The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /
 Couverture de couleur

Covers damaged /
Couverture endommagée
Covers restored and/or laminated /
Couverture restauree etou pelliculée
Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes geographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur

Bound with other material /
Relié avec d'autres documents

Only edition available /
Seule édition disponible

Tight binding may cause shadows or distortion along interior margin / La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la methode normale de numerisation sont indiqués ci-dessous.Coloured pages / Pages de couleur

Pages damaged / Pages endommagées
Pages restored and/or laminated)
Pages restaurees et/ou pelliculees
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials / Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas eté numérisees.

SCIENCE IN OUR PUBLIC SCHOOLS.

E follow up our article on "Practical Training in Public Schools," by a few more remarks on the same subject; it is one of great import. ance to the community, and should receive more public attention than has hitherto been given to it. We want more practical men to be on the Boards of Education, and our Public Examiners and School Inspectors should give more attention to what is practical in education and essential to the wants of our people, than to forcing upon them a more superficial knowledge of subjects of little importbe a do their requirements in after life. There cannot studies, cropt into All sorts of fantastic theories and notions have crept into the profession of teaching, and many of our With cors are becoming pedagogues, who are not satisfied the confining themselves to teaching growing mankind ing, escential parts of a practical education, such as reada Variety of and arithmetic, but stuff their pupils with to disety of information, which it is impossible for them occentric, in the form of ologies, isms, and crotchets of sential and pedantic examiners; so that the most esyoath part of education for an ordinary citizen, who in does not ine can spend but a few years at school, and who in not intend to study any of the learned professions, $h_{\text {nage }}$ neglected, and valuable knowledge lost which might fitably been gained had his time at school been more protom demployed. Such a state in our educational syslodge in dem reform, as it shows an utter want of knowcience our Education Departments of the value of of the and practical training to the mass of the youth
Something more is required in a country like Canada,
whose prosperity depends on agriculture and its mariufactures, and which aspires to hold a high place yet in the World's industrial progress, than even the knowledge of mere reading, writing and arithmetic, as taught in the common country schools, and the higher knowledge obtained in High Schools, which is too often of such a superficial character as to be of no after utility, and that want is practical illustration and practical teaching, which should go hand and hand together.

The knowledge of mere reading and writing to the poorer classes in the present day is far in advance of what it was a few years ago, and far be it from our desire to cry down the present system of education in Canada; on the contrary, it is most excellent and highly approved of by all; but it is the application of studies to the wants of life that we desire to deal with. Reading and writing, to be sure, are the keystones to further knowledge, but unless the child has been taught by early application some useful branches of study, and the mind directed into proper channels, by which a taste is developed for more solid information, all the use will ever be made of his knowledge of reading will be to peruse silly stories and trashy novels. The enormous sale of this class of books fully bears out this assertion.

We believe the feeling is growing stronger, day by day, in the minds of parents, that a change in the branches taught is necessary, and more attention should be paid to the introduction of certain branches of knowledge in our public schools that will be of practical utility in after life, and the question is one of choice of the subjects to be taught, as it would be unwise to introduce indiscriminately everything that happens to fall under the attention of those called upon to regulate these matters. And here we may observe that the Boards of Education should contain among their members men of high standing in the professions of civil and mechanical engineering, architecture, and chemistry, as well as those of high classical and mathematical attainments, as the latter are seldom, by the very nature of their education, practical men.

The subject has to be considered from two aspects :1st. What branches are absolutely neceseary ? and what others are merely desirable, and which can, without
harm, be entirely discontinued in the present state of society, and can be attained at any future period of life by self-study ? 2nd. What subjects of study have the best influence in developing practical judgment, and, in general, the minds of the pupils: This is a very important point. for, as stated in our article on "Practical Training" (see page 257, September numbor,) most branches, so far as taught in our public schools, are merely exercises of the memory-and what is the worst feature of it-a mere mechanical memory for words and names.
The atudy of Latin and Greek became prevalent in olden times, for the simple reason that the formef principally was the only language by which ambassadors, statesmen and churchmen could hold cunversation with foreign Courts and with each other, when nations mingled but little together and could not speak each other's language as they now do, and when the principal works handed down to us from posterity were nearly all written in these languages; and also for the reason that so little was known, in those days, of other matters, that it was impossible to kzep students busy except by acquiring the classical languages. But times have so changoll now, that if a man wishes to become eminent in one particular branch of science or literature, the whole study of a lifetime must be devoted to it. In practical knowledge the ancients were like mere children to the present generation, and we can learn scarcely anything practical from ancient writers; therefore, we are foreed to the conclusion that the teaching and the occupation of a youth's time at school, who is destined for a learned profession, and whose parents can afford to give him a collegiate education, should be of such a kind as is suitable to that end; but that the youth destined to be a mechanic, and whose parents can only attiord to keep him a few years at school, should not be obliged to follow the same studies in class with the student for a profession, and which he never can complete, but his time should be devoted to the acquisition of those branches of knowledge of practical use to him in the trace he is to follow, and not thrown away in acquiring a mere smattering of classics and mathematics. This is a grave error, even a serious wrong, and needs reform.

Writing, reading and arithmetic, geography and history, have for some time been considered necessary branches to be taught to all pupils in our public schools, and they are doubtless most important for every boy and girl to learn, but at the same time might be taught a general knowledge of the earth on which we live, of the various nationalities which partake of the advantages it offers, and a sufficient knowledge of practical geometry for mechanics. There are other branches which should be also taught, but which could be more readily impressed upon the mind in the form of lectures, accompanied by illustrations and proper diagrams, such branches as astronomy, anatomy of the human frame, geology and botany. The way in which many of these branches are taught in most schools makes the studies distasteful by confining the students to recitations from mere text books, when, if taught by lecture and made both amusing and instructive, would be comprehensive to the mind of the youngest child. We confidently believe that more real knowledge could be acquired by illustrative teaching in one year than by our present system of text books in two. These studies, combined with natural philosophy, would explain those
phenomena of nature immediately surrounding $\mathrm{us}^{\text {a }}$ and $\mathrm{all}_{\text {t }}$ are the best basis for religious culture, as they teach all respect and admiration for the wonderful powers which pervade the universe.

In regard to urawing, which in several previous articles we have advocated, it is a branch of tuition of the utmost importance, and which is receiving the greates consideration in the public schools of the United States and European nations, as evinced by the examples erf hibited from schools at the recent international exhibio tions; it is a branch which we may say is altogether dier regard d in the common public schools, and yet it is one , of the most essential studies for a mechanic; moreover, it has a most beneficial influ:nce in the development of the mental faculties. A pupil who has learned to draw has always a better developed mind than those ignorand of the art. , Drawing we should recommend to all, and pupils may be put to it quite young, especially when they possess some natural talent and like it. It requires, however, an able instructor to make the pupils reap all the benefits. This is the case with all the branches of in study, especially those that are more influential in developing other faculties of the mind than a parrot like memory, against which we always most earnestis prutest, but which unfortunately is the most cultivated, as by it the pupils make the most striking display ${ }^{\text {dt }}$ public examination:, at the expense, however, of othber and inuch more important mental faculties, whiob become crushed by the over-straining of the faculty of memory for words and sounds.
The above are only suggestions, the further develop ment of which we leave to the reflecting reader. have no doubt that many will agree. with us that there is a necessity for reformation in the method of teaching and in the branches of education taught in our publio schools, and of the unnecessary expenses parents are p to in the purchase of ncw books, many of which merely the productions of some political pedant, and in no way superior to other text books of the kind, frequently far inferior. The cost of unnecessary bo tious to now in public schools is becoming most 7 expense. In many instances the child has hardly leardad a few pages of a newly purchased book when it in thrown aside for another. It is high tit e that only 001 tain standard books should be used in our public schools, when the change is merely for another work, to obtain the sume end in different words, often to the cone fusion of the pupil.
In conclusion, we may add that we by no means mould insist upon following the same course for all pupils; fo those who love music and have a natural disposition foid it, obtain some preliminary knowledge which will al them afterwards to devote more time to it, as music is
study which, in order to acquire even the smallest degroi
年 of proficiency, requires more time than can be given to it in any public school ; but whatever branch of learning is taught in our public schools, let it be so practically taught that it will be thoroughly understood by any child of ordinary intellect, who, if thus practically instructed in early life, would, when his memory grom stronger and his intellect ripened, far excell in generd ability the boy with the parrot-like memory, who stand first in public school exaninations and is the teachertion prodigy, but often dues not come up to even mediocrits, in after-life.

EARLY INHABITANTS OF BRITANS.

At the Thursday evening lecture at the London Institution last Whek Professor Boyd Dawkins gave an interesting summary of What has been learnt of the eurly inhabitants of this country from pit and cave explorations. Enough, he said, was now the wh of them for sonse of their characteristics to be traced in the present populition. The claims of race have lately been urge.l in the cry of Panslavism, and we ourselves take pride in recoguising an Englishman as an Englishnann, whether he is horn in Britain, Australia, or America. The history of the "English"" from their invasion of this country in 449 is fairly well known. It touk ta o centurits from their first landing at the Isle of Thanet for tirem to dive back, district by district, the inhabitants peop found here, whom we should call the Welsh or Iberian people. It was not unril 607 the invaders took Chester. His object was to speak of this earlier people turned out by the hadish. He wished first to mention that the Roman invasion had no more influence, so far as blood was concerned, than has hiistory rule in India it the present time on blood there. The history of our insiand tregins with the age of steel, and iron-with that civilisation ot whech the term "iron age" is accepted as thpical. He had to deal with the pre-historic people. Before the iron age there was what is known as the "bronze age" of civilisation, and further back again than that the "polished stone" age. It was this "polished stone" age of which he had to apeak. The hatitations of the people of this age are now tnown to us from the examination of such traces of groups of Whichings as are met with at Cisbury. The people lived in huts Thich had roofs to them. Their animals, most prohably domesticated, were sheep, goat, ox, hog, and horse, and there is eridence from the bonts that the horse was used for food. The "ecethat the horse has ceased to be animal for food is due to the "ecclesiastical" superstition that, as it was used sacrificially, it
eat hot to be eaten. It canue to be not the "correct thing"' to and orse. The dog, too, was used for food, as well as for herding and other purposes. In all the sites of old dwellings broken and dogs, not of dous are met with. All the bones show they were large ${ }^{\text {dogen }}$, not diminutive pets. Still more can be learnt of the prople rom their implements. They had pottery made by hand, not
tarned on a wheel. They struck lights frum iron pyrites, not from stan a wheel. They struck lights from iron pyrites, not needles steel, as steel was not invented. They ground corn. The a feedles found point to the tailors' and dressmakers' art being in of the followed. They spun and wove apparently, for some parposes. nosposes. As now, so then, the ear was adorned, and perhaps, apeare rings were worn. The people, too, were warlike, and their liars, bows, battle-axes, and stones for slings show that they lited, then as much as "civilised" people do now to try the effect people, fors of destruction. They were evidently not a nomadic People, for thrir centres of habitations were well fortified, and Cineal Lane Fox is of opinion that the work shows as much enbumbering skill as any fortification works of our own day. The Tho ent of strongly-furtified places seems to indicate many tribes that enjoyed warfare. There is evidence from implements found, Sioua and a supple were miners. With all this they were a reliWestining a superstitious people. Avebury might be called their grapes cluster Abbey. It was an imposingly grand temple, and With placestered around it as burying-places are now associated the deaces of divine worship. The tombs contain such things as ho departed might want in his future state, and in and around "Wortant tumbs have leen found relics of funeral feasts or thakes." That there were family vaults is well eatablished, and momily lie. uliarities can be traced in the skulls. Looking at the of the tal of what we know of these people, we find in them many to the iudiments of that culture which we now enjoy. Turning Hork evidence as to where this people originally came from, the lberian, of as asologists on the C ntinent has shown that this Rurap, or, as he would call it, Welsh, race was widespread over Gurope. The small dark Basque of the Western Pyrenees showed people. At fairs in some of what would be made out of the old element At fairs in some of the Welsh towns, too, the Iberian froment could he traced in soine of the people who came to them rempect. out- the-way places. St. Asaph was renarkabie in this patect. In Ireland, ton, small dark ment are to be seen who, if Fogside by side with the Baspue, could not be distinguished as "berians type. The English who invaded the old "Welsh" or With light of our islands were, on the contrary, tall, fine penple, these old Wair and blue eyes, as is known from history. Although one be hardy Welsh w.re driven to the mountain fastnesses, there To be hardly a doubt that the raven tresses and flashing dark Ttaceable to themes come across in modern English people rre
the basis of a civilisation of which ours migh: be an outcome, except where we can trace other influences.

LIGHT AND LIFE.

The question as to how life is affected by the different colours of the spectrum has at various times engaged attention, and plant life has apparently been more sudied in this respect than animal. Two distinct series of researches lately described to the French Acalemy seem to afford some fresh insight into the matter, and it is iuteresting to compare them together. One series, by M. Bert, was on plants ; the other, by M. Yung, on the eggs of certain animals. M. Bert kept plants within a giass trough enclosure, containing an alcoholic solution of chlorophyll (very frequently renewed) and exposed them thus in a good diffuse lighr. The solution, which was very weak, and in a very thin layer, intercepted little more than the characteristic region of the red in the spectrum. This excluded part, then, was proved to be the indispensable part of white light, for the plants immediately ceased to grow, and before long died. It is this red region (as M. Timirigzeff has lately shown) that the greatest reduction of carbonic acid takes place. If red rays are kept from the leaf the plant can no longer increase its weight, it is reduced to consuming reserves previously accumulated, exhausts itself and dies. This part of the spertrum, however, though necessary, is not sufficient. Behind red glass plan s may no doubt live long, but they get excessively elongated and slender, and their leaves become narrow and little-coloured. This is owing to the absence of the blue violet rays. Thus each region of the spectrum contains parts that play an active role in the life of plants. Now turn to animals: M. Yung has experimented during three years on the effect of different spectral colours on the development of the eggs of frogs (the coinmon frog and the edible frog), of trout, and of fresh-water snails. It was found that violet light favoured the development very remarkably; blue light comes next in this respect, and is followed by yellow light and white light (which two gave nearly similar effects). On the other hand, red and green appear to be positively injurious, for it was found impossible to get complete development of the eggs in these colours. Darkness ioes not prevent development, but, contrary to what some have affirmed, retards it. Tadpoles of the same size, and suljected to the same physical condition previous to experiment, died more quickly of inatition when deprived of food in violet and blue rays than in the others.

(Quexies and Ausurexs.

A corrrspondent enquires for a remady to prevent new crucibles from cracking when first exposed to fire.
Ans.-We have received the following receipt from a practical mechanic: Coat the inside with albumen (that is, the white of an egg) ; when well absorbed and dry, apply a second coat. If any of our readers know a better plin, we should like to publish the result of their experience.-Editou S. C.

Cuxxespondencr.

To the Editor of the Scientific Canadian :

Dear Sir,-Whilst appreciating the great improvements made in your valuable magazine duriug the past two years, could you not also improve the Patent Office Record? The smallness of the diagrams, and particularly the lettrring, render it almost impossible to uuderstand them, and they are utterly useless for comparing with the words of the claim. In the United States there is always a rief given of the specification, sufficient to describe the use and workings of the machine patented, and one can always obtain, for a few cents, a full-sized copy of the drawing from the U. S. Patent Office. I think if you would give this matter consideration and do something to improve the Patent Record, you would have many more subsecibers.

Respectfully yours,
J. W. Brown,

Carriage Builder.

Kingston.

[This matter rests entirely with the Patent Office Department. The publishers only have the privilege of giving the Patent Office Record as a supplement to the suliscribers to the Scientifio Canadian. However, as we have already received seveial complaints on this matter, we shall be happy to draw the attention of the Pitenit Office to the subject of our correspondent's sug-gestion.]-EL. S. C.

TOOLS FOR METAL SPINNING, AND EXAMPLES OF SPINNING.

gmatent $\mathfrak{z x c c i x a n t e s . ~}$

THYAL SPITNING.

The operation of spinning metals, although exceedingly simple and capable of being practiced to advantage in almost every shop, and also by the amateur mechanic upon the foot lathe, is not generally understood. One reason for this is that the artisans who follow this branch of mechanics as a business usually conduct it under locked doors, and it is with considerable difficulty that the amateur in search of information on this and kindred subjects can obtain entrance to one of these establishments. The reason of this secrecy is plain enough, as the "kink" or "wrinkle," or, in plain English, the knowledge required to do the mechanical part of spinning, is so slight that secrecy is the only protection.

The tools required are few. They consist of a lathe; a fors or mould on which to shape the article; a tool rest with a series of holes for receiving, a pin to keep the tool from slipping, and s few spinning tools or burnishers of different sizes and shapes.
The lathe the amateur is supposed to possess; the tool rest he may easily make ; and the only other addition to the lathe will be a back centre of the form shown in Fig. 2. This form of center answers as a step to the work holder, and will bear considerable pressure without undue friction.
The tools required are shown in Figs. 3, 4 and 5. These are simply hard steel burnishers of the form shown, and varying in size, with the size and kind of work to be done. The size given in the engraving is about right for amateur work on the foot lathe. Fig. 3 shows in two views a ball tool. Fig. 4 shows both side and edge views of a curved tool. Fig. 5 shows a plain round burnisher. In some instances it may be necesgary to make tools of different forms. The operator will be guided in
the solection of his tools by the particular work in hand, and praictice will bring new suggestions as to tools and the manner of a.ing them.

The materials generally used in spinning are brass, copper, rinc, britannis metal and lead. All of these may be worked on sat foot lathe, but perhips the amateur will derive the most satisfaction at first by using britannia metal, as it works easily and does not require annealing. Articles in this metal also present a handsome appearance when done, whether simply polished or plated. Zinc must be spun quite hot. Articles of brass, if of considerable depth, must be annealed when partly done.
The form on which the metal is spun may be either hard or soft rood or metal. A good close-grained pine answers as well as anything for mo t purposes, and is very readily furned to the reyuired form. It may be attached to the face plate, B, and the disk to be spun may be held against it at first by a hard Food or metal piece, C, as shown in Figs. 6 and 7, which is forced against the disk by the tail center. After the spinning is in little advanced, a cup-shaped holder is applier, as shown bolt thed lines in Fig. 7. Nometimes the holder is secured by a bolt that runs through botl it and the form or mould, as shown to D, Fig. 8. In some cases a little rosin is applied to the form motrease the friction, but this is rarely necessary. The motion of the lathe should be quite rapid, and the disk should receive a coating of grease (lard or heavy oil) before applying the of oil theil. The position of the workman and the manner of holding in the may be seen in Fig. 1. It will be poticeri that the pir brough tool rest serves as a fulcrum for the tool, which must be disught with considerable pressure against the surface of the disk. This pin is moved forward from time to tine as the work 10 ances. The movement of the tool may be seen in Figs. 9 and 10, and the shape taken by the metal in front of the tool will ilso be seen. In swinging the tool towards the form it is mored bact direction of the arrow as shown in Fig. 9, and it is carried back as shown in Fig. 10. This last operation is very essential T_{00} the proper fitting of the nouid, and it also thickens the metal. yoo much should not be attempted at a time. A suecession of yaick movements, as iudicated in Figs. 9 and 10, under a moderate pressure, is much hetter than to do a great deal of execution at a single stroke. Shruld the metal tend to vibrate or buckle, a piece of wood may be applied to the back with the left hand ${ }^{1}$ ghown in Fig. 8.

The method of spinning a cup or pot without a form is illuscratind in Fig. 11. Here the netal is supported by a plain cylindrical mandrel, and is first spun into the form indicated by stroted lines, and then bringing the burnisher on the return veroke only to the shoulder which fo.ms the larger part of the Vessel. For small work on the foot lathe the han'lles of the commeed not he as long as represented in Fig. 1. The length $\mathrm{T}_{0} \mathrm{~m}_{\mathrm{m}} \mathrm{m}_{\mathrm{l}}$ emplayed for wood turning tools will answer.
Tor spin a sing a mandrel like that shown in Fig. 12 will be required. A plain flat ring pared between the shoulders of the mandrel is pressed upon by the roller seen above the mandrel in this the ring assumes the desired form. Napkin rings are made in this way. Fig. 13 shows a concave reflector. Fig. 14 reprelents a single cup formed of two pieces. Fig. 15 represents a conil vase made of three pieces, the smaller end of the upper or soldeal part and the upper portion of the base piece bring ball Fig in a spherical connecting piece. The two halves of the b^{2} velledg. 16 are made upon the same form. The edges are Ave opun and soldered together. The pitcher, Fig. 17, is made of it boun pieces, a short cast and turned piece that unites it to Fig. 18 , has a handle made of square wire. The card receiver, Faso, Fig has a spun top and base, and a cast standard. The equare Fig. 19, consists of four spun pieces and three legs of buare wire, uniling the body with the base. Fig. 20 shows a repregen a magnetic needle or other small apparatus. Fig. 21 of sqesents a vase composed of saven spun pieces and two handles process of wire. More complex examples of work done by the process of spinning might be farnished. The ones given are the entedly sufficient to enable the amateur to get an idea of and eadless variety of articles that may be made by this simple
acquired art. -Scientific A merican.

NHW CUT-OFT.

for the accompanying engraving represents an improved cut-off liut otom engines recently patented by Mr. Thomas E. L. Coldes, of Fall River, Mass. The improvement, although especially lifters for beam engines, is not coufined to this use. The atters are made in too parts. The fixed portion, A, being attiched to the valve rod in the usual way, the adjustable.por-
tion, B, is pivoted to the heel of the fixed portion, and is guided and supported by a curved arm that projects downward from the toe to the lifter Two screws, C D, pass through the lifter, the screw, C, being swiveled in the adjustable part of the lifter. The screw, D, merely presses against the back of the adjustable portion, giving an additional bearing.

The ordinary cut-off lifters of beam engines awe secured to the valve rods by means of set screws and keys; and they can be ad. justed only by loosening the aet screws and keys and changing

COLLINS' CUT-OFF FOR BEAM ENGINES.
the position of the lifters. This operation involves a great deal of labor and requires considerable time, and the engine must be at rest.

The advantages of the improvement above described are apparent. The lifters can be adjusted with great accuracy even while the engine is in full operation, by simply turning the screwa, C, D, and the application of the improvement to engines already in use in volves no change except in the lifters.

The Telephone as a Lightning Indioator.-Mr. George M. Hopkins, of Brooklyn, N. Y., during a recent thunder storm connected the gas and water pipe of his dwelling with an ordinary. Bell telephone, and discovered that the electrical dis. charges were plainly indicated, either by a sharp crack or by a succession of taps. This occurred when the discharge was 80 distant that the thunder was inaudible. The sound also seemed to be perceived by the ear before the lightning could be seen. There was a marked difference in the sharacter of the discharges, some that appeared single to the eye were really multiple. Often the discharges would consist of a series, beginning and ending with discharges larger than the rest, thus : \qquad sometimes the resometimes it would be thns \qquad -••• and water pipes wert used, being the most convenient and at the same time the safest conductors for the purpose. Special apparatus might be devised, having a good ground, and a series of points for gathering the electricity from the air, but in using apparatus of this kind thetib is always more or less danger.-Scicntific American.

Preservative Wrapping and Packing Paper.-Mi. Jóhíh F. Rodgers, of Philadelphia, claims to have dipcovered a preservative wrapping and packing paper for protecting cloths, furs, etc., from mildew and ravages of moths and other insects. The patent bears the date January 9th, 1878. The paper used is made from woolen and cotton rags and manila rope or manila paper. This paper is saturated with a mixture of 70 parts, by measure, of the oil remaining from the distiliation of coal tar naptha by live stesm with five parts crude carbolic acid, containing at least 50% of phenols, 20 parts of thin coal tar, heated to about $160^{\circ} \mathrm{Fsh}$. and tive parts of refined petroleum. After saturating the paper it is passed through squeezers and over hot rollers for the purpose of drying. When cool it is cut into sheets as desired, and the drying completed in the atmosphere. The paper thus treated is used for packing woolen clothing, cloths, furs, carpets, and all material likely to be injured by moths, mice, or vermin, and will also to a great cxtent, he states, prevent cotton material from mildew.

Flax vs. Silk.-Considerable excitement has been cansed in Lyons, France, by a discovery which purpoits to give to flax all the qualities and appearance of silk. It has long been known that silk is solable, not only in powerful acids, but also in soda and chloride of zinc ; and it is said that these qualities are made use of in the new process. A company is being formed, with capital of $\$ 6,000,000$, for the manufacture of the new textile:Iron Age.

THE ANTIQUITY OF MAN.

By Sydney B. J. Skertchly, F.G S. Of H. M. Geological Survey. (Continued from page 164.)
The Neolithic and Bronze Age discoveries in England, and elsewhere, have taught us much respecting the manners and customs prevailing in those times. But, as we have already pointed out, it is to the Lake-dwellings of Switzerland that we must look for most of our knowledge respecting the domestic habits of these early peoples.

One of the most striking facts in the study of pre-historic man is the singular uniformity of the stone monuments. Whether we take Great Britain by itself, or include all Europe-nay, even if we examine Asia and great part of Africa-we find sim!lar erections, such as mounds (or tumuli), circles of stones (or crom. lechs), standing stones (or menhirs), covered stone chambers (or dolm $(n \cdot$), and so on. The most perfect type of these erections is a stone chamber, covered with a mound of earth, surmounted by one or more standing-stones, and surrounded with a stone circle, from which one or more double rows of stones lead outwards. This perfection is seldom ittained. Most frequently only one or two of the features are present.

It has been wisely said that savage races are children in intellect, and close study has proved how infantile is the savage mind. Nnw, if we take our own children, and allow them full scope to carry out those architectural proclivities, which seem to be as natural to childhood as mischief, what do we find? Any sea-side resort will afford ample evidence. Armed with little spade- the embryn Wrens build dolmens, cover them with mounds, erect menhirs upon them, surround them with stone circles, and construct long avenues of stones. I have often been much struck with the exactitude with which little hands and minds have pertormed on a small scale what stronger hands and lesser minds had acromplished ages ago on a gramder plan. Here, then, we see a vimple explanation of the uniformity of stone erections in differents parts of the globe.

These ald stone structure; were confidently ascribed to the Druids before prehistoric archæoll'gy became a science ; just as, in country distritts at present, the demolition of castles, church sculpture, and so forth, are, by the bu olic mind, ascribed to Oliver Cromwell-or, what seems much the same thing, to the Devil.
But we now know that ages before the Iruids worshipred here, these structures stood as hoary monuments of the zeal of long-forgotten races ; an I we know that most of them were burial or holy places of the Stone and Bronze Ages.

It must not, however, be concluded that, even in Britain, all the tumuli and heaps of stones (cairns) belong to remote antiquity. Tumuli were occasionully built in England as late as the third century, and cairns are still erected in the Hebrides and other puits of Scotland.
An objection has sometimes been urged against the antiquity of these structures, that they are often too massive to have been erected by people ignorant of the use of metal. But this objection is nt ance removed by historical facts. The Tuhitians, who, when first visited by Europeans, were quite ignotaut of the use of metal, erected huge stone structures for the reception of the distinguished dead. One of these, described by Captain Cook, was no less than 267 feet long, 87 feet wide, and 44 feet high. The stones were frur feet deep, and were neatly squared and polished. Similar instances might be cited from other places.

Respecting the dwellings of the Bronze Age, but little is known. In Germany and Italy there have heen found rude earthenware urns of this age, representing huts. Some of these are round, with a door at the sides, and with tall, conical, thatched roofs. The lake-dwellings of this a we have been already alluded to.

Of the dress. f these people naturally but few examples remain. In the lake-dwellings linen cloth of rude t-xture has been found. The most interesting discovery, however, was made in Jutland, where singularly well-preserved bodies were found in certain tumul. One of these had the head covered with a round, thick, close fitting woollen cap, covered with threads terminat. ing in knots. The boily was clothed with a woollen shirt, a woollen cloak, and woollen l-ggings. The head and feet were covered with woollen shawls, fringed at the bottom.
Their weapons and tocls were of bronze, stone, wood, bone, and such like materials. The bronze implements were all cast, and they do nol seem to have been able to cut or inscribe the metal ; even the ornamentation (which is always free-hand) being cast.

Celts, used as axes and chisels, are plentiful ; and the earliest, which are seldoin ornamented, are of well-known Stone Age types. These, of course, are solid. Others are grooved for the readier attachment of the handle, to which they were further secured by cords passed through a loop in the celt. A third kind was hollow and looped, but none have as yet been found with socket-holes like hammer-heads.
Tho swords were all small, like large daggers, leaf-shaped, double ed,ced, and more a lapted for lhrusting and stabbing than for cutting. The handles were small, witkout guards, and often ornamented.
Javelins and spear-heads are common. Bronze arrow-heads are rare, probably because flint was less expensive, more readily fabricated, and quite as effective. Indeed, at close quarters, ${ }^{8}$ bow with stone-tipped arrows is almost as deadly as a rifle. Some of the North Americ.an Indians of the present day will discharge twenty arrows in a minute, with great precision, and with sufficient force to pass right through the body of a buffalo.
Fish hooks of bronze are pretty abundant in Switzerland, but very rare in Britain. Sickles are common, and so too are knives, of which, one peculiar type, sh:iped like a razor-blade, and often hi,hly ornamented, is characteristic of the period. Personal orumments are abundant, and consist chiefly of bracelets and ornamental headed har-pins, some of which are over two feet in length. The bracelets are generally simple spiral bands, or rings open at the side.
With o::e exception, no inscriptions have been found on bronze implements, though they are by no means rare in the succeeding Iron A:e. The one exception is a bronze celt, found in Rome, years ago, upon which is a well-fashio ed inscription, in unknown characters.
The prevailing ornamentations are series of circles, and spirals, no authentic case being known of the representation of animals or plants, which were a feature in the Iron Age.
The use of the potter's wheel was unknown until the Iron Age. The pottery is often finer than that of the Stone Age, and though similar rude ornamentations adorn it, they are supplemented by cincles and sp rals, which were unknown in the earlier age.

Gold was known, but not silver, lead, or zinc. Glass beale were in use, but no vessels of this material have been found belonging to the Bronze Age.
Leaving the question of the habits and state of civilisation of the people of the Bronze Age for the present, we will now describe some of the features of the Neolithic and Newer Stone periud.
We have already seen that in their mode of burial, so far as the structure of their tombs goes, they were very like their successors, but, on the other hand, they seldom if ever practised cremation.
Respecting their dwellings we know hut little, save with reo gard to the lake-dwellings. It is, how'ver, highly probable that, in inland localities, they erected rude structures, partil, undergrouns, and not very unlike some of the chambered Tumuli. We know that at the present time some savage races, surh as the Kamschatdales, possess winter dwellings very much like some tumuli; and a tomb is often looked upon as a dwelling for the dead, hence we may infer that their houses were not unlike their tombs.
The dress of the Neoliths was chiefly of skin, but they manufactured rude textile fabrics of flax, straw, and probably of wool.

Their cutting tonls were all of stone, and often of great beauty. Many of the celts aro polished or ground smiooth, and this, amongst .ther features, at once divinguishes this age from the Pulæolithic. The arrow-heads are often exquisitely faslioned, and the marvellous delic.cy of their workmanship can only be fully appreciated by those who have spent ycars in the practical study of stone weapons. Bone and wood, of cour e, were largely used.
The staple commodity for cutting-tools was flint, and they carefully sought out the localities where the best materisl ex isted. One of these is Brandon, in Suffolk, where the same bed of flint which was used by these old people is still worked for the manufacture of gun-fints. The remains of the rld flint-pits are still extant, and they afford a striking example of the attainment of grat ends by simple means. Many of them are forty feet deep, and their diameter at the top is not less than ten yards From the bottom of thece pits gallcries were driven. These huge works were carried out by the aid of no better weapons than stone celts, and picks of defr horn.
Their pottery was very coarse, the clay being ill-worked, bsdly
baked, and fu'l of large grain of sand. They were rulely embellished with lines, thumb or finger-marks, impress ons of a twisted cord, and sometim $\cdot \mathrm{s}$ by rows of ill-shaped knohs. The vessels were not strong enough to stand fire; but there is ample evidence to show that they boiled water in them by dropping red-hot stones into the vessels. just as the A:ssinuboius and other Thages do to this day.
prople manners and custom to the Neolithic and Bronze Age poople are hest illustrated by the study of their food, and it is here that the lake-dwellings afford us such valuable testimony, in them alone have vegeta le remains been found.
Firstly, with regard to the animals usell as food, we find that they all belong to speries which either now liv-, or lave lived Within histori times, i: Europe.
The earliest of the lakedwellings show us a people passing from the hunting into th. pastorill stage. The ox and the stag Wild the most abundant, the former it dumesticated, the latter : Wild species. In the earli-st settiements the remains of the st, ${ }^{\text {g }}$ are more common than those of the ox ; but as we trace the $\mathrm{l}_{\text {fss }}$ bing of these p ople onwards we find them d ${ }^{2}$ pending less and
 tent to their herds. Sinilur signs, of poarress are als, seen in the
grad Wradual increase of t!ac numbrr of specirs domesticated, for Whereas in the early stone s-ttlements two races of oxen were Agt, another was adled later on, and yet mother in the Bronze Age. The lake-dwellings that afford us proof of four races of oxen having been domesticated.
A like story is told by the remains of the hog. At first they Were all will, then a wild variety was domesticiterd, and in the ${ }^{\mathrm{B}}$ ronze Age the present race first makes its apporance. The of Brone, very rare during the Stour Age, was common in that of Bronze. Space will not permit us to go further intu this in. teresting question, but a few norls may now be said respecting Wultiv.ted plants.
Wheat and barley wi re cultuvated in the earliest of the lakeUwelling eras, but the ears w.re invari.bly smallet than at
present present. This is true of all the cultuvated plants, and when we ponder upon the length of time required to modity speries, we
 that uas Egyptian wheat is common. Six-rowed barley, lik. grown used by the ancient Egyptians, but smaller, was largely frown. It appears, indeed, that the cerrals were introduced are alse south, for seeds of weeds native to the south of Europe are also found, evidently having been accidentally introduced With the corn. Wheat and millet alone seem to have been used been bread, and fragments of round, flat, unleavened lowves have been found. Oats were first cultivated in the Bronze Age. Peas
were Were known in Neolithic times, beans not till the Bronze Age. Fried apples are plentiful in places, but are of wild varieties.
picture this meagre sketch we can dr.w a moderately accurate picture of the people of the Neolithic and Brnnze Ages. We see
then progreasing emerging from the hunting state, and gradually Trogressing through the pastoral, well into the agricultural stage. They lived in large coumunities, apparently in tolerable amity, or battle grounds are very rare, and they enjoyed a certain by the of foreign intercourse, as is shown by their cereals, and their own introduction of certain domestic animals not uative to In own country.
In fine, we can compare the people even of Neolithic times, in point of culture, to many modern races. The two most important
No Neolithic sedtlements, we have indications of cultivation and the
domest and domestication of animals, in which they were in advance of some bradual now living; Secondly, we have incontestible proof of STadual, continuous, steady progress.
We will next see what attempts have been made to assign time-limits to these prehistoric epochs.
(To be continued.)
Lightining kods not Insulated.-Insulators should not be bainst putting up lightning rods on buildings for protection gainst the electric current. The rod should be fastened directly gainst the building. But the most important precaution is to surface in that the bottom end of the rod has a large conducting simply in contact with the earth. Better have no rod than Proper to stick the end a few feet down into dry earth; the piper way is to solder the lottom end of the rod to a metal water
a ${ }^{\text {on }}$ gas pipe in the ground. If there are no pipes, then make a long or gas pipe in the ground. If there are no pipes, then make Gine charcoal and put in some good conducting material, such as good corcoal, or hard coal dust, iron ore, or old iron, making a
danection between the bottom end of the rod and this con. cting material.

FORECASTING STORMS-THE LOSS OF THE " EURYDICE."

We copy the following from the English Mechanic:

At the inquest held over the bodies recovered from the Eurydice, and in the daily Press of the period, it was said, no means were known to science by which the squall which caused the loss of that unfortunate vessel, with its 300 lives, could have been foreseen. I hope, with your assistance, to show tha! there is a means, "within the grasp of ordinary minds," of guarding, to a very great extent, against all such catastrophes.

For an illustration, I will refer to the action of a pendulum susp nded before a strip of paper which is stationary (diagram 1). If we pull it to the right at B it will, as we know, when released, rebound nearly as far to the left as C , oscillating about its position of rest at A, and we can easily imagine that to arrest and reverse its action would indicate considerable violence in the disturbing force; if we now cause the strip of paper to move perpendicularly at a uniform rate, and attach a pencil to the end of the qrendulum, we should find its path traced upon the paper as a symmetrical curve, and any interference with, and reversal of, the mution of the pendulum, as at 1), would, of course, destroy the symmetry.

The Astronomer Royal, writing to the Times on the d.y after the Eurydice was lost, refermg to the atmospheric circumstances about the time, said: - "The fluctuations of the barometer were very inconsiderabie," leaving us to infer that no warning could have been gatued from that instrument. The diagram No. 2 shows che barometric pressure for March, 1878, aud premising and asserting that there is ample evidence that atmospheric pres. sure has a primary tendency to vary also by symmetrical curves, it will be seen that the indeation given by the barometer at the time was really sery significant, inasmuch as its action was being violently reversed-equivalent in effect to the reversal of the action of the pendulum ; and Sir G. Airy's letter shows that ample waruing was given of the change of direction, for he says:-"At 2 h . 30 m . the barometer stood at $29 \cdot 35$, at 3 h .56 m . it was $29 \cdot 28$ (the lowest point), and at 5 h .30 m . it was again 29.33 ." The squall wax "t 3 h .56 m ., "nearly" in corroboration of the adage, "r'irst rise afṭer low fortells stronger blow."
The variation of barometric pressure, as of the pendulum, is by this intea referable to gravitatiou; difference of opinions may, and doubtless will, exist as to the origin of the disturbing force, the fact of the disturbance being probable, and the part of the barometric curve where it is likely to be most dangerous-viz., when the pressure has been for some days largely in excess (as irum the 1st to the 21st March), and the fall having for some time set in, a reversal of the action takes places-is all that is necessary tor the seaman to know.
Air is a much heavier substance in the aggregate than is popularly supposed. Dr. Mamn, the late presideut of the Metesrulogical Society, has lately s:ated that the uir contained within the walls of Westminster Hall weighs 50 tons; if such a substance is forced above its true level it will, like any other fluid, try to regain such level by an equal and contrary reaction.

It will be seen the really hazardous days to a seaman are by this thory reduced to a very few in number; all that would have been necessary in the case of the Eurydice would have bepn to have closed the lee ports when it was seen the true line of fluidmotion was being departed from; this one simple precaution would have saved the ship. A very cautions seaman might, with such a barometric curve before him, have passed 2 miles instead of 1 from such a coast as that of the Isle of Wight, and might have also lowered a studding s:ill which was "the biggest sail in the ship," until he had turned the barometric corner and the squall had passed.

Collateral evidence of the probability of the shift of wind from about S. W. to N. W. might also have been gained by reference to the temperature: the barometer had been steadily falling for four days. When it does so the thermometer ought coteris paribus to rise, and vice versa. Sir G. Airy states the temperature " about 21 . 0 m . had been 49°, diminishing to 45° just before the squall. With the squall it sank most rapidly to 38°, and continued to fall till at 5 h .0 m . it was about 32°."

With letter 13862 (January, 1878) a diagram was given with the average height of the barometer for the years 1873 to 1877 inclusive ; during 1878 pre ssure recovered to $29 \cdot 85$, so that upon the large scale a "reversal of the pendulum " has occurred, and it is suggested that the great intlux of cold air necessary to produce strch a reversal will account for the extraordinary low tem. perature of the past few months.

FIG. 4.

EXAMPLES OF THE PRACTICAL USE OF THE STEEL SQUARE.
By F, T. Hudghen, Acht., Ed. "Amerioan Bulder," (late of Collinawood, Ont.)

THE CARPENTER'S STREL SQUARE ATD ITS OSEB.

By F. T. Hodgson, Editor Anerican Builder.

(Continued from page 187, June number.)

In the present paper we have introduced a few examples that In interesting, as well as instrnctive, to the young stadent. In Fig. 1 we show how the square can be nsed, in lien of the trammel, for the production of ellipses. Here the square, ED F, of the to form the elliptical quadrant, A B, instead of the cross of the trammel ; $h l k$ may be simply pins, which can be pressed crainst the sides of the square while the tracer is moved. In equase the adjustinent is obtained by making the distance, $h l$, equal to the semi-axis minor, aud the distance, $l k$, erfual to the Figaxis major.
Figs. 2 and 3 are taken from Gould's Wood Workcr's Guide.
Pig. 2 exhibits a method of finding the lines for eight squaring piece of timber with the square, by placing the block on the plece, and making the points seven inches from the ends of the Bonal from which to draw the lines for the sides of the octaBonal piece required.
At the heel of the square is shown a method of cutting a board
to fit any angle with the square and compass, by placing the
to fit any angle with the square and compass, by placing the aquare in the angle, and taking the distance from the heel of the aquare to the angle A, in the compass ; then lay the square on
the piece to be fitted, with the distance tak $\cdot n$, and from the point A, draw fitted, with the distance takra, and from the point A, draw
piece required.
Fig. 3 exhibits a method of constructing a polygonal figure of eight sides; by placing the square on the line A B, with equal
distances on the blade and chatances on the blade and tongue, as shown; the curved lines Rives the method of transferring the distances ; the diagonal Wives the intersection at the angles.
a ag. 4 shows a method of describing a parahola by means of beingight rule and a square, its double ordinate and abscissa being given. Let A C be the double ordinate, and D B the dicular Bisect D C in F; join B F, rnd draw F E perpen. dicular to B F, cutting the axis B D produced in F. From B Het off B G equal to D) E , and G will be the focus of the parabola. Make B L equal to $B \mathrm{G}$, and lay the rule on straight-edge $H \mathrm{~K}$ on L, and parallel to $A C$. Take a string, $M r G$, equal in leugth and its attach one of its ends to a pin, or other fastening, at G, the equarher end to the end M, of the square M N O. If now preseed against slid along the straight-edge, and the string be pressed against its edge $M N$, a pencil placed in the bight at r Pig degcribe the curve.
Pig. 5 shows a nuthod of describing a segment of a circle by $B{ }^{\text {meane }}$ of two laths, the height and base being given. Let $E B$, leng be the two laths, each of which must be at least equal in ength to the whole base A C ; join them together at B, and exof them so that their edges shall pass through the extremities itremity Base, and the angle where they join shall be on the exthe cross-pof the height D B. Fix the lath in that position by extremitipece $g h$, then by guiding the edges against pins iu the extremities of the base line AC, the curve A B C will be de-
acribed by the poin Mribed by the point B.
Pig. 6 shows a method by which large curves can be struck at
twice, with laths or triangular moulds, the buse and height being give, with laths or triangular moulds, the buse and height being given. Let A C be the length of the base, and $D B$ the height; Join C B , and C be the length of the base, and D B the height ;
$\mathrm{B} C$. Fallel to A C , and make it equal to ${ }^{\mathrm{R}} \mathrm{B}_{\mathrm{C}}$. Fix a pin in C, and another in B, and with the triangle bs C describe the arc C B. Then remove the pin C to A, suld the guiding the sides of the triangle against A and B, describe
Fig. 7 half of the curve A B.
bat the development of a pyramid with an equilateral drawing is found by drawing the triangular base A B C and then the ding round it the triangles forming the inclined sides. If
the lines A is made on stiff paper, and the triangles folded on
Pigures A B, B C, C A. the solid figure will be constructed.
Ploged 8 and 9 show the method of finding the joints for Take work, such as hoppers, trays, etc.
Pig. 8 . a separate piece of stuff to find the joints for the hopper,
Lig. 8. Strike the bevel $f g$, the bevel of the hopper, on the
-nd of the piece (Fig. 8). run the gauge mark c from f. Haare on piece (Fig. 9); run the gauge mark c from f; then Tt o b; on the edge from a, or where you want the outside joint, bevel then square them from b to the gauge mark c; strike the
le to d the work $f g$, from i to d, through the point at e. From G to α the work $f g$, from i to d, through the point at e. From
foint Hoint will be the joint, the inside corner the longest. If a mitre
fono d ro h; the set the thickness of the stuf, measuring on? g, rom d to h; the line $d h$ will be the mitre joint.
$\mathrm{P} i_{\mathrm{g}}$. 10 shen
Pig. 10 ohows a method of describing an ellipse, the major and dinor axis being given. Let A C be the major and $D B$ the
semi-axis minor. On the major axis construct the parallelogram $\Lambda E F C$, and make its height equal to the semi-axis minor. Divide A E and E B each into the same number of equal parts, and number the subdivisions from A and E respectively; then join A I, 12, 23 , etc., and their intersections will give points through which the curve may be drawn.

Fig. 11 shows another method by which an ellipse may be described. This figure shows the curve on a rake, and is placed in that position to show the student that the curve can be produced on a rake without much difficulty. This method of describing an ellipse is sn simple that it requires no explanation. D is the centre of both major and minor axes.

(To be continued.)

Electro Engraving Machine.-It has baffled the skill of inventive genius for ages, to produce a ma hine that would competa with the skilful hand engraver. Guertant, after much study in trying to perfect such a machine, his, by the aid of electricity, succeeded in producing a practical machine, which it is claimed han no rival. The construction of the machine is not complicated, but simple and durahle. It is easily operated-any persou of ordinary mechanical skill can learn to work it in a short time. There is nothing to do but turn a crank forward and back, after the work is fixed in the machine. The variety of work that may be accomplished by it is said to be unlimited. It copies from the regular press type of uny style of letter or design that is made of type ; from the plninest to the finest German rext letter, or fancy design ; and at the same time, it will reduce the letter or design from the original size to ten different sizes, or so small that it cannnt be seen by the natural eye. It will shorten the letters or elougate them; also, will lean them forward or backward; will either make a raised or sunken lettor; will engrave on any surface, either plain, concave or convex-for instance, such things as watch-cases, either in or outside, finger rings, either in or outside, bracelets, napkin rings, goblets, pitchers, mugs, waiters, spoons, forks, and all kinds of jowelry; or, in fact, any article susceptible of being engraved or ornamented with scrollwork and fancy designs, etc., either on gold, silver, copper, brass, iron, hardened steel, glass, stone, pearl, ivory, bone, gutta-percha, etc. The machine is capable of doing the most difficult kinds of engraving, and on the most difficult metala and substances to be engraved.

Bringe Guards.-The New York, Lake Erie \& Western Companv is putting up guards at all its overhead bridges, to warn brakesmen of their approach. The guards are made by putting up, some 300 feet from the bridge, posts on each side of the track, to which cross-pieces are attached, from which hang a number of pieces of rope so that, no matter which way a brakesman is looking, if he is stending so that his head will strike the bridge, the harmless contact with the dangling rove ends will warn him of his danger in time to avoid it. The New York Central, we believe, uses a similar device. The Pennsylvania and some other companies use a slender rod hinged to a post at the side of the track, with a spring to keep it up to its places. This will strike a brakesman a sharp rap, and swing back to its place when he is past.

A Feat in Enginefrina, -Owing to the immense weight that they sustain, the iron shoes in which rest two of the spans of the railroad bridge at Easton, Pa., lately sunk about an inch, throwing the bridge ont of grade. As it was certain that the depression would continue, from the fact that the inside masonry of the njer is less solid than the outside, an iron casting, weighing 7,000 pounds, was recently anccessfully placed under the spans, in order to elevate them. The spans weigh 180 tons each. Hydraulic jacks were used. The spans were raised, the masonry redressed, the castings placed in position, and the spans lowered without the stoppage of a single train.

Carbon Photo Printing.-Mr. F. Gutekunst, 712 Arch street, Philadelphia, has organized a complete establishment for the printing of photographs by the carbon process, that is, in printer's ink that never fades. We have received some specimens of the work done, which are unsurpassed for excellence, and reflect credit on the printer. For book illustration and portraiture this method of printing yields the finest results.

THE MYSTERIOUS IN BOILER EXPLOSIONS.

There is beyond question an element of mystery attending certain boiler explosions. At one time all explosions of boilers, save those which obviously resulted from shorimess of water or extensive corrocion of plates, were regarded an mysterious and remarkable. Theories have been formed almost without number to account for their occurrence-in a word, to solve the mystery. The spheroidal theory of Boutigny d'Evreux may he cited as an example. When water is dropped on a hot plate it assumes the spheroidal condition, runs about in drops, and "vaporates slowly. The drops are really unt in contact with the plate at the time, each drop being enveloped in an atmosphere of its own vapor. When the plate cools the water touches it and flawhes into steam. It was supposed that under certain circumstances water assumed the spheroidal condition in normal steam generators, and that a great development of stean ensued when th. furnace phates cooled a little; so much steam being made thus in a few seconds that the boiler burst. This idea is now well known to be fallacious.

Another throry was that if a boiler was hented red hot and cold water pumped in it would infallihly explole ; this is obviously the tail end o' the spheroidal theory. L masmuch as the specific heat of iron is but one-ninth that of water, in round numbers it follows that nine pounds of iron heated to almut $1,500^{\circ}$ must give up thrir heat to make one pound of steam; and it has never yet been shown how enough red hot iron rould be present in a boiler to cause a development of stomm with which the safety valve could not deal. Many experiments have been carried out to test the point, with negative results as far as explosions are concerned

The electrical theory was hroached. What this meant we never underntood, nor did we ever mert any one who did. One gentleman promised to prevent all explosions from this cause by incasing every boiler in thin sheet copper. Another proposed to fit conducting wires to put boilers in communication with the earth. The notion that water was decomposed into oxygen and hydrogen, and subsequeutly recomposed with a terrible explosion, kept its ground for a long time. We believe we may say that no engineer possessing a noderate knowledge of chemistry holds such a theory now. The inspecting engineers of the various boiler insurance and assurance companies were the first to place the whole suhject on a sound footing. They showed as a result of their experience that boilers burst because they were too weak to withstand the strains brought on them by the internal pressure. They proved that in the vast majority of cases furrowing, and grooving, and corrosion in all their multifarious forms, were the agents oprerating to bring about boiler explosions, and they carried back such catastrophes from the regions of romance to those of every-day life. There is some reason, however, to fear that these gentlemen have gone a little too far; and that by assigning all boiler explosions to one cause they are doing harm and stopping inquiry into certain secrets of nature about which we do not know quite so much as is desirable.

That hy far the larger number of explosions which occur every year in England are due to weakness of the boilers which give way, either congenital or acquired, we should be the last to dispate. But it is equally indisputable that events take place now and then which quite upset all conclusions based on the idea that explosions always take place because a boiler is ton weak to withstand normal strains, and these said events apparently contradict much that sound scientific authorities teach. Thus, for example, although the entrance of cold water into a red hot boiler ought not to cause an explosion, yet there is one case at least on record in which, on a pail of cold water being poured suddenly into a red hot kitchen boiler, a most vinlent and disastrous explosion took place. The weight of metal engaged here was, however, very great as compared with that of the water. It is also shown that explosions have ensued when water was pumped into plain cylindrical externally fired boilers, which had been allowed to run short.

On the other hand, boilers patched and re-patched, and seemingly worthless, have by the hundred done their duty for years without a catastrophe, while boilers as well made as possible, and in exrellent condition--nearly new, in fact -have exploded with disastrous results. So long as furrowing and corrosion are present it is easy to account for the failure of a boiler. It is when explosions of strong boilers occur that inspectors are at fault, differences of opinion arise, and we become enveloped in an atmosphere of mystery out of which it is difficult to find the path which leads to certainty. Two notable examples of this have been recently recorded in our columns; one is the Coltness explosion, when six boilers out of ten flew away at once like a covey of birds; the other is the Kersley explosion, when one boiler out of eight burst, leaving the rest intact.

As regards the Coltness explosion, that, as is well known, has been explained by Mr. Fletcher on the theory that one boiler which exploded first had the steam pine plugged up, and consequently gave way from a sheer accumulation of pressure. We cannot find that one tittle of definite evidence was adduced to show that any such plugging took place. Mr. Fletcher is, no doult, satisfied on this point, but we are not. In fact his theory is hased on pure assumption. But, granting that he was right, how are we to account for the axplosion of the remaining five hoilers? One explanation is that the boilers were bedded so close that they rested against each other, and that each boiler as it gave way staved in the side of the next one to it. To make this an intelligible cause of "xplosion, it must be assumed that the sudden reduction of p,ressure on the outrush of steam through the side of the lirokpu hoiler catised so large a portion of the contained water to flash into steam that the hoiler flew into pieces hetore the steam so produced could scape. But it is well known that the Coltness boilers were strong enough to stand a pressure of 300 pomads on the square inch, and it is difficult, if not impossible, to ser how stram of any pressure like this could be produced. Only as much water would be converted into steam as would suffice to restore the pressure in the boiler to sonething lיes than what it was lyfore the rent took flace. To assume anything else is also to assume that once the process of flashing in established it will go on regardless of the pressure set up. This is a very important assumption; nay, more, it is a complete begging of the question. If it can be shown conclusively that the stored-up energy in a boiler can all he expended in flashing water into steam, if flashing is once fairly set up, without any consideration for the accumnlation of that pressure which is inimical to the operation of the flashing function, then we are face to face with a new physical law which would clear away much mystery, and set boiler explosions, like that at Coltness, in a totally new light. It is a notorious fact that a great many explosions take place just when an engine is started. If we may assume that the sudden reduction of pressure sets up flashing, and that the process is continued by, if we may use the words, its own ris civa, then it is easy to understand why a sudden reduction in pressure may cause an explosion ; but until some definite statement of facts is available, we must hold this ides to be pure, little supported, theory, and nothing else. If we are asked, how, if we reject the theories of Mr. Fletcher and others, we explain the Coltness explosion, we reply that we cannot explain it, because there is not sufficient evidence available on which to base an opinion.
In the Kersley explosion we have a boiler, insured, carefully looked after, and apparently sound, going to pieces without having givell warning in the way of leakage. Here again we find hoiler inspectors dealing largely in pure assumption. Wr. Hiller, the engiueer of the National Insurance Company, trok it for granted that an elbow pipe was broken off and let the water run cut. But there is not a scrap of evidence that a cast-iron pipe was broken as supposed. Mr. Baldwin, another boiler inspecting engineer, holds that Mr. Hiller is quite wrong, and that the bniler hurst because the plates had become weakeneld by age, that they had "lost their nature," to use a word well known among iron makers. But eveu Mr. Balilwin finds all the plates he tested so strong that the boiler should have withstood on the lowest calculation double the pressure at which it was worked. It is to be presumed that the inspecting engineers of boiler insurance companies are the greatest authorities in existence on all that pertains to the life and death of steam generators. Wher we find any one of these gentlemen unable to form any opinion concerning certain catastrophes, which is not flatly contradicted by a professional brother, it would be folly to deny that ther are mysterious boiler explosions-that is to say, explosions which occur from some cause or causes unascertainable. That we shall always remain in our present ignoraice is very improbable. But we venture to think that the solution of our difficulties will come, not from the boilermaker or the engine. r, but from an elaborate process of physical research into the laws which govern the genration and evolution from heated liguids of their steams or vapors. Many suggestive phenomena have been recorded which might serve to direct an inquirer. For example, the behavior of water heated under oil is, as shown by Dr. Frost many years aqo, very curious and suggestive. Again, water may have its boiling point altored by various conditions other than those of pressure. It is not too much to say that although the more prominend, aspects of evaporation and ebullition have been carefully studied, a great deal remains to be learned concerning the real nature processes about which men speak all the inore glibly the less they really know.-The Engincer.

THE "HOROGRAPH."

Among the thousand-and-one interesting items, not strictly Qricultural, shown at the Royal Agricultural Society's International Exhibition at Kilburn, we noticed on the stand of Mes rs. Newton Wilson \& Co., of High Holborn, a little portable instrument for producing rapidly and cheaply any desired number of circulars, notes, or other writiugs. As its name - The "Horograph"implies, it may be said :o be writing by e.ock-wgrk, the mechanism and the moving power, clock-work, being all contained in the head of the instrument. This consists of a holder about 4 in . long, and of the thickness of a pencil-case, upon which is mounted a metallic casing about $2 \frac{1}{2}$ in. in diameter, and $\frac{3}{4}$ in. thick. Within this casing is a train of clock-work, which actuates a needle carried in the tube, and to Which a rapid reciprocating motion is impartel. As the point of the needle is thus alternately thrust beyond the lower end of the tube, and withurawn again, it follows that if traversed over the surface of a sheet of paler, a line compoed of a series of small pathetures will he produced. This is in fact the principle of "forographic" writing, the punctures being produced at an estimated rate of nearly 10,000 per minute, and the instrument o_{n} bing held vertically in the hand during the process of writing. On commencing to ise the instrument, the clock-work is first Tound up by means of a sinall key projecting from the cylindrical casing. On pressing a small spring lever near the needle point leverechanism is started, and continues runuing, so long as the lever is kept down by the thumb which covers the lever when the instrument is held in the ordinary poxition of writing. On releasing the lever the mechanism stops. The letter having been written, or, in other words, the stencil having been completed, it is placed in a frame over a sheet of ordinary paper. The passage of an iuk roller over the stencil produces a fac simile of the subject of the stencil on the paper. In this way a large number of copies may be taken in a very short time.

HANDLES FOR FIIES.

Will you allow me to call the attention of your readers to a patent receutly taken out by Mr. Gray, of Sheffield, for improve. ments in files and in hafty for the same? The patentee says that con made on his plan are reluced in cost and are rendered more convenient for carrying about by the workmen employed in With them. The improvernent consists in constructing the files bithout tangs, and in the employment of hafts or holders, each of the a socket or recess corresponding in shape to the section of the file to be orsed, into which the end of the file is inserted.
The ind holdere may be secured in the socket or recess in the haft or hilder either hy means of a screw passing through a hole in the aile, or by wedging the file in the socket. The improvement is more particularly applicable to files intended for sharpening the

Knip
but
but it is reaping machines-why, I cannot pretend to guess; end wis obvious that the arrangement of the holder and the filebrass, and facilitate changing when files have been used up on easy, and if the ferrules are made of different metals, it will be The to keep the files sorted for the work to which they are suited. a tang, and is of similar stection throughont ; the haft or holder
 ${ }^{t}$ tremity ${ }^{\text {used }}$ into which the end of the file is inserted. The extremity of into which the end of the file is inserted. The ${ }^{\text {rx }}$ -
the the haft or handle for the reception of a serew-pin which passes in the socke haft and the hole in the file, thus secaring the file the socket.

Viceman.
ED. S. C.] our hardware merchants should introduce them.-

DESCRIPTION OF A PAPER DOME FOR AN ASTRONOMICAL

 OBSERVATORY.by prof. Greene, in the "american journal of science AND ART."

An astronomical observatory has recently been erected for the Rensselaer Polytechnic Institute, through the liberality of Mr. E. Proudfit, of this city. In maturing the plans and supervising the erection of the building, I have introduced an improved method of constructing revolving domes, a brief account of which may not be without interest. While making the preliminary inquiries, I ascertained that a dome of the dimensions required, constructed in any of the methods in common use, would weigh from five to ten tons, and require the aid of cumbersome machi. nery to revolve it. It therefore occurred to me to obviate this objection by making the framework of wood, of the greatest lightness consistent with the requisite strength, and covering it with paper of a quality similar to that used in the manufacture of paper boats; the principal advantages in the use of these materials being that they admit of great perfection of form and finish, and give extreme lightness, strength, and stiffness in the structure, --prime qualities in a movable dome.
The dome is a hemisphere with an outside diameter of twentyni:se feet. The framework consists primarily of a circular sill which forms the lase, and two semi-circular arch girders set parallel to each other, four feet apart in the clear, and spanning the entire dome. These are firmly attached to the sill, and kept in a vertical position by means of knee-braces. The sill and girders are of seasoned pine, the former being $8 \ddagger$ inches iy $3 \frac{1}{2}$ t ick, and the latter each $4 \frac{1}{2}$ by 3 inches. The paper covering of the done is made in sixteen equal sections, such that when set up side hy side, their bases on the sill, and their extremities meeting at the top, they form a complete hemispherical surface. The framework of each rection consists of three vertical ribs of pine each 3_{4}^{3} inches in width, and $\frac{3}{4}$ of an inch thick, one at each side, and one midway hetween and meeting at the apex. The paper was stretched orer this tramework as follows :-
d wooden model of full size being made of that portion of the dome included within one of the sections, with a surface truly spherical, the framework of a section was placed in its proper position on the model, so that its outer edges formed part of the same spherical surface, and covered with shellac where it was to be in contact with the paper. The sheet of paper cut in the proper form was then laid on the model while moist, the edges turned down over the side ribs, and the whole placed in a hot chamber, and left until thoroughly dry. In this way the several sections were dried in succession over the same model. The paner used is of a very superior quality, manufactured expressly for the purpose. Its thickness, after drying, one-sixth of an inch, and it has a structure as compact as that of the hardest woud, which it greatly excels in strength, toughness, and free dom from any liability to tracture. After being thoroughly painted, the several section, were ready to be set up side by side on the sill, and connected together by bolting through the adjacent ribs. The space between the arch girilers being left uncovered on one sile from the sill to a distance of two feet beyond the zenith, the upper ends of the sections required to be cut off and accur ately fitted to the pirders. The joints betwoen sections were made weather-proof by inserting a double thickness of heary cotton cloth saturated with white-lead paint. The adjacent side ribs were then bolted firmly together through the paper and cloth, the lower ends attached to the sill by angle irons, the upper ends bolted to the girders, and the lower edge of the paper turned under the sill and securely nailed. The joints were afterwards painted over on the outside. As the entire qurface exposed is free from nail-holes or other abrasions in the paper, the structure promises, with an occasional coat of paint, to last for many years, and to form an effective and serriceable roof. The fourfont opening between the arch girders is covered by a shutter, which is also of paper stretched over a wooden frame. With the exception of about two feet at the lower extremity, this shutter is in a single piece. Attached to its sides are a series of iron rollers which run on a railway track of band iron laid down on the girders, by which means the shutter can be moved over to the opposite side of the dome. The wooden sides of the shutter have iron flanges attached to their lower ellges, which project under the railway tracks, making the whole weather-proof. The shutter is opened and closed by meaus of a windlass and wire rope. The weight of the dome and its appurtenances is about 4,000 pounds. It is supported on six eight-inch balls which roll between grooved iron tracks, and can be easily revolved by a moderate pressure applied directly, without the aid of machinery.

Scientific.

IRON ITTO FINE STREL WITHOUT FUSION.

Various processes are at present known for converting castiron into steel ; those most in use being the Bessemer process, which consists in refining by contact with the oxygen of the air, and that known as Reaumur's process, which acts by means of reaction, and which has been greatly improved liy Siemens, Pierre, Martin and others. Ingenious as all these processes are, none of them have yet yielded-nor can they ever yield-anything but imperfect results; the products in all cases consisting of compounds which are intermediate between true pig-iron, cast-iron and steal. For the purpose of getting rid of these defects, and of improving the quality of the metals, they are maintained for some hours at a red heat, in the middle of a mass of cbarcoal, "ver which is slowly passed a current of nitrogen, carbonic oxide, and various gaseous hydrocarburets. Wood, charcoal, peat, coke or any kind of vegetable matter, well dried and heated to a temperature of about 122° Fahr., is plunged into some hydrocarbon, such, for instance, as schist oil, which has been heated to the same temperature. Under these conditions, the liquid is absorbed by the carbonaceous substance in the proportion of from 12% to 15%. A pile is then formed of alternate layers of bars of Bessemer metal, Martin iron or other product resulting from the refining of pigiron, according to one or other of the processes above referred to ; the whole is placed in the receiving apparatus, which consists of a kind of retort of any shape, heat being applied gradually until the iron reaches a red heat. By these means, the excess of oxygen contained in the vegetable substances forms an oxide of carbon, by combining with the vaporized hydrocarbon, and the nitrogen assists in the formation of ammonia, so that the metals are surrounded by the gaseous compound which is recognized as being the best for their conversion into finished steel or cementation steel.

Playing Balls.-India-rubber has been very largely employed of late in the manufacture of playing balls. These are made either solid, inflated, or self-inflating, and are used for a variety of games. The majority of the solid india-rubber balls, until very re:ently, were manufactured in Germany, but an English firm having acquired the secret of their success, a very large portion of the trade has reverted to this country. Ail description of india-rubber balls, with the exception of footballs, are vulcanized in strong iron molds, cast in two sections, and turned perfectly true on the inside; a number of these molds, when the rubber has been inserted, are usually secured together by one pair of clumps. The secret of the German method of manufacturing solid india-rubber balls consists in rendering the interior of the rubber porous, while the outside is perfectly uniform and smooth. The object of this is not only to make the ball much lighter, but to make it appear more elastic, and thus impress the uninitiated with an idea that they are manufactured from a bettor quality of india-rubber than they actually are. To produce this effect, the following ingredients are mixed together : 20 lbs . of African ball rubber; 111 lbs. red lead; 46 llss. vulcanized (best rubber) crumbs; 48 lbs. rulcanized dark compound crumbs ; 6 lbs. salt, wet saw. dust, or other substances capable of rendering the material porous by expansion when subjected to a high temperature. Total, $129 \frac{1}{2}$ los. The mixture is placed in crumbs in the inolds, a solid wooden ball being used as a sort of kernel or center for each ball.
Utilization of Exhatst Steam.-According to the invention of Mr. N. W. Ericson, of Stockholm, he lets steam of higher pressure, or higher temperature, or both higher pressure and temperature than the pressure or temperature, or both, of the steam which is to be used in a steam-engine or for any other purpose, pass into an apparatus for the suction and couipression of elastic fluids, in order that the said higher or stronger steam may in such apparatus act as the suction fluid to the said spent steam ; this suction and compression apparatus is further connected with the apparatus wherein steam is to be used in order that the spent steam may to a great or less extent be drawn into the suction and compression apparatus whon the acting or higher steam passes through it. The mixture of the acting of drawing steam and the spent steam pusses through the delivery pipe of the suction and eompression apparatus (and its continuation, as required) either to the place where the thus compressed steam is to be used, or else first through an apparatus containing saturated
steam, or water, or in so near connection with water that the steam if in a superheated state becomes more or less saturated tho lowered in temperature, or else into an apparatus wherein the steam, by cooling, is rendered liquid, and the heat thereby givalus out is used for generation of fresh steam. This latter apparatur may be the steam boiler in which the acting superheated steam generated, or another steam boiler or vessel. The suction and compression apparatus may be any suitable section and compretsion apparatus, such as an annular or other jet apparatus.
Spontaneous Generation.-Another contribution to the spontaneous generation controversy, fasoring the germ theoryj has just been published by Prof. Tyndall, in a paper to the royw Society. He reports that he took with him to the Alps duridg the pust summer one hundred flasks of infusions, 50 of turnip and 50 of cucumber, that had been prepared in the laboratory ${ }^{0}$. the Royal Institution, and carefully sealed. Of these 20 wero broken in transportation, and were found to be swarming or ${ }^{\text {chan }}$ ganisms. Another lot was opened in an atmosphere in whic ${ }^{\text {g }}$ sar-dust had been shaken up, and was soou turlid with orgato isms; others were found to be infected by the proximity cascade of water derived from melting snow ; while others that were opened in the pure air of the mountains were found to remsily clear and uninfected. These results of Prof. Tyndall are entirel) confirmatory of his previous experiments and announcements, il which he has always taken strong ground against the hypothosid of spontareous generation advocated by Bastian and others, and has maintained the view that the origin of the swarms of orgap
isins that make their appearance in decomposable animal or issos that make their appearance in decomposable animal or
vegetable matter must be explained upon the supposition of vegetable matter must be explained upon the supposition of the
fection from without, through the direct instrumentality of air bearing the germ of these organisms in contact with the medium suited for their development. Tyndall, in the paper ahove referred to, places himself again on record as an oppope of spontaneous or non-pareutal generation.
Siliciuret of Iron.- The London Engineer reports that French Societe d'Encouragement has undertaken to examino int the uses that can be made of the new compuund, "siliciuret iron." An ingot, weighing about 3 kilogs. (6.6 pounds) sent to the Society by Prof. J. Lawrence Smith, having thy following properties: Color, like platinum; specific gravitfy 6.5 ; easily broken with the hammer; does not rust in the air; is not corroded by concentrated nitric acid, and is scarcel attacked by any reagents except fluohydric acid and by fusion with alkalies at a red heat. As a substitute for the rough-and ready mode of testing iron and steel with the hammer, Mr. Hering proposes an electro-magnetic test. The pieces to be tested (wirt) rods, bars, etc.) are passed through a magnetizing helix, if any break in the continuity of the fiber exists, the may be detected by means of a magnetic needle suitably mounted on a block above the helix through which the teat pieces diawn.
Drawina in Schools.-The report of the judges on the scbool drawings lately exhibited at Boston, from various towns of the State, says that there is no feature of the exhibition this yeal so pronounced as the "systematic educational treatment
drawing in public schools, to make it neful as a preparation drawing in public schools, to make it useful as a preparation imple the practical duties of life, as well as to employ it as an imple ment of education whereby knowledge of other studies may
acquired, rather than to consider it as an ornamental study ony, of little practical importance. It is a triumph for drawing as ing elementary branch of education, that all mere picture-ma has been abolished, and a thing of work having industrial and means substituted for the thing of play that drawing to be."

A New Process of glazina.-A new process of glazing has been introduced by which putty may be altogether dispenso with. Vulcanite is the substance that is to take the place of the old material. The window sashes under the new system are be so arrauged that the glass may be fixed into the grooves prite pared for it, and, coming into contact with a strip of vulcanitod attached to the frame, the glazing is complete. Any unsxily to workman can fix the glass, and, when fixed, there is no putty perish under the action of the atmosphere.
The electrical resistance of pure water, according to the ex. periments of Messrs. Exner and Goldschmidt, decreases uniformis as the temperature rises. At $99^{\circ} \mathrm{C} .\left(=210.2^{\circ} \text { Fahr. }\right)^{\text {it }}$ is onl one-third of what it is at $2^{\circ} \mathrm{C} .\left(=68^{\circ} \mathrm{Fahr}.\right)$. A similar resul is observed with water acidulated with sulphuric acid.

FARM HOUSE.
ARCHITECTURAL DESIGNS FROM THE " AMERICAN ARCHITTECT AND BUILDING NEWS."

FURNITURE AND DECORATION.

A drawing-room, in the usual acceptation of the term, is substantially a lady's room. It is there she presides and reigns supreme as mistress of the mansion and queen of her company. As a rule, she fills it with articles of bijonteric an l knick-knacks -artictes which ladies of taste are sure to admire. Rare cabinets, beauti'ul and exquisite receptacles for everything and for nothing ; shells, mounted in gold and ormolu, etc. ; easy chairs, couches, ottomans, and every appliance for elegant comfort and cosy chat. The style of its decorations should be in accordance with its general :speect when in use-light, cheerful and rich.

The ceiling, if it is a moderately sized room and not enriched with ornament in relief, may be tinted cream color. A stile may be added next to the cornice, five, six or eight inches wide, according to the size of the room, which may be tinted of a warm grey; an ornament may be stencilled at each corner, and a smaller one in the centre of each side, between corner and corner, and connected by lines either broken and stencilled, or run continuous with a fitch or flat hog-hair brush.

It is necessary to use caution in the choice and size of the ornaments used. Many gross mistakes are made in this respect. We often see ornameute on ceilings which are only fitted to adorn furniture, and which are utterly lost on a ceiling, and in other cases we may see ornaments put upon a ceiling ten or twelve feet high large enough tor one twenty-five feet high, and of propor. tionate dimensions.

In the designing and counection of the corners and centre ornaments, care should be taken to conse the lines to flow ont of the corners and form a part of them. A broad line and a fine line look better than a single line, or than two of the same width, either fine or broad. They may be either broken lines with stripes or dots, or interlace one with the other. Their color, or the tints named above, may be, for the broad lise, a dull warm gold or golden brown; the fine line may be either a tint made from vermition and white, of a reddish manve. The broal line should not be more than three-quarters of an inch broall on a reiling of ordinary height, and the fine line about one-eighth. The ornaments miy be done in two or three tints, as may be desirable. The larger portion, when the ornament will admit, such as a conventional leaf, may be stencilled from the top to the base with two, three, or four colors blending one into the other, or, in stencilling, the half of the leaf lengthways may be covered with a straight-edged slip of paper while one-half is colored, then the stencilled half may be covered in the same manner, and the other half colored, and so two shades of color, forming light and shade, may be got on the same leaf or ornament. Many good effects may be thus got by very simple means. The cornice, whether plain moldings or enriched, should be colored with tints of cream color and white on the projecting members, and tints of warm grey of different degrees of tone in the coves, quirks, and backgrounds, with suitable tints of red or pink on the under sides or tillets against the darkest grey tints. This causes the grey to look warm, and if the whole is properly balanced, the one color will blend with the other, and the effect will be a sort of bloom of color, equalized and toned to perfect harmony. The enrichments may be etched and gilt. Λ beautiful effect may be got by the judicious use of three colors of gold in conjunction with color, namely, regular deep gold, middle shade, and lemon gold.

The walls may be done in several ways: when the room is large enough, a good style is to divide each wall into proportional panels, with stiles and pilasters, and gold moldings. The centre panel on each wall may be filled with a mirror of the same dimension, and finished in the same manner as the other panels. The ornaments of a dining-room should have some reference to the purpose for which it is used-fruit, game, implements of the chase, more especially of those animals which are used for food, etc. In the drawing-room, we may have the seasons represented by the aid of flowers, birds, butterfies, etc. The wild flowers of the months are a very suitable decoration, unpretentious, and well adapted for arrangement. Large masses of flowers are objectionable. Colored ornament, enclosing medallions, either of the seasons or classic heads, is also a good style. A less pretentious style of treatment is to put each wall or side of the room into one panel, with gold moldings, as before, but in this case each panel should have a centre ornament of a proportionate size, placed exactly in the middle of the top lines of moldings, in order to give elevation, and break the long straight line, which is always objectionable. The form of these and of the corner ornaments must be determined by the style of the room. The centre of panel may, in this case, be either tinted or filled in with a suitable diaper pattern paper. If paper is used we pre-
fer that there should not be any of the so-called gold in the $p^{\text {nt. }}$ tern, but when the gold patterns are used for this purpose they should be chosen of as quiet and undemonstrative a pattern as possible. A simple and inexpensive manner of treating a draw ing-room is to color the walls of some light pleasing tint in dis-
temper, then decorate with a floral border round the top part of temper, then decorate with a floral border round the top part ond
the wall about 6 in . wide, enclosed in simple gold beads, and forming a frieze; a narrow ornamental border in one color may also be put round the brittom of the wall about 6 in . from the skirting. Many suitalle arrangements of borders are manufactured by the paper stainer, and if good taste is exureised in the chnice of color, an excellent effect may be obtained at a sligh cost.
White and gold is a favorite style for drawing-rooms, and is considered to be in the purest taste. Large rooms of unrelieved white with heavy deep gold moldings do not appear to us to be in good taste. Where pure taste is exercised, gold leaf will be used sparingly, for there is no stronger evidence of a vulgar taste than a too profuse use of gilding in decoration Any one may produce a gorgeous effect by a prodigal use of gold and color, but the true test of the decorator's art is to produce a rich and har. monious effect without the aid of gold leaf. Instead of white and gold the doors and all other wood-work in the drawing-rooms may be painted in tints; or the panels, moldings, and quirks tinted, and the stiles white; by adopting this course we retalib its purity, but ald warmth and harmony. The pamels may be painted either with floral arabesques, or simple lines and ornso ments, in quiet, fure tones of color. It does not follow that because the work is well executed it is necessarily in good taste; this is not so. Mere manipulative skill, although indispensable in the extention of all grood work, is the result of practice. Tast and judgment are much higher qualities, and very rare, and may be possessed in a high derree without the possessor having any manipulative skill whatever, but when all these qualities are combined in the same person, successful works must result.

The initation of wowls we think to be out of place in a draw ing-room, except elaborately inlaid work; but in a large drawingo room, in which pilasters or columns form a part of its constructive features, imitations of light-colored marbles may be used with propriety, if well done-not otherwise. The morning room or break fast room should be treated in a cheerful style, warm and comfurtable. The wood-work may be grained any light, clean looking wood, or a well executed imitation of inlaid woods, all good and serviceable of its kind; above all things it is necessary to avoid a depressing dullness in such a room. When we enter it in the merning, all should look bright and cheerful, and in accordance with the good things spread out for our use. Such ${ }^{8}$. room juliciously colored gives zest and relish to our fond, and soothes our tempers. With regard to the decoration of the hal and staircase, much depends upon its size, style of architecture and general character. The Grerk, Italian, and Roman style admit of marbles being used as a lining for staircases. On tho walls of a grand hall and staircase, we know of no style of decord ation so much in accordance with its grandeur as marble, veneer. with the real marble if possible, but if that is unattainable, good imitation may be used with taste and propriety. In paind ing imitations of marbles on staircase walls, it is always advisabd, to make choice of a mediun tint of the marble to be imitated, that is to say, there are certain blocks and slabs of (we will say) Sienua marble whicb, are less strongly marked than others, bo ${ }^{n}$ in vein and color. These are better adapted for painting thane the darker jarts, inasmuch as they allow of a more uniform ton to of color being kept throughout. Nothing looks worse than see one block or slab strong and dark, and the next light and faintly marked. Yellow or yellowish drab is the prevaling color certainly, but this is mixed and blended with such a variet of tints of pinks, greys, browns, blacks, blues, and purples, that the yellow is sobered down, and made into a perfectly harmon ous whole.
The marbles suitable for walls are so well known that we need not describe them here. Vestibules or entrance halls are ofted, done in imitation of inlaid marbles, which, when well executed, is an admirable style of decoration for this purpose. Much care and judgment is required in the selection of the marbles, and thes choice of a suitable design. Designs for the inlaying of mar of should be very different to those which are used for inlaying d woods. This is necessary from the difference of material, should always be kept in view in getting out designs for eithery It will be evident to the plainest comprehension that almost and pattern, however intricate, may be cut out of thin vineers of wood with the gratest ease, whon the same patterns, cut out
marbles, would entail an immensity of labor and an enormous
cost ; and many pattrens could be cut out of wood which could not be cut out of marble. Therefore, in marble, breadth and simplicity should be aimed at, and only such designs adopted as might be used by the marble mason, which are principally geometrical patterns, formed of strap work, circles, octagons, pentagons, hexiogons, wtc. There is, of course, an endless variety of patterns which may be used for this purpose, always keeping in mind the caution before given as to simplicity and suitableness. Much of the prejulice agdinst the use of imitation marbles has arisen from the use of narhled puper-hangings, the majority of them being such gross caricatures of the marbles they profess to represent; and even the best of them are so utterly inferior to really first-class painted marble, that no comparison can be instituted between them. A wall covered with paper never can have that evenness of surface and smoothness of finish that a paint d Wall prop.rly prepared has. Consequently we see at once that it is paper, which fact destroys all illusious at once. If we can see at once how an effect is produced, that effect will not be near ${ }^{80}$ pleasing as if the manner of its doing is effectually concealed; the greater and more complete the deception, and the more pleasure and wonder it cxcites, the grater the pleasure we receive from its beauty.
Another good style of treatment is to prand vestibule walls With lines and flat ornaments, and borders stencilled in quire neutral tints, in accordance with the style of the architecture. The staircase may be treated in the same mumer, or it may be painted dacio high, with two shades of the same color, the darkest tint about three or four teet above the skirting, and a suitable border stencilled upon the line of division; or the stencil may be divided; a black or dark-colored border may be stencilled apon the lower or dark color, and a line and stops, or small repeating ornament, upon the upper or lighter tint, in anv properly contrasting color, or it may be done with the same color as the dado is painted with. A good rffeet may be got by stencilling a diaper upon the d do of a darker or lighter shade of the same color, with a border of course, but we olject altogethet to the bper part being treated in the same manner, hus making too busy what ought, in reality, to be a relief and contrast to the rest of the house. Nothing can be in worse taste than to cover every part of our houses with busy ornament, creating a feeling of unrest and oppression utterly opposed to the thue principles of decorative art.

Fossil Footprints in Coal.-At the last meeting of the New York Academy of Natural Sciences, Dr. Joseph Leidy read a letter from Mr. W. I.orenz, chief engineer of the Philadelphia and lieading hailroad Company, referring to a fossil spuimen preSented to the academy by Mr. William D. H. Masson, of $\mathrm{f}_{\text {Oot prinstown, }} \mathrm{Pa}$. The specimen is a mass of coal shale with footprints, and was discovered by the donor at the Ellengowan colliery, in the Mahanoy coal field. Mr. Lorenz remarks that it is of special interest as having been the first specimen of $t: s e$ kind found in the anthrarite coal field. The specimen is an irreThe slat, upwards of a foot long, and less than half the breadth. The upper surface is obscurely ripple marked longitudinally, and i^{18} crossed in a slant by seven tracks, which are in pairs, except one, in advance on the right. The four tracks on the right occupy a line of six inches, and are about an inch and a half apart from those on the left. The more perfect impressions exhibit
four widy four widely divergent to ${ }^{\text {s }}$, successively increasing in length from than montwardly, excepting that the fourth toe is slightly shorter Than the third. The expranse of the tracks is about oue inch. The inupressions probably pertain to some salamandroid animal ; and as it had been found useful to refer to lossil foot tracks as thé representatives of the animal by which they were made under
distinct distinct numes, he would in accordince with a suggestion from Mr. Lorenz, name the form represented by the Ellengowan
anthracis.
Carbolic Acid Inhalation.-The inhalation of carbolic acid spray (two per cent. solution) in phthisis has been tried in the Mectorstinai Hoipital, New York. The first case had fetid expectoration, with an average temperature of $102 \frac{1}{3}$. The first effect of the inhalation was to increase to a marked extent the 8put, but at the same time to check the fetor. The most importail effect of the inhalations was to decrease the temperature rom 102° to $101^{\circ}, 100^{\circ}$, and 99°. In some of the cases carbolic efidecte acted as an irritant, giving rise to considerable spasmodic effects, and in these cases salicylic acid was substituted. The patter arnint did not produce such a decided effect on the temPerature, but its action on the fetor was equally marked. - Medical
Times.

A SIMPLE ELLLPSOGRAPH.

The accompanying illustrations represtnt a simple attachment for compasses for drawing ellipses. It consists in adding an extra point to the compass and then employing it in a manner similar to the way the trammel is ased for the same purpose. From the consideration that the draughtsman dops not have many ellipses to draw, the rrossbars have been dispensed with for the sake of simplicity and the triangle made to take their place. It will be observed that the point inserted in the com-

pass leg, and also the o:ir on the sliding piece, are blunt at the end, so as not to catch on the papur in sliding along the edge of the triangle.
This instrument has the disadvantage of only drawing a quarter of the ellipse at a time, and of reyuiring a little practice in its manipulation on the part of the draughtsman. On the other hand, it possesses the advantages over the trammel of a greater range of work, of not reyuiring an additional pen and pencil to keep in order, of compactness, of simplicity, and cheapness.

DISTINGUISHING BUTTER FROM LARD, BEEF FATS, ETC.

Mr. William Gustavus Crook, public analyst for Norwich, England, deserihes a metnod which will in a lew minutes distinguish butter from the fat of b.eff, mutton, or pork, or mixtures of them.
The sample to be examined (if in the form of butter) must be first melted and rendered pretty tree from water and salt, by filtration if necessary; 10 grains are then to be put into a test tube and liquified by placing the tu e in hot water at about 150° Fah.; remove the tube when ready, and add 30 minims of carbonic acid (Calvert's No. 2 acid, in crystals, one pound ; distilled water, two fluid ounces). Shake the mixture, and again place it in the water bath until it is transparent. Set the tube aside for a time. If the sample thus treated be pure butter, a perfect solution will be the result; if beef, mutton, or pork fat, the mixture will resolve itself into two solutions of different densities, with a clear line of demarkation ; the denser of the two solutions, if beef fat, will occupy about $49.7^{\circ} \%$; lard, $49.6^{\circ} \%$; mutton, $44^{\circ} \%_{0}$ of the entire volume; when sufficiently cooled, mure or less deposit will be observed in the uppermost solution. If olive oil be thus tested, the substratum will occupy about $50^{\circ} 20$; with castor oil, there is no separation. With some solid fats (not likely to be used fraudulently) no separation whatever takes place ; the addition of a minute portion of alkanet root will render the reading of the scale extremely distinct by artificial light. The author states that the above method (although not intended to surp iss other processes) is capable of wide application, the saving of a large amount of time, and the reliability of its results will at once recommend it as " "first step" in butter analysis.

FAIENCE JARS AND TAZZA IN PORCELAIN AND ENAMEL.

Farkites.

We present herewith an engraving of a groap of faience jars and tazza in porcelain and enamel work, designed from Chinese and Japanese originals, by E. Collenot, of Paris.

CHITA WARE IN NEW JERSET.

Last year, at the suggestion of Governor McClellan, of New Jersey, a commissioner was sent to Paris to study the exhibition of ceramics there and purchase a library of works relating to that 'industry. Mr. W. C. Prime is reported as pronouncing the library thus selected the best of its kind in this country. A slight controversy, which has arisen among the Trenton potters, owing to a fear that the returning commissioner may bring to the company he is connected with more than their share of the knowledge gained by him abroad, has called out the following facts, which are printed in the Sun:

There are sixteen great pottery establishments in Trenton. In them are invested between a million and a half and two millions of dollars, and their annual sales amount to nearly the same figures. Their buildings cover large tracts of ground, and give employment to about 3,000 persons. Their grimy, stained buildings seem to be as old as Trenton, but the industry is, in reality, a new one. It is only abont twenty-five years ago that the first pottery was established. It is there yet. It made only yellow or Rockingham ware. Other potteries started out to make only yellow ware, but the grades of goods made in Trenton improve every year, and there is now only one yellow ware pottery there. East Liverpool, Ohio, is the great center of

Jellow ware manufacture. It is nearly as great a pottery contitio as Trenton. Trenton owes its good fortune, in this respect, to its situation. It has no clay, except some black dirt that is used for the manufacture of the boxes that the crockery is laid in to be "fired." The clay used in Trenton comes from Ponn", sylvania, New Jersey and Delaware. The clay near the Amboys, in New Jersey, is the best in the market. A poor man, in Sout Amboy, borrowed a little money, a few years ago, purchased arr lot of ground, and began selling the clay that lies under its sar face. He has dug great shafts and tunnels, and is said to hare earned a fortune of $\$ 300,000$. Trenton's handiness to Now York and Philadelphis, and its railroads, canal, and river, aro its attraction to the potters. Among the workmen in ans potteries are many Englishmen and Irishmen, but Americens. are learning to do good work. There are designers and decorb, tors from Minton's great English tile works, and from Tiffany in New York, employed to decorate the better grades of toilet. and table ware.

A little while ago nothing better than cream-colored stone china, and blue stone, and stone procelain ware was made in Trenton. Now there are establishments that make real ching and others that manufacture a grade of stone china that they claim looks as well and wears better than French china, and is the same in everything except that it is not translucent., " ond. translucent quality is obtained by an intense "firing, "ing" those who do not make "real" china seny that this "firing this spoils a large proportion of the goods. Those who deal in ther fine work claim that by "firing" the china just as earthenwero is fired-that is, by putting many pieces together where the French put only one piece-there is a tremendous proit at
lower prices than the French obtain. The trouble is, however, chat the French goods, in standing aloue in the firing boxes, receive no blemish, while the American ware, which is stacked up On pegs, in the boxes, bears the mark of the pegs.

Mr. Fisk, of the American Crockery Company, estimates that the growth of the Trenton trade has reduced the importation of It ign ware from 35 to $\mathbf{x} 0$ per cent during the past three years. It is said that in one year a great stride has been ti:ken. A market has grown up for fancy goods. People were educated
Agreat deal by the Centennial Exhibition, and, more than all, Americans had ceased to copy from the English, and are relying Opon their own originality. Other potters are less cheerful. One young man spent much time and money on a pair of plaques. The principal ornamentation was a wreath containing every garden flower of especial beauty. The potter estimated the cost of the playues at $\$ 125$. He took them to Tiffany and to ome one else in New York and asked what they were worth. At one place he was offered $\$ 50$; at another $\$ 35$. He says that if they had been imported he would have been offered at least $\$ 250$ for them. He gave them to a bride, and found her a more ${ }^{\text {appreciative connoisseur than the New Yorkers. }}$

Twozboll and fosterbs abtzonomically hounted TERRESTRIAL GLOBE.

The following design is intended among its other geographical properties, to teach by modern astronomy the correct mechanical polations which the earth has in the system, and for that purpose there are at least eight original appendages, viz. :
${\text { last. A terrestrial globe, with a zone or ring around it } 18^{\circ}}^{\circ}$ broad, representing, the earth's twilight. The edge of this ring which is marked sunrise and sunset, forms the great terMinator, astronomically, of sunlight and darkness on the earth's morface, and is always situate 90° from the sun's centre. It ${ }^{m o v e s}$ with the sun's plane around the inclined globe once a year, and is known in astronomy as the "Solar Horizon," or Circle of illumination.

2nd. A Terreatrial globe, with a great circle around it repreMrting the ecliptic, or sun's path in the hearens. The ecliptic -rcle consists of two parts, an outer circle of wood and an inner wante the twelve constellations of the zodiac, divided into 30° moh. Itwelve constellations of the zodiac, divided into 30°
coe is also divided into the days of the calendar, every deCon. It is also divided into the days of the calendar, every de-
Tantre ing opposite to the day of the month where the sun's ing opposite to the day of the month where the sun's
eituate at the tifie. The inner brass aircle revolves
round the globe upon friction rollers and carries the sun's centre or place, with the other details to be mentioned.
3rd. A Terrestrial globe with a brass nemi-circle, graduated to degrees and fixed from pole to pole, to read the parallels of latitude on the earth. The semi-circle is carried round close to the globe by the sun's centre, hence it represents the true solar meridian for giving the longitude east or west, and the right apparent time of the day. This semi-circle has also another useful motion as it is earried round the globe by the sun, from the obliquity of the earth's axis to the ecliptic ($23^{\circ} 28 \frac{1^{\prime}}{}$) it will be observed that it causes the degrees of the meridian to traverse north or south (as the case may be) over the sun's centre in the ecliptic plane, thereby receding off on the earth his daily delineations north or south of the equator.
4th. A Terrestrial globe, with a graduated semi-circle placed between the ecliptic plane and the globe, with a motion round the sun's centie. In practical geography the two quadrants will give approximately the distanco in degrees of any place from sunrise or sunset upon any parallel of latitude in the illuminated disc of the earth.
5th. A Terrestrial globe, with a large hour circle placed round the south polar axis of the earth, divided into 360°, and also into hours of civil time. Twelve o'clock or noon on this circle is always it the plane of the solar meridian as it follows the sun's centre, hence it becomes the principal zero for finding the longitude on the earth and the hour of the day.

6th. A Terrestrial globe having a vernier or hour hand placed upon the axis above the hour circle, for reading hours of time or degrees of arc. It can be shifted to suit any meridian and fixed by a screw to the axis of the globe.
7th. A Terrestrial globe, where the sun's place is indicated by the wire through the centre of the circular brass ring which moves over the surface of the ecliptic plane; this appendage gives the sun's position in the zodiac for the day of the month required in the calendar.
8th. A Terrestrial globe with a round pointed vaze on the top edge of the twilight zone, indicating the axis of the ecliptio around which it revolves.

In concluding this circular the patentees may add that, with those who have written and lectured upon the subject, very great defects bave been seen about the old plan of mounting the Terrestrial globe ; for example,-Sir David Brewster, a prominent physicist of the last half century, at the end of his lecture on the uses of this educational appliance, observes: "To exhibit in a pleasant and correct way the physical conditions of the earth in the solar system, relative to light and heat, you requirs to unship the globe from its old mounting, viz.-take it out of the brazen meridian and the wooden horizon, and place it upon a pedestal in sunshine in such a way that its axis shall be pointed to the poles of the heavens, then the sunlight on the little globe will show where it is day and the shade will show where it is night, giving the true physical aspect of the earth in space." Now, in so far as the exhibition of this phase is useful in an educational point of view, this desideratum is correctly accomplished by this new astronomical plan of construction, as the true positions upon the earth's surface are given where the boundary line of the two great hemispheres of sunlight and darkness is situate for every day in the year, thereby giving the true scientific causes of the variation and distribution of light and heat to the northern and southern hemispheres of the globe.

In fine it may be mentioned that it is chiefly in the usen made of the above astronomical principles where the superior claims of this invention are lodged, as it is solely by the use of the "Solar Horizon," combined with the sun's motion. In the ecliptic hour the appliance can be made to exhibit trathfully, in miniature, terrestrial phenomena, with all the annual vicissitudea of the seasons which we enjoy.

To Hardin the Skin.-Through constant use, the fingerm in practicing the violin, piano and guitar, or kindred instrumenta, frequently become very tender and sore. The skin may be hardened by applying a strong solution of alum in water, or the tincture of white oak bark. A still better lotion would be a solution of tannic acid. Any drug store can furniah the acid, which should be dissolved in water.

Insoluble Cement for Botrles.--Soften glue in colid water and melt it in the water bath to form a very thick paste. To this add good glycerine in quantity equal to the dry glue taken, and continue the heating to expel as much of the water as pos. sible. This may be cast on a marble slab ta cool, and melted for use as required. This is not soluble in alcoholic liquids.

SOLID ENDED CONNECTING RODS.

By Josile Rose, M.E.

In Fig. 1 is shown the simplest form of solid-ender connect-ing-rod. It has but one brass, and the aljustment is made by the set-screw shown, to which there is sometimes added a checknut to prevent the serew from slacking back. During the palling stroke of the rod the whole of the strain is concentrated on the end area of the set-screw, and this causes it to imbed in the brass, giving play to the brass unless frecpuent adjustment is made. It is difficult to readily obtain a very aceurate adjustment with a simple set-screw of this kind, and furthermore the rod gets, as it were, shorter from centre to centre of the bore of the brasses. In Fig. 2 is stown a form of end not unfrequently used upon very small rods. The rod-end screws into the brass A, so that when it wears shorter to the amount of half the pitch of the thread upon the rod-end, the brass may be unscrewed half a turn, and the original length will be restored. The cap is held on by two screws, which may be slotted heads as shown, or screws with check nuts to prevent the screws from slackening back, as all screws are apt to do that receive sudden straius in reverse directions.

In Fig. 3 is shown a very substantiai form of solid-ended rod, a plan view being shown in Fig. 4. The back brass A has a flange, as shown in Figs. 4 and 5 at A, which secures it to the rod end at the back. The front buass B, Figs. 3, 4, and 6, has the key-way partly sunk in id, and the key biuds against one side as well as ou the bottom of the key-way, and this draws that brass close down to the face of the rod, as shown in Fig. 4. In order to cause the rod to maintain its original length, the key at one end is placed outside the crank-pin, while at the other end it is placed inside or between the crank.pin and the stem of the rod, as shown in Figs. 3 and 6. In this, as in many solidended rods, the flange or collar of the crank-pin requires to pass
through the brass opening of the rod. This nay be accomplished by making the brass opening large, or wide enough to pass ores the crank-pin collar (which will increase the width of the brasses, and hence that of the rod-(ond) ; or else the crank-pin collar mig. have two flat places filed on it, as in the end view shown in Fig. 7. The nijection to this plan is that the rod can only be taked on and off in one position of the engine-that is, when the tho flat places A and B, Fig. 7, stand parallel wi'h the length ${ }^{0}$ the rod.
It will be noticed in Fig. 4 that the brass B does not fill the space in the rod. This is because that brass has to pass in ores crank-pin collar and push up into the journal after it is in ${ }^{\text {bible }}$ rod. To make this space as small as possible, and to engble giving the crank-pin as large a collar as possible, the key bri (B) is sometimes bevelled off, as shown in Fig. 8 at ${ }^{A}$ there Another form of this rod-end is shown in Fig. 9, in which they are two keys to the brasses, the olject being to adjust the kedte to maintain the rod of its proper length. In order to facilita of making this aljustment, there should always be upon the face or the rod-end centre punch marks, as shown in Fig. 11 at F in in else two deep marks, as shown at C D in Fig. 10. Then, in ing up the brasses trr set the key back, the rod may be restor of to its original length by putting behind the back brass a piec the metal of such thicknesses as will bring the centre of ther bore of the back brass B even with the centre-punch or ot the marks. This being the case, it does not matter about rass, exact thickness of the piece of metal put behind the other braber since a variation in that will only act to let the key come mone or less throngh the rod-end without affecting the length of hich rod. (This remark does not, however, apply to rods in wh 10 is there is a stra!, which moves as the key is set up.) In Fig. pen, shown a form of rod-end sometimes used. The end being op the the branses pass through it. In this case the whole strain of tom pull of the rod falls upon the edge of the jib at top and bottom
of the strup, causing the jib to wear out very fast ; furthermore, opening brass condenses the metal at the back of the brass opening, acting to pene it and throw the points of the rodend pen, which it always does, the jaws of the jib embedding in the aws of the rod. This opening of the rod-jaws makes the brasses of roin their places; hence this is a weak and undesirable form 11, 12 rend, though very convenient to take on and off. In Figs. 1, 12, 13 and 14 are shown a form of solid-ended rod of more of iern construction. In this case a wedge (A) is used instead ${ }^{\text {of }}$ a bey being adjusted by screws passing through the rod at the ${ }^{\text {top a key being adjusted by screws passing through the rod at the }}$ check-nuts addeel. B is the back brass, and C the key brass. and a case the flange of the brass goes next to the crank-pin, of thlate, D, is provided to serve as a flange on the front face redge, hrass. In Fig. 11 this plate is removed to show the $V_{\text {Fedge, }} A$; but it is shown in the Plan View 12 and the End of the 13, and by itself in Fig. 14. A groove is cut on each side the groo brasses and the plate spans, the brasses passing up ing froove, being held in position by a screw at E . The openthe fur the lrass (in the rod-end) is here shown wide enough for this as elind to pass over the crank-pin, but in many cases, with pin as well as with other torms of solid-ended rods, the crankWin may be madr plain, that is without a flinge, and have a that by secured by a sirrew (as shown in Figs. 11, 12 and 13), so brassey removing the washuer the rod may be put on with the thassess alrealy in place, and made no thicker (at the joint face) be termed necessary for strength. In Fig. 15 is shown what may end (to ta a clip \cdot nd connertiner-rod, the screw closing the rodond (to take up the wear) against the spring of the metal. It is His the that in thin case the hole may receive a brass brush split present rod-end and sercured from turning by a pin. Fig. 16 of a brass another form of solid end-rod, which admits of the use take ons having a flange in lwoth sides of the strap, and will i_{s} solid ant off ly removilgy the cap, B. If the crank-pin collar rod, with the hrassin must he placed on the crank-pin, and the bat if th the we.dg. in place, lifted or lowered to the brasses; tog if the crank-pin has a washer and screw, the rod may be put together and slipped on its place.

HOW TYPHOID FEVER MAY BE PROPAGATED.

$D_{0}^{I n} 8$
D_{e} a recent number of the Popular Science Monthly, Ely Van Peval Per, M.D., of Syracuse, N. Y., under the title "Typhcid
subarb of the", reports seventeen cases of the fever in an isolated rubarb of the city ints which there were hut fourteen houses. The $^{\text {fitat case }}$ in which was imported; thence through the overflow of the privy became all the excrement of the patient had been thrown, a well theame contaminated. All the persons who were taken ill used Werpen of It was the constant or occasional source of supply of Where of the fourteen fanilies. No cases occurred in houstholds veloped the inmates did not use this well. Some cases were deWho ped in cvery family who drew water from it. The families thio escaped were exponsed to every other influence hut thit of
the particular well ; their own water supply was the same, less the privy palar well; their own water supply was the same, less received contanination. It is not unlikely that their own wells vern free some of the overflow rom their own vaults, but as these About from typhoid poison, no ill results cusued.
a About eight vears since, Dr. Flint, who has studied and written ${ }^{6}$ gphat deal on the subject, became satisfied that a source of Grat thourer existed which was little dreamed of, and which at enuncought would seem impossible. Thi, source, as he then ledge haviug to his home medical society (and not to his knowidea having been before suggested), is found in ice. If this blematical. In the investigated, it will not aypear to be very propaired by freal. In the first place, the poison is not destroyed or imTaagk or freezing (some one long ago remarked that ice often Our ice conceals what it does not kill). Now, whence comes Deighborhpply? Often from shallow reservoirs in the midst of drainarhoods of large towins purposely made to receive surface ill enge from all around, under the erroneous idea that no harm That ensue, us freezing is supposed to purify and render harmless are taken fromerwise be objectionable. Great quantities of ice from taken from canals, fromi creeks, from stagnant ponds, aud sorface dreans that are, either the natural or artificial recipients of linese drainage, of the outponrings of sewers, and of unclean.
Proper from rarious sources. The danger fom ine taken from in.
one places is not only from that which is drunk, but from its The in places is not only from that which is drunk, but from its
if ${ }^{\text {getabet }}$, Teget refrigerators and preservatories, where milk, butter, fruits,
it it Paporizes. ${ }^{\text {and meats are subjected to its saturating influences as }}$
obtervatines cond notion where the disease, by the nost cireful invertigation,
fact the statement positively made by Budd in the London Lancet, in July, 1859, that it never originates de noro, but proceeds from a special and specific poison which is capable of diffasion to a great extent, and which preserves its noxious qualities for a long period, even if buried for many months, we cannot reject the hypothesis of ice infection ; and it is hoped that it will be made the subject of very thorough and careful investigation.

WHITE AFRICANS.

Major Pinto, the Portugurse explorer, who has just crossed Africa, from Benguella southwestward to Natal, describes a race of white men found by him near the headquarters of tie Zamberi. He says:
" I one day noticed that one of the carriers was a white man. He belonged to a race entirely unknown up to the present day. A great white people exist in South Africa. Their natme is Cassequer; they are whiter than the Caucasians, and in place of hair have their heads covered with small tufts of very short wool. Their cheek bones are prominent, their eyes like those of the Chinese. The men are extremely robust. Wh.n they discharge an arrow at an elephant the shaft is completely buried in the animal's hody. They live on roots and the chase, and it is only when these supplies fail them that they hold any relations with the neighboring race, the Ambuelas, from whom they obtain food in exchange for ivory. The Cassequeres are an entirely nomedic race, and never sleep two nights in the same encampment. They are the only people in Africa that do not cook their food in pots. They wander about, in groups of from four to six families, over all the territory lying between the Cuchi and the Cabango. It would seem that from a crossing of the Cassequeres with the negroes of other races sprang those mulattoes of the south, whom the English call Bushmen. The latter are, however, better off than the Cassequeres, and use pots in cookiug their frod, while their , dispositions are good, though yuite opposed to civilization."

Unfortunately Major Pinto does not say whether her saw more than one of the white African he describes, or whether the account he gives of them is based on observation or on hearsay. His promised book may clear up the inatter.

INCOMBUSTIBLE WOOD

The following chemical compound is said to produce the result claimed by M. M. P. Folbarri for rendering wood incombustible, petrifying it, as it were, without producing any chang in apperance. Intense heat chirs the surface, slowly and without flatue, but does not penetrate to any extent, and leavos the fiber intact:
Sulphate of zinc, 55 ll . ; American potash, 22 lb . ; American alum, 44 lb .; oxide of manganese, 22 lb . ; sulphuric acid of 60°, 22 ll .; water, 55 lb . ; all of the solids are to be poured into an iron boiler containing the water at a temperature of $46^{\circ} \mathrm{C}$., or 113° Fuh. As suon as the substances are dissolved the sulphuric acid to be poared in little by little, until all the subistances are completely suturated. For the preparation of the wood it should be placed in a suitable apparatus, and arranged in various sizes (arcording to the purpoes for which it is intended) on iron gratings, care being takru that there is a space of about half an inch between every two pieces of wool. The chernical compound is then pumped into the apparatus, and as sonn as the vacant sp, ces are filled up it is boiled for three hours. The wood is then taken out and laid on a wooden grating in the open air, to be rendered solid, after which it is fit for uses of all kinuls.

BROWNING'S STONE VARNISH.

Respecting the colorless preservative solution by which Cleopatra's Needle has been covered, a correspondent recently wrote to the Times: " In operating upon the granite, Mr. Browning first gave it a thorough cleansing, removing all the sooty and greasy matters from the surface, and then indurated it wi:h his invisible preservative solution. The effect has heen to give a freshness to the granite as if only just chiseled from the rock, retaining the original color, disclosing the several veins, the whit spar shining in the sun's rays like crystals, and exhibiting the nolished portions as they formerly existed. The solution soaks well into the pores of the granite, and the best authorities consider that it will have the effect of thoroughly preserving the monolith. Mr., Henry Browning has personally superintended the operations.

TEW DRAG SAWLNG MACHMNS.

The engraving on this page represents, in Fig. 1, Messrs. Alters \& Brasington's improved drag saw in actual operation, and in Figs. 2 and 3 the details of its construction are shown. The saw is capable of being operated by one man, as the weight of the operator, the pressure of his feet, and the power exerted by the hands are all utilized in giving a reciprocating motion to the saw.
The saw, A, runs between two parallel bars, B, which are con. nected with an upright pivoted to the standard, shown in detail in Fig. 3. This standard rises from a cross-piece which gives a broad base to the machine, and in which is set a perforated curved plate for receiving the latch or detent carried by the pivoted saw guide. By means of this device the saw may be adapted to inclined or uneven surfaces, as the saw frame may always be adjusted to a vertical position and secured by the detent or latch.
The saw head is pivoted at its rear end to the lower end of the lever, C, which reaches upward and is fulcrumed in the timbers rising from the bars, B, and is provided above the fulcrum with a Thandle. In the lever, E, forward of its fulcrum, a rock lever, D , is pivoted. This lever is composed of two parallel bars united at the ends, and supports a saddle for the operator at one

end, while the other end is conneoted by a link, E, with the treadle lever, which is fulcrumed at the rear of the machine just above ihe bars, B. The treadle lever is connected by a link, F, with the lever, C , at a point just back of its fulcram. At the forward end of the bars, B, there are a guide for starting the saw, and two spurs which onter the log and hold the machine in place.
The method of operating the machine will be clearly understood from Fig. 1. The operator sits upon the saddle, as indicated, and his weight being disposed forward of the fulcrum of the lever C , tends to throw the lever back, as does also the power exerted by the hauds pushing forward on the handle, while the pressure of the feet of the operator on the treadle lever being éxpended on the lever C, through the connecting bar back of the fulcrum, and the power exerted in drawing the lever back by the hands, throw the saw forward. Thus, by the weight of the operator, the pressure of the feet on the treadle lever, and the power exerted through the handle of the lever C, a reciprocating motion is communicated to the saw, by which it is rapidly and easily operated.

Further information may be obtained by addressing the Edior of the Scientific Canadian.

New Use for Old Clothes.-A manufactory in Germany turns out 1,000 pounds of grape sugar a day, made from old linen. The old linen, which is pure vegetable fibrine, is treated with sulphuric acid, and converted into dextribe. This is washed with lime water, and then treated with more acid, and almost immediately changes and crystallizes Into glacose or grape sugarwhich is highly valued in the making of rich preserves and jellies.

DAMPITESS IN FOUNDATIOT AND CETTAR WALIH.

From "Foundation and Foundation Walls," by George in Powell, just published by Bicknell \& Comstock, New Yorl, ${ }^{\text {WO }}$ make the following extract on this important subject :
In dwellings that are isolated, to avoid dampness from ponetrating the basement or cellar walls that are below the line of earth, architects sometimes specify that the outside of the walle be cemented from the footings to the base-board of frameworn and in some instances stop the cement 4 to 6 inches below line 0 . earth. Then excavate the earth around the structure to the disp tance of 2 feet from wall, and to a depth of 16 to 20 inches, and at an angle of 10 degrees lay one course of brick flat up to line, and cover with a coat of cement, as shown in Fig. 1.

Fig. 1.
Before this is done, it is necessary to fill in earth and settle it around the walls. After this is done, allow it to set perfected befure covering with earth. As the foregoing method interforthes with flowers and grasses up to line of wall, here is anothat method (see Fig. 2.)

Fig. 2.
After the wall has been built and cemented on the outside (Reseadale cement is good enough), excavate the earth ${ }^{\circ}$ the outside to line of footings, and grade the excavation to a pros per descent to carry the water to sewer in a drain pipe, laid om top of a. course of bricks cemented, and on top of this loosely broken stone, and cover the whole over with earth it is dry. Where there is a clay bottom and much moisturs, even this will not prevent dampness from arising in the co oafo To overcome this, use the method shown in Fig. 2 on the oaf side, and that of Fig. 3 on the inside.

Fic. 3.
Prepare the cellar bottom, and lay, say 3 to 4 inches of sand, $1 \frac{1}{4}$ in down firm and even. On top of this put a coat of cement, aronnes thick, over the whole surface of the cellar, and lay off deacent the cellar walls in the cement flat gutters of slight Thent to the sewer or waste pipe.
There are clay soils sufficiently solid for walls of dwelling that it But the clay in wet seasons retains so much moisture risea it does not seem to be carried away into the earth, but lare and penetrates through the cellar bottem, and keeps the celar damp nearly all the time. This is a serious difficulty to overwith but I have known the following method to be carried out

Fig. 4.
Poticavate the foundations to the depth required to put in the hotings, and in the cellar bottom 4 to 5 inches of sand rolled thick, on iop of which lay a coat of cement, not less than 1 inch tyek ; and when this is as dry as possible, put a coat of asphaland threr the whole surface up to the lines of the inside walls, care throngh one course of brickwork around the whole structure, caph being taken to cement the outside wall, and coat it with Tphaltum taken to cement the outside wall, and coat it with
peime as the cellar floor. This is the best course to Patbue where there is no chance for a drain.
Another method to secure a dry cellar is as follows: Perform orer thelling to the cellar bottom as may be required; spread Pher this sand to the depth of three to five inches, and roll or theieknem on top of this ; cover the whole surface with 1 -inch Wryes of cement mortar, Rosendale or Anerican brands; the walls against the inside of the outer walls. Coat the outthect malls with cement one-half to three-quartere of an inch thin in the same manner up to the dry line. Then on top of
the asphaltum through the wall (this should be provided for when foundation walls are being built), and cost the outside wall to dry line with hot asphalt. When the asphalt is sufficiently dry to walk on, dip heated brick into asphalt and tar, and lay olosely the whole surface with brickwork. When it is not possible to carry the asphalt through the wall to the outside, carry it up on the cement on inside.
The best mixture of asphalt is to mix with the asphalt 10 per cent. of coal tar and 25 per cent. of sand and use while hot, to form a cement for bedding brick for damp cellar bottoms.

A damp cellar sends up through the walle of a house a great deal of moisture by capillary attraction ; it is, therefore, too often the unsuspected cause of rheumatism and colds.

Naw Diseases.-Prof. Winckel, the director of the Royal Lying-in Institution at Dresden, has reported to the Congress of Children's Doctors, lately held in Berlin, obeervations upor a mysterious children's disease, which he had an opportunity of clinically studying in his own institution. An opidemio broko out toward the end of March. Of 23 children attacked, 19, or $82^{\circ} \%$ died, and the average duration of illness in the fatal casees was 32 hours. The illness began with a sort of sudden otupefaction of the children. The respiration became hoarse, acoompanied with groaning ond occasional foaming at the mouth. The change in the blood was remarkable. Dr. Winckel made incisions in some cases, but it was only by using pressure that he was able to squeeze out any blood. It was a thick, brown-black fluid, of the consistency of syrup. The body became flacid, the liver much swollen ; presently convalsions supervened, during one of which the child expired. The President of the Congress, Privy Councillor Dr. Gerhardt, of Wurzburit, suggested that thim new disorder should be designated "Winckel's disease." Another disease has become apparent in the heart of a very crowded portion of London. It is a new form of Cyprus fever, and a diagnosis of a recent malignant case shows the patient to be suffering from hallucinations and lowered vitality. The faculty ascribe the disease to impure water, and have given it the name of detephobia, and, though it is seldom fatal, the sufferer remain but a shadow of his furmer self.

Geographical Problrms Solved.-Within the presant generation, and mainly during the present docade, nearly all the great geographical problems left us by our adventurous anceators have been solved; all the great lines of exploration have been taken up and worked out with a surcese that leaves to the future only the details to fill in. The northwest passage was completod more than a quarter of a century ago; the Acatralian interior has been crossed and recrossed within the past few yeary ; several bright lines now break up the once mysterious darkness of the "Dark Continent;" the sources of the Nile have been traced, and the course of the Congo all but laid down; the Russians have filled up many important blanks in Central Asia; there is now no mystery to speak of for geographers on the North American Continent, and none of any magnitude on the South; even the great outlines of the ocean-bed have been chartered, and now at last, after a struggle began more than 800 years since, the northeast passage has been made with an ease that makes one wonder why it was not done long ago. A matter-of fact Swedish professor has shown that with a suitable ship at the proper season this long sought-for passage to the "Far Cathay" is a question of only a few weeks. Of Artic feats there now remains only the "dash at the Pole," and.that the North Pole will be reached sooner or later there can be no doubt.

Explosive Foroz of Dynamitr.-We learn from the Scientific American that there is a misconception about dynamite exciting a greater force downward and gunpowder upward when exploded. Nitro-glycerine (the explosive agent in dynamite) yields on exploding about 800 times its volume of gas ; gunpowder about 300 . This gas, suddenly liberated, must displace a portion of the atmosphere, which presses with a weight of abont nine tons upon each square yard of surface. To lift such a weight in the exceedingly short space of time occupied in the explosion of a charge of nitro-glycerine (in the form of dynamite or otherwise) would require a force greater than to split a rock, and the rock yields. Gunpowder yields but one-third as much gas on exploding, and the complete combustion of its grains requires an appreciable amount of time. Nitro-glycerine explodes all but instantaneously.

AN INGENIOUS AUTOMATIC VENTILATOR.

We illastrate herewith an ingenionsly devised and curious automatic ventilator, recently patented through the Mining and Scientific Press Patent Agency by Frank J. Crouch, of Eugene City, Oregon. Mr. Crouch is a young man of great ingenuity, and has invented a number of useful appliances of different kinds. This ventilator is his latest device. It is intended as an attachment to windows, transoms, etc., by means of which the opening or closing of the window or transom is automatically accomplished, in accordance with the temperature of the room.

The sash or transom is hinged or swiveled to the frame, so as to swing in a circle on a central axis, and thus be opened or closed. This shaft or axis is continued through the window frame on one side. On its outer end is a pinion, which unites with a small apur wheel, as shown.
On the lower part of the frame is secured a pipe-cylinder or chamber, on top of which is a thin metallic plate. On top of this plate is another of the same size and shape, the two plates being secured together at thirir edges, and the space between them being filled with sulphuric ether, turpentine, alcohol or similar sensitive substance. The tube or cylinders opens into the chamber formed by these two plates through the lower plate, and also contains the ether or other substance. To the top plate of the disk is secured an arm, the upper end of which is fastened to the crank on the spur wheel.

Now, when the liquid in the cylinder and between the plates or disks expands, the plates are expanded as they admit of a sensible spring apart at the centers. As they are expanded or forced apart ly the expanding substance, the arm attached to the upper plate operates the crank and gear wheel, thus rotating the pinion on the shaft or trunnion carrying the sash or tran. som, and the sash or transom is thus swung open. As the liquid cools, the reverse is the case and the sash is closed.

The plates and cylinders are made preferably of glass, as it absurbs heat readily, and none of the chemicals used will corrode it. No dangerous effects are produced should leakage occur.

The plate and cylinder arr placed inside the room so as to be affected only by the temperature inside. When the room is heated the resulta it expransinn of the plates acting on the gearing will open the transon, atd as the liquid cools, the plates come together, and close the trimsom, thus regulating the size of the opening through the transom or window in proportion to the
temperature of the air. This durable and self-ventilator is adapted to hotels, theaters, halls and private dwellings, where good ventilation is desirable. On one side of the window framid may be attached a gong, so arranged that in case of fire or who there is any unusual heat, the movement of the sash will rind the bell to attractattention.

circular gadez.

The inclosed diagram shows a plan and elevation of a circalar gauge, which might be found very useful by many of our readern

It is designed for the measurement of large drums, cylinders, and pistons, and to give more accurate measurements than callipers and ortinary gaures.

The diagram (plan) is 1 foot in circumference, marked like A^{1} ordinary rule, viz., inches, half-inches, and eighths.

A A A shyws the " gauge."
B B the handle and fork. C shows the indicator. D shows the centre-pin. E the starting point.
In the elevation--
A A shows the gauge.
B B B shows the fork and handle. D D shows the centre-pin.
In addition to the above uses, this gauge may be used for aly description of work.

RMTIATION GOLD AND SIVLVER.

There have been a great number of alloys resembling gold apd silver patented. The last which has come to our knowledge is patent recently sranted in England to one Thomas Meiffer, Marseilles, France, for the following ingredients:

Gold Alloy.- 800 parts of copper, 28 of platinum, and 20 as tungstic acid are melted in a crucible under a flux, and the mit it mass poured out into alkaline water, so as to granulate it. then melted together with 170 parts of gold.

Silver Alloy. -65 parts of iron and 4 parts of tungsten 20^{50} melted together and granulated ; also 23 parts nickel, 5 of alumi num, and 5 of copper, in a separate crucible, to which is adde num, and 5 of copper, in a separate crucible, to which The tro a piece of sodium, in order to prevent oxidation. The resish the action of sulphureted hydrogen.

Expansion of Wrovght Ikon and Cast Steel.-It is inf portant in workshop manipulation to remember that if a piece all cast steel be made red hot and quenched in cold water it ${ }^{*}$ become longer, but if the same operation be performed apon piece of wrought iron it will become shorter.

Tuixdxanies.

Strel in the Boiler of the Future.-Steel can now be produced by either the "Bessemer" or the "Siem"ns" process, torpassing in tensile strength and in the power of bending and duisting, for flanging, any best brand iron known, the metal prohomody either of these two processes being of a purer and more homogeneous nature that can be made by any of the older methods. The best American boiler plate is said to have a rupsection strain of 70,000 pounds, or 31 tons per square inch of caction. The ordinary plate for locomotive boilers is stated to be capable of hearing a strain of 60,000 pounds, or 27 tons per square have Steel boiler plates, having very grrat cohesive properties, have been made in England and in South Wales. It is stated to capable tensile strength of 45 tons per square inch, and to be capable of producing the highest class of stcam boilers. As a rule, England boiler plates are of two classes-Yorkshire and The therdshire ; these, however, include the make of other districts. The maximum strengths for locomotive boiler plates are as best : Best Yorkshire iron plates, 25 tons per square inch; Ameritaffordshire iron plates, 20 tons per square inch; best American iron plates, 31 tons per square inch ; ordinary A merican 45 tons per square inch 27 tons per square inch; English steel plates, 40 to

Prance, has Cleaning Machine.-A brewery at Mouchain, in cleance, has been using for some time a patented machine for outside barrels. Four barrels ure washed at once inside and piece of In the center of the machine is a shaft on which is a in diafe of metal so arranged that four iron hoops about three feet on diameter can be bolted on. These four hoops have each two attachiron plates mounted on pivots, and between these plates an are plant screw catches the barrels. Brushes fixed on springs tope placed on a hoop ontside the machine, and so arranged as to occentric four barrels at the same time. The circle of brushes is Water fic to the shaft. A reservoir under the machine has hot placed for washing the outside of the barrels. A chain brush is alaced in the interior of the barrel. The machin! is worked hy the fourdinary pulley fixed on the main shaft. This latter carries brashes barrels round, like the sails of windmill. The exterior canshes being stationary, produce a friction on the barrels which canses them to rotate on their givots, so that two circular movethrow are obtained at the same time. The tables of the screws that thater un the barrels when they come to the upper part, so B $\mathrm{Br}_{\mathrm{R}_{188}}$ - Founding.-If you want fine castings, dry the surface
of juur moulds well, dust them with bean flour tied up in a muslin bag, put them upright, and with a pair of common house-belmolds blow out all the surplus flour ; use a little care ; surew your molds together well, mix your metal with a piece of red-hot iron, that and pour as quickly as possible. I have heard casters say cracibe art of casting is in pouring in the metal-that is, the cracible should be held as high as possible over the gateway of metal moulding box, and poured in with a from hand, so that the you tay go down to the bottom at once. Practice will enable You to do this without letting the metal touch the sides of the gateway. When the gateway is full, give the box a few light
taps with flow with anything light, and on no account let the metal overWant the box, and you will have good and clean casting. If you must well powder the facing sand with a pestle and mortar; this mast be dusted on the pattern through a fine piece of muslin,
then fill up with fine sifted sand.

Preparing Metal Sheets and Wire for Coating.- A ppecial improved process of treating metal previously to its being
coated of P_{0} with tin, lead or zinc, has heen invented by Mr. Conway, is to subjewydd, near Newport, England. The present method acid, but mect the iron, steel, or other metal, to a bath of sulphuric and, but Mr. Conway's invention does away with the use of acid, Tegetable or substurbon or hydrocarbon, either in the form of regetable or mineral tar or hydrocarbons, which may be applied employically or by manual labor, but he finds it advantageous to through a machine by which plates by means of rollers are passed araygh a bath containing the carbon to be used, thus doing may with what is techuically known as "black pickling" in the bathufacture of tin and terne plates. After passing through the beth the plates or metal of other forms go through the usual proOegs of annealing, cold rolling, white pickling and tinning, as is
Well understood.

Automatic Speed Regulator.-A coutrivance has been invented by Messrs. Dufilhot \& Duprat, of Bordeaux, for regulating the speed of machinery. It consists of a spindle to which rotary motion is imparted by the machine to which it is attached; on the spindle is fitted a sliding cone, and under the latter is a cross-head, bearing bent and counterpoised arms jointed thereoll. When the spindle is revolved by the machine, the arms are thrown outwards at their lover extremities, but impinge upon the cone with their upper extremities, aud by means of their varying friction on the cone, which increases with the velocity of the motion of the spindle, the speed of the latter is controlled, and its means and that of the machinery, with which it is connected by gearing-wheels.-Universal Engineer.

Blackening Zinc.-A process for chemically blackening zinc has been devised by M. Fuscher, of Frankfort. The inventor first scours the zinc to be operated on with fine sand and very dilute hydrochloric acid, and then plunges it into a solution of equal parts of chlorate of potash and sulphate of copper in thirtysix parts of water. When withdrawn, after a short interval, it is found to have taken up a fine coating of velvetry black, which, however, at this stage, very readily comes off. To ensure its permanency, the zinc thus coated is quickly washed with water, allowed to dry, and then plunged into a weak solution of asphalte in benzole. The excess of this fluid is allowed to drain off, and the colour can then be fixed by rubbing the sheet with a cotton plug. Zinc thus blacked is found to be particularly suitable for covering in roofing.

Petrolfum Fuel for Steamboats.-On July 15th, the first known attempt to use petroleum as fuel on board a steamer was tried at Pittsburg, and the result was very satisfactory. The Telrgraph says: "The little steamer Billy Collins lay in the Alleghany river this morning with 80 pounds of steam in her hoilers, and not a bit of smoke in her starks, ashes in her puns or clinkers in her fire.box. A few gallons of 53 cent crude oil had run out of a barrel on her guards, and was converted into a wav. ing flame 10 feet long under her boiler, by a ittle device recently patented." The trip was made a few days ago, and everything passed off satisfactorily. The patent is the invention of a Pittsburg man.

The Ifer of Filfs.- A new file should always be used with ia light pressure until the very thin sharp edges of the teeth are worn off, after which a heavier pressure may be used with less danger of the teeth crumbling at the top or breaking off at the base. Every filer should keep a partially worn file to use first on the chilled or gritty skin of castings, or on a weld where borax or similar fluxes have been employed, or on the glazed surface of saws alter gumming. In filing high tempered steel it will generally be found more profitable to use the finer grades of files, called 2 d cut, and particularly where anything like a fine finish is required.

Sailing on the Rails.- The Sioux City (Iowa) Journal says: Mr. John McMillan, the enterprising roadmaster of the Sioux City and St. Paul railroad, came here a short time since with his hand.car rigged with canvas, sloop style. The experi. mpit of sailing cars on railroads seems to be a new departure, and the success attending the trial was well marked. The car has been in use about two months, and gives perfect satisfaction, having made, with moderate breezes, upwards of 18 miles per hour, and with its "leg of mutton" sail can sail close up to the wind.

Gilding on Sterl.-An old process,-which, however, is by no means universally known,-is as follows:-By shaking a solution of gold leaf in aqua regia with ether, or naptha, the gold will leave the acids to combine with the other liquids. Polished steel surfaces, such as knives, scissors, \&ic., on being plunged in this solution, when dry become covered with a coat of gold, which is an excellent preservative from rust. Letters, designs, \&c., may be traced by means of a pen, pointed stick, or brush, and as the ether evaporates, the gold will remain fixed.

Restoring Stefl.-A German magazine gives a simple method of restoring burned steel to a workable condition. This consists in immersing it in a preparation made by melting three parts of pure rosin in a crucible, and after it has become perfectly fluid, adding, with continued stirring, two parts of boiled lingeed oil-care heing taken to prevent the mixture taking fire, of which there is danger should the temperature be too high.

English Anxicultuxal $\mathfrak{z m p l e m e n t s . ~}$

NEW PATENT "ALBION" SELLF-RAKING REAPING MACHINE.

Having said so much about the general merits of Messrs. Harrison, McGregor \& Co.'s machines, I purpose describing, for the information of your readers, some of the mechanical features which they possess, and supplying, from my notes of a recent visit to the Albion Iron Works at Leigh, a few observations on the economy of manufacture and amplitude of resources possessed by the firm for carrying on their vast business as iron-founders and mechanical engineers. To begin with their New Patent "Albion" Reaping Machine, with controllable rakes, of which an engraving is given in the preceding page, I regard it as near perfection as anything mechanical can be, and at any rate equal

The Patent albion and Self-Raking Reaping Machine. to any selt-raking reaper in the market. This machine is sent out with four (or five) controllable rakes, complete, with knives, box of tools, \&cc. It will be seen that the platform and cutter bar are constructed so as to be easily folded up for transport, and to pass through a narrow gateway ; and that the driver's seat. is placed in a convenient position, so as to give the attendant entire control over the machine, whilst the man's own weight balances it, and takes all weight from the necks of the horses. By a new patented arrangement the lever for throwing the working parts into or ont of gear is placed outside the main wheel, and close to the drivers hand, an obrious advantage in working the machine. Another lever is placed within easy rearh, to enable him to tip

Fig. 2.-Tue Albion One-Hurse Self-Raking Machine. the points of the fingers up or down whilst the machine is in motion, as the nature of the crop may render necessary. A noteworthy feature of this two-horse reaper is, the gearing is well protected from dirt, and is so constructed that the machine when in operation is comparatively noiseless. By a simple arrangement of the rakes any of them may be made to deliver the sheaf, or pass over the platform leaving it untouched, as may be desired. The New Patent "Albion" One-Horse Self-Raking Reaping Machine is a very complete and handy implement for the use of small farmers. It contains every improvement for light, easy, and rapid corn-cutting, and is similar in every respect to the machine above described, except that it is adapted for one horse,

Fig. 3.-Teqe albion Mower.

Fig. 4.-The Albion Chaff Cutter.
and cuts 3 ft . 6 in. wide only. This reaper is fitted with the improved controllable arrangement, whereby every rake every second rake, every third rake, or every fourth rake may be made to deliver the sheaf; by a simple pedal movement the driver call cause all the rakes to act as dummies until it becomes necessary to sweep off the sheaf. These are the main features of Harrison, McGregor \& Co.'s reapers, which, up to the present time, harr fully sustained, in actual field work, the reputation originally earned by them.
[We simply give these illustrations, which are copied from sin English contemporary, in the expectation that our manufacturers may probably see in them some new and useful improvement.ED.S.C.]
taking Casts in Plaster of Paris.-In a previous num ber we gave the process for this art ; the following is considered ${ }^{\text {s }}$ preferable method : Put the required quantity of water into a basin. Lift your plaster with your two hands and put it into the water as gently as possible, till it rises an inch above the water in the centre of the basin. When saturated, blend well before casting. Do not use oil for your pattern; ;it burns the mold and makes it soft. Lacquer for pattern: a piece of black soap the size of an egg, a piece of tallow half ditto, and two gill of water. Put them on a slow fire, and keep stirring till the mixture comes to a boil. Then take off the fire, and let it simp mer at the side for 15 minutes, stirring all the time. Apply tho mixture with a small brush. Draw your pattern when yous plaster gets hot, which you can tell is the case when you 900 steam coming off.

THE KANSAS WHIRLWINDS.

THE KATSAS WHIRIWLNDS.
O_{n} the evening of May 30, a severe storm swept over portions more more whirlwinds of limited scope,-but of terrific violence. Eane severest of these appears to have formed on the Salina river, Wandes, crossing the country to Solomon river, then northeastbut into Nebraska. Much of the country traversed has been com rocently settled, and in the absence of complete telegraphic communication, it is impossible to form a connected idea of the killed ction wrought by them. Forty or fifty persons are reported 0 gitnand wounded; and many houses were wrecked at points 0^{20} gituated as to make it certain that no single whirlwind could
have done all the mischief. Even when a definite line of disacter can be traced on the raap, it takes a curiously zig-zag direction ; and local reports describe the main course as having been diversified by many remarkable loops and curves.

In their general features, the whirls substantially repeat those of the whirlwind that wrecked the town of Richmond, Mo., just a year before. There was the same sort of funnel-shaped cloud, with its terrific rotary motion and irresistible suction, sweeping across the country with a writhing motion, leaving in its track a looped and sinuous line of ruin and death. Whatever came within its range was lifted bodily, torn to pieces, and scattered broadcast ever the country. Nothing wam blown down; every-
thing was twisted and whirled into promiscuous ruin. Horses, cattle and hogs were caught up and carried to considerable distances, then thrown aside, crushed often into shapeless masses. In some places the track would be straight and narrow : at others the terrible meteor would sway from side to side, leaving a belt of partial destruction half a mile wide, with here and there a section entirely unharmed, perhaps an island-like space in a loop of complete devastation. In one of these loops, it is said, a house remains undisturbed, though the terrible whirl passed closely all around it.

Our engraving shows, as well as a single drawing can, the general aspect of whirlwinds of this nature. The artist, Mr. Davidson, has had the good fortune to witness one or more of these unwelcome visitants, without experiencing its immediate effect, and has given an accurate picture of their appearance. It is impossible for the most lively imagination, uninstructed by actusl observation or experience, to form any adequate idea of the imposing grandeur or the terrific force of whirling storms. The forward motion of the whirl may not be more rapid than that of a stiff breeze; yet the actual speed of the wind in the whirl would seem to be immeasurably greac. It is impossible to estimate the resistless violence of the air movement at such times. Houses are swept up like straws, heavy wagons and machinery are crushed and carried for long distances, and the toughest trees are twisted off like reeds. The electrical action in counection with these murderous whirls is naturally excessive, but the immediate rainfall is apt to be slight.-Scientific American.

THE SMBAY ENGINE OF THE FUTURE, AND THE FUTURE OF THE STBAY ENGLIE.

In the form of a pamphlet the well known author of many valuable works on the steam engine has now given forth some admirable suggestions, and sensible previsions, as to the future of the wondrous machine. We shall at present content ourselves with allowing Mr. Bourne to speak for himself on this pregnant subject. He observes that " the benefit of working steam er"gines expansively is well known to engineers, as also the necessity of employing a steam jacket in engiues so worked, to obtain the full benefit of the expansive principle. It is not generally known, but is nevertheless the fact, that in high speed engines there is a further benefit arising from the inability of the cylinder to become sensibly heated and conled at each stroke, from the shortness of the time given tor that process, and in such engines the cylinder approaches to the condition of a pon-conductor, which is known to be favorable to the economical generation of power. Then, in the case of all high pressure engines, it is easy to see that a considerable pressure must be more beneficial than a lower pressure. To raise a given quantity of water into steam takes just the same quantity of heat, whether the evaporation is effected at the pressure of the atmosphere or at six or eight times that pressure. But at the low pressure the steam will not generate any power, whereas at the high pressure it will generate much power. A very high pressure of steam, however, is inconvenient, as it involves a correspondingly strong and heavy boiler, an extra strong and heary engine, and separate expansion gear, which is not compensated by the small amount of increased economy obtained from excessive pressure. I have found a pre sure of about eight atmospheres to be, on the whole, the most eligible that can be adopted.
" Supposing a good and cheap small engine to be availablean engine that will be strong, simple, safe, light, noiseless, and economical in fuel-not only would all its industrial applications be extended, but it would find a new and wide sphere of usefulness in ministering to domestic wants, one of the most widely pervading of which is the want of a simple motive power. In American hotels steam engines have long been employed for brushing boots and cleaning knives. They aye the docile and inexpensive Helots of the age, and the domestic production of the electric light is a new and important sphere for their energies. But besides these functions, a domestic engine may be employed in roasting meat, driving washing machines and mangles, driving sewing machines, in brushirg hair, in preparing aerated waters, and in the country for pumping, for sawing wood, and for performing many other laborious operations. A steam engine may be made to cool houses in summer and to warm them in winter, to maintain fountains in conservatories, to work punkas, to produce ice, and to create and maintain a vacuum in safes for the preservation of meat. For such purposes the engine must obviously be of the simplest, most compact, and most inexpensive character, and should be attached to the boiler, so that the
whole may be lifted in a piece, like a hall stove. The boiler whould be provided with a self-acting feed of water, and the fuel should be gas, which has only to be lighted to enable the engine to be put into operation. Gas companies will find ample compensation for the loss of their lighting function in the creation of a new heating function, which will become larger and more remunerative than the lighting has ever been. Instead of extracting from the coal only the illuminating gases, the whole fuel should be turned into combustible gas by the aid of superheated steam, and all the fires of houses could be maintained by this cheap gas burning in jets amid pumice, which it would keep red hot. There would then be neither dust from grates nor snoke from chimneys, and the gas-works would supply the fuel that is necessary for the generation of the electric light.
"I cannot pretend in this brief notice to enumerate all the improvements which the steam engine of the future should comprebend ; but one essential quality is, that the boiler shall not be liable to internal incrustation, and that there shall be abundant facilities for easily cleaning it out. Most waters contain a certain proportion of lime, which is precivitated by boiling, and in tes kettles this lime forms an internal crust, which is termed 'rock.' Such incrustation hinders the transmission of heat through the metal of a boiler, and is injurious in various ways. But there are known means of preventing its formation, and in the 'steam engine of the future, it is an indispensable feature that these means shall be embodied.
"The application of the steam engine to the propulsion of carriages, omnibuses, and cabs, is now only hindered by its too heary weight and too high cost. Asphalt pavements, which are objectionable for horses, afford for steam carriages a surface as eligible for easy traction as a railk ay, and without any countervailing fault. All wheeled vehicles, whether required to travel at a high or a low speed, will be propelled by steam instead of horses as soon as the steam engine is made sufficiently light and sufficiently cheap to warrant the substitution. Life boats, instead of being open boats propelled by a number of men, should be decked boats propelied by a steam engine, and managed by only two men, one to steer the bout and the other to attend to the engine. Such boats should be propelled by a water jet which will always act, whatever may be the roughness of the sea, and whether the stern of the beat is in or out of the water. The $\mathfrak{u s e}$ of the steam engine for irrigation in connection with the centrifugal pump is an application of which the sphere is limited only by the cost and the deficient portability of the apparatus. Io render the class of small engines so much more portable, 80 much more simple, and so much less costly as to remove the existing impediments to their use, may certainly be accounted one of the most important problems of the present time, and I trust it is not presumptuous to hope that the cursory hints here given may accelerate the desired solution.

(aseful zuforuation.

EMBELLISHING IEETALLIC PLATES.

The decorstion of sheet-iron or of tin or terne plates by printing with colors, by lithogalvanography, and by stamping is considered to be defective whichever is used, so that in the opinion of Messrs. Trottier \& Ce., of Hennebont, France, a blank re* mained to be filled up in order to supply the numerous manufac* tures employing sheet-iron and tin with a product which, while presenting essentially a decoration suitable for the article for which it is intended, offers great resistance to the tools with which it is to be made, and will bear the usage to which it will be subjected. Such is the object sought and which is believed to be fully attained with the novel products forming the subjects 01 this invention. These products, which it is proposed to term " litho-plastic iron and tin," may in fact be applied to all pur" poses of manufacture. The plates of iron or other metal having been polished and grained, are submitted to lithographic printing with inks nou-saponifiable by acids, amongst others those having a base of wax, linseed oil and asphaltuin, or linseed oils vulcanized by the action of azotic acid, or made so that they cannot be attacked by acids by means of an addition of Jews pitch, and two or more solutions of concentrated indis-rubber.

The object or impression being obtained, the parts not covered by the fatty inks are bitten in or deepened liy chlorhydric, sulphuric, nitric, or nitrous acids, pure or diluted, or by any other body capable of forming with the iron a soluble combination, or by the aid of an electric current in baths suitable for this work. The duration of the action necessarily varies with the relief

Which it is desired to obtain and the nature of the dissolvents used. The fatty inks which have formed the reserves are then removed either by heating the plates or by dissolvents of the fatty matters. In this state the iron is submitted either to ordinary tinning or to galvanizing, or to any kind of galvanic deposit, according to the use for which it is intended. The electro-chemical deposits may be applied as reserves, this application being based upon the property possessed by certain plication being based upon the property possessed by certain
metals of not being attackable by acid, whereas the same acids act upon iron. The same lithographic composition will then give an object or impression the reverse of that obtained hy the previously described process.-Mining Journal Sup.

Dreing.-A new process, by which novel effects may be produced upon textile materials, has been introduced by MM. Gillett $\&$ Son, Lyons. The thread or textile tabrics are first dyed black al any known process, and are then treated with gelatine or albumen, and allowed to dry. After this, the materials ore placed in a bath (more or less dense) of color obtained by the distillation of coal, and vaporization is then effected either in a Wet or dry condition, according to he effect which it is desired to produce ; after these operations the materials are washed. The threads or fabrics thus dyed are then ready to be submitted to the operations of drawing, lustering, calendering, pegging, and other manipulations intended to increase their brilliancy. The treatment of the threads or fabrics with gelatine or albumen may
be dispentian be dispensed with, but without them the coloring matters will not be so well fixed, although they may be brighter. Good reHalts and different effects may be obtained by placing the thaterials to be treated alternately in bathis of logwood and of acetate of copper. The same colors obtained by the distillation of coal may also be employed, not only for materials which have first been dyed black, but for those which have been first dyed with colora more or less dark. For instance, a fine effect may be obtained by the application of aniline violet on French blue ; or quite a different effect may be produced by the application of such colors on chestnut or other shades of brown.
The Significancr of Salt in Well-Water.-In Prof. Lattimore's report on the analysis of well-water, which was proved to be the c.use of a serious epidemic of typhoid fever in Rochester, he lays special stress on the significance of the presence of common salt in well-water in general. No single indication, he holds, is of so great sanitary importance in judging of the purity or impurity, and consequently of the safety or danger, of any water. He proceeds then to show that, though from the aniversal diffusion of this substance in the air and in the soil, we or ould expect to find it in all waters, whether from rain, springs or wells, because of its extreme solubility, nevertheless, he argues, the quantity of salt that should be found normally from the causes " n med in well-water is extremely small, and therefore, whenever "it rises above a very few grains per gallon, it becomes certain that it comes from some other source than the soil;" and he conclades with the logical inference that, as nearly all the salt used for domestic purposes escapes by the way of two channels, the "water-closet and the house-drain, we should therefore expect, "What is always found on examination to be true, that, whatever *ewage may or may not contain, it always contains salt."
Presence of Mind.- Professor Wilder gives these short rules for action in case of accident: For dust in the eyes, avoid rubbing, dash water into them. Remove cinders, etc., with the round p(int of a lead pencil. Remove insects from the ear by tepid water ; never put a hard instrument into the ear. If an
artery is artery is cut, compress above the wound ; if a vein is cut, •ompreas below. If choked, get apon all fours and cough. For light - arns dip the part in cold water; if the skin is destroyed, cover With varnish. Smother a fire with carpets, etc.; water will often spread burning oil and increase the danger. Before passing thrungh smoke take a full breath, and then stoop low, but if carbon is suspected, walk erect. Suck poison wounds, unless Your mouth is sore; enlarge the wound, or, better, cut out the part without delay. Huld the wounded part as long as can be cite to a hot coal, or end of a cigar. In case of pois.ning excite romiting by tickling the throat, or by water or mustard. For acid poisons give acids; in case of opium poison give atrong coffee and keep noving. If in water float on the back, with the nose and mouth projecting. For apoplexy raise the head and body; for fainting, lay the person flat. Prcoliar action of Gelatine on Gum.-Gelatine, it is said,
haf a peculiar action on gum ; if gum be added to gelatine, aud
the mixture sensitized with ammoniacal potassium bichromate the behaviour of the latter substance is very little altered by the addition of the former. Its solubility in hot water is somewhat increased, and to obtain the same degree of insolubility for the image as with pure gelatine the exposure must be linger. But if the mixture be acidulated with acetic acid, the film after exposure and desiccation is less soluble than one consisting of chromated gelatine only with acetic acid. Gum, therefore, renders an acid solution of gelatine less soluble, and the reason for this is belipved to be that glutin and arabic acid form a compound solid only with difficulty. Borax thickens a gelatine solution, and the alkaline reaction of the same substance tends to render the chromated gelatine more insoluble. Calcium nitrate gives to gum an enormous power of adhesiveness.

Blackberry Root Good for Summer Complaint.-We have great faith in a lecoction of fresh blackberry root for looseness of the bowels. Last summer it completcly cured a severe case of chronic diarrhœa, after the other remedies of the best physicians had proved unavailing, and it invariably cured in many other cases where it was afterward recommended. Dig the green roots, rejecting those that are large and woody. Wash thoroughly clean, and steep in water at the rate of a quart to half a pound of the root, boil down on -half and then strain or pour off. Put the liquid in a bottle with about one-eighth of its bulk of brandy, whisky, or alcohol, to krep it from souring, and cork tight. A tablespoonful of this, rather less for a child, is to be taken three ol four timcs a day, say before each meal time. We would not go from home, especially southward, without taking this preparation along. The blackbarry brandies or cordials made from the berries are of little account as remedies for the diarrhca. The virtue lies in the roots, not in the berries.-Agriculturist.

A Word to Insurance Officers.-The Plumber and Sanitary Engineer suggests to life insurance companies, that instead of merely hammering at a man's chest to find if he has a tendency to any disease, would it not te well for the medical examiners of life insurance companies to inquire if he has not got a cesspool leaking into his well, or untrapped pipes beneath his basins and closets :
More persons die of zymotic diseases in New York than from almost any other malady, yet a man living in the midst of contagious influences, and hence daily liable to take diphtheria or typhoid fever, would yet find little trouble in getting a heary policy on his life.
If insurance officers would give this subject their attention they might save many losses to their companies, and also benefit the public generally; for if men found that their homes were rated as "hazardnus," they would soon begin to think of finding a remedy for the difficulty.

Tests yor Butter by Light.-A writer in the Hannoversche Monatsschrift is even more sanguine than Mylius, who first proposed the examination of butter by polarized light, of the value of his method of testing the purity of butter. Under such light the peculiar crystals come out very distinctly. He has discovered that different fats, like the minerals, produce characteristic marks whereby they can be determined in the polarization colors, and he intends soon to publish plates showing the peculiar forms and colors of each fat, whether raw or melted, or crystallized from glycerine. Mutton tallow gives a blue tone; ox fat, green and white ; hog's lard, red and blue, with other colors not so intense ; cacao butter, a play of color froin the deepest red to the brightest green. Besides being useful as tests of the genuine nature of butter, these optical reastions are said to be available for the detection of foreign fats that may be fraudulently added to chocolate or cocoa.
To Attain Lona Life.- He who strives after a long and pleasurable term of life must seek to attain continual equanimity, and carefully to avoid everything which too violently taxes his feelings. Nothing more quickly consumes the vigor of life than the violence of the emotions of the mind. We know that anxiety and care can destroy the healthiest body; we know that fright and fear, yes, excess of joy, become deadly. They who are naturally cool and of a quiet turn of mind, upon whom nothing can make too powerful an impression, who are not wont to be excited either by great sorrow or great joy, have the best chance of living long and happy after their manner. Preserve, therefore, under all circumstances, counsels The Sanitarian, a composure of mind which uo happiness, no misfortune, can too much disturb. Love nothing too violently; hate nothing too passionately; fear nothing too strongly.

Baxifine Coustruction \& 思xawing.

 (From Collin's Elementary Science Series.)We regret that we have been obliged to postpone the lithographing of the plates referred to in this work until its completion They will all be supplied in the last two numbers of this year's volume, and properly indexed, so as to be easily reîerred to who bound. This work is alone worth more than the cost of the Magazine itself. Next year we shall give further instructive matter of ${ }^{2}$ aimilar kind, but on separate illustrated sheets.-EdITOR S. C.

THE NEW POST OFFICE, TORONTO.

WINTER BOUQUETS, GRASSES, ETC.

As usmal, at this season, we have inquiries as to the preparation of grasses, flowers, etc., to use for winter decorations. It is not practical for us to go over all the details, but for the benefit of our readers, we give the principal points. In Europe, the preservation of flowers is a regular business carried on in large establishments and employing many hands. Great numbers of these flowers are imported by our dealers, both made up in wreaths, bouquets, baskets, etc., and in bunches or clusters all of one kind. Most of the made-up affairs are not of a kind that appeal to our taste, the object being, apparently, to crewd the greatest possible variety of the most positive colors-even to black (!) in each design. The effect, as a general thing, is artificial and tawdry.

AS TO GRASSES.
These are largely imported, and of late years some dealers have offered many of these collected in various parts of the country. These for the most part are dyed of various brilliant colors, and look, to our taste, so thoroughly unnatural, that we are repelled rather than attracted by them. The pleasing effect of grasses is in form, rather than in color, and when we see specimens which are naturally of a soft green or straw color, dyed with the most intense crimson or blue, or of a green, the like of which no grass ever presented, the eye is arrested by the "stunning" color, and takes no note of the beauty of form. Others load their grasses with crystals of alum ; and worse yet, others are given a metallic appearance by the application of bronze powders. We can describe how these things are done, but we can not find beauty in them.

the time ror collecting grasses.

Each month there will be some grasses in season, and though many of the earlier ones have gone by, there will be found, during this month and next, a sufficient variety, especially of the larger kinds. As some of the most pleasing kinds are of no agricultural value, they are not generally known by common names, and to give their botanical names would be of no use except to botanists, who do not need them. We therefore simply say, that by road sides, in meadows, and especially in moist and swampy land, grasses are to be sought for. Not only the more showy kinds, but those which have delicate, fine panicles of flower clus ters should be collected. Secure long stems, and cut away the leaves. In most grasses the upper joint that bears the flower cluster will pull out readily from the sheathing leaf; this will often leave the stem too short to make up conveniently, and it is better to take several joints of the stem and cut away the leaves. If one can choose the time for collecting, the grasses should be watched as they develop, and taken when in flower, which may be known by the protrusion of the anthers or the feathery stigmas. Some grasses if gathered much later than this, will drop portions of their flowers, or shed their sceds in an unpleasant manner. Still, if one is but temporarily at a locality, a desirable grass should be taken in the condition it is found at the time.

drying the grasses.

Those in which the panicle is graceful and drooping, should be dried so as to preserve the natural form. If such are tied in bunches and hung ur carelessly, they will be disappointing when dry. A handy method ia to have a broad and not vely deep box of sand, and stick the stems in this. Those kinds in which the flowers are in a close aud spike-like cluster, may be tied in convenient bunches and hung up, heads down; a little practico will teach the proper treatment if it be remembered that the form in which the grass is dried can not be afterwards changed. Any airy place will answer for drying, such as an unoccupied room, or an old-fashioned garret. When the stems are quite dry, the flower cluster will be so; and if the drying place is not quite free from dust, they should be put away from dust and from flies, which are very fond of collecting upon them.

besides the true grasses

there are various members of the Sedge Family that are worth collecting, especially the Cotton-grasses (Eriophorum), which show their white and brownish plumes in the boggy meadows. Indeed, whatever plants by grace or beauty of form commend themselves to the collector, should be gathered, without reference to botanical relationships.
preserving showy flowelis.
While grasses are as much flowers as roses and camellias, they
are not popularly so regarded, and in the trade, "preserved flowers and grasses" are offered. We compromise the matter by calling the others "showy" flowers, of which a large number are prepared abroad. The class of annuals known as "Everlastings," are cultivated by many with a view to the use of their flowers in winter decorations. The majority of these require only to be picked as they just come into bloom, carefully dried and kept from the light and dust until wanted. A large number of the imported flowers are preserved by means of sulphur fumes, the process being precisely that used in bleaching straw hats. A box or barrel is provided, which if not tight, may be made $\mathbf{s 0}$ by pasting paper over the joints; this should have a small opening near the bottom to admit air, which can be closed when needed; a few inch and a half holes to be stopped with plugs will answer. An arrangement should be made to support cross wise sticks at the top ; a tight fitting cover and an old iron pan, or flower-pot with the hole plugged, to hold live coals, complete the outfit. The flowers are tied in small clusters in such a man ner that the fumes can reach all parts, and bung upon the crosssticks, live coals being put in the pot or pan, a few lumps of sulphur are thrown upon them and the cover placed on; if the cover does not fit closely, put folds of wetted cloth under it and a heavy weight on top. When the box or harrel is well filled with fumes, close the lower air hole and leave all untouched for 24 hours. At the end of this time, remove the flowers and hang them in an airy room to dry. When quite dry thoy may be laid away in boxes. All flowers do not succted equally well, and there is room for experience. Among those we found most satis. factory were, China Asters, Fuchsia ouds, Larkspurs-the dark colored kinds, Red flowered Spiræas, Golden-rods, Roses-the rod well filled and not over-blown ones answering best. As a general thing, the Howers are better if taken just as they are opening; some, such as the Fuchsias, even in the bud, to be opened afterwards. Some flowers after sulphuring will be quite bleached; but the color in most can be restored, as we may show in speaking of making them up.

LABOR AS A FORM OF ATHLETIC EXERCISE.

Open-air labor is the most effective cosmetic, an almost infsllible panacea against all kinds of bodily deformity. But the remedial virtue of labor, i.e., sound bodily exercise, is greater than that of open-air life per sc; for among the rustic population of Scandinavia, Scotland, and Northern Germany, who perform a large portion of their hard work in-doors, we frepuently find models of health and vigor; far more frequently than among the inhabitants of Italy, Sprin, etc., who pass the greater part of their indolent lives in the open air.

But besides all this, athletic exercises have a moral value, which our social reformers have strangely failed to recognize; they afford a diversion and a vent to those animal energies which otherwise are sure to explode in debauch and all kinds of vicious excesses. The sympathetic thrill by which the mind accompanies a daring gymnastic feat, and the enthusiasm of athletic contests, form the most salutary, and perhaps the only normal gratification of that love of excitement which is either the legitimate manifestation of a healthy instinct, or else a wholly irremediable disease of our nature. The soul needs emotions as the body needs exercise, and the exciting sports of the palæstra met both wants at once. We try to suppress these instincts, but their motives remain, and if thwarted in their normal manifestations they assert themselves in some abnormal way, chemically instead of mechanically, as Dr. Boerhaave would say, by convulsing the organs of digestion, since the organs of motion are kept in un bearable inactivity. In times of scarcity the paupers of Chins and Siam silence the clamors of their hungry children by dosing them with opium ; and for analogous reasons millions of our fellow-citizens seek relief in alcohol; they want to benumb feeling which they cannot satisfy in a healthier way.

After finishing his day's work the Grecian mechanic went to the gymnasium, the Roman to the amphitheatre, and the modern Euronean and American goes to the uext "saloon," to satisfy by different methods the same instinct-a longing for a diversion from the dull sameness of business routine. There is no question which method was the best-the only question is which of the two bad substitutes may be the worse: the brutalizing, i.e., soul-hardening spectacles of bloodshed of the Roman arena, or the soul-destroying poisons of the liquor shops?--Dr. F. L. Oswald, in Popular Science Monthly.
ilhe Poinon of the Rattlesnafe a Ferment. - Hitherto the general beliet has been that the poisonous matter secreted by certain species of reptiles was nothing more that a poisonous saliva, acting in the manner of ferments. M. Lacerdo has been making, at Rio de Janeiro, some researches into the action of the venom of the rattlesnake, which throws much new light on the subject. His investigation shows that the saliva contains What are called figured ferments, the analogy of which with bacterides is very remarkable. From a young and vigorous crotalus, subjected to the action of chloroform, he obtained a drop of the venom on a chemically clean piece of glass, and at onee placed it under a microscope. Almost immediately he observed the formation of a filamentons pulp in an arborescent disposition. Gradually the thickentd filament, after having pushed out spores, dissolved and disappeared, and the liberated spores swelled and enlarged visibly, each of them sending out a
minute tube which lengthened ravidly. After a very short minute tube which lengthened rapidly. After a very short period the latter separated from the first spore, and constituted amother nucleus for engendering the deadly contamination. In of examination of the blood of animals killed by the bite of one of these snakes, M. Lacerdo noticed that the red globules of the hlood commenced to change by presenting some small, brilliant Points on the surface, which spread with great rapidity, and ultimately the globules melted one into the other, forming a sort of amorous paste which could no longer circulate in the veins. Other animals, in which that blood was injected immediately after the death of the first, expired in a few hours, presenting all the smyptoms of having themselves been bitten, and their blood always showed the same alteration. M. Lacerdo concludes his
toemoir toemoir by stating that numerous experiments have shown that the true antidote for serpent poisoning is the injection of
alcolating alcohol under the skin, or its administration through ihe mouth.
Medicinal Effects of 9nions.-A mother writes to an
 it was generally when we had cold meat minced-I gave the children a dinner which was hailed with delight and looked forWard to. This was a dish of boiled onions. The little ones Knew not that they a were taking the best medicine for ex , elling
What What most children suffer from-worms. Mine were kept free
hy hy this remedy alone. It was a medical man who taught me to
eat boil eat boiled onions as a specific for cold in the chest. He did not $\mathrm{kn}^{\text {now }}$ at the time, till I told him, that they were good for anything else." The editor of the journal adds: "A case is now under our own observation in which a rheumatic patient, an ex${ }^{\text {treme }}$ sufferer, fiuds great relief from eating onions freely, either cooked or raw." Dr. G. W. Balfour, in the Edinburgh Medical
Jolirnal real Journal records three cases in which much benefit was afforded patients by the eating of raw onions in large quantities. They acted as a diuretic in each instance.
The Teeth. -As the result of numerous trials made by the exposure of recently extracted teeth to the action of various substauces, M. Maurel comes to the conclusion that if various othedicinal substances are injurious in their action on the teeth, Others in still larger numbers prove, in their habitnal employprent, quite inoffensive. Thus, if we are re, guired to take great precautions respecting citric acid, tannin, chlorides of zinc and
antime antimony, perchloride of iron, sulphate of copper and alum, we May coutinue to employ with complete safety arsenious and caralcehacils, vinegar, corrosive sublimate, chloride of potash, and e hol, tincture of beuzoin, essence of mint, tincture of quinine and eatl de cologur. Tobacco, whether used in chewing or king, dues not injur the teeth beyond their discoloration.
Vevtilation by the chimey.-A parlor-fire will consume Gallonours 40 punds of coal, the combustion rendering 42,000 gallons of air unfit to support life. Not only is that large anount
of deletering of deleterious yroduct caried away and rendered innoxious by the chimuty, but five thmes that quantity of air is carried up by ascent iraft, and ventiation thus effectually maintained. The ness of smoke up a chinney de punds on the comparative lightness of the column of air within to that of an equal column if the fine thager the chinney, the stronger will be the draft, be so fire be sufticiently great to leat the air; hut it the chinmey druft is di that the air is cooled as it approacies the top, the Mas diminishent.-Firaduy.
Magnesium Steel.-Magnesium also causes a remarkable coinese of strurture in other metals. A coarse-grained steel beNinges tine-graiued on the addition of one-fifth per cent. of magnesium. In performing the expurisintits referred to, the the crucible must be introduced througha a hole in the cover of additiocible after the oxypen has been first removed by the adition of a few pieces of charcoal. Without this precaution violent explosions are apt to occur. -Btr. l. Chem. Ifesell

JUDICIOUS ADVERTISING.

A man was standing on the corner of Santa Clara aud First strects yesterday, denouacing newspaper advertising to a crowd of listeners. "Last week," said he, "I had an umbrella stolen from the vestibule of the -_ Church. It was a gift, and, valuing it very highly, I spent double its worth in advertising, but have not recovered it."
" How did you word your advertisement?" asked a merchant.
"Here it is," said the man, producing a slip cut from a newspaper. The merchant took it and read:
"Lost-From the vestibule of the - Church last Sabbath evening, a black silk umbrella. The gentleman who took it will be handsomely rewarded by leaving it at No. - San Fernando street."
"Now," said the merchant, "I am a liberal advertiser, and have always found that it paid well. A great deal depends upon the manner in which an advertisement is put. Let us try for your umbrella again, and if you do not acknowledge then that advertising pays I will purchase you a new one."

The merchant then took a slip of paper from his pocket and wrote:
"If the man who was seen to take an umbrella from the vestibule of the -Church last Sabbath evening does not wish to get into trouble, and have a stain cast upon the Christian character he values so highly, he will return it to No - San Fernando street. He is well known."
This duly appeared in the paper, and the following morning the man was astonished when he opened the front door of his residence. On the front porch lay at least a dozen umbrellas of all shades and sizes, that had been thrown in from the sidewalk, while the front yard was literally paved with umbrellas. Many of them had notes attached to them, saying they had been taken by mistake, and begging the loser to keep the little affair quiet. -Detroit Pree Press.

WESTON'S ELECTRIC LIGHT GENERATOR.

Mr. Edward Weston, of Nuwark, N.J., who has earned a great reputation as the inventor and manufacturer of the dynamoelectric machine, now used in many clectro-plating and electroty. ing establishments, both here and abroad, has for some time given his attent on to the construction of a similar machine, especially adapted for the production of electric light, and of the lamps used in connection with the same. In the adj ined engravings Fig. 1 represents the machine, Fig. 2 the lamp exteriorly, Fig. 3 another form of lamp, showing details of carbon carriers and of electro-magnet and artnature regulating their position, and holding the sliding rod wi'h a clamp, which automatically releases and keeps the light steady. This is one of Mr. Weston's latest improvements to the electric lamp. Fig. 4 represents the iron armature of Fig. 1, without its coils.
The machine (Fig. 1) is constructed with a view of keeping it in contimuous operation without heating it to such a degree as to necessitate its stoppage so as to allow it to cool off, a feature in which many machines of this kind bave failed. For this purpose the large stationary soft iron electro-magnets are, where they are not covered by the coils, perforated by slits. Fig. 1 shows these slits in the centre .f the top and on the sides, and when in motion the hand can feel the currents of air pass out of these slits, being propelled from the rotating centre to the circumference hy the centrifugal tendency, on the same principle as the action of rotary fan blower. This continuous current of air, taken in cool at the ceutre, and blowing nut at the circumference, is most etfective in keeping the machine cool, which, without this provision, loses much of its effectiveness, as the magnetic power of iron descruds when the temperature rises, and the conductivity of the coils for electric currents diminishts from the same canse. Therefore, even if a machine does not bu come hot enough to necessitate its stoppage, it is of importance to keep its temperature at as low a degree av possible, so as to secure its maximum effectiveness.
The power required to drive these in .rhines is form two to twelve horses, nad depmols on their size, of which the price varies from $\$ 200$ to $\$ 1,200$, the larger ones buing capable of furnishing several lights. They are commencing to he largely used for brilliant illumination gurposes in New York and vicinity, for instance, on the new iron pier at Conry Island.
These machines $+x$ rel in simplicity and compractness; they appuar to he eminently durable, and are claimed to be the most powerful for their size and cosit of any in the world, as it is reported that actnal tests showed them to yield more than double the amount of light per horse-power alsorhed than that oltained from any other machine luilt in this country.

The ability of the company to execute satisfactorily any orders for electric light, can be inferred from the fact that they have now in successful operation nearly seven hundred dynamo-electric machines among the largest manufacturers in this country and in Europe.

Figs. 2 and 3 represent lamps with ground glass globes, seen below, and which contain the carbons, the lower one being fixed to the bottom and the upper one suspended from the conducting rod, which is capable of sliding downward, but this down-sliding motion is arrested and regulated by a sunall clamp, worked by an electro-maguet, situated in the cylinder seen in Fig. 2, and its interior arrangement in Fig. 3; Fig. 4 shows the revolving armature, placed inside Fig. 1. The little electro-magnet in Fig. 3 is charged by the current; when its magnetism becomes too strong by a too close proximity of the two carbon electrodes, its attraction closes the clamp and draws the rod upward, separating the carbons. When the current, by this separation, suffers resistance enough to become weaker and cause the electro-magnet to relieve the armature by diminished attraction, it allows, by relieving the clamp, the rod to slide down and bring the carbans closer together. This simple device works so well that we have watched the light for hours and did not notice any perceptible change in it.

We advise parties desiring the use of electric light, before ordering a machine, to communicate to the manafacturers full particulars in regard to the baildings and localities to be lighted, to give, for instance, the size of the rooms or areas, the amount of power disposable, where it is located, etc. They can be sure that the manufacturers, the Weston Dynamo-Electric Machine Co., of 286 Washington street, Newark, N.J., will without delay give all particulars as to cost of machines, etc.

WESTON'S ELECTRIC LIGHT GENERATOR.

Fig. 1.-The Light Generator.

Fig. 3.-Detaila of the Electbio Layp. Armature of Liget Genbbator.
Fig. 2.-Ter Electric Lamp.

