BULLETINS

OF THE

Arial Exprotinut Asamiatian

Bulletin No. XXVII Issued HOMDAY, JAN. 11, 190

MR. MCCURDY:S COPY.

Murating of the Auxin, Prpertront Assoefation.

2ABye or cosshacte.

1. Eithorial Hotes und Coryonta: -

Aerlal Lecocnotion discuased by the Joyal soeiety of Great Britain in the Beventeenth Contury (2861-2679)

Biographios of some of the wen the took part in the diacuasiong of the Hoyal society $1661-26793-5$ Dr. Hobert Hooice (2635 m 2703)..............3-s sir villian Petty ($2623-1678$)............4-4, sir Chriatopher tron (1632-1723).......5-5
2. Harzaendeport Foris:-
3. Bainn Huroarth Porx:-
4. Misce 4 monons Corgunicstions:-

A deronstration how it is practically poasible to anke a Thip, which shall be auatained by the Air. and runy be moved olther by anila or oara: (A transLation of the 6th Chapter of Yather Lana's book eprodrons del1' Arte Maestra" Brascia 1670, by Dr. Robert Hooke, raad by hin Defore the Rogell 3ooiety of Fingland llay 29 1679, and published in Dr. Hooke ${ }^{\circ}$? Tracts and Collections 1674-1679)

Papperivents and diacussions relating to Aerial Loconotion by the early menbere of the Hoyal society of Inghand 1662-1667: (3xtracts from the Hiatory of the llogad Society by thonas Birch)...................28-2.
5. The Outiook on Ayiation:-

More than 100 years before the invention of the Balloon by the Hrothers Montgolfier (1785) a remaricable work, Poreahadowing the balloon, had been written by a Jesuit Pricat nazed Prancis Lans. The Fork was ontitled, "procromo dell" Arte Maeatra"sind was publiahed in Bresela its 1670. The book containod © demonatration, how it is practically possible to make ta ship, which shail be sustained by the air, and may be moved elther by asils or oars". The sppearance of the work mude a feefound fupression upon the warld at the tine and la probably rampasible for the axpresaion aerial mavigation wich has persistod dow to the present day. All works dealing with the hiatory of Aeronautice refer to thether Lana'a book, but none, so far as I know, have quoted fron the work itself, wo that the bonk is enly known by ite tithe oud by the picture of Pather Inana'a machine which has been widnly roproduced.

On the 29th of Hoy $\mathbf{1 6 7 9}$, and again on the 5 th of June 2679, Dr. Hobert Hooke read before the noyal society of Ingland a translation of partion of Pather Lane's book "Prodrome". This translation, with the remarice of Dr. Hooke
 Fracta and collections 1674-1679", a copy of mich may be found in the Boaton Public Library.

A fow years ago, at my request, Wr. Bawin P. Grosvenor Fialted the Boaton Public Lelbrary and made a copy of Hooke's
translation wich I give belop. A.G.B.

\#o woric relating to tha hiatary of Aeriad Loconotion so far as I know, rabes referonee to the fact that the art of flying was discuased by the early nombers of the lioysi Bociaty und that aoroplane experimentes were made by theoa in the 17 th contury. It ia true they were not called taerom plane experiments but they vere really the pare thing. por लxamplez: Dr. Wrenn (Bir Chriatophar Wromn), the deaigner of 9t. Paul. ${ }^{\circ}$ Cathodral, made evporioventa with meveral round pasteboarda to tent their valooity in Pulling; Dr. Hooka proposed experimente to natcertain the atrongth requistite to sake a wirge or exponded area eustein t detersainate bulk in the aix, and suegested "that $1 t$ was not sufficiont to have is theory for the deacent of an axpanded area perpendicularly downward, beeause the descent of an expmuded sraz, noved edgem wiae horisontaliy in the air, was extramely difrerent; in which way, howover, nil motion of nying matis be parformade. I give below quotations from the mistary of the Rayal Beciety" by thoman Hirch referring to experisments and discussions having a bearing upon Aerin. Loconotion between the years 2662 and 2679, and a Pev biographical notes cone cerning Hooke, Potty and Vrom. A.G.B.

An orighinal ingeniaus experimentel Philosopher born 1635, died 2703. About 1655 he whe oxployed and patronized by the Itonorable Robert Boyle whe surned hia skill to wooount in the construction of his celabrated air-puxp.

Hetween 265% and $\mathbf{2 6 5 9}$ Hooke ' B inventive faculty oxereised isaele in deviaing thirty dirrerent methods of plyint aecording to the 罍cyolopedis Britunuion.

In 2662 he wan arpointed ourator of experissentis to the Hoysal society sud rizled the orrice with extraordinsary diligence and skill during the revainder of his life.

During thin period he translated into Maglish the 6th Chupter of Jama's work "rrodromo" vhich appeared anong his posthumous phileaophiond contributions.

Hirch*a Kiatory of the Royal Society containa refer onces between $\mathbf{2} 66$ and $\mathbf{1 6 7 9}$ to diacuasions concerning the art of fiying participsted in by Hooke, but I have not found any description of his ideme relating to artiricial ilight produced betwrean 1657 and 2659 . It niftht bo well to inatitute a searoh through his published writings for some deam criptions of his lacal.

He seeras to have been an invalid all hia life, His were 1iaben ahrowiken. Hia hair hung in aidhevelled $20 c \mathrm{c}$, over his hag. ard onuntenance. 相is tomper vas irritable, his hablta penurious and aolitary. He way, howevar, blamelese in morals nad roverant in religion. Hia weientipie pertomancea were varied and original, and he ham lert behind him the reputate Ion of being one of the groatent experinental philoaophers

STH WTETEAM PMWY 1623-1087.

He wre bora in L62\%. Abotat 15 yeary of age went to
 mintuined himacis wile stwoing. On hss return to kneland
 Tamained for three yeara in Jrsmes ans tho Hentherlands. In 1647 Petty ottained patent Por the invontion of double wibing or in othar worda of a copying mechine. In la4a occurred hia fixte rublication Advice for the Advancement

 Chevistry. 1649 Dr. of phygic and Fellov of Branemoge col-
 boen hanged. Lesi Prof. af Anatexy in Oxpora und siso Prof. of Wuase at Greahn Colleg Ireland and in 1694 he $\begin{aligned} & \text { ande } \\ & \text { an } \\ & \text { aurwey of the innds grasted }\end{aligned}$ to the solaiera in Ireland by wheh ho groned 9000 gounds which he investedprofitahly. He thus ultisetaly boema the esner af sboat 50,000 acrey of land in Irelund. \%et up iron werics, ofened lead nines and marbze muarriea; eatsbliahed a pilehard Pishery und cowsenced tirade in tinber. In L66s attracted mueh 解tention by the imvention of a doublembote tomed ship. Ono of the elvat membere of the Hoynd socioty. Diea 2637. Petty was \& ran of ramaricable vercatility, inm gemuity and remewree. JVelyn declarad he had "never knom atach mother goniua", and said of hive if I ware a Prince I wousa make him my seeond emustillor tat leust. * A. G. H.

SIf cintaiopwan worens.
$\mathbf{1 6 3 2 - 1 7 2 3 .}$

Born 1638. He invented several ingenioua instruatenta when he was about the age of furteen. In 2646 vent to Oxford as gontleann cocmoner. Knrly distinguiahed for proficioncy In mathematios and anstoray and was regarded as a protegy in Colloge. Prof. of Astronomy in 1657. Onn or the rirst sambera of the Royal society. In 2661 whs appeinted aseistant to the Burveyor Goneral and began to turn hia attention to architent.. ure. In $\mathbf{2 6 6 7}$ he aucceoded Benhacn sa gurvayor Genoral and Chief Arohitect. Hia mantormpiece is St. Pauist Cathedral. Generaliy regarded as the greateat of Haglish Architecte. Contributed several treatiees on fatronomy and other aciences to the Philosophical Sranametions. He was knighted in 1675 . and was eleeted Preaident of the Hoyal Society in 16el. None of the biographical notices I have uxarined make any refersnee to his intereat in Aerial Locosotion. He is perhapa beat known to the worla as the Architect of 3t. Pauls Catheddral in London. He died in 1723 and was buried in hia ovn Cathedral and a'connpicuous tablet there boars the epitaph "Ei monumantua requaris, ciroumifice" - "If a nomeiont is needed lakk around". A.0.3.

 HOVID 1 ITHEA 没 SAxTS OA OABis．
（A tranalation of the oth thayter of Yather Lane a
 Dro Robart Fooke，rond berore the moynd soolety of Riginund
 Lections $1674-2679$ ．

The Cuzionity and Axdex of zwesune \＃it hath not besn se bounded hy proceding Invontions，st mot to be yet fuxtho Inquisitive after sorse other union how mon thamsezven may，2kk birds，Yhy in the Aix．For in it，pertrop，品 moer Fable wich Is rocordod of Daedalus sund Icaras，ninoe tis reportod for a truth，that oven in our timos，a certain Pergen whose mome I know not，ald by sorse anch artifice of lhying，pass over
 21ght upon the Barth；being toe quick，ho rell dow，with the Losa of his Lire．\＃ut ao one yet thought it possible to make a ship which ahould pass through the Ats，as it is ware auam tained by the 解ter，becouae they have judged it ixposaibla ta maice an Ingine wifich thould be Ligtiter than the Air．wheh 13，nevertheleas，neeensary to be ane in order to produce this affect．

But I_{g} ，Whose Genius and desire hath admades prompted me to endeavour，to sy uterost，te Itnd mat africicust Imvont－ lons，to hope，at length，I have $11 g{ }^{\circ}$ ，won a why of maing such an Ingine as shavinet only by its boing 2ignter than the Air，raise itself in the Air，but togethar，with itaelif， Buay up and earxy into the Alr Hen，or tury other weight．Hor do I believe I deceive myacif，ilnee I consirm the thing both
by certatn Exparimants, and by Dessonatretion, dram fron the zlevonth Book of Jaolit, hitharto thoupht infallimle of all Mathomatieximns.

I wil2 thererore prenise acne Buppositions, and from those afterwaris, deduce a practicable way of making this ship, wheh, though it may not deserve, lize Janong Axige, a place among the stara, yet that way mhal it of its own nature tend.

I auppeae then Husat, That the Air hath weight, because of the vapours and exhalations, which are rained from and incoryass our germasueoug clobe to the height of many ailoa. And thia will not be denied me by auch Philosophers, aa sre but any way versed in Exqerivents. And the prose of it may ta made by owaenating, if not all, yet a grest part of the Air, out of a alasewasgel, wich having beon firat weighed, and after the extraeting of the Air wedshed again, will be found notably leasenta in weight. Now how weh the woight of the Air is, I have sound in this mannert I took a Large Glassvesack, the neok of which could bo shut and oponed by a stope cork; and being open I heated it at the Pire, se that the Air in it being rarified, issued out of it in ereat parts Then I suddenly shus it, so that the Air could not rementer, and weighed its which cone, I aumb the neek under water, the body of the Glass rominining all above the water; and oponing it, the water aaeended inte the GLass, and filled the groater part/of 1t. Then I oponed it again, and let out the weter, wish I wei ched, und measured the buik and quantity thereer. Whenee

I Infarrad, that so ruch Air had ifsured out of the Glama, as there was watar that houl entered to fl2 the part 2 ast hy the air. I agais wetifoed the Vesmen, first wolz wiped try, and I round that it woighed an aunee zorre whilet it mate fund of Air. than it aid men the graster pout of it wha evaruated.
 In buly to the wherer that had entered into the plsee thereor. Yow that wator woiched stix bitndued sud Porty oumeest whonce I conclude, thest the velght of the Atr, eoxparod with that

 one ounce.
 " 80 L. . 960 ouneea, sccording to the Ryje rinent or yivhe pandug, which agrees very nour with mine; forawach as found that that wher wich weighed 840 ounces, wat litile laas than $2 / 3$ of a Cubsic foot; whence it follows, that if R/3 of a foot of Air weighs an aunce, a male foot will walgh 2-2/2 sunce.

I auppose, gharty, That any grent Veasel ray be miltogether avacunted of Alr, or at leant of the grontust part of the Airs And this I whall show to be foesable many maies, In my Work pal Arta Magatry; the saan bine I shadi tranacribe hither ons of the nont easie waice.

Let any froat olaservessel be taken, that in round and hath a neck, and let to the nock befastened arass or Jatten Gane, at least 4% modern Homan Palms long; the longer the surer
the erfect will be. Let there be noar the aald Vessel a stopcoric, 30 olaaing the olaae that no Air ean anter. Pill the winole G1ass, and the Whole Cane full os Water; then whuting the Cane in the extrean part, let the veasel be inverted, we as that it gtand on its upper part, and lat the extreme part of the Cane be immerwed in water; and whilet it is imwerned in the wator, let it be opaned, thit the Whter may isatae out of the Vessel; which will sil go out of it, the Cane remaining ruil to the hoight of 46 Palnes, sad 26 linutes, and the r maining apece above will be angty, there being no way for the Air to ontery then shut the neek of the Vessel with the stapeock, and the Veasel wili be mapty. He that disbelievea it. let his weigh it, and he will find, that as many Cubic peat or water as there are isaucd ouk, so many ouneas and hals aunces less will it woigh, than wat it weighed Pixat, thon it was full of Alr: which is aurficiont for my purpose:

I axppose, Yourthiy, ghe truth of the Demonstrationa of Zuolides 21 and 22 Books, which are also avident by Koporiment, which proveth, that the superfice of Baile or Splieres inereaceth in a duylieate proportion to their Diametera, and their soliaity in a triplicute. Duplicate proportion is, then three mumbers are auch, that the third containa the second as often as the second contains the firat, as $1,3,9$. or $1,4,16$. And triplicato proportion in wen 4 suoh numbers are takon of which the 4th contains tho 3re ass often as the 3rd contains the 2nd, and the 3 rid contains the and as often an this contains the 1at, as in $1,3,9,27$. or in $1,4,26,64$. so if you taice two Bulis, one of which have a Dianeter twice as big
as the etros, the surface of the Ball of two Palmea (e.g.) ahall be four efmee bigger then the aurface of the Buix of ond Palaf and the wole aolidity of the hall of two Palmea masoetor, Increnging in a triplieate proportion, shall be efocht times as great, ond consequently aieht tirsen hoavier than a 3all of one Pains in Dianeter: ao thet the zurface of the creater to the aurface of the amplor ahall be as 4 to 2 , and the aolidity an 8 to 1.

I auypoas, 䍜地hy, that were one body is 21 ghter in gocete than another, tho 11 ghter saconds in the ather that in heaviar, if the howvier be S Liquid boty; as a Bull of ordinary Food on Wher, beoatue it in ifghter in soecto then wateri a also a Ball of Glawe full of Ahr will awim at the top of mater, bocause though alaan be hoavier than water, yet taking the woive eorptex of the Ba2n, Gasam and Air tom gether, it iat ilsthter then that, stich ia only a body of watm or.

Sheae thinga boing auppoaed "tien nertatny that if pe could make a Veasel of alass, or othor matter, that might weigh Less than the Air that ia in it, and shousd draw out all 1ts Air, after the manner sbova directed, this Vessel would De 12ghter in Gpesic than Air itaelf, so thnt by the girth Suppoaition, it would asim on the top of the Air, and aoound
 a foot of water, that ia 80 2b. and wera ge thin and aublile as to waigh leas than an ounce and a inalr: the Air being

-60
would welel $1-2 / 2$ ounce, that Vomsi veule remain 21 ghter than Air it self, and mount on the top of it, uupported by its ovn 1ightnese. It may be, that thia Veasel oapable of one foot of water, and yet ac aubtile withil as to weigh leas than $1-1 / 2$ ounce, cannet be wade of Glasm, neither of any other mottor that thall ressain eonaiatent and atser: Sut then iet un sucke a much biggor Veasel, with aouble the quantity of Wase, then we shall have a Vaasel that shall contain four times as mach water, thst is four foos wator, and coneequert thy aix aunces or Airy sinee, that, wocording to the fourth supm position, the ompeetity of the Veasm increasea in a argilcate groportion to the aurface. So that he that hould make a Vosvel capable of four foot of Air, wand wighing loas than adx ouncea, the $s i x$ ounces of air being thanee evacugtod, would have a
Veacel Lighter thon Air. And the making of this gecond Vossel iighter than Air, is twice easier than of the yirat. But bow easse ever this second Veasel may posubly not be made so 2ight, an te be less than six ounesa welcht, snd to be caysable of four foot of Air, let a bigerer ba made, holding twiee an much ss the second, yizo of aight root, and conaequantly containIng twelve ounces of Air, Wich vessel. doth weigh leas than twelve ounceng and the saking of this third Veasel will be yet easier than the second. In a wozd, let the eajeasty of the Vesmel be incrassod mere ma more, formanueh as as onsa Will alwaies increase nore than thut of the aurface, that $\mathbf{i s , ~}_{3}$ the matter and tha wndight of which etis nade; and we ahall arrive to such a bigness, thet although it be made of a donse

- 9
and heavy matter, yet the weight of the Air, it ahall oontain, shall exceed the weitht of the matter that makes up the aurinee of that Vessel; because, as hath been sald, the capaelty inereases in deuble proportion to the surfrace.

Lot us see then of what deteminnte begness a Brass Vesael may be mades and let an aupqose, the thinneas of the Brase to be wuch, thet a plate of 18 , a foet broad and long, co weigh threo aunceaj which it not airficult to nake. Jet us make of such a thin plate a round Veasel, of the Dianeter and bigneas of fousteon foots So that the Air being exthanted out of 14 , and the bare Vessel recsaining 11 chter than an eguaj bulk of Air, must needs of itself mount up into the Air. To demonstrate which, there neede no more than the aure rule of Arehimedes for moacuring a Iphere: vifoh is, that the Dimneter to the circumference of a circle is as 7 to 22 , more or leas: So that auppoaing our Vesash to be of rourteen foet in Diameter, the eireunformee will be forty four. Pur ther, to know, how many square feet must be in the male aurface of a eiscular Vossel, the ame tesches, that the Dismoter nust be multiplyed by the eircuenforenee, which when done in our oase, will give ue our surface of 626 aquare feet of Bramaminte, each of which we have auppoaed to woigh three ounces, so that 616 multiplyed by threese ahall have 1848 ounces: aftich is the weight of all the Hrass the Masi or Bphere consiats of, that is 254 pounds. Hon let ua see, whethor the Air contained In that Veasel do woigh more than 254 pounds; for if it $\mathbf{d o}$, the Air being evacuatod, the Voasel will be inghter then it: and the 1ighter it shail prove than it, po much welight nay it
carry up mang with it invo the Alr. To eatimato the wight of the Aix contained in $i t$, we rugt consieler how pany cuble feet of adx it holds, or which wo have shown thmb cach meigha if ouncesnc a hals. To to which. Axchingeas temehces ua agrin, that wo mast mulsipiy the Eensaiorzeter (7) through the Ehire part of the surtice, which wil2 bo $205-2 /$; whick cone, tot have the capneity of the Veasel, Yine $14 \% \%-2 / 3$ geat; and bem coine each roet or Air woters 1-3/2 ounce, the westat of the thade Air contain* in that Voseck will be $2253-i / 3$ ouncon, or 379 pounds and $7-2 / 3$ Jiweces. But now, itid Brats of when the Veasas is mace, weigeing only 154 pornta, the Vossel is 35 round and $7-2 / 5$ ouncon 21 ghter than Aisi which was to be denonatrated, so that the Air beire evactrited, tho vessel $w 112$ not only ascend into the Alie, but alse oarry with it on h1gh a weight of. 35. . and 7 -2js cunces.

But to rakae a greater welght, sut to elovate oven nen into the Air, let us take the double of Irass, yiz. 1235 foot, which are sos pounde of Brass; with which double quantity of Brass we can make is Voasel, four thee bicger than the Pomer; and consequentily the Air that shall be contain'd in much a Vosael vill weigh The pounds and $4-3 / 4$ ouncos; wo that that Air being dram out of this Vownel, the Voasel will rarnin 420.I and $4-2 / 3$ ounces 22 ghter as mo much Air, and consequantly wili be able to raise on higti two or three mon.

Whence 'tis evident, that the bigser the sphare ox Vessel ia, the Brasa may be the thicker; because that as the waight of it increaseth, so tha compackty of the sume inereases
still nore and sore, and conseguentily the weight of the Air; whence it aus atill raine nore veight into the Air.

Whilat I thua relate this mater, I curnot ohuge but axile to hear a Yable, which to me guras not leas increable and extravagant than Chome Chimers"a which opruag out of the phantastical brain of that rational merry mad Droll Lucian. and yet on the other aide, I cloarly know that I have not erred in my Domonatrations, and whon I had co municsted thes to divers Learned and prudent nen, they could not find any erm ror in my Diacouree, and deasred nothing more than to soe an experinent of it in onv (kobe, rataing itagit up into the Air of its own aceord, wich I ahould wlilingly have preparad before I had published this ny Invention, if the ReLigious powerty Wich I profean had not diambled e Iron laying out a hundre? Ducata, wich would have been adundantly aufficient, on the tryal of ae pleasant a Curioaity. For mich cause I do earnestIy intreat my meaders, that they would acquaint me oith thoir aucesas, beownet though, perinpa, fros soxie failour or mistake in the operation, it may net muecesed so happily at firat. I may perhaps supply a way of aranding that exror. And that I may oxedte and put courage into some of than to make a tryal of it, I ahnil here ranove aone aifficuities wich may seen to obsatruct the Practice of thits Invontion.

And firat, aose Difficultios nay ocour in the way above preaeribed of evacuating the aforesaid opheros, where it Is required to invert the Sphere uyon a Tube or hollow pipe, by lifting that up to a great helght wich formeriy lald on the ground, which could not indeod be done whout some graat

Hachine, and greater dipfioulty, by reason of the groatnean of this Ifherical Vemeel, and trat pilded with water. To this evil I can enaily suyply a reenedy that the Sphere shall not at all need to be moved out of its place. Tat the Bphere therem fore be placed when ompty about 33 root $h i_{g h}$, and to 1 ta un-der-part or neck, let there be added a sube or 33 foot long, caroruliy stopped below, afterwarda let the vessel and Tube be filled by a hole at the top: and when that is cone, lot that hole be carerully atopped with a value: then to evacunte the veasel, there will need nothing but to open its lower ene of the gube under water, that the air may not get inte the place left by the water; thon the water being all run out of the Globe, surn the stopmock at the neok of $1 t_{\text {, }}$ and romove the Tube fron under it, and we ahall have the veasel evacuated. Winich if it be not wholly evacunted of air (or mion I will not now dispute) this is at least certain, that its weight ahail be by so many ouncea and hall ounces 11 chter, as there wore Cubical peet of water bofore contain* in ite capacity, which is surficient for our purpose. This ic now a proved Kxpariment, as I have sasd above; great oare only muat be had that the value or stopecock, with which the Vessel. is closed, bo sade vary good and uxact, that the air may not get into it by its ohinks.

Socondiy, A dirriculty may arise about the alondorness of the Vessel, because the sir seoking to ontor with great Inpetuoalty to hinder the vacuma, or at least the violent rarafaction, may aem to be able to compress it, and though posaibly not to break $1 t$, yet to orush it so as to make it
-21-
lose its roundness.
Te thls I Anawer, That thia woule haypen, were not the veasel round, bus aince it in theherical, the air cocyasaee it equally on all aides, so that it doea rather atrongthen it than brouk it, wich im observable in Classmessels, which though sude of thick Glasa; yet if they were not round, would be brokon into a thouaand piecese whereas on the othor bide, round class vessela, though very alender, are not broken, nor is a perfect roundness necessary, but it will suffice if it does not much vary froen a Spherienl pigure.
gindily. In the rorming a Bphes out of copper, there may be made two Hemiapheres, wioh may be aftorwardm joyn"d and soder"d together with ${ }^{*} \mathrm{~min}^{2}$ aftor the usual wanner, or wae the sevral parta of the Iphere may bo made apart, and after the aure manner joyned, in mhich there cannot remin any great aifficulty.

Fourthly. A doubt suay arise to mat Altitude in the Air our lnip will rise, since if it whould be raised sbove all the alr, which ia cormonly estearsed to be fifty uiles, ilttle sare or leas, in haight, am we mall afterwards seé: It would follow that men woula not be nbla to breath.

To wich I sanswer, 筑隹t by how much the Air is higto er, by so wuch the more thin and light it iz, we that the stip boing guoyed up to a eettain height it cannot rise higher, for that the upper Air being lighter, it would not be fit to sustain it, and thence it will stay in that place where it finds the Air so aubtil as to be of equal woight with the whole Ragine, and the ren in it.

Then least it should be carryed too high, it will be convenient to burthon it with woighta, heuviar or ilechter accardine to the height to which it ia doaigned to riae; but if it should be earryed higher than is ought, there is an oanie remedy by opening a little the stoperocke of the Bpheres, and adnitting a little Alr, for so loaing some part of their Levity, they will, together with the ghip. deacond. Au on the contrary, if it mhould not aseend to i te desired height, we can help it by removing the oifhts mich it earryed up. In the like zanner, being to deacend to the Sarth, we eust turn the Cocks of the spheres, wherohy the Atr entering, is ※ill lose its Levity, and so descond till the ship be quietm 1y placed on the efround.
 ed by Oars, becaume these only move a vessel on the Whter; in as much as the Water reasats thoir sotion, but the Air cannot reaist.

To wich I anawer, that the Air, though is doea not reaist the Oars ac as the 雷ter, because "tia more aubtile and novenble, yet it does notably resist and sweficiontly to nove the ship. Sinee by how ruch the leas the resiatanoe of the Air in to the motion of the Oark, by so much the leas is it to the motion of the Ghip; from whence a $215 t 1 e$ ree alatance to the Oars may make it nove very awirt; beaidea, that it will be aoldom necenaary to use Orrs, beeause we always have in the air winds, which though they be nover ae weak, will yot be surficiant te carry it with great awirtneas: And if the Find should happen to be contrary to our
vayage, I will in another place tamah how to place the that of a ship, so as to 3 ail with any Wind, not only in the Air, but in the vituer.
 too graat lmpetuosity, with which a vielont vind mav oarry our ship, so that there mill be danger of dashing agganse the tops of 保保tains, whion are Rocice in this Ocean of the Asr, or elae of ovortwrning it utterky. To the second, I amy 'twill bc Aiffult for the wele Jigine to be over-turned by the Find, With wal the men in it, which are, ocuntorpulae to the Levity of the Syharay; whone these will be fivales ugparmost, and the stily can nevar be sbove them. Beaides that, sinee the ship oan never full to the Ground unleas the Alr gets into the spheres, thare is no dinugur of aupfocstion of the Air an there is in the Fater; besidea all this, the ang being bound to the Beams or Ropes of the ship, are sufe from foar of their frilinge Hut as to the firat. I confesa this our Shiy, hay underge may dangers, but none greater than what Wher ships sre subjeet te. Yor ats hese, to ours own mace use of Anchora so faston to srees. That I may may nothinc of the Oeean of the Air, which though it has no shores, haa ybt the eonveniency of Ports, ware the Ghip may be in safety, since whon there is any danger, it may deacend and rorain on the Ground.

Other difficulties I soe not, which nay be objected agrinst thia ${ }^{*}$ Invention, besides one which to ne aeens graater than all the rest, and that is, That it may be thought, that God elill never eurfer thia Invention tot ake effeet, becmuse of the many consequencies wich may disturb the civil Govern-
mant of men. For whe sees not, that He city can be secure no gainst attack, ainco our mhip may at sny time be placed directly over it, and cescending down muy discharge souldiers; the sume vould happen to private Houses, and ships on the Soa; for our Bhip deacending out of the Air to the Bails of 3oa-hipa, it zuy cut their Hopes, you without descending by casting Grapples it may over-set then, kill their men, burn their 3hipa by artificial pire works and fire balls And this they nay do nos only to hips but to great Buildings, Castles, Cities, with such security that they hich cast these chinge down from a helght out of than-ahot, cannot on the othar side be offorsded by those fron below. Thus far the Ingenious Father.

A man that hoars all these things, and ahould believe the berrible and nischievoun eonsequences, would possibly be of the Author ${ }^{\text {a }}$ mind, and think also that he vary much deserm ved to be puniaht himselr, the had thua unluckily diacovered ao Diabolicul an Jingine, that whould at once aubvert the Gevernasent, pease and seourity of nunkind, and bring in vararn of Harmariana to disturb the quiet and civilised Vorle. Hut hold a litele, let hin alone till inquiring into mattor of Fact he be foumd cuilty. Tat ua exanine therefore, whether his erounds and procass of Demonstration be true, that we may in time think of waies of defending ourselves against these orils that may hover over our heada, if auch there be.

Pixat. Then I Pind Dr. whrine, in hia dimeovery of a new Vorla, quotes Albortug de garonia, and Praneig Yendoes, Sor the Inventors of this oyinion, that the Air ia Ravigabla; and that upon this statiak principle, any Irass or Iron verom sol whese substance ia much hasvier than that of the water, yet being rilled with the lichtar air, it will swin upon it and not sink. The awne thing k a quoted alse by gohottug. And evvoral Boperinants to this purpone, were made here in the yoar 1664, but without the wished for auccoss. Now to the mster itande, he axpposes the air to bo heary, so for he is right, and the consequenee, that an axhauated vesael is 1ighter by the weitht of the air axtracted, has been here proved. But tron axppoeing it to be but 680 times lighter than water, he auppomes it much too heavy, for I find it to be above 000 times liehter than veter. Hew a Cuble foot of
 weigha about 224 ounces, ar one outce and one weventh of an ounce: ac that upon this account it in mach nore diffiewlt then he lvangines by reaan of the greater levity of the air. But yet that were muperable.

Hext "tis granted, Thet Ephorea are to one another, as the Cuben of thair Dianetars, whorans the surfaces of then are only an the aquares of their plometers.

But whoreas he supposea Copper of three ouncas in a foot square to bo aufficient thickness to resist the proasure of the air in a Giobe of 14 root aquare, nay of any binensions we can no wise assent to him; for the preseure from without inwards, though it be alwaies the nane upon oqual surfaces,

$$
-160
$$

yet upon unequal surfaces the case is quite otherwise, for there the preasure will be found not the same, but to increase almaise in the savse propertion with the surface, sund thance consequently the thicknesa of his Copper, or any other Wettal or matorial, which he shail make use of, must increase in the same proportion aith the Diazeter of the Aphere, and consequentiy the weight of his Coppes must alvases increase in the awse proportion, at least to the soliaity of hia Jphore, so that by the augranting the quantity of his sphere, he has no manner of acivantage of making it proportionubly 21 gintor than the Air, and proportionably strong, tut the oontrary; for is Is ranifest that a bleger Iphere so zade of any matter, we yet know, hns leas poiser of reaisting the sasue proasure of the sir than a less, because of the finite reaistaince of natter to preasure, there being sorne degree of pressure that all cruah every body. And therefore he that cannot make the axperiment mucesed in small, will be aure never make it do in great.

Hut in thia lies the fallagy of the Authoris beasoning, and this is the Roek that has precipitated his Ship to the Ground, ma not the tops of the Mountains, nor the wirl Vinds of the air, wherely all these Diresul prenages vanish, se that I hopa I have oleer'd the Author in your opinions of his doing any great harm by this Invention to the Civil and Penceful alvernnent of the world.

EXTHACTS PROH FHS HIGTORY OV THE ROYAL SOCIXTY BY FHOKAB
 FLYIIG (1661-1679).
 to prosooute hia deaign of trying, by several round pasteb arda, their veloesty in falling.

1661-30.March 5, (Vol. I. P. 77) : Mr. Hooke" (ste) mand Mr. GBOUNE were deaired to try the experiment mentioned by Monsieur IUYGugs of a Eeather to be let pall before und after the exauction of the air in the said engizo." (Boyze a engine)
 of Inquiries concorning the Air".
*** What the reaistanco of the air is to bodies moved through itp How much it rosards the descent of heavy bodies? Kow much it stops the motion of a pendulunf and whether that be the only cmuct of a pendulumes losing ita notion How it boars up dust, anoak, \&c. Hoa it justains birda? the otrangth reguiaite to make a fing, or expanded area, bustain a dem terginate buik in the airf And here, mat buik cay be raised by what kind of contrivahceq Aa fixt by that oontrivance, which children use to make their paper xites off that saana may be thought of for raising a man; for raising lighta to a considerable height; for conveying intelligenee? whet contrivance may be made for letting bodies fall frow certain highte, for knowing the awiftness of their descent? and wat other exparimonta miny be efried this way?
1662-3. March \& (Vel. I, y. 205):- Fis following experiments, concerning the ressatance of air to bodies noved through it, was brought in by Mr. Hooke.
whor the finding out the resistance of the air te bodies moved through it, it will be neeessary, that triala should be made ofith pondulums of all sorts, whose weighta zhould be made with several sorts of materials; as of metals, atones, woods, Peathera, woola de. and theae pashioned into several shapes, as round, elliptical, aquare, oblong, flat; be moved Phtuays, or edgewaya, and the 1ike;" se. se. se. 1665. June 2n (Vol. II, p. 59) I- Occaston being efven to discourse of the art of flying, and mr. mann baing desired to leave with the society what he had considered on this subject, prontsed to to so.

He, affirmed, that a man would be able so often to move the wingu, as he could with double his oum weicht on his back ascend a pair of atairs built at an angle of forty-five degraen.

Mr. Hoors auggested, that it mas not surficient to have a theory for the descent of an expanded area perpendieulariy downard, bocause the deseent of an expanded area, noved ederem wiae horifontally in the air, was oxtremely different; in Fhich way, however, all notion of flying muat be perfornce. l660m9 Yab. 25, (Vol. II, p. 350) :- At a meeting of the sooiety, vome experimonta were made, to find what would be the resistance of air to bodias moved through it mith arvaral veloeities; and it goemed, that the linger the arch was, in which the pendulums body moved, the nore ixpediment it suffered fron the air: And the slower it moved through the air, as when it noved in a manler arch of a circle, the leas atop It received from the Lrapediment of the air, and the mpediment to notion decreased in a greater propartion that the decrease
of the velocity: But what the exnot proportion of decrease was, was to be found out by farther triala.

It was ordered, that this kind of experiments should be prosecuted at the next meeting by employing boards or plates of several expansions, but wil of the sasae weight; and with balls or boards of several weights, but of the same expansion.
(ii.B. More experiments to find the reaistance of the air to bodies moved through it with several velocities were made March 4 and March 11, 1668-9, see Vol. II, p. 352 \& 354. A.G.B).
1673. Fov. 27, (Vol. III, p. 111):- Mr. HOOKE showed an atterapt of his, of making a vessel so thin, that when evacuated of the air contained in it, it might awin in the air. He mentionod also, that a cettain Italian clergyman, named Lana had uritten upon this subject; whose book he thought had been formarly prosented to the Society by their Secretary, but vas still in his hands.

1674-5, Feb. 11. (Vol. III, p. 281): Dr. CROUNF read his discourse concerning the manner how flying is performed by birds; ahowing, in order thereunto, the atructure of a duck's Wing and body, empecially of the muscles and their insertions into the humerus.

This discourse was ordered to be registered, though the doeter did not then mave it with the Society.

He having intimated a quite aifferent structure of the body of man from that of birds, and thence concluded his utter unfithess for slying, gave occasion to some of the members to remark, that what nature had denied to the body of man, might
be aupplied by his reaaon and by art.
Mr. HoOKS intinuted, that there was a way. Which he knew, to produce strongth, wo as to five to one man the atrongth of ton or twonty men or more, and to contrive muscles for him of an equivalent atrength to those in birds. Ho hinted likeo viae, that a conerivance wight be nade of aonething nore prom per for the feat of rwan to tread the air, than for his arma to beat the air.

Sir VIGLIAM PMETY mentioned, that perhaps it aicht prove of use to connider, whether gun powder, being of no ereato and quick a force, mi ght mot be alackened to fivo a slower rotion, as in the mortarmiece the ohell is much :ore slomiy carried through the air than a buliet out of a ruaset.
sone aaid, that it would be of real use to contrive to raise
sonething for riying, if it were butak man wo high, as to fly over a wall, and the beaigera of a town to curry and bring back intelligence.
 inatrument to extonine and show at all times the apeciric gravity of the air, in which it is placed, without anyrespect to the heat or cold, pressure or apring of the air; that the aaid property of the air was not ahowed aingly by any other instrum mont; nor wam it proper or capable to ahoa any other quality of the air, as sone had thought, except only the apeciric eravity of the aireee this instrusent made to demonstrate the said property of the air was a very large and thin ball of glaas sealod up hornetically. It mas anpended at tho ond of an axact beam (which weuld aasily turn efthar one why or the other)
ath was auntespoised by a awail reifot of lead or brasa；3ut． lead was best for thet prupowe．Then lir．Hoske axylained the swas，and shoved the reason，why tho ball wauld rise wen the
 or；and that it tapandod upan the arae ground fith the ino
 cuasion Pollowed this．A．A．B）．
 cerning tho wocolleration of the motion of fulling bodies，梡．Hooke drev attention to the fact that a reather let fall in th vacuuse nuved inith accelleratad ve acity， Finrias，in air it full with waform velocity，and adaed an Intoresting arghesnt upen the eubject．A．G．B）．
＊And Parther，that in the 解却meat sedian，though the nccelleration wat prasty aeer wat mus auppased bj the afore－ said authors yot that it san in none sathomaticaliy true，but that there romal bo in all mecivez a carsatin degiee of Telach 1ty．which the asins woscending baig woula nuver exceed，though

 thocon ever so ran continued，provided the gravineting powera ressined the sene．＂
 that in ahocting ercenndion he had round，that the grasteat ran－ dem ans belen 45 ceqroes of inclination．And that shooting at 20 degrees would fly muoh further thaw whoting at 70；The reason of which was the cuensity wrid resiotbonee of the air to the bady passing through it，wimeby that，wich wee anot at 70 degresa，pasaing throuth a greator quantity of air，re－ deived a greater irupadizent and hindrance froin moving axactly
in a parabolic line, than that hich was ahot at 20 . 1679. Hay 8_(Vol. III, p. 482) :-Ntr. Hoorce produced and read a paper, containing a deaeripition of the why of flying, inm vented and practiced by one Mons. masMr2R, a malth of Bable, in the County of Mayne, the contrivance of fich consiated in ordering four winge folding and shuttinglike folding, to be moved by his hands before and logs behind so as to move diagonaliy, and to counterpoise ash other; by wich he was, it was sald, able to fly, from a hich place, creas a river to a pretty diatance.

Dr. Choums rewariced, that in the Paris Gasette there was montion suade of one, who had lataly flovn there from the top of the steeple to the ground at a conaiterable digtanee, and had lighted aare.

He obaerved likewise, that the bodies of fomla were rade in all parta light ans atrong, and partic larly in their bones.

Mr. Hooin procuced anodel of the contrivance of the Finge made with pastobourd, whereby both the manner of the motion of then aiagonally, and alse of their opening and shutting, was explained; though he gupposed that not to be the beat way contrived for the performing that effect after that manner. but that the asme sort of ainge night bo much more advantageously made and used for that effect.
sin jowas woons related, that one Mr. Gascolgars had, about forty yeare before, made a contrivance for flying, by which he had been able to make a boy at Knareaborough fly a conaiderable way; byt that he being irightened in hia fileht by the acelasations of the ayectators, fell dow before he
designed to allegt, and though not much hurt, would not atterapt it any farthar.

Itr. Hesturam eoneaived, that by roason of the woatness of a man'a arms for such kind of notions, it would be much more probable to sance a chariot, or such like machins. with springe and wheela to nove the vinga, that thould oerve to earry one or more nen in it to act and guice it.

Several relations were mentioned of the strength of the yinge of fouls, and anonget the rest lix. Mcy notice, that ho had known a \sin or pifty yeara old beat down by the atroke of the wings of a awan.
2679. Hay 29. (Vol. III, p. 487):- Mr. H001GE read a translation of a chapter of the Itelian book of Fother Francisce Lana, intitied Prodrone, being an explication and denonstration, as he supposed, of a way to make a veasel to awle and iloat in the air, so as to carry in it one or mere men with other heavy boaiea, invented, sem he seys, by hiriself, in orm der to make flying practicable, wich had before boen thoucht Laposaible.
(A Sootmote mays see hr. H00Kig Philoaophical Colloctions Ho. I, P. 18 A.G.E).
1679. June 5, (Val. III, P. 489) i- Ur. Hoogs read a farther dise courae of Padre Jana concerning flying, with he had trangLated; and added to it a diacourae of the ixpoasibility of that attempt by thint menns; and alae showod wherein the author had been graatiy niataken in the grounds ans auppoaitlons of his denonstration, vizt in suppeaing the same thickneas or netal to be aurficient to rasist the preasure of the
-
air inward in a boli of twenty-four pett diameter as in a bald of one foot disuoter: Whareas on the contrary it 18 noew easary to inereane the velght of the madi more than mocordIng to the proportion of the aolidity or capacity of the ball.

