representing the species.

It may be said, that different species in the inorganic Torld combine so as to form new units, and why may they not in the organic? It is true they combine, but not by indefinite blendings. There is a definite law of multiples, and this is the cental idea in the system of inorgauic nature. In organic nature, such a law of multiples, if existing, would be general, as in the inorganic; it would be an essential part of the system, and should be eavily verified, while, in fuct, ubserration lends it no support, not even enough to have suggested the hypothesis.

In one kingdum, the inorganic, there is multiplication of kinds of units by combination, according to the law of multiples, and no reproduction; while in the organic, there is reproduction of like from like and no multiplication of kinds by combination. And thus the two departments of living and dead nature widely diverge.

Neither does the possibitity of mere mixture among inorganic substances aford any a a $a \log y$ to sustain the idea of possille hybrid mixture indefinitely perpetucted among living beings. The mechanical aggregation of units íhat make up urdinary mixture, is ene thing; and the combination that would alter a germ, one of the units in organic species, even to its fundamental nature, is quite another. This last is not aggregation. It is as different from mere mixture as is chemical combination, and stands somewhat in the same relation, so that the analogy has no bearing on the question.

3. Variations of species.

But there are variations in species, and this is our next topic. The principles already considered teach, as we believe, that each species has its specific value as a unit, which is essentially permanent or indstructible by any natural source of chauge; and we hare, therefore, to almit in the outset, if these priaciples are true, that variarious have their limits, and caunot extend to the obliteration of the fundamental charasteristics of a species.

To uuderstand these variations, we may again appeal to general truths.
Variation is a characteristic of all things finite; and is involved in the pery
conditions of existence. No substance or body can be wholly independent of every or any other body in the universe. The most comprehensive and influential law in nature, most fundamental in all change, composition or decomposition, growth or decay, is the law of mutual sympathy, or tendeney to equilibrium in force through universal action and reaction.

The planets have their orbits modified by other bodies in space through their changing relation to those bodics. A substance, as oxygen or iron, varies in temperature and state of expansion from the presence of a body of different temperature; in chemiral tendencies from the presence of a luminous body like the sun; in magnetic or electrical attraction from surrounding magnetic or electrical influences. There is thus unceasing flow and unceasing change through the universe. All the natural forces are closely related as if a common family or group, and are in coustant mutual interplay.

The degree or hind of variation has its specific law for each element; and in this law the specific natur: of the element is in a degree expressed. There is to each body or species the normal or fundamental force in which its very nature consists; and in addition, the relation of this force to other bodies, or kinds, amounts or conditions of force, upon which its variations depend. One great end of inorganic science is to study out the law of variables for each element or species. For this law is as much a part of an idea of the species as the fundamental potentiality; indeed the one is a measure of the other.

So again, a species in the organic kingdoms is subject to variations, and upon the same principle. Its very development depends ou the appropriation of material around it, and on attendins physical forces or conditions, all of which are variable through the whole of its history. Every chemical or molecular law in the universe is concerned in the growth,- the lans of heat, light, electricity, cohesion, \&c.; and the progress of the developing germ, whatever its primal potentiality, is unevoidably subject to variation, from the diversified influences to which it may be exposed. The new germ, moreover, takes peculiarities from the parent, or from the circumstances to which its ancestry had been exposed during one or more preceding generations.

There is then a fixed normal condition or value, and around it librations take place. There is a central or intrinsic law which prevents a species being drawn off to its destruction by any external ageney, while subject to greater or loss. variations under extrinsic forces.

Liability to variation is hence part of the law of a species; and we cannot be said to comprehend iu any case the comphate idea of the type until the relations to external forces are also known. The law of variables is as nuch an expression of the fundamental equalities of the species in organic as in inorganic nature; and it should be the great aim of ssience to inves' fate it for every specics. It is a source of knowledge which will yet give us a deep insight into the fundamental laws of life. Variations are not to be arranged under the head of accidents: for there is noining accidental in nature; what we so zall, are expressions really of profound law, and often betray truth and law which we should otherwise never suspect,

This process of variation is the external revealing the internal, through their sympathetic relations; it is the law of universal nature reacting on the law of a. special aature, and compelling the latter to exhibit its qualities; it is a centre of

84 AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE.

force manifesting its potentiality, not in its own inner working, but in its outgoings among the equibrating forecs around, and thus offering us, through the known and physical, some measure of the vital within the gern. It is therefore one of the richest sources of truth open to our search.

The limits of variation it may be difficult to define among species that have close relations. But being sure that there are limits-that science, in looking for law and order written out in legible characters, is not in fruitless search, we ueed not despair of discovering them. The zoolugist, gathering shells or mollusks from the coast of eastern America and that of Japan, after carcful stuc!y, makes out his lists of identical species, with the full assurance that species are definite and stable existences; and he is even surprised with the identity of characters between the individuals of a species gathered from so remote localities. And as he sees zunlogical geugraphy rising intu une of the grandest of the sciences, his faith in species becomes identified with his faith in nature aud all physical truth.

If then we may trust this argument from general truths to special,- general truths I say, for general principles as far as established are truths-we should conccive of a species from the potential puint of view, and regard it as-
a. A concentrated unit of furce, an ineflaceable component of the system of nature; but
b. Subject to greater or less librations, according to the universal law of mutual reaction or sympathy among forces.

And, in addition, in the organic kingdom,
c. Exhibiting its potentiality not simply or wholly in any existing condition or action, but through a cycle of growth from the primal germ to maturity, when the new germ comes forth as a repetition of the first to go auother round in the cycle and perpetuate the original unit; and, therefore, as follows from a necessary perpetuity of the cycle-
d. Exhibiting identity of species among individuals by perpetuated fertile intermixture ia all normal conditions, and nomidentity by the impossibility of such intermixture, the rare cases of continuations for one or two generations, atiesting to the stability of the law, by proving the effort of nature to rid herself of the abnorinity, and her success in the effort.
e. Th : many like individuals that are cons,uecific do not properly constitute the species, but each is an expression of the species in its potentiality under some one phase of its variables; and to understand a spucies, we must know its law through all its cycle of growth, and its complete series of librations.

We should therefore conceive of the system of nature as involving, in its idea, a system of units, finite constituents at the basis of all things, cach fixed in lav; these units in organic nature as addiug to their kinds by combinations in definite propositions; and those in organic nature adding to their numbers of representative individuals, but not kinds, by self-reproduction; and all adding to their varieties by mutual reaction or sympathy. Thus from the law within and the lav without, under the Being above as the Author and sustainer of all law, the world has its diversicy, the Cosmos its fullness of beauty.

I would remark agaia that we must consider this mode of reaching truth, by reasoning from the general to the special, as requiring also its complement, direct obserration to give unwavering confidence to the uind; and we should therefore encourage research with a willinguess to receive. Whaterer .results cone from
nature. We should give a high place in our estimate to all investigation tending to clucidate the variation or permmence of species, their mutability or immutability; and at the same tume, in order that appearances may not deceive us, we should glance towards ohher departments of nature, remembering that all truth is harmonious, and comprehensive law the end of science.

A word further upon our conception of species as realities. In acquiring the first idea of species, we pass, by induction, as in other cases of geueralization, from the special details diepliged among individuals to a general notion of a unity of type; und this general uotion, when written out in words, we may take as an approximate formula of the species. Une system of philosophy thence argues that this result of induction is nothing but a notion of the mind, and that species are but an imaginary product of logic; or at least, that since, as they say, (we do not now discuss this point), genera are groupings without definite limits which may be laid off variously by different minds, so species are undefned, and individuals are the only realities-the supposed limits to species being regarded as proof of partial study, or a consequence of a partial development of the kingdoms of nature. Another system infers, on the contrary, that species are realities, and the geveral or type idea has, in some sense, a real existence. A third admits that species are essentially realities in nature, but claims that the general ided exists only as a result of logical induction.

The discussion in the preceding pages sustains most nearly the last viem, that species are realities in the system of nature while manifest to us only in individuals; that is, they are so fir real, that the ilea for each is definite, even of mathematical strictness, (although nut thus precise in our limited view,) it. proceeding from the mathematical and infinite 'asis of nature. They are the units fixed in the plan of creation; and individuals are the raterial expressions of those ideal units.

At the same time we learn, that while species are realities in a most important and fundamental sen. 3 , no comprelensive type-idea of a species can be represented in any material or immaterial existence. For while a speces has its constants, it bas also its variables, each variable becomiag a constant so far only as its law and limits of variation are fixed; and in the organic kingdoms, moreover, each individual las its historic phases, from the gern through tiee cystr of growth. The general idea sought out by induction, therufure, is not made up of invariables. Limited to these, it represents no object, class of objects, or law, in nature. The variabies are a necessary complement to the invariables; and the complete species iden is present to the mind, only when the image in view is seen to be ever changing along the lines of variables and developement. Whatever indidualized coneeption is entertained, it is evidently a coneeption of the species in oue of its phases,-that is, uder some ne specific conditon as to size, form, culor, constitution, de., as regards each part in the structure, from among the many variations in all these respects thatare poscible : mind can picture to itself iudividuals only and nut species, and one phase at a time in the life of an organic individual, not the whole cycle.

We may attempt to reach what is called the typical form of a species, in order to make this the subject of a conception. But eren within the clusest range of What may be taken as typical characters, there are still variables; and moreover, we repeat it, no one form, typical though we consider it, can be a full expression of the species, as long as variables are such an essenlial part of its idea as constants

The advantage of fixing upon some one variety as the typical form of a species is this,- That the mind may have an initial term for the laws embraced under the idea of the species, or an assumed centre of radiation for its variant series, so as more easily to comprehend those laws.

Again, abrupt transitions and not indefinite shadings have been shomn to be the law of nature. In proceeding from special characters to a general species-idea, nature gives us help through her ste, ping stones and barriers. In former times, man looked at iron and other metals from the outside only, and searching out their differences of seusible characters, gradually climinated the general notion of each, by the ordinary logical method of gencralization. But science now brings the element to the line and plummet, and reaches a fixed number for iron and other elements as to chemical combination, ete. By this means, the studying out of the idea of a species seems almost to have escaped from the domain of logic into that of direct trial by weights and measures. It is no lovger the undefined progress of simple reason, with a mere notion at the end, but an appeal to definite measurable values, with staille numbers at buttom, fixed in the very foundations of the universe. So, in the organie lingdoms, where there is, to our limited minds, still greater indefiniteness in must characters, the barier against hybridity appears to stand as a physical test of species. We are thus elabled in searching into the nature of a species, to stitike from the outside detail to the foundation latr.

The ty pr-idea, as it presents itself to the miud, is no more a subject of defined conception than any mathematical expression. Could we put in mathematical terms the precise law, in all its cumpreheusiveuess, which is at the basis of the species irou, as we can for one of its qualities, that of chemical attraction, this mathematical expression would stand as arepresentative of̂ the species; and we might use it in calculations, precisely as we can useany mathematical term. So also, if we cuald write out in numbers the motential nature of an organic species, or of its germ, inciucing the laws of its variables, this expression would be like any other term in the hands of a mathematician; the mind would receive the immula as an expression for the species, and might con.jpare it with the formulas of ather species. But, after all, we have here a mere mat'bemathical abstraction, a symbol for amount or law of foree, which can be turned into conceptions, only by imagining (supposing this possible) the force in the course of its evolution of concrete realities, according to the law of development and laws of variations embraced within it.

NEWER PLIUCENE FUSDILS OF TEF: \rightarrow F. I-DVHENCE VALLEY.-BY PRUFENOR DAWSON.
The object of this paper was in the first place to notice several fossil shells recently found by the author and others in these deposits, and which did not appear to have been previously observed. The species mentioned were:

$$
\begin{aligned}
& \text { Nutica Heros, Say. Benuport. } \\
& \text { Natica Groulanduca, Berk.................................... do. } \\
& \text { Fusus tormatus, Gould. . .. Montreal. } \\
& \text { Presius harpularius, Couthoy } \\
& \text { Rissou minuta... . . Montreal. } \\
& \text { I'urvitella, (like crosa)..................... Reauport. }
\end{aligned}
$$

> Bulla oryza, Toit Montreal.
> Spirorbis sinistrorsu, Montague. do.
> Univalve, (perhaps Menestho albula)

Most of these are shells now living on the Atlantic const of America, north of Cape Cod, and some of them ranging very far north. The paper then referred to the distribution of the various kinds of drift in the vicinity of Montreal, abd to the conditions of the sea areas, in which the shells and other marine animals of the Newer Pliocenc period existed in the St. Lawrence Valley. Good evidence exists of a sea beach on Montreal Mountain, at an elevation of 470 feet above the sca. The sea area corresponding to this beach must have extended to the Laurentide lills and the escarpment of Niagara, and communicated freely with the ocean on the east. On the other hand there are lower shores of the same period only 100 feet above the St. Lawrence. These must have belonged to a very narrow prolongation of the present Gulf of St . Lawrence.

The conditions of climate, ice, drift, de., corresponding to these different shores must have been very diverse.

Again, in the stratified drift, it is possible to recognise, within a few inches of each other, a bed coltaning deep sea shells, and another containing species that are littoral; these sea buttoms currespunding tw different levels of the land. It is evident that any conclusions with reference to the climate indicated by the marine fauna of these successive beds of marine detritus, must take into account these fluctuatious of the sea level, and the changes in animal life consequent on them. Taking these into account, positive and reliable resulks may be attained; and the study of such districts as the St. Lawrence ralley may be made to cuntribute toward the elucidation of the conditions of life in older furmations.

NOETR AMEGICAN LAEES.-BY MR. CHARLES WHITMLESEX.
The fluctuations of level of the American lakes, have repeatedly formed a Eubject of inquiry, and have been brought under the notice of the Canadian Institute, by Major Lachan, in former years. These fluctuations present three distinct features. There was first the general rise and fall, extendiug through a long period of time; then the annual rise and fall occurring regularly within a certain period of each year, which Mr. Whittlesey styled the annual fluctuation; then there was the third, a local, fitful, and irregular oscillation, lasting sometimes from three to five minutes, and varying in duration from one to twenty-four hours. He had no difficulty in cxplaining the general rise and fall of the lakes, as they were merely the reservoirs for the drainage of the country of the surplus water, which passes thence by the St. Lawrence as a general opeuing to the sea. Mr. Whittlesey read a variety of statistics in reference to the range and extent of the two first named fluctuations, and said he was unable to find in these, or in the examinations he had made, any confirmation of the popular belief that there is a seven pears rise and fall of waterin the Lakes. He then directed attention to the cause of the third phenomenon-the irregular fluctuations which occur without any particular known cause. Aithough these pulsations, as tliey might be termed, were the first to attract notice, they were the last to have received any explanation. They occur in
all conditions of the atmosphere, but whether produced by electro-magnetic influence or not he could not say, although he thought it not unphilosophic to look in that direction for their cause.
direction of the cerinents of deposition and solnce of the materials of tae older palieozoic nochs.-by prof. james hall.

In treating of the elevation of mountains, the author remarked, sufficient consideration had not been given to the distribution of the material forming these mountain chains, in its unaltered condition. All the materials they knew of were stratified, and had been metamorphosed more or less. He proposed to occupy a few moments in following the direction of the ancient currents, and to show their parallelism with the mountain chains in the Laurentian Mfountoins, north-east of them, which are nearly parallel to the Appalachian chain. The Geological Survey would show whether these sediments were thicker to the eastward than to the westward; but he thought the direction of the currents which deposited the materials forming the Appalachian chain, was from the northeast. They had certainly good evidence, from the fact that the strata are of the same age, and are much thicker from the north-easterly direction then from the south-wesi. They gradually thin in that direction, and as he believed they were deposited by water, the further from the source they would be the thinner. They had reason to believe that in the south-west these strata were much thinner than in the north. Taking the Hudson River group which consists of sediments stretching to the south-west, with a thickness of 1000 feet to the north-east of us, it thins down to 600 feet in Pennsylvania, and finally in the Mississippi valley the thickness is not more than 100 feet. Passing from the Iludson rive: group and over a lapse of time, to the Oriskany Sandstone we find the deposits from the north-east.

At Gaspe the thickness is 7000 feet, in New York it is reduced to a few hundred feet, and the strata thin out in a westerly direction. The conclusion he had arrived at was that along these lines of deposit where the greatest accumulation of sediment has been made, is where we have the greatest elevation of mountain chains. This merely coincides with the direction of the ancient currents, and the Appalachian mountain range bas not been more uplifted than the other portions of the country, or than the plain between these and the Atlantic. In New York and Peunsylvania we get to the Potsdam Saudstone, and, therefore, there was no uplifting of any previously existing rocks before the Appalachian chain. The folding and plication had commenced at an early period-at a period before the upper Silurian Rocks were formed, and we find these strata plicated, and uplifted and metamorphosed in a considerable degree. We get no lower than the Potsdam Sandstone in any part of the Appalachian chain, and we can demonstrate that no lower mass has had anything to do in giving us the elevation of this mountain chain. The Professor then referred to his examination into other formations in confirmation of his hypothesis that elevating forees had not caused the uplifting of these mountain chains. On the contrary, if there had been no folding and plication, this range of mountains, he thought, would have been twice as high as they now are.

Clasification of the himan bace.-by the rev. prof. andenson, of noouestra.
This subject was introduced to the notice of ine Siection with a view of shewing the importance of some comprehensible classification of the varieties of the human race, in order to the correct observation of chose facts upon which one school of ethnologists founded their opinion that mankind consisted of several species, or of one species planted in several centres of creation. To illustrate the difficulties in the way of classification, Prof. Auderson mentioned that Virey divided the race into tro species-the white and the yellow; the black and the brown. But many difticultics interfere with the classification. Take, for iustance, the Arabians-the purest of the Semitic races-and he found the Arab in one place with light hair and blue eyes, while in the hot regions of the desert the Arab. very nearly approached the Negro. The same changes occurred in the Hindoos and great Iranian races, as they descended from the mountains to the hot deltas of the rivers and to the sea coast. This was also to be remarked in Africa; so that the distinction into white and yellow, black and brown, formed no really useful classification. Jacquenot spoke of three species of men; Dumoulin of eleren, of which the first was the Celto-Scyth Arab, the meaning of which he could not divine. Colonel St. Vincent made eleven species; and Luke Burke, the editor of the Ethonologist, made sixty-three; while Dr. Morton's posthumous works made twenty families, each of which he plainly looked on as a distinct species. These could not all be right. Again, Agassiz considered that there were at least eight, and perhaps a thousand centres of creation, though there was but one species; but there were many diffculties about that theory, as it would require a new miracle of creation for each supposed centre; and it was a good rule in physics not to allow new creations except where they were absolutely required. He concluded by saying that he thought the proper attitude for Ethoologists at present was to hold all theories as provisional, kecping themselves ready to give an upprejudiced cousideration to new facts whenever they appeared.
on the breaks in the sučcession of life in the britisif nocks-by frof. a. C. hamsay.

Professor Ramsay, of the Geological Survey of Great Britaiv, who atteuded the mecting as the representative of the London Geological Society, desaribed the physical breaks, and the breaks in the succession of life, which appear to be establisked by the palrontological study of the British rocks. In illustration he exhibited a chart to show the fossiliferous strata of Great Britain in their chronological order, and the number of genera and species of fossils found in each, as well as the number which pass from one series to the next above. He then discussed the probable causes at work to produce the phenomena under consideration, and expresed his belief that the extinction of the animal and vegetable species of fonsils was owing to physical chavges similar to those which are constantly in operation at the present time:
MONTILT METEOROLOGICAL RFGISTER, AT THE PROVINCIAY MAGNETICAL OBSERVATORY, TORONTO, CANADA WEST-OCTOBER, 1857.

91
REMARKS ON TORONTO METEOROLOGTCAL REGISTER FOR OCTOBER, 1857.

＇souput $\mathrm{x!}$ sNOS		－
$\begin{array}{\|c} \text {-seypait u! } \\ \text { mein } \\ \hline \end{array}$		
	\％	
	㤩首	
	－	
	O	
		 かの \qquad
	0	
	$\begin{aligned} & \text { \&i } \\ & \text { N } \end{aligned}$	
	$\stackrel{7}{0}$	
	4	
	产	
	E	
	$\begin{gathered} \text { Nun } \\ \text { A } \\ \hline \end{gathered}$	
	Ş	20\％
	烒	
	$\stackrel{H}{-1}$	Whonsw
	$\begin{aligned} & \dot{\sim} \\ & \sim \end{aligned}$	
	0	
${ }^{518}$		

REMARKS ON TORONHO MDTEOROLOGICAI，REGISMER FOR NOVEMBER． Barometer．－The mean height of the barometer was ．095 below the average；the he preatest for any November during the series． $\left(-3^{4} 5\right)$ was the lowest entry，and the sestl：was the coldest day of any November on ceord：the monthly ranke also was never excecded in any previons November the enth of show also was 3.63 inches in excess of the mean． 0 is57 were N． $32^{\circ} \mathrm{W} .2 .06$
uiles prar hour．
Thore was marked absence of meteorsat the epoch of their usian apnear of this oceurrence ever recorded．On the return of the mild weather the ice again broke up．

$\begin{gathered} \dot{0} \\ \underset{y y y}{*} \end{gathered}$		突 	
产			
宝		 	
	－3¢uvy	 	冎
		 $01111+t+1+t 11++t+$	
	音	 	
	fax		

 os $5^{\circ} .2$ on p ．in，．of Sth $\}$ Monthly yango $=$ range $=$ $\}^{\text {Mícall } 13.39}$
 $5^{\circ} \mathrm{G}$ from $\mathrm{D} . \mathrm{m}$ ．of 17 th to $\mathrm{a} . \mathrm{m}$ ．of 18 Sth ． $49.32\}$ Diffurence $=38^{\circ} 92$
 $7 S^{\circ} 2$
 Aurorn observed on 2 nights，viz．，on 17 thand 23 rd．
Possible to sec Aurora on 14 nithts；inpossible on 10 nights．
7haining on 14 days，- depth 3.235 inches，duration of fall 73.
Snowing on 9 days，－denth 6.9 inches；duration of fall 40.2

Highest Baromeler．
D Maximum Temperature． Mear maximum Temperaturo Mean minimum demperaturo Greatest daily rango Least daily range． Warmest day．．．．．．．．． Mnximum $\left\{\begin{array}{l}\text { Solar．}\end{array}\right.$ ation．\｛ I＇crestrial．．．．．．．．．．．．．．．．．．．．．．．．．．．．．90． 2 on a．m．of $25 t h$.

$$
\text { Possible to sec Aurora on } 14 \text { nirhts; impossible on } 10 \text { nights. }
$$

 22nd．Faint Halo round the Moon at $8.15 \mathrm{p} . \mathrm{m}$.

MONTULY METEOROLOGICAL REGISTER, ST, MARTIN, ISLE JESUS, CANAVA EAST-OCTOBER, 1857. BY CHARLES SMALLWOOD, M. D.,
BY CHARLES SMALLWOOD, M. D., LL. D.
Latilude- 15 deg. 32 min. North. Longitude-73 deg, 30 min. West. Height above ith

豙总		$\begin{aligned} & \text { WBATiEP, de. } \\ & \text { A cloudy sky is represented by } 10 ; \\ & \text { A clondless sky by } 0 \text {. } \end{aligned}$		
		6 A. 3r.	2 ram.	10 P. M.
0.376	...	C.C.Str. 4.	Str. \& Ni. 6	C.St. 8. Thu
...	\ldots	Clear.	Clear.	Clear.
\ldots	...	Do.	Do.	Grr. 2.
\ldots	...	${ }^{\text {Cob }}$ Ctr 4	Do.	Clear.
\cdots	\cdots	C. C Str. 4.	C. C. Str. 8.	C. Str, 10.
...	\cdots	Cilstr. 10.	Cist. 8.	Clear.
\ldots	...	C.Str. 6.	Do.	coir. Cum. 2.
...	...	Clear.	Do.	Clear.
...	...	Do.	Do.	Do
	\cdots	Do.	Do.	Do.
0.350	…	Light Cir. 4.	C.C.St. 6.	Str. 10.
0.350	\cdots	Nimb. 10.	Ni. 10.	Clea
$0.93: 5$	\cdots	Fog. 10	C.C.Str. 6.	Do.
1.176	...	Ni. 10.	C. St. 9.	Ni. 10.
...	...	St. 4.	Clear.	Do. 4.
	…	Cistr. 8.	C. Str. 4.	Do. 10.
0.478		Ni. 10.	Ni. 10.	Ni .10.
0.300	Inp	Ni. 10. S'eet	C. St. 8.	C. St. 8.
\cdots	...	C. St. 4.	Do. 8.	Clea
...	...	clear.	Do. 2.	Do.
\cdots	...	C. St. 4.	Light Cir. 4	Clear. Aur. Bore
	\cdots	Clear	C. Sir. 9.	C.St. 4. Do.
$1.49{ }^{\circ}$...	C. C. St. 6.	Rain.	Rain.
1.713	...	Paill.	Do.	C. St. \%.
.	...	istr. 8.	C. Str. 3.	Do. 10.
	...	C. St. 6.	Do. 10.	Do. 10.
Inapp		11) 0.110	Do. 10.	Do. 10.
Inapp		Do. 10.	Do. 9.	Do. 8.
		Do. 8.	Do. 10.	${ }^{\text {D Do. }} 10$.

REMARLS ON TIE ST. MARTIN, ISLE JESLS, METEOROLOGICAL REGISTEE FOR OCTOBER.
Highest the Bra day 30.224
$\{$ Iowest the 16th day 29.308
Barometer $\left\{\begin{array}{l}\text { Monthy Tean. } \\ \text { Monthly }\end{array}\right.$ 0.916
(Ilighest the Sth day $70^{\circ} .0$
Iowest the e2nd day $23^{\circ} .6$
Thermometer $\left\{\begin{array}{l}\text { Monthly Mean } \\ \text { Monthy Kange }\end{array}\right.$ $46^{\circ} 19$
Greatest Intensity of the Sun's Rays 98. $\frac{1}{6}$
Lowest P'oint of T'errestrial Radiation $22^{\circ} 1$
Mean of Xumidity 859
Amount of Evaporation 3.56 inches.
Rain felt on 10 days, anumutints to 0.323 inches; it was raining 90 hours and 50 minutes and was accompanied by thunder on one day.
Snow fell on the 20th day. Inapp.
Mrost pyevalent wind, N. E. by E. Least prevalent wind, E.
Most windy day, the 26th; mean miles per hour, 28.78 .
Least windy day, the 14 th ; mean miles per hour, 0.03 .
The electrical state of the atmosphere has indicated feeble intensity.
Ozone was in largo quantity.
Aurora Borealis visible on 2 nights.
memaris on tie st. Martin, IsLe Jesus, meteorological register FOR NOVEMBER.
Highest, the 26 th day 30.344
Lowest, the 19th 29.003
Barometer Month!y Tean.
Monthly Ramge $29.6 S 1$
Thermometer... $\left\{\begin{array}{l}\text { Highest, the 9th day } \\ \text { Lowest, the 25th day } \\ \text { Monthly Mean........... }\end{array}\right.$ $6.4^{\circ} .1$ $1{ }^{\circ} 0$
Moithly Range $63^{\circ} 1$
Greatest intensity of the Sur's Rays $09^{\circ} .6$
Lowest point of Terrestrial Radiation -1.0
Bean of Humidity 871
Rain fell on 12 days amounting to 5.713 inches; it was rainiug 71 hours 15 minutes, and was accompanied by thunder on one day.
Snow fell on four days, anjunting to 2.01 inshes; it was snowing 12 hours 10 minutes.
The most preralent wind was the W S W.
The least prevalent wind E.
The most windy day the 25th ; mean miles per hour 22.09.
Least windy day the 1st; mean miles per hour 1.09.
The electrical state of the Δ tmosphere has indicated moderato intensity
Ozone was in rather large quantity.

[^0]: afiord ample and satisfactory information, velativo to the stamps found in the United Eiusdom.

[^1]: * Vidc Canden's Brit. Eid. Gough, III. p. 438.

[^2]: "Aomina barl)ara fortasee etiam corrupta." "MILIT (avit)" "TVNGROR." "corr. PRAEF, cujus nomen male lectum est."

 Having stated the opinions of others, I shall now proceed to offer my own riews on the subject.

[^3]: "The great chain of the Rocky Mountains is next in the surface configuration, and from this point forward all the uniformity belonging to the Eastern United States disappears, and the greatest and most abrupt contrasts occur. As in the north of lidia and in other parts of Asia, everything here depends on configuration and surface; and not only on these directly, but also on the relation of any point or locality to an extreme of configuration in the viciuity. Thus the valleys

[^4]: "In revier of the distinctions of a general character belonging to the interior and Pacific climates, they may be briefly stated to be arililiy first; isolation of districts and conditions uext; and periodicity of rains, winds, and some other leading phenomena in distinction from equally distributed rains, dec., as in the Eastern Tuited States. The isolation of phenomena implies an interruption of the esmmetry so characteristic of the East, aud all the important differeness which follon in this train. Extreme contrasts, diversities, and transitions belong here to pluce or locality, and in the East to time." p. 164.

[^5]: ＂The popular anthor，jutge Thompen，has just empletent，for the puiblic ev．

 oecurrel abont forty years ago．Camb Gumey mas supposed to be an acior in this and other fagitions crimes，and made lis escape to the IVest Indies．Judige Thompon has hailt a Story upa these historic facts，which will probaldy be mow read by Ner England people than any book which he has ever mitem．It is： Fork of thrilling interest and rare power．＂

[^6]: * Ante Yol. I., page drisu

[^7]: - In support of this vicw, see Agassiz, "Jake Superior;" Dana, "Manal of Smeralogy;" Native Copper; Burat, "Geologic Appliquée ;" Fournet, and other olververs. It shoud also be remembered, in connection with this inquiry, that native copper occurs likewise in obler trmy crupted trap rocks of diferent ages and localities, as, ior example, in Connceticut, New Jersey, Siova Scotio, Rhenish Prussia, the Faroe Isles, Barthead in Scotond, and elswwhere. E. J. O.

[^8]: - Specimens of Carbonate of Lime colonved and allered by his process were cxhibited to the Section.

