CIHM
Microfiche Series (Monographs)

ICMH
Collection de microfiches (monographies)

Technical and Bibliographic Notes / Notes techniques ef bibliographiques

The Institute has attempted to obtain the best orignal copy avalleble for filming. Fastures of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which moy significantly change the usual method of filming. are checked below.

Coloured covers/
Couverture de cónleur
Covers damag̈̈d/
Couverture endommade

Covers iestored and/or laminated/
Couverture restaurbe et/ou pelliculbe

\square
Cover titte missing/
Le titre de couverture menque

Coloured maps/
Car tes googrephiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/pr illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relió avec d'sutres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure seribe peut, causer de l'oribre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certeines pages blanches ajoutdes lors d'une restauration apparaissent dans le texte., mais, lorsque celạ était possible. ces pages n 'ont pas ite filmés.

Additional comments:/ Commentaires supplèmentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy illmed here has been reproduced thanks to the generoelty of:

Metropolltan Toronto Reference Library

 Baldwin RoomThe lmagee appeering here are the beet qualliy possible consldering the condition and legibiliey of the original copy and in keeping with the filming contract specifications.

Original coples in printed paper covers are fllmed beginning with the front cover and ending on the last pege with printed or Illustrated Impresslon, or the back cover when approprlate. All other original coples are filmed beginning on the first page with a printed or lliustrated Impresslon, and ending on the last page with a printed or Illuatrated Impression.

The last recorded frame on each microflche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"). whichever applles.

Mape, plates, charte, etc., may be filmed at different reduction ratios. Those too large to be entirely Included In one exposure are filmed beginning In the uppar left hand corner, laft to right and top to bottom; as many frames as requilred. The following diegrams illustrate the method:

L'exemplaire fllmo fut reprodult grAce ite gendrosites de:

Metropoiltan Toronto Reference Library Baldwin Room

Les Imeges aulvantee ont cts reprodultes avec io plus grand soin, compte tenu de le condition et de le nottoté de l'exemplaire flimb, et en conformité avec lee conditions du controt de fllmage.

Lee oxemplaires originaux dont to couverture en pepier eat Imprimbesent llinte en commencent par le premier plat et en terminent sole par la dernitre page qui comporte une emprointe d'impreselon ou d'illustration, solt par lo second plar, selon lo cas. Tous les autres oxemplaires originaux sont flimbe en commencant par in premidre page qui comporto une emprolnte d'Impression ou d'illustration et en 'terminant par la dernilere page qui comporte une telle emprolnte.

Un des symboles sulvants apparaitre sur lo dernídre lmage de chaque microflche, selon le cas: le symbole \rightarrow slgnifle "A 8UIVRE", le - symbole ∇ elgnifie "FIN".

Les cartes, planchee, tubleaux, etc., peuvent Atre flimbe des taux de réduction différente. Lorsque. le document est trop grand pour tire reprodult en un seul cliché, Il 'est film' 1 partir de l'anglo supérleur gauche, de gauche aldrolto. et de haut en bas, en prenant lo nombre. d'Imagen nécessalre. Lee diagrammes sulventer Illustrent là méthode.

APPLIED IMAGE the
1653 Eost Moin Streit
Rochester. Now York 14609 USA A
(716) $\mathbf{8 8 2}$ - 0300 .- P'hone
(716) 280-5989 - Fox

SPECIAL REPORT

 1\% THE
COMMISSIONERS

\$ecueraghe aul Mihater

vor ruv

CINY OHGAIN'ITOHN ANJ

TOWN OF PORTLAN \dot{D},
ON THE FORMATION OF ANCHOR ICE,

HY THE SUPGBINTGNDENT

GLIBHRT MURDOOF, HEQ., O. H.

SAINT JOHN, N. B.:
"daily newr" htham job print, cantekbuky htrekt, 1881. spectal report

101111

(0MMISEIONELIN

\$eturag̣e aull Hillater

ron TIIt

CITY CIGAAIN'I.VCIIN

TOWN OF PORTLAND.
ON 'LILE FORMATION OF ANOMOR ICK,

GIIMIIRT MUEDWOII, THEQQ., O\&'M.

SAINTAJOHN, N. B.:
"DAHY NEWN" NTEAM JOB PHINT, CANTEHBUHY NTREKT, 1881.
-*.

ITovember aana, 1000. .

Naint Joing, N. H., Dece Iifth, I Asu.
EDWARD E: IOCKKHART, KMq.

Dali Nin,-On Mondny avoning the e2but ultimo, the meply of water to the City and Town of Porthand muldenly cemacol. I was aitting in my Office at the timo ($6 \mathrm{r}, \mathrm{m}, \mathrm{M}$) nnd bind my at. 'tention drawn to tho trouble by tho ringing of the premsuro alarm.

Immerliater ntopm wero taken to ascertain the cause. Some of the mon !uad loft the pije yarl for home, hat not all, and those that remained wera ment out in hasto to bring back tho othere as bace. An soon an thoy returned orders were given to havegevery sunpectaxd place nearchod for leaknge, an thin wan nuppowed to be tho cause of tho failure. Partien were went out almost kinultaneounly to all the low lying parta of the City and Portlant and nlong the main pipe line; and at 10.15 p . M., Mr. Walkef roturnod with the alarming intelligence that there was no dhter entering the Gate House at Little River, and that tho lateq ans woll as the culvert leading thereto appeared to bo choked withice.

This was a new experience in connection with our works afd n. greatly more- nerious one than an ordinary break. - The nightwas

 ".ray link ablel some.

 night in quention tho requirmmenten of tha city linver mere ouf.乡rown (durink tha lant $1: 3$ yonrs) itn prentent enpucity
 conveynuces foumb for the men. Sy midnight tho work af chans

 work of clenring wus pronoconterl with renswol vigor. Tha intisw continued to increves, und by \boldsymbol{H} A. M. Hen groster part of the (intes IIouse les wan gone nmi tho froszing cold wator which mpemorod to fill tho culvert aul finto Hownc woll, hmi beon dinglaced by warmor currenta from undor the ica coverrel jarth of the ronervoir.

Oul City han hemn auppliol with Iake and liver whter for fully forty thre yoam (13 from Lily Lake and 30 fromi Littlo Rivor,) and this in tho first instance, during the whole of that tinns, of trouble arising from "anchor ice." The probaliles physical circurnstancen or causes which led to tho interruption will

inl

Tt .
tho ,

an

$$
121 .
$$

4

Ine noticed morw filly, hemmafter, lint in the menn time it may be wall to place on recoml the monauren takes to overonme the ditli culty nud keep the manaen of moft fibmoun iece, in the culvert amil (iato House, from molidifying.

The finst atep taken wan to ofens the gate on the bulue end of tho culvert to ita fullent capacity; next to removo the neminerm from their places, in the centry of tho (hate Honse, mal lamely to opers
 whish brade from the botton of the recoiving chamber. This
 yena ago-with " vicw tor rmpty the (dinte llonse well, of thr rosorveir fiself if neal werr, mud to ment any ofher emergeney which might urime, requiting for anfety " npeedy withhawnl of the whter or a quickening of the curront for thashing purposex. The office was not njparone for nome time, lut ultimately it le . gan to shew, anll by :2 A. M. (23 idl) tho grenter part of the nofter ico in the wentorn division, or ontlet side of the Ginte Houme, (marked A on accompanying plans, sheet 1 and z), has dimplpear. of and the wator had gainod mufliciont atrength and volume to rise to the City supply main (B) which is placed nbout is feret above the lnottom of the well.

There was still, howner, a large quantity of ice in lioth chamberm. In tho western or outlat one, it clung tonacioumly to the walls and gates rods and flonted in maft spongy masmen in tho inlet or cantern chamber, making the water thick and slasliy. After an holl's trial it becamo apheront that something moro hud to bo done to quicken the velocity and reatore the works to their normal condition.

The flushing gates were again openerl and all tho inflowing water allowed to run off as quickly as it came. This of course had a wouring action on the soft ice and the inflow began again to increase. While this was going on a stage was mado and n man lowered into thio western or lower well (A) of tho Cato House to cut an opening in the planking (aa) which held the fiame work of the strainers and divided the Gate House into two compart*
meuth. Thia wan a work of nome diffieulty and danger, but it was necomplinhand without an aceldent of any kind acouring, mul then renult wan antimfactory in ovory particular. An then aperture wan unlauged the inflow fincroased, and finding realy agrom from tho hottom of the well the valocity beonme mufliciently rapid to dentioy or carry out the ice from the upper chamber, where it hal lingernd lougewt, un well an from the culvert: and ultimately bring, an ulrealy noticond, a wrrmer boaly of water to the (iater Houne. Thia later romult wan manifenterl by a thin vipoer which rowe from the water and from the man nugagel in entting the hole returning to the surface in a lathor of awoat, in if ho liad beon working in a nummer temperature.

An tho danger wan now (5 a. m.) baat, then ntop cocka on tho "morgency pipe werv mitliciently clowed co allow tho whter to rise to ith ununl height in the Ginte House, and the work of refilling tho muins loghul. Whin wan a work that required time and care. By 9 A. x. the loading naml distributing pipen wert filled to the contolic of Elliott llow, and hy midday the greater part of tho City and Town of Porthand wan aupplied. It took a considorablo time, however, to get the air fully expelled from the maina, and in connequence of thix und the heavy draften maile in the lower districts for tlunhing and other purponem, the aupply did not roach the summite with its unual force until late in the night, kay af to 30 hours from tho time it was cut off.

I have beon particular in relating minutoly ull the circumstances of our experience on thin occasion, that they may bocome matter of record and pomsibly ansist in showing how to denl with a like occurence again, should auch another trinl unfortunately come to us. In discovoring it, if possible, in its incipiency and in leading to the adoption of measures fitted to mitigate, as far as practicable, the evils which spring from such visitations-to avert the danger altogether or reduce it to a minimum.

To do this some knowledge is requirod of the nature of "frasil," "ground" or "anchor ice"-it is known by all the three namesand the conditions under which it in formed. It is well known to
millumen and othorn, through ith fropuent interfernence with gaten and flumem, and in rarer finstancen to managorn of whior workn through tho nuddon interruptiona it caumen at timen to their daily mupply. Among mientinta, however, thern in a wide difference of opinion an to the canmem or natural lawn which cull it into being 'and place it ofton whore it in lenat expeoted, an happenesl in our own experience.

The only Water Workn that I know of on thim emtinent that have leen subject hitherto to serioun vinitationa from anchor ico are thone of Chicago, Cleveland, Detroit. and Montreal-the two lant expecially, but in different forma.

In the winter of 1868-69 two interruptionn oceurred to the water aupply of Chiengo from thin cause, by the lant of which the "entire gateways wore obstructed by "anchor ien.'" The Aupply was cut off from the tunnel, and before the ice could be removex and mattern remtored to their unual condition the remervoirn were omptied and the whole city wan out of water for nearly three (3) hours. For meveral dayn in January 1878 nimilar trouble wan experionced at the crib, whifh formn the inlet to both tunnela; and no sorious have those interruptions. become that plans are being dovised to ensure a nupply for fire purposes chiefly, should both tunnels fail to furnish their unual daily nupply. And no imminsont and constant is the danger anploned to be that two men and нometimes three nee ougaged during the winter seunon in keoping tho gatownye clear of ico : and "bowides this n tug in kept all winter long" nemr the month of the siver rendy to start (for the crib) in vory mhort notice with wathaver may be neoded."

Clevgland, Ohio, had in 1873, a similar experience to outs, but on a larger and more protracted scule. During a henvy weatorly gale which provailed, while ice was forming rapidly in tho vicinity of the inlet to the queduct which mupplied the pump, wells, the water was observed to be unusually, low, but as this had boen obsithed on several occasions before no purticular notice was taken of the fact until the following night, when it had fallen
away to atseh an oxtont that one prump only cended to kept going at one fourth of ita mpoes. Thim lest to inquiry.

An examination wan made of the mpuentuct "aind it wan dineor. ered that from the findot for the diatance of oight hundrod (800) foot inland it wan filled with finn particlom of fow, which whon taken out hat the appoarance of coname anow." Abil about thirly hourn elapment lefore the ien wan rmovonl and the mupply rowtoresi.

Thin was the only thens there had teven trouble trom ive at the infet aqueduct mince the ewtabliahnent of the workn 30 yearn before, and an in our couce, was n now oxpertionce and a grvat nurprime to all concernod. Shortly nfter thin their now lake tunnel wan complotod and I do not know that any further tronble han beon experienced nince.

Detnotr han hal equal if not gronter trouble than Chicago, and in not nure yot of being wholly free from it. There an in other placen the vinitationn have been intormittont and irrogulardepending largely on the thermal charncter of the nownon nod the forco and direction of the winds. The water for the aupply of this city in taken from Dotroit River, and wan led to the nottling reservoir (previoun to 187%) by 290 feet of 36 inch wrought iron pipe, the inlet oritice of which was twenty-five (25) fout below the surface of tho water. Since 1875 tho point of intake hian been chaugol, for manitary reamons, and the, water is now conveyoy to tho rettling banins through elecen hemdied (1100) feet of 60 inch wrought iton pipe. I am not aware of any trouble having been experienced as yet with this now fipe, but with the old 36 inch ono the interruptions were frepuent nil nerigus, though earnent efforts had been made to prevent the formation or inther the aggregation and allienion of the ioe to the inlet atrainera nud framo work by which they were anstained and protected.

As far bnck as 1866 the water commissioners of Dutroit upplied to Profossor Douglas, of Michigan University, to noe il scionce could devise a cure, or rather a proventive of this winter trouble, and nfter a pationt investigation of the phymical conditions that

 comingly, with aflow tor lome the menracy of him thatery, How

 from the affiecte of arrly frown.

IIs tha following year the committoee fin clange of the work lonil a lian of Inooma daceal, na culvisal liy Profomeror Donglas mon firmly
 for romulex dial not follow. liy ther atid of divone a aulanorget plate

 over.

During ono of tho fropuent intorrnptionn which unok piach tho committeo induced one of thoir divera to go dawn to the inhat pingo ned oxamine itn condition and murronndingm: The interno leolal provented him from remaining long, lint bo wan thero long oncsugh Le dincoker that the inlot pipew and ntrainerx, with their nurromul. ing apilea was one mans of ico particles, collocted into a momal momoten foset high and about fifteon feet in diamoter ; nul thint largo quantition of minute cryntal of ico word rajilly fnaming anil malding to tho mann alrondy colloctand. Spocimens of the bee wown brought to the nurface in a bag. It wan in mooty nul puitidion thin as papor, tmualucont with mharp pointed exlgen.

A firthor oxamimation revealest tho fact that the manall amonnt of water tho pump was recoiving at tho time the nomel wan Ixcing. mule came through tho lower or down ntrean mide of the atraincy, thin being the ouly point at which tho pijee could te rewched. IIore thore was but little ice. Whon theme facth were ascerthinerl tho committoo thought they hal nolved tho problem nul could apply a romody. It was to onclono tho ntruiners except n part of tho down stroan nido no ns to provent these floating particles from collocting on and around it. To do this a large picco of can-
van wan prepareal of mititalion mion aul Armily fantong didition

 water

 it was agnin mportorl with the themometory at 16°, and the com

 "they colloct "pous. tion conaderar recommentel tho com.

 " will necumulate cannot vary moriomaly whet the how of water to "tho inlet pipe."

I nin not sure that the rawommonibintion of ther committer was

 gives of further ©Nate mal deviose for womenning lheir iow diff culties, chicf anomg which wow the exterusion of the imbet main

$$
d_{1 / 4}^{3}
$$

The maximum capkity of the works an origimally demigned was $5,000,000$ gallons daily, und wo long as the mpueduct was free from ice they were fully able for this duty. In the winter nonson, howover, their capacity was reduced to about $3,000,000$ gallons, through the contraction of the chanuel by anchor ice washed from the St. Lawrence into the aquedinct.

This ice trouble hegan with the new worka and was an annual one but wan not always equally severc. Vmions experlients were tried to overcome it but without beneficial effuct. Piern wene built at the ontrance to the aquednct ω stop its insidions appronch, and afterwiuds romoved, when fonand to be useless, and men and gunpowder had to bo omployed sviry winter at the entrance to koop it open and nervicoable.

So long as the demand for water did not exceed $3,000,000 \mathrm{gal}$ lons per day the supply was maintained; but in 1859 (3) yeurs after the works had been opened) the supply to the reservoir hal to the cut off and the water sent directly into the mains for City use. This was done that the water in the reservoir might be retuined for fire purposos which could be done by shutting off only, as the daily draft exceoded the diminished capacity of the pumps.
"Those troubles,". mays the superintending ongineer (Mr. Lussage) " wout on increasing evory winter, so much so that in the year" 1862,1863 and 1866 water punchoons had to be resorted to in "order to supply the citizens." In 1868 a steam onging was erceted to "save the City from another wator famine," and in 1872 a second one was put up for winter use, the consumption having risen to $6,615,000$ gallons per clay. But as the eost of pumping by water prower is greatly less than by steam the rales in Montreal being as $\$ 3.41$ to $\$ 25.00$ for oach million of gullons placed in the reservoir, a contract was mado in 1873 for a now and much larger aqueduct at an ostimate cost of about $\$ 1,850$,193.00 .

The action of the ice and frazil on the old aqueduct is thus doscribed by Mr. Keefer in a report made to the water works committoo in 1869 : "Tho difficulties," he snys, " arise from two causes
"viz: rapid fluctuations in the winter lavel of the St. Iawn? " und that peculiar form of ico known as frazil, which in dortim
" from the hottom instend of the surface, nad therefore flosten milir-
" neath instead of ngon the, name level with other ice. The fluc-
" tuations incronse the thickness of the aqueduct ice, from "boje-
"the frazil from below. The former cause the ice cold currenta of
" the river to tise suddenly and flow over the frozen nuffice of thr" "mueduct immediately thickening and weighing down the ier in
" the latter, then by as shildon" n " falt to still further depress this "ice, so that hy mid-winter (with the stealy roduction of the "rverage surface of the river in meldition) the water way under "the mpueluct ice is so diminishod that, in order to supply the "wheels a rupich under" eurrent sets in, bringing in frazil "in groat abundance until the passage is nearly or quite choked "up. When this result tenkes phee, if the wheels continue rim" ning they rapidly empty the aqueduct below the obstruction, " letting down the ice nhmont or quite to the lottomi, thus hringing " about a state of things irromediable so long as the cold weather " lasts. Difficultios lave inereasol as tho demmed for mhlitional "pumping power increased and the romedy las been tho long in" layed."

From the foregoing brief description of the ice troubles of Montroal it will be seen that they differ materially from those of Chicago, Clevehnd and Detroit-though much the sume in phinciplo ; and show that the insidious influence of tho anchor ice br frazil was undorestimated by the maquestiombly able ongineer who phmed and excented the works und by the still mote ominont gentlemen who were consultedprofessionally before their construction was begun by the City of Montreal.

It was believol that mon or less ice trouble would bo met with, as inust necessarily be the case in all northern latitudes but no one anticipated what renlly did take place. The formition of "frazil" as well as its subsequent movoments and aggregations alle:ir still to be involverl in somo degree of mystery and do not seem to follow the ordinary hews of freozing as generally understool.

Having noticerd at nome longth the tronblesone and trenchorous charnctar of this form of ice, and the effiorts that have beon mado in varions ways to orercome it, a fow remarks in relation to the

Views held by Solontisted

in rohation to its formation, may not be out of phes nor altogether voil of interest.

It nhmost seoms incrodible that ice should bo foumd at tieentyfive (2:5) foot below the suface of open , and that it shonlal the aggregntad and massed, at that depthi, dite in momerl or pyrmind
 found lining with grent uniformity the interior suface of suliterrenean water courses, mising sudedenly the lovels of lakes and rivors und cansing them to ovorflow hori rapidly than in ordinay flools-stopping the inflow tir large culverts, phacel 20 feot or more below the water level, and hocking an open camal with a constant eurront flowing through it (as it Montreal,) but the ovi dence is complete and inresistible.

Scientists are divided in opinion as to tho molles operenali of uature in making mad working, with anchor ice. 'The conditions under which it is fomil aprear to log wonderfully miform, whers"vor it is mot with, and agree exactly with those that provalol here on the night of the e2nd itt., viz. : open water, clouden liy day, clear by night, high wind and themometer muging from 5 " to $1 x^{\circ}$ or 20 degroes thove zero. Under those conditions anchor ice has interrupted agnin nust again, as we have soen, some of the noblest water supplios of Amorica, and engineering skill and scientific resenrch have failed, as yot to find a porfect cure.

Professor Douglas, of Michigan University, when applied to ly the water authoritios of . Detroit attempted to explain the phenomenr ""pon the principle of Wells' well known" and acknowledged theory of the formation of dew, viz. : by radiation" clear water he satid "boing to a great extent transcolent (permitting " the passuge" of hoat) would not interrupt the caloric from helow "from rising ant passing into the niir above, whon the surface water " is open nud below the freezing print. Nor would the depth (2: "ffect) affect it, for it is well known (said the Professor) that caloric
"that has beon transmitted through one layer of a transcalent " mediun will ine transmitted through nuy number of layern ; the "rays of tho sum would also convey heat throngh the whter to tha "pipe (a goonl nhsorber of catoric) and theso wombldissipate the " ico. As soon an tho ice forms oin thẹ river all raliation and trans" mission of caloric would be mbpped liy the intersentency of the "ico," and from this roasoning hembised the phacing of "three or " four largo seowa or timber rafts directly over the pipe to intercept "tho hont ruliated therefrom as well as fiom the survonading "water" und semal it back ngain to the source from whence it came..

This opinion was endorsed by Professor John F. Frazer and tle, Jommal of the Franklin Institute, (Philadelphia) but it was not matisfuctory to the late Professor Hemry, the Superintendent and seientific hend of the Smithsonian lustitute, (Washington.) Gronad or anchor ice ho said in a letter adhessed to Professor Doughas was a "pazzlo to physicists." The radiation oxplanation was ono which romdily saggested itselform such is were fumiliarwith tho experiments of D_{r}. Wells, and was generally allopterl previous to the rescarches of Malloni, (an Italimensamat) who hat shown intensity rexts interruptel by the thinvicst sheet of wuter. This it will be observel is in direct opposition to the view held by Professor Douglas that clear water was a transcalent medium and would transmit heat through my number of layers. Profensor Henry inclined to the theory of Arago, who hold that anchor ice was formed when the water at the surface uxes cooled below the point of congellation aus by the motion of the stream was brought iuto contect with a solich botly at the bottom which actiny as a mucleus of crystalization immediately determined its solidification: but yet hes thought the whole subject reguired furthor elucidation.

James B. Francis the celehrated hydraulic engineer and Superintendent of the locks and canals at Lowell, Mass., holds similar views to Henry and Arngo in regard to the formation of this des cription of ice and in a deeply interesting pincer published on this subject a few yearsigo, gave an array of facts, in his own experionce, which secmed to put tho matter beyond disenssion and sllew
conclunively, that the modiation thoory of Prof. Douglus wien uth. cemble. A fow extracth from thin paper may be wortliy of peruwl.
" Anchor ico," Mr. Fraucís naya, "in pu nggregation of amall " crystals or noedlos of ico, forming in wator a apongy mans easily "ponotrntod with any hard nubatance. It is frequently found "allering in largo quantitios to the bottom and siden of water
" channeln both open and coverol. In clear weather, an the sun
"appronchos the meridian masees of anchor ice ofton rise from the
" hottom of the ojen channols and flont off; sometimes with earth " nul small stones alhering. It is produced in the greatest aboun" dnnce in cold, clear, windy nights. It unquestionably originates " at the surface of the water, the necesmary conditions being thant " the water should be at the freesing tentporature, the air below that " point and the siufnce of the water agitated, oither by a current " or by the wind. In its first stanges the ice is in small detoulied " nealles or arystals; if there is little or no current this ice ac"cumulater at the surface and finally consolidates into a sheot; "if the current is too strong to permit this, portions of it accumu" lato at the surface and finally consolidates into a sheet; if tho "current is too strong to permit this, portions of it accumulaton, "in tho spongy masses and float along at or below the surfaci, " their specifie gravity differing but little from that of water. In "a current of wator there is a constant intermixture of the water
" at different depths producing a uniform temperature all depths
" and tending to distributo uniformly foreign mattor held in sus" pension. The small crystals of anchor ice found at the surface "come down by means of this intermixture and distribute through.
"out the whole depth of the stroam much in the same mannor as
"oarthy matters are carried along in suspension by, currents.
"These crystals have a strong tendonoy to adhere to each ofthor or" to any other solil body they may come in cqntact with. The "adherence can only take place by freezing, and here" says Mr.
"Francis, " lies the mystery of anchor ico. How can water be-
"como ice without a loss of heat?
" It adheres to lurficose of atone and wood over whiol wâter in "running with a considerablo velocity, in nome cancen oxceoding 20 "foot per nocond and growing up under this rapid current at thon "rate of an inch an hour. It in clearly not dependent upon "radiation in the manner Dr. Wells han shown dow to be formed "for wo find the piern of bridges and the interior surfacen of mub. "torranean water coursen, whore there can be no loss of heat by " rudiation, coverol with anchor ice."

Rospecting the formation of this ice Mr. F. remarkn, ly way of suggestion, that it "commences to form at the surface of wator " agitatod either by a current or by the wind: The water leing "at the tomperature of 32° Fah., and the air at a lower tompera"ture hoat passeas from the water to the air equivalont to the " formation of n certain amount of ice; the water boing agitatexl " nad the ice in minute cryntals, the latter bocome mixed with tho " water before all the ice due to the loss of heat is formed; and " although the crystals are removed from the further lose of heat "they will continue to onlarge until an equilibriuns is attained. "The amount of ice formod after the cryatals loavo tho surface " may bo very small but still be sufficiont to oanse them to adhere, " whon by moans of the current thoy are-brought in contact with "each other or with any other solid at the froezing temperature.".

He also notes the fact that on drawing the wator out of a subterranean water colurse he had found the interior surface of the channol contod with anchor ice, with great uniformity and symmetry and several inches in thickness and says it must have formed before it entered thio subterrancan channel and subsoquently alhered.

Again as an instance of the sudden trouble which may ariso from anchor ice and of the exceptional circumstances under which it is found at times, ho relates an oxperience ho had in December, 1863, whon the ice which coverod tho river was carried out by a heavy rain. The rain storm occurrel on the 13 th and 14 th of tho month named, (December) and in the night betwoen the 15 th and 16 th the wind was high from the Northwest; anchor ice
making frooly with the thermometer at 30°. At 6 A. M. of the and was the the anchor ice forming very freoly. The wator whed for moving the sluice gates of the Northern Canal could not be started on account of anchor ice having ohoked up the outfall through which the water in drawn. No anchor ico is ever found at this wheel when the river is frozen over.
The unusual amount of anchor iee at this time forming at such a high temporature was attributed to the high wind and rapid current in the river and the groat oxtant of open water above the dama, on which anohor ice could form. Part of the ice thun formed paseed into the canale whon it adhered to the nidee of the water cournen and orifioen greatly obatructing the flow of the water. And Mr. Francis ooncludee his exceedingly interesting and valuablo paper by remarking that the circumatances attending the formation of ice at Detroit do not appear to differ in any oasontial particular from that attending the formation of anchor ice at Lowtll." The depth of 35 feet at which the ice wan formed at Detroit is greator than it in found at Lowell, where nonto of the Canals exceed 20 feet in depth and are generally 10 foot or lens. It however thoy were 25 feet doep we should expect anchor ice to gather at the bottom of them pretty much as it does now if the ourface remained unfrozen.

But it may not be necessary to dwell longer on this point as the sciontific aspects of the question are of leses direct importance, to us than the facts themselves which may be briefly nummarized as follows, viz: (1) That ico will and does form in open water under certain meteorological conditions ; (2) that at such timee it in found flonting in fine particlen at various depthin from the nurface; (3) that it adheres readily to all solid bodies with which it comen in contact; (4) that it growa or aggregatoe rapidly when ouce it has nociured a centre of crystalization; (5) that it not infrequently closes submerged culverts and water couries as well as openi cainals and aquoducte ; (G) that the conditions most favorable to its rapid forinntion áre open water at or below freezing, a aly clouded by

19

day and clear by night, a high wind and an air temperaturo rang. ing from about five degrees to 20 degreen above sero; (7) that it moldom form in bright sunshise, but on the contrury in often loomoned by thim influence and is meen to rise in manser to the surface ; (N) that it in lown troublowome when the meroury in at or below zero than at higher temperature, and (9) that the troublo ceasos as moon as the surface of the water is firmly frozen over.

As the aurface of our remorvoir in now firmly frosen over there in no likelihood of a recurrence of the troublo during the prement wintor, unlom, indood a sudden thaw nul freahet ahould roopen the pond and oarry away the ice, which in not at all probable. It . becomen un however to look to the finture, to eonsidur well our $\mathrm{p}^{\mathrm{m}-}$ nition in the light and dauger of this new exporignce, and see what can be done, in reavon, to overvone or reduce to n minimun tho inconvenionoe and risk that como of such untimuly interruptious as we had in November. : It in trua the like may not huppen nguin for another forty (40) years and more, but of thin wo have 10 assurance; and it should be no matter of surprise if the sume thing occurred agnin in loss than twelve months. Some sugkes tions have beon made with a view to this which are mo:o or leks worthy of consideration:

It has beon said that the care-taker at the roservoir should be placed in communication with the engineer's office by means of telophone or telograph: Such an mrrungennent might bo useful on many occailons when work was being dono or inimodiate informa. tion roquired, as in froshet times, of the state of tho resarvoir. and waste way, but I do not think it would have averted the recent accident; as the caro-takor had no reasou to believe that anchor ice was boing formed, and found at $5 \mathrm{p} . \mathrm{m}$.,-an hour only beforo the stoppage took place-the usual height or depth of water in the Gate House well.
Such a line of communication would have been of great service however, had it exirted when the interruption ocoured and would have saved some chree or four hours of valuable time, which was spent in soarching for the cause. This in itself is a weighty point

In favor of the auggeation and whould commend it atrongly to your approval.

As there are no telegraphie wires on either of the Inoh Iomond reada, the whole cost of conatruction an well as of maintaining and working would have to be borne, for the prement at leant, by the Wator Dapartment. Mr. Robinson, of tho Wontern Union Tolograph Co., entimatom the firat ontlay at about $\$ 500.00$ and the annual working and maintaining at mbout 850.00 , oxclusive of Jabor, but both ontimatew, the lant enprocially, aro only approximate.

A Beoond Gate House

has also boon auggoated; and thin, no doubt, would have been a valuable auxiliary had it oxisted and been freefrom ice. The lant named condition wguld havo depended, however, on itn ponition und whether it wan exempt from the physical influencow which slestroyed for a time the unefulnews of the present one. Hal thigy been noar one another, that in to may placed any where in the dan or in the cove that leadis to the wuste way, there is reason to bolieve that both woild have been affected alike-as the open, agitated water extonded along the whole front of the dam an woll as into the wasto way cove.

To understand this properly it may bo necessary to explain, that there was first, immediately outaide of the dam, a ntrip of thin whell ice which adhered to the face of the ombankment and followed the ahore line into the cove as shown on the accompanying mketch; (oos Shoet No. S) next a body of open water about 100 feot or more wide, and beyond this agnin ice or frozen water; which covered the greater part of the remorvoir. The open water was kopt from froezing, though its temperature was doubtleosly below 33°, by the gusty gale which had been blowing from the night of the 20th, and remained apen until the wind began to subside on the 23rd.

A Gate Honse placod at a point protected from this fierce wind and fod from ice covered water, would probably have remained open, and proved of great service in rostoring the supply, but I

- Sirelch, shewing abe unparinace of the bietle River Reservior ade Ahe ervening

HEETN No. 3


```
In tavor of
mpproval.
An there 1 suads, the w working wor Water Dapm graph Co., on nnumal work Jabor, but be
han alao thom valuable aux namad cond nud whether domeroyod fat lwoen maar on or in the cet lience that 1 ngitated wat an inch the \(x\)
To undern thery was fid whell ico whi lowed the nh akolch; (ase feet or mot which cover wai kept in Inolow 32". night of the nubuide on 4 A Gato H nuid fed from
open, and pr
```

to not know whern th coubl have been placed on auch a night to hinveguarantoed litu usefulfesus Nor in it cuntomary to have mors than one main laftow fromi a anrvien reservoir to a Gaten Hunaes even where anchor tee In alasomet an annual viatant, as the phyaical influences which would dentroy the one would be almont certain to Ioweryy the wher at the same time.

From the formging comaiderations and the further fact that the conatruction of a sew Cate Houns-alth inflow and ontfow cul. verta-would be a work of no momall ditilienlty and dangor, and enume proliably, mome conabilerubile finterruption to the water anppily of the City and Portang 1 could not udvine ith being undertaken -at proment, nor until elfory in, at lenat, a reomonalife prompect of ila laving a aubatantial impuprement whon completenl. And 1 might nlwo add that, from an enginoering atandyoint, it in alwayn conuidered prifilent to have an fow opening an pomilile in remervoir ambankmenta like ourn ; an every such opmang maide for pipe orculvert in inore or lema n polut of wonknema.

The prement Gato Hoones in grently smaller than it whould be ayd fuconveniont in many wayn, lint ita inlot culvort in largo and capncioun. It wan luilt by the Water, Conmpany in the fall of 1849, when the prement workn were emtablinhed on Little Rivarfron plana furniahed liy Georgo II. Bailley, Civil Engineer, Bonton -and han been allowed to romainan originally buile, from the difficultion which atood in the way of ita reconatruction or onlargonant. Thin quention was fully, comiderod by tho ablos enginoers Momarm. Sladeand McKean, who waye connulted in 1850 on the bont moxno of improving our then wahor aupply; and the remone which then provailod agninat doing anything still exint, viz: the lengtiy interruption it wonld probably ocenaion to tho water pupply, and the unforeseen difficultien and dangers that would ariso from opening and cloning the old embankment-nuw mo strongly and thoroughly connolidated. Hal we, howover, a connection with Ioch Iomond I would atrongly urge menlargement of the present Gate Honse or the construction of n new one altogether; but until "thin loug anticipnted and much required ex.
tension in mado it would not be prndent to attompt any radical change in connection with the present Gate House arrangement on Little River.

Anothor nuggonted mecurity ngainat a total deprivation of water as took place so suddenly on the 22 nd ultimo, in all additional

Sorvioe Reservoir

eapable of containing not less than one week's supply, and as much more an possible. This is certainly a most desirablo thing, could a suitable site for the sume bo obtained in the immediato neightorhood of the City, and the cost of construction' not too great, as it soarcely could be, measured by the magnitude of the inconveniente, of the loss and of the danger that follow a day's suspension, even, of our ordiuary water supply. This I have recommended in formor reports and when doing so on one occasion summarised the ad. vantages that would, ncerue as follows, viz.:-
" Before quitting this division of my report, I consider it my "duty to press earinestly on your attention the necessity of having "an intermediate reservoir constructed at an early day, the site "suitable for which is known to you. It may be true that at " present it is not much wanted and that if no accident happen to
"Little River reservoir, or the mains that lead from thence to the "City, it may not be required for some years; but without one "the City supply is, not as safe nor as perfect as it should bes. "We have no guarantee of immunity from accident any more " than others, and, in the meantime, did any serious casualty be" fall, or circumstances nocessitate the emptying and cleaning of our "present reservoir the City would be at once deprived of water " until the defect was repuired, whether it took a day, a week, or a " month.
"In the water supply of a City nothing should be left to hazard: " Everything should be perfect and if possible duplicated to such "an extent as to render interruption for any lengthened period "impossible. What is done, is well done, but not extensive " enough. A resorvoir of the kind proposed, capable of contain-

2%

" ing three or fout wookn' nupply, is still wanterl and is a nocosnary "appendage to works like ourn, without whioh they aro not com"plete ; as thoro is a daily risk which it in not prudent to continuon "only for the shortest time possible.
"The consequencos involved in a lengthened interroption to the "usual water supply of the City are serioun to contemplate ; and "without regard to domestic and mumfucturing convenionce, " might entail a direct lons by fire, in a fow hourn upon the City, " find beyond the whole cost of the work contemplated.
" But without regard to accident an intormediate reservoir must "sooner or later be built. Without it our present reservoir can " never be properly cleaned; and it is to be expecterl from the " uncloared, peaty nature of the collocting ground that a timo is "coming when it will be absolutely necensury for the purity of the "wator to empty this reservoir and remove the accumulatod " vegetable mattar which is brought down in great quantity by " overy flood.
" No doubt from the grade moptod in laying the 24 inch main, " water would find its way into the City although the greator part " of the present head was removed; but it should be borno in " mind, that were it necessary, for any cause, to empty the reser" voir and clean it, the discharging and supplying wator must bo "convoyed to the Gate House, through the same culvert and it " would become so riled and contaminated with vegetable and " other organic substances, washod up" and carried alout by the "effuent current, that in all probability it would be quito unfit " for use.
" An intermediate reservoir would, it must be readily perceived; " not only give great additional safety to the City, but allow the " mains and stop cocks to be properly flushed and leisurely ex" amined and-repaired whenever nocessary; it would also allow "t the reservoir to be emptied and cleaned as often as occasion re" quired; and when the time came, as come it must, that the "draft on the mains by day was more than they could furnish, "this reservoir would be an equalizer and regulator of the flow,

- " storing the nurplun by night to moot the dxtra demand by day, "and by this means socuring a bettor general hoal than othor" wine could be had.
" From these considerations, I think it very dosirable that mome " initiatory ntopes should bo taken before long for the promotion of "thin most dowirable object." (Report 1808, 1804 mul 1807.)

The site reforrol to abovo us suitable for an intermediate reservoir in connection with our Little River system of supply, is on the Wilson farm, near the upper ond of what is called by some the "Trafton Valloy," to the eastward of the old Wentmorland road. (See sheet No. 4.). By the orection of an embankment across tho lower ond of this valloy, a resorvoir could be constructed which would have a water surface when full of about eighteen acres, and an averago dapth of about ten foit.

The bottom of this reservoir would be on about the samo level as that of our present Leinster Street resorvoir and its capacity would be equal, to about one woek's supply at our presont rate of consumption. The maximum surface level would be abộut 140 feet above City datum, or 20 foet below that of Little River reservoir. To bring the water to the City a main or mains of suitable size would have to be laid betwoen its outlet and the aboidean. I have not made any estimate of the probable cest, but it would, exceed considerably that of an oxtra gate house and pipe chamber. It would, however, be a much more valuable auxiliary in case of accident and greatly more so in case of fire. But the pressure at best would be low and diminish with the draft, whon the latter was taken from the impounded water alone; as it would necessarily bo when the supply was cut off as on the 22nd ultimo. But allowing for this dofect it would still be of :incalulable valuo as a supplementay supply when other sources failed.

In view of a probable extension to Loch Lomond at an early day it may not be thought immediately nocessary to construct this reservoir, but in reference to this, it may be said that although wo had our mains extended to Loch Lomond, and had a high and low service supply in full operation, this reservoir would still be a

SHEDTR No. 4入

$$
C_{E M E T}
$$

$$
W^{15^{5}}
$$

$$
\geq
$$

"mooring the sur "and by this ma " wino could be by
"Front thetro of 0 " this mont demiral The site roforro vair in connection tho Wilson farm,
" Trufton Valley,' (Sos sheet No. 4.) lower ond of this would have a wad an average depth

The bottom of ns that of our prot would be equal to consumption. T! foot above City d coir. To bring size would have I have not mad oxcoed considered It would, howeve accident and grep best would be was taken from sarily bo when th allowing for thin supplementary gu

In view of : a day it may not b reservoir, but in had our mains of? service supply in

25

aluable appendage to our water aupply, and partioularly to the ow nervice, to which it would really belong.
Bofore lenving thin nubjeot it may be proper to remark that ome of the advantagow olaimod for an intermediato remervoir, in he extracta given above; nuch an the flumhing and repairing of nains and ntop oockn, were necured in 1873 when the 24 inch pipe ran laid from the aboidean to Little River.
Beniden the foregoing the connecting of

Lily Lake

with our proaent remervoir has been anggenterl for fire and other purponea.
The value of thin lake for city une was fully temted by the old vator company previous to removing their works to Little River, In 1850-the water aupply of the City having been drawn from chis source for upwards of thirteen (13) years.
It is deficient in elevation as well as in storago capacity and Arainage area, and ive water is greaily inferior to that of Little River for domentio and manufacturing purposem.

The surface water of this lake is about eighty (80) feet above City datum, while the bottom of our Leinster ntreet renervoir is one hundred and twenty-three (123) or forly-three (43) feet highor than the surface water of the lake.

When this lake was used by the old water company, the supply of water for the City, was pumped into the Leinster street reservoir three or four times a week, and doled out daily between the. hours of 6 and 8 A . м. .For 22 hours out of the 24 the water was shut off; unless an alarm of fire was given, when the reservoir had to be opened and the pipes filled before any could be got for its suppresion from the City fire plugs. The daily demand was then about $2 \pi, 000$ gallons, now it is more than two hundred times that quantity-and even then in dry seasdns this lake was barely able to furnish the small supply required of it. Its capacity and elevation could be raised to some extent by raising the dam at its

26

outlet, but not sufficiently no to put any part of itu water into the Leinster street reservoir by gravitation.

To make the water of this lake useful therefore, an a abort time supply, in fire moons, or when other mon rem failed, extensive pumping work n would have to bed ornotext'nmed maintained in a constant alate of roadinoon ; and much mevhasional arrangement a made an would shut off, entirely, the ordinary nupply from tittle River, when the water of thin lake wan being used by pumping directly into the distributing mains, in in the Holly and Wateroun systems ; or a return be made to the old practice of pumping into and distributing from thin old remervoir.

In the first named (that in pumping directly inter the maine) the pressure in cane of fire could be run up to any desired paint, with Little River and Leinster street remervoir hut off, but the auden jerky strain which would be hurriedly placed on house fittings an well an main and morvico pipes would be very destructive to such an were weak and worn and cause no mall inconvenience and expenne to water takers. This would be avoided of course by pumping an of old into the Leinster witreet reservoir, but in that canc the general pressure would toe lems than it now in.

The water of thin lake would be "n valuable acquisition to our present system, on special occasions, could it be pumped into a large reservoir, as bus been proposed, in opposition to direct pumping, elevated 200 foot or more above City datum, or may from 120 "to 140 feet higher than its present surface level.

A reserve reservoir in a position of this kind, kept constantly full and capable of containing a week's supply or more would be a nice thing to have and be a great additional security in times of fire and in other exigencies, but an appendage of this kind built of stone or cut out of the solid rock would involve a very large outlay in addition to what would be required for pumps and ontrines; mains and gates and pressure regulators, do., much more probably than the ratepayers of Saint John and Portland would be disposed to bear at the present time; with an extension to Lock Lomond still in abeyance.

**

27

solore conoluding this Roport, I would advies in view of our ent experionce,
list. That one or more pipes be lidd, as soon an preotionble, from neh O, on the now 24 inch main, (See Plain, Sheot No, 6), to old papor mill sluice (marked D), and such arrangementa made may be nocomary to mocure a

Supplementary Bupply

case of other interruptions. By an arrangement of this kind on wator would be taken, of course, from the surtace of the pond ad contain, probebly, more suspended mattor than it doee when rawn from a lower point ; but not to an oxtent to make it obsotionable, nor to cause uneasineses, as when the ground in fromen ard, an it neocesarily would be under the conditionn contomplated, here would be little chance of much impurity being abeorbed by he water on its way to the reservoir.
A.connoction of this sort would answer praotioally for a gato pouse no long as the inlot end of the sluice was free from ioe and the aurface lovel of the reservoir maintained ; but the extent of its useofulneses would be measured and limited to large extent by the last named circumstance. Both conditions were fivorable on the night of the 22nd ultimo, and arrangementu had been begun for making this connection with all possible apeed when the ioo
fiolded tw our effortis and disappeared from Gate House and culvert.
This work cannot be well done, however, at this nescon of the year, nor would it be advisable to attempt it before tho apring time, if possible; bitt I propose to have the neoemary pipees, do., sent out as boon as the going is sufficiently good for thin parpones. that they may be on hand and ready when wanted. I would also advine
(2). That a careful and continued series of observations be made, at stated hours deily on the

Temperature of the Water

in the Gate House at and below ite surfice loval-on the air of
the Gate House and on the open air outaide of the name ; also on the aky noting its dogree of olouding and the general toree and direction of the wind.

Such obearvations may not amount to much, practically, bat if it be as stated by authorities on this subject that when anchor ioe begins to form the water is at or below 32° Fuh., the thermometer in observant hands will ahew when thil point ia being approached; or reached, by the water in the gate house well and to this oxternt give notice of approaching danger; unless indeed the change, from the one state to the other, be extremely sudden, as the wiog good reasons for believing it is, at times, when the condi 19 eminentify favorable.

Observations of the kind auggested were commenced on the 23rd ultimo and have been continued since, but they are nut as full nor as frequent as they should be when reliable stationary instruments are received and placed, ready for use. The thermometer used in this work should be accurate and truatworty in every way, as without this the observations would be absolutely useless. I have failed, so far, to find self-registering instruments of this oharucter in the City and think they will have to be ordered from iome mater of standing; such as Negrette and Zambra, or Cassela of London, England.
(3). In addition to the thermal observations just noted I would recommend another class of observations having for their object the

Barly Deteotion of Ioe

when it begins to form and float about in the water waiting as it were for something to cling to. The Detroit divers ygu will rocollect हAW in their" winter deacent "large quantities of minute crystals of ice" fioat in the water far below its murfact, and Mr. Francis says that these crystals have a strong tendency to adhere to each other and to any other solid body they may come in contact with."

Now what I propcee to do is to immerse in the gate house well
a box fitted with iron shelves inside and pierced on athe outaide for the adminaion of water an a nucleus: or artificial oentre of cocretion to which the ice mas adhere, if prement, and by the withdrawal of which it may be brought to the aurface anil diecovered.

This box, or ico deteotor an it may be called, I would have examined three or four timee a day during the wintar seamon, and houriy or oftener. when the conditions under which the anchor ice is known to form prevniled.

I do not know that thin or the thermal obmervations suggented will prove of much practical value, but is the responsibilitien are great and our : opportunitie ample for patting to proof the teste proposed, they are worthy, at least, of a trial whether they sucpeed or not. Both are but experiments ; the success or failure of which it may take years to detormine should aucceeding seasons prove unfavorable to the formation of anchor ioe, an I sincersly hope they will.
(4). The only other suggestion I have now to make in reference to the future in that a

Rait of Suitable Bise

be'mude and moored early next winter over the ontlet end of the inlet culvert, not wo much with a view to stop radiation and prevent the making of anchor ice as to give a means of access to it, should it exist; and an opportunity of starting it with bars or such other tools as may be found best fitted for the work of loosening. During the recent stoppage a raft had to be made and launched for this purpose which neoessarily occupied comaiderable time:

Another subject which is worty of consideration-not only in relation to total suspensions of supply-but also with reference to a more efficient protection of the higher parts of the City is that of

Btreet Tanlyofor Fire Bervioe

placed at such points as in the judgment of the fire department of Saint John add Portland they would be most eerviceable. Arrangements of this kind exist in New York, in Boston, in Chicago,
....

- , in Dotroit and in many other places in additiou to fire hydrinite and are maintained with an match oare.

Thoir unofulnewn would be monaured of courne by the quabtity. of wator they containod but in the caso of a total suapension an on the night of the 22nd ultimo, an hourf nupply eyen might prove of inciloulable value in arrewting the progrom of a newly discovored fire.
Some of the old wells that formerly exinted in the City-such as that on the northern nide of King Square-should be olearied out and reserved for work of thin kind. Thin in, matter of no amall importance and should not be overlooked by the propor authoritie.
The above recommendations it may be remarked are substantially the name as were made in my Reports of $1 \$ 64$ and 1865.

Respectíully submitted,
GILBERT MURDOOH, Supt. S. and W. Works.

