IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

The Institute has attempted to obtain the best original copy evailable for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored end/or laminated/
Couverture restaurée et/ou pelliculde
Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La re liure serrée peut causer de l'ombre ou de la distortion le long de la marge interieure

Blank leaves added during restoration may
appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines pages blanches ajoutes lors d'une restauration apparaissent dens le texte. mais, lorsque cala était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meillour exemplaire qu'll lul átétépossible de se procurer. Les détails de cat exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiques ci-dessous.

Coloured pages/

Pages de couleur
Pages damaged/
Pages endommagées
Pages restored and/or leminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées
Pages detached/
Pages détachées
Showthrough/
Transparence
Quality of print varies/
Qualité inégale de l'impression

Includes supplementary material/
Comprend du matériel supplémentaire

Only edition avaiiable/
Seule edition disponible

Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/
Les pages totalement ou partieilement obscurcies par un feuiliet d'errata, une peiure. etc., ont été filmées à nouveau de fac̣on à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanke to the generosity of:

Dounta:: Library
Queeri's Univeraity

The images appearing here are the best quality possible considering the condition and legibility of the original copy and in keeping with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or iliustrated impression, or the back cover when appropriate. All other original copies are filmed beginning on the first page with a printed or lilustrated impression, and ending on the last page with a printed or lilustrated impression.

The last recorded frame on each microfiche shall contain the symboi \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichover applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely inciuded in one exposura are filmed beginning in the upper left hand corner, loft to right and top to bottom, as many frames as required. The following diagrams illuatrate the method:

L'oxemplaire filmb fut reproduit grace ila géncroalté de:

Douglas Library
Quean's University

Les images suivantes ont étó reprodultes avec le plus grand soin, compto tenu do la condition ot de le nettote de l'oxemplaire filmb, ot on conformito avec les conditions du contrat de filmage.

Les exemplaires originaux dont ia couverture en papier est imprimbe sont filmés on commencent par le premier plat ot en torminant soit par la derniJ̈e page qui comporte une empreinte d'Impression ou d'iliustration, soit par ie second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par le premiàre page qui comporte une empreinte d'impression ou d'illustration ot on terminant par is dernidre page qui comporte une telle empreinte.

Un des symboles suivants apparaîtra sur la dernidre lmage de chaque microfiche, selon le cas: le symbole \rightarrow signific "A SUIVRE", le symbole ∇ signific "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés ô des taux de róduction différents.
Lorsque le document est trop grand pour être reproduit on un seul cliche, il eat film' a partir de l'angle supdrieur gauche, de gauche à droite. et de haut on bas, on prenant lo nombre d'images nd́cessaire. Les dlagrammes suivants illustrent la móthode.

1	2	3
4	5	6

07

GEOGRAPHY:

comprisina a

COMPLETE DESCRIPTION OF THE EARTH, PHYSICAL, STATISTICAL, CIVIL, AND POLITICAL; mxhibiting its relation to the heavenly bodies, ITS PHYSIOAL STRUCTURE,
 the natural history of each country, AND THE INDUSTRY, COMMEROE, POLITICAL INSTITUTIONS, and civil and social state
 or

ALL NATIONS.

BY HUGH MURRAY, F.R.S.E.

assistidid in
ASTRONOMY, \&c. BY PROF, WALLACE| BOTANY, \&c. BY PROFESSOR HOOKER GEOLOGY, \&ze BY PROF. JAMESON, ZOOLOGY, \&c. BY W. SWAINSON, ESG

ILLUSTRATED BY EIGHTY-TWO MAPS, AND ABOUT ELEVEN HUNDRED OTHER ENGRAVINGS ON WOOD meprdienting the most remarkable ondect of nature and art in every recion of thi clone,

TOGBTHER WITH A
NEW MAP OF THE UNITED STATES.

REVISED, WITH ADDITIONS, BY THOMAS G. BRADFORD.

IN THREE VOLUMES.
VOL. I.

PHILADELPHIA:
LEA AND BLANCHARD, ror
GEORGE W, GORTON.
1845.

Entered according to the act of Congress in the year eighteen hundred and thirty-six, by carey, lea, and blanchard,
In the clerk's office of the district court for the eastern district of Pennsylvania.

PREFACE TO THE ENGLISH EDITION.

The value and importance of the atudy of Geography are so obvious, and indeed so universally acknowledged, as to require little illustration. Nothing can be more intereating to man, or more gratify his thirst for knowledge, than a survey of the earth which he inhabics, peopled as it is by beings of the same nature with himseif. To viait and observe foreign climes and regions is an object of general desire, and forma one of the moat effectual means of enlarging and enlightening the human mind. This wish, however, unless in the case of a few individuals, can be gratified only to a very limited extent, and in none can embrace more than a amall portion of the vast variety of intereating objects which the earth comprises. This necensary defect of personal observation may, however, be in a great measure supplied, by collecting the reports and narratives of those intelligent individuals who have explored and described its various regions, and forming out of these a general description of the world and its inhabitants.

Works of this class have always possessed a peculiar attraction. Even in ancient times, when the extent of the known worid, and the information with respect to the inhabitanta and productiona of ita remoter regions, were comparatively fimited, the geographical descriptions of Herodotus, Strabo, Pomponius Mela, and Pliny, rank among the most valuable productions of the classic agea. But in modern times, and particuiarly in the present age, Geography has acquired a much more prominent place among the departments of human knowledge. The discovery of America in the fifteenth century awakened a spirit of enterprise, and a desire to explore unknown regions, that have continued to gain new atrength. During the last haif century more especially, the most civilised nations of Europe have been contending with each other for the glory of discovery; and there is now scarcely a shore however remote, or the interior of a continent however barbarous or difficult of access, which has not been surveyed and described. Materiala have thus been provided for a much more complete, interesting, and authentic description of the earth, than could have been drawn up at any former period.

The extensive discoveries thus recently made have thrown a wonderful light on the structure and productions of the earth, and afforded large contributions to all the departments of natural history They have also displayed man in every varied condition, from the highest refinement of civilised society, to the rudest and most abject condition of savage life. These representations are not only interesting in themseives, but throw light on the history of past ages. Communities are still found exactly similar to some of those described in the eariliest records of antiquity. The tent of the Arab aheik differa little from that which Abraham pitched on the plains of Mamre; many of the Tartar tribes are a people exactly aimilar to those who roamed in early ages over the plains of Scythia; and the splendid courts of Babylon and Persepolis have their representatives in the existing world. We may thus, in fact, trace back man to an earlier and ruder stage than any represented in the ancient records; for these convey only faint and fabulous notions of what mankind had been at a very early period. But the wilda of America, and the shores of the Pacific, exhibit the atate of savage aimplicity, which doubtless existed in Europe before the light of authentic bistory had begun to dawn. Hence it is that Geography, in its present extended range, not only shows man as he actually exists, but delineates, as it were, the progressive history of the apecies.

Besides the gratification thus afforded to a liberal curiosity, the knowledge of even the remotest regions has, through recent events, become an object of the utmost practical importance. In many of these, colonies have been founded, political relations formed, and a commercial intercourse with them opened, by th; civilised nations of Europe, and particularly bj Britain. Regions the most distan: to which a ship can sail form integral portions of her dominion, and have theil ports crowded with her vessels. There are thousands in this country who have a more intimate connection with Calcutta or Sydney, than with towns in their immediate vicinity. The manufacturer labours to supply the markets of countries, the very existence of which, fifty years ago, was unknown; the circumnavigation of the globe is now an ordinary trading voyage. The knowledge of Geography has thus become a necessary qualification for the pursuits of commerce and industry, and for much of the ordinary and current business of life. A great proportion of the youth of Britain are trained for employments in countries which lie far beyond the limita of Europe.

The same causes have, moreover, given to the knowiedge of diatant countries a peculiar hold on the domestic and social affections. There are few amongst us who have not a near relation, perhaps a brother or a child, residing in another nemisphere. Oceans now separate us from those to whom we are united by the tenderest ties; the objects of our affection have their abode on the banks of the Ganges, or the shores of the Pacific; and many, whose hearts are knit in the closest friendship, are divided from each other by half the earth. In this situation, a description of the place in which our friend or relative dwells, the objects which meet hia eye, the society in which he mingles, must afford peculiar gratification, and soothe the mind under this painful separation.

Deeply impressed with a sense of the great extent and difficult execution of a compiete geographical work, the Editor, during nearly ten years in which he has been engaged upon it, has used the utmost exertion to procure from every quarter information and aid. He has studiously collected the moat recent, authentic, and accurate accounts of the extent, natural features, population, productions, Industry, poiitical constitution, literature, religion, and social state of the various regions of the giobe, with the leading detalis as to their districts and cities. The sciences connected with the natural hiatory of the earth have, however, attained to such an extent and importance, that a thorough knowledge of them can only be possessed by individuals who have apecially devoted themselves to one particular branch. The Editor, therefore, considered It essential to procure the co-operation of writers who had risen to acknowledged eminence in the departments of Geology and Mineralogy, Zoology and Botany. He considered that he had fully aucceeded, when Professor Jameson undertook to delineate the geological structure of the globe, and the diatribution of minerals over its surface; $\mathbf{M r}$. Swainson to explain the distribution of animals, and the most remarkable of those found in each particular region; and Dr. Hooker to perform the same task in regard to the vegetable kingdom. Professor Wallace has illustrated the relations of the earth as a planet, the trigonometrical surveys, the construction of maps, and other subjects connected with mathematical science. These tasks have been executed in a manner which, it is hoped, will fuily aupport the high reputation of their respective authors. In preparing the sectiona relating to commerce, the editor derived much assistance from Mr. M'Culioch's Dictionary of Commerce, and he is also indebted to that gentleman for many valuable communications. Various parts relating to remote countries have been revised by gentlemen recently returned from them.
The Maps, which are so numerous as to form a complete Atlas, have been executed from drawings by Hall; and having been carefuily revised by the Editor, they will, it is hoped, be found to be accurate, and to include all the most recent discoveries. Notwithstanding the smaiiness of the scale, they are filustrated by the letter-press in a manner which enables them to comprise equal information with others of much larger dimensions.

The other Wood Engravings are mostly original, or have been carefully selected from the most faithful representations of the objects described; and they are executed in the best style by the eminent artists whose names appear on the titie-page. They exhibit the most remarkable plants and animals, the chief cities, public buildings, natural curiosities, and picturesque scenery, with the characteristic figurea and costumes of the natives, in the countries described. It is not believed that any work of this kind is similarly embellished, at least to nearly the same extent. These representations are by no means introduced for the sake of mere ornament; they will be found of the greatest utility, conveying an infinitely better ilea of the objects than could be derived from the most laboured description.

Notwithstanding all these efforts, it is impossible to lay this volume before the Pubic without the painful reflection, that, in a subject involving such an infinite number and variety of details, many of which are often very difficult to procure, not a few imperfections and even errors must inevitably occur. M. Baibi, whose exertions to collect the most recent geographical information are weil known, and to whose labours the present volume is much indebted, candidiy observes :-" One of the greatest obstacles to be surmounted in the composition of an ciementary treatise of Geography is the want of contemporary documents. Geography is almost necessarily a compound of things which are, with things which have ceased. to be. How can one be informed of all the changes that take place in the course of a few years, even in the capitals of Europe, still more in those of Asia, Africa, and America? To compose a Geography which ahould exhibit a complete picture of the globe at a particular period, it would be necessary to have authentic documents, all of the same date and that a recent one; which never has been, and never can be."

ADVERTISEMENT

TO THR

AMERICAN EDITION.

The object and plan of the Encyoloprdin or Grooraphy have been very fully set forth in the Preface to the English Edition, and the names of the editor and his collaborators are sufficient vouchers for its value. It is due, however, to the American reader, to inform him in what respects these volumes differ from the original. The whole of the English work is here given, with the single exception, that the description of Great Britain, which occupied more than one-third of the Book devoted to Europe, and considerably more than the space given to the whole of America, has been somewhat abridged; but, it is believed, without the omission of any thing of importance. The text has been carefully revised and corrected throughout, and in most cases more recent statistical details have been substituted for those of the original. The additions to the first volumes are not considerable in amount, but are generally such as have been required by changes in our knowledge or in the condition of things. The Book relating to America has been enlarged as far as the limits of the work would alow, principally by the addition of local details; the condition of the new American states is too unsettled to render it worth while to fill much space with accounts of their political relations, which might be entirely changed before these pages met the eye of the reader. The Chapter which treats of the United States has been written anew, the original being extremely inperfect and incorrect, as all European treatises on the subject are.-Our growth is so rapid, the increase of our population, wealth, commerce, manufactures, and other industrial resources, so amazing, the creation of new towns, cities, nay, states, is continually making such a change
in the face of things, public works are conceived, planned, and executed on so great a scale and with such promptitude, that it is not at all surprising that a distant writer should be entirely baffled in his attempts to describe the country as it is. The Zooloaical section has alone been retained, but it has been much enlarged, chiefly from a later work of Mr. Swainson's; and some general remarks upon the shells of the United States have been added. For the account of the Geoloay of our country, the reader is indebted to Prof. Rogers, of the University of Pennsylvania. The Botanical section has also been prepared by a gentleman of high reputation in the scientific world. The Editor is painfully sensible of the imperfection of the other parts of this Chapter, but he trusts that the difficulties of the subject will obtain for him the indulgence of the reader.

Pailadelpaia, October 1a, 1886.

CONTENTS OF VOL. I.

M
 PITAOD DY THR AMERIOAN EDEOO MYIODUCTION.

PARTI.
 mintont of amography.

BOOK 1.
anctant ezoasapuy
OHAP. L.

CRAP. II.
Andiont Voyegeo Dreotrory 18
fi. Voymme of patlon of Artica andor Necho........ 18
if. Voysee of hatappe
II. Voy ${ }^{2} 59$ of Hanno.
F. Voyage of Puthenas
Vi. Voyme of Nearehus
Vii. Poriplue of the Eny h:............................

CHAP. III.
Grok Goograply before Alozander
.80

1. Geography of Homer

II, Pootleal Geortaphy
IV. Goography of Harodotus

1. Europe of Herodotus
. Asla of Herodotua.
2. Amien of Herodotue.

OHAP. IV.
Firt Alarandrian Achool. Fratoothenee and 解rabo 37
I. Expedition of Alezander . 37
II. Expedition of Beleucu*
III. Eratoathenes
T. Eilpparchus..

1. 良urope. .
${ }^{2}$. Aala.
2. Atrtes

CRAP. ${ }^{2}$
Romat Geography
I. Mifa. Ping

CRAP. VI.
Second Alezandrian fehool.
. 81
I. Marians of Tyre

1. Ptolemy
2. Enrope

2 Africa

BOOX II
 OEAP. 1

CHAP. II.
Furopean Creography daring the Dart Agen.
CRAP. III.
Ceographical Knowledge dorived trum the Oruenden. At OEAP. IV.
Tarter Geogaphy,
OHAP. V.
Fantian Geography \qquad

BOOK III.
modean aroomarat.
OHAP. 1.
Discovery of Americe and the East Indiee..... .. 0
CHAP. 11.
Early Dyetem of Modern Ceography
OHAP. III.
Modern Amtronomical Geography.
CHAP. IV.
Modern Oritieal Geography
.78
TPAP. V.
Modern Deecriptive and Etatitical Geography. 78
CHAP. VI.
Modern Gleography of Asla. 7
CHAP. VII.
Modorn Geography of Atrdes. 71
CRAP. VIII.
Modern Geography of Americe.
CHAP. IE
Modern Geography of the Autell Boas and Imande. 77

PART II.
PRINOIPLTS OF GEOGRAPHY.
BOOK 1.

CRAP. 1.
Comeral Viow of the Phenomens of the Henvens, apparent Motions, fared biery, Fianaty, be.

CHAP. IL.
The Reavent, at seen through the Trelescope.
CHAP. III.
Approzimation to the Figure and Magnitude of the

CONT T ${ }^{2}$ NT

The THiNe ．．．施
 Geseral View of the CHAPr XVIIL．．．．．．．．．．．．．．．．the
 Figure and Megnilude of the Earth ．．．．．．．．．．．．．．In
 Devormanation ar Lachude．XX．Longliude．．．．． 147
 Inprecentalion of the EHAR XXI．．．．．．．．．．．．．．．．．18！

BOOK 11．
oEOLOGSGL PRINCIPLEA
CHAP．I．
Hydrology ．．\＆8e
BOOK III．
 MELATION TO OROANLEED AND LAVINE BEJNES． CHAP． 1.
Coggraphy conaldered in relation to the Diotribution CHAP．II．
Ceography conodered in rolatioa to ithe Dituribution of Min cond Animels CHAP．III．
in rifition to Wea la Roodery sis

PARTIII．

OEOGRAFHY CONSIDERED IN RELATION TO TIIN VARIOUS REOIONS OF THE GHOED BOOK 1．－EUROPE． CHAP．V1．

CHAP． 1.

1．Natural Peaturen．
if．Inhabitanta．
if．Dotany．
V．Lenguage
CIIAP． 11.
Emelans ．．．．．．．．．．．．．．．．．
it．Natural Geography．
IV．Political Geography
V．Productive Induatry
VI．Civil and Social geta
Vii．Local Geography
1．Eouthern Countios
8．Eastern Countiel．．
3．Contral Countiel．：
4．Northern Countiea
5．Weatern Countien．
CIIAP．III．
\＆cotlans．． 40 ．
II．Natural Geography
III．Historical Burvey
IV．Political Conatitutión
V．Productive Induatry
Vi．Civil and skeial stato
Vif．Local Geography．
1．The Lowland Couniles．
\％The Highland Counties． CHAP．IV
Inzlann．．．．．．．．．．．．．．．．．．．．．．．．．．．
1．General Outhne and
11．Historical Geography
IV．Political Conmitution
V．Productive Induatry
Vi．Civil and 8oclal stato
I．Geveral Outilie．and Äspect ．．．．．．．．．．．．．．．．．．．．．．．．．． 465

969 － 901 ． 291
chyap. v.

II．Naturul Geozraphy
III．Hititorical Geography
1V．Productive Induotry
Vi．Political Geography．．．．
Vi．Civil and Social sta
Vii．Local Geograpty

Bwapan ans Nonway．．．．．．．．．．．
1．General Oatiline and Appei
47 II．Natural Geography．．． II．Hintorical Goography IV．Politicai Geography Y．Productive Induatry
V1．CIvil and Bocial staie．
VII．Local Geography
1．Eweden
3．Laplated
CHAP．VIL．
Molland and Bezatox．．．．．．．．．．．
i．General Outhine and
11．Ilistiorical Geography
V．Prodicictive Induptry．．．
V．Productive Jnduatry ．
Vii．Local Geography
I．Belpium．
2．Holiand．
CHAP．Vill．
Franon．．．．．．．．．．．．．．．．．．．．．．．．．．．．
518
ii．Natural Geography ．
iif．Historical Geegrephy
IV．Political Geography
V．Proluctive Induatry ．．
VI．Civil and Eocial Etate
VII．Local Geography ．．
CHAP．IX．
Spaın．．． 558
1．General Outline and Appect t．．．．．．．．．．．．．．．．．．．．．．．．．． 548
1．Nalural Geography ．
III．Histurical Geography
1V．Polltical Geography
Vi．Civil and Eocial Etate
Vi．Civil and Bocial Elate．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． ．$_{57}^{87}$
Vii．Loeal deopraphy ．．．．．．．．．．．．．．．．．．．．．．．．．．． 575
Vili．Republic of Andorra．．．．．．．．．．．．．．．．．．．．．．．．．． 389
chap． \mathbf{x} ．
Pontvaal ．．． 580
1．General Outline and Aapect ．．．．．．．．．．．．．．．．．．．．．．．．s80
II．Natural Geography．
II．Historical Geography
1V．Poilitical Geograply
V．Productive Industry．．．．
ViL．Local Geography ．．

ENCYCLOPEDIA OF GEOGRAPHY.

INTRODUCTION.

Groosapity conainta in the deacription and delineation of the Farth. It conaidera that planet in reapect to ity form, ite connexion with other bodien in the univerne, the various perts into which it in divided, thoir relations to each other, and the objects with which each is reapectively fillel. Geography indeed could not attompt a scientifie amalyuis of all these objects, without aecking to comprehend within itwelf a complete circle of acience. It viowi only thoir obvious and viaible characters, and chiefly those featuren which arp peculiar to each respective country and region on the face of the globe.

The great importance of this branch of knowledge must be mufficiently obvioun, It embruces a vaat variety of thoee objects which are moat intereating in themeelven, and with which it most concerns man to be conversant. It enablea the navigator, the merehant, the military commander, to carry on their respective operationa. Geography is moreover emential to the clear understanding of every branch of the history both of man and nature. The transactions of bordering states are unintelligible without a knowledge of their relative extent and position, and of the theatro on which the great events of their history are acted. Every form, both of animal and vegetable nature, is modified in the most atriking manner by the climate or the country in which it is placed. Still more intimato is ite rejation with geology and other aciences, which invertigate the materiale composing the substance and crust of the earth. None of these branches of knowledge can be distinctly understool, or viewed under its proper relation and arrangement, without a previous know ledge of geography.

Thia important and extensive subject seema to divide itself naturally into three parta.
The First Part treats of the "History of Geography;" the origin and progress of the Science; and the ateps by which man, who seemed fixed by nature in a local and limited position, has made himself acquainted with the immense circuit of the globe. This Part is divided into-I. Ancient Geegraphy;-II. Geography of the Middle Ages;-III. Modern Geography.

The Second Part comprisen the Principles of the Science. These are-I. Mathematical: those which relate to the form of the carth, its movements, its plece in the Solar System, the great circlea by which it is divided, the operations by which it is aurveyed, and the modes in which its spherical outline can bo represented on the plane surface of a map. II. Physical: those which trent of the substances which cover the earth's surface, the elements which compose and surround it; rock, earth, water, sir, as they appear under the various forms of mountain, plain, river, sea, and present all the changing phenomena of the atmosphcre. III. Gcography may be considered in its relation to other objects and sciences. 1. To Zoology, or the distribution of animals over the globe. 2. To Botany, or the diffusion of vegctable productions. 3. To the haman race, and the various branches into which it has been formed, considered in relation to numbers, wealth, political union, social, intellectual, and moral condition.

The I'hirl Part considers Geography in detail, as it applies to the various quarters and countrics into which tho world is divided, the outline and extent of each, its natural feeturea, the revolutions through which it has passed, its political constitution, the industry and wealth, the civil and social condition of its inhabitants. The description of each country will conclude with a local and topographical survey of ita districts, cities, and towns.

Tbis Part will divide iteelf into five general heals:-I. Europe. II. Asia. III. Aftica. IV. Australia. V. America.

An Index will be added, which, being extremely copious, and containing references to all the places mentioned in the work, will answer in a great degree the purposes of a Geographical Gazettecr.

PARTI.

HISTORY OF GEOGRAPHY.

The Histery of Geography may be divided into three books:-I. Ancient Geography. II. Geography of the middle ages. III. Modern Geography.

BOOK I.

ANCIENT GEOGRAPHY.

The Geography of the Ancients may be considered under the heads of, I. Hebrew and Phenician Geography; the principal features of which may be found in the Jewish Scriptures. II. Greek Geography, in its early state, before the expedition of Alexander. III. The first Alexandrian school formed by Eratosthenes. IV. The Roman school, formed chiefly by Mela and Pling. V. The second Alexandrian school, formed by Ptolemy.

CHAPTER I.

hebrew and pugenician geography.'

The Sacred Records, in addition to their higher claims on the attention of mankind, possess the important secondary advantage, that they enable us to trace human existence, and the forms of society, back to a much earlier period than the information derived from any other source. They were long anterior in this respect to the classic story of Greece and Rome; the faintest light even of whose fabulous history cannot be traced back to the period when Abraham was driving his flocks over the seats of future empire on the Euphrates. Among Abraham's contemporaries we discern the germ of the great monarchies which first changed the face of human affairs. Nimrod, the founder of Babylon, almost like an Iroquois chief, is mainly celebrated for his activity and success in the chase. Modern discovery has indeed made us acquainted with tribes existing in a still ruder form; but there is no narrative in which we can trace so distinctly the gradual, yet somewhat rapid, transition made in these favoured regrons, from the hunting and pastoral, to the commercial and agricultural states of society.

Suct. I.-The Patriarchal Ages.
In the early patriarchal records we discover first the rich Mesopotamian plain, not yet covered with cities and harvests, but standing as an open common, over which the sous of Terah drove unmolested their flocks and herds. In these favourable circumstances, and surrounded by simple and rural plenty, the flocks and the shepherds multiplied in an extraordinary manner. The heads of the families became petty princes, and were as such at once respected and feared. As they went on increasing, the land hecsme "not able to bear them;" and the most intimate friends were able to prevent dissension among their adherents only by an entire though painful separation; nay, even by striking into routes so opposite, as to prevent the possibility of a future union. This, however, was rather a palliation than a cure for the evil; for, in whatever quarter each directed his course, he came into contact with other families. The difficulty was still augmented, when all the more fertile tracts began to be cultivated by a fixed population, subject to regular government. The first regions which esme under these circumstances appear to have been Lower Egypt and Gerar, on the coast of Philistia, along the Mediterranean. In the latter we find Isaac attempting to settle and cultivate the ground; but the king, though evidently afraid to offend so potent a tribe, insisted, in a determined though courteous manner, upon their quitting his territory. The family were therefore obliged finally to establish themselves in the vicinity of IIebron, collecting the somewhat scanty herbage which grew amid the rugged mountains to the west of the Dead Sca. It was, therefore, an auspicious change when they were transported into the Land of Goslien, a rich pastoral district of Egypt. The circumstances attending the captivity of Joseph enable us already to observe the activity of that interior caravan-trade, which afterwards on so great a scale, traversed

Arabia. Two caravans, destined for the supply of Egypt, appear meeting each other in opposite directions; and that cruel trade, of which men were the ebject, is already carried on in the same remorseless manner, and by the same unjust means, by which it has ever since been conducted.

Scet. II.-Thr Kingdom of Israel.

The Israelites, after being established in Egypt for more than two centuries, were led back into the promised land, so long the seat of their ancestors. Every thing there, since the patriarchal age, had assumed quite a different aspect: it presented walled cities, and high cultivation, accompanied with that gross superstition and dissolute voluptueusness which are the too common attendants of early wealth. The guilty inhabitants of Canaan with their country were delivered into the hands of the Israelites; and the territory being divided among the ten tribes, gave occasion to a very careful topographical survey; but nothing yet occurred to attract the views of the nation beyond these limits, or towards the world in general. Still less could this take place during the subsequent period, when they were forsaken of heaven, and reduced to servitude under the neighbouring nations. ft was under the favoured reign of David that Israel finally triumphed over all her enemies. That great prince left to Solomon, either as subject or tributary, a territory extending from the Euphrates to the Mediterranean and the borders of Egypt, forming the most powerful state then in western Asia. Solomon, by the terror of his father's name, and of the powerful army transmitted to him, was enabled to preserve the whole of this kingdom, during a long reign, in peaceful submission. This accomplished prince devoted himself to the arts of peace, to the extension of commerce, to tho culture of science, and to the improvement and embellishment of his dominions in every direction. By the alliance with Hiram, he was enabled to accomplish voyages more remote than had, perhaps, been ever undertaken under any former sovereign. His alliance, and even his society, were courted by distant princes; and the observation of the Jews began to extend over a considerable portion of the globe.
The separation of the kingdoms after the death of Solomon, was a fatal blow to the grentness of the house of Israel. Their divided power could no longer maintain numerous tributaries in submission, nor was it adequate to distant and extensive enterprises. All the stater beyond the Jordan shook off the yoke; the attempts to navigate the Red Sea were sbandoned; and all distant regions in a great measure lost sight of. Their view, however, was enlarged by unexpected and unwelcome events from another quarter.
The successive invasions of Assyria and Babylon, which terminated in the downfall of both the kingdoms, forced upon the Irraelites a knowledge of the existence of these proud and powerful empires. At the same time, the colossal grandeur of Egypt, the only power capable of contending with them, was brought into prominent notice. Ample materials were thus afforded for those lofty and awful images, those pictures of the shaking of the world and the downfall of nations, which abound in the writings of the prophets during the regal times. Another and nearer object attracted wonder, and afforded the means of knowledge respecting regions still more distant. This was Tyre, the earliest seat of commerce, in whose markets were found collected the tin of Britain, the gold ef Africa, the cotton of India, and, perhaps, the silks of China. This forms so grand a feature, and the descriptions of it tend so much to illustrate early geography, that it must claim some separate notice.

Sect. III.-Commerce of Tyre.

Tyre, which under Solomon was already great and flourishing, continued to increase till, with the exception of one of its own colonies, it became the most splendid emporium of the ancient world. It appears, indced, truly wonderful that, at this early period of arts and history, when Rome yet consisted only of a few straw-thatched cottages, merchants in Tyre should vie with the pomp of kings. So magnificent was the scene, that the prophet, in snnouncing the divine intention to destroy Tyre, considers it as implying a purpose "to stain the pride of all glory, and to bring into contempt all the honourable of the earth." (Isai. xxiii. 9.) Perhaps, however, commerce in its earlier efforts has a particular tendency to concentrate itself in one point, where alone it finds protection, information, and regular channels; while in the advance of society its streams begin to be more widely difusused.

In the interesting picture of Tyrian commerce drawn by Ezekiel, the foundation of the intercourse with Damascus and other contiguous districts, is stated to be "the multitude of the wares of her making;" that is, it consisted in the exchange of her manufactured produce for the raw produce of these rich agricultural districts. There is little specification of the Tyrian manufactures, but the returns were all made in natural products, of the first quality which the soils of Judea and of Syria afforded; from Judea, the finest wheat, honey, oils, and balsam ; from Syria, white wool, and the wine of Helbon. No situatior could be more fortunate than that of Tyre for the formation of a navy, with the magnifi-
cent forests of Lebanon, Senir, and Bashan, rising immediately behind. The timbers, it appears, were constructed of fir; the cedar supplied masts; while the oak was used for those long and powerful oars, which were then the chief instruments of navigation. The vessels appear to have been fitted up with a luxury unknown to modern times. The benches were of the finest cypress wood, inlaid with ivory; the fine linen of Egypt, adorned even with embroidery, was spread out in sails. Tyre, like Carthage, appears to have adopted the policy of employing mercenary troops, which she drew even from the mountainous districts of Persia and the upper Euphrates. The immediate guand of the city, however, was intrusted to its neighbours of Arvad and Gammadin, who, standing round the walls in brilliant armour, are said to have "made its beauty perfect."

With regard to the distant commerce of Tyre, the quarters to which it was carried on must become the subject of some discussion, in the course of which we shall introduce the interesting particulars given by the prophet.

Sect. IV.-The World according to the Hebrews.

No aystem of Geography can be traced in the sacred writers, who, occupied with higher objects, do not even allude to any such as existing among the Hebrews. The ideas of that people with regard to the structure and boundaries of the earth may, however, be inferred from the genealogical chapters (Gen. x., repeated 1 Chron. i.), which contain, in fact, a view of the known divisions of the earth, agreeing in some striking particulars with the records of profane history; also from the accounts of the commerce of Tyre, and from various detached notices in the historians and prophets.

The Hebrews obviously never attempted to form any scientific theory respecting the structure of the earth. The natural impression, which represents it as a flat surface, with the heaven as a firmament or curtain spread over it, is found universally prevalent. Boneath was conceived to be a deep pit, the abode of darkness and the shadow of death. In one place we find the grand image of the earth being hung upon nothing; but, elsewhere, the pillars of the earth are repeatedly mentioned; and sometimes the pillars of heaven. In short, it is evident, that every writer caught the idea impressed on his senses and imagination by the viow of these grand objects, without endeavouring to arrange them into any regular system. Although, however, the Jews never indulged in speculative geography, yet there are copious cxamples of minute and careful topography for practical purposes. Our object, however, is not to mark the divisions of Judea, but to trace the ideas of the Jews respecting the extent and boundaries of the known world. We shall at the same time be able to collect all that is now to be known of the Phonician Geography; for it is evident that Ezekiel visited Tyre, as Herodotus did Babylon, with the eye of an intelligent observer; and he would doubtless hold intercourse with the best informed men in that great school of commerce and navigation. The objects always alluded to, as placed at the farthest limits of their knowledge, are Tarshish; Ophir; The Isles; Sheba and Dedan; The River; Gog, Magog, and the north. (Fig. 1.)

Subaect, 1.-Tarshish.

Tarshish is the name which, in the annals of Jewish and Phenician navigation, occurs most frequently, and ranks next to Tyre; yct notling has been found more difficult than to fix thai name to any precise place. The peculiar difficulty is this; that there are two voyages from Tarshish: one up the Mediterranean, bringing iron, silver, lead, and tin, the produce of Spain and Britain (Ezek. xxvii. 12.); the other up the Red Sea, bringing gold, ivory, and apes, the produce of tropical Africa (1 Kings, x. 22.). How these two voyages can be from the same place, appears at first sight to baffle research.

Various places have been suggested, among which I should not think it necessary to mention Tarsus, in Cilicia, were it not supported by such names as Volney and Malte Brun. Except the resemblance of name, it las not a single feature which can be reconciled to the Tarshish of Scripture. Besides, the name Tarsus is evidently of Greek origin (See Steph. Byzant. in v. Ntrabo, 1. 14. Bochart's Phaleg., and Wetstein's Nov. Test. vol ii. p. 511, and 608.), whereas Tarshish is manifestly of oriental derivation, and is donbtless of Phenician origin. Indeed, Malte Brun admits it to be tenable only on the clumsy and improbable supposition of there being two places of the name of Tarshish. Tartessus or Cadiz is certainly more plausible, and agrees with the Mediterranean voyage; but the distance is too great, and notice might have been expected to be taken of not a few intcrmediate objects, particularly of the Straits of Gibraltar. It is altogether foreign to the voyage by the Red Sea. This last objection appears also to hold against Carthage, which, in every other respect, seems preferable to Tartessus, and of which more will be said in the sequel.
To solve the problem of the two voyages, the only attenpt, so far as I know, has been in the ingenious hypothesis of Gosselin: Tarshish, according to him, signifies the greet or open sea, as distinguished even from the largest of its inclosed gulfs. The name may then be applied equally to the Atlantic and the Indian Ocean; and the voyage to and

Luok I.
HEBREW AND PIIGEICIAN GEOGRAPHY.
Fig. 1-GEOGRAPIIICAL SYSTEM OF THE HEBREWS.

from Tarshish may equally be by the Red Sea or the Mediterranean. But though this hypothesis be supported by the signification of an old Hebrew term, and though it solve the great problem, I think any one, who attentively traces the various occasions on which Tarshish is mentioned in Scripture, will be satisfied that it has a sense quite different from the loose and vague one here ascribed to it. Let us only read the following verse :-"But Jonah rose up to flee into Tarshish from the presence of the Lord, and went down to Joppa, and he found a ship going to Tarshish; so he paid the fare thereof, and went down into it, to go with thein into Tarshish from the presence of the Lord." Do not these words unavoilably suggest a precise port, to which there was a regular packet, with a fixed rate of fare ?-not a mere vague setting out into the wide and open sea. If the following expressions can be reconciled to M. Gosselin's hypothesis, it is only by very strained interpreta-tions:-"The kings of Tarshish;-the merchants of Tarshish;-pass ye over to Tarshish; Tarshish was thy merchant:-with silver, \&cc. they traded in the fairs;-silver in plates is brought from Tarshish, and gold from Ophir;-the daughter of Tarshish," \&c. In the genealogical chapters, Tarshish is introduced as one of the sons of Javan. But the other three sons, and every other name mentioned in these chapters, are the fathers of a country and nation; and it would be quite singular if Tarshish alone should have had only the sea for his offspring. What a strange idea to call the sea one of the sons of Javan! Indeed, this is so glaringly improbable, that M. Gosselin has recourse to the hypothesis of inter-polation-a supposition very unlikely in regard to books held so sacred, and in respect to these chapters among a people so fond of genealogy, and altogether a most unsound principle, as applied to the sacred volume. Finally, I think it very evident, from the general tenour of Hebrew writers, that they had no distinct notion of the Mediterranean as an inclosed sea, and of an ocean beyond it. The expression, "the sea," used in that vague and wide sense, will, I apprehend, be always found to signify the Mediterranean, the Red Sea being designated by that particular term. Thus, there appears to be no motive for adopting M. Gosselin's hypothesis, except the want of any other by which the problem of the two voyages can possibly be solved. But if another can be stated, which shall solve that problem, and at the same time make Tarshish the very place it might be expected to be, this great question may, perhaps, be considered as settled in a more satisfactory manner than heretofore.

That Tarshish must be, findamentally, Carthage, cannot, I think, admit of a moment's doubt. The strongest argument is, that if it be not, then that grand emporium of Mediterranean trade, the colony of Tyre, the place of all others with which Tyre held always the closest intercourse, must never have been named by the prophets, who give such copious Vol. 1 .
und detailed accounts of Tyrian commerce. When Ezekiel was enumerating every place, even the most obecure, with which Tyre held intercourse, can it be supposed that this, the chief of all others, would have been totally omitted? But if Tarshish be Carthage, then that celebrated city holds exactly the prominent place which, according to every circumstance, it ought to have held in relation to Tyre. This gencral negative argument does appear to me quite irreaistible. The details are equally conformable. Carthage in her glory monopolized, almost entirely, the commerce of Spain and Britain. She even took the most violent measures to prevent any maritime power from penetrating to the west of Sicily. There appears no trace of the Tyriana ever proceeding further. They found, apparently, in Carthage, a complete assortment of the commodities of all the countries to the west, and on the ocean-silver, iron, lead, and tin, which were thus naturally viewed by the Jews, and perhaps by the Tyrians themselves, as Carthaginian commodities. With regard to the name, considering that both Tarshish and Carthage are corruptions of the original Phenician term, they have that rude resemblance which might be expected. The connexion is rendered stronger by Carchedon, the Greek name of Carthage, which forms a sort of middle term between them.

The voyage from Tarshish by the Red Sea, however, which forms the grand difficulty, remains yet unaccounted for; and it can only, I think, be solved in the following manner: I conceive the name of thia great African metropolis must have been generally extended to the whole of the continent of Africa. All the names of the continents, we may observe, were originally derived from one of their remarkable and frequented districts. The name of Asia was extended by the Greeks from a tract of that name immediately opposite to their shore, including Troas, Ionia, and some other of the more eastern districts of Asia Minor. With the Romans, Africa derived its name from the very district now in queation, called always Africa Propria, being the finest on that coast, and including Carthage. It appears, then, quito natural that a place so very prominent, with which Tyre held euch close and constant intercourse, apparently the only place much frequented by her on the coast of Africa, should be associated in her conception with the whole continent in which it was situated. On any uther supposition, the Jews and Phœenicians must have had no name for Africa, which is not very probable. It is observable that Tarshish evidently does not comprehend either Egypt or Upper Ethiopia, which countries, in fact, were never by the ancients considered as decidediy African, that continent, according to their coneeption, having the Nile for its eastern boundary. If we admit Tarshish to be Africa, the whole difficulty respecting the two voyages at once disappears. As the voyage to the northern coast was by the Mediterranean, so that to the eastern coast was of course by the Red Ses. It is in favour of this solution that Jerome, in fact, calls the voyage to Tarshish "an African voyage." The Jews, unacquainted with intermediate countries, had probably a very inadequate conception of the distance between these coasts; at all events, they justly considered them as parts of the same vast expanse of continent.

Subsect. 2.-Ophir.

The name of Ophir, combined, as it always is, with the most precious of metals, and the most coveted of all commodities, ranks among the distant countries known to the Jews, almost superior in splendour to Tarshish, though not equal in greatness and commercial importance. The voyages of Solomon to Ophir for gold, form the greatest naval enterprise in which the kingdom of Judea was ever engaged. Yet this name has been attended with little less difficulty, and produced scarcely less controversy, than that of Tarshish.

The belief that Ophir was in Arabia has certainly not a little to urge in its favour. In the genealogical chapters it is always combined with Sheba, or Sabea, which was undoubtedly situated at the south-west angle of Arabia. It was from Sheba that gold (doubtless, the gold of Ophir,) was regularly brought to Judea and Pheenicia. Even Bochart, who thinks himself obliged to seek in India a more distant Ophir, clumsily compounds the matter by making another Ophir in Arabia. He is followed by M. Malte Brun. M. Gosselin, with hia usual zeal to restrict ancient knowledge, insists, that there never was any Ophir except the Arabian, and places it in the modern interior district of Dofar. There sppear to me, I confess, vast improbabilitics in this Arabian Ophir. As an interior distriet, it must have been nearer, or certainly as near, to Judea as Sheba; and it appears strange, that no direct land comnunication should ever have been opened with it. Let us consider the mighty operations of Solomon; his utmost efforts combined with those of Hiram; the materials of shipbuilding conveyed by land over a vast desert; the most skilful workmen transported to Ezion Geber ; a fieet composed of large vessels, called ships of Tarshish, at last formed, and undertaking a series of voyages, in each of which three years were employed. What a waste of Jabour and expenditure to obtain a commodity which could have been conveyed across Arabia in two months on the backs of camels! Yet the repetition of the voyare phows that the article was, in fact, procured on better terms than by the usual chanuel. In the voyage from Ophir, also, we find new articles never mentioned
in relation to Sheba or Arabia, hut characteristic of equatoria. Africa-ivory, ajes, and peacocks. With regard to the close combination in which Shebe and Ophir are alwaya found, it will appear natural enough, when we consider that, unless during the short expedition of Solomon, Sheba appears to have been the channel by which the gold of Ophir was transmitted to Judea and Phoenicia. This circumstance might readily lead the inhabitants of those countries to consider the two as closely connected, theugh Ophir might be beyond Shebe, and even be separated from it by seas and territories of considerable extent.
The hypothesis which places Ophir in India, though supported by great names, appears quite untenable. The trade of Ophir bears not the least resemblance to an Indian trade. It does not include the fine manufactures and rich spices which India has alwaya furnished; and ita staple is gold, which never, at any time, was an article of export from that quarter of Asia. India has, on the contrary, always demanded a large balance of specie, and has formed a gulf in which the gold of the west has been absorbed. If wo reject India, we shall not certainly, with some savans, travel as far as Peru in quest of our olject, notwithstanding the slight resemblance of name, and the attempt to eke it out by the expression "gold of Parvaim," which has some appearance of being synonymous.
The eastern coast of Africa is the quarter to which all the indications appear very clearly to point. In the voyage to Tarshish by the Red Sea, its name and that of Ophir are always combined; nay, the voyage, which in the Book of Kings is called the voyage to Tarshish, in the Chronicles is called the veyage to Ophir; so that it is evident the two are one and the same voyage; and, if Tarshish was Africa, Ophir must clearly be in Africa. There is, however, on this coast no abundant supply of geld till we reach as far south as Sofala; thus implying an extent of navigation which is certainly somewhat startling. M. Gosselin particularly urges, that in the time of Alexander there was no longer any knowledge of eastern Africa; and that even the Romans never appear to have penetrated beyond Cape Delgado. On the other hand, it is to be considered that the alliance of Hiram and Solomon united advantages which never existed again in an equal degree. The wealth, naval skill, and ample materials which those great princes could command were scarcely equalled, even by the Ptolemies. After the death of Solomon, the kingdom, split into two and weakened by continued dissention, abandoned entirely these distant commercial enterprises. A solitary attempt to renew the trade was made by Jehoshaphat, but the vessels prepared for that purpose were wrecked in the very mouth of the port of Ezion Geber; after which the undertaking was entirely given up. In the calamities which afterwards befel Israel and Judah, and the revolutions which subverted the whole political system of western Asia, it is not wenderful that every trace of this distant intercourse should have been obliterated; and that the successors of Alexander should have had to enter on a new field of discevery. In support of the supposition of Sofala, there may also be noticed a certain resemblance of name; and the duration of the voyage, stated at three years, would afford very ample time to reach the Zambese, even under all the imperfections of ancient navigation.

Subsect. 3.-The Isles

The Isles, a term which occurs much in Scripture, might be supposed to describe generally those portions of the globe which come under this description; yet a careful comparison of the different passages in which the word occurs will probably show, that it is used in a much more precise and determinate sense, and is applied to a wide and connected range of territory. The whole of the southern consts of Europe, consisting either of real islands or ef peninsular tracts, appears by the Jews and Phoenicians to have been viewed as a long range of islands. Besides, the terms unoos and insula were, in periods of remote antiquity, applied loosely to peninsulas as well as islands proper. Among many examples which might be adduced, one will suffice-Peloponnesus. The isles, relative to Tyre, appear to have ranked only second to Tarshish as a source of wealth, and in respect of close and intimate intercourse. Tyre is called expressly, "a merchant of many isles:" and the consternation which shook the isles at the sound of her fall; the dismay of their kings, who are said to have then cast off their robes, and sat on the ground,-all point out the extent and importance of this commerce. Tarshish, Elisha, Chittim, and Dodanim are named in the genealogical chapter as the four who divided among them the isles of the Gentiles; but, though Tarshish is so often named in combination with "the isles" among the most distant maritime territories, there is never any indication as if it were itself an island. The combination is probably produced by the extensive possessions and commerce of the Cartinginians in the western islands and coasts of Europe. These, including the southern point of Italy, were, as already observed, probably considered as insular, and were distinguished by the appellations of the "isles afar off," and "the distant isles of the sea." The "isle" in particular, which Isaiah mentions in such close connexion with Tarshish, and which the merchants of Sidon, "by passing over the sea, had replenished," can scarcely be any other than Sicilv, an island almost Carthaginian, and
containing so many flourishing cities. With regard to the isles of Elisha, they are evidently Hellas, the Creek name of Greece. The only distinctive characteristic, indeed, that of furnishing Tyre with the blue and purple dyc, does not recall to us any of the featuree under which we have been accustomed to recognize that celebrated region. But Greece was not yet the seat of arts and arms; and, had she been so, the Tyrian merchants might atill have viewed her only as she served their purpose. Bochart has collected ample testimonies to show that the murex, the shell which yielded those celebrated dyes, was found in peculiar abundance on the coast of Laconia. Chittim appears very evidently Cyprus, and its early capital of Citiyrn. The alarm being given thence of the approach of the king of Babylon, and its being considered as the natural place of refuge for the inhabitants of Tyre, where yet they would not be fully secure, mark a proximity which belongs to no other island. The name, indeed, is in one instance given to Greece, and in another to Italy; but this seems merely to be, that, as the nearest known island, its namo is sometimes thus vaguely extended to the whole of that territory considered by the Jews as insular. The attempts of Bochart to find the name of Chittim in Italy have been wholly abortive; for we cannot consider as worthy of notice the observation that it and Iatium, in the respective Greek and Latin languages, both signify "to hide." In regard to Dodanim, convertible into Rodanim(7 and 7 being perpetually intorchanged and confounded), though it is mentioned only once, we seem justified in fixing on Rhodes, already flourishing and commercial, though not yet become the rival of kings. Bochart seems to go much too far, when he seeks for it on the Rhone or the Ebro.

Suasect. 4.-Sheba and Dedan.

Of the internal trade of western Asia during the early ages, the most extensive and important was that carried on across Arabia. It consisted, not so much in the productions of the region itself, as in those of India and Africo, which found their way by this channel to Judea and Phoenicia

Sheba, among the Arabian states, holds the most prominent place, being undoubtedly the same with the Sabea or Arabia Felix of the classic writers. Its imports were the precious commodities of gold and incense: the latter anciently in most extensive deman., for the purpose of sacrifice. These articles appear to have been brought to Judea, not by any maritime channel, but in crowded caravans. The "companies of Sheba" are mentioned even in Job. Isaiah speaks of the "multitude of camels;" and of "all they from Sheba." Yet the incense, it is now certain, must have come chiefly from the epposite African coast of Berbera; and the gold, we have some reason to think, must have been derived from a still more remote part of that continent.

The commerce of Dedan rivalled that of Sheba, being carried on from the opposite or eastern coast. The mention of "many isles" in combination with Dedan, seems to fix it to that point at the entrance of the Persian Gulf, which is, in fact, bordered by numerous islands. One of these, Ormuz, became afterivards the seat of a kingdom, which, from a situation and commerce similar to that of Dedan, derived a splendour which made it the pride of the East. The imports from Dedan-"ivory and precious cloths"-point out the source of this prosperity. These were the commodities of India, brought to the mouth of the Persian Gulf, and thence transported across the desert to the western regions. The caravan trade of Dedan appears to have been most extensive; insomuch that the prophet, in denouncing the judgment upon Arabia, mentions the "travelling companics of Dedanim" as its most conspicuous feature. In the prophets, Edom and Dedan are almost universally named together, and the same judgments represented os affecting both. Hence they are usually considered as parts of the same country, and the ordinary maps include Dedan as a district of Edom. Even Bochart, whose learning showed him that there must be a more distant Dedan, adepts the hackneyed scheme of supposing that there were two Dedans. There is no occasion for so unskilful a theory to explain the intimate connexion between these two states. When caravans came across Arabia from the Persian Gulf, it was at Edom or Idumea that they first touched on the civilized world. A depot was thus naturally formed there of the commodities in which they traded. This traffic raised Idumea and its capital, Petra, to a high pitch of wealth and importance. So close a connexion necessarily caused Dedan to be deeply affected by any calamity which desolated Edom, and rendered her no longer the channel through which this commerce could flow. But these disasters are by no means represented as touching her so closely or so deeply; and while Edom is represented as utterly spoiled, and converted into a waste and reproach, the inhabitants of Dedan are merely warned to "turn back and dwell deap;" (Jer. xlix. 8.) and the expression, "they of Dedan shall fall by the sword," is more correctly interpreted in the margin, "they shall fall by the sword unto Dedan." These circumstances appear to mark, along with an intimatc connexion, a complete distance and separation between these two great Arabian atates.
Raamah is mentioned among other nations of Arabia, along with Sheba, as producing the same articles, but as a much less remarkable country. It appears to be the modern Had ramuth, neither situated so commodiously ns Sheba for the African, nor as Dedan for the

Book I.
Indian, trade. Some of the best-watered districts probably of the Nedsjed, appear to have composed the kingion of Kedar, enriched by the breeding of numerons sheep and goats, with which it supplied even Tyre, and rose to such prosperity, as to make it be considered a mighty catastrophe "when all the glory of Kedar should fail."

Subsect. 5.-Countries on the Euphrates.
The river (for such is the import of the term) presents itself as a grand feature of the landscape after passing across the wide Syrian desert, towards the eastern extremity of the known world. This name, in preference even over the Nile and the Jordan, was alwaya applied to the Euphrates, which, holding so immense a course through kingdoms the most celebrated in history, was considered as one of the grand boundaries of the earth. The great empires and capitals of Assyria and Babylon gave to it a lustre, which was scarcely divided by the Tigris, whose name was little known to the Jews before the captivity. Along this lae of territory Ezekicl enumerates a numher of cities, Harnn, Canneh, Eden, Ashur, \&c., from which great caravans procecded to Tyre with cloths nnd other articles of the most valuable description. In such early accounts, however, the country from which commodities last came is seldom distinguished from their original seat. I therefore entirely agree with Dr. Vincent, that they must have been brought by a long overland voyage across Asia ; that these chests of rich apparel, so carefully bound with cords, came, probably, by interior caravans from Hindostan, and, perhaps, already from the frontier of China.

Of the countries beyond the Euphrates, only some broken fragments of knewledge appear to have reached Judea before the captivity. Elam is particularly noticed; the residence of a warlike people, occupying the long mountainous tract east of the Tigris. Media and Persia are also named on a few occasions, but so as to prove that they were only contemplated in dim and obscure distance. At a vague and indefinite distance beyond, the ends of the earth were inagined to exist. The early Greeks and, after them, the Arabians, viewed the habitable earth as an island, surrounded on every side by water. Ptolemy, on the contrary, places at every extremity of his map a vague expanse of unknown land. The Hebrews combined in some measure these two views of the subject. To the west, the remetest object for them was the sea, studded with numerous and distant isles; but to the east, where land was seen indefinitely extending, they formed the idea of an inlond termination, without being able to nttach to it any precise limits. Such a boundary was apparently supposed to exist in various directions, since "all the ends of the carth" is an expression frequently occurring. It was to the east, however, that this idea peculiarly attached itself; and "from the river to the ends of the earth," is the farthest point to which the figurative kingdom of the Messialı is made to extend.

Subsect. 6.-Gog, Magog, and the North.

The north quarter is the only part of the circuit of the geographical knowledge of the Jews which remains to be surveyed. It presented features of peculiarly rude and formidable aspect. Ezekiel, in anticipating an approaching inroad, draws the most gloomy feature of the hordes which it poured forth: Gog, with all his bands, coming like a storm or a cloud to cover the land; Gomer with all his bands; the house of Togarmah, from the north quarter: "a great compauy and a mighty army," directing their course against those nations which " were nt rest, dwelt safoly, and had gotten cattle and gools;" and with the eager purpose "to take a prey, to carry nway their silver and goll, to take a great spoil.". This picture, these hostile and tumultuous crowde, "all riding upon horses," with their wideroaming and predatory habits, has alwuys suggested the idea of Seythian invasion; and the Arabian geographers have placed the castle of Gog and Magog at the remotest extremity of Tartary. On looking narrowly into the matter, however, we shall find it difficult to suppose this inroad to have proceeded from uny part of those unbounded plains. The fact is, we have no occasion to look so far; for the high table-lands in the interior and north of Asia Minor, Phrygia, Galatia, Cappadocia, and Paphlagonia, have always presented the same rude 'pastoral aspect, and have bred tribes of migratory shepherds and warriors, very similar to those of Scythia itself. These tracts, in fact, continue still to pour forth vast bodies of irregular cavalry, which form the main strength of the Turkish armies. This view of the sulject appears completely fixed by the account of the commercial intercourse maintained by these nations with Tyre. The prophet mentions Meshech and Tubal, elsewhere enmpletely identified with Gog, who is called their "chicf prince." There never has been the least doubt as to the position of these countries in Upper Armenia, and on the southern border of Caucasus. There the classical writers mention in the Mosehi and the Tibareni. which are, perhaps, the same names. The imports into Tyre are stated to be "vessels of' brass, and persons of men." This somewhat curious combination is, however, altogether eharacteristic of the region in question, which was, in ancient time, highly distinguished for the copousness and excellence of its copper and iron, which last is not wholly excluded by the term used in the original. The skill with which it was worked into steel by the Chalybes, a people of this region, caused their name to be generally given to this product.
Vol. I.

Even in the present atate of neglect, the neighbourhood of Trebisond suppliea with excellent copper all the Lesser Asia. The other article, also, is but too descriptive. The expression, "persons of men," marks the trado in slaves, with which it has always been the fate of Caucasian countries to supply the East. Horses and mules are reported as brought by the "house of Togarmah." Horses have alivays been a boast of Tartary; and an ullianco has been imagined between this namo end that of the Turcomans, who still furmish the finest horses. But there was a raco called Trogmi, in the upland tracts of l'aphlagonia, a region celebrated for its horses, and also for its mules, in which last respect it has a decided advantage over Tartary, to which this last breed is a stranger. Thus we seem justified in finding Gog, with all hia rude and terrible appendages, in the northern extremity indeed of the civilized and classical world of Avia, but still far distant from those boundless wastes which composed the ancient Scythia and the modern Tartary.

Javan, which is described as furnishing the same objects of trade with Meshech and Tubal, but not as having any concern in the desolating invasion of Gog, is, in fact, the same word with Ion, or Ionia, an extensive appellation, which comprehended all the western part of the Lesser Asia. The Jews and Phenicians, overlooking the long range of narrow straits which separated it from Europe, not yet recognised as a separate continent, appear to have extended the name to Thrace, and the interior of cuntinental Greece. Alexander the Great is in one place called king of Javan. That a similsr extension was recognised in the early ages of Greece itself, sppears by the celebrated ancient inscription at the Isthmus of Corinth. "This is Peloponnesus, not Ionia." The Javan slaves were probably drawn from Thrace, whose barbarous regions amply supplied the ancient markets with this cruel species of commodity.

CHAPTER II.

ANCIENT VOYAGES OF DISCOVERY.

The carly voyages of discovery formed the most important materials for those delineations of the globe which were made by the geographical schools of Greece and Rome in their more advanced and perfected state. Before proceeding, therefore, to consider the systems of these schools, it may be proper to take a survey of the exploratory voyages performed by ancient navigators. These do not appear very considerable in the eyes of a modern mariner. There is not one of them, perhaps, which the captain of a tolerably sppointed merchent-vessel would not, in the course of his ordinary business, be ready to undertake. But in steering along an unexplored coast, in vessels which could scarcely rank above boats, without the use of the compass, or any correct means of astronomical observation, even these limited voyages were fraught with peril and adventure. The record of them is, however, involved in much mystery and controversy. They were not reported to the worlid in those regular narratives with which the modern press teems. The ancient narratives are always meagre, and in many cases we have only fragments of hearsay testimony, collected by careless or prejudiced writers. A learned investigation, therefore, is usually necessary, to discover along what coast the navigator sailed, to what point of it he reached, and sometimes whether he ever sailed along any coast. In several cases the most skilful disputants are still divided on questions, which, sunk in the deep abyss of time, must probably remain for ever undecided. Faint and dubious, however, as are these records, they will lead us over some of the most interesting problems of antiquity, and will cnable us to trace, in some degree, the infant steps of maritime enterprise.

Sect. I.—Circumnavigation of Africa under Necho.
To perform the circuit of the coast of Africa was the favourite object of ancient maritime enterprise, as it continued to be of that of modern times, till the era of its final happy nccomplishment. The manner in which its coasts, beyond the Mediterranean and the Red Sea, begin to converge, suggested the idea of a peninsula, the circumnavigation of which might be effected, even by the limited resources of ancient navigation. The wide sphere, both of knowledge and trade, which such a discovery would open to the enterprising maritime nations round the Mediterranean, was sufficiently obvious. The first attempt of this description originated in a quarter which had usually been accustomed to kecp aloof from every species of naval enterprise.

Egypt harl long held itelf as a country strictly agricultural; but .Vecho, who, next to Nesostris, raised its military glory to the greatest height, appeare, like other conquerors, to have been animated by an active spirit, which excrted itself in every direction. Not possessing fit instruments among lis own subjects, he engaged some Phenician navigators to descend the Red Sea, and endeavour to find their way back to the Mediterranean, by the Pillars of Hencules. The narrative is so very short, that we may easily give it in the words of Herodotus: "The Phonicians, setting sail from the Red Sea, made their way into the southern sea; when autumn approached, they drew their vessels to land, sowed a
crop, and waited till it was grown, when they reaped it, and again put to sea, Having spent two yeara in this manner, in the third year they reached the Pillars of Herculea, and returned to Egypt, reporting what does not find belief with me, but may, perhaps, with some other person; for they said that in passing Aftica they had the sun on their right hand (i. e. the north). In this manner Libya was first known."

The authenticity of this narrative has been in a remarkable degree the object of learned curiosity, and han produced a mass of controversy, greater, perhapa, than its ahort and vague nature is well able to admit. The arguments appear to have been exhausted on the believing aide by Rennell, on the sceptical by Goseelin and Vincent. Formidable as the achievement was, it doea not seem to lnvolve any absolute impnesibility; aince the whole voyage might be performed without losing sight of the shore, or launching into the open sea, through which the ancients had no means of guiding their course; and their smaller vesseis, keeping close to the shore, might even possess some advantage over our larger ones, obliged to stand out to sea, and encounter the stormy wavea of the Atlantic. Herodotus scems inclined to credit the information, unless, on the ground of one general atatement, which, being the very thing that should have happened, and disbelieved only through his ignorance, atrongly fortifies our inclination to credit the story.

Sser. II.-The Voyage of Sataspes.

The Persian monarcha, after their sway was established over the eastern coasts of the Mediterranean, found the exploration of Africa in some degres their peculiar province. This nation, however, laboured under an aversion and dread of the sea, greater, perhapm, than that of the other orientals. The only effort of theirs on record was ene which arose in a singular and rather casual manner.
Sataspes, a Persian nobleman, having committed a heinous offence, was condemned by Xerxes to a cruel death. His friends, however, persuaded the monarch, that by commuting this sentence into that of a voyage round Africa, he would inflict aufferings scarceIy less aevere, and might render a national benefit. They prevailed, and Sataspes, having procured in Egypt a vessel and crew, passed the Straits of Gibraltar, and bent his course southwards. He io represented as having beat about for several montha, at the end of which he probably reached the coasts of the Sahara. The view of those frightful and desolate shores, and of the tempestuous ocean which dashed against them, might well intimidate a navigator bred in the luxurious indolence of the Persian court. Sataspes was struck with a panic, and measured back his course ω the straits. Yet, hoping that time and the degree in which he had accomplished his mission might efface the impression, both of former offence and of present failure, he again presented himself before Xerxes. In giving an account of his voyage, he merely related, that wherever he landed he had scen little men wearing a Phenician dress, who immediately fled into the monntains; but his people had done them no injury, beyond carrying off the cattlo of which they stood in need. The failure of the ultimate object of the cxpedition he imputed to the occurrence of an insurmountable obstacle, the nature of which has not been satisfactorily explained. Xerxes, however, accustomed to expect that all nature should be subservient to his will, would listen to no excuse, and ordered the original sentence to be immediately executed.

Srcr. III.-Voyage of Hanno.

The Carthaginians, as the greatest maritime and commercial people of antiquity, might have been expected to make earlier and further progress in the discovery of Africa than any other nation. In general, however, a veil of deep mystery shrouded all the proceedings of that powerful and aspiring people. It is even asserted that they considered as exclusively theirs the whole Mediterranean west of a line drawn across to Sicily, and that they captured all the vessels, and put to death the crews, that wore found navigating within these forbidden precincts. The Romans, on the other side, animated by inextinguishable enmity, are said to have industriously destroyed all the records of the literature and history of their fallen rivala. The only fragment that escaped is the Periplus of Hanno, which, notwithstanding the scepticism of Dodwell, its editor, the learned world are now generally agreed in considering as ancient and authentic. This celcbrated document is so short, that we may find space here for a complete translation of it.
"It pleased the Carthaginians that Hanno should sail beyond the Pillars of Hercules, and should found cities of the Liby-Phonicians. IIe set sail, therefore, with a fleet of sixty vessels, each of which was impelled by fifty oars. They carried with them men and women to the number of thirty thousand, with provisions and supplies of various kinds. We sailed two days beyond the straits, and founded a city overlooking an ample plain, and which we called Thymiaterium. Thence we proceeded westward to Soloc, a promontory of Libya, thickly shaded with trees, where we founded a temple to Neptune; then turning cestward for half a day'a sail, we came into a lake not far from the sea, overgrown with
numerous and high reeds, and on whose banks elephanta and a number of will animals were feeding. Ilaving passed this lake in the course of a day's mail, we founded cities on the sea coash, Caricum-Teichos, Gytte, Acra, Melisea, and Arambys. Then setting sail, we made our way to the great river Lixua, which flows from Libya. On ita banka the Lixite, a pastoral race, ted their flocks; with whom we formed tiea of friendship, and spent a short interval. The country above them was inhabited by luhorpitable Etcliopians, filled with wild beasta, and traversed by very high meuntains, whence the Lixus is said to deseend; and it was added, that these mountains were inhabited by men dwelling in caves, of a strange appearance, who outran even horses in the chase. Having received interpretera from the Lixita, we proceeded along a desert coast till the middle of the second day; when we sailed one day to the eastward, and in the recess of a little bay found a amall island, five stadia in circuit. We left inhabitants there, and named it Cerne. This imland, en taking an account of our course, we conjectured to bo opposite to Carthage; for the navigation from Carthage to the Pillars, and from the Pillars to Cerne, corresponded. Then we came to a lake through which flowa a great river called Chretes. That lake contained three islands greater than Cerne; by these, in the course of a day'a navigation, we reached the interior shore of the lake, whero very great mountains impended over it, inhabited by a rough people dressed in sking of wild beasts, who by throwing stones repelled us, and prevented ua from landing. We then sailed into another river, large and broad, full of crocodiles and river horses. We then returned to Corne. From Cerne, renewing our course to the south, we paseed for twelve days along a shore, the whole of which was in the possession of the Ethiopians, who showed a trembling dread of our aspect, and spoke a language unknown to our Lixite interpreters. On the last day, we came to high mountains covered with trees, the wood of which was odorifereus and variously tinted. Passing round these mountains by a navigation of two days, we came to an immense opening of the sea, bordered by plaina in which we saw fires of different magnitude glittering at intervals from every spot. Llaving watered there, we proceeded five days along the shore, till we came to an immense bay, which the interpreters called the Western Horn. In it was a large island, and in that island a salt water lake, in which again there was another island. Entering this lake, we saw in the day nothing but forest; but in the night there were many fires burning; and we heard various sounds of musical instruments, and the eries of numberless human beings. Being terrified by these objects, and the prophets also exhorting us to quit the island, we made off, and reached next the fiery region of Thymiamata, whence torrents of flame poured down into the sea. Here the heat of the earth was such, that the foot could not tread upon it. We therefore took our speedy departure from this place, and after four days' further sail, saw the earth in the night full of flames. There appeared also in the midst of them one lofty fire greater than the rest, which seemed to reach to the very stars; this, when seen by daylight, proved to be a very lofty mountain, called the chariot of the gods. Thenee by a navigation of three days, having passed these fiery torrents, we came upon another bay, called the Southern Horm. In its inmost recess was an island similar to that formerly described, which contained in like manner a lake with another island, inhabited by a rude description of people. The females were much more numerous than the males, and had rough skins: our interpreters called them Gorilla. We pursued but could take none of the males; they all escaped to the top of precipices, which they mounted with ease, and threw down stones; we took three of the females, but they made such violent struggles, biting and tearing their captors, that we killed them, and stripped off the skins, which we carried to Carthage : being out of provisions, we could go no further."

Sueh is the entire narrative of this most celebrated of the aneient veyages; but it would be impossible to comprise within the same limita cven a sketch of the commentaries to which it has given rise among the learned.

Three leading hypotheses have been formed; one, that of Bougainville, who conceives Hanno to have reached the Gulf of Benin; another, of Major Rennell, who carries his course only to Sherbro Sound, a little beyond Sierra Leone; while M. Gosselin insists upon terminating it about the river of Nun. (Fig. 2.) When we reflect that the first of these courses is upwarils of three thousand miles, and the last under seven hundred, an idea may be formed of the extromely vague nature of these data, where all the names are changed, and no one point fixed with such certainty that the others can rest upon it.
Bougainville contends that his assigned limits do not exceed what muy reasonably be supposed to have been passed over by the most skilful navigator of antiquity; in fact, the period of thirty-eight days is precisely the time employed by the squadron sent in 1641 to found the Portuguese fort of Flmina. All the grand features of man and nature described by IIanno are to be found in tropieal Africa only; Ethispians or Negroes; Gorille, who are evidently apes or orang-outangs; rivers so large as to contain erocodiles and hippopotami. The great conflagrations of the grass, and the music and daneing prolonged through the night, are phenomena which have been obscrved only in the negro territories.
Major Rennell's system retains all the arguments by whecu that of Bougainville is sup

Book 1.
VOYAGE OF HANNO.
Fig. 2-map illustrating the voyage of hanno

ported, at the same time that it avoids tho extravagant supposition of ancient vessels having made a course of seventy geographical miles in the day. The Gulfs of Bissago and Sherbro present those numerous islands described by Hanno, and not found on any other part of the coast; and even their form seems to correspond to the appellation of Horn, applied by him to these great gulfs. If, then, Hanno's career reached central Africa, there can be little doubt that Major Rennell's hypothesis, or sometling near it, exhibits his real progress.
M. Gosselin restricts the voyago within mach narrower limits. It was impossible, he urges, that the course could be otherwise than slow in a voyage of discovery upon an unknown sea, where the mariner could sail only by daylight, with constant precautions, and minutely examining every part of the coast. The motions of Hanno were clogged also by the large and incumbered fleet of which he was the escort. Destitute of the compass, and without the power of standing out to sca, he coull never, it is alleged, have doubled Cape Bojador, which so long baffled the efforts of the Portuguese. With regard to the features supposed to be exclusively characteristic of tropical Africa, M. Gosselin conceives that Morocco, yet in no degree civilized or subducd, but in the full possession of rude native tribes, would bear a much more similar aspect than now to the interior portions of the continent. The ape tribe and the wild river amphibia might probably fill a region unoceupied by man, though now, it is supposed, expelled by culture and a more crowiled population. The term Ethiopians has been applied, not to negroes only, but to all nations of a dark colour. Ile conceives, therefore, that Hanno's course could never pass much beyond the froutier of Morocco, and could have reached only a very little further than the estuary of the river of Nun.

To decide a point on which such learned men so widely disagree, is what we do not leel very forward to undertuke; and really the difficultios appenr very great in any view of the sulject. The detail of the positions would, on the whole, lead us to prefer the most
limited apace. Of theme positions tho iwland of Cerno forma the key; and the identifying of it with Arguin is easential to the anpport of the two renwotu liypotheses. But though it is evident that the whole of tho mailing period to Cerne le not given, the time being omitted during which the five citien wers foumded, yet the general tenour seems hardly consistent with so great a way being made along auch a ditficult and unknown shore. The defect iw in some degree supplied by an ancient nautical guide of some authority, called the Periplus of 太cylax, in which the wail from the atraits to Cerne in given at twelve daya, a period which Major Rennell admita to be wholly insufficient for reaching Arguin. Ptolemy, indeed, carries Cerne to almost a tropical latitude; but an he keepe it atill north of the Canarien, his graduation here iu manifestly erroneous, and liis authority, on the whole, in in faveur of rotnining Cerne within the limits of Morocco. The details of Hanno do not appear to be alwaya very satisfictory; but perhapa they might prove more so, did we powesm a more accurate survey of thle coast than has yet been takon. On the whole, then, the great question is, whether M. Goseelin's solutiona can account for the aapect of nature and life being so different froin that of Morocco, and no like that of a negro conat: perhape here, too, wome light might be obtained from a careful obworvation of the ruder bordera of the former empire.

Suot. IV.-Voyages of Eudoxus.

The ambition of perforning the circuit of Africa, the grand maritime problem of antiquity, was not sololy confined to princes and states. Even privato adventurcra, animated by the ambition of achleving so great an enterprise, and hoping, perhape, to combine with it opportunities of lucrative commerce, are found in the liat of the explorera of Africe. kudoxis was the most memorable of these adventurers, whose story, however, has come down to ua through a very clouded medium. In ancient, atill more than in modern timea, there existed men whose habit it was to treat with doubt and derision all narratives of discovery that extended beyond the ordinary limita. At the head of thia sceptical band atands Strabo, one of the greatent geographera whose worke survive, and who forms the chief medium by which these narratives have reached our time; a most unfortunate circumstance to the fame of these early discoverers. However, in many instances, nature herself has stood forth as their vindicator; and our more extended knowledge has enabled us to detect the fallacy of the arguments by which Strabo has euleavoured to refute them. This is not particularly the case with regard to Eudoxus ; but really, in Strabo's notices reapecting the adventurous life of tho bold navigator, we camot aeo any thing which tends to controvert the general beliof of antiquity, that ho had made repeated and apirited attempts to explore the unknown coasts of tho Affican continent.

According to the narratives of Strabo, Eudoxua was a native of Cyzicua, sent on a misaion to Alexandria, then the great seat of maritime enterprise and geographical knowledge. His ardent mind was strongly imbued with the apirit which reigned there; and he offered himself to Ptolemy Evergetes, tho reigning king, as a zealous instrumont to be employed in any expedition having these objects in view. There was, at first, some talk of ascending the Nile, and endeavouring to reach it unknown sources; but their viewa received a new direction from the arrival of a porson who was, or profeseed to be, a native of India, escaped alone from the wreck of his vessel near the foot of the Arabian Gulf. Ptolemy immediately fitted out a naval armament, with which budoxus proceeded on this deatination. Ile appears to have made a prosperous voyage, and to have returned with a cargo of aromatica and precious atoncs, which last had either been washed down by the rivera, or dug out in a concrete stato. It is scarcely probable, howover, that Eudoxus ever renched the real shores of India, or went beyond the southern shore of Arabia, and, ot farthest, the Persian Gulf. Of this wealth, Evergetes appears to have plundered him; which Strabo insinuates was in reaentment of some dialoonest conduct on his own part. We cannot, in these days, attempt to judge betwcen the two parties. However, Evergetes dying, his widow Cleopatra took Eudoxus again into favour, and sent him on a fresh voyage. He was now driven by unfavourable winds to the coast of Ethiopia, where he was well received by tho inhabitanta, and sarried on some advantagcous trado. His return to Alexandrin was again unfortunate. Cleopatra was dead; and her son, who succeeded, treated him as ill as Evergetea had done. Eudoxus brought with him, however, one trophy from the extremity of his voyage-the prow of a vessel, said to liave como from the weatward as a portion of a wreck, and on which was sculptured the tigure of a horso. This prow being exhibited by Eadoxus on the harbour, some mariners from Cadiz declared it to be the very form peculiar to a species of large vessel which went from that port for purposes partly of trade, and partly of fishing, to the const of Mauritania, Eudoxus listened with enthusiastic credulity, and deternined now to renounce the deceitful patronage of courts, and to fit out a new expedition from the commercial city of Cadiz. Ho proceeded thither by way of Massilia and other maritime stations, where he loodly proclaimed his hopes, and invited all who wero animated with any spirit of euterprise to accompany him. He accordingly succeeded in equipping an expedition on a consilerable, and even magnificent scale. He had ono ship and two large boats, on board of whirl. he carried, not only goods and provisions, but artisans, medical men, and even
playern on muaical inntrumenta, A crow so gay, and flled, probably, with oxtravagant hopen, were ill fitted to encounter the hardhhip of Afticall dincovery. They took fright at the awell of the open een, through which buuloxus was anxioun to cunduci them, and insinted, according to tho urual timid pyatem, on being brought apear to the shore. This led to the disaster which Eudoxus had foreneen: the shipm were stranded; and the cargo with dificulty saved. The mont valuable articles were then put on boand one veemel of a lighter conatruction, and he prowecuted the voyago till he canie to a raee of people whe appearnt to him to upeak the eame language with those whon has had met on thie opposito ahore of the continent. Conceiving himwelf to have thus ascertained the olject of his voyage, he returned, and endeavoured to procure the barbaric aid of Bocehus, king of Mauritanie ; but, muspecting that monarch of a treacheroua design againat hitm, he agnin betook himelf to Spain, Here he mucceeded in equipping a freah expedition, consiating of one large vemeel fitted for the open sea, and anothor of amaller dinensions for exploring the eoast. Here, unfortunately, the narrative breaks off, referring to the Spaniards and Gaditanians, as likely to know more; but wnothing more in atated on any authority, wo fear that this lant expedition ment have had an unfortunato ineue. Such in tho narrative given by Strabo, upon informatio I which seems to have been originally obtained from Euloxus himself; and we nee nothing in it unworthy of belief, or which might not vory well be accompliahed by a man of bold and enthusiastic character, possessed of scienco and talent, and devoted with such ardent zeal to the cause of discovery. Eudoxus cannot bo made reaponsible for tho fables which antiquity has put into his mouth. He la repremented by some as having actually made tho circuit of Africa; by others as having come to one nation that was dumb, and another whoee mouth was entirely closed, and which received food through an orifice in the nose. But none of theme fables aro found in the report of Eudoxus himself, as coming through the medium of Strabo his enemy.

Sact. V.-Voyage of Pytheas.
The voyage of Pytheas, the Massilian navigator, is of peculiar interent, as it in the only one described in any detail, having Europe, and particularly tho British Islen, for its object. It comee to us, however, utill more deeply tinged by the same dim and discoloured medium through which that of Eudoxus has passed. It is known almost solely by the hostile quotations of the sceptical Strabo, alduced fur tho purpose of proving Pytheas to be "a liar of the first magnitude." Yet, the naturo of the grounds on which this conclusion is made to rest, is such as to place in the eleareat light Strabo's own ignorance, and tho superior infurmation of Pytheas. This last will become more conapicuous, if wo suppose, as seems probable, that the errors of tho geographer were transmitted to him from Massilia itself; in which case, Pytheas being found possessed of knowledgo of which hia countrymen were destitute, there appears no mole in which he could have obtained it, except the actual performanco of the voyages.

Tho following are statements on which Strabo rests his refutation of Pytheas. That navigstor atated, that the Calbium Promontorium, the extrenity of Bretagne, pointed to the west, while Strabo affirms it to be perfectly notorions that its direction was to tho north. This last strenge idea was connected with what wo shall find to bo the general error of this school, which allowed to France a southern coast only, and not a western one. Again, Pytheas represented Britain as having one of its sides much longer than five hundred miles, whereas, his adversary maintains this to be the dimensions of its longest eide, which, according to him, is that opposite to and seen from the shores of Gaul. Finally, Pytheas asserts that his Ultima Thule was farther north than Ireland; wheress, all well-informed persons, knowing Ireland to be four hundred iniles north from Britain, and scarcely habitable on account of the cold, consilered it as forming on that side the extreme bonndary of the inhabited earth. Thus far it is necessary only to name the charges against Pytheas, to make him shine conspicuous above his enemies.

There are other statements, it must be confessed, which appear at first sight a littlo startling. Pytheas describes the longest side of Britain not only as more than five hundred miles in length, but as exceeding two thousand. It is to be observel, however, that while Strabo described Britain as a triangle, having its longest side opposite to Ganl, Pytheas conceived it to have only two sides, one of which, consequently, reached from the Land's End, or the Lizard Point, to the extremity of Seotland. If we consider this vast extent of coast, with so many winding shores and deep bnys, all the sinuosities of which an ancient navigator was obliged to follow, the estimate will appear not very extravagant. Again Pytheas described the const of Kent as several days' snil from that of Gaul. But the term by which Stralo designates Gaul, is Knatıx (Celticn); and it appears from Cmear, that Celtica formed only one of the three parts into which Gaul was divided, and was bounded on the east by the Seine. Pythoas probably usel the term in this restricted and more proper sense; when the distance assigned becane strictly correct. He moreover described the const of Spain as inhabited by Gallic nations; it wonld even seem, that he considered the Calbiun Promontorium as Spanish. Here he was elearly in the wrong; but the error will probably be
found to have rested not in his observations and faets, hat in mixing then with an erreneous theory prevalent at Massilia, aecording to which, Franee had not a western coust, nor one facing the Atlantic; such a coast belonged to Spain only. Under this inpression, Pythons, solong as he sailed along the western coast of Gaul, and till he eane to that opposite to Britain, would naturally inagine that he was sailing along the const of Spain.
Strabo at last traces Pytheas to Thule, and "her utmost isles," when he does, eertainly, present a narrative ussuming sonewhat of a fabulous aspect. The most daring navigator, as he approached the dreary boundaries of earth and ocenn, and saw only the high billows of the North Sea dashing against a rocky and misty shore, might become liable to some sinister impressions. Pytheas, it seems, said, that beyond Thule there commeneed what was neither earth, sea, nor air, but a confissed blending of all the three, similar to the substance called pulmo marinus (a species of medusa common on our shores). He added, that this substance was the basis of the universe, and that in it, air, earth, and sky lung as it were suspended. If we place ourselves in the situation of Pytheas, seeing before him the northern sea, overhung by thick and gloomy mists, slurouded in twilight, and darkened by tempest, we may suppose him very easily persuaded, that what he beheld was a confused blending of all the clements, not very dissimilar even to that thick viscid animal substance to which it was compared. Nor can we feel mueh wonder, if; after this long and difficult navigation through so many perils, he should lend somewhat of a ready ear to a report which represented him to have reached that furthest boundary of nature, beyond which it was no longer possible for mortal sail to penetrate. Another report of Pytheas was, that at Thule the phenomenon took place which belongs only to the polar circle,-a summer of one long day, and a winter of one long night. Antiquity is somewhat full of rumours of this phenomenen, which science had pointed out as likely to take place at a certain latitude; and there was a general disposition in those who had made any progress northwards to anticipate the term. Considering the loose way in which rumour then spread, it may easily be supposed, that the partisans of this idea might support it by an exaggerated representation of the real statements of Pytheas. One of these (Geminius) merely reports him as saying that the nights appeared to him to last only for two or three hours, a statement which at midsummer would be quite correct. Indeed, we have been assured by persons who have resided in the Shetland islands, that at that season there was scarcely any sensible term of darkness. A foreigner, then, visiting the islands, might very readily imagine he had arrived at that point on the globe where the summer was one uninterrupted day.
The theories, which would make Thule any other place than Shetland, seem not to require much disenssion, though there are not wanting learned partisans in favour of each. Iceland would imply too great an extent of open sea for an ancient navigntor; und the period of five days' sail from the continent would be very inadequate. Some Scandinaviun writers have elaimed Thule as belonging to their own region; Rudbeck for Sweden; Saxo Grammaticus, und Schemning for the Norwegian Tellemach; Malte Brun for Jutland. These theories seem sufficiently refited by the single consideration, that Pythers invariably considered Thule as British, and expressly calls it the "farthest of the Brituins." But Jutland or the Baltic he could have only reached by a long navigation along the coasts of Germany, which could never have been performed without the clear perception of having left far behind him every thing belonging to Britain.

Sect. VI.-The Voyage of Nearchus.

Alexander the Great was animated beyond, perhaps, any other ancient monarch or sage, with an ardent zeal for discovery IIis expedition became almost as mueh one of exploration as of conquest. Its course was in general ly land, and through the interior of the continent; but his mind was not less decply fixed upon commeree and maritime discovery. On reaching, therefore, the bauks of the Indus, and being obliged by the mutiny of his troops to fix there the termination of his career, he was seized with a desire to explore the lower course of that river, und afterwards the southern consts of Asia; a long range completely unknown to the Greeks. The prospects of this voyage, however, were such ths to appal the must enterprising of his naval officers. The perils of tempest and shipwreck on this wide and unknown ocean, with those of being driven upon a barbarous and dreert coast, appeared almost to preclude the hope of renehing by this long eircuit the destined station of the army on the banks of the Euphrates. The inferior officers varionsly excused themselves from so heavy a task; and the enterprise appeared ready to fiil for lack of instruments, when Nearchus, the admiral of the fleet, came forward and proffered his own services. Alexander unwillingly committed this task to nn officer so high in rank, and his intimate friend; but the carnestness of Nearelns, and the backwardness of all the others, left him at length no alternative.
The royage down the Indus was brilliant. Alexmer conveyed his army in a crowded fleet of two thousiml vessels. The sound of the numberless nars, echoed by the surrond-
 natives. Alex atir eren aceompanied hits admiral down the Delta of the Indus, and took
a view of the ocean, after which he returned, to lead his army by a most perilous and difficult routo through Gedrosia and Karamania to Babylon.

Nearchus now began his arduous naval route (Fig. 3.), after the usual antique preparation
Fig. 3.-MAP of the voyage of nearchus.

of sacrifices and games. At the mouth of the river appeared a most formidable obstacle, a rock barring the passage, and against which the waves broke with fury. This was surmounted by cutting a canal across the softest part of the rock, through which the vessels were able to pass at full tide. Ile then passed the sandy jsland of Krokali (Corachie,) and Mount Eirus (Cape Monze,) when, being now in the open ocean, a series of gales began, so heavy and continued, as obliged him to seek the shelter of an excellent harbour farmed by an island called Bibacta. The crews here landed, threw up an entrenchment to defend themselves against the natives, and remained for twenty-thrce days, subsisting chiefly on shell-fish. The wind having abated, they set sail, and came to a coast where water, of which they appear to have needed almost daily supplies, was only to be got by going several miles up into the country. They then passed between a range of rocks, so close to each other, that the oars struek against them on each side. After sailing a considerable space, partly in a narrow channel between a wooded island and the shore, they came to the river Arabius (the modern Pooralee). It gave name to a numerous people, inhabiting all the territory between this river and the Indus. On the other side was the coast of the Orite. In proceoding, however, Nearchus met with a dreadful tempest, in which three of his vessels perished, though the crews were saved by swimming, and he with difficulty brought his shattered vessels to the coast. Here he found Leonatus, whom Alexander had detached to open a communication with him, which he obtained only by very hard fighting. Nearchus here spent some time in refitting his shatered vessels, and exchanged those of his erew who had proved themselves less efficient, for fresh men out of the Greek army. Having laid in corn for ten days, they sailed with a prosperous wind, and reached the rapid stream of Tomerus (the modern Wudd). Here the natives, six hundred strong, were drawn up to oppose their landing; a barbarous race, armed with lances six cubits long, pointed not with iron, but with wood hardened in the fire. Nearchus cansed a band of his light troops to swim on shore, and to make no movement till they were drawn up in a triple line, then suddenly to raise a general shout, and pour in clouds of darts and missiles. This sudden attack, their shouts, and the glitter of their armour, produced instant and total rout on the part of the natives. They are described as presenting an aspect almost incredibly savage, being covered in a grent measure with hair, and having long niils like the claws of wild beasts. Their dress censisted in the skins of animals and of large fishes.

The expedition now stecring out to sea, and taking a southerly course, observed phenomenn belonging to the midsummer of the tropic, the novelty of which struck then with surprise. When the sum was in the meridian no shadow was projected, and when there came to be a little shadow, it declined to the southward. Stars, which were wont to be seen high in the heavens, were now little above the horizon. At Bagaziri (Cape Arrubah) they left the const of the Orite, and cntered that of the Iclithyophagi, or fisl-eaters, a food which is said to have so remarkably abounded, that even the flesh of the cattle savoured of fish, from their makiag it, like sea-birds, their daily food. The people were hospitable, but could give only fishes and roats. It was not till the Greeks had sailed a considerable distance that at larna they founl some palus, gardens, and verdure. After passing Cophante (Guadel,)

Vol. I.
3
1)
where they obtained a aupply of fine water, and Cyzia (Gwutter) on a desert and rocky ahore, they came to a small town on a hill a little inland (probably Churbar,) where it appeared probable that a supply of grain might be obtained. To possess himself of this, Nearchus had recourse to measurce that harmonized much more with the character of a buccaneering freebooter, than with that of an officer of the first prince in the world. The people met him in the most kindly manner, and presented to him roasted fish and other victuala. Meeting their friendly advances, he expressed a wish to visit their city, and being cordially admitted, his first step was to take military occupation of it, and command the natives to lay open to him all their stores of grain. The poor citizens at first flew to arms, but having ne means of effectual resistance, were obliged to yield. It proved, however, that they had little except dried fieh reduced to powder, and Nearchus could get only a very small stock of grain. In sailing now along an almost desert coast, the atock of provisions became excessively zcanty; and they obtained only a poor supply by landing and cutting off the leaves of wild paim-trees. The pressure became so extreme, and was so impatiently borne by the crews, that Nearchus did not think it alfe to land at night, leat they should all take fight into the interior. In one place he found a paltry village, all the inhabitants of which fled; but the Greeks found aeven camels, which they killed and eagerly deveured. The same distress continued to press upon them so long as they sailed along the coast of the "fish-eaters." Notwithstanding this name, few of them were fiahers, or had even boats. They procured this food by immense nets, sometimes a quarter of a mile long, formed out of the fibrous bark of the palm tree. Thees they placed at high tide across the mouth of little bays, so that when the waters receded, the nets retained all the fish which had been carried up with the tide. The houses of the rich were built with the bones of whales cast ashore, those of the poor with the back-bones of smaller fishes. Nearchus descried a number of whales, whose presence was at first made sensible only by the quantity of water thrown up into the air, and tossed as in a whirlpool, a spectacle which struck the sailors with terror, and made the oars drop from their hands. The commander, however, on being informed of the cause, made his crews raise the loudest possible sound by ohouts, trumpets, and dashing of oars, which at once kept up their own spirits, and was supposed to induce these monsters of the deep to replunge into their abysees.

The coast of Caramania was next reached by Nearchus, after passing the fabulous abode of a Persian Circe, who, according to report, was accustomed to seduce the navigator by voluptuous pleasures, and then convert him into a fial. Nearchus now found his distresses nearly at an end, as the soil was tolerably productive in grain and fruits, and there was plenty of good water. After passing Capes Jask and Bombareek, they came in view of a huge promontory, stretching far into the sea, called Cape Maceta (Mussendoon), and forming the entrance of the Persian Gulf. The great body of the sailors, and even Onesicrotus, an officer high in command, weary of this long navigation, earneatly proposed to land, and march on foot to Babylon. Nearchus justly and strongly insisted that this was in no degree to fulfil the intention of Alexander, whose injunction it was, to survey every coast, every harbour, and every bay, between India and the Euphrates; and that besides they incurred great hazard of being involved in those arid and burning deserts, ot which Arabia in a great hieasure consists. This wise opinion prevailed, and in ascending the Persian Gulf they found, for the most part, a fertile and beautiful coast. In the delightful country at the mouth of the river Anamis (the modern Minab) they landed, and began to refresh themselves after so many hardships. Nay, a party having proceeded to some distance into the interior, met, with tears of surprise and joy, a man in a Greek dress, and speaking the Greek language. This proved to be a soldier who had straggled from the army of Alexander, which he reported to be at a distance of only five days' journey. On receiving this intelligence, Nearchus caused the ships to be drawn on shore, a rampart to be formed round them, and the crews to take reat and refreahment, while he and Archias set out alone for the camp. On their arrival they presented an aspect so haggard, pale, and squalid, that the pers nns they met did not know them, but on being told their name, hastened to carry the first tidings to Alexander. They added (a hasty conclusion formed from appearances, that the fleet and the army had perished. Alexander received Nearchus with a kindness mingled with sorrow, and after the first salutations, began to ask particulars of the catastrophe of his favourite armament; but when Nearchus rcplied, "O king! thy ships and men are safe," the conqueror burst into a. flood of tears, and swore by Jupiter Ammon, that he derived more pleasire from this event than from the entire conqueat of Δ sia.

The rest of the navigation of Nearchus, when lie had with some difficulty regained the fleet, was easy, care being taken that he should find on the coast every kind of supply. They passed the barren and desert rock of Organa, afterwarls so celebrated ubder the name of Ormuz, the large and fertile Oaracta (the modern Kishme). Soon after they quitted the coast of Caramania and entered that of Persia proper (the modern Fars, which they followed till its termination at the river Arosis (the modern Endian Tab,) which appeared to them the largest they had seen since they had left the Indus. They were now in Susiana, and soon reached the mouth of the Tigris, where the voyage terminated.

Boox 1.
PERIPLUA OF THE ERYTHREAN SEA.
The circumnavigation of Arabia, and the opening of a communication between the Red Sea and the Persian Gulf, formed to Alexander an object of alnost equal ambition. He accordingly appears to have sent expeditions down both seas, in the hope of accomplishing this object. Those, however, who went from Persia were never able to double that formidable promontory (the Mussendoon) which Nearchus had passed at the entrance of the gulf; while those who went from Egypt, after making a certain progress, were always obliged to return for want of water. The narrator chose to conclude with inferring, that such an achievement must be beyond human skill or power, otherwise the daring curiosity of Alexander would certainly have accomplished it. He reinforces this argument by observing, that as caravans which crossed Arabia were able to travel only during the night and in the day were unable to bear the intense heat of the sun, it was unreasonable to auppose that a region still farther to the south should be at all habitable.

Sect. VII.—Periplus of the Erythrean Sea.

The complete establishment of the dominion of Rome produced a long period of comparative peace. The encouragement of industry and commerce never formed part of the policy of that powerfill empire; but the demand for luxuries of every description in its overgrown capital, where the wealth of the world was collected, and to procure which the remotest extremities of the earth and sea were ransacked, powerfully stimulated mercantile enterprise. Alexandria continued still the great nautical school, by whose mariners the obstacles which in the time of Alexander had been deemed insurmountable were completely overcome. Regular veyagea were eetablished across to India, and for a considerable extent alang the eastern coast of Africa. The course of this cemmercial voyage is related by Arrian, not the historian of Alexander, but a merchant of Alexandria; and though not so much a voyage of discovery as a coasting guide, it is founded, probably, upon personal observation, and will enable us to complete the survey of the great naval routes of the ancient world.
The voyage down the west coast of the Red Sea began with Berenice, founded by the Ptolemies, and the site of which, after being long sought for in vain, aeems to have been nearly fixed by Belzoni. The coast on the African side was wild, and occupied only by a few rude huts of barbarous Nubians. The small port called Ptolemais Theron was the only place wherc refreshments could be ebtained. At length, the navigator came to Aduli, a great emporium, whose site Mr. Salt scems to have ascertained in the vicinity of Arkeeko. Here was a profusion of excellent ivory, collected and sent down from Axum, the metropolis, about eight days' journey in the interior. In return for this single staple of Ethiopia was exchanged that variety of showy coleurs, suited to a rude taste, pottery and glass vessels, the manufacture of Diospolis; brass for vessels and ornaments, iren for pointing lances, arms, and cutting instruments. Some fine cloths, and ornaments of gold and silver, were brought as presents or tribute to the king. Farther down, apparently in the Gulf of Zeyla, was the kingdom of Zoskalcs, a prince who is described in glowing terms as adorned with every virtue, and eminently skilled in Grecian literature; but these seeds of civilization, if they ever existed, did not ripen in so ungenial a climate. The coast now turns eastward to the Indian Ocean.

A view of the passage down the opposite or eastern coast of the Red Sea must now be taken. Navigators do nat seem to have ventured across the breadth of that sea from Berenice, but went by Myos Hormus, along the mouth of the Gulf of Suez, touching at Leuke Kome, the fair village, which formed the port of the great commercial capital of Petra. The coast downwards was most unfavourable to navigation, "full of danger, witheut harbours, beset with rocks, everywhere full of horror;" and such the whole of the Red Sea is described to be by modern navigators. If a vessel was driven too near the shore, it was immediately plundered by the barbareus inhabitants, and all who survived carried into slavery. At length they came to the Burnt Island, which seems to be Gebel Tor, on the coast of Yemen, where they found a fine country and a friendly peeple. The emporium of this coast was Moosa, ncar the modern Mecha, said to be inhabited by a race skilled in maritime affairs. The imports were of the same description as at Aduli, but of finer quality, including a considerable quantity of dye-stuff. The exports wcre myrrh, gum, alabaster (no mention yet of coffee). They then procecded downwards, and passed the straits now called Bab el Mandel.

The sonthern coast of Arabia formed the next object of navigation. Ocelis (the modern Ghella) was a good harbour, though with little trade; but Arabia Fclix, which seems to have been near the gite of Aden, had been a most flourishing port, forming a depot in which the merchants of Alexandria found all the cemmodities of India. It had latcly, however, been destroyed by the Romans. In coasting along Arabia, they found Kane (the modern Macculla); the Gulf of Sachalites, in which is found the modern Sahar; and Syagros, described as the largest promontory in the world, usually supposed to be Ras el Had, but which Vincent appears clearly to fix in the much more westerly position of Cape Fartash. This region is describel as yielding a considerable quantity of incense, but as cxtremcly meist and unlicalthy. They now passed Mosca (Morebat); Asichone (Hasec), the islands
of Zenobius (Curia Muria) Mistory of geography.
the Persian Gulf. 'The writer came to Ras el Had, where the eost
by. very lofty and rugged mountaines, and truly, that the entrancoast turns northward to western shore, and Apologos, othtains; he mentions the celebrace of the Gulf is bordered He does not dwell, however on thise called Oboleh, then the pearl fishery on its southern coast of Persia, which the obe details, and passes also, with wiun of the Euphrates. any materials for commerce. . The coast of India (fir voyage. He reaches the mow commences, and form great river Sinthus, by which name the designates the Indus, It is represe he as entering the sea by seven mouths, only one of which is navigable, and on which is situated a place called Emporium Barof Minnagara, which interior metropolis 24 Scythian city. The idea of Scyth as a tached to this part of India scythia atsuggested by the rude pastoral manners ${ }_{22}$ of the people, and, combined with the circumstance of its being included in the belonging to empire, points out Minnagara asso dom of Caubul, to which called the kingta of the Indus is still subjeat, the Delehants were obliged to go up to Minnergara, and to negotiate with to Minna- ${ }^{1 s}$ himself. After passing the Indus, navjgirin(Cund successively the gulfs of to The narrator here Barygaza (Baroach). of every kind with which these gulfgers beset, shollows, concealed tose gulfa are and difficult entrances, but rocks, narrow extraordinary oceasional violene all, the tide; in consequence of whichee of the rieneed navigators often which, unexpe-12 either sunk or driven on shore. FrequentIV, when they were sailing in perfectly smooth water, a sound was heard as of an on with such force, that the tide rushed

Fig. 4. - Peaiple most important era in the
${ }^{\infty}$ $\begin{array}{llllll}\text { emporium, at whieh were found } & 72 & 74 & 70\end{array}$ much finer cloths, and a found the same commodities as at Emarygaza was a very great eapital, the prince of which it was of long pepper. Ozenc (Oumein) warbaricum, with of the very best wine, rich ungus necessary to propitiate, by sendin) was a great interior The region of Dachinabades (the cloth, and beautifill female slaves landsome presents combining " "os $\tau \eta$ aizuv jnwarn) extended n, i. e. the South, for 1 es many great and popyions, deserts, huge mountains south of Barygaza, and is des, Daxavos the one twenty days' ios nations." It had two larg, wild beasts of every kind, and fed as deur of both hy days' journey south from Bary large interior capitals, Plithana, and finally, of the former seems now Dowlatabad, in whognised in Piltanah on the Gostern cities are subject; but the sito number of ports are nowe vicinity are the magnificent sery, that of the latter in Deoghir, liena, mentioned as the seat, thou, which cannot be very priptured temples of Ellora. A pretty clearly recognised at or nough with some interruptions precisely determined; but Kuland the by the mention of pirates. At modern Bombsy. Afterwards great commeree, is and the sent of a great trade. The At length the Greeks reseched Lime may know the (Mangalore), and Nelkunda (Nelisuraree chief emporia were Tyndis Limyrike, a fine port, secondary importance, was then the of the mon western India. The larger southern, as Barygaza was into a place of very ancient navigation, benabled, with a daring coursels had even, by availing northern, The prand staplen, to steer directly ueross fro course very forcion, to availing themselves stones of staple then, as now, was poss from the mouth of the to the usual habits of tortoise-shell, ortoiseshell, and betel-leaf, from the interior. were diamonds and hyacinths, ant precious
mong the imports, according to the usual
ceurse of Indian trade, stood foremost "much money," a little eloth, and a little wine; but a considerable quantity of metala and toys, brass, lead, tin, glass, coral, stibium for painting the eyes, orpiment, and cinnabar. There is mucli appearanca that Nelkunda was the farthest point to which the Greek navigators actually penetrated, and that they found there a supply of the commodities produced in the more eastern regions.
All beyond Nelkunda is faint and tinetured with fable. We recognise, however, Comar (Cape Comerin), Taprobane (Ceylon), and its great pearl-fizhery. The Coromandel coast is nearly a blank, till we arrive at Masalin, which, with the great abundance of its cotton cloths, speaks clearly Masulipatan. In proceeding northwards, navigators came to a strange and barbarous people, with visages sometimes of enormous length, at others resembling those of horses, and some eating human flesh: an exaggerated picture of the fierce predatory races who occupy the mountain and jungle tracts of Orissa. A.rian describes accurately, however, the direction to the east which the coast of the ocean takes, before it receives the mighty flood of the Ganges. At its mouth there was then, it seems, a great emporium bearing the name, which no city now does, of the river itself. The staple was "superlatively fine cotton cloths, called Gaugetic," and which still exist in the superb fabrics of Dacca and Moorshedabad.
In the regions beyond Ganges the author of the Periplus gropes almost in total darkness. Mention is made of an island, the farthest part of the world to the east, and which is richly stored with the most precious productions of the countries that lie on the shore of the Red Sea. This cannot seemingly be any other than Sumatra, though erroneously placed near the Ganges. The only ulterior position is Thine, a great interior city, situated opposite to Pontus and the Caspian Sca, and near to where the Palus Mreotis flows into the ocean. This strange site we shall afterwacds find reason to consider as a combination of some actual rumours with the theory forned by the first Alexandrian school respecting the form and dimensions of the continent of Asia. There seems some reason, however, to conclude with Dr. Vincent, that this Thine, whence caravans came by way of Bactria to Barygaza, must lave obscurely indicated the capital of China. Nor can we be easily persuaded that in the malabathrum, though most usually applied to betel-leaf, some confused idea of tea is not involved. Its being so strictly characteristic of China, and being brought by persons of a

Fig. 5.-Periplus-African Coabt.
 broad forehead, short body, and flat nose,
features decidedly Mongol and Chinese, seem all in favour of this supposition, and inconsistent with that which would make it merely betel-leaf, a product of Indostan; though there is doubtless a great and manifest confusion between the two suistances.

We must now look back to the Straits 10 of Bab-el-Mandel, and follow our author along the African coast. (Fig. 5.) From those straits vessels proceeded eastward along the shore opposite to Arahia, the modern Berbera. Its ports, Avalites, Mosyllum, Mundos, Daphnon, and others, cannot be, easily identified on a coast, with respect to which we have scarcely any - imodern data. The imports were nearly the same as at Adulis; the exports were myrrh, frankincense, a species of cinnamon called casia, some other aromatics, slaves, and a little ivory. At length they doubled the promontory of Aremata (Guardafui), when they came to a coast stretching to the southward and ficing the Indian ${ }_{10}$ Ocean. Here was a prort, the seat of a considerable trade, but by no means secure; however, when the north wind began to blow with dangerous violence, tho vessels found shelter in the neighbouring promontory and port of Tabai. Proceeding onwards, they found Opone, Apokapa the less and grenter, Nicon, Scrapion, seven ${ }^{20}$ successive rivers, with anchorages at the mouth of each. Soon after, at the distance of about three hundred stadin from the continent, there occurred a low wooded island, bearing the very expanded name of

Eitenediom-menouthesias, which other writers wiscly eontract into Menuthias. It centained no wild animals, but abounded in fish, particularly tortoises, which the inhabitants were very diligent in catching. Two days' voyage farther brought them to Rhapta, a promontory and port, and the seat of a great trade. Beyond this point, the ocean was not yet explored; but it turned to the west and sonth, and was supposed to continue in that direction till it joined the Atlantic. The exports from this coast were ivery in great abundance, but not equal in quality to that of Aduli; tortoise-shell, guperior to every other except that of India; and a number of valuable slaves, chiefly destined for the Egyptian market. The territory was governed by a number of petty kings, all owning tho supremacy of Mopharites, who was himself tributary to Moosa, by the vessels of which great commercial state the trade of this const was almost entirely carried on.

The extent of coast thus deseribed by the auther of the Periplus has been the subject of considerable controversy. Dr. Vincent fixes Rhapta, its farthest point, at Quiloa, thus allowing a navigation of upwards of fifteen hundred miles; while the rigin scepticiam of M. Gosselin, placing it at Brava near the meuth of the Doara, allows a good deal less than lualf that distance. Dr. Vineent here, hewever, appears to earry the question triumphantly, by means of his seven menths of rivers, of which M. Geseelin admits that no trace can be found within his limits. They are elcarly presnnted by the estuaries of the Quillimanci, on which are the important harbours of Patte, Melinda, and Mombaza. But we cannot, with Dr. Vineent, pass by Pemba and Zanzibar, to find in the little island of Monfia the Menuthias of Arrian. Zanzibar, from its size and its proximity to the coast, appears a feature which it was impossible to overlook, and its position is in much better bearing with the seven estuaries previously passed. The next cape mist then be Rhapta, and this will be that opposite to which is situated the small group of the Hinagie Iglands. Beyend it for a considerable distance the coast runs in the direction of south-west, which does not at all admit the placing Rhapta beyond Quiloa, nor, indeed, on any other part of the coast till after we pass Mosambique.

CHAPTER III.

GREEK GEOGRAPHY BEFORE ALEXANDER.

Greece is regarded by all civilized nations as their instructress in the sciences, many of the most brilliant of which she carried to the utmost perfection. In that of geography, however, little progress was made until the formation of the Greek kingdom in Egypt under the Ptolemiee. Neither extensive commeree nor distant cenquest characterised the Grecian states, etherwise so illustrious for all the arts of pence and war. It was not till the cenquering career of Alexander, that the survey of the Greeks was extended over the wide circuit of the ancient world. Engaged before that era in the glerious defensive war against Persia, and the contests with each other for pre-eminence, they cenfined their views very much within the limits of Greece and its neighbouring coasts and islands.
The first traces of Greek geography are found among its poets, whose brilliant fancy has spread its lustre over all the regions with which Greece ever held intercourse. Homer took the lead, and his high authority gave to the geography of the Greeks a poetical cast, which they transmitted to the nations whon they taught, and of which the traces are not entirely obliterated.

Sect. I.-Geography of Home*.

It is in Hemer that we find the first trace of the widely-prevalent idea, that the earth is a flat circle, begirt on every side 'by the ocean. This was indeed a natural idea in a region so entirely insular and peninsular, nowhere presenting, like Judea, a vast tract streteling so far as to give the idea of immeasurable distance. The circular shape was suggested by that of the visible herizon; and until science demonstrated the globular form of our planet, the very natural opinien prevailed that the earth was a flat eirele, with the vault of heaven above, darkncss, and the abode of departed souls beneath.
Hemer, like Hesiod and the ancient poets generally, delights in topographical detail, and scareely allows a city or natural object to pass without applying to it some eharacteristic epithet. It was only, however, within a very limited range that he could give these distinet and animated notices. The Greek islands, beautiful and fertile spots, which seem to have beest the first cradle of European eivilization, were the central point frem which his knewledge emanated. He knew well, and had probably visited. on one side Peloponncsus, Attica, and the regions immediately adjoining; on the other, the western coast of Asia Minor, and the bauks of the beautiful rivers by which it is watered. Perhaps scarcely any other tract on the globe presents within the same compass such a variety of grand and beautiful objects to reuse the imagination. Beyond this circuit the world of Homer was soon involved in mysteriens obscurity. Some grand and distant festures, diseernible through the glonm, were exaggerated and distorted by ignerance and superstition. Thebes, the mighty capital of

Egypt, when that kingdom was in its greatest glory, is celebrated for its hundred gatee, and the hosts of warriors which they sent forth to battle. Beyond lay the Ethiopians, deemed the remotest of men, dwelling on the farthest verge of the earth, and to whose distant confines Jupiter repaired to hold an annual festival. In the western part of the same continent the stupendous ridges of Atlas had excited in Grecian fancy the image of a gigantic deified being, to whom was intrusted the support of the heavens. Even farther to the west, the exploits and wanderings of the great Grecian demigod had conveyed a tradition of the strait leading into the ocean, and of the rocks on each side, celebrated under the denomination of the Pillars of Hercules. On the east, Colchos was distinguished by its early wealth and commerce; it was considered a city on the ocean, with which, therefore, the Black Sea must have been confounded; and being supposed to contain the palace of the Sun, where during the night he gave rest to his coursers, and whence in the morning he drove his chariot to its diurnal career, Colchos must have been regarded by Homer as placed on the most eastern verge of the earth. On the north, Rhodope, under the name of the Riphean Mountains, was considered a chain of indefinite extent, closing in the northern limits of the werld. The poet, however, had heard a vague report of the Scythians, under the descriptien of a people subsisting on mares' milk. The vessels which conveyed the Grecian srmy to Troy were evidently little better than large boats; and all distant voyages, or those in which land was lost sight of, were considered as fraught with the extremest peril. A navigation to Africa or to Sicily took place only through tempest, terminating usually in shipwreck; and a return from these shores was esteemed almost miraculous. In regard to Sicily, indeed, Homer has largely communicated his ideas, having made it the thestre of the woes and wanderings of the hero of the Odyssey. Making every allowance for poetical license, we see evident traces of the terrified and excited state of mind in the navigators who returned from these shores. Monsters of strange form and magnitude, who watched for the destruction of the mariner, and even fed upon his quivering limbs; delusive syrens, who lured but to destroy; imprisonment under the transformed shape of wild beasts; these, probably, are only a highlycoloured repetition of the terrific rumours brought by the few whose bark had been wafted to those as yet savage coasts.

Sect. II.-Poetical Geography

An ideal and poetical character was communicated to the science of geography itself by the fables with which Homer thus tinged his narrative. This tendency indeed did not rest solely upon Homeric influence, but proceeded from certain secret workings of the human heart. There exist in man ideas and wishes for which, in the sphere of his sctual existence, he can find no corresponding objects; these he creates for himself in that dim boundary which separstes the known from the unknown world. There involuntarily srises in his breast a longing after a more exalted state of existence than the world before him presentsbright scenes, which he seeks but never finds in the circuit of realities. In a newly-discovered region, however, which possesses any share of beauty, imaginstion soon heightens the colours of nature, till they appesr to fulfil its fond anticipations. Such were those brilliant spots celebrated by the poets under the title of the Gardens of the Hesperides-the Fortunate Islands-the Isles of the Blest-for which, when knowledge had dispelled the first illusion, and brought them down to the ordinary level, a place was still found in some more distans extremity of the globe. Northern Africa, as it stretched westward, was peculiarly adapted, by its striking and brilliant contrasts, to excite these illusions. The first site of the Hesperian gardens was at the frontier of Cyrene, where they are described by Scylax as forming a luxuriant grove, in which the lotus and the palm were mingled with the finest trees of Europe. Other and more western sites were successively found, both for them and the Fortunste Islands, which last were finslly fixed, probably on very imperfect observation, at the Csnaries. These islands have not altogether lost the appellation; and they are painted by Horace in glowing colours as a refuge still left for mortals from that troubled and imperfect existence which they experience in every other quarter of the globe. Independent, however, of this bright and romantic enjoyment, there sre other objects of fond desire to the human heart. In this sgitated world it sighs after peace-a scene of profound repose, exempt from the tumults of passion and the corrosion of care. Such a scene, indeed, wonld never fulfil the hopes thus formed; yet these hopes spring from a natural illusion, to flatter which Grecisn poetry conjured up a fabled race, the Hyperboreans, sested in the recesses of the North, and sheltcred by vast mountains from the rage of the elements. They wore represented as exempted from all ills, physical and moral, the change of seasons, sickness, and even from desth. The original seat assigned to them was behind the Riphran Mountains, which seem to have been originally Rhodope, the northern boundary of the Homeric world. The Greeks hsving soon acquired knowledge sufficient to nscertain that no such people was there to be found, sought them next on the banks of the Danube; but every thing there was remote from that tranquil sspect under which the poets had painted the Hyperborean world. Some traditions carry them westward; but their seat was finally fixed in that northern extremity of Asiatic Russia which the ancients never explored. They even carried with
them the Riphuran Meuntains, which became thus an ideal chain, delineated in molern maps as extending along the extreme frontier of Europe. Impressions of gloomy darkness, and even of the termination of existence, are, in other moods of tho human mind, associated with images of distance and obscurity. These influences gave birth to the Cimmerians, a people who dwelt in perpetual durkness, and were never illuminell by the cheorfill rays of the sun. Their favourite seat was on the strnits at the month of the peninsula of Taurida, the firthest point, probably, of which rumour had spoken in the poeticul uges, and which was called the Cimmerian Bosphorus. It was prohably from similitude of name that they were afterwards confuunded with the people called Cimbri. The learned, however, have found traces of Cimmerians in the cxtremities both of the east and the west; and the idea of the earth as terminated by a loundary of durkness, being founded on natural impressions, has very generally proviiled. Park mentiens it as the reigning belief among the Mandingos at this day; and the world, in the system of the Arabian geographers, was enelosed by a sea of darkness.

Other fabulous creations, springing from those of Homer, continued long to held a place in geography. The one-eyed Cyclops appears under the name of Arimaspian on the frontier of India, and in the remotest extremity of Africa. The Pigmies multiplied still more extensively; they had seats on the Strymon, the Hebrus, in Iadia, and the north of Europe. According to Strabo they were spread over the whole southern border of the earth; and this representation even induced Banier to suspect that, on that side, they have been confounded with the monkeys.

Sect. III.—School nf Miletus

The astronomical schools of Miletus and Samos appear, so far at least as there is any precise recorl, to have made the first attempts to form geography into a system, and to apply to it the lights derived from astronomy. These nod other cities of Asin Minor rank high nmong the early seats of commerce, and they estublished colonies in varieus quarters of the Mediterranean and the Euxinc. While they continued independent they were very wenlthy and prosperous, and the sciences were cultivated with ardour and success. To a commercial people pructical mathematics, and especially those branches subservient to geogrsphy and mavigation, must have peculiarly recommended themselves. Thales, Anaximander, Anaximenes, and P'ythagoras, are celebrated by their countrymen as the inventers of all the processes by which the phenemena of the globe are calculated. The gnomen or sundial, for nscertaining the progress of the sun from tropic to tropic, and finally the latitude of particular places, the division of the year into 365 days, and into four seasons, are represented as having originated in this school. It appears doubtful, however, whether these discoveries were due to their own exertions or borrowed from the Egyptians and Chaldeans, whose fame, amid the dim traditions of antiquity, stands pre-eminent for astronomical ebservation.
The first rude mode of forming a division of the enrth was into elimates, determined by the species of animals and plants produced in each. Thus the negro, the rhinoceros, the elephant, were considered as characteristic of the torrid zonc. This very loose method gave place to another, formed by observing at caeh place the length of the longest and shortest days. This could only be dune with accuracy by a gnomon or dial, erected on a horizontal plane, and showing, by the length or shortness of its shalow, the elevation of the sun above the horizon. There is much reason to think that this simple instrument was employed by the Egyptians, especially in the operation, which they undoubtedly perfermed, of aulding five days and a quarter to 360 , the number originally supposel to form a complete year. It has even been innagined by some, that the pyramids, those enormous structures by which this people excited the astonishment of the world, were only huge sundials; and thongh it might doubtless be extravagamt to conclude this to have been their sole object, yet it really appears that, being placed in the direct position of the cardinal points, they nre perfectly fitted for being thus employed. But, though it is clear that Thales and his disciples had largely drawn from these early sources, they probably made consilerable nulditions to the information thence derived. Two books, one on the tropic, and the other on the equinoxes, are reported to have been written by Thales himself. The degree of knowledge thus nttained enabled him to discover the error of the culgar in supposing the earth to be a plane surfnce; but he could not reach the precise iden of its globular form. Aun wimander viewed it as a cylinder ; some fompared its form to that of a boat; others to that of a lofy mountain. The detnils of the Pythagorean cosmography have not reachel us; but the fact that they placed the sun in the centro of the system, with the enrth moving round it, indicates at that infant era attainments which were lost during rany ages, and only recovered at a fir more advanced stage of modern science.
The map must, ns soon as geography was cultivatel, have occurred as the best and most perspicuons form of embodying its results. Anaximander is the first who is reported to have constructed a map of the world, embracing that limited sphere of objects which were then comprehended under that terin. But the most celebrated production of this nature was that emploved by Aristagoras, the prince of Miletus, to induce Cleomeues, the Smrtan king to undertake the conquest of Persia. IIe entered, it is said, the presence of that monarcl.,
holding in his hand a tablet of hrass, on which were inscribed "the whole circuit of the earth, the sea, and all the rivers." Under this pompous description, however, was probably includer: little more than a route from the Ionian sea to Susn, which was specially pointed to as that hy which the Spartan prince might lead lis victorious troops to the Persian capital. Evens of this line, respecting which he was so deeply interested, the short detail of Ilerodotis slows him to possess by no means complete intormation. Beyond Cilicia his descriptions are very indistinct. He has omitted Media altogether, and has given to Armenia quite an undue extelusion.
The continental Greeks, during the ern of their greatest power, did not cultivate systematic geography, nor indeed any sciences dependent upon mathematical principles, with much activity; indeed, they did not even keep them up to the state in which they had been received from the lonian cities. One solitary observation of latitude is recorded as having been made at Athens, by Meton and Eudemon, 432 years A. C. The different states, in the course of their extensive wars, must have acquired a great portion of that topographical knoivledge which is indispensable for military operations. Engrossed by these internal objects, their attention was little directed to the general system of the world. One individual alone, by extensive travels and diligent enquirier, procured an ample accession to the science of history and of historical geography.

Sect. IV.-Geography of IIerodotus.

The system of geography included in the great historical work of Herodotus is as complete as could be formed from the materials within his reach. It comprises a general summary of all that he could learn respecting the human race, and the regions which they tnhabited. His information was obtained not solely or chiefly from books, but mostly by travelling, the only mode in which at that era geographical knowledge could be effectually collected. He assures us that he had visited Persia, Assyria, Egypt, Thrace, Seythia, and all the distant regions which he describes. IIe viewed them; however, only as tracts of territory, the abodo of men, and did not attempt to combine them into any system of the earth; nor did he possess, or, at least, apply any of the mathematical or astronomical principles of the Milesian school. He even derides some of its conclusions; as that of the earth being round and encompassed by the ocean. His strange statement, that the sun in India was vertical in the morning instead of at midday, is evidently a misunderstood report of what he hal been infermed respecting the difference of time in the different parts of the earth's circumference. His knowledge, however, such as it is, consisting of plain ficts, untinetured with theory, is both solid and extensive.
The division of the earth into three quarters, or continents, was by this time completely formed. Sea, or at least water, seems to have been the principle of separation, though not required to be ultogether complete. Setting out from Euivpe, ior the origin of which appellation we have nothing but the fuble of Europn, the Greeks seem to have named the other continents from the districts immediately beyond the intervening sca. Homer already mentious the name of Asia as applied to a large and fine tract on the coast of Ionia. Thence it spread through the spacious peninsuln of which it forms part, and which Europeans continue to call Λ sia Minor ; but soon passing these limits, it was vaguely extended through the boundless regions of the East, till it finally embraced entirely the largest of the three continents. On the other side, directly to the south, the Greeks first landed on the coast of Libya; and the name of Libya wns by them npplied to the entire continent. With the Romans, on the contrary, whose position and political relations attached them entirely to the district of Africa proper, in which Carthage is situated, the name of Africa soon prevailed over every other.
These grand divisions of the ancient world were already known to Herodotus; but he las astonished European readers in an extraordinary degree by the assertion, that Europe is longer and of greater extent than Asia and Africa united. The severe julgment of M Gosselin pronounces such an assertion, made in the midst of the nations which carried on the most extensive navigation, th he a proof that they had not formed the least idea of the distance which their vessels sailed along the Mediterrancan. Before pronouncing so severe a sentence, we must consider attentively what, in the conception of Iferodotus, was Europe, and what was Asia. He mentions two boundaries: ono formed by the Black Sea and the Don, which, though it does not form a very nppropriate boundary of a continent, continues still to prevail, being connected with the Northern Ocean by the mountain chain of the Urals. But in the other, which is that preferred by Herolotus, the Black Sea is continued by the Caspian; the boundary line being carried nlong the north of that sea, ind thence indefinitely eastward. Taking Europe in this sense, we find it in the west co-extended with the opposite coast of Λ frica, which the ancients necessarily considered as marking the length of that continent, while, in the east, however far Λ sia might be prolongel, Europe wns still regarled as co-extensive. With regard to the boundaries of Atrica, too, there was an extreme wunt of precision. Our limit of the Isthmus of Suez is certainly the most accurate ;
Vol. I.
but the ancients, who could not rendily admit the notion of a continent bounded by any thing but water attached themselves more to the Nile, and did not welf know whether to consider Figypt as Asiatic or African.

Stascot. 1.-The Europe of Herodolus.

Scythia was the extremity of Europe, beyond Greece, with which Herodotus appears to buve been most finiliar, and which, in fact, he knew better than almost any other ancient writer. This name, which became ultimately Asiatic, was restricted by him to the tracts that now form the southern provinces of the Russisn empire. These regions wers then, and in a great measure still are, possessed by the same description of rude Nonjadic and pasteral people, who have always occupied the centrul plains of Asia. The attention of the historiall was specially called to them by the rash and daring expedition of Darius into a region secured by its notural barriers, and the wandering and untamed character of its people, against every form of regular aubjection. Dariua, crossing the Helleapont, marched along the southern shore of the Euxine, reached the banks of the Volga, and after the fruitless labour of erceting there several fortresses, returned by a moro inland route, in which Najor Reunell even supposes him to have passed the site of Little Novogorod. The knowledge acquired by this expedition, however, did not enable llerodotus to avoid great errors in the delineation of European Scythia, He imbibed a most exaggerated idea of the dimensions of the Palus Maootis, which he calls the "mother of tho Wuxine." This appears to have arisen chiefly from the false orienting of the side which faces Russia, and which is made to atretch almost due north, instead of west, while the sea itself is represented as forming the eastern boundary of that great space of four hundred miles square, within which ILerodotus comprises Scythin. The southern boundary was formed by the Euxine, and the other two by the land, so that be does not connect it in any shape with the Northem Ocean.
The details of this extensive region are given by Herodotus with considerable accuracy. Of its rivers, after the Danube, which he ranks second to the Nile, he mentions the Tyres or Dniester, the Mypauis, or Bog (and even describes the close appronch of these rivers to each other in the upper part of their course), the great channel of the Borysthenes, or Dnieper, and the Tanais or Doin. Between the hast he mentions several streams, the Panticapes, Hypacyris, and Gerrhus, which not beiug recoguized by modern geography, Major Rennell supposes to be crecks or branches of the grenter rivers.
Milesian colonies lad, by the activo enterprise of that commercial people, been already formed even on these rude shores. One, called the port of the Borysthenes, is described as the centre of the trade of Seythia. On the banks of this great river dwelt a people, bearing tho raro character of the ploughing Scythians, who reneuncing the almost universal habits of their race, raised crops of grain in this fertile district, which still furnishes to the ports of Taganrog and Odessa those supplies, which render t ' en the granary of the Mediterranean. The Milesians had also a colony eetablished at the mouth of the Danube.
The northern interior countries of Europe, which lay beyond the limite of the Scythia explored by the expedition of Darius, were covered for Herodotus with a veil of dim obscurity. On the Scythian frontier, along the heads of the Dnicster and Borysthenes, he represents several nations; the Melanehleni, "men clothed" in black;" the Androphagi, "men eaters;" the Neuri, "ence a year converted into foxes." Theso Greek names, and partly fibulous nttributes, shew the very iniperfect nature of the rotices collected on the subject. The regions beyend the Danube are expressly stated to be occupied by nations to him unknown. Two precious commodities, the amber from the coast of Prussin, and the tin of the Cassiterides, under which last name a vague idea of the British Islands seems to be included, cemmunicated the knowledge, that there was a great ecean in the north, but without the means of ascertaining its extent and limits. On the cast, however, as already observed, he had attached to Europe a vast extent of territory which has been entirely severed from it in subsequent systems. The expanse of northern and even middle Asia, which the ancients afterwards called Seythin, and which forms the modern Tartary, inhabited hy races exactly similar to the Seythians already described, appeared to Herodotus decidedly European. It was bounded by the Phasis, the Caspian, the Aral (not distinetly recognized), and the Jaxartes. The Mxssagetes, celebrated for their contest with Cyrus, gave name with llerolotus to all the wandering tribes in this eastern part of Europe; but they were afterwards merged into the prevailing appellation of Seythians.

Sunsect. 2. Asia of Ilerodotus.

Asia, aecording to the conception of it fermed by Jicrolotus, will appear, from what has been said, t include only a small portion of the vast continent to which we assign that name. On the north it had the same seas and rivers just enumerated as the boundnries of eastern Europe; to the east it terminated with India; while even to the south, a large portion of the desert tracts of Arabia were not yet believed to exist. When this great historian
wrote, all the various kingdoms and petty states, into which, in the infancy of the worll, Asia had been partitioned, were absurbed into one vast empire. The Persians clalmed Asia as their own, and had distributed it into twenty-four satrapies, which have been illustrated in a very learned manner by Major Rennoll. They included, with the exception of the northern part, which he considered as European, all of Asia that was known to the Greeks. In collecting therefore from Major Rennell's investigution the following table of those satrapies, we exhibit not only the outline of that great empire, but, with the somewhat dubious exception of a small part of Greece, the whole of the civilized world. The tribute paid in talents of silver will exhibit their relative wealth and inportance.
tanle of tile division of abia into satrapieg

```
3. Innin, Magnesia, Curia, Enlia, Lycia, Pumphylin (the west and south coast of Asia Minor)
$TMaste
2. Mygin, Lvilia, dec, (tlie western Interior)............................ ..............................
3. Plirygia, Paphmagnmia, Cappadocin, &e., (tho north enast mod the great interlor table land of Asia Minor)
4. Cilicin (ineludinR purt of Byria, and reaching to the Euplarnleg).,
```



```
Egypl, iacluding Cyrene and Barca (half of the trilute palif in grain)..............................
0. Bnhylon mnil As=yria, including Syria, and furnighing mlso 500 aunucis.
8. Ensjana, or Ronthern Peria.
10. Medle, (Northern Perain)
11. Thu Cagpianu, Persicm, Puntimathi, nnd Daritam (the Crupian provincea of Puruia).
88. The Natieni, Sappiren, &c. (Aderbljan mnd the Armenian provinces).
```



```
. (T)
4. The Sagartiane, Baramenns, ke. (Seikinn, Carummnia, Lar, and othar lerriterlea along tha Indian
        Ocuan and the eastern part of tho Peroian Gulf
```



```
7. Tlie Gadarit tha Dacice, ec:
```



```
Bnctria (Balk)
. The Eace and Caspice(Kaslagar, Pamur, and other tracta of mountainoua country about the head of
        the Охия).......................................................................................
17. The Paricanli and Eihlopianm nf Adia (Mekran, Including, perhape, Callbul, and the Delta of tha
        Indns)................................................... .............................................
18. India, the largent of all, being 360 talents in gold, which amounte in ailvar to.............................
\begin{tabular}{|c|}
\hline T 7 der \\
\hline 400
800 \\
\hline 360 \\
\hline 00 \\
\hline 1400 \\
\hline 1000 \\
\hline 300 \\
\hline \({ }^{290}\) \\
\hline 200 \\
\hline 400 \\
\hline 300 \\
\hline 000 \\
\hline \\
\hline 170 \\
\hline \\
\hline \\
\hline \[
\begin{aligned}
& 400 \\
& \hline \text { ine }
\end{aligned}
\] \\
\hline
\end{tabular}
```

Some tracts of thia vast empire, not formed into regular satrapies, were privileged to furnish only presents, or gifts, under an appearance of voluntary homage. Among these were ranked the Persinna proper, inhabiting the modern Fars, who obtained this distinction as the conquering people by whom the empire was originally founded. The Soithern Arabians, and the Ethiopians above Erypt, derived the same immunity from the difficult acces., to those rude regions in which they dwelt. The Southem Arabians are said to have propitiated the favour of the great king by the present of a thousand talents of incense. The Colchians, and the occupants of the neighbouring heights of Cancasus, were also numbered among the "givers of gits;" while the inhabitants of the northern parts of that great range, gecure in their mountain fastnesses, are said to have cared very little about the mighty ruler of Persia.
These delineations of Asia display, upon the whole, n surprising aceuracy nnd extent of knowledge; yet several remarkable errors oecur with regaril to points of which the investigation does not uppear very difficult. Thus the breadth of Asia Minor was reduced almost a half; that between Babylon nnd the capital of Egypt was underrated at least a fourth; and the country between the Black Sea and the Casptan was placed in the same meridian with the Persian Gulf, while it is really four degrees to the westward. These crrors are the more remarkable, as the distances, instead of being in excess, according to almost every other ancient example, fall short of the truth. The carly travellers exaggerated every space over which they actually passed; but it sometimes happened that two points were approached from different quarters, nnd then united to each other by a hypothetical line, which, as men usually undervalue what they know nothing of, was made generully too snall. It would not dppear that any regular route hall heen formed across the high and rugged tableland in the interior of Asia Minor froon Cilicia to Trebisond. Theso two points, being approached respeetively along the southern and northern coasts of the peninsula, might be supposed nearer to each other than they really were. Egypt was approached through Syria and Palestine, and Babylon by descending the Euphrates; but the direct line between them lying across the Arabian desert, wns scarcely known or frequentel, and therefore became an ideal line in the view of Herodotus. The line from Armenia to the Persian Gulf was of course measured along the Euphrates, the general course of which was sonth; and as the ancients oriented nll their lines to a cardinal point, they overlooked the gradual but constant bend which that river takes to the eastwarl.

The ileas of Herodotus concerning the extent of Asia, even including all that portion of it which he assigned to Europe, could not fail to be defective. He knew nothing of India beyond the Ganges, Thibet, China, Eastern Tartary, or Siberia, mere than half the superficial extent of the continent. Even his notions concerning India were most imper-
fect. Ho describen it as bounded on the eart by wand, stretching into an unknown and measureleme desert. From this ntatement it clearly appears that him lumin comprehended merely the western part watered by the Indus and its flve tributaries; ho know nothing of Ita widest and richest regiona, tho Gangetic provinces, Delhi, Bengal, and the Deccan; large portions were almo cut off from the mouthern coasta of Aria, which were nupposed to be washed by an ocean called the Red or Erythrean Nea, without any dintinction of the Persian Gulf, and vory little of that which we now call the Red Nea.

Sunnzor. 3,-Africa of Herodotus.

In hia inguiriea respecting Africa, Herodotus appenrs to havo been equally diligent as concerning the other regionn of tho globe; but as ho nover proccedel beyond Egypt, and as tho formidable barriers which nature opposes to him who attempts to penetrate the intorior had been very imperfectly overcome, much in what he collected is obecured with mys. tory or perploxed with conjecture.
Egypt io described with great accuracy, and under some foatures which no longer exist; for the Tanitic and Pelusiac branches of the Nile, of which little more than the channely can now be traced, were then in full flow. It appearn, however, that considerablo conflusion prevailed reapecting the quarter of the world to which Egypt was to be adjuiged. As water formed the basis of the division into continenta, the sandy inthmus of Suez, believed to be broeder than it really was, appeared very ill-fitted to form auch a limit. The Nilo, therefore, in the opinion of all the Grooks, was the boundnry of the continents: all to the east was Arabia ; all to the west Iibya; but a difficulty hore arose in fixing tho lot of Egypt itself. The Greeks, it appears, considered nothing ns Egypt beyond tho Deltn; but this opinion is ridiculed hy Herodotus, who observes, that in that caso thero must formerly havo been no Egypt at all, since this its lower branch was evidently produced by the gradual alluvial depositions of the Nilo. Ife contends reasonably, that all the banks of the Nilo as far up as Elephantap which was inhabited by Egyptiana, was clearly Epypt. Ho accuses the Greeke of roferring tho Delta, or their Egypt, neithor to Asia nor Libya. If wo rightly understand his own idea, it is that tho middle or Sebennytic branch was tho proper point of division between those continents.
In tracing the Nile above Egypt, Herodotus states a line of two months' journey partly along the banks, partly in boats which were dragged by ropes nlong the current through tho rocky channel. At tho end of this journey they came to Meroe, the capital of Fthiopia above Egypt, an ancient and celebrated kingdom, whoso moncanents wero viewed with almost religious veneration, and whoso monarehs had repeatedly conquered ligypt and founded dynasties. Two mouths' journey farther was the country of the Egyptian exiles, a numerons body, who, having revolted from Psammeticus, sought the protection of the king of Ethiopia, and wero cantoned by him in this remoto district, which mny be Sennaar, or rather, perhaps, the branch of the Bahr-el-Abiad opposito to it; for Herolotus shows his knowledge of this last stream by observing that it comes from the west.
The long tract of desert to the west of Egypt is also described by Herodotus in some detail, though apparently only from hearsay. Tho most conspicuous objects hero are the oases, particularly that which contains the ancient and venerated templo of Jupiter Ammon, and which has been identified with the modern Siwah. To the west he gives the nnmes of a succession of wandering aud pastoral tribes, such as still ronm over these arid nnd sandy regions, deriving from the soil only the produce of the date-tree. Many of them stand chargel with morals peenliarly shameless and dissolute, the females indulging openly in the most irregular conduct, and making even a boast of the number of their paramours. Probably there may be scandul mixed in theso very evil reports of the African ladies. An exception to this rude pastoral character existed on the const of Cyrenaica, where the Greeks established flourishing colonies, which could be appronched, however, only by the dangerous route of the Syrtis or quicksand, proverbial in ancient times as the scene of disastrous shipwreck.
The Nasamones, the most westerly as well as the most numerous of the wandering tribes, in general drove their herds along the sca-coast, but in summer repaired to the Oasis of Agila (Augila) to colleet the dates proluced in that district. A trihe among this people were called the $\mathrm{P}_{\text {sylli, }}$ or devourers of serpents; and in fact appear to have had a peculiar power of charming those noxious reptiles with which their deserts abound. Within their borders, on the side of Cyrene, where verdure first began to udcrn the waste, Herodotus has fixed the fabled site of the Hesperinn gardens.
The Garamantes, to the south-west of Augiln, and the Nnsamenes, nre represented by our historiur as inhalitants of a region infested by wild beasts, and of a timid character, flying the view and intercourse of other men, destitute of arms, and unnequainted with war. These characters do not apply to the people of modern Fezzan, which, however, is undonbtedly the tract pointed out. To the north-west were the Gindanes (the modern Gadamis), among whom the licenso of public morals had risen to a greater height than among all the wandering tribes of Libys. Still proceeding north-west, the traveller came to the luke Tri-

Buok I.
TIE EXPEDITION OF ALEXANDER.
tonin, celebrated in nncient fable as the hirth-place of Minerva, who, according to one legend, was aprung from Neptune nand the nyinph of the lake. Thin lake firms the weatern limit of the long range of nomadie tribes. Heyond it, Herolotus gives us the Maxyem, who enltivnted the ground. Ho had now seached that fine range of territory helonging to Carthage, atretelinizg along the connt, watered and eariched by atreama trom the Atlan, It is very remarknble, linwever, that he ahould pass by entirely that mighty and celebrated state, which wan not only the mowt powertul in Aifica, hut was alno the centre of industry and commerce with respect to the "ucient wordd. Major Remell han muspected that this aroms from a national feeling of enmity on account of their allinnce with the Persians; but when we consiler that no such feeling has prevented tho filleat aceount froin being given of the Pervinus themeelven, it ean scarcely be anpposed that the being merely friendus to the Persians woild excluile mo great a people from his notice. it seems renlly very diffeult to conjecture his motive, unlems, necording to the suggention of a learned friend, we auppose that Herodotua, writing nimost entirely to illintrate what wan obecure, or cominunicate knowledge on points reapecting whle the world were in ignorance, might think it superfluous to describe what must have been well known to the bulk of hia reailers, for the same renson that he hns given no regulnr demeription of Greece. In reference to the tranenctions of this people with other nntions, he taken repeated oceasion to mention them, so that the onission could not arine from absoluto lignorance.

Atlas nnil the desert border behind it next engage the uttention of our historian ; a trnct reaching as far an the strnits, which he enllm the high forcheud of Aftrica. He deecribes Atlas as a long and lofty range, whose highest pinnacles nre wrnpped in perpetua! clouds and ho nueribes to the natives the origin of the bellef adopted by the Greeks, which made it the pillar of heaven. Even in this extremo boundury of the continent, he mentions mome peenliarities that renlly exist:-the enormous size nnd formidable charncter of the eerpent tribe; oxon with large and crooked horns; hounes of salt which would inelt away if n single shower were to interrupt the continued dronght. When he begins, however, to speak of people with horses' hends, and othera without heads at all, it is time to tnko our lenve; though some learned writers suppose this to be a mere oxaggerated deacription of some animnls of the desert. We must still follow him, however, to the western coast beyond the strnite, where the Carthaginians, he was informed, carried on trade with the natives in a peculiar manner. The parties did not see ench other, but after a signal made by smoke, one laid down his proffer, went away, and left room for the other to do the arme; when the first eame, nud either accepted or rejected the bargain, till the terms were adjnsted. There have been reports in various quarters of this mofe of traffic, but all, wo suspect, exaggerated representations of the timid manner in which civilized traders make their nppronches to those snvage people who possessed nny valunblo commodities. The product sought upon this shore was goll: and, is it does not exist in any lntitude north of the Senegal, Major Reunell conclutes that the trule of Carthage extended to that distant river. $\boldsymbol{\Lambda}$ sceptic might surmise that the gold was brought. across the desert to the coast of Rarbary; yot, considering the formiduble character of this desert, it seems doultful if at so early a period a commercinl routo across it could have been opened.

The interior of Africa could not fril deeply to attrant the curiosity of Herodotus. The part already noticed ns described ly him forms only a belt along its northern const, and includes none of the vast inland tracts. On this subject, however, lie has olly one tale to tell. Severul Nasamonian youths of distinction, seized with that desiro to penetrate the continent which has prevailed throughout all nges, departed on an expedition to the southward. They trnversed three successive belts; first, the cultivated, or at least verdant and inhalited tract along the sea-slore; then, nnother occupied only by wild beasts; and, lastly, a region arid and desolate. Here, while plucking fruits, they were surprised by some men of small stature, who enrried them by the way of very great lakes, to a city inhabited hy black inhabitants, and situated on a large river flowing from west to eust. This river Ilerodotus, naturally enough, julges to be the Nile. Najor Rennell conecives it to be probably the river of Tombuctoo, which Europenns call the Niger; but we think, since the late discoverics, there can scarcely be any hesitation in fixing it as the Yeou, the river which rolls through Bornou, while the Tchad may be identified with the great lakes along which the expedition was conducted.

CHAPTER IV.

FIRST ALEXANDRIAN sCHOOL-ERATOSTUENES AND ETRABO.

Sect. I.-The Expedition of Alexander.

Tur geography of the Greeks became little more then a topographical delineation of military routes, atter the intestine wars in which they were involved cansed them to lose sight of the more distant regions of the earth. Besides, as they never cultivated matheVol. I.
matical science with any care or to any extent, they had not the power of arranging even these limited materials into a systematic form.
The expedition of Alexander gave a much greater degree of expansion to the human mind. That menarch transferred the seat of war inte the Persian empire, and carried his victorious arms into the remotest regiens of the East. Whatever might be the faults and follies with which his career was stained, it cannot be denied that an enlightened curiosity animated all his proceedings. Wherever he went, he was accompanied by skilful surveyors, Diognetus and Beten, who measured the length and direction of every route over which the army passed. Alexander himself carefully inspected these itineraries, employed all practicable means for obtaining the beat materials, and his letters are even quoted by Pliny as authorities for many geographical statements. These itineraries are said to have been afterwards published by Beton, under the title of "the Marches of Alexander." From the defective state of the science, however, which that prince could not remedy, all these materials were necessarily imperfect. They could include nething beyend mechanical measurement, nor is there any record, throughout this leng career, of a single attempt to fix the position of any spot by celestial observation. Imperfect as they were, however, these documents did not the less form a completely new era in geographical science. After the death of Alexander, they passed through the hands of Seleucus into those of Ptolemy 1hiladelphus, who spared no efforts to render Alexandrin the greatest seai of learning and science in the ancient world; and among the sciences there cultivated, geography and astronony held the most distinguished place.
The progress of Alexander led him at first through Syria, Egypt and Persia, but did not bring the Greeks to the knowledge of any countries, of whose existence and limits they were not already fully apprised. But after he began the pursuit of Bessus, whe had carried off Darius into Ractriana, his march became a sort of exploratory route. In his vain puranit of the Scythian armies he reached the banks of the Jaxartes, though he did not fully trace the course either of that river or of the Oxus. On his way thence to India, he had to penetrate the narrow passes overhung by the snowy ramparts of the Hindoo Coosh, and, with much difficulty and many hardships to his troops, learned to appreciate the magnitude of that great inland barrier of Asia. In India, Alexander could not penetrate beyond the region watered by the five rivers. Yet he did not consider it as the boundary of the carth; he learned the existence and beauty of the fine regiens on the Ganges, whither he in vain sttempted to persuade his fatigued and refractory troops to follow him. He consoled himself by conveying his army in pomp down the Indus, to view the entrance of that grest stream into the ocean, and with instructiens, as we have already seen, to trace the shores of Asia round the Persian Gulf. IIe himself, upon very bad information, undertook to lead back his army through Gedrosia and Caramania, the greater part of which he found, as modern travellers have done, to be a desert of the most dreary and formidable character, in which his army was with difficulty saved from total destruction.

Sect. II.-Expedition of Seleucus.

Seleucus, on the partition of the empire of Alexander, succeeded to the dominion of Syria and the East. Neither that prince nor his successors were either learned or patrons of learning; but as the owner of extensive dominions, and aiming at farther cenquest, he eherished the natural wish to be acquainted with what he possessed or hoped to obtain. He employed his admiral, Patrocles, to make a survey of the Caspian Sea, which had net entered into the line of Alexander'e route; but the information gained by this voyage must, as we shall see, have been far from complete. It would also seen as if he had employed the same admiral in an attempt to circumnavigate Asia; but the assertion which obtained credit in that age, that he had sailed round from India to the Caspian, sufficiently attosts the failure of the enterprise. Seleucus, also, finding, probably, that the inroad of Alexander inte India had been of very transient result, undertook a military expedition, the details of which are little known, and which enabled him to establish no permanent footing in the country; but lie collected some firther materials for the geographer, and the record of his marches appesrs to have been of important service to Pliny. He sent also an embassy under Megasthenes to Palibothra, capital of the great Indian kingdom situated on the Ganges, from which the ancients derived a mero accurate knowledge of these eastern parts of the world than they had previously possessed.

Sert. III.-Eratosthenes.
Fratosthenes at lengt? succeeded in reducing geography to a system under the patronage of the Ptolemics, which gave him necess to all the materials collected by Alexander, his generals, and successors, and to the immense mass of documents assembled in the Alexandrian library. The astronomical observations nade in this school were now sufficient to prove the globular form of the earth. Fratorthenes, procecding upon this principle, made it his study to aljust to it all the known fentures of the glohe. IIe did not, however, attend to the grand original divisions of the equater, the pole, or even the tropics. The line which

Book I. WORLD ACCORDING TO ERATOSTHENES AND STRABO.
formed the basis of his geography, and generally of that of the Alexandrian school, was a parallel drawn across the Mediterranean, and thence prolonged through Asia. It was formed in a very rough manner, upon no actual observation, and comprising all leading positions which came ncarly though not strictly within its sphere. It was called generally, the parallel of Rhodes. The most westerly point was the Sacred Cape of Iberia (Cape St. Vincent), after which tollowed the "Strait of the Pillars" (of Hercules). The next point was the Strait of Sicily, erroneously considered to be under the same meridian with Rome and Carthage. Then came Rhodes, the centre of the line. Issus, celebrated as the site of the vietory of Alexander, was with hittle difficulty brought within the limit. Next followed the somewhat doubtful position of the Caspian gates, and the line was extended along the chain of Mount 'Taurus, supposed to divide Asia into two parts, till it terminated at the remote city of Thinx, situated on the eastern ocean. This entire length of the habitable world, as it was called, amounted to about 70,000 stadia, or, according to his estimate, one hundred degrees, not quite a third of the circuit of the globe.

In determining a moridian to exhibit his breadth of the habitable world, Eratosthenes laboured under still greater difficulties. On the extreme south was "the limit of the habitable earth;" for, according to this school, a certain tract around the equator was, from the excess of heat, unfit for human labitation. The uninhabitable zone was supposed to extend 8,300 stadia, or about twelve degrees to the north of the equator. Under the next parallel were included the "Isle of the Exiles," in or near Sennaar; the cinnamon-bearing region, which appears to be Berbera, and Taproban, or Ceylon. Next comes Meroe, the capital of Ethiopia, which was supposed, though with great error, to correspond as to latitude with the southern extremity of India: thence descending the Nile the geographer marks the celebrated position of Syene, which was concluded to be immediately under the tropic, rince there was a well, in the depth of which at noon-day, at the precise time of the vernal equinox, the disk of the gun was seen reflected entirc. The observation was very nearly correct. Next came Alexandria, of which, ns the centre of all these observationa, the position as to latitude was very closely approximated. Then followed Rhodes in the centre of the great parallel already described as exhibiting the length of the habitable globe. Continuing northward, though not upon the same line, were found the Hellespont, Byzantium, the mouth of the Borysthenes, and passing over the vast obscurely-known tracts of Germany, Gaul, and Britain, the farthest Thule, which, on the report of Pythess, Eratosthenes regarded as the extreme northern boundary of the earth. As the same authority placed Thule under the Arctic circle, or at sixty-six degrees of latitude, the interval between that position and the limit of the habitable earth on the side of the equator nmounted to about fifty-four degrees, or according to his estimate 38,000 stadia, which formed thus the supposed breadth from north to south of the habitable earth.

Sect. IV.-Hipparchus.

Hipparchus, carrying still farther the system adopted by Eratosthenes, subjected the whole science of geography to astronomical principles. His labours in numbering the stars, and arranging them according to their plsce in the heavens, were such as appeared marvellous to the ancients, and are esteemed by Pliny as achievements that would have been arduous even for a god. In this career, however, he had been preceded by Timocharis and Aristillus, who, more than a century before, had made some observations which paved the way for the present extended discoveries. Hipparchus appears to have first conceived the iden of transterring the observed latitudes and longitudes of the stars to their corresponding places on the carth's surface, thus fixing the latter with a precision which no itinerary loeasurements could ever attain. He made a considerable number of observations of latitude, in addition to the very few previously existing, and he pointed out the mode in which the longitudes might be ascertained by observing the eclipses of the sun and moon. It does not appeer to what extent he carriel the difficult operations requisite for this investigation; bu: he is said to have calculated the eclipses for six hundred years, including the moments of their nppearance at different places; a performance which seems to indicate a knowledge of their astronomical position. Thus Hipparchus distinctly perceived all the principles upon which an accurate system of geography might be founded, and made some progress in their application; but these important prineiples, like others which were beyond the comprehension of the age in which they were made, remained for a long time durmant or misapplied, and were not brought into full practical application until a much more advanced period in the progress of science.

Skcr. V.-The worli according to Eratosthenes and Strabn.

The application to the different parts of the earth's surfice of the prineiples according to which tho globe was to be delineated, formed a task still more arduous than that of the first establishment of those principles. The longitudes and latitudes of the ancienls are both erroneous; more especially the longitudes, to which astronomical observation was never verv extensively apolied: lience it is not wonderful that the errore should be great;
but the regular and rapid manner in which they accumulate appears very surprising. They begin from the Sacred Cape of Iberis (Cape St. Vincent), which the ancients made their first meridian, and continue regularly increasing as we proceed eastward. To the Pillars of Hercules were assigned inore than twe degrees beyond the truth; to Alexandria, nearly seven; to Issus, ten; to the Caspian gates, fourteen; to Pattalcua, or the Delta of the Indus, twonty-three; to the mouth of the Ganges, nearly twenty-seven. We have already had occasion to observe, and the remark is found in the best ancient geegraphers, that merchants and travellers of that age gave an exaggerated report of all the distances over which they passed. The windings of the route, the hardships and obstacles encountered by them, the desire to magnify their own achievements, all concurred in inducing them to view and present this particular through an amplified medium. All the itineraries continued along the line upon which Eratosthenes measured his length of the habitable globe being thus unduly extended, the degrecs calculated out of them were of course equally in excess; and this excess became always the greater in preportion to the length to which the line was protracted beyond its commencement at the Sacred Cape. The latitude of the principal places in and round the Mediterranean is in general not far from the truth, probably because it was determined by such rude observations as were within the cempass of Greek science at that early period.

In tracing the outline of the known world, and especially of the continents, geographers still proceeded amid obscurity and doubt. This school had laid down the fundamental principle of a great circumambient ocean, embracing the entire circuit of the three continents. This idea, inherited from Homer, was doubtless supported by facts to a considerable extent; but its application to the world in general, and especially to the northern shores of Europe and Asia, was manifestly hypothetical. Eratosthenes, in comparing the magnitude of his known world, even under its ezaggerated dimensions, with the general circumference of the earth, became sensible that only a third part of this last was filled up. He indulges in conjecture as to the contents of this vast unknown region, which, he observes, might either be supposed to consist of one great ocean, the whole of which he denominates the Atlantic, or of lands and islands which might be discovered in sailing to the westward. With a degree of caution, however, not very common in that age, he declines to give any decisive opinion on this questicn.-The system of Eratosthenes may now be considered in regard to Europe, Asia, and Africa.

Subsect. 1.-Europe. (Fig. 6.)
The imperfection of ancient geography is often conspicuous with respect to ceuntries which were very near and familiar. In regard to the very centre of the Mediterranean, Eratosthenes committed a capital error. Following the propensity to include all the leading positions under some one line to which they approximate, be placed in the same meridian Rome, the Sicilisn strait (that of Messina), and Carthage. The mistake with regard to the first and last of these points did not much exceed a degree; but the middle point is nearly four degrees east from Rome, and five from Carthage. Such an error could not fail to produce others. M. Gosselin shows that it has led to a signal mistake respecting the position of Sicily, as the geographer, in order to retain its relative positien towards Carthage, neccssarily represented its greatest length as from north to south, instead of from east to west. The promontory of Lilybæum, facing Carthage, became the southern instcad of the western extremity of Sicily; while Cape Pachynum, instead of the southern, became the eastern. Sicily being thus projected so unreasonably towasis the sonth, Carthage also was made to recede too far in the same direction; and the coast leading thither fron the straits of Gibraltar was supposed to bend to the sonth instead of the north. The same erroneous process, placing Sicily too far west, enlarged beyond measure the eastern basin of the Mediterranean comprehended between it and Asia Minor. This deformity became still more serious from another application, to Alexandria and Rhodes, of the system of placing leading points under the same meridian. As the former error had made Nicily too far west, this made Rhodes too far cast, and rendered the sea between these islands too large by at least a half.

Strabo, ever alive to the fuults of his predecessers, detected the mistake of Eratasthenes with respect to the rclative positions of Rome snd Carthage. He has been far, however, from rectifying all the wrong positions established by his predecessor. He has

References to the Map of Europe according to Eratosthenes.				
I. Gatlea	11. Rama	90. Rhegium	©5. Poln	d Lizer
2. Calpe ${ }^{\text {3. }}$	12. Ontia	91. Aryingiam	30. Epidaures	e Garumna
4. Narbo	14. Puteoh	21. Thurentum	31. Apollanis	T Jurtue
5. Mrasilin	15. Neapolis	24. Hfundusium	\%. Apolonit	
6. Antipolis	17. Ponidovia	25. gipun	Rivera	Boetio
8. Tunac	18. ${ }^{\text {anin }}$	2\%. Anconn	b Aheran	1. Rherus
10. Populoniam	19. Ilippouium	23. Arimiaum	c Eequama	1 Varus

Fig. 6.
EUROPE ACCORDING TO ERATOSTHENES.
41

left untouched the false orienting of Sicily, and all the errors dependent upon it. Both he and Erutasthenes describe ltaly as extending from north to south, which, allowing for the early tendency to orient all lines towards a cardinal point, may be taken as a pretty fair representation. M. Gosselin has undertaken to show that such a direction would be inconsistent with the other data given by these geographers, in conformity to which Italy must stretch from east to west. Considering, however, the imperfect state of geographical delineation at that period, it seems going too far to follow each error into all its consequences, or to suppose that all tho views given can be brought into complete harmeny.

The outline of the central and northern countries of Europe drawn by these geographers is excessively vague. Strabo indeed makes some approach to accuracy in comparing the Spanish peninsula to a "hide spread out," or to a parallelogram. Various countriea were by the ancients denominated from a fancied resemblance to some object in nature, nor are examples wanting in modern times. But the eastern side of this figure is formed by the Pyrenees, which are thus made to extend from north to south, to form the western boundary of Gaul, und to be parallel to the Rline. Hence arises the greatest of sll these errors; for Gaul is allowed to have on the ocean only one coast, which is that looking to the nerth, and every where opposite to Britain. Strabo treats with derision the report of Pytheas, that the Calbium promontorium, the extreme point of Brittany, looked to the west, and he represents vessels as sailing to Britain as readily from the mouth of the Loire and Garonne as from that of the Rhine and the Seine. Great as these errors are, we shall easily trace their origin in considering the sources whence the Greeks derived their information respecting these extremities of Europe. Whatever may have been the ease with regard to the Carthaginians, it is evident that neither Greeks nor Romans ever navigated its exterior seas. Pytheas alone performed that daring voynge; but having no witnesses to bring in support of his relation, it was denounced as fabulous, in common with others made by early discoverers. The regular channel of communication was Marseilles. The merchandise oi Britain being brought across the British channel to the mouths of the Rhine and the Seine, was conveyed up those rivers, and by land carriage to that great emporium of Gaul. Hence the geography of Gaul and Britain, in that age, was ruled entirely by Massilian idess. From the canses stated, the Massilians had no communication with Britain unless by the northern coost of Gaul, und by routes directed from south to north through that country. Reasoning only from what they knew, they might soon arrive nt the conclusion, that Gaul had only a northern coast, and might apply to it the whole of the erroneous system now described. The result of this system was, that the Cassiterides, Islands of Tin, in which term the Scilly islands were evidently blended with Cornwall, were made to approach to Spain, and came to be considered as much Spanish as British. So prevalent was this ides, that even afterwards, when the conquests of Rome had made known the wide separation between the two countries, the Cassiterides are found in some maps still attached to Spain, and at a little distance from Cape Ortegal.

Britain, under this system, was represented as a triangle, of which the base, or longest side, was that along the channel and opposite to Gaul. As the coast, after pasaing the two extremities of this line, begins on one side to bend inward towards the Bristol Channel, and on the other to the Thames, navigators then probably considered it as continuing in these directions till it came to a point, far short of its real termination. Ierne, or Hibernia, (Ireland) appears in dim obscurity. It is said to be situated four hundred miles north from the centre of Britain, under a climate so excessively cold that there could not possibly be any inhabited country nearer to the pole. If the four hundred miles be measured from the centre of the southern const, and aliowance be made for false orienting, it will not be found se very wide of the truth. The rest of the description was probably made out by confused ideas of Scotland, and particularly the bleak mountainous tracts in the north. Eratosthenes, indeed, has derived from Pytheas a knowledge of the far nerthern limit of Thule, and of its appendant islanda, stretching towards the Arctic sea; but, as the proud scepticism of Strabo rejected this statement, lie was thrown back upon the more imperfect information afforded by the merchants of Marseilles.

The eastern shores of northern Europe occasioned still more embarmssment to the Greeks. They had, in general, the idea of this continent having the sea for its boundary; but this seems mainly to rest upon the general vague belief of a circumambient ocean, and an understanding that Germany had on the north a maritime boundary, indicated by the amber brought from the shores of the Baltic. Here, too, Pytheas, either by personal investigation or by carefill inquiry, had collected some purticulars which if Strabo had not disdained, he would not bave been left in such total darkness. After proceeding far along the German coast, that navigator, it is said, came to a great gulf (evidently the Baltic). He found Basilin, a very large island, the same which Pliny calls Baltia; being, in fact, the peninsula of Scandiaavia, which, until it was circumnatigated, must have beea regarded by navigators as an island. Then, it is said, he came to the Tanais, which appears, no denbt, a very startling assertion; but we must remember that, in this echool, the circumambient ocean was supposed to lave a coast only a little north of the Euxine and the Caspian, and

Boor I.
ROMAN GEOGRAPIIY.
to communicate with these scas or gulfs (as they werc supposed to be) by narrow straits, one of which was the Tanais, and the mouth of one of the great Baltic rivers night very easily be imagined to form the ternination of this strait.

Subszct. 2.-Asia. (Fig. 7. page 44.)
The limits assigned to Asia, already too small, were contracted by the geographers of the Alexandriun school, notwithstanding the arditional sources ef information wheh they possessed respecting that continent. This error arose partly from their theory of a surrounding ocean, and partly from their neglect of the important information obtained by Herodotua respecting the countries aleng the heads of the Euxine and Caspian. The expedition of Alexander, indeed, and the embassy of Megasthenes, made them acquainted with the Ganges, rolling eastward through the fine plain of Upper Hindostan. Seeing it pursue this direction to the utinost limit of the then known world, they were led to conclude that its ceurse continued eastward, and that it fell into the eastern ocean, which formed, on that gide, the boundary of the continent. Connecting this with the Caspian, the enly northern Asiatie sea known to them, they drew a line from one to the other, by which they excluded nearly two-thirds the extent of Asia; the Birman empire, China, the greater part of Tartary, and the whole of Siberia. On the shore of the eastern ocean was placed Thine, evidently known only by vague rumour, and which they fixed at the extremity of the line measuring the length of the habitable globe. What may be the import of this mysterious name, and whether it be the capital of Siam or of China, is a discussion which will be better reserved until we come to the more precise notices of Ptolemy. One other grand feature was known to this school; the cape of the Coliaci or Cape Comorin; but conceiving the coast. of Coromandel to follow the line of the Ganges, and, consequently, to verge towards the west, they made it several degrees inore ensterly than even Thine.

Asia within and Asia beyond Taurus were made the grand divisions of that centinent. That great mountain chain arising in Asia Minor was supposed to be prolonged by those of the Elburz, of Khorasan, and of Hindoo Coosh, which, in fact, there is much reason to believe, may form a chain nowhere whelly interrupted. Within Taurus were all the fertile, populous, and splendid kingdoms and countries of Asia; Syria, Assyria, Babylon, Persia, Susiana, Ionia, Cilicia; beyond, were the ruder tracts of Scythia, Bactria, Sogdiana; and more westerly, the Caucasian territery, and the part of Asia Minor situated along the shere of the Black Sca.

Sunsect. 3.-Africa.

In regard to Africa, the knowledge of these geographers, theugh accurate in some respects, was extrencly limited. They believed its boundary to be the sea; but this correct judgment proceeded rather from a casual coincidence with their theory of an encircling ocean, than from any actual knowledge; since Strabo rejected even the possibility of circumnavigation. This scepticism was founded upon the hypothesis of an uninhabitable torrid zone, which formed an esaential part of the reigning system at this period. It is a belief manifestly African, founded on the observation of those vast and burning deserts, which extend indefinitely beyond the narrow inhabited atripe bordering on the Mediterranean. The Nile, then, being still considered as the eastern boundary, Africa became a sort of right-angled triangle, of which the two smaller sides were formed by that river and the Mediterrancan, while the hypotenuse, or largest side, was the unexplered shore. It was mon the Nile that Eratosthenes measured the habitable world of Africa; yet he does not trace that river so high as Herodotus, his detuils reaching only between three and four hundred miles above Meroe. In these details, however, he is very accurate: on the eastern side, he represents it as receiving two great rivers, the Astapus and the Astaboras, the former of which flows from lakes in the south, and, when swelled by the summer rains, forms almost the main body of the Nile. He describes alse the bend which the river makes in its pussage through Nubia. The source, being imagined to exist in regiens rendered inaccessible by extreme heat, could not be considered as within the reach of discovery. The idea, however, still prevailed, that it came from the west, and Strabo even mentions a report, that its source was in the remote region of Mauritania, south of the Atlas. This is the only statement made by geographers of this school, which can be considered as indicating any idea of the existence of the Niger.

CHAPTER V.

roman geography.

Tue Roman geographers attained no proficiency in the mathematical branch of the science. M. Gosselin does not even hesitatc to assert, that they remained always strangers to its very first elements. They made no attempt, therefore, to combine their materials inte one harmonious system, or to fix their positions with that strict accuracy, which astronomi-

Soos I.
tal observation alone can reach. Yet no nation employed greater diligence in the operations of practical survey. This was, indeed, absolutely requisite, with a view to that incessant warfare in which they were engaged; they could not conquer tho world without oreviously surveying it. Their geographical researches were, however, held strictly subservient to this ambitious design.
Itineraries were thus the only form in which the results of Roman investigation were presented. Vegetius infurms us that when war was to be carried into any country, the first care was to procure a complete set of routes, and place them in the hands of the general. Theso itineraries, it is observed, ought, if poessible, to contain, not merely the intervals, in paces and Roman miles, between one place ard another, but the quality of the roads, the surrounding objects, mountains and rivers, delineated with the utmost possible precision. They were not only to bo noted, but painted, that the commanders might not know merely, but see before their eyes, the route by which thev were to proceed. The Ronnans became thus the surveyors as well as the conquerors of the world; and every new war in which they engaged, every new conquest which their arms achieved, produced a fresh accumulation of muterials for the use of the geographer. Even after a country was subdued, the necessity of accurate survey did not cease. The empire was long held in a state of mere military occupation; camps formed at proper distances were connected by those excellent and durable roads, many of which remain to this day. An accurate acquaintance with the position and intervals of these camps, and the nature of the intervening territory, was essential to the maintenance of their dominion over the vast extent of their conquered countries. No sooner, therefore, had Julius Cesar seated himself on the undisputed throne of the empire, than he caused a senatûs consultum to be passed for a general measurement of the Roman world. This task, it is said, was intrusted to "the most prudent men, adorned with every endowment of philosophy." The east was assigned to Zenodoxus, the west to Theodotus, and the south to Polycletus. In the course of twenty-five years, as we are informed by Ethicus, the whole was completed. Julius Casar, however, did not long survive the commencement of this great work, which the civil wars probably suspended. It was apparently resumed and completed under the reign of Augustus and the ministry of his son-in-law Agrippa, to whom it appears, from Pliny, to have been afterwards ascribed. The exact principles upon which this grand measurement was conducted have nowhere been stated. The reform of the calendar, effected by Cessar, seems to point out that sonc elements of astronomy existed among those with whom he consulted.
Rome, in the moet flourishing era of its literature, produced two eminent geographers, Mela and Pliny.

Sect. I.-Mela.

The personal history of this eminent geographer is a subject respecting which scarcely any particulars have transpired. From the allusions, however, in his own writings, to the conquest of Britain by Claudius as a recent event, made in those flattering terms which only a contemporary would have employed, it would appear that his work was written under the reign of that inglorious prince, and is, consequently, anterior to that of Pliny.
Mela, in forming his system, does not appear to have possessed those extensive measurements and itineraries, which were probably deposited in the imperial archives. Faithful, however, to the object of his treatise, "de situ orbis," he discovers very considerable anxiety to determine the position of the globe, and trace with accuracy its general outlines. He adopts the general principles of the school of Eratosthenes, incorporating into it the new features which had been afforded by Roman conquest. He docs not appear, however, to have comprohended their idea of the globular form of the carth, nor is he very perspicuous in any thing that he says upon that subject. He bogins-" All that, whatever it is, to which we give the name of the world and heaven, is one thing, and in one circuit embraces itself and all things;" rague and pompous expressions, to which no determinate idea can be attached. We find him, howover, adopting in its fullest extent the belief of a circumambient ocean; and when lie spcaks of "the ligh earth in this middle part of it," and describes the sea as going under and washing round it, we are led to believe, that he viewed the earth as a sort of conc, or as a high mountain raised by its elevation ahove the abyss of waters. Having made a vague division of the world into east, west, and north, he distributed it into five zoncs, two temperate, one torrid, and two frigid. Only the first two were habitable;

References to the Map of the Worll according to Eratosthenes.				
EIJROPA.	2. Amiana	15. patala	AFRICA.	10. Rerenice
1. Massilia	3. Simupe	15. Palibuthra	1. Lixus	11. Norene
2. 1loma	4. Ephesus		2. Carthago	19. Merdo
3. Athenaf	6. Thampacus	ก Oxus Rivers.	3. Pyrana	13. Ptolpmain
	7. Ninua	b Jgrartea	5. Rerenice	
Rivers.	R. Susan	d. Phasis	6. Alexandria	a Nilns Rivers.
${ }_{\text {b }}$ B Berysthenes	10. Rhinocolura	9 Tipris	8. Pelusum	${ }_{6}{ }^{\text {b A Alapus }}$
c Tanais	11. Filana	f lnilus	9. Ansinot	c Astaboras.
ASIA. 1. Dioscurian	1.. Garra j3. Tirus lnanfa 14. Aradus Insula	${ }_{5}$ Gangea		

Mg. 8.-SYSTEM OF MELA.

and that on the south was inaccessiblo to man, on account of the torrid regions intervening. Accorling to this system, however, there was on that side another earth, inhabited by people, whom lie calls Antichthones, from their opposite position with respect to that part which we inhabit. The form and boundaries of the known and habitable earth are thus delineated:The Mediterranean, with its branches of the Straits, the Euxine, and the Palus Mcotis; itu great tributaries, the Nile and the Tanais;-these combine, in his conception, to form the grand line by which the universe is divided. The Mediterranean itself separates Europe from Africa; and these continents are bounded on the east, the former by the Tanais, the latter by the Nile; all beyond or to the east of these limits was Asia. (Fig. 8.)

In drawing the outline of Aaia, Mela adheres very strietly to his Alexandrian models. He describes it as bounded by an ocean on every side except the western, where it confines with Africa and Europe. It presents, he says, a inge and perpetual front to the eastern ocean, its slures being occupied by the three farthest known nations, the Indians on the south, the Seres in the middle, and the Scythians on the north; but the territory of the Indians and Scythians is rendered in a great measure uninhabitable by the extremes of heat and cold. The limited extent of his aceurate information, however, is apravent from the representation he gives of this ocean, as flowing directly north from the point of Colis (Cape Comorin), the Ganges flowing into it, and the Scythians occupying its shores as far as "the Caspian Bay." He even inclines to credit the report of an Indian vessen! having been driven round by stress of weather to the coast of Germany. Thus he gave to Asia the same truncated form which it had received from the authors whom he followed; but he certainly rendered the dimensions of its eastern shore more ample, when he made it to consist, not of India only, but also of Serica and part of Scythia. With regard to the aouthern shores of Λ sia, they were known with sufficient accuracy, ever since the expedition of Alexander, and the voyage of Nearchus. He calls the Indian ocean the Red Sea, and recognises the Red Sea of modern geographers only under the name of the Arabian guif; but this is plainly a mere nominal difference.

Europe, as described by Mela, extends from the Tanais to Cudiz, and, with the exception of its eastern river-limit, is bounded every where by seas and oceans. Its leading feature is the Mediterranean, joined to the Euxine and the Palus Maotis, which are considered only as prolongations of that sea; while the Agean, the Ionian, and the Adriatic seas, torm its three great gulfs. The western part lie divides lato the Tuscan and the Libyan seas. His delineation of the exterior consts marks a great advance of knowledge. He assigns to Spain a northern, and to France a western coast of great extent, and adds that the Pyrences, after separating France from Spain, enter the latter country and penetrate to its extremity, when they face the Atlantic. Here the whole chain of the Cantabrian mountains is considered, by no very strained meaning, as Pyrenean. In trcating of these outer ahores of Europe, and the "huge and infinite sea" on which they border, Mela relates, with exaggerating wonder, the phenomena, unknown to a Mediterrancan people, of the tides, "that mighty movement by which the sea alternately advances and returns into itself, overflowing the lands, driving back mighty rivers, and sweeping away the strongest land animals." His speculations on the cause are singular ; either the world is a great animal whose breathings excite in its breast these alternate movements; or it contains deep caves, into which the waters are alternately absorbed and ejected. He does, however, mention the theory which supposes them influenced by the moon, and remarks their correspondence with the movements of that body. In treating of the Cassiterides, or Islands of 'Tin, which include, as already olserved, the Scilly Islands and Cornwall, he shows considerable perplexity, only observing that they are "in Celticis," indicating their close alliance with France. In regard to Britsin itself, however, he confidently undcrtakes to give the world better information, in consequence of the victories of "the greatest of princes" over nations hitherto unsubdued and unknown; and he certainly makes a great progress beyond the imperfect notions of Strabo. He describes Britain as presenting two extensive oblique coasts, one looking towards France, the other towards Germany; the two forming a grest angle nearly opposite to the mouth of the Rhine. The coasts thon began to bend inwards, and form a triangle varied with numerous points and anglea, and somewhat similar in form to Sicily. The country is described as flat, large, and fruitful, but contrary to what now obtains, more favourable to the support of flocks than of men. The nativos were uncultivated, warlike, and ignorant of wealth; they were accustomed to paint thcir bodies, and to ride in chariots. Above Britsin was Juverna (Ireland), nearly equal in size, and of an oblong form, its soil searcely fit for the production of grain, but its pastures so luxuriant, that if the eattle were allowed to feed for more than a short period of the day, they died of repletion. The relative dimensions assigned to Britain and Ireland would aeem to show that the former was known only in its southern part, yet the writer discovers himself not unacquainted with the Scottish islands. He mentions thirty Orcades, in which number the Shetland Islanda are probably included.
In proceeding to the east and north, Germany is described by Mela as a region of great extont, interseeted by many rivers, and covered in a great measure with woods and marshes. The inhabitants were tall and remarkable for courage and strength, continually exercised in war and hard labour, eating raw flesh, and clothed partly in the bark of trees. Passing the Vistula, we enter into Sarmatia, extending to the Danube, rather a vague limit, but the term is evidently meant to comprehend the greater part of modern Poland. The people are some stages in barbarism beyond even the Germans, having no cities or even settled abodes, and carrying their fierceness to such a pitch, that hunting and bending the bow were considered the best accomplishments of their females, no one of whom, the writer even asserts, could enter the matrimonial state till she had killed her man. On this shore he represents the Codanus Sinus, a great bay filled with large and small islands; nowhere presenting an expanse resembling a sea, but dispersed and seattered in narrow channels like rivers; a description very applicable to the entrance of the Baltic and the Danish islands. In common with all the ancients, however, Mela sppears to have been ignorant of any thing like a continent on the other side of this great bay.

The outline of Africa, drawn by this geographer, sufficiently shows his limited range of information. This continent he views as a triangle, the greatest length of which, measured in his system from the Nile to the Atlantic, is considerably less than the length of Europe. Of this triangle, the Nile forms the base; and firm thence the southern const, or that of the Ethiopic ocean, continually approximates to the northern, till, beyond the Pillars of Hercules, it tapers almost to a point. The origin and course of the Nile are to Mela a subject of much speculation. One account, esteemed by him as tolerably credible (aliqua credibile) identifies it with a great Ethiopian river, called in the language of the natives Nuchul; which, while all other rivers tend towards the ocean, alone flows eastward to the central region, and no one knows where it terminates; a striking coincidence with the actual observation of the moderns, respecting that celebrated stream denominated the Niger. Elsewhere, however, Mela propounds an hypothesis of a much more extraordinary character He says, that if there be another carth (on the south of the equator), and Antichthones opposite to us, "it might not be departing too far from the truth" to suppose that the Nile
nrose in that earth, and reached our side of the globe by a channel bencath the ocean. Thus it would naturally swell during the summer solstice, which, on the side of the worli froms which it came, was the season of winter. Bertius and Vincent, however, have perhaps dealt too linrdly with the author, in combolying this wild conception into a map, and giving it to the world as the syatem of Mela, who mentiona it merely ns a conjecture. The lower part of the course of the Nilo he describes with less accurncy than Strabo, the two channels of the Astapus and Astaboras being made branches of the Nile itself, first aeparating and then re-uniting. His ignorance respecting even the sheres of the Red Sen ia proved by their being filled with poetical wonders; the pigmies waging their ancient war with the cranes; the phomix, after a life of four hundred yeare, dying, and reviving from its ashes. Proceeding to the interior and remoter shores of Ethiopia, he finds always new wonders, sphynxes, birds with herns, flying horses. He refers to the voyages of Hanne and of Eudoxus, to whom he ascribes a variety of fables, by which the reputation of that navigntor has been much and perhaps unjustly tarnished; lastly, he comes to the Fortunate Islands, of which the soil produces all things spontaneously, and the fountains are possegeed of miraculous virtues. In short, every thing that Mela anys of Africa beyond the mere Mediterranean coast betraye a remarkable ignerance of the myateries of that continent.

Seot. II.-Pliny.
Pliny, the most learned of the Homun writers, devotes two books of his extensive werk on natural history to a system of geography. IIe appears to have possessed a greater store of nuthentic materials than any former writer. From his intimate connexion with the imperial fumily, and with many of the most eminent commanders, all the military measurements, as well as the general survey of the Roman empire, were placed at his disposal. He has introduced, therefore, a multitude of itinerary details, which are generally very accurate and valuable. But he employs no astronomical elements, and appeara to have tuken no pains to construct a regular system. All the gencral idens which we can trace in his delineation appear to be founded on the same basis with those of Mela.

I'liny begins with Europe, which he considers as by far the most besutitinl and fruitful of the three quarters of the globe; and he applands the opinion of these whe consider it not merely as a thirl, but as a half of the whole globe, separated from the other half by the Tanais and the Meditcrranean. This capital error, however, will not appear so surprising, when we consider that the regions here compared with Europe wese Asia terminuted by the Ganges and the Jaxartes, and Africa extending only a few hundred miles inland from the Miediterranean. Europe had been computed by Agrippa at 3440 miles in length, by Polybius at ouly 2410; which last dimension is nearly correct. Pliny discovers a clear conception of the form of Spain, drawing the Pyrenees not from south to north, but from south east to north-west, nnd observing that Spain, "where it begins from them, is narrower than France, and even than itself." The position of Britain in the mup of Europe is very fairly given; though, to enumerate Spain, with France and Germany, among the countries to which it is opposite, partakes too much of antiquated theories. He states the belief of Agrippa that Britain was eight hundred miles in length, and three hundred in breadth; Ireland the same in breadth, but ghorter by two hundred miles; which ia a tolerable estimate, the last par icular excepted. His disposal of the islands around Britain is not a little confused. He mentions the Orkneys, seven Kmode, and thirty Ebude, but without showing any precise idea of how they stand. Not only the Isle of Man, but that of Wight also, is phiced between England and Ireland. He conmits also a rernarkable error when he mentions Cassiterim or Cattiterim, where tin is proluced, as an islund at the distance of six days' sail from Britain. To the remotest point, 'Thule, he assigns the attri'sutes of a region beneath the Arctic circle, having only one day and one night in the year; and only a day's sail from the Cronium or Concrete Sca. Here, nlso, he nuentions reports of other islunds, Scandia, Bergos (Bergen), Nerigon, which lave intercourse with Thule. These features evidently belong to the coast of Norway.
In describing the north of Europe, Pliny begins from the northern shores of the Euxine, and Palus Moeotis. The latter receives the Thuais, flowing from the Riphrean Mountains, and forming the boundary of Europe. Beyond that celebrated and deni-fabulous range, he still finds the IIyperboreans, n people screened from every noxious blast, leading a happy life exempt from old age, sickness, discord, and grief; till at length, satiated with felicity, they throw themselves from a rock into the sea. "These fables are, however, qualificd with the saving clanse, "if we are to believe them," which shows that the faith of Pliny was not implicit. The shores of the ocean, he confesses, are "marked by uncertinty." On the authority, however, of Xenophon Lampsacenus and of I'ytheas, he reports Basilia or Biatia as an island of immense magnitude, three days' journey from the Neythian coast. Procecding westward, he comes to the Cimbric Chersonese, and opposite to it another island. Scandinavia, of unexplored magnitude, but which was iuy many described as forming quite another world. Thus Baltin and Scandinavin, approached from different peints, are con-
sidered an two dintinct insular territories, tho vast extent of which, however, appears to be better appreheuded by Pliny than by any other ancient writer.

Asia, in l'liny, is delineated according to tho gencral ideas of Stralo and Mela. Tho Cnspian or llyreanian Sea is a gulf opening into the northern or Scythian ocean, which is in comsunieation with that called Seric or Oriental. Pliny seems to havo fuller information of the grandenr and weath of Indin than any of lis predncessors. Its inhabitants and its cities were innumerable, und it was reported on good authority to form a third of the whole world. It enjoyed gentle breezes, two summers, two harvest:s, one before, another atter the periodlcal winds. Blessed with these advantages, this happy people were never known to emigrate beyend their own territories. He describes the marches of Alexander, from the measurements of Dingnetus and Beton, and where these fail, he continues them by those of Scleucus, and by the embassy of Megasthenes, as fur as the month of the Ganges. These itineraries secin very gool. In treating of Taprobane, he ohserves, that it had been believed by some to be sn opposite continent ol earth, but that the inquirios of Alexander had clearly proved it to be an island. His report, however, that the country of the Neres was soen from it, implies a nost inulequate and erroneous cencantion of the eastern coasts of Asia.

The Africa of llliny does not differ in its general outline from that of Mela. His access, however, to the archives of the empire, and his nequaintance with somo of tho Roman generals, cnabled him to give new details as to some of its most interior tracts. Tho region of Atlas had been first penctrated in tho reign of Claudius, by Edemon, an adherent of the extinct fumily of the Ptolemics, whe sought refuge there. Suetonius Paulinus, with whom I'liny had convorsed, fonnd it of immense height, covered with snow even in summer; on one side rising from the sands, rough, horrid, and bare; on the other, covered with thick groves of unknown epecies of trees, and sparkling with fountains. An account is given of a vayage nlong the western coast, which Polybins had mado by order of Scipio. Only the names of the places and tho distances are given. The formor coincide in a great measure with those of Hanno; and if Polybius was right in this coincidonce, his report tends much to confirm M. Gosselin's riew of the limited extent of IIanno's discoveries. In the time of Vespasian, anothor expedition, under Cornolius Balbus, penctrated into und conqurered Garnmn (Germa), and Cydamus (Gadamis). The Romans here beheld with surprise houses built of salt, and on digging to n small depth, water sprung ont of the sand. A number of names of conquered places are here given, which it is diffirilt to recognize; for it seems too hasty to identify Boin with Bornou.

A theory of the course of the Niger was formed by Pliny from these materials with considerable pains, but very imperfect success. Its sonrre, according to king Juba, existed in Mauritania, and it is even said to have boon found by Suetonins Paulinus after a few days' march to the sonth of the Atlas. Tho Niger springs here from a lake; but soon, indignant at flowing through sandy and squalid tracts, it passes under ground for several days, and emerges inte another lake of Mauritania. After a circuit, however, of some extent, it again disappears, and having pursued a subterranean course of twonty days, re-appears, dividing Africa from Ethiopia, At last, in its passage through Ethiopia itself, it ussumes the charucter of the Nile, first in two chunnols, Astusapes and Astaboras, enclosing the island of Mcroe, anil afterwards uniting to form the entire and proper Nile. This wild and absurd detail evidently includes the course of several rivers belonging to different nad widely remote regions of Africa. It may even be doubted, if any part belongs to what by moderns has been considered the Niger. It seems very probable, however, that the middle part, which divides Africa from Ethiopia, has been suggestel by the river of Bornou, or the Yeou, as it has been called by our recent diseoverers.

Sect. III.-Itineraries,-Peutingerian Table.

Of the itineraries composed by the masters of the world, and employed by them as an instrument in its conquest, some fragments yet remain. The most memorable is that which hears the mame of Antonimus. It has been nscribed by some to Scverus, by others to Theodosius, and in fuct contains many particulars which could not have been written prior to the era of the last sovereigns; but it seems probable that there were successive editions, with such ameniments and alterntions as time suggested. It is a mere skeleton road-book, with nothing but the names of places nud their distance from each other. The same may be said of the Jerusulem Itinerary, exhibiting in great detail the route from Bordeaux to that holy city.

The Peutingerian Table (the Italian portion of which is exhibited in Fig. 9, p. 50.) is a more remarkable monument, and may be considered, probably, as a specimen of the "painted roads" of the ancients. It forms a map of the worlh, constructel, however, on the most novel and peculiar principles. Its dimensions being twenty feet in length and one in breadth, an idea may be firmed of the correctness with which the proportion of the different parts is exhibited. The high road which traversed the Roman enipire in the general direction of east and west is made the first meridian, and to this every other part is subjected. The ob-

Vor. I.

Brok I.
jects nlong this line are mimitely and frithfully exhibited; of thowe lying to the north and sonth of if mily mome general notion can in cunveyed: theme are all reprenented, of courne, mort enormounly extended in longth and reduced in breadth.

Chalprbit Vi

mexonil aldxanturtan mehoot.

Alexanmaia hy her coutributions to geography mupplicd to a great extent the deficienciea of the Romanse, who, amid thin succees, with which they cultivated history nad literature, never attained to any eminence in this weience. That capital, even in its subject state, retainet witl the impulwe received fron the ittolemier, and continued to be the necond in magnitule, and the firrmomt in learning, of all in the enmire. In the wecond century there was establinked, here and at 'Tyre, a geographical school, powewing inore ample materinla and reworrcon than nay that had hitherto exinted, 'To the compuents and itineraries of Alexnnder were now mided thowo of Rome, which, extemling in a different direction, embracell many countries to the north and to the went, Gaul, Britain, Germany, Spain, and Mauritnnin, respecting which the Greoks had ponsensed only confused and imperfect notions. Thus a grenter jortion of the glolar than at any firmer period was now united under one government, which, by a standing army and a regular nysten of inwn, presorved the whole in peace and order. The terror of the Roman armin enahled travellers to jenetrate with nafety oven beyond the limita of the empire. Iastly, the unboumded luxury of the great capitala, and above all of imperial Rome, enriched with the spoils of the glate, fired the enterprise of the merclinnt, whe found his way into those remotent markets of the castern world, the rich commotitiew of which had hitherto been either brought by caravana or found at internediate stations.
These enlarged materinis wero connected together by a much more accurate and acientific arrangement than hail been mopted under the sehool of Eratosthenes. The method suggented by Hipparcluas of subjecting the whole of geography to astronomical principlen, nud of Ilxing the position of every spot upon the globe necerding to its longitule and latituile, was now attempted to be carried into full effect. The attempt, howover, was male but in a very rude manner, and upon a very narrow banis of obwervation. Not only, therefore. did it prosent a very imperfect eulition of the now system, but involved errors which caused it in pone respects to retrogrado even from the rude state to which it had been brought by the former achool of Alexnudria.

Sect. J.-Marinus of Tyre.
No Tyrian aystem of geography has come down to us, notwithstanding the commercial greatness of ite people at an early period. From the Hebrow writers wo have accounts perhaps of nenrly the whole of the distant countries with which the Tyrians held intereourse;

References to the l'eutingerian Talle (mage 30).				
NORTL PAET.	41. Aneonn	- Rubienm	31. Trrento	70. Gurra
1. Minria	44. Cnmero-nnvo	1 Nulurum	3. Brindiai	71. Ad Inrras
9. Nardona	4i. Aqumir Apolilaaria	M Matuon	2i. Anatio	72. (fpleminus
3. Aquineo	14. Ponto	\checkmark Mino	34. Neruion	7. Thiroro Col.
Jmiers	43. Jeato	${ }_{\square} \mathrm{T}$ 'uma	3, Nutrefin	7\%. Tnparura
a. Regralono	47. Enatejio Firmani	y Nnfrimum	\%7. Oplanis	76. Frenpe
7. Satinria	4i1. Ad Roni. Poutum	z Anio		78. Orapania
g. Celom		gOUTII PART.	413. Nenupoil	78. Aqurin Laboden
10. Viodiohana	31. Charnaginn	1. Ad Pretorum	d1. Copua	(0). stirsmunia
1. Tarantica	S2. Trime Calonia	2. Eurvitio	42. Cumas	21. Aetlina Mone
2. Pimuna	51. Aquin	;1. An Pretorum	43. Ayline	89. Alewsana
13. Pola	54. Jpponte diarito	4. Murin Major	44. Acram.	
14. Gilvo	55. Caper Colonia	5. Indunea	45. Pretonium Lauucria-	Rivers.
14. Fonte-trmala	57. Thelowe CuI.	7. Ragurio	46. Siminto	b binnum
17. Aquileia	54. Themente.	8. Sielis, ma.	47. Fiernic	- Gnvum
18, Oyilim	59. Siecn-veria	9. Sinlona	48. Tumba Scodicino	d Maraum
19. Altino	60. Ad Aquas Craariy	11. Ppetio	19. Sinucaan	0 - Contaim
O. Rupino		1. Marman	50. Menturnis	5 Lepaum
22. Tridrnia	n Damubius Ribers.	1.. Nnfuna	5.5. Turracina	\% Crator
2.1. Aqua Populanie	b Drinum	14. Tautunn	5i. Porentínum	Bilerum
94. Florentin Tuncorum	c gavam	15. Ad Mintricem	54. Fubrataie	Color
2. Senm Julia	d Arin	17. Einuiluna	35. ¢ртопип	k Avglitiam
27. Pituribn	9 Frigido	17. Pipitura	\$3. Corminia	Ausdenus
${ }^{47} 7.7$ Verona	f Licenna	14. Btanell	87. Jnrruhio	m mbrinum
29. Mutina	${ }_{6}$ C Clousio	96. Viminatia	Sti. (an aulia	\% Bnnnum
30, Conam	1 Umatia	81. Dyeralio	61i. Oatin storni	p Cumara
31. Adretion	${ }^{1}$ Padoe	22. Aulona	61. Pinam	7 Nerbum
3. Bunonia	c Pata	21. Oat Col.	fi. ©ualto nova	\% Amo
33. Clatio	A Aniaia	4. ¢habrala	61. Prenesto	1 Tiboris
34. Volniniy	mjats	25. Regio	64. Rama	is Vallarnus
25. Aquas Pumaria	${ }_{0} \mathrm{n}$ Upiphro	27. Caulon	6. Hoatia th. Chartagine	\checkmark Hilamera
97. Anveana	- Palina	22. Cantraminervio	67.	w Nirsaum
3. A nimino	${ }_{9}{ }^{\text {P Marta }}$	29. Vibone Valentia	68. Ad Aquma	\times A osere
37. Contum celliv	r Tiberis	30. Temes	69. Sizus Cilpeia	y Gain
40. Aquan futil				

Part I.

but if those writers are supposed to have borrowed from them their idens respecting; the general structure and boundaries of the earth, geography among the early Phenicians will not appear to have passed its infancy. As Tyre, however, even under the Roman empire, remained still the seat of an extensive commerce, some of her intelligent citizens availed themselves of the lights affirded by the learning of Alexandriu. and applicd them to the illustration of those subjects on which the greatness and prosperity of tieir city depended. If the merchants of Tyre had nothing left of that proud rule, and those monopolizing profits, which enabled them to rival the pomp of princes, their commercial relations probably extended over a wider surface of the globe than ever. They seem to have been engaged in that vast caravan route which was opened from Byzantium across the whole interior of Asia, conducting the merchants by a journey of ten or eleven months to the Chinese frontier, whence they brought silk, the staple product of that great country. Collecting these enlarged materials, Marinus, a native of Tyre, sought to apply to them the astronomical principles of Hipparchus, and thus to arrange geography into a new and more accurate form.

The works of Marinus have perished, and are known to us only by the references and extracts of Itolemy; but these are sufficient to show that his system partook largely of the imperfection of a first effort. Aware that the degree of longitude diminished as it receded from the equator, he vet did not attempt to express this difference by representing the meridians with curved lines approaching each other, although this had been already shown by Hipparchus to be the proper course. He made them parallel to each other, not at the equatorial distance, but at that which belonged to them at the meridian of Rhodes. Thus in the part of the glube which came into his immediate observation he avoided any material error; but the meridians, adjusted only to this latitude, became too near each other as they were carried southward, and too distant as they went northward. He fell into a still more pernicious error in adopting the geodesic measurement of Posidonius, according to which the circumference of the earth was made to consist of only 180,000 stadia, and conseciuently the degree to contain only 500 stadia. This short degree, being calculated out of the exaggerated itineraries upon which the maps of those days were constructed, enormonsly amplified all the dimensions of the globe. Marinus appears also to have admitted with excessive credulity the extravagant reports of the merchants who had penetrated across the vast mountain and desert tracts in the east of Asia. The rugged and difficult character of the region, the circuitous route which they w ree frequently obliged to follow, and the obstacles often encountered from the rude inhabitants, caused this journey to occupy a much longer time than those performed through districts better known; and time, as already observed, was the element out of which the ancients were chiefly accustomed to calculate space. Ptolemy also accuses the merchants of vain-glorious propensities, which led them to magnify beyond truth the extent and vastness of the regions which they traversed. Hence the great line upon which Marinus measured the length of the habitable globe, instead of one hundred and twenty-nine degrees given to it in the measurement of Eratosthencs, is swelled out to two hundred and twenty-five degrees, not much less than two-thirds of the globe; whereas the actual length, placing Thine even at the eastern extremity of China, is not much more than one third. The exaggeration is enormous chicfly with respect to the country beyond India, which is made to comprise one hundred degress. This being probably a new route opened through the Himaleh, and across the vast deserts of Eastern Tartary, had been affected by all the sources of amplification in a remarkable degree.

Sect. II.-Ptolemy.

Ptolemy, the last and greatest of the geographers of antiquity, and equally illustrious as an astronomer, instituted a complete reform of the science, and undertook to purify it from all the false elements with which it had been alloyed. The principles, in fact, which he adopted were strictly correct ; for though, as an astronomer, his theory of the universe was substantiaily false, yet, in admitting the globular forn of the earth and the revolution of the heavenly bodies, he admitted all the elements which were requisite for the less lofty sphere of earthly delineation. He adopted the system of Hipparchus in its ntmost extent, subjecting every spot on the known globe to astronomical data, and constructing his tables, never according to itinerary distance, but according to the supposed latitude and longitude of cuch place. He saw and corrected the error of Marinus in inaking the degrees of longitude equal under cevery lutitude. Thus, though Ptolemy did not actually introduce any new principle into geography, he was the first whe combined together all the sound views of his predecessors, and formed out of them a just and harmonious delineation. Yet he was far from reacling his aim of forming a perfect system. He still rctainel the erroneous measurement of the degree formed by Fosidonius, and of which Marinus lad made so unfortunate a use. Hence, while he felt the extravagance of the distances assigned by his predecessor, in consequence of the adoption of the degree of 500 stadin, he extricated himself but partially from the same error. All his longitudes, extended along the length of the known world, present a similar accumulation of errors, only somewhat diminished in amount. These
errors, heginning from Cape St. Vincent, constantly increase till, in India, they amount to upwards of forty degrees. M. Gosselin has even aceused him of an error whieh, as he justly observes, would mark a strange departure from every principle, and a neglect of what ought to bc the first care of a geographer. This consists in giving to his degrees of latitude a different dimension from that of the degrees of longitude, and retaining, with regard to the former, Eratosthenes's standard of 700 studia. I suspeet, however, that M. Gosselin has been somewhat precipitate in advanciug so serious a charge against the first geographer of antiquity. Tho ground on which he proeecds seems to be, that while Ptolemy has changed materially all the longitudes of Eratosthenes, the latitudes along the great line continue unaltered and generally correct. The real cause of this, however, appears to be, that the latitudes of Rhodes and several other leading points of this great line were determined by observations which, though not perfect, at least approached to the truth, while the longitudes were calculated merely out of the itineraries. This central line, therefore, bisecting the breadth of the known world, was fixed upon sound data, and the errors could necumulate only to the north and sonth of it. In fact, we sliall find that they did accumulate as rapidly as in the longitudes, when the sphere of observation was passed, which was bounded by Syene on the south, Marseilles and Byzantium on the north. The mouth of the Seine is placed one degree too far north; that of the Rhine, nearly two degrees; that of the Elbe, more than tivo degrees; York is three degrees; and the farther accumulation is only prevented by that singular conformation which we shall find given by Ptelemy to the northern part of Britain. To the south, again, Axum is placed three degrees too far south; Cape Aromata (Guardafui), nearly six degrees; and from that point the errors continually become greater. Thus it appears, that as soon as Ptolemy quits the sphere of observation, his latitudes are calculated exactly as his longitudes, out of itineraries, and exhibit the same ancumulation of errors.
The manuscripts of Ptolemy aro clearly shown by M. Gosselin to hnve reached us in a very imperfect state. In collating with care the different editions, that learned writer has found a greater number of variations than in those of almost any other ancient writer. These variations were of course very likely to occur in copying cyphers where there was no eonnexion of sense to cheek the copyist. The manuscripts and the maps appear to have been copied by different hands, holding no communication with each other; and accordingly these two parts of the same work do not, in many instanees, correspond. Lastly, the work of Ptolemy appears, for several centuries, to have been earried about as a guide by mariners and travellers, who, wherever they found any feature which did not agree with their observations, altered the writing or the map accordingly. This process appears in the numerous variations of the Latin copies with regard to the western part of the Mediterranean, and of the Greek with regard to the eastern. The alterations thus made would often, and indeed, most generally, be improvements; but the great diserepancies which they introduced into the different eopies, must have greatly bewildered the public.
In delineating the geographical system of Ptolemy, we can only consider the general outline, which is pretty nuch the same in all the editions. Ptolemy begins with rejecting the theory of his predecessors, from Homer to Strabo downwards, who represent the whole earth as enelosed by a circumambient ocean. Mercantile caravans, especially in the east of Asia, had now procceded considerably beyond the line of coast which, according to the last school, had marked the eastern bounding ocean. They had passed that line withont reaching the distant corresponding one by which the Pacific and Aretic seas were actually drawn around this vast continent. The eastern Atlantie, and the Northern Oceans were, therefore, effaced from the delineation of Asia, and an indefinite expanse of terra incognita (unknown land) was substituted as the boundary of the world. This proceeding must certainly be considered as more precise and philosophical than the gratuitous theoretical one for which it was substituted. Men, however, seldom know exactly where to stop: Ptolemy, having once formed the iden of a bounding terra ineognita, extended it round nearly the entire cirenit of the known world. All the reports of the circumnavigation of Afriea were rejected; that continent was represented as stretching indefinitely sonth, and it was even earried round to join the east of Asia, and form the Erythrean or Indiau sea into a vast hasin. Thus the whole system and strueture of these two continents underwent, in the hands of Ptolemy, a. cemplete transmutation.

Subsect. 1. Europe. (Fig. 10.)

In regard to all the remoter boundaries of Furope, Ptolemy displays an advancement in knowledge, truly wonderful, considering the slort period which had elapsed sinee the days of Strabo. The faets which we have stated under the liead of Roman geography show the vast additional maes of information derived from the conquests of Casar, and from the imperial surveys. This having been incorporated into the writings of Mela and Pliny, a century before the age of Itolemy, would easily, through these and other channels, reach his knowledge. It is not surprising that the erude delineation of the exterior coasts of Europe under the Stribenie system should have been materially anended; that Spain

Boox \mathbf{I}

PTOLEMY-EUROPE.

should have now a southern, and Gaul t . western coast; and that the Bay of Biscay should appear clearly under the appellations oithe Cantabrian Ocean and the Aquitanian Sea. In regard to Britain, also, or, at least, England, a great reform had been effected. Its const, after passing the promontory of Kent, bends inward toward the estuary of the Thames, called here Idumanus. Still more decided, on the opposite side, is the "Sabrina estuarium" (the estuary of the Severn), a very appropriate appellation for the Bristol Channel. The projection of Wales, and its entire outline, appears then drawn in a very unexceptionable manner. With regard to Ireland, Ptolemy has not been able wholly to shake off the erroneous impressions of the first Alexandrian school, according to which that country lay to the north of Britain. He makes it west, indeed, but at the same time greatly too far north, its southern coast being on a line with that of Lancashire, or, at least, with the north-western point of Wales. The consequence is, that the island of Mona (Man) is placed off the southeastern point of Ireland, not far from Wexford. Having pointed out this great error, we must add, that the whole form and circuit of Ireland is given with a correctness which appears very surprizing, when contrasted with so great a mistake as to its relative position. Again, the eastern coast of England proceeds correctly till it reaches the vicinity of York, when an aberration takes place of the most extroordinary nature. The rest of the English coast, with the whole of that of Scotland, instead of ranging from north to south, runs from west to oast The eastern coast becomes thus the southern, the western becomes the northern; and the coast of Germany appears opposite and parallel throughout its whole extent. The most northerly extremity of Britain is thus fixed at a point which Mr. Pinkerton supposed to be the Mull of Galloway, but which seems more probably to be some point near Port Patrick, which might be supposed the most westerly, for the west is here the north. It is part of this arrangement, that the Cbudx (Hebrides) are placed in the Deucaledonian Ocean, which washes the western coast of Scotland, made here the northern; and the Orkneys are in the same ocean; for, instead of following the line of the main land, they are placed, as - ${ }^{2}$ nced, they ought to be, north, becoming thus at right angles to that line.
To accoun' fer io strangely distorted form of northern Britain, M. Gosselin has formed a very ingenic $\because \quad$ r. The southern extremity of the island being in lat. $52^{\circ} \mathrm{N}$., and Thule, the rc: : e remity, in 63°, Ptolemy could not, within these limits, find apace for that vast ex: n coast, which the itineraries represented to him as belonging to Britain. To make out this space he had no alternative but to give to the northern part the form it actually bears in his maps, and under which the latitude is augmented only by the breadth of Scotland, a much smaller dimensien than the length. The question, however, is, by what circumstance Ptolemy was cheeked in his latitude of Thule, and why he should not have driven it out to the north as far as his itinerarics seemed to require. We at one time thought it possible that this grand boundary point might have been fixed by some rude observation which was not applied to the intermediate pointe. But it appears very improbable, that any expedition which should have made an observation of latitude at Shetland, should not have done the same in tho southern and much more accessible parts of Britain. I rather incline to adopt the following solution. We have seen, that, in the ideas of the Roman navigators, Thule was in a great measure separated from Britain, and attached to the cast of Germany, or rather to Scandinavia; whether its existence was made known to them by Scandinavian navigators, or whether a part of the coast of Norway was actually fixed upon by them instead of Shetland for this most northern limit of the carth. This idea, which attached Thule to Scandinavia, appears to have been combined in Ptolemy's mind with that of Pytheas, who made it the remotest extremity of Britain. Such a combination could be accomplished only by stretching Scotland across the German ocean in that etrange direction.

The details of Scotland, if we pass over this radical error, are given in a manner mach more tolerable than could have been expected in a country unsubdued by the Romans, and with their imperfect navigation. Thule, in Ptolemy, is not a oluster of islands, like those of Shetland, but one large island, upwards of a hundred miles in length: this circumstance more and more strengthens the suspicion that Norway, to a considerable extent, entered into the idea attached to that celebrated name.

References to the Map of the World according to I'temy.				
FIJROPA.	2. Binnpe	19. Paracurs	d Polytimatus	5. Cyrene
1. Garthge Nova	3. Amiona	23. Beaynga	- dnanrtea	6. Alexandria
2. Maesila	4. 1apias	21. Raraham	f EEcharden	7. Heroopolis
3. Genua	5. Flana	9.. Tacpin	- Rautisua	8. Ryene
4. Roma	6. Jnarsm	27. Rabana	h Senua	9. Plolemaia
6. Byzantium	8. Mierra	25. Thigara	${ }^{\text {j }}$ ¢ Indungea	10. Aderolia
Rivers.	ti. Teredon	27. Apmilhra		
π Rhenus	11. Ninua	96. Sinda	a Ganges	${ }^{\text {a }}$ Slachir
b Thanain	13. Grgara	39. Suaiona		b Parntus
if Rha	14. Sugara	30. Serr	1. Nigifu	d Nifir
e Unryathonen	14. Parenpolis	Rivers.	2. Gira	- Nilua
	10. Aacira	a Puphrnian	3. Chrthago	f Astapus
ASIA.	17. Pataln 18. Palituthrs	b' 'Tigriм c Cruad	4. Phyeua	c Arleboras

Under the headsof great Germany and of Sarmatia, Ptolemy has given all the knowledge he had acquired of the north and east of Eurcpe, which was not inconsiderable. The line of the German coast is very well formed, and the Amasius or Eins, the Visurgis or Weser, the Albis or Elbe, the Vedra or Oder, and the Visulu or Vistula, appear in regular succession, and almost under their molern names. Jutland appears as the Cimbric Cliorsonese, and the southern coast of the Baltic is carried on very correctly; but, in regard to Scandinavia, he fails entirely; Evidently ignorant that tho Raltic is an enclosed gulf, ho calls it "the Sarmatic Ocean," and places in it fhur islands. Three of these, close to the Cimbric Chersonese, are clearly recognised in the islands of Denmark; but the other, of greater extent, farther to the east and opposite to the mouth of the Vistula, is probubly part of Swe den, and perhaps Gothland. It is clear, that muvigators had not then rounded Jutland, and passed through the Skagerrack or Cattegat, otherwise they must have noticed these straits, and the grent extent of continent opposite the Cimbric Chersonese. The Aloceinn islands, however, situated off the northern extremity of Jutland, must have been suggested by some part of the Norwegian const, as there are no islands in that quarter. The more northern part of the Norwegian coast was probably, as alrendy observed, identified with Thule.

The const of Sarmatia is described by Ptolemy on passing the Vistula, and he traces with accuracy the great bend which it takes northward to the gulf of Riga. Four rivers are given, which cannot be recognised by their names, but which M. Gowselin conceives to be the Pregel, the Niemen, the Windau, and the Dwina. Beyond this he places "the end of the sca of the known land," and immediately commences that boundary of terra incognita which he carries around the whole of Λ sia.

In regard to the south of European Russia, Ptolemy recovers much of the knowledge which had been wholly or partially lost under Strabo. He appears indeed to have gone back in a great measure to Hcrodotus, whom he imitates in giving most unreasonable extension to the Palus Mrotis. There is little room for complaint as to the Tanais, the Borysthenes, and the other great rivers which fall into the Euxine. In this romote and wild extremity of Europe, however, he has found a place for cortain poetical and historical fietions, which experience had banished from better known quarters, but which could not find a place here with any propriety;-the grove of Diana, the race-course of Achilles, the alturs of Cesar and of Alexander; neither of whum ever carried their arms into this part of the ancient Scythia.

In tracing the Mediterranean, Ptolemy improves considerably upon the labours of his predecessors. Sicily, in particular, is much better constructed, nnd the straits of Messina are placed nearly in their true latitude. He still, however, merits deep reproach for the utterly barbarous form which he has given to Italy, that ruling country, which must of all others have appeared to him the most interesting, and for which he must have possessed the most ample materials. Yet Italy, with the exception of a slight bend at its extremity, is oriented almost entirely east and west, having the Adriatic for its northern, and tive Tyrrhenian for its southern boundary. I cannot find any account of an error so strange, except by supposing that Ptolemy must have been led into it by one of those itinerary maps which, like the Peutingerian, made every thing subservient to the direction of the Roman high road, and drew it in a straight line from one extremity to the other. It is ensy to suppose that he might not comprehend the very old principle upon which this map was constructed, and might conceive that being made with regard to Itaiy, a country so near, and so completely within reach, it might be implicitly relied on. This suspicion is strengthened when we find, after passing Dyrrachium, the port of embarkation for Greece, this being the direction of the great road of the empire, that the coast of Italy suddenly resumes its just form, and the peninsula of Campania makes even too abrupt a bend to the south.

Strasect. 2.-Asia.

In regard of Asia also, important discoveries had been mode since the time of Eratosthenes. Immense territories, included by that geographer within the domain of the ocean, were known to Ptolemy as occupied by the wandering hordes of Scythia, or by the peaceful and industrious nation of the Seres or Chinese. This advantage inight he partly due to the military itineraries, especially that of Trajm in his victorious expedition into Parthia. The grand source, however, evidently was that bold spirit of eommercinl enterprise, to which an inpulse was given by the vast consumption of Rome, wheu the woalth of the world centred in that mighty nud voluptuons capital. The East was the region mainly resorted to for the supply of the boundless wants which arose in thut artificial and luxurious state of socicty. The merchants soon learned to trace rontes, both hy land and sea, much longer and more adventurous than hud been achieved ly their predecessors at any former period. Under the narrative entitled "the Periplus of the Erythrean Sea," we lave followed the maritime career ly which the merchants of Alexandria were led to the const of Malabar. Whether, in the time of Ptolemy, the Greek nawiuntors had actually proceeded farther, it may be difficult to say with certainty. Ite has certainly, however obtained at comsiderable accession of knowledge with rararil to this eastern extremity of the known world. Ile
goes far heyord the month of the Ganges, at which we have observed the termination of all precise knowledge in the author of the Periplus. After delineating a coast, with a succession of ports which it is difficult to identify, he comes to a grand feature, which he calls "the Golden Chersoncse," formed by three great estuaries discharging their waters into the sea. These phenomena are actually presented by the mouths of the Irrawaddy at the southern extremity of Pegu. This is followed by an extensive feature, the Magnus Sinus, or Great Bay, penctrating far inland, and receiving some considerable rivers. The rulf of Malacca is not nearly so large or so deep as this Magnus Sinus; but its mouth being very broad, and its shores very winding, it is not very improbable that, in the cyes of ancient and unskilful navi itors, it might assume this exaggerated form and dimension. Beyond the Magnus Sin: the coast, in continuity with its castern shore, stretehes duc south to the farthest known extremity of the world. On this coast the leading features are Thine, a great interior metropolis, and Cattigara, its sea-port at the mouth of the river Cotiaris. This coast, it should seem, can only be that of Malacca and the Isthmus of Kraw, which runs exactly in the direction here assigned by Ptolemy. Gosselin identifies Thine with Tenasserin; but there seems more reason for acceding to Dr. Vincent's opinion that it is Siam. This expositi, n, which is supported by Vossius, Gosselin, and Vincent, appears to me undoubtedly preferable to the more general one supported by the authority of d'Anville, which makes the coast of the Sine extend along the gulf of Siam and the sca of China. Such a line would involve Ptolemy in the strange and incredible blunder of making a const face the east which really faces the west. Sunatra, indeed, is so land-locked that it might casily enough have been taken for a part of the continent, and have been called the Golden Chersoncse. But it seems inconceivable how the straits of Malacca and of Sunda, so important and so critical to navigators, and by one or the other of which they must have entered the sca of China, could have been overlooked. On this supposition, indeed, the coasts are swelled very far beyond their due dimensions; but we have often remarked how enormously this is apt to be the case, in regard to routes, and above all coasts which are traversed for the first time, and by inexperienced navigators. Ptoleny, as we have seen, after retrenching the eastern itinerarics of Marinus one half, left them still greatly too large; and he does not mention any similar retrenchment in regard to the consts. If, on the other hand, those of Ptolemy extend to the Chinese sea and to China, then, contrary to every ancient example, he must have immensely underrated the extent of these imperfectly discovered tracts; an error which would be contrary to all precedent:-this, however, does not imply that there may not, within this line of positive knowledge, lave been a confused blending of features that lay in reality beyond.
The increased knowledge of Ptolemy respecting the eastern part of the Asiatic continent was chicfly derived, as we have alrcady remarked, from the great caravan which proceeded from Byzantium, having the country of Serica for its ultimate destination. This caravan, having traversed Asia Minor, crossed the Euphrates at Hierapolis, and journcyed through Media, by way of Ecbatana (Hamadan), to Ifecatompylos (Daumghaun), the capital of Parthia. It then advanced north to Hyrcania (Horkan or Jorjan), thence south, to take in the fine province of Aria (Herat). It now again turned north, to include the capital of Margiana (Meru Rood), thence due east to Ractria (Balk), which then formed, as at present, the main centre of the commerce of interior Asia. The caravan now quitted the easy and level tract through which its route had hitherto led, and began to ascend that vast and rugged mountain world which fills the eastern interior of Asia. Atter accomplishing the steep ascent of the Montes Comedorum, which seems to be the chain of the Beloor, it reached a station called the "Stone Tower," which there is nothing to identify. except that the direction towards it is north-east, and it may be either Ladauk or Yarcund, the great modern emporium of this part of the East. From the Stone Tower to the frontier of Scrica, Marinus, on the authority of the merchants, reported a journey of seven months, which Ptolemy considers as monstrous and incredible, though he admits that the road is exposed to the greatest hardships and difficulties. The question, what is the country described by Ptolemy and his contemporuries as Serica, is the most curious in the ancient gcography of Asin. The earliest modern opinion identified Serica with northern China, while the country of the Sine composed the southern part. D'Anville, however, who transported the Sine into the const of Cambodia, carried westward also the Seres into the country of the Igours, or Eygurs, including in their territory only the small projecting portion of the Chinese province of Shensec. Mr. Pinkerton places it still farther west, in Little Bucharia. M. Gosselin, followed generally by the present French school, contends that Serinagur, in the north of Hindostan, is the real Sera inctropolis of Ptolemy. I can see no reason for altering the grounds on which I concluded formerly, and endeavoured to prove, Serica to be simply China. (Sce Edinburg Phil. Trans. vol. viii. On the ancient Gcography of Central and Eastern Asin.) All the natives of India whon Ptolemy saw assurod him that the Scres lay beyond the Sine, and China is beyond Sinm. The Sine (Siam) lad to the north Scythia beyoud Imaus, which country had Scrica on the enst. Serica is described ns traversed by two great rivers, flowing castwarl, as the Ioang-h- and Yang-tse-kiaug netually do. Scricu, accorling to Ptolemy's graluation, was Vol. I.
fourteen hundrell miles from north to south, and eleven hundred from east to west, a very close approneh to the timensions of modern China. Serica, then, in form, extent, geographical features, and relations to the neighbouring countries, cxactly corresponds to the modern China. Not less confurmable is tho report given of the national character. The Seres are represented as frugal, quich, sedate, and tranquil beyond all other nations; as of all others the most unwarlike, and the most averse to the use of arms; as shumning, with the most atudious care, the society and intercourse of strangers, and scarcely ever allowing them to enter their territory ; as carrying on trado at a fixed frontier station only, and under the strictest precautions; as selling their own commodities without receiving tho comnodities of other nations in return. Silk was the staple of Serica, and it is of China. With regard to M. Gosselin's Indian theory, it must now, we suppose, be on all hands given up, since Thibet and Northern India, instead of being connected by the valley of the Ganges, have been found separated by the unbroken continuity of the loftiest rldge of the liimmaleh, which can be penetrated only by a few most perilous and tremendous passes.

Reapecting Hindostan, and its limitary regions, the details given by Ptolemy include a great mass of sound information. In some important particulars, indeed, his map is decidedly superior to those possessed by the moderns, previous to the late important accessions to their knowledge. He describes the Ganges rising, as it really does, on the southern side of the Himmaleh, and in the outer limits of Hindostan, while, prior to the mission sent by Col. Colebrooke, in 1808, its origin, and a considerable part of its early course, were supposed to bo in Little Thibet. The inission to Caubul first found that all the great western rivers emptied themselves by one channel into the Indus, as they had been represented by Ptolemy, while modern maps had exhibited them entering by two great separate ehamels. The same mission discovered two very considerable rivers, western tributaries of the Inlus, the Kaumeh and the Suaut, of which ne trace had yet appeared in modern delineation; but, on turning to Ptolemy, we find them accurately traced under the names of the Coe and the Suaste. Thus we find him delineating with suecess geographical features in the most secret recesses of Asia, which remained unknown till lately to the best-informed of modern geographers.
The site of Palibothra is one main point in which, after much diseussion, geographers have in vain endeavoured to form an unanimous opinion. It wus found by Megusthenes the proud capital of the Gangetic kingdom, and the greatest city of all India. Yet modern geographers have not been able to agree within several hundred miles upon this marked and celebrated position. Arrian states that it is situated at the junction of the Ganges with the Erranaboas, the third river of India as to magniturle, being surpassed only by the Ganges and the Indus. This scale of magnitude suggests the Jumna, and at the confluence of the Jumna with the Ganges actually stands Allahabad, a city of great magnitude and high antiquity, which is even revered by the Hindoos as the "king of holy cities." Upon this general idea D'Anville and, after him, Robertson, have considered Allahabad as occupying the site of Palibothra. On examination, however, this is found in contradiction to the most positive statements of Pliny and Ptolemy. Pliny, in express words, states Palibothra to be 425 miles distant from the junction of these two rivers. Ptolemy makes the distance somewhat greater atill. In considering Allahabad, then, as Palibothra, we abandon altogether the nuthority of these two great geographers, a step in which we should be very little justified, either by a reference to their general character, or by our knowledge of their remarkable accuracy with regard to the other features of central and northern India. Their account of Palibothra, too, is given upon the authority of Greek ambassadors, who actually visited that capital. The river next in mugnitude is the Gogra or Sarayu. But the junction of this river with the Ganges is not nearly so far from that of the Jumna as the above statements would require. Besides, Ptolemy actually gives us the Sarabus (Sarayu), with its junction in the due relative position to that of the Jumna, but Palibothra much firther down. Major Renuel has made choice of Patna, and considers the junction of the Soane, at present thirty miles above that city, as having taken place formerly by a different and nearer channel. This theory stands on much higher ground than the other; yet it by no means closely corresponds with the ancient data. Pliny mentions both the Sonus and the Erranabons as quite distinet tributaries of the Ganges, and he places the eity considerably firther down than Patna is. Ptolemy, also, in giving the junction of the Son and the Ganges, places Palibothra more than two hundred miles below. Major Rennell's theory, then, brings us considorably short of the point at which this great capital ought to be situated.

Another point which appeared to me to unite the name and position of Palibothra has been mentioned (Discoveries in Asia, v. i. p. 491.), and, without being inclined very confidently to dogmatize, it still appears to me to combine better the different requisites than any other yet named. The name of Boglipoor may be considered identical with laaliboor; for, in transferring Indian terms into our charncters, P and B, O and Λ, are always used promiscuously; and the termination attached by the Romans is evidently aceording to their system of harmoniziag foreign sounds with their own. A name is of little consequence when it is not accompanied with a corresponding position; but here this appears to coincide
ncarly, though not indeed quite exactly, with Pliny. He makes Palibothra 430 miles from the junction of the Ganges and Jumna, and 600 from Gange, a capital situuted at the mouth of the former. Boglipoor, however, instead of being onl; two-fiflis of the distance between these two points, is about exactly midway. The space lower down the river, being less known, might more readily have been exaggerated, and Gange being on the most easterly branch of the Ganges, might occupy nearly the position of Islamabad. The place assigned by Ptolemy is exactly midway, and therefore coincides strictly with the position of Boglipoor. Near it the Ganges receives the Coosy, or river of Nepaul, certainly not the third in Iudia as th magnitude; but the ambassadors might not have very precise means of ascertaining the relative dimensions of the Indian rivers. There is, therefore, a great weight of evidence, as to name and position, in favour of the theory here proposed. I must confess, however, that I find no description of any monuments, such as might be expected to mark the ancient site of so splendid a capital. Indian structures, however, are not usually composed of materials sufficiently solid to resist the ravages of sixteen centuries. If the local data could at all have allowed us to fix upon the thrice ancient and holy Benares, its character would have given it at once a pre-eminence; but this is impossible. Rajemahl, suggested, is not very distant from Boglipoor; but besides losing the coincidence of name, it agrees less than the other position with the statements both of Ptolemy and Pliny.

Subsect. 3.-Africa.

In the delineation of Africa, Ptolemy, hinself an African, had obvious advantages. Accordingly his delineations of ceveral of the most interior features have, as in the case of southern India, proved to be mere accurate than those given by modern geographers down to a very recent period. The course of the Nile, up to its highest probable source in the central range of the mountains of the Moon, has been justified by recent inquiry, in opposition to the Portuguese missionaries, who drew it from the mountains and lakes of Abyssinia. This original fountain-head has not yct t, traced by the daring foot of the modern traveller; but the description given to Brown, of its descent from the great mountain chain south of Darfoor, corresponds very exactly with Ptolemy, making allowance only for his erroneous graduation. With equal fidelity, he delineates the Astaboras, or Atbara, the Astapus, or river of Abyssinia, successively falliug into it from the east. He has, indeed, made Meroe an island, enclosed by branches of the Nile; but modern diseovery has shown it to be so very nearly insular, in consequence of the great bend taken to the south, that the error cannot be considered exeessive.
In regard to central Africa, Ptolemy had not equal advantages, on account of the distance, because no track had yet been formed across the vast ocean of desert which intervened. It appears to me a matter of some difficulty to ascertain the precise extent of his knowledge as to this region. M. Gosselin has not hesitated to assert, that he knew nothing of Africa south of the desert, and that all the features which he has assigned to interior Libya, and the course of the Niger, belong in fact to Fezzan and that region behind the Allas which we call the B'led-cl-Jereede, or Land of Dates. This opinion certainly receives much countenance when we find the Garamantes and the Garamantica vallis placed on the same line with the Niger, the lake of Nigritia, and the other leading central features. I still, however, think it probable that Ptolemy might, by way of the Upper Nile, have obtained intelligence respecting a portion at least of these vast regions, the approach to which by way of Dongola and Sennaar was not obstructed by any very insarmountable barriers. Besides the agreement of several names, as Gana, Tagana, Panagra, the general picture of this region as one of lakes, rivers, and mountains, agrees mueh better with the interior than with the arid tract between Atlas and the desert. My suspicion thercfore is, that Ptolemy, unacquainted with any route across the grent desert, was not aware of the wide interval between the features to the north and those to the south of it, and linked them together in his description as contiguous and connected. As his knowledge of central Africa was thus obtained only in a westerly course from the Nile, it was not likely to extend beyond the castern part of the vast brearlth between the Nile and the ocean. The Mons Mandrus, his most western feature, with a great river flowing frum it into the lake of Nigritia, may perhaps be recognized in the migaty range of the mountains of Mandara and the river Shary flowing from them intn the lake or sea of the Tehad. About this quarter I should conceive the knowledge witach reached Ptolemy by inland chennels probably terminated; and the Atlantic coast, known to exist by the voyages of IIanno, Scylax, and Polybius, was united to these oljects by a merely hypothetical construction. In regard to the course of the Niger, it is difficult to say very precisely what were Ptolemy's views, and we only perceive that he made it an inland river, neither flowing into the Atlantic, nor by the Nile into the Mediterrancan.
Respecting this great central region of Africa, however, Ptolemy had obtainel some notices from which he might have estimated ite magnitude. Two Roman expeditions had been reported to him, one made by Septimius Flaceus from Garama, and the ether by Julius

Maternus from the coast of Cyrene. The former in three, and the latter in four months, had penetrated into the country of the Ethiopians. I'tolemy expresses himself very sceptical as to the possible length of this march; nevertheless he lays down the country of Agisymbu as that farthest region of interior Ethiopia into which these commanders had ponotrated. Agisymba we suspect to be Agadez; at least as the march comprehends no rivers or lakes, it cannot well have reached the line of the Niger. Nevertheless 1 tolemy places it considerably to the south of Nigritia; which is doubtless in faveur of tho limited extant which M. Gosselin allows to his information. But we may observe that, supposing Ptolemy to have formed, in the manner above supposed, his idea of the plain of the Nigor as little removed to the south of Fezzan, he must, in protracting marches of three or four months, necessarily have carried the line much farther to the south.
In regard to the western coasts of Africa, Ptolemy'a delineation is not very luminous, but sppears on the wholo to favour M. Gosselin's views reapeeting tho extent of Hanno's voyage and of the knowledgo of the ancients. He does indeed present two rivers, the Daradus and the Stachir, flowing on a line with thn plain of Nigritia. But I have no idea that Ptolemy could have any precise information reaching across the entire breadth of the continent, and conceive, as already hinted, that the coast and interior were here hypothetically united. As Ptolemy placed the plain of the Niger much too far north, he might make these rivers on a lino with it, without identifying them with the Senegal and Gambia. Hlis pesition of the Fortunate Islands (Canaries) opposite to their nouths, and south of Cerne, is not at all in favour of the opinien which carries these last features deep into central Africa.
On the eastern coast of Africa, Ptoleny adds to the line described by the author of the Periplus a coast extending from the promontory of Rhaptum to that of Prasum. At this point the coast, hitherto running south-west, changes to south-east. No detaila are given of this coast, which is described as rough and difficult to navigate. We can neither, with M. Gosselin, limit Prasum to Brava, ner with Vincent carry it eo far ne Mosambique. There is ne part of the coast to which the direction assigned to it belongs, except from Quiloa to Cape Delgado; and if Rhaptum be at or near Quiloa, the latter, allowing for some exaggeration of distance on a coast so little known, will be the promontory Prasum. Five degrees enst and threo degrees south of this promontory is the island of Menuthias. The Menouthesias of the Periplus appeared pretty plainly to be one of the smaller ielands near the Africen coast, and probably Zanzibar; but none of these could be the Menuthias of Ptolemy, which is manifestly Madagascar.

BOOKII.

GEOGRAPHY OF THE MIDDLE AGES.

Under the "geography of the middle agea" may be comprehended that of the Arabian or Saracen nations, during the period when science was successfully cultivated among them; and the geographical ideas prevalent in Europe, during that long darkness which preceded the revival of learning, and the commencement of maritime discovery.

CHAPTER 1.

ARABIAN GEOGRAPHY.

The Arabs were for some time the most learned of nations. As the mantle of science dropped from the sages of Greece and Rome, it fell upon this wild and strange race, aprung from the bosom of bigotry and barbarism. The fanatic hordes, who, under the guidance of their false prophet, rushed from the heart of Arabia, at first owned no law but the Koran and the aword. When they had conquered half the world, however, and founded splendid capitals on the banks of the Euphrates and the Guadalquivir, there arose a race of humane and polighed princes, who studiously sought to relumine the almost extinguished lamp of acience. Almamoun above all, in the ninth century, may rank among the most distinguished of its patrons who have ever filled a throne.

Geography among the Arabian states, nppears to have been atudied with greater ardour than at any other place or country, except at Alexandria. It employed the pens of several of their most eminent writers; Masuli and Ebn Haukal in the ninth and tenth centuries; Abulfeda and Edrisi in the twelth and thirteenth; to whom may be added the respectable names of Ibn-al-Vardi, Bakoui, and Scheabeddin. Although none of their works thave become at all familinr to the European reader, yet learned men have translated portions, which. sceptiatry of ra had anda no tolemy limited pposing Niger or fous
ous, but וo's voyDaradus dea that the conheticully ht make Gambia south of into cenrre given ther, with גe. There m Quiloa me exagFive delias. The lands near nuthias of

Arabian or long them: h preceded
of acience ace, sprung guidance of Koran and lendid capihumane and pof acience. fished of its
cater ardour as of scveral h centurics; respectable ks dave be tions, which

Book II.
ARABIAN GEOGRAPIIY.
not only convey a generai idea of thoir system, but have enabled geographers to delineate some distriets of the globe wb ch otherwiso would have long remained unknown.

Skot. I,-General System. Fig. 11.

Tho mathematical seienecs, and above all astronomy, were among tho most fuvourito pursuits of the court of Bagdad; and the ample resources which they afforded woro applied with considerable care to tho improvement of geography. In 833, the caliph Almamoun endeavoured, by observations of latitude male at Kuft, and at a point in tho desert of Palmyra, to measuro the circumference of tho globo. In all the countries subject to the Mahomedan arms, numerous observations are recorted which, though not alwaye rigorously correct, appear at least to have been real, and not merely calculated out of itineraries, like those of the Aloxandrian geographers. The tables of Abulfeda, of Ulug Beg, and of Nazir Eddin, edited by Grevius, and ropublished by Hudson, afford materials that are atill uacful for the construetion of the maps of interior Asia.

Fig. I1.-MAP OF TIIP WORLD TAKEN FROM AN ARABIAN MANUSCRIPT OF AL EDRISI, IN TILE bodLetan library.

Many countries, hitherto unknown and barbarous, were explored, and in some degree civilized, by the Moslem arms. Those on the Oxus and the Jaxartes, the Asiatic Scythia of the ancients, anl occupied then only by Nomadic horles, were covered by them with great and flourishing cities. Among these, Samarcand became afterwards the capital of an empire that extended over half of Avia. At the opposito extremity, Mauritania, which had been rogarded by the Romans as almost beyond the limita of social existence, became a flourishing kinglom, and possessed in Fez an eminent school of learning. Even beyond the limita of the Mshomedan world, missions were sent to explore the remotest limits of the cant and west. Ono interesting result of theso has been communicated in the relation of two Mahomedan travellers, Walhad and Abuzaid, who in the ninth century penetrated into China; and gavo a description of that country; which, thongh only recently known to us by the translation of Renaudot, must havo been the earlieat ever conumunicated to tho nations of the west. From Lisbon, also, the brothers Almagrurim sailed, endeavouring to anticipato the discoveries of Columbus, by exploring unknown countries beyend "the sea of darkness." For ten or eleven days they steered westwarl; but seoing a storm approaching, the light faint, and the sea tempestuous, they dreaded having come to the dark bounclaries of the earth. Thoy turned therefore south, saited twelve days in that direction, and camo to an island, which they called Ganam, or tho island of birds; but the flesh of these birds was too bitter to be eaten. They eailed on twelve days farther, and camo to another ieland, the king of which assured them that their pursuit was vain: that his father had sent an expelition for the same purpose; but that, after a month's sail, the light had wholly failed, and they had been obliged to return. The adventurers, therefore, made their way back to the coast of Africa, which they reached in three days. The bearings stated seem to point out Madeira and the Canaries as the two islands visited in this expedition.
In regard to the gencral outline of the earth, the Arabs seem to have closely adhered to ancient theories. They revived tho carly impression of an ocean, which, like a zone, encompassed the whole earth. This, according to a natural feeling, was characterized as tho "Sea of Darkness," an appellation most usually given to the Atlantic; but the northern sea of Europe and Asin, inspiring still more mysterious and gloomy ideas, is called the "Sea of pitchy Darknoss." Edrisi has even imagined the land as floating in the sea, and only part appearing above, like an egg in a basin of water. At the same time ho divides it into seven seas, fancifully appropriated to the seven climates into which the earth was divided. According to these climates, he describes the earth beginning at the western and proceeding to the eastern extremity; an ill-judged arrangement, which, by a mechanical sectien, separates portions of territory the most intimately connected. The knowledge of the Arubs was subjected to another and a voluntary limitation. They studiously desisted from all inquiry respecting those blinded nations, whose minds had nover been illumined by the light of the Koran. Ibn Ilaukal even makes it a subject of glory, that he had found nothing worthy of remark among nations who could not be viewed without horror by men who had any innate principles of virtue, wisdom, or religion. These views of the subject greatly restricted their incans of knowledge in respect to Europe, and rendered it of little value, unless with regard to those two continents, which their arms had rendered to a great extent Mahomedan.

Sect. II.一Asia.

The Asia of the Arabs comprised a wider range than had belonged to that continent under nny former system. China is distinctly marked, partly under the appellation of Scen, and partly under that of Cathay; the former term appearing to comprehend India beyond the Ganges. Lamery, productive in camphor, gold, ivory, and dye-woods, appears by these products to be Sumatra, snd mention is even made of Al Djavah. The countries on the Oxus snd Jaxartes hsving become the seat of an extended Moslem empire, of which Samarcand was the capital, Tartary, both eastern and westorn, was, for the first time, delineatred with tolerable accuracy; many of the leading positions, in this hitherto inaccessible part of the continent, were even fixed by astronomical observation; and some positive though faint and indistinct notice appears to have been received respecting the people situated along the shores of the Northern Occan. Unfortunately the main objects of curiosity and inquiry were Gog and Magog. The authentic applicstion of these names has been observed under the Hebrew system as belonging to a devastating race from the shores of the Euxine and Caspian. Oriental fancy had transformed them into two enormous giants, who had erected an impreg. nable castle on the borders of Scythia. The efforts made by the court of Bagdad in pursuit of this chimera were very extroordinary. The first expedition was undertaken with the hope of finding it somewhere on the shores of the Caspian; but as their conquests soon embraced the whole of that region, without the slightest trace of this tremendous castle, the more southern country of Bokhara was the next object of search. When that also had been surveyed in vain, the court was involved in much perplexity, and scarcely knew to what ulterior region their view was to be directed. At length one of the caliphs dispatched a mission, with strict injunctions on no account to return without having discovored the castle of Gog. The envoys, according to Edrisi's report, proceeded first along the slorea of the

Byos II. IN EUROPE DURING THE DARK AGES.

Caspian, then through a vast extent of de8ert, probably the country of the Kirghisea, when they arrived nt a atupendous range of mountaina, which must have been the Altai. Here they dill actumlly find or pretend to find something which they concluded to be the castle of Gog and Magog. Perhaps they reached some of those ancient monuunents which have been feund nlong this range, and gladly embraced this pretext to rid themselves of so troublesonnu n commission. The pleture they drow of it was certainly very hlghly coloured, necording to Oriental taste. The walla were of iron cemented with brass, and a gate fitty cubits ligh was aecured by bolts and bars of enormous magnitude. The minds of the Arabs were thus set at rest, and in all the future dellneations of Asia this mighty castlo was seen towering at its farthest extremity.

Sxct. III.-Africa.

In regard to Africa, the wide-extended settlements of the Arabe afforlod them now sources of information. The Mediterranean coast, indeed, as fur as Numidia, had beels fully oxplored by the ancionte, and had even formed a more intimate part of their political system than it has done of that of the moderns. By the Arabs, however, who had eatablished here a muccession of kingloms, it was described in greater detail than ever; and as the most western of those kingdoms was the flourishing one of Morocco, this region, eomprising the nearly unknown tracts of ancient Mauritania, formed an almost entirely new accuisition to knowledge. But their grandeat achievement consiated in forming a road neross the Great Desert, and in colonising a considerable part of the central regions of Africa. They here fuunded a aeries of powerful kingdoms: Ghana, the modern Kano; Tocrur, which we concoive to be Saekatoo; Kuku and Kauga, which recent travellers have found in and near the modern region called Bornou. They described those countrica ns aituated on the Nile of the Ne groes, which, contrary to ancient opinions, they repreaented as rising indced from the same fountain with the Nile; but as flowing westward across all Africa, and falling into the Atlantic ocean or sea of darkness. At its mouth they placed the island of Ulil, whence salt was conveyed to all the Negro territories, which were entirely destitute of that necessary of life. This view of the subject, though erroneous, was naturally suggested by the course of the rivers within the region with which they were alone intimately aequainted; but we reserve this discussion for a aeparate chapter, when we propose to give a auceinct view of the successive theories respecting this great African river. We shall at present only observe, that, as Tocrur is described to be only eighteen days' journey from the ocean, it is plain that the knowledge of the Arabs did not extend to Tombuctoo; that they knew nothing of the Senegal or Gambia, or the countries upon these rivers; and that the ocean into which they represented the Nile of the Negroes as falling was either a hypothetical feature altogether, or was at least hypothetically conneeted with all that they knew of the eastern tracts of interior Africa.

CHAPTER II.

european geography during the dark ages.

Even the imperfect knowledge possessed by the ancient geographers became involved in the general progress of that intellectual darkness, which ensued on the deeline of the Roman empire. Europe, overwhelmed with a deluge of barbarism, no longer cultivuted art or acience; and the rude states into which it was divided had only a vague idea of each other's situation. The advance of this darkness may be observed in an anonymous work, published at Ravenna in the eighth century. The writer presents only confised fragmenta of the information contained in Ptolemy and Pliny. The coast of India, indeed, the mereantile route to which appears to have been kept open, is still delineated with some degree of correctness. But the whole interior of Asia, from China to Ihactriana, is included under the name of "Seric India:" the Caspian re-appears as a gulf of the Northern Ocean; in short, all these distant regions are viewod, in the manner natural to ignorance, as a dim nnd indefinite expanse, the fcatures of which were all confusedly blendei with cach other.
The monasteries during the dark ages afforded an asylum for all that remained of ancient knowledge; in them the manuscripts of many of the classic writers were still preservel, though little consulted. The reading alond of histories, and deacriptions of neighbouring, and even of distant countries, formed a mode of beguilir.:' the tedious hours; but these being recorded under the title of "Wonders of the World," and crowded with the most extravagant fables, zerved rather for the amusement of the fire-side, than for any real instruction.
The missions undertaken for the conversion of the northern pagans were the principal channel by which any geographical knowledge was conveyed. The missionnries did not, at this time, attempt to pass the limits of Europe; but directed their efforts towards the conversion of the Slavonic tribes, who occupied Poland, Prussia and Livonia. Other appears even to have penetrated through the interior of Russia to the White Sea; he undertook also an extensive voyage along the coasts of Norway. The Anglo-Suxon Wilfrid, named by the pope the apostle of the Germans, appears to have been the person who transmitted the most

IIISTORY OF GEOGRAPHY.
Part I.
full detnilh relntive to the Slavonic tribes. Nt. Otto, bishop of Bamberg, end Anecaire, a monk of Corbie, penetrated to tho kingdomn of Sweden and Denmark; but the details of their missinn have nat been preaerved. Althongh, however, the monks thum ilid something to Illustrute the geography of Europe, there is sufficient ovidence that thoy laboured, in many instuncex, under the growent ignorance ; some of them know not even the capital of their own conntry, or the citien nearest to their own.

I'he great inomareha made some efforts to rescue the ngo from this atate of profound ignorance. 'The two illustrious menarchs, Clmerlemagne and Alfred, distinguidhed themselves by their endeavoura to promote geograpliy: the former constructed a silver table of large dimensions, en which was delinoated the whole world mo fir as known to him; unfortunately the materials were too costly, and the silver world was suon melted down to supply the necessities of one of its kingdoma. Alfred produced a more valuable monument in a description ef the north of Earope, from the best materinls which could be then collected, and which forms still the boet record of the geographical knowledge of that age. Under the direction of William the Conqueror was drawn up that important document called Doomslay Book, in which the population, the culture, and the taxes paid by each district, are exhibited in the greatest detail. A similar aurvey of Denmark was mado in the thirteenth century, by its sovereign Waldemur II.; nnd of the Mark of Brandenburg, in the fourteenth century, by the emperor Charles IV.

The Danes and Norwegians, the Northmen ns they were called, while under their mighty aen-kings they spread desolation over tho maritime districts of Europe, necessarily acquired a very extenaive knowhelge of its scas and consts. Such knowledge, though nowhere formed into any regular systen, may be traced in the sagas, or metrical histories in which they celebrate the gallant exploits of thoir countrymen. They were, of comrse, familinr with nil the countriea bordering on the Baltic. They knew by conquest Orkney, Shetland, the Itebrides, nul the western coast of Ireland. Their fleets renched even the shores of Italy and Sicily. Townads the north, they established colonies in Ieeland and Greenland. But the moet important discovery of the Northmen was, undoubtedly, America, if their claim to the merit of that discovery shall be nimitted to be made good." In the beginning of the eleventh century, Thorwald and Leif, two natives of Iceland, haviug sailed fir to the south-west, came to a commtry which appeared to them, loubtless hy comparison, to be mild nad agreeable; the natives were of dwarfish stature, and maintained with them sometimes a hostile, but oftener a friendly interconrse. Finding that the rivers abounded with fish, and that tho finest furs conld be procured, they and their countrymen repented their visits; nod in 1211, Bishop Eric is sail to have repaired thither with the view of converting the natives. The name given to the region is Vinland, from the vines growing in it; n featuro which certainly occurs to us as very foreign to this part of the world; but, in fact, wild vines nre found growing in all the most northerly districts of America. It is highly probable that the continent was not reached by the Icelandic adventurers, and that Vinlund was merely a southerly district of Greenland.

CHAPTER III.

geograpilical knowledge derived from the crusades.

Tue crusades formed a series of events which roused the European mind from its local and limited range, and directed its ken into the regions of another continent. The high-wrought enthusiasm which impelled Europe to poar itself, as it were, in one mass on the eastern world, however blind might have been the zeal which inspired it, was, on the whole, highly beneficial: it drove back the tide of Saracen and Turkish conquest, which might have swallowed up the whole West, and involved it in the same gloom of barbarism and superstition that pervaded the East. Above all, the crusules had a powerfil influeuce in dispelling the mental darkness in which the western regions were involved, and in preparing that light of science and intelligence which was so soon to dnwn upon them. The attention of Europe was thus directed to these interesting and memorable regions, known hitherto only by the meagre report of some occasional pilgrime. Not only the IIoly Land, with the kinglorns of Jerusalem nul Edessa, founded by the vietorions cruaders, but the extensive domnins belonging to the Sinacen and Turkish empires, becume objeets of inquiry; seareh was now made in the writings of the ancient geographers, and perhaps some lights were derived even from the Arabian writers. Samudo conpiled a map of the world, amexed to Bongar's "Gesta Dei per Francos," (fig. 12.) in which the ideas formed out of the erusading expeditions are fully exemplified: Jerusalem is placel in the centre of the world, as the point to which every other object is to be referrel; tho carth is made a circle surnounded by tho ocenn, the shores of which are represented as evervwhere nearly equidistant from that spiritual capital, the sito of which is, indeed, remarkable for its relation to the threo continents, Asia, Enrope, and Africa. l'ersia stunds in its proper place; but India, under the modifications of Greater and Lesser, is cenfisedly repeated at different points, white the river Indus is mentioned in the text as the castern boundary of Asia. To the north, the

Mg. 18.-RANUDO'S Mar of the world.

castle of $\mathbf{G o g}$, and Magog, an Arabian fenture, crowns a vast range of mountains, within which it is said that tho Tartars had been imprisoned by Alexander the Great. The Caspian appears, with the bordering countrics of Georgia, Hyrcania, and Albania; but these features stand nearly at the northern boundary of tho habitable earth. Africa has a sea to the south, stated, however, to be inaccessible, on account of the intensity of the hest. The European countries stand in their due plsce, not even excepting Russia and Scandinavia; though some oversights are observsble in tho manner in which the two are connected together.

CIIAPTER IV.

tartargeography.

Tue revolutions of the north of Λ sia next attracted the eyes of Europeans to the distant quarters of tho world. The roaming tenants of those boundless wilds, berwn under the ancient name of Scythia, and the modern one of Tartary, have st various riods conquered and desolated the civilized world of Asin. The offispring of Tartar chi vo cat for many centuries on the thrones of Pekin, of Dolhi, of Ispahan, and of Constantinople: but, of the Tartar rulers, none ever raised so terrible a name, or established so wide an empire, as Gengis or Zingis; originally an individual chief of the Monguls, he attained the general sway over that warlike race, and led them as conquerors frons empire to empire. His first and most signal exploit was the conquest of China; having thence crossed the whole breadth of Asia, he died on the shoresof the Caspian. His successors pressed on westward,overran Russia, and penetrated through Poland into IIungary and Silesia; their approach, their rapid movements, and the exaggerated reports of their ravages, struck the nations of Europe with inexpressiblo terror ; this was greatly heightened by the prevailing ignorance of geography, which was sueh that none knew when they might arrive, or where they might be encountered. The Vor. I.

Danes were thus deterred ono senson even from going to the herring-fishery, on the coast of Scotlnad. The Thrtars defeated nud killed the Duke of Silesia; but a gencral muster of the German chivalry being made to oppose them, they retreated into the interior of Poland, and even further to the east, ieaving only a numerous vanguard; but it was suspected that they were only mustering their strength, again to invade Europe, iu morc dreadful und destructive array.
Embassy, at this crisis, was deemed the expedient most likely to appease the fury of these dreaded invaders. According to the ilens of the age, the pope nppoared the most respectable character, in whoso name a mission could be undertaken, and nonks the most fitting anbassadors. The ehoice was injudicious: these envoys, ignorant of the political relations of countries, of the usages of society, and the mode of treating with mankind, obtnined no respect in the cyes of the fierce conquerors of Asia. They returned without fulfilling any object of their mission; and if Europe was not again exposed to this barbarous inumdation, it owed its safety only to the division of the immense empire of Kaptchak, and the dissensions among its princes. These ambassalors, however, traversed a large portion of the continent, wefore unknown to Europeans. One mission, indeed, under Ascelin, which met the Monguls on the frontier of Persia, does not communicate any geographical information; but the journey of Carpini, and after him of Rubruquis, (fig. 13.). led them through the north of

Russia, nlong the shores of the Mack Sea, and the Caspian, and thence into the very beart of the immense plnins of interior Asia, where they found the great Tartar capital of Karakorum, the chief sent of the posterity of Zingis. Here the rasters of the world, while enbbassies and presents were waiting them from all the courts of southern Asia, were living in the rudest Seythimn fashion, feeding scantily on horse-flesh and mares' milk, roving about in tents, destitute of arts, and occupied only with war and plunder. The Thrtars, however, treated with a proud dishnin nll other nations, over whom they beld themselves as commissioned by heaven to rule, while they paid the most abject submission to their own Khan, revering him as the appointed representative of the deity on earth.

Karakorum wns found searcely entitled to the name of city, being little larger than one of the suburbs of Paris, and its most sumptuous edifices scarcely suitable to ${ }^{n}$ E European country town. The situation of this capital of so great nn eınpire has been a subject of some controversy. D'Anville phees it at a point to the north of China, near the eastern limit of the grent desert of Shamo or Cobi, while Fischer fixes it on the Orchon, one of the rivers which unito in forming the Selingha. I have elsewhere endenvoured to show (Discoveries in Asin, I.) that both these positions must be about a thousand miles to the eastwarl of the renl site. It is true that upwards of four months was occupied in passing from the western frontier of Russin to this capital; and the missionnries complain of the grievous rapidity with which they were conveyed. They estimate the dnily rate ns equal to the distunce fron Paris to Orleans, or abont seventy miles; and this time nad route would doubtless he sufficient to carry them to the most eastern extrennity of the continent. But whenever they give us the time netually employed in travelling letween known points, n rate is found which does not even appronch to the alove. Two months are spent by Carpini in travelling from the Dnieper to the Volgn, nad by Rubruquis from the Danube to the Don, "riding post as the Turturs do;" yet neither of these spaces exceeds in direct distance six hundred miles. Then from the Volga to the Tral, which may be two hundred nad fifty miles, we have twelve duys; while the journey ficm the Ural to the inland sen of Balkash, or Paleati, oceupied alove forty-three days. Thas down to that point it required four months to travel not quite eighteen bundred miles. From the Bilkasil to Karakorum, the journey was performed in three weeks.

Is it possible to suppose that they could in that time have travelled fifteen hundred mues, the space which would be necessary to enable them to reach the Karakorum either of D'Anville or of Fischer? They could not have passell the great table plain of Soongaria, compared by the Oriental listories to a great sea of verdure, and consequently of all others the best fitted to forin the central encampment of this great pastoral snd military empire. All the geogruphical indicatious given by Rubruquis agree with this position; and disagree wholly with the other two. He says all the rivers observed by him flowed to the westward, which is true as far as Soongaria, but directly contrary to what takes place in the other positions, both of which are even placed upon rivers that flow to the eastwarl. China is said to lie to the south-east, as it does from Soongaria; but from the two other positions it weuld be directly south. The Kirghises are said to lie to the nerth, and the Baschkirs to the west; but these, according to the ordinary site, would have been at a distance quite immense, and could have had no relations with Karakorum. The hypothesis which places that city in Mongolia is founded upon the latter having been the original seat of Zingis; but Rubruquis expressly states, that this arrangement had now ceased, and that Tartaria was "the chief and royal city." Such a change was, indeed, almost necessary to an empire which was to embrace at once the East and the West; to hold China in one hand, and Russia in the other.

CHAPTER V.

venetian geography.

The republics of Italy, and above all that of Venice, were the states in which the spirit of commerce and inquiry, after being long dormant, revived with the most brilliant lustre. The commerce which they carried on was one whioh connected them with the most distant regions: they traded in the jewels, the spices, and the fine cloths of India, a country situated at a distance really vast, and which then appeared almost immeasurable. It was not by Venctians, however, or by any Europeans, that the vast intervening space was truversed. They found the Indian commolities in the ports of the Mediterranean or the Black Sea, to which they were breught by the Arabs up the Red Sea, or by the interior caravans across central Asia. It was impossible, however, that they could see these precious and profitable commodities continuing to enter their ports, without feeling some curiosity as to the splendid and beautiful regions whence they came; and, in that age of enterprise, it was likely that some would he impelled to brave even the obstacles presented by this vast unknown space, occupied by people of a hostile and bigoted faith. The Abbé Zurla has collected notices of a considerable number who, actuated by this spirit of discovery, penetrated to a considcrable depth into the interior of Asia. But the flame of nll these is eclipsed by one, whose travels extended far beyond the rest, and who has always ranked among the greatest of discoverers of any age.
Marco Polo was a noble Venetian, whose family, like many others of the same rank, was engrged in extensive commerce. His uncles, Maffeo and Nicolo, had visited Tartary, and afterwards China, though without leaving any narrative of their observations. The pope, however, being apprized of their discoveries, sent out an ecelesiastical mission, accompanied by the young Marco Polo, then only nineteen. They spent twenty-four years in traversing the most remote regions of Asia. The result of their religious mission is not stated; but they returned laden with precious jewels, with which they dnzzled the eyes of their countrymen, by whom they were not at first recognised. Marco being afterwards made prisoner by the Genocse, was persuaded to amuse the hours of cenfinement hy dictating a narrative of his trivels, which was read with avidity, and soon translated into all the European languages. He has suffered like many ether eminent travellers, under thoso injurious suspicions which arise in the minds of persons unwilling to believe any event or object which goes beyourd the sphere of thieir orlinary experience. His name even furnished the nickname given to a personage introduced into the comedies of the age, to recite every species of extravagant fable. But modern information has verified in all its most essential points the narrative of Marco Polo, leaving only n slight tincture of that credulity which was characteristic of the age, and is confined to what was told him by others of countries which he did not himself visit. IIe appenrs to have first proceeded nlong the northern shore of Asia Minor, then the seat of a flourishing Turkish dyansty. He passed throurg Armenia, along the lofty rilges of Ararat, and descending the Euphrates through Curdistan came to Bagdad, no longer the capital of the ealiphate, but still a flourishing and civilized city under its Tartar conquerors. He visited the great commercial capital of Ormmz, and thence proceeded castward througli the southern part of Persia by Kermasiand Kubbees, across the great salt desert. At length he reached Balkh, which, though still a considerable emporium of central Asia, presented only in its ruined temples and spacious equares the vestiges of its ancient grandeur. Then passing along the borders of Cashnire and the mountain tract of Balashan (Badakshan), celebrated for its mines of rubies, he ascended to the elevated plain of Pamere, forming the summit of that cross branch of the limmaleh called the Beloor. On this, which appeared to him
the highest ground in the world, he felt that difficulty in respiration, and in producing combustion, which is peculiar to the most elevated mountain sites. He afterwards reached the large Tartar cities of Yarkund and Cashgar, and entered on that great eastern table-land which, before and since, has formed the Terra Incognita of Asia. He then entered Northern China, which he calls Cathay, and visited its capital Cambalu, his description of which strikingly coincides with that of the medern Pekin. He afterwards visited Mangi or Southern China, and found in its capital, Quinsai, a scene eclipsing all that he had beheld either in Europe or in the East. It is described as a most immense, and, from its splendour and the beauty of its situation, almost a magic city. In fact Hangtchoofoo, which corresponds with Quinsai, though it has long ccased to be the capital of China, is atill a very large city, very charningly situated. From China, Marco Polo passed through the Indian Archipelago, hearing only of Great Java, but visiting Sumatra, which he calle Little Java. He touched at the coasts both of Malabar and Coromandel, and learned many particulars respecting India and its people, which have since been confirmed by modern observation. He returned by the Red Sea to Europe.
A map of the world on a large scale, (fig. 14.) by Fra Mauro, which is preserved at Venice, and of which a highly finished copy exists in the British Mueeum, exhibits a view of the geographical ideas formed by the Venetians, founded upon the information derived from their Asiatic travellers, and prior to the discovery of America.

Fig. 14.-Map of the World by Fra Mauro.

CHAPTER I

discovery of america and the east indies

Tue progress of discovery

astonishingly rapid; no cost, no peril, globe, when the first steps had been taken, was of the earth. Coceans, and facing the rage of save private adventurers from equipping Orinoco, when Cabot, Newfoundland, and consted far as Virginia. In the ned along the present territory of the Ulish auspices, discovered guese navigators, began the long or three years, the Cortereals, anted States, probably as they sailed along the coast of Labrador search of a passage round the normily of Portuwhich they seem to have of Labrador, and entered the spociond the north of America: them unhappily perished. In 1501 for the sea between Apacious inlot of Hudson's Bay, coast of Brazil, which he claimed, Cabral, dostined for India, struck America; but two of part of Terra Firma, and Guied for Portugal. Ameriga Vespucei hexpectedly on the of Brazil; services which obtained and he now made two extensive had sailed along a great continent. Grijalva and Ojeda wed for him the high honour of giving boyages along the coast gulf of Mexico. In 1513, Nument round a great part of the cing his name to the whole boundless expanse of the Pacific Balboa, crossing the narrew isthmircuit of the coasts of the prompted Cortez and Pizarro to with a handful of daring followers the in their adventurous and sanguinary impulse which Mexico and Poru. Expollowers, they subverted the extensive sanguinary career; in which, other to California, and the regions to soon pushed forward on one side populous empires of of the great interior breadth of sents to the southern ocean.
In the Eastern world, th covery was alike rapid, the domain which the papal gront had Gama, when Albuquerque, Almenty years had not elapsed from assigned to Portugal, disor as conquerors, had explored all the castro, Sequeira, Perez, and many otherg of Vasco da ba, of Persia; had penetrated to Mo coasts of Hindostan, those of Enotern As, navigators Siam and Pegu; anderated to Malacea and the Spice Islose of Eastern Africa, of Arajealousy of that power was attempted to enter the ports of China. Buand the existence of the presence of the emperor; and akened: the Portuguese embassy wos the characteristic beards and large eves should; and a mandate was issued, that nonsy was not admitted into coveries, the grand achieura enter the bavens of the celestial none of the men with long and western discovery of the globe, which, that of laying open to the wondering cogether the ranges of enstern mankind contrary to the testion demonstrated by the astronomer cyes of mankind that structure Magellan, in 1520, undertook, by circumir senses. he passed through, undertook, by circumnavigatin
Paeif IIe himseif straits which bear his name, and crasth, to solve this mighty problem: saile, n, and presented themselves tilled at the Philippine Issed the entire breadth of the car. "ey arrived in Eureme ves to the astonished eyes of the Port but his companions doubt liy the most sceptical after a voyage of three years; and itguese at the Molucby the most sceptical that the a varth wase a three years; and it could no longer be body.

CIIAPTER II.

EARLY SYBTEM OF MODERN GEOGRAPIIY.

Tus systematic arrangement of the immense regions thus discevered, their adjnstment to each other, and te the mass of knowledge previously possessed, was a task as yet beyend the resources of modern geography. It was to Venice that the results of discevery were still referred to be arranged and systematised; but the Venctian geographers, however skilful, laboured under many difficulties. The navigaters seldem furnished them with any celestial ebservations, or even accurate surveys; for which, indeed, science had as yet provided no suitable instruments: they gave only rude delineations, on which the geographer was obliged to trace his uncertain way; most of the countries formerly known were touched at new ponts, and recognised under new names; and the centinents, being made to centain both the ohl and the new features, were swelled to a preposterous magnitude. The east of Asia was obliged to centain at once the Serica ef Itolemy, the Mangi and Cathay of Marco Polo, and the China of the Portuguese, all as epparate empires. The relative site of the two continents of Asia and America, the presentation of the west coast of the ene to the east const of the other, was of course the problem which they had the fewest means of solving. In a series of Venetian maps, preserved in the king's library, the two centinents are described throughout their whele extent as either united or separated enly by the narrow Strait of Anian: the former delineation is retained even in a map by Bertelli, dated 1571; and in one by Cimertinus (1566), Cathay is placed upon the Gulf of Mexico. The expedition of Magcilan, it inight be supposed, would already have epened their eyes to the extent of that vast ocean which here intervened: but Magellan scarcely penctrated into the northern Paeific; and his ill-understood ceurse was probably supposed to reach direct from Cape Horn to the Meluccas, which did net interfere with the hypothesis of the two continents meeting each other in a different latitude. The breadth of America, like all unknown spaces, was vastly exaggerated in the early maps; while eastern Asia, by the process above pointed out, was tripled in all dimensions, and thus made to cover an ample portion of the Pacific.
Sebastian Munster, in 1572, produced a delineation of the world, which is cleared of some of the grossest mistakes, and which very tolerably delineates the general outline of the earth. He commits, hewever, Δ very discreditable mistake, in taking Ptolemy for his guide in regard to Scotland, and consequently representing that country as extending from west to east; a blunder the mere singular, as his forms of Scandinavia and Ireland are liable to littlo exception. Singular flights of fancy are found in the works of these early geagraphers. Munster undertakes to describe, not enly the surface of the earth, but also its interier: this is stated to be occupied by hell, a huge cavern two or three thousand German miles in length and breadth, and "capable of holding many millions of damned souls." Its existence was proved by the spirits which, in the depth of mineral caverns, as he had been assured by Cornelius Agrippa, often killed instantly a great number ef men. The inflammatory gases, which are still frequently producing such disasters, afford certainly no unplausible ground for that strange conclusion.
Ortelius, in the commencement of the sixteenth century, exhibits a remarkable improvement in geography. In his maps, all the parts of the glebe begin to assume their real form and dimensions; Americn and Asia are widely separated, the expanse of the South Sea interposing between them. The south pole is invested with a Terra Australis Incognita; which, as it relates to New Holland, is said to rest on the authority of Marco Polo and Barthema, and in regard to the West, on that of Magellan. Terra del Fuego is made a portien of this Austral continent: while in lat. $41^{\circ} \mathrm{S}$., and long. 10° west of Ferro, is Promontorium Terre Australis. There is a Terra Septentrionalis Incognita, nearly as extensive, and seeming to include Nova Zembla. Greenland, however, exists distinct from it. In the interior of Asia, the Caspian, under the appellation of Mer de Rachu, presents the same form and dimensions as in Ptolemy, and receives all the rivers falling really into the Aral, the existence of which seems not to be suspected by this geographer.

Mereator advanced censiderably farther, particilarly by shewing the imperfections of Ptolemy, and the injudicious manner in which the delineations given by him had been mixed with those furnished by modern authority. Mer ator retains the Austral continent, ineluding in it Terra del Fuego. The lakes of Canaia appear for the first time in his maps, as a sea of fresh water, the termination of which is unknown. In Africa, Abyssinia, enermonsly amplifiel, is made the principal and almost sole feature; it extends sonthward to the vicinity of the Cape, comprehending Mosambique, and bordering on Caffraria: the Nile rises only sbout ten degrees nerth of the Cape, and consequently traverses all Africa from south to north. , With respeet to the extreme northern regions, this very learned man has indulged in some extraordinary flights of imagination. The ocean resmes, as in Hemer, the character of a river, and is seen rushing ly four months inte the Pelar Gulf, to be absorbed, it is said, inte the lowels of the earth. On one of the river branches are placed pigmies, scarcely four
feet higlı; a notion suggested, perhaps, by the diminutive stature of the Laplanders and Sa moyedes: on another is placed a sort of northern paradise, while the Pole itself, a black and immense rock, towers to a prodigious height.
From the time of Mercator modern geography made rapid and continued progress, till it attained the state approaching towards perfection, in which it now exists: this will appear, when we consider it as astronomical, critical, or statistical; and when we view it in its relation to the different quarters of the globe.

CIIAPTER III.

MODERN ASTRONOMICAL OEOGRAPIIY

The astronomical geography of the Greeks rested on a basis exceedingly narrow. It was only at Alexandria, Syene, Rhodes, and a few other leading points, that observations of latitude appear to have been inade with a tolerable approach to accuracy; sll the others seem to have been only extended from rude itineraries. With regard to the longitudes, although the mode of calculating them by means of eclipses appears to have been understood, only one or two actual observations of this nature are recorded; nor does it seem to have exerted any important influence on geography in general. The Arabs made much greater progress in this department; but, through the separation produced by religious antipathy, their works were scarcely at all known in Europe at the period of the revival of lettera. At that time, the pompons display of latitudes and longitudes made by Ptolemy, venerable as it had become from its antiquity, commanded universal assent.

Modern observations have gradually shown the magnitude of Ptolemr* 3 errors. The first great shock to his authority was given by the latitude of Constantinople, which Amurath III. caused to be taken in 1574, when it proved to be two degrees lower than ancient authorities had assigned: the idea of such a difference, however, was treated with derision by some Europeun geographers, till it was confirmed, in 1638, by Greaves, who harl been sent to the East by Archbishop Laud. Even then, many, rather than renounce the authority of Ptolemy. believed that a change had taken place in the position of the earth; but this notion became no longer tenable to any extent when Alexandria and other points were found very nearly to coincide with ancient observation. But the great ularm as to the unsoundness of ancient graduation was given in 1635, when M. de Peiresc caused an eclipse of the moon to be observed at Marseilles and at Aleppo; and the difference of longitude, instead of 45° as it had teen represented, was found to he only about 30° : such an enormous error, in a dimension which ought of all others to have been most exnetly nscertained, shook altogether the blind confidence hitherto reposed in the longitudes of Ptolemy. It was at last perceived, that an entire reform of his graduations must be effected, before geography could rest on any secure basis. Numerous observations upon eclipses now began to be made; but it was then discovered, that this only known mode of ascertaining the longitude was attended with many imperfections. In the observation of fifty-six eclipses, collected by Ricciolus, there were no two, olserved in the same two places by the same men, which exhibited the same quantity of longitule: even the same eelipsn gave different results, when observed at its four critical periods. As it was found impossible to guard sgainst errors anounting even to three or four degrees, an opinion becane prevalent, in the middle of the seventeenth century, that unless for very grent distances, even itinerary measures would give the result with greater accuracy ; yet Gulileo, in 1610 , had already pointed out a source of more accurate knowledge : he had in that year discovered three of the satellites of Jupiter, and in his Nuncius Sidereus, pointed ont the use to which they might be applied. As his hints did not meet with the attention they merited, he communicated then more fully, in 1631, to Philip II. of Spain; lut that bigoted prince was unable to estimate their importance. Galileo met with a more favournble reception from the Dutel, who sent Hortensius and Bleau to Florence, to communicate with him on the subject. They found that great man involved in the storm of persecution which the ignorant bigotry of the Romish church had raised against him: he was thrown into prisen; and, after having asked pardon on his knees, for asserting that the earth moved round the sun, obtained only a mitigation of his confinement. This discovery was therefore of little ase till 1668 , when Cassini published his tables of the revolutions and elipses of these satellites; and three years afterwards, he and Picard made joint observations at Paris, and in the observatories of Tycho Brale at Copenhagen, by which the longitude of these two important points, which hail been the subjeet of long controversy, was finally fixed.
The French government now took the most active measures for extending geographical observation. Two acudenicians, l'icard and De la Iire, were employed to eonstruct a new map of Frince upon nstronomical principles. In this operation they almost everywhere reduced the previous dimensions, which had been tounded npon itinerary measures, and were liable to their nsua! excess: they took off a whole degree from the western coast between Britany and Gascony, and half a degree from the consts of Iangnedoc and Provence; so that
on their return, Louis XIV. facetiously repronched thern with having rebbed him of a part of his kinglom. Other acadenicinns were employed to determine the longitude of Goree on the const of Africa, and of Guadaloupe and Mnrtinico in the West Indies; and M. Chazelles was sent up the Levant on a similar mission. Expeditions on a mueh grander scale were dispatched, under Mappertuis to the Arctic circle, and Condamine to the equator. The primary object of theee was to determine the figure of the carth by the application of the pendulum; but the opportunity was taken of making various obscrvations of longitude and latitude, in regions which had been fermerly delineated only by processes of the most vague description.
In the operation of determining the position of places on the globe, important improvements havo been made since the above crus. Although there can be no more accurate mode of determining the longitude, than by the celipses of Jupiter's satellites, these are of too unfrequent oceurrence to answor tho practical purposes required. Observations of the transits of Mercury and Venus over the sun, of the occultations of the fixed stars, and of what are called lunar distances ; processes, the nature of which will be fully explained in the following book, have been employed with success. Nay, to such perfection have chronometers been brouglt, that, by showing the difference of time between known and unknown points, they serve many of the ordinary purposes of navigation. The voyages undertaken by Capt. Cook, under the auspices of Gcorge III., afforded the means not only of exploring many islands and regions of the Pacific and Polar seas, but of throwing much light upon the general structure of the earth. The expeditions of Capt. Parry, and the nautical surveys executed under the direction of the British government by Flinders, King, Owen, and other officers, have gone far to fix the outlines of the great continents. The trigonometrical surveys of France and England, executed within the last thirty years, have almost completed the delineation of those countries. Still this branch of geography remains very imperfect.

CHAPTER IV.

modern critical geography.

The application of a sound criticism to geographical materials cannot be discorned in the rude and infant stages of the science. There is no branch in which the inquirer is so likely to be misled by false and fabulous rumours. The persons from whom ho must draw his in.ormation,-the navigator, the merchant, the traveller,-make observations often only in a rough and superficial manner, and are swayed in their reports by fancy or vanity. The results of their own olservation, or the authentic relations of well-informed persons, are confounded with the most vague rumours which float among the vulgar. Hence almost all the early systems lave a portion of truth, mingled with many ideal and fabulous creations. The human mind unwillingly owns its ignorance even to itself. The geographer was reluctant to stop short at the point where his authentic information eeased. Having to delineate a kingdom or a continent, he filled up the really unknown parts from vague rumour, or a fanciful prolongation of those that were known, Whatever object had onee found a place was eopied mechanically without any incuiry, until modern maps and descriptions beeame crowded with objects, for the position of which no reason could be assigned.
Strabo, among the ancient geographers, was alone endowed with a critical spirit: but not having a sufficiently ample stock of materinls, he exercised his judgment with a blind severity, which appears to have done injustice to seveml individuals whose exertions in the infant cause of discovery were highly meritorious. This extreme of scepticism, opposite to that of credulity, has indced thrown unjustly into shade the merits of some of the most eminent discoverers, both ancient and modern. It is only by the collation of numerous authorities, accumulated by time and extended intercourse, that the just medium can be observed, and an equitable sentence pronounced on the reports of each party.
D'Anville, in the eighteenth century, possessed of ample materials, endned with indefatigable patience and sound judgment, undertook to revise the whole system, upon which the world and its regions had been hitherto delineated. The maps of the age were still covered with many obsolete and many fanciful particulars; and large portions of the worhl, eoncerning which absolutely nothing was known, were filled with inaginary cities and countries. D'Anville subjected every geographical feature to the strictest revision, and expunged without mercy those which rested on no positive and actual anthority. The world, under his hands, assumed a new, and in some respects, a less flattering aspect. Maps, which had before been auply and regularly covered, now exhibited vist and unsecmly blanks, which, anid the boasted learning of this age, inplied a mortifying confession of igmorance. It was impossible, however, to deny, that this was the sound system upon which to proceed. Geography rested at last upon sure bases, and procecded in a regular course of iuprovement.
Major Rennell, with a skill and sagacity not inferior to that of D'Anville, arranged and illustrated the mass of important materials collected respecting India and Africa; and, though
additional contributions of vast importance have in some degree superseded his actual delineation, his example has introluced a still greater precision into the mode of treating the subject.
The comparison of ancicat und molern geography, and the traeing of the infant steps of early discovery, constitute an interesting field of inquiry, which has been much cultivated during the present age. Vossius, Bochart, and other learned scholarsoftheseventeenth century, had exercised inuch diligence in these researches; but they were not always guided by the soundest judgment, nor were they sufficiently acquainted with the objeets aetually existing, to be able to recognise them under the early deseriptions. Renncll, Vincent, and Mannert, seemed to have earried this research nearly as far as it can go, though without being able to dispel that impenetrable darkness in which some questions are still involved. Gosselin has applied to the science an extent of investigation, and a critical aeumen, which. perhaps, none of his predecessors have equalled; but animated by too Strabonie a spirit, and seeking to subvert all the bases on which ancient geography had before rested, he has in many instances rather given lustre to bold and ingenious paradoxes, than made solid additions to the science.

CHAPTER V.

MODERN DESCRIPTIVE AND STATIETICAL GEOGRAPHY.

The mere outline of the globe, its continents and countries, the leading features of mountains, rivers, and cities, their distance and position with respect to each other, constitnte all that in the very strictest sense can be called geogrephy. But the mind cannot pass these in review, without feeling its interest excited, in even a superior degree, by other objects, for which these only serve as the basis. The productions of the earth, whether natural er artificial; the treasures hid in its bosom; the animals which roam or are bred on its surface; above all, the men by whom each region is peopled,-their manners, laws, industry, eommerce, the revolutions through which thcy have passed,-these possess the strongest claim on our attention, and are of an importance superior to that of the mere geometrical outline.
The ancients did not oceupy themselves with much more than the simple and fundamental bases of the science. The delineation of these formed alone an arduous task, which the geographer was required to accomplish before he could attend to the accossary and ornnmental parts. Eratosthenes does not appear to have extended his rescarch heyond those branches which were connected with astronomy. The work of Ptolemy forins a mere naked tabular list of positions, rarely enlivened by any historical or descriptive notices. Pliny does not go much farther. Strabo alone has enriched his work with numerous anecdotes and deseriptions which, though not given on any complete or systematie principle, constitute a great portion of its valuc.

Early modern writers confined themselves, like the ancient geographers, to mere outlines. All the first treatises were formed on the model of Ptolemy ; D'Anville, the head of the French school, applied himself solely to the boundaries and positions of countries, whieh he fixed with a precision before unknown, but without directing much attention to their physical and sccial relations.

Statistics, the science which treats of kingdoms and states in their relations of population, wealth, productions, commerce, and public force, is, as a separate branch of knowledge, only of reeent origin. From the first it had a natural alliance with geography. Busching may be considered as the father of statistical geography: his vast rescareh, strict fidelity, and access to the best sources, enabled him, in his description of Europe, to assemble a mass of information unequalled by any of his predecessors. He has arranged it, however, nearly in the same mechanical manner in which they had drawn the mathematieal outlines of the globe. His writings, instead of conveying to the mind striking general views, are loaded with minute and burlensome details, which ean be useful only as matter of rcference, and would therefore have most preperly appeared in the form of a dietior.ary. His successors have been numerous, and their labours are of similar character and value. Bruns, with regard to Africa, and Ebeling to Asia, continued the series. The great geographical work recently eompleted by IIassel, Cannabich, Gaspari, and Gutsmuth, in twenty-five octavo volumes, each equal to three or four of ordinary sizr, comprises, probably, the largest mass of statistical information ever assembled into one work.
The English compilations of Bowen, Guthrie, Salmon, and others of the same school were, perhaps, the first works which embraced nearly sll the objects that ean give interest to a system of geography; and though indifferently exccuted, and devoid of any eharms of style, they acquired a very extensive popularity. Mr. Pinkerton has exccuted a work on the same plan, in a superior manncr, adding notices of the different branches of natural history, and of the different languages of uations. M. Malte-Brun, by his acquaintance with the eastem and northern literature of Europe, and by an animated and interesting style, has produced a werk in some respects superior. M. Balbi has distinguished himself by the industry with whieh he has collected geographical facts.

We shall now take a view of molern discovery in the remoter quarters of the globe.
Vol. I.

CHAPTER VI.

modern geograpily of asia.

Asis was the first continent which attracted the attention of Europeans, and the journeys of all the early travellers. The enterprise of the Venetians penetrated into some of the wide and perilous tracts of its interior, which the boldest of more modern travellers have in vain essayed to reach. Since the passage of the Cape, the career of diseovery has been eliefly maritime. We have seen how rapidly the Portugueso fleets explored all the southern coasts and islands. Tho eastern shores beyond Japan, as they presented nething tempting to commereial avidity, were lef to be examined by expeditions having seience and curiosity for their object. This task was efierted by Cook, Perouse, Broughton, and Krusenstern. Jesso, which had figured as a large continental tract, stretching between Asia and America, was reduced by them to its insular form and dimensions, and its separation from Saghalien established; the range of the Kurile islands was aleo traced; but some questions respecting this very remote and irregular coast remain yet to be solved. Aleng its northern ooundary, beset by the almost perpetual ices of the polar sea, the progress of navigation was slow and laborious, The Enghish and Dutch, the chief maritime states, made extraordinary efforts and braved fearful disasters, in the hopeless attempt to effect by this ronte a nearer passage to India; but though they penetrated beyond Nova Zembla, they never could pass the formidable promontory of Severovostochnoi, the most northern point of the Asiatic continent. The Russians now elaimed for themselves the task of advancing farther. They had most rapidly discovered, and conquered the whole south and centre of Siberia, and reached the eastern ocean at Oehotzk; but the frozen bounds of the north for some tine defied their investigation. Proceeding in little barks, however, they worked their way from promontory to promontory. Behring and Tehirikoff, early in the last century, sailed through the Northern Pacific, discevered the American coast, and the straits, bearing the name of the former, which divide Asia from America. Deschnew and Shalaurof, by rounding tho Asiatic side of this Cape, and discovering the coast stretching away to the westward, were supposed to have established the fact of the entire separation of the two continents. There still remained a portion of coast on the side of Asia, which, it was alleged, might, by an immense circuit, have comnected the two together; but the late voyage of Baron Wrangle scems to have removed every ground on whieh such cenjecture could rest, and to have established beyond doubt or dispute, the existence of Asia and America as continents altogether distinct.
Respecting the interior of Asia, the British obtained much additional information from India, after they became undisputed masters of that region. This information was in many respects only a revival of ancient knowledge. The mountain boundary of India was traced, and found to rise to a height before unsuspected. The sources and carly courses of the Gsnges and the Indus, were found in quarters guite different from those which modern geography had long ussigned to them. The mountain territories of Cabul and Candahar, the vast sandy plains of Mekran, were illustrated by the missions of Elphinstone and Pottinger; while Turner and Moorerof penetrated into tho high interior tsble-land of Thibet. Recent and authentic information has also been furnished by Burnes respecting Bochara and Samarcand, those celebrated capitals of the early masters of Asia: but there remains still a grest central Terra Incognita, respecting which our information rests chiefly upon the desultory and somewhat clouded reports of Marco Polo, and the meagre narrative of Goez; though some important snd more precise information has recently been sfforded by the researches of Humboldt and Klaproth.

CHAPTER VII.

MODERN GEOGRAPHY OF AFRICA.

Africa, more than any other quarter of the globe, has defied the researeh, and humbled the pride, of molern inquiry. After securate surveys had been made of the remotest oceans and shores, this continent, placed almost in view of Europe, still baffled every sttempt to penetrate the mighty secrets which it held in its bosom. This vast and unbroken region enelosed by huge expanses of desert, and occupied by barbarous and predatory tribes, for a long period proved fatal to every daring mortul who attempted to penetrate into its depths. The Portuguese, however, at an early period, made very extraordinary exertions, inpelled by the odd chimers of Prester Joln, a Christian prinee, whom they expeeted to find in the interior. With this view they explored Abyssinia, of which they vastly exaggerated the dimensions, making it extend even to the Cape, in the vieinity of which, according to their iden, the Nile took its origin. In their progress also along the western coast, they sent repeated embassies into the interior, to diseover, if possible, the abode of Prester John; and though that favourite object always eluded their searel, they appear to have reached on one vecasion as far as Timbuetoo, and learned at Benin soue particulars respecting the great interior kingdom of Ogane or Ghana.

Book III.
MODERN GEOGRAPIIY OF AFRICA.
75
The great interior river called by Ptolemy the Niger, was the object which from the first excited the chief interest in respeet to the African interior. All the early European navigators, on coming to the two broal estuarics of the Senegal and Gambia, concluded that one or both formel the termination of the long course which the Niger liad been described as taking across the entire breadth of Africa. For several centuries the European nations, intent only on the trade in slaves, merely touched at different points of the coust, to which those unhappy victims were brought down by large earavais. In the begiming of the soventeenth century, howover, the French and English having respeetively scttled on the Senegal and Gambia, were tempted, by the report and view of the gold brought from the interior, to push up these rivers and endeavour to reach Timbuctoo. They had not ascended tar, when they became sensible that the extraordinary magnitude and distant origin aseribed to both was altagether chimerical. They were traced so near to their sources as to be little more than rivulets; yet still the explerers were far from Timbuctoo, and from the great central plain, through which the main course of the Niger was understood to flow. At the same time, notices were tranemitted to the French geographers Delislo and D'Anville, which led them to infer that there was in that region another and greater river, which flowed eastward towards the interior, and of which they were unable to learn the terminatien. Yet this delineation of these great geographers had been in a great measure lost sight of even among their own countrymen.
The information obtained by the African Association at first tended to confirm this impression. The persons who had crossed the Niger at the most eastern part of the central African plain, deseribed it to Mr. Lucas as fowing westward: but these conflicting statements were silenced by the first expedition of Mr. Park, who at Sego beheld it a broad and majestic stream, flowing through the plain of Bambarra from west to east, and directing its course into the depths of interior Africa. From that time, the termination of the Niger became the grand problem which the seienoe and the enterprise of the age were exerted to solve. A boundless field was open to conjecture. By one theery, the Niger was lost in some great inland seas or lakes of the interior; by another, it bent to the south and west, and reached the Atlantic either in the Gulf of Benin, or by the estuary of the Congo; lastly, it rolled to the eastward, till, under the name of the Abiad, or Whito River, it became the principal head ef the Nile of Egypt. At last, by the persevering exertions of the British government, an expedition fairly suceceded in penetrating into the hitherto unknown interior of Africa, and in throwing a wonderful addition of light upon its structure. This mission, however, broke up the grand question. They discovered, flowing through the great Afriean plain, not one river in one direction, but several in different directions; all of which, it appears, have been censidered at different times, and under different circumstances, as the Niger. These rivers are four :-1. The Senegal, considered by the Arabians and modern Europeans as the embouchure by which the Niger entered the occan. 2. The Joliba, which ever since it was visited, and its course ascertained, by Park, lass been fixed in the mind of Europeans as the only Niger; though probably not known to any of the ancient geographers who used that term. 3. The Quarrama, or river of Zirmie, first discovered by the late mission, flowing from east to west, and falling into the Joliba or Quolla. This is evidently the Arabian Nile of the negroes, on or near which are situated all their great cities-Ghana, now known under the name of Cano; Berissa, under that of Borshee; Tocrur, as I apprehend, under that of Sackatoo. 4. The Yeou, flowing eastward into the great lake of Bornou, and which appears to have been the western Nile of Herodotus, visited by the Nasamonian udventurers from Tripoli. The mission also ascertained the site of the kingdom of Borneu, which had been very erroneously placed; they discovered the fertile kingdem of Loggun, perhaps the Cauga of Edrisi, and the great mountain region of Mandara, which appears to be the Mons Mandrus of Ptolemy. The subsequent expelition of Clapperton from the Gulf of Benin showed the connexion between the Atlantic coast and the interior, und completed the diagonal section made across the greatest breadth of the African continent. It showed also the continuity of large and populous kingdoms extending in this direction: Eyeo, the Gago of Leo and the carly geographers; Zegzeg, with its large capital Zaria; Nyffe, the most industrious of the African states; Boussa, Koolfu, and other flourishing cities. The Niger of Park was here seen holding a southerly direction towards the Gult of Benin; but it was reserved for Lander finally to solve the grand problem by tracing the Niger down to its termination in the Gulf of Benin. This diseovery, with that of its numerous tributaries, opens to commerce the prospect of being able to penctrate into the most interior and finest regions of the African continent.
Among partial but important contributions to the knowlenge of Afrien, may be mentioned the observations of Bruce and Salt in Abyssinia; those of Brown in Darfir ; of Waddington and Caillaud in the upper part of the Nile; and, lastly, of Lichtenstein, Campiell, and Burchell, upon the countries which lie in the interior northward from the Cape of Good Hope. Yet a vast field still remains for future discovery. In particular, all the southern interior, from the equator nearly to the Cape, has searcely been the sulject even of rumour. The sources of the Nile, ntter the seareh of so many ages, are yet unexplored; as well as
that wide range of territory which intervenes between it and the series of rivera which we have just noticed as assuming the name of Niger. The continuity and structure also of that vast chain of innuntains, which, aecording to recent truvellers, appears to cross Africa at its greatest breadth, and gives rise to so many mighty streans, have yet by nomeans been completely traced.

CHAPTER VIII.

modern geoghapiy of america.

The discovery of America, as formerly observed, was made in the first instance with extraordinary rapidity. The thirst for gold and the opirit of adventure urged mution after nation to explore its coasta, and penctrate its interior. Within twenty years was formed a full and tolerably preciso ontline of the whole castern coast, from the mouth of IIudson's Bay to the Straite of Magellan. The conquest of Cortez, of Pizarro, and of their immediate sicceseors, soon conveyed a protty accurato iden of the western coast of South America, of Mexico, and even of the peninsula of California. But the northern regions, stretehing into the ices of the Pole, presented barriers of a formidablo description, which long baffled the utmost efforts of navigators. America on this side resisted for a longer time the attempts to complete ita delineation than any other continent.

To explore the north-western coast seems to havo been an undertaking properly belonging to Spain, the posseasor of all the vast and opulent regions which extend along the Pacific. Recent notices have shown that they did not neglect that inquiry, for Cortez and several of the other viceroys sent expeditions along this coast, to which they gave tho name of New-Mexico. The Spuniards, however, as usual, shrouded in deep mystery even these limited discoveries, and were long able to prevent the other nations of Europe from visiting this coast, the most remote and inaccessible of any in the circuit of the globe. Europeans, therefore, were not aware of the vast breadth to which this continent expanded towards the north. They rather supposed that, like South America, it narrowed to a point or cape, upon passing which the navigator would enter upon the expanse of the Pacific, and might bear down npon Japan, China, and tho Fast Indies. The commercial nations therefore, made vigorous and almost ceaseless efforts to turn this point, and effect, as they imagined, a nearer and more direct route into the eastern seas.

The Fnglish took the lead in this important carecr. Under the reign of Queen Elizaleth, Frobisher and Davis made each three successinn voyages. One discovered the entrance into IIudson's Bay, the other found the entrance into tho great sea which bears the name of Baffin's Ray; but, partly urrested by the well known obstructions to which these seas are liable, partly diverted by a chimerical search after gold, they could not penetrate beyond the numerous islands and inlets by which these entrances are beset. IIudson, in 1610, steered a bolder course, and entered the vast bay, which has reccived its appellation from that great navigator, who there unfortunately terminated his adventurous career. The treachery of a ferocious and mutinous erew exposed him on these frozen and desolate shores, where he miscrably perished. Sir Thomas Button followed in 1612, and finding himself in the middle of this capacious basin, imagined himself already in the Pacific, and stood full sail to the westward. To his utter dismay he came to the long continuons line of shore which forms the western boundary of IIndson's Buy. He expressed his disappointment by giving to the coast the name of "Ilope checked." Bylot and Baffin, who followed three years after, were stopped by the ice at Southampton Island. Baffin, however, made afterwards a more important voyage, in which he completely rounded the shores of that great sea which bears his name, and which, appearing to him to be inclosed on all sides by land, has been denominated Baffin's Bay. The error involved in this appellation deterred subsequent navigators from any further attempt; for Baffin, in passing the great opening of Lancaster sound, had concluded it to be merely a gulf. From that period the English navigators, though they ceased not to view this ohject with ardour, hoped to fulfil it only by the channel of Hudson's Bay. In 1631, two vessels were sent thither under Fox and James. The latter, entangled in somo of the southern bays, returned after dreadful sufferings from the cold of the winter; but the former, quaintly calling himself North-west Fox, explored a part of that great opening called Sir Thomas Roe's Welcome, which appeared now to afford almost the only hope of a passage; but he stopped short at a point which he termed "Fox's farthest." Under Charles II. a company was formed for the purpose of settlement and commerce in Hudson's Bay, and engagerl to make the most strenuous exertious to discover western passage ; but it is believed that the only exertions really made by the Company ended to prevent any ouch discovery. Middleton, an officer in their service, was sent out in 1741, sailed up the Welcome, and believed himself to have discovered that the head of that channel was completely closed. He was strongly charged with having received a high bribe from the IIudson's Bay Company to stifle the diseovery, and Moor and Smith wern sent out in the following year with the most sunguine hopes; but when they returned witls

Part 1.
thich we 3 uleo of *s Africa ans been nce with tion after $1 s$ formed IIndson's their im. of South regions, m, which a longer y belongllong the ortez and the name ven these m visiting iuropeans, wards the t or cape, nd might therefore, ragined, a lich bears to which not peneIIudson, 3 appellaus career. desolate d finding cific, and nons line sappointfollowed cr, made s of that sides by deterred opening Euglish t only by 1 James. pgs from pplored a to afford 1"Fox's ent and discover Pompany sent out licad of la ligh th werm ed with

Book III.
out loaving effected any thing, the public expectutions were greatly abated. It hecame the general impression thit America, on this side, formed a mass of unbroken land, and that the long sought passage had no existence.
New views of the extent and form of the northern extremities of America were opened by the discoveries of Cook, corroborated by those of some other English navigators in the Northern Pacific. It appeared that America there stretched away to the north-west, till it reached a breadth equal to one-fourth part of the circumference of the globe. Cook penetrated, indeed, through the strait which bounds the continent nnd separates it from Asia ; but the const appeared thero extending indefinitely uorth; and it became a general impression that America formed a huge unbroken mass of land approaching the 'Pole, and perhape reaching that ultimate point of the globe. This belicf received a suulden shock from Hearne's voyage down the Copper Mine River, and his discovery of the sea into which it fell, in a lntitude not higher than that of the north of Hudson's Bay. Soon after, Sir Alexander Mackenzie tracel also to the sea another river twenty degrees firther west. There was now a strong presumption that a sen bounded the whole of America to the north, and that there really was such a passage as hal been so long sought, nnd might be found, were it not too closely barred by ice and tempest. The British administration, animated with an active and laudable zeal in the cause of discovery, determined that no possible effort should be omitted by which this important and long agitated question might bo brought to a final decisien.
A scrics of exploratory voyages was now begun. Capt. Ross, in 1818, made the circuit of Baftin's Bay, and returned with the belief that no opening existed: Lieut. Parry, second in command, formed a different judgment, and having satisfied the Admiralty as to his grounds of belief, was sent out with the command of a new expedition. In this memerable voyage, Capt. Parry penetrated through Iancaster Sound, which he found to widen gradually, until it opened into the expanse of the Polar Sea. He did net touch on any part of the Amcrican const, but found parallel to it a chain of large islands; and his progress through these was arrested, not by land, but by straits and channels encumbered with ice. In consideration of these obstacles, his next attempt was made through Hudson's Bay, by the yet imperfectly explored channcl of the Welcome. Struggling through various obstacles, he reached at length a point considerably beyond that where Middleton had stopped, and found a strait opening from Hudson's Bay into the Polar Sea. This strnit was, however, so narrow, and so completely blocked with ice, that there appeared no room to hope that it would ever afford an open passagc. Capt. Parry was therefore again sent out in lis first direction; but he made no material addition to his former discoveries. Meantime a land journey, under Capt. Franklin, following in the footsteps of Ilearne, reached the sea, and discovered a considerable extent of the hitherto unknown northern const of the Anerican continent. A tolerably clear glimpse was thus obtained of its extent and boundaries; and the zealous efforts of government were employed to verify the whole by actual survey, A second expedition under Capt. Franklin extended this survey over three-feurths of this boundary coast, and reached beyond the 149th dogrec of longitude. Meantime an expedition, under Captain Beechy, sent to meet Captain Franklin from the westwari, passed the Icy Cape of Cook, and arrived at nearly $150^{\circ} \mathrm{W}$. longitude; between which point and Captain Franklin's farthest limit there intervened only 7°, or 150 miles.
The belief was hence entertained, that the whole const extended in a line not varying much fron the 70th degree of latitude; but the important expedition which Captain Ross has just achieved through so many difficulties, preves the existence of a large peninsula, extending as fur north as $74^{\circ} \mathrm{N}$. latitude. It remains still probable that a naval passage may exist farther nerth, in the line of Captain Parry's first voyage. But the encumbering ice is se thick, and so wedged into various straits and channels, that probably no vessel will ever be able even once to work its way through ; and certainly a ship could never set out with any assurance of thus finding its way from the Atlantic into the Pacific. Britain has, however, reaped an ample share of glory in contributing so essentially to delinente the boundaries and dimensions of this great and important continent.

CHAPTER IX.

MODERN GEOGRAPIY OF Thi aUstral geas and islands.

Mene than half the surface of the globe, ineluding long groups of islands and vast expanses of ocean, remained unexplored, even after regular naval routes had been formed round the Cape of Good IIope, and Cape Horn; yet there soon arose the belief of an Austral continent, as extensive and as abounding in wealth as that which had been discovered by Columbus. An ideal balance was fancied, which it was supposed must exist between the lands of the northern and those of the southern hemispheres; and the more disproportionate the extent of sea which existed in the known parts of the latter, the greater it was supposed must be the mass of southern continent which was to estabiish this ideal, imaginary
balance. In all the early maps, a huge continental mass encircles the Antarctic pole, and presente to the great ncean in continnons eircuit of shore renching round the globe: the alkova analogies were doubtless aided by diseoveries made on great insular truct of the South Nea, wo purtinl that they might be mistaken for promontories, or portions of a great mnas of Antaretic lani.

The lortuguese, solong the most wkilful and intrepid navigators of the scean, appear to have been the first who threw any light ugon this fith nud most remote portion of the earth; in less than twenty years nter their pussage of the Cape they had reached the nost extreme Islands of the Orietulal Arehipelago, including Java and the Moluccas, and appear even to have observed romo parts of the coast of New Guinea. There are no recorda of their having proceeded tarther; but maps have been found in the British Museum, and other collections, which exhibit an extensive land to the south of Java, under the title of Java Major, on whiels oecur n number of names, some of them l'ortugnese: one of thewe maps, partly translated into Freuch, lins the "Cote des Herbuges," a name somewhat curiounly coincid. ing with Botany llay. Nons of these diseoveries, however, have been embolied in any known narration.
The Spaniurds also, during their early and adventurous eareer, made strenuous efforts to explore the sonthern sens: Magellan, as already observed, by his first circumnavigntion of the globe, effected a grand step in geographical discovery. Alvaro Mendann, in 1508, sailed trom Lima, and, atter crowsing tho brealth of tho P'acific, discovered a group of large maritime lands, to which, from a chimerical reference to Ophir, he gave the name of "Islands of Solomon :" they appear to bo part of that great group which forms the outer range of Australasia. Mendana set out on a second voyage, and reached the same quarter, but, by some fatulity, could not again find the islands formerly discovered. Quiros made a still more important expedition ; he passed through the P'olynesian group; and Sagittaria, one of the islands discovered by hin, appears clearly identified with Otaleite; he terminated his voyage, like Mendana, among the exterior ialanda of Australasia; and with him expired the epirit of Spanish enterprise.

Tho Dutch, when they liad expelled the Portuguese from Java and the Spice Islands, and had established in them the centre of their Indian dominion, wero placed in such close proximity with New Holland, that it was scareely possible for a great maritime nation to avoid extending their search to that region. Vin Diemen, the Dutch governor of India about the middlo of the seventeenth century, grently promoted this object, and sent successive vessels to explore the coast of New Holland. Ilertog, Carpenter, Nuytz, and Ulaming made very extensive observations on the northern and western shores, but found them so dreary and unpromising, that no settlement of any description was ever attempted. Abel Tusman, however, weut beyond his predecessors; he reuched the southern extremity of this great mass of land, to which he gave the name of Van Diemen, without discovering it to be an island: he then aniled across, surveyed the western coast of New Zealand, and returned home by the Friendly Islands. This important range of diseovery was not followed up; it refuted, however, the delineation by which New IIolland had been made part of the imagined Austral continent. In the newly arranged charts, that continent still remained, but with its position shifted farther to the south, and Now Zealand probably contributing to form part of its fancied outline.
The English nation; by the voynges of several navigators, and particularly of Cook, secured the glory of'fully exploring the depths of the grent I'acific. The previous voyages of Byron, Wallis, and Carteret had already made known some of the interesting groups of islands with which its vast surface is studded. Cook fully traced the great chains of the Society Islands, and of the Friendly Islands; he discovered and surveyed the eastern coasts of Now IIolland and Van Diemen's Land. Ie settled the form and relations of Now Zealand, New Caledonia, and the other great Australasian lands and islands. This side he passed thrice the Antaretic circle, and ranging along the yet unvisited borders of the southern pole, solved, by rcfuting, the famous modern hypothesis of an Austral continent. He navigated also through the northern Pacific, observed carefully the group of the Nandwich Islands, and established, in the manner before pointed out, the relation between the continents of Asia and Λ merica. Many eminent navigators, anong the French, La Perouse, Marchand, D'Entrecasteaux; among the Russians, Kotzebue and Krusenstern; among the English, Vanconver and Beechey, followed; and, though the grand prizes of discovery had been carried off, found still some gleanings in so vast a field. The circumnavigation of the globe has ended in becoming a mere trading voyage, which conveys neither name nor glory to hin by whom it is nchievel. Captain Weddell, however, has lately, in New South Shetland, found a tract of land situated nearer to the Antarctic pole than any previously supposed to exist.
New Holland, much the most extensive of the lands belonging to the southern hemisphere, and rendered doubly interesting by its recent relations with Europe, has formed the theatre of late southern discoveries. Bass, in an open boat, found the strait which bears his name, separating New Holland from Van Diemen's land, and making the latter a separate island. Baudin and Flinders, contemporaneously employed by the French and Englis!
nation, made a continuous survey of the vast circuit of its conuta, which had been before touched only at partial points. At a later poriool, Freycinet male zotno additional obwervations ; and King found still a great extent of north and northowentern coast to survey for the flrst timo. More recontly, tho dincovery of Swan Rivor and itn shores promises to redeem the reproach of sterility which had been attached to the whole western const of this continent: tho luterior on the eastern side also, though guardod by ateep and lofy burriers, han beell penetrated to a considorablo depth, and found to contain extensive pluins traverwed by large rivers. Still the explored tracts form only a amall proportion of the vast surfuce of thia southern continent.

PARTII.

PRINCIPLES OF GEOGRAPHY.

Amona the various branches of human knowledge there la so intimate a connexion, that no science can be truly said to be independent of all others. Some, indeed, may be rogarded as primary, because, to a certain extent, they have had an independent existence, and bocause other sciencea have sprung from them. Such, for example, are aritlimetic and geometry, the prolifie parents of all the branches of modern mathematics. Other sciences, again, are connected by collateral relationehip, in respect of their affording mutual aid: and in this manner all the branches of human knowledgo depend one on another, each repaying the advantages which it has recelved.
The subject of this treaties, Geoorapry, whieh in conmon with other scienecs owes its origin to the wants of man, joined with his inherent desire of knowledge, has arrived at its present state of improvement by the aid of several seiences, and of a very grent number of the arts which are the fruit of human ingenuity. It is more particularly indebted to the mathematical sciences, eithor directly, as furnishing rules and methoda by which the magnitudo of the earth, its figure, and the position of the different parts of its surface, may be determined; or indirectly, inasmuch an it has been improved by astronomy, navigation, and other seiences which owe their perfection to the mathematice. To the arts its obligations are innumerable: for every atep of progress which lins been made in the construction and management of ships, in the fabrication of mathematical, optical, and nautical instrumente, and in the collateral arts on which these depend, has contributed to the advancement of geographical knowledge.
The doctrines of geography strongly support, and have a close affinity with, those of natronomy. It is only by the application of thia latter science that we have been able to discover the true figure of the earth, and its inagnitude: and some of the most importnnt divisions of the earth'a aurface are marked out by astronomical phenemena. On the other hand, an exnet knowledge of the figure and magnitude of the earth is of the highest importance in the explication of the more recondite doctrinea of astronomy. Hence, while the doctrines of astronomy involve the principles of geography, it holds equally true that the principles of geography can only be understood by a due application of some of the more aimple theorice of astronomy.
The acience of geology has, if possible, a atill more intimnte connexion with the deseription of the earth. While astronomy delineatea the form and movements of that planet, and its relation to other bodies in the universe, geology describes the materiala which compose its aurface, and the order in which they are arranged, with the composition and phenomena of the surrounding atmosphere. The various inequalitios into which it is formed, the distinction of land and sea, with their origin and effecte, come all within the sphore of this important science.
The organized and living beings which cover the surface of our planet, form a most intereating feature in its delineation. For the aupport and nourishment of these, the whole of its vast structure was originally destined. In taking a aurvey of this interesting range of objects, we may begin with plants; then ascend to animals; and, lastly, to man, who holds tho chief rank in the constitution of this lower world.
Three divisions, comprehending each a separate book, will, on the grounds now stated. comprohend the Principlea of Geography: these are-I. Astronomical Principles. II. Geological principles. III. Geography considered in relation to the organized living and rationa . naturea which cover the surface of the earth.

BOOKI.

ASTRONOMICAL PRINCIPLES.

CHAPTER I.

general view of tife phenoyena of the ifeavens, apparent motions, fixed ETARS, PLANETS, \&c.

The succession of day and night brings under our observation the sun, the moon, and an inuumerable multitude of luminous bodies, which appear like points on the concave surface of tho heavens. Of these the sun and the moon are the most remarkable. The sui at all times presents to us a circular dise : the dise of the rnoon is also at certain periods circular, but she undergoes a succession of changes in the appearances of her luminous part, which are denominated phuses. With regard to the distances of the sun and moon from this earth, we are certain that they are very remote; for we observe that their apparent magnitude is not sensibly affected by any change in our lecal position. We may with probability suppose the stars to be bodies of the same nature with the sun and moon, appearing smaller only because they are at a greater distance.
The apparent motion of the heavens from east to west about a fixed point in the nurthern quarter of the sky, as seen in this country, is a phenomenon quite familiar to every one. If we change our position on the earth by going always south, this fixed point appears to descend, and at last it sinks below the liorizon: but we now perceive that there is another fixed point in the southern region of the heavens, exactly opposite to the former, about which the diurnal motion is also in like manner performed. These two points are the north and souti, or the arctic and antarctic poless of the heavens.
From what we see on the earth's surface, we learn by experience that the real and apparent motions of bodics may be very different. An observer in a vessel carried along by the current of a river, will feel disposed to believe himself at rest; and then, if he were to judge from appearances, he would suppose that trees and fixed objects on the banks were in motion, because of the apparent change in their relative positions. Hence we may infer, that we cannot judge immediately respecting the absolute motions of the heavenly bodies fron their apparent motions. It las only been by a series of nice observations, and the application of the doctrines of mathematics, that the former have with absolute certainty been deduced from the latter.
The general phenomena of the apparent motions have, however, been discovered by the ordinary observation of mankind from the remotest ages. To a spectator in any place of the earth, the whole system of the celestial bodies appears as if placel on the surfuce of a concave sphere, the centre of which is the place where he stands; and this sphere appears to revolve daily on an ideal line which passes through the poles of the heavens, and is called the Axrs of the world. Although the cupposition that the celestial bodies are all situated in the surface of a sphere, of which the eye is the centre, be perfectly consiste with the appearance of the heavens, it is easy to understand that this may be a consequence of their immense distances. To an observer standing on an extensive plain, objects very remote around him, though at unequal distances, would appear in the cireumference of a circle having his eye in the centre.
Besides the diurnal motion of the heavenly bodies, which is common to them all, we discover that some of them have peculiar motions by which they change their apparent places in respect of one another. Thus we see the moos in the course of about a month describe a circle quite round the heavens from west to east. The sus also appears to change his position daily, and to go round the heavens from west to east in a year. It is in consequence of this peculiar motion of the sm, that we find different stars at different seasons of the year set immediately after him, or rise inmediately before hinn; and that the appearance of the heavens through the course of the year is continually changing.
From the remotest antiquity five stars had been observed to change their position ; and in modern times five others have been discovered. These "wandering stars" have bee., appropriately denominated planers; and, generally speaking, they can be seen at all times, except when their feeble light is rendered insensible by the effilgence of the sun. The planets have received particular names, and are distinguished by particular characters; these are
 Uranus ity.
There are other luminous bodies laving a proper motion, which are seen for a short time and afterwards disippear. Their existence, however, is permanent. They nre distinguished from the planets by their being visible only for a slort period, and also by a train of light proceeding from them on one side, forming a tail; these bodies are called comets. Theinumber is not known, but it appears to be very considerable.

Pagt II.

FIXED

on, and an ve surface sui at all s circular, art, which this earth, gnitude is ty suppose aller only

Book I.

clear night; these retain ollways the comets, there are other lumınous bodies visible ever reason are denominated fixed stars. same position in respect of each other, and for this sphere is perfectly uniform, and a complete reparent motion about the ouxis of the celestial minutes.
is performed in about 23 hours 56 colestial sphere, we are enabled to deterning of the fixed stars on the concavity of the
bodies. The motions of the motions of the sun and moon are the motions of the other heavenly one another. This plissimets appear more complicated, the most conspicuous and simple. the heavenly bodies are very dy might well lead to a conjecture considerably different from modified by the real motion of therent from the apparent motions, that the real motions of verified.

This conjecture we shall afterwards find fully their motions and mutual relations his general survey has brought under our notice, with mining with exact the most extensive series of discoveric Astronomy, which of all the natural with precision their various mestions of the sun, moon, and stars; by obsing for ages, and deterscience in investigating the motions; and by employing all th; by tracing and measuring mind has suc eeded in phe constant laws to which these the resources of mathematical hensive survey by which, in the from the first cursory view of the are subject, the human past and future states of the system present state of astronomical science, we to that compresystem of the universe.

CHAPTER II

 \section*{the heavens as seen tifrougil the telescope.
 \section*{the heavens as seen tifrougil the telescope.
 From the arscovery of the telcscope, ar ithe telescope.}era may be dated in that science. The number of stars thousand, which the purposes of astronomy, a new clearest night, and in the absence over the concave surface of the naked eye is about three unce. They are not distributed in of the moon, seldom more tha heavens. Even in the which from the remotest antipuity incriminately over the heavens two thousand are seen at ployed to facilitate the destription have received distinct names, but aro disposed in groups, The ancients imagined the figuon of the heavens, and the refo, and these have been em\& c. to be traced on the concaves of various personages of their mythole any particular star. sidered a group of stars to belong to eace: these figures they called constellation of animals, remarkable for their position, pro to each. To some of the brighter stars, and to the and con-
The distinction founded on the names have been given. most obvious which occurs to the different degrees of brigh and has aecordingly been emp the spectator while his vision is of the fixed stars, is the to the naked cyo have beem, on est are reckoned to be of the first paisinciple, arranged under six mugnitudcs stars visible to the sixth magnitude. The arrougnitule, the next in brightness of the ses. The brightcombining the principle of the arrangement of the stars has beess of the second, and so on In maps of the heavens and on cost-mentiened arrangenent with the methorther facilitated by in each constellation are on colestial globes the constellations the method of constellations. degrees of brightness. The usc of the tele the same time discovercope has greatly increased the nur visible to the nakedered to us many particulars before unlmor of visible stars; and has at tound, when observed cye. Many of the stars which to unnown respecting those that are sometimes of three or more sh a telescope of high marnifying vision appear single, are multiple stars were observe stars extremely near to one anothg powe s, to consist of two, by the joint labours of his son Sir William Herschel, and ther. Seven hundred of these In some of them the small stand Sir James South, also by the number has been increased Thus a Herculis is donble stars are different in brightness the German astronomer Struve, composed of four stars; three the larger of the stars is red, the sme colour of their light. mequal, the largest a reddis white, and one red: γ Andromede conver blue: ε Lyrae is single stars evidently differ in their co, the sulallest a sky-blue inclining to two stars very
Nebule are small luminous their colour: Aldebaran is rel, Sirius of a brilline wa. Some many places of the heavens. Tlue mos' a cloudy appearance and irrerular spont white. ar Milky Way, which enc. The most remarkable appearance of irregular shape, seen in The Sword of Orien containg asses the whole heavens, and is of this kind is the Galaxy, Bear, one of an oval shante the a beautiful nebula. Two occur in the to the naked eye. a telescope of reat magnifying power round like a comet without a tail head of the Great of small stars, distinetly sepyrate power, these luminous spots are a tail. Viewed throngh Vol. I.
blended together produces the luminous appearance. In a portion of the Galaxy, about titteen degrees in length, and two in breadth, Dr. Herschel found no fewer than fifty thousand atars large enough to be distinctly counted. The number of nebule is very considerable. Herschel discovered two thousand; before his time only one hundred and three were known.
Contmued observation has shown that the fixed stars are not altogether exempt from change. Several stars mentioned by the ancient astronomers are no longer visible, while some are now seen by the naked eye which are not in the ancient catalogues. Some stars have suldenly appeared, and after having been seen for a short time have ceased to be visjhe. In 1572 a new star appeared in Cassiopeia's Chair; and in 1604 another appeared in Serpentarius. These sturs did not change their places: but having gradually inereased in hrilliancy, until they exceeded Venus or Jupiter in brightness, and were even seen in the day-time, they diminished in the same gradual manner, and in a few months entirely disappeared. Some stars are observed to have periodical changes of brightness. Of this description is Algol, or β Persei: when brightest it is of the second, and when least bright of the tourth magnitude. It goes through all its changes of lustre in four days, twenty-one hours. Other stars like β in the Whale, have gradually increased in brilliancy; or, like δ in the Great Bear, have continually diminished in brightness.
The fixed stars, when viewed through the telescope, appear like luminous points on the concave surface of tho heavens; but the planets aro found to exhibit the appearance oî dises of greater or less diameter. Mercury and Venus accompany the sun, appearing at one time on the east, and at another time on the west of that luminary, and never receding from him beyond a certain distance. The other plancts recede from the sun to all nossible angular distances. Connected with tinis circumstanee is a distinetion which it is c.siul to make of inferior planets and superior planets; the former appellation being applied to Mercury and Venus, and the latter to the remaining planets.
Mercury and Venus, as they oscillate about the sun, exhibit all the phases of the moon. From laving the appearance of a crescent, they gradually assume that of the half-moon. The illuminated part of the dise increasing, they becone gibbous, and at last present a complete circular disc, like the full moon. From this state of illumination they again pass tlrough the same appearances in an inverted order, until they disappear altogether. Sometimes these planets are seen like black spots in the sun; thesa appearances are called transits of the planets over the sun's dise. They are rare, but whell observed, particularly the transit of Venus, they give the best means of determining the magnitude of the solar system. In all the phases of Mercury and Venus the convexity of the illuminated portion of the disc is turnel towards the sun.
The dises of the other planets are always nearly circular. Mars, however, in certain positions with regard to the sun, assumes a gibbous appearance; but he nover becomes cornicular like Venus. He has no satellite. As viewed from the earth, he is known by his red and fiery appearancc. Dr. Merseliel observed that the polar regions of Mars, after having been turned from the sun, appeared brighter than the rest of the planetary dise; just as if these regions had in the absence of the sun's heat been covered with snow.

Certain spots appear on the dises of the sunand the four planets Venus, Mars, Jupiter, and Saturn, when they are viewed through the telescope, and are distinguished from other parts of the dises by the colour or intensity of their light. Similar spots are seen on the moon with the mked eye. Jupiter has also his dise marked with several parallel belts or stripes, which stretch across it. They are subject to considerable variation with regard to number, breadth, and distance from each other. Mereury is too much immersed in the solar rays; Vesta, Ceres, Juno, anil Pallas, are too small; and Uranus is too distant to allow points of unequal brilliancy to be observed on their surtace. The spots upon the sun are very varianble in their number, position, and magnitule. Often they are numerous, and of great extent. Each of them, in general, consists of a dark space, or umbra, surrounded by a penumbra, or fainter shade, beyond which is a border of light more brilliant than the rest of the sun's disc. Sometimes, though seldom, the sun has been without spots for several years; this was the case from 1676 to 1634 . The dark nueleud of the spot is seen to form and disappear anidst the grenter brilliancy that surrounds it. After the nucleus ceases to be seen, the umbrn continues visible for sone time: the place where it at length disappears becomes like the other parts of the solar surface, unless it be succeeded, whicb is sometimes the case, by a luminous spot. Umbre of great extent have, with few exceptions, a nucleus in their crntre; but small umbres are offen seen without it.

The solar spots are never stationary, but are seen to move slowly over the sun's disc fron past to west. Their paths across the dise, when necurately traced, are foum to be rectili neal in the beginning of June, and in the beginning of Defember; but in the intermediate seasons they ure fiound to lee elliptic. Between June and December the convexity of the path is towards the upper part of the dise, and between Docember and June it is towards the lower part.
The planet Jupiter, when viewed through the telescope, appears to he attended by four emall stars, ranged nearly in a straight line, which are seen sometines on the sume side,

Part IL.
Buor I.
FIGURE AND MaGNITUDE OF TIIE EARTH.
and at other times on opposite sides of the planct. These small stars occasionally pass botween us and Jupiter, and then they are found to project shadows which are seen to truverse his disc. Ou the other hand, they are often immersed in the shadow of Jupiter, and exhibit the plenomenon called an eclipse. The planets Saturn and Uranus are also similarly attended, the former by seven, and the latter by six, little stars. These accompanying stars are called satellites, and also secondary pianets, in contradistinction to the others, which are called primary.
Saturn is distinguished from all the othe. planets, in being surrounded by a circular ring concentric with itself. When first exan ined by the telescope, this planet was almost always seen between two small luminous bodies of an irregular form, which seemed to be attached to it, and which, as they suggested the idea of handles, were denominated ansec. Sometimes the anse disappeared, and then Saturn appeared round like the other planets. By tracing with care these singular appearances, and combining then with the positions of Saturn relatively to the sun and the earth, Huygens at last discovered that they are prouluced by a ring which encompasses the body of the planet, and which is everywhere separated from it. Being seen obliquely, the ring appears of an oval or elliptic form. Before the time of Herschel the ring of Saturn was supposed to be single; but this distinguishea astronomer discovered that it is double: so that two rings concentric, and in the same plane. constitute what was formerly supposed to be a single rilig. The ring, which is very thin, is inclined to the plane of the ecliptic. It revolves from west to east in $10^{\circ} 39^{\prime} 54^{\prime \prime}$. Its breadth is nearly equal to its distance from Saturn; that is, about one third of the diameter of the planet. The interval between the rings is very little; yet Dr. Herschel saw a star through it. The inner ring is somewhat broader than the outer.

CHIAPTER III.

APPROXIMATION TO THE FIGURE AND MAGNITUDE OF THE EARTH.

Ture true figure and exact magnitude of the earth are elements of the highest importance in geography. Their determination, however, has required the aid of astronomy in its most improved state; yet it is necessary, to the explanation of the general doctrines of astronomy, that we should, in the outset, know nearly its figure and magnitude: we shall afterwards explain by what means the first conceptions have been corrected, and its true figure and magnitude found. Having now pointed out, generally, the phenomena of the heavenstaking into view the more remarkable diseoveries inade by ail of the teleseope-we are next to consider the causes and mutual dependence of these phenomena. The first step towards obtaining an explication of the motions of the heavenly bolies, is to form some notion of the figure and magnitude of the earth which we inhabit, and from which all the celestial phenomena are observed. To a person placed in an elevated situation in an open country, where the view is uneonfined on all sides, the earth appears an extended plane, with the concave sphere of the henvens resting upon it ,-the horizou being the common boundary. This appearance is, how cver, altogether illusory:

The earth is a round body, and is isolated in space. This is sufficiently established by the following facts:-

1. To an observer who travels from north to south the nocturnal heavens appear cont, nually to change their aspect. The stars, indeed, retain the same relative position in respect of each other, and the points on whieh the heavens appear to revolve remain unchanged; hut the angle, which the axis of their motion forms with the horizon, continually decreases; so that stars which, at the place from which he set out, appeared to reach their greatest elevation to the sonth of the point directly over his head, now that he has changed his position, appear, when nighest, on the north of that point. This clearly indicates that his path on the earth's surface has not been a straight line, but a curve of which the convexity is turned towards the sky.
2. The convexity of the earth is quite apparent to a spectator in a ship receding from the shore. At first low objects disappear; then those more clevated; and at last the highest points of the land sink in the horizon, on account of the direct visual ray being broken by the interposed curved surface of the ocean. In like manner, when two ships approach each other, the navigators in ench see at first the upper part of the rigging of the other vessel, the hull being still invisible: as the distance becomes less the body of each vessel comps gradually into view. The reverse happens if the distance between the vessels is increasing. From these uppearances it is evident, that a straight line joining any two points of the earth's surfaces passes witlin the body of the earth.
3. That the horizon of the sea, which, to the eye, terminates its surface, is only an apparent limit in reference to the position of the observer, is evident from the fact, that if we advance towards it we find it recede; and, at the same time, we still imagine ourselves placed in the eentre of an extenled plane, bounded by the line in which the heavens and
earta appear to meet. This is what the navigator uniformly experienecs; whilo, to an observer on the shore, his vessel appears to sink below the horizon; and by continuing to sail in the same direction, he will at last arrive at the same port from whin he set out,having thus circumnavigated the earth. This enterprise has, it is woll $\mathbf{k y}$, ${ }^{\text {o' }}$ in numerous instancea, been accomplished by navigators, who have left the shores of $\mathbf{E} \cdots, \pm$ and returned home, some by sailing always towards the west, and others by holding an c.asterly course. This great experiment demonstrates that the sea and land have a curved surface which returns into itself, so that no part of it is touched by the heavens.
There are other phenomena which prove that the earth, if not an exact aphere, is at least nearly of that figure. The varions appe.cances of the moon, in the course of her revolution round the earth, show that she is an opaque body, and is visible only by the reflected light of the sun. The earth being also an opaque body, must project a slialow in a direction opposite to the sun. It will afterwarda be shown that the moor., when full, must sometimea pass through this shadow. In this case, when the moon begins to penetrate, or is about to leave, the shadow, the greater part of the disc is atill illuminated by the smin; and it is found that this luminous part is always of the form of a croscent, having its concave side bounded by an arch of a circle. The section of the earth's shadow, shown by its projection on the moon, is, therefore, as to sense, circular,-a proof that the earth ia a sphere, or nearly of a spherieal figure; whence we may conelude that there is a point within the earth which is its centre.
That the earth is a round body, is thus completely proved by experience and observation; yet, when this doctrine is presented to the mind for the first time, there is some difficulty in believing that the earth is balanced, as it were, on its centre, without any visible support; while all thinge at rest on its surface require to be supported. We must, however, consider that the bodies which we see rill towurds the centre of the carth are mere atoms in comparison to the earth itself; and that, although their tendercy to its centre is another fact establisljed by experience, yet it does not thence fullow that the earth itself should move towards one point of space rather than towarde another. A little reflection will show that there is no inconsistency in supposing the carth, an immense mass, to be at rest, and all things to be retained on its surface by some force annlogous to that by which a piece of iron is drawn towards a magnet. This is really the fact; and a consequence of it is, that on opposite sides of the earth its inhabitants stand in opposite dircetions, with their feet towards each other, for which reason they are called Antipodes; and every country has its own Antipodes.
The knowledge of the true figure and magnitude of the earth is of the greatest importanee in geography, and on this account we shall treat of them in a particular manner. In the mean time, as a near approximation to the truth, the earth may be considered as differing hut little from a sphere, 7916 miles in diameter, and consequently nearly 24,870 miles in circumference. In geometry, the circumierence of every circle is supposed to be divided into 360 equal parts, called legrees; and each of these into 60 equal parts, called minutes, and so on. A degree, therefore, of any cirele on the carth's surface, whose centre is the same with that of the earth, will be rather more than 69 milos; and a minute of a degree will be about $1 \frac{3}{2 J}$ mile.

CHAPTER IV.

doctrine of tie sphere.

The motions of the celestial bolies being in appearance all performed on a aphere, ef which the eye of the spectator is the centre; with a view to describe the nature of theso motions, it has been found expedient to suppose certain circles to be traced on this sphere, to which, also, the positions of the heavenly bodies in space are referred.
The distance of the tixed stars is iminensely great in respect of the carth's somi-diameter; for it is found that, when viewed from any twa points of the carth's surface, they have the very same relative position, and the same apparent distances, at a given instant of time. Hence it follows, that the appearance of the heavens, and the angular distances of the fixed stars, will be, as to sense, the same, whether they be viewed from the centre of the earth. or from a point on its surface. We may, therefore, conceive the axis of the diurnal revolution to pass through the centre of the earth, which will be also the centre of the celestiul sphere.

DEFANITIONS.
A great circle of the sphere is that whose plane passes through its centre; and all others are called small circles.
A eircle of the colestial sphere, whose phane passes through the carth's centre, and is perpendicular to the axis, is called the Fquator. The line in which this plane meets the. earth's surface is called the Equatron of the earth, or the Eizunoctiai.

Part II.

While, to an ontinuing to e set out,n numerous nd returned arly course. faee which

, is at least

 revolution ected light a direction sometimes is about to ; and it is ncave side projection , or nearly rth whichBook I.

DOCTRINE OF TIIE SPIIERE.

we sue centre of the spllere (fir 15), eart pose to coincide with the co.), which earth, who let $\mathrm{P}_{\mathrm{e} p}$ p be the axis; centre of the cle, whose diameter be the axis; then the cir. c, and is perpendiculnr to which passes through The circles which the stars is the Eijuator. diurnal revolution, arn all pars deseribe by the tor. Sueh is the circle all parallel to the Equa A circle, whose plane piameter is A B. poles, is called the Merinuss as through the of the earth's surface mainian, and the section ed the Meridian of all the place this plane is callit passes. Thus PEp Q is a through which in the heavens. Th $p \mathbf{Q}$ is a meridian circle is indefinite. The number of these circles By the
the plane of any meridionerties of a sphere the equator and all circles cuts the planes of

angles.
 We know by observation, that uny bod angles.

 will, by its weight or gravity, aly body at rest, and let fall gravity: it is also indicated by the diren a straight line. This a point above the eurth direction of evwhere perpendicular to direction of a cord to which a pine is the direction of downward. this line at any point on the earth's surface water at rest. If, now is suspended, the Zenith and Na, ealled a vertionl, will surface be produce. 1 ind now, ε line in the plane conceived to ari. The former is the mark, on the celestial sphere two upward and joining its zenith anss through any plane on the the heavens immediately points callod which is the Honand nadir, will, when extend earth's surface at right aty over head. Λ parallel to the phizon of that place. A extended to the heavens, meet the angles to the line the Horizon, bune just now defined, will meet thasses through the earthere in a circle, and the latter the Rodistinguish the one from the sphere in a circle. which is als, and is semidiameter, when compar Honizon. On account other, the former is called the Sensible, are, as to sense, the same.The zenith is at Z same.
If the earth were (fig. 1oj, and nadir at N
luf to its surface, all bodies would the direction of gravity H OR is the horizon.
will not exact sphcrical firure tend towards its centre peing everywhere perpendichpass through theral, pass through the centre, theally the case,) then the directany deviation The pagh that point.
expanse of the henvers ion of any place touches the is Visimes, and the other Intwo Memisphenes; one of which surface, and divides the whole surface of the sea, the two hemisp. To an eyo placed close to viz. that above the horizon, the top of a mountain, cinn see mispheres will appear exactly to the earth's surfice, or to the his eye to tonch the earth's surfice than half of the heavens equal. A spectator, however, on cone. The portion of the heavens were carried round, it would becase, if a line drawn from zon would withont the cone, which woun this cone would be invi generate the surface of n dicular to the be a circle; but it would manifestly be the larger portion but he would see all plane is calle vertical. The depression of the the plane passing through his parent horiCircles whe Drp.
Circurs. Sues planes pass through the zenith are all perpendicular to the ha the circle ZON. nadir of any place are called Vertical the vertical circle whase platizon. The meridian ise the the properties of a sphere, Veutical. Whase plane is perpendicular to the course, a vertical circle; and The meridian cuts the horizon in the \quad to the meridian is called the Prme into four equal parts. Weat. These four are the Cardinal Points. They the prime vertical Let r reft heaveus, the cal circle be supposel to pass continualy the star; and the are of thele between the star and thirough a star, or any point of the Azin'tio, which may be measured between the vertical circle and called the Altitune of ister at N , then its altitude is the either from the north or south and the meridian is called its
Verticul circlos are called 5 the are $\mathcal{S} O$, and its azimoth whe are 1 IO O , in fig. 15., suppose The altitule of a star will evidenty of Azmuth.
liave equal altitudes when it is at equal distances from the meridian; that is, when its eastern and western azimuths are equal.
Suppose a meridian to pass throngh a star, then the arc intercepted between the star and the equator is called the Declination of the star. Thus PSp being a meridian that passes thrgugh the star \mathbf{S}, and mects the equator in K , the $\operatorname{arc} \mathbf{S K}$ is the declination of the star.
If the meridian circle pass through the zenith of any plaee, the are intercepted between the zenith and the equator is called the Latitude of that place. Thus Z being the zenith of any place, and EK Q the equator, the latitude of the plsce is the arc Z E.
Assuming the meridian circle that passes through the zenith of any particular place as the First Meridias, the arc of the equator intercepted between the first meridian and the meridian circle passing through the zenith of any other place, is called the Lonoitude of that place. It is usual, in this country, to reckon the longitude of places from the meridian circle that passes through the zenith of the Observatory at Greenwich.
Because the arcs Z R, the distance of the zenith from the horizon, and P E, the distance of the pole from the equator, are cach one-fourth of the circuinference of a circle or a quadrant, they are equal, and consequently, leaving out the common arc PZ, the ares ZE and PR are equal. Hence it appears that PR, the distunce of the pole from the horizon of any place, called the ele:ation or altitude of the pole, is equal to the latitude of that place.

CHAPTER V.

mo'AMo, ur' the sun, moon, and planets on their axes. their pigure.
Brom the momena of the spots which, by aid of the telescepe, are visible on his disc, we am led th conclude that the sun revolves from west to cast on an axis, in about twentyfive cays ant n half. Though these spots are subject to many variations, they are sufficientl twannt to ensble us to discover that they have regular motions across the disc, exart'y the rance as nust belong to corresponding points on the surface of the sun, supposing hina actcally in have a motion of rotation from west to esst on an axis nearly perpendicular to t_{i}, nlane of the path or orbit, which, in virtue of his apparent motion, he describes round :i heavens in the course of a year. When a spot is first discovered on the castern edge of the disc, it appenrs like a fine line: as it approaches the centre of the disc its hreadth iacreases; as it advances towards the western edge the breadth sgain diminishes, until the spot at length entirely disappesirs. The same spot is sometimes again observed, after fourteen days, on the east side of the disc ; but more frequently the spot is dissolved, and is no more seen. By carcful observation of the time occupied by a spot in crossing the disc, taking also into account the proper motion of the sur from west to east during that period, the time of the sun's rotation on his axis is found to be about twenty-five and a half days.
That the moon, and the planits Mercury, Venus, Mars, Jupiter, and Saturn, have cach a motion of rotation from west to east, on an axis inclined to the plane of the sun's orbit, is inferred in like inanner from the spots that are seen to traverse their discs. The moon presents always nearly the same side to the earth; and must, therefore, revolve on her axis in the same time in which she is carried round the heavens by her apparent motion, namely, in $27^{\text {d }} 7^{\mathrm{m}} 43^{\text {! }}$. Mercury revolves in $24^{\mathrm{b}} 5^{\mathrm{m}}$; Venus in $23^{\mathrm{h}} 30^{\mathrm{m}}$; Mars in $94^{\mathrm{B}} 39^{\mathrm{m}}$; Jupiter in $9^{\mathrm{h}} 56^{\mathrm{m}}$; Saturn in $10^{\mathrm{h}} 29^{\mathrm{m}}$. In the remaining planets no appearances have been discovered which enable us to ascertain whether or not they revolve on axes; though, from analogy, it is highly probable that they do.
With regard to the figure of the sun and of those planets which are known to revolve on axes, we may conclude that they are nearly spherical ; because no other but a spherical body can, when revolving on an axis in the manre: of thr tlancts (with the exception of the moon), present in every position the appearan es a circular disc. The spherical figure of the moon, and, indeed, of the other planets which exhibit plases, may be inferred from the fact, that the concavity of the crescent which they from time to time diasplay is bounded by an elliptic line. The planet Urams always preseints a dise that is nearly circular, and it has not been ascertained that he revolves on an axis; but it is very improbable, when we con sider how very irregular his motions among the fixed stars appear when seen from the earth, that he should keep the same side always turned towards us. His npparent motion is sometimes direct, that is from west to east, smmetimes retrograde, or in the contrary direction; so that to present constantly the nppearance of a circular dise, the planet would require, were it not spherical, to have motions in opposite cirections about the same axis. The same rea soning will apply to the remaining phanets. We my conclude, therefere, that the sun. inwor, and plancte, tre bonies nearly spherical.

distances and magnitudes of the heavenly bodies.

Distanoes of the fixed stars. From whatever point of the carth'a surface we observe the fixed stars, they always appear to preserve the very same relative positions. We may hence conclude that these bodies are situated at immeasurable distances from the carth; and that though to us who inhabit it the dimensions of the earth appear very great, they are insensible when compared with these immense distances. The earth is in reality but as a point in space. But though the fixed stars ere vastly too remote to admit of their distances being determined, we have reason to believe that they are placed at very different degrees of remoteness. They shine with very various degrees of brilliancy; multitudes are not visible without the aid of the telescope, and it may reasonably be supposed that many more have not yet been discovered by the most powerful instruments whicli have been directed to the heavens.
The distances of the fixed stars being unknown, we can only form conjectures from hypothesis and analogy respecting their true magnitudes. When viewed through the best telescopes, they have no apparent diameter, but appear like points in the heavens.
Mode of determining the distance of the stin, moon, and planets. In reference to the sphere of the fixed stars, then, the earth is to be regarded as a point. To a spectator, at the sun, moon, and planets, however, it would present a disc subtending an angle of greater or less magnitude, and, even when smallest, admitting of measurement. This angle can be determined by an observer on the earth's surface; and as we know the true magnitude of the earth, it afforde us the means of estimating the distances of these bodics. Let \mathbf{O}_{0}° (fig. 16) be the places of two observers under the same meridian, but very distant from each other. Let P be a planet in the meridian of these places, and let some fixed star which comes to the meridian at the same time with the planet, be seen by the observers at O and 0 , in the directions 0 S , os. Join $\mathrm{OP}, o \mathrm{P}$, and produce OP , to mect os in Λ. Then, because OS , os, are parallel (the distance of the star S being regarled as infinite), the angles $\mathrm{O} A \mathrm{o}, \mathrm{A} O \mathrm{O}$ are equal; and, because $0 P_{0}$ is the exterior angle of the triangle o $A P$, it is equal to the sum of the two interior and opposite angles A o 1 , o A P. Wherefore the angle O Po is equal to the sum of the angles A o P, POS; that is, the angle subtended at the planet by the chord of the terrestrial are intercepted between the points of observation, is equal to the sum of the apparent distances of the planet from the stax, provided the planet is seen (as we have here supposed) on opposite sides of the star ly the two observers. If the star is seen on the same side by both, the angle st the planet will then be equal to the difference of the apparent distances.

If the observers are so situated that PO, Po (fig. 17) are tangents to the circle $\mathrm{OE} o$ at the points O and o, the angle $\mathrm{O} P o$ will be the angle subtended by the disc of the carth nt the planet.

But if $\mathrm{P} O, \mathrm{P}$ o are not tangents, draw $\mathrm{P}^{\prime} \mathrm{O}^{\prime}$ and $\mathrm{P}^{\prime} \dot{o}$ tangents to the circle $\mathrm{O} E \mathrm{E}$, and from C the centre draw $\mathrm{C} 9^{\prime}, \mathrm{C} \sigma$ to the points of contact: draw also the vertical lines $\mathrm{C} Z$ and $\mathrm{C} Z$ through O and o the places of the observers, and produce $\mathrm{P} \mathbf{O}, \mathrm{P}$ o to meet $\mathrm{C} \mathrm{O}^{\prime}, \mathrm{C}$ o in B and D . Now, for the sun and planets the angle $\mathrm{O} \mathrm{P} o$ is very small, and even for the moon it is not very considerable. 'The distance 1 ' C may therefore be regarded, in every case, as much greater than CO^{\prime}, or C° o. Hence the lines $\mathrm{CO}^{\prime}, \mathrm{CB}, \mathrm{C} \mathrm{D}$ may without sensible error be considered as proportional to the angles C P O', CP'B, CP 1 ; so that we nave $\angle \mathrm{C} \mathrm{P}^{\prime} \mathrm{O}^{\prime}: \angle \mathrm{CPO}=\mathrm{C} \mathrm{O}^{\prime}: \mathrm{CB}$ and $\angle \mathrm{CP}^{\prime} \mathrm{O}: \angle \mathrm{CP} O=\mathrm{CO}: \mathrm{CD} \mathrm{D}$; wherefore $\angle C P O^{\prime}: \angle C P O+\angle C P O$ or $\angle O \mathrm{P}^{\prime} o=C O^{\prime}: C B+C D$ But the angles
at B and D are very nearly right angles，nud therefore，to rudius $\mathbf{C} \mathbf{O}^{\prime}$ ，wo have $\mathbf{C B}=$ $\operatorname{Sin} . C O B=\operatorname{Sin}$ POK；and C D＝Sin．Coll $=\operatorname{Sin}$ ．Po Z＇：Hence we obtain
 CPO＇or $\angle \mathrm{O}^{\prime} \mathrm{P} \delta=2 \angle O \mathrm{l}^{\prime} \mathrm{o} \times \frac{\mathrm{Rad} .}{\sin \mathrm{P}^{\prime} \mathrm{OZ}+\operatorname{Sin} \mathrm{P}^{\prime} \mathrm{O}_{1}^{\prime}}$

If the planet be on the same side of the zenith to both olscrvers，then the difference， instead of the sum of the sines of the zenith distances，must be taken tor the denominator． Expressing the above tormula in worls，we give the following simple rule：－Divide the are， （expressed in parts of the radius，）which measures the olserved ungle at the plunct，by the sum of the sines of the zenith distanees of the planet，if it is between the zeniths of the two observers；or by the diffrence of these sines if the planet is on the sume side of the zenith to both observers；and twice the result will be the are，expressed in parts of the rudius，that measures the angle subtended at the planet by the dise of the earth．

Since small angles，that require for their measurement only tho use of the micrometer， an be determined with much moro accuracy than large angles requiring the whole telescope to be moved，it is best to employ，in finding the angle $O P$ P a star which is near the planet； a small error in taking the zenith distances of the planct will produce no sensible error in the result．

Another method of determining this angle，is by observations on the transit ef Venus over the dise of the sun；a phenomenon in which the planet is seen like a dark spot on the dise； but the method now explained is sufficient for our present purpose．

The following aro the angles sultended by the earth＇s dise at the siun，moon，and planets． when the earth is nearest to each：

To deterrnine，now，the distance of the sun or moon，or of a planet：－In the right angled $0 \quad$ triangle $\mathbf{P O C}$ we have given the angle P equal to half the angle subtended by the earth＇s disc at tho body whose distance is to be found；nlso OC the earth＇s semi－diameter：therefore the distance P C may be determined by the proportıon Sin．P：Rad．＝ $\mathbf{C O}: \mathbf{P C}$ ．Since the angle \mathbf{P} is small，its sine must be nearly equal to the are which measures it． Observing therefore that the are to which the radius is equal，expressed in seconds，is $206265^{\prime \prime}$ we have $\angle \mathrm{P}$（in seconds）： $\mathbf{2 0 6 2 6 5}=\mathrm{C} \mathbf{O}: \mathrm{P}$ C．Hence
$\mathrm{PC}=2 \mathrm{CO} \times \frac{200265}{2 \mathrm{P}}$ ．Whence we derive the following rule：－Divide the constant number 206205 by the number of seconds in the angle subtenuled by the carth＇s dise as seen from the body whose distance is to be determined；multiply the result by the diameter of the earth，and the product is the distance required．In the case of the sun；assuming the diameter of the earth as unity，we have the distance equal to $\frac{206265}{17}$ or 12133 diameters of the earth．In like manner，taking $4^{\prime \prime}, 2^{\prime \prime}, 1^{\prime \prime}$ for the angles subtended by the earth＇s dise at Jupiter，Saturn，and Uranus，the distances of these planets from the earth，when least，will be $51546,103132,206265$ diameters of the earth respectively．The mean distance of the moon is about sixty semi－diameters of the earth．
The apparent diameter of any one of the heavenly bodies，is the number of seconds in the mensure of the angle under which its circular disc is seen by a spectator upon the earth． When measured by a micrometer，the apparent diameters of the sun，moon，and planets are found to be，when greatest，as follows：

The four remaining planets，according to the most eareful observations，appear to subtend only a small part of a second．
Now，for deducing the real diameters from the apparent，we have this rule：－As the apparent diameter of the eurth，（or the seconds in the angle which its disc subtends，）as

Boon I.
ROTATION OF TIIE EARIII.
seen from the planet, is to cae apparent diameter of the planet as seen from the earth, st is the true diameter of the earth to the true diameter of the plunet.

Calling the dianneter of the earis unity, or 8000 miles in round numbers, we obtain,

Diameter of the	Sun		Diamalern of		882,000 nearly.	
		=	111.454	$=$		
	Mercury	$=$	0.308	=	3,140	
	Venus	=	0.9	$=$	7,200	-
	Mars	=	0.517	$=$	4,100	
	Jupiter)	10.860	=	87,000	-
	Saturn	=	0.982	=	70,009	
	Uranus	$=$	4.332	=	34,500	
	Moon	=	0.273	$=$	2,160	

As the sun, moon, and planets are spherical bodies, their magnitudes compared with the magnitude of the earth, may be found upon the principle that similar solids are to one another as the cubes of their similar dimensions; so that as the cube of the diameter of the earth is to the cube of the diameter of the sun, moon, or a planet, so is the magnitude of the former to the magnitude of the latter.
Assuming the magnitude of the earth as unity:
The magnitude of the Sun $=1384472.000$

Nun	$=$	1384472.000
Mercury	\equiv	.063
Venus	$=$.027
Mars	$=$.139
Jupiter	$=$	1280.900
Saturn	$=$	$\mathbf{0 0 5 . 0 0 0}$
Uranus	$=$	80.490
Moon	$=$.020

Having now ascertained the distances and magnitudes of the heavenly bodies, we proceed to inquire whether the diurnal motion which we observe in them be a real or only an apparent motion; and whether the earth is the centre to which the proper motion of any of them is to be referred.

CHAPTER VII.

ROTATION OF THE EARTH.

The diurnal motion of the heavenly bodies suggests the existence of some cnuse, under the influence of which they either perform or appear to perform a revolution from east to west round the axis of the celestial sphere in the space of a day and a night. Now, there are two suppositions, on either of which the diurnal motion may be explained. We may suppose the heavens to be earried round the earth, while the latter remains immoveable in the centre; or we may suppose the heavens to be at rest, and the earth to revolve on an axis in an opposite direction; that is, from west to east. To which of these hypotheses the preference is due, will be evident if we consider that the heavenly bodies are independent one of another, and are placed at very different distances from the earth; that variutions in the apparent diameters of the planets indicate great changes in their distances, while the comets traverse the heavens in all directions; so that it is difficult to conceive that one and the same cause should impress on all these bodies a common motion of rotation.
Since the earth is a globe of alout 8000 miles diameter, it is small when compared with the immense mass of the sun. Were the centres of the sun and earth brought into coincidence, the former body would fill the orbit of the moon and extend as far again beyond it. Besides, the sun is distant from us about twelve thousand diameters of the earth; so that to revolve round the heavens in the interval of twenty-four hours, he must move nt the immense velocity of abont twenty-ive millions of miles in an hour. It is therefore more reasonable to suppose the earth to have a motion of rotation on an axis, than to suppose the sun, a body so distant and of such immense magnitude, to move with the vast rapidity that would be requisite to carry him ronnd the heavens in so shert an interval. With regard to the fixed stars, we may reason in the same manner with still greater forec: for the velocity necessary to carry the sun round in twenty-four hours is really insensible when compared with the rapidity with which the fixed stars must move to accomplish a like revolution. In order to necount for the diurnal motion of the heavens on the hypothesis that the earth is at rest, it must be supposed that the sun, moon, and stars have their velocities so ndapted to their respective distances, that all of them complete their revolations round the earth in exactly the same number of seconds. Sach an adaptation among innumerable independent bodies, placed at snch a variety of distances, it is impossible to admit.
There are other phenomena of the heasens which serve still farther to confirm the conclusion, that the diurnal motion of the heavenly bodies is net a real motion. Every difficulty, Vol. I.

Lowever disappenrs, if we suppose the earth to have a motion of rotntion on an nxis from west to cast. Cu, ried round with a velocity common to nill the objects which surround us on the earth's surfice, we are in a situation eimilnr to that of a speetator placed in a vessel in motion. At the first careless glance he imagines himself at rest, while the shore, and all the objects which ne sees, unconneeted with the vessel, appenr to be in motion. By reflecting, however, on the extent of the shore, on the magnitude of the mountains, ems other ebjects on land, when compned with the vessel from which he observes them, he frees his mind from this monentary illusion, and becomes convinced that the motion of these objects is only apparent, and that it 18 proluced by the ren motion of the vessel. The multituice of ntars scattered over the heavens are, with respect to 1 s , what the shore anl the objects upon it are with regard to the ajpectator placed in the vessel: und by the same considerations, by which his first impressions are so corrected that he beeomes assured of the reality of his motion, we are led to the conchasion that the rotation of the earth on an axis produccs the apparent diurnal metion of the heavens.
An argument for the rotation of the earth may also be drawn from analogy. Several of the planets are known to have a motion on an axis similar to that whleh we have supposed to belong to the earth. Jupiter, for example, which is mnny times greater than tho earth, revolves on his axis from west to cast in less thnn half a day; and to an chserver on his surface, the lieavens would appear to revolve round that planet in the same manner as we see them revolve round the eurth, but in about half the time. This motion of the heavens in reference to a spectator on the planet Jupiter would, however, be only apparent; and lience we may reusonably conclode, that the case is tho same in reference to a spectator on the earth.
Lastly, if the earth is aetually in motion, there will be generated a centrifugal force, or a tendency to throw of objects from its surface, which must diminish the foree of gravity, particularly at the equator, where the motion is most rapid. Now, by observations made with the pendulum, this diminution of the force of gravity has been found to exist. The same cause affects also the figure of the earth, which has been found to be flntened somewhat at the points of rotation, and elevated at the equatorial regions. The same is observed to be the figure of Jupiter,-a circumstance which greatly strengthens the argument drawn from analogy. The evidence whieh has now been adduced leaves no doubt respeeting the enrth's motion of rotation; nad thens we are enabled to ascertain the true plnce which the globe that we inhabit holds in the universe.
The points in whieh the uxis of rotation meets the surface are called the polss of the earth; and it is evident that tho nxis, if produced, must pass through tho poles of the heavens.

CHAPTER VIII

apparent annual motion of tie sun. Vicissitude of seanons.

Whus the sun participates in the diurnnl motien of the heavens, he also appenrs to move eastward among the fixed stars. This motion. it will be of importance now to trace ont, and to explain the ehange of seasons to which it gives rise. If we observe each dny of the year tha meridian altitude of the sun, and note the time which elapses between his passage over the meridian and the passage of any particular star, we shall have the apparent motion of the sun in the direction of the meridian, and of the cireles parallel to the equator in which he appears daily to be carried by the diurnal motion of the heavens. The result of the composition of these two motions will give the true motion for each day. In this manner it has been found that the sun moves in a path or orbit which euts the equator in two opposite points, and makes with it an angle equal to $23^{\circ} 28^{\prime}$ neerly.
The name of eeliptie is given to the circle which tho plane of this orbit marks out on the sphere of the heavens. It passes through twelvo consteliations, which are called the twrlve sigss. This has given rise to the division of the ecliptic into twelve equal parts, called sions, each contuining, of course, 30°. The twelve sigus are contuined in n zone of the starry henvens, called the Zodinc. The names of theee constellations, with the characters by which they are usually denoted, are as follow:-Aries Υ, Taurus \varnothing, Gemini II, Cancer

The vicissitude of seasons arises from the combination of the apparent motion of the smn in the eeliptic with his apparent diurnal motion. When the sun is in either of the points in which the ecliptic intersects the equator, he deseribes the equater on that day in virtue of his diurnal motion; and as by the propertics of the sphere this circle is divided into two equal parts by the horizon, at whatever point of the enrth's surface the spectator is situated, the day is then equal to the night over nll the globe.
The points of interscetion of equator nod eeliptic nre called the Equinoetial Pointe. The first point of the sign Aries is supposed to coincide with the point of the vernal equinox; and from that point the signs of the celiptic are reckoned: the first point of the sign Libra

Part II.

 nxis from rround us a a vessel dhore, and tion. By tains, end , he trees of these sel. The ahore and the same ssired of rth on an leveral of supposed the earth, er on his ner as we gheavens ent ; and sctator on f gravity, ons made ist. The red someobserved ut drawn cting the rhieh the
.Es of the

es of the

; to move

 race ont, hy of the passage t motion uator in esult of manner vo oppo-
t on the

led the

 1 parts, zone of
charae-

 Cancer cecs 长。 he sun points virtue to two tuated,
OINTE.

inox ; Libra

Book I.
VICISAITUDE OF SEASONS.
91
will therefore coincide with the point of the autumnal equinox. As the sun, when he leaven the point of the vernal equinox advances in the ecliptic, his meridiun altitude nbove our horizon daily increases, and a larger portion of the parallel whieh he daily deseribes becomes visible. Hence arises a gradual increase in the length of the day in all countries to the north of the equator; until the sun having renched his greatest altitude, the day acquires its greatest length, and begins to shorten. As the variations of the altitude on euch side of the points at which it is greatest are insensible, the sun, if we attend only to his altitude, appoarb stationary, and the day continued, for some time, very nearly of the sume leugth. The point of the ecliptic at which the marimum takes place is therelore detominated the point of the Summen Solstice. The sun, laving reached this point, now returns towards the equator, Which he crosses at the point of the autumnal equinox. Ilis ineridian altitude gradually diminishes until it reaches the minimum at the point of the Winten Nolsiree. The day, which hus been gradually shortening from the summer solstiee, is then tho shortest in the year, and for some time does not sensibly lengthen. The sun, however, again gradually approaches the equator, and reaches it at the vernal equinox.

Such is the constant progress of the sun in the heavens, and such the succession of the seasons of the year. The Nprino is the time comprised between the vernal or spring equinox, which falls about the 21st of March, and the summer solstice, which happens about the 21st of June: the interval between the solstice and the autumnal equinox, which falls about the jud of September is the Summer: the time between the autumnal equinox and the winter solstice, which occurs about the 22d of December, is the Autumn: and, lastly, the Wintere is the time that elapses between the winter solstice and the spring equinox.

The two eircles parallel to the equator, which the sun describes on the lengest and shortest days, are called, one the summer or northern Tropic, and the other the winter or southern Tropic. They are also respectively denominated the tropic of Caneer and the tropic of Capricorn, in reference to the points in which they touch the ecliptic.

The presence of the sun above the horizon being the cause of heat, and the temperature increasing as tho altitude increases, it might be inferred that the temperature should be the same in sumner as in spring, and in winter as in autumn; because the altitudes of the sun in these seasons exactly correemond. But it is to be ebscrved that the temperature is not an instantaneous effect of the sun's presence; but is the result of the continued action of his rays. On this account. it is not greatest on the day when the altitnde is greatest, bit some time between the summer solstice and autımnal equinox. In like manner, the greatest cold of winter does not occur on the shortest day, bat some timo between the winter solstice and the spring equinox.

With regard both to temperature and the length of the day, great differences arise from the different elevations of the pole above the horizon, as we proceed from the equator towards either of the poles. The horizon of an observer at the equator passes through the poles, and by the geometrical properties of the sphere it divides the equator and all the circles, psrallel to it into twe equal parts. It also cuts them at right angles; and hence the position of the celestial sphere, in reference to the horizon of an observer at the equator, is called the Riour position of tho sphere. In whatever point of the ecliptic the sun is situated, his diurnal course is therefore at right angles to the herizon, and one half of it is in the visible hemisphere, and the other half in the invisible; hence, at the equator, the day is at all seasons equal to the night.

When the sun is in either of the equinoctial points, he passes through the zenith at mid-day. When he is in either of the solstitial points his meridian altitude is the least, and is equal to the complement of the inclination of the celiptic to the equator. In these two positions of the sun the shadows of objects fall, at mid-day, in opposite directions, a phenomenon which'at no season occurs in our climate, where the solar shadows are at mid-day always directed towards the north: there are, then, properly speaking, two summers and two winters in the year at the equator. The same thing takes place in all the countries where the elevation of the pole above the horizon is less than the obliquity of the ecliptic. In every country beyond this region there is only one summer and one winter in the year, with the intervening seasons of spring and nutumn: the sun is never in the zenith: the length of the longest day increases, and that of the shortest day diminishes, as we advance towards either of the poles; and when we have reached such a position, that the zenith is distant froms the pole by an are of the meridian equal to the obliquity of the ecliptic, the sun does not set at the summer solstice, nor rise at the winter solstice.

The polar circles. About eacil of the poles of the celestial sphere, suppose a cirele to be described distant from it by an arc equal to the obliquity of the eeliptic; these two cireles are called the Polan Cinclas. In the region of the earth situated around either of its poles, at every point whose zenith lines within the polar circle, the time of the sun's presence above the horizon and of his absence below it, at certain seasons, exceeds twenty-four hours: it increases ns wo approach the pole, and may amount to days or even to montlis. Thus, when the sun's declination north, iucreasing, becomes equal to the distance of the zenith of any place in the northern polar region from the north pole of the heavens, he ceases to set

IMAGE EVALUATION
 TEST TARGET (MT-3)

at that place, and continues above the horizon until he has reached the same declination in returning towards the equator. - From that time the sun rises and sets in the course of twenty-four hours, until the sun'e declination south becomes equal to the distance of the zenith from the pole, and then he ceases to rise and continues below the horizon till he has again acquired the same declination in returning northward.
At the pole, the equator coincides with the horizon, and all the circles parallel to the equator are also parallel to the horizon. This is called the Paralese position of the sphere. To an observer, placed at the pole, the heavenly bodies would appear to move round, either in the horizon or parallel to it. Hence the sun is constantly above the horizon when he is on the same side of the equator with the pole, and constantly below it when on the other side; so that at either of the poles of the earth there is only one day and one night in the year.
At any point on the earth's surface, between the equator and either of the poles, the equator and the circles parallel to it, are oblique to the horizon. This is called the Oghque position of the sphere; and by the geometrical properties of the sphere, the horizon, in this position, diviles all the circles parallel to the equator into two unequal parts ; hence arises the inequality of the days and nights at all places between the equator and either pole. In this country, for example, in summer, when the sun is on the north side of the equator, the larger portion of his diurnal course lies in the visible hemisphere, and the less in the invisible, $s 0$ that the day is longer than the night. The reverse is the case in the winter when the sun is on the south side of the equator.

If two places are situated on opposite sides of the equator, the spring and summer of the one will, it is evident, correspond to the autumn and winter of the other.

With regard to the temperature, it is higher in the equatorial regions than in any other part of the earth, because there the action of the suin's raye is most direct. To every point of the earth's surface, whose zenith lies between the tropics, the eun is vertical twice in the year; so that his rays, acting perpendicularly, produce their greatest effect. In the polar regions the temperature is lowest, in consequence of the obliquity with which the sun's rays fall on the earth's surface, and the great length of the winter night. In the conntries situated between the equatorial region and the two polar regions, there prevails a medium temperature, increasing as the zenith approaches the nearer of the two tropica, and diminishing as it approaches the nearer of the polar circles.
$\mathbf{\Lambda}$ division of the earth's surface into five zones has been suggested by this difference of temperature from the equator towards either pole.
 In the adjoining figure let $P \boldsymbol{p}$ represent the earth's axis, $\mathbf{P E} p \mathbf{Q}$ a meridian, and E Q the equatorial diameter. Let E C Q be the representation of a cirele on the earth's surface equally distant from the poles, whioh will therefore be the equator: and FGH,fgh circles on the earth's surface parallel to the equator, and at the distance of about $23 \frac{1}{2}$ degrees; on each side of it, and A B D, abd circles round the poles P, p, and at the same distance of $23 \frac{1}{2}$ degrees.
At the times of the year when the oun is in the tropic of Cancer, he will, in his apparent revolution, be vertical to all places on the circle FGH; and when he is in the tropic of Capricorn, he will be vertical to the circle $f g h$. The space on the earth's surface between these circles is the Torrid Zone.
When the sun is in the southern tropic he will not be seen anywhere in the space bounded by the circle A B D. This is; therefore, the northern Frigid Zone: and when he is in the northern tropic there is a like tract, bounded by the circle $a b d$, round the south pole, where he will then be invisible. This is the southern Frigid Zone. The two tracts between the torrid zone and the frigid zones are the temperate zones.
Another division of the earth into zones was used by the ancient geographers, founded on the different lengthe of the longest day, as we proceed from the equator towards either of the poles. These zones were denominated Cumates, and were each of such a breadth, that the longest day at the boundary nearer the pole exceeded the longest day at the boundary nearer the equator by some certain epece of time, as half an hour or an hour. Within the polar circle, the climates were supposed of such a breadth as to make the longest day at the opposite sides differ by a month.
The points in which the equator and ecliptic intersect each other are not immoveable, but appear, with respect to the fixed atars, to recede towards the west at the rate of $50 \frac{1}{16}$ nearly, annually, or about 1° in 72 years. This motion is called the Paecession of the Equinoxes. When the constellations of the zodiac werc first delineated by the ancient

VICISSITUDE OF SEASONS.
2stronomers, the middle of the sign Aries was at the point of the vernal equinox, from which it is now distant more than 58° towards the east. In consequence of the precession of the equinoxes, the time in which the sun moves from the vernal equinox to the vernal equinox again, is less than the time in which he moves from any star to the same star again;-the point of the vernal equinox moving westward, so ss to meet the sun, and thus anticipate the time of his crossing the equator in the preceding year.
The intervals of time which separate the equinexes or the solstices are unequal. Almost eight days more elspse from the spring to the autumnal equinox, than from the later to the former. We may therefore conclude, that the motion of the sun is not uniform. From precise and multiplied observations, it has been ascertained that his motion is most rapid at a point of the ecliptic situated near the winter solsticial point, and slowest at the opposite point towards the summer solstice. At the former point the sun describes daily $1^{\circ} \mathbf{1}^{\prime} 10^{\prime \prime}$, at the latter only 57' $11 \frac{1}{2 \prime \prime}$. The distance of the sun from the earth is also varishle. This is proved by variations observed in his apparent diameter, which increases and diminishes at the same time with his angular velocity, but not in the same ratio. The angular velocities at any two instants of time are, to one anothcr, as the squares of the apparent diameters.

If v and v^{\prime} be the angular velocities of the sun, or his daily advances in the ecliptic at any two seasons of the year, and d and d^{\prime} his apparent diameters at the same time, then $v: v^{\prime}=$ $d^{\prime \prime}: d^{\prime \prime}$.

To diminish the apparent motion of the sun, it would be sufficient to suppose that body removed to a greater distance from the earth, without altering his true angular velocity. But if the diminution of his motien depended entirely on this cause, the apparent velocity would diminish in the same ratio with the apparent diameter. Since it diminishes, however, as the square of the diameter, there must necessarily be an actual diminution of the velocity of the sun while he recedes to a greater distance from the earth.

His distance being reciprocally as his apparent diameter, if \mathbf{D} and \mathbf{D}^{\prime} be his distances at the two seasons when his diameters are d and d^{\prime}, we have $v: v^{2}=D^{\prime 2}: D^{2}$; and $v \mathrm{D}^{2}=v^{\prime} \mathrm{D}^{\prime 2}$. Hence it appesrs, that from the combined effect of the two causes influencing the sun's spparent motions,-namely, the diminution of his velocity and the increase of hisdistance,his daily angular motion diminishes as the square of his distance increases; eo that the product of the sosare of the distance by the velocity is a constant quantity.
Let us imagine a struight line to join the centres of the sun and of the earth. This line is usually called the Radrus Vector. It is not difficult to prove that the small sector, or the ares which the Radius Vector traces in a day, in consequence of the sun's motion, is proportional to the product of the square of this radius by the sun's daily motion, that is, to $v \mathrm{D}$. This area is therefore constant; and the whole area, described by the Radius Vector, setting out from a fixed radius, increases as the number of days reckened from the epoch when the sun was at the fixed radius.

Since $v D^{\prime}=v^{\prime} D^{\prime \prime}$, we have $D^{\prime}=D \sqrt{\sigma_{j}^{j}}$ Assuming, therefore, any line whatever for D, and finding, by observation, the sun's angular velocity for every day of the year, the value of \mathbf{D}^{\prime} for each day may be found.
Thus we shall be able to trace a curve line representing the orbit of the sun. This curve is found to be not exactly circular, but a little elongated in the direction of the straight line passing through the centre of the earth, and joining the points in the orbit at which the sun is at its greatest and least distances. The resemblance of this curve to an ellipse having given rise to a comparison between them, their identity has been discovered. Hence we conclude, thst the apparent solar orbit is an ellipse having the centre of the earth in one of its foci.

The solar ellipse is not much different from a circle; for its eccentricity, which, from the geometrical properties of the ellipse, is equal to half the difference of the sun's greatest and least distances from the earth, is a quantity which bears but a very small proportion to the distance of the sun. It appears, from ebservation, that there is a small diminution of the eccentricity,-so small, indeed, as scarcely to be perceptible in a century.

The position of the greater axis of the solar ellipse is not constantly the same. Its extremities lisve an annual motion eastward, in reference to the fixed stars, of about $12^{\prime \prime}$ in the direction of the sun's motion.

The obliquity of the sun's orbit, or of the ecliptic to the equator, is also subject to change, and appears to have been centinually diminishing from the remotest date of astronemicsl observation. Its present rate of diminution may be stated at nearly $43^{\prime \prime}$ in a century.

The apparent elliptic motion of the sun does not represent, with perfect exactness, the results of modern observation. The grest precision now sttained in the art of observing has made known to us small inequalities, the laws of which it would have been almost impossible to determine by mere cbservation. These lawe can be investigated only after the physical cause has been discovered upon which the phenomena depend.

CHAPTER IX.

dIVISION AND MEASURE OF TIME.

The notion of time is suggested by the succession of phenomena in the universe. When two events exactly correspond in all ineir circumstances, they arc conceived to occupy equal portions of time. The descent of a heavy body to the earth, for example, from a given height, if repeated under precisely similar circumstances, will in every case be performed in the sume interval of time. Suppose then that a number of heavy bodies fall to the ground one after another from the same height,-the descent of the second and of each succeeding body commencing at the instant in which the boly that preceded it had reached the ground; the whole time occupied by the fall of these bodies will be divided into equal portions, one of which may be assumed as the measuring unit of time. The vibrations of a pendulum, performed under precisely the same circumstances, are enployed for estimating the smaller portions of time: the larger portions are determined by the motions of the sun; from which arise the vicissitude of lay and night, and the change of seasons.

The Day, in civil life, is the time that clapees between the rising and setting of the sun; and the Nioht the time between his setting and rising. The Agtronomical or Solar Day, on the ether hand, comprehends the whole period of the sun's diurnal revolution, and is reckoned from the time of his passing any particular meridian, to the time of his returning to the same meridian. The pendulum usually employed is of such a length as to divide the mean astronomical day into $24 \times 60 \times 60=86400$ equal parts called seconds; 60 of these parts make a minute ; 60 minutes make an hour ; and 24 hours complete the day.
As the apparent motion of the sun carries him eastward among the fixed stars, the time that elapses between his passing the meridian, and his returning to it again, is longer than the time that intervenes between two successive passages (called transits) of any particular star. This latter period is the exact time of the earth's revolution en its axis, and is called a Sinzreal day: it is about $23^{3} 56^{\mathrm{m}} 4^{4}$ in length.

The motion of the earth en its axis being perfectly uniform, the length of the sidereal day is always the same. Thia is not; however, the case with respect to the astronomical or solar day, which is affected by the unequable motion of the sun, and by the obliquity of the ecliptic. At the summer selstice, towards which the sun's motion in the ecliptic is slowest, the solar day is more nearly equal to the sidereal day than at the winter solstice, when the sun's motion is quickest.

With regard to the effect of the obliquity of the ecliptic in reference to the length of the solar day, it is to be ebserved, that, by the geometrical properties of the sphere, equal portions of any circle, whose plane is perpendicular to the axis of revolution, pass over the meridian in equal times; but if the plane of a circle is oblique to the axis, the arcs that pass over the moridian in equal times are not equal. Hence, if the sun moved uniformly in the equator, the solar day would be always of the same length: but as he moves in the ecliptic, whose plane is oblique to the axis, even if he did proceed with a uniform motion, the equal arcs which he daily described would pass over the meridian in unequal times; so that the solar day would be longer or shorter necording to the sun's place in the ecliptic.
The motion of the shadow on a sun-dial marks out time as measured by the sun's motion in the ecliptic: but if the sun moved uniformly in the equator at such a rate as to complete the annual circuit of the henvena, in the same time as he does by his actual motion in the ecliptic, time measured by his motion would then correspond with that of a well-rogulated clock.
The difference between the time shown by the sun-dial, and that shown by the clock, is salled the Equation of Time. The part of this equation which depends on the obliquity of the ecliptic, vanishes at the equinoxes and at the solstices; because at these seasons the sun comes to the merldian at the same moment as he would do if he moved in the equator.

From the vernal equinox till the summer solstice, and from the autumnal equinox till the winter solstice, the time as shown by the sun-dial is in advance of that indicated by the clock; because then the sun's distance from the first point of Aries, and first point of Libra, passes sooner over the meridian than the equal arc upon the equator, which the sun would have descriked had he moved in that circle.
Again, the hour shown by the sun-dial is behind that shown by the clock, from the summer and winter solstices, till the autumnal and vernal equinoxes ; because at these two seasons the distance of the sun from the first point of Aries, and from the first point of Libra, requires longer time to pass ever the meridian, than the equal arc upon the equator.

The part of the equation of time which arises from the unequable motion of the sun, will vanish when he is at his groatcst and least distances from the earth; hecause he is in these two points of his orbit at the same instants of time as he would be if he moved uniformly with his mean velocity ; that is, with a rate of motion by which he would describe equally the ecliptic in the same time in which he describes it by his unequable motion.
The dial, during the time when the sun is moving from the point of his greatest, to the point of his loast distance from the earth, is faster than the clock; because the sun is then

Book I.

DIVISION AND MEASURE OF TIME.

at no instant so far advanced in his orbit, as he would have been if he had been moving uniformly with his mean velocity. The reverso is the case while the sun is moving frum the point of his least to that of his greatest distance. Time measured by the dial is called apparent time; that shown by a well-regulated elock is called rave time. The effect of the obliquity of the ecliptie, and that of the sun's unequable motion, in rendering the dial faster or slower than the clock, sometimes combine with und at other times counteract each other. The amount of each is given in the two following tables for every fifth day of the vear; and by taking the sum or difference, according as the obliquity of the ecliptic and the sun's unequable motion produce similar or opposite effects, a table may be formed of he equation of time.

Table showing the Part of the Equation of Time that arises from the Obliquity of the Eeliptic.

Dial Fanter.				Dial Elower.				Disl Faster.				Dial Blower.			
March - -		M.	S.			M.	8.			M.	8			M.	E.
	21	0	0	June - .	21	0	0	September	23	0	0	December -	21	0	0
	25	1	39		26	1	48		28	1	39		96	1	48
April	30	3	15	July . - -	1	3	33	October	3	3	15		31	3	38
	4	4	46		7	5	8		8 13	$\begin{aligned} & 4 \\ & 6 \end{aligned}$	46	January -	5 10	5	${ }_{3}^{8}$
	9	6	9		12	8 7	35		18		9		10	$\begin{aligned} & 0 \\ & 7 \end{aligned}$	35
	14	7	22		17	7	48		18	7	98		15	$\begin{aligned} & 7 \\ & 0 \end{aligned}$	48
	19 24	8	23 9		28	$\begin{aligned} & 8 \\ & 9 \end{aligned}$	45 28		23	$\begin{aligned} & 8 \\ & 9 \end{aligned}$	88	,	$\begin{aligned} & 20 \\ & 90 \end{aligned}$	8	45
May - .	34	9	9 40		28	$\begin{aligned} & 9 \\ & 0 \end{aligned}$	48		28	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	8 40		$\begin{aligned} & 25 \\ & 29 \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	\% 49
	30	9	40 53	Auguat - .	2	0°	49	November	9 7	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	40	February .	29 3	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	49
	10	8	49		12	9	40		12	9	40	February	8	9	40
	15	9	26		17	9	9		17	0	26		13	9	9
Juna	20	8	45		29	8	83		92	8	45		18	8	28
	26	7	48		28	7	29		87	7	48		83	7	88
	31	6	35	September	2	6		December -	2	0	35		28	6	9
	5	5	8		7	4	46		7	5	8	March -	5	4	46
	10	3	33		19	3	15		12	3	$3{ }^{3} 8$	March.	10	3	15
	10	1	48		17		39		17	1	48		15	1	39

Table shoving the Part of the Equation of Time that arises from the Inequality of the Sun's Motion.

Dial Faster than Clock.								Dial Blower than Clock.							
July . - .		M.	8.			M.	8.			M.	8.			M.	8.
	1	0	0	Octolvar	3	7	43	December -	33	0	0	March .	30	7	43
	7	0	40		8	7	42	January -	5	0	41	April .	4	7	40
	11	1	19		13	7	37		10	1	22		9	7	34
	17	1	87		18	7	29		15	2	8		14	7	24
	$\stackrel{2}{2}$	2	35		23	7	18		20	2	41		10	7	12
August - -	28	3	12		28	7	3		25	3	19		94	0	50
	2	3	47	November	2	6	45		89	3	56		30	0	36
	7	4	91		7	6	24	February	3	4	30	May - .	5	6	14
Seplember	12	4	53		19	5	39	Pobrary	8	5	2	May	10	5	50
	17	5	29		17	5	33		13	5	32		15	5	22
	22	5	50		28	5	2		18	5	39		20	4	52
	28	6	14		27	4	30		98	6	24		26	4	21
	2	8	36	December -	2	3	56		28	6	45		31	3	47
	7	6	56	Decernber -	7	3	10	March	- 5	7	3	June	5	3	12
.	12	7	12		19	0	41	March	10	7	18	June	10	2	35
	17	7	24		17	2	9		15	7	29		10	1	57
	23	7	34		21	1	29		90	7	37		21	1	19
	28	7	40		20	0	41		25	7	42		20	0	40

The difference between the apparent and the true time, is very observable about the season when the day is lengthening or shortening with most rapidity. It is a commen remark, that when the day is shortening, the change is more observable in the evening than in the morning; but that the reverse is the case when the day is longthening. This arises from the elock being before or after the sun. Thus, in the end of October, the dial is upwards of sixteen minutes faster than the clock; so that the time of sun-rise, and the time of sun-set, will each, as indicated by the elock, appear earlier by 16 minutes, than as indicated by the motion of the solar shadow. Hence the instant of noon, as shown by the clock, appears not to divide equally the time during which the sun is above the horizon: the time from sun-rise till noon, appears longer than from noon till sun-set. Again, about the middle of February, the dial is about 15 minutes slower than the clock; so that the time of sun-rise and the time of sun-set will each, as indicated by the clock, be later by 15 minutes than as indicated by the dial; and the time from sun-rise till noon, as shown by the clock, will appear shorter than the time from noon till eun-set.

As the return of the sun to the meridian marks out the day, so his return to the same equinox marks out anether portion of time of much importance to be determined with accuracy; namely, the Year. This period comprehends the scasons which divide it into four parts. Within this period also, the moon gees twelve times through all her plasee, which occupy the space of nearly twenty-nine and a half days: hence the year has been divided into twelve months, three of which are ahotted to each scason. By accurate obeervation it is feund, that the time which elapses between the instant at which the sun passes the vernsl equinex, and the period of his return to it, is $365^{\mathrm{d}} 5^{\mathrm{h}} 48^{\mathrm{m}} 48^{\circ}$. This period is called the Tropical year. It is found to be sherter than the interval between two successive returns of the sun to the same star by $20^{\mathrm{m}} 29^{\circ}$. This last-mentioned period is called the Sidereal year, and censists of $305^{4} 6^{\text {n }} 9^{\text {nin }} 11$.

In order to make such a distribution of time as is accommodsted to the purposes of lift, it is necessary so to adjust the reckening of the solar revelution to the length of the mean solar day, that the beginning of the year may coineide with the beginning of the day, and the scasons may always recur in the same menths. If the solar revolution consisted of an exact number of days, there would be no difficulty; but as it includes a fraction of a day, it is evident that one year cannet be made equal to one revelution, without incurring the inconvenienco of making the year commence at a different point of time from the beginning of the day. But though one year cannot be made equal to one revolution, a certain number of years may be made equal to a like number of revolutions.
Julius Cessar introduced the first near approximation to accuracy on this subject, in the 45 th year before the commencement of the Christian cra. The Romans had befere that time estimated the year according to the ceurse of the moon, in imitation of the Grecks; dividing it into twelve months, which consisted in all of 354 days; but as an odd number was thought the more fortunatc, one day was added which made the year cousist of 355 dsys. To make the lunar year, correspond with the ceurse of the sun, on which depends the vicissitude of seasons, an intercalary menth was inserted every other year, between the 23 d and 24th day of February. The intercalation of this month was left to the discretion of the priests, who, from interested metives, inserted often mere or fewer than the proper number of days, so as to make the year longer er sherter, according as it suited their own purposes. This caused the months to be transposed from their stated seasons, the winter months being carried back into autumn, and the sutumnal months into summer. When Julius Cesar became master of the state, he resolved to put an end to this disorder, by abolishing the use of intercalatiens which had been the source of it; and for that purpose, by the assistance of Sosigenes, a celcbrated astronomer of Alexsndria, he adjusted the year to the ceurse of the sun, and assigned to the respective menths the number of days which they still contain. That matters might proceed with regularity frem the beginning of the ensuing January, he made the current year, which was called the last year of confusion, censist of fifteen months, or 445 days.
The Julan year is founded upon the supposition that the solar revolution is exactly $365^{\mathrm{d}} \mathbf{6}^{\mathrm{h}}$. For three successive years the six hours are omitted; but in the feurth year an additional day is inserted in the month of February, which makes the feur years correspond with four solar revelutions. This feurth year, consisting of 366 days, is called Bissextris or Leap year. But as the true length of the solar revelution is net $365^{d} 6^{\text {b }}$, but only $365^{\mathrm{d}} 5^{\mathrm{h}} 48^{\mathrm{m}} 48^{\circ}$, the Julian year is too leng by $11^{\mathrm{m}} 12$; so that before a new year begins, the sun has passed the point of the ecliptic where the preceding year began. The crror thence arising is, however, so small, that it was leng before it was observed. The Julian Calendar was introluced into the church at the time of the Council of Nice, in the year 325 of the Christian ora; and the vernal equinex was at that time fixed to the 21st of March. In the year 1582, hewever, it was found that the vernal equinox fell, not on the 21st of March, but on the 11th of that month; so that the Julian year had fallen about ten days behind the sun. If this crroneous reckoning had been continued, the scasons would have entirely changed their places. It was therefore resolved to reform the calendar, which was done by Pope Gregory XIII., and the first step was to correct the loss of the ten days, by counting the day after the 4th of October, not the 5th, but the 15th day of the month. The error in the Julian year reckening, being about eleven minutes yearly, amounts to nearly three days in four centuries. Hence to prevent its accumuletion in fiture, it was agreed to suppress three intercalary days in the course of four hundred years, by censidering the last of three successive centurics common, instead of leap years. The years in which the intercalary days are omitted are $1700,1800,1000$: and, in general, the last year of every century not divisible by four, is reckoned a common year, which in the Julian account is bissextilc. The degree of accuracy thus attained is very considerable; fer taking the annual error at $11 \frac{1}{3}$ minutes, in four centuries, it will amount to 4480 minutes, or to $3^{f} 2^{14} 40^{m}$. Of this errer, the fractional part, $2^{\text {h }} \mathbf{4 0}^{\mathrm{m}}$, is all that remains uncorrected; and this error will require the lapse of 3600 years before it amounts to a day.
Other modes of intercalation. If the tropical year were $365^{4} 5^{h} 49^{m} 12$, the Gregorian intercalation woull be verfectly exact. Accurnte nhservation proves, however, that the year
ta shorter by about 24 seconds. If scientific principles had been strictly follewed, they wonld have pointed out other modes of intercalation still more accurate, theugh perhaps not merc convenient, than that which has been alopted. The determination of the methods of intercalation best suited to make the computations in the calendar correspond as nearly ns possible with the real motions of the sun, requires all the integer numbers to be found, which most nearly express the ratio of $5^{n} 48^{104} 48^{\circ}$ to a day. These numbers are casily determined by the method of continued froctions. In the Gregorian calendar, $\mathbf{9 7}$ days are intercalated in the course of 400 years; but it would be much more exact to intercalate 109 days in the ceurse of 450 years. If the tropicnl year were precisely $365^{4} 5^{n} 48^{m \mathrm{~m}} 48^{\prime}$, this intercalation weuld, indeed, be quite accurate: for $5^{n} 48^{1 \mathrm{~m}} 48^{\circ}$, multiplied by 450 , give exactly 109 days.

The rebormation of the calendar, or the change from the Old Styie to the New Styid, did no. take place in England, till the year 1752, at which time it was established by an act of parliament. The alteration was ordered to be made on the $2 d$ of September; and as the crror of the Julian reckening now amounted to 11 days, the 3 d was to be counted the 14tn of September.

Correspondence between the days of the week and month. As the commen year consists of 52 weeks and one day, it is evident that the beginning and end of each common year will tall on the same day of the week. In a series of years, therefore, if no leap years occurred, the first day of each month would, year after year, be one day farther advanced in the week, till, in the course of seven years, the same days of the menth weuld return to the same days of the week. But since leap year contains 52 weeks and 2 days, and occurs every fourth year, it follows that the days of the week cannot correspond to the same days of the menth, till nfter the lapse of four times seven or twenty-eight years. This period is called the Cvcle of tue Sun. When this period is completed, the sun's place in the ecliptic returns to the same signs and degrees on the same months and days, so as not to differ a degree in a century; and the leap years, as well as the commen years, begin the same course over again with respect to the days of the week on which the days of the month fall. The year of our Saviour's birth, according to the vulgar era, was the ninth year of the solsr cycle: hence, to find the current year of that cycle, we must add nine to the given year of the Christian era, and divide the sum by twenty-eight; the quotient will be the number of cycles which have been completed since the birth of Christ, and the remainder will be the current vear of the present cycle. Thus, for the year 1829, the cycle of the sun is found to be 18. The first seven letters of the alphabet have been employed to mark the several days of the week. As one of those seven letters must necessarily stand against Sundny, it is printed in the calendar in a capital form, and called the Dominical Letters: the ether six letters are inserted in a difierent character, to denote the other six days of the week. When January begins on Sunday, A is the Dominical letter for that year: but because the next year begins on Monday, the Sunday will of course fall on the seventh day, to which is annexed the seventh letter \mathbf{G}, which will therefore be the Dominical letter for all that year: and as the third year will begin on Tuesday, Sunday will fill on the sixth day, so that F will be the Dominical letter for that year, and so on. Hence it is evident that the Dominical letters will succeed each other in a retrograle order, viz. G, F, E, D, C, B, A. As the days of the week correspond to the same daye of the month only once in twenty-eight years, it follows that it is only after the lapse of the same period, that the series of Dominical letters can proceed in the same order in reference to the dnys of the month. Every leap year has two Dominical letters; one answering from the beginning of January till the end of February; the other being the letter imniediately preceding, answering for the remsinder of the year: The Dominical letter may be found for any year of any century by the following rule: divide the ceaturies by 4, and take twice whot remains from 6: then add together this last remainder, the odd years above the cven centurics, and the fourth part of these odd ycars, neglecting the remainder if any: divide the sum by 7 , and the excess of 7 above the remainder is the number answering to the letter required. Thus, for the ycar 1830, the Dominical letter is C. For the centuries 18 divided by 4 leave 2; and twice this remainder taken from 6 also leaves 2; by adding to which the odd number of years 30 , and their fourth part 7, we obtain 39: this sum divided by 7 leaves the remainder 4, which taken frem 7 leaves 3 , answering to \mathbf{C}, the third letter of the alphabet.

CHAPTER X.

proper motion of the moon. her phases, eclipses of the sun and moon.
The moon, next to the sun, is the most interesting to us of all the heavenly bodies. Her phases, or that series of changes in her figure and illumination which she undergoes in the course of about a month, are one of the most striking of the celestial phenomena; and presen n division of time so remarkable that it has been the first in use among all nations.
The moon has an apparent motion ameng the fixed stars similar to that of the sun, bu Vol. I.
much more rapid: it carries her eastward at the rate of ncarly $13^{\circ} 10{ }_{2}^{\prime}$, at an average, in 64 hours. When this motion is accurately traced out, it is found, that the moon describes round the earth, in $27^{\mathrm{d}^{\mathrm{n}}} 7^{\mathrm{n}} 43^{\mathrm{mm}}$, a path or orbit inclined to the ecliptic at an angle of nearly $55^{\circ} 0^{\prime}$. The line in which the plane of the orbit cuts the plane of the ecliptic is called the Lane or the Nodss. The point in which the moon crosses the ecliptic when ascending to the north, is called the asoenoino node; and the opposito point, in which slie crosses it when descending to the south, is called the descendino node.

The figure of the lunar orbit is determined in the same manner as that of the solar, by observing the changes in the apparent diameter of the moon, and comparing these with the variations in her angular velocity. It is thus found, that the moon's orbit, like that of the sulu, is in appearance an ellipse, having the centre of the earth in one of the foci, and that the ralius vector, or the lino joining the centres of the earth and moon, describes areas propurtional to the times. Neither the line of the nodes nor the greater axis of the lunar orbit is fixed. The former has a slow retrograde motion, by which it makes an entire revolution in something more than $18 \frac{1}{2}$ years; the latter has a progressive motion, by which it completes a revolution in something less than 9 years. The elliptic orbit is liable, indeed, to so many changes, that the full investigation of the lunar motion has been found one of the most difficult problems in astronomy. At the same time it is one of the most useful; as connected with the finding of the longitude of places on the surfaco of the earth. Accordingly, the efforts of astronomers have been assiduously directed to the perfecting of the lunar theory; and by employing the resources of modern science, and combining these with continued and accurate observation, their labours have been crowned with wonderful success.

The phases of the moon depend on her position with regard to the sun. Let E be the
 earth, M the moon revolving in her orbit round the earth, E S the direction of the sun, and let us suppose all the solar rays which illuminste the moon to proceed in straight lines parallel to S E. The moun is an opaque body like the carth, and is visible only in consequence of reflecting the light of the sun. When she comes to the meridian, therefore, about the same timo with the sun, that is, when she is at M , she must be invisible, on account of the unenlightened side being turned towards us. It is then said to be new moon: and, in reference to her position with regard to the sun, the moon is said to be in conjunction. Again, when the moon comes to the meridian about midnight, that is, when she is at m, she is said to be in opposition, and in that position she presents an entire circular disc; because the wholo of the onlightened side is then turned towards the earth. It is then said to be rulu. moon. At any point of her orbit, between the points of conjunction and opposition, the moon turns more or less of her enlightened side towards the earth, according to her angular distance from the sum, and presents exactly the same appearances as an opaque spherical body, of which one side is illuminated, would cxhibit, if viewed from a distance, and in the same positions in which the moon is seen from the earth. After the conjunction, as soon as she has emerged sufficiently from the solar rays, she is seen in the western sky, after sunset, in the form of a Caescent, as at M^{\prime}, having the convex side turned towards the sun, and the concave bounded by an clliptic line. On every succeeding night the luminous part increases, while the elliptic boundary continually approaches to a straight line. On the seventh night from the time of new moon, the moon reaches the position $\mathbf{N}^{\prime \prime}$, wherc lier distance from the sun is 90° : she is then said to be in her first Quadratuae, and exhibits the appearance of half moon; that is, the disc is a semicircle. The enlightened part still continuing to incrense on the same side, the rectilineal bonndary of the semicircular disc passes again into an elliptic line, and the moon becomes orspove, as at $\mathrm{M}^{\prime \prime \prime}$: on all sides the dise is convex, though it does nut become entirely full orbed until she reaches the point of opposition, at m, about the end of seven days from the time of half moon. From the instant of opposition the moon begins to return to the sun on the western side; und in her progress towards the conjunction she goes throurh the same serics of changes in an inverted order, becoming first gibbous, as at m^{\prime}; then haif moon at the time when she reaches the position $m^{\prime \prime}$, her second quadrature; then a crescent, as at $m^{\prime \prime \prime}$, which, continually diminishing, at last disappears altogether. Thus, on the supposition that the moon is an opaque body and nearly spherical, and that she revolves in an orbit round the earth, the phenomens of her phases are easily explaincd.

Strictly speaking, the moon is not exactly 80 degrees diatant from the sun when ehe pro-
 eents the appearance of half moon. This phasis occura at the moment when tho moon is in auch a position that two straight lines drawn from her centre,--the one to the centre of the earth, the other to the centro of the aun,-form a right angle. By observing, therefore, the moon'e distance from the aun, at the instant when the boundary between the enlightened and dark part exactly bizects tho lunar disc, we should have in the right-angled triangle S M F the angle at F; and hence, since the side F M is also known, S F, the distance of tho sun may be determined. This was the first mothod employed for finding the sun's distanco from the earth; but, from the nicety of the observations required, it cannot be expected to lead to any very satisfactory reault.

To a spectator on the inoon the earth must evidently exhibit a series of changes similar to the lunar phases as seen from the earth. At the time of conjunction the moon is on the illuminated side of tho earth, so that the earth must then uppear, as seen from the moon, an entire circular disc. Again, at the time of opposition, the moon is on the dark side of the earth; so that the earth must then be invisible. When the moon is seen es a crescent, the earth will appear gibbous; and when the moon appears gibbous, the earth will be seen as a crescent.
The fact of the earth appearing to a spectator on the moon an entire luminous disc, at the time of the moon's conjunction with the sun, furnishes an explanation of a phenomenon with which every one is familiar. In clear weather, when the moon is three or four days old, her whole body is visible. The horns of the enlightened crescent appear to project beyond the old moon as if they were part of a sphere of considerably larger diameter than the unenlightened part. Now, the part of the moon not directly illuminated by the sun is seen by the light reflected from the earth. The appearanco of a lucid bow, connecting the horns of the crescent, is produced by the circumstance of the eastern edge of the moon's disc being more luminous than the adjacent regions towards the centre. With regard to the enlightened crescent appearing a portion of a larger sphere, this is an optical deception, and furnishes a remarkable proof that of two objects of equal magnitude, but of different degrees of brightness, the brighter appears larger.
A lunation or lunar month is formed by the time that elapses between one new moon and another. It consiats of $\mathbf{2 9 ^ { 4 }} 12^{4} 44^{\text {m }} 3^{4}$ nearly ; and therefore exceeds the period of her mean sidereal revolution, which is $27^{4} 7^{4} 43^{\text {mim }} 11^{1}$. This excess arisea from tho proper motion of the sun in the ecliptic; for it is evident that the period in which the moon goes through all her phases must be equal to the time required to describe 360°, with an angular velocity equal to the difference between angular velocities of moon and sun.

Cycle of the moon. In 19 Julian solar yeara there are 235 lunations, and about one hour and a half more. Hence, after 19 years, the conjunctions, oppositions, and other aspects of the moon recur on the same days of the month, and only about an hour and a half sooner. This period is accordingly called the Cycle of the Moon, and has been found of so much use in adjusting the lunar to the solar year, in order to know the time of new and full moon, and to determine the time of Easter, and other moveable feasts, that th numbers of it have been called Gouden Numsers. The year of our Saviour's birth, accor z . ing to the vulgar era, was the first year of the lunar cyele: hence, to find the golden number, or the current year of that cyele, wo must add one to the year of Christ for which the golden number is required, and divide the sum by 19: the quotient will be the number of cycles which have elapsed since the birth of Christ, snd the remainder will be the golden unmber or current yesr of the cycle.
The epact is the difference between the solar and lunar periods at the end of each year, or the moon's age on the first of January. Since the Julian solar year is $365^{4} 6^{\mathrm{h}}$, and the lunar year, or twelve lunations; $354^{4} 8^{n} 48^{m} 36^{\prime}$, if we suppose new moon to have happened on the first of January, so that the epact for that year is 0 , it follows that the epact for the next succeeding year will be $10^{4} 21^{\mathrm{b}} 11^{\mathrm{m}} 24$;, or ncarly 11 days. For the third year, the epact will be nearly 22 days. For the fourth year it will be 33 days, or (rejecting 30 days for a complete lunation) 3 days, and so on.
The annexed table contains the golden numbers with the corresponding epacts adapted to the Gregorian calendar, till the year 1900 . The epact for each month of tho year is, in like manner, the moon's age on the first day of the month, supposing new moon to have happened on the first of January.

Golden Numbers.	Epacts	Goiden Nualbers.	Epacts.	Numbers.	Epacti.
1.	0	VIII.	17	xV.	4
11.	11	1 x .	28	XVI.	15
III.	92	X.	9	XVIL.	28
IV.	3	XI.	20	XVIII.	7
V.	14	XII.	1	XIX.	8
VII.	${ }_{6}$	XIII.	12 23	I.	0

The epacte for the monthe of the common and leap year are as follows:-

It is evident that the moon's age will be found by adding together the epact of the year, the epact of the month, and the day of the month, rejecting thirty if the sum amount to that number. Thus, if it in required to find the moon's age on the 11th November 1829; by adding 1 to 1820 and dividing by 19, we obtain a remainder 6 , which is the golden number for the year 1829. Now, againat VI. in the table, we find 25 for the epact of the year, and θ is the epact for November: hence $25+9+11-30=15$, which is the moon's age; \quad o that the moon in full on that day.
The lunar cycle of 19 years, though remarkably simple, is however far from being accu1ste. Nineteen yearn contain about an hour and a half more than 235 lunationa; so that at the termination of that period the moon has edvanced about an hour and a half in the next lunation. This error amounts to a day in the course of 16 cyclen, or about 300 years. But, to compensate this excema, the epacts may be advanced one day every 300 years, and in this manner the lunar and solar periods will be made to agree. In consequence of her apparent motion eastward, the moon is about 48 minutes later after every diurnal revelution of coming to the meridian. As 48 minutes is equal to $\frac{1}{3}$ of an hour, an approximation is made to the time of her southing, by multiplying her age by 4 , and dividing by 5 . This givea tho time, nearly, before or after noon, according as the moon is past the opposition or conjunction.
The time of her rising and setting is affected by the samo cause. In one part of the orbit, however, this is in a great measure counteracted by the amallness of the angle which the orbit makee with the horizon. For facilitating the illuatration of this phenomenon, let us suppose the moon to move in the ecliptic, from which she never deviates much more than 55. By turning round the celestisl glebe, it will be seen that the ecliptic makes with the horizon very different angles, as the points of their intersection vary. If the first point of Aries be brought to coincide with the east point of the horizon, the angle which the ecliptic makea with the horizon is equal to the difference of the ebliquity of the ecliptic and the complement of the latitude : but if the first point of libra be brought into ceincidence with the east point, the angle between the ecliptic and the horizon is equal to the sum of the obliquity and the complement of the latitude. When the moon is in Pisces or Arics, her motion in her orbit will therefore produce a considerable change, each aucceeding night, on the distance between the east and the point of riaing, but the time of rising will not be much affected. The reverse will be the case when the moon ia in Virgo or Libra. Hence it is obvious that in every lunation, at a certain time, the moon must rise nearly at the same hour for several days togather. This phenomenon, however, for the most part, passes unobserved; but in the harveet season it attracts attention, as being then much more conspicuous than at any other time of the year. In the autumnal months the moon is full in the signs Pisces and Aries, (the sun being at that season in the epposite signs Virgo and Libra,) and on that account riges an entire orb (or nearly so) for about a week, almost at the time of sunset, thus affording a supply of light very beneficial to the husbandman, in gathering in the fruits of the earth. This lunation has accordingly been distinguished by the name of the barvige moon.
The inclination of the moon's orbit to the ecliptic, makes the harvest moon rise, more or less, nearly at the same time that ahe would if she moved in the ecliptic, accerding to the position of the line of the nodes. If we auppose the ascending node to be in Aries, the moon's orbit makes with the herizen an angle upwarda of 5° lesa than the angle which the ecliptic makes with it, and consequently the harvest moon will rise more nearly at the same time than if the moon had been in the ecliptic. In a little less than 98 years, however, the line of the nodea will have made half a revolution, and the descellding node will be in Aries. The moon's orbit will then make with the horizon an angle more than 5° greater than that which the ecliptic makes with it; and, congequently, the harvest moon will not rise so nearly at the same time as if the moon had been in the eeliptic.

The quantity of moonlight which we eqjoy in winter is much greater than in summer. As the moon is always on the same side of the heavens with the sun, at the time of new moon, and on the opposite side at the time of full moon; it is evident that at midsummer the moon, when seen as a crescent, will rise at a point of the horizon to the nerth of east, and aet at a point to the north of west, and will be seen high in the heavens when she passes the meridian. As ehe approaches full moon, however, she will rise farther and farther to the south of east, will appear low in the heavens when on the meridian, and will set farther and farther to the south of weat. The reverse takes place at mid-winter: the moon is low when seen as a crescent, and rises higher and higher in the heavens as she approaches full moon. She also rises to the south of east when a crescent, and sets to the south of weat; but, when full, rises and sets to the north of these points. Thus the great quantity of moonlight during the long nights of winter arises from the moon being full in the northern signe
of the ecliptic, and is analogous to that of munshine in the leng daya of summer. As we spproach the pole, the quantity of moonlight in winter becomes ulill more remarkabie; nul at the pole itwelf; at mid-winter, the moon does not set for fifeen daya together, nainely, from the first to the last quarter.
The lunar dise in divernified with a great variety of apots, which are quite permanent, but ditler very considerably from each other in degrees of brightness. These inequalities of illumination are visible to the naked eye. Since the discevery of the telescope they have engaged the particular attention of several natronemers, by whom their relative positions lave been carefully ascertained, and laid down in maps of the lunar surface. From an attentive examination of the lights and shades seen on the moon'a dive, it has been inferred that her surface ia very irregular, being diveraified by lofty mountains, precipitous rocks, and deep eaverna. The existence of these irregularities of surfhce ia strikingly ovident from the serrated appearance of the line which eeparatee the enlightened from the dark part of the moon, and by a variety of bright detached apota, almost always visible on the dark part and near the line of separation between light and darkness. These bright spots are the tope of mountains illuminated by the sun, while his rays have not yet reached the bottom of the intervening valleys. The dark spots of the moon are mooth, and apparently level, while the luminous parts are elevated regions, which either rise into bigh mountains or sink into deep and immense cavities. The general smoothness of the dark spots naturally led to the conclusion that they were collections of water; but more careful observation has made it appear that the line which separates the enlightened from the dark part of the moon is not sinooth and regular, even when it passes over a dark spot; so that there is no reason to suppuse that there is any large cellection of water in the moon : and this conclusion is etrengthened by the constant serenity of her appearance, which seems undisturbed by any of those atmospherical phenemena which arise on our globe from the existence of water. The mountainous scenery of the moon, and more especially the immense caverns with which her surface is broken, bear little analogy to what we see on the surface of the earth. The resemblance may, however, be conceived to be considerably increased if all the waters of the earth were removed, and the beds of the ocean, seas, and lakes were left dry with all the inequalities of their surfaces exposed to view. The earth would then be diversified, not only with the rocks and mountains now seen upon its surface, but likewise with deep caverns of immense extent, and having detached mountains and rocks rising from the bottom, similar to the cavities discovered in the moon. From certain light spots which have sometimes been seen on the dark part of the moon, at such a distance from the enlightened portion that they could not arise from the light of the sun, astronomers have inferred the existence of volcanoes in the moon. Dr. Herschel, in particular, two or three different times, observed such spots.
The height of a lunar mountain may be measured by the following method. Let D A F
 be a section of the moon made by a plane passing through 0 , the eye of an observer on the earth, M the summit of a mountain situated in the dark part of the lunur disc, and S the sun. It is evident that this plane will be perpendicular to the line which joins the horns of the moon. Let D A be the areh of the circle D A F, which passes over the visible portion of the enlightened hemisphere. Whenever the point M becomes visible to a spectator at 0 , it must be illuminated by a ray of the sun S A M, which will be a tangent to the circle D A F at the point A, and therefore at right angles to the diameter A F. Produce OM to meet the diameter DE in m, and draw A r and A n parallel to $\mathbf{D E}$ and $\mathbf{M} \boldsymbol{m}$; also produce $\mathbf{E} \mathbf{D}$ to meet $\mathbf{S} \mathbf{M}$ in \mathbf{C}. Because $\mathbf{D} \mathbf{A} \mathbf{F}$ is a section of that hemisphere of the moon which is turned towards the earth, the visual ray $O M m$ is perpendicular to $D E$: hence the angles $m \mathrm{MC}, \mathrm{MC} m$ are together equal to two right angles. But becanse C A is perpendicular to A B, the angles A BC and ACB (or MC m) are also together equal to two right angles: whence it is evident that the angle $m M C$ is equal to $A B C$; and that the triangles $A M r, A B n$ are similar. We have, therefore, $\mathrm{A} \boldsymbol{n}: \mathrm{AB}=\mathrm{Ar}: \mathrm{A} M$. Hence $\mathrm{A} M=\frac{\mathrm{Ar} \times \mathrm{AB}}{\mathrm{A} \boldsymbol{n}}$.
Now, $\mathbf{A} r$ is the projection of $\mathbf{A} \mathrm{M}$ on the lunar disc, and will be found by measuring, with the micrometer, in a direction perpendicular to a line joining the horns of the moon, the distance of the illuminated summit M from the enlightened disc at A; also $\frac{A n}{A B}=\operatorname{Sin}$. $\angle A B C$, radius being unity, the angle $\mathbf{A B C}$ is equal to $\mathbf{S M} m$ the moon's distance or elngation from the sun: wherefore we obtain $A M=\frac{A r}{9^{*}} \overline{\text { Sin. clongation }}$, a given quantity.

Next let A G II be a soction of the moon made by n plane paeming along the tangent A M,
 and through the centre K : draw M K G ; then, by a well-known property of the circle, $A M^{2}=\mathbf{G M} \times M H=M I \times(G H+\| M)$, or, $H M$ being much amaller than OH , we have $\mathrm{A} \mathrm{M}^{2}=\mathrm{MH} \times \mathbf{G H}$, and $\mathbf{M H}=\frac{\mathbf{A M}}{}{ }^{\mathbf{2}}$ nearly. Now, $\mathbf{A M}$ and $G 1 I$ are both given; therefore II M, the hoight of the mountain above the general aurface, may be determined.
Suppose, for example, that when the apparent diameter of the moon in $31^{\prime} 15^{\prime \prime}$, and her olongation from the sun $93^{\circ} 07 \frac{1}{\prime}^{\prime}$, the dibtance between the enlightened part of her disc, and the summit of a mountain aituated in the dark part of it ia found to be $41 \mathrm{z} \mathbf{\prime \prime}$; and let it be required thence to determine the height of the mountain.
The diameter of the moon is about 2180 , niles; hence $31^{\prime} 15^{\prime \prime}$ or $1875^{\prime \prime}: 41^{\prime \prime}=2180$; $48^{\circ} 25$, which is the number of milea in $41 \frac{1}{\prime \prime}^{\prime \prime}$ en the lunar disc ; to that wo have $\lambda r=4825$ miles.
Again, the Nat. Sin. of the elongation $83^{\circ} 07 \frac{1}{2}=9976$; therefore A M $=\frac{\mathbf{A}}{\text { Sin. elongation }}$ $=\frac{4825}{9976}=48.30$ milea.

Lastly. The height $=\frac{A M^{3}}{G H}=\frac{(48.36)^{2}}{2180}=1.07$ mile.
Thus the height of the lunar mountain in question is found to be about a mile. The principle now explained is correct in theory; but with regard to the results obtained from the practical applicatien of it, a greater difference of opinion exists than might have been expected. These reaults are, however, highly curious and intereating.
Moon's motion round the earth. The moon's surface, when viewed through a telescepe, is so strongly characterised by the apots visible upon it, as to leave no doubt of its being always the same. From this the infercuce is obvious, since we are certain from the moon's motion round the earth, that she must revoive on an axis nearly perpendicular to the plane of her orbit in the same time that she revolves about the earth, namely in 274 days nearly. Her rotation en her axis is equable; but this is not the case with her metion in her orbit, which is periodically variable: and hence there are parts of the eastern and weatern edges of the moon which are geen occasionally. This appearance is cnlled the libration or thu moon in Lovartude. It is entirely optical, and argues no inequality in the moon's motion on her axis.

The moon's axis of rotation is not altogether perpendicular to the plane of her orbit, but inclined to it at an angle of $88^{\circ} 29^{\prime} 49^{\prime \prime}$. In consequence of this position of her axis her poles are alternately visible, and a small portion of the polar regions; this phenemenon is called the ligration or the moon in latitude.

The diumal libration of the moon is another optical appearance arising from the moon being viewed from the surface instead of the centre of the earth. At rising, a part of the western edge is seen, which is invisible at setting; and, at setting, a part of the eastern edge is seen, which is invisible at rising.

The explication of the lunar phases leads to that of Ecurssem-those occasional obscuratiens of the sun and moon which have, in ages of ignorance, been objects of superstitious terror to mankind, and at all times objects of curiosity to the philosopher. At the time of new moon, the moon is upon the same side of the heavens with the sun, but, for the most part, passes either above or below the solar disc without obscuring any part of it. This arises from her orbit being inclined to the ecliptic: for it is evident that if the planes ef the orbit and ecliptic coincided, the centres of the sun, moon, and earth would, at every newmoon, be in the same straight line; so that the moon would be seen to pass over the sun's disc, and the sun would appesr to be totally or partially eclipsed, according to the position of an inhabitant upon the earth's surface. Again, at the time of full moon, the moon is on the opposite. side of the heavens from the sun; and therefore she is on the same side of the heavens with the shadow, which the earth, as an opaque boly, projects into space. In most cases, however, the moon passes above or below this cenical shadow; so that she is not deprived of the sun's rays. But if the plane of the orbit coincided with that of the ecliptic, the centres of the sun, moon, and earth would evidently be in the same straight line at every full moon as well as at every new monn: the moon would therefore fall into the earth's shadow, and would be eclipsed to all the inhabitants on that side of the carth which is turned towards the mom at the time.

Though the inclination of the lunar orbit to the ecliptic prevents the occurrence at every new and fill moon of these phenomena, there are certain distances from the nodes of the moon's orbit, called ecliptic limits, within which, if the moon is situated at the time of new or full moon, there will be a solar or lunar eclipse.

To illurtrate the general phenemena of lunar eclipmea. Let $\mathbf{A} \mathrm{D}_{1} \mathrm{D}$ E be sections of the sun and earth, by a plane perpendicular to the plane of the ecliptic. Draw A V, B V touching

the circlen A \mathbf{H}_{1} D E on the corresponding aides in \mathbf{E} and $\mathrm{D}_{\text {, and }}$ meeting each other in \mathbf{V} : aloo draw B G, A H, touching these circles on the opposite siden in M and N. Then, if wo suppowe the figure ABIG to revelve about the line C F , which joins the centres of the circles, as an axia, the cone generated by the line E V represents the shadow which the earth projects into epace; and from every point of that conical ahadow the light of the mun is entirely excluded. The apaces between E V, M G, and between D V, N H, will receive the light of a part of the sun: and hence the apace round the shadow, which in generated by the motion of the lines $G \mathrm{M}, \mathrm{E} \mathrm{V}$, ia called the panvmaza.

Join C E. It in ovident that the angle E V Fis equal to the difference of the anglea AEC,ECF. But A EC is the angle under which the sun's semidiametcr is seen from the earth; and ECF is the angle under which the earth's aemidiameter is seen from the aun. Doth of theso anglea being known, their difference E V F is a given angle. Now, in the right angled triangle E V F wo have given the anglo at V, and the side E F, which is the earth's semidiameter: hence F V; tho height of the earth's shadow, may be determined. The height of the shadow varies from 213 to 220 semidiameters of the carth.
Again, let $\mathbf{F O}$ be the diatance of the moon from the earth: draw KO L perpendicular to F V, and join F L. The angle L F O, under which the semidiameter of the section of the earth's shadow is seen from the earth, is equal to the difference of the angles, $\mathbf{F} \mathbf{L} \mathbf{E}$, F V L. But FI. E is the angle under which the semidiameter of the earth ia seen from the moon, and F V L is, as has been shown, equal to the differenec between the angle under which the sun's semidiameter is seen from the oarth, and the angle under which the earth'm semidiameter is seen from the sun: hence, to find the angle under which the aection of the earth's shadow through which tho moon passee in a lunar eclipse is seen frem the carth, we must add together the two angles under which the semidiameter of the earth appears when soen from the sun and moon, snd from the sum sultract the sun's apparent acmidiametor, the remainder is the angle required. The angle L F O, when greatest, is about 46'; but the inclination of the lunar orbit to the ecliptic is upward of 5°, and to this distanco the moon may recede from the ecliptic. It is evident, therefore, that an eclipse of the moon can take place only when she is near her nodes.

Let the circle AHB be the eection of the earth's shadow at the moon; ABaportion of the ecliptic, and D F a portion of the moon's orbit near the ascending node. Draw C G from the centre of the shadow, (which must be the point of the ecliptic directly epposite the sun,) porpendicular to $\mathbf{A} \mathbf{B}$, and let it meet $\mathbf{D F}$ in \mathbf{G}; then \mathbf{G} is the point of epposition at which the moon will be 180 degrees of the ecliptic distant from the sun. Now, in moving from \mathbf{D} to \mathbf{G}, the moon must enter the earth's shadew,
 and will therefore be eclipsed. The beginning of the eclipse will be the moment that she enters on the shadow at K : the middle of the eclipse will be the moment when her centre reaches the point E, the extremity of the perpendicular drawn from C to D F; and the end of the eclipse will be the moment when she leaves the shadow at the point L . The portion of tho moon's dise that is obscured will depend on the distance between Es and C, which will vanish when the point of the opposition coincides with the node. It is evident that had the eclipse happened on the ether side of the node, the opposite edge of the moon would have becn immersed in the shadow.
In eclipses there are various degrees of immersion. When this is entire, it is said to be total; when only a part of the moon is immersed, the eclipse is said to be partial; and when the centre of the moon passes through the centre of the shadow, the eclipse is said to le central and total. The brealth of the shadow at the moon is about three times her diameter, so that in the case of a total central eclipse, the moon may be entirely obscured fis nearly two hours.

The time when eclipses shall happen may be computed from the laws which regulate the mutiony of the sua and moon. This computation requires astronomical tables, and is perfirmed with consilorable labour. But it may be observed that in 223 lunatione, or 18 years 10 duys (or 11 days according as four or five leap years occur in the interim), 7 hours 43 mimites, the moon returns to the same position nearly with regard to the sun, and the lumer nodeg, ntul therefore the eclipses, will return nearly in the same order and circumeltures. This is thought to be the period called the Chaldean Saros, being used by the Chaklemins in predicting eclipses.

Whun it is known that a lunar eclipse is to happen, it is easy to compute its gencral cirellmatancee. The distance of the moon from the ecliptic at npposition, the time of opposithon, the angles under which the earth's semidiameter is seen at the sun and moon, qliso the uplarent dinmeters of these two luminaries, are known from the tables. In the right angled tringle CE G we have given C G, and the angle G C E , which is equal to the inclination 9t the moon's orbit to the ecliptic, nearly; hence we find C E and E G. From C E and C F, the sum of the semidiameters of the section of the carth's shadow and the moon, we limi E F F, which is equal to E D; thence DG, G F become known. We can compute from the tables the angular motien of the moon in her orbit relatively to the sun, the latter body belug supposed at rest. Her motion relatively to the opposite point \mathbf{C} is evidently the same: hence wo can determine the time of describing D G and GF; that is, the time that elapses between the beginning of the eclipse and the opposition, and between the opposition and tho end of the eclipse. But the time of the opposition is known, therefore the times of the beginming amil end of the eclipse will also be known.
For estimating the quantity of an eclipse, the diameter of the solar or lunar disc is coneeived to be divided into twelve equal parts called drorts ; and according to the number of thowe parte which are obscured, so many digits are said to be eclipsed.

Lat it be mupposed that the edge of the moon's disc just touches the edge of the section
 of the earth's shadow at P, and that at the same time the diameters of the moon and shadow are each at the maximum, and we shall find the ecliptic limit for lunar eclipses. Produce E D and BA to meet in N: then NC is the limit of the distance of the node from the opposition at which an eclipse can happen. Since the line in which the centre of the moon moves (which for a short distance may be considered as a straight line) must be supposed p_{u}.allel to the tangent to the circle A P B at the point \mathbf{P}, the angle at \mathbf{E} is a right angle. The angle N, is the inclination of the lunar orbit to the aeliptic: also CE is equal to the sum of the semidiameters of the moon and shadow. Hence from the spherical triangle CEN, CN may be determined; and is found to be nbout 11 ${ }^{\frac{1}{n}}$. Unless wien the node and the point of opposition, which are both liable to eonthunl change of position, come within this distance, there cannot possibly be a lump eclipse.

Cile tulation of longitude. The penumbra makes it very difficult to observe, with preplafot, the beginning or end of a lunar eclipse; so that though these periods may be emplayell fir determining the longitude of places on the earth, no great degree of accuracy is is be expreted. The best method is to note the time of the arrival of the boundary of the mhadow it the different spots on the lunar surface, which may be considered as so many iliffrent observations.
'I'lue thoon seldom disappears entirely in lunar eclipses, but is seen of a dusky red colour: oven the eppots on the lunar surface may be distinguished through the shade. This effect is (4) Ie attributed to n portion of the sun's light, which enters the conical shatow in conseyluenee of being refracted by the ntmosphere of the earth. The nature and effects of atmosfilierleal reffaction will afterwards be explained.

Bellipmes of the sun. With regard to the general phenomena of solar eclipses, we may hayin with remarking, that when the sun's light is intercepted hy the moon, so that at any place wh the earth's surface he becomes partly or wholly invisible, properly speaking, it is an aelljpe of that portion of the carth on which the moon's shadow or penumbra falls.
'Thoe eeminangle at the vertex of the moon's shadow is determined in a similar manner to thint on which the semi-angle at the vertex of the carth's shadow was found. It is equal to the liflibretice of the angles under which the semi-diameters of the sun and moon would he meth, If ench of these bodies were viewed from the other at the time of their conjunction; nint will therefore not be very tar from being equal to the apparent semi-diameter of the minn nas seen from the earth. Computing, then, the length of the conical sharlow of the monell, wis slatl find it vary from about $60 \frac{1}{2}$ to $55 \frac{1}{2}$ semi-dianeters of the earth. The length of the shadew at the time of the conjonction may therefore nt one time exceed, and at numblur time fhll short of the mon's distance from the carth, which varies from 64 to 50 miolinneters. In the former case, if the conjunction happen when the moon is within a
certain distance of the nole, the lunar shadow will reach the earth, and a section of it will traverse a portion of the carth's surface, producing, wherever it falls, a total eclipse of the sun.

Wherever the penumbra falle, the sun will appear partially eclipsed; more or fewer digits being eclipsed according as the place is less or mere removed from the shadow, Beyond the penumbra the sun is not eclipsed at all. The section of the lunar shadow is so near the vertex, that, even when greatest, the portion of the earth's surface which it covers is not very extensive, being only about 180 miles in diameter: the penumbra, however extends over a considerable part of that hemisphere of the earth which is turned tewards the sun. Λ total eclipse in any place cannut exceed $7^{\prime} 58^{\prime \prime}$. If the vertex of the lunar shadow just reaches the surfice, the total eclipse then produced will be instantancous.

When the vertex of the lunar shadow falls short of the earth's surface, at no place will there be a total eclipse: but at places near the axis of the cone, there will be seen an annular eclipse; that is, the central parts ef the sun's disc will be obscured, but a bright ring will be left visible round the dark body of the moon. Thus let A B, C D be sections of the sun and moon and V the vertex of the lunar

shadow which is supposed not to reach the earth. Produce F V the axis of the shadow to meet the surface of the earth in E. From E draw E C G, E D H tangents to the moon, and intersecting the sun's disc in \mathbf{G} and \mathbf{H}. The eircle of which the line joining $\mathbf{G} \mathbf{H}$ is the diameter, marks out the portion of the sun that is hid by the body of the moon from an observer at E, and the annulus, of which the breadth is A G, will be visible.
The general circumstances of a solar eclipse may be represented by prejection; and a map may be constructed to show the progress of the shadow over the surface of the carth. The most simple projection is that which supposes the observer to be placed in the sun, and to see the path which any place on the carth's surface describes in consequence of the diurnal motion projected inte an cilipse on the plane of the earth's disc, while the path of the moon's shadow is projected into a straight line on the same disc. The geometrical construction thus ebtained is sufficiently accurate for the predictien of eclipses.
The circumstances of a solar eclipse may, hewever, be cemputed with considerable accuracy. Thus, find for the given place, from the tables, the time of the conjunction of the sun and moon. The position of the heavenly bodies in reference to the ecliptic is determined by latitude and longitude, in the same manner as the position of a place on the surface of the earth in reference te the equator. Find, then, for the time of the conjunction, the latitude and longitude of the moon, and apply to them the small change produced by the spectator being placed on the surface instead of the centre of the carth; a change which depends on the angle which the earth's semidiameter subtends at the sun and moon at the time: this will give us the apparent latitude and lengitude of the moon as seen on the cencave surface of the heavens. Cempute from these and the longitule of the sun, that is, his distance from the first point of Aries, the apparent distance of the centres of the sun and moon at the instant ef conjunction; whence we may nearly conclude the time of the beginning and ending of the eclipse, by taking into account the apparent horary metion of the moon in latitude and longitude at the time of conjunction, computed from the tables. About the conjectured time of the begiming of the eclipse, compute twe or three apparent latitudes and longitudes ef the moon, and thence, combined with the longitude of the sun, the apparent distances of the centres. From these results the time may be computed by proportion when the apparent distance of the centres is equal to the sum of the apparent seni-diameters, that is, the time of the beginning of the eclipse.

The magnitude also of the eclipse at any time may be thus determined: let SE (fig. 28.) be the computed apparent difference ef longitude of the centres S, M, of the sun and moon, and M \mathbf{E} the computed apparent latitude of the moon. In the right-angled triangle $\mathbf{M E S}$, we have therefore given the two sides to find the hypothenuse M \mathbf{S}, which, being known, we obtain $m n$ the celipsed part of the sun: for $m n=\mathrm{S} m+\mathrm{M} n-\mathrm{M}$. .

The ecliptic limits of the sun may be determined in the following manner: let \mathbb{S} and \mathbf{M} (29-fig. 1.) be the sun and moon, seen from E the centre of the earth at the moment of conjunction; that is, when their centres are in the same circle $\mathbf{S} \mathbf{B}$ perpendicular to the ecliptic. Let the angle $a \mathrm{E} b$, formed by tangents drawn from E to the adjacent edges of the solar und lunar discs, be cqual to the greatest difference between the true place B and apparent

Vol. I.

place m of the moon, which can arise from her being viewed from the surface instead of the sentre of the earth. It is not difficult to see that this difference will be greatest when the moon is in the horizon, and that its effect will be to depress her altitude. The distance of the sun is so great, that we may at present consider his true and spparent place as coincident. Suppose now an observer on the earth's surface at A, whose horizon is at right angles to S B, to lave the moon in his horizon at the moment of conjunction; it is evident that to him the two discs would appear to be in contact: but to an observer on any other point of the earth's surface, the discs would appear asunder. In the moment of conjunction, therefore, the penumbra must have just touched the earth at the point A; and when the centres of the sun and moon approach nearest to each other before or after the conjunction, it will spread over a very small portion of the earth's surface near A, so as to produce barely an eclipse. Hence the distance of the sun from the node at the time of conjunction will be the solar ecliptic limit, nearly. In the right-angled spherical triangle $\mathbf{S} \boldsymbol{m} \mathbf{N}(f i g .2$.$) let$ N \mathbf{S} be a portion of the eeliptic, and $\mathbf{N} \boldsymbol{m}$ a portion of the moon's orbit, \mathbf{N} being the node, and let the perpendicular $S m$ be equal to $S m$ in $f g$. 1. The are $N S$ is the ecliptic limit required: and to find it, we have given the angle at \mathbf{N} equal to the inelination of the moon's orbit to the ecliptic, and $\mathbf{S} m$ equal to the sum of the apparent diameters of the sun and moon together with the angle $b \mathrm{E} a$, which is equal to BMm or A ME, the angle subtended ly the semidiameter of the earth's disc as seen from the moon. The angle \mathbf{N} and the perpendicular S m being known, the base NS is easily determined. The three quantities to the sum of which $S m$ is equal, are variable in their values. Taking for $S m$ the sum of the semidiameters of the solar and lunar disc, and of the dise of the earth as seen from the moon when they are greatest, we find $\mathbf{S} \mathbf{N}$ equal to $17^{\circ} 12^{\prime}$ nearly. But if $\mathbf{S} m$ be made equal to the sum of the semidiameters when they are least, $\mathbf{S} N$ is found to be nearly equal to $15^{\circ} 19^{\prime}$. Within the former of these limits an eclipse of the sun may happen, within the latter it must happen.
If the moon's apparent diameter be greater than or equal to that of the sun, the eelipse will be total wherever the lunar sliadow falls. But if the sun's apparent diameter be greater than that of the moon, the eelipse will be annular within the lunar shadow.
Number of eclipses. The ecliptic limits of the sun taken on each side of the node, give an are of the ecliptic exceeding 30°, so that the sun will be more than a month in passing through these limits. Hence there must be two eclipses of the sun every year. Sinee the ecliptic limits of the moon, however, taken on each side give an are only of about 23°, and since through this portion of the ecliptic the sun passes in less than a month, there may be no eclipse of the moon in the course of a year.
When a total and central eclipse of the moon happens, there may be an eclipse of the sun at the preceding and following conjunctions, because between new and full moons the sun describes only about 15 degrees of the ecliptic, so that each conjunction may happen within the solar ecliptic limits. The soma may take place at the opposite node: there may therefore be six celipses in the conrse of a year. The retrogradation of the node at the rate of 20° yearly renders it possible, when the first eclipse of the year happens early in January, that another eclipse of the sun may oceur in the end of the year. On the whole, there may be seven eclipses in the course of one year; five of the sun, and two of the moon: and there never can be fewer than two, but though more solar eelipses happen than lumar, there are fewer of the former visible than of the latter; because a lunar eclipse is visible at every place on the carth which is turned towards the moon during its continnance; but in a solar eelipse the sun continues visible at all places over which the penmubra dors not pass. The greatest possible duration of the amnular appearance of a solar eclipse is $12^{\circ} 24^{\circ}$, and the greatest possible time during which the sun can be wholly obscured is $7^{m \prime \prime} 58^{\circ}$.
As the beginning and end of a solar eclipse can be ohserved with considerable arruracy, they are useful for determining the longitude, though the method which they furnish is complex and laborious.

Book I.
Effects of atmospherical refraction and parallax. In the preceding explanation of solar eclipees we have had occasion to refer to the effects of atmosprieaical refraction; also to the difference between the apparent places of the sun and moon, called their parallax, proliseed from their being viewed from the surface instead of the centre of the earth. Before leaving this subject, we shall state a little more fully the offects arising from these causes.
Atmospherical refraction. The earth is surrounded on all sides by an aeriform elastic fluid, which is called the atmospheae. This fluid possesses weight, and is compressible; and hence the parts near the surface of the earth are more dense than those above them; on account of the greater superincumbent pressure which they sustaia. The same thing holds true of every stratum when compared, in reference to density, with that immediately below it; so that from the surface upwards the density gradually diminishes, at a few miles' elevation hecomes very small, and at some point may be considered as altogether evanescent. Now, it is a well known principle, that if a ray of light, after passing through one medium (air, for instance), enters another (say water) of a different density, in a direction not perpendicular to its surface, it is bent out of its course towards the perpendicular to the surface on which the ray is incident, if the second medium is the denser of the two; but from that perpendicular if the second medium is the rarer. In passing through the atmosphere, theretore, a ray of light will be continually deffected from the rectilineal into a curvilincal path; because at every.point of its course it is entering a medium of a greater density. The ray is said to be refracted; and as the tangent draws from the eye to tho curve which it describes is the dircction in which celestial objects appear, it follows, that refraction reuders the apparent altitude of all the heavenly bodies greater than the true. Hence they often appear above the horizon when they are actually below it.
The deviation of the refracted ray from its original course increases with the angle of incidence, and vanishes when the direction of the ray is perpendicular to the surface of the second medium. Hence atmospherical refraction is greatest when the object is in the horizon, where it may be about $34^{\prime}:$ at 45° altitude, it is about $57 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$: in the zenith it vanishes.
Whatever alters the density of the atmosphere must affect also its refractive power. In all accurate ohservations, therefore, the state of the barometer and thermometer must be taken into account. At the same zenith distances, the quantity of refraction varies nearly as the height of the barometer, supposing the temperature to remain the same. The effect of a variation in the temperature is to diminish the quantity of refraction about ${ }_{\sigma}^{1} \frac{1}{\sigma}$ th part for every increase of one degree in the height of the thermometer.
In passing through the atmosphere light is reflected as well as refracted. The reflective power of the atmosphere produces the splendour of day by diffusing light in every direction. Combined with its refractive power, it causes that faint light called rwinort, which is perceived before sunrise and after sunset;-beginning in the morning in our latitude, and ending in the evening, when the sun's depression below the horizon is about 18°. Various other phenomena are to be attributed to the same cause: the red and orange colour of the morning and evening clouds; the ruddy appearance of all the heavenly bodies when ncar the horizon; the blue colour of the sky ; and the bright azure of the distant mountains, are all the effects of the refractive powers of the atmosphere.
Refraction is also the cause of the oval appearance of the sun and moon when near the horizon. The diameter of the disc that is parallel to the horizon remains unafiected in its apparent length, because both extremitios are equally refracted; but the diameter perpendicular to the horizon is shortened by about dith of its length, because the lower edge of the disc, being nearer the horizon, is refracted nearly five minutes more than the upper.
The great-apparent magnitude of the sun and moon when in the horizon is another remarkable phenomenon which we may here notice. This illusion, which is altogether optical, is usually accounted for on this principle, that we form an erroncous judgment respecting the distances of these bodies when they are in the horizon, compared with their distances when they have attained a considerable elevation. When we see the moon, for example, in the heavens at a considerable altitude, we intuitively suppose her nearer than when she is in the horizon; because, in the latter case, we see a multitude of objects,many of them at great distances, and the moon beyond them all; but, in the former case, we have no intervening objects by which to form an estimate of her distance. The angle under which she is seen being nearly the same, we infer a greater magnitude when we imagine the distance greatest, that is, when the moon is in the horizon. Such is the error into which we, in this instance, fall, in the rapid judgments of the mind respecting magnitude and distance connected with vision. The more deliberate conclusion on this subject drawn hy reason is, that the moon must indeed be at a greater distance from an observer on the earth, when she is in his horizon, than when she is in or near his zenith; but that, however the eye may be deceived, her apparent diameter must, when exactly measured, he found less. This is accordingly the case; for, when accurately measured with the micrometer,
the moon's apparent diameter, when she is in the horizon, is actually found to be less than when she has attained a considerable altitude.
Parallax. We have formerly slown that, in comparison with the distances of the fixed stars, the earth is but as a point in the universe; so that their positions in the heavens appear the same when viewed from the earth's surface, as they woild if they were viowed from its centre. This, however, is not the case with regard to the sun, noon, and planets. At each of these bodies the earth presents a disc of an appreciable magnitude: and, on the other hand, their positions among the fixed stars, when viewed from different points of the surface of the earth, vary, and are different from what they would be were they seen from the centre of the earth.
Let A BE (fig. 30.) be the earth, \mathbf{C} its centre, and M, M", M' (a heavenly body, for example) the moon in the sensible horizon, the zenith, and
 any intermediate position. The true places of the moon in these positions, as scen from the centre C , and referred to the starry heavens, will be $m, m^{\prime \prime}, m^{\prime}$; and their apparent places, as seen from B, will be $n, m^{\prime \prime}, n^{\prime}$. It is evident, that in the zenith the true snd apparent places coincide, so that there is no parallax. In the horizon the parallax is greatest: it is measured by the arc $m n$, and is equal to the angle BMC, under which the semidiameter of the earth's dise appears when viewed from the moon. At the intermediate position \mathbf{M}^{\prime} the parallax is measured by the arc $\boldsymbol{m}^{\prime} \boldsymbol{n}^{\prime}$: it is less than in the horizon, and decreases as the body ascends until it vanishes when the body reaches the zenith. From the horizon to the zenith, parallax diminishes the apparent altitude of a body; but as the altitude increases, this diminution becomes less and less. Its effect, therefore, is contrary to that of refraction, which always increases the apparent altitude of a body.

CHAPTER XI.

MOTION OF THE PLANETS ROUND TIE BUN.

The phenomena of the motions of the other planets differ from those of the moon, which, se we have shown, are all easily accounted for, on the supposition that the moon revolves round the earthein an elliptic orbit, subject to varions changes; which are confined, however, within certain limits. The attempts which the ancient astronomers made to explain the celestial phenomena, by supposing the earth to be the centre of the universe, introduced a system, the prolemaro, which was reccived for about 1500 years, as affording the true explanation of the planetary motions; but which the progress of scientific discovery has proved to be absurd. Ptolemy, an astronomer of Egypt, who flourished about 140 years after the Christian era, supposed the plancts to revolve about the earth in the following order; viz. the Moon, Mercury, Venus, the Sun, Mars, Jupiter, Saturn. Beyond the region of the planets he placed the sphere of the fixed stars. While he thus accounted for the proper motions of the planets from west to east, he conceived the whole to be carried round the earth by a diurnal motion, in the opposite direction, in twenty-four hours. The irregularities of the planetary motions,-these being sometimes dircct, at other times retrograde; sometimes swift, and at other times slow,-were imagined by him to arise from each planet moving in a small circle, called an epicvele, whose centre was carried round a larger circle, called the deferent, having the earth placed a little to the one side of its centre. The motions in these circles he imagined to be produced by the revalution of transparent globes; each planet being supposed to be attaclied to a globe, which carried it round in its epicycle; and this globe again supposed to be contained in the shell of another globe of sufficient thickness to receive it within its solid substance, and to allow it to revolve on its own centre, at the same time that it was carried in the deferent round the earth.

Setting aside the obvious objections to this theory, arising from the extravagance of the suppositions, as well as the awkwardness and complication of the machinery which it employs, an insuperable difficulty remains; viz. that the whole system is entirely hypothetical, and offers no proof of the existence of the agents to which it attributes such mighiy effeets. It is not surprising, therefore, that instead of being confirmed by subsequent discoveries, it fell to the ground as soon as the true method of investigating the laws of nature was understood and adopted.

Of the planets, two, Mercury and Venus, always accompany the sun, never receding from him beyond certain limits: the rest are seen at all possible angular distances from the sun. Let us, then, fix upon Venus as the most conspicuous of the two which accompany the sun, and upon Mare as one of the most conspicuous among those which recede to all angular distances from him; and by tracing out the appareut motions of these planets, let us endeavnur to ascertain the centre about which they revolve.

Part II.

 c less than of the fixed vens appear iewed from lanets. At and, on the wints of the y seen fromly body, for zenith, and the moon in ferred to the rent placee, that in the that there is eatest: it is agle B M C, dise appears iate position is less than nds until it a the horizon altitude of a effect, therede of a body.
moon, which, oon revolves mfined, howde to explain e, introduced ing the true iscovery has it 140 years he following dd the region inted for the arried round The irreguretrograde; each planet and a larger of its centre. transparent round in its ter globe of evolve on its 1.
rance of the hich it emypothetical, yhiy effects. scoveries, it was under-
ceding from he sun. Let the sun, and ar distances ndeavour to

Boox I.

MOTION OF THE PLANETS ROUND THE SUN.
When the planet Venus is near the sun, she is invisible; bat whon alie has emerged suffieiently froin his rays, sho is seen in the twilight of the morning or evening, aceording as she is to the west or east of the sun. In the former case she is tho mornina star; in the latter, the evening star. When she begins to be seen in tho evoning, she is found to be receding from the sun towards the east, and thus disengaging herself more and more from his rays. Having reached her greatest angular distance, or elongation, which is from 45° to 48°, she begins again to approach him, and continues to do so till her angular distance is about 28°. During all this time her motion is direct, that is, in the order of the signs; but now she becomes stationary, and in a short time she is seen moving in a direction contrary to the order of the signs, and has thus acquired a retrograde motion; but still sho continues to approach the sun, until in a short time sho is lost in his light. After being invisible for about six weeks, she is sgain seen; but now in the morning to the west of the sun, emerging from the solar rays. Her motion is still retrograde; but whon she has reached about 28° distance from the sun, she again becomes stationary; and in a short tine resumes a direet motion, receding from him night after night, until her angular distance exceeds 45°. She then returns to the sun; is for a time lost in his rays; and at length is seen in the evening to the east of the sun, to repeat the same round of phenomena. While Venus thus appears to have an oscillatory motion to the east and west of the sun, she is found, when viewed through a telescope, to present phases exaetly similar to those of the moon, the illuminated portion being always turned towards the sun. We may hence infer that Venus is an opaque body, and shines in consequence of reflecting the solar light. At tho same time her apparent diameter also varies, its variations having an evident relation to the position of the planet with regard to the sun. The diameter appears least when the planet is about to be iminersed in the rays of the sun in the morning, or immediately after her emerging from them in the evening. On the other hand, it appears greatest when she is about to be lost in the solar rays in the evening, or when she emerges from then in the morning. Such is a gencral view of the apparent motion of Venus; and by attending to the phenomena which she exhibits, we are led to the conclusion that she revolves round the sun. When in the norning she begins to disengage herself from the solar rays, slie is seen to rise before the sun in the form of a crescent; and it is then that her diameter appears greatest. At that time, therefore, she must be nearer to us than the sun is, and not far from being in conjunction with him. Her crescent increases, and her diameter diminishes, as she recedes from the sun: when she has reached her greatest elongation snd returns again towards him, she continues to discover to us more and more of her onlightened hemisphere, her diameter all the time diminishing, until she is lost, in the morning, in the sun's rays. At the instant of her disappearing, Venus is seen as a full disc; and ot the same time her diameter is least. Hence we may with certainty infer, that she is then at a greater distance from us than the sun, and again nearly in conjunction with him. After having remained for some time invisible, she reappears in the evening to the east of the sun; and in receding from and returning towards him exhibits, in an inverted order, the same phenomena, in reference to the changes in her disc and apparent diameter, which she had presented when seen in the morning, on the west of the sun: her enlightened hemisphere turns more and more from us, and her apparent diameter continually increases, until she again disappears, or is seen as a black spot traversing the disc of the sun.

From these phenomena only one inference can be drawn; viz. that Venus revolves in an orbit, near the centra of which the sun is placed. This conclusion, which rests on the firm besis of observation, leads to a natural and simple explanation of all the peculiarities of her motion.

The planet Mars, the next to be considered, appears to be carried round the earth by a motion which is subject to great inequalitics. When he begins to be seen in the morning emerging from the solar rays, his motion is direct, and at its greatest rapidity; but it gradually diminishes until the planet's angular distance from the sun is about 137 . At that time it changes into a retrograde motion, whose rapidity increases till the moment that the planet comes into opposition with the sun, or is on the meridian at midnight. It is then at its greatest rate, and presently begins to decrease, continuing to do so till the planet becomes stationary when at the angular distance of about 137° from the sun. The notion now returns to its direct state, after having been retrograde for about seventy-three days; and in that period the planet describes an are of retrogradation of about 16°. Mars continues to approach the sun, until he becomes immersed in his rays in the evening. These phenomena are repeated at every opposition of the planet, with considerable differences, however, in reference to the duration and extent of the retrogradations. At different points of his course round the heavens, the apparent diameter of Mars is very different: it varies from about $13.3^{\prime \prime}$ to $29.1^{\prime \prime}$. It is greatest when the planet is in opposition to the sun.

The phenomena now described can be satisfactorily explained in no other way but by supposing Mars to revolve round the sun. As he recedes from the sun to all possible angular distances, the earth must be situated within his orbit; but the increase of his apparent diameter as he approaches his opposition, and its decrease when he approaches the sun, show Vol. I.
that the earth is not the centre of his motion. Before he reaches the point of opposition, his motion, from being direct, becomes retrograde; after the opposition it resumes its direct state, when the planet is at the same distance from the sun, at which he was situated when the motion became retrograde; and it is at the moment of conjunction that this last motion is most rapid. Now, all these circumstances evidently indicate that the apparent motion of Mars is the result of two combined motions, which ulternately conspire with and oppose each other, and of which one depends on the apparent motion of tho sun. As we have found that Venus revolves romd the sun, and accompanies him in his apparent amual motion round the earth, we are led by analogy to extend the same law to Mars, and to conelude that he also revolves in an orbit round the sun.
The dise of Mars changes its figure, and becomes sensibly oval, according to his position relatively to the sun: henco we may conclude that Mars is an opaque body, and derives his light from the sun.
The same reasoning being applicable in the ease of the other planets, we may extend to all of them the conelusion which we have now establizhed in reference to Venus and Mars, -namely, that they are opaque bodies, and revolve about the sun in orbits nearly circular; while that luminary of the system either describes or appears to describe an orbit about the earth in the course of a year. This general law, which affords a simple and complete explication of the planetary motions, receives additional confirmation from the phenomena of the satellites of Jupiter and the ring of Saturn; for these phenemena prove directly that Jupiter and Saturn revolve about the sun in nearly circular orbits.

CHAPTER XII.

motion of the earth round the sun.

Tue conclusion to which we have now been led,-that all the planets describe orbits that have the sun near to their centre,-naturally suggests the question, whether the earth itself is not subject to the same lawo, and therefore to be ranked among the planets which revolve round the sun. With regard to the celestial metions, every appearance would remain the same to us, whether the earth described an orbit round the sun, or the sun with his accompanying planeta revolved round the earth. To which of these hypotheses the preference is due will appear from the following considerations:-
The imnense masses of the sun and of several of the planets, combined with their great distances from the earth, render it much more simple to suppose that the earth describes an orbit round the sum, than that the whole planetary system revolves round the earth. What an inconceivable rapidity of motion is it necessary to assign to Saturn, almost ten times more distant from us than the suri, or to Uranus, at about double the distance of Saturn, in order that these planets may complete a revolution round the earth in a year, at the same time that they revolve about the sun! It is a law which is found to pervade the planetary system, that the less body revolves about the greater body which is in its neighbourlood; and by supposing the earth, in conformity with this law, to revolve about the sun, which in magnitude greatly exceeds all the planets taken together, we avoid all the complication and rapidity of motion which follow from the supposition of the earth being at rest.
The analogy which subsists between the earth and the planets confirms the lyypothesis of the earth being carried round the sun by a motion of translation: Jupiter, for example, is known to have a revolution on his own axis, and to be attended by four satellites. In these particulars the earth resembles that planet, having also a revolution on its own axis, and being attended by one satellite, the moon. An observer placed on Jupiter would be led from appearances to imagine that the planetary system revolved round him, in like manner as an inhabitant of the earth supposes himself placed at the centre of the celestial motions: and the greater magnitude of Jupiter would give to such a conclusion, when drawn by an observer placed on that planet, a greater resemblance to the truth than it would have when drawn by an inhabitant of the earth. With such a close analogy in these respects before our eyes, may we not naturally conelude that it extends still farther; and that as Jupiter revolves in an orbit round the sun, the earth must also have a similar motion?

Let us imagine ourselves to be placed on the surface of the sun, and from that position to observe the earth and the planets. All these bodies would appear to move from west to east; the planets would be found free from all that complication in their motion to whieh they appear subject when viewed from the earth; and the motion of the earth itself would in every circumstance correspond with that of the planets. The more distant a planet is fiom the sun, the lenger is the time which it requires to perform its revolution round him; but throughout the planetary system this remarknble law prevails, connecting the periodic times with the distances,-the aquares of the former are proportional to the eubes of the latter. If we compite, by this principle, what should be the time of revelution of a planet situated at the distance of the earth from the sun, we find the result correspond exactly with the sidereal year; thus, the earth's distance from the sun being assumed as unity, the distance of

Mars is known to be 1.523693: his periodic time is 030.9796 days. Hence we have $(1 \cdot 52693)^{1}: 1^{3}:\left(688^{\circ} \cdot 796\right)^{2}:(365 \cdot 253)^{2}$. The periodic time of a planet, at the same distance from the sun as the earth is, should therefore be $365 * 256$ days, which is the length of the sidereal year. This result leaves no doubt that the motion which the earth would be seen to have, if it were viewed from the sun, arises from the same causes, and is regulated by the same laws as the motions of the planets: hence we may conclude that it is no less real.

The motion of the earth in un orbit round the sun, which the preceding considerationa render so highly probable, is directly proved by the phenomena of the aberration of light. It was long supposed that light was propagated from the sun and other luminous bodies instantaneously; but modern observations have proved that this hypothesis is erroneons, and that light, like all other projectiles, occupies a certain time in passing from one point of space to another. The fact that light has a progressive motion was first discovered by Roemer, a celcbrated Danish astronomer, from observations made on the eclipses which the satellites of Jupiter undergo when they fall into his shadow. He found that these eclipses happened sometimes sooner and sometimes later than the time deduced from the tables of their motions; the observation being before or after the computed time, according as the earth was nearer to or farther from Jupiter than the mean distance. Repeated obscrvations have proved, that when the earth is between the sun and Jupiter, his satellites are seen eclipaed about $8 \frac{4}{4}$ minutes sooner than they should be according to the tables; but that when the earth ia on the opposite side of the sun from Jupiter, the eclipses of his satellites happen about 84 minutes later than the time shown by the tables. The only conclusion that can be drawn from these facts is, that light occupies about $16 \frac{1}{2}$ minutes in traversing a space equal to the diameter of the earth's orbit, which is upwards of 190 millions of miles; it must therefore move at the enormous rate of nearly 210,000 miles in a second.

Now, if the earth is really in motion, it must be moving at the rate of about 20 miles in a second, in order to accomplish its revolution round the sun in the course of a year. This; rate of motion, although small when compared with the velocity of light, bears to it a sensible proportion; so that an evident consequence of the earth's motion will be, that the appirent places of the heavenly bodies will not be the same as they would be if the earth were at rest.

Suppose $\mathbf{A} B$ to be a portion of the earth's orbit, S a fixed star, and $\mathbf{S} \mathbf{A}$ the direction of light proceeding from the star to the earth at A. It is evident that if the earth were at
 rest at \mathbf{A}, a telescope presented in the direction $\mathbf{A} \mathbf{S}$ would receive the light of the star, which, procceding along the axis of the telescope, would reach the eye at Λ, and show the star in its true position. But if the earth be supposed to move from A towards \mathbf{B} with a velocity that bears a sensible proportion to the velocity of light, the ray $S \Lambda$, which entern the telescope at C, cannot reach the eye, but must, in consequence of the motion, he lost against the interior of the tube. In order that the light from the star may reach the eye when carried forward by the earth's motion, the teleacope must have such an inelination to $\mathbf{A} \mathbf{B}$, that $\mathbf{S} \mathbf{F}$ being supposed a ray parallel to $S A$, and meeting the axis of the telescope in $\mathbf{D}, \mathbf{A} \mathbf{F}$ may have to $\mathbf{F} \mathbf{D}$ the same ratio as the earth's velocity in its orbit has to the velocity of light; that is, of 1 to $\mathbf{1 0 , 0 0 0}$ nearly. In this position of the telescope, the light entering at D will pass along the axis as it moves from A to F, and will reach the eye at F; but the star will be seen in the direction, not of F S, but of FE: so that its apparent place differs from its true by a quantity measured by the angle S F E or A D F. The angle D F E is the aberration which will evidently be towards that part of the heavens to which the earth is moving. Let the axis F E be supposed to be produced to the starry heavens: it will trace out on the convex surface a circle, if the star S is in the pole of the celiptic; but an ellipse in every other position of the star. The true place of the star is the centre of the circle or ellipse.

If the star be in the pole of the ecliptic, the angle D A F may be considered as a right angle; for the line joining the star and the earth will always be perpendicular to the direction of the earth's motion. In this case, therefore, the angle A D F will he the greatest possible; for the ratio of sin. A DF to sin. D AF is constant, being the same with the ratio of AF to FD, or of 1 to 10,000 nearly: so that $\sin . \Lambda D F$ is greatest, and therefore AD F is greatest when sin. DAF is the greatest possible; that is, when D $\mathbf{A} F$ is a right angle. In the case of any other star the greater axis of the ellipse which it appears to deacribe round its true place as a centre will be equal to the diameter of the circle which a star in the pole of the ecliptle would appear to describe about the pole as a centre: for the ellipse will be the orthographic projection of a circle equal to that described about the pole, the greater axis being the diameter, which is perpendicular to a circle of the sphere passing through the star and the pole of the ecliptic, and at right angles to the ecliptic. When the
star is in the eeliptic, it will appear to describe an arch equal to the greater axis of the ellipse described by a star not in the ecliptic, or to the diameter of the circle of aberration that would be described by a star in the pole of the ecliptic.

When angle D AF is a right angle, we have D F: FA: : rad: \sin. $\angle A$ D F; that lg_{s}, $10,0000: 1:: 1: 0001=$ sine of greatest aberration, which will therefore be $20^{\prime \prime}$ nearly. The aberration of a planet will depend on its own metion as well as on that of the earth. If the motion of the planet were equal and parallel to that of the earth, no aberration would take place. The aberration of a planet may be found by first considering the effeet of the inotion of the carth on the apparent place, and then the aberration arising from the planet's own motion.

Such are the effects which, if the earth have actually a motion of translation that carries it in an orbit round the sun, must arise frem that motion combined with the progressive motion of light. Te obtain, therefore, decisive proof of the earth's annual metion, it is only necessary to ascertain by accurate observation the existence of these phenemena.
I'he true system of the world, which supposes the sun to be at rest in the centre, and the earth and planets to revelve round him, while the moon revelves about the earth, and the diurnal metion of the heavens arises from the motion of the earth on its axis, was taught by several of the ancient philosophers, and particularly by Pythagoras. It was also held by Arehimedes; but after him it was neglected, and even forgotten for many ages, until at length, in the beginning of the sixteenth century, it was revived and improved by Copernicus, from whom it took the name of the Corernican System. Notwithstanding the beauty and simplicity which distinguished this theory, it was at first coldly received or utterly rejected. Tyehe Brahe, an illustrious Dane, was ameng its adversaries. He regarded the doctrine of the earth's motion as untenable, without abandoning the testimony of Scripture: henee he was led to imagine another system, whiels bears his name ; in which the sun, with all the planets and cemets revolving reund him, is supposed to perferm a revolution about the earth in a solar year, while at the same time all the leavenly bodies are supposed to be carried round the carth from east to west in twenty-four hours.
The only apparent difficulty connected with the Copernican system arises from the fact, that the earth's axis is always pointed to the same star, and that the stars preserve always the same relative positions; though by the anmual motion of the earth, a spectator on its surface views them at any two instants of time separated by the period of about six months, from two points nearly $200,000,000$ miles asunder. During the seventeenth century the supporters of the Copernican system labourd to remeve this objection, by detecting a change in the position of the fixed stars.

The minute and accurate observations instituted for this purpose led, in the end, to the important discovery made by the celebrated Dr. Bradley, that the very effects which we have shown, must result from the annual metion of the earth combined with the progressive motion of light. He found that each star describes, round its true place as a eentre, a small ellipse of which the greater axis is about 40"; and that this ellipse approaches to a circle or to a straight line, which are its limits, aecording as the star is situated towards the pole of the ecliptic, or towards the ecliptic itself. No parallax is observable in the fixed stars arising from the earth's annual motion; and hence it must be inferred that their distance is so great, that even the diameter of the earth's orbit is to be regarded as a point in the universe.

From an attentive consideration of the celestial motions, we are therefore led to reject as crronpous the notions which appearances at first suggest respecting the system of the world. Instead of the globe which we inhabit being at rest in the centre of the universe, it is a planet in metion about its own axis and about the sun. In regarding it under this aspect, we find all the celestinl phenomena explained in the most simple manner, the laws of the motions of the heavenly bodics appear uniform, and every analogy subsisting among them is preserved unbroken. Like Jupiter, Saturn, and Uranus, the earth is accompanied by a satelite; it revolves on its own axis as Venus, Mars, Jupiter, Saturn, and perhaps all the planets; like them it receives light from the sun; and to complete the analogy, it revolves about the sun in the same directien, and according to the same laws. By fellowing out the results arising from the earth's metion being combined with the real mations of the planets and of light, we find all the phenomena of the heavens flow, as necessary consequences, from one great principle. Thus the motion of the earth aequires all the certainty of which a physical truth is susceptible.

The vicissitudes of seasons arise, as we have already explained, from the obliquity of the ecliptic to the equator. The ecliptic, which we have hitherto consilered es the path of the sun round the earth, we have now proved to be the orbit of the earth round the sun. The axis of the carth's diurnal motion is inclined to the plane of its orbit at an angle of alout $66^{\circ} 32^{\prime}$, and remains, ns the earth revolves round the sun, nearly parallel to itself. Hence the circle which the sun appears to trace in the heavens in the course of a year forms with the equator an angle of about $23^{\circ} 28^{\prime}$. This produces the differences in the distribution of the solar light and heat which we observe throughout the seasons of the year.
of the erration
that is, nearly. - earth. n would t of the planet's
t carries gressive tis only
, and the and the aught by held by until at Copernie beauty r utterly rded the cripture: sun, with ion about sed to be
fact, that the same ace views from two upporters go in the
nd, to the which we rogressive e, a small o a circle the pole ixed stars distance int in the
to reject m of the universe, ninder this the laws ig among ompanied erhaps all nalogy, it following is of the ry consecertainty

Boos I.

ORBITS OF TIIE PLANETS
The parallelism of the earth is not absolute; for the axis is found to have a slow motion of rovolution from east to west round a line passing throngh the centre of the earth, and perpendicular to the eeliptic ; its revolution being completed in the period of 25,745 years. In consequence of this motion the poles in the sphere of the starry heavens describe each a circle round the pole of the ecliptic, at the distance of $23^{\circ} 23^{\prime}$ ncarly; and the two points in which the terrostrial equator, when produced to the atarry heavens, cuts the eeliptic, shif to the westward, at the rate of about $50 \frac{1}{4}$ seconda yearly, which causes the precession of the equinoxes. A small lnequality has been observed in the precession of the equinoxes, and in tho mean obliquity of the ecliptic, which arises from a slight motion ln the earth's axis, whereby its inclination to the ecliptic is not always exactly the same, but varies backwards and forwards some seconds. This is called the nutation of the earth's axis, and was discovered by Dr. Bradley while employed in verifying his theory of aberration. The period of the changes of this inequality is nearly nine years.

CHAPTER XIII.

orbits of the planets.

To an ubserver placed on the sun, all the planets would appear to trace on the concave surface circular paths, cutting cuch other at various angles, but all comprehended within a certain zone of the heavens of some degrees in breadtl. The angle which the plane of the orbit of a planet makes with the ecliptic is called the inclination of that orbit; and the line of their intersection is called the LiNE or THE Nodes. If a planet be observed twice in the same node, the node being supposed to have in the mean time remained stationary, the position of the line of the nodea can be determined, and also the distance of the planets from the sun at the times of observation.
Let a superior planet be observed in its node \mathbf{N} from the earth at E , (Fig. 32), and after the planet has made an entire revolution let the earth beat E^{\prime}. Then, from the time and the theory of the earth's motion, $\mathbf{E} \mathrm{E}^{\prime}$ is given, and the anglea $\mathbf{S} E \mathrm{E}^{\prime}, \mathbf{S} \mathrm{E}^{\prime} \mathrm{E}$. But the angles $\mathbf{S} \mathbf{E} \mathbf{N}$, $\mathbf{S} \mathrm{E}^{\prime} \mathrm{N}$ are known by observation; therefore, in the triangle $E \mathrm{E}^{\prime} \mathrm{N}$, the angles $\mathrm{E} \mathrm{E}^{\prime} \mathrm{N}^{\prime}, \mathrm{E}^{\prime} \mathrm{EN}$, and the base $E E^{\prime}$ are given; and hence the sides $N E$ and $E^{\prime} N$ may be found. Wherefore from either of the triangles $S E N, S E^{\prime} N$ the distance $S N$ is determined; also the angle ES N, which ascertaina the position of the node as seen from the sun.

From observations of this kind, made at times considerably distant from each other, it found that the nodes of each planet have a slow retrograde metion.
Again, the distance of a planet from the sun, and its place as seen from the sun, may be determined from observations made at the time of its opposition to the sun.

(Fig. 33). Let \mathbf{E} be the earth, \mathbf{S} the sun, P the planet, \mathbf{O} its place reduced to the eeliptic, $\mathbf{S} \mathbf{N}$ the line of the nodes passing through the sun. Since the planet is in its opposition, the points S. E, \mathbf{O} are in the same straight line. The angle ES N is known by the last problem, which determines the position of the line of the nodes; therefore the arch $\mathbf{O N}$ in the heavens, which measures it, is also given. The angle $\mathbf{P} \mathbf{N} \mathbf{O}$ is equal to the inclination of the planet's orbit to the ecliptic, and is therefore given; also the angle $\mathbf{P} \mathbf{O} \mathbf{N}$ is a right angle. Hence in the spherical triangle $\mathbf{P N O}$, the perpendicular $\mathbf{P O}$ and the hypotenuse $\mathrm{P} \mathbf{N}$ may be found. Now the arc PO is the moasure of the angle $\mathrm{P} S \mathrm{~S}$, and $\mathrm{P}^{\mathrm{P}} \mathrm{N}$ is the measure of PSN; therefore these two angles are given. In the rectilineal triangle PSE, the exterior angle PEO can be determined by observation; the angle PSE or PSO is given, and the base ES is known by the theory of the earth's motion; whence PS, the distance of the planet from the sun, may be computed.

Vol. I.

Orbit of a planet. Since the angle $\mathbf{P S} \mathbf{N}$ is also known, the line $\mathbf{P} \mathbf{S}$ is given in position as well as in magnitude. If many oppositions of a planet are thus observed, and if the radii obtained be laid down, the line connecting their extreme points will represent the orbit of the planet. In this manner it is found that the orbits of all the plancts are ellipses, having the sun in their common focus; and that the angutar motions of a planet round the sun are inversely as the squarea of its distance from the sun: so that the aectors described by the radius vector are proportional to the times. This exactly corresponde with what was proved respecting the apparent metion of the aun in the ecliptic, and therefore the motion of the earth is reguluted by the same law.

The planets which meve immediatoly round the sun are called primary, their satellitea are called aecondary planets. Thus, the moon is a secondary planct to the earth. In considering the lunar motion, we found that the moon describea round the earth an elliptic orbit, and that the radius vector describes equal areas in equal times. The ame holds of the satelitites of Jupiter, Saturn, and Uranus; so that the same principle runs through the motions of all the bodics of the planctary system.

When the mean distances of the planets are compared, and also their periodical times, it is feund that the squares of the periodic times are as the cubes of the distances.

The great general facts which have now been pointed out respecting the orbits of the plancts, and their motions in these orbits, were first discovered by Kepler, after he had empleyed immense labour and ingenuity in the research, and are usually called Krpler'a Lawa. It may be proper to bring them under one point of view :-
I. The primary planets all revolve in elliptic orbits round the sun, which occupies one of the foci of the ellipse; the plane of the erbit passing through the centre of the sun.
II. The radius vector describes equal areas in equal times.
III. The squares of the timea of revelution in the planetary bodies are as the cubes of their distances from the sun.

CHAPTER XIV.

COMETS.

The fixed atars and the planets are always visible when not obscured by the superior light of the sun; but the class of bodies called comere are seen only when they are in that part of their several pathe which lies nearest to the sun: at all other times they nove through regions of space far beyond the reach of eur vision, even when nssisted by the most powerful telescopes. The motions of the comets are, like those of the planets, performed in elliptic orbits according to Kepler's laws; but, unlike the planetary orbits, the ellipses which the comets describe are extremely elongated: so that the small portion of their orbits through which we have an opportunity of tracing them coincides very nearly with a purabola, the curve of which is the limit of the ellipse when its greater axis is indefinitely increased. The inclination of the orbits of the comets is very various; some meve in planes almost coincident with the ecliptic, and others in planes nearly perpendicular to it. They move also in very different directions; the motion of some being direct, and of others retrograde.

The comets differ widely from the planets in their appearance, as well as in the figure and position of their orbits. When a comet is first seen, it is usually surreunded by a faintly luminous vapour, which becomes more bright os the comet appronches the sun, and at length shoots out inte a long luminous and transparent train, very much resembling a streamer, and extending in a direction opposite to the aun. The dense part of the comet, which both to the naked eye, and when viewed through a telescope, resembles much the planetary bodies, is called the nucleus; the faintly luminous rapour by which it is surrounded is called the coma; and the long luminous train proceeding from the comet in an opposite direction from the sun is called the tail. Between the nucleus and the coma lies a part fainter than the former, hut brighter than the latter, and in which the nucleus appears involved: this is called the head of the comet.

The length of the tail is very various. Sometimes it extends only a few degrees; in other cases it has been found to reach over more than a fourth part of the lieavens. If a comet does not come very near the sun, the coma docs not shoot into a tail, but retains the appearance of a nebulosity round the comet during the whole period of its being visible. The thil sometimes consists of two or more diverging streams of light, and is alwaya so transparent that the smallest etars are seen through it without any sensible diminution of their brilliancy.

Nature of comets. In ages of ignorance, comets have always, from their extraordinary appearance, been sources of superatitious terror to mankind. This fear has been dissipated by the light of science, which has shown that the appearances of comets are regulated by the same laws as other celestial phenomena. We are still, however, almost entirely ignorant of the nature of these bodies, though a great many hypotheses have been formed concerning them. They were considered by some of the ancients, and particularly by Aristotle,

Boor I.
ns accidental fires or meteors generated in the atmosphere of the earth; but this opinion in obviously proundless. If they wero connocted with the oarth or its atmosphere, they would partake of the diurnal motion on tho nxis, and could not therefore appenr to have a diurnnl esvolution in the heavens along with the other colostial bodies. Besides, their having no thiurnal parallax proves that they are at a great distance from the earth; whilo the fact of their apparent motion being affected by the annual motion of the earth ehowa thint they are situated in the planetary regions. Observation bas demonstrated that, like tho planets, they ure permanent bollies, and, in all probability, derive their light from the aun.

From the small portion of the orbit of any comet which we have en opportunity of observing, we camot ascertain with sufficient aceuracy the eloments necessary for ceternining the period of its return; but supposing that their orbits are not disturbed by any cause in those distant regions of space through which the greater portion of the paths of comets lie, it is evident that by accurately observing all the comots that come within viow, and caretully recording the results, in the course of ages the return of many cometh may be detected and thoir periolic times ascertained. Hence the greater axis of the orbit of each may be determined by Kepier's third law ; nnd the comet's loast diatance from the sun being found by obsorvation, the less axis will also become known. In this manner the periodic time of some comets hns been found, and thoir return predicted.
The firat and most remarknhle instance la that of Dr. Halley, who, by comparing his ubservations on the comot of 1082, with thoso of Koplor on the coinet of 1607, anil those of Apian on tho comet of 1531, found reason to conclude, from the agreement of the circumstances of each, that what had boen considered three distinct comets were only re-appearances of the same comet after a period of about 78 years. In all the three cases the distance of the comet from the aun when nearest to him was almost the same; the position of the comet in the heavens at the time of its nearest approach to the sun likewise correaponded; as did also the inclination of the orbit, the place of the nodes, and the variableness of the motion, as being direct or retrograde.
These coircidences rondered the iuentity of the comet almost absolutely cortain. Hence Halloy predicted its return in the end of 1758 or the beginning of 1759. It appeared about the end of December 1758, and mndo its ncarest approach to the sun on the 13th of March 1759, differing not many daya from the time expected. Again it made its appearance, as predicted, at the completion of its period, toward the end of August, 1835.
Though there can be no doubt of the identity of the comet of 1531, 1607, 1682, 1759, and 1835, the appearauces wero considerably different. In 1531 the comet was of a bright gold colour ; in 1607, it was dark and livid; it was bright again in 1682; and obscure in 1759.

The mean distance of this comet from the sun is about eighteen times that of the earth; but in consequence of tho great eccentrieity of its orbit, its distance, when at the farther extremity of its greater axis, is nearly double that of Uranus, the most distant of the planets. When nearest to the sun, its distance from him is about $\frac{10}{10}$ th parts of the earth's mean distance.

A very remarkable comet was seen in the end of 1680 and beginning of 1681 . Its tail extended 70°, and was vory brilliant. This comet, of all those which have been observed, p.pproacl.es nearest to the sun. Descending with immense velocity in a path almost perpendicular to his surface, it proceeded until its distance from his centre was only about 540,000 miles. Sir Isaac Newton computed that, in consequence of so near an approach to the sunl, it must have received a heat 2000 times greater than that of iron almost going into fusion; and that if it was equal in magnitude to our earth, and cooled in the same manner as terrestrial bodies, its heat would not be expended in less than 50,000 years.

Three observations on comets are recorded in history, agreeing in remarkable circumstances with the comet of 1680 :-one in the 44th year before Christ; another in the consulate of Lampadius and Orestes, abont the year of Christ 531; and the third in the reign of LIenry I. of England, in the year 1106. These dates are nearly at equal distances of time, namely, 575 years; which is also the period between 1106 and 1681 . Hence Dr. Halley conjectured that these might be successive appearances of one and the same comet, revolving about the sun in the period of about 575 years. If this conjecture is well lounded, this comet may be expected again, after finishing the same period, about the year 2255.

A comet remarkable for its beauty appeared in 1811. The tail of this comet was composed of two diverging streams of faint light, slightly coloured, which made an angle of from 15° to 20°, and sometimes much more, and were bent outwards. The space between was comparatively obscure. When at its greatest length, the tail subtended an angle of at least 16°; and was then computed to extend about $23,000,000$ miles in length.

Besides Dr. Halley's conet there are two others whose returns have been observed, and the elements of their orbits determined, with such certainty, as to enable astronomers to predict their re-appearance. One of these was recognised for the first timo in 1810 as a periodic comet. Encke, a Geriman astronomer, has determined the time of its revolution
about the sun tw be three yeara and three monthn nearly. The other was lant meen in 1893: Ita periodic time wan determined by Biela, a Boheminn antronomer, to be nix yeara and three quarters. Altogether, then, there are only tiree cometn whowe periode are certninly known.

Danger from comets. As the comets traverne the planetary regionn in ali directiona, it in nstural to liquire whether there is not a posaibility that wone one of thern may approach so near to the earth an greatly to disturb its motion, or by an actunl contact to produce the most divantrons effects. Upon this subject there in no rensonable ground for fear. If it in not aboolutely imposible that a comet may come in contact with the enrth, the prohabilitien against much an event happening are as millions to one. Ameng bodien monnall in connparison with the immenae space in which they move; and moving with all volocitien, and in orbits that are inclined in all directions, and are of all dimenmions, how small must be the probability that any two ahall come in contact! Small, however, na thin probability in for any one age, if we take into account a long series of ages, the probability may be greatly increased.
If we auppose the earth actually to receive anch a shock, it is eany to imagine the calamitoun consequences which must follow. The axim and motion of rotation being changed, the waters of the ocean would leave their ancient ponition, and weuld be preclpitated towardm the new equator. 1 great part of the human race, and of the lower animals, would be drowned by this univermal deluge, or deatroyed by tho violent ahock impressed on the terreatrial globe. Whole species of animala might be annihilated. All the monuments of human industry and invention would bo overthrown. In nuch a catastrophe we find, too, a cauee adequate to account for the ocean having overflowed lofty mountains, en which it has left incontestable evidence of its preaence; and to explain how the snimalu and plants of the south may have existed in the climates of the north, where we find the remaine and inpressiona of them. Lastly, nuch an event accounta for the recentness of the molern world, the monuments of which ge beck ecarcely 3000 years. The human race, reduced to a amall number of individuals, and to the most misorable condition, would for a long time be mainly occupied in proviling for their preservation, amidat the wreck which nurrounded them, and would lose all remembrance of arts and sciences; and when, by the progress of civilization, they at length became senaible of the want of these, they would find it necessary to recommence, as if man had been newly placed upon the earth.
It aeems impossible to contemplate the picture of calamity here drawn, without being foreibly struck with this singular coincidence;-that if we suppose the period of the comel of 1680 (which in that year made a considerably near approach to the earth's orbit) to be $575 \frac{1}{2}$ years; and count back, from the yenr 1680, seven revolutions, or a period of 4023 years, we reach the year 2349 hefore Clirist,-the year of the deluge, as fixed by chronologers.
If we take into conaideration the great velocity with which the comets move in approach ing to and receding from the mon, it in evident that the mere approximation of a comet to the terrestrial orbit, would be productive of little or no effect. Accordingly, though a comet is said to heve eclipsed the moon, in which case it muat have been very near the earth, no mensible effect was produced.

CHAPTER XV.

LAW OF UNIVERSAL GRAVITATION.

Having now taken a brief view of the planctary motions, and pointed out generally thei laws, we may next inquire whether from these any general prineiple can bo deduced to which the motions regulated by them may be referred as to their cause.

The motiona of the heavenly bodies have been variously nccounted for. We have alrealy ndverted to the rude mechanism of deferent anl epicyclic spheres, by which some of the ancient philosophers attempted to explain tho celestial motions. This doctrino originnted with Eudoxus and Callipus. But a more aensible attempt was made by Cleanthes, another philosopher of Greece, who, from observing that bodies aro casily carried round by whirlpools or vortices of water, imagined that the celestial spaces are filled with an ethereal fluid, which is in continual motion round the earth, and that it carried the sun and planets round with it. Though this hypothesis afforda no real explanation of the phenomena, it was revived in modern times, and maintained by two of the most eminent mathematicians and philosophers in Europe, namely, by Dea Cartes and Leibnitz, and for a long time met with general acquiescence. But a much nearer approximation to right conceptions on this aubject was made by many philosophers, both of ancient and modern times, who supposed thut the planets were deflected from uniform rectilineal motions, by forces similar to what we observo in the motions of magnetical and electrical bodies, or in the motion of common heavy bodies; where one body seems to influence the motion of another at a distance irom it, with. out any intervening impulsion. Fermat was the first who suggested that the weight of a

hout being

 the comel orbit) to be iod of 4028 by chrono-
approach

 a comet to though a y near theIboon I.
LaW OF UNIVERSAL GRAVITATION.
bunly fu the sum of the tendencien of each particle of matter in the boily to every purticle of the earth. Kepler made another approximation to the trith when ho alid, that if there were two hoxliew placed out of the reach of ail external forces, and at perfect. liberty to move, they would upprouch each other with velocitiea invervely prenportional tu their quantitien of matterwhen he awserted that the earth and tho mon matually attraet each other, imm are preventea thom meeting by their revolution round their common centre of attraction; and when ho attributed the tides to the attructive binfluence of the moon in heaping up the watera inuncdiatoly under her.
But Dr. Hooke male the nowt preciso nurmise to this purpose. At a met ling of the Royal Suciety, May 3, 1HRN, he exprewed hinself in the following manner:-" I will explain a nymeem of the world very diflerent from any yet roceived, and it is founded on the three following proporitions:
" 1. That all the heavenly bodien have not only a gravitation of their perts to their own proper eentrea, but that they almo mutually nttract each other within their spherea of action.
"2. That all bodies having a simple motion will continue to inovo in a atraight lino unlese continually deflected from it, by sone extraneoua force causing them to dewcribe a circle, an ellipse, or sorne other curve.
" 3 . That this attraction is so much tho greater as the bolies are nearer. Ais to the proportion in which theas forcea diminiah by an incrense of distance, I own I have not yet discovered it, although I have malo morne experiments to that purpone. I leave thin to othera whis have time and knowledge sufficient for the tark."
The truly philosophical views stated in these propositions relatively to the celestial mations were illuatrated by a very pretty experiment, which llooke had sonno time before exhibited to the Society, X ball, suspencled by a long thread from the ceiling, was made to awing round another ball laid on a table immodintely helow the point of suspension. When the impulae given to the pendulum was very nicely aljunted to its deviation from the perpendiculnr, it described a perfect circlo round the ball on the table; but when the impulse was very great or very little, it deseribed an ellipwo having the other ball in its centre. The force, under the influence of which this circular or elliptic motion was produced, Hooke showed to be a deflecting force, proportimal to the distunee from the other ball. But he adled, that although this illustrated the planetary motions in some degree, yet it was not suitable to their case; for the planeta lescriho ellipses, having the nun not in their centre but in their focus, so that they are not retained in their orbits ly a foree proportional to the distance from tho sun.
Thus we nee that certain points of resemblance between the motions of the planets and tho motions of magneta nnd hieavy bodies, had attrneted the attention of muny philosophers; but these observora failed to deduce from the principles which they so dimly perceived any satisfactory conclusion.
At length the powerful genius of Sir Isaac Newton was directed to the subject, and by his penetrating sagacity the law of universal gravitation was brought filly into view, and suecessfully appliell to explain the celestial phenomena. He hal fetirel from Cambridge to the country on account of the plagne, and while wulking in his garden ho was led to meditate on the planetary motions, and on the naturo of that central force which retains the plancts in their orbite. The thought happily occurred to him that the same foree, or some modification of the same foree, which canses a henvy lorly to descend to the earth, might extend to the moon, and might retain that boly in its orbit by deflecting it from the rectilineal path. Howover plausible this conjecture might appear, the mind of Newton was too deeply imbued with the true spirit of philosophy to adopt it as the groundwork of a theory, unless it conld be shown by calculation to be coincident with fact. But before it conld be brought to this test, it was necessary that he should forn some conditional hypothesis respecting tho molification of the force as the distanco increased, and also that he should know nearly the magnitude of the earth. The hypothesis which he assumed with regard to the molification of the force aecording to the increase of the distance was correct; nnmely, that the force decreases ns the square of the distanco increases. But he made a filse estimation of the bulk of the earth; so that his ealculations showed that his eonjecture did not agree with the phenomenon : he accordingly abandoned it. A few years atterwands he was indueed, however, to renow his caleulntions, having in the interval obtained more correct data, in consequenee of the measurement of a degree in France by Picard. The nttempt now succeeded; and it is said that, as his calculations drew to a close, ho beenme so agitated that he wns obliged to request a friend to finish them. His former eonjecture was found to ngree with tho phenomena with the utmost precision; and in exploring the grand seene which was now laid open before him, he was led to an explanation of the system of the work, consisting simply in an accurate narration of facts, and such an arrangement of them as showed their muturl dependence, and, at the same time, their reference to one great faet of which they were all neecssary emnsequences.
We are now to explain briefly the theory of gravitation; but our account of it must of course be very limited.

Thare in no phenomenon in nature mure familiar to us than motion; and although it be grently divaresifiel according to the causes by which it is produced, yet all motions are subjeat to the three following laws:-
Jnt LaW. Wivery lnaly continues in a state of rest, or of uniform rectilinear motion, unless ulfurted hy soune mechanical force.
of l,AW, livery change of motion is proportional to the force impressed, and is made in the directions of that furce.
ald law. Hevery netion is accompanied hy an equal and contrary re-action.
If in a conseguence of the first two laws, that if a body or particle of matter be subjected th the sinme thme to the action of two moving forces, each of which would separately cause it to dewrithe the side of a parallelogram uniformly in a given time, the body will describe the Ilagum! iniformly in the same time. By these very simple laws, the result of experisuew, ithil liy the principles of geometry, Newton established the sublime doctrines of the phamtury motions.
It will thut be expected that we should enter at any considerable length into the recondite doetrinet of physical astronomy. This subject requires for its full discussion ample space, und all the resourees of tie higher mathematics: the mere elements of geometry, however, are mulleient to inlicate generally some of the fundamental principles. Let us suppose that
 \mathbf{S} (fig. 34.) is a fixed point, and that a body moves in the direction $A B$ with an uniform velocity, at such a rate, that if not disturbed by any external cause, it would move from B to b in a second of time. Let us also suppose that when the body arrives at B, it receives an impulse in the direction B S, and of such intensity, that, if acting alone, it would cause the body to move uniformly from B to H in a second. Complete the parallelogram HIB b C, and draw the dingoiat $\mathbf{1 1} \mathbf{C}$; the impulse at B , combined with the tendency to continue its motion in the limis 13 b will cause the body to move along the diagonal BC; so that at the end of a necond it will netually be at the point \mathbf{C}; and if no external cause acted on the body, by the firmithw, it would continue to move uniformly ever after in the direction BCc; so that in the nott pecond it would describe a line C c, equal to BC. But now suppose that the body, when it C , receives a second impulse in the direction $\mathrm{C} \mathbf{S}$, by which it would be carried uifirmly from C to I in a second: then, completing the parallelogram DIC c , the actual buth of the berly will be tho diagonal C D, which will be uniformly described in a second: Iuril If' unalisturbel, the motion would be continued uniformly in the straight line $\mathrm{C} \mathbf{D} \boldsymbol{d}$, the Mistance D) d described in the next second being equal to C D. A thiril impulse at D, in the Nifection I) N, auch as would carry the body uniformly from D to K in a second of tine, Wonid, when combined with the tendency to move in the direction $\mathrm{D} d$, produce a motion nlong D) Et, the diagonal of the parallelogram EK D d, and a fourth impulse in the direction BN, wumh, when combined with the motion in the direction E e, produce a motion along the dlagothl $\mathbf{D} \mathbf{F}$, and so on. In this way, by successive instantaneous impulses, a body may be mule ta describe the path A BC D EF, \&e., which will be all in one plane.
Hine tho lines AB, B b are equal, the triangles ASB, BS b are equal; but because C 1 If purallel to $\mathbb{S} 13$, the triangle BS b is equal to the triangle BSC; therefore the triangis is A C is equal to ASB. In like manner, it may be proved that C S D is equal to B N C, itad DNH to CSD, and so on: thus it appears that the triangles ASB, BS C, CSD, I) N If, de, Hro all equal. If we suppose a struight line to be drawn from the moving body to the flxeel point N, and to be continually carried along with it, it is evident that this line will pine iver or gencrate the equal areas A S B, B S C, C S D, DS E, \&c. in equal intervals of' tilite: it ia also evident that the shorter the interval between the impulses communisiatal to the moving booly, the greater will be tho namber of sides of the figure formed by the dingonula of the parallelograms, and the nearer will the line composed of these diaguinis apmotich to a curve. If we suppose, therefore, that the body is urged towards F ly a toree neting, not at intervals, but incessantly, the body will move in that eurve to which, is ita linnit, the line, composed of the diagonals continually approaches, while the line trawis from the moving body A S, or radius vector, will continue to describe areas propathontal to the times.

Book I.

LAW OF UNIVERSAL GRAVITATION.

The foree which urges the body towards \mathbf{S}, is called a centriperal porce. If the aetion of that force were to cease, the body would proceed in a straight line,-a tangent to its curvilinear path. The tendency of the body to proceed in the direction of the tangent, is called its centrifugal force.

From the important conclusion to which we have now been led, we may infer, conversely that if a body revolve in a curvilinear path about a point, and if the radius vector drawn from that point describe round it arens proportional to the times, the body is deflected from the reetilineal path by a force direeted to that point. Now, this is exactly the ease of the planets, both primary and secondary. The former deseribo curvilinear orbits round the sun and, according to the second of Kepler's laws, the radius vector describes areas propartional to the times. Hence we may infer, that each is retained in its orbit by a centripetal force directed towards the sun; and that this force is counteracted by a centrifugal force generated by the planet's motion in its orbit. In like manner, each secondary planet revolves about its primary, the areas described by the radius vector following the same law ; so that the secondury must be acted upon by a centripetal force directed towards the primary planct.
The next thing to be determined is the law of the centripetal foree when a body moves in an elliptic orbit, the force being directed towarda one of the foci. First, let us suppose n body to revolve in the circumference of a cirele A D C (fig. 35.), about any point S, as the centre of its motion, and let us inquire into the law of the centripetal force in that case.

Draw the chord ASC, and let A D be so small an are, thst it may be considered coincident with its chord. Draw DE parallel to the tangent A B, and join C D. Then A D will measure the velocity of the body in its orbit at the point A, and AE the space over which the centripetal force directed towards S, if acting alone, would cause the body to move in the time in which it moves from A to D . Put v to denote the velocity, and f the centripetal force. Since the triangles A DC, AED, are equiangular and similar, we have AC: A $D=A D: A E$; that is,

$$
A C: v=v: f: \text { therefore } f=\frac{v 2}{\Delta C}
$$

Next, let A P B (fig. 36.) be the elliptic orbit of a planet, S the focus in which the sun is placed, A the point at which the planet is at its greatest distance from the sun, and \mathbf{P} any other point in its orbit. Join $\mathbf{P S}$; draw the tangent $\mathbf{P} \mathbf{D}$, and draw $\mathbf{S} \mathbf{D}$ perpendicular to $\mathbf{P} \mathbf{D}$. Let v and v^{\prime} denote the velocities of the planet at \mathbf{A} and \mathbf{P} respectively; and \boldsymbol{c} and \boldsymbol{c}^{\prime} the chords of the equicurve circles at A and P which pass through the point S , and let f be the deflecting force at A , and f^{\prime} the deflecting foree at P. Then from whst we have proved respecting a boly moving in the circumference of a circle round any point F as the centre of its motion, we have $f: f^{\prime}=\frac{08}{6}: \frac{v 2}{l}=v^{2} c^{\prime}: v^{\prime 2} c$. But since the small ares which represent the velocities at \mathbf{A} and \mathbf{P} must be supposed to be described in equal times, the corresponding areas described by the radius vector will nlso be equal. Hence it is not
 difficult to see that $v \times A S=v^{\prime} \times S \mathrm{D}$, and $v: v^{\prime}=$ $\mathbf{S} \mathbf{D}: \mathbf{S} A$. We obtain, therefore, $f: f^{\prime}=\mathbf{S} \mathrm{D}^{2} \times c^{\prime}$: $\mathbf{S} \mathbf{A}^{2} \times$ e. Draw PE perpendicular to the tangent PD, meeting the axis in E, and draw E G perpendicular to $P \mathbf{E}$, and $\mathrm{E} \mathbf{H}$ perpendicular to \mathbf{P} G. From the properties of the ellipse, $\mathbf{P} \mathbf{H}$ is equal to half the principal parameter, and consequently to half of c, the chord of the circle, of equal curvature at \mathbf{A}, which passes through \mathbf{S}. Also $\mathbf{P G}$ is half of c^{\prime}, tho chord of the equicurve circle st P, which passes through S. Therefore,

$$
f: f^{\prime}=2 \mathrm{SD}^{2} \times \mathrm{PG}: 2 \mathrm{~S} A^{2} \times \mathrm{PH} .
$$

$$
=\tilde{S} \mathbf{D}^{2} \times \mathbf{P} \mathbf{G}: \mathbf{S} \mathbf{A}^{2} \times \mathbf{P I I} .
$$

Now, from the similar triangles GPE, EPH, we have GP:PE=PE:PH; hence $\mathbf{G P}: \mathbf{P I I}=\mathbf{G} \mathbf{P}^{\mathbf{2}}: \mathbf{P} E^{2}$. But the triangles $\mathbf{G} \mathbf{P} \mathbf{E}, \mathbf{P} \mathbf{S} \mathbf{D}$ being also similar, $\mathbf{G} \mathbf{P}^{2}: \mathbf{P} \mathrm{E}^{2}$ $=P S^{2}: S D^{2} ;$ therefore, $G P: P H=P S^{2}: S D^{2} ;$ and $P S^{2} \times P I=S D^{2} \times G P:$ nnd since it was shown that $f: f^{\prime}=\mathrm{S} \mathrm{D}^{2} \times \mathrm{P} \mathbf{G}: \mathrm{SA}^{2} \times \mathrm{PII}$, wherefore $f: f^{\prime}=\mathrm{PS}^{2} \times \mathrm{PII}: \mathrm{SA}^{2}$ $\times \mathrm{PH}$; or leaving the consmon factor PH out of the two consequents we have
$f: f^{\prime}=\mathrm{P} \mathbf{S}^{2}: \mathbf{S A}^{2}$.
Thus we have arrived at this important conelusion; that the force by which the plancts evolve round the sun in elliptical orbits, the sun being in one of the foci, and the radius vector describing areas proportional to the times, is always inversely as the squares of the distances.

There remains yet another point to be determined respecting the forees which retain the different planets in their orbits; namely, whether there is any analogy letween them. From Kepler's third law, we know that the squares of the periodical times of any twn of the planets are proportional to the cubes of their mean distanees from the aun. This law is independent of the cccentricitics of the orbits; and the same relation would aubsiat between the mean distances and the periodic times, though the cecentricitics were to become infinitely small; or, what is the same thing, the orbits were to become circles. Let us then suppose the planets to move with uniform velocities in circular orbits, having the sun in the contre. This aupposition differs very little from the truth. Put v, v^{\prime} to denote the velocitics of two of the planets, r, r^{\prime} the radii of their orbits, t, t^{\prime} their periodic times, and $f_{1} f^{\prime}$ the forces by which they are retained in their orbits. From what we have already shown respecting a body moving in a circle round any point as the centre of its motion, we have $f=\frac{v^{2}}{2 r}$ and $f^{\prime}=\frac{v^{2} 2}{2 \pi}$, thercfore $f: f^{\prime}=\frac{20}{r}: \frac{v^{\prime} \%}{r}$. But aince the circumferences of circles are to one another as their radii, and the velocity or the space passed over by the planet in the unit of time is equsl to the circumference of its orbit, divided by the periodic time expressed in that unit, it is evident that $v: v^{\prime}=\frac{r}{1}: \frac{r}{r}:$ hence $\frac{v 2}{r}: \frac{v^{2} 2}{r}=\frac{r}{82}: \frac{r}{r^{2}}$; or, since $t^{2}: t^{\prime 3}=r^{3}: r^{\prime 3}, \frac{08}{r}: \frac{v^{2}}{r^{\prime}}=\frac{r}{r^{3}}: \frac{r^{\prime}}{r^{3}}=\frac{1}{r^{2}}: \frac{1}{r^{2}}=r^{\prime 3}: r^{3}$. Wherefore we obtain $f: f^{\prime}$ $=r^{\prime 2}: r^{2}$.
This result shows that the forces which, acting on two planets, would cause them to describe circular orbits, agreeing with Kepler's third law, are inversely as the squares of tho distances. Hence we may infer the sameness of the force which retains the planets in their respective orbis; since it varies from orbit to orbit, necording to the very same law which regulntes its intensity at different distances in the same orbit. This conclusion is fully established by the fact, that the force which acts upon the comets during their descent to the sun, varies exaetly according to the law which we have now assigned ns the law of the planctury foree. The comet of 1759, which was predicted by Dr. Inalley, came from regiona far beyond the most distant of the known planets, and approached nearer to the aun than Venus; and when it arrived at the same distance from the sun as any of the planets, its deflection from the rectilineal course by the action of the centripetal force, was the very same as that of the planet. We may, therefore, conclude, that it is one and the same force which deflects all the planets as well as the comets.

From what has now been shown, it is evident that if all the planets were placed at the same distance from the sun, they would all be deflected equally by the centripetal force independently of the quantity of matter in cach. Ilence it follows that, at equal distances, the centripetal foree must net equally on cvery particle of matter of which the planets are composed; so that if one planet contain exactly deuble the quantity of matter that unother planct contains, nid if both are placed at exactly the same distance from the sun, the former will receive a double impulse. We may infer, therefore, that another lan of the force which retains the planets in their orbits is, that, at cqual distances, it is proportional tc the mass on which it acts; and that if two bodies act on the same particle of matter, the forces which they exert are proportional to their masses. The force may be supposed to he produced either by a cause residing in the boly which is placed in the eentre of motion, or by a cause residing in the revolving body. In the former point of view, it is called a forec of attraction; in the latter, a force of gravitation. The truth is, however, that the cause of this force is absolutely unknown. We see only the cffects produced, and from these we investigate the laws which connect them with each other, and the general principles on which they depend.
Thus, from the facts discovered by Kepler respecting the planctary metion, we have shown that each planet has a tendency towards the sun, in consequence of which from a state of rest it would move towards him, acquiring at every instant an increase of velocity according to a fixed and determinate rule or law which applies alike to all the planets. This tendeney, if not counteracted, would bring the matter of the sun and planets into one mass. This, however, is prevented from taking place, in eonsequenee of an impulse having been originally communicated to each planet, giving it a constant tendency to move in a straight line with on uniform velocity. The effeets arising from these two tendencies are so adjusted, as to produce elliptic orbit:. But the law which regulntes the effeets arising from the tendency of the planets towards the sun remaining the same, such a velocity might have been commanicated to each planet, by the original impulse which gave it its thinducy to move uniformiy in a straight line, as would bave produced parabolic or hyperbolic orbits. In a cireular orbit, if the centre of motion coincide with the centre of the orbit, the velocity of a planet is uniform, and of such rapidity as at every point to produce a teulency to move in a tangent to the orbit, exactly sufficient to counterbalance the tendeney to move towarda the eentre of the orbit. If the orbit be elliptical, and one of the foci the centre of motion, the motion of the planet is variable, and its tendency to move uniformly in a tangent to the orbit sometimes exceeds, and at other times falle short of, that

Book I.
which would be neccssary to cause it to revolve in a circle at the same distance from the centre of inotion.
Let A D BE be the elliptic orbit of a planet revolving about the sun, which is supposed to be placed in the focus S. Suppose the planet to set out from A in the direction $A P$, A being the point of its greatest distunce from the sun. At A the direction of the planet's motion is at right angles to the radius vector, and if the velocity were such as to produce a tendency to move in the direction of the tangent $\mathbf{A} \mathbf{G}$, exactly equivalent to the tendency of the planet to move towards the sun, the planet would revolve in a circle of which \mathbf{S} is the centre, and $\mathbf{S} \mathbf{A}$ the radius. But the velocity being supposed less, the path of the planet will fall within the circle, and the angle S P H contained between the radius vector und the tangent $\mathbf{P} \mathbf{H}$, which shows the direction of the planct's motion, changes from a right angle to an acute angle. The tendency of the planet towards the sun is now exerted partly
 in accelerating its velocity in its orbit, and partly incurvating its poth. While the planet describes the quadrant A P D, its velocity is always less than that which would produce a circular motion; until it is at the point D , and then the velocity is precisely what would be sufficient for a circular motion about \mathbf{S}, if its direction were perpendicular to the radius vector: the direction, however, being oblique, the planct is brought still nearer to \mathbf{S}. The tendency towards the sun is, in a great measure, still exerted in accelerating the motion, and as soon as the planet passes D, its velocity becomes greater than what might preduce a circular motion about \mathbf{S}. The angle S D K is, therefore, the lcast angle which the radius vector makes with the direction of the planet's motion, and from the moment when the planet passes the point D , that angle begins to increase; and the effect of this is to cause the tendency of the planet towards the sun to be principally exerted in incurvating the orbit. Its influence in accelcrating the planet's motion, though it still exists, is gradually diminished, until the planet arrives at the point B, where it ccases altogether, in consequence of the radius vector being at right angles to the tangent $\mathbf{B I}$.

As the velocity of the planet at \mathbf{B} is greater than what is sufficient to produce a motion in a circle of which the radius is $\mathbf{S} \mathbf{B}$, the path of the planet falls wholly without that circle; and consequently, it is now receding from the sun. The angle which the radius vector makes with the direction of its motion becoming oltuse, the tendency of the planet towards the sun is now partly employed in retarding its motion, so that its velocity is diminished. The angle contained between the radius vector and the direction of the planet's motion increases while the planet is moving from \mathbf{B} to E , and decreases from \mathbf{E} to A , when it becomes a right angle, as it had formerly decreased from \mathbf{A} to \mathbf{D}, and increased from \mathbf{D} to \mathbf{B}. The velocity of the planet in its orbit must, therefore, decrease from B to A, as it had formerly increased from A to B; at the point E it will be equal to what it was at D, and from E to A, the influence of the plinet's tendency towards the sun to diminish its velocity will become less and less, until when the planet has arrived at Λ, it will cease altogether. The velocity is then the same as at first, and the motion goes on in this way for ever.

Whatever has now been deduced from Kepler's Laws respecting the orbits of the primary planets, and the law of the force by which they are described, will apply equally to the orbits of the secondary planets: for in each of these little systems, there is the same analogy between the periodic times and the distances, which takes place in the general system; the figure of the orbits is also elliptic, and the areas deseribed by the radius vector is proportional to the times. We may legitimately conelude, therefore, that the satellites revolving about any planct, are retaincd in their orbits by a force inversely proportional to the squares of their distanecs from their primnry planet; so that all the celestial motions are produced by forces regulated by this general law.
The forec that keeps the Moon in her orbit is, then, the attraction of the earth, or her gravitation towards the earth. But we find that the earth attracts all the bodies near its surfice by a force which is proportional to the mass of the body attracted. Whatever be the weight of a body, it falls to the earth from the same height in the same time, and with the same velocity. Thus, if the resistance of the atmosphere be removed, it is found by experiment that the lightest feather falls to the earth, from a given height, in the very same time, and with the very same velocity, as a stone, however great its weight. Let us inquire whether the force which retains the moon in its orbit may not be identitied with this attractive force which causes the descent of heavy bodies to the surface of the earth.
We may without great error suppose the lunar orbit to be circular, and its semidiameter to be equal to sixty semidiameters of the earth. Let it be represented by the circle CMA, the earth being supposed to be placed at the centre E; and let MC be the small portion
Vol. I.
11
Q

of the orbit which the moon describes in a second of time. Draw M B a tangent to the orbit at M: draw also C D parallel to M B , and C B parallel to M A, the diameter of the orbit. The arch M C may be regarded as coincident with its chord; therefore, joining A C, it ia evident that in the right angled triangle AC M we have A M: MC=M C:MD. Hence, since A M and M C are known, MD or BC, the deflection of the moon from the tangent in a second, by the attraction of the earth, may bo found.
The moon describes her orbit round the earth in about 27 d $7{ }^{7} 43^{\mathrm{m}}$ or $2,360,580$ seconds ; the circumference of her orbit is about 60 times the circumference of the earth, that is, if we reckon $69 \frac{1}{1}$ English miles to a degree, 7,926,336,000 feet; therefore the length of the arc MC, which the moon describes in a eecond, will be found nearly equal to 3358 feet. Again, A M, the diameter of the moon's orbit, is about $2,523,031,140$ feet. Hence we obtain M D equal to 00447 feet nearly. This small fractional part of a foot is the space which a body, placed at the distance of the moon, and falling from a state of rest by the action of the force which retains the moon in her orbit, would pass over in the first second of time. Observing, now, that this force increases as the squares of the distances decrease, we may determine the space which a body at the surface of the carth (or at the distance of one semidiameter from the earth's centre), and felling from a state of rest, weuld pass over in the first second of time, if urged by the same force. For, since the moon's distance from the earth is equal to about sixty times the semidiameter of the earth, we have $1^{2}: 60^{2}=00447$: the space required, which is found to be 16.09 feet. Now, thia is exactly the space which a body, falling from rest by its own weight, is found by experiment to pass over in the first second of time. Hence we may infer, that the mnon is retained in its orbit by the very same force which produces pressurc in a body supported, or causes a body when unsupported to fall to the ground.
Theugh the attraction of the earth on bodies near its surface is only a particular case of a general principle, which produces all the planetary motions, the effects are, to appearance, considerably modified. At all the heights to which we are able to ascend above the general surface of the earth, or to which we can project a body, the force of gravity acts, as to sense, uniformly: it also acts in the direction of atraight lines, perpendicular to the horizon, and therefore parallel to one another, for the greatest range that can be given to a projectile. Hence the phenomena, which depend on the force diminishing in intensity, as the square of the distance increases, and on its emanating in the direction of straight lines drawn to the centre of the attracting sphere, become imperceptible. In consequence of the comparatively small velocity with which himan power can project a body, its path always meets the earth, and its motion terminates. But if the whole matter of the earth were collected into a point at the centre, a body projected from a point 4000 miles distant from the centre, and with such a velocity as human power can communicate, would be acted upon by the same forces, with a hody similarly projected from the surface of the earth. But on the supposition now made, the body would meet with no obstacle, but would approach within a certain distance of the centre, and would then recele from it until it reached another limit, when it would again approach, and go ons in this manner, approaching and receding atterantely, for ever. The path of the body would be an ellipse, resembling in figure the orhit of a comet. The extreme portions of the path would, as to sense, be portions of a parabola. Hence it is usually laid down as a law regulating the motion of projectiles, that if a heavy hody be projected in a straight line, aot perpendicular to the horizon, it will describe a parabola situated in the vertical plane passing through that straight line, and having its axis perpendicular to the horiznn. This physical truth was first discevered by Galileo.
The force of gravity near the surface of the earth being uniform in its action, it is found that the motion which it proluces corresponds in all its circumstances with that which mathematical reasoning shows should result from the action of a constant force. The spaces through which the body falls are proportional to the squares of the timcs, and the velocity is proportional to the time during which the body has been falling.

From the third law of Kepler, it is not difficult to see that the periodic time of a planet in its orbit is determined cntircly by the mean distance, that is, half the transverse axis: and is not at all affected by the increase or decrease of the conjugate axs. By supposing, then, the conjugate axis to be continually diminished, we are led to this conclusion, that the time in which a body would descend to the sun, if allowed to fill from a state of rest at any distance from him, is equal to half the time of revolution in an ellipse the semitransverse axis of which is half of that distance. Let T he the time of revolution of a planet at any distance, and t the time of revolution at half that distance; then, by the third law of Kepler,
 would fall from the distance corresponding to T. IIence the time in which a planet would

Book I.
LAW OF UNIVERSAL GRAVITATION.
fall to the sun by the action of the centripctal force is equal to the periodic time divided
 the reciprocal of the square root of 32 . By this general rule, the times in which the different planets would reach the sun, if the netion of their centrifugal force entirely ceased at the moment when they are at their mean distances, are as follow:

The principle in the Newtonian philosoply, that the effects produced by the attraction of a body depend very much upon the quantity of matter which it contains, furnishes the means of resolving a problem which at first sight may appear of anch difficulty as to transcend the powers of the human mind; namely, to determine the quantity of matter in the sun and planets. Let f and f^{\prime} denote the forces by which two bodiea revolve in circular orbits round two central bodies, of which the masses are denoted by m and m^{\prime}. Let r and r^{\prime} be the radii of the orbits, and t and t^{\prime} the periodic times. From what we have already proved with regard to a force that retains a body in a circular orbit, we have

$$
f: f^{\prime}=\frac{1}{18}: \frac{r}{r 2} \text { But we have also } f: f^{\prime}=\frac{m}{r 2}: \frac{m^{\prime}}{r 2} ; \text { therefore, } \frac{m}{r 2}: \frac{m^{\prime}}{r 8}=\frac{1}{18}: \frac{r}{r 8} ; \text { and }
$$ consequently, $m: m^{\prime}=\frac{12}{18}: \frac{\mathrm{r}^{3}}{r^{2}}$

Thus it appears that the masses of matter in the bodies which compose the solar system are directly as the cubes of the mean distances of any bodies which revolve round them, and inversely as the squares of the times in which the revolutions are performed. By means of this principle, the masses of the sun and of the planets which have satellites may be compared with one ancther. With regard to the planets which have no satellites, the quantity of matter contained in them can only be guessed from the effecta they produce on the motions of the other planets. The quantity of matter in the moon can, however, be determined with greater certainty, by comparing together the influence of the sinn and moon in producing the tides and the precession of the equinoxes. Hence we leam, that the matter in the moon is abont $\frac{1}{70}$ of the matter in the earth.

The following table exhibits the massea of the planets, that of the aun being considered as unity:

TABLE.

If we add together the numbers given in this table, it will be found that the whole matter in all the planets is not one-six-hundredth part of the matter in the sun.
Knowing the masses of the planets and their diameters, we can determine the foree of gravity at their aurfaces; for, supposing them to be spherical bodies, and to have no rotation on their axes, the forces with which a boly placed on their surfaces gravitates to them will be proportional to their masses, divided by the squares of their diameters.

From the masses of Jupiter and the earth, La Place caleulates that if we suppose thent to have no rotation, a body which at the carth's equator weighs one pound would, if carried to the equator of Jupiter, weigh 2.509 pounds, supposing the weights to be measured by the pressures exerted in the two situations. If the centrifugal foree produced by the rotation of the planets be taken into nccount, hownver, this weight must be diminished by about one-ninth part. The same body would weigh about $\mathbf{2 7 . 6 5}$ pounds at the surface of the sun. Hence it follows that a heavy body weuld there descend about 425 feet in the first second of time.
We have hitherte attended chiefly to the action of the central body upon that which revolves round it; but, in reality, the action is mutual. The planets attract the sun in the same manner as the sun attracts the planets; and the same netion and re-action have place umong the primary planets and their satellites. Indend, the gravitation of all the great bodies of the system towards one another, appears only to he a consequence of a similar action between every particle of matter and every other particle of matter. This great fact, to which all the celestial phenomena are ultimately to be referred-thrit the particles of mattcr mutually attract each other by a force varying iaversely as the squares of the distances-is commonly called the principle of Univerbal Gravitation.

The mutual attraction of the bodies composing the planetary system gives rise to a train of consequences which it has required the utmost efforts of human ingenuity to unfold. We have already remarked that the planetary motions are liable to a variety of irregulai-
ties with which accurate observation has male us acquainted. Now, here we see the cause to which all these irregularities are to be referred. If the sun were fixed immovable in the centre, and only one planet revolving round him, then the path of that planet would be an ollipse, from which there would not be tho least deviation; and that focus which is tho centre of motion would coincide with the centre of the sun, supposing that body to be spherical and composed of matter of uniform density. But since the planet attracts the sun as well as the sun attracts the planet, with a force directly proportional to the mass and inversely proportional to the square of tho distance, it follows that the aun mist also move in an elliptic orbit round that point of which the condition is in no way disturbed by the mutual action of the revolving bodies, namely, their centre of oravity. It is with this point that the focus of the orbit of the planet, and that of the solar orbit, would coineide, and about which the radius vector of each would describe areas proportional to the times. In reference to thia point also, the squares of the periodic times would be proportional to the cubes of the distances.
If we suppose two or more planets to revolve about the sun, it is evident that the motions of all would be disturbed by their mutual gravitation. The immense magnitude of the sun compared with that of any of the planets, or of all the planets taken together, might, however, give to his attraction auch a preponderance as would preserve all the planetary orbits nearly elliptical; while his own orbit would become a more complicated curve, but such as to furniah a centrifugal force in respect of each planet, just able to counterbalance the gravitation towarda it. The centre of gravity of the wholo syatem would be a point to which all their motions are to be referred. Now this is actually the case of the planetary syatem. Accurate observation proves that the sun is not at rest in the centre, though his motion is very small. Hia centre is never distant from the centre of gravity of the system so much as his own diameter; and hence the orbit which he describes must be very incongiderable, when compared with the orbits of the planets. With regard to those planets which are accompanied by satellites, it is not the centre of the primary which traces the elliptic orbit round the sun, but the common centre of gravity of the primary planet and secondary planets which revolve round it.
The perturbations which the mutual attraction of the planets produce in each other's motions are divided into two classes. The one class affeet the figure and position of the elliptic orbits, and inerease with extreme slowness: these are called secular inequalities. The other class depend on the mutual situation of the different planets, and acquire the same amount whenever the same relative positions occur : these are called periodic inequalities. Both these classea of inequalities have been demonstrated to be periodical; that is, they increase only to a certain extent, and then decrease. Amidst all the changes which arise from the mutual actions of the heavenly bodies, there are two things which remain perpetually the same; namely, the greater axis of the orbit which the planet describes, and its periodic time. Thus the permanency of the planetary system is secured.
To subject to calculation the perturbations of the system, requires the solution of the following problem: three bodies of given magnitudes, as the sun, the earth, and the moon, being projected into space with given velocities, and in given directions, and attracting each other according to a given law, namely, inversely as the squares of their distances from each other, and directly as their masses; it is required to determine the nature of the curve, that one of them, as the moon, descriles about one of the other two, as the earth. This is the celebrated problem of the turee monies, stated in all its generality, but under this aspect its solution is beyond the reach of the most refined methoda of analysis which the mathematical sciences in their present state furnish. In its application to the purposes of physical astronomy, there are certain conditions which render the problem less difficult: viz. 1. That the sun greatly exceeds in magnitude the other two bodies, and is nearly at rest. 2. Its distance from the earth and moon is so great, that it may he considered the same for both. This condition fails, however, in reference to the action of the primary planets on one another, a circumstance which augments the difficulty of investigating the perturbations arising from their mutual gravitation. 3. The planetary orbits are nearly elliptical, and the aterrations from the ellipses in reference to each, are all that is required. Fven with these limitations the problem is sufficiently difficult, and has engared the attention, and exercised the skill of the most celebrated mathematicinns of modern times.

The general view which we have now given of the planetary disturbances is all that our present object requires. We shall only, therefore, farther advert to the explanation which the theory of gravit.tion affords of the tigure of the earth, and of the tides.

CHAPTER XVI

FIGURE AND CONSTITUTION OF THE EARTH DEDUCED FROM THE THEORY OF GRAVITATION
In the beginning (Chap. III.) we proved that the earth must be nearly spherical, in ordet to account for the general phenomena which we constantly observe. As soon, however,
as the gencral law of gravitation was discovered, it was a necessary consequence that the carth conld not be a perfect sphere, but most rather be an oblate spheroid flattened at the poles, and swelled out at the equator, and this inference is independent of all actual measurement, but may be confirmed by observation, and in fact has been so, as will be afterwards folly proved. This deviation from the splierical figure is to be attributed to the influence of the centrifugal toree, urising from the earth's diurual rotation, in diminishing the foree of gruvity from the pole towards the equator, where the centrifugal force, in reference to the surlice, is tho greatest possible. This tendency which every particle of matter in the carth lais to tly off in the direction of n tangent to the circle in which the particle is carried by the earth's motion of rotation would be increased if that motion were to be accelcrated: und may be conccived to be increased to such power as not only to overcome the force of gravity, but also the force by which the particles adhere to one another, and so to cause the earth to separate into fragments. Suppose a small satellite to revolve round the earth elose to its surlace at the equator; its periodic time may be deduced from that of the moon, on the principle that the squares of their periodic times would be to one another as the cubes of their distances. For we have (since the moon's distance is about sixty times the semidiameter of the earth, and the time of her periodic revolution 39343 minutes),
$60^{3}: 1^{3}=39343^{2}:$ sq. of the periodic time of the satellite.
Hence we obtain the periodic time ncarly equal to $84 \frac{1}{3}$ minutes. If the earth revolved about its axis in $84 \frac{1}{2}$ minutes while such a satellite described a circular orbit close to its surthce, the satellite would therefore: appear to be at rest on the surface, but would not in the least degree press upon it, because the force of gravity would be exactly counterbalanced by the centrifugal force produced by the motion of the satellite in its orbit. Now, all the objects on the surface at the equator would be in the very same circumstances with the satellite; for they actually describe circles in conscquence of the carth's motion, and if the earth revolved in $84 \frac{1}{2}$ minutes, their centritugal force would become exactly equal to the force of gravity; so that they would no longer have weight. If the earth's motion of rotation became still mere rapid, they would fly off from the surface.

At the equator a body describes a cirele of which the circumferenco is shout $132,105,600$ feet in $23^{14} 56^{\mathrm{m}}$ nearly : it must therefore describe an arc of about 1528 feet in a second of time. From what we have shown already respecting central forces, it is evident that, by dividing the square of this are by the diameter of the carth, we shall find the deflection from the tangent in a second, which will be the measure of the centrifugal forcc. This deflection amounts to about $\frac{167}{1010}$ of an inch, or ${ }^{1}-8$ of $16 \frac{1}{13}$ feet, the space through which a body would fall in a second by the foree of upparent gravity. The centrifugal force at the equator is therefore the $\frac{1}{2} 8 \mathrm{p}$ part of the sensiblo weight of a hody, or $\frac{1}{2} \frac{1}{6}$ pait of its real weight. Suppose, then, a body, when weighed at the equator hy a spring-steel yard, to be lound capable of drawing out the spring to the division 288: if that body were weighed ut the pole, where the centrifugal force vanishes, it would draw out the spring to the division 989.
It admits of being demonstrated that, procecding from the cquator where the centrifugal foree is the grcatest toward either pole, where it vunishes, the increase of gravity i:l different latitudes is as the square of the sine of the latitude.

Sisch being the nature of the forces that act upon every particle of matter of which the earth is composed, the determination of its figurc from physical principles involves the solution of the two following problems:-

1. What is the law according to which a particle will gravitate towards a solid of a given form and constitution, the particle being supposed situated either within or without the solid?
2. What figure will a mass of matter, either wholly or partly fluid, assume in consequenec of the joint eflect of the attraction of its particles (that attraction vurying inversely as the squares of their distances), and a centrifugal forec arising from the rotation of the mass about an nxis? Both these problems involve a great degrec of difficulty; and the sceond is cven more intricate than the first, in consequence of the reciprocal relations subsisting between the figure of the attracting body and the law of gravitation at its surface, which renders a knowledge of the one necessary to the determination of the other. Assuming that an homogeneous fluid of the same mean density with the earth has the figure of an oblate eqheroid, and revolves on its axis in $23^{\mathrm{n}} 56^{\mathrm{ng}} 4^{\circ}$ of solar time, it would be in quilibrio, if the axis of revolution were to the equatorial diameter in the proportion of 20) to 230. This is the figure which Newton ascribed to the earth; and though the itssumption which he made of sueh a figure was certain! y gratuitous, the result of his inveetigation is almost the same as later writers have obtained by a more rigorous as well as direet mode of reasoning than that which he employed. Λ gain, it has been demonstrated by Iat Place, that π fluid and homogeneous mass, of the mean density of the carth, cannot remain in equilibrium and possess at the same time an elliptic figure, if the time of its rotation be less than $\mathbf{2}^{h} \mathbf{2 5}^{\mathbf{n}} \mathbf{1 7}^{\circ}$. If the time of revolution exceed this, there msy always be two elliptic spheroide, and not mere, in which the equilibrium may be maintained. In the

11*
case of the mass revolving in $23^{n} 50^{\mathrm{n}} 4^{4}$, the one spheroid is that which lins already been mentioned; the other is one in which the polar diameter is to the equatorial in the ratio of 1 to 681 . The extreme flatness of this spheroid must render the force of gravity at the equator almost nothing; the fluid, therefore, would be so easily dissipated that thia equilibrium can scarcely be regarded as stable.
Another conclusion on thia subject, deduced by Clairault, is, that if the flu:d masa supposed to revolve on its axis, instead of being homogeneous, be composed of strata which increase in density towards the centre, in order to remain in equilibrium, it must still possess the figure of an elliptic spheroid, jut the chlateness will be diminished.
The oblateness of the earth at its poles is a phenomenon which the measurements that have been made of ares of the meridian have placed beyond all doubt; but there is still an uncertainty as to the exact quantity of the compression. The results obtained, however, render it highly probable that it is less than $\frac{1}{2}$ 万, , which Newton, proceeding on the supposition of a uniform density, assigned for the compression. Hence we may conclude, that if the earth is a spheroid of equilibrium, it ia denser in the interior than at its surface. This inference has been verified by very accurate experiments made by the late Dr. Maskelyne on the sides of the mountain Schehallien, in Perthalire. The object was to determine the derangement of the plummet by the vicinity of this lofty and solid mountain; and the reaults, obtained from observation made at two stations on the south and north sides of $i t$, showed that the plummet deviated from the dircction of gravity towards the mountain more than $7^{\prime \prime}$. The quantity of this change of direction gives the ratio of the attraction of the mountain to that of the whole carth, or to the force of gravity, equal to the ratio ef 1 to 17804. But the bulk and figure of the mountain being also obtained by a trigonometrical survey, its mean density waa found to be to the mean density of the earth nearly as 5 to 9 . Thus it appears that the mean density of the earth is not much less than double the density of the rocks which compose the mountain Schehallien; and these, again, seem considerably more dense than the mean of those which form the exterior crust of the earth.
It may appear an objection to this mode of reasoning concerning the figure of the earth, that it is not evident how a centrifugal force should produce the same effect on a solid body, like the earth, that it does upon a fluid mass. But the fact that the earth has made an approximation to the aphcroid of equilibrium, is an indication that either the entire mase was originally fluid, from whatever cause; or the repeated waste and reconsolidation of the parts near the surface has gradnally produced the spheroidal figure. In either of theae modes the power of cohesion, which in the solid body resiats the effects of the centrifugal force, may have been overcome. However irregular a body, whose surface is composed of land and water, may be in its primitive form; by the process of constant waste, the more prominent parts are gradually worn down, and the matter which composed them is deposited in the lower parts which are occupied by the water: here it acquires a horizontal stratification; and having, by certain mineral operations, under the transforming hand of nature, been consolidated into stone, the water being removed, it may again form a part of the solid crust of the earth. In this manner the primitive irregular form will gradually disappear, and the surface in the course of ages aequire a position at right angles to the direction of gravity; so that, by the action of the centrifugal force, there will be a constant approximation made to the spheroid of equilibrium. The irregular distribution of the heterogeneous materials which compose this terraqueous globe may, perhaps, prevent the coincidence from ever being complete.
It admits of being demenstrated, that if the earth were a perfect sphere, and composed of matter of uniform density at equal distances from its centre, the action of the solar and lunar attraction upon it would be the same as if the whole terraqucous mass were condensed into a point at the centre. Hence the position of its axis would not, in that case, be in the least degree affected by its gravitation towards the sun and moon, but would remain parallel to itself while the earth performed its annual revolution. In consequence of the spheroidal figure, however, the earth may be considered as composed of a sphere of which the radius is half the polar axis, and of a quantity of redundant matter, which is distributed over it in such a manner as to swell out the equatorial regions. The action of the solar and lunar attraction on this redundant matter produces the precession of the equinoxes and the nutation of the earth's axis. The complete explanation of these phenomena affords one of the happiest illustrations of the Newtonian doctrine of attraction; but requires at the same time the aid of some of the most abstruse theories both in pure mathematics and meehanics.

CLIAPTER XVII.

THE TIDES.

The elternate rise and fall of the surface of the sea, or it flux and reflux, known by the name of the tides, is a phenomenon which has attracted the attention of mankind from the earliest periods. Hierodotus and Diodorus Siculus take notice of the daily llux and reflux
sun,
be re
M S
$\mathbf{M} \mathbf{G}$ ratio of y at the ilibrium increase le figure
nts that still an lowever, pposition it if the e. This askelyne nine the results, showed ore than nountain 4. But its mean appears he rock re dense of theae ntrifugal posed of the mere leposited tratificaare, been lid crust and the gravity on made nateriale om ever
posed of plar and ndensed in the parallel heroidal adius is er it in d lunar putation he hapte time ce.
by the om the reflux

Boor I.
THE TIDES.
of the waters of the Red Sen or Arabian Gulf, the latter historian describing it as a great and rapid tide; but neither of these writers forms any conjecturo respecting its cause. $\mathbf{O b}$ servatien must soon have shown, that this periodical ebbing and flowing of the waters of the ocean had an intimate connexion with the position of the sun and moon in the heavens; and, accerdingly, we find that Pliny not only describes the phenomena of tides, but expressly attributes them to the action of these luminaries.
It was not, however, until Newton applied the principle of universal gravitation to explain these plenomena that the theory of the tides was fully understood. The weight of a body on the surface of the earth arises frem the tendency which the particlea composing it have to the centre (or to a point near the centre), in obedience to the law of gravity. But as every object on the earth'a surface gravitates towards the sun and moon, as well as towards the earth, it follows that the solar and lunar attraction must affect the weight of terreatrial objects. Upon solid bodies, between the particles of which adhesive force is powerful, ne discernible effects are produced by this attraction. But the case is altogether different with regard te the waters of the ocean, the component particles of which yield to the alightest impulse; so that any alteration in their weight that deea net equally affect the whele muat be followed immediately by a motion of the parts of the fluid mass, which will continue until, by a new arrangement of the particles, the equilibrium is restered.
To aee what must be the general effect, arising from the action of the sun, if the whole surface of the globe were cevered with water; let $A \mathrm{CBO}$ (fig. 39.) be the watery sphere, S the

sun, and \mathbf{E} the centre of the earth. Let the gravitation of the central particle \mathbf{E} to the sun be represented by the line ES, and the gravitation of any other particle M by the line MSD. Let the force MD be resolved into two forces, MH equal and parallel to ES, and M G. The force M H does not in the least degree affect the gravitation of the particle M towards the centre \mathbf{E}; and $\mathbf{M} \mathbf{G}$ is, therefore, the only disturbing force. If $\mathbf{S} \mathbf{M}$ be produced to meet the circle ACBO in the point m, the setion of the sun on a particle situated at \boldsymbol{m} is less than its action on the central particle E ; so that if $\boldsymbol{m} \boldsymbol{d}$ represent the gravitation of the particle m towards the sun, the point d will fill on the opposite side of S from the point D ; and the force $m \boldsymbol{d}$ being resolved inte two forces, $m h$ equal and parallel to ES. and the disturbing force $m g$, it is evident that the tendency of the force $\boldsymbol{m} \boldsymbol{g}$ is to diminish the gravity of the particle m, in like manner as the force $\mathbf{M} \mathbf{G}$ diminishes the gravity of the particle M. When the point M coincides with Λ, the angle ESM is the angle under which the semidiameter of the earth is seen from the sun; therefore ESSM can never exceed $8 \frac{2}{2 "}^{\prime \prime}$: whence, in determining the direction and quantity of the disturbing force from the geemetrical relatiens of the lines, we may censider the lines D G, S L, and D M as coincident, and M L may be taken for the disturbing force. Again, the difference between

SM and SE is greatest when the jpint M coinciden with \mathbf{C} or \mathbf{O}. But if we consider that C F, the difference between S E and $\$ M$ when greatest, is only ubout sins part of S E, it is evident that we conmit but a very sinall error in supposing $\mathbf{N} M, N \mathbf{N}$, and $\mathbf{N} \mathbf{E}$ in every position equal. Now, since $\$ E$ and D M represent thic gravitation of the parti-
 since $S E$ and $S N$ may be considered equal, $D M=\frac{S N^{3}}{N M_{i}}$, But $S N=S M+M N$, therefore $\mathbf{S} \mathbf{N}^{3}=\mathbf{S} \mathrm{M}^{3}+3 \mathbf{S} \mathrm{M}^{2} \times M N+3 S M \times M N^{2}+M N^{3}$. The quantity $M N$ is so small, compared with $\mathbf{S M}$, that the two last terns of this expression tor $\$ N^{3}$ may be neglected: we have, therefore, $S N^{3}=8 M^{3}+3 S M^{2} \times M N$, and $\frac{S N^{3}}{N^{2}}=S M+3 M N$: wherefore, also, $D M=S M+3 M N$; and taking $S M$ from each, we find $S D=3 M N$. Now, since G D may be considered equal to LS +SD , and ES is by construction equal to $G \mathbf{D}$, it is evident that $E S=L S+S D$, or taking $L S$ from each, $E L=S I$. Hence $\mathbf{E L}=\mathbf{=} \mathbf{M N}$, and the disturbing force for any point M is determined both in direction and magnitude.
Suppose now that A C BO (fig. 40.) is the terraqueous glole, E S a line directed to the sun, and AEB a gection by that circle which separates tho enlightened from the dark hemisphere. Let M be any particle on or within the mass. Through the point M draw a straight line M N perpendicular to the plane AEB, and in ES take E L, equal to $3 \mathrm{M} \mathbf{N}$: join L M ; then LM represents the direction and intensity of the disturbing force which the sun exerts on the particle M. Let the force I, M be resolved into two forces, one, M E , directed towards the centre of the earth, and tho other, M R, tending from the plane AEB towands the sun. Suppose the same construction to be made for every point of the sphere, the whole being supposed covered with water, it is evident that the forces represented by ME will balanee ono another, and therefore need not be considered. But the force represented by M R will diminish the gravity of every particle M, reekoned in the direction of a line perpendicular to the plane of that great circle of the earth which separates the ille. minated from the dark hemisphere. The force thus diminishing the gravity will be proportional to three times the distance of the particle from the same plano; for $\mathbf{R M}$ is equal to L. E or 3 MN . Every particle in any column M N being thus acted on by a force which evidently tends to destroy the equilibrium of the flnid mass, the water in thint column cannot remain at rest. Its equilibrium may be restored, however, by the addition of a small portion $\mathrm{M} \boldsymbol{m}$, which, by restoring the weight of the column, enables it to resist the pressure of the adjacent columns. A similar addition may be made to each colunn, perpendicular to the plane A E B: and the result will be that, from being spherical, the figure of the globe will be changed into that of an oblong elliptical spheroid, having its axis directed towards the sun, and its poles in thoso points of the surface which have the sun in the zenith and nadir.

Let the figure into which the watery sphero would be transformed by the solar action be represented by the ellipse $a c b o$ (fig. 41.): the points o and c are the poles of the spheroid; and at these points the waters are highest above the sphere A C BO of equal capacity, while ull round the circumference BEA the waters are below their natural level. By calculation it is found that the difference between E c and Ea is about twenty-four and a lalf inches; so that the deviation from the spherical figure is not great.

The figure which the watery sphcroid assumes must be in a slight degree influenced by the spheroidal figure of the earth; but the deviation from the spherical figure is so small, that its effect in changing the spheroidal figure of the waters on the surface of the earth must be quite inconsiderable. If the earth were at rest, the watery spheroid would acquire that form which would produce an equilibrium among all its particles. This, however, can never happen under the actual circumstances of the case, because some time must elapse before an accelerating force can produce a finite change in the disposition of the waters; but, by the motion of the earth on its axis, the disturbing foree is every instant applied to a different part of the surface, so that the position of equilibrium can never actually he attuined. Such, then, is the general effect which the solar netion would produce if the whole globe were fluid, or a spherical nuclens covered with a fluid of equal density. To explain the phenomena of the tides, however, it is indispensably necessary to take into account the action of the moon.
It is with the moon that the tides are principally connected; ani the sun's influence is known only by its increasing or diminishing the effects of her nic:e nowerfnl action. This greater influence of the moon in producing the tides arises from her vicinity to the earth, when compared with the sun, her distance being only nbout ${ }_{4} \frac{1}{\text { an }}$ part of his. It must be carefully kept in view, that it is not the mere action of the sun and moon that produces the tides in the ocean, bnt the incqualitics in the action of each: and the gravitation of the waters of the ocean to the moon is much more unequal than their gravitation to the sun. Whatever has been proved with regard to the influence of the sun in producing tides in the
ocean is equally applicable to the mnon. The waters will be accumulated immediatoly under her, and on the opposite sido of the globe, producing a spheroid of the same kind with that which we have shown must bo prohneed by the merpual action of the sun, but more elongatof; ; nend this spheroid, directed toward the moon, will bollow her in hor apparont duily revolution abont the earth. In consequenco of this simultaneous gravitation towards both luminaries, tho oceun must assume a tigure difforont from both of thesa spheroids; which will become bleuded aud undistinguishable. Tho resulting flgare resembles each of the apheroids in boing elongated, and its most clevated parts are formil to follow the more powerliul of tho disturbing bodies, namely, tho inoon, in her appurent diurnal revolution about the earth. We may, without sensible error, euppose that the change producod in any part ift the ocoan by tho combined actien of the sun and moon, is the sum or the difference of the changes which they would have proluced if aeting soparately.

Wo have alreudy romarked that tho rapid inotion of the waters, in consequence of the diurnal motion, provents them from ever assuming the figuro which would be requisite for the equilibrium of the forces acting on them; so that they oscillate continually, alternately upproaching to that figure and receding from it. Tho motion tlus communicated to thom is one not of transference, but of undulation, ono part rising and another sinking, unless whon from want of depth of water the balanco between the adjacent columna is destroyed. We may, therefore, regurd the two elevations produced in the occun by the inequalities in the solar und tunar actions as two vast waves which follow tho moon in her apparent diarnal motion. The line joining the tops of these two waves is not directed to the moon, as would be the caso if the earth and moon were at rest, but is directed to a point about 30° to the eastward of the moon. This arises from the inertia of the wator, which causes it, when onco put in motion, to continuo to riso for a time after tho impulso communicated has ceased. If we consider the tides relatively to the whole surfuce of tho globe, there is a meridian, therelore, about 30° eastward of the moon where it is always mon water, both in the hemisphere where the moon is, nud the opposito hemisphere. On tho west sido of the meridian the tide is flowing, and on the east side of it tho tide is elbing. On the meridian which is at right ungles to the former, it is everywhere now waten. If wo suppose, then, the sun and moon to bo in the equator, and an observer to be situated on the surface of the water under the equator; when the moon has risen 30° above his horizon, the stato of tho tide to that observer will be low water. As the moon advnueces tewards his zenith, the tide will flow; and when she has reuched a point about 30° to the westward of his zenith, the summit of the wave will reach him, and then tho state of the tide will be high water. As tho moon approaches the western horizon, ths observer will see the water gradually subside as it had formerly risen; and when she has descended 30° below the horizon, it is again low water. As the moon continues her course below the horizon, the waters again gradually rise by the approach of the other wavo until its summit arrives nt the observer, and ugain produces high water; when the moon has passed the opposite meridinn, and reached a point 30° beyond it, the tide again begins to elb as the wave rolls on, and the same phenomena are repeated in tho same order. Thus, in the space of time in which the moon performs her diurnal revolution, which may be called a lumar day, and consists of nearly $24^{n} 50^{\circ}$, there oceur two tides of flood and two of ebb. The time between one high water to the next is about $12^{\text {n }} \mathbf{2 5}^{\mathrm{m}}$, und the instant of lew water is nearly but not exactly the middle of this interval, the tide in general taking about nine or ten minntes more in ebbing than in flowing.

Spring and neap tides. As the magnitude of the two waves which produce the rise and fill of the tide depends on the action of the sun as well as on that of the moon, it is evident that the height to which tho water rises and fills must be affected by the relative position of the two luminaries. At new moon and full moon the actions of the sun and moon are combined, but at the quadratures they comnteract each other. In the former case, the two spheroids produced by the solar and lunar actions have their axes coincident or nearly so; in the latter, their axes are at right nngles to eaeh other. Hence, at new and full moon the flool tide will rise higher, and the ebb tide will sink lower, than usual. The reverso of this will happen when the moon is in either of her quadratures: the flood tide will not rise so high as usual, nor will the clbb tido sink so low. This is exactly coincident with experience; and we here perceive the cause of what are called spaing tides and neap tidys. About tho time of fill moon und change the tides rise higher than when the moon presents any nther phasis, The highest tide does not happen, however, the first after the opposition or conjunction, though the disturbing forces are then united, but some time nfter; and the canse of this is the same which prevents the time of high water of any one tide coinciding with the time of the moon being on that meridian under which the tide happens; namely, the incritia of the water, or that tendency which nll matter has to retain its state whether of rest or motion. At Brest, where nn accurate register was kept of the phenomena of the tiles about the beginning of the last century, it was found that the highest tide happened nbout n day and a half after the new and full moon. If the time of high water coincide with the very time of conjunction or opposition, the third high water after that is the highest of all. This is called te spring tide. From this period the tides gradually decrease, until the third Vot. I.
high water after the monn's quadrature, which in the lowent of all, anil is called the neap rios. But having reachel their utmont depremslem, the tidem again increuse until the ocenrrence of the next upring tide; and mo on continuilly. The ligher the tide of lloxi rises, the lower the elbh tulo generally sinks on that day. 'I'he lotal mignitude of tha tide is entimnted hy the ditlerevec between high nnd low water. At Brest the noedium upring tide is abont Ii fiet, und the medium neap tile about 0 feet.
Iff'cot indifferent hemispheres. Let us next ruppowe tho sun and moon to be wituated in one of the tropics; the two waves mised in the ocean by their netions on opposite sides of the glohes will now roll nlong under the tropien. If an ohmerver be placel on the surface of the water, and under tho same tropic in which the sun and inoon arn sitmuted, he will atill see two tides of floxl nnd two of ehli); but they will not correypond in all their circminstances, as they did on the firmer nupposition. The depth of the high water produced by the wave situatel in the anme hemispliere with the moon, will evidently be grenter than that of the high water proluced by the wive which rolls nlong under the other tropic in the opposite hemisphere from the moon; for the ohserver will see the very summit of the one wave, and enly the sloping side of the other. To an olserver altunted uniler tho tropic on tho oppowite side of the equator from the sun and moon, the case would be reversed; and if ho were so far removed from the equator as to be situnted under the polar circle, no part of the wave accumulated in the mine hemisphere with the moon would reach him; so that he would see only one tide of flood and one tide of ebb daily produced by the motion of the other wave.
This also is consistent with what we know respecting the tides from observation. All the phenomena are found to be modified by tho latitude of the place of observation; and some phenomena are found to occur in high Intitudes, which are not at all seen when the place of observation is under the equator. In particular when the moon and the observer are on the same side of the equator, that tide in which the moon is above the horizon is greater than the other tide of the same day which happens when the moon is below the horizon. Tho contrary takes place when the moon and the observer are on opposite sides of the equator: in this Inter ense, if the polar dintance of tho observer be equal to the mosn's declination, he will see but one tide in the dny, continuing to flow for twelve hours and to ebb for twelvo hours. We have supposed lin simplicity tho sun and moon to he in the equator, or in one of tho tropies; hut it is ovident that this can seldom he the case. The two luminaries are capable of un infiuite variety of positions in eeferenco to ench other, ns well us in reference to any particular point of the earth's surface. The phenomena with regard to particular places must, theretore, be endlessly diversified; but by tracing the general teatures, tho principles beeme apparent upon which nil the phenomena depend.
The influence of the sun and noon in prolneing tides in the ocean will evidontly he aug. mented when these bodios are nenrer to tho earth, and diminished when their distances are incrensel. From this cause it arises, that when tho moon is in that part of her orlit where she ruproaches nearest to the earth, tho spring tide whinh happens nt that time is the highest, and the noxt spring tide is the smallest ; bipause the moon is then nearly it her greatest distane from the earth. This mukes a differenco of $\mathbf{Q}_{1}^{\prime \prime}$ feet from the mean height of the spring tide at Brest; and couserguently of double thint quintity, or $5 \frac{1}{2}$ feet, between the grentest spring tide and the least. The neap tide which happens between these two very unequal spring tides is regular, becauso the moon is then neurly at her incau ilistunce. The reverse of this takes place when the moon is ut her mean distance at the time of the clange: the spring tide is regular, but the two neap tides differ considembly in height. The increased tistance of the sun is the renson why the spring tides in our summer are not so great as in onr winter. At the mean intensitios of the disturbing forces, the sun terids to raiso tho waters about $24 \frac{1}{2}$ inches, and the moon about 58 . Hence the spring tile should be about ; $2+24 \frac{1}{2}=82 \frac{1}{2}$ incles, and the neap tile about $58-24 \frac{1}{2}=33 \frac{1}{2}$ inches.

Wariations caused by contincats, islands, ofr. We have hitherto supposed the two waves which proluce the phenomena of the tides to meet with no interruption in their progress round the world. This is, however, fir fron bing the case; thing are interrupted by contineuts and islands, and may be propelled or retardel by the antion of the wind; their volocity und dircetion may also be changed by irregularities in the bed of the ocean: so that, to explain all the phenomena nt any particular place, the effeet of local circumstances, which is often great, must be taken into the account. The great l'acific Ocean is, perhaps, the only part of the terragueous globe in which all the forces have roon to operate. But the wave which they form must, in rolling westwarl, encomter the consts of Asia und New Ilolland, with the interjacent islands; and amidst thrse obstacles it inust force its way to the Indian Oeean. Its figure will thus be changed, and the phenomena of the tides, which it produces, powerfully molified. - On its eastern sido the Pacific is bounded by a vast stretch of const, extonding without interruption from Cape Hora to Behring's Straits. This barrier prevents all supply from the etastward for making up the watery spleroid, nud must be equally offectual in arresting the progress of the wators accumulnted to the eastward of the dinerican contineat. So far as we lave information respecting the tides in the Pacific

Ocenn, they appear to be very unlike the Furnpean tides, until we reach about 40° or 50° went from the const of America. In the nelghbourhool of that coast, mearcely any tisle accurs when the moon is below the horizon. Even in the middle of the lacille Ocean the tidey are very minall, but at the mame time very regular.
As ugreat extent of surlice in necemsary in order that the aen shonld be sennibly affected ly tha inequalitiea in the actimus of the nun and moon, the tides which are experionced in marrow seau, and on shores fir removed from the main looly of the ocean, are not produced in those neun, but are waves sropagated trom the great diurnal undulation, and moving with much less velocity. The tiwa which vinit the coanta of Fingland, must, in a great mensure. be supplied from the arcumulation of water in the Indian and Fithiopic Ocenn, from the eantward, nad by what is brought or kept bach from the South Sea. The undulationa will be diflised as proceeding tron a collection coming round the Cape of Gooxl Hope, and rounl Cape Ilom. Consistently with this supposition, it is found that high water, which occure at the Cape of Good Hope at now anil full moon about three o'clock, is later and later as we proceed northward along the coast of Africu; later and later still as wo follow it along the westen coasts of Spain und France, until we reach the mouth of the English Channel. The wave now divides itself into three branchea; one part passing up St. George's Channel, mother procoeding northward along the western conat of Irelaml, and the third passing up tho Euglish Channel, between the Britiah and French coasts. The two branches that proceed along the east and west siden of Ireland unite and form one ridge or wave, which con. tinues its progrewa along the weatern coasta and islands of Scoflanil, and then diffises itaelf' castward towards Norway and Denmark, and cireling round the eastern coasts of Britain, comes southward through the German Ocean, until it reaches Dover, where it meets tho hrunch which passes up tho English Channel. It is to be remarked, however, that this tide whieh comes uy the channel is not the same with that which meets it from the north, but is a whole tide enrlier if not two, as appears from the fact of the apring tide nt Rye being a tide earlier than tho spring tide at tho Nore: it even seems two tides earlier, for it appearn the one as often as the other. By traciug the hour of high water from the Lizard up St George's Channel, and along the west coasts of Scotland, it appears that the two tides which pass nlong the east and west siden of Ireland and unito into one wave to the north of it, travel round Britain in ulout twenty-eight hours, in which time the primitivo tide has gone round tho whole circumference of the ourth, and nearly 45 legrees more. By attending ulso to the successive hours of high water along the western coasts of Africa and Eumpe, it appears that the wave, which divides into three branches at the mouth of the Enghish Channel, takes up nearly two days, or between four and tive tiden, in travelling thither from the Cape of Good Hope, A sianilar progress of the same high water from the southward is observed along the eastern shores of Suuth Ameriea; but beyonal Brazil and Surinam the Atlantic Ocean is sufficiently extensive to contrihuto greatly to the formation of the regular spheroid; so that the effect of this ligh witer from the sonthward, being blended with the tide raised in the Atlantic itself, becomes insensible. In an ocean of such a breadth from cast to west as tho Athntic, the water can riso on tho one shoro only by descending on the other. In the middle, therefore, it will retain nearly the mean height between its elevations on the two opposite coasts: this appears to be the reason why the tides aro small in islands that are very far distant from the shores.

The reflection of the tide from shore to shore is a great cause of irregularity in the tides. Tho coasts may bo so situated that the time in which the undulation that constitutes the tillo would of itself vibrate backward and forwarl from shore to shore, may be so exactly uccommodated to the recurring action of the moon that tho succeeding impulsea, being always added to the naturul undulation, may raiso it to a heiglit altogether disproportioned to what the uction of the moon can produce in the open sen, where the undulation diffuses itself to a vast distance.

T'se inequulities which undoubtedly obtuin in the bottom of the ocean affeet the tides, by changing the direction of the waters; also their velocity either ahsolutely or in respect of particular places. They may also influence the height by causing the tide to rush with incrensing velocity towards a particular point, where the waters must at length be suddenly checked, and therefore be accumulated in an extrnordinary degree: this appears to be the cause of the astonislingly high tides which occur in the Bay of Fundy. The high water of the AtInntic Ocean at St. Helem does not exceed four or five feet; but, setting in obliquely on the coast of North Ainericu, it secms to range along that coast in a channel oe bed. gradually narrowing till it is stopped in the Bay of Fundy, where the aceumulation of the waters beeomes tremendous. The tide approaches with a prodigious noise in one vast wave, that is seen many miles off, und the waters rise to tho loeght of more than seventy feet in the gulf of Cumberland bssin; the rapidity of the wnters is so great as to overtake animals feeding on the shores.

In consequence of the length of timo required for a tide to propagate itself up a great river, ono or two succeeding tides may reach the month of the river before the first tide has arrived at the highest point to which it ranges up the stream. The second tide will also
have propagated itself so far up the river, by the time that the thirid tide reaches the month; unil thas there may be three co-existent high waters in the river. The two intervening low waturs in the ocean will also produce two corresponding low waters in the river: these elimuses in the depth of the stream are produced by the ligh waters which arrive at its menth checklng its velocity, and the low waters accelerating it. To cause high water at uny purticular point, it is by no means necessary that the water sheuld be raisel to thast levei wilf the wiy from that point to the mouth of the river. Before such an accumulation could take place, ita many instances, places farther down the stream would be inundated. At many plineves thut are far from the sea, the stream at the moment of high water is down the river, mul munctimes it is considerable. At Quebee, the current in the St. Lawrence runs at the rnte of not less than three miles per loour: this is a clear proof that the water is not heaped up, for there can be no stream withent a declivity. The phenomenon termed the bore of a river, which occurs eliefly in large rivers that have a wide outlet, and where the greatest these are experienced, arises from the waters accumalated in the gulf or outlet by one tide Hot being, in such circumstances, discharged before the approach of the ensuing tide. These necumulated waters encounter, therefore, the waters of the ocean flowing in an opfooite direction; so that the re-action of the conflicting waves produces an elevation of the water lar above the natural level. The surge formed in this manner rolls up the river with Irredstible force, overwhelming every thing which it encounters; until, exhausted by the rosistance which it has to overcome, it at length sinks into a feeble undulation. The violence and elevation with which the bore rushe3 along in some rivers is almost incredible: at the mouth of the Severn the flood comes up in one head about ten feet in height; but in the great rivers of America, and particularly in the Amazon, it becomes a rolling mountain of wuter, which is said to attain the height of 180 feet.

In confined seas of small extent, such ns the Caspian, the Euxine, the Baltic, and the great lakes of North America, the tides must necessarily be almost insensible; the disturblug forces in such situations have not room to act to any extent: the greatest height to which the waters of the Caspian can rise above their level on the shore, in consequence of asphereldal shape being given to them by the lunar action, does not exceed seven inches; uIn necumulatien which a slight breeze of wind is sufficient to counteract. Even in cases where a confined sea is connected with the ocean by a narrow chaunel, ne sensible tide can happentif for the tide in the ocean cannot diffuse itself through the eontracted inlet during the perion that elapses between two consecutive tides.
The Mediterranean is a confined sen of considerable extent; snd the tides there might be very mensible if the effects of the solar and lunar actions were not diminished by its distance from the equator. As the moon approaches the meridian of the eastern part of the Mediturratem, there is a considerable clevation of the waters on the Syrian coast, and a conwillerable depression at Gib altar. In the middle of the length the water is at the menn lielght; in the Atlantic Ocean, an open and extensive surface of water, the regular spheroidni form is nearly attained, and the water stands considerably higher on the outside of the atruita than on the inside; it is nearly low water within, while it is about one third or one labl' flowd without. Notwithstanding this accumnlation, the communication is too narrow 41 allow the tide of the occan to diffuse itself in a regulnr manner into the basin of the Meliterranean. As the moon moves westward, toward Gibraltar, the water will begin to rine, but slowly, within the straits, while without it is flowing very rapidly. The accumulation within increases with the progress of the moon westward, until it reaches high Whter; but by this time the tide has been ebbing for some hours without the straits. It will now be low water on the coast of Syria; and during all this time the water at the middle butween the eastern and western extremities will not have sensibly altered its depth.
The eingular currents which prevail in the Straits of Gibraltar appenr in a great measure explained by these peculiarities with regard to the tides in the Mediterrancan Sea and Allntic Ocean. Changes of tide, always different and frequently quite oppssite, are ulworved on the east nnd west sides of the narrow neck which connects the rock with Spain; anul the general tenor of those changes has a very great analogy with what has new been deweribeen.

It in a fict which strikes the attention, upon the most cursory observation of the phenomusin of the tides, that they fall later every day. This variation in the interval of the tides ta enlled the inimina or lagana of the tides, according as we refer them to lanar or solar time. If we suppose the sun and moon to be in the equator, and the watery spheroid t., nttuin instantancons'y the form suited to its equilibrium, then the line joining the summits of the twn waves produced in the ocean by their combined nctions will always be directed to a point situated between their centres; exeept in the ense of the sun and moon being in conjunetion or opposition, when it will be directed towards their centres. The following table, eulealuted on the above supposition, and for the menn distances of the sun and moon from the enrtl, exhibits the minutes of solar time that the moment of high water precedes or followe the moon's southing, corresponding to every tenth degree of the moon's clongation (enst ward) from the sun or from the point opposite to the sun. It shows also the hour and minuts-
of the day, nearly, when it is high water; and the height of the tide, supposing the height of a spring tide to be 1000:-

$\begin{aligned} & \text { Moon's Elongation } \\ & \text { at southing. } \end{aligned}$	Time of High Water.		Height of Tide.	Timo of Iligh Water.		$\begin{aligned} & \text { Moon's Elnngation } \\ & \text { at southing. } \end{aligned}$
	Beforo Moon's mouthing.	Afternoon or Midnight.		Aftertioon or Midnight.	After Moon's sonthing.	
Deg.	Min.	Ho. Min.		110. Min.	Min.	Deg.
0	0	00	1000	120	0	180
10	11.	0 2 4	987	1131	11	170
20	92	054	949	119	98	160
30	311	128	887	1031	311	150
40	40	20	806	100	40	140
50	45	235	715	085	45	130
60	46	3 1:1	610	8 461	404	120
70	40.	3 591	518	801	404	110
80	25°	$4 \div 5$	453	75	25	100
90	0	00	429	00	0	90

If we note the exact time of high water of spring tide for any larbour, and the exact position of the sum and moon at that time, we can easily make a table of the monthly series for that port, by noticing the difference of that time from the table, and making the same cifference for every succeeding phasis of the tide.

CHAPTER XVIII.

general view of the golar gystem.

Ten stars, among the countless number with which, in a elear night, the heavens appeas so resplendent, have been proved, by the observations and reasonings of which we have now given a brief outline, to ve planets revolving about the sun, and deriving their light from him. The earth which we inhabit has been proved to have a similar motion, and to belong to the same class of bodies. Several of these primary planets are accompanied by satellites; and the whole are preserved in their respective orbits by a centripetal combined with it centrifugal force. Thus there subsist anong these bodies relations which are regarded as uniting them in one system, having the sun in the centre; and which is therefore called the solar system.
In regard to the other planets, as we have employed the obvious analogy subsisting between them and our earth, in proving its annual and diurnal motion; so, on the other hand, from the same grounds, it seems reasonable to conclude that, like the earth, they are designed and fitted by Infinite Wisdom for the accommodation of inhabitants, and that in all probability millions of beings are placed upon them. Though our observations in relation to the subserviency of the urrangements of nature to the enjoyment of sentient beings is confined to this narrow seene; yet, seeing this small portion of the universe crowded with examples of utility, why should we imagine that Divine Goodness has not throughout the system in like manner diffised its bounty? As our knowledge of the celestial phenomena is extended, the probability becomes proportionably stronger that the other planets are stored with inhabitants who share in the blessings of rational and sentient existence. Their rota tion, their atmospheres, of which the telescope has enabled us to detect the existence, and the changes which we see going on in these ntmospheres, so much resemble what we experience on the carth, that no man who clearly conceives them can divest his mind of the thought that this is not the only part of the system where the Creator has displayed his bounty by giving existence to sentient beings. There is nothing that forbids us to suppose that in each of the other planets there is the same inexhanstible store of subordinate contrivanees that we see here for living creatures in every situation, possessing appropriate forms, desires, and abilities. Before abandoning such an opinion, there may surely te expected, fron those who require us to do so, some good reason for its rejection.
In regard to the fixel stars, as the sun, if viewed from a sufficient distance, would be diminished into a luminous point, while the plunets that revolve round him would become invisible; so, on the other hand, it is highly probable that each fixed star is itself a sun, and the centre of a particular fystem, being surrounded with a certain number of planets and comets, which, at different distances and in different periods, perform their revolutiong around it.

There appears strong reason to suppose that the sun, with hie accompanying plauets, has a motion among the fired stans, round a centre. From a comparison of ancient and modern Vol. I.
observations，it appears that while the stars in one quarter of the heavens are receding from each other，those in the opposite region are gradually appronching．Dr．Herschel has found that these motions of the stars are ncarly in the direction that would result from a motion of the sun towards the constellation of Hercules．It is the epinion of Lalande that there is a kind of equilibrimm umong all the systems of the universe，and that they have a periodic circulation about their common centre of gravity．

TABULAR VIEW OF THE SOIAR SYSTEM．
I．SECONDARY PLANETS．

1．The Moon

Bemidiamater nf Terreatrial Equator $=1$ ．
Moon＇s meas dislance $=\mathbf{5 0 . 9 6 4 3 5}$ ．

$$
\text { in milea }=237000
$$

Moon＇s mean diameter $=2160$ miles．
Her volume $=\frac{1}{60}$ of volume of the Earth．
Her mass $=\frac{1}{7.0}$ of mase of the Earth．
Her density $=\frac{1}{1.6 z=}, 615$ of denaity of the Earth．
Her light is $\frac{1}{30000}$ th of tho light of the Sun．

II．PRIMARY PLANETS AND SUN．

Planete．	Sidereal Period．	$\begin{gathered} \text { Mean } \\ \text { Distance. } \end{gathered}$	Eceentricity．	Dlean Iongitude． Jin 1,1201 ．	Long．Perhelinn． Jan．1， 1 S01．	$\left\lvert\, \begin{gathered} \text { Inclin. of Orbit. } \\ \text { San. } \\ \hline \end{gathered}\right.$	Long．Nodea． Jmn．1，1801，	Menn Daily Motion inOrbit．
				0.11	017	01	01	
Nercury	88.9602540	0.3570981	． 20551404	$\begin{array}{llll}166 & 0 & 48.6 \\ \\ 11 & 33 & 3.6\end{array}$	74 129484.91	$\begin{array}{llll}7 & 0 & 0.1 \\ 3 & 23 & 2 \times 5\end{array}$	456730.9	$4{ }^{4} 632.6$
Yenus	224．7007869	0,7233116 10000000	． 000860044	$\begin{array}{rl}11 & 33 \\ 100 & 39.0 \\ 10.9\end{array}$		32328.5	745412.9	$\begin{array}{llll}1 & 36 & 7.8 \\ 0 & 49 \\ 8\end{array}$
Earth	361.2563612 686.9796458	1.0000000 1.5236423	． 016678357070			i $\mathrm{Bl}_{1} 6.2$	49.08 .5	0 49 0 81 86.7
Vesta	1325.7431	2.3874700	． 04913000	（ 2780300.4	［ 2492344.4	${ }^{7} 8800$	103 1318.2	01617.9
Junn．	1592．6604	2． 68700090	． 25781600	\％$\left\{\begin{array}{l}200 \\ 208 \\ 169.1\end{array}\right.$	\％ 2533346.0	\％${ }^{\mathbf{2}} 13480.7$	2 1717840.4	0 13323.9
Ceren	1681.3901	9．7672450	． 078439000	－$\left\{\begin{array}{llll}123 & 16 & 11.9\end{array}\right.$	0.	－$\left\{\begin{array}{l}10 \\ 10 \\ 3\end{array} 28.2\right.$	－ 904194.0	${ }^{6} 1250.9$
Palla		9．7728860	． 24164000	（108 24.67 .9	121 13 7 4.3 1.6	（34 3485.0		$\begin{array}{lll}0 & 19 \\ 0 & 48.4 \\ 4 & 59.3\end{array}$
Sapurn	10759．2198174	${ }_{8.5137 \%}$	． 05615050	1358208.5		22935.7	1115637.4	0 4 0 89.3
Uranus	30656．e209298	10.1×2390	． 046667938	1774883.0	1673116.1	04828.4	725935.3	042.

Planela and Sun．	True Dinnueter	Volume．	Mass．	Densily．	Grnvi． ty．	Sidereni Ro－ tation．	Inclinption of Axis to Axis of Ecliplic．	Likht atul lleat．
						h．m，s．	0 ＂	
Mercury	0.398	0.398			1.03	24 is 28	not known	6.680
Vents	0.975	0.927	40387t		0.98	23217	not exactly known	1.911
Enrtl	1.000	1.000	351838	3.9326	1.00	$24 \quad 0 \quad 0$	$\begin{array}{lll}23 & 27 & 56.5\end{array}$	1.000
Mars	0，517	0.139		－－		$\begin{array}{llll}24 & 39 & 21\end{array}$	$\begin{array}{lll}30 & 19 & 10.8\end{array}$	0.431
Jupiter	10.860	1280，900	Tत\％ 5.3	． 9924	2.72	9555	$\begin{array}{lll}3 & 5 & 30.0\end{array}$	0.037
Snturn	0.982	－995．000	35，$\frac{1}{3}$	． 5500	1.01	102917	$31 \quad 19$	0.011
Uranus	4.332	80.490	T可竕行	1.1000	－－	unknown	not known	0.003
Sun	111.454	1384472．000		1.0000	97．50	25120	$7 \quad 300$	
IMoon	．0275	．000		2.418%	0.16	$27 \quad 748$	$1 \begin{array}{lll}1 & 30 & 10.8\end{array}$	1.000

the
mine
m50，
then
stadi
Tl
whic
inste
well
atcur
deter
lent
Th
appea
that a
while
circle．
same
tion，
reckni
no val
Abo
nomers
which
divided
directly

figure and magnitide of tile eartil.

We have sufficiently establishel the important proposition that the earth is a round body; and have inferred from the figure of its shadow, as seen on the moon's dise in lunar eclipses, that it must be a sphere, or at least that it approaches to that ligure. Thu hypothesis of its being exactly spherieal is sufficient to explain, in a satisfactory manner, the general appearance of the heavens, as seen from different points of its surface; and before the true doctrine of motion and the law of gravitation, which connects the most remote bodies in the universe, were discovered, a sphere was considered to be an exact representation of its shape, and the ingenuity of mathematicians was exerted to discover its magnitude.
The determination of the magnitude of the carth might appear, to one altogether ignorant of mathematical science, as in problem of insuperable difficulty, and, indeed, as too sublime to be resolved by a human being. If, however, we suppose the earth an exact sphere, the theory of the solution is by no means diffieult; it is within the bounds of elementary geometry, and has been known from the earliest ages: but the case is very different with the practice. In the actual resolution, instruments of the greatest nicety are required; and to produce these, the ingenuity of man has been tasked to the utmost during the last two hundred years; besides, the application of them demands, in addition to the principles of geometry, some of the most refined theories in physics: so that, on the whole, few problems present a more ample field for the exertion of the mind of man, or have more extensively called forth the assistance of arts and seiences.
It is now about two thousand years since Eratosthencs attempted to resolve this important problem. He knew that on the day of the summer solstice
 the sun illuminated the bottom of a well at Syené. At the same instant he observed at Alexandria that the sun was 7° 12 from the zenith: and it was supposed that Syené was due south from that place, and therefore that both were under the same meridian. Let C (fig. 42.) be the earth's centre, A Alexandria, Z its zenith in the heavens, B Syené, and \mathbf{S} the sun at the instant when it illuminated the bottom of the well, and consequently was in the zenith of that plaee. The angular measure of the celestial are Z S, or the corresponding terrestrial are A B, is the angle Z C S at the earth's centre. Eratosthenes observed the nngle Z A S, which by the clemente of geometry, is less than the former by the angle A S C. However, tuis difference is so small, that it may be altogether neglected in the present case; and thus the angle AC B will be nearly $7^{\circ} 12^{\prime}$, that is, one fiftieth part of 360°; and consequently the are A B of the terrestrial meridian one fiftieth of the earth's circumference. The distance between Alcxandria and Syene had been determined to be 5000 stadia. Hence it immediately followed that the earth's circumference was $\mathbf{2 5 0 , 0 0 0}$ stadia. As it could not be supposed that this result was very aecurate, Eratosthenes reekoned the cireumference to be 252,000 stadia, which give in round numbers 700 stadia to the length of a degree.
The geometrical principle here employed was quite cerrect, and indeed was the same whieh is used at this time; but the data were very inaccurate and uncertain, for Syenó, instead of being exaetly south from Alexandria, lies considerably to the east; and it may well be supposed that the assigned distanee between Alexandria and Syene was not an uccurate measurement, but merely a rude approximation. It is impossible, however, now to determine how near Eratosthenes came to the truth, for want of a knowledgo of the exaet length of the stadium by which the distance was reekoned.
The principles by which Eratosthenes was directed in his measurement of the earth appear to have been afterwards employed by Pesidonius. This astrenomer had remarked, that at Rhodes the star Canopus was just visible in the horizon, but never rose above it; while at Alexandria it attained an altitude of $7 \frac{1}{2}{ }^{\circ}$, or ${ }^{\frac{3}{8}}$, th part of the cireumference of a great circle. The direct distance hetween these two places, which were supposed to be on the same meridian, was accounted to be 5000 stadia; and therefore, according to this observation, the circumference should have been 240,000: but here the uncertainty of a distanee reekoned by a sea-voyage, not to speak of other causes of error, renders the conclusion of no value.

About the year 800 of the Christian era, the caliph Almaman directed that his astronomers should measure a degree of the meridian in the phains of Mesopotamia. The method which they employed was susceptible of greater accurncy than that of the Greeks. They divided themselves into two parties: after observing the altitude of the pole, one went directly north and the other sorth, measuring as they proceded, and taking from time to
time the altitude of the pole, until cach party laud changed its latitude by a degree. Thus the measure of two degreey was obtained; but, at the present time, our ignorance of the exact length of the unit of mensure remers all their halour useless to us, even if (what is very unlikely) its accuracy might have heen relied on. It appears, however, that their estimation of the earth's inagnitude wns less accurate than that of the astronomer of Alexandria.
The method of Erntosthencs was practised in modem times, first by Fernel, a Flemish physician. He travelled from Paris towards Amiens, which places are nearly under the same meridian, until he hat passed over a degree of latitude; und, by a contrivance attached to the wheel of his carriage, he ascertained the number of revolutions it made in that distance. In this way he found the length of the degrec to be 57,070 French toises.

The same degree was nfterwards measured by La Caille, and found to be 57,074 toises. The near agreement of Fernel's result with this last, obtained by a more accurate and scientific process, is very remarkable.

The Dutch astronomer Snellius was the first who attempted to resolve this most interesting and difficult problem in practical geometry with those scientific aids which its importance required. In the year 1617 he published his Erutosthenes Batavus, in which he has detailed the whole process. The extreme points of his meridional arc are terminated in the parallels of Alcmner, in lat. $52^{\circ} 402^{\prime}$, and Bergen-op-Zoom, lint. $51^{\circ} 29^{\prime}$, the arc between them being $1^{\circ} 11 \frac{1}{2}^{\prime}$. Ile forned a series of tringles between these places along the earth'ж surface, and deterimined (as well as the imperfect instruments of the time cuabled him to determine) their angles; and by several base lines, netually measured, be found their sides. Ife reduced the positions of his stations to the meridinn; and he concluded that a degree of the meridian was 28,500 perches, which were equivalent to 55,100 toises of that period; which, however, were rather longer than the toise as it is now estimated. The error of Snellius appears to have been about 2000 toises on the length of a degree, of which 190) may have arisen from the error in measuring the celestial arc, and the rest from the imperfection of his geodetical measurements. Snellius measured his original base over ngain, and corrected his conclusion: he died, however, before he could publish the result. Cassini made certain corrections in his calculations, by which the lengtl of the degree came ont 56,675 toises; nnd Muschenbrock, by an examination of Suellius's papers, found that the degrec ought to have been reckoned 57,033 toises,
Richard Norwool made a remarkable npproximation to the true length of a degree in 1635, by apparently inadequate means. He ineasured the distance between London and York, observing the bearings as he proceeded, and reducing all to the direction of the meridian nud the horizontal plane. He determined the difference of latitule to he $\mathfrak{Z}^{\circ} 28^{\prime}$; and from the whole distance he determined the degree to be 367, 176 feet English, or 57,800 toises.
As far as pure mathematical theory was concerned, the method of Snellius was excellent; the chief imperfection was in his instruments: but an inmense improvement was made ly Picard, in the npplication of the telescope and the micrometer to the mensurement of angles; amd, with the assistance of instruments constructed on the new principle, this astronomer, by the dircetion of the French Academy, began the measurement of an are of the meridian, taking for its extremities the parnllels of Sourdon near Amiens, and Madvoisine. His general manner of conlucting the process was the same as that of Sncllins. He conneeted the extreme parallels by a series of triangles, the sides of which were determined from a base of 3663 toises, measured twice with great care at one extremity of the series. There was a base of verification of 3902 toises measured at the other extremity. The horizontal nngles were measured by a quadrant of thirty-cight inches' radins; and the celestial arc, which was about $1^{\circ} 12^{\prime}$, by a sector ten feet in radius. If concluded the length of a degree to be 57,060 toises.
This was the first measurement in which confidence conld be placed. It is true there were several elements wanting in the determination of the celestial arc, owing to the inperfect state of astronomical seience nt that time; but, by a fortunate compensation, the crrors thence nrising corrected each other. This mensurement of licard was of serijirn to Newton, in verifying his happy thought of the law of universal gravitation.
The measurement begun by Picard was centinued northward to Dunkirk by La Hire, and in the opposite direction, as fir as Perpignan, by the second Cassini, who published the whole in 1718, in a work on the magnitude nall figure of the earth.

The labour of the French nstronomers determined the magnitude of the earth with a degree of necuracy sufficient for the general purposes of geography ; but science was now proceeding with rapid strides, and a new question was ngitated,-Is the earth an exact sphere, as had been hitherto supposed ! or, if it he not a sphere, what is its true figure?
Hhygens and Newton had established the doctrine of the centrifugal force of bodies revolving in cireles; and from this it was justly inferred that the earth, in consequence of its rotation on an axis, mut necessarily deviate from in spherical figure, and assume that of an oblate spheroid; that is, a solid generated by the revolution of an ellipse on its tesser axis, the extremities of which in this case were the poles.

This opiaion received support from some astronomical observations made by Richer, who was sent by the Academy of Sciences, in 1672, to Cayenne. He there found that his clock, which had been regulated to mean time at Paris, went slower by a sensible quantity. This interesting observation showed that the weight of the pendulum was less at the equator than it had been at Paris; and hence the increase of the force of gravity in proceeding from the equator towards the pole, as shown theoretically by Newton, was completely established; and eonsequently also the oblateness of the earth at the poles, and its clevation at the equator, which are the consequence of this diminution.

If the earth were a perfect sphere, then all the degrees of the terrestrial meridian from the equator to the pole would be equal in length. But this will by no means he the case if the earth be a spheroid. For, supposing the earth to be an oblate spheroid (fig. 43.), of which the lesser axis is $\mathbf{P} \mathbf{P}$, that diameter of the earth which passes through $\mathbf{P} \mathbf{P}^{\prime}$ the poles. Let $\mathbf{E} \mathbf{Q}$ be any equatorial diameter, and EPQ P' a section of the earth, through the axis $\mathbf{P ~}^{\mathbf{P}}$, which will therefore be a terrestrial meridian. Because the direction of gravity is always in a line perpendicular to the carth's surface; at the poles and equator, the direction of gravity will pass through the centre. It will be otherwise, however, at any point, D, between the equator and poles; fur, by the nature of the ellipsc, a line, D \mathbf{F}, drawn perpendicular to the curve at \mathbf{D} will pass on one side of the centre. Now let us suppose that D F, H F , are two straight lines perpendicular to the earth's surface at \mathbf{D} ar. \mathbf{H}, which mect in F , and contnin an angle D F H, of one degrec; also let G K, L K, be other two lines perpendicular to the earth's surface at points nearer the pole; and suppose these also to contain an angle G K $\mathbf{I}_{\text {, }}$, of one degree. The elliptic arc D H, because of its smallness, may be considered as an are of a circle of which D F or H F is the radius; and similarly the elliptic arc G L may be considered as an arc of a circle whose radius is $\mathbf{G} \mathbf{K}$ or $\mathbf{L} \mathbf{K}$. The curvature of the ellipse is greatest at E , the extremity of the greater axis, and gradually decreases to P , the extremity of the lesser axis, where it is least. Hence the are D H will be more incurvated than G F; and since the angles at F and K are equal, each being one degree, the almost equal lines G K, L K, will be greater than the alnost equal lines D H, II F ; and the are G L must therefore be greater than the arc D H. Thus, if the earth is an oblate spheroid, a degree of the terrestrial meridian will, by actual measurement, be found to be least at the equator; and the degrees will gradually increase as we proceed towards either pole.

It is manifest that the case would be just the reverse if the earth were an oblong spheroid, generated by the rotation of an ellipsc on its greater axis EQ. Hence the important question, What is the figure of the terrestrial meridian? may be resolved by measuring arcs of the meridian in different latitudes.

None of the measurements before that begun by Picard were made with such accurary as to enable inathematicians to resolve the question. But it was then suppesed that this had been performed with such care as to afford the necessary datia. Such, however, appears not to have been the case. The degrees actually measured were found to be unequal; but, instead of increasing in going from south to north, the reverse was supposed to be the lact; and had this been really true, the polar axis would have been greater than the equatorial, -a conclusion quite in opposition to that derivable from the doctrine of centrifugal force.

To determine this most important question, the Academy of Sciences resolved that degrees of the meridian should be measured in various latitudes which might differ as much as possible; and it was determined that one party should be sent to the neighbourlood of the equator, and another to the polir circle. Two scientific expeditions were accordiugly undertaken. Maupertuis, Clairaut, Comnss, Lemonnier, and Outhier, went to Lapland, where the Swedish astronomer Cetsius joined them; and there they measured an arc of fifty-seven minutes of a degree, from which they concluded that a degree under the polar circle, viz. in lat. $66^{\circ} 20^{\prime}$, was 57,419 toises, that is, about 349 toises greater than that of Paris. This degree has been since remeasured with great care by Svanberg and other Swedish mathematicians, who found it to be 57,196 toises. This is 223 toises less than the determination of the French academicans; hut it is certainly more correct.
The other party, composed of Godin, Bouguer, and La Condaminc, performed a similar but more extensive operation in Peru. After ten years' labour, they, with the assistance of two Spanish officers, Don Jorge Juan and Antonio de Ulloa, accomplished the measurement of an are of about $3^{\circ} \mathbf{7}^{\prime}$. From this they concluded that the length of a degree was $\mathbf{5 6}, 758$ toisos, which was shorter than the French degree by 302 toises. These measurements set the question completely at rest. There could no longer be any doubt that the polar diameter of the earth was shorter than the equatorial.
The measurenent of differcnt degrees has been since performed many times in different
Vol. 1.
12*
S
countries; as again in France, and also at the Cape of Good Hope, by La Caille; in Italy, by Maire, Boscovich, anul Becearia; in Peunsylvania, by Mason nuil Dixon; in Hungary, by Liesganig; in India, by Lambton.

There have been, in addition to these, two admeasurements of ares of the merilian which deserve particular notice, on account of their extent, the excellence of the instruments employed, and the skill with which the operations have been conducted. We are indebted to the spirit of reform and inprovement which sprung out of the French revolution for one of these, and to the liberal and enlightened views of the English government for the other.

The great diversity in the units of a measure is an evil which has been long felt und complained of in every commetcina country. The French Constitutional Assembly took up this most important subject in the year 1790; and, at the suggestion of Talleyrand, it was decreed, that the king should request his Britannic majesty to engage the parliament of England to concur with the National Assembly in fixing a natural unit of weights and measures; that, under the auspiens of the two nutions, commissioners of the Acaderny of Seicnces, and an equal number of nembers of the Roysl Society of London, should determine the leagth of the pendulum in tie latitude of 45°, or other preferable latitude, and from this ileduce un invariable standard for all weights and measures.

The Academy named a commission, composed of Borda, Lagrange, Laplace, Monge, and Condorect, who gave a report, which is printed in the Memoirs of the Aeademy for 1788. Three different fundamental units were suggested in their report. The first is the pendulum which bents seconds in a given parallel. That of 45° was thought preferable to any other, because there the pendulum is a mean among all those which heat seconds in the different latitudes between the equator and the pole. They observed, however, that the pendulum contains a heterogeneous element, namely, time; and an arbitrary element, viz. the division of the day into 86,400 seconds. They, thereforc, consilered it to be less proper as a standard unit of lineal measure, than another which they regarded as unexceptionable. This is the length of a quadrant of the meridian, a linear magnitude of the sam- kind as the thing to be determined, and therefore more natural than the pendulum, whieh uvolved the consideration of time. There is yet another linear unit, namely, the circumterence of the earth's equator. But this is not better known than the elliptic meridian; nor does it admit of being determined with so much precision. On the whole, therefore, it was recemmendel that the quadrant of the meridian should be taken as the primary unit, and that its ten-millionth part (a lineal space about 39 . ${ }^{\frac{1}{7}}$ Enylish inches) should be the ordinary unit for the measurements which occur in the affairs of life. This was named a metre.

Although in the beginuing it had been proposed to invite the English philosophers to ussist in establishing n standard unit, yet, as the object to be attained could be accomplished perfectly by the French mathematicians, without any foreign aid, it was recommended to commence immediately the measurement of the arc of the meridian between Dunkirk end Bareelona, an extent of nearly $9 \frac{1}{2}$ degrees. The operations necessary for this labour were, 1. To deiermine the difference of latitude between Dunkirk and Barcelona; nnd, in general, to make such astronomical observations on the whole line as might be thought useful. 2. To measure ngain the bsses which had served for the measurement of the degree made at Paris, and the construction of the map of France. 3. To verify by new observations the series of triangles which had formerly been employed for the measurement of the meridian, and to prolong them to Barcelona. 4. To make, at the 45th degree, such observations as might determine the nunber of vibrations which a pendulum equal in length to one ten-millionth part of the meridian would make in a day, in a vacuum at the level of the sea, and at the temperature of melting ice, in order that, this number being once known, the metre might be determined at any time by the length of the pendulum. In this way the advantages of the two methods of forming a standard would be united. 5. To verify by new experiments the specific gravity of pure water in a vacuum, and at the temperature of water just begimuing to freeze. 6. And lastly, To reduce all the old measures of every kind employed in commerce to the new standards.
To accomplisu these objects, it was recommended that six distinet commissioners should be appointed. This was done by a deeree of the National Assembly, dated $26 t h$ March, 1791; only it wss thonght to be better to commit the astronomical and geoletical observations to a single commission. Immediately directions were given for the construction of the necessary instruments. Lenoir, a celebrated Freneh artist, was employed to make repeating cireles, long rules of platina for the measurement of the bases, and a sloorter rule; also, balls of platina and gold for the pendulum observations.

About the middle of the year 1792, Cassini and Borda began a series of experiments on the pendulum; and, in the following year, Lavoisier was engaged in experiments on the expansion of metals. And about the same time Mechain begin his operations for the determination of the portion of the meridian between Rodez amd Barcelona, an extent of 170,000 toises. Delambre had undertaken the protion of the are between Dmakirk and Rodez, : $3 \leqslant, 000$ toises in extent. This, however, had been twice measured before; and for this reason the labour was expectel to be less than was requisite for the other portion, which
was entirely new. Besides the privations nmd lariships, the ordinary nccompaniments of a service which requires those whu perform it to live in elevated situations, with little she Iter, with few of the comforts to which they have been accustomed, and exposed to the vicissitudes of heat and cold, and the intluence of the nocturnal dews, they had to encounter the porils arising from a disorganized state of society. Meehain was stopped in the neighbourhood of Paris; but when he pursued his labours at in distance from the capital, he met with no farther ioterruption; while Delambre, in the north of France, was otten exposed to the most imminent danger. In the heat of tho French revelution, the people were jeulous of what they did net understand; and the astronomers were at once exposed to the machinutions of their enemies at Paris, and to the brutality of the ignorant peasants in the provinces.
In the ceurse of their operations they measured two bases, on the accurate determination of which the utility of all their labours was to depend. One base, of 6075.9 toises, was measured by Delambre at Melun; and the other, of 6006.2478 toises, at Perpignan. The distance between them was 360,330 toises, about 436 English miles. They were connected by a chain of triangles, the sides and angles of which were all known; so that the length of one base being known, that of the other might be found by computation. It is a remarkable faet, that when the base of Perpignan was inferred by calculation from that of Melun, the result was found to be only ten or eleven inches less than that obtained by actual measurement. This striking agreement affords a strong presumptive proof of the accuracy with which the operations had been conducted.
The determination of the latitudes of the twe extremities of the are was also a matter of the utmest importance. The pains which the astronomers took to arrive at true results are almost incredible. Delambre made 800 observations to ascertain the true latitude of the Dunkirk extremity; and a corresponding degree of attention was bestowed on different interniediate points.
This most important undertaking was at last, after seven years' labour, brought to a conclusion in the year 1799. Although the result was, in its first application, to be directed to the establishment of a standard unit of lineul measure for the French nation, yet the advantages which may be deduced from it extended much farther, and were available to every nation enlightened by seience. For this reasen, the states living in peace with France had been invited to send eminent mathematieians and astronomers to assist in a rigorous examination of every step of the operation. The nstronomical and geodetical observations, in partieular, were subjected to the examination of Tralles, the deputy of the Helvetian republic; Van Swinden, the Batavian deputy ; and the two French philosophers Laplace and Legendre. They entered into all the details of the measurement of the bases; and they examined the three angles of every triangle, and determined their valucs. The calculations were then separately performed by four different persons-T'ralles, Van Swinden, Legendre, and Delambre; and this last astronomer calculated the length of the meridian by fonr different and independent methots ; and a report was made to the National Institute at Paris, in June 1799, in the nume of the Class of Physical and Mathematical Sciences, on the Measure of the Meridinn of France, and its Results.

The general faet, that the degrees of the meridian increase as we recede from the equator towards the pole, was again fully confirmed; so that the oblateness of the earth in the direction of the polar axis is a truth now placed beyend all controversy. Notwithstanding, however, the almost incredible care with which the operations were conducted, the exact quantity of this compression was still left in some uncertainty. The limits between which the true measure of the oblateness is contained are, hewever, narrower; and it is likely that the problem, What is the exnct proportion of the polar to the equatoriul axis? does not, from its nature, admit of a nearer approximation to the truth than has been already obtained.
If we could suppose the measurements of lines and angles to be perfectly cerrect, it would follow, thnt nlthough on the whole, taking considerable intervals, the length of arce of the ineridian corresponding to equal celestial arcs go on increasing from south to north, yet the law of the increase is irregular, and not that which ought to result from an exact elliptic meridian. The result of the measurement will be acen in the following table:-

	Lstiludes.			Inlervals.			Incervals in Toises.	Lenglh of a Degree.			$\begin{aligned} & \text { ande. } \\ & \text { ade. } \end{aligned}$	Arc of one Second.
	${ }^{\circ}$,		\bigcirc	,	$1{ }^{\prime \prime}$		Toises.		,		Toises
Dunkirk	48	50	0.29 49317		11	19,83	124944.8	57082.63		56	20.30	15.85f983
Evnix		10	42.54		${ }_{5}^{40}$	${ }_{88}^{683}$	159343.1	$55^{4089} .31$		30	45.91	15.859586
Carenssone	43	12	54.30		${ }_{51}^{57}$	48.0.4	16×8	56.977 .86		41		15.r27167
Montjory		21	44.96		51	0.34	305499.0	56946.68		17	19.60	15.818508

From this table we see that the length of a degree in the four mean latitudes goes on increasing. Also, from the column of mean lutitudes, and that of the length of a degree, it appears that a diminution of $2^{\circ} 25^{\prime} 43^{\prime \prime} .39$ in the first mean latitude corresponds to a diminution of 13.13 toises in the terrestrial meridiun: this gives 5.5 toises to a degree. Again, that a farther diminution of $\mathfrak{2}^{\circ} 4 \Psi^{\prime} 57^{\prime \prime} .54$ produces a diminution of 91.51 toises, which is at the rato of 32.4 toises to a degree. Lastly, that a thirt diminution of $\mathbf{2}^{\circ} 24^{\prime}$ $228^{\prime \prime} .77$ gives a diminution of 31.17 toises, which is at the rate of alout 12.9 toises to n degree. These changes of $5.5,32.4$, and 31.17 toises in the length of a degrce ingoing southward evidently do not follow a regular law, such as aloould result from a continuous increase of curvature. We may, therefore, reasonably suppose that all the observations have not been equally perlect, or that, in adlition to unavoidable crrors in the estimation of lines and angles, some disturbing cause must have operated: probably, an inequality of density, in the density of the strata over which the measurement was pertormed, may have had great influence in producing the irregularity.

The small discrepancies in the results of the observations must produce corresponding uncertainty in the determination of the great ebjects to be attained. On the whole, however, it was concluded that the length of the terrestrial meridian between the pole and the equator was $5,130,740$ toises; and hence the mètre, or ten-millionth part of the meridian, was .513074 of a toise, which is 443.295986 lines.

Another most important result, deducible from these observations, was the ratio of the polar axis of the earth to the equatorial axis. This must partake of the uncertainty of the data by which it is to be determined. We may, however, assume, without sensible error, that the equatorial axis is to the polar as 334 to 333 . The difference, therefore, of the semi-axes, compared with the equatorial radius, will be one part in 334 . The fraction $3 \frac{1}{5}-$ that is, the difference of the semi-axes divided by the equatorial radius,-is called the compression of the earth at the poles.

The astronomer Mechain had contemplated the extension of the measurement of the meridian beyond the limit at first proposed; but he did not live to carry his views into execution. However, the undertaking was resumed, after a cessation of three years, by Biot and Arago, French astronomers, with whum wero associated MM. Chaix and Rodriguez, Spaniards, all eminently distinguished for their talent and devotedness to the object to be aecomplished. By their exertions, a train of triangles was carried southward from the point where Mechain and Delambre had stopped, to Formentera, a small island near Ivica, in the Mediterranean. This is the southern limit of a most interesting labour: but, if ever European civilization extends into Africa, the measurement may be extended to Cape de Gata, and thence across the Mediterranean to the coast of Africa, and continued to the eity of Algiers, which is nearly in the meridian of Paris; so that in time the southern extremity may be actually carried to the summit of Mount Athas.

The other measurement of a considerable portion of the earth, to which we have alluded, was begun under the auspices and at the expense of the British government as long ago as the year 1784. At that time a memoir, drawn up by Cassini de Thury, was presented to the minister (Mr, Fox) by the French ambassador. It stated the alvantages which would accrue to geography and astronomy by determining the difference of longitude between the observatories of Greenwich and Paris, by means of a series of triangles from the former to Dunkirk, to which place the meridian of Paris had previously been extended. The proposal wns communicated to the Royal Society; and having been approved of, the execution was committed to general Roy. The first step was to measure a base, from the length of which the sides of all the triangles might be inferred; and a line rather more than five miles in length was traced out on Hounslow Heath, and measured with tho most scrupulous care. It may at first sight appear a very simple matter to measure a straight line on the ground; but if the utmost exactness is required, the operation must be performed with instruments constructed with the greatest ingenuity, and the application of much physical knowledge. Generally all solid bodies expand by heat, and contract by cold; and, moreover, some change their dimensions by moisture and dryness. To counteract or to estimate precisely these changes, so as to allow for them in the final result, is a matter of great difficulty, and only to be accomplished by infinite care and perseverance.
The measurement of the base was first undertaken with deal rods, twenty feet in length. These, however, were found to be much affected by the changes in the atmosphere from ineisture to dryness: they were therefore laid aside; and instead of them glass rods, of thsame length in frames, were employed. This substance was chasen, from a belief that it was less affected by changes of temperature than the metals. The measurement, which had been begu: about the middle of June, was completed in the end of Octoher; and it was found that the base measured exactly 27404.08 feet, or 5.19 miles.
The work in the field was not carried firther at that time: it was, ${ }^{\text {iowever, resumed in }}$ 1787. A theodolite of greater dimensions than had ever been employed in geodetical operations was constructed by the celebrated artist Ramsden. The scries of observations was legun at the base in the beginning of August, by Gencral Roy, assisted ly Isaac Dalby, an ution was of which miles in lous care. ground ; struments nowledge. ne change sely these , and oniy
in length. here from dids, of the ief that it ent, which and it was
sumed in ical operations was Dalby, an

Buon I.
FIGURE AND MAGNITUDE OF THE EARTH
excellent mathematician, and most veracions astronomical observer. After continuing to a eertain length, it was julged to be expedient to break otf, and proceed with the justruments to Dover. Λ series of observations was thero mide, in congmetion with the brench acndemicians Cassini, Mechain, and Legendre, by whieh the triangulation between I'aris and Dunkirk might be connected with that between Dover and Greenwich. As a check on the operations, a buse of verifiention was also measured on Romney Marsh; nal in this, instead of the ghass rohls, a steel chuin, constructed for tho purpose by Ramsien, was employed; it having been found by experience that there was no sensible ilifference in point of aecuracy between this and the glass rods, while the chain manifestly was more convenient. Afterwards, when tho two bases were connceted by calculating the sides of the triangles, it was found that tho measured base differed from its computed value by only twenty-cight inches, although Romney Marsh is more than sixty miles from Hounslow Heath. Ihe junction of the observatories of Greenwich and P'aris, by a series of triangles, was completed in 1788, and an account of the operations communicated to the Royal Society; but tho death of Gene. ral Roy again suspended the survey until the year 1791.

At this time, hy the exertions of the Duke of Richmond, Master-general of the Ordnance, the survey was resumed with great vigour. A new theodolite, and various other instruments, in addition to those formerly employed, were liberally supplied, and placed under the direction of Captain (afterwards Colonel) Mudge of the Royal Artillery, and Mr. Dalby. Beginning their labours by a re-measurement of the base on Hounslow Heath with steel chains, they found the difference between this and the former, in which glass rods were employed, to be no more thm two inches and three quarters. They also measured another base of verification, 36574.4 feet in length, on Salisbury Plain. When this was connected by a chain of triangles with the base on Hounslow Heath, and its length computed, the result did not differ more than an inclı from the actual measurement; a convincing proof of the accuracy with which all the operations had been conducted.

Although an accurate survey of the island was the main object for whieh all this labour was undertaken, yet, as its complete accomplishment requires a knowledge of the figure and dimensions of the earth, no opportunity of solving this grand problem is to be negleeted. The
 two stations of Beachy Head in Sussex, and Dunnose in the Isle of Wight, are visible from each other, and more than sixty-four miles asunder, nearly in a direetion from cast to west: their exaet distance was found by the geodetical operations to be 339397 feet. The az1muth, or bearing of the line between them with respeet to the meridian, also the latitude of Beachy IIead, were determined by astronomical observations. From these data the length of a degree perpendicular to the meridian was computed; and this, eompared with the length of a meridional degree in the same latitude, gave the proportion of the polar to the equatorial axis.

The result thus obtained, however, differed considerably from that oltained by meridional degrees. It has been found impossible to explain the want of agreement in a satisfactory way; and, for this reason, it has been thought better to rest the solution of the problem entirely on the measurement of degrees of the meridian in different latitudes, which, on the whole, give results more consistent with one another.

Without noticing in detail all the steps by which the survey has advanced, we shall next advert to the measurement of an are of the meridian between Dunnose, in the Isle of Wight, and Clifton, near Doneaster; the former in lat. $50^{\circ} 37^{\prime} 5^{\prime \prime}$, and the latter in $53^{\circ} 27^{\prime} 30^{\prime \prime}$. To accomplish this, the ingenuity of the artist Ramsden was again exereised in the construction of an instrument, a zenith sector, for finding the latitude of the different points of the are: this was almost the last work of a man to whose genius astronomy and geography are highly indebted; and it was superior to any thing of the kind ever before constructed.
To give the reader a distinct notion of this most important operation, we here present a sketch (fig. 44.) of the series of tringles, twenty-two in number, which connect the extrenue points together with the angles contained by the straight lines which join the different stations, and the length of their sides. The numbers marked on the diagrain indicate the names of the stations, by referring to the following table. The northern extremity of the base, Beacon Hill, or Clitton, is marked No. 3.; and the southern extremity, Dunnose, is 23 The names of the intermediate points may be seen in the table.

No, nf Trianglea.	Names of Etaliana.	Angles correctell for Calculation.	Divinnce.	Feet.
1.	Dintrer IIIII (\%) Dran Itill.	0 1 11 78 11 21.5 $4 N$ 4 31.75 35 $4: 1$ 6.75	From Dunnose in Hatmer llill. to Dean Itill	140580.4 $18: 4113.2$
2			Dean llill fram Ilitiner Ilill. Ilighelern	$15+122.1$ $14500+4.9$
3.		81 31 4.5 10 13 54.25 24 12 21.25	llither Inill from TInd Ilesal. Itighelire	$\begin{array}{r} 78905.7 \\ 14 * 0.11 .0 \\ \hline \end{array}$
4.		$440^{-} 15$ $4: 39014$ 1110.131	lighelere from Ilapalat Ileath Itind Iload	$\begin{array}{r} 149959.6 \\ 160972.8 \end{array}$
5.		5.5 39 25.5 16 10 17.75 78 17 17	Nonfelit Trom IIngshot Lleath IIighelere	$\begin{aligned} & 105321.2 \\ & 1200374 . \end{aligned}$
6.	WTitō llorae 119......... (17) Ilighelere. Nuffilil.	$6: 1$ 7 5.15 0.3 14 17 53 3.3 40.5	White llorm linlt from Nutfielil. IIIghelare	$\begin{array}{r} 190557.7 \\ 10 \mathrm{e} 413.1 \\ \hline \end{array}$
7.	White Herse Hill (17) Nuffielil. (10) IIrill. (15)	38 4 12.5 811 4 15 55 7 32.5	lirill frem White Ilorse Ilill.............. Nutheli	$\begin{array}{r} 146603.2 \\ 02804.5 \\ \hline \end{array}$
8.		50 1445 64 45 42.5 64 59 32.5	grow from White Iforge IHIII Brill	$\begin{aligned} & 1241355.6 \\ & 146321.3 \\ & \hline \end{aligned}$
9.		829 34 42.25 60 50 55 611 20 12.25		$\begin{gathered} 78938.2 \\ 182 n 140 \\ \hline \end{gathered}$
10.		34 29 57.5 85 0 17.5 60 35 45	Arbury Hill from Epwell. Brill.	$\begin{gathered} 8,0098.4 \\ 1+65350 \\ \hline \end{gathered}$
11.		86 57 5.5 54 45 18.25 3. 17 36.25	Corley from Arbury Hill Epwell.	$\begin{aligned} & 117408 \\ & 143 \mathrm{k} 47.8 \end{aligned}$

The distance of Butser Hill (22.) from Dunnose, 140580.4 feet, had been previously found, by a series of triangles connecting these stations with the bases measured on Hounslow Heath and Salishury Plain; but, for greater security against error, a new base of 26342.7 feet was measured on Misterton Carr, in tho northern part of Lincolnshire. From this the sides of the triangles procceding from the north to the south were computed, as exhibited int the remainder of the tablo.

No. nf Trianglea.	Numes of Etations.	Anglea corrected for Calculatlon.	Diatance.	Feet.
12.		011		
	Theneon Ifill. 3 (3)	204720	Beacon Ilill from	
	North end of Base (1)	601713	North end of Base.	64401.7
	South end of Brse (0)	095597	South end of Brec.	73:91.8
13.	Beacon Hill.(1)	344442	Gringley from	
	North end of Base 1)	744650	North enil nit Bese............	44338.2
	Gringley (4)	709862	Beacon IIIII	75068.0
14.				
	Gringlay.................. ${ }^{\text {(4) }}$ (2) gouth end of Base	$\begin{array}{rlr} 51 & 11 & 5 \\ 114 & 51 & 52 \end{array}$	Gringley from Beacon Ilill...	75068.2
15.	+ enthersidge (5)	184038	Ilealhersedge from	
	Ilepteon IİII. (3)	139118	Rencon Ilill	0927.9
	Gringley.................... (4)	23100	Gringley	1 151384.8
16.		784711	Ention Ashificld from	
		545235 46908	Gringley .	130399.7
	Gringley. (4)	469084	Ifentherselge.	11533989
17.				
	Heathersedge (5)	39 8 38 60 28 25	Ifeatherselga.	1610403
	Sutton Ashfield (6)	602225	Sintion Ashifeld.	73 cen 0.15
18.			Ilolinn Ilill from	
	Sulton Ashfield 0 (7	113497	Sutton Arhfield.	38375.2
	Orpll (7)	212722	Orpit .	05175.3
19.	Bardon Hill. ${ }^{(10)}$	425859	Bariton Jlill frnm	
	Ilollnn Ilill (8)	745937	IIollen Ilill.	124454.7
	Orpit (7)	62824	Orpis .	1230415.3
20.	Custle Rlog. Pr $^{(9)}$	553243	Cnstle Ring from	
	Bardon Hill. ${ }^{\text {a }}$ (0)	68243	Orpit .	159235.2
	Orpit..................... (7)	56 a 14	Bardon dill	1116717.8
21.	Corley(1)	72.3246	Corley from	
	Castle Ring................ ${ }^{(10)}$	475442	Bardon Hill	1063577.3
	Brarlon Jlill. (10)	593232	Casta Ring.	323539.7
22.	Arhury IIIII............... (12)	341433	Arhiry Hill from	
	Corley Bardon Ilill. (11)	1079014 382513	Bardon Hill Corley	$\begin{aligned} & 180490.0 \\ & 117457.1 \end{aligned}$

Book I.

FIGURE AND MAGNITUDE OF THE EARTH.
From the last triangle the diatance between Corloy and Arbury Hill comes out 117457.1 feet. This result has been found from the bnse on Misterton Carr: but the same distance, deduced from the bases on Hounslow Heath and Sulisbury l'lain, either of which is more than 150 miles distant from Misterton Carr, was found to be 117,463 feet, only six feet different. ILere we have a remarkable proof of the extreme accuracy with which the operations have been conducted; so that, from whatever canso any uncertainty in the conclusion sought may proceed, it can hardly be foond either in the want of perfection in tho instruments, or of care in those who used them.
L'y olservations on the pole star, the exact bearing of Butser IIill from Dunnoso (that is, the azinwth or angle which the line joining them makes with the meridian,) was found: and by like observations the bearing of the station at Gringley from Cliton was deternined. By these data, and by the known lengths of the sides of the triangles, tho portions of the meridian intercepted by perpendiculars on it from the stations was obtuined. Their sum gave $1,036,337$ feet for the meridional distance en the surface of the earth, between Dunnose and Clifton. Moreover, by the zenith sector, the are of the celestial meridian between them was found to be $2^{3} 50^{\prime} 23^{\prime \prime} .38$, or 2.8303 of differcuce of latitude. The length of the measured are of the meridian, viz. $1,030,357$ feet, divided by this number, gives 364,033 feet, or 6082 fathoms for the length of a dogree is the parallel midway between Dunnose and Clifton, which is $50^{\circ} 2^{\prime} 20^{\prime \prime}$.

In tho same way that the length of a degree, at the midalo point between Clition and Dunnose, was determined, the length of degrees at other intermediate points was fuund. The latitude of the station at Arbury flill was carefully observed with the sector. The latitude of Greenwich was well known; and that of Blenheim, an observatory belonging to the Duke of Marlborough, had been detormined from five years' observations. The two observatories were assumed as stations, in addition to those in the meridional chain of triangles, and their position in respect of the others was found.

By comparing the colestial with the terrestrial aree, the length of degrees in various parallels was determined, as in the following table:-

This tablo prosents a singular deviation from the common rule; for, instead of tho degrees increasing as we proceed from north to south, they appenr to decrcase, as if the earth were an oblong instead of an oblate spheroid. The oblateness of the earth at the poles is, however, a fact so well established by more extensive measurements, that we must suppose either that some error has been committed in the observations, $-a$ thing, however, not probable; or else, what is more probable, that by inequality in the density of the strata. producing a local attraction, the plumb-line of the sector has suffered a deflection at some of the stations.
Notwithstanding the discrepancy of the results of the measurements in this particular arc, the length of a degree at the middle station (viz. lat. $52^{\circ} \mathbf{2}^{\prime} 20^{\prime \prime}$) agrees very well with the measurements of the meridian in France and other places. Indeed, the measurements of the small ares of the meridian in other countries have presented similar anomalies, although in general not so remarkable. It is, therefore, only by comparison of the measures of extensive arcs at considerable intervals that we can arrive at certain conclusions. The British survey has now been extended from the southern parts of the island to Unst, the northernmost of the Shetland Islands. At present the engincer officers who carried it on are employed in the survey of Ireland; but we may expect that at no remote period they will resume the British survey, and supply the observations still wanting. When this in done, and the complete triangulation is published, it will then appear how far local attriction may have disturbed the plummet in passing over the variety of rocks throughout the island.
Although the compression of the earth be small, yet an exact knowledge of its quantity is of great importance, because of the deductions which are to be mode from it. It has been explained, that the direction of a plumb-line is always perpendicular to the enrth' surface; therefore, and because of the continual change of curvature of the meridian in going from north to south, the direction of gravity can only pass through the carth's centrm at the poles and equator. Thus it appears that there is a necessary connexion between the form of the earth and terrestrial gravity; so that the small variations in the latter, which are owing to the deviations from the exact spherical figure, being known, that deviation itself may be determined.

If the earth were sphencal and homogenona, the attruction of ita masa upon difforent puints of its murtice, or the lioree which bolicits every particle of matter at its mirfuce towards the centre, would be evorywhere the saume. Bat the elliptio form prohuces a mall deviation from this equality, which hacreasem in going from the efpator towarls the polea, as the eqpare of the sine of the latitute; and this wonkl be true even if the earth were as rest: but, by its revelution almot its shorter axis, there is produced a centrifugal force, which acts in a direction perpendicular to that axis, and therefiore diminishes the foreo of gravity mort of all at the equator, beeanso there the two forees act in contrary directions, At the polle its direction is perpendicular to the direction of gravity, and produces no effect.
By the mited operation of these two causes, in going froun the equator towards the poles, is prodeced a variation in tho degree of quicknexs of descent of a heavy budy, which increases as the sipuare of the sine of the latitude.
The oscillations of a pendulun affird a simple means of verifying this fact. The increase of weight in a lienvy body,-thut in, the force of gravity in proceeding frem the equator to the poles, - will be indicated hy a dimination of the time in which an invariable pendulum performs a vibration. Accordingly the pendulum has been employel to determine the figure of the earth; and the reselis obtained have been fennd to accord perfectly with the geodetieal measurements which we he ve described.
The Britivh and French governments have both instituted observations on the pendulum. Tho latter, on the reconmendation of tho Academy of Sciences, directed that the intensity of the furce of gravity should be determined at different points of tho are of the meridian between Dunkirk and Formentera; and committed the Jabour to MM. Biot, Arago, Mathieu, Bhavard, and Chaix: subsequontly, Biot extended his observations to the northern extremity of the British islauls. These operations were begun in the year 1807. At a somewhat later period tho British govermment, with the assistanco of the Royal Society, employed Captain Kater, an eminent observer and experimenter, in tho same labour; and also sent Captain Subine, a British artillery officer, with invariable pendulums, to tho equator on the one luand, and the highest accessible latitudes of the northern hemisplicre on the other. It was expected that, by thus mulciplying tho places of observation, the combination of results would destroy the irregular influences of local density, and give tha true variations of the firee of gravity, which are owing to the earth'y ellipticity. From E . mean of all the observations male by tho British and French experimenters, it was found Hat the compression or ell.pticity of the earth was about gat or gatios Lnplace had provienisly concluded, from the conblined measurements of terrestrial degroes and pendulum experiments, and the lunar inequalities dependent en tho figure of the earth, that the same important element was 3hing. There is a uliflereuce between the two conelusions; but, on the whole, all the results which havo been ohtained are compreiended within limits which may be deemed moderate, considering the difficulty of the inquiry.
The following tables exhibit numorical values of the magnitudes of the degrees of latitude and longitude, and their proportion to each other.
The first is from a valable collection of astronomical tables and formule by F. Baily, Las., President of the Astronomical Society of Lonion. It shows the longth of a degree of latitude and longitude on the enrth's surface, assuming the compression to bo $\frac{3}{3}$ an , together with tho length of the pendulum beating seconds there, supposing the compression to bo zon, the mensures at the equator being considered as unity; also tho increase in the number of vibrations of an invariable pendulum beating seconds at the equator on proceeding towards the pole. This merely shows the relative values of the quantities therein stisted.
Tho second and third tables aro from Mendoza's Tables for Navigation and Nautical Astronony. And the fourth is from the very valuable Introduction to Practica, Astronomy by Dr. Pearson, where it is stated to be compated from a Formula given by Lieut.-Col. lambton in the Asiatic Rescarches, vol, xii.
The tables are constructed from different values of the earth's compression at the poles. 'The uncertainty of this important element, in all questions of geography and astronomy, is an inconvenience which cannot yet be got rid of.
In Tables II. nnil III., the dimensions of the degrees of latitude and longitude are given in inimutes of the equator. To change these into feet or fathoms, we must know the number of them in a degree of the equator.
Accorling to I'uissunt and Svanberg, the equatorial degree, or 60 geographical miles, is mi0, 47 futhoms.
Cagnoli has assumed $=\mathbf{6 0 , 8 9 3}$ futhoms.
Lieut.-Col. Lambton reckoned it to be 60,857 fathoms.
General Mudge concluded it to ho $60,81,5$ fathons.
Mr. Baily, as an ac 'nmpaniment to his table ('Table I.), assumes tho equatorial diameter of the earth to be 7924 iniles, and the polar $=7916$ miles. A degree of longitade at the equator will, on this supposition, be 69, 15 miles, $=60,552$ fathoms, $=305,110$ feet : so one second of time, or fifteen seconds of a degree of longitude, will be 1521 feet.
'Table IV. gives the measure of each degree of hatitule and longitude in fathoms.

Dook I.
FH:CM: AN゙ Magntrede: of THE EARTH.

Compresmion $=$ ana			Comprossion $=$ si\%.	
Lat.	Thearce of Jang inulte.	Itrgren of Larlitude.	Tength if the	Incrvare of Vibrailone
$\stackrel{\square}{0}$	1.00000	1.000000	100000	" 0.
5	0.996	1.00007a	1.00004	1.77
10	.98431	1.000301	1.100116	7.02
15	. 96614	1.000669	1.001036	18.60
20	9.11006	1.001168	1.100069	27.24
25	.90183	1.001783	1,00096	41.59
30	. 86675	1.012 .196	1.00135	58.91
35	. 82005	1.0031884	1.01177	78.60
40	. 76710	1.004125	1.00223	96.21
45	. 70388	1.004992	1.00269	116.49
50	. 61404	1.005858	1.00316	138.64
55	.57.18.5	1.006699	1.00362	156.25
60	. 50126	1.007487	1.00404	174.63
65	. 42377	1.008900	1.00443	191.26
70	.3430:	1.008815	1,00476	205.61
75	35960	1.009315	1.00503	217.25
80	. 17491	1.009682	1.00523	225.82
85	. 08764	1.009907	1.00535	231.08
90	.00000	1.009983	1.00539	232.85

The Measure of a Degree of Longitude, on each Parallel of Latitudo in Minutes of the Equator, on the Sphere and Spheroid. Compression $={ }_{5} \frac{1}{2} \cdot$.

Par, of	Degree on the sphere	Deafee in the Splierold.	Par. uf Lat.	Degree on the Bphere.	Degree on the Epheriold.	$\begin{aligned} & \text { Par. } \\ & \text { wid } \end{aligned}$	Degreo on the Ephere.	Degree on tho Epherold.
0	'	1	0	1	,	-	,	1
0	60.000	60.000	30	51.962	52,002	60	30.000	30.070
1	59,991	59.991	31	51.430	51.473	61	29.089	29.158
2	53.963	50.964	32	50.883	50.927	62	28.168	28.237
3	59.918	59.918	33	50.320	50,367	63	27.239	27.307
4	59.804	59.855	34	49.742	49.791	64	26.302	26.369
5	59.772	59.773	35	49.149	40.199	65	25.357	25.422
6	59.671	59.673	36	48.541	48.593	60	$2.4 .40 \cdot 4$	24.468
7	59.553	59.556	37	47.918	47.972	67	23.444	23.506
8	59.416	59.420	38	47.281	47,336	68	22.476	22,537
9	59.261	59.206	39	46.699	46.686	63	21.502	21.562
10	59,088	59.094	40	45.963	46.022	70	20.521	20.578
11	58.898	50.904	41	45.283	45.313	71	19.534	19.589
12	58.689	58.687	42	44.1889	44.651	72	18.541	18.593
13	58.462	58.471	43	43.881	43.945	73	17.542	17.592
14	58.218	58.228	44	43.160	43.225	74	16.538	16.586
15	57.956	57.963	45	42.126	42.493	75	15.529	15.574
16	57.676	57.689	46	41.680	41.747	76	14.515	14.558
17	57.378	57.394	47.	40.920	40.988	77	13.497	13.537
18	57.063	57.080	48	40.148	40.217	78	12.475	12.512
19	56.731	56.750	49	39.364	39.434	79	11.449	11.483
20	56,382	56.402	50	38.567	38.638	80	10.419	10.450
21	56,015	56.037	51	37.759	37.831	81	9.386	9.414
22	55.631	55.665	52	30.940	37.011	82	8.350	8.376
23	55.230	55.257	53	36.109	36.181	83	7.312	7.335
24	64.813	54.841	54	35.267	35.339	84	6.272	6.292
25	54.378	54,403	55	34.415	34.487	85	5.229	6. 246
26	53.928	53.960	56	33.552	33.624	86	4.185	4.193
27	53.460	53.495	57	32.678	32.750	87	3.140	3.149
28	59.997	53.013	58	31.795	31.866	88	2.094	2.100
29	5:.477	52.002	59	30.902	30.973	89	1.047	1.050
30	51.962	52.002	60	30.000	30.070	90	0.000	0.000

Tiamik I.

Table II.

Vol. I.
se in tho
oceeding
itsted.
Nautical
tronomy
eut. Col.
ne poles.
nomy, is
ro given
number
miles, is

Table III．
The Mensures of different Ares of the Meridian in the Spleroid from the Equator to the Pole； abil also the respective Degrees of Latitude in Minutes of the Equator．Contpres． mion $=5 \frac{1}{3 T}$ ．

0	，		0			－	1	－
II	0.000	59.623	30	1700.302	59.772	60	3517.515	60．051
1	5	59.1031	31	1850.074	50．781	61	$3{ }^{3647.51046}$	（6）． 053
y	1116.257 178.467	50.630	3	1909.255	59．769	62 03	3707.625 3767.602	61．065
4	Que．518	59.631	3	2029．442	${ }_{59.707}^{59.718}$	4	31827． 7.67	61.005
0	（9nder 150	50.1634	35	20049.249	59.816	$6{ }^{6}$	3887.849	10．040
11	0.737 .74 .4	51.1030	338	${ }^{2149.0055}$	59.833	${ }_{6}^{60}$	${ }^{3947.4389}$	16i． 0107
7	417．420 477.058	50.63 x	37 38	2208．841	50.835	${ }_{6}^{67}$	4006．036	110.104
0	Б：Н1．0ヶ\％	59.641	39	2348.570	59.844	60	4128.501	00.111
111	696． 343			2389.424			4188.368	
11	（135．50， 6	59.647	41	2448.287	59.863	\％	4248.492	c0．124
14	715.441	59．651	42	250 CH 160	59．873	72	4，308．622	600130
$1:$	778．8910		43	2568.043	59．883	73	4：318， 757	0.135
14	${ }^{\text {cila }}$	59.663	44	2027.936	50.902	34	$442 \mathrm{~N}, 818$	60.140
13	\％ 114,01018		45	${ }^{2687.838}$	59.012	75	4481.044	（60．151
117	1154.2468	59.673	40 48	2747.750 2807.672	53， 212	76	454．1935	（00． 15.5
${ }_{4}$	11771．1123	59.679	48	2867，603	59.031	－8	4668.510	60.160
19	1133．323：	59.62	49	2927．544	50.941	79	4720．674	C0．164
ys	11，33014		50	2987.495		10	4789．841	
91	1852.711	59．763	51	3047455	59.960 59076	81	4 450．012	60.131
$4:$	1312．414	59.710	52	316\％． 25	59,976 59.979	82	4910.126	60.15
49	1372．124		53	3167.404		2：3	4970.3688	60．179
4	143184	59.20	54	$3 \mathrm{3M27.393}$	510.418	84	50330.541	（i）． 181
ys_{5}	1491.565		5	32287.381		8	5014.782	60.182
	1351.847	50.739	${ }_{5}^{56}$	3347.31818	60.010	816	51589.104	60.184
47 98	1611.036 1070783 18083	59，747	588	3467.414 3667.431	G000035	${ }_{48}^{8}$	5271.1273	60.185
（4）	17：31．588	59.755	59	3597.478	60034	89	53×1.458	60145
20	1746．312	59.76	60	3854.615	101．042	16	5：191． 1644	60.186

Table IV．
The Measure of caeh Degree of Latitude and of a Degrce of Longitude in each Parallel of

lat． ＂11 Lul，	Degree af tnilitude in Falloms．	Degree of Longitude in Fathoms．	Par． of Lat．	Degrce of Latitule in Fathons．	Degree of Longitule in Fathams．	Par． nf Lat．	Degree of Latitule in Fathoms．	Degree of Longitule in Fathoms．
7	60.58 .0	C0857．1	8	606．07． 1	52\％46．9	${ }_{6}{ }_{6}$	comoc． 6	
1	（fil） 5 s .8	10，0247．8	31	60616．5	5×217.0	61	（in915．7	－ 2155048
y	［if1599．8	tinkelu． 2	3	600以	511457.2	$6{ }^{\text {c }}$	C0¢54．5	geliain．e
：1	1i0460．3	（6）774．2	33	600：35．2	$511+8.6$	18	（10）：331． 1	273100.6
1	161461.5	｜in700．8	34	60644．8	51.504 .5	iH	60941．4	Qfiturs
0	76．44ti3．2		35	60654.5	491．44． 9	6.5	G09P49， 6	257×8.7
1	600415．1	60.525 .8	30	60064． 4	40， 130.2	46	coisisis	24×20.7
7	604675	601108.4	37	geabisil	4810	67	tiokes 3	23845.0
H	（30）70．${ }^{\text {a }}$		88	Cuxis． 4	48015.5	$6 \mathrm{in}^{2}$	60962.7	92981．．1
11	101732	60112．6	39	60694.6	47355.2	69	609790.8	21ど1．\％
	（0476．5	59032 c .1	40	（107\％）4． 8		5	comein 7	90\％74．8
11	Cifili 3	50746.1	41	60715.1	45594.2	\％	cory 3.4	1！1271．4
14	4：04－1．3	593.35 .6	12	60745.4	459920	72	G0999．7	$1 \mathrm{~W} \mathbf{8 1} 1.8$
11	¢0484． 7	59307.1	$4: 1$	60735．${ }^{\text {ch }}$	44.506 .0	73	1i100． 7	1740．4
14	60403．4	59 MWO	44	607411.3	43×40.2	74	$\mathrm{CiPO}_{11.5}$	1600．4．
15	\％ill 49 H 4	เ¢\％74． 1	4.5	cotsit 7	431103.0	75	111016．8	157\％ 19.3
11	46803.8	5×514.1	46	660767.2	42.46 .6	76	${ }^{611(t) x 20}$	1474i8． 2
17	filminct 4	5×214.2	47	60777.11	41577.3	77	（1） 10×6.7	137：2． 6
$1 \begin{gathered}19 \\ 19\end{gathered}$	tinis． 4	5	48	60780	40795.1	${ }_{7}$	611831.2 61915.2	129692.7
	100．21．0	57511.4	49	607， 0.4	40100.5	79	610：3．3	11644.9
4	\％in．ope 2	5ramer	${ }^{511}$	C0F02． 7	3×1193.5	${ }_{8}^{0}$	61839.1	1 miOLCL 4
Cl	（10） 535.0	566389.9	51	CIIP19．0	$3 \mathrm{Pr174.5}$	81	610425	！0，50．7
4	（81571．0	514451.18	532	Cumen	37\％．4．7	8	611045．， 6	8497.0
：1	1017．419．4	58047.2	53	Gu830．3	$33: 01.1$	83	（13048，3	7440.6
4	（ilis．ion	${ }_{5}^{5515195.8}$	54	$\mathrm{COHP}_{4} 9.3$	：15\％47．4	81	${ }^{(110) 50.7}$	6.380
（41）		55157.5 54739.4	5	6ibe9．3	34183.1 311011	${ }_{4}^{85}$	611052.7 61054	5881.4
${ }_{4}$	4：10ik1．2	54210．13	57		33.2×1.5	87	（11055，．6）	3195.5
\＄4	mamen 7	53772．4	58	C．0， 0 Pr 2	32945.5	88	011055	2130.9
\％）	n0090 4		59	600417．5	31419.4	8	61057.1	10xis． 3
\％il	coroti 4	52746.9	60	C0900．0．19	30503.5	10	61057， 2	0000.0

CHAPTER XX

determination of latitude and longitude.

Tueae are three important problems in geography which require for their solution the doctrines of astronomy. The first requires to find the direction of the merddian at any point of the earth's surfuce; the second, to find the latitude of any place; and the third, to find the longitude.

Pronlem I.-To determine the Meridian, or to draw a Meridian Liue.

This problem, like many others in practical astronomy, admits of a comparativery easy solution, if no great degree of accuracy is required; but to obtain a very accurate result, much care, and instruments of the most perfect construction, are indispensable.
The general principle of the solution is the fact, that the celestinl bodies which do not sensibly clange their declination in the course of a day, have the same apparent altitude at equal intervals of time before and after passing the meridian: also, that their altitude is greatest or least when in the plane of the meridian; that is, when they are due south or due north.
About the time of the summer and winter solstice, the sun changes his declination very little in the course of a day: and hence it happens that the shadow of an upright rod or nnomon is almost exactly of the same length when the sun is at equal distances from the meribian. To determine the position of the meridian, then, let a number of concentric circles be described on a horizontal plane, and let a wire or rod be placed directly over their common centre, and perpendicular to the plane; and, the sun shining on the plane, let the two points in which the extremity of the shadow of the wire crosses each circle be exactly notel. 'Then, through any point of the plane which is at equal distances, from each pair of intersections draw a straight line through the centre of the circle; and this will be in the plane of the meridian, or will be a meridian line. It is easy to see that one circle, and one pair of intersections of the path of the extremity of the shadow and the circle, would be sufficient: but several circles will fulfil the object with greater accuracy and more certainty; because a mean position of the meridian line may be found among all the results; and bosides, one of a pair, or both, may be lost by clouds intercepting the light of the sun.
The imperfection of this method of finding the meridian arises from the indistinctness of the termination of the shadow of the upright wire, and from the change of the sun's deelination between the observations. There is, however, another as simple and exact as can be expected, without the assistance of a telescope. It is known that the pole star and the star Alioth, or ε of the Great Bear, pass the meridian within about nine minutes of each other. If, therefore, ve suspend two phmmets by threads to the ends of a rod which turns horizontally on a pivot, and by muving the rod, keep the two plumb-lines exactly between the eye and Alioth when near the meridian, then, at the moment when the pole star is also seen along the two plumb-lines, the two stars and the plumb-lines will be all nearly in the plane of the meridian. To keep the plumb-lines steady in the vertical plane, the plummets may hang in vessels filled with water.
If we could determine the position of a star when its altitude is greatest or least, we would then have a point of the heavens in the plane of the meridian: hut that position cannot be found with certainty, because the change of altitude is imperceptible to a sensible distance on each site of the meridian.

The exact determination of the meridian requires the aid of the telescope, a well-regulated clock, and an instrument for determining the altitude of the sun or a star: Iladley's sextant, or a reflecting circle, are the proper instrument:s for this purpose. By the sextant we can determine two instants of time when the star has the sume altitude; the clock will give the interval of time between them: and half this interval will be the time between each observation and the passage of the etar over the meridian. If we next day note the time hy the clock when the star again attains that altitude, and add to that time the above-mentioned half interval, we shall have the time by the clock when the star will be on the meridian. If' at that instant a telescope, moveable in a vertical plane, be directed to the star, so that in passing the ineridian the star may be in the axis of the telescope, the position of the plane of the ineridinn will be obtained: and if the telescope be fixed to a horizontal axis which is perpendicular to that plane, it will have a vertical motion in the plane of the meridian, and will be what is called a transit instrument. By this instrument the exact instant when any celestial phenomenon is on the meridian is known. It is, thercfore, one of the most essential instruments in an observatory.
In a variable climate, it may happen that the observations necessary to determine the meribian may be interrupted by clondy weather. This, however, is an inconvenience to which all astronomical observations are liable. It must also be observed, that a single set of olservations will not give so perfect a reenlt as a considerable number of sets, from which a mean may be deduced.

If the celestial object change its position otherwise than by the diurnal motions of the earth, as happens when it is the sun, still the problem may be resolved, as has been explained, by making allowance for the change of position, by applying the principles of spherical trigonometry to the laws of the motion.

Problem Il.-To determine the Latitude.

In treating of the doctrine of the sphere, it has been already shown that the distance of the pole of the world (that is, the point of the heavens about which all the stars turn) from the horizon of any place is equal to its latitude. Now, in the coursc of twenty-four hours, every star passes the meridian twice, at equal distances from the pole, and on opposite sides of it. When the star passes the meridian below the pole,-that is, between the pole and the horizon,-its altitude is the least possible; and when it crosses the meridian above the pole, or between the pole and the south part of the horizon, its distance from the north point of the horizon will be the greatest possible. lf, therefore, with a suitable instrument, (a quadrant for instance,) wo take the star's altitude when it is least, and also when it is greatest, and correct these for refraction, it is manifest that half their sum will be the latitude of the place where the observations were made.

We have supposed the star to pass the meridian between the pole and the zenith, and then its greatest altitude will be its distance from the north point of the horizon: but it may pass to the south of the zenith, and then its altitude, reckoned from the south, must be subtracted from 180° to get its distance from the north point of the horizon; and half the sum of the two distances, as before, will be the latitude.

Any one star that never sets, the pole star for instance, will serve to determine the latitude: but it will be proper, if circumstances allow, to observe various stars, and the mean of all the observations may be expected to be more correct than a single pair.

If, instead of the greatest and least altitudes of a star, its greatest and least distances from the zenith be found, then half their sum will be the complement of the latitude; that is, the difference between the latitude and ninety degrees.

For example, by observations made on the pole star at the Dublin Observatory. ${ }^{\circ}$. found that

When the latitude of one place is known, the latitude of another place may be found by observing with a quadrant, or other suitable instrument, the zenith distances of any star at both places. The difference of these zenith distances, when corrected for refraction, will bo the difference of latitude of the two places.

Thus, for example, to determine the difference betwcen the latitudes of Greenwich $\mathbf{O b}$ servatory and Dunnose in the Isle of Wight, it was found that

The navigator has daily occasion to determine his latitude at sea. For this purpose, he finds the sun's zenith distance, or its altitude at noon, by Hadley's sextant. The Nautical Almanac gives him the sun's declination, or distance from the equator at the time he makes his observation: the sum or difference of these is his latitude, according as the ship and the sun are on the same or opposite sides of the equator.
Ex. On July 24, 1783, at a place in longitude $54^{\circ}\left(3^{\star} 36^{m}\right)$ west of Grcenwich, the altitude of the sun's lower limb, when elcared from refraction and parallax, was observed by a sextant to be $59^{\circ} 15^{\prime} 30^{\prime \prime}$. By the Nautical Almanac, the sun's semidiameter was $15^{\prime} 43^{\prime \prime}$, and his declination at the time of noon in that longitude $19^{\circ} 51^{\prime} \mathrm{N}$. The calculation for the latitude will stand thus:-

The navigator cannot always obtain an observation of the sun or a star when on the meridian. He may, however, be able to observe two latitudss out of the meridian, and the interval of time between them. W/ith these data, snd the aid of spherical trigonometry and the Nantical Almanac, he may find hus latitule by rules given by writers on navigation and astronomy. It is, in general, by one or other of these methods that the recorded latitudes of all places have been obtained, and arranged in a table for the use of the geographer and marvigator.

Problem III.-To determine the Longitude.

The interval of time between two successive passages of the sun over the meridian of any place is twenty-four hours. If, therefore, we suppose a number of meridians to be drawn at equal intervals,-that is, to form suceeseively with each other equal angles at the poles,then, in the course of twenty-four houre, esch of these meridians (supposing their planes produced) will pass through the sun. Therefore twenty-four hours of mean solar time will correspond to 360 degrees of longitude; for the whole scale of longitude must be contained between the eastern and western sides of the meridian at the same place. At places situated on the meridian opposite that on which the sun was at 0^{h}, or, in civil reckoning, at 12 at noon, the time would be 12^{h}, or 12 at night; and 12^{h} would correspond to 180 degrees of longitude. At places situated on the meridian at right angles to the former, the time would be 6^{h} or $18^{\text {h }}$, or, in civil reckoning, six in the morning or six in the evening; and, accordingly, six hours and eighteen hours of mean solar time will correspond to 90° or 270° of longitude ; and so on for intermediate meridisns.
The selection of a meridian, from which the longitude is to be reckoned, is entirely arbitrary. The English take the meridisn passing through Greenwich Observatory for the first meridian, and reekon its longitude to be 0° or 0^{b}. The first meridian of the French is that which passes through the observatory of Paris. An interval of $9^{m} 21^{\prime}$ elapses between the passages of the sun over the meridians of Paris and Greenwich: the longitude of Paris Observatory : therefore, by English geographers, accounted to be $\boldsymbol{9}^{\mathbf{m}} 2 \mathbf{1 '}^{\prime}$ east in time; or in degrees, \mathfrak{z}^{0} : $\mathbf{1 5}^{\prime \prime}$.

Since it if. instant, it $\because \quad$ a hour past noon, or 1^{h}, at all places on the meridian 15° to the east of that of Gree. $v^{\prime \prime}$, and two hours past noon, or 2^{h}, at all places on the meridian 30° east from that of lireenwich; and so on. On the other hand, it will want an hour to noon, or will be 11^{h}, at all places on the meridian 15° west from that of Greenwieh; and it will be two hours before noon, or 10^{h}, at places on the meridian 30° west from that of Greenwich; and so on, reckoning an hour, or sixty ininutes of time, to correspond to fifteen degrees, and four minutes of time to one degree.

Since it appears that all places on the same meridian have noon, or any assumed hour, at the same instant, and that the instant of noon is different at places on different meridians,being earlier or later on meridians having west longitude, sceording as they are nearer to or farther from the first meridian, and the reverse on meridians having east longitude; and moreover, that the difference between the time of noon on two meridians is proportional to the difference of their longitude, and therefore a measure of that difference; it follows that if, knowing the hour of the day at any place, we can at the same instant by any means know the hour at a place on any other meridian, then we can determine the difference of longitude between the meridians: for it will be the difference between the times of the day, as estimatel on the two merilians, reckoned in hours, minutes, \&c.; snd this may be converted into degrees, minutes, and seconds, by reckoning fifteen degrees to an hour, and proportionally for minutes and seconds of time.

The practical methods of determining the longitude are the following:-

1. By a Chrononeter or Time-keeper.

Let us suppose that a traveller leparts from any place, (St. Paul's, London, for example, and carries with him a watch regulated to mean solar time, and which indicates 12^{n} at the instant of mean noon at london: then, supposing the watch to go with perfect regularity, if he go to bilinburch, and compare the estimated solar time there with that shown by his wateh, he will find that they differ by twelves minutes twenty-one seconds; so that when it is $12^{\prime \prime}$ at 'ilinhurgh Observatory, it will be $12^{\mathrm{h}} 12^{\prime \prime} 21^{\prime}$ by his watch. IIe may therefore conelude, that the difference of longitude between Lonion and Edinburgh is $12^{\mathrm{m}} 21^{\prime \prime}$ west; and since St. Paul's is twenty-three seconds of time west from Greenwich, the longitule of Edinhurgh Olservatory is $12^{\prime \prime} 44^{\circ}$ west, which corresponds to $3^{\circ} 11^{\prime}$. If, leaving London, he lad qone to Paris, he would there have foumd the estimated time to be $9 \mathrm{~m} 44^{\prime \prime}$ earlier than that shown by his watch: henee the difference between the meridinns of Iondon and I'aris is $9^{\prime \prime} 44^{\prime \prime}$, and the longitude of Paris (from Gre enwich) $9^{m} 21^{\prime \prime}$ enst.

In the same way the navigator at sea may determine his longitnde by a grood chrononeter. He can deturaine the hour of the day by the sun's altitude, and the principles of spherical
trigonometry. Or he may take equal altitudes, noting the times; the middle point of time between them will be the instant of noon, as shown by the watch: he must, however, make a correction for the change of the sun's declination, and the distance run by the ship in the interval. Supposing now the chronometer to have been set to the true time at the port from whence he suiled, and to have gone uniformly with a small known daily acceleration ot retardatiou, called its rate ; this correction being applied, he will liave the time at the port corresponding to his observed time of neon, and their difference will be the longitude of the ship eastward or westward from the meridian whence she sailed.
The longitude of any point on the earth, either at sea or on land, may be deternined by a good chronometer; in the latter case, however, the jolting it must suffer by carriage will disturb its motion, and render the result sought uncertain. At sea, the mode of transport is not so liable to sudden jerks; and, therefore, the ehronometer may be expected to go with more regularity. If several be employed, considerable aceuracy may be obtained. The Board of Admiralty sent ten or twelve chronometers from Greenwich to Falmouth, and thence in a yessel to Madeira, and in this way determined the longitude of Funchal from a mean of their results.

The facility of this mode of determining the longitude makes perfection in the construction of chronemeters an object of high importance in a maritime nation like Britain. It was, therefore, for many years encouraged by acts of parliament offering ligh rewards for prescribed degrees of excellence. These, however, are now repealed; but the government has not lost sight of this important subject.

2. The Longitude by Eelipses of Jupiter's Satellites.

If a celestial phenomenon can be seen at the same absolute instant of time in two different places of the earth, this appearance gives the means of determining the difference of their longitudes; for if the phenomenon be seen at both places, and the times, according to their reckoning, be noted, it is manifest that their difference will be the difference of longitude, in time, of the two places.

Now the eclipses of Jupiter's moons are phenemena of this kind. They may be seen, ulmost at the same instant, everywhere in the hemisphere in which Jupiter is visible: and such is the perfection of astrenomy, that the times at which they will happen can be predicted with considerable accuracy. These are computed according to Greenwich time, and published, along with various other matters, in the Nautical Almanac, several years before they happen, for the benefit of travellers. This method of finding the longitude can, however, only be applied on land; for at sea the rolling of the ship makes it next to impossible to direct a telescope so steadily to Jupiter as to view the eclipse of a satellite.

Example--Suppose an immersion of the first satellite should be observed at the Cape of Good Hope, April 16, 1805, at $13^{\mathrm{n}} 25^{\mathrm{m}} 35^{\mathrm{n}}$ mean time; the predieted time given by the Ephemeris being $12^{\mathrm{h}} 12^{\mathrm{m}} 2^{\prime}$ at Greenwich. Here the difference is $1^{\mathrm{h}} 13^{\mathrm{m}} 33^{\prime}$; whence the longitude of the Cape should be $18^{\circ} 23^{\prime} 15^{\prime \prime}$ east of Greenwich.
In this example, the ebserved time at the Cape is compared with the cemputed time of the eclipse at Greenwich. If, instead of this, the observed time at Greenwich had been used, greater necuracy might have been expected.

This method is casy, and therefore much practised; but it is liable to uncertainty: for two observers in the same room, but using different telescopes, will sometimes differ in noting the time of an eclipse of the first satellite by as much as fifteen or twenty seconds. Delambre thinks thnt the time of an eclipse of the fourth satellite may be doubtful to the amount of four minutes.

3. Longitude by an Eclipse of the Moon.

An eelipse of the moon has exactly the same appearance, at the same instant, wherever seen; but it is impossible to be quite sure, by observation, of the exact time of their beginning or end, because of the penumbra which bounds the earth's shadow. The results to be obtained from them are therefore uncertain, to perhaps two minutes of time; and therefore only to be regurded as appreximations to the truth.

Fxumple. An eclipse of the moon was observed Aug. 28. 1729, by the astrenomer Cassini at P'aris, and by Mr. Stephenson at Barbadoes.

$$
\begin{aligned}
& \text { At Paris, Imm.) - } 12^{\text {h }} 19^{\mathrm{nn}} 12^{\circ} \\
& \text { At Barbadoes, Imm.) }
\end{aligned}
$$

By the mean of the two, the difference of longitude is $4^{4} 8^{\mathrm{m}} 6^{\circ} 5$; that is, Barbadocs is $62^{\circ} 1^{\prime} 30^{\prime \prime}$ west of l'aris.

4. Longitude by Lunar Distances, or by Occultations of Stars by the Moon.

The moon is, of all the celestial bodies, the most convenient for determining the longitude, because of the greater quickness of her apparent motion among the stars. She makea the complete circuit of the lieavens in $27^{4} 7^{4} 43^{\prime \prime \prime} 4: .7$ (this is her mean sidereal revelution): thercfore she changea her place among the stars more than half a degree, or her own apparent diameter, in an hour; so that in two minutes of time she passes over one minute of a degree. This, or even its half, is quite a measurable quantity by a good sextant.

By the theory of the moon's motion, her place among the stars is known at any time that is, knowing the time of the day at Greenwich, the placn of the moon is known; and, on the other hand, kn ving the place of the moon, the time at Greenwich is known. The Nautical Almanac giv the distance of the moon's centre from the sun, and some of the brighter stars, as it would be seen from the carth's centre, for cvery third hour of the day, Greenwich time. If, therefere, the Almanac show that the moon, considered as seen from the carth's centre, will be 10° frem a certain fixed star at six o'clock in the evening at Grcenwich; and we make an observation at a distant place, and find that the moon's distance from the same star, reduced by computation to what it would be if seen at the earth's centre, is 10°, we immediately conclude that at that instant it is six 0^{\prime} clock at Greenwich. Thua the moon, with the brighter fixed stars near her path, serve the purpose of a chronometer.

To determine the longitude in this way, one ebserver measurea the moon's distance from the sun or a bright star (one of those in the Ephemeris); anothcr observer at the same time finds the altitudes of the moon and star; and a third should observe the exact time by a chronometer or good watch at which the obscrvations were made. These observatiens, corrected for refraction, give data for finding what weuld be the apparent place of the moon in the heavens, if it could be scen from the centre of the earth at that time. The Nautical Almanac enables the observer to find the hour at Greenwich, when the position of the moon in the heavens was such as he observed it, and the interval between the Greenwich time and his own gives him his longitude.
This method of finding the lengitude is commenly practised in the service of the East Indis Company, and in the navy. By it the longitude may be generally known to within twenty miles, and very often much nearer. This, although less accurate than the latitude, is yet an invaluable acquisition to the navigator. Λ striking proof how much it may be depended on has been given by a distinguished navigater (Capt. Basil Hall, R. N.). Afer a veyage of 8000 miles, occupying eighty-nine days, he srrived off Rio de Jsneiro, hsving passed through the Pacific Ocean, rounded Cape Horn, and crossed the South Atlantic, without making any land. When within a week's sail of Rio, he set about determining, by lunar observatiens, the ship's course and place at a determinate mement; and having found this, within from five to ten miles, he trusted to the ordinary and more compendious way of finding his position, such as is used in short trips, for the remainder of his voyage. When he arrived within fifteen or twenty miles of the const (accerding to lis estimation), he heve to at four in the merning, waiting for day-break. He then proceeded, although the weather was hazy; but about eight it become so foggy that he did not like to stand in farther. The fog suddenly cleared off, and then he had the satisfaction to see the Great Sugar-loaf Rock, wluch stands on one side of the harbour, so nearly right a-hesd, that he had not to alter his course above a point in order to hit the entrance of Rio.

Oecultations of stars by the moon acrve exactly the same purpose as a distance of the moon from a star: these, however, are not so generally observed at sca as on land. They give ihe distance of the moon from the star with almost perfect accuracy, and therefore are an excellent method of determining the longitude. When an oceultation has been observed, we can, by the lunar tables or the Nautical Almanac, which is a species of lunar and solar tables, compute the distance between the centre of the moon and star as it would appear at the earth's centre at the moment the occultation was observed, provided we know the longitude of the place where the observation was made: but this longitude is the veiy thing we want; therefore we cannot proceed by a direet process. However, we may know the longitude nearly by some other means; an celipse of one of Jupiter's satellites, for example. With this, as if it were the true lengitude, we may ealculate the apparent distance between the star and centre of the moon reduced to the earth's centrent the time the occultation was seer. If the longitude had been correctly assumed, this would have been exsetly the moon's semidismeter; but it will differ more or less, aecording to the magnitude of the error we have made in the assumed longitude. There will, however, be sueh a determinate comexion between the error of the longitude and the difference between the moon's semidiameter and computed distance of the star and moon's centre, that the one will be deducible from the other by calculation. In this way, then, the error may be estimated, and a nearer approximation to the longitude obtained; and a repetition of the proces. will give a still more correct result.

5. Longitude by the Transit of the Monn over the Meridian.

Let \mathbf{T} be the time by the clock when the moon is observed on the meridian of any place, t the time of transit of a known fixed star, $24+x$ the interval between two successive transits of the same star: then $24+x: T-t:: 360^{\circ}$: difference of right ascension of the moon and star at the instant the moon was on the meridian; to which adding the known right ascension of the star, the right ascension (A) of the moon when on the meridian is determined. Now the moon's right ascension when on the meridian of Greenwich is given in the Nautical Almanac for every day of the year, from whence the daily increment of her right ascension may be determined: let, therefore, a be the moon's right ascension when en the meridian of Greenwich, E the increment of right ascension in the time between two successive transits over the same meridian; then, considering the change of right ascension as uniform,

$\mathrm{E}: \boldsymbol{a}-\mathrm{A}:: 360^{\circ}$: the required longitude.

6. Longitude by Signals.

The most accurate way of determining small differences of longitude is by signals made on the earth's surface. A moket fired from an elevated spot on a clear night may be seen distinctly with a telescope at the distance of twenty or thirty miles: therefore, by observing the times at which the same explosion is seen at two places, the difference of longitudn of the places may be found.
The same method will apply to places at any distance, if they be connected by a chain of stations sufficiently near to each other to admit of a rocket to be seen from every two adjoining stations. The difference of longitude between Greenwich and Paris was determined in 1825 in this way. Rockets were exploled at Wrotham, and seen simultaneously at Greenwich and Fairlight Down: also at Ia Canche on the French coast, which were seen at Fairlight and Ligniers; and at Mont Javoult, which were observed at Ligniers and Paris.
In the same way the difference of longitule between Geneva and Milan has been determined by signals inade by illumination on the tops of intermedinte mountains.
The intensely brilliant light whici Lientenant Drummond, of the Roynl Engineers, has proposed for light-houses, and which is producel by placing a ball of lime, about the size of a pea, in a flame supported by oxygen gns, may be employed in determining differences of longitude. We believe that, in favourable weather, this light exhibited on the top of Ben Lomond may be seen at the same time at Edinburgh and in Ireland: indeed, we know that it has actually been seen in the north of Ireland. Here, then, we have the means of deter mining with great exactness the difference between the longitude of Dublin and Edinburgh.

7. Longitude by Triangulation.

The trigonometrical survey of Britain has determined the longitude of all the principal points on the coast, as well ns the mountains and cities in the interior, particularly in Eng. land. At present the survey is suspended in Britain, but is going on in Ireland. When this is completed, the British survey will doubtless be resumed, and the georraphy of the northern part of the island made as perfect in its minute details as the sonthern, which, from its proximity to the continent, is more necessary to be known in preparing plans of national defence.

CHAPTER XXI.

REPRESENTATION OF THE EARTL.

The most natural and correct representation which can be given of the geographical divisions of the earth's surflace is that which is made on a sphere or globe. In this way the differont countries may be truly delineated, so as to exhibit perfectly to the eye their relative position, their magnitule, and boundaries; and by such a representation of the earth, all the problems in geography may be resolved with elegance and facility.

But although the surfece of a solid having the exact figure of the earth, or differing but little from it, afforls in theory the most complete and the only perfect representation of any considerable tract of country, yet there is a limit in practice to this precious advantage. Λ globe of a molerate size serves very well to give a distinct notion of the figure, the magnitude, the position, and general features of the great continents and islands: hat the largest glohe that can conveniently be ennstructed is insufficient for minute details; and then we must have recourse to the more simple, although less perfeet, representations of Maps.
It is impossible to represent on a plane a large extent of the carti's surfice, so that the distances of places in the plave map shall have to cach other precisely the same proportion as their distances on the globe. To obviate this diflieulty, gengraphers have had recourse to diflerent mothods of represeating portions of the glohe on a plane.

When ohy of the rn, whicb

Booz I.
REPRESENTATION OF THE EARTII.
By one method the cointries are represented by the rules of perspective, as they would appear to an eye that should view them on the surface of a sphere from a given point. The different positions which may be assumed for the point from which the sphere is viewed give rise to different projections, which all answer very well when the surface to be represented is of small extent, and the point of view, or projecting point, is nearly over its centre. However, when the surface is of great extent, a whole hemisplere for instance, those places which lie near the border of tho projection are in them all much distorted.
Accorling to another method, the spherical surface to be represented is supposed to be a cone whose vertex is somewhere in the polar axis produced, and its curved surfucs either touches the sphere at the middle parallel of the map, or falls within the sphere at the middle parallel, and withent it at the extreme parallels. The surfuce of tho cone is then supposed to be extended into a plane. This way of censtructing maps is called the method of development.

There are other mathematical hypotheses according to which maps are delineated, and one in particular by which marine charts are constructed. In this, the parallels of latitude and circles of lengitude are all represented by straight lines (that is, a line making always the same angle with the meridian), and the course of a ship sailing always on the same rhemb is also a straight line. A representation of the earth in this way is cemmenly called Mercator's chart, although the invention is duo to un English mathematician, Edward Wright. Charts of this censtruction are of great importance in navigation.

I. construction of mape by projection.

There are two projections of the sphere by which portions of its surface may be truly delineated by the rules of perspective: the cr cogapime and the stereogaphic. In each, the plane on which the projection is made is called the plane of projection.

1. orthographig projection.

To project any point in space orthograpb:sally on a plane, a perpendicular is to be drawn from the point on the plane and the bottom of the perpendicular; that is, the point in which it mects the plane is the orthographic projection of the point.

The orthographic projection of a line of any kind on a plane is found by supposing perpendiculars to be drawn from every point in the line, and that line on the plane which passes through the bottom of all the perpendiculars in the orthographic projection of the proposed line.

It is easy to see that the orthographic projection of a straight line must be a straight line, because the perpendiculars drawn from every point in it to the plane of projection will all lie in a plane, and the common section of two planes is a straight line. It is also apparent that the projection of a rectilineal figure will be a rectilineal figure.

If a circle be parallel to the plane of projection, its orthographic projection or representation will be a circle: for the perpendiculars supposed to be drawn from every point in the circle to the plane of projection will all be on the curve surface of a eylinder, and they may be considered as constituting that surface. The circle and its projection will be the topand bottom of the cylinder; and since they are parallel, they will be alike and equal.
If the plane in which a circle lies be perpendicular to the plane of projection, its projection will manifestly be a straight line, which will be equal in length to the diameter; and the projection of any arc reckoned from the extremities of the diameter will be projected into its versed sine; also the complement of the are, or what it wants of ninety degrees, will be projected into its sine.

But if a circle be in a plane which is neither parallel nor perpendicular to the plane of projection, then its projection will neither be a circle nor a straight line; it will be an oval figure. The boumding line will be in ellipse, a curve formed by cutting a cylinder by a plane oblique to its axis; and it is also one of the conic sections.

An exact notion may be formed $\mathrm{c}^{\boldsymbol{c}}$ the orthographic projection of any line or figure by holding it in the light of the sun, and observing its shadow formed on a plane which is perpendicular to the directivn r : the solar rays. The rays which pass close to the figure are the perpendiculars to the plane, and the shadow is the projection of the figure.
The plans and sections by which artificers execute different constructions are no other than orthographic projections of the things to be constructed; with these all workmen are familiar.
The orthographic projection of any object,-the terrestriul globe, for example,-with all its circles, and the continents and islands on its surface, is nearly the representation or picture which an artist would delineate on a plane surface, if he meant to represent the globe at a great distance from the eye; and it is exactly the appearance which the globe would have, supposing an eye could view it at an infinite distance.
From the nature of this projection, it appears that the orthographic representation of half the surfice of the globe will show nearly the true figure and proportions of coumtries about the middle; that is, directly opposite to the supposed position of the eye: but, towards the Vol. I.
extremities of the map, the graphic representations of places will imperfectly exhibit their true figure and position. For this reason it is seldom employed in geography, although its use is frequent in astronemy.

(A.) 'I'o project the Sphere orthographically on the Plane of the Equator.

About any point, C, as a centre (fig. 45), with any radius, C A, describe a circle B A 90
 to represent the equator. Draw two diameters, A C 180, B C 90 , perpendicular to each other: these will be the projectiens of meridians distant 90° frem each other, and C will be the projection of the pole.
Divide each quadrant into six equal parts, and let A 15, 1530 be two of these; draw diameters threugh 15 and 30 , and these will be the projections of meridians 15° and 30° from AC 180; and, in this way, meridians dividing the equator into twenty-fenr equal parts may be represented. Of these, any one, C A, may be assumed as the first meridian.
To project the parallels of latitude: divide A B, one of the quadrants, into nine equal parts; let 80, 70,60 be the three of these points of division adjoining to B: draw perpendiculars from these, and all the other points on the radius A C meeting it in 80, 70, 60, \&c. About C as a centre at the distances $\mathrm{C} 80, \mathrm{C} 70, \mathrm{C} 60, \& \mathrm{c}$. describe circles, and these will be the projections of parallels of latitude at the distance of ten degrees.
The polur circles and tropics may be tound by laying off an are of $23 \frac{1}{2}^{\circ}$ from A tewards B, and from B towards A, and drawing perpendiculars from the points thus determined on C A, circles described about C, through the bottoms of the perpendieulars, will be the projections of the polar eirele and tropic. In this way, the projection may be completed.

It is easy to sec that the regions within the polar cirele may be represented by this projection so as to give a tolerable notion of their position and magnitade, judging by the eye; but that the appearance of the equatorial regions will be altogether distorted.
(B.) To project the Spherc orthographically on the Plane of the Meridian.

Describe any circle, NESQ (fig. 46.), to represent the meridian, and draw two diame-
 ters, ECQ, NC S, perpendicular to each other; the former may be taken as the projection of the equator, and then the latter will represent a meridian 90° from the meridian N E S.
To represent other meridians: divide a quadrant $\mathbf{S} \mathbf{E}$ into six equal parts, as at $15,30, \& \mathbf{c}$; from 20 these points of division draw perpendiculars $15 a$, $030 b$, \&c. on E Q. Describe ellipses N a S, N $b \mathrm{~S}$, having a common transverse axis $\mathbf{N} \mathbf{S}$, and the lines $\mathbf{C} \boldsymbol{a}, \mathbf{C} b, \& e$ for their semiconjugate axes; and these will be the projections of meridians which pass through every fifteenth degree of the equator. Or, by dividing ES into nine equal parts, they may be made to pass through every tenth degrec.

For the parallels of latitude: divide the quadrants $\mathbf{E N}, \mathbf{N} \mathbf{Q}$ each into nine equal parts at $10,20,30$, \&c.; join the corresponding numbers by straight ines, and these will be the projections of parallels of latitude at distances of $10^{\circ}, 20^{\circ}, 30^{\circ}$, \&c. from the equator. The tropies and polar cireles are to be drawn in the same way; the former at $23 \frac{1}{2}^{\circ}$ on each side of the equator, and the latter $23 \frac{1}{2}^{\circ}$ from the poles.

In this projection, the polar regions, and all places near the meridian NESSQ, are very much distorted in appearance to the eye: it is only towarls the centre that there is any considerable resemblance of a projected portion of the earth's surface to its appearance on a globe.

2. atereooraphic projection.

In the stercographic projection, the eye is supposed to be situated at a point in the surface of the sphere, and the plane on which the projection is to be made is the plane of that great circle, which is everywhere 90° distant from the position of the eye: hence it must be evi-
dent that the eye can see only the inside or concave surlince; however, we may suppose the sphero to bo transparent, and its various circlen, and the islamis, continents, \&c. delineated on its surliace th be seen through it. If we now conceivef lino to be drawn from the eye to any point on the concave surfice, the point in which that line cuts tho plane of projection will be the projection of the point on the epherical surface.

To illustrate what has been said, let E A C B (fig. 47.) be a great cirelo of the sphere,
 $p^{\boldsymbol{q}} \boldsymbol{r}^{8}$ a plane passing through its centre, and perpendicular to the plane of the great circle; let CE be a diameter of the sphere perpendicular to the plane; then azsuming p q $\boldsymbol{r} \boldsymbol{s}$ as the plane of projection, E , one end of that diuncter, may be taken as the place of the eye or projecting point. If, now, straight lines E A, E B, $\mathrm{E} C, \mathrm{E}$, , \&c. be drawn to $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, any points on the surface of the sphere, the points $a, b, c, d, \& c$. in which these lines meet the plane $p r$, will be the projections of the corresponding points on tho surface of the sphere. Let ADB be any circle of the zphere: conceivo a straight line to be drawn from F, the place of the eye, to D, any point in the circumference. If D, the end of this line, be now carried round the circle, supposing it always to pass through the fixed point F, the line will genereto the surface of a cone whose base is the circle, and vertex the place of the eye; and ti.e curve line adb, which is the common section of the plane $p r$, and the surface of the one will be the projection of the circle.

It will now be sufficiently obvious,

1. That evcry circle which passes through the eye will be projected into or represt. 'ed by a straight line on the plane of projection.
2. That every circle whose pilane is parallel to the plane of the circle will br: projected into a circle.

These two properties hold truo wherever the eye be situated. The assumption; however, that it is in the surthee of the sphere gives rise to geometrical properties which are peculiar to this projection, and which by their simplicity and elegance give it great value.
One geometrical property is this: whatever be the position of the circle ADB (or base of the cone) on the surface of the sphere, the portion of the cone between the projecting point E and the plane of projection $p r$ is always similar to the whole cone. If the plane of the base be parallel to the plane of projection, the truth of this proposition is obvions; but writers on geometry prove, that when it is oblique, still the cones whose bases are AD B und adb, and common vertex E, are similar ; only they have contrary positions. From the similarity of the wholo cone to the part cut off, it follows that,
3. In the stercographical projection of the sphere, the representation of any circle that does not pass through the eye will always be a cirole.
There is another proposition demonstrated by writers on spherical geometry which is of great importance in this projection; viz. if two straight lines be drawn from any point on the surface of the sphere to touch it in that point, their representation on the plane of projection will contain an angle exactly equal to the angle contained by the lines themselves. Since straight lines touching the surface of a sphere at any point may be regarded as tangents to any circles of the sphere passing through that point, we have this other remarkable property:-
4. The angle male on the surface of the sphere by two circles which cut each other, and the angle made by circles which are their representations, are in all cases equal.

This projection is extremely convonient in practice, because a circle may be easily describel when three points in its circumference are given, or when two points and its radius are known; also, the property of lines making angles at their intersection on the surface of the sphere equal to those formed by their projections, is of great value in the representation of the surface of the sphere of a plane. Moreover, the contraction of the map towards the extremities of an hemisphere is not so great as in the orthographical projection; on all these accounts, the stereographical projection deserves a preference.

Supposing E to be the projecting point, or place of the eye, und $p r$ the plane of projection, let \mathbf{C} be the point of the sphere opposite to E , and therefore 90° overywhere from the circle, which is the common section of the sphere and plane of projection; it is evident that any are, $A C$, of a great circle passing through C and E will be projected intos straight line $n c$: now this line is manifestly the tangent of the angle $\mathbf{A} \mathrm{E} \mathrm{C}$ to the radius $\mathrm{E} c$, and the measure of this ungle is half the are A C.
5. IIence it follows, that if a great circle pass through the projecting point, any arc of that circle, reckoned from the opposite point of the sphere, is projected into a straight line nassing through the centre, and equal to the tangent of that arc.
(A) To project the Sphere stereographically on the Plane of the Equator.

Describe a circle, ABD (fig. 48.), to represent the equator, and draw any diameter
 A C D and a rulius C 1 Berpendicuine to A D. Suppowing now that the parallels of latitudo to every tenth degree are to le represonted in the map, divide $\mathbf{A} \mathbf{B}$, a quadrant of the circle, in:to nine cqual purte, as at the points 10, 20, 30, \&c. and draw straight lines from the points of division to \mathbf{D}, the extremity of the diameter A C II, meeting the radius IB C in the points $10,20,30$, \&ce. Then, about the centre \mathbf{C} describe circles to pass through the points $10,20,30, \& \mathrm{c}$, and these will represent the parallels of $10,20,30,8 \mathrm{cc}$. degrees of latitude. In this way, all the parallels of latitude may be found, as also the tropic and polar circle, by laying off arcs of $23_{\frac{1}{2}}{ }^{\circ}$ and 66_{3}^{10} from B towards A.
Next divide the circumference of the circle into into 24 equil parts, und draw radii from the centre .o the points of division. These will ropresent the meridians which differ in longitude by one hour.
(B) To project the Sphere stereographically on the Plane of a Meridian.

Describe any circle N QSE (fig. 49.), to represent the meridian on which the projection is to be made; which should be so chosen as to include
 nearly one of the continents,-the castern, for instance: this will be accomplished if N E S be the meridian 20° west from London. Draw the diameter N C S, which will represent the meridian that passes through the projecting point, and therefore is perpendicular to the plane of projection. Then \mathbf{N} will represent the north, and $\$$ the south pole; draw another diameter, E C Q, which will represent the equator.
Since, by the nature of the projection, all the meridians will be represented by circles which pass through the poles N, S, it will be sufficient if we deterinine the points in which they cut the equator: we shall suppose the meridians to pass through every tenth degree of longitude: the points where they cut the equitor will be found by dividing one of the quadrantal arcs, $\mathbf{N} \mathbf{Q}$, into nine equal parts, as at $10,20,30, \& c$., and draving straight lines from S to the points of division, meeting $C \mathbf{Q}$ in $1,2,3, \& c$. Then, a circle described through the points $N 1 \mathbf{S}$ will represent the meridian which cuts the equator 11° from \mathbf{Q}, and a circle through $N 2 S$ will be the meridian that cuts the oquator 20° from \mathbf{Q}. The remaining meridians N 3 S , \&c. will be determined exactly in the same way; and it appears from the construction, that the contres of the circles will be in the diameter $E Q$ and its prolongation, and their distances from the centre will be the tangenta of $10^{\circ}, 20^{\circ}, 8 c$.; viz. the inclination of the circles to the plane of the primitive; also, that their radii will be the secants of the same inclinations.

To describe the parallels of latitude, divide the four quadrants each into nine equal parts, as at $80,70,60$, \&c., and draw straight lines from E , one end of the diameter EQ , to the points of division, meeting $N S$ in $8,7,6, \& c$. Then circles described through $80,8,80$; $\mathbf{7 0}, 7,70$, \&c., will represent the parallels of $80^{\circ}, 70^{\circ}$, \&c. The centres of all the circles will be in the line $\mathbf{N} \mathbf{S}$, and distant from it by the secants of the distances of the parallels from the pole: also, the radii will be the tangents of the same distances. The polar circles and tropics being described by the same rules at the distances $23 \frac{1}{2}^{\circ}$ and 661° from the poles, the projection will be completed.
(C.) To project the Sphere stereographically on the Plane of the Horizon for a given Latitude.
In this projection, the eye is supposed to be in the nadir of the place for which the projection is made.
On C (fig. 50.) and C (fig. 51.) as centres with any radius, describe circles W N E S, W'N'E'S', of which fig. 50 . is to be the primitive or horizon; tho other, fig. 51 ., is to serve for determining the position of the circles to be described on fig. 50. Draw the diameters N S, W E, N'S', W'E' in both circles perpendicular to one another; then N S in fig. 50. wil! be the projection of the meridian, and W E the projection of the circle passing through
the cast and west points of the horizon and the zenith,-that is, the prime vertical; \mathbf{N} will be the nerth point of the horizon, $\$$ the south, and \mathbf{E} and \mathbf{W} the cast and west poins.

Make the arc $N^{\prime} \mathbf{P}^{\prime}$, or the angle $N^{\prime} \mathbf{C P}^{\prime}$, fig. 51 ., equal to the latitude of the place; join $W^{\prime} P^{\prime}$ cutting $C N^{\prime}$ in P; make $C P$ in fig. 50. equal to $C P$ in fig. 51., and P, fig. 50., will be the projection of the north pole. Draw the diameter EQ, fig. 51., perpendicular to $\mathbf{P}^{\prime} \mathbf{C} \boldsymbol{p}^{\prime}$; join $\mathbf{W}^{\prime} \mathbf{Q}^{\prime}$ mecting $\mathbf{C} \mathbf{S}^{\prime}$ in \mathbf{Q}^{\prime}. Take C Q, fig. 50., equal to $\mathbf{C} \mathbf{Q}^{\prime}$, fig. 51.; describe a circle through tho points $\mathbf{W}, \mathbf{Q}, \mathbf{E}$, and the are W Q E will represent the equntor. Next, to project the parallels of latitude, - for example, those which are 40° and 20° from tho polo, -from P^{\prime}, fig. $51 .$, take $\mathrm{P}^{\prime} 40$ and $\mathrm{P}^{\prime} 40$, each arcs of 40° on opposito sides of P^{\prime}; also, $\mathrm{P}^{\prime} 20, \mathrm{P}^{\prime} 20$, nres of 20°. Join $\mathrm{W}^{\prime} 40, \mathrm{~W}^{\prime} 40$, meeting $\mathrm{C}^{\prime} \mathrm{N}^{\prime}$ in m and n; also $\mathrm{W}^{\prime} 20$, $\mathbf{W}^{\prime} 20$, meeting $\mathrm{C}^{\prime} \mathrm{N}^{\prime}$ in r and s. In N C S, fig. 50 ., take $\mathbf{C} m, \mathbf{C} n, \mathrm{C} r, \mathrm{C} s$, equal to $\mathbf{C} m$, $\mathrm{C} n, \mathrm{C} r, \mathrm{C} s, f i g .51$. ; describe circles on $m, r s$ as diameters, and these will be projections of parallels of latitude at the distances of 40° and 20° from tho pole. In this way may all tho parallels, also the tropics and polar circle, be projected.

To project the meridiun: in fig, 51 . draw $\mathbf{S}^{\prime} \mathbf{B}$ perpendicular to $\mathrm{N}^{\prime} \mathbf{S}^{\prime}$, meeting $\mathrm{P}^{\prime} p$ produced in B; tako C A, fig. 50 ., equal to $\mathbf{S}^{\prime} \mathbf{B}$, fig. 51., and through Λ draw a perpendicular to C A. Let us suppose that the meridians are to make with each other angles of 15° : nt P , in the line $\mathrm{P} \Lambda$, draw P 15 and P^{15} on each side of $\mathrm{P} A$, making angles with it of 15°; and, in like manner, P 30, P 30, making angles of 30°, and so on to angles of 75°. On A, as a centre, describe a circle to pass through P; this will pass through W and E, and will be the projection of the six o'clock hour cirele in the heavens, or that meridian on the globe that is perpendicular to the meridian of the place for which the projection is made. On the points 15,15 describe ares $a \mathbf{P} a^{\prime}, a \mathbf{P} a^{\prime}$ to pass through P , and meet the projection of the horizon in $a, a^{\prime} ; a, a^{\prime}$; and in like manner on 30,30 as centres describe the arcs $b \mathrm{P} b^{\prime}, \boldsymbol{b} \mathbf{P} b^{\prime}, \& c$, all passing through P : these will be the projections of meridians on the terrestrial sphere, or of hour circles on the celestial sphere. In this way, the projection may be completed.

3. alobular projection.

In the orthographic projection, equal portions of the carth's spherical surface are represcated by unequal plane surfaces; and the deviation from aquality in tho surface to be represented, and its plane representation, increases from the centre to the circumference of the projection.
The same is true of the stereographic projection, but with this difference, that the distortion in the representation of the figure of any portion of the spherical surfices proceeds in a contrary direction: in the former ease, the degrees of longitudo and latitude are gradually contracted from the centre to the circumference; but in the latter, they are enlarged.
In the stereographic projection, the projecting point, or point of view, is the pole of the circle on which the projection is made; and in the orthographic, it may be supposed in the axis, nud at a very great, or rathc. mdefinitely great, distance. It is this change of position of the point of view that produces the change in the direction in which the degrees of latitude or longitude are contracted. Hence it may be supposed, that, by taking n point of view at some finite distance greater than the radius of the sphere, a perspective representation will be obtained, in which the degrees in the representation will be nenrly equal, and the deviation from equality in the representation of equal portions of the spherical surfhce in some measure corrected.
Vol. I.

Let A I) B (fiy. 62.) be a nection of the uphere by a plane presing through E, the point of view, and C the centre; draw the diameter $\Gamma \mathrm{D}$ to pawh through F , and draw A C It perpendicular to D F Since the wholo quadrant A F in to be projected into the radius $\mathbf{A C}$, it it be powible to make he reprementations of equal portions of it nenrly equal, its halves A K und K Frmay be assumed an represented by A II and H C, halves of the radius: therefore, a line drawn from K to E must bisect the radius in 1I. 'This determines D) E, the dis. tance of the projecting point, to be equal to $\mathbf{K} \mathbf{G}$, a perpendicular from the middle of the quadrant.
To prove this geometrical proposition, draw $\boldsymbol{A} \dot{F}$ and KC intersecting in I , and join II I. Then \mathbf{A}
 is parallel to $\mathbf{C H}$: hence, K I:IC:: K $\mathrm{H}_{1} \mathrm{HE}:$: G C: CE. Now, $\mathrm{Kl}=\mathrm{FG}$ and $\mathrm{IC}=\mathbf{C} \mathbf{C}$; thore-
 $\mathbf{C}^{\mathbf{H}}=\mathrm{K} \quad \mathbf{G}^{\mathbf{n}}=\mathrm{F} \mathbf{G} \cdot \mathbf{G} \mathbf{D}$; thereforo $\mathbf{C} \mathrm{E}=\mathbf{G} \mathrm{J}$, and, taking awny the line C D commen to both, D E is equal to $\mathbf{C} \mathbf{G}$ or to $\mathrm{K} \mathbf{G}$.
Hence it appears that the alistance $D \mathbf{E}$ is the sine of $\mathbf{4 5} 5^{\circ}$; and therefure nearly 71 of such parts as the radius C A contains IOM). Thia projection was first suggested by M. Delahire, und is now commonly called the Globular projection. If we suppose the quadrant A F divided into ten equal purts, then the projections of the arcs of θ°, reckoning from F^{\prime} to $A_{\text {, }}$ will be as in this tuble, in which the radius $\mathbf{C} \mathbf{A}$ is supposed to be $\mathbf{1 0}$.

Are.	Repreaentation.	Are.	Representalion.
$00 . . .10$. 091	430... 540	1.017
9... 18	.004	i4 ... 1i:1	$1.023)$
$18 . . .97$. 01009	64... 78	1.015
$\begin{array}{lll}87 \\ 30 & . . . & 35 \\ 45\end{array}$	1.004 1.013	$72 . . .81$ 81	. 10.97

From this table it appears, that the approximation to equality in the projection of equal ares of a circle perpendicular to the plano of projection is considerable.

According to tho principles of perspective, in this projection tho circles of the sphere will he represented by ellipses; and they havo been so delinented in two hemispheres, projected, Irawn, and beautifully engraved by Mr. Joseph Lowry, of London. He has placed London at the centre of the northern hemisphere, and instead of .707, Delahire's distance of tho projecting point, he has made it .88 of the radius.

In general, however, the projection is made on a meridian, and the circles of the sphere are represented by circles, and without any regard to the distance of a point of viow. Also, the degrees of longitule on the equator, and of latitude on a meridian, are made all equal. With these simplificstions, the meridians and parallols on a hemisphere of the earth's surface may be represented by the following construction :-
Let us suppose the parallels of latitude to be truced through every tenth degree, and that the meridians are to be an hour from each other.

Describe a circle, ENQS (fig. 53.), for the representation of the meridian. Draw the diameters E Q, , N S perpendicular to each other; one, E Q, to represent the equator, and the other, N S, the meridisn, which is 90° from that on which the projection is made; \mathbf{N} being the north, and \mathbf{S} the south pole.
Divide the quadrants $\mathbf{E} \mathbf{N}, \mathbf{Q} \mathbf{N}$, snd the radius C N, each into nino cqual parts; let N 80, 8070 , \&c. be the equal divisions of the quadrants, and $\mathrm{N} \boldsymbol{c}$, cd , \&ec. the equal divisions of the radius: describe a circle through the three points $80, c, 80$, and it will be the representation of the parallel of 80° of latitude; in like manner a cirele described througl: the points $70, d, 70$ will represent the parallel of 70°; the remaining parallels, the tropics and polar circles, on both sides of $\mathbf{E} \mathbf{Q}$, the equator, are to he found in the same manner.

Book 1.
Next for the meridians: divide the radii C E, C Q each lito six equal parta at the pointa $a, b, \& 0$, dencribe circlen through tho pointa $N a s, N b s, d e c$, and thene will be the representations of the meridiann, any one of which, in laying down the powitions of placen by their Jatitude and longitude, may be anaumed na the frrst moridian.

II. conathuetion of maph ay deyeiopement.

The three mothols of projection which have been explained are umially emplayed it the reprementation of a heminphere, but are sellom used in delineatiog the geographical leature: of a single country. For these, the method of developement in coumonly employed.

X perfoct geographical repreaentntion of a country ahould represent all ita parts in just preportion, and ahould exhibit its true figure. This is exactly dene on the ephere; but it can only be nearly accomplished on a plane zurface.
The purposen of civil government require mapa that give the true figure and dimensions of territory. Military aflairs require anch as give correct distances; and navigatien demands the exact bearing of one place from another. Ordinary mape filfil approxinntely the two first purposen. The last is completoly matistied by a map of a peculinr construction, called Mercator's chart; but this is not immediately applicable to the other purposes.
It is a known property of a cone that its curve surfice can be expanded intria plane: hence any figure dolineated on it can always be exhibited exnctly in all its dimention on n plane aurface. Now, a part of the surface of a aphere contained between two paiallela of latitule, not very romote, will not differ much fron tho surface of a frustum of a cone thnt touches the sphere in the parallol midway between them; and this will also bo trie if it pass along the churd, or if it pass partly within and partly without the ephere, cutting' it between tho midile and extreme parallela: in each case the length of tho alant side of the frustum muat be supposed cqual to the length of the meridian between the extreme parallels. On this principle, different constructiona have been given for representing the surface of a sphere on a plane.

1. Conical Developement.

Let P A Q (fig. 54.) be a section of the meridian, P Q the axis, \mathbf{C} the centro, E C the radius of the equator, B D any are of the meridian, and A the middle point between Band D: draw the tangent $\mathbf{A} \mathbf{O}$, meeting the axis in \mathbf{O}. Suppose now the plane figure $\mathbf{O} \mathbf{A} \mathbf{E}$ to revolve about the axis $\mathbf{P} \mathbf{Q}$; the semicircle $\mathbf{P} \mathbf{A} \mathbf{Q}$ will generate a sphere, and the tangent $\mathbf{O} \mathbf{A}$ will gencrate the surface of a cone which touches the sphere in \mathbf{A}. The points $\mathbf{B}, \mathbf{A}, \mathbf{D}$ will generate the parallels of latitude B $b, \mathbf{A H} a, \mathrm{D} d$, of which the middle prrallel A H a will be a section of the cone perpendicular to its axis.

Take H any point in the parallel AHa; draw FII to its centre, and join HO. Con-
 ceive now the cone to bo expanded into o plane, and that the surfice O A H becomes, by dovelopement, $\mathrm{O}^{\prime} \mathrm{A}^{\prime} \mathrm{H}^{\prime}$. The expansion of A H, the arc of the parallel of latitude on the sphere, whose radius is F II, the cosine of tho latitude, will now become $\mathrm{A}^{\prime} \mathrm{H}^{\prime}$, an are of a circle whose radius is $A^{\prime} O^{\prime}=A O$, the cotangent of the latitude of the parallel.

In $\mathbf{O}^{\prime} \mathbf{A}^{\prime}$ take $\mathbf{A}^{\prime} \mathbf{B}^{\prime}$ and A Γ^{\prime}, each equal to A B or A D, and :cr the radii $\mathbf{O}^{\prime} \mathrm{B}^{\prime}, \mathbf{O}^{\prime} \mathrm{D}^{\prime}$ describe arcs $\mathrm{B} m, \mathrm{D}^{\prime} n$. x^{\prime} The plane flgure $\mathbf{B}^{\prime} m \boldsymbol{n} \mathrm{D}^{\prime}$ may now be taken as nearly equal to the spherical surface bounded by meridinn passing through A and H, and the pritions of the parallels $\mathbf{B} \boldsymbol{b}, \mathbf{A} \boldsymbol{a}$ inter re, ed between them: and any tract oc country delineated on the sphere may be nearly shown by a delinention on the plane; the approximation being the more accurate as the breadth of the spherical zene is less.
Let the middic latitude E A and the angle A F H, or breadth in longitude of the spherical surface, be supposed given, to determine the radius $O^{\prime} A^{\prime}$ and the angle $\mathbf{O}^{\prime} \Lambda^{\prime} H$ Because the middle latitude is known, its cotangent $\mathbf{O H}$ is given in parts of the radins by the trigonometrical tables, or it may be expressed in minutes of latitude, by considering that half the circumference (to radius $=1$) is 3.1416 ; therefore, the radius in minutes will be expressed.

$$
\frac{60 \times 180}{3.1416}=3487.7^{\prime} .
$$

Hence $O^{\prime} A^{\prime}$, the rudius of the middle parallel in the developement, will be expressed in ininutes of latitude by
$3437.7^{\prime} \times$ cot. middle lat.
Next, to find the angle $A^{\prime} \mathbf{O}^{\prime} \mathbf{I I}^{\prime}$. The are $\mathbf{A} \mathbf{H}$ on the sphere and the arc $\mathbf{A}^{\prime} \mathbf{H}^{\prime}$ on the plane being equal; by the principles of geometry, the angle $\mathrm{A} F \mathrm{~F}$ will be to the angle $\Lambda^{\prime} O^{\prime} 11$ us $\Lambda^{\prime} O^{\prime}$ to $A F$: now, $\Lambda^{\prime} O^{\prime}=\Lambda O$ is the cotangent of the middle latitude, and A F is its cosine, and the cotangent is to the cosine as radius to the sine; therefore, putting L Lodenote the degrees of longitude between two meridians on the sphere, the angle $\mathrm{A}^{\prime} \mathrm{O}^{\prime} \mathrm{H}^{\prime}$, contained by the straight lines which represent them in the developement, will be in degrees
$L \times$ Sine middle lat.
'The angle O^{\prime}, and the lines $\mathrm{O}^{\prime} \mathbf{A}^{\prime}, \mathbf{A}^{\prime} \mathbf{B}^{\prime}, \mathbf{A}^{\prime} \mathrm{D}^{\prime}$, in the develepement, are now known; it remains only to divide $\mathbf{B}^{\prime} D^{\prime}$, the representation of the are of the meridian, and $B^{\prime} m, D^{\prime} n$, tho parallels of latitude, into equal parts to form scales of latitude and longitude : then, circles described about \mathbf{O}^{\prime} as a centre, through the proper divisions of $\mathbf{B}^{\prime} \mathbf{D}^{\prime}$, will form the parallels of latitude; and straight lines drawn joining corresponding degrees on the extreme parallels $B^{\prime} m, D^{\prime} n$, will represent the meridians on the map; which is now ready for the delineation of the geographical features of the tract it is to represent. This is the way in which the common maps are constructed.

Example. Let it be required to construct a map to comprehend the British islanda, which extend from 50° to about 61° of north latitude, and from 2° east to 11° west, about 13° of longitude. The middie latitude is $55^{\circ} 30^{\prime}$, of which the cotangent in the tables is $\mathbf{6 8 7} 28$ tund sine $=.82413$. From these data, $O^{\prime} A^{\prime}$, the radius of the middle parallel, is $9: 137.7 \times .68728=2362^{\prime} .7:$ the length of the are $B D$ is $11^{\circ}=660^{\prime}$; therefore, $A^{\prime} B^{\prime}=$ $\Lambda^{\prime} D^{\prime}$, its half, is 330 , and hence

$$
\begin{aligned}
& \text { OB }=2362.7 \times 330=2692^{\prime} .7 \\
& \text { OA }=2362.7-330=2032^{\prime} .7 .
\end{aligned}
$$

The number of degrees of longitude (L) in this case is 13°; therefore, angle $\mathrm{A}^{\prime} \mathrm{O}^{\prime} \mathrm{H}^{\prime}$ $=13^{\circ} \times .82413=10^{\circ} 42$.

Knewing now the radii $\mathrm{O}^{\prime} \mathbf{B}^{\prime}, \mathrm{O}^{\prime} \mathrm{D}^{\prime}$, and the angle O^{\prime}, we can find the arcs $\mathbf{B}^{\prime} m, \mathbf{D}^{\prime} n$; or we can find their chords.
'Thus we have,

> chord of $\operatorname{arc} \mathrm{B}^{\prime} m=20 \mathrm{~B} \operatorname{Sin} . \frac{1}{2} \mathrm{O}^{\prime}=375^{\prime} .6$. chord of arc $\mathrm{D}^{\prime} n=20 \mathrm{D} \sin . \frac{1}{2} O^{\prime}=502^{\prime} .1$.

We have now ohtained the chords of 13° of longitude on the extreme parallels, and the meridians which form their extremities in minutes of a degree of the meridian; also the tadil of tho parallels of latitude: with these, the intelligent student of geography will find to difficulty in constructing a map of Britain.

2. Murdoch's Conical Developement.

There have been various modifications of the conical developement: of these, one was givon by the Rev. Patrick Murdoch, in the Lond. Phil. Trans, 1758. Let M denote the are of the meridian which is to be represented in a map: he proposed to make $\mathrm{O}^{\prime} \mathrm{A}^{\prime}$, the radius of the middle parallel, equal to

$$
\frac{\text { cherd of arc } \mathbf{M}}{\operatorname{arc} \mathbf{M}} \times \text { Cot. mid. lat. }
$$

the cotangent being supposed expressed by the radius of the sphere. The remainder of the construction is the same as the ordinary conical projection.

By Murloch's method, the surface of the developement is exaculy equal to the spherical surface which it represents, and the cone passes through points of the meridian between the middle latitudes and the extremities of the projected are, its side being parallel to the tangent at the middle latitude.

3. De Lisle's Conical Developement.

The astronomer De Lisle employed the conical projection in constructing a general chart of the Russian empire, which extended from 40° to 70° of north latitude. IIe, however, mupposed the cone to enter the sphere co as to cut it in two parallels midway between the mean and extreme parallels: these, in the developement, had the same dimensions as the corresponding circles of the sphere, and its whole extent differed but little from that of the trnct it was meant to represent; because the excess at the two extremities of the chart was compensated, at least in part, by the opposite error in the middle.

4. Euler's Method.

Euler was also occupied with this projection: but he substituted for the determination of prallels which should be common with the sphere, that of the point of concourse of straight lines which represent the meridians, and of the angle which they make when they contain one degree of longitude. Jis calculations rest on the following conditions:-1. That the errors are equal at the northern and southern extrenities of the mad. 2. That they are
also equal to the greatest of those towards its middle. Hence he concluded that the point of concourse of the meridians should be situated beyond the pole by a quantity equal to 5° of latitude, and that the angle of two consecutive meridians should be $48^{\circ} 44^{\prime}$.

5. Flamsteed's Projection.

T. e English astronomer Flamsteed, in constructing his celeatial atlas, developed all the parallels of latitude on the sphere into straight lines, and also one of the meridians; viz. that which passes through the middle of the chart: then the parallels, which are all perpendicular to that meridian, are exactly of the same length as on the gloke, and consequently tho degrees of longitude on the parallels will be shown in their just preportion, that is, as the cosines of the latitude. If, now, the parallels on the map be divided into equal parts, juat as the parallels on the globe are, by the meridians, curve lines traced through corresponding points of division will represent the meridians.

The adjoining figure (fig. 55 .) exhibits a sketch of a map of

55 this construction.
According to Flamsteed's method, any distance on the map in the direction of the parallels is everywhere equal to the corresponding distance on the globe; but the configuration of places near the extremities is considerably distorted by the obliquity of the meridians to the parallels, so that the spherical quadrilaterals, the sides of which cross at right angles, are in the map represented by mixtilineal trapeziums, of which the angles are very unequal. Flamsteed employed this projection in representing the positions of the star ; but it is also employed in geography, particularly in delineating countries which extend on both sides of the equator: Africa, for instance.

6. Modification of Flamsteed's Projection.

There is a modification of Flamsteed's projection (fig. 56.), which has been extensively
 employed, and which deserves particular attention, bec use it eorreets, in part, the defect of the obliquity of the meridians. This substitutes ares of concentrie circles for the straight lines, which he proposed to represent the parallels of latitude. The common centre of the circles is in a straight line drawn through the middle of the map as an axis, and which represents a meridian; and its position in the axis ought to be auch, that the obliquity of the angles made at the intersection of the curves which represent the meridians, and the eircles which represent the parallels, should be as little as possible.

The position of the centre is so assumed, that the radius of the middle parallel of lutitude is equal to its cotangent; and in this the modified projection of Flamsteed agrees with the ordinary conical projection.
To exemplify this construction, let it be proposed to describe the parallels and meridians for a map of Europe, which shall extend from 35° north latitude to 70°.

Let us, as before, assume a minute of a degree of latitude for the unit of the seale from which the measures of the lines are to be taken. Therefore, as before, the radius of the sphere, of which a portion of the spherical surface is to be represented, will be 3437.7 minutes.
Let OACB (fig. 56.) be assumed as the axis or middle meridian of the map; and let A D, BE be the halves of the part of the extreme parallels of latitude to be represented, anc C the point in which the middle parallel ($52^{\circ} 30^{\prime}$) cuts the axis; also, let O be the centre of the circles, ares of which are to represent the parallels.
By the nature of the projection, O C must be taken equal to the cotangent of $52^{\circ} 30^{\prime}$; this, to radius $=1$, is .76733 , and to a radius expressed by minutes, we have
$\mathrm{OC}=.76733 \times 3437.7=2637$ '. 8.
IIaving found OC, the radius of the middle parallel, the radius of any other parallel may be found by ndding or subtracting its distance in minutes of the meridian from the middle parallel. Thus we find the ralii of parallels tiffering by 5°, as in the annexed table:-

Next, we must find the points in which some one meri-

Pranalic.	Madius.	Pralle	Radiu:
${ }_{40}^{350}$	${ }_{\text {chem }}$	${ }_{60}^{50}$	
43	$3131-7.4$		1887,
50	27\%7.	70	1597\%

dian cuts all the parallels. We shall suppose it to be 30° of longitude from 0 C , the axis of the map.

From the nature of the developement, the are of longitude on any parallel in the map is equal to the are of the parallel on the sphere which it represents. This lias to an are of the same number of degrees of the meridian the proportion oit the cosine of the latitude of the parallel to the Vol. I.

14*
V
radius. Therefore, an arc of $30^{\circ}=1800^{\prime}$ on a parallel whose latitude is L will be in minutes,
$1800 \times$ cosine L.
By this formula, the lengths of the arcs may be easily computed by a table of logarithmic sines; but, for a practical construction, it will be more convenient to have the chords of the arcs. Now, in arcs not exceeding 30°, the arc diminished by a fraction whose numerator is the cube of the arc, and denominator 24 times the square of the radius, is very near equal to the chord; that is, a being put for any arc, and $r \boldsymbol{r}$ its radius,

$$
\text { chord } a=a-\frac{a^{3}}{24 r^{2}} \text { nearly. }
$$

From this formula, the chords mny easily be deduced from the arcs.
As an example, let the arc of 30° of longitude, and its chord on the parallel 35°, be required. For facility of calculation, we shall use logarithms.

Calculation of Arc.	Catculation of Log, of 24r9.
	Radius of are 687.8. ${ }_{\text {Logarithma }}^{3.56677}$
Cozine 350.. 0.91336	Ralue 2
	Log, of squara of radius. $24 . . .13354$ $\mathbf{1 . 3 e 0 2 1}$
From lig. of cuhe of arc \qquad 9.50589 Eublraci Log. . .4r2. \qquad 8.51375	Logarithm 94r2...... 8.51375
Differ, of are and chord 9 \%.8.................. 000914	

Par. of Lat.	Arcs.	Chord of Are.
35	1474.5	1464.7
40	1378.9	1349.4
45	1972.8	1263.8
50	1157.0	1148.7
55	1032.4	1025.0
60	900.0	893.6
65	760.7	755.5
70	615.6	611.8

Thus, by an easy logarithmic calculation, we have found the arc to be $1474^{\prime} .5$, and its excess above the chord to be $0^{\prime} .8$. Therefore, the chord is 1464'.7 of the meridian. By a like process, we have found the arcs of 30° of longitude, and their chords on the parallels to cvery fifh degrec, as in this table.
Having now found the chord of 30° of longitude on the parallel of 35° to be 1464.7 of the meridian, we must, with compasses, place that distance taken from a scale of minutes from B to \mathbf{E}, and to e; and the points \mathbf{E}, e will be in the representations of meridians 30° of longitude from the axis on cach side. In the same way, the intersections of these meridians with the other parallels are found. Curve lines E D, c d must now be traced through all the intersections, and these will be the meridians on the map.
The intersections of the intermediate meridians with the parallels may be found by dividing cach parallel into thirty equal parts, from the axis both ways; and as many meridian lines may be exhibited as may be thongit necessary. In the figure here given, they are traced to every tenth degrec.
If the map is to extend further than 30° on each side of its middle meridian, the divisions of the parallels may be repeated on each, and meridians drawn.
This censtruction of a map is memorable, because it was adopted by the general depot of war of France, about the year 1803, as the groundwork of a system of geographical charts which should exhibit the French original territory, as well as the additions which had been made, and were expected to be made, by conquest or negotiation.

Developement of the Curve Surface of a Cylinder.

The mariner, in navigating a ship between remote points on the globe, directs his course by the compass; stecring as nearly as possible always in the same direction, supposing there are no obstacles to prevent him. If the place from which he sets out, and that of his destination, be due north and south from each other, the slip's path will evidently be a great circle, viz. the meridian passing through them. If, again, they have the same latitude, he must sail on a parallel of latitude; that is, his course must be due east or west. But if the places differ both in latitude and longitule, then it becomes a question, what is the nature of the line on the globe along which a ship must sail, with her head always in the same direction, as indicated by the compass, so as to pass from one to the other?

The line in question, which is called a rhumb line or lnvolromir, liue, has manifestly this property,-it cuts all the meridians on the globe at the same angle. By this property, a whip sailing along it will move always in the same direction, as shown by a compass: but it will not be a great circle; for the equator is the only great circle that cuts all the meridians at the same angle; and hence it appears that the line on the globe by which a slip pases from one place to another is never the shortest possible, except when they are on the same meridian, or on the equator.
Supposing a navigator had a perfect delineation of the earth on a sphere, it is by no means evident how he should find the conrse he ought to steer to reach a remote port. By due consideration, however, he would see that the path must be a spiral. It would also be repre-

sented by a spiral curve on a map, formed by thr developement of a cone; but navigatora required charts before the theory of such curve; was 'nderstood; thercfore at that period his art must have been imperfect.
The wants of the navigator, accordingly, gave rise to the construction of a chart, in which the meridians and parallels were straight lines; and in this the developement of the curve surlace of a cylinder was employed. Let us cenceive that a zone of the earth's surface, of 110 great extent in latitude, is inscribed in or circumscribed about a right cylinder, whose uxis coincides with that of the globe: the planes of the meridians will cut the curve surface of the cylinder in straight lines, parallel to the axis; and the planes of the parallels will cut it in sections perpendicular to the axis, which will be circles equal to the base of the cylinder. But in supposing the surface of the cylinder developed into a plane, these circles will oecome straight lines, perpendicular to the meridians. This developement has received the nanie of the plane chart: its invention is attributed to Heury, son of John, king of Portugal. This kind of chart has nothing but its simplicity to recommend it; for the degrees of lengitude have, indeed, their just proportion to the degrees of latitude in the parallel commen to the cylinder and sphere, but in no other parallel.

In the developement of a cylinder circumscribing the whole sphere, the area of any zone in the sphere is exnctly equal to that of its representation in the chart; and indeed the same equality may be observed in all cases, by a proper assumption of a parallel of latitude as the base of the cylinder. The developement, hewever, has this great fault,-the degrees of lengitude always err in excess towards the nerth and in defect towards the south of the mean parallel, which is assumed as the base of the cylinder.

There is a construction, described in books of navigation under the name of a plane chart, the principle of which is somewhat different from that just described. In the seaman's plane chart the meridians are parallel straight lines, and so also are the parallels of latitude; and both are se laid down that a degree of latitude and a degree of longitude are equal in all latitudes. It may easily be conceived how incompetent such a representation must be to the purposes of navigation or geography.

Mercator's Chart.

The utter inadequacy of the old plane charts to the wants of geography and navigation induced ingenious men to censider whether a chart might not be se constructed as to represent the meridians and parallels by straight lines, and at the same time readily show the true bearings of places frum one another. The first that gave a true solution-at least an appreximate one-of this important problem was Gerard Mencator, who was born at Ruremond, in Upper Guelderland, in the year 1512, and published a clart in 1556, wherein the rhumbs, which on the globe are spirals, were represented by straight lines, as in the plane chart; and so also were the meridians and parallels. It is not known by what principle Mercator constructed his chart; it has been supposed that he observed on a globe furnished with rhumbs what meridians the rhumbs passed in each degree of latitude: it is certain he did not know the truc principles of the construction; for these were first found by Edward Wright, of Caius College, in Cambridge, who communicated his discovery to his friend Thomas Blundeville, with a short table, showing the correct distances of the parallels of latitude frem the equator, which was published in 1594 by Blundeville, among his Exercises. The truth of the divisions of Mercator's chart was then tried by the numbers given by Wright, and they were found to be inaccurate; hence it appears that Mercator did not understand the principles of the map bearing his name, and that this important invention is due to Wright, who explained it himself, in his treatise entitied The Correction of certain Errors in Navigation, published 1599, but written many years before.

Although Wright's numbers were sufficiently correct for all nautical purposes, and might be carried to any degree of accuracy, yet, in the progress of mathematical science, an improvement was made in his theory. Napier's invention of logarithms had proved an inestimable alvantage to navigation and geography, by shortening calculations: this, however, was not the only advantage that the navigator derived from the invention; for, about the year 1645, Henry Bond showed that the division of the meridian in Wright's chart was altogether analogous to the logarithmic tangents of half the complements of the latitudes, and might be expressed by them. He seems to have fouml this by chance: such accidental discoveries are, however, never made but by men of genius. He could not demonstrate his important theorem. At last James Gregory proved its truth in his Exercitationes Geometrica, published in 1608. The construction of the chart was now made perfect.

The invention of Mereator's chart, one of the most important in the 16th century, affords a notable instance of the slowness with which men adopt improvements in science. Although designed for the use of sailers, it was at first by ne means generally used by them. William Burrough, a celebrated navigator, who had entered (n his profession at the age of fifteen, and risen by his merit to the rank of controller of Geucen Elizabeth's navy, objected to its ssefiluess. He raid-" By Mercator's augmenting his degrees of latitude towards the poles, the same is more fit for such to beheld as studv in cosmograyhv, bv rending authors upon the
his course sing there f his desbe a great titude, he But if the the nature the same

festly this

 roperty, it gs: lut it meridians hip pasees the same 0° of lanmeridians reugh all meridian they are
divisious

depost of cal charts had been

land, than to be used in navigation at the sea." It is curious to observe that logarithms, the other grand auxiliary of navigation, met with a like reception from the German mathenaticians that were somewhat advanced in years.

Mercator's chart may be produced by developement, as follows:-Conceive that a sphere with the meridians and parallels and countries delineated on it, is inclosed in a hellow cylinder, und that the axis of the sphere coinciles with that of the cylinder. Imagine now that the sphere is expanded in its dimensions, just as a soap-bubble is produced by blewing air into it, or as a bladder would swell in all directions by inflation, the parts always stretching uniformin; the meridians will lengthen in the sume proportion as the parallels, till every point of the expanding spherical surface comes into contact with the concave surface of the cylinder: the meridians will at last become straight lines, and the parallels, circles on that surface; the former in the direction of its length, and the latter parallel to its base, which is the equator. Suppose now the surface of the cylinder to be cut open along one of the meridians, and spread into a plane; the surface thus produced will be Mercator's chart.
Mercator's chart is constructed, then, on the following geometrical principles:-1. The meridians are parallel straight lines at equal distances, for equal differences of longitude; and the parallels of latitude are also straight lines, perpendicular to the meridians. 2. Supposing a meridian on the globe be divided into minutes of a degree; one of these, at any parallel of latitude, will be to a minute of longitude taken on that parallel in the proportion of the radius of the equntor to the radius of the parallel, which is the cosine of the latitude; that is, as the secant of ine latitude to radius. Now the same holds true in the chart; that is, a minute of the meridian, at any parallel, has to a minute of longi' sde in that parallel the proportion of the secant of the latitude of the parallel to radius.
By the first of these properties a minute of lengitude in the map is represented by a line of the same length in every parallel; therefore, by the second the minutes of the meridian will be represented by lines which go on increasing from the equator towards the poles. From this it follows that, if a minute on the equator be taken as the unit of a scale, and that unit be considered as the radius of a circle, then the representation of a minute of the meridian, at any lutitude, will be expressed by the number in the trigonometrical tables which is the secant of that latitude. Thus it appears that, while the degrees of longitude on the equator form a scale of which the divisions are all equal in the map, the degrees of latitude marked on a meridian form a scale of which the divisions go on increasing from the equator towards both poles, each being the sum of the secants of all the minutes in the legree.
The numbers which result from the aldition of the secants of 1 minute, 2 minutes, and so on to the last minute of any are of the meridian, reckoned from the equator, are given in books on navigation. They form the table of meridional parts, and serve for laying down the position of any place in the chart. The addition of the secants is, however, only an npproximation to the true length of the enlarged meridian in the chart; but it is sufficiently near the truth for nautical or geographical purposes. In strictness, also, it must be considered that the earth is not a sphere but a spheroid, and on that account allowance ought to be made for its compression at the poles. The following short table slows the length of the enlurged meridian, both on the sphere and the spheroid, to every fifth degree of latitude. The compression is assumed to be $\frac{32}{3210}$.

Lat.	Meridional Parls.		Lat.	Merilinnal Parts.	
	Sphere.	Splueroid.		Sphere.	Ipheroid.
00	0.00	0.00	500	3474.47	3457.39
5	300.38	998.37	55	396797	3950,57
11	100:107	599.01	60	4597.37	4509.41
15	910.419	905.93	6.5	5178.81	5159.93
20	1255.14	1217.199	70	5965.12	51945.51
25	1549.99	1541.17	75	6970.34	6851.67
30	18484.38	1*77.99	80	8375.29	8352.24
35	2.244 .219	2012.19	85	18764.62	10741.75
40	9120.19	2tikx 35	90	Infuite.	Infinite.
45	302.2.9.4	3014.41			

To construct Mercator's chart (fig. 57.), draw two straight lines W E, N S at right angles to cach other, intersecting in C; of these W E is to represent the equator, and NS a merilian, in the middle of the chart: from any convenient scale lay off equal parts alring the ejuator, from C both ways, to represent degrees of longitude, and each of which should, if there be rom, contain 60 sublivisions for minutes.
Assuming the equator as a scale of minutes, lay off from \mathbf{C}, north and south on the middle meridian, the number of minutes in the enlarged ineridian, correspending to each degree of latitude as shown by a table of meridional parts, of which that just given is an abridgement.
Draw straight lines through every fith or every tenth degree of the equator and divided meridian. and perpendieular to them. The perpendiculars to the equator will be meridians, and the lines parallel to it parallels of latitude.

Fio. 57.

To put any place in its proper position on the chart, assume some one meridian for the first, and lay off from its intersection with the equator, and along it in the proper direction, the longitude of the place in minutes; draw a line through the point thus found perpendicular to the equator: this will be the meridian of the place.

On this meridian lay off the latitude, as shown by the table of meridional parts; and the point thus determined will be the true position of the place in the chart.

To find tho bearing of one point from another, or course in which a ship ought to sail in passing from one to the other, draw a straight line joining the two points, and the angle which that line makes with the meridians is the course or bearing.

Thus, if L be the Lizard Point on the chart, and M the east end of the Island of Madeira, draw LI I parallel to the meridian N S, and the angle I L M will be the course on which a ship ought to steer from the Lizard to reach Madeira.
The courso may be found by a trigonometrical calculation, by considering that the meridional cliference of latitude of the two places (as given by the table of meridional parts), and the difference of longitude in minutes, are the sides of a right-angled triangle, of which the line joining the places is the hypotenuse, and the course one of the acute angles, viz. that made by the meridian and line joining the places.

Again, the distance of the places, measured on the rhumb line passing through them, may also be found by trigonometry. It is the hypotenuse of a right-angled triangle, of which the proper difference of latitude (not the meridional difference) is one side, and the course the adjacent angle.

These properties of the ciart apply alike to the bearings and distances of all places on the globe measured on rhumb lines. The bearing and distances of London, Elinburgh, and Dublin, for instance, from each, may be found in this way from a table of meridional parts and their known latitudes and longitudes.

It is evident that Mereator's chart does not serve well to show the figure of the countries on the globe, nor their relative magnitudes. These are purposes, however, which it is not intended to serve; but it does serve perfectly the purposes for which it was first constructed, and whicl, before its invention, were a desideratum in geography.
und perpen- ide, and the

1 places on hburgh, and dional parts

he countries

 ich it is not constructed,

BOOK II

GEOLOGICAL PRINCIPLES.

Georocir is that branch of nutural history which treuts of the atmosphere, the waters of the glole, and of the mominuin-rocks of which the earth is composed, No depurtment of natural history aboundu mase in important facts and interesting conclusions; nud therefore we shall lay before our readors a slort view, 1st, Of the natural listery of the atmoxphere, or meteornlogy ; 2lly, Of the naturnl history of the wuters of tho globe, or hydrelogy; and, 3 lly , Of the solid materials of which the earth is composed, or geognosy.

CHAPTER 1

METEOROLOGY.

Turs beautiful department of science makes us aequainted with all the properties and relations of the atmosphere which surrounds our plunet. Although in general but little studied by geologists, a knowledge of it is, nevertheless, inost useful in a geological point of view, of which the details we shall now lay before our readers will afford niplie proof.

Sect. I.—Pressure, Height, Form, and Temperature of the Atmosphere.
The air in which we breathe, with the clouls and vapours floating in it, surrounds the earth on all sides to an unknown height, and forms a moveable envelope denominated the atmospherc. The human species, and other land animals, being thus entirely inmersed in this fluid, may with some propricty be suid to inhabit an ocean as really as the fishes which live in the great deep. But the lutter have tho advantage in being able to mount up, remain, or descend at plensure in their element: wherens, without some additional aid, we must centent ourselves with the moro lumble allotment of renaining on the hottom of our ocean. The winged tribes, doubtless, have the power of ascending to great heights; still they can never reach the summit. There is nothing more essentinl to the existence or health of man himself; or of the various inferior animals and vegetables which live on uur globe, than the air or ntmosphere; nor has any agent a greater share in the innumerable changes which are daily taking place in the inanimate materials composing our planet. It is not wonderful, then, that the composition and properties of the atmosphere shonld have so otten excited inquiry. To give an account of these, and of their relations to other bodies, particularly to the various substances which are diffised in the atme phere, and really or apparently deposited from it, constitutes the seience of meteorology. Whilst engaging in this task, so fur as our limits permit, it will be fully as instructive, and scarecly more tedious, occasionally to introduce a very brief sketch of the mode in which some of the leading facts were first diseovered; but there is reason to think that a fow of the more obvious properties of air have been known, as it were instinctively, from the remotest antiquity.

That air is a boly or substance possessing the essential properties of matter, appears from the resistance which it offers to the occupation of its place by other bodies. Thus, if an apparently empty glass jar be first inverted, and then immersed in a vessel of water, that liquid will only enter a very little way into the jar, the rest being occupied by the air. This familiar experiment shows that air is a body, by its resisting the entry of the water. At the same time it shows the air to be an elasti , or compressible substance, otherwise it should have completely excluded the water. That it is a fluid is evident from the ease with whieh bodies movo in it, from its pressing equally in every direction, and passing with great facility through extremely minute openings.
The ancients must have been aware of these properties, or at least of some of their practical applications, otherwise they conld not have constructed their powerful air-guns, nor availed themselves of the principle of the diving-bell: for, in those early ages, the adventurers who dived in search of penrls, \&c. were accustomed to hold large pote or ketties inverted on their heals. The air which these open vessels contained both excluded the water, aud for a short time supported respiration; thus forning diving-bells in a portable shape. The ancients likewise, in some of their mechanical contrivances, avniled themselves of that property of air by which it expands with heat and contracts with cold. It was on this principle that, in more modern times, Sinetorio constructed the air thermometer.

Weight and pressure are properties of the uir us of all other bodies: it presses on the earth's surface, mud on every other bexly with which it emos into contact. This was conjectured even by the uncients. But the effiects which are now known to result from the weight nad elasticity of the air were for a long time ascribed to a principle called nature's horror of a vacum. So late as the heriming of the sevententh century, it was generully believel, that the ascent of water in pumps was owing to this principle, and that by means

Book II.

METEOROLOGY.

of suction fluids might be raised to any height whatever. But Galileo, though still inclining to the old opinion, remarkel that water did not rise in a common pump unless the sucker of bucket reached within 34 feet of its surface in the well. Hence he was forced to conjecture, that not the power of anction, but the pressure of the atmosphere on the surfice of the well, wus the causo of the water's ascent; that a column of water 34 leet high was a counterpoiso to one of air on in equal base, but reaching to the top of the atnosphere; and that, for this reason, water could not follow the sucker any farther.
Torricelli, a disciple of Galileo, profited by this hint. It occurred to him that the same torce which supported water to the height of 34 feet would sustain a column of any other tluid which weighed as much on an equal base; and therefore mercury, being 13.6 times as heavy as water, should only be suspended to the height of 29 or 30 inehes. Aceorlingly, he took a glass tube from three to four feet long, and closed at one end; this he filled with mereury ; then, stopping its mouth with his finger, he inverted the tube, and on re-opening its mouth in a vessel of quicksilver the result verified his expectation. The mercury, obeying the laws of hydrostatics, descended in the tube till the vertical column was about 30 inches above the level of the cistern, leaving the remaining space at the topempty or nearly a vacuum. Ilence he inferred that it was only the weight or pressure of the atmosphere on the mercury in the cistern, which balanced the column in the tube. This is usually ealled the Toricellinn experiment, and is the foundation of the barometer.
The mean pressure is everywhere the same at the level of the sea, and equal to abent $14 \frac{1}{3}$ lbs. on the square inch. It becomes less ns the place is elevatel above the sea, and greater if below its level. The pressure of the atmosphere, as measured by the mercurial column, varies somewhat at every place on the earth's surface. Generally speaking, its variations are greatest in the temperate zones, decreasing towaris the equator and poles. The annual range rarely exceeds half an inch in the torrid zone. It is nbout two inches at London, and the same at St. Petersburg, but rather less at Melville Islund. It nowhere exceeds $3 \frac{1}{2}$ inches. The annual range is more considerable at tho level of the sea than on mountains; and under the same latitude it is less, ns the height of the place ahove the sen is greater. The barometer has a tendency to rise from $4 \mathrm{P} . \mathrm{M}$. to $10 \mathrm{P} . \mathrm{M}$. ; to fall from 10 P. M. to $4 \mathrm{~A} . \mathrm{M}$. ; to rise from $4 \mathrm{~A} . \mathrm{M}$. to $10 \mathrm{~A} . \mathrm{M}$. ; and again to fall from $10 \mathrm{~A} . \mathrm{M}$. to 4 P. M. Different uuthors, however, differ a little both as to the hours and the amount of the diurnal variation, which appears to be greater is the latitude is lower. The barometer is likewise elevated a little at the quarters of the mon, and depressed at the new and flll. The range of this instrument is greater in winter than in summer.

The barometer ranges higher in proportion ns the weather is more serene and settled; calm weather, with a tendeney to rain, depresses it; high winds have a similar effect. In extra-tropical climates, n fall in the baroneter, with a change or rise of wind, is usually followed by rain.

The law which regulates the elasticity of the air formed the next important step, after the discovery of the pressure. Boyle in England, and Mariotte in France, discovered, much nbout the same time, that the temperature being the same, the pressure or elastic force of air is directly as its density, or inversely as the space it occupies. This law, though received ns correct at the time of its disccuery, continued to be suspected till within these few years. But Dulong and Petit have recentiy examined it through a wide range of temperature; Professor Oersted has tried it under a grent variety of pressures; and within the limits of their experiments it was found to hold good.

The variable capacity for heat forms another property of air of no less importance, but which seems to have been little known or nttended to till towards the end of the last century. When air undergoes a change of volunie, it at the same time changes its capacity for heat ; becoming hotter by compression, and colder by rarefaction. The want of ucquaintance with this circumstance led Newton, and many others after him, into the mistake of concluding, that the particles of elastic fluids repel each other with forces inversely as their central distances; which cannot be the case if the capacity be nflected, no matter in what manner or degree, by a change of density. But very extensive experiments, made by some of the most eminent scientific men in France, and repeated in England, are favourable to the idea that the particles of air observe the same law as magnetism and electricity, repelling each other with forces inversely as the squares of their distances.

There is a gradation of density in the air. Being, as already stated, a compressible body, It is obvious that the lower parts of the atmosphere, by sustaining the greater weight or pressure of the air nbove them, must be so much the more condensed; and therefore, as we ascend in the atmosphere, the density will continually diminish. Accordingly, it may be shown from the principles already laid down, that were the temperaturo and the force of gravity uniform at all heights above the earth's surfice, the densities of the strata would decrease in geometrical progression for altitules taken in arithmetical progression, so as nearly to halve the density for every 3.5 miles of ascent. But, independently of a triffing change in the force of gravity, this is not exactly the law of nature; for it is found that the temperature generally decreases as we go upward, and that not according to any fixed law Vol. I.

Hence the relation between the density and altitude in not of a stendy character, and can only be obtuined in any particular cune from observing the pressure, temperature, anil lygrometric state of the air. This is a research to which muny eminent men huve turned their attention; and their successive labours havo led to tho formation of convenient rules, by which the heights of mountains can be obtained to a considerable degree of atcuracy, and with great ficility, by means of the barometer, \&c.

The leight and form of the atmosplere are objects of interest. With an uniform tenperature, the law of Bayle would involve tho notion that its height is infinite; but this is an idea which has scarcely any supporters, and is generally believed to be incompatible with the luws of motion. Dr. Wollanton, whose opinion is entitled to great deference, msintains that the atmowphere must terminate at the height where the repulsive force between its particles egunis their tendency to gravitate towards the earth. The law of gravity muy be almitted n., known, but the same can hardly be affirnied of the law which regulates the repulsive firec, so long as the temperature at great heights is unknown; and this circumstance leaven the boundary undetermined. Λ doubt of a more serioua natire, however, attaches to this speculation, on the ground that we are totally ignorant with what materials the air may be mixed at great elevations. The atmosphere is genorally supposed to be ligher at the equator than at the poles; but we have neither data for computing the heighta, nor the proportion in which they difter: so that the oblate spheroidal figure which some give to the atmosphere cun be considered as little else than an ingenieus conjecture.

The temperature of the atmosphere has great influence on most meteorological phenomena; but it is exceedingly variable, and can as yet be determined only by actual observation on the spat. Nothing would tend to throw greater light on many of the unresolved questions in meteorology, than a ready mode of conaputing with certainty the temperature which chtains at uny instant in a point of the atmosphere remote from the contact of the earth's surtice, nud ut any point on the surface remote from tho observer: but these are likely to continue desiderati. The very little that is known of the temperature of air remote from the carth's surface has been ilerived from a few aëronautic excursions, particularly the aseent of M. Gay-Lassac to the height of 7630 yards.

The beat of the air in one shape or another is no doubt greatly derived from the sun, either immediately, hy intercepting the solar rays, or indirectly, from its centact with the earth's surfice, which is more or less heated according as it is turned more or less towards the sun: but whether heut, in return, be projected from the earth or its atmosphere towards other regions of space, is a disputed question. Professor Leslio maintains that heat, which is not uecompanied with or rather is not in tho state of light, cannot pass through a vacuum, and, of course, that it cannot pass the boundary of the utmosphere. If so, it would fullow that the atmosphere dues not continually draw of heat from the earth, but may oftener be the warmer of the two. Many philosophers, however, are of a different opinion, among whom was the ingenious Dr. Wells, with most of those who embraced his theory of dow. These allege, that heat is constantly projected from the earth and atmosphere towards the boundless rerions of space. Obscrvation slows, that much heat passes upward from the earth's surfice, especinlly when the air is clear. In this way, the stratum of air in contact with the surface is cooled more thin that which is somewhat higher. It is probable that there exists a natural tendency in the atmosphere, as in most other bodies, towards an uniform temperature throughout its whole height; and since currents in its upper regions usually zone from a warmer quarter, and the lower currents from a colder, there is upon the whole, independently of aerronautic observations, semne ground for supposing that the decrease of temperalure on ascending in the atmosphere should be slower than the law of capucity as increased by dilutation requires.

The following list of temperatures, chiofly observed at stations employed in the barometrical measurements of heights, is taken from M. Ramond's work on that subject. Only a few of these measurements embrace the whole heights of the mountains on which they were made, and the first case is of a different class. We have reduced the temperatures to Fahrenheit's scale :-

	Plarte.	Highet.	Temp. at bal	Temp	Placres.	Ifeight.	Temp. at hos.	Temp at top.
		${ }_{\substack{\text { Yarima } \\ 7 \times 607}}$	ค7	11.6	Piv d'Pure, Tartes	${ }^{\text {rasida }}$	793	${ }_{8}^{81.6}$
	Mont Rhanc......................................	${ }_{410}^{647}$	${ }_{893}^{77.4}$	20. ${ }^{29}$	Ple di Mnotain		${ }_{\substack{\text { On } \\ 001 \\ 0.1}}$	17.6 61.8
	Mollt phane p...........	\cdots	${ }^{17} 7$	22.1			714	
	Pie de 'ramelife ...	4077	76.4	47.1	Duta.	-	703	48.8
,	Mnm Blanr, Chamoung	490	73.4	20.M	buth	-	${ }^{5}$	88
		2909	79\%	44	Ditn.	\sim	${ }_{64.6}$	4.6
		3948	76.4	40.1	Ditto.	-	en.0	43.4
-	Maladinn .i..............................	3174	N0,	38.1	Puy thito................................		C8.1	41.4 37.6
	Pre du Multi, Tatbra......................................		67.9	47.0	-		60	01.4
	¢ M14...............................	二	${ }^{73.8}$	40.6	(14to...............................	二	${ }_{7} 18.8$	bs. 1
	pmin.......................................	\because	${ }^{760}$	${ }_{40.6}$	Dit		701.8	${ }_{74} 98$
	mito................................		${ }^{6} 4$	30.3	Bedat du Map netrem, Tarben.	811	81.6	48.4
	Col du Dirto..	2 NOH	\% 700	40.1	Le Darrakur, Cliermual .o.........................	${ }_{1818}$	79.6 74.8	3.8
	Munt Pindu Patrefe	2854	74.0	414				

This table shows, in a very striking manner, with how little certninty the deerease of temperature can be estinnted from the increase of height; und how unsteady the rate of decrease in often at tho saine place. M. Ramond, however, has collected some cases which ure till more discordant.

The pree.aling tuble centains the temperatures of the air at differeut heightm for one or a fow particular instants; but we shall now uld a table from Baron Humbolde of the mean temperatures of elevated situations, na deduced from several years obwervations. The dogrees are those of Fahrenheit's renle.
From this table it appeass, that, in the mean state of the utmosphere, the temperature

Ifelght in Enuliali feet.	Equalorial zone from lat. 00 to 100.		Temperate zone froni lat. 4501047°	
	Mean Temp.	Differ. ence.	Muan Temp.	Differ. ence.
	81.5	\bigcirc	530	\bigcirc
310	81.5 71.2	10.1	53.65 41.0	110.0
ciari	15.1	月.1	311.14	10.4
${ }^{1507}$	57.7	7.1.1		8.2
12742	44.7	$\int_{0.0}^{1.10}$		

Temperature of air in mines. Having thus noticed the lower temperatures which obtain in more elevated situations, we shall new give some aceount of the inereased temperature which generally prevails in air occupying deep caverns and mines. There enn be no doubt as to such facts, but the source of the heatis still a subject of contreversy. There are some mines intensely cold; and as these were first observel, the explanation offered was, that the coller portions of air had, by thoir greater weight, descended into the mines: but this solution entirely vanished when it was known that mines are generally hot. The heat of the workmen, their fires and lights, have been stated as sources of heat; as likewise the chemical action of air and water on the minerals. Some again allege that a high tempernture obtains in the interier of our globe, and consequently that the heat will always be greater as we penetrate fartier. Lowever, it is found that on boring into the solid strata in the bottom of warm mines, and letting down a thermometer, the temperature, so far frem increasing, comes short of that in the mine. This sufficiently proves that, whatever be the sources of heat, some of them at least must operate in or be situated about the mine itself. That a high temperature obtains in the interior, is in many instances evident from the streams of hot water and vapour which issue from fissures in the strata: but in many warm mines nothing of this is observable. Professor Leslic, Dr. Forbes, and afterwards Mr. Matthew Miller, have suggested the heat evolved by n current of air, while it undergoes an increase of pressure in descending into the mine. The first two of these philosophers did net deem this an adequate source of heat; and Mr. Miller seems to entertain similar doubts. But from what is now known of the great heat evolved by the cempression of air, there can be little room to question that this furnishes a considerable supply, wherever there is a sufficient current of air. Thas, if air at the temperature of $63^{\circ} \mathrm{F}$. have its density suddenly increased by the 170 th part, the temperature will bo raised 1°; supposing ne heat to be lost on the sides of the shaft. This would give 1° for a descent of 170 feet, which is still slort of tho rate at which the temperature is ebserved to increase in British mines; but when added to the heat caused by the presence of the workmen and horses, their lights, blasting of rocks, fires, \&e. together with some increase of temperature belonging to the dcepor strata, there does not seem sny mystery in the heat of some, nlthough probably not of all, mines. Those mines, again, in which there is almost no circulation of air, and which pre-
ment a wide mouth to a clearsky, may have their temperaturo reduced by muliating heat upwards, in the mamo way that plants aro starved with cold ly being two tuach mheltered from the wind while they are exposed to it clear aky.

An inumenee collection of facta and observations relatiug to this sulject may be seen in the ITanametions of the Geological Suciety of Cornwall, mail in the firat number of the Edin, Phil, Journal. From the latter we extruct the following nummary of Mr. Bulal's observations, made in the deepent conl-mines in Greut Britain:-

Jarrow Colliery, Counly of Durham.

The engine pit of Jarrow is the deepest perpendicular shaft in Britain, being 000 feet to the foot of the pumps, where the temperature of the air was 64°.

51

Air nt antur depth 77
At lija depih, distilled water boiled at......... 213
un at

The temperature of aprings and caverns, in many places, coincidea with the mean annual temperature of the air : but Hunboldt alleges that, in latitudes above 45°, the mean heat of springs and caves exceeds that of the atmosphere. As connected with this subject, Mr. Ferguson, of Raith, had four largo thermometers sunk in his garden, to the respective deptha of $1,2,4$, and 8 feet, in lat. $50^{\circ} 10^{\prime}$, and 50 fect above the sea. Tho stems and scales rose above ground, and indicuted the following menthly mean temperatures:

	1810.				1817.			
	1 Fool.	2 Feel.	1 Fert.	- Feel.	1 Foot.	9 Feet,	4 Fuet.	8 Fuel.
January.............	32.00	$30.7{ }^{\circ}$	40.70	48.05	35.10	38.70	40.50	45.10
Februury	381.7	311.0	\$19.0	42.0	37.0	40.0	41.6	42.7
March.	35.0	331.7	310,0	42.3	311.4	40.2	41.7	42.5
Aprit...............	39.7	38.4	41.4	4:1,8	41.10	42.4	4.2 .6	42.6
May................	40.0	47.3	4,3.4	4.1 .0	41.8	44.7	4.4.15	44.8
June	51.0	50.0 .	47.1	45.8	511	40.4	47.0	47.8
July.	54.0	5.3	50.4	47.7	55.2	55.0	51.4	411,6.
Augnet.	50.0	54.5	50.11	44.4	53.4	53.0	82.0	00.0
September	51.0	\$1.3	31.8	50.0	53.0	52.7	52.0	50.7
Octoher.	47.0	411.3	49.7	40.6	45.7	49.4	411.4	410.8
November	40.8	431.8	41.3	48.6	41.0	44.7	47.0	47.11
December.	35.7	40.0	43.0	46.0	35.0	40.8	44.9	46.4
Mean of the Year	43.8	44.1	45.1	40.8	44.0	45.0	41.2	413.6

Had the thermometers been sunk considerably deeper, they might havo been expected to have indicated $47^{\circ} 7^{\prime}$, which is the constant temperature of a neighbouring spring issuing from a trap rock.

The local temperature or climate of a country depends very much upon its distance from the equator, and its height above the level of the sea: but the nature of the surface, the proportion of humidity, the distance of the sea, of lakes, of mountains, of arid or frozen plains, and perhaps, also, the internal heat of the earth, have each their share in the fertility or salubrity of a country. The decrease of heat as we recede from the equator follows dif-

Lat.	World.	Now	Dif.
10	${ }^{81.50}$	${ }^{61.50}$	00
30	${ }_{70.7}^{77.9}$	77.9 67.1	${ }_{8}^{0.6}$
40	0.3	${ }^{54.5}$	9.0
60	4	25.0	${ }^{218.0}$
70	3.30	0.0	33.0

the glot

 tnble or Island.reckone have beobservat
worll th
it differs be requi longitud
As the
that the
thrown o increase some of successiv bratel M the mean thousand

Tho ge temperatı best, and

Imothermul lines have been considered an meanaring the heat and coll of the earth. The climate of Eatern Asia comes nenrer to that of Bantorn America than of Weatern Burope. Thum tho latituklen of Naplen, l'eking, nnd Philulelphin are respectively $41^{\circ}, 40^{\circ}$, and 40°, whilst their mean tempuraturen are $6 \mathbf{B i} .3^{\circ}, 61.5^{\circ}$, and 63.4°. Such diflereneen are remdered more aeneiblo when wo connect the placen having the mame mean temperature hy lines which Ilumboldt denominates inothermal lines. Thua, the inothermal line of $50^{\circ} \mathrm{F}$, traversers the Intitule of 43° in Eumpe, but descends to lat. 30° In Amerien; the imothermal line of ${ }^{\circ}$ $41^{\circ} \mathbf{F}$. pusses from lat. 6$)^{\circ}$ in linfope to lat. 8° in Anuerica: but since the wentern const of North America ls warmer than the enstern, the isethermal lines, being traced round tho northern hemisphere, would lave coneave summits at the east side of both worlds, and convox at the west.
The difference between the mean temperaturo of summer and winter is nothing at tho equator, and increasen continually with the latitude. Dut the extreme difference of the nensons is comparatively small in Western Burope, and great where the mean annunl teniperature is low, us on the east consts of Asin nml America, If we draw a ling in in northeast direction from lovileanx to Waranw, and continue it to the Wolgn, in lat. 55°, then all places under this line, at the same elevation, will have nearly the samo aummer temperature of 60° or $70^{\circ} \mathrm{F}$. Tho linen of equal wintor temperature declino in an opposito direction. Thus a atraight lino drawn from Edinburgh to Milan, almowt at right angles to tho fonner line, would pass over placea which, if equally elevated, would have nearly the same winter tomperature of 37° or $38^{\circ} \mathrm{F}$.
The oxtremes of temperaturo are experiencel chiofly in largo linlaul traets, and little filt in amall islands remote from continents. In the United Staten intense cold is felt when the wind blowa from the frozen regions round Hudson's Bay. From snow-clad inountains, gusts of cold wind, callel snow winds, rush down and cool the adjacent plains. Tho hent aceumulates to an antonishing degreo when tho wind passes over oxtonsive dowerts of burning sand, which aro said, in somo instances in Africa, to bo hented to the boiling point. This fine sand, or rather lust, sometimes rises in the air and obscures it liko a log, communicating to it an intolerablo lieat. In arctie countries the temperature is very minch regulated by the freczing of the water and tho melting of tho ico ; by the freezing of the water grent quantities of hent are given out which molorate tho severity of the winter's cold, and thus gave from destruction the arctic land animals, and plants; while in summer, the intensity of the heat, produced by the long contimuanco of tho sun above the horizon, is moderated by the abstruction of a consilerablo portion of that hent by tho water during the melting of the ice. Ltud the arctic regions been entirely of land, neither plants nor animals could have existed in thom: for during summer, owing to the sun remaining ubove the lorizon for months, an elovation of atmosplicric temperature would have been prodicel fatal to animals and plants; and in winter, the long darkness and intense coll woild have proved equally fatal to animated beings. The cold of the icy regions of the north has been alleged to reach, by eurrents of nir, southern Jatitudes, and thus to lower their temperaturo.
Baron Humboldt has added moro to our knowledge of the distribution of temperature over the globe than any other who had laboured in the samo boundless field of research. The table on tho following pago contains his general summary, to which is alded Melville Island. The temperatures have been reducel to Fahrenleit's scale, and the longitudes are reckoned from Greenwich. An asterisk is prefixed to thoso places whose temperatures have beon most aecurately determined, and in general by means of 8000 observations.
In treating on the mean amunl temperature which obtnins at different places, it is customary to givo a table which makes the temperature depend entirely on the latitude. But observation shows, that the temperature is usually higher at the same latitude in the old world than in tho new, and in north latitule than in south; and, as was already mentioned, it differs in tho same continent under lifferent merilians. So that more than one table would be required for each quarter of the globe; or elso one very extensivo table, involving tho longitudo as well as latitude; which is tho caso with Humboldt's table, so far as it goes.
As the carth and its atmosplere aro continually recoiving heat from the sun, it is plain that their mean annual temperature must bo continually on the increase, it no heat be thrown off by them into surrounding space. Professor Leslie accordingly alleges, that the increase of temperature is at the rate of alout 1° in 80 years. This would help to explain some of the changes of climate which seem to lave been gradually taking place during successive ages in many places, and particularly in the west of Earope. But the late celebrated Marquis de la Place has endeavoured to show, from nstronomical observations, that the mean temperature of the earth has nudergone no sensible change during the last two thousand years. Ilis arguments, however, are not free from objection.

Sect. II.-Eiffect of Climate on Plants and Animals.
Tho geographical distribution of plants and nnimals appenrs to be chiefiy requlated by the temperature of the atmosphere. Each has generully a particular climate in which it thrives best, and beyond certain limits it censes to exist. Since an increase of height has an effect

Boox II.

MEITEOROLOGY.

on climate in some respects similar to an increase of latitude, it has been commonly snpposed that there are properly no plants peenlinr to ligh latitudes, isecause such miny be raised on the monntains nuler the equator, which embrace every variety of climato betwren thers summit and lase, at lenst in me fir as tempernture is cencernel. In point of ntmosplariz pressure, howerer, tho two situntions differ essentinlly; and some mituralists nlloge, that pressure is of' vitul importanes to the growth of plants. 1'rofessor Dabereimer is of opimim that the dimimutive size of plants, in elevatel sithntions, depenals more on the diminution of presenire than of temperature. 'To nseertain this, he pat equal fumitition of harley and moist surth into two equal receivers: the air in the one had a presenre of $\mathbf{1 4}$ incher of mercary, und the other 56; germinution commenced in both at the wame time, nud the leaver had the sume green tint. At the coul of fifteen dnys, the shonte in the rarefied nir were 0 indies long, and in the other frime 9 to 10. The first were (expanded und sof und wet on the surhice, especinlly towneds their extremities; the others were firm, rolled roumd the stem, and nearly iry. In some respects, this aceorils with what Ihmikidit observed of the trees on the Amles, thint water tramspires from them even in the driest weather. But such experiments are inconclusive, unless there were anue contrivnnce employed to renew the confined air 'requently. Inlepemulently of pressure, the barley in the condensed nir had the use of four times the quantity of air in the other vessel.
Jhants are ment mumerous, and exhibit the greatest variety of npecien, and the most luxilriant grewth, within the tropies, beyond which they gradonlly diminish. In the aretic regions, and in the north of Russia, the vegetablo kingdom has dwindled to nlmost nothing. The lines which limit the growth of certain plants depend on the avernge summer temperature, fir phants which repuire a long and molerate heat; on the temperature of the warme st month, for those which require a short lint great heat; and on the temperature of the collest month, fir thoso whieh ennmot hear coll. The trankmanency of the air in also of importance to many plants; but our limith will not nulmit of enlarging, nul therefore we shall corfine ourselves to a short account of the climates of cultivated plants. The plantain, which is n primary article of foxl in tropical America, requires a temperature from 82° to $73^{\circ} \mathrm{F}$., which occure between lat. 0° and 27°; but, in tho equinoctial zone (lat. 0° to 10°), its fruit does not ripen at a greater altitule than 3330 feet. The rugar-cane has neprly the same range, but is cultivnted, though with less advantuge, in the oll world to lat. 246° 5', where the mean temperature is alout 67°. The severity of the North American winter prevents the cultivntion of the sugnr-cane beyond lat. 31°; but it succeeds at an altitule of 5760 fect on the table-Inand of Mexico. Tho fiveurite climate of the cotton plant lies betwern lat. 0° nul 34°; hut it succeeds with a mean summer heat of 75° or $73^{\circ} F^{\circ}$., if that of winter do not dercend belnw 36° or 38°. In Amerien, it is cultivated at lat. 37°; in Enrope, nt hat. 40°; and in Asiracan, at lat. 46°. The date palm thrives best between lat. 29° and 35°; hat, when sheltered from the north wind, it is cultivnted on the shores of Italy to hat. 44․ The citron has nearly the same zange, but is cultivated at. Nice, at altitudes of 40 or feet. 'This tree, with the sweet orange, grows in Jousisinn to lat. 30°, but beyont that it is injured by the cold. 'The olive ranges in Europe between lat. 36° nul $44^{\circ} 5^{\prime}$; it suceceds wherever, with a meun nmmal tempernture from 66° to $58^{\circ} \mathrm{F}$., that of summer is not bolow 71°, nor that of the colkest month below $4 \mathbb{R}^{\circ}$, which exchides all North Americe leyont lat. 34°. The favmurite climate of the vine in the old world is hetween lat. 36° nud 48°; hut it thrives wherever the mean tempernture is from 62° to 47.5°, providel that of winter is not brlow 33°, mor summer unler 66° or 68°. Such is the case on the shores of Furope to hat. 47°. and in the interior to lat. 50°, bit only to lat. 41° in North America. The rerralia or common grain, ne wheat, rye, barley, anil oate, thrive where the menn ammal tempernture descends to 28° F., provided that of summer rise to 52° or 53°. In Laphond, burloy ripens wherever the mean temperature of summer rises to 47° or 48°. The rapill growth of barley anyl onts alapte them to the short sumbere of the north: they are fund as high as lat. (into ${ }^{\circ}$ in lapland, nlong with the potato. In some parts of enstern Russit, no grain is found beyoud lat. 60°. Wheat, which is a preenrious arip, mial little enitivated heyoud lat. 58° in western Furope, yields gooxl returns in this purt of the temperate zone, when the mran hent, while tho grain is on the ground, is 55°; but if no toore than 46°, nome of the cerculiat come to maturity. These epecies of grain are cultivated at a height of " 35 hat feet on the $\mathbf{\Lambda l p s}$, in lat. 46°. Barley and onts sucecerl nt double that height on Chucnens, and at nlmost a triple height on the Andes, nlong with whont nud rye. In the west of Earrope, maize has the same range as the vine, mut reachesf firther morth on the cast. In its native American soil, it forms the chief neticle of foxel, from the river llata to the lakre off Canada. Repuiring a short hat warm senson of four montlis, it is well suited to the climato of the Now World up to the latitule of 45°. The oak censes at lut. 63° in Norwny, nt 610° or 61° in Finland, and at 57° in the government of Porm. The pinus silvestris, or N'cuts fir, grows to n height of 60 feet in Lapland, at lat 70°, and 850 feet above the level of the sea : there the hirch is found at double that elevation. In castern Russia, the larch, pine, birch, and mountain-neh, disappear about lat. 68°; and, at Ilulson's Buy, all trees cease abuent lat. 60°.

Sect. III.-Composition of the Atmosphere.-Aqueous Meteors.

Regarding the composition of the atmosphere, abundantly vague and faneiful notions prevailed for many ages. The ancients considered air as one of the four simple elements, of which they supposed all other bodies to be compounded. These were carth, air, fire, and water. Low far the opinion was correet, which made fire an element, is a question on which nothing is yet known; but the researches of modern chemistry have shown that the other three are all compound bodies. The chicf; and perhaps the only essential, component substances in the atmosphere, are the two gases called oxygen and azote; its other ingredients, occurring only in small and variable quantities, are rather to be considered as foreign bodics. The analysis of uir is a difficult problem. Many chemists have found it to consist of 21 parts by volume of oxygen to 79 of azote; and this proportion is sensibly the same whether the air be from the polar or tropical regions, from the level of the sea or a mountain top, from the most healthy or insalubrious comtries. But Dr. Prout, guided by the laws of definite proportions, alleges, that if the two gases of which air principally consists be really combined, they onght to be 20 oxygen to 80 azote; and it must be allowed that similar conjectures of the same eminent chemist have been verified regarding the composition of other bodies, whieh had apparently deviated farther from the atomic system.

The investigation of the component parts of the atmosphere did not keep pace with that of its mechanical properties. Boyle, lowever, and his cotemporaries, put it beyond doubt that it contained an elastic fluid and water in the state of vapour. They also conjectured that it contained various other substanees, which rose from the earth '.. the form of vapours, and often altered its properties, rendering it noxious or fatal. Since the discovery of earbonic acid by Dr. Black, it has been ascertained that this elastic fluid always constitutes a part, though a very minute one, of the atmosphere.
With respect to moisture, or the state in which water exists in uir, two opinions have been formed: 1. Water may be dissolved in air, in the same manner as salt is held in solution by water; 2. It may be mixed with air in the state of steam or vapour, after having been converted into vapour. The first of these was linted at by Dr. IIooke, and afterwards proposed by Dr. Halley. It has been adopted by many others in succession, among whom is. Irofessor Leslie; nud it cannot be denied that many of the phenomena agree with that theory. The seeond opinion seems to have originated with Mr. Delue; but it is to Mr. Dalton and M. Gay Lussac that we are indebted for subjecting this theory to the test of experiment.
Evaporation from the waters on the surface of the earth is undoubtedly the source whence the noisture which exists in air is derived. Accordingly we find that water exposed to the nir suffers a gralual diminution of bulk, till it entirely disappears. It is then said, in commen language, to have dried np, or to have evaporated. Under an exhausted receiver, water diminishes even more rapidly than in the open air. Were this owing to solution, the very reverse onght to follow; beeause, in place of dapour being caused by the presence of air, it gocs on more rapidly in its absence. By comparing a set of experiments made at Geneva, with a similar set on the Col-du-Genut, 10,950 fect higher, Saussure found that, supposing the temperature and dryness of the air the same at both places, the evaporation at the upper would be to that at the lower nearly as 7 to 3 ; so that a diminution of about one third in the density of the air more than doubled the rate of evaporation. It is well known, that cold is utways generated during spontancons evaporation; that is to say, that water, as it disappears, carrics off a quantity of heat. Dr. Black has rendered it probable, that the quantity of heat which disappeare during spontaneous evaporation is na great as that which is required to form water into steam. Λ wet body is always cooled by exposure to dry air, owing to the evaporation from its surfiee. Ilence, in warm countrics, liquors are cooled by wrapping wet cloths round the bottles and exposing them to the air. M. Saussure observed, that the evaporation from the surface of melting snow caused it to freeze again, when the temperature of the air was 4° or 5° above the freezing point. The simplest mode of illustrating the cooling influence of evaporation, is to cover the bull of a thermometer with wet cloth and cepose it to the air, when it will be found to indicate a greater or less degree of cold. This, it is true, does not take place if the air be very damp, becuuse there is then no evaporation. Wind tends to promote evaporation, both ly communicating its heat to the colder evaporating surface, and also by sweeping away the vapour as it is formed. On the contrary, there is searcely any evaporation in perfectly still air, unless some substance be present which absorhs the vapour as it forms.
On this principle, Professor Leslie contrived an elegant mose of producing ice in any elimate. A eup with water is placed within the receiver of an air-punp, along wihb some substance which absorlis the vapour. The rate of evaporation is then increused in an astonishing degree, by exhausting the uir from the receiver; and the portion of the water whieh is converted into vapour abstracts so mueh heat from the remainder, that the !atter is speedily converted into ice.
Dow is a remarkalie proluct of atmospheric moisture. The quantity of anucous vapour
conauctor aequ re mo bedrewed cmperatur wood, stru collect mo coated witl Vol. I.
which cq̣n exist in a given space, as a cubic foot, is pretty generally helieved to be the same, whether there be nir present in the space, or nothing but the vapour alone. The quantity is atways (cat. par.) the same at the same temperature, but it is greater as the temperature is higher; nud therelore, supposing the space to be saturated with vapour at a particular temperature, a portion of this will return into drops of water whencver the temperature talls. It is on this principle that a cold boly, such as a bott'. - of liquor, being carricd into a warm moist apartment, becomes bedewed on the outside, till, perhaps, the water trickles down its sides: the contact of the cold surface chills the air, which in return deposits a portion of its moisture. Now this is similar to the mode in which moisture is insensibly deposited from the atmesphere on bodies at the earth's surface, and which is known by the name of dev. All bodies, placed in still air and e::posed to the aspect of a elear sky, are found to become colder than they would be if some screen or awning were interposed between them and the sky. In such circumstances, bodies olten become much colder than the surrounding air, which, if sufficiently moist, deposits on them a portion of its moisture or dew. When the temperature is low, the dew is frozen, and forms har frost.
The radiation of licat also deserves notice. About the commencement of the present century, Professor Leslic discovered that bolies possess very different powers of radiating heat; and that this depends on the nature and conditien of their surfaces. Metals possess this quality in a degree inferior to vitreous bodies, and it is diminished in all of them by polishing the surface. Most fibrous and filamentous vegetable substances are good radiators, as are likewise bodies in general which are bad conductors or bad reflectors of heat. Now the degrees of eooling, which different bodies undergo when exposed together to the aspect of the sky, is observed to follow the same order ns that of their radiating powers; and, of course, the order in which they begin to acquire dew, as also the quantity acquired, is regulated by a similar law, as will be seen from what follows.
For the investigation of the causes of dew we are cliefly indebted to the late ingenious Dr. Wells. The ancients maintrined, that dew appears only on calm and clear nights. Dr. Wells found that, in opposite circumstances, very little is ever deposited, and that little only when the clouds are very high. Dew never occurs in nights both cloudy and windy; and if in the course of the night, the weather, from being serene, should become dark ard stormy, dew which had been deposited will disappear. In calm weather, more dew will appear it the sky be partially covered with clonds, than if it were quite clear. It often happens, that even before sunset, dew begins te adhere to grass in spots which are sheltered from both sun and wind; for, in clear weather, such spots suffer much from the chilling aspect of the sky, and may often continue te aequire dew during the whole night, and for some tine after sunrise. The quantity of dew depends on the moistness of the air, being greater after rain than after long-contimued dry weather. It is more abundant, in Europe, with southerly and westerly winds, than with those which blow from the opposite points. The reason of this seems to be the direction of the sea rendering the wind moist; for, in Egypt, dew rarely occurs unless the wind come from the sea. But with a southerly wind, which has passed along the floods of the Nile, dew is usually observed in the Delta five or six days betore the imundation. After a long period of dronght, Dr. Wells exposed to the clear sky, 28 minutes before sunset in a calm evening, known weights of wool and swan-down, upon a smooth, unpainted, dry fir table about 3 feet in height, and which had been placed an hour before in the sunsline in a large grass field. At 12 minutes after sunset the wool was 14° colder than the air, but had gained no weight. The swan-lown was 13° colder than the air, but had got no ulditional weight; nor was it any heavier at the end of 20 minutes longer, but it had then become $14 \frac{1}{2}$ colder than the air; whilst the grass was 15° colder than the air 4 feet above ground.-From these, and many similar experiments, Dr. Wells concluded that bodies bezeme colder than the neighbonring air before they are dewed.-He bent a slicet of pasteboard into the form of a penthouse, making the angle of flexure 90°, and leaving both ends open. This was placed one evening, with its ridge uppermost, upon a grass-phat, and, as nearly as could be guessed, in the direction of the wind. On the middle of the spot of grass sheltered by the roof, was placed 10 grains of wool, and an equal quantity on a spot of the grass fully exposed to the sky. In the morning, the first 10 grains were only 2 grains heavier, whilst the other had gained 16. The wool does not here acquire moisture from the grass by capilliry attraction, for the same effect lappens if it be placed in a saucer; nor is it by hygrometric attraction, for in a cloudy night, wool placed on an elevated board scarcely gained any weight.
'The quantity of' dew varies according to circumstances. When wool is placed upon a bad conuuctor of heat, as a deal board, a few feet from the ground, it will become colder nid acqu re more dew than if laid on the grass. At the windward end of the board, it is less bedewed than at the sheltered end; because, in the former ease, the wind keeps up the temperature nearer to that of the atmosphere. Rough and porous surfaces, as shavings of wood, straw, \&e., take more dew than smooth and solid bolies. Ruw silk and fine cutton collect more than even wool. Glass, being a gool radiator of heat, is much more quickly roated with dew than bright metals, which, indeed, receive it more readily than many other Vor. I.

X
lodies. This circunstance has given rise to the strange iden that metalsabsorb dew, though they be the most compact bodies known. If we coat a piece of gla \cdot ontially with bright tin-foil, or silver leaf, the uncovered portion of the glass quickly b $\quad 3$ cold by radiation, on exposine to a clear nocturnal sky, and aequires moisture; u.... heginning on those parts most remote frum the metal, gradually approuches it. Thus, alsu, if we coat a part of the outside of a window-pane with tin-foil in a clear night, then moisture will be deposited mside, on every part but that opposite to the metal; but if the metal be inside, then the rutside of the couted part of the pane will be sooner and more copiously hedewed. In the tirst case, the tin-foil prevents the glass under it from dissipating its heat, and therefore it ran receive no dew; in the second case, the tin-foil prevents the part of the glass which it coats from receiving the calorific influence of the upartment, and hence it is sooner cooled on the outside than the rest of the pane. When the night, after having been elear, becomes clourly, though there be no clange with respect to calmness, a rise in the temperature of the glass always ensues. In clear nights the temperature always fills, but, unless the air be sufficiently moist, dew does not necessarily follow; from which it is evident, that the cold cannot be the effect ef dew. For a more particular account of these interesting phenomenn, we must refer the reader to Dr. Wells's elegant Essay on Dew.

Clouds. The various forms of clouds were first successfully attempted to be arranged under a few general modifications by Mr. Lake Howard, and pablished in the 16th and 17th vols. of the PhilosopL. Magazine. The modifications of clouds is a term used to express the structure or manner of aggregation, in which the influence of certain constant laws is sufficiently evident amidst the endless subordinate diversities resulting from occasional causes. Hence the principal modifications are as distinguishable from each other, as a tree from a hill, or the latter from a lake; although clouds, in the same molification, compared with each other, have often only the comnon resemblance which exists among trees, hills, and lakes, taken generally.

There aro three simple and distinet modifications, which are thus named and defined by Mr. Howard:-
(1.) Cirrus. A cloud resembling a lock of hair or a feather. Parallel, flexous, or diverging fibres, unlimited in their extent or direction.
(2.) Cumulus, Λ cloud which increases from above in dense convex or conical heaps.
(3.) Stratus. An extended continuous level shoet of cloud, increasing from bencath.

There are two modifications which appear to be of an intermediate nature: these are-
(4.) Cirro-cumulus. A connected system of small roundish clouds, in close order or contact.
(5.) Cirro-stratus. A horizontel or slightly inclined shect, attenuated at its circumference, concave downward, rundulated. Groups or patches have these characters.
There are two modifications which exhibit a compound structure, viz. :-
(6.) Cumulo-stratus. A cloud in which the structure of the cumulus is mixed with that of the cirro-stratus or cirro-cumulus. The cumulus flattened at top, and overhanging its base.
(7.) Nimbus. A dense clom spreading out into a crown of cirrus, and passing beneath into a shower.

Regarding the mode in which clouds are suspended in the air, philosophers are not agreed. Ahout the commencement of the last century, it was supposed that the aqueous particles of clouds were in the form of hollow shells, specifically lighter than the air in which they float. But as no evidence or probability could be adduced in favour of this theory, it has given place to other speculations ; and, at present, many consider the suspension of clouds as an electrical phenomenon. On attentively observing the forms of elouds, it will be found that they have a tendency to assume one or other of the seven distinet modifications abve mentioned; the peculiar characters of which may be discovered in all the endless configurutions rxhibited by clouls under differnat circumstances. It may be observel farther, that the most indefinite and shapeiess masses of clouds, if attentively watehed, will sooner or later - how a tendeney to assume the firm of some of these molifications; a circumstance which *hows not only their distinct nature, but also proves that there are some grieral causes, as yet undiscovered, why aqucous vapour, stspended in the air, should assume certain definable ind constant modifications.

A more minute description of the formation and changres of the clouds, and of the prognostics of the weather to be deduced from their preuliar appearanees, shall now bo attempted.
Then cirrus or curl-cloud* may he distinguished from every nther by the iightuess of its nature, its fibrous structure, and the preat and perpetully clanging variety of figures which it presents to the eye. It is grnerally the mast clevated of clomis, nernpying the higher regions of the atmosphere. As this clouk, muler different circminstances, presents consider-

[^0]
Boox II.

METEOROLOGY.
able varieties of appearances, it will be proper to consider these separately, with reference to the particular kind of weather in which they prevail. After a continuance of clear fine weather, a whitish line of cloud may often be observed at a great height, like a white thread stretchel across the sky, the ends seeming lost in each horizon: this is often the first indication of a change to wet weather. To this line of cirrus, others are added laterally, and sometimes, as it were, propagated from the sides of the line in an oblique or transverse direction; the whole having tho appearance of net-work. At other times the lines become gradually denser; descend lower in the atmosphere; and, uniting with others below, produce raill without exhibiting the above-mentioned transverse reticulations. The nbovedescribed varicties of cloud, though composed of straight lines, are ranged under the general head of cirrus, from their resemblance to this cloud when it appears under ct red and contorted forms. The comoid cirrus, popularly known under the name of the grey mare's tail, is the proper cirrus. It sonewhat resembles a distended lock of white hair, or a bunch of combed wool, and from this it got the name comoid. It usually occurs in variable weather, and is reckoned a precursor of wind and rain. In changeable weather it varies considerably in a few hours; but when the fibres have a constant direction to the same point of the compass for any considerable time, a gale of wind generally springs up from that quarter. During warm changeable weather, when there are light breezes of wind, long and obliquely descending bands of cirrus are often observed in the air, and sometimes seem to connect distant elouds. Frequently, by means of the interposition of these cirri between a cumulus and some other cloud, as, for instance, cirro-stratus, the cumulo-stratus, and ultimately the nimbus or rain-cloud, is formed. The cirrus, when attentively examined, is found to be in constant motion, not neerely changing its form, but often exlibiting an internal commotion in the substance of the eloul, especially in the larger end of it. Every particle seems alive and in motion, while the whole mass scarcely changes its place. This motion, on a minute examination, often appears to censist of the fibres which compose tele cirrus, genty waving to and from each other; frequently, however, it seems like minute specks all in commotion. This takes place more frequently in those large and lofty cirri, with rounded heads and long pointed tails, so common in dry winds during summer and autumn.

The formation of the cumulus is best viewed in fine settled weather, about sunrise or a little after. Small specks of clond are seen here and there in the atmosphere. These seem to be the result of small gatherings of the stratus or evening mist, which rising in the morning grows into small masses of eloud, whilst the rest of the sky becomes clearer. Alout sunrise these clouls increase; two or more of them unite, till a large cloud be formed, which, assuming a cumulated and irregularly hemispherical shape, has received the name of cumulus or stucken-cloud. This is, n, pperly the cloud of day, as it usually subsides in the evening by retracing the steps of its formation in the morning. It separates into small fragments and evaporates, giving place to the stratus or fall-cioud, which is therefore styled the cloud of night.

Some varicties in the forms of the cumulus deserve particular notice, as they are supposed to be connected with electrical phenomena. The hemispherical form is more perfect in fine than in changeable weather. When such well-formed cumuli prevail during nany suecessive dnys, the weather is settled, and the electrometer pretty steady in its indications. They are whitish coloured, and when opposed to the sun reflect a silvery light. Cunuli which oceur during intervals between showers are more fleecy, and variable in form and colour. Sometimes they are blackish, and may at any time increase till they obscure the sky, or assume the forin of the twain-cloud or cumulo-stratus.
The stratus or fall-cloud comprehends fogs, and all those crecping mists which, towards evening, fill the valleys, aul disappear in the morning. The cumuli which have prevailed during a hot summer's day decrease towards evening, and by degrees there is formed a white mist near the ground, increasing in density till midnight or even till morning, and generally disappeariog after sunrise. In autumn, this cloul sometimes lasts lonfer in the morning. In winter it becomes still more dense, and sonetimes continues a who " uay or many successive days. A remarkable instance of this occurred in January, 1814, when a dense fog prevailed for about a fortnight, extending over a great part of the south a a i west of Eagland. It was particularly felt at Iondon, where the stagnation and subsidence of the smoke more than drubled the dismal visitation. The stratus is often positively electrified, and its component parts do not wet leaves or other substunces connected with the earth. On this, however, it may be remarked that dry bodies, which continue warmer than the fog, must remain dry on thie ordinary principles of evaporation. The stratus may be distinguished from some varieties of cirro-stratus which respmble it, hy the circumstanec that the latter wets every object it alights on.

The cirro-cumulus or sonder-eloud is subject to some variations in the size and figure of the orbicular masses of which it is composed, and in their distances from ench other About the time of thunder storms, the component parts are denser in their structure, rounder in their form, and closer together than usual. This has leen frequently noticed by poets as
a prognostic of thunder and tempestuous woather. In rainy changeable wenther, this cloud hns a light flecey texture, and is very irregular in thu form of its component purts; so that it then approaches to the form of the cirro-stratus. Sometinnes, indeed, it consists of nebecula, so small and light coloured as to be scarcely discernible. In fine summer weather, the cirrocumulus is neither so dense as the stormy variety, nor so light as the one last described; its parts vary in size, and in their proximity. During fine dry weather with light breezes, sunall detachments of cirro-cumulus rapidly form and subside, which do not lie in one pline; but their arrangement is commonly liorizontal. Tho cirro-cumulus sometimes commeuces in the clear sky. At other times the cirrus, the cirro-strutus, or some other cloud, ehanges into cirro-cumulus, and vice versi. In summer, this cloud forebodes heat: in winter, the breaking up of frost, and mild wet weather.
The cirrostratus is remarkable for its shallowness, compared with its horizontal extent; so that when any other cloud assumes this form, it seldom fnils to end in a cirro-stratus. This cloud is constantly ehanging its form, and graduully subsiding; hence it has been called the wane-tloud. There are many varieties in its figure; sometimes it is disposed in waving bare or streaks, varying almost infinitely in size and shape. A flat horizontal clond, consisting of such streaks, frequently oucurs during chnngeable summer weather; its bars are generally confused in the middle, but more distinct towards the edges. A variety of thes sort conatitutes what is called the maekerel-back sky. It is often very high in the atmorphere, as is proved from its still appearing high when viowed from the top of a lofty nouctain. The cumulus, on the contrary, may be seen on a level with, or even lower than, the observer. The eirro-stratus often appears in the form of a long plain streak, tapering waris the extremities. Sometimes such a figure seems to alight on the cumulo-stratus; und, 1s: these cases, the density of the latter incienses in proportion as the former alternately appirs and evaporates agnin on its summits. The usuml result is the formation of the nimbus, and a fall of rain. Another principal variety of the cirro-stratus consists of sumall intws of little clouds, curved in a peculiar manner: it is called the cymoil cirro-stratus, and © sure indication of approaching storms. The last variety of this cloud which we shall now totice, is that large and shallow veil of cloud which covers a large portion of the sky, particularly towards night, and through which the sun and moon are indistinctly seen. Xhose peculiar refractoons of the light of these luminaries, called hnlos and mock suns, usually appear in this cloud. These are the most eertuin signs, yet kuown, of approaching rain or snow.
The cumulo-siratus or twain-cloud is a stage towards the production of rain, and is frequently formed in the following manner:-The camnulns which usually passes along in the wind, seems retarded in its progress, grows denser, sprends out laterally till it overhangs the base in dark nal irregular protuberances. This change often takes place in all the cumuli which nre near to ench other; their bases unite, whilst the superstructure remains asunder, rising up like so many mountain summits, or masses of rocks. The cumulo-strati, in which iail showers and thander storms occur, look extremely black and menacing before the rain commences Sometimes the cumulo-stratus evaporates, or changes again to cumulus, but it oftener ends at the nimbus and rain.
The nimbus remains to be described; a cloud which nlways precedes the fall of rain, suow, or luil. Any of the others above described may inerease so much as to obscure the sky, without ending in rain, before which the peculiar characteristic of the rain-clond may always be distinguished. The best way of obtuining a clear idea of the formation of the nimbus or rnin-clond is to ohserve a distant shewer in profile, from its first formation to its fall in rain. The cumulus seens first arrested in its progrese: then a cirrus or cirrostrntus mey nppear to alight on the top of it. The chnuge to cumulo-stratus then gous on rupidly; and this cloud, increasing in dens: y, assumes that hack nud threatening aspect which is a known indication of rain. This hackness is soon changed for n more gray obscurity; nad this is the criterion of the actund formation of ruin drops, which now hegin to tall, while a cirriform crown of fibies extends from th: upper parts of the clouds, and small cumuli enter into the under part. After the shower has spent itself the different moklifications appear again in their several stations: the cirrus, the cirrosstratus, or perhaps the crrrocumulus, appear in the upper reginus of the air; while the remaining part of the brokpn umbus assumes the form of thocky euruli, and sails along in the lower current of wind. The reappearance of lirge cumulo-strati indicates a return of the rain. In showery wenther, the alternate formation and destruction of rain-clouls goes on rapidly, and is attendel by the other modifications in succession, as nhove theseribed. From its comexion with local showers, the nimbus is distinguished nlmust exelusively by bearing in its broad field of sable the honours of the rainhon.
Rain. Theorins of rain have been founded on the above observations. Since, ns already mentioned, a greater quantity of moisture can exist in a given spaen as the temperature is higher, it is plain that there is a certnin temperature at wheh air contnining some moisfure, will just be saturated, and which is called the point of deposition, or the deving point; far,

Part II

, this cloud ; so that it nebecula, , the cirrocribed; its czen, small plane; but nees in the anges into the break-
al extent rro-stratus. thas been is disposed horizontal eather; its A variety ligh in the of a lefty ower than, k, tapering ilo-stratus ; alternately ien of the ts of small tratos, and h we shall of the sky, actly scen. neck sums, ppreaching
and is fre. long in the overhangs in all the re romains nulo-strati, ing before ocumulue,

Il of rain, scure the loud may ion of the tion to its rro-stratins n rupidly; which is a rrity ; and II, while a all crumuli dificntions the cirrohe broken ind. The ather, the led by the vith local lil of sable

Book II.

METEOROLOGY.
body of air below the dew this, the air will deposit moisture. When the cooling 181 parency, or proluce a for. point is very slight, the etlect is nueroly to the cooling in the not aflected; because it is. In the case of dow, tormerly consilerely to disturb the trausbut only a minnte portion not the mass of air that is cooled bonsuret, the transpareney is When the cooling in of it which comes into contuct withew the point of deposition, deposited more copiously bonly of air below the dewing point is socs cooled by radiation. rain; or, if the temperature bollecting into drops, desconds to the pusideruble, the water is sleet; if tully trozen, suow ; be sutliciently low, the drops are the curth in the form of lation of hail.
Dr. James Hutton of Edinburgh made the first attent compact, they receive the appelrain, \&c. on known principles. Withont deciding whet to account for the phemomenn of chemically combined in the air, he conjectured from whether moisture be simply mixed of ratio than the temperature yuntity of aqueous vapour which can exist ins is now established with moisture are mixed ate. Hence he inferred that whenever two in air varins in a higher in consequence of the mean temperature notures, a precipitation of moises of air saturated vapour. But if the air, before perature not being able to support the misture must ensue, smiller quantity, or none, before mixture, was not fully saturuport the mean quantity of metcorologists, particularly Proley be fleposited. This theory has with moisture, then a justly remarked, that it involves ther Leslie and Mr. Dilton: hus been adopted by various temperature,-a point which was the assomption that the mixture Mr. Lake Howard has is experiment goes, it is filly more fien, and is even yet, not quite settlat; have the mean Mr. Howard accordingly more favourable to the theory than the mean ; although so fir in every instance the result of thects Dr. Hutton's theory, nad alleges that would be. he thinks, is confirmed by of the electrical action of clouds uponeges that rain is almost of the clonds and rain. and sensible display of those he supposes that a thunder storm upon the electricth state purposes.
which are incessantly operating for more sudden clout, the spreading of the superior ming of notice in the formation of the nimbus or rainwhe stratus, one uniform sheet; and the rapid motion all directions, until they become, like superior shect under the latter. The cirri, alson and visible decrease of the cumulus, conductors for the electricity so many bristles, are supposed frequently stretch from the larger drops which form the evolved by the union of piposed by some to be temporary feet in wis interval hetween rain. In an experiment of Cavallo's pith of vajour into the clouds were positively clectrified ters, and kept up during rain, with a kite sent up 360 strong negative electricity took belore the rain; but on the orrival sens that the superior kite. We are not, however, warrou, which lasted while the currival of a large cumnlus, a is always negative; as the same warnated to conchule that the cumulus which passing over the negative stratus: yet the same effect might ensue from u positulus whieh brings on rain the positive indications commendy negative state of the lower atmerphulus uniting with a opinion. It is not, howevmonly given by the true stratus, reaumoephere during rain, und clouds which appear durimer, absolutrly necessary to detorminer this the more probable clusion, that clouds formed in rain; since there is sufficiertnine the several states of the bronght near enough, so as to different parts of the atinosphere evidence in favour of the concan be attributed only to thei occasion their partial or entire destruction on each other when site electricities. Such is Mr. Il powssing beforehnal, or acquiring ot the -an effect which in purticular, the electricity of the atmes view of the subject; but untile electricity, the oppophenomena of rain be broy of the atmosphere, be better mun until electricity itself, and, present state of science, Dr. Hutton, ner home by being ascribed to , is doubtinl if the principles which are better known, the theory has rather the adiantage electricity. In the for the purposc. Rain is very unequally distributed to the dif so arrunged it, that it is most copious in those latitudes whe of the globe; but nature has hardly ever rains. These are usu this rule; for, on several tracts evaporation is most rapid. sterile and uninhabitable. Thenally far inland, ind are generally on the earth's surtace, it copious deposition of dew: On the cont of rain is in some phaces extensive phains utterly which are mustly on the seal On the contrary, there are some spots partially supplied by the is calculated to hold no more As the whole atmosphere, when fully charged ways rains, and mean ammul deposit is abont 35 water than would form a sheet 5 incherged with humidity, renewod. Rain is more abumbur 40 inches, it is plain that the inches in depth, white the towards the interier, and on elevant toward the equator than the supply must be frequently From the most authentic cources situations than on plains. poles, at the sea-coast than Vol. 1 .

10 has construeted the fellowing table, slowing
the mean monthly und annual quantities of rain whieh lanve fallen at several places, being the uverage for many years:-

								容		
	1nch.	Inch.	Inch.	Inch.	Inch.	Inch.	Inch.	Incil.	Fr. luch.	Fr. Inch.
Jamuary.......	9.310	2.177	9.191	3.461	5.249	3.1095	1.505	1.414	1.8) ${ }^{\text {d }}$	2.477
Fehrusiry	2.5104	1.147	1.125\%	2.9145	5.1213	2.827	1.741	1.850	1.238	1.760
March.........	2.1094	1.523	1.342	1.753	3.151	2.164	1.144	1.172	1.140	1.127
April...........	2.0111	2.104	9.078	2.180	9.080	2.017	0.970	1270	1.185	2.6443
May	28.5	2.573	4.11 H	2.4181	3.480	4.568	1.641	1.036	1.767	2.431
Jnne	2.503	2. 416	9.920	2.512	2.152	2.1174	1,34:1	1.7\%6	1.6097	9.5184
July...........	3.8107	3.0613	3.0011	4.140	4.155	3.954	2.303	2.44M	1.1000	1. K 02
August	2.ti65	3.311	4.435	4.5011	5.0031	3.189	9.746	1.407	1.060	9.347
Sejulember.....	3.241	3.154	9.204	3.751	4.874	4.350	1.617	1.1842	1.550	4.140
October	3.982	3.724	3.0718	4.151	5.4319	4.143	9.947	2.048	1.760	4.741
November.....	3.360	$\mathbf{3 1 . 4 1 1}$	2.1134	3.775	4.7.75	3.17 .1	1.904	2.248	1.760	4.187
December.	3.832	3.228	2.569	3.055	0.084	3.148	1.181	1.736	1.600	9.397
	36.140	34.118	27.664	30.714	53.1144	36,019	21.3311	90.686	14.649	33.977

The depth of rain, according to Iumboldt, at the latitudes of $0^{\circ}, 19^{\circ}, 45^{\circ}$, and 00°, is, respectively, 96, 80, 29, ned 17 inches. In the torrid zone, a small thick rain falls almost every day on that side of the equator where the sun is; but it generally intermits during the night. In many places, there are two wet and two dry scasons in the year; and in some regions, from the effect ef the monntums and peculiar winds, places under the same parallel have their wet and dry seasons nt opposite periods. Though the ammal depth of rain be greatest toward the equator, the number of rainy lays inereases with the latitude.
Aqueous meteors, so essential to vegetation, have their salutary effects modified by the chemical qualities of the moisture in the atmosphere. The salt rain and dew of the vicinity of the Caspian Sea, owing to the vapours which are exhuled from the soil, probably contribute to those saline efflorescences which are said to he gralually overspreading the once fertile soil of Persia. The salt fogs in the west of Jutland are very injurious to the foliage of trees, without being hurtful to the grass. Rain has also been known to be impregnated with sulphur, and with various substances approaching to that of animal and vegetable matters. Some of these communicate to the rain a peenliar colour, ns that of blood, \&e. On the other lund, fogs oecur in which little or no moisture is present: such are called dry fogs ; and are supposed to be the vapours and ashes ejected by volcanocs, and diffised in the atmosphere by the winds. Their oceurring about the time of great eruptions strengthens this conjecture.

Glucirs. Ice and snow absorb a large portion of heat during liquefuction, which they give out again on freezing; for, in the ordinary process of nature, water does not cool below $32^{\circ} \mathrm{F}$. till the whole be frozen; nor does its temperature rise nbove that point, while in contact with ice or snow,-that is, till the whole be melted. This property has an important effeet on the temperature of snowy distriets. It retarls and often prevents the occurrenee of extreme cold, and it opposes an sudden rise of temperature nbove the freezing point. The cold in the at-Aosphere, as was formerly stated, continually increases with the elevation; mud, at a certuin height, depending on the climate or latitude, perpetual frost prevails. Where the carth's surfnee attains this height, it is, with the exception of sone steep or vertical cliffs, continually covered with snow. The snow acipuires new additions from time to time; for, though it may melt slowly from the hent of the ground on which it rests, yet it suffers little decay externally, except what the air carries off hy evaporation. The warmth of the solar rays may soften it a little, but this only tends to its farther consolilation. Masses of this sort are called glaciers. By accumulating in the maner just mentioned, they often becone top-heavy, or acquire such an enormous weight as to break their hold, or erush theil lower parts, which are besides liable to be undermined by the warmth of the mountain on which they rost. Hence it not unfrefuently happens, that luge masses of ice or conglomeritod snow slide or roll down the sides of monutans, transporting, perhaps, large stones or fragments of rocks to which they had adhered, or which had been separated from their beds by the ageney of the weather. Detached mheiers often descend into districts having a meas temperature consiferably above the melting point of snow. But so great is the heat consumed in lipuefying such lugre masses, that yeurs may elapse before they entirely disappear; and during that interval others descend; and so on continually. So that the limit of' perpetual now may be found in a climate where little snow falls from the cloods. When glaciers descral into the sea, and particularly when detached and doating, they are termed icfluress.
The snow-line, or lower limit in mountains oovered with perpetual suow, descends in winter anl rises argin in summer. Uuder the equator, this change is scarcely perceptih's

Rook II.
METEOROLOGY.
hut it increases with the latitude, and in liggh Intitudes the snow-line has a great range. The direction of the prevailiag winds, with many circumstances too numerous to be detailed, has each its eflect. The snow-line is lower on the sides of mountains turnel from the sun, than on neclivities which receive his rays more perpendicular to their surfuces. Hence it happens, that one side of a mountain may be covered with perpetual snow, whilst at the same height on the opposite side it is in a state of cultivation. The snew-line, therefore, depends so much en localities, that no general rule can be given for computing its altitule. 'Yough often employed for estimating tio heights ef mountains, it is a most fallacious criterion.
Humboldt gives the following lieights of jerpetual snow in different parts ef the world:Andes ef Quito (lat. 1° to $1^{\circ} 30^{\prime}$), 2460 tojses. Volcano of Puracé (lat. $2^{\circ} 18^{\prime}$), 2440) toises. Tolimn (lat. $4^{\circ} 46^{\prime}$), 2380 toises. Nevados of Mexico (lat. 10°), $\mathbf{2 3 5 0}$ toises. Hinúláya (lat. 81°), northern side, 1950 toises; southern side, 2605 toises. Summit of Sierra Nevada, Grenada (lat. $37^{\circ} 10^{\prime}$), 1780 toises. Caucasus (lat. 42° to 43°), 1050 teises. Prrences (lat. $42^{\circ} 5^{\prime}$ to 43°), 1400 toises. Swiss Alps (lat. 46°), 1370 toises. Carpathian mountains ($49^{\circ} 10^{\prime}$), 13330 toises. Norway (lat. 61° to 67°), 850 to 600 toises ; and (lat. 70° to $71^{\circ} 30^{\prime}$) 550 to 366 toises.

Colour of the Atmosphere. That the air has a blue colour, has been conjectured becnuse a distant landscape appears of that cast, which, however, is greatly diminished by a good telescope. Newton ascribed this phenemenon to the greater refrangibility of the blue rays and some censider it the effect of vapour. The appearance of the sky, when viewed from a ligh meuntain, is of a deep blue, approaching to black. But this must be in some way illusory; because the upper atmosphere is highly transparent, as the heavenly bodies shine with increased splendour.

Sect. IV.-Luminous Metcors.
The refraction and reflection ef light hy air produce a remarkable phenemenon. While the rays of light move in a medium of uniform density and composition, they are straight; but when they pass obliquely into a medimm of a different density, they are bent or refracted toward the denser medium. The rays ef light, therefore, whilst coming through the atmosphere frem the heavenly bodies, are always entering into a denser and denser stratum of air, and are censequently bent down towards the earth. The different rays suffer different degrees of refraction, according to their colour. That of red is the least, then orange, yellow, green, light blue, indigo, and violet. All solid bodies have the property of reffecting light; and it is probable that all bodies whatever reflect light in a greater er less degree. The clouds and air possess this property. The rays which are the most refrangible, are also the most easily reflected. When the sky shines with a fine azure hue, it is by means of the more reflexible rays, which are first reflected from the earth, and afterwards returned by the atmesphere. The refraction and reflection of light enablo it to diffuse itself ever the atmosplere, illuminating our hemisphere fer a considerable time after the sun has gone down and before he has arisen, producing the morning and evening twilight.

The rainbow is a circular innge of the sun, varieusly coloured, and proluced thus:The solar rays, by entering the drops of falling rain, are refracted to their farther surfaces, and thence, by one or more reflections, transmitted to the cyc. But on escaping from the drop, they underge a secend refraction, by which the rays are separated into their different coleurs; and in this state are exhibited to an eye properly placed to receive them. The rainbow is never seen but when rain is falling, and the sun and bow are always on opposite sides of the observer.

The halo is a broad circle of a variable diameter, sometimes white, but more commonly exhibiting a faint representation of the coleurs of the rainbow. It appears in a thin cloud, or in a liaze, around the sun and moon's disc.

The corona is a circular space, full of mild whitish light, around the moon's disc. It sometimes passies into n yellowish or brownish colour towards the edges. This and the halo are popularly known by the name of burrs; and the latter is accounted a prognostic of rain, especially when its diameter is large.
Parhelia or mock-sums are images which appear sometimes above and sometimes below the dise of the true sum. They are supposed to be seated in the points of intersection of different halos, and to derive their brightness from the union of several reflections. Parhelia are sometimes surrounded by a whitish border, sometimes by the colours of the rainbow. They are rarely quite circular, and some have luminous trains, as has likewise the sun himself, when near the horizon, in the vicinity of Indson's Bay. It is there, and in similar cold foggy situations, that parhelia are usually seen.

Mock-moons or paraseteno are of less frequent ocenrence than parhelia, but they are generally ascribed to a similar canse.
luminous shadows or ghories are remarkable phenomena, in which a spectator sees his shadow projected on a elond with a luminous ring, sometimes coloured like the rainbow, encircling his head. The spectator, in such eases, must either be on an elevation, or the rloud mist be very low: The shalow is usnally of an enormous size.

Looming is the torm usel by wilors to oxprese a eurious optical deception, by which objects come into view, though materially nitered us to their real nituation or position. The French call it mirage, and the Italians fata morgana, It othen hoppens at eon, that a distant ship appears ns if painted in the eky, perhapw in an inverted powition, nud not suppurted by the water. Sunken rocks and sands appear as if raised nlowe the surlice. 'I'lo *wordes long senreleed in vain for an illusory island of this sort, which they saw from a distance, as if placen between the islea of Alaul and the coast of Uphand, TThe shipping und lmidings on the shore of Naples lanve, from Messina, sonetines uppeared thanting inverted in the uir. In 1798, the French const appeared distinctly raised above the sen, fier un hour, us viewed from the opposite shore of Suasex. Te the French, whist marehing in the Byyptian doserts, the samly plain covered in the distance by a dense vapour presented the illuxive inugre of a vast lake, townrds which they hastened, lint could never reach it.
The aurora borealin, or northern light, is a remarkable luminous phenomenon which occurs during night, and most commenly in clear or frosty weather. It is buknown in low latitudes, and becomes more frequent as we recedo from the equator. But it is doubtfinl if its maximum either as to frequency or brilliancy be at the pole; for in the late north polar expeditions it was seen to the sonth of the observer, wherens at greater distnnces from the pole it appears to the north or a little to the west of north of the spectator. It is usually of' a reddish colour, inclining to yellow, and sends out frequent corusentions of pule light, which seem to arise from the horizon in pyramidal undulating forms, and shoots with great velocity townrds the zenith. Some maintain that a whizzing noise accompanies this phenomenon, but this is not very well ascertained. The light appears sometimes remarkubly red, ns was the case in many parts of Europe, Dec. 5, 1737. The aurora borealis frequently appears in the form of a luminous arch, chiefly in the spring, and in the nutumn of a dry geason. The arch is partly bright and partly dark, but generally transparent. This kind of meteor is almost constant during the long winter nights, in high Patitudes. The "merry daneers," as it is called in Shetland, afforil the inhabitants great relief amid the gloom of their long dreary nights. They commonly appear at twilight near the horizon, of n dun yellow, and sometimes continue so for several hours, without notion; nfterwards they break into streams of a stronger light, passing into colnmns and imnumerable different shapes. During this, the colour varies from all the tints of yellow to the most obscure russet, exhibiting the must beautiful appenrance. In the northern parts of Sweden and Iapland, the aurora borealis is singularly benutiful, snd affords to travellers a very fine light during the whole night. In Iludsm's Bay it diffuses a variogated splendour sometimes equal to that of the full moon. Similar lights were ohserved by Dr. Forster towards the sonth pole, but they were much feebler than in the northern hemisphere. The cause of suel phenomena is unknown. Some ascribe then to electricity and magnetism.
The electricity of the atmesphere is very imperfeetly understood. In storms, the clonds usually exhibit the vitreous or positive electricity. In summer, when the earth is dry, and the day warm and serene, the eleetricity of tho nir increnses from sumrise to noon; in which state it continues for an hour or two, and again diminishes, till the dow appear. It revives towards midnight, and again decreases till it become insensille.
The phenomena of thunder are so vell known, as to require no description; but no satisfuctory explanation has yet been discovered, except that it is intimately connected with electrieity, which being itself in a great mensure among the incognita, lenves us still in the dark. Thunder is more frequent as we npproach the equator, and decreases as the lutitude increases, being totally unknown in the arctic regions, It is a very rare phenonenon in intensely cold wenther, and seldom oceurs during night in tho temperate zones. It is usually attended by heavy showers of hail or sleet, sad less frequently hy min. The distance of thunder may be estimated, ly allowing 1100 fiet fur each second which elapses between seeing the flash of lightning and hearing the report. It is sellom hearl at a grenter distance than two miles, and only does mischief when very nenr.
St. Elrno's fire is a faint light which seems to adlere to the points of hodies carried swifly through the air. It appears on the tops of ship masta, and at the points of spears and other warlike instruments when in motion. It is generally beliceed to be an accumulation of electric matter. 1 single flame of this sort was called by the ancients IIclena. When seen in pairs, they were called Castor and Pollux.
Fire-balls are those luminous bodies whieh appear usually at a great height nobve the earth, and were on that acceunt long known by the term meteor, which is now applied to many other nurial phenomena. They present a very imposing appearance, and are seen of un immense size, sometimes red, but oftener of a vivid dazzling white. They traverse the atmosphere with amazing velocity. This, and their great height, have been inferred from their being seen from various listant places almost at the same instant. Sometimes they hurst in pieces, or discharge torrents of flames, with a detonation making both the air and earth to tremble. Some of these balls desseend like lightning, break through the ronfs of buildings, destroy animals, and shater vessels at sen; in short, they ure often attended with nll the disastrous effects of thender and lightning, with which they are occasionally arcom-
pamich. Some consider these balls to he great masses of electric matter, passing from one placu to another. Others suppose then to be the same with the aefrolites.
Aerolites, or meteoric stones, have trequently descended from the atmoephero from the remotest untiguity. Whith the alove opinions may be in so fur correct; because tho fire-bnlls exhibit very diflerent appearances. Philosophors aru very much divided regarding the origin of meteoric stones. Some imagino them to be ejectel from volcanoes on the enth's enrfaco; others from volcanoes on the moon. A third class maintain, that they are generated by the combinution and comsensation of their component parts, previously diflused in the ntmosphere in the gaseous form. Others allege, that they are detached stones moving through ther boundless regions of space, and which casunlly come into contact with our planct. All these are little else than conjecture, although their formation in the atmosphere is the moxt plansible. A numerous list of the most authentic falls of such bolies is given in Phil. Mag. vol. Ixvii.

Falling stars are very ordinary phonomena everywhere, but still they belong to a class which is not well understood. Near the place of thoir apparent descent, a foxtid gelatinous substance has frequently been found, of a whitish yellow colour.*
The zodiacal light is a luminous appearance, seen nfter sunset, or before sunrise, somewhat similar to the milky way, but of a fainter light, in the figure of an inverted cone or pyramid, with its base towards the sun. Its nxis is variously inclined to the horizon, and makes an angle of nearly 7° with the plane of the enliptic. The earliest distinct account of it was given by Cassini in 1683; but this affords no ground for supposing that it had not existed or been spen prior to that dato: it is always observable, when the sky is clear, in the torrid zono; but is moro rarely to he found as we recedo from the equator. The season most favourable lor observing it is about the beginning of March: it is much brighter in some years than others, and wus particularly brilliant at Paris, 10th February, 1769. The zodiacal light lies in the plane of the sun's equator, and is therefore supposol by some to be connected with his rotation.

Sect. V.—Winds.

Winds are currents of air occasioned by the disturbance of the equilibrium of the atmosphere hy tho unequal distribution of heat. The gencral tendency, in such circumstances, is for the heavier colnmns to lisplace the lighter; nnd for the nir at the earth's surface to move from the poles towarl the equator: in consequence of tho rotation of the earth on its axis, another motion is combined with the currents just described. The nir, which is constantly moving from points where tho enrth's motion on its axis is slower to those where it is quicker, cannot have precisely the same motion eastward with the part of the surface over which it is passing, and therefore must, relatively to that surfuce, aequire a motion somewhat westerly. The two currents, thereforo, from the opposite hemispheres, will, on mecting, abont the equator, destroy that part of each other's motion which is in the direction of the meridiun, leaving nothing but their united motion towards the west. Such is the cnuse of the trade-wind, as proposed and rejected by Dr. ITalloy: it wus shortly after revived by Hadley, and is pretty generally received. The trado-wind (with certain exceptions) blows constantly from the east, between the latitudes of $30^{\circ} \mathrm{N}$. and $30^{\circ} \mathrm{S}$.; it declines somewhat from due east, towards the parallel to which the sun is vertical at different seasons of the year. The only supply for the air constantly abstracted from the higher latitudes must be made by a counter current, in the upper rogions of the atmosphere, carrying back the air from the equator to the poles. In a zone of variable brealth, within the region of tradewinds, calms and rains prevail, caused prolably by tho mingling and ascending of the opposito enrents. IIigh lands change or interrupt the course of the trade-winds: thus, under the lee of the Africun shore, calms and variablo winds prevnil near the Cape Verd islands, while an eddy, or connter current of air from the south-west, is generated under the coast of Guinca. The lofty barrier of the Andes shelters the sen on the Peruvian shores from the trade-winds, which are net felt till a ship has sailed eighty leagues westward; but the intervening space is occupied by a wind from the south. In the Indian ocean, the tradewind is curiously modified by the surrounding land: the southern tradc-wind blows regularly from the east and south-east, fromi 10° to 23° south latitude; but between 10° south and the equator north-west winds prevail from October to April, and south-east the rest of the year ; while north of the eqnator, the wind is south-west in summer, and north-cast in winter: these are culled monsoons, but are not fully understood.

As to the parts of the globe that lie beyond the region of trade-winds, calms prevail pretty generally over a narrow epace; beyond which, the region of variable winds extends probably to the poles. Mr. Forster obeerves, that beyond the tropics the west winds ate most common. He nlso supposes that east winds have an uscendency within the antartic circle. According to Robins, a westerly wind almost constantly prevails about latitude $60^{\circ} \mathrm{S}$. in the Pacific

[^1]

IMAGE EVALUATION

 TEST TARGET (MT-3)

Photographic
Sciences
Corporation

Ocean. In Hudson's Bay, westerly winds prevail during thrce fourths of the year, as also in Kamtschatka. At Melville island, the north and north-west winds prevail: on account of these winds, the Atlantic may be croesed eastward in about half the time of returning westivard.

Sea and land breezes arise from the same general principle which chiefly occasions the trade-winds: during the day, when the sun renders the surface of the land warmer than that of the sea, the warmer rarefied air of the land ascends, being buoyed up and diaplaced by the heavier air rushing from the sea, and thus forming the sea breeze; but the reverse often happens during the night, when the surface of the land becomes colder than the sea, and occasions a wind from the land, or a land breeze. Winds of this sort are more frequent about islands and small peninsulas than in other situations; but they are not confined to any particular latitude.

A variety of local winds have also been observed. The etesian, which is a northerly or north-easterly wind, prevaile very much in summer all over Europe. Pliny describes it as blowing regularly in Italy for forty days after the summer solstice. It is supposed to be a part of the great lower current moving towards the equator. Another northern wind, which often continues about a month in February and March, is called the ornithion wind, because some birds of passage then make their appearance in the sonth of Europe. A squall, or sudden gust of, wind, is common in many places; and when its impetuosity is sufficient to bear along trees, buildings, \&c., it is called a hurricane; such winds have frequently a whirling motion, and are accompanied with torrents of rain or hail, and even thunder; these are sometimes called tornadoes: they are principally confined to the torrid zone. The sirocco is a hot sonthern wind, known on the shores of the Mediterranean; when it reaches Naples and Sicily, it is very moist and relaxing to the human frame. Some warm climates are occasionally visited by excessive hot pestilential winds, generally frem the south, and known under a great variety of names in different quarters. Such are the kamsin of Egypt, the simoom or samiel of Arabia and the Desert. The deleterions effects, which frequently cut off whole hordes or caravans, are sometimes ascribed to the predominance of one of the component gases of the air, or to a mixture of nitrous gas, \&c.; but this is not well ascertained. The very arid state of the air, bearing along vast quantities of burning sand and dust, must of itself be very prejudicial to animal life. The harmattan is a warm, dry, east wind, which occurs in Guines, and is also of an nawholesome description.

The velocity of the wind varies from nothing up to 100 miles in an hour; but the maximum is variously atated by different authors. According to Smeaton, a gentle breeze moves between 4 and 5 miles per hour, and has a force of about 2 ounces on a foot; a brisk pleasant gale moves from 10 to 15 miles, with a force of 12 ounces; a high wind, 30 to 35 miles, with a firce of 5 or 3 pounds; a hurricane, bearing along trees, houses, \&c. has a velocity of 100 miles, and a force of 49 pounds on the square foot.

The force of the wind is nearly as the square of the velocity multiplied by the density of the air. Some interesting experiments are described by Colonel Beaufoy, Annals Phil. vol, viii. p. 94.
The atmosphere is the vehicle of sound, and we shall close this brief aketch by noticing this property. Till lately, the velocity of sound used to be greatly over-rated. From the experiments of Dr. Moll, in the plains of Utrecht, in 1823, it sppears, that the mean velocity of sound is nearly 1100 feet per second; but it varies a little with the temperature and humidity of the air. See Phil. Trans. for 1824.

CHAPTER II.

hyprology.

This branch of natural history makes us acquainted with the various properties and relations of the waters of the globe. Any definition of water is unnecessary; but mankind must have remarked, at a very early period, that the waters distributed over the globe differ considerably in their fitness for drinking, for preparing food, and for other domestic purposes. These differences are occasioned by the foreign bodics which this liquid holds in a state of solution or suspension; for water is capable of dissolving a greater number of substances than any other fluid. Hence it is scarcely ever found nstive in a state of absolute purity: in some csses, the quantity of foreign matter is so minute, as to have little infiuence on the taste or other properties; but in other instances they are so abundant, as to render it unfit for common use, or even noxious; while at other times it is medicinal, \&c., according to the nature of the substances with which it is impregnated. Native water, free from colour, is almost nevor poisonous, especially if it be at the same time tasteless; but if blue from copper, green from iron, or brown from vegetable impregnation, it is unfit for the use of man. Water performs the most important functions in the vegetable and animal kingdoms, and enters largely into their compositions, as a constituent part.

The aubstance of water presents iteelf under three different forms of aggregation. If under sufficient pressure, it is liquid at all temperatures above 32°, so far as ia known. It is denseat at the temperature of 40°. When cooled down to 32°, it ordinarily assumes the solid form of ice; but if great care be taken to avoid agitation, it may be cooled almost to zero, without freezing. Congelation commences in the form of priamatic crystals, crossing each other at angles of 60° or 120°, and the temperature, however low before, instantly rises to 32°. During this process, the mass expands with a prodigious force, the volume suddenly increasing about a ninth part. Glass bottles filled with water, and properly stopped, are burst during its congelation, and the same has happened to a atrong bonb-ehell. Water passes into vapour at all temperatures, and under any pressure; when the alasticity of the vapour equals or exceeds the incumbent pressure, the process proceeds with violence, and is called boiling. Under the ordinsry pressure of the atmosphere, this takes place at about 212° of Fahrenheit's scale; but the bolling temperature varies with the pressure: bence, water boils at a lower temperature on a mountain top, and at a higher in a deep pit.
The relations of water to heat are very remarkable. With the exception of hydrogen gas, it absorbs more heat in warming, and parts with more in cooling, than other bodies do. Hence, large bodies of water have a powerful influence in checking or retarding sudden alterations of temperature in the surrounding air. Ice, in melting, absorbs as much heat as would raise its temperature 140°, and gives eut the like quantity again in freezing, - property that enables it to resist or retard sudden alterations of temperature in cold climates, in a more remarkable degree than the other; which, however, exerts its influence in the torrid and temperate as well as in the frigid zone. Lastly, water, in assuming the elastic form, absorbs heat sufficient to raise its temperature 1000°, and parts with as much during re-condensing into water; so that water possesses an almost boundless influence in tempering climate.

Water, as to its composition, was long ranked among the simple elements; but the researelies of modern ehemistry have ascertained that it is a compound of 88.9 of oxygen, and 11.1 of hydrogen; or its composition by volume and weight may be thus stated: one volume of oxygen combined with two of hydrogen, or eight parts by weight of oxygen, with one of hydrogen. It is composed and decomposed, during many of the operations of nature, and its chemical agency is almost universal. It is an ingredient in most bodies which appear under the cryataline form.

Sect. I.-The Ocean.

The occan is the origin and fountain of all the other waters which occur, in whstever form, on the face of the globe. According to some naturalists, it forms the remains of the menstruum or chaotic fluid, in which all solid bodies were originally held in a state of solution, and from which they have been precipitated or crystallized, in short, brought to their present state, during the countless ages which these processes are supposed to have occupied, anterior to the creation of man : be this as it may, we are certain, that it is from the vapours exhaled by the ocean that the atmosphere is furniahed with sufficient moisture to support and refresh the organized beings which inhabit the earth. All nature languishes when the atmosphere withhelds its rain and dews; plants fade and droop; animals feel their strength failing; even man himself, breathing nothing but dust, can with difficulty procure shelter from the sultry heat by which his frame is parched and overpowered. The ocean is the grand thoroughfare of commerce, forming a medium of communication between the mont distant and otherwise inaccessible portions of the earth. It consists of one continuous fluid, spread round the land, and probably extending from pole to pole. All the gulfs, all the inland seas, form only portions detached, but not entirely aeparated, from that universal sea, denominated the ocean. Geographers roundly estimate the ocean and its branches to occupy three fourths of the entire surface of the globe. But to ascertain the exact proportion between the land and water will afford them ample employment for ages to come, though every day adds to the stock of information already acquired.
The ocean is variously subdivided by different authors: it msy be conveniently divided into five great basins.

The Pacific, so named from its comparative tranquillity, and often called also the Grest South Sea, separates Asis from America. It is the largest of the basius, and somewhat exceeds the entire surface of dry land. Its greatest extent, from east to west, is about 3700 leagues, and breadth 2700. It is bounded on the east by the western and north-west shores of America, and on the west by the eastern coasts of Aaia: on the weatern side, and between the tropics, its surface is studded with innumerable groups of islands, all remarkably small; and consisting generally of coral reefs, rising up like a wall from unknown depths, and emerging but a very little above the sea. These islands are the works of innumerable minute inseets, whose ineessant labours are thus gradually forming new lands in the bosom of the occan. On the western side, it communicates with the inland seas of Japan and Okotsk, the Yellow and Chinese seas; and on the eastern side, it has the inlets of California and Qucen Charlotte's Sound. The small islea of the Pacific, scattered over the torrid zone,
have their temperature so moderated by the occan as to enjoy the most delightful climate in the world.
The second basin, or Atlantic Occan, is usually divided into the North Atlantic, and the South Athntic, or Ethiopic Ocean. Tho Atlantic ia bounded on the east by Europe and Africa; and on the west, by America: that part of it between Furope and North Anerica ia frequently called the Weatern Ocean. The Atlantic basin extends from $70^{\circ} \mathrm{N}$. to 35° and $50^{\circ} \mathrm{S}$. latitude; but it is only about half the aize of the l'acific Ocean. The length is about 2800 leagues, but the breadth, which la very unequal, varies from 600 to 1800 . The South Atlantic contains few islands of any size, and no inlets of consequenco; but the North Atlantic abounds in large islands, and in leep and numeroua inland seas, which penetrate far on each side into both the old and new worlds, and have fitted it for the most extensive cominerce on the globe. On its eastern slores it receives few large rivers except the Niger; but on the west it receives the Plata, Orinoco, Amazons, and Mississippi,-the largest rivers on the face of the earth.
The third basin is the Indian Ocean, which washes the shores of the south-east coasta of Africa and the south of Asia. It is bounded on the cast by tho Indian ialands, New Holland, and New Zealand: its length and breadth are each about 1500 leagues: it contsins many islands, the two large bays of Bengal and Oman, with the deep inlets of the Persian Gulf and Red Sea. The half-yearly winde called monsoons prevail in its northern parts.

The fourth basin is the Arctic Ocean, an iminense circular basin, surrounding the North Pole, and communicating with the Pacific and Atlantic by two channela; the one separating America from Europe, the other America from Asia. Few points of the consts of Europe and Asia, which occupy a full half of the circumscribing circle, extend much beyond the 70th parallel; and it is doubtful if the other boundaries, consisting of the northern coasts of America and Old Greenland, reach nearer the Pole; so that the mean diameter of this basin may be taken at 800 leagues. Its interior or contral parts are little known: several islands are scattered over its southern extremities, the largeat of which is Old Greenland whose northern limit is unknown; the others are Spitzbergen, Nova Zembla, the Isles of New Siberia, those lately discovered by Captain Parry, and several towards Baffin's Bay. The White Sea, on the north coast of Europe, is the only deep gulf connected with this basin, which is of any importance to navigation.

The fifth basin is the Antarctic, which is still less known than the preceding: it joins the Pacific in the latitude of $50^{\circ} \mathrm{S}$., and the Indian Occan in that of 40°. Floating ice occurs in every part of it; but it is very abundant within the parallel of 60°. It was long supposed, that a large continent of land and fixed ice occupied the greater part within the antarctic circle. In 1810, Captain Smith discovered land lying between the longitudes of 55° and $65^{\circ} \mathrm{W}$., and beginning at the latitude of 62°. Mr. Weddell has since examined this quarter nearer the Pole, which he believes to be free from fixed ice.
Of the inland seas, the Mediterranean is the largest and most important: it ia deserving of notice on various accounts, and in particular as having been the scene of by far the greater number of the nautical adventures of antiquity. It is the "Great Sea" of the Sacred Writings, though we find it there spoken of under other names. Its greatest length, from east to west, is about 2350 miles; and the breadth, which is sometimes small, is at the greatest 650. It is bounded on the south by Africa, on the cast by Asia, and on the north by Europe. It communicates on the west with the Atlantic by the Straita of Gibraltar, and with the Black Sea by the Dardanelles Strait on the east. It has many islands, gulfs, and bays, with a very deep inlet on the north called the Adriatic Sea, or Gulf of Venice.' The Black Sea is connected with the Sea of Azof; but these containing only brackish water, and being so far inland, have more of the character of lakes than branches of the ocean. Proceeding still farther eastward, we come to the Caspian Sea, which is abundantly anlt, and of great dimensions; but being wholly uncounected with the ocean, will be afterwards spoken of under the character of a lake.
The Baltic is pretty much allied to the Black Sea, in having only brackish waters, which are sometimes wholly frozen over for several months in winter, and the ice so strong, that armies have been marched across. The Baltic communicates with the German Sea by the strait called the Cattegat: its greatest length is 1200 miles. The North Sea, or German Ocean, is bounded by Britain and the Orkneys on the wost, and the continent of Europe on the east; and reachee from the Straits of Dover to the Shetland Islands, where it joins the Northern Ocean. On the west of the Atlantic are the Gulfa of Mexico and St. Lawrence, and Hudson's and Baffin's Bays; but we must now proceed to treat of the different propertics and relations of the ocean, so far as our limits will permit.
The usual colour which sea water exhibits is a bluish green, of various shades. Some maintain, that this is its true and proper colour; others, that it is an optical illusion, occasioned by the greater refrangibility of the blue rays of light,-opinions which may both be true to a certain extent. The ocean seems often to assume various other colours; some of them no doubt real, but as often illusory. Among the more general sources of deception, may be reckoned the aspect of the aky: thus, an apparently dark-coloured sea is a commor

ate in

 ad the c and nerica to 35° ghth is The North netrate tenaive pt the i, -the asta of Iolland, many $\mathrm{un}_{\mathrm{Gulf}}$Boor II.
HYDROLOGY.
prognostic of an approaching storm; not that the water then is really blacker than usuul, but because the dark colour of the clouds indistinetly seen in, or reflected from the waves, ia mistaken for the colour of the sea itself. Whatover other colour the aky happens to wear has a greater or less influence on the appearance of the oceen: thus red clouds seem to tinge it red, \&c. On some occasiona, the edges of the waves, by refracting the solar beams like a prism, exhibit all the different colours of the rainhow, which is atill more nearly imitated by the refraction of the rays in the spray. Not unfrequently, an indistinct image of tho neighbouring coast reflectod from the ruffled aurface is mistaken for the colour of the wuter.

The variety of colours in the sen may probably arise from animal and vegetable matters diffused through the watera in a putrescent state, and communicating various tints. The yellow and bright green shades seem to be owing to living marine vegetables, which grow at the bottom, stretch their fibres through the water, or spread over the surface; and it is supposed that the colour of innumerable minute animala is often confounded with that of the sea. Near the ahore, and especially towards the mouths of rivers, tho diffuaion of mud and other earthy matters cannot fail to affect the colour of the sea: where it is shallow or very transparent, the colour of the bottom is frequently miataken for that of the water.

The colour of the Greenland Sea, according to Mr. Scoresby, varies from ultramarine blue to olive-green, and from the most pure tranaparency to great opacity. These appearnnces, he thinks, are not transitory, but permanent; not depending on the state of the weather, but on the quality of the water. Hudson, in 1607, noticed these changes, and observed that the sea was blue where there was ice, and green where it was open. This, however, was only accidental. Phippe does not mention the green water; it forms, perhape, one-fourth of the Greenland Sea, between the latitudes of 74° and 80°; often it constitutes long bands or currents, lying north and south, or N. E. and S. W. Mr. Scoreeby sometimes passed through stripes of pale green, olive-green, and transparent blue, in the course of ten minutes, The food of the whale occurs chiefly in the green water, and there the fishers look for them. Whales are more easily taken in the opaque green water than in the transparent blue, because they do not readily see their enemies through the former. On examining the differentlycoloured sen waters, Mr. Scoresby found various substances and animaleules, especially in the olive-green water. The number of medusw was immense: they were about onc-fourth of an inch asunder. Hence a cubic foot would contain 110,592. From these, and many similar observations, Mr. Scoresby concludes, that the Aretic Sea owes its colour to animalcules, and that they occasion the opacity of the olive-green water. The blue water contains few animalcules, and is uncommonly transparent. The aurface of the Mediterrancan sometimes appears of a purple tint. In the Gulf of Guinea, the sea is sometimee white; and around the Maldive islands, black.

The transparency of the aea may in many places be very great, without such property peing readily noticed. Thus, where the water is sufficiently deep to be dark at the bottom, it may seem quite opaque, unless some fish or other object happen to come within view. Agitation of the surface will likewise tend to conceal the transpareney. In general, the aea ia more transparent as we recede from the shore, and in cold climates than in hot; owing perhaps, to the smaller quantity of organic matter diffused in the waters of high latitudes. From this, however, there are exceptions; as in the opacity of the Arctic Sea just noticed, and in the ease of the Caribbean Sea, which is often remarkably transparent. Admiral Milne observed the bottom at a depth of 150 feet in the Caribbean Sea. Authors are not agreed to what depth the solar rays penetrate; and indeed we have every reason to suppose that this must depend upon and be as various as the transparency. Some limit the penetration to a depth of 100 yards; while others more than double that quantity. The light ahould aurely penetrate to at least double the depth to which an observer can see from the surface.
The temperature of the aea has probably a tendency to follow the mean temperature of the elimate; but many powerful causes must interfere and modify it. Thus, between the tropics, the miean temperature of the surface of the ocean is about 80°, and generally ranges between 77° and 84°. Beyond the tropics, it begins to decrease, but without observing any atrict connexion with the latitude; because, on account of the great speeific heat of water, powerful currents cannot fail partially to preserve, for some time, the temperature of the place from which they come. Hence, currents from the torrid zone, on passing into higher latitudes, raise the temperature of the sea above what usually belongs to such parallels; the reverse holds of cold icy currents from the arctie regions. The temperature of the ocenn is much more steady than that of the superincumbent air, and has likewise a smaller annunl range: unless where very ahallow, it has acarcely any diurnal range.
The temperature of the sea on descending below the surface generally decreases, hut not according to any uniform or known law. Thus, at a depth of five fathoms, it is sometimes 1° colder, while in other instances it requires 100 fathoms for 1°. Sometimes the cold attains its maximum at a depth of 100 fathome, and sometimes it requires 400 or 500 fathoms. According to an experiment related by Capt. Sabine, the temperature of the Caribbean Sea was 45.5° at a depth of 1000 fathoms, while its surface was 83°. But the enormous pres-
sure at the bottom probably compressed the ball of the thermometer, and kept the apparent temperature 45.5° above the truth. In the Arctic Sca, however, the temperature increases with the depth. Mr. Scoresby, who first ascertained this, found an increase of 6.6° and 8° at the respective depths of $\mathbf{1 2 0}$ and 730 fathoms; Capt. Parry, 8° at 240 fathoma; Capt. Ssbine, 7.5° at 680 futhoms; Lieut. Beeehy, 10° at 700 fathoms; and Mr. Fisher, 9.5° at a depth of' 188 fathoms. 'Thus, the rate of increase of temperaturo in the Aretic Sea has as incoustant a connexion with the depth as the decrease in the temperate and torrid zones. Sea ruter freezes about 28°; ntter which, the ice has been observed to cool down to - 55°; but we cannot thence infer, that a lower temperature does not occur in the polar regions.
The phosphorescence of the sea is a common but very remarkable phenomenon, coneerning the cause of which authors are not agreed. But most probably, as Newton conjectured, it proceeds from a variety of causes. Since his time, it has engaged the sttention of many cminent philosophers. The appearance of these lights is by no means uniform. Sometimes a vessel, in truversing the ccean, seems to mark out a track of fire; while each stroke of an oar emits a light, sometimes brillisnt and dazzling, at other times tranquil and pearly. These lights are grouped in endless variety. P'erlaps, at one time, innumerable shining points float on the surface, and then unite into one extensive sheet of light. At another time, the spectator fancies lie sees large sparkling figures, like aninals in pursuit of each other, incessantly vanishing and re-appearing. Such lights have been aseribed to luminous animals, and to the phosphorescence of semiputrescent matter diffused in the ocean. It is well known, that varions fishes and other marine animals emit light, which does not in cvery instance appear to be voluntary, or to depend on the vital prineiple, as, in some of them, it continues, and perhaps inereases, atter desth: but motion seems to be either a principal cause, or at least an exciting one; for this light more rarely occurs, and is much fainter, in still water, whilst it becomes more and more brilliant as the motion increases. It is also more abundant immediately before and during storms. In vol. v. p. 303. of the Edin. Phil. Jour., Dr. Francis Buchanan has given a very interesting account of an extraordinsry slining of the
 a quarter past seven P . м." says he, "the sea was observed to be remarksbly white. The sky was everywhere elear, except -ound the horizon, where, for about 15°, it was covered with a dark haze, as is usual in sum "latitudes. The whiteness gradusilly increased till past eight. The ses was then as high-coleured as milk, not unlike the milky way, the luminous appearance very much resembling the brighter stars in that constellation. It centinued in this state till past midnight, and only disappeared as daylight advanced. The whiteness prevented us from being sble to see either the bresk or the swell of the sca, although both were considerable, as we knew from the motion of the ship and the neise. There was much light upon leck, ss we could diseern all the ropes mueh more distinetly than usual. We drew several buckets of water, in which, even when at rest, there sppesred a great number of luminous bodies. The bulk of them did not appear to be more than one quarter of an inch in length, and nearly as much in breadth. Some, however, were one inch and a half long, and of the same breadth as the others. These were seer to move in the same manner as a worm does in water. When taken up on the finger, they retnined their shining faculty even when dry. When brought nesr s candle, their light disappeared; but, by minute uttention, an extremely fine white filament could be observed and lifted upon the point of a pin. It was of a uniform shining colour and form, and about the thickness of a spider's thread. In a gallon of water there might be about 400 of these animals emitting light. The water itself, when in the bucket, had a nstural appearance. The atmosphere was seemingly free from fog. The stars were bright, sind there was no moonlight. The night before, the same appearance was observed at ten P. M. ; it lasted only 20 minutes; but as I wse below, I did not hear of it till it was over."-" The animslcules which occasion the unusual luminousnees of the sea emit light only when strongly agitated, snd hence appear close by the sides of the ship, or when any larger fish passes swiflly, or when a bucket of water is drawn and suddenly poured out."-"In the year 1805, on returning from St. Helena to England, a little north from the equinoctial line, and near the coast of Africa, I had an opportunity of seeing a still more splendid appearance of the luminous animalcules. Soon after dark in the evening, it being nearly calm, we saw numerous lights st a distance, like the lamps of a great eity. The.lights gradually appronched the frigate, and on reaching us appeared to arise from a great many large fishes (albicores) aporting in the water, and agitating the animalcules, so as to excite their luminous powers."
The depth of the sea is a question on which our information is very imperfect, and there is little likelihood thst much accurate information will ever be obtained on the subject, so far as regards the wide ocean. According to the speculations of the late celebrated Marquis Laplace, the depth of the ocean is comparatively small, and nearly uniform. If, howcver, it be recollected that the bottom of the sea is still a part of the earth's surface, and by much the greater part too, one would be apt to ask, why thst larger part of the surface should be more level than whst appears as dry land? The soundings which have been made

Boor II.

HYDROLOGY.

in the ocean are quite inadequato to decide the question. They, however, often iudicate great inequalitics in the depth; but how far hollows may have been filled with debris, or asperities worn down, it is not easy to say; though it is more likely that the summits of mountains exposed to the alternate or comhined actiona of air and moisture suffor a more rapid abrasion than those which are wholly under water. In general, the slopo of the adjacent shore is continued downward for a good way under water; that is, the sea is usually shallow where the shore is flat, while its depth increases rapidly by the side of a cliff or steep mountain. It is therefore probable, that some islands, though very emall, may be the tops of sub-marine mountains as large, perhaps, as the highest which occur on the earth's surface. In many instancee, no bottom has been found; but this might proceed either from the shortness of the line, or from its being borne aside by rapid currents. We have already mentioned a sounding of $\mathbf{6 0 0 0}$ feet in the Caribbean sea; but Lord Mulgrave's line of 4080 feet did not reach the bottom of the Northern Ocean. In the entrance of the German or North Sea, at the Straits of Dover, the central depth is 29 fathoms. This extensive basin Contains various shallows and sand-banks; yet, generally speaking, the depth increases in going northward, and near to Bergen in Norway it amounts to 190 fathoms. A very interesting account of the bed of the German Sea is given by Mr. Stevenson, Edin. Phil. Jour. iii. 42.; and in the third volume of the Memoirs of the Wernerian Society.

The level of the open sea is believed, generally speaking, to be everywhere the same; or to form a portion of the surface of an oblate spheroid, to which the surface of the land approaches with less accuracy. Some gulfa and injand scas appear to deviate in some measure from the general rule. This is more particularly the case where the communication of such seas with the ocean is narrow; and there are a few other exceptions.* When the general motion of the ocean or of the trade-winds is directed into the mouth of an inland aea, it has a tendency to raise its level above that of the ocean. On this account it is that the Arabian Gulf or Red Sea is higher than the ocean, and still higher than the Mediterranean, which, from the opposite action of the wind and the great evaporation, is supposed to be a little below the general level. \dagger Some gulfs and inland seas, as the Baltic and Black Sea, rise in spring, from the copious influx of river water, and are lowered in summer by evaporation and the cfflux at their mouths. Of late years, there has been considerable discussion regarding the subsidence of the Baltic below the level it had formerly maintained. Whilst some support this opinion, and venture to explain the cause of the subsidence, others deny the fact altogether. The trade-winds and gencral westward motion of the ocean force the water iato the Gulf of Mexico, so as to maintain a higher level there than on the western coast of the Isthmus of Darien. \ddagger The consequence of this accumulation of water is, that it generates a current moving northwards; and which, after various windings through the Atlantic, at length reaches the western shores of Europe, as will be more particularly noticed hereafter. Some naturalists allege, that the débris, or alluvial matters daily abraded by the action of the weather on the surface of the land, and swept into the ocean by the rain and rivers, must, at length, raise the level of the ocenn till it cover the whole globe, and restore the reign of ancient chaos. Unless there be some compensating process, which either makes up for the exhausted materials, or gradually elevates the entire continents above the water, it is not very casy to guess at an alternative. A compensating power is situated deep in the crust of the earth.

The taste of sea water is disagreeable and bitter, at least when taken from the surface or near the shore; but when drawn from great depths, its taste is only saline. It would therefore seem that the bitterness is owing to the greater abundance of animal and vegetable matter near the surface. Man, in a civilized state, cannot make use of sea water as drink; yet it is said that the inhabitants of Easter Island, in the Pacific Ocean, make it their usual beverage. Some of the lower animals occasionally travel far to drink sea water. Sheep are very fond of licking the dry salt; and so are horses and cattle. With them it is a cure for various complaints. Several attempts have been made to render sea water potable, or to free it from salt. Distillation is the most effectual; but the expense of fuel is a serious objection to this method at sea, and, after all, it does not divest it of all its bitterness. Thus, in the midst of water, mariners are frequently in danger of dying of thirst, when they run short of fresh water. Sea ice, when melted, affords nearly fresh water; but being devoid of air, its taste is not very agreeable, though it would bo highly prized in time of need. A temporary, and in some degree an imaginary, relicf may be obtainel, by holding salt water in the mouth.
The saline contents of the waters of the wide ocean do not, so far as experience has gone, vary much in different latitudes and under different meridians, although we ought to find the sea fresher in the spaces occupied by the internal limits of the trade-wind, and also in those tracte of the occan where calms and a high temperature prevail, as on the west coast

[^2]of Africa. The mean is about 3.5 per cent. in the weight of the water; but the sultness in more or less affectod by currents and storns. It is diminished at the surfnce during heavy rains, and by the discharge of rivers; but increased by evaporation, which carries off the water fresh, and leaves the aalt belind: hence there ia often little consistency in detached observations. From a great variety of experiments, Dr. Marcet concludea: 1. That the Southern Ocean contains more salt than the Northern, in the ratio of 1.0291 to 1.02757. 2. That the mean specific gravity of sea water near the equator is 1.02777 , intermediate leetween those of the northern and southern hemispheres. 3. That there ia no notable difference in sea water under different meridians. 4. That there ia no satisfactory evidence that the sea at great depths is more salt than at the surface. 5. That the sea, in general, contains more salt where it is decpost and most remote from land; and that its saltness is always diminished in the vicinity of large masses of ice. 6. That small inland seas, though communicating with the ocenn, are much less salt than the open ocean. 7. That the Mediterranean contains rather larger proportiona of salt than the ocean. This last is explained from the fact, that a pretty strong current from the Atlantic alwaya flowa inward at the mouth of the Mediterranean, to supply, as was supposed, the water which escaped by evaporation, and left its salt behind. So great, however, is the influx, that this inland sea ought to have become perfect brine, or perhaps to have deposited beds of salt, if there were no efflux; and accordingly it is maintained that there is an outward current at the bottom, very deep, which carries off this excess of salt, and prevents lts deposition in the vast hollows in the bottom. The water drawn up from this lower current is salter, in a emall degree, than at the surface.
The following are the mean specific gravities of the waters of different scas, according to Dr. Marcet's experiments :-

Aretic Ocenn. 1.03064	Black Slen. 1.01418
Norihern Ilemlaphere. 1.0 . 0288211	White Sta . 1.01001
Boutharn İemisphera. 1.00888	Bultic . 1.01523
Yellow gea . 1.02891	Lake Ourmin, In Persia 1.16507
Mediterrniean . 1.04930	Lend Sea . 1.11100

The saltness of inland seas is subject to many varieties. In the entrance to the Black Sea, the water is much salter at the bottom than the surface. To account for this, it is said that an under current enters from the Mediterranean. It is well known that there is an outward current at the surface, which brings with it the less salt water of the Black Sea. The saltness of inland seas is often affected by the direction and strength of the wind, either forcing in, or retarding the entrance of, water from the ocean. Accordingly, from the experiments of Wileke, it appears that the saltness of the Baltic is increased by a west wind, and atill more so by a north-west wind; but it undergoes a diminution when the wind is from the east. Thus, the specific gravities are, for a

$$
\begin{aligned}
& \text { Wind nt iv... } 10067 \\
& \text { Ditlo at N. }{ }_{\mathbf{W}} \\
& 1.0008
\end{aligned}
$$

Florm at W.
WInd at E.. \qquad
\qquad .1 .0030
Hence, the proportion of salt in the Baltic depends in no small degree on the different winds; a proof that the salt is not only derived from the neighbouring ocean, but that storms have a much greater effect on it than has been commonly supposed.
The constituent parts of aca water have been an object of examination to many chemists, and various scts of experiments made to determine them. The late Dr. Murray of Edinburgh was of opinion that there were various sources of fallacy in analysing sea water; and that different modes of operating on the same water gave very different results. Two reasons are assigned for this; viz. that some of the different salts mutually decompose each other in the process, and that a part is lost altogether by evaporation, eapecially if the temperature be high. According to this eminent chemist, $\mathbf{1 0 , 0 0 0}$ parts of water from the Frith of Forth, which is not sensibly different from that of the ocean, contain 220 parts of common salt, 33 of sulphate of soda, 42 of muriate of magnesin, and 8 of muriate of lime. On analysing sea water from N. latitude $25^{\circ} 30^{\prime}, \mathrm{W}$. longitude $32^{\circ} 30^{\prime}, \mathrm{Dr}$. Marcet made the numbers respectively 266, 47, 52, and 12. According to Bladh, the saltness is greater about the tropics than at the equator. Dr. Trail maintains the contrary ; and also that the saltness increases with the depth.
Ice is formed on the sea, though its saltness enables it to resist the process of congelation at the ordinary freezing point of fresh water. This quality does not withatand the rigour of the Aretic regions, where the temperature of the air has been observed so low as $55^{\circ} \mathrm{F}$. Sea water freczes about 28°, but the temperature varies a little with the saltness.-It is n curious circumstance, that sea water parts with its salt in freezing. Hence compact transparent sea ice affords fresh water on being melted. When, hotvever, the ice is of a loose or cellulnr texture, its pores sometimes contain liquid brine; and therefore, on being melted, it affords brackish water. It is supposed to be the affinity between the water and salt which retarls the congelation of sca water; because the greater the saliness, the lower is the freezing temperiture. Detached masses of ice are occasionally met with, floating in the ocean at so low a parallel of latitude as 40° in both hemispheres; having becn conveyed
thither by eurrents from the polar regions.* At the parallel of 50° they aro more abundant; and there it is common, in winter, to see the shallow edges of the sea covered with ice. A : $60^{\circ} \mathrm{N}$. latitude, the gulfs and inland seas are frequently frozen over their whole surface. As we proceed toward the poles, the ice becomes inore and more abundant, and of larger dimensions, till at length we come to fielde of ice, and icebergs or mountains of lee. The process of conrelation commences at the surfuce of the sea, with the formation of slender prismatic crystals resembling wet snow : this the seamen call sludge. The surface is at first rough ; but, by the union of the crystals and the accumulation of the sludge, the surfice becomes smonth and forms a continued alleet, which is next broken, by the agitution of the water, into fragments of about three inches diameter; these again coalesce into a continued sheet of a stronger texture, which is in its turn broken as before, but into larger fragments called pancake ice. Where the water is free from all agitation, the congelation goes on more regularly, and some allege more rapidly. During 24 hours of keen frost, the iee frequently sttains a thickness of from two to three inches, and is soon fit for walking on: it is then called bay ice. When the thickness is about a foot, it is called light ice; and when three feet thick, heavy ice. The term field is given to a sheet of ice so extensive that its farther end cannot be seen from a mast-head. Very large loosened pieces, whose boundaries may be seen readily, are called foes. Fragments of thick ice floating together are called brash icc. Floating ice of any sort, sufficiently loose to allow a vessel to pass through, is called open or drif ice. Indeed, there is no end to the terms which seamen apply to different sorts of ice. The sudden disruption of extensive fields is sometimes produced by that powerfill tendency to undulation of the surface, communicated by the motions of the adjoining liquid surface of the ocean during a continued storm, which ia denominated a ground awell. The ice, when thin, merely yields; but, if thick and little flexible, it is broken with tremendous noise. A very interesting nccount of such a phenomenon is given by a party of missionaries who passed along the coast of Labrador in sledges drawn by dogs. They narrowly escaped destruction; but were near enough to witness all its grandeur. "The missionaries met n sledge with Esquimnux turning in from the sea, who threw out some hints that it might be as well for them to return. After some time, their own Esquimaux hinted that there was a ground swell under the ice. It was then scarcely perceptible, except on lying down and applying the car close to the ice, when a hollow disagreeable grating noise was heard ascending from the nbyss. As the motion of the sea under the ice had grown more perceptible, they became alarmed, und began to think it prudent to keep close to the shore. The ice also had fissures in many places, some of which formed chasms of one or two feet; but as these are not uncommon even in its best state, and the dogs easily leap over them, they are frightful only to strangers. As the wind rose to a storm, the swell had now inereased so much that its effects on the ice were extraordinary, and really alarming. The sledges, instead of gliding smoothly along as on an even surface, sometimes ran with violence after the dogs, and sometimes seemed with difficulty to ascend a rising hill. Noises, too, were now distinctly heard in many directions, like the report of cannon, from the bursting of the ice at a distance. Alarmed by these frightful phenomena, our travellers drove with all haste towards the shore; and as they approached it, the prospect before them was tremendous. The ice, having burst loose from the rocks, was tossed to and fro, and broken in a thousand pieces agrainst the precipices with a dreadful noise; which, added to the raging of the sea, the zoaring of the wind, and the lriving of the snow, so completely overpowered them as alinost to deprive them of the use both of their eyes and ears. To make the land was now the only resource that remained; but it was with the utmost difficulty that the frightened dogs could be driven forward; and as the whole body of the ice frequently sunk below the summits of the rocks, and then rose above them, the only tine for landing was the moment it gained the level of the coast, -a circumstance which rendered the attempt extremely nice and hazardous. Both sledges, however, succeeded in gaining the shore, and were drawn up on'the beach, though not without great difficulty. Scarcely had they reached it, when that part of the ice from which they had just escaped burst asunder, and the water, rushing up from beneath, instantly precipitnted it into the ocean. In a moment, as if by sigual, the whole mass of ice for several miles along the coast, and extending ss far as the eye could reach, began to break and to be overwhelmed with the waves. The spectacle was awfully grand. The immense fields of ice rising out of the ocean, clashing against one another, mud then plunging into the deep with a violence which no language can describe, aud a noise like the discharge of a thousand cannon, was a sight which must have struck the most unreflecting mind with solemn awe. The brethren were overwhelmed with amazement at their iniraculous escape; and even the pagan Esquimaux expressed gratitude to Gol for their deliverance." \dagger
The term icelerg is applied to huge masses of ice resembling mountains, whether resting on the land or floating on the sea. The latter part appear to be sometimes formed in the

[^3]ren itself, by the accumulation of ice and anow; at other timen to be fragments of land icebergs or glaciers, which have been piling up on the ehore till quite overgrown, and ultimately liraken and launched into the ocean by their own weight. Masees of thls sort abound in Baffin'm Buy, where they are sometimea two milea long, and half or ono thind as broad. 'They are bristled with varioua apires, rising, perhapa, 100 leet above the aurfhce, and descending half us much below it. When compact ice flonte in water, the part under the surface is nhout nine times as groat an that above it; and hence the icebergs may sometimes descenl to a great depth, though they should be far from consisting of very compnct ico. Icebergs of un even surface, rising $\mathbf{D O}$ feet above the sea, and having an area of flve or six mpuare mile, are very common. Thosn of East Groenland are of Inferior size, and they are atill smaller around Spitzbergen, where some of enormous dimensiona occur on sloro. The reason which Mr. Scorosby ansigns for this is, that, owing to the shallownose of the water into which the hugn masses aro precipitated, they are all shattered against the bottom into a thousand pieces before they are fairly launched into deep water. "On an excursion to one of the Seven Icebergs, in July 1818," says Mr. Scoresby, "I was particularly fortunate in wituessing one of the grandest effects which these polar glaciers ever present. A strong north-westerly swell, having for some hours been beating on the shore, had loosened a number of fragmonts attached to the iceberg, and various heaps of broken ice denoted recent shoots of the seaward elgo. As we rowed towarda it, with a view of proceeding close to its base, I observed a fow little pieces fall from the top; and while my eye was fixed upon the place, an immense column, probably 50 feet square and 150 foet high, began to leave the parent ice at the top; and leaning majestically forward, with an accelerated velocity fell with an awful crash into the sca. The water into which it plunged was converted into an appearance of vapour or amoke, like that from a furious cannonading. The noise was equal to that of thunder, which it nearly resembled. The column which fell was nearly square, and in magnitude resemblefl a church. It broke into a thousand pieces. This circumstance was a happy caution; for we might have inadvertently gone to the very base of the icy cliff, from which masses of considerable magnitude were continually falling." A huge mass of this sort which fell on a Russian ship, broke the fore and main masts, aprung the bowsprit, and flung the ship over with such violence that a piece of ordnance was thrown overbond from under the halfdeck, and the captain and some of the crew were projected in the same manner. The captain, however, escaped unhurt; but the mate and two others were killed, and many were wounded.

Icebergs variously sffect navigation. They are often highly useful by protecting navigators from gales, as well as from the concussiens of irift ice, which moves more quickly when acted on by the wind than the massy iceberg. To the latter, ships are sometimes moored, hut not without danger; for these floating masses aro sometimes so nicely bulanced as to be easily overturned, should they happen to catch the bottom of the sea. The concussion proluced in this way somotimes detacles large fragments; and sonietimes the iceberg rolls forward, to the imminent danger of the vessel, though perhaps 100 yards distant, -so great are the waves and whirls caused by such an occurrence. Many dangers and discouragements attend the navigation of the pular seas: but the recent attempts to discover a northwest passage through the Arctic Sea have rendered the ice a subject of considerable interest. These nttempts have not yet been crowned with success: but different navigators havo brought such different anccounts of the state of the ice, that it is probably vexy changeable and very difficult to examine. It is not quite agreed that uny navigator has been within 6° of the North Pole; although some accnunts pretend to a still nearer approach. Captain Parry, in his last voyage, reached to $82^{\circ} 45^{\prime} \mathrm{N}$. lat. The failure of Captain Cook's attempt to penetrate to tho South Pole gave rise to an iden, which has been pretty generally entertained since his time, that the South Pole is surrounded with fixed ice to the distance of 18° or 19°; and a moro recent Russian expedition gnve still worse hopes, ss they could not get beyond the latitule of $70^{\circ} \mathrm{S}$. Mr. Weddell, however, has since reached 255 miles nearer the pole, and met with no such obstruction: this enterprising navigator contends strenuously that the South Pole must be frec fron ice, nnil might be reached by sea. Some of his arguments are rather plausible ; but the queation is involved in so many uncertainties, that nothing less than actual trial can decide it.
The expansion and contraction of ice has iniportant effects. Though water undergoes a great expansion in the set of freezing, yet ice obeys the ordinary law of solids,-that of expanding by heat and contracting by cold. The effect, therefore, of intense cold is to contract ice, which, if of large dimensions, or fixed all nround, has no alternative but to rend where it is contracting most. This is often nttended with a tremendons report. On the contrary, a rise of temperature may not only bring the parts to meet again, but often makes them lap over, or burst up with great violence.*

The motion of the waters of the ocean is almost perpetual; and it is believed, that withour

* The most antigfnetory ncenunt of the polar lco is that of Scoreshy, first published in the Memoirs of the Wei neman Natural Hivtory Eociety

Boox 11.
METEOROLOGY.
this provision in the economy of nature the soa, in placo of tempering and purifying the air, would both becomo putrid and exhale noxious vapours.

Waven. Tho motions which first present themselves to our notice are tho partial and altornato rising and falling of the surfice, known by the name of undulations or waves. This sort of motion is caused by the wind, which, by dislodging or deproasing a certain portion of tho waters, has destroyed the equilibrium or lovel, which they naturally ondeavour to recover. Waves myy be compared to the reciprocation of water in a ayphon or bent tubo. It was in this way that Newton deduced the volocity of wavea, and the time required to an undulation. If water ascend and lescend alternately lio tho lege of a bent tube, and a pendulum be constructed whose length between the point of suspension and centre of oscillation is equal to half the length of the water in the tube, then this fuid will ascend and descend during onch ascillation of the pendulum. Hence the velocity of tho wavea is as the square roots of their hreadths; the breadth boing tho distance between the tops of the ridges. In tho same way, it may be shown that the apparent progressive motions of waves through spaces equal to their hrealths are performod in tho times in which pendulums oscillate whose longthe aro equal to theso breadths. IIence waves, whose breadth is 30 in inches, will acem to pasa over that space in one second. Waves are scarcely over without progressive motion; but the real progress of the surface of the water is generally stmall, compared to the apparent motion of the wavos; as is easily proved from any floating body which does not rise above the surfuco so ns to be hurried forward by the wind. Waves are distinguished into natural and aecidental. Tho natural are proportional to tho strength of tho wind producing them:-the accidental aro occasioned by repercussion of the wind from hills and bold consts, and by the dashing of the waves on rocks and shoals. Divers, it is said, find the waters porfoctly atill at the depth of thirty yards, during tho greatest tempest. But this can only be known of some sheltered spots; for when do divera descend in an open sea during a tempest 1 Waves are always seen rolling towards tho shore; but an obstaclo opposed to them becomes tho centre of a now series which sproads in circles. Ono set of waves, however, may not interfere with the motion of another, and they may mutually cross without interruption. Sometimes the ordiuary oscillstions are combined with a distant swell, called the bore, which riaes impetuous after certain intervals. Breakers, or waves which break against some obstacle, when formed over a great extent of shore, are distinguished by the name of surf. The surf is greatest in those parts of the ocesn where the wind blows always nearly in the same :lirection.
Currents. There are two permanent and general sorts of currents in the ocean, which aro supposed to originate in two great movements,-that of the tropical waters westward round the glohe, and that of the polar waters towards the equator. But it is plain that the latter, or polar currents, imply the existence of a third set, moving in the opposite direction; otherwise the waters at the poles would soon be oxhausted, together with the ice from which they are partly derived. It is well known that the rain, fog, or snow, which falls in the polar regions, could nevor supply any perceptiblo current towards the equator. The movement of the tropical waters wostwsrd is aseribed to the agency of the trade winds, which, blowing constantly from the east, must impress their motion on the sea to a certain extent. But the resulting current is necessarily modificd by the position of the great continents. This grand westerly motion prevails generally between $30^{\circ} \mathrm{N}$ and $30^{\circ} \mathrm{N}$. latitude. According to Humboldt, its mean velocity is from nine to ten miles a-dny. In the Atlantic it separates into two branches, one of which forms the well-known Gulf Stresm. This branch flows northward, through the middle of the Atlantic, till it reaches the Cape Verd Islands: it then turns west, passes through the Caribbean Sea, and the strait hetween Cuba and Yucatan, winds round the Mexican Gulf, and rushes out by the Babamn Channel; then spreading out to a greater breadth, jt sweeps along the shores of the United States to Newfoundland. At this point it is deflceted south-eastward by a southerly current from Baffin's Bay, and passing the Azores and Canary Isles, returns in a great mensure into itself, and repents its cireumgyration. The waters of the North Atlantic, between tho latitudes of 11° and 43°, thus form a continued whirlpool, completing a circuit of 3300 leagues in about 34 months. Its velocity is greater as tho depth and breadth are less. Its breadth is 51 leagues in the Bahama Channel, and velocity from three to five miles an hour. In its retrograde course from longitude 50° to the Azores the breadth is $\mathbf{1 6 0}$ leagues, and velocity from seven to cight miles a-day. An insulated expanse of nlmost motionless water, 140 leagues in breadth, occupies the interior of the circuit. This grand current sends off one branch near Newfoundland, which proceeds north-castward, and sometimes deposits tropical fruits on the shores of the British isles and Norwsy. In 1776, Dr. Franklin traced this current, by means of its high temperature, quite across the Atlantic; and, since his time, it has been more closely traced, especially by Captain Sabine. A second branch, escaping at the Azores, enters the Straits of Gibraltar, and forms the upper and midlle current which prevails in that strait. Another branch of the great tropical current sets slong the coast of Brazil, and at length passes through the Straits of Magellan. In the Pacific Ocean the waters have a general westward motion from the coast of Peru, which must he partly sup-
plied by the laut-mentioned current after doubling Cape Ilom. The current from the coast of Peru is less perceptible, till it enters the Indien Ocean; when, atrengthened hy the nurtherly currenta there, it flowa along the eautern coast of Afrien, and doublem the Cape of Good hopo, in a rapid stream, 130 mileu broad, and from 7° to 8° wariner than the contiguoun sea. A current from the South Pole nets along the weat nile of Now Hollamd into the Bay of Bengal: it in supposed that other portions of the generul polur current deflect the grent wenterly current northward, after it has paseed the southern promontories of Africa and Amorica. In the Northern Ocean, in the apace comprised between (ireeuland and the coasta of Britain and Norway, and between Labrador and Spitzbergen, a grent body of watere, acted on by three or four lateral currents, is suppoeed to perform a perpetual circuit. Thewe waters receive their impulse cantward from a branch of the Guld stream, which passen from Newfoundland along the north-west coasts of Scotland and Norway. At the North Cape in Laplund, a great westerly current frum Nova Zembla turna the waters northwentward along both niden of Spitzbergen. Beyond this inland, beling met by a current from the pole, they turn aouth.westward, and pase along the coast of Greenland to Davie's Straits, where they are deflected wouthward by a fourth current from Baffin'a Bay; and hnving returned to Newfoundland, recommence their revolution. Thua two great whirlpoola, connected with one another, touch at the Bank of Newfoundland, which seems to be a bar cast up by their conflicting waters; and revolving indopposite directions, occupy four-fiftha of the North Atlantie. The amall current which sets from the Bay of Biscay across the mouth of the Engliah Channel, and through St. George's Channel, is most probably a branch of the Gulf Stream which had come off at the Azores. Were other parts of the ocean as minutely examined as the North Atlentic, it in to be expected that other great vortices would be discovered.
Local or temporary currents are produced by winds, the discharge of rivers, the melting of ice, \&c. In general, currents which do not descend to a great depth are liahle to change with the winds, particularly when they blow for a long time with equal force, as the monsoons do. These winda give by turns entirely opposite directions to the currents which prevail from the Maldivia Islands to Arabia and Zunguebar. When the supply of fresh water in an inland sea falls short of what is carried off by evaporation, its level will have a tendency to fall below that of the ocean; and hence the water will flow into it from the ocenn. But, as formerly noticed, a continual influx of salt water, to be cencentrated by evaporation, must have a tendency to render such inlanil sea salter than the ocean ; and the salter water being the heavier, naturally endeavours to keep under the lighter, which enters from the ocean. In this way, it forms an outward current in the bottom of the entrance. Such is said to be the case with the Mediterranean, as was first hinted by Dr. Hudson in 1724. The reverse of all this takos place whero the supply of fresh water in an inland sea exceeds the evaporation, as is the case with the Baltic, the Black Sen, nnd the Sea of Azof. In theso the outward fresher current is uppermost, whilo the heavier saltor current enters below. Since the mean quantity of eult brought in must equal what is carried out, if no permanent change take place in the saltness of the inland sen, it follows that the salter current is the amaller of the two. However, the weather sometimes proluces temporary exceptiona to this general rule. The current which flows into the Mediterranean by the Straits of Gibraltar sets along the shores of Africa and Egypt to Syria, where it turns north-westward; and, jeined by the current from the Dardanelles, it makea the circuit of the Adrintic, then of the consts of Tuscany, Frnnce and Spain, and ultimately returns to the Straits. In the Cattegat, a northern current proceeds from the Baltic along the coasts of Sweden; and another, a southern current, enters into the Baltic along the coasts of Jutland. In the German Soa, a north current aets from the Straits of Dover along the continental shore, while a south current comes from the Orkneys along the British coast.

Whirlpools or eddies are produced by the meeting of currents which come in different directions. These, by encountering in a narrow passage, turn, as it were, abcut a centre, which is sometimes spiral, till they unite or one of them escapes. The most celebrated whirlpools are the Euripus near the coast of Negropont, the Charybdis in the Straits of Sicily, and the Malstroem on the northern coast of Norway. Such eddies sometimes aug. ment their force by means of twe contrary high tides, or by the action of the winds. In certain states of the tide, some of them cease altogether; but they do not fnil to make up for this afterwards. Their langer to navigation is well known; but is, perhaps, inferior to the dread which they inspire. They draw vessels ulong, and dash them against the rocks, or engulf them in tho eldies. The wrecks, perhaps, do not appear till some time afterwards; or, indeed, they may never be seen at all. This has given rise to the notion that these vortices have no bottou. The phenomena and dread of whirlpools have afforded excellent matter for marvelloas fables, both to the ancient poets and more modern writers.

The tides form a remarkable phenomenon, consisting in the alternate rise and fall of the surfaco of the sea twice in the courso of a lunar day, or at a mean rate every $12^{18} 25^{\mathrm{m}}$ 14: The instant of low water is nearly, but not exactly, in the middle of the interval between two high waters. Tho tide generally takes nine or ten minutse longer in ebbing

Book II.
than flowing. At the new and full moon the tides attain the greatest height, and the intervil between two high watern in lennh, viz. 12' 10" $2 \mathrm{~g}^{\circ}$. At the qumrtera of the moon the tides aro the leant, and the intervala the greatest, viz. $\left.1 z^{h} \mathbf{3 0}\right)^{\circ} \mathbf{7}$. The time of high water in momily regulated by the moon; and in general, in the open sea, in from two to three hourn after that planet pasmea tha meridian, either above or under the horizom. On the ahores of large continents, nid where there are shallowa and obatructions, great irregularities take pluce in this reapect; and when these exceed six houra, it may seem au if the high water preceded the meon'n punage over the meridian. 'I'hough the tidea seom to be regulated chiefly by the moon, they appenr also in a certain degree to be under the influence of the stun. 'lhus, at the syzigien, when the sun und moon ceme to the merilian together, the tinled, every thing else considered, are the higheat. At the quartera, when the mun noil moon are 00° dimennt, the tides are least. The former are called the apring, the latter the neap tidem. The highent of the spring tides is not that immediately after the new or full moon; but is in general the thirl, and in some cases the fourth. The lowest of the neap tides occura much about the same time after the quartera. The total magnituile of the tide in estimated by the difference between the heights of high and low water. The higher the flool tide rises, the lower the ebb tide generally ainka on the same day. At Brest, thin medium spring tide is ubout 10 feet, and the menn neap tide about 0 . On other parts of the coast of France opposito to England, the watern, being confined, rise to a great height, and do mo on both sides of the Chamel. At St. Mnlo it is from 45 to 50 feet. Nearly an high tides occur at Annapolis Royal, in Nova Scotia. It is the ohstruction which the land proe sents to the motions of the watorn which ocensions tidea of any consequence at all: werr the globe entirely covered with water, the tides wonld be very insignificant. Thue, in the: Pacifle Ocean, the spring tide nmounts only to 5 feet, and the neap to from 2 to 2.5 feet. On the other hand, a free cotmmunication with the neean is indispensable, to prodnce a high tide. Thus, in inland seas, the tiden are very trifing, because the luminaries ect nearly equally wer the whole surface at the same time.

The height of the tide increanea as the sun or moon is nearer the earth, but in a higher ratio. The rise of the tides is likewise greater when the sun or moon la in the equator, and less as they decline from it. When the observer and the moon are on the same side of the equator, the tide which happens when the moon is above the horizon is greater thnn when whe is below it. The reverse occurs when the observer and the moon are on opposite sirlw" of the equator. If the tides be considered relatively to the whole globe and to the open sen. it appears that there is a meridian about 30° eastward of the moon, where it is nlways high water, both in the hemisphere where the moon is and in the oppesite. On the weet sile of this circle the tide is flowing; on the enst it is ebbing; and on the merilinn, which is nt right ungles to the same, it is everywhere low water. These merilian circles move westward, keeping noarly at the same distunce from the moon: only npproaching nearer to her when new or full, and withdruwing at the quarters. In high latitules the tides are very incousiderable. It is probable that at the poles there are no diurnal tides; but there is scme ground lor thinking that the water will rise higher at the pole to whiell the laninaries are at any time nearest, than at the opposite.

The mont wave which follows the inoon as alove described, and constitutes the tile, is to be considered as an undulntion or reciprocation of the waters of the ocean; in which there is, except when it passes over slinllows or approaches the shore, very little progressive motion. In all this we are as yet overlooking the operntion of local causes, winds, currents, \&e., by which these general lnws are motified, overruled, or even reversed. Most people find little difficulty in conceiving how the waters should rise on the side of the globo which is next the moon; but there can scarcely be a harder task than bringing many to see why the waters shoulil at the same time rise on the side which in turned from the moon. We must, however, confine ourselves to a very brief and palpable explanation. The force by which the moon drawe any particle of our globe towarils her is greater when it is nearer to qer, nud less when more reinote. The force, therefore, with which the moon attracts the particles on tho side nearest her is grenter than the average force which she excrts on the whole globe. These particles, therefore, rise or endeavour to come near the moon. On the nther hand, the force by which the moon draws the particles which are farthest from her ocing less than the average force, these particles endeavour to recede from the moon, and in so loing they also recede from the carth's centre ; that is, they rise higher than the general level. The action of the sun is similar to that of the moon; but his being almost four hundred times as distant, greatly diminishes his effect. At the new nnd full moon the luminaries act together. and produce spring tides. The highest of all are a little after the antumal, und before the vernal, equinox; and the least spring tides occur a little after the solstices. At the quarters of the moon her action is opposed by that of the sun, and therefore neup tides are the result.
The time of high water deserves eonsideration. The preceding is sufficient to show that the plimomenn of the tiles are efferts that might be expected from the principle of attraction or gravitation; but since the waters necessarily oceupy some time in moving from one
place to another, this is the reason why the high water occurs, not when the moon ia on the ineridian, but from two to three hours afterwards. For the same reason, when the sun is before or west of the moon, he hastens the riso of the tide; nnd when behind her, he retards it. Considerable extent of surface is necessary, in order that the sea should be sensibly affected by the action of the sun and moon; for it is only by the inequality of such action on different parts of the mass of waters that their level is disturbed. In narrow seas, and on shores far from the main body of the water, the tides are not caused by the direct action of the sun and moon, but are waves propagated from the great diurnal undulation. Of this the tides on the coast of Britain, and in the German sea, are remarkeble examples. The high water transmitted from the tide in the Atlantic reaches Ushant between three and four hours after the moon has passed the meridian, and its ridge stretches north-west, se as to fall a little south of the coast of Ireland. This wave soon after divides itself into three branches; one passing up the British Channel, another rainging along the west side of Ireland and Scotland, and the third entering the Irish Channel. The first of these flows at the rate of about 50 miles an hour, so as to pass through the Straits of Dover, and to reach the Nore about midnight at the time of spring tide. The second being in a more open sea, moves more rapidly, reaching the north of Ireland by six P. M.; about nine lt has get to the Orkneys, and forms a wave or ridge stretching due north; at twelve the summit ef the same wave extends from the const of Buchan eastward to the Naze of Norway; and in twelve hours more it passes southward through the German Sea and reaches the Nore, where it meets the morning tide that left the mouth of the Channel only eight lours before. Thus, these two tides travel round Britain in 28 hours; in which time the primitive tide has gone quite round the globe, and nearly 45 degrees more. Various curious anomalies are observed in the tides of particular places: such as their ceasing altogether for a day or two, at a certain age of the moon; while at other times they become considerable, though perhaps occurring only once a day It is said that on some coasts there is never mere than one tide in the course of a lunar day, which is probably owing to some oversight: but it may be shown from theory, that if the observer's distance from the pole be equal to the moon's declination, he will see but one tide in the day. Small tides occur six times a day on the shore of the Isle of Negropont.*

The agency of the tides is probably very extensive in many of the operations of nature, and in particular in those which regard geology. The late Professor Robison suggested how experiments might be made to determine the mean density of the globe, from the temporary clange which is undoubtedly caused on the direction of gravity by the great body ef watcr brought to Annapolis Royal, and then withdrawn by the stream tidee.

Sect. II.-Springs.

Springs are composed of the waters issuing from crevices in the earth. Of such there are great varieties. Some of the principal distinctions, independently of the qualitiea of their waters, are-temporary springs, which only flow during a certain seasen of the year; perennial, which always run; intermitting, which alternately run and cease, either wholly or in part, at short intervals; periodical, which flow and ebb regularly at particular periods; spouting, which issue with considerable force, torming, perhaps, a jet of water. The magnitude of springs passes through every gradation, from being scarcely perceptible, to considerable rivulets. They have, likewise, a wide range of temperature; but necessarily limited between the freezing and boiling points. It is most usual for springs which are large, and which appear to isfue from a considerable depth, to have nearly the mean temperature of the place; and in sone instances the temperature is remarkably steady,-not the slightest variation being perceptiblo in the course of the year. Hence apparently, or relatively to the air, they are colder in summer and hotter in winter. It is, no doubt, this contrast which has given rise to the popular notion, that good springs are really colder in summer and hotter in winter. Nothing is more common than to sce a well smoking during intense frost, which shows nothing of the kind during warm weather; but it does net require a really high temperature to exhibit such an appearance, but only a temperature not so low as that of the air. The most that any spring keeps within the range of both seasons, is to renain always at one temperature. The greater number of the smaller springs, however, become a little warmer in summer and colder in winter; particularly those which come nlong for a considerable way at a small depth under ground. By so doing, they participate in the temperature of the surface, which varies with the season: but all springs preserve a greater warmth than the mean temperature of winter; and, excepting the thermal or hot springs, they do not reach the mean heat of summer.
Hot springs are those which preserve a heat above the mean temperature of the place. Such as are merely tepid are common in most countries, especially in mines. Those having a considerably higher temperature are less frequently met with, and mostly in volcanic districts; but some of them reach the boiling point, or are actually hailing and spouting forth

* Vide Srevenson's greal work on the Bell-Rock Light-house, for observations on Tides in lhe British seas
with great violence, which indicates their having had a still higher temperature before getting vent. The most remarkable are the het springs of Iceland, some of which are considered ameng the greatest wonders of the world. They are believed to be more abundant in Iceland than in any other country. But the interest which the number and variety of these het springs excites in a persun who never saw any thing similar, is quickly lost in the feelings which are roused on beholding the magnificent and tremendous explosions of the Geysers, as they are called. Besides the principal fountains, there is a great number of boiling springs, cavities full of hot water, and several from which steam issues. There are also some places full of boiling mud of gray and red colours. The silicious depositions of the waters of the Great Gcyser have formed for it a basin 56 feet in diameter in one direction, and 46 in the other; a projection from one side causing it to deviate from the perfect circle. In the centre of this basin is a cylindrical pit or shaft 10 feet in diameter. Through this the hot water rises gradually, filling it and the basin, after which it runs over in small quantities. At intervals of some hours, when the basin is full, explosions are heard from below, like the report of distant camnon, and at the same time a tremulons motion of the ground is felt all around the basin: immediately the water rises in a mass from the pit, and sinking again, causes the water in the basin to be agitated and to overflow: another and a stronger prepulsion follows, and clouds of vapour ascend. At length, strong explosions take place, and, large quantities of steam escaping, the water is thrown to a height of from 30 to 90 feet, and even to 200 or 300 feet. The steam, coming into contact with the cold air of that climate, is condensed into thick clouds, which are tossed and rolled with great rapidity; the whole forming a very singular and magnificent exhibition. After continuing for some time, the explosiens cease, when the basin and pit are found einpty. Bursts of ateam sometimes take place, when the water is rising, without any warning by subterrancous noise. These phenenena seem to be occasioned by steam finding its way from below into cavities, where part of it is condensed into water, which water is at length forced out by the action of the steam under high pressurc. The New Geyser is somewhat smaller than the other. There are many hot springs of less noie in Iceland; but perhaps the most curious of the whole is the Tunguhver. Among a great number of boiling springs are two cavities, within a yard of each other, from which the water spouts alternately: while from one the water is thrown about ten feet high in a narrow jet, the other cavity is full of water boiling violently. This jet continues about four minutes, and then subsides; when the water from the other iminediately rises, in a thicker column, to the height of three or four feet. This continues about three minutes; when it sinks and the other rises, and so on alternately.

The natural jets of water, called spouting springs, only differ from the rest in comir down sonte rlose canal from a fountain on a higher level. Being thus closely confined, they burst forth in consequence of the pressurc, in the same manner as the artificial spouting fountains do.*
Intermitting feuntains have sometimes been viewed by the multitude ns of a miraculous nature. One at Como, in Italy, rises and falls every hour: another at Colmars, in Provence, rises eight times as often. At Fronzanches, in Languedoc, one has a period of 24 hours 15 minutes. England affords many examples of such springs; particularly those on the sea coast, whose waters rise and fall with the pressure of the tides. The town of Tideswell, in Derbyshire, is named from e noted fountain of this sort which once flowed there, but has now ceased to observe its tides. The principles on which intermitting springs depend are attempted to be explained in every popular treatise on hydrostatics and hydraulics. \dagger

Vnrious have been the opinions of philosophers concerning the origin of springs. Some suppose that sea water is conveyed through subterrancous ducts or canals to the places where the springs flow out of the carth: but in this way fresh-water aprings could not be prodnced; because sea water cannot be freed from its salt by filtration. It is, besides, difficult to conceive how the water should filter upwards. In order to overceme these objections, recourse has been had to subterranean heat, by which the water is conceived to rise upwards in vapour throngh certnin fissures and cavities of the mountains where it is collected, and issues forth, as we sec, in springs. Others vary the lypothesis a little, by saying that the sea water is raised through the meuntains by capillary action; but here we ought still to lhave salt springs; and it has been further objected that a current cannot be produced by capillary action.

The most prohable theory is that proposed by Dr. IIalley, who maintained that springa are nothing more than a part of the water which falls on higher ground filtrating through, and aflerwards issuing forth at a lower level. This, it is true, does not at first sight appea to account for the permanent flow of springs during dry wenther. To complete the theory it is supposed that the water at first collects in large subterranean cavities, from which it aiterwards filtrates slowly, and passes towards the springs. The disposition of the rocks in

* Vide Ed. New Phil. Journul, vol. ix. for ohservations on spouting springe and Arlesiath wells.
t Vide Ed. New Pliil. Journal, vol, viil. for an account of intermilling springs.
stratn contributes much to the collecting of the waters under the surface, and conveying them without waste, as if in close pipes, till they are united in fountains, laker, riverg \&c. Dr. Halley showed that the evaporation from the sea alone is a sufficient supply for all tho waters that the rivers carry into it. His calculation was founded on a very complex view of the subject, and liable to several objections. Buffon took a more simple view of the matter, by selecting one of those lakes that send out no strenm to the ocean, and showing that the probable evaporation from the surface of the lake is equal to all the water carried into it.
The theery of hot springs is deserving of consideration. It has been ascertained that the greater number of warm and hot springs occur in volcanic countries-where volcanoes formerly burnt or are still in a state of activity; and of those that do not occur in volcanic districts, some are associated with trap and granite rocks, to which most geologists assign an igneous origin. Hence it is inferred that they owe their temperature to the same cause or causes as gave rise to volcanic and ignigenous rocks. That the heat of such springs is often connected with volcanic action cannot admit of doubt; for, from the Geyser of Iceland, the transition is almost uninterrupted to the hot springs in the dormant volcano of the island of Ischia, and from thence to those connected with the process which formerly took place in the now extinct volcanoes of Hungary and Auvergne. The hot and warm springs of Bath and Bristol, however, occur in a linestone country whers no igneous rocks are visible; but these may be under the limestone. This opinion is fuider countenanced by the fact that many of the hot springs met with in primitive, and also in secondary, formations, occur in spots where the strata appear to have been disturbed by igneous agency. Of thia there is a striking example at the hot springs of Carisbad in Bohemia; the hot springs of Clifton issue from a limestone which appears, at an early period, to have been disturbed by igneous action: the hot springs of Pfeflers, in the Grisons, gush from a ravine from 400 to 654 feet in depth, and so perpendicular that the provisions required for the inmates of the bath are lowered from ropes attached to the summit of the cliff, and so narrow that the rocks in some places touch overhead, and nowhere, perhaps, are more than 30 feet apart. The most obvious explanation of such a phenomenon is to be found in some convulsiou of nature, such as that caused by an earthquake, or the sudden elevation of a large tract of country. The other hot springs in Switzerland appear in cireumstances for the most part similar. Those of Weissenburg, in the canton of Berne, rise sut of a gorge of the same kind as that of Pfeffers: those of Louechi appear at the foot of the mural precipice of the Gemmi : whilst the spring of Baden, in the canton of Argovia, from which the only remaining one, that of Schinzath, is not far removed, lies near the point where, in consequence of the two mountains of Staffelegg and Lagern having been severed asunder by some great convulsion, the waters of the Rhine and of the other rivers,-which appear to have once constituted a single lake extending from Coire in the Grisons to this mountain ridge, including the lakes of Zurich and of Wallenstadt, with the intermediate country,-in one continuous sheet of water, flowed off by the channel now taken by one of the rivers, the Limmat alone. Thus the Rhine, says Dr. Daubeny, may be supposed to owe its original direction to the event which produced one hot spring, and its present course to that which occasioned another.
Some springs apparently emit inflammable matter; for when a light is applicd, it scems to tuke fire like ardent spirita. But it is not so much the water that is inflummable, as some ges which it exhales, or bituminous matter flonting oil its surface.

Springs in the sca. Poverful springs are occasionally met with boiling up in the bottom of the sea, so as, in some instances, to rise above the surfice. From some of them navigators can draw up fresh water fit for taking on board as store. The natives, in certain places, know where to dive under the surface of the sea for fresh water; which, perhaps, may be the only source whence they could obtain it.
Mineral waters, and the quantity of matter they deposit. Springs in their course through strata convey along with them portions of the stratn, not only from higher to lower situations, but also from below upwards. They contain salts, earths, acids, metals, and inflammable matters, of very varicd nature: the variety depending sometimes on the nature of the strata through which they pass; at other times, as in those that rise upwaids in volcanic districts, on igneous agency. Hoffinan remarks, that when warm and hot springe, and those richly impregnated with mineral matters, occur in countries at a distance from active and extinct yolcanoes, we ohserve the stratn from which they issue to be much deranged, thus intimating that formerly earthquakes anm other igneous agencies were at work in the districts where these springs now flow. The quantity of mineral water brought from the interior of the earth by springs is very great; whether that matter is abstactel from the strata traversed by the springs, or is brought by them from a great depth, as in voleanic countries. Even some culcarcons springs in Britain deposit annually vast quantities of culcareous tuffa and calcareous sinter. In the neighbourhood of Edinburgh there are great calcaresus deposits from calearenus springs that flow through limestone rocks; and appearanees of the same description abound arouml all the calcareons springs in England. Near to Clermont, in France, some calcareous springs, rising through rocks of granite and gueiss,

Boox II.
HYDROLOGY.
have formed a mound or hill 240 fect high. Many of the great edifices in Rome are built of calcarcous deposits from calcareous springs. The hot aprings of Carlsbad annually deposit much calcareous tuffa and sinter. Other springe, as the hot springe in Iceland and in the Azores, deposit aumally great quantitics of ailica. Sult springs also bring from the interior of the carth, and spread over their vicinity, much salt, which salt may be derived from the saline clays and salt beds through which they pass; in other instunces the salt may come trom a great depth as an igneous production.

Chemical nature of spring waters. The water of springs, when very pure, is named sofl; if impregnated with calcarcous salte, hard; and if impregnated with yarious mineral matters, mineral. It was long believed that hard water was unfit for brewing and distillation; and hence soft water was often procured for these operations, at great expense; but it is now found that water which owes its hardness to lime is the most proper of ull for the termentation of worts. A time will, however, be necessary to remove the popular prejudice in favour of soft water. We have, in the Table on the following page, given a view of the composition of the most celebrated mineral springs.

According to sone chernists, the salts found by chemical analysis in springs are considered as existing in the watcrs; the late Dr. Murray considers the compound existing before concentration of the water as, in all cases, the most soluble salts that can be formed out of the ingredients present. But, in rcality, so far from our laving determined in any given case the nature of the existing combinations between the ingredients, we are ignorant oven of any method by which such knowledge is attainable. If, says Berzelius, the physician inquires of the chemist, what the proportion these salts bear to cach other in any given case may be, the latter must reply, that this is a question as to which we are at present entirely in the dark; as the proportion dependa not only on the quantity of acids and bases present. which admits being ascertained, but also on the relative force of affinity subsisting between the one and the other, for determining which we have as yet no data whatever.

Sect. III.-Lakes.

A lake is a body of water which does not communicate with the ocean. Independently of the qualities of their waters, lakes are distinguished into several sorts:-1. Those which receive atreams of water, and have an outlet, are the class of lakes best known. It ia rare for a lake to give rise to more than one river, which often beara the name of the principal stream which flows into the lake, though the two rivers may differ materially in every respect. 2. Those which receive streams of water, and often great rivers, without having uny visible outlet. This class is less numerous than the former, and is confined to warm climates; but the largest of all lakes, the Caspian Sea, belongs to it. 3. Those which receive no running water, but have an outlet,-circumstances which imply that such lakes are fed with springs from beneath, or with small imperceptible strcams from the adjacent land. 4. Those which reccive no running water, and have no visible outlet. Lakes of this class, exclusive of marshes, are for the most part small, and merit little attention. Without regarding the foregoing distinctions, some writers subdivide lakes into two kinds, according to the general character of the surface in which their basins are aituated: viz. those which are formed in deep hollows between the ridges or at the foot of mountains, and fed by apringe or torrents; and those which are formed in low and level countrics for want of a general declivity, or dammed up by a mere accumnlation of alluvial matter.
Subterranean lakes form a class of lakes difiering remarkably from all the preceding, and are bodies of water contained in cavities quite covered over by earlhy strata. It is only when such cavities are laid open by earthquakes, by the falling asunder of mountains, by the action of the weather or of rivers, by the operations of mining, or when the roof falla in, that their situation becomes known. But they are probably very numerous, though perhaps often of small size. It is not easy to account for the permanent and uniform flow of many springs on any other supposition. Some of them appear to give rise to rivers, while others are known to reccive very considerable streams which lose themselves in the interior. Such are the numerous cavities of the Julian Alps. It is to similar reservoirs that we must attribute the periodical disappearance of certain lakes situated above ground. There are some caverns in Norway which afford a passage to rapid currents of water, as appears from the sound heard through their roofs. It is natural to suppose that many streans, finding no readier outlet, flow into subterranean cavities, are absorbed by the carth, or disclarge themselves under ground into the sea. In this way may be explained the origin of those springs of fresh water that are to be seen spouting up even in the midst of the waves of the ocean. The waters thrown up by volcanoes, the sudden and terrible inundation of mines, the number of rivers which disappear, the mountains which are suddenly engulfed in the bosom of new lakes,--all these facts leave no doubt of the existence of extensive subterranean cavities containing large bodics of water. The digging of wells has suppled a fact still more interesting to physical geograply. It appears that there are lakes, or rather sheets of water, which exteud under ground to considerable distances. In digging wells near Aire, in the province of Artois, they always come to a clayey bed; which being pierced, the water gushes Vol. I.

	$\stackrel{d}{d}$		Sig	$\frac{5}{8} 85$	8		
	3	洊洨：	$\vdots \vdots \vdots$	！$\vdots \vdots \vdots \vdots$	！	：	
	${ }^{4}$	存 $\vdots \vdots \vdots \vdots$	$\vdots \vdots \vdots \vdots$	$\vdots \vdots \vdots$	：：	$\vdots \vdots \vdots$	
	$\frac{8}{1}$		：	！！：	：\ddagger	8	
	$\frac{1}{4}$	垄 $\vdots \vdots \vdots \vdots \vdots$	：	$\vdots \vdots \vdots \vdots \vdots$	！\vdots	：	：$\vdots \vdots 8$
	8 8 $\frac{6}{4}$	荐 $\vdots \vdots \vdots$ ¢	न	兩骨言：		：ल	
	$\frac{1}{2}$		¢0：	! : \% ั⿵	）${ }_{\text {\％}}^{\text {\％}}$	$\vdots \vdots \vdots \vdots$	かơor
	意				Wूळू	¢6\％	
	S	真！！：\vdots	！：\vdots	！$\vdots \vdots \vdots \vdots$	：	！：：	
		真:	N:	W $\mathbb{F}^{\text {¢ }}$ ：			
		京：		구응	－		
	热			: Soxio	：	¢	：${ }^{\text {R }}$
	$\stackrel{3}{\underline{3}}$		！：$\vdots \vdots$	！¢ ：¢ ¢	－	응 $\vdots \vdots \vdots$	$\vdots \vdots \vdots$
			以ิ！		$\vdots \vdots$! :	
	$\frac{8}{3} \text { 置 }$				：		$\vdots \vdots$
	\％		$\vdots \vdots \vdots$	！伿：	：：	！：：：m	
	1－ूँ	$\vdots \vdots \vdots \vdots$	¢0，	！\％	¢	！${ }_{\text {¢ }}$ ！	$\vdots \vdots!$
		$\vdots \vdots \vdots$		！¢ ：：	！：	$\vdots \vdots \vdots$	！：
		Toioc	¢0유：	o登:	¢0．0．	内滑：	$\vdots \vdots$
	耑 部	尔 $\vdots \vdots \vdots$	！	！	号 ！	．	引 $\vdots \vdots$
	$\begin{aligned} & 8 \\ & \text { 券 } \\ & \text { y } \end{aligned}$						O
		Acidulous．		品	Chalybeate.		

forth in large bubblee, and forms permnnent springs. In the comntry of Molena, we find every where, ut the depth of twenty yards, a bed of clay five feet thick; which being piercel, the water spouts up with considerable force-indicating that it is connceted with a reservoir which stunds at a highor level. There is a district in the interior of Algiers, where the iuhabitunts, aftor digging to a depth of about 200 fathoms, invariably come to water, which flows up in such abundance that they call it the subterranean sea.
Lakes which receive much water, but have no outlet, were believed necessarily to communicate with the ocean by some subterraneous channel. The great distanee of somo of them from the ocean seemed to stand in the way of such an explanation; and ilcults might still have remained, were it not for the discovery of the remarkable fact, that some of the principal lakes of this description have their surfaces far depreased below the level of the ocean. Thus the surface of the Caspian Sea, which is the largest known lake, and without an outlet, was found by Engelhardt and Parrot to be 334 feet bencath the level of the Black Sea. A similar depression has been ascertained of the level of the fameus. Dead Sea, in Judea, which is also a lake without an outlet. Its surface is below that of the Mediterranean in its neighbourhood, and consequently still farther below the higher level of the Red Sen. The true explanation as to the consumption of the waters of such lakes scems to be, that it is carried off by evaporation. The climates in which the two last-mentioned are situated accord well with this supposition. The level of these lakes, however, varics with the weather, and with the abundance or scarcity of the waters discharged into them by rivers at particular seusons of the year. The variation in the height of the Caspian Sea is from four to eight feet; but the level, at a particular point of its ehore, must be affected by the direction of the wind, and probably by a vory trifling tide. When the banks of lakes are very porous, they cannet fail, during very dry weather, to absorb a large portion of the water, and to throw it off by evaporation.
The depth of great lakes has been seldom ascertained with much exactness. The general depth of the Caspian Sea is from 60 to 70 fathoms; but this inercases towards the south end to such a degrec, that no bottom can be found with a line of 380 fathems. In lakes, as in the ocean, the slope of the bank is continucd downward for a considerable way helow the water; that is, deep lakes are to be found in rountainous districts, and shallow marshy ones in flatter countries. The depth of loch Ness, in the Highlands of Seotland, is in some places 130 fathoms, which is four times the mean depth of the German Nea; and its bottom is aetually 30 fathoms below the aleepest part of that' sea, between the tatitules of Dover and Inverness.* The Lake of Geneva attains the still greater depth of 161 fathoms. Many other lakes are known to be exceedingly deep, withont the amount being aseertained. Scveral have passed for ages as bottomless; but this opinion now obtains little eredit. It is more probable, that most lakes are daily getting more shallow, from being filled up with mud or débris.
The temperature of the surfuce of lakes depends on the climate and season; but at the bottom of deep lakes it undergoes little or no change throughout the year, and approaches to that which corresponds to the maximum density of water, which different writers estimate variously, from $39^{\circ} \mathrm{F}$. to 42.5°; but 40° is most commonly reccived. In Loch Catrine and Loch Lomond, the temperature, at all depths below 40 faihoms, is 41°; but the mean for the climate is 47°. The deep lakes of Thun and Zug, in Switzerlanil, have a temperature of 42° at the depth of 15 brasses. Thun was 41.5° at the depth of 105 brasses, while the surface was 60°; and $\mathrm{Zug}, 41^{\circ}$ at 38 brasses, with surface 58°. The bottom of the Lake of Geneva has a temperature of 42° : that of the Lago Sabatino at Rome is 44.5°, at a depth of 80 fathoms. Tcpid springs may, in some cases, keep up the temperature, when they occur at the bottom of lakes. From what we mentioned of the Caribbean Sca, it does not appear that the climate has much influence; and yet most powerful springs of fresh water arc known to boil up in its shallower parts. Sueh springs probably upproach to the mean temperature of the climate; or, perhaps, those who contend for an increase of heat with the depth of the solid strata would claim for them a higher temperature. Deep lakes almost never freeze, execpt in a very cold climate; because the whole bolly of water must cool below 40° before congelation could commenec. Accordingly, neither Loch Ness nor its effluent river of the same name are ever frozen ever.

The qualities of the waters of lakes are various, aecording to the nature of the substances with which they may be mixed or contaminated. The principal distinetions, in this respect. are fresh, saline, and alkaline. Lakes which reccive much fresh water, and have a copious efflux, are almost always fresh; but those which lose much of their water by evaporation may be slightly saline, especially if the neighbouring soil abourd in salt. When lakes have ne outlet, they are invariably saline. To account for this, two reasons have been given, which are quite compatible with each other. The one is, that salt lakes having no outlet are concentrated portions of the waters of the deluge, retained by the hollows of the earth's surface; and that all other lakes were originally such, and salino; but those have had their

[^4]salt washed out and carried to the occan, which are traversed by rivers or ether fresh water Tho other opinion is, that the salt in lakes has come from springs, or beon washell from the soil of the adjacent country by means of the rain and rivers: for such lakes are most abundant where the soil contains saline matter; and where lakes only lose water by evaporation, the vapour goes off fresh and leaves tho salt behind. The Dead Sea is the saltest of all known lakes, and appears to have been so for upwards of 4000 years; for in the book of Genesis it is called, by way of diatinction, the "Salt Sca," even at a time when the adjacent plain was as noted for fertility as it ia now for barrenness. The waters of this lake are in a state of saturation, containing about eight times as much salt as those of the ocean. The salt must be accumulating in beds at its bottom; for the river Jordan, which is brackish, nocessarily carries in more. Massea of bitumen frequently float on the surface, and seem to rise from the bottom of the lake. The same thing occurs in other Asiatic lakes, some of which are impregnated with borax. In the island of Trinidad, there is a lake which produces an enormous quantity of bitumen fit for naval purposes.
Some lakes are both saline and alkaline, as is the case with a sories of lakes in Lower Egypt. These are called the Natron Lakee, from their abounding in soda, which is there called trona and natron, the nitrc of the Sacred Writings.
Lakes appear to have been much more numerous at a former period than at present, and to have occupied a large proportion of the surface of the land. Traces of their existence occur everywhere. Many of them have been filled up with débria, and become lovel plains traversed by a river; some have been drained by the gradual deepening of their outlets; or both causes have often operated together. Others have got vent through cracks caused by earthquakes, or by the subsiding of a part of the basin. The kingdom of Hungary is supposed to have been originally the basin of a lake; and some go so far as to alloge the same of the Mediterranean Sea. Geological phenomena also show that new lakes arise, and old ones disappear, during those great risings and sinkinga of the land which have taken place during former perioda, and even now are not without example.
"There are several modes in which new lakes may be formed. In hot tropical climates, many large lakes are formed during the rainy season, and entirely disappear on a change of weather; hut such hardly deserve the name, being rather land-floods, though they would bo permanent lakes in a colder country. We have already mentioned the formation of a visible or open lake from the falling in of the roof of a subterrancan one. When a mountain falls asunder, it often happens that it atops up a neighbouring river and valley, and forms a lake. But the water of a river obstructed in this manner will always overflow, and can scarcely fail to regain its former level, either by wearing away a cut for itself above, or by undermining the ruins beneath. Shallow marsly lakes are frequently formed by the surplus waters of rivers detained on flat ground by an accumulation of mud. Ice and snow sometimes accumulate in narrow passes between mountains, se as to obstruct and make the water stagnant, and form a temporary lake, increasing porhaps for years, till at length the pressure of the water is augmented to such a degree as to burst the icy barrier. The consequences are sometimes dreadful. So great a dischargo of water and ice, precipitated from the mountains, tears up not only alluvial substances, but frequently portions of rocks, which are acattered over the plain below. Thus villages and fertile fields are almost instantly converted into deep hollows and heaps of rubbish. These cavities perhaps continue filled with water, forming small lakes.
There are certain lakes which disappear and re-appear periodically, without regard to the rainy scason. Such are supposed to be filled and emptied in a manner similar to the cavities of intermitting springs, or to communicate with some subterranean lake which undergoes such periodical changes. That any lakes, remote from the sea, should communicate with it under ground, во as to rise and fall with the tide, is very improbable. In Portugal there is a small lake near Beja, which emits a lond noise on the approach of a storm. Other lakes appear agitated by the disengagement of gas. Near Boleslaw, in Bohemia, a lake of unfathomabic depth sometimes emits blasts of wind which raiso up pieces of ice. Some of the Scottish lakes, and the Wetter in Sweden, experience vielent agitations even during serene weather. A coincidence of dates has given ground for beliering that these agitations are connected with earthquakes in distant countries.

Sect. IV.-Rivers.

The origin and progress of rivers have been compared by Pliny to the life of man. "Its beginnings are insignificant, and its infancy is frivolous; it plays among the flowors of a meadow, it waters a garden, or turns a little mill. Gathering atrongth, in its youth it becomes wild and impetuous. Impatient of the restraints which it still mects with in the hollows among the mountains, it is restless and fretfiul; quick in its turning, and unsteady in its course. Now it is a roaring cataract, tearing up and overturning whatever opposes its progress, and it shoots headleng down from a rock; then it becomes a sullen and gloomy pool, buried in the bottem of a glen. Recovering breath by repose, it again dashes along̣, till, tired of uproar and mischicf, it quits all that it has swept along, and leaves the opening
of the valley strewed with the rejected waste. Now quitting its retirement, it comes abrond into the world, jeurneying with more prudence and discretion, through cultivated fields, vielding to circumstances, and winding round what would trouble it to overwhelm or remove. It passes through the populous eities, and all the busy haunts of man, tendering its services on every side, and becomes the support and ornament of the country. Increased by numerous alliances, and advanced in its course, it becomes grave and stately in its motions, loves peace and quiet, and in majestic silence rolls on its mighty waters till it is laid to rest in the vast alyss." The sun and the host of heaven have, in all ages and nations, been objects of sineere worship, Next to them, the rivers seem to have attreeted the grateliul acknowledgements of the inhabitants of the neighbouring ceuntries. They have everywhere been censidered a sort of tutelar deities, and each little district, every retired valley, hud its river god, whe was preferred to the others. The expostulation of Naaman the Syrian, who was offended with the prophet for enjoining him to wash in the river Jordan, was the natural eflusion of this attachment. "What (said he), are not Abana and Pharpar, rivers of Damascus, more excellent than all the waters of Judea? Might I not wash in them and be clean? so he went away wroth." In those countries particularly where the labours of the husbandman and shepherd depended on what took place in a far distant country by the falling of periodical rains, or the melting of the collected snows, the Nile, the Ganges, the Indus, were the sensible agents of nature in procuring to the inhabitants of their fertile banks all their abundance, and they becune objects of grateful adoration. Their sourees were sought for even by conquering prinees, and when found were wershipped with the most affectionate devotion. These rivers preserve to this day the fond adoration of the inhabitants of the countries through which they pass, and their waters are still held sacred.
The term river is applied to any large current of water which is not in the ocean or its branches, and which may discharge itself into the ocean, into lakes, marelies, or into other rivers; for the waters of some rivers never reach the ocean; as is the ease with the Wolga, the Jerdan, and others, which diseharge thenselves into salt lakes, having usually the name of seas. When the atmosphere supplies a country with more water than it has all opportunity of carrying off again by evaporation, the surplus either penetrates through the surface or colleets into small streams, which, afterwards uuiting and receiving the water of springs, gradually form larger and larger currents, which, if allowed to proceed increasing, at length become rivers. Some rivers proceed from lakes or marshes, but nene come inmediately from the sea. They invariably oceupy the lowest parts of the districts from which their waters are derived, and these districts are called their basins. The basins are usually hounded by high lands, and sometimes by mountains. They form natural divisions in physicial geography. Those of the Rhone, Garonne, Loire, Seine, and part of the basin of the Rhine, comprehend the greatest part of France. In some cases, the boundaries of basins are not well defined; as where the surface becemes flat or marshy. This is the case between the basius of the Amazon and Orinoco, which are connected by a natural and navigable communication. In Europe, the sources of the Dwina, of the Niemen, and of the Borysthenes, are nearly united in a marshy plain. It is evident that the deep ravines through whieh rivers flow could not in many instances be the work of the rivers themselves; because the margins of such ravines are often higher than other places of the district, through which the rivers ought to have flewed before such velleys were cut, as some fancy, out of solill rock. A more rational explanation is, that a crack or rent,-the effect of some earthquake or subsidence,-had taken place; and that the water, getting through such rent, had gradually widened it by the attrition of its sand and gravel: the still more corroling action of the weather would materially assist in widening the upper part of the ravine. Many rivers appear to have been at first a series of lakes and eataracts alternately, through which the water was conveyed from higher to lower ground. The bottoms of these lakes are gradually filled up with dëhris, the outlets are by degrees deepened, or the basins rent through as above described. The lakes at length beeome dry plains, traversed by the river; the eataracts, elefts or deep ravines; and the river acquires, upon the whole, a pretty nniform descent. There are traces of these changes everywhere: the parallel roads of Lochaber, as they are called, scem to be nothing else than the horizontal shelves with which lakes are usually surrounded. From these it nppears that the valleys of Glen Glnoy, Glen Roy, and Glen Spean, have formerly been the busins of lakes, which are now eut through and emptied. Three distinct basins are observed in the course of the Rhine: first, that of the Lake of Censtance; the second reaches from Basle to Bingen; and the third from this to the sea. They are separated from each other by rocky straits. In many cases, the suhsidence of the water, at successive stages, ean he traced from one level to another, by means of the different horizontal sinelves still visible on the sides of the valleys. Sir Thomas Lauler remarkel this, in the above named glens in the Highlands of Scotland. In the valley of the Rhine, Professor Playtair distinguished four or five such terraces, at the successive heights of twenty, thirty, or forty feet alove one anether. The same thing occurs on the banks in the great chain of North Ainerican Inkes which are not yet empty.

The larger rivers are, their fall or deelivity is generally so much the smaller. The reason Vor. I.
of this is, that large rivers necessarily occupy the lowest parts of the country; and also, that there are no materials of which beds of rivers are ordinarily formed, that conld have resisted the action of a great river, having a rupil fall, during the lapse of ages. In the last 2011 leagues of the Amazons, the fall is only 10.5 fect; and in the 3000 miles above that, the mean fall is only five inehes per mile. The Seine, between Valvins and Sevres, has a fall of about 9.5 inches per mile. The Loire, between Briaire and Orleans, has only one foot in 13,5s6. Between the llimalaya chain and the sen, the Ganges has only four inches per mile. 'The cutire fall of the Wolga is 9.57 French feet, or five inches per mile. Notwithstunding the rapidity of the Rhine, it has only a fall of four feet per mile between Schaffhausen and Strasburg; and of two feet between that and Selinnckenschantz. Sometimes a river falling into another with great rapidity, and at an acute angle, will at the time of flood force the latter to flow back for a short way. Such is sometimes the effeet of the Arve on the Rhone, which is forced back into the Lake of Geneva.
The bore is a phenomenon which occurs on some great rivers, which enter the sea with ronsiderably volocity, and experience a sudden check or obstruction from the flow of the tido: the consequence is, that an enormous wave, known by the term bore, and various other names, is generated and sent backward or up the river with grent velocity, to the no smnll danger of the navigation. The prineiple on which this phenomenon depenls is nearly allied to that of the hydruulic ram: at the spring tides, it appenrs of a correspondingly greater magnitude. In the Amazons, the height of this wave is cstimated at 180 feet.
Rivers are subjeet to inundation. In the Snered Writings, some allusions are made to the jverflowings of the Nile; but those of the Jordan are distinetly mentioned, as covering all the banks during harvest, and expelling the lions which lurked in the thickets, so as to drive them infuriated through the country. Modern travellers, however, assert that this river dnes not now overflow; and they allege as a reason, that its channel is become deep enongh to hold the floods. It is as likely that the banks have been raised by the deposition of mud and the growth of vegetables: perhaps the fall of snow and rain upon Mount Lebanon, from which the floods came, is not so abundant since its forests of eedars were cut down; for some travellers are of opinion that this river must, from the aecounts of the ancients, have been formerly of much greater magnitude, at all seasons of the yea, than it now appears to be.
The excessive rains which fall in tropical regions, during a certain season of the year, sceasion the inundation or overflowing of the rivers whieh originate in the torrid zone. The following is nearly the general rulo for the rainy season; viz., that periodical rains everywhere prevail from the equator to the parallel of latitude over which the sun is vertical. IIumboldt mentions as another pretty correct and still more gencral rule, upplying likewise to the frigid zone, that the season of floods falls within four months of midsummer. The floods of rivers originating in high intitudes proceed principnlly from the melting of the ice and snow on the mountains, by means of the summer's heat. Such floods are violent, but of short duration, and occur in the four months preceding the summer solstice. Some of these rivers have two, or perhaps threc, successive floods, corresponding to the seasons of thaw in the low ground, on the sides of mountains, nnd on their summits.
The ancients were quite aware that some rivers derived their floods from the sources we have just mentioned; but the overflowings of the Nile, in a country remote from both rain and snow, excited their surprise. The mystery was, however, dispelled, when once it was known that the Nile principally draws its waters from the tropical regions, where the excessive periodical rains cenuse other rivers to overflow. The Nile begins to swell in June, and cont..ales to do so till the middle of August, when it has reached its maximum height of from 24 to 28 feet. With the exception of a few elevated spots, and some of the higher necumulations of alluvial matter, on thic margin of the river, the whole of the Delta nud the long valley of Egypt is then covered with water. The rising of the Ganges, which is partly owing to the melting of snow and partly to the rainy season, commences in April, nnd, like the Nile, nttains its maximum of about 31 or 32 feet in the middle of August. Tropical rivers which move parallel to the equator spread their waters pretty unifermly over the low ground: such is the case with the Orinoco and the Senegal. In rivers which deseend from great elevations, or move at right angles to the equator, the action of the tropical rains is extremely unequal ; for the surplus water only overflows the low and flat distriets. This is exnetly what happens with the Nile: but it is sufficient here to mention the general principles; ns the inundations of particular rivers will be deseribed along with their respective countries.

Waterfalls, or cascades and cataracts, are often formed by rivers in descending from pri mitive mountrins into secondary countries. Compnct durable rocks are requisite for pro ducing a permanent effect of this kiad: such are the catarnets of the Nile, of the Gnages, and various other rivers. Some eataracts, like those of Tunguska, in Siberia, have gradually lost their elevation by the wearing away of the rocks, and have now only a rapid descent. According to ILumboldt, the height of the great eataraet of the Rio de Bogots, in South America, long estimated at 1500 feet, is about 800 feet; that of Staubbach is about

000 feet. The small river Ache, in Bavaria, which rises in the cavern of tho glacier of Mount Tauren, runs through the valley of Achenthal, and, after reaching the Gulf of Tauren, throws itself over an elevation of $\mathbf{2 0 0 0}$ feet. It has five great falls; the last of which forma a most magnificent arch of waters, which is resolved into spray before it reaches the ground. The noise of the waters is so terrible, that it is heard at the distanco of nore than a league; and the current of air proluced by the doscent of the water is so violent, that it drives back those who attempt to advanco towards the gulf: it is necessary. therefore, to approach it by walking backwards. The fall of Garispa in India is 1000 feet. One of the most considerable known falls takes place on the river Niagara, which connects Lakes Erie and Ontario. The river here, just before the fall, is divided hy Goat Islund into two parts: the one, 600 feet broad, falls to the depth of 150 feet; while the other, 35 yards broad, falls 164 feet in porpendicular height. In Scotland the most considerable falls aro thoso on the rivor Clyde, near Lanark, where the river is precipitated down three successivo precipices of red sandstone. In the upper fall, that of Bonniton, tho wholo river throws itself over a precipice 30 feet high: lower down, ot Corra Linn, it is precipitated from a height of 84 feet. The lowest fall, that of Stonebyres, consists of three stages, being broken by two projecting rocks; its fall is 80 feet. In the course of the river Foyors, on the sille of Loch Ness, there are two falls; the upper fall is $\mathbf{4 0}$ feet high, the lower 80 fect. In the mineralogieal report of Lapland, presented to the Swedish government, the discovery of a great waterfall in the river Lulea is partieularly mentioned. It is said to be one eighth of a mile broad, and to fall 400 feet; if tho mile be German, as is most likely (equal to fur and a half English miles), the brendth exceeds half an English mile.

CHAPTER III.

aEOGNOAY.
This branch of natural history makes us acquainted with the structure, materials, relative pasition, and mode of formation, of the great mineral masses of which tho crust of the earth is composed.

In conveying to our readers a short view of this important subject, we shall adopt the following arrangement:-
I. Deseribo the physiognomy of the earth's surface.
II. Give an account of the action of water and air on that surface.
III. Give nn account of the action of volcanoes and earthquakes on the earth's surface.
IV. Describe the different structures observable in the solid mass of the globe.
V. Define and describe the different classes and species of rocks of which the crust of the earth is composed.

Sect. I.-Physiognomy of the Earth's surface.

Dry land. The dry land, or the land above the level of the sea, is arranged into masses of various magnitudes and forms. It is not equally distributed; for a much larger portion of it occurs to the north than to the south of the equator; and the difference in this respect is so great, that the southern half of the globe is principally water, while the northern is chiefly land. About the middle of the last century, it was asserted that a great continent must exist towards the south pole, in order to counterbalance the mass of land in the northern hemisphere; but by the voyages of Cook and Bellinghausen, and particularly the late enterprise of Weddel, it has been shown that in high southern latitudes, in place of a continent, there are but a few groups of islands. The absence of a continent near the south pole does not itself prove that there is less land there than in the north, since it is possible that the land in general may be only rather more depressed in the south, and consequently the ocean is spread more extensively over the surface of the enrth in that quarter. The dry land is arranged into two grand divisions named worlds, viz. tho Old World and the Newo World. The Old World, in the eastern hemisphere, extends from S. W. to N. E., and comprehends the three continents of Europe, Asia, and Africa. The New World, in the western hemisphere, extends from \mathbf{N}. to S., and is composed of two continents, viz. North and South America.

The general direction of the land in the two worids is different. In America, it is from N. to S.: in the Old World, it is S. W. to N. E: and, if we omit Africa, it is almost parallel with the equator. The longest straight line that can be drawn on the Old World commences on the western coast of Africa, from about Cape Verd, and extends to Behring' Strait, on the north-east coast of Asia : it is about 11,000 miles in length. A similar line traced along the New World from the Strait of Terra del Fuego to the northern shore of North America measures nearly $\mathbf{9 0 0 0}$ miles.

The Old and New Worlds have the following features in common: northern and southern halves, connecting isthmuses, a peninsula on the one side, and a group of islands on the other. This arrangement will appear evident from the following details.

The old world may he considered as compmesed of two great hatven：the one，the wentern， implades Burope and Africa ；the other，the castern，Asia nuil New Hollamel．In the western half，tho two continente，vix．Biorupe nul Airien，are commeted together hy the inthume of Nuer，and have ons the one hand the islande of the Moliturranean，and on the other the pen－ insula of Arabin．In the oastern half，the two continents of Anin nmel Now Ilolland are，to a rertain extent，cominected thgether by the iwhals of Javin，Numatra，\＆c．；nul in front of this broken isthmus in I＇apin and other islanis，mul on the other side the peninsula of India． ＇The New World is compowed of two hadves，a northern and a mouthern；these are connected turether by tho isthunus of Darien；and on the thont are situated the West India islanle，und hehimed the proninsula of California．

Anether general featurs in the general distrihution of the dry Innd，in the tapmering of nll the great peninsulus to the south，This，fire exmmple，is the caso with the contineut of Africa， with Aruhin，India，Neuth Americn，Neanulinavin，Apain，Italy，Greece，Coren，Alawhkn，Krun－ tehatkn，Californiu，Florida，nal Greenlaml．
Besiles the Otd anil Now Worlds，as nlove descriled，thero occur，dispersed through thes occun，mumprons smaller masess of land，forming islands of various magnitulen nul formn． ＇Those isfands situated near to the continents aros commidered as belouging to them．Thum the British isles belong to Europe，thowe of Japan to $\Lambda \sin$ ，the West Intin islanils to America，and Madagasear to Airica．But hesides theso there are other islanels and groups
 preceding divisions，but to tho oceuns in which they occur；as，fir example，the Sundwich Islanls，in the North I＇ueific Ocean．

Nunsker，1，－Inequalities of the Nurface of the Dry Land．

Tho surtice of tho land exhibits great varisty in aspect，torming mountains，hills，valloys， nud plains．＇l＇ho most general of＇these features aro what geographors term high lend nud lome lemd．Nigh lumds are lofty，meven，and widely extended masses of lanil：thins，the manmaninous tract of country exteniting from the Naze of Norway to tho North Cape is n high Inad．Low lands nre wilely extenaled low mal flat countries：thus，the northern part of＇rannee，the Netherlamis，Holland，part of Germuny，und Silesin；Holnud，and European Russia firm what may he culled the great huropean low lami．Wo slaull first explain the structure of high tam，nui next that of low haml．
（1．）Nerueture of high lund．In a high land，the central parts are generally the most rugged and lotty，while the exterior districts，those which border on the low land，are lower， and less rugged．The central part is named alpiae，the lower nod the exterior purt hilly． ＂The alpine part of＂a high lame is composed of a central and lefty chain of mountains，named the central，or high mountain chain，towards which there tonl a preater or losser number of lateral or prineipal；and from these again subordinute chains．＇I＇he high mountain chain forms the rater－shed（dirortin aquarum）of the district；and the hollows that traverse tho upper part of this chain aro namol passes（cols．）On passing from one side to another of the nlpine lanil，we do not always travel through a pass or col，but sometimes across a com－ puratively that tract，many lengues in extent；such nre named table－lands．In crossing from Noriwny to Sweden，wo pass in some parts across a tuble－land；also in travelling from Vera Cruz by Mexico to Acapulco．The inclined planes on which the lateral，or principal and suborilinte，chains are distributed are named the acclivifies of the high land．The hollows that esparate these chains from each other are named valleys：those valleys loomiled by principal chains aro named principal valleys，and sometimes iransverse valliys；while the valloys between subordinate chains are named subordinate valleys．The hilly or lower part of the＇ighl land is composed of comparatively low and less rugged chains，ealled chains of hills，whith nre irregnlarly grouped，being entirely without a central or high nountain chain．The valleys in this hilly land are shorter，less steep，and not so rugged as in the more central or alpine part of tho high land．
（2．）Structure of low land．Low land is formed principnlly of extensive plains，little elevated above the level of the sen，in which we occasionally observe gentle risings and undulations of the surface，that otten extenil to a considerable distance，anil sometimes form the limits between neighbouring rivers．Now nud then eonienl and uble－shaped hills rise up singly and sudlenly in a low country，as is the case with volemie nul igneons hills．The plains of the low land are charncterised by the presence of particular hollows or concavities， which are named river－courses or river－walleys：because in these rivers flow．In such hol－ lows we distinguish the bed of the river，and the holm or haugh land；firther we observe the high and low lanks of the river，and the ravines or small valleyn，that traverse the high bank and terminate in the low bank．There is still another kind of hollow met with in the low land；it is that in which laken，generally shallow，are contained．
Cousts．The nargin of the dry limil，where it meets the waters of the ocenn，has received the general name of coast．It varies in its aspect．Sometimes it is low and shelving，and then the neighbouring sea is shallow to a considerable distunce；at other times it is stecp， lofty，and rugged，and then the sea is deop．In many parts of Great Britain，and on the
continemt, as in Ifolland, the coast is low nal sanily, and the sand is occasionally blown into hills.

Cares. Theme are cavitien of greater or leas extent, which are either open to day, as in the e'men of the marnitcent enves in the Impo of Imla, those in Arran, thowe uear Wemyse on the conetn' Fifindiro, \&c., when they are mamed external or open caver ; or they are more or lews cencenled in the interior of the rocks in which they are conthined, ne Mnclean's Cave in the the of Figg, and many cuser in the limeatene of Berbyshire: such are named internal cures.

Sugasur. 2.-Inequalities of the Surfuce of the Submarine Imind.

The lattom of the sea, like the surfice of the dry Innd, varies in form. In some seas there occur dats nid phins ranging to a comiderable extent, and nent to the morfice of the water, firming what are called shoula ; in other cusew, plains, of great oxtent, ocenr deeply seated, ur much helow tho surface of the sea, which are denoninated derp submurine pherina. 'These submarino plains, like the pluins on the dry land, sometimes cuntnin bollows of considerable extent, nind of groat depth; the deep hollows under tho sea off the const of Scotland, known nuder the amme of Montrose pits, are of this description. The sen botton in nometimes hilly; these hills vary in form nal magnitnde, and are either deeply seated, or rise above the anrfice of the witer, forming. rocks or inlanils. In tropical seas, the bettom, when not very ileep, becomes encrusted with coral; which cornl mometines rises to the surthee, null then forms coral shouls, coral reefs, or coral inles. If tho hotom is very deep, but sends up from lelow hills whose summits nre not far below the level of the oceun, these in tropical seas also lecome covered with coral.

Nact. 11.-Fifectin of Water and the Almosphere on the Surfuce of the Iand.
Water is a very nctive ngent in altering and varionsly molifying the surface of the earth, nud its energy is incrensed when it carries along with it mechanical matter, ns mand, gravol, \&c., and particnarly when nided liy the gnawing inflaenee of the ntmosphere. Through these agents the whole surfice of the dry laml is kept more or less in a state of motion, by their breaking up the strata, and removing with greater or less rapidity, the broken rocky imntters from point to point, and otten inte lakis and the sea.
Water acts mechanically nal ehemically: it acts mechanicully when it removes part of the soil or liroken rocky matter over which it pusses, or corroles the channel in which it flows, or the reservoirs in which it is contnined; it nlso nets mechnnicnlly, when, on being imbibed hy rocks, it increnses their weight, und thus favours their rending, slipping, and overturning; aml, lastly, it acts mechanically, when, ly its freezing in fissures, it lireaks up mountuin masses and rocks. It acts chemically, when it dissolves purticular mincral substanees, as rock-salt, out of the rocks through which it percolntes.

Numseot. 1.-Mechnnicul destroying Fiffets of Water.

(1.) Rivulets and Rivers. Running waters, in their course from the higher to the lower purts of a country, carry along with then the debris nlready prepared by the action of the wenther on exposed rocks, and nlso more or less considerublo portions of the strata of the basin in winich thoy flow. The quantity of abraded mintter depends in a greut degree on the quantity of sand or gravel the river enrries nlong with it; it heing a fact, that running water, when pure, acts but feebly on compact strata, and displays its scooping or excavating power only when earrying aleng with it sand, gravel, nal such other matters, which communicate to it n mechanical destroying action. As the velocity of the river diminishes, its currying power diminishes; and frequently, long before it has reuched the marsh, lake, or the sea into which it disembogucs itself, it carries only slime and slecch, leaving the gravels and larger solid masses in higher parts of its course. The transporting power of water is much irreater than many aro awire of: it is strikingly shown by the enormous quantities of rubbish, and grent blocks of stone, which are swept along by ris ulets when in the sute of flood or swollen. This transporting power is materially assistell by the diminished specific gravity of the rocks when inmersed in the water, hy which their weight is often diminished one-third, and even one-half. The transporting of heavy stones by water in situations where ico occurs is nssisted ly the ice which adheres to then, and which diminishes tho specific gravity of tho mass.
(2.) Lnkes. Around the margins of inany lakes we olserve a beach, formed of the frag. ments of the neighbouring strata, broken off in part hy the waters of the lake. The bursting of lakes also occasions great changes in the neighbouring country, which chnnges are of a mechanical destroying nature.
(3.) Ocean. The waters of the ocean exercise a powerful destroying effect en coasts. If the coasts are hold and rugged, they are violently assaulted by the waves of the ocean; the crags and cliffs split and tumble down, in trightful and irregular succession. The perforated rock, the Dureholm, on the west coast of Shetland; the perforated rocks described by Captain Cook near Now Zealand; the stalks, holms, and skerries on the coasts of Shetland, Vol. 1.

18*
2 B

Scotland, and Norway, are effecta of the destroying power of the wnvew of the ocenn, conjrined with the gnawing action of tho weather. (On thowo rocky conmta where the atrata are of unergual hariness, the mifter portions, and ahoo part of the surrounding harder mana, are removed by the action of the waves; and thus sea-caves are formed.
'I'he waters of' the ocean often alwo canse dreadful ravagen lin low countrios oxpowed to their tiury. Ilolland thmishes many atriking examples of its devantatiar power. In the yenr loge the waters of the ocenn, agitnted hy n violent tempest, inmilnted the conntry; the Ithine, wwollen at the timo by extrnordinary fleocha, and retained at a great height, purtly by the waters of the ocemn, and partly by tho wind blowing in a contrury direction to ita courme, aproad over the noighouring country: but, tho tempent having vuddenty subaided, the highly elovated waters rotired, with guch velocity and force as to carry with them a conadiderable portion of the moil, and lett in its place the sea now named the Zuyder Sea. In the yenr 1421, a great inumdation submerged the aouthern part of the province of Holland, drowned 00,000 permone, and on retiring formued the Bien-Boos.

The action of the aea on the aubmarine land is also worthy of notice. Stevenson apeakn of agitations of the mea reaching to a dopth of upwarde of 200 feet; stating that, at a considorable depth the power of the ocean is so conaderable as to break rock in piecen, and throw them upon the consta in ninsses, of various sizes and forms. Thus he suys, " numerous proots of the ma being disturbed to a conmiderable depth have also occurred ninco the erection of the Bell-Rock Lighthouse, situated upon a sunken rock in the sea, twelve miles off Arbroath, in Forthrshire. Nome drif-stones of large dimensions, mensuring upwards of thirty cubic feet, or more than two tons weight, have, during storms, been often thrown upon the rock from the deep water. These large boulder-stones are so finmiliar to the lighthouse kocpers at this station, as to be by them termed travellers.* On the coast of the main land of Shetland, particularly on the west conat, wo have observed many striking lieplays of the power of the waves in moving enormons nusees of rocks.

The currents that traverso the ocean, like rivers on the iry land, probably scoop out bede for themselves, and curry away, and often to distant places, grent quantities of tubruded matter. The gulf strenm, and other branches of the great erpinoctial current, may act powerfully in this way; and the same may be the case with the currents in other seas, and thesen that enter mediterruncan neas and wind round them, as the Baltic and Mediterranean.
(4.) Artion of watre by its own weight. Water by its own weight contributes very nuch to the degradation of the surface of the globe. Sometimes great masees of rock, particuIarly those of a soft and porous nature, imbibe much water, by which their woight is incrensed, aml thus occasions breaking and rending, and slipping of masees often of enormoue magnitude. Clay beds sonetimes becomo soft trom the percolation of rain or anow water from the superincumbent stratu. When this takes place the superincumbent beds lose their anpport, and if the clay and superimposed rocks are inclined at a considerable angle, the rocks in vast masses separate, and slide down into the lower part of the country. The fall of the Rossberg, in Switzerland, in September 1802, may to mentioned as an example of this phenomenon. This mountain (Rossberg) is 5193 feet high, and lies opposite to the Rigiberg, which rises 6180 feet above the level of the sea. The Rossberg is composed of molasse, with beds of clay, and all inelined at an angle of 45° to 50°. It is said that the rlay in some of the beds was inuch softened by the percolating wnter, and the thick superincumbent beds of molasse, in this way losing their support, were separated from the inclined and soft aurface undernenth, and slid into the valley below. This avalanche ot debris and mul overwhelmed several vilhges, and destroyed from 800 to 900 persons. In the year 1714, the west side of the Diablerets, in the Valais, separated, nud in its course downwards covered the neighbouring country with its ruins for two miles in length and breadth; the inmense blocks of stones and heaps of rubbish interrupted the courso of the rivers, and lakes were thus formed. In the year 1613, the once considerable town of l'leurs, in the Grisons, with the neightouring village of Schelano, were overwhelmed by a vast mass of rock, which had imbibed much water, and separated from the south side of the mountain of Corto.
(5.) Effects of the freezing of water. In those regions of the earth where the freezing snd thawing of water takes place, tho expansive and destroying action of ice is often displayed on a grand acale. In the history of northern countries we meet with many accounts of the noises and rendings of rocks, oceasioned ly the expansion of water cluring its freezing in the fissures of rocks. Terrible disasters take place in alpine countries by the bursting and fall of great masses of rock, split by the freezing of the water in rents.
(6.) Destroying effects of ire and snotr. Water in the form of ice causes considerable chauges on the surfice of the earth. Thus, when floated along in great masses by rivers, it breaks up their banks, and thus affords them an opportunity of devastating the lower country; and the masses are often so great, that enormous heaps of the strata are thereby torn off and carried to a distance. When sea ice is drifted against the clifls and precipices on the coast, the breaking and destruction it occasions sometimes almost pass belief. For the breaking
up and inoving of large musen of rock, onf of the moet $[\mathcal{K}$ Werfill enginea empleyed by mature are the glaciors. Those mawes of congenfed water and snow, in their course downwarl, puali before them enomomn guantities of broken moky matter, which form groat momuls, numed moraine.

Sumaner. 2.-Chemical destryying Fiffects of Wuter.

Atmowpheric water enters into the flesures of rocke in a pure atate, but lanues forth again more or lewn impregnated with mineral mintera of varions kinis abruded from the strata through whiel they pama. I'he mowt abuudunt submance bronght out in this way from the interior of the eruat of the enrth in lime, which in depositod from these calcareous waters in the thrm of tuff. Nany of the exenvutions in limentone are partly owing to this festroying effict of water. Spriny waters, in passiug through beds of gypaum and rock salt, dissolve a portion of them, and in thim wny mometimes occasion cenaidernble changes in the interior nud even the surfice of the earth, by the nuperincumbent atrata yielding over the hellows formed by the removal of the salt and gypwun.

Sumakct. 3.-Mechanical forming Effects of Water.

(1.) Forming effecta of apringa. Aprings bring from the interior of the earth muddy matter of various lescriptions ; and in the course of time, if the springs are spouting-springs, hillocks and hiltw of considerable magnitude are thus formed.
(2.) Lakes. When lakos are filled up, or are emptied, we find the space formerly ocenpied by them covered, to a greater or less depth, with the alluvial mattor hronght into them by the rivers that flow into them. When lakes burst their bnrriera, at different timen, they leave on their nides a series of natural terraces or platforna, of which we have a aplendid example in Glen Roy. In Glen Roy these terraces are known under the name of \boldsymbol{P} arallel Ronds of Clen Roy; becnuse somo have funciel thoy were not natural arrangements, but works of art,-rodds formed by the ancient inhabitants.
(3.) Rivera, When rivers nre in a atato of flood they often overflow their banks, and cover the neighbouring country with their waters. Thus the Ganges, near ita mouth, in the miny season overtlowa the coantry to the breadth of one hundred miles, and to the depth of nenrly twolvo feet; and the ludus, during its period of innudation, extends thirty or forty miles from its banks, This flood water curries with it muddy and other matters, and depowits them upon the land. Gerard says that the annual floods of the Nile hal raised the surface of Upper Egypt about aix feet four inches, English measure, since the commencenent of the Christian em, or four juches in a century. In other countries extensive deposita, extending along the sides of rivers, are formed by the overflowing of their waters. Where rivers enter lakes and the sen, they form triangular pieces of land named dellas, from their resemblance in form to the triangulur-whapel Greek letter Δ. These doltas are more strongly marked in lakes than in nearly inclosed seas, as the Mediterrunean; and in these nean than in the ocean, where the depositions aro much interrupted by currents. The most fiumors in history of these deltas is that of tho Nile. This delta lins been considerably enlarged since the time of Herodotus, hat not to the extent etated by many writers. At no grent distanco from the shore of the delta the depth of the Mediterranean is about seventy-two feet, nad fiarther out the sea suaddenly deepens to 2000 feet,-a depth very probably beyond reach of the delta, and which may be conjectured to be the original depth of this part of the Mediterrmean eea. The deltas of the other rivers that flow into the Mediterranean, as tho Rhone and the Po, exhibit phenomena similar to those observed in the delta of Egypt; and by their considerablo extent, and amual growth, furnish ample proofs of the forming power of rivers, and of the resemblance of alluvial matters to strata of an older date. The great sea-deitas, or those formed where rivers flow into the ocean, are sometimes on a great scale, as is tho case with the Ganges, of which a most interesting account has been given by Rennel and some other writers. $\boldsymbol{\Lambda}$ full deseription of this nagnificent delun, as also of the vast deposites at the mouths of the Mississippi, Orinoco, and other great rivers, will be given in the body of this work. At present, however, we may remark, that the quantity of matter carried into tho sea by all the rivers on the globe is very great, and fully as considerable as thut stated by some authors, who linve been leld ss exaggerating the amount of this earthy matter carried from the dry land to the shores of tho ocean. The alluvial matter brought down by rivers not only forus greut tracta of land at their mouths, but also, through the agency of eurrents, nssisted by the waves of the ocean, gives rise to extensive tracts of low and flat land, which extend along the coasts.

Downs. When the sen-coast is low, and the bottom consists of sand, the waves push this sand towards the shore, where, at every reflux of the tide, it becomes partially dried, and the winds, which often blow from the sea, drit up some portions of it upon the beech. By this forming action of the ocean, sandy flats and doons, or ranges of sand-hills, are formed along the coast. When this sand is moved about by the wind, it forms what is called the smm-flood. Westward from the mouth of the river Findhorn, in Morayshire, a district consisting of upwards of ten square miles of land, which, owing to its fertility, was once
named the Granary of Moray, has been depopulated, and rendered utterly unproductive by the sand-flood. This barren waste may be claracterised as hilly ; the accumulations of sand composing these hills frequently varying in their height, and likewise in their situations. The sand hills of Barry, at the meuth of the Tuy, composed of blewn sand, are from 200 to 300 feet high. Belhelvie links, in Aberdeenshire, and the extensive sundy tracts in the Shetland and Western Islands, are of the same deseription. Thesn blowing sunds sometimes block up the months of rivers and rivulets: thus, many years ago, the nouth of the river Findhorn in Moray having become blocked up with blowing sand, it cut out for itself its present elannel, which conduets it by a more direct course to the sea. In consequenee of this, the old town of Findhorn had changed its situation from the cast to the west side ef the river, and its site has since been covered by the sea. The lake at Strathbeg, which covers a square mile of country, on the coast of Aberdeenshire, about ten miles north from Peterhead, was formed about 170 years ago, by the choking up by blowing sand of a small stream that fell into the sea. These barriers sometimes give way, when the tract is again, for a time, covcred by the sea; a new barrier again rises, and the sea is excluded a second time. These operations, on a great scale, would afford alternation of productions of the land and of the sea. The sands of the African deserts may be sea sands, or land sunds, or both together. Dr. Oudncy, Major Denham, and Captain Clapperton have ulded to our knowledge of the blowing sands of the African deserts. The coloured engraving of the sand-hills of the African desert in Denham, Ondney, and Clapperton's Narrative, is a striking and interesting representation of the form of the moving sand-hills of Africa.

Sand banks. The bed of the German Ocean supports many accumulations of sand, celled sand-banks. One of these extends from the Frith of Forth, in a north-easteriy direction, to a distance of 110 miles, while nnother, the Dogger Bank, extends, nortl and south, for upwards of 350 miles. The average height of these submarine sand-banks is estimated at about seventy-cight feet: the whole surface of the various shoals in this sea laid down in charts, according to Stevenson, is equal to abont one-fifth of the whole area of the German Ocean, or about one-third of the whole extent of England and Scotland. These banks are composed of quartz sand, varying in the size of the grain, from coarse to fine, which is abundantly inixed with broken shells and fragments of corals. These banks are conjectured to owe their origin to the aetion of eurrents and the tides,

Subsect. 4.-Chemical forming Effeets of Water.

(1.) Springs. Many spring waters, after dissolving, by means of the superabundant carbonie acid with which they are impregnated, ealcareous matter abraded from limestone rocks, or roeks containing lime, allow the carbonate of lime to crystallize, in consequence of the escape of the acid, and in this way form depositions of cale-sinter, or caleareous alabaster, on the roofs, sides, and floors of caves; or fill up fissures in rocks, and form veins; or when flowing over the surfuce of rocks, form, if the surface is horizontal, horizontal beds-it inelined, inelined beds-of ealeareous sinter and calcareous tuff. These beds sometimes extend very far, and with a thickness of 200 or 300 feet. The water of such springs, when collected into hollows so as to form lakes, often deposits vast quantitics of calcareous sinters and tuffas; and hence sueh lakes, when emptied, present extensive caleareous deposits. The travertine employed at Rome for building is a lake or spring ealcareons deposit of sinter and tuffa; and the town of Guancavelica in South Anerica is built of a compact calcareous tuffu from the caleareons springs in the neighbourhood. In the mountain limestone districts in England, also in the lias districts both in England and Seotland, the roofs, walls, and floors of caves are otten elegantly ornamented by numerous varieties of calcareous sinter. In Persin, as mentioned by Sir John Malcolm, there are great deposits of a very fine cale sinter, whieh is extensively employed for ornamental purposes; and in the marshes of the great plain of the vast eircular valley of Inugary, according to Beudant, there is a constant deposition of horizontal strata of caleareous tuffa and sinter, which are so hard as to be used for building, all the houses of Czlea being constructed of these minerals. The pea-stone, a beautiful calcareous carbonate, is formed in very considerable abuadance from the waters of ealcareous hot springs, as those at Carlsbad in Boliemia. As these calcareous springs often flow into rivers, and these rivers terminate in the sea, it is evident that in this way a vast quantity of carbonate of lime must reach the ocean where it will be deposited in the various forms of sinter, tuffa, and limestone. The Geysers, or hot springs of Ieeland, and those of St. Miehael's in the Azores, deposit on the dry land vast quantities of silieeons sinter. This siliceons mineral, which is sometimes like opal, although generally pure, is not always so, being oceasionally intermixed with other earths, and thus giving rise to particulsr mineral substanees. Such springs also pour their waters into the ocean, and even rise from the bottom of the sea sometimes a considerable way upwards, or even jet above the surface level of the sea, all the time throwing out much water impregnated with silica, which is deposited on the subinarine land in various forins and states, depending on a varicty ff eircumstanees, which our limits prevent our noticing.
(2.) Lakes. Ilaving already noticed the calcareous depositions from the waters of

Book II.
GEUGNOSY.
some lakes, we may now mention some other deposits that appear to owe their origin te lakes. Tho log irom-ore, or hydro-phosphate of iron, is oflen found in such situations as to show that it has been deposited from the waters of lakes; and in some countries it is collected from the sides and bottoms of takes once in a certain number of years; thus showing that it is still forming in such situations. In sult lakes considerable depositions of salt take place; and when such collections of water dry up, or are drained off, the sides and bottoms of the hollows are found incrusted with sult, which is sometimes disposed in beds alternntely with beds of clay.
(3.) Marine incrustations. Collections of perfect and broken sea-shells and of corals are sonetimes found agglutinated by caleareons, cluycy, or ferruginous matters, forming banks or beds of considerable extent. Beds of this kind, particularly those formed of shells, are met with in many parts of the coasts of this island. In other countries, as in the West Indies, a solid conglomerate of shells and corals lines a considerable extent of coast on several of the islands. The human skeleton from the island of Guadaloupe, in the British Museum, is imbedded in a rock of this description.

Subsect. 5.-Effects of the Atmosphere, \&c.

Effects of the atmospherc. The nir and moisture of the atmosphere effect great changes on the rocks at the surface of the earth. They either simply disintegrate the rock, or not only break it down, but also occasion a change in its chemical constitution. Sandstone, and other rocks of the same general description, oflen yield very readily to the weather; their basis or ground is washed a way, and the quartz, mica, and other purticles remain in the form of sand and gravel. When trap veins intersect strata, it frequently happens that the softer parts of the rock are destroyed, while the harder trap appears rising several feet or yards above the neighbouring surface, and crossing the country like walls; hence, in Scotland, they are named dykes. The variously shaped summits nf mountains and hills owe much of their form to the destroying influence of the weather. Some caves, as certain open caves in sandstones and limestones, are also formed by the destroying powers of the atmosphere. The various changes in the form of rocks, by which they assume columnar, globular, tabular, and indeterminate angular forms, and fall into scales, crnsts, laycrs, gravels, and sands, are, to a certain extent, eflects of the destroying powers of the atmosphere. Vulleys owe much of their form and extent to the destroying influence of the atmosphere. Their sides and summits, everywhere exposed to its action, become covered with débris; and in this way valleys experience greater changes than are proluced on their bottom by the passage of the river, and on its sides by the rushing of the torrent. The chemical destroyirig effects are to be traced to the carbonic acid of the atmosplere, and to the vast quantitios of the same matter which rise from the interior of the earth: this aeid dissolves lime, abstracts alkaline mutters from granite and other similar rocks, and by combining with iron, converts that universally distributed substance into a soluble carbonate. The oxygen of the atmosphero also, by its action on the iron and other constituents of rocks, assists in breaking them down.
Effects of elcetricity on rocks. Electricity, as a chemical agent, may be considered not only as directly producing an infinity of changes, but also as influencing almost all that take place. There are not two substances on the surface of the globe that are not in different electrical relations to each other; and chemical attraction itself seems to be a peculiar form of the exhibition of electric attraction: and whenever the atmosphere, or water, or nuy part of the surface of the earth, gains accumulated electricity of a different kind from the contignous surfices, the tendency of this electricity is to proluce new arrangements of the parts of those surfices. Thus, a positively electrified cloud, acting even at a great distance on a moistened stone, tends to attract its oxygenous, or acidiform, or acid ingredients; and a negatively electrified cloud has the same effect upon its earthy, alkaline, or metallic matter; and the silent and slow operation of electricity is much more important in the economy of nature than its grand and impressive operation in lightning and thumder.

Sect. III.—On Voleanoes, and the Changes they produce on the Land and the Bottom of the Sca.
The agents which the globe conceals in its interier, and whose existence is manifested at its surface, are made known to us by the phenomena of volcanoes and earthquakes. We shall first deseribe these phenomena, and nftervards add some observations on their canses.

Sunsect. 1.-Distribution of Volcanoes.

Volcanoes, as is well known, are openings in the crust of the earth, whence there issue from time to time jets of hurning suhstances und currents of melted matters which bear the ame of havas. These openings are gencrally on the summit of isolated mountains; they have the form of a fumel, and take the name of craters.

Position of ralcrmoes. Volcamoes occur in all quarters of the globe, and are often dis sributed in a linear direction.

Distrihution,-Europe contans but lew burning volennows. On the const of Sicily, we see Sitm rising liko a colossus to a height of 10,870 Bughinhl feet. On the oppowite const of Italy wo haso Vernvios, which dones not attuin more than the third of this elevntion, viz. 10ide feet. Ihetween them, in the Lipari islands, we time the smatl volamo of Strombeli, nud the volenmes of Valenno and Vulcmello, winch still nnuke. 'Tho islands of' the Arehipelago, at Mido and Santorino, contain mountains which, daring an carly historic perioul, prodnced terrible igneons phononem. Iceland in the north, in the midst of show and ice, presents to our view many volenneen, of which the most prominent, Hecha, rises to a height of $55(k)$ feet. Finther to the north, in the desolnte and dreary Jan Mayen's Inlatid, extending between uorth latitude $70^{\circ} 49^{\prime}$ and $71^{\circ} 8^{\prime}$, is the voleane of Fisk Nount, which rises to a height of $\mathbf{1 5 0 0}$ feet above the sea-bench in Janeson's Ihy. The continent of Asia, us far as in known at present, exhibits but few volemoew. We cun senrcely recken three or four on its westeru shoren, or on the edges of the Cuspian: there are nono in its northern purt : some lut vaguely known exist in Central Asia : in the enst, the peumanda of Kamiselatka contains live or six; but in the islands whieh surronul this continent thoir mamber is grent. The ishands on the coast of Africa, such as lourbon, Malagnesear, the Cape do Verd Islmuds, the Camaries, mad the Azeres, also contain severnl volcmoes. In Amerien, if we except those of the West Ludin islands, we observe the greater purt of them on the ridge of that great Cordillera, which, like an immense wall or loty terrace, lxorders the western part of that continent. 'Ihey are remarkable not only on aceount of their powition, hat also for their colowsal fiorm, tho uiture of the masses of which they are composed, and the materials they throw ont. 'Torrents of fire rarcly issue from them, but streans of water mad mud are of trequent occurrence: the total number of Americun voleanoes is ulomt eighty-six ; they are pheed as it were in groups. The kinglom of Guatemaln presents about twenty; in Mexico there are six, in the number of which is the Jornlo, so well known from the uccoumt of Iumboldt. But it is in 1'ern that the greatest occur: there are seven in that country, of which we mall mention Piehinclan, nearly 15,931 feet high; Cotopuxi, wich rises to the height of 18,863 feet; and Antisana, which attains a height of 10,136 fect. On a rough estimate, we state the number of burning voleanoes inchuding solfaturas at 303; of these $\mathbf{1 9 4}$ nre in isltuds, nad the other 109 are on the continents: tho most distant from the sen are those of America and Asia; in P'eru there are volcanoes thirty lengues from the sea; und that of l'opseatepetl near Mexico, which, however, is now only a smoking voleano, is fifty-six lengues; mud they ocenr in the very centre of Asin. The circumstance of the most active voleanees being situated in the vicinity of the sen, is a fact worthy of being recollected; it becones still more so when we observe, that there are submurine voleanoes larming in the midst of the waters. 'The islands, and the phenomena which they have been observed to produce, it Sunturino, on the const of Iceland, in the Azores, \&e., leave no doubt respecting their existence.
Independently of voleanoes in a state of activity, the interior of onr continents connins a great number of extinet volcanoes, but which still present their originul torm, or incontestable remains of that form : perhaps no country contains more mumerous and splendid displays of them than France; there are more than a hundrel in Auvergue, Vivarais, and Cevennes. They are conical mountains, composed of lavas, scorim, and volcanie ashes heuped upou cach other; many of them present a crater, which has retuined its form in a greater or less degree; and sometimes there are seen as it were issuing fron their bases lavas whieh extend to a distance of severn! thousand yards, und which have perfectly preserved the form of enrreats: the matter of which they are composed resenbles that of lava trap. We may further remark, that voleanoes are never or searcely ever isolated; they are collected into groups. 'This is the case with the American volcanoes; those of Asin, and the different Archipelagoes are similarly situated: in Europe, the Greek islands and southern Italy present distinct groups. Sometimes voleanoes ar. nrranged one after the other in the same line, as is the case in South America, and in the extinct voleanoes in the neighbourhood of the Puy de Dóme.

Sunsect. 2.--Phenomena and Theary of Volcannes.

Volcunoes do not incessantly eanit flames, nor do lavas constantly flow from them; they remin for uges in a state of innetivity. Vesusius was extinct from time imnemorin, when, nwakening from its slumber, it suddenly rekindled, in the reign of Titus, and buried the cities of Pompeii, Ilerculancum, und Stabime under its ashes. It beenue quiet again at the end of the fitteenth century; nud in 16:30, when it resumed its netion, its sumnit was inhabited, and covered with word. The inhabitants of Catania regarded as fibles the accounts, of history respecting eruptions of Atma, till the periol when their city was ravaged, and in part destroyed, by the fires of that colcano.

Subterramenn noises, and the appearance or increase of smoke, which issucs from the crater, are Lenerally the tirst eymptoms of voleanic action. Presently the noise becomes 2 louder, the earth trembles, it experimees shock:, and every thing prochaims that it is in labour. The smoke increnses, thickens, and becomes churged with nshes. When the air is tramuil, the smoke is seen rising, mader the form of an immense column, to a very great
height. 'There, fiming itself in a rurer ntmowhere, it ccanes to rise; its upper part dilating,
 supperting eolumi, in thvonrable circumatunces, has the tigure of in immense umbrella, or of the Itatian pine, to which Pliny the Blder compured that of the eruption of Vesuvias in A. D. 73, and which was accurntely represented in Octoler, 1892. At other times the smoke dispersers in tho air: it there lorms thick and vast clouds which olsecure tho day, and coves the surromiding country with darkness, These colunmes und clonds are often craversed by enormons jets of red-hot sind, resembling flumes, and rising to extraordinury heights. Sometimes they aro traversed by flashes of lightning, and on nll nides lumb exphosions are heard. Then there ure projected red-hot stones nud masees in fusion. 'They instue from the volcums with a noise which is frepuently very loud. They rise into the nir, spreuling out in their progress, nud fhell around the nomth of the volcano under the form of showers of ashes, scorin, or stonew. The shoeks and ןuakings of the ground continue and increure in violence. In the midst of these convulsions, und on theso necessions, the melted matter which filled the sulterrancan furmaces, ulrealy carried into the mountain, is ruised up by elastic fluids; it ascends to the crater, fills it up, und passing over the least elevated purt of this enormous cavity, spreads out upon the flanks of the voleano. It then deseculs, sometimes very juickly; sometimes, and more frepuently, us a majestic river, quietly rolled along its penceful waters. Very frequently, when tho lnva rises, the walls which contain it being unable to resist its inunense pressure or its heat, give way und lurst asumder. It rushes forth like an impetuous torrent throngh this new aperture: rivers mid torrents of fire make their way to the fiot of the mountain; they spread out upen the neighbouring gronnd, carrying aloug or barying all that thoy find in their way, breaking dnwn or overtlirowing every obstacle that opposes their passuge. In the midst of torrents of fire, enomous currents of water and mud sometimes issue from volcanoes, and deluges falling from the atmosphere increase the ravages, lay waste fields which lavas had spmred, and carry desolntion into places which had already thought themselves happy in laving esenped the seourges of the cruption, Mephitic gases and moxious exlalations sometimes arise, particularly in low situmtions; they destroy unimals and blast vegetation, and thus complete the seene of misery und desolation.

After the cemission of the lavas the earth seems freed of the evil which agitated it, the earthguakes cease, the explowions and cjections diminish for some time, and the volenno enjoys a moment of rest: but presently a new acceession takes phace, reprolucing in a still more terrible manner the same phanomena; and this state of things continues during a variable period of time. At length the crisis ceases, and the volluno tinally resumes its original trampuillity.

ILaving prenised this general aceount of voleanic action, we shall next treat of the sulstanses ejected or projected into the atmosphere by volcanoes, and the lavas which they pour out.

a. Ejected Matters.

These are, 1. Smoke. 2. Asbes. 3. Sands. 4. Scorius. 5. Volcanic bombs. 6. Unal. tered Masses?
(1.) Smoke. 'The onormous columns of smoke which are seen issuing from the crater, sometimes with extraordinary rapidity, are chiefly composed of aqucons vapour. This vapour is gencrally charged with gascous sulistances, and particularly with hydrogen gas, sometimes also with carbonic acid. Sulphurons acid and muriatic acid ure also given out. The smoke is gray or white; sometimes also brownish black, or fuliginous, and then the smell is not unlike that of asphaltum, or mincral pitel. It often contains a great quantity of volcanic aslices.
(2.) Ashes. These ashes, which nppear to be nothing else than the substances of the lnva reduced to a stute of mimato mechanical division, are formed of flocculent and extremely minute particles of a gray colour, and forming a paste with water. They are always mixed with a greater or less gunatity of sund, which gives them the blackish colour which they sometimes cxhibit. The torrents of gas and vapour which issue from the craters carry these ashes along with them, bearing them into the ntmosphere, where they form vast clouds, sometimes so dense as to cover the surrounding country with darkness. During the cruption of Hecla in 1766, clouds of this kind produced such in degrec of darkness that at Ghumba, which is more than fitty leagues distant from the mountain, people could only find their way by groping. Durine the erruption of Vesuvius in 1794, at Caserta, four leagues distant. people conld ouly walk by the light of torelics. On the 1st of May, 1812, a cloud of volemie ashes and sand, coming from a voleano in the ishland of St. Vincent, eosered th whole of Barhadoes, spreading over it so intense a darkness, that at mid-day, in the open air one conld not precive the trees or other objects near him, or even a white handkrechiet placed int the distunce of six inches from the eye. The distance to whiel these wilcanic ashes are carried by the winds is truly astonishing. Barbudoes is more than twenty leagues from St. Vincent's, and Ifecla is fifty leagues from Glaumbn. Procopius relates, that in 472
the aslies of Vesusius were carried as far as Constantimple; that is to say, to a distance of

250 leagues. These showers of ashes produec, in the countrics where they full, earthy heds, often of great thickness, which, on being heaped up and penetrated by water, form some kind of volcanic tuffa.
(3.) Volcanic sands. These are small particles of lavas which have been ejected into the air in the form of drops, and there harden. They are nothing but very small sized veoria, or fragments of ordinary scorie. They are, moreover, mingled with numerous small erystals of augite and felspar, or with fragments of these crystals. The quautity of these sauds which volcanoes eject is immense. They form the greater part of the ejections, and of the mass of many volcanic mountains, of Nitna for exumple, according to M. Dolemicu. The tinest mingle with the ashes, and form part of the elouds alrcady mentioned. Others, accumulating in too great quantity to be sustained upon the acclivities of the mountain, slide down and spread out at its base. In the eruption of Vesuvius of 1822 , a current of sand of this description, still red-hot, wus taken at a distance for a torrent of lava.
(4.) Scoria. The gases which come from the depths of the volcano, passing through the mass of melted lava with great force and velocity, carry off some parts of that viscid matter, and bear them along with them into the atmospherc. They are there further divided, in consequence of the resistance which the air opposes to thein; and, in cooling, they assume the intumesced and slaggy appearance which the scorie of farges so frequently liave.
(5.) Volcanic bombs. When the matter of lavas is projeeted in a soft state, as is most commonly the case, it sometimes on cooling in the air ussumes the form of drops, tears, or elongated spheroids, to which the name of volcanic bombs is given. They abound in the extinct volcanoes of Auvergne.
(6.) Unaltcred ejected masses. Volcanoes sometimes eject stones, many of which bear no marks of common fusion. These, by some, are considered as fragments ol' rocks, which form the walls of internal cavities, and which may have been torn off and projected by some current of elastic fluids; others, again, maintain that they are fragments of rocks, which have been formed by igneous solution and crystallization. Fragments of these dubious masses are found in great numbers on the Monte Somma. There they are of granular limestone, containing mica, and many other mincrals besides.

Projectile pooer of voleannes. Did our space allow of it, it would be interesting to inquire what is the intensity of that force which throws such quantities of matter to so great a lieight. We can only remark, that the greatest velocity in the case of Etna and Vesuvins was found to be equal to that of a cannon-ball at the moment when it issues from a cannon, the velocity being from faur to five hundred yards per second. The gigantic Cotopaxi projected a piece of rock about an llundred cubic yards in magnitude to the distance of three leagues.

b. Lavas.

Eruptions of lavas. When we have an opportunity of seeing the liquid lava in the crater, it resembles the melted matter in our furnaces, and appears ns it were boiling with greater or less violence. Jets of the melted matter are thrown up from the liquid surface, through the agency of elastic fluids. It is by these elastic fluids that the lava is raised upwards in the crater. When the mountain is high, as Teneriffe or \mathbb{E} tna, these fluids are not sufficiently powerful to raise the lava to the summit, or ruther the sides of the mountain are not sufficiently strong to resist the weiglit and force of tho long and heavy column of lava; it therefore presses or melts the walls which surround it, and thus forms an opening, through which it issues with great rapility. When, on the contrary, the mountains are comparatively low, as Vesuvius for example, the lava reaches the month of the crater and flows over its lips, and from thence downwards along the acelivities of the mountain. On reaching the bottom they divide into several branches, according to the nature and slope of the ground over which they flow. The eurrents or strenms of lava vary much in regard to the velocity with which they move. This velocity depends upon the slope of the ground upon which it flows, as well as upon the quantity and viscidity of the lava. At Vesuvius, M. de la Torre saw eurrents pissing over a space of ubout 800 yards in an hour. Sir William Ifamilton observed one which traversed 1800 yards in the same time. The eruption of 1776 presented another, which moved more than 2000 yards in 14 minutes. Buchk observed, during the eruption of 180.7, n torrent flow from the summit to the sea-shore, a distance, in a straight line, ot about 7000 yards. Those we have mentioned, however, are extraordinary velocities; for in general lavas move slowly. Those of Ftna, flowing upon an inclined plane, are considered quiek when they traverse a space of 400 yards in an hour. In flat grounds they sometimes occupy whole days in advancing a few yards.

The slowness with which lavas cool is not less remarkable than that with which they move. If their surface is quickly cooled nn! consolidnted, the case is differnt with the interior; the heat concentrates there, and is retained for whole years. Currents are mentioned whieh were flowing ten years affer emerging from the crater, and lavas were seen smoking in Fitna twenty yours after an cruption.

The heat of liquid lava is mearly that of lifuid trap, as greenstone or basalt. The

Boor II.
GEOGNUSY
particular temperatures are given by Dr. Kennedy, Sir James Hall, and Professor Jameson.
The magnitude of lava currents varies much. The largest current which has ever issued from Vesuvins was about 14,000 yards long; that of the eruption of 1805 was 8000 ; that of 1794 was in length 4200 yards, in breadth from 100 to 400 yards, and in depth from eight to ten yards; that which issued from Etna in 1787 was furtr times larger; and Dolomieu relates that that voleano furnished one more than ten leagues in length. But the largest current known is that which in Iceland, in 1783, covered an extent of twenty leagues in length by four in breadth.
These eurrents, by being superinduced on cach other, and having interposed between them other products of eruptions, as sand, ashes, and scoriz, form a series of inelined beds that give rise to the cone of the mountain. In short, the cone is composed of a series of concentric layers or conts of lava, seorie, \&c.; the outgoings of which are sometimes well seen in natural sections in the mountain.

c. Different Kinds of Eruptions.

Watery and muddy eruptions. In the aecounts of voleanic eruptions, mention is often made of torrents of water and mud vomited forth by voleanoes. Many of these watery and muddy cruptions are external actions, as is the ease with those mentioned as having taken place in Vesuvius, Etna, and Hecla; others are internal, as those of Quito.
(1.) External aqueous and muddy eruptions. These are owing to great rains, which frequently take place by tho condensation of the great volumes of aqueous vapour that rise from the eraters during voleanic aetion. This rain, on mixing with the ashes and eands, forms currents, more or less charged with earthy matters, which deseend on the sides of the mountain, spread themselves at its base, and sometimes to a distanee in the low country. The melting of bodies of snow by the lavas also oceasions great floods of water and mud. Of this a striking instance is related as having taken place on Mount Etna in 1755, where, by the sudden melting of a great body of snow by a stream of liquid lava, a terrible inundation was produced, which devastated the sides of the mountain for eight miles in length, and afterwards covered the lower parts of Atna, together with the plains near the sea, with great deposits of sand, ashes, scorie, and fragments of lava. Similar floods of ashes and sand are mentioned by authors as taking place in Iceland and in America, where the summits reach above the snow line.
(2.) Internal aqueous and mutdy eruptions. These waters also frequently make their way into the mominnin by infiltration. They there collect in particular reservoiss; and at the period of explosion, or when the mountain happens to split in consequenee of some shock, they issue fortl, and cover the neighbouring countrics. During the carthquake which overturned Limn in 1746, four volcanoes opened at Lucanos and in the mountains of Concepcion, and oceasioned a frightful inundation. The mountains of Quito sometimes present the same phenomena: but it is there aceompanied with extraordinary circumstances. The enormous cones of Cotopaxi, Piehincha, Tunguragua, \&e., are but in some measure the summits of the volcanoes to which they belong, and whose acelivities are probably eneased in the great mass of the Andes. No true lavas, within the memory of man, have been vomited forth by these volcanoes; yet Humboldt saw consolidatod lava eurrents on Sanguay, and even on Antisana. It might be said, says Humboldt, that the volcanic agents, which seldom have foree sufficient to raise the column of lava to the summit of Ftna and of the Peak of Teneriffe, would still less be able to raise it in voleanoes of nearly double the height. In Etna and Teneriffe, the lava may force an opening at the lower part of the mountains, and thus burst out; but this could not happen in voleanoes whose sides are strengthened, to a height of nearly 3000 yards, by the whole breadth of the Cordilleras. These voleanoes confine themselves to the emission of ashes, scoria, and pumiee. They also vomit immense quantities of water and mud, but much more frequently by openings which take place on the sides of the cone than by the ernters. These muddy waters form, ns it were, great lakes in the different eavities which these enormous mountains contain. They issue from these cavities, as we have said, when a communication is opened with the exterior. Thus, in 1698, the voleano of Carguarazo, which is in the neighbourhood of Chimborazo, and perhaps forms a part of it, broke down, and covered with mul eighteen square leagues of country. Similar muddy waters are still contained in parts of the same country, which are of voleanic origin, but which no longer present any indication of fire; and they are equally vomited forth during great commotions of the ground. In Peru and Quito it is not by fire and currents of burning matters that the volcanoes commit their ravages, but by the water and enormous streams of mnd. This substance is mud which is at first of a soft consistence, soon hardens, and bears the name of moyn. It presents two curious phenomenn. Sometimes, as in the moya which inundated the country of Pilielo, and which destroyed the village of that name during the carthpuake of 1797, it contains a combustible matter, which renders it blaekish and soiling, and which exists in so large a quantity in it that the inhabitants make use of this moya as a kind of fuel. Freguently the sane muddy waters, issuing from subtermean caverns, earry

Vol. 1 .
19
2 C
with them a great quantity of emall fishes. Theso fishes are a species of pimelodes (P . cyclopum). Nhost of them are not more than four inches long. Their number is sometimes mo great that diseases are occasioned in the commtry by their putrefaction. They ore the same as those which live in the brooks of the country. What, then, has introluced them into these subterranenn lakes? It would appear that there aro some communications between the upper and lower level of these lakes and the surfiace of the ground; but what could have raised them from the level of this surface to the summit of the volcanoes, for they sometimes issue from the crater? It is very difficult to give any explanation of this. From all that has been said above, it does not appear that the mud which issues from these volcanoes comes from the subterranean caverns where the volcanic fires have their focus, and prepare the matter of lava.

Air and mud volcanoes. In some countrics we observe issuing from the ground jets impolled by gases and charged with earth, which, on being deposited in the form of mod, in the neighlsurlood of and chiefly around the apertures which have vomited them, form cones, which represent on a very small scalo voleanic cones, and which are therefore namel air volconoes. One of the nost remarkable of these is that of Macalouba in Sicily. It consists of a hill of dricd mul ahout $\mathbf{1 6 0}$ feet high. Its upper part, which is 2000 feet in circumference, presents a multitude of small cones of which the largest are not above a yard in diamcter. They have a small crater full of soft clay, which is every instant traversed by large bubbles of gas, which burst with an exploling noise, und seatter the clay around. Some of these explosions have been scen throwing jets of mad to the height of $\mathbf{1 6 0}$ feet. In the neighbourliond of Modena there are many of these small mul volcanocs, where they are called salses on account of the saltness of the water they scatter alout. The gas which oceasions the phenomena is hylrogen gas charged with petroleum and earbonic acid. Similar mud voleanoes occur in the Crimea, Java, Trinidaul, and America.

d. Pcriods of Activity of Volcanoes, anl the Theory of their Formation.

Perionls of activity of volcanoes. The periods of activity of volcanocs are but transitory and of short duration. They aro followed by years, and even ages, of rest. Hlumboldt is of opinion that the frequency of eruptions seems to bo in the inverse ratio of the size of the voleano. The smallest of them, Stromboli, is continually throwing up volcanic matter; the eruptions of Vesuvius are less frequent, there having been bit cighteen recorled since 1701; those of Fitna are much rarer; those of the Peak of Tencriffe still more so; and the colossal summits of Cotopaxi and Tunguragua scarcely exlibit one in the course of a hundred years. To periods of activity there sometimes succeed periols of repose. The crater is filled up and hecomes coverel with forests. These burning furnaces, whence torrents of fire have issued, becone the reservoirs of subterranean lakes, whose waters are peopled with fishes, and in elevated situations the sides and summits of the mountains become covered with snow and ice. But most coinmonly the state of rest is not complete; the crater remains open, and there is exhaled from it a greater or less quantity of vapours, which attack the masses that lie in their way. Sometimes they produce different saline and metallic iuerustations. Voleanic districts in which, however, no cruption has taken place since the commencement of our history, and in which the volcanic cones are nearly effaced, still betray by their vapours and exhalations the fire which formerly ravaged them, and which is not yet extinct. Such are the Phlegrean Ficlls, on the coast of Puzzoli, in the kingdom of Naples.

Cause of volcannes. This is an obscure subject. A conjectore, hazarded many years ago, may be stated. There being no decided proof of a centril heat, in the cemmonly received sense, it may be assumed that the matter of lavas is seated decp in the crust of the carth, in spaces of greater or less extent, from whence it is sent up from time to time among the previously cxisting strata, by the agency of elastic fluids.

Seot. IV.-Earthquakes.
On carthquakes, and the chonges they produce on the rarth's surface. Werner distinguishes two kinds of carthquakes. Some, he says, appear to be comnected with n particular voleano, and to have their focus in the same region as it. They are only felt to the distatce of a few leagues around, and their paroxysms are almost always comnected with those of the volcano. Others, which appear t, have their focns at a much greater depth, and whose effects are much greater, are propagated to immense distances with incredible celerity, and are felt almost at the same time at points thonsands of miles tistant from caela other. Somof the latter however approach the former, and are still competed with voleanic phenor. "mo. Thas, during the earthquake which overturned Lima in 1746, nad which was one of the most terrible that has been recorded, four voleanoes opened in one night, and the agitation of the earth craved.
Uninersmlity of earthquakes. If in the more viotent we include the slighter agitations of the carth's surface in particular places, carthquakes may be said to be universal or general, and we raay affirm that no considerable country is entirely cxempted from them. Sandy deserts and fertile regions, primitive, sccendary, and tertiary hills, extensive plains, and even
marsliy districts but little elevated above the level of the sea, afford no protection agninst t_{1}. se destructive phenomena, which are equally prevalent in cold, in temperate, und in tropical climates. 'They are, however, generally considered more frequent nenr to coasts; thus, Syria, the cousts and islands of Asia, America, the Europenn coasts of the Mediterranean, and Ictand, are most subject to them; while the plains of Africa, Asia, and the North of Lurope are least exposed. Viewing the whole earth, and including every slighter agitation, earthquakes uppear to be exceedingly numerous, and it may be maintained that not a week passes in which the earth's surface in some place or other is net nore or less agitated. The great number of concussions observed in civilized countries, and the fact that somo districts are constantly agitated by them, entitle us to draw the conclusion. Their return in the places most subject to them, and in the places where they are less frequent, is not regulated by any precise period of time. Their appearance is not connected with any particulur season of the year or state of the atmosphere, and they take place by day us well as by night.

Phenomena of Earthquakes. The phenomena peculiar to earthquakes are in theinselves sufficiently simple. They consist in tremblings anil oscillations of the earth's surface, called shocks; extending over greater or smaller tructs of country, and frequently following a particular direction. The shocks appear at first chiefly as perpendicular heavings; then as horizontal undulations or oscillations; lastly, in some instances, there is a violent agitation: the motion is more or less rotatory. If to these we add the rending, slipping, rising and sinking of the ground, the violent agitations of the sea, lakes, rivers, and springs; consisting, in springs, in their drying up or bursting forth with great violence; in lakes, rivers, and the ocean, in their falling and rising, and rushing backwards and forwards, owing to the sinking and rising of the land, we obtain an enumeration of the principal phenomena. As the subject is very interesting, we shall view it somewhat in detail, and under the following heads :- 1. Slocks. 2. Extent of earthquakes. 3. Duration of shocks. 4. Magnitude of rents formed, and the phenomena connected with them, 5 . Flevation and subsidence of the land. 6. Agitations in the sea. 7. Notice of particular earthquakes.
(1.) Shocks. The slighter shocks of an earthquake, consisting of perpendicular heavings and horizontal undulations, commonly produce rents in houses, moving light objects in them, as articles of furniture. Persons unacquainted with the phenomenon, or who do not perceive it from the subterrancous noise resembing thunder which accompanies it, feel unsteady while in their beds, but particularly when sitting, and believe themselves seized with a sudden giddiness. The shocks proceed gradually to be more violent, and then they are very easily perceived even by the inexperienced. Then the most substantial buildings are shattered to pieces, and the inhabitants buried beneath their ruins: while buildings of a lighter construction are only rent, and very slender reed huts are least of all exposed to destruction. In some cases the fractoring, or as it were trituration, surpasses description. Hence, fer the plainest reasons, it is most dangerous to remain in houses or inhabited places; but even the fields and mountains themselves afford no perfect security, inasmuch as the fields frequently in some places open into fissures, and ure rent asunder; while mountains are net only rent, but slide down into the valleys, dam up rivers, form lakes, and cause inundations. Althongh the desolation produced by these convulsions exceeds all description, this is much more the case with the rotatory motions; a species of motion, however, the existence of which has been denied by some gcologists. In proof of it, however, it may be mentioned, that during the earthquake of Catania, whose general direction was from S. E. to N. W., many statues were turned round, and a large mass of rock was turned 85° from South to East. But the rotatory motion was more strikingly exemplified in the earthquake at Valparaiso, on the 10th November, 1822, by which many houses were turned round, and three pilhn-trees were found twisted round one another like willows. These rotatory motions of masses of rock are particularly interesting when viewed in connexion with the phenomena of faults or shifts among strata in non-volcanic districts. It is only the slighter earthquakes that pass by with a single shock; in most of them more shocks follow at short intervals, and for the most part the number is proportioned to the violence of the concussion. The first shock is sometimes the most powerfal, but the secend is as often, if not oftener, equally violent. Further, the concussions are also repeated after longer intervals, as the earthquakes in Syria, that sometimes continue for a number of months, with longer or shorter intermissions; but the first catastrophe is generally the most violent and destructive.
(3.) Extent of earthquakes. It is the agitation of the sea that points out the great extent of the tracts of land convulsed hy earthquakes. In this respect, the earthquake at Lisbon, in 175., was the most remarkuble and most violent that ever visited Europe. In consequence of it, by the concussion on the bottom, or momentary rising or upheaving of the submarine land, the sea overflowed the coasts of Swerlen, Enginnd, and Spain, and of the jslands of Antigua, Barbncoes, and Martinique in America. In Barbadoes the tide, which rises only 29 inches, rose 20 feet in the bay of Carlisle, and the water appeared as black as ink, owing probably to bituminous matter thrown up from the bed of the ocean. On the 1st of November, when the concussion was most violent, the water at Guadalonpe retreated twice, and on its return rose in the channel of the island to a height of from 10 to 12 feet.

Similar appearances were witnessed at Martiniquc. \boldsymbol{I} wave of the sea, 00 feet high, overflowed a part of tho city of Cadiz; and the lakes of Switzerland, sueh us Geneva, were observed to be in cominotion six hours after the first shock. It is also remarkable that agitations were noticed in lake Ontario, in October, 1755. During the eurthquake at Lima, 1588, a wave of the sea rose 84 feet high in the harbour of Callio. During the earthquakes in Calabria in 1783, the sea not only overflowed the coast and drowned many people, but was in general so much agitated that the guns on shipboard sprung from the deck to a height of several inches.
(3.) Slipping of Mountains. Besides the common operations of earthquakes already mentioned, others occur that do not immediately succeed the concussions, and therefore happen less frequently. To these belong the sliding down of parts of mountains, as at Dobratch in 1345, and the falling together of two mountains in Jamaica in 1692, by which the bed of a river was dammed up. In the latter place, a part of a mountain slid down and covered many plantations; the city of Port Royal sumk to the depth of eight fathems; and a plain of $\mathbf{1 0 0 0}$ acres fell in, with all the buildings upon it.
(4.) Duration of shocks. Single shocks frequently succeed one another very rapidly, and often after greater or smaller intervals of time; they are occasionally single, frequently very numerous; and in volcanic districts, shocks sometimes happen after a lapse of months or years, are then followed by longer or shorter intervals, and even periods of 10 or 100 years. In regard to this, it is remarkable that since the earthquake which in 1204 shook Antioch, Damascus, and Tripoli, Syria was spared till the latter half of the seventeenth century, although no region of the earth suffers more from these destructive phenomena than that country. It is, in short, difficult to define the duration of a single shock. It is undoubtedly brief in general; and in slighter shocks, witnessed by tranquil spectators and consequently observed with greater attention, it is not longer than a few seconds. In the greater convulsions, for instance at Lima, Caraceas, Calabria, Catania, Zante, Antioch, \&c. the time is reckoned from fifty seconds to one minute and five seconds, or indefinitely from a few minutes to a few seconds. When we consider how exceedingly distracted the attention is when the shock is first perceived, that the duration cannot be measured by means of a watch, but by supposition, and that by such a mode of compatation we are in the habit of reckoning time much longer than it really is, we may with great probability conclude that the daration of a single shock does not go beyond a few seconds, and we may affirm that, at the most, it rarely exceeds balf a minute.
(5.) Magnitude of rents formed by earthquakes. These vary from a few feet to many fathoms in extent. They have either a direction which is nearly straight or more or less winding, or they run in all directions from a centre. During the terrible Calabrian earthquakes of 1783, rents were formed of great dimensions; in the territory of San Fili there was formed a rent half a mile long, two feet and a half broad, and twenty-five feet deep; in the distriet of Plaisano, a rent, of nearly a mile in length, one hundred and five feet broad, and thirty feet deep opened; and in the same district two gulfs arose, one at Cerzulli, three quarters of a mile long, one hundred and fitty feet broad, and about one hundred feet deep; and another, nearly a quarter of a mile long, about thirty feet broad, and two hundred and twenty-five feet deep. Ulloa relates that in the earthquake of 1746 , in Peru, a rent took place, which was two miles and a half long, and four or five feet wide. These rents sometimes close again; thus, in the yenr 1692, in the island of Jamaica, during an earthquake, the ground henved like a boiling sea, and was traversed by numerous rents, two or three hundred of which were often seen at a time opening and closing rapidly again.
(6.) Elevation and subsidence of land during earthquakes. It is evident that, if the land is fractured and then traversed with vast rents by earthquakes, that portion of the land will in some places sink and in others rise, and this not once but several times in the same place. In the year 1772, during an eruption of one of the loftiest mountains in Java, the ground began to sink, and a great part of the voleano, and part of the neighbouring country, estimated to be fifteen miles long and six miles broad, was swallowed up. During the earthquake at Lisbon in 1755, a new quay entirely disappeared; thousands of tho inhabitants had taken shelter on it, to be out of the reach of the tottering and falling buildings, when suddenly the quay sunk down with its thonsands of human beings, and not one of their dead bodies ever floated to the surface. In the year 1692, during an earthquake in Jamaica, a tract of land about a thousand acres in extent sank down in less than a minute. and the sea immediately took its place. On the north side of the island several large tracts with their whole population were swallowed up, and a lake appeared in their place covering above a thousand aeres. Numerous examples of the upraising of the land by earthquakes might be given; we shall enumerate a few of them. On the 19th of November, 1822, 1 most dreadful earthquake visited the coast of Chili; the shock was felt at the same time throughout a space of one thousand two hundred miles from north to south. When the country around Valparaiso was examined on the morning after the shock, it was found that the entire line of coast, for the distance of more than a hundred miles, was raised above its funuitr ievei. The area over which this upraising took place was estimated at one hundred

Boor II.
thousand square miles: the riso upon the coast was from two to four feet; at the distance of a mile inland, it was estimated from five to seven feet. On the 18th of March in the year 1790, at St. Maria di Nisconi, some miles from 'Terranuovn, near the south const of Sieily, a loud subterranean noiso was henrd under the town just mentioned, and the day after earthquakes were felt; then tho ground gradually sunk down for a circunforence of threo Italian miles, during seven shocks, and in one place to a depth of thirty feet; as the subsidence was unequal, reuts were formed, somo of which were so wide that they could not bo leaped over: this gradual sinking continued to tho end of the month. About the middle of this period an opening took place in the subsiding land, about three feet in diameter; through these continued to flow, for three hours, a strenm of nud, which covered a apace sixty feet long and thirty feet broad; the mud was saltish and composed of chaiky marl and a viscid clay, with fragnents of crystalline limestone; it sueit of sulphur and petroleum. On the 16 h June, 1819, at Cutch in Bombay, a violent earthquake took place, during which, independent of other changes, tho eastern and aluost abandoned channol of the Indus was much altered: this estuary was, beforo the earthquake, fordable at Luckput, being only a foot deep when the tide was at ebb, at flood tide never more than six feet; but it was deepened at the fort of Lackput, after tho earthquake, to more than eighteen feet nt lew water, showing that n considerable depression had taken place. The channel of the river Runn was so much sunk that, instead of being dry as before, during that period of the year, it was no longer fordablo except at one place; and it is remarked by Captain Macmurdoch,--and the observation is of high geological import, as connected with the formation of valleys, of river districts, \&c."should the water continue throughout the year, we may perhaps see an inland navigation along the northern shore of Cutch; which, from stone anchors, \&e. still to be seen, and the tradition of the country, I believe to have existed at somo former period." Sindree, a small mud fort and village belonging to the Cutch government, situated where the Rum joins the Indus, was overflowed at the time of the shock. Tho people escaped with difficulty, and the tops of the houses and walls are now alone seen above water. In the year 1790, in the Caracceas, during an earthquake, a portion of granite soil sunk, and left a lake 800 yards in diameter, and from eighty to an hundred feet deep; it was a part of the forest of Aripao which sunk, and the trees remained green for severnl months under water.
(7.) Agitations of the sea. We have already noticed, in a generul way, the agitations observed in the sea during earthquakes; we shall now add some particulars illustrative of these motions. During the Lisbon earthquake of 1755 , the sea rose along the coast of Spain; and at Cadiz it advanced in the form of vast waves sixty feet high. At Lisbon about sixty thousand persons perished. The sea first retired, and laid the bar diry; it then rushed in, rising upivards of fifty feet above its ordinary level. At Kinsale, in Ireland, the sea rushed into the harbour, and invaded the land. At Tangier, in Africa, it rose and fell eighteen times on the coast. At Funchal, in Madeira, it rose fifteen feet above high-water mark; although the tide, which ebbs and ftows there seven feet, was then half ebb. Even ships at sea, a considerable distance from land, felt, in the midst of these convulsive motions, as if harried aeross a ridge of rocks. This took place, to n distance of $\mathbf{1 0 0}$ or $\mathbf{2 7 0}$ nautical miles from the coast, during the earthquake at Lisbon in 1816. During the Lisbon earthquake of 1755, the shock was feit at sea, on the deek of a ship to the west of Lisbon, anil produced nearly the same feeling as on land. At San Lucar, the captain of the Nancy frigate felt his ship so violently agitated that he thought he had struck on the ground; but, on heaving the lead, found he was in deep water. Captain Clark, from Derina, in N. lat. $36^{\circ} 24^{\prime}$, between nine and ten in the morning, had his ship shaken as if she had struck upon a rock, so that the seams of the deek opened. Dr. Shaw relates, that in 1724, being on hoard the Gnzello, an Algerine ship of 50 guns, they felt such violent shocks, one after another, as if the weight of twenty or thirty tons had been let fall from a good height on the ballast. Seloouten, spenking of an earthquake which happened in the Molucens, says, that the mountains were shaken, und ships that were at anchor in thirty or forty fathoms water were jerked ns if they had rua nshore, or come foul of rocks. Le Genil says, "that ships ut sea and at anchor suffer, during earthquakes, such violent agitations that they seem to be falling asunder; their guns break loose, and their masts spring."
(8.) Notices of particular Earthquakes. A fill account of all the principal earthquakes that are known would much exceed our limits; we shall, therefore, select only a few of the more interesting.

No part of Europe is more visited by carthquakes than Italy and the neighbouring islands. The first earthquake particularly worthy of notice was that whieh, in the year 63, destroyed Herculaneum and Pompeii. Sinee that period they have frequently visited Italy and Sicily, but much seldomer from A.D. 63 to tho twelfh century, than from that period till modern times, that is, till the eighteenth and niuctecnth centuries. Of these we shall describe one of the most recent in Calabria, and another of still later date in Sicily.

Earthquake of 1783 . The eartliquake that so much affected Calabria, and destroyed the city of Messma, raged at unequal periods from the 5th of February till the 2Sth of March,
1783. Accorting to Sorcin, its priucipal sent was tho smull town of Oppido in the neighbonrhood of Atrmonte, a show-covered peak of tho Apennines. From this point, says ©ir Willian IIamilton, around to a distanco of twenty-five miles, comprehends the surface of country which suffered most, and where all the towns and villages wero destroyed. If we describe the circle with a radins of seventy-t wo miles, it will include the whole country which was in any way aflected by tho earthquako. The first shock, on the 5th February, in two minutes threw down the greatest part of the houses in all the citices, towns, and villares from the western acclivities of tho Apennines, in Calahria Ultra, to Messina in Sicily, und convulsed tho wholo surfice of the country. Another slock, which took place on the 25th of March, was nearly equally volent. Tho granite chain which extends through Culabria from north to south was but slightly agitated, the principal shocks being propagated with a wave-liko motion throngh the tertiary sands, sand-stones, and clays, from west to east. It was remarked that the violenco of tho shoek was greatest at the line of junction of the granite and tertiary rocke, occasioned probably by the interruption of the undulatory movement of the softer strata by the laarder granito. The granite range also prevented tho passage of the shocks to the countries on the opposite side of the mountainrange. Λ bout 201 towns and villages were destroyed, more than one hundred hills slid down, fell together, dummed up rivers, and tomed lakes; numerous rents, often of vast mapnitude, were formed; many subsidences and also upraisings of the ground took place; and the general features of tho conntry were so much changed that they could scarcely be recognised. Thus, in a very short space of time, the whole country was as much changed as if it had been exposed to common inlluences for many thousand years. The total numsber of human beings that perished was estimated at 100,000 , and it was difficult to find even distant relations to succeed to the property of some families.

Earthquake of Lisbon in 1755. In no part of southern Europe has 80 tremendous as: earthquake oceurred as that which began on the lst of November, 1755. On the morning of that day, at thirty-five minutes after nine, without the least warning, except a noise liky thunder heard under ground, a most dreadful earthquake shook, by short but quick vibrations, the foundations of Lisbon, so that many of the principul edifices fell to the ground in an instant: then, with a scarcely perceptible pause, the nature of the motion changed, now resembling that of a wagon driven violently over rough stones, which laid in ruins almost every house, church, convent, and public building, with an incredible destruction of the people. It contimuel in all about six minutes. At the moment of its beginning, some persons on the Tagus, near a mile from the city, heard their boat make a noiso as if it had run aground, though then in deep water, and saw at the same time houses falling on both sides of the river. Four or five minutes after, the boat made the like noise, caused by another shoek, which brought down more houses. The bed of the Tagus was in many places raised to its surface. Ships were driven from their anchors, and jostled toget 10 . with great violence; and the masters did not know if they were afloat or aground. Thu large quay called Caes de Prada, was overturned, crowded with people, and sunk to an unfathomable depth in the water, not so much as one body afterwards appearing. The bar was seen dry from shore to shore; then suddenly the sea, like a mountain, came rolling in, and about Belem castle the water rose fifty feet almost in an instant; and had it not been for the great bay opposite the city, which received and spread the great flux, the lower part must have been under water. As it was, it came up to the houses, and drove the inlabitants to the hills, About noon, there was another shock, when the walls of scveral houses which were yet standing were seen to open from top to bottom more than a quarter of a yard, but closed again so cxactly as to leave scarce any mark of injury. It is remarked, that on the lst of November, 1756, being the anniversary of tho fatal tragedy of this unhappy city, another shoek gave the inhabitants so terrible an alarm that they were preparing for their flight into the country, but were prevented by several regiments of horse placed all around by the king's orders. Many of the largest mountains in Portugal during the great earthquake were shaken as it were to their foundation, and many of them opened at their summits, split, and rent, and huge masses of them were cast down into the subjacent valleys. The same dreadful visitation was experienced at Oporto. We are told that at about forty minutes past nine in the morning, the sky being serene, was heurd a dreadfil hollow noise like thunder or the rattling of coaches over rugged stones at a distance; and almost at the same instant was felt a severe shocl: of an earthquake, which lasted six or seven minutes, during which every thing shook and rattled. It rent several churches. In the strccts the carth was scen to heave under the people's fect, as if in labour, The river was also amazingly affected; for in the space of a minute or two, it rose and fell five or six fect, and continned to do so for four hours. The river Douro was observed to burst open in some parts, and discharge vast quantities of air; and the agitation was so great in the sea, beyond the bar, that it was imagined the air got vent there also,

On the fatal day of the great carthquake of Lisbon, at Ayamonte, near where the Gundiana falls into the bay of Cadiz, a little before ten o'clock, immediately on a rushing noise being hearl, a terrible earthquake was felt, which during fourteen or fifteen minutes damaged

Buox II.
almost all tho buildings. In little more than half an hour after, the sea and rivir, with all their canals, overllowed their bounls with great violence, laying under water all the coasts of the islanals aljacent to the city and its nelghbourhood, flowing into the streets. The water rose three times, after it had as many times nubsided. One of the swells was at the time of ebb. Tho water eame on in vast black mountains, white with toam at the top, and demolished more than laalf of the town at the bar called De Canala. The eartit was observed to open in several places, and from the apertures flowed vast quautities of water.

At Cadiz, in the same morning, some minutes after nine, the whole town was shaken with a violent earthquake, which lasted about five minutes. The water in the cisterns under ground rolled backwards and forwards. At ten ininutes after eleven, a wave was seen coning from sea, eight miles off, at least sixty feet higher than usial. It dasled against the west part of the city; at last it cume upon the walls, beut in tho breast-work, and carried pieces of eight or ten tons weight forty or fifty yards from the wall. When the wave was gone, some parts that aro deep at low water were loft quite dry, fior tho water returned there with the same violence as it came. On the same eventful morning Gibraltar was agitated by an earthquake. It lasted about two minutes. The guns on the battery were seen to rise, others to sink, the earth having an undulating motion. Most people were seized with giddiness and sickness, and some fell down, others were stupefied, though many that were walking or riding felt no motion, but were sick. The sea rose six feet every fifteen minutes, and fell so low that boats and all the small craf near the shore were left aground, as were numbers of fish. Ships in the bay seemed as if they luad struck on roeks. The flux and reflux lasted till six next morning, having decreased gradually from two in the afternoon.

This earthquake excited much attention, from the incredibly great extent at which slighter contemporary shocks wero experienced. They extended from Greenland and Ieeland to Norway, Sweden, Germany, Britain, Switzerland, France, Syain, Morocco, Salee, Fez Teutan, and even to the West Indies and the lako Ontario in North America.

However dreadful many of the earthquakes of Europe were, they bear no comparison with those which have desolated many parts of Asia. Passing over those which were observed in the islands, on the eastern continent, and in the environs of the Caspian Sea, our attention is particularly drawn towards Syria, on account of the ravages it has frequently experienced.

Gibbon, in the forty-third chapter of his Decline and Fall of the Roman Eupire, gives the following account of the earthquake that took place at Antioch in A. D. 520. May 3t1. "The near approach of a comet may injure or destroy the globe which we inlabit ; but the changes on its surface have been hitherto produced by the action of volcanoes and earthquakes. The nature of the soil may indicate the countries most exposed to these formidable concussions, since they are caused by subterraneous fires, and such fires are kindled by the union and fermentation of iron and sulphur. But their times and effects appear to lie beyond the reach of human curiosity, and the philosopher will discreetly abstain from the preliction of earthquakes, till he has counted the drops of water that silently filtrate on tho inflummable mineral, and measured the caverns which increase by resistance the explosion of the imprisoned air. Without assigning the cause, history will distinguish the periods in which these calamitous events have been rare or frequent, and will observe, that this fever of the earth raged with uncommon violence during the reign of Justinian. Each year is marked by the repetition of earthquakes, of such duration, that Constantinople has been slaken above forty days; of such extent, that the shock has been communicated to the whole surface of the globe, or at least of the Roman empire. An impulsive or vibrutory motion was felt: enormous chasms were opened, huge and heavy bodies were diseharged into the air, the sea alternately advanced and retreated beyond its ordinary bounds, and a mountain was torn from Libanus, and cast into the waves, where it protected, as a mole, the new harbour of Botrys, in Phenicia. The stroke that agitates an ant-hill, may crush the insect myriads in the dust; yet truth must extort a confession, that man has industrionsly laboured for his own destruction. The institution of great cities, which include a nation within the limits of a wall, almost realizes the wish of Caligula, that the Roman people had but one neck. Two hundred and fifty thousand persons are said to have perished in tho earthquake of Antioch, whose domestic multitudes were swelled by the conflux of strangers to the festival of the Ascension. The loss of Berytus was of smaller account, but of much greater value. That city, on the coast of Phenicia, was illustrated by the study of the civil law, which opened the surest road to wealth and dignity: the schools of Berytus were filled with the rising spirits of the age, and many a youth was lost in the eartlquake who might have lived to be the scourge or the guardian of his country. In these disasters, the arclitect lecomes the enemy of mankind. The hut of a savage, or the tent of an Arab, may be thrown down without injury to the inhabitants; and the Peruvians had reason to deride the folly of their Spanish conquerors, who with so much cost and labour erected their own sepulchres. The rich marbles of a patrician are dashed on his own head; a whole people is buricd under the ruins of public and private edifices, and the conflagration is kinilled and propagated by the
innumerable fires which are necesmary for the subsistence and manufactures of n great eity. Instead of the mutual aympathy which might comfort and awnint the distremeed, they dreadfilly experience the vices und pansions which are released from the fear of punishment: the tottering houses are pillaged by intrepill avarice; revenge embraces the monent, und selects the viction; nal the earth otten swallows the nasasmin or the ravisher in the consummation of their crimes. Superstition involves the prement danger with invisible terrora; and if the image of denth may sometimen be sulmervient to the virtue or repentance of individuale, an athighted people is more furcibly moved to expect the end of the world, or te deprecute with servile homage the wrath of an avenging Deity." In 1100 single shacks coutinued for four monthr; unil in 1202 another earthquake dentroyed many citien, filled ul tho villoys of Le:bunan, nuld shattered the bnaltic dintricts of llauran, so that, nccording to the expression thun current, it was no longer possible to say, Here stood thin or that cily. A ireadful earthquake foxk place in 1750); the shocks continued for six months. At the tirst shock the cities of Autioch, Balbec, Acre, Tripoli, \&e, wero laid in ruins, and $\mathbf{3 0 , 0 0 0}$ perwons killed. The more recent earthpuake, of 1822 , laated still longer, and committed dreadthl ravages. On tho 13ith of August, in one horrible night, Aleppo, Antioch, Biha, Gesser, indeed every single village and cottage within the pashmlic of Aleppo, was, within ten or twelve aeconds, completely destroyed, and converted into a heap of rubbish: no less than $\mathbf{2 0 , 0 0 0}$ people lost their lives, anul many more were mutilated; a very great number, considering the low population of these places.
Africa is very little known, and we nre thorefore ignorant of any earthquakea in ita interior, where they may oceur as frequently an in other places. 'Ihe southern extremity of this continent is rarely visited by elight slocks, but they are more numerous in the north, where, in March, 182\%, they dide considerable damage to Algiers and Blida. On the contrary, America, particularly in the southern parts, is inferior to no part of the world for tho magnitude, number, and duration of its earthyuakes. We alall now mention a few of the greateat recorded by naturnlists. To theso belong the earthyuake of 17.10, which, within five minutes, destroyed the greater part of Lima; Callao was inundated; and of $4(000$ persons, 200 only escaped. The destruction of New Andalusia, on the 21st of Octover, 1760, was erpually terrible. The shocks extended over Cumana, Caraccas, Maracaibo, the shores of the Cusinar, the Meta, the Orinoco, and Ventures; and the granite districts in the mission of Encaranada were also sinken ly their violenco. An earthquake, in 1707, destroyed a great purt of Peru. It proceeded tion the volcnno Tunguragua, continued with slight shocks during tho whole of February und March, and returned on the 15th of April, with increased violence. Nany places wero tilled up by the summits of mountains tunbling down; muddy water flowed from the volcano; and, spreading over the country, became afterwards an indurated crust of clay. The entire number of persons who perished on this occasion was 16,000. No earthquake conll well be inore destructive to any place than that which destroyed the Caraccas in 1812, and ol' which Humboldt has given an excellent description. The Caraccas was thought securo on account of its primitive mountains, although in 1641, 1703, and 1778, violent earthyuakes were experienced, and a slighter shock in 1802. Humboldt, from actual inspection, hul no doubt but this country, from being in a volcanic region, must be liable to such disasters. In December, 1811, various shocks were felt; on the 12th of March, 1812, the city of Caraccas was destroyed. The sky was clear, and in Venezuela, there had not been a drop of rain for five months: there was no forewarning prognostic, for the first shock at seven minutes past four in the afternoon camo on unexpectedly, und set the bells a ringing. This was immedintely succeeded by a socond slock, which caused a waving and rolling motion in the rarth, then a subterraneous rumbling noise was heard, and there was a third shock, in which the motion was perpendicular, and sometimes rolling horizontally, with a violence which nothing could withstand. The people, in place of flying directly to the open fieds, flocked in crowis to the churches, where arrangements hail been made for a procession; and the multitudes assembled there were buried beneath the ruins. Two churches 150) feet high, and supported by columns of from twelve to fitteen feet in diameter, fell in a mass of rubbish, and were for the most part ground into dust. The Caserne el Quartel vauished almost eatirely, and a regiment of coldiers stationed there, and about to join the procession, disappeared at the same time along with it; a few individuals only escaped; ninetenthy of the city were completely destroyed, und most of the houses that remained were rendered uninhabitable; the number of peoplo killed was reckoned at nearly $\mathbf{1 0 , 0 0 0 1}$, without incluling these who perished afterwards from bruises and want of sustenunce. The clouds of dust laving fatlen, were succeeded ly a serene night, which formed a frightful contrast with the dostruction oo the earth, and with the dead bodies lying seattered anong the ruins. The duration of each particulur shock was reckoned by some 50 seconds, by others 1 minute 12 seconds. These shoeks extended over the provinces of Venezueln, Varinas, Maracuibo and into the mountains in the interior. La Guayra, Mayguatin, La Vega, St. Felipe and Merida, were almost entirely destroyed. In La Guayrn and St. Felipe the number of persons killed was about 5000. On the 5th of April another violent earthquake took place, during

Which onormons fth gmestes wero detached from the mountaina, It was said that the monntain Silla lowt from 3) to to $3(6)$ foet of ita height ly sinking.

Cause of Earthguakes.-The original hypothenim, which attributed volcanic eruptions and carthquaken to the operation of contra! fire, was at first attacked chiefly by Stukely, who, from the phenomema of two earthquakes obwerved at London on the 8th February, nad 8th of Murch, 1740, endeavoured to provo that they wore caused by a highly overcharged atato of the clectric floid. Andrew Bena aflirnm, that they aro sulden oxplosionm, caused by gas in tho interiur of the earth, which he believen would be found there inclosed ir. reservoirs of wulphur and bitumen. Beccarin, an in known, endeavoured to attribute to electricity every thiug that had any probable affinity for it; henco ho believed that an aecummlation of it in the crust of the earth produced concumsions with tho clouds, and thon exinibited the appearance of earthquakon. Humboldt found it to be a prevailing epinion in America that earthquakes are electrical phenomena; but obeerves, that this nuuat bo excumed by reason of the partiality entertained for Franklin. The invention of the Voltaic pile, and the oheervation of ita ningular operation, induced many philomophere, at least those naturaliste who were perfectly intimate with the nature of this remarkablo apparatus, to coneider the whole earth as a column or pile of this deacription, or that it contains an apparatus of this doscription in its intorior. These fanciea, however, lead to nothing satisfactory. Where then can we seek for tho causo or csuses of earthquakes? The uubject is entirely hypothetical, as wo have no means of reaching the seat of these remarkable phenomena. The theory of the earthquake in the name as that of the volcano. The agitations may lo produced by the motions of the liquid and gnsoous matter at a great depth in the crust of the eurth endeavouring to escape.

Skot. V.-Account of the different Structures nbservable in the Cruat of the Eorth.
Beforo the time of Werner, littlo had been accompliwl ed in regard to tho detormination of the structurew that occur in the crust of the earth. Some maintained that evorywhore irregularity prevailed, and that it was in vain to look for order or regularity in the coarse rocky masses of which mountains, hills, and plains are composed. Werner, however, on geieral grounds, assumed that if determinato structures and arrangements occurred in the vegetable and animal kingdoms, tho same must be the case in the mineral kingdom, not only in sinuplo minerals, but also in the great and moro generally distributed masses of which the crust of the earth is principally composed. Ilis investigations fully confirmed tho truth of this opinion, for minerals he found as well characterised as plante and animals and the following details will show that there exists among mountain rocks, or those greu mases of which the crust of the earth is composed, a beautiful series of structure, from that of hand-specimens to the general arrangements of the great rock formations. We shall consider these structures in the following order, beginning with the smallest and terminating with tho greatest.

Sunsert. -Different Structures.

1. Structure of mountain rocks in hand-specimens.
2. Structure of strata and beds.
3. Structure of formations.
4. Arrangements of formations in regard to each other.
5. Structure of veins.
(1.) Structure of mountain rocks. The kinds of structure occurring in mountain rocks aro the following:-1. Compact. 2. Slaty. 3. Granular. 4. Porphyritic. 5. Amygdnloidal. 6. Conglomernted. In the compact structure, the mass is uniform, without slaty or any other arrangement, and when broken exhibits various fractures ns earthy, splintery, conchoidal, nven, \&e. Common compact quartz is an example of this kind of strueture. In the slaty structure the rocks split rendily into thin layers or slates, as in common roofing slate. Roeks having the granular structure are composel of granular concretions or imperfect erystals, as in primitive limestone or statuary marble. In the porphyritic structurt there is a basis or ground with imbedded erystals, generally of folspar or quartz, or both. as in porphyry: in the maygdaloidal structure there is also a basis or ground ; but here the lase does not contain imbedded crystals, but amygdaloidal cavities, which nre either nenrly enpty, bulf filled, or completely filled with minerals. The roek named amypdaloid exhibits this kind of structure. Lastly, the conglomerated structure is that which we observo in the rock named conglomerate, which is eomposed of fragments imbedded in a basis or ground.
(2.) Structure of strata and bels. When a mountain or hill is eemposed of tabular masses of the same kind of rock, as of sandstone, that extend throughout the hill, it is said to be stratified, and the individual tabular masses are named strata, as in fig. 58 . If among theso strata there occur tabular masses of a different rock, the masses are named beds: a. fig

Vol. I.
2 D
58. represents a bed of limestone in the cliff of stratified sandstone. These strata and beds

vary in position; sometimes they are flat or horizontal, or they are more or less inclined untis they become vertical, or are set on their elges. They also vary in the point of the compass towards which they are inclined, or dip; but it is worthy of remark that the dip is always at riglt angles to the range or direction of the strata; and that if the dip is given, we know the direction: but a knowledge of the direction will not give us the dip. Their direction also varies. The position of strata is determined by a well-known instrument, the clinometer, which is a compass with an attached quadrant. When we examine the structure of individual strata and beds, several varieties may be discovered: thus, in some beds, the rock is arranged in columns, as in basalt; in others, the arrangement is in tables, as in porphyry; or in balls, as in granite and greenstone.
(3.) Structure of formations. The idea of formations was first clearly brought out by Werner. To his views on this most important subject we can trace the new character of geology, and the great progress made in geognosy within these last thirty years. But this is not the place for discussing the subject. All those rocks which appear to have been formed at the same time, and in the same or similar circumstances, and which agree in position, structure, mass, petrifactions, imbedded minerals, \&c. are said to belong to the same formation. These formations are divided into simple and compound. Simple formations are those principally composed of one rock; compound formations, of more than one species of rock: granite is an example of a simple formation; the first secondary sandstone, or the great coal formation, of a compound formation, because it centains several rocks; viz. sandstone, slate, limestone, coal, and ironstone.
(4.) Arrangement of formations in regard to each other. When two formations occur together, and the ene rests upon the other, the subjacent formation is named the fundamental rock, and that which covers or lies upon the other, the superincumbent. The line where the two rocks or formations meet is called the line of separation or line of junction. In fig. 59. a is the fundamental rock, and b the superimposed rook, and $c \mathrm{c}$ the line of junction.

When the strata of the superimposed formation is parallel with the strata of the fundamental or subjacent rock, the stratification is said to be conformable, as fig. 60 where a formation n,

we shall say of limestone, rests on b, of sandstone. If the strata of the superimposed formation are disposed ss at c, fig. 61., they sre said to be unconformable. Lastly, if the

strata lie over the ends of the strata of the fundamental rock, as at l, in .fg. 59., they are said
to the
formerl
The re
cording
represe
they ar

(5.)

the moy that cut
whin $d y$ not muc same m to many inches t fissures matters

Boor 11.
to be unconformable and overlying. If the strata rest on the fundamental rock. as represented

in fig. 62., they are said to be saddle-shaped; if as represented in fig. 63., they are said to

be mantle-shaped; if disposed in a bason-shaped hollow, as in fig. 64., they are said to be

bason-shaped; if in a lengthened or trough-like hollow, as in fig. 65., thev are said to be

trough-shaped. In a mountain or natural section of Neptunian or aquatic rocks, as himestone, sandstone, slate, \&c., the undermost or lowest-lying strata are considered to be the uldest: therefore, on ascending a mountain, as that in fig. 66., from a to b, we pass from the newer

to the older rocks; but if from c to b, from the older to the newer. Formations were formerly more continuous than at present, portions only remaining of extensive deposits. The remaining portions occupying different situations have received particular names, according to the situations in which they occur. When in patches on the summits of hills, as represented at $a \operatorname{a} a$ in fig. 67., they are called mountain-caps. When in hollows, as at $b b$, they are named upfillings.

(5.) Structure of Veins. These are tabular masses that intersect the strata and beds of the mountain or tract in which they occur. The tabular masses of trap or whinstone veins that cut across the strata of Great Britain are there popularly known under the name of whin dykes. Veins, like strata, vary in position, being sometimes vertical, at other times not much inclined to the horizon; their direction, inclination, and dip are determined in the same manner as in strata. These intersecting masses vary in breadth from an inch or less to many fathoms; in length, from a few inches to several miles; and in depth, from a few inches to an unknowu and vast depth. Veins appear to have been originally open rents or fissures traversing the strata, which have been filled by an after-process with the mineral matters they now contain. This being the case, we naturally expect to find the strata on
the walls of veins exhibiting the same phenomena as occur in the walls of rents. When rents cut across strata, they sometimes, as in fig. 68., at a, b, produce no derungement;

while, in other cases, the strata on the opposite sides of the rent do not correspond, owing to the atrata on one side sinking down, as represented in fig. 69. : this derangement is called a shift, slip, or fault.

Such, then, are the different structures observable in the great masses of which the crust of the earth is composed. We next proceed to give-
Sect. VI.-An Account of the different Classes and Species of Rocks of which the Crust of the Earth is composed.
It was at one time a general opinion that the formations of which the crust of the earth is composed were destitute of all regularity in distribution and in individual characters. Lehman, a German miner, was early convinced of a certain degree of order in their arrangement; and in his well-known work, first stated their division into Primitive and Secondary; under the first including those destitute of fossil organic remaina, while under the other he arranged all those containing petrifactions or fossil organic remains. The first, he said, were generally in highly inclined strata, the other in horizontal strata. Werner first distinctly characterised these two classes of rocks, and added to them other two classes, viz. the Transition and Local, or what are now called the Tertiary. The whole rocke, from the oldest to the newest, were arranged by Werner under the following names and in the following order:-1. Primitive. 2. Transition. 3. Secondary. 4. Local, the Tertiary of the presen ${ }^{+}$geology. 5. Alluvial. 6. Volcanic. This arrangement, more or less modified, still remains, being adopted by the principal geologists in Europe and America.

Primitive rocks. The rocks of this class lie under those of the succeeding classes. Countries in which they predominate are in general more rugged and lofty than those composed of rocks of the other classes; further, their cliffs are more extensive, their valleys narrower and deeper, and more uneven, than those in secondary countries. The strata of primitive mountains are very frequently highly inclined; a circumstance which contributes in an especial manner to the increase of the ruggedness and inequalities of the surface of primitive regions. The primitive strata in many countries maintain a wonderful uniformity of direction. Thus, in Scotland the general direction of the strata of primitive mountains is from N. E. to S. W.; and the same is nearly the case in the vast alpine regions of Norway. and in many of the lofty and widely extended primitive lands of other parts of Europe. The rocks of which primitive mountains and plains are composed are throughout of a crystalline nature, and present such characters as intimate their formation from a state of solution. These characters are the intermixture of the concretions of which they are composed at their line of junction, their mutual penetration of each other, their considerable lustre, purc colours, and translucency. Thus, in granite the concretions of felspar, quartz, and mica are joined together without any basis or ground; and at their line of juncture are either closely attached together, or are intermixed; and frequently branches of the one concretion shoot into the other, thus occasioning a mutual interlacement, as is observed in bodies that have been formed simultaneously and from a state of solution. These characters show that the concretions of granite (and the same applies to the concretions of limestone, gneiss, mica slate, and other rocks of the primitive class, are of a crystalline nature, and have been formed at the same time. The strath are so arranged as to show that they are crystalline formations. Primitive rocks contain no organic remains, hence are inferred to have been formed before animala and vegetalles were called into existence. Primitive rocke abound
very much in metalliferous minerals, and hitherto no metal has been met with which does uot occur, either exclusively or occasionally, in this class of rocks. Tin, wolfram, lead, copper, iron, cobalt, zinc, inanganese, arsenic, and mercury, occur either disseminated, in beda and veins, or imbedded in various rocks of this class, and many primitive districts are characterised by the metalliferoue deposits they contain.
'The most beautiful of all productions of the mineral kingdom, the gems, occur in great variety in primitive rocks. Nothing can be more beautiful than the drussy cavities met with in primitive mountains, whose walls are lined with purc and variously tinted and crystallized topaz, beryl, rock cryatal, fluor spar, and calcareous spar; the gneiss, granite, and mica slate, with their imbedded crystals and grains of sapphire, chrysolite, and garnet; and the veins in granite, clay slate, and other primitive rocks, with their emeralds, axinites, and spinel rubies, afford to the mineralogist highly interesting combinationa.

Species of primitive rocks.-The following are the species of rocks that form the primitive parts of the crust of the earth:-1. Granite. 2. Syenite. 3. Protogine. 4. Trap. 5. Serpentine. 6. Porphyry. 7. Gneisa. 8. Mica slate. 9. Clay slate. 10. Quartz rock. 11. Limestone.

Of these rocks one set, consisting of certain granites, with trap, gneiss, mica slate, clay slate, quartz rock, and linestone, are said to be of Neptunian origin, that is, have been deposited from a liquid, probably water; the other set, including certain granites, with ayenite, porphyry, protogine, serpentine and diallage rock, are named Plutonic or igneous, it being probable that they have been formed from a state of igneous solution. We shall describe first the Neptunian, and next the Plutonian primitive rocka.

Subsect. 1.-Neptunian Primitive Rocks.
(1.) Granite ia a granular compound of felspar, quartz, and mica. It occurs in beds and in imbedded masses, and also in included veins in gnciss, mica slate, and clay slate. From its intimate connexion with these rocks, it is inforred to be a Neptunian deposit.
(2.) Trap. Under this name we include all those granular primitive rocks in which hornblende is the sole or predominant constituent part. These rocks sometimes appear arranged like the steps of a stair; hence the name trap, from the Swedish word trappa, a stair.
(3.) Gneiss ia a granular slaty compound of felapar, mica, and quartz.
(4.) Mica slate is a slaty compound of mica and quartz. Talc slate and micaceous talc rocks may be arranged under this head.
(5.) Clay slate is a slaty rock, frequently entirely composed of minute scales of mica.
(6.) Quartz rock. This rock is almost entirely composed of quartz, either in granular concretions or in the compact form; and grains of felspar and scales of mica not unfrequently occur in it. When the felspar increases in quantity, the compound at length passes into granite. When the scales of mica increase and the felspar disappears, mica slate is formed.
(7.) Limestone. This rock has generally a white or gray colour, is composed of shining granular concretions, and is more or less translucent. It frequently contains scales of mica and grains of quartz, seldom or never grains and crystals of felspar.

Subseot. 2.-Plutonian or Ignigenous Primitive Rocks.

(1.) Granite. The structure and composition of this granite is in general the same as that of the Neptunian kind already noticed. It differs from it in occurring in vast and often widely extended masses, which form the central parts of mountain groups, and appear to have come from below after the deposition of the Neptunian rocks that rest upon them. The highly inclined position of the primitive strata is considered to have been occasioned by this granite, with its syenites and porphyries.
(2.) Syenite is a compound of felspar, hornblende, and quartz: in ahort, it is a granite in which the mica is replaced by hornhlende. Some of the primitive traps belong to this head.
(3.) Porphyry is a rock with a felspar basis, including grains and crystals of felspar and quartz, and sometimes scales of mica. This porphyry is a mere modification of granite,
(4.) Protogine is a granular compound of felspar, quartz, and chlorite. It differs from granite in the mica being replaced by chlorite.
(5.) Serpentine is a simple green-coloured rock, with a compact fracture, feeble translucency on the edges, which yields readily to the knife, and feels greasy.
(6.) Diallage rock is a compound of felspar and diallage. It belongs probably to the primitive trap series.

Sect. VII,-Transition Rocks.

The rocks of this class, in the regular succession, rest immediately upon those of the primitive class. Most of the rocks are distinetly stratified, und the strata are frequently vertical, and, like those of the primitive clase, exhibit the same general direction throughout areat tracts of country. Some of the deposits are of a chemical, othors of a mechanical nature: timestonc is an example of n chemical, greywacke of a mechanical deposit. They Vol. I.

20
are distinguished from primitive rocks by the presence of fossil organic remains, and the positive characters are drawn from the occurrence of certain fissil crustaccons animals, shells, and corals. The extensive deposits of limestone, purticularly of the variegated kinds so highly prized for ornamental purposes, which they contain; tho tino granites nad porphyries which they affiord; and the ores of lead and copper distributed among them, are proofs of their importance in the arts. In this class there are also Neptunian and Plutonian rocks. The Nepiunian are the following, viz. 1. Groywacke. 2. Trunsition clay slate. 3. Gneiss nud mica slate. 4. Quartz rock. 5. Red sandstone. 6. Limestone. 7. Glance coal. The Platonian are, 1. Granito. 2. Syenite. 3. Porphyry. 4. Trap. 5. Serpentine.

Sunaect. 1.-Neptunian Transition Rocks.

(1.) Greywacke is a conglomerated rock, having a basis of clay slate, in which fragments of various primitive rocks, as clay slate, quartz rock, \&c. occur imbedded. When the imbedded fragments become very small, and the quantity of the basis increases, the rock uequires a slaty fracture, and is naned greywacke slate.
(2.) 'Transition clay slate. This is the rock known under the name roofing slate. It sometiunes contnins trilobites.
(3.) Gneiss and mica slate. These have the same general aspect as the varietics met with in primitive regions.
(4.) Quarlz rock. This rock very much resembles the kinds met with in primitive inountains.
(5.) Limestone. It frequently occurs with less lustre and translucency than primitive limestones, and otten exhibits in the same bed various tints and shades of beautiful colours. It is frequently traversed by veins of calcareous spar. Some varicties are conglomerated, forming the brecciated marble of artists; and others contain fossil shells and corals, and also the characteristic trilobite.
(6.) Glance coal, or Anthracite. Beds of this conl, known by its metallic lustre, and burning without flame or smoke, are met with in transition districts.

Surseot. 2.-Plutonian Transition Rocks.
(1.) Granite. This rock docs not differ materially from that of the primitive peried. It is principally distinguished by its being intermingled with greywacke and other transition roeks.
(3.) Syenite. This rock, which has the same mineralogical eharacters with the primitive varieties, very generally contains crystals of sphene.
(3.) Porphyry. This porphyry has sometimes a basis of felspar, sometimes of clay stone, und as usual contains imbedded grains and crystals of felspar. It occurs either alone, or associated with syenite and trap, forming mountains, and even ranges of mountains.
(4.) Trap. In this as in the primitive trap, the sole or predominating mineral is horn blende. It passes into syenitc.
(5.) Serpentine. This rock does not differ materially from the primitive rock of the same name: geognostically it is distinguished from it by its alternating with, and sometimes traversing in the form of veins, greywacke and other characteristic transition rocks.

Sect. VIII.-Secondary Rocks.
This very interesting class of rocks rests, in the regular succession, immediately upon those of the transition ciass. Much of the mineral matter of which they are composed uppears to have been deposited from a state of mechanical suspension, a circumstance which may be considered as distinguishing them, in some measure, from the transition class, where chemical deposits prevail over those of a meehanical nature. They abound in fossil organic remains, nnd it is here that for the first time we meet with remains of vertebrated animals, as lacerta and other species of the same general description. Coal, which occurs but in small quantity in transition deposits, is profusely distributel amung secondary formations. Of ores, by far the most abundant, and at the same time most important in an economical view, are those of iron and lead: of these the iron (it is the common clay ironstone, the aluminous carbonate of iron,) is the most abundant and mist widely distributed. In this, as in the preceding class, there are Neptunian and Plutonian rocks. The Neptunian rocks are the following:-1. Sandstone. 2. Slate. 3. Limestone. 4. Gypsum. 5. Coal. The Plutonian are, 1. Granite. 2. Porphyry. 3. Trap.

Subsect. 1.-Neptunian Secondary Rocks.

In the primitive and transition classes geologists have not hitherto observed any very determinate arrangement among the Neptunian deposits; whereas in the present class a determinate order has heen discovered thronghout the whole series. In our sketch we shall follow the order of succession, beginning with the oldest, and finishing our account with a description of the newest formation. The whole Neptunian series is divided into formations of sandstone nad formations of limestone; the other menbers of the series, as the slate, gypsum, conl, and ironstone, occurring subordinate to these.

Firsi secondary formution ; or the old red sundstone. This formation is a sandstone of a

Boox II.
GEOGNOSY.
231
rod colour, and, being the oldest of the sandstones, is named the old red sandstone. It is composed of particles of yturt\%, with occasional scales of mica and fragments of felspar, held together by an iron-shot busis or gromml. Sometimes it is associated with a conglome. rate amde up of fragments of transition nud primitive rocks.

Sccond secondary formution, or monutain limestone, or metallifcrous limestone, or carboniferous limestone of geologists. This deposit rests, generally conformably, sumetimes also uncouformably, on the old red sandstonc. It is distinctly stratified, and the strata are frequently more or less inclined. Its colours are gonerally gray; the fractore is compact. Sometimes it lias a graunlar foliated structure, particularly where it occurs in contact with trap rocks. Somo varieties, viz. thoso named luculite, have a blnck colour. It contains fossil organic remains of animals of various descriptions. Of these the most. characteristic are genera of the trilobite tribe.

Third secondary formation; or the sccond secondary sandstone, nr the great coal formation. This very important deposit is a compound formation, therefore consists of different rocks. Of these rocks the predoninating one is sandstone. The rocks of the formation are the following:-I. Sandstone. 2. Slate. 3. Clay. 4. Limestonc. 5. Conl. 6. Ironstone. 1. Sandstone. The general colours ure swhite and gray; sometimes also it is reddish, and then it much resembles tho old red sandstone. Some varieties are entirely composed of particles of quartz, held together by a very inconsiderable basis or ground; others contain, besides quartz, also felspar and mica; these are by some geologists named arkose. It frequently contains coaly matter, and casts and impressions of plants,-2. Slate. Of the slate there ure two kinds, named slate clay and bituminous shale, both of which are mere molifications of clay with the slaty structure. These also contain fossil organic remains.3. Clay. This is compact clay without the slaty structure, and from its use in the arts is named fire clay.-4, Limestone. "his limestone very much resembles the mountain limestone which lies below the coal; but hitherto no trilohites have been found in it. It alternates in beds with the other rocks of this formation. Some geologists refer it to the mountain limostone, and consequently that limestone to the coul formation; an opinion which may be correct.-5. Coal. The coal in this formation occurs in beds that alternate with the slates, sandstone, and limestones. The coal is bitmminotis or black coal.-6. Ironstone. This ironstone is the dommon gray clay ironstone of mineralogists. It is an aluminous carbonate of iron, and is the species of ironstone which affords most of the iron manmactured in Great Britain. It occurs in heds or imbedded, nnd most frequently in the slate of this formation.

Forth secoudary formation; the second secondary limestone; the magnesian and alpine limestone of authors. This formation, in the regular succession, rests immediately apon the coal formation. It contains several varjeties of limestone. Oue of these, which frequently occupies the lowest part of the deposit, has a brownish black colour, a thick slaty fracture, and emits an unimal bituminous smell, and is named bituminous marl slate. Another variety has a yellowish gray, or even at times un oclire yellow colour, with a compact or small granular foliated st ructure, with a low degree of lustre, and is named magnesian limestonc. Another variety has a brownish or yellowish colour, is sometimes compact, sometimes granular or cavernous, impregnated with sparry iron, forms the upper part of the deposit, and is called calcaire ferrifere. When this variety becomes charged witl, bitumen and cavernous, it is named by German miners rauchwacke. It abounds in the fossil shell named Productus aculeatus. "Ihis formation does not abound in fossil organic remains. No truc ferns, lut fossil fuci and zostera, occur in it. Remains of the monitor, and it is said also of the crocodilc, have leen met with in it. Fishes of the genus cluetodon and of other tribes, and numerous remains of shells and corals, occur more or less frequently in different varicties of the limestone. The trilobite tribe, so abundant in the transition periol, and also in the first secondary limestone, oceur here along with orthoceratites. It is the species nanned trilobites bituminous. Entrochi and pentacrivi of great size also oceur in it. The shells are not distributed throughont the whole mass of the beds, but rather occur in particular parts. The following are the shells:-
Orthoceratites, very rare.
Ammonites giblosus.
Terelratuda paradora.
Terefratula elongata.
Spirifer alatus.

Encrinus racemosus.
Prodtectus rugosus.
Mytilus rostratus.
Tercbratula ovata, lacionosa, trigonella. spirifer alatus.
Fifth secondary formution; the third secondary sandstone, or varicgated sandstone, or new red sundstone. In this formution, besides the sindstone, there are, when the deposit is complete, also beds of unarl, with gypsum nul rock-salt. The inferior part of this formation is a red coloured sandstone conglomerate, which rarely contains subordinate beds of dolomite, but no fossil organic remains. Above this reposes what may be called the middle part of the deposit, which is the variegated sandstone, so named because it sometimes exhibits different colours, prineipally red, with yellow and gray blotehes. It is composed uf fine grains of quartz, with a little mica, and sonetimes felspar, held together by a base
of ferruginous clay. It contans lut few urganic remains, prineipully of vegetuhbes. The upper part of tho deposit is generally compsisel of beds of a clayey marl, nlwnys moro or less slity, and generally altermating in the lower part with leds of the sandstone. Its colours are red, rray, und yellow; sometimes it is varieguted in the same mamer us the sundstone with which it alternutes. It eontains sulorilinute heds of rypusum, und roch-salt, and sometines aleo beds of dolomite. It contains littoral shells and bones of samrian animals.
Nixth secondary formation; the shell limestone, or muschel halhstein. This meresting reposit, in tho regular succession, resta inmediately on the variegated or now reil sumdstone tiormation. 'I'lis limestone is of a gray, yelow, or redlish tint of colour.-It is eompact, but the fracture surfaces exhibit numerous shining ficets from aninual fiwsil remains. Beefs of marl, which are sometimes oolitic, ulternute with it. It otten abomals in well preserved tissil shells; lence tho namo shell limestowe. It sometimes contains dypsum nus rock-salt. It contuins hesides numerons species of lissil shells, often very well preserved, hones of grent sauriun unimals, and impressions of thei and lerns. Corals and echinites are rare, but entruchites nro sometimes so abomilunt that in sume parts of Germany it is named trochital limestone (trochiten kalk). Tho encrinites liliitiormis, vory common in this formation, is consacered to be elameteristic of it. Of tho fossil shells, the Ammonites nodosus und Avicula sociai;s aro considered as characteristic of the shell hmestone.
Seventh secondary formution; the thirl secondary sumistout, rel ground, murnes irisees, Keuper. This deposit is principally composed of sandstone, murls, ind dolonites with salt anul gypsum. It has been divided into the tillowing finur groups:-I. Keuper salt and gypsum. 2. Inferior keuper, 3. Variegated marls. 4. Upper or superior keuper.-The sall and gypsum, with their marls and bels of saline clay, the most important members of this formation in un ceonomical point of view, occupy the lowest part of the series. Several extensive salt-mines oceupy this situation.-'The inferior kcuper, that which reste on the gypsum nnd salt, is a sambstone which is red in the upper stratu, but gradually passes into gray in the lower. This sundstone sometimes alternates with marls, slate clay, nud dolomites, nnd contains leds of gypsum nud coal. Tho slate clay contains bivalvo shells, a species of Ophiuru, und several species of Equisetum, Filices, ani also somo Cyculucep.-T'he variegated murls (marnesiriseses), resting upon the inferior kenper, exhibit alternate stripes of whito, green, violet, red, gray, nad blie; they are generally compact or slaty, nod soft. 'lhey contain few or no orguic remains, very little gypsum, noul no rock-salt.-The upper kruper is sundstone of \mathbf{n} gray, yellow, or variegated colour. It is composed principally of grains of yurtz, generally but liosely held together, so that the muss can frequently be pressed into grains between the tingers. Contains some traces of emal, null a few fossil shells :und iupressions of plants.

Wighth secondary formation, or fourth secmulary limestome, contains the lins nad oolite limestones and Jura limestone of authors. This, which is one of the most extensive and important of tho secondary formations, nay be divided into the following menhers; procoelling, ns usunl, from below upwards:-1. Liss. 2. Oolite. 3. Oxtord cluy. 4. Cornl rag. -. Kimmeridge clay. 6. Portland oolite.
(1.) Lias. Lins is a provincial name applied to limestone shales, and warl stones, and some sandstones that occur along with them. The murls are sometines very bituminous, and contuin leeds of lignite or brown coal, and also fissil shells, and occasionally beds of gypsum. The fossil vegetubles of the lins are lignites, fossil wowl, sonnetimes siliccous impressions of terns, cycadacen, and fuci. The anmal remains nre numerons aml interesting. It is in this deposit that bones and skeletons of extinct tribes of saurian unimals are met with; such as the genern grosaurus, ichthyosaurrs, am phsiosaurus. Different species of fishes and of erabs also occur. The lias contains un imnense quantity of fossil shells, of which the predominating one is the Giryphan arcuata ; hence the marl stones or limestones of the lias lanve been named gryphite limestones. Besides, the following may also be mentioned as clarncteristic fossils, viz. Ammonites Buclandii, Plagiostoma gigantea, Betemaites paxillosus, nnd Belcmnites digitalis.
(2.) Oolite. The oolite is divided into interior oolite and great oolite. Inferior ootite. This is a limestone composed of rouma granular coneretions, resembling the roe of fishes; hence the name oolite, or roestone, given to it. It is nssociated with compact limestones and marls, and sometimes it abounds in fossil organic remains. It contuins, is at Brora in Sutherland, beds of coal. The fissil vegctables, which ure numerous and often well preserved, ure of the tern and cyens tribes. It nlso contains lones and skeletons of grent extent, saurian animals, also tortoises and crabs. Species of the tribe eclinns, which makes its first appearance in the eighth secondary formation, are not uncommon; the crinoid family has also representatives here, so also lave several genern of the coral tribe. The charncteristic fissil shells of the inferior oolite are the Belemnites aulrusis and Bel. suleatus.Great oolite. This is a thick deposit, composed chielly of un oolitic limestone. It contains beds of doiomite, and sometimes rests upon heels of fullers' "urth. Resting upon this uolite is the Bralford rlay; next the forest marble, to which brionus the lithogruphic limestones of Bavaria.' This forest marble, which inclutes also the Stonesfictl slate, contains remains

Pant II tubles. The fys more or ddstone. It. tumer as the nd rock-salt, tion aninuels. - interesting d sandstone is compract, mitus. Beds 1] proserved nl rock-sult. nes of great te mare, but red truchital bomation, is and Avicula
nes irisées, es with salt er sult and uper.-The nembers of 's. Neveral rests on the passes into 1 dolomites, species of The varie${ }^{3}$ stripes of , and soft Tlie upper neipully of quently be ossil sluells
and oolite nsive and bers; proCoral rag.
tones, and ituminous, ly beds of siliceons 1 interestimals are ut species shells, of innestones r also be gigantea,

Book II.

of flying reptiles, tarreverial GEOGNOSY.
vegetables. The upper memper mimmiferat sauriun anitnals, insects, mariue $23:$
bluish and whitish compuct limer of this great oolite series is nameds, marine shells, und (3.) Oxford clay und Kellosente with marl. which becones brown Reloway rock. Tho innrl, and nlso the calcareous oxposure to the air. It contains sulo bluish argillaceous marl, rock, a partieular kind of culcuryoy nodules, maned septaria subordinate beds of culcarecus thyosurus. The fossil shells ureons rock. Tho marls sometimes eonenth is the Kelloway enumeration of them. (4.) Coral rus is u
 calcareons concretions, insons sand, contuining a calcureous colour. Below tho coral ruy is a and most perfectly preservis in this part that the fossil ory grit or sandstone, and siliceobones of saurian unimals. Neary fossil Cypadacea occur; also, at in tharo most abundant phyllea, and Meandrina. Nearly nil the mudrepores belong to the pevoru ealcareous grit, Tho fossil shells have not been thoros of the genera Ciduris and Clypera Astrea, Caryo-
(5.) Kimmerilge clay. The lower bly examined. Cularis and Clypeus aro met with. vellowish gray marl, which is lower beds of the pre slate, and even true liguite or brore or less slaty, und cong deposit alteruato with a blue or An iehthyosanrus different from theol, sometimes forming beots beds of a very bituninous saurus, and bones of whnles, it is that in tho lias is foumd hero of considerable thickness, impressions of fishes. Serp, it is said, have been found in the; also remains of the plesioMany species of different genera of species of cidaris and usterimmeridgo elay; also fine culurly ammonites, belcmnites, \&o murino shells aro enumernted, occur in this formation. wholo oolite formation are ares, \&e. It would appear that the prated as occurring in it, partidown in the sories than the lias.
(8.) Portlanll oolite. This is.
times oolitic, forming the last is a limestone which is frequently loosely superior or newer secondary limestones secondury limestone with this y aggregated, someand dicotyledonous plants. Remains of larsesing it. It contains petrified more, nono of the with in it. Ammonites, trirouiains of largo saurian animales petrified monocotyledonons shells aro the Ammonites (riplicatus and gryphites, are abundant. and also of fislres, are met have also been discovered in it. ratus and the Pecten lamellosue. Tho most charactoristic Ninth secondury formation. ation abounds in fromainn. Wealden clay and Purleck marino species; he ace it is an shells and land plants; hut, in sits, viz. the oolito and chalk. It is probathesh-water deposit bland at least, contains no that even in England it contains marine shale, however, that fiture observntionsine depkviz. the Weald elay, and Purbeck stone shells. There are two moinbere of tions will prove, (1.) Weall Clay. This is a binione. of argillaceous limestone. The limestone grayish coloured clay, containing subordinate bods ore, beds of lignite, also a groat quantity of the crustaceor in shells belonging to the fresh-water coal formation, from those in the coal form it. It contains impressions of some of the varieties of the
(2.) Purbeck coal formation.
maludinar, also contains a clayey limestone, which altern erocodiles.
of fresh-water fishes, and of tortoisesis in by its organic reary formation, or chalk formation. This fon sand; 2. Gault clay; 3. Ulints. Five beds occur in this formation is well characterised,
(1.) Lower green sand. pper .jreen sand; 4. Tuffaceous chalk; 5. Chalk. Lower grcen remains are le:s abundnt. This sand does not diffor from the upper. Chalk.
Great Britain the trigonia alaformis is are ammonites, the uppratulites but the fossil organic sand. (2.) Gaull. The green sand is divided into known in many of the districts where it occurs under a very thick bed of bluish gray clay, moniles and other shells, particularly the Inoceramurs sulcatus.
(3.) Upper green sand thalt. It contains amquantity of fossilg and of i. The lower part of the tufticatus. und we reach a mass of iron pyrites, becomes more and matale containing a prodigious calcareous saudstone. Frosed of a green sand more or less mare charged with green points, silica; teeth of fishes, Fragmouts of silicified wood, and also ply, and often a green coloured shells are very numer, but parts of no other vertebrated also parts of shells penetrated with also cornls of various kinds species of the genera cidaris and smals, oceur in it. The fossil (4.) Tuffucrous chanlh, which is generally Vor. I.

20* or a cretaceous inatter, clay and sand
2 E

It is soltor than chalk, nud townrds the lower part of the mass the clay predominates, nums slaty clay marl is timmi. When the sund predominates, al hasely aggregate grayish mand-
 Fowsil vegetahber, even lignite, ure fiomed in it. Fowsila ure mowt nhandant in tho lower part of thes depnett. 'The chief are brtemuites, mmmonites, namilites, hamites, buentites, turrilites, rechmitts, with modrepores mad carrinites.
(5.) 'The uppermost is the chalk properly so culled, of which there ure two principal
 intbelded masses; mud the lower or laurd chnlk, in which thint is more rarely met with. These clamks also contain iron pyrites nad calenreons spar. The fessils nro vertebre and treth of fishes; numermes erhinites and terebratulites oxeor thronghont the whole mass; nud in the deseending order, smmonites nan brlemnites first make their appentunce in the lower part of the clatk.

Sunsect. 2.-Plutonian or Igneous Necomdary Rucks.

Ifncons rocks appear, at diffirent deteminate periods, to have broken in anong the Neptumim rocks of this class, and also to have forced up through them older rosks of varions descriptions, forming momatuins, mountain runges, and grougs of mombtuins. The igneous rocks are perphyry, and sometimes nlso grmite and sycnite.

Sker, IX.-Tertiary Rocks.

Sunamer. 1.-Neptunian Tertiury Rucks.

The roeks of this clase were first pointed ont by Werner ; but it was not until the pulbication of the excellent work of Cavier nud Brongmiart on the groogog of Paris, that their importanee was felt and acknowledged ly geologists. In the regolnr succession they rest immedintely upon the chalk or mppermost member of the secondary class. Although the rocks aro lexwer in texture than those of the secomary elass, yet anong them beds oesear equally compact with thase of the secondary elass. They nlound in fissil! remains of the mimul and regetablo kingiduns; although many species are diflerent from the present ones, muny of the genern are the same. 'Ihe following ne the Neptumian rocks in the order of their ureurrence, trom holow unwards: 1. Plastic clay. 2. Calenire grossier, or tamdon clay. 3. Gypsimn with Inmes. 4. Auperior marine sandstones and sands, sumatstone of Fontaindilemu. ©. Upper fresh-water formation.
(1.) Plastic clay. This clay is frequently divided into two heds by a bed of same; the upper bed is more or less mixerl with the sand, the lower hed is pure, kneads completely with wnter, and is intisible in the percelain firmece. The upper bed abounds in fiwsil remuins; the lower hed contains none. Jet and brown cont, which are fossilised remains of dicotyledonous and monocotyledonons plants occur, in it. Remains of the pelm tribe are very frequent ; but ferns lave not been met with. Insects well preserved in amber ure also met with. I'the fossil shells are purtly fresh-water, parily marine, which are sometimes separate, sometimes mixel together.
(2.) Calcuire grossier, or a ecrites of French nuthors, the Londun cluy of English geologists. This deposit is sometimes sepparatell from the plastic elay by a bed of sand, which oceasienally contains puro and soliil sumdstone, but nc petrifactions. Resting mpon this sand is a bed of shelly limestone, nbounding in green coloured grains of silicnte of iron, and which sometimes passes into a kind of sand; it is in this limestone thut the nummulite shells are so abundant, and which nre mixed with corals and numerous shells in a ligh state of preservation. Immediately above this lies the great bed of true enlenire grossier. It is so compuet, that in the Paris basin, where it abounds, it is used extensively as a building-stone. It is the common building-stone in Puris. It contains murine shells well preserved, and also remains of plants. In some districts it is divided into two beds by an interpased bed of lignite or brown coal, which is intermixed with fresh-water shells. It is interesting to rotice, that here a limestone abounding in marino shells is wepurated into two bells by an interposed mass of coal, fillel with fresh-water shells. Aromed London there is a great deposit ot clay abomeng in the same shells as occur in the calcuire grossier; thence, for this and other reasons, it is censidered ns the equivalent of the Paris calenire grossier. The upperinost part of this formation cousists of sand, hornstone, und samdstone, with alternating beds of limestone. It somotimes abounds in ceriles.
(3.) Gypsum with bones. This deposit may be considered as consisting of three stages; a lower, a middle, and an upper. The loiect part, or that which rests inmmediately upon the ealeaire grossier, consists of gray und white limestonse, more or less compnet, penetrated in all directions by silica. This silica, when it finds its way into cnvities in the limestone, lines them with chalcedony or with quartz crystals. It contains species of the fresh-wuter genera Lymnea and Planorbis. The middle part is composed of gypsum which alternates with layers of marl. It is in this gypum that remains of the genera Palaother rinm, Anaplo-

I'art II. mimates, and grayish manlderis hy eleert. le lower part :ulites, furri.
two principal ls, veins, und ly met with. vertebra and whole mass; trunce in the
tunong the kn of vurious The ignoous
il the puhlin, that their un they reat ilthough the burds ocear mius of the resent onen, the order of or Ionden tone of l'en-
finnul; tho pletely with il remains; of dicotylere are very re also met es sepurate,

of Englisht

 ed of saunl, esting upon silicute of t the numshells in π se calcuire extensively rine sliells o two beds ter shells. separuted ad London e grossier ; is calcaire sandstone,ee stages; tely upon penetrated limestone, esll-wnter alternates , Auaplo-

Drow II.

Theritum, of variuns GEOGNOSY,

 opal nemed menilies ; iomanerul whia. Hore nher in the marls oceurs thels, ther munt charthis gy puma deposit. In thim which in some degreog may tee couridurat curiens hime of

 (4.) Superior natine sudu he pulten tribe.
coloured urpillucesous marl with celestine, upon whidh ther part of this deposit is a greenupprer part is mundste part eonsists of micacevos sumde, and sandstomarls containimg fiessil (5.) Upprif frembene with murine shells.
and vesienlar yumet\% or willanalion. The lower purt of this deposit cune
 eureons marld, limestonex, masses in the marls and sunds. The upper mure oceurn rarely
 It is firther churneterised by the exubeniles, lyycopodites, Joracites, Churus This formation
 Thanorbis, I'ohanides, Cychostomand, but of diflerent species. Tho tho samo gemera us
 Mon the upers deseribes a murine deposit and anal romnins, but seects of the of Lannarck, Enpon the upper freslownter formantion depmit met with in the basin of the the plant chara. English geologists, and has been lately niet withosit appars to be the same us the cresting of Sunsecr. 2.- Plutomian or Ith also in Provence,
The reugh felspathose porphyries, known Ignigenous Tertiury Rocks,
abundunce un many countripes, appear to bo of the same ame trachyte, which oceur in vas ble by the naked eype the umpite and folup greenstone or dolerite, a componud, minerals ure not distinguishanamyprduloid, which is greent ure distinguishable; wacke, which a green colour, in which or phonulitt, which is greenstene er wacke with tho nuny gidaloidul is a clayey greenstone; of mountains, us Mont Blauc, mud thu upruised partly during and me, mad the Scandinavian runres, are tertiary rocks. Some classes

Under this hend wo inelude Sect. X.-Alluvial Rocks,
vels, and rolled masses or boulders, which culc in the reous deposits, peat, clays, lonms, sands, gracorling to their supy of the tertiary cluss, These degular succession, rest upon the newest distinctness, acconpposed relative untiquity : prodeposits have been varionsly arrunged acalluvium, as downs. 2. River sitnation, in the following many be arranyed with sufficient 3. Lake alluvium, that River alluvium, that met with manner:-1. Littoral or sea-const springs, as cale tuffn, cale sthe sides, \&ec. of Jnkes, 4. Npring botton and sides of rivers. deposited ly and moved by riner, travertine, siliceous sinter, \&e alluvium, that formed by over tracts of country by the appraising 6. Plutonian ralluvium, that formed anduvium, that
In this alluvium, remnins of veger of clanins of mountuins, that formed and distributed vegetables, as fur as is romins of vegetables and animuls aro those of the country whero at present, are either foreign ef frequent occurrence. Tho neither remains of humaro industry remains are found. In the elder species identical with numerons bones and skeletous of ling nor bones of the human specics or Plutonian ulluvia, These quadrupeds aro either of quadrupeds. ceros, hippopotamns, tapir, ber of extinet species of ceros,
shoep, and dog; or species of extind lion; or of living species, as the the elephant, rhino-

> Scet genera, ns mastodon and megatherium. Stat, ox, deer, Volcanic Rocks. These are rocky masses which Ster. XI.—Volcanic Rocks.
and new, or ancient and modern.
Ancieat volcanic rocks.eir origin to voleanoes. They are divided into old Ancieat volcanic rocks. Under history. These whe which have not been in a state of activity those volcanic rocks connectell the earth in the form of streams resemble basalt, and have been sent frencement of our we find craters from whence they or currents. In nlmost every count from the interior of are aecompunied with puzzee they have streaned. These dark conntry where they occur, Sometimes lighter coloured lavas and seoriz, very much resembling those of acaltic-like rocks, along with the darker varieties
Modern volcunic rocks. The lavas, seorime, ashes, sands, \&e.

BOOK III.

GENERAL PRINCIPLES OF GEOGRAPHY UNDER ITS RELATION TO OKGANIZED AND LIVING BEINGS.

In considering the extenaive ranfe of subjecta which thia book embraces, we have arranged them as they successively rise above the scale of inanimate nature.

The firat ehapter treats of geography, in its relation to botany, or to the diatribution of plants over the surface of the globe.
The second chapter considers it in its relation to zoology, or the diatribution of animals, including man viewed simply as to his physical condition.
The third chapter views geography in reference to human society, to man in his political, moral, and social conditien.

CHAPTER I.

geography considered in relation to the distribution of plantg.

In proportion as our knowledge increases relative to any of the sciences, we find a more intimate relation anu conmexion between them. Formerly geography was only atudied as it regarded the surface of the carth itself, its figure, the constitution of the scveral regions and countries, their boundaries, \&e. ; and botany has had too many votaries who devoted thicir attention alinost excluaively to determining the generie and splecific names of plants, neglecting the more beautiful and philosophical parta of the science. Of late years, indecd, our systems of geography have, in some instances, contained a meagre catalogue of the vegetable productiona of the different regions, but nothing that could give the least information with respect to the laws of their general distribution : and now that some of the most able naturalists and philosophers of our day have, by their labours, thrown new light upon this interesting subjeet, we sheuld feel that our work would ill merit the character which we hope it may obtain with the public, were we to omit a notice of it. At the same time, the limits of eur publication will permit us to give only a sietch of what indeed must be considered as atill in its infancy; and those who have most devoted their attention to botanical geography will most readily join with Mirbel in declaring that "we are even yet far from having arrived at that period when it will be possible to write a good history of this subject. What we do know of elimates and of vegetation, is little, in comparison with what we have yet to learn; and hence it would be rash in us to form an estimate of what we do not know by what we are already acquainted with. The surest way is to confine ourselves to collecting and arranging facts, leaving, to those who may follow us, the charge of discovering and developing the theory."

To exhibit the present state of botanical science, we shall endeavour to put together the more intereating facts, collected principally from the writings of our most authentic travellers and naturalists; and, devoting this memoir to vegetable geegraphy in its more enlarged and general sense, shall afterwarde, in the different countries, under the head of botany, point out some of the most striking and infportant productions of their respective regions. As the nature of the present work docs not permit us to enter minutely into the subjeet in all its bearings, we shall give a popular view of it, as little encumbered as possible with technical terms.

That certain vegetables are confined to certain distriets or limits, depending in a great measure, but by no means altogether, upon soil and climate, must be familiar to the most careless inquirer into the works of nature. In regard to elimate, the two extremes are represented by the country within the tropics, and that which approaclies the poles. In the one, nature exhibits herself in her most lovely and her most magnifirent and exuberant form, and the earth is covered with vegetables which indicate a never-ending aummer; whilat in the others a brief summer, a few daye of freedom from frost and anow, call into existence a thinly scattered vegetation of amall and stunted flowering plants, which acarcely rise above the mosses and lichens that surround them; and the intermediate zones will be found to be occupied by other racrs, gradually, however, increasing in difference as they approach to one or other of these extremities. The same graciation exists, we know, upon a lofty mountain, situated within the tropics. At its base may be geen those plants which are peeuliar to the tropics; and the beauty, the grandeur and perpetual verdure will gradually diminish in the ascent, until a soil and climate be found on the higher summits similar in respect to elimate und productions to those in the vicinity of the polea.

In regard to elimate and vegetable proluctions, our globe has been aptly compared, in its two hemispheres, to two iminense mountains, placed basc to base, the circumference of
which at the foot is constituted by the equator, and the two poles represent the summits, crowned with perpetual glaciers.
That alnost every country possesses a vegetntion peculiar to itself; is also well known; and this is purticularly the case with countries whose natural boundaries nre formed by mountains, seas, or deserts, even in the same or different degrees of latitule. Europe exhibits a widely different class of plants from that part of North America which lies immediutely opposite to it. The botany of Sonthern Africa has little or no resemhlance to that of tho sunue parallels in South Ameriea, or to that of New Holland. In Great Britain, soine plants are confined to the enstern and some to the western side of the island. In Seotland, the 'Iutsane and the Isle of Man Cabbage are never found but on the western side of the country, and the same is the case with the pale Butterwort (Pinguicula Lusitanica), hoth in England and Scotland. Nature has constituted the barrier, for by art they may be cultivated as well on one as the other side of the island.

Botanical geography is constituted by considering plants in relation to their habitation, region, or the country in which they grow, and in regard to their locality or particular station, and forming a collection of fucts, deduced fron these circumstanees, from which general laws may be derived: nor is this a science destitute of advantages; such, we mean, as are immediately manifest; for there are few, in the oresent ige, who will be disposed to deny that the study of the works of nature, like every thing that cali exalt and refine the mind, is highly deserving of our attention. Vegetable geography is intimately connected with hortieulture. Our gardens will be better stocked with vegetables and fruits, our forests with trees, our fields with corn, and our pastures with grasses, in proportion to our knowledge of the relation of plants with the exterior elements. Nay, Schouw has justly observed, that a good chart of the distribution of the vegetable forms over any given country will afford a far more correct idea of the productive strength of that country than many statistical tables. The systematic betanist may thence derive benefit; for by it he will be better able to determine whether certain kinds of plants are species or varieties; he will consider that a different local situation produces different effects upon them; that those growing in wet places are less hairy or downy than those growing in dry; that at great elevations plants are more dwarf in their stature, with fewer leaves, but with larger and more brilliant flowers than those found at lesser heights. The station, too, of certain plants, or groups of plants, frequently lead to a diseovery of claracters diverse from other individuals of other countries with which thyy had been associated. Thus the Canadian Strawberry and the Canadian chickweed Wintergreen ('Trientalis), though long confounded with the European Strowber$r y$ and Trientalis, are found to be quite distinet. The regions, too, and the limits of those regions, of very important medicinal drags, are determined by vegetable geography.

Sect. I.-Prugress of Botanical Gengraphy.
This branch of science had been, hownver, for a long time, wholly neglected. Linnesus, indeed, with whom originated so many improvements in botany, besides what related to systematic arrangement, was the first writer who gave stations for plants, as he called them, or rather habitations, or frequently both combined, and this plan has been followed by every succeeding systematic botanist. Yet although these stations or halitations are frequently consulted in the geographical arrangement of plants, they are too vague and uncertain to be generally depended upon; and they must be employed with caution. De Saussure, who so assiduously studied vegetable physiology, was particularly attentive, on that account, to the elevation at which plants grow above the level of the sea; and appears to have been the first to ascertain that elevation barometrically. Mr. Young, the celebrated agriculturist, in his Travels upon the Continent, determined with considerable aecuracy the northern boundaries of several of the most important cultivated plants, the Olive, the Vine, and the Maize; whilst Soulavie, in the south of France, has characterised the limits of them, and of the Orange and Chestnut. These, nad other authors of less note, prepared the way, during the last century, for the more important labours of the present, when the study has begun to rank as i science. Stromeyer described, to a certain extent, the boundaries of the vegetable kingdom, in a work entitled "A Specimen of the History of Vegetable Geography," Göttingen, 1800. The work of Kielmann, entitled "A Dissertation cancerning Vegelation in the Alpine Regions," Tubingen, 1804, was followed by thut of Treviranus, named "Biologie," which seems to be the first whercin attention was paid to the distribution of plants according to their natural families; the latter author dividing the globe into regions or distinct Floras; and De Candolle, about the same time, partitioned France into regions in the same way, and wrote on the inflaence of height upon vegetation. To the celebrated Humboldt, however, we are indebted for the most valuable writings on vegetable geography, which have first given it the true eharacter of a science. 1Iis "Essai sur la Geographie des Plentes," in 1807, and his beautiful "Tahleaux de la Nature," contained his first ideas on the subject; while his celebrated "Prolegomena de distributione geographica Planta"um secundum cali lemperiem el altitudinem montinu," forming the introductory chapter 'o the botanical part of his travels; his invaluahle "Memoir on Isothermal Lines and the

Distribution of Heat over the (ilobr, mublished in the Mémoirea d'Arcueil, nnal translated into llrewster's und Jamesm's l'hilosuphieal Journal, vol. iii.; together with his later work on tha subject, "New Enquiries into the Lawa which ure abserved in the Distribution of Vercteble Forma," likewise inserted in the Edin. l'hil. Journal, vol, vi., may he cotnside;ed as the nowt murtunt dineertationa on a comprehenaive acale that have yet appeared. In the mean time, other eminment naturalists, by their welledirected lalkwrn, contribnted unterially to extend the neience: Wohlonberg, for example, in his almirahle Flora Lapponica, and in that of a portion of Switzerland, mud of the Carpathian Alps; whilst Von Bheh, in his Trarols in Norsony, detniled many curious ficterespecting the distrihution of vegetables in that clinute, and also in his luteresting Voyage to the Canaries, mailo in company with Professor Smith. Mr, R. Ilrown has published memoirs which rank aneng the mowt valuable that have appeared on this subject. Wo particularly allude to his "Remarks, (ieographical und Syatemutic, on the Hotany of Terra Australis, 1814," and "Observations on the HerGarium collreted by Profeasor Christ. Ninith, in the vicinity of 1 he Congo, 1818." Dr. Nchonw conopiled, in 1824, un admirablo history of the science, of which sone portions have been translated into Brewster's and Jameson's Journals. Thia valuablo work is accompanied by an Atlas of several maps of the world; euch exhibiting the geographical extent of certain tribea or fumilies of vegetables, indicated by differont colours; so that wo she, at one view, upon a plan of the world, the countries in which theno plants are found, their boundaries, and their comparative abundance, indicated by the grenter or leas depth of colour employed. Do Candolle, in the "Nouveau Dictionnuire des Seiences Naturelles," has given an admirable résumé of theso writors, and has added much important original information. A somewhat similar plan is adopted by M. Brongniart in the "Dictionnuire Classique dIlistoire Naturelle." Mr. Allan Cunningham, both in Mr. Barron Field's "Memoirs of New Nouth Wales," and in the aecond volume of "Captain King's Survey of the Intertropicul Cousts of Australict," has furnished some excellent remarks upon the distribntion of vegetables, especially of the less frequented parts of New Hollanil. Tho "Mémeires du Muséum alistoire Naturelle" contain some iniportant papers on this subject, particularly that of Mirbel, "Sur la Geographic des Conifires," a tribe of plants valuable for its economical uses; and his "Recherches sur la Distribution Géographiyue des Végétuux phanérogames dans l'ancien Monde, depuis l'Equiteur jusqu'au Pole Arctique: and, lastly, wo shall name a useful little mannal, entitled a "Lectur: un the Geography of Plants," by Mr. J. Barton.

Sect. II.-On the Infuence of the Elements on Plants.

In eegarding the limits to which certain plants are circumscribed upon the surface of the globe, wo shall see that it is with them as with the mighty occan ; they are equally subject to that fiat of tho Almighty, "Thus far shalt thou goo and no farther." The Pulms, tho Trec-Feros, the parasitical Orchidea, are ever confined io the (ropics; the Cruciferous und Umbelliferous plants almost exclusively to the temperate regions; while the Coniferous plants, and many of tho Amentaceous tribes flourish in those of tho north; and since theso nre all affected by physical agents, we must consider, before proceeding any farther, the influences which the elements or exterior agents exerciso upon plants. These M. de Candolle considers to be Heat, Light, Moisture, Soil, Almospherc.

Subsect. 1.-On the Inftuence of Heat.
Hert is the most obvious and powerfinl agent in affecting the existeace and growth of plants: and of this we have continual experience before our oyes. In winter ull vegetation is at a stand, and we can only cultivate thoso plants which are at a continued state of vegctation, by artificial heat. Plants are nourished either by water alone, or by substances dissolved or suspended in the water. Hence vegetation is arrested when the temperature is below the freczing point; for the water, becoming solid, cannot enter the vegetable tissuc. Again, as in the great deserts of many countries, the heat may be so great that the earth is dried up, and cannot part with its nutritive properties. These effects, however, it is but reasonable to suppose, are more remarkable upon the surface of the earth than at a considerable depth : hence it happens that trees which have long tap-roots resist both the extremes of temperature better than those whose roots are nearer to the surface; their fibres penetrate into a soil, whose temperature is greater in winter than that of the outer air, so that the fluids imbibed keep the interior of large trees, as has been aseertained by experiment, at a degree of heat pretty nearly the same as that indicated by a thermometer placed nt the roots of such trees. Hence, the greater the thickness of the stem or branch, and the greater the number of layers interposed between the fith (the softest part being the moistest and the rost susceptible of cold) and the exterior air, the better are they able to resist the severity of the cold. It is a well-known fact that a shrub or tree ns it grows older becomes more hardened against frost. Do Candolle relates that at Montpellier the Pride of India (Melia Azedaracls) when young is destroyed by a moderate degree of cold; but that when
from nlthous
Europ poses themse plants, encour
it attaina a more alvanced age, it will endure, in the garden at Geneva, an intensity of atmosphere four timea as nevere an that which killeil the young plant in tho sonth of 'rance. Again, in proportion as the exterior layers are deprived of sapp or watery fluid, and fortifiol by a deponsit of carbon and resinous matter, the more powerthlly they withatand the cold. Every gardener and cultivator in acquainted with the fhet that in cold and wet nummers when the sun and heat have been insuflleient to proxluce goxil bark upon the now shoote of the fruit-trees, they ure liable to be affected by a very inoderate frost in tho ensuing winter. Succulent plants and Monocotylednnous plants, in general, which have no distinet bark, are highly susceptible of coll; whilst the Birch, which in fenced around with numerone layers of old and dry hark, and the Fir , whowe bark abounds with reain, endure an inter, e degree of it witheut injury. At Fort Enterprise, in North Anerien, lat, $64^{\circ} 300^{\prime \prime}$, Di, Richardson has ascertained that the Banksian Pine (linus Bankeinna), the white, the refl, and black Spruce, the mall.fruited Larch, and other Amentaceous trees, bear a legree of cold equal to 44° below zero of Fahrenheit; and in Siberia, lat. $05^{\circ} 28^{\prime \prime}$, the common Jurch. the Siberian Stone Pine, the Alder, Birch, and Jumiper, \&ec, attain their greatent aize, and uro not affected by the extremest cold of that mevere elimate.

Powerful summer heats are capable of causing trees and shrubs to endure the most trying effects of cold in the ensuing winter, as we find in innumerablo instances; and vice versa. Hence, in Great Britain, so many vegetables, fruit-trees in particular, for want of a suffciently powerful sun in summer, are affected by our comparatively moderato fromts in winter; whilst upon continents in the same degree of latitule the same trees arrive at the higheat degree of perfection. Even in the climate of Paris the Pistacia tree and the Oleander will not bear the winter. Yet the winters there are mild in comparison with those which prevail in the environs of Poking, where the Oleander was found by Lord Macartney to remain abroad the whole year; and et Casbin in Persia, where Chardin assures us that the l'istacia nuts, produced in the open air, are larger than those of Syria. On the other hand, the heat of these two countries in summer is infinitely greater than that at Paris; the sumner temperature of Peking especially nearly equals that of Cairo, and surpasses that of Algicrs, For the snme reason, too, the Wceping Willov becomes a latge tree in England; while in Scotlund, whore the winters are at lenst as mild, hut where the summer affirily much lesa warmeth, this beautiful tree can only be cultivated in highly favoured situations, and even there its vegetation is exceedingly languid: its young shoots, not ripened by the suminer sun, are destroyed even by a slight frost.
Hence the influence of temperature upen the geograply of plants is pointed out by M. de Candolle under three points of view:-1. The mean temperature of the year. 2. The extrome of temperature, whether in regard to cold or heat. 3. The distribution of temporature in the different months of the year.
The mean temperature, that point which it has for a long time been the great object to ascertain, is in reality what is of the least importance in regard to the geography of plants. In a general view, it may be useful to take it into consideration; hut the mean temperature is often determined by circumstances so widely different, that the consequences and the analogies to be deduced from them relative to vegetables would be very erroneous.
By attending to the extreme points of temperntare, results more limited, hut fur more exnct, are to be obtained. Thus, every locality which, though at only short intervals, affords a degree of cold or heat of certain intensity, cannot but produce plants which are capable of supporting those extreme degrees. When, however, these widely different temperatures recur at very long intervals, man may cultivate in such a country a vegetable which cannot exist in a wild state; either because, when destroyed by the rigour of the season, he restores it by seeds or by plants derived from a more temperate country; or because he shelters it from the inclemency of the air; or, because he is satisfied with the product of the plant, nlthough it should not bring its seeds to perfection. And thus it is that, in the south of Europe, the Vine, Olive, and Orange trees often vegetate exccedingly well for all the purposes for which they are required, though, if lef to themselves, they could not propagate themselves, nor sustain the winter. Thus we sec a wide difference in the geography of plants, between those in a state of nature, snd those individuals whose growth is artificially encouraged by men.
This, indeed, is a subject elosely connectel with the acclimatation of plants, or the power which man is supposed to exert over them in inuring them by degrees to a elimate not originally natural to them. This power is, however, denied by very able vegetable physiologists. Mirbel, in particular, declares that he has known many species indeed whose wants have been, to a certain degree, artificially supplied; but not one whose constitution has been changed. "If," he says, " from time to time, exotics mingle themselves with our indigenous tribes, propagate as they do, and even dispute the very possession of the soil with the native inhabitants ; this, assuredly, is not the work of man, but it is the climate which dispenses this faculty of naturalization." Cultivators, however, mnintain that scedlings from Myrtles, which had ripened their fruit in Devonshire in the open air, are better abie to endure the cold of the climate than those sceds perfected by artificial heat, or
that have come from the warmer parts of Europe. It is true, the power of so acclimating itself already exists in the vegetable ; but it is man that calls it into action, for naturally the myrtle would never extend itself to these latitudes. Nay, something of the same kind M. Nirbel himself allows, where he says, "When we consider that the Vine is cultivated in the plains of Hindostan and Arabia, between the 13th and 15th parallels; that it is cultivated on the banks of the Rhine and Maine, in lat. 51°; in Thibet, at an elevation above the level of the sea of from 0,000 to nearly 11,000 feet, under the 32 d degree of latitude; what astonishes and interests us the most is, not that the vine inhabits countries so remete from one another, or that it grows at so great an elevation above the sea, but that it possesses in so eminent a degree the property of accommodating itself to different climates; a property, indeed, much more restricted in a great number of vegetables, which extend from the equator to the tropics on both sides, without ever crossing them; for notwithstanding the grenter distance between the 23 d degree of south latitude and the 23 d degree of north latitude, the climatic differences are much less from one tropic to the other than from the plains of Hindostan to the banks of the Maine."
The distribution of heat at different months of the year is what we shall find to be of the most importance in regard to vegetable geography. Some climates are eminently uniform; a certain mean temperature is produced by a mild winter and a moderate degree of warmth in summer. This is frequently the case on the sea-coasts, because the extremes of heat are continually modified by the sea; that vast reservoir of nearly equal temperature, which therefore imparts heat in winter and cold in summer, and enables even tropical plants to sulsist in some situations of the temperate zone. Such are the western shores of Europe and America, and e. great portion of the southern hemisphere. A similar mean temperature may indeed be produced by a combination of very severe winters and very hot summers, as in the great continents compared with islands, or the shores of those continents; or the eastern side of continents as compared with the western; or the northern with the southern hemisphere; but these two climates, as may be expected, will produce a very different vegetation.
Annual plants, which require heat during the summer to ripen their seeds, and which pass the winter, so to say, in torpidity, in the state of grain, indifferent to the intensity of cold, ${ }^{*}$ abound most in those regions where the extremes are the greatest; whilst the pcrennial plants, which can better dispense with the maturing of their seeds, and which are injured by the severitics of winter, affect the temperate climates. Of these, again, those kinds which have deciduons leaves accommodate themselves best to unequal temperatures; whilst the individuals ' n which the foliage remains, or evergreens, give the preference to districts where the temperature is more constantly equal.
Mirbel reckons that there are about 150 or 160 natural groups or families of plants in the Old World, types of all which exist in the tropical parts of it. Beyond these limits, a great number become gradually extinct. In the 48 th degree of latitude, scarcely one half of that number appear; in the 65th, not 40; and but 17 in the vicinity of the polar regions. He further estrmates, that within the tropics the proportion of woody species, trees and shrubs, enving, if it does not exceed, that of herbaceous, annual, biennial, and perennial plants. The relative number of the woody species to the herbaceous, annual, biennial, and perennial, decreases from the equator to the poles; but, as an equivalent, the proportion of perennial to annual or biennial plants goes on increasing. Near the extreme limits of vegetation these are, at lenst, as twenty to one.
We must, however, by no means conclude that the same elevation in corresponding degrecs of latitude is necessarily suited to the vegetation of the same plants. A number of circumstances may exist to modify the degree of heat at the same elevation. In Switzerland, for example, the elevation of the valley of Untersee is the snme as that of Gestein; yet the thermometer, in 1822-3, fell only to 8° below zero in the former spot; wherens at Gestein it fell to 101°, and at Berne to 16°. The depth of the vaileys influences vegetation; the deeper they are, the more intense is the cold on the summits of the surrounding mountains. Thus, the pine does not thrive on the Bragel, at a height of 5100 feet; whereas it succeels perfectly, at the same elevation, on the Rhetian Alps, the valleys of the Linth, the Mnotta, and Kloen being deeper than those of the latter districts. In like manner, in the valley of the Davos, agricultural produce is certain in places much mere elevated than the Bernese valleys, because the latter are deeper. The warm winds from Italy have a perceptible power over the vegetation of the contiguous parts of Switzerland; but the degrees of that influence depend upon circumstances. In the valley of the Inn, barley and flax are cultivated with success at an elevation of more than 5400 feet; whereas at Laret, in the valley of Davos, though the licight is only 4900 feet, $n n$ grain will thrive. Yet, these valleys are alike in most respects, nad are surrounded by mountains of similaaltitudes; they are both sheltered from the north-east wind; their soil is of the same nature;

[^5]Book III.
but in the valley of the Inn, the warm winds from Italy are irtercepted only by a single ehain of mountains, whereas two chains lie between Italy and the valley of Davos: and, besides, the latter being of smaller extent than the former, it admits of the reception of less solar heat. In the Oberland of Berne, an increase in height of 2000 feet diminishes the crop one third.*

Subsect. 2.-On the Influence of Light.

The infuence of the solar light upon vegetation De Candolle considers to be as imfortant as that of temperature; and although it acts less powerfully upon the geographicul distribution of plants, it nevertheless merits a particular notice.

Light is that agent which operates in producing the greatest number of phenomena in vegetable life. It determines, in a great measure, the absorptien; for plants imbibe less humidity during the night and in darkness. It completely influences the watery exhulations of the grcen parts of plants; for these parts do net exhale during the night or in obscurity, whilst these exhalations are very considerable during the day, and cepecially under the direct influence of the rays of the sun. The light affects, in most cases, the decomposition of the carbunic acid; and consequently the deposition of carbon in vegetables, their substance and their growth, the intensity of their sensible properties, and the direction of many organs. It is the principal, and perhaps the only, cause of those singular movements known by the name of the sleep of plants; and, lastly, during the absence of light the green parts nhsorb a certain quantity of oxygen gas. Although these different causes affect all vegetables, yet they are not affected in the same degree.

Light is more equally distributed than heat upon the surface of the globe; but its mode of diffusion induces some very important consequences. In the countries situated under the equator, an intense light, since it acts more perpendicularly, influences vegetables nearly equally, during twelve hours each day, throughout the whole year. In prciportion as we recede from the equator and approach the poles, the intensity of the mere oblique rays gradually diminishes; but in regard to the distribution of these rays, the light is completely wanting during the winter, when the absence of vegetation indeed renders it nearly useless to plants; und it is continued during almost the whole period of vegetation, in such a manner that its lengthened infuence compensates wholly or in part for its want of intensity. Thus wo see that, independently of what concerns the temperature, plants which lese their leaves can better exist in northern countries, and that those whose vegetation is continued have need of the southern regions. And unother beautiful and just remark is made by De Candolle, in reference to the distribution of light; namely, that those plants whose foliage and flowers maintain habitually and censtantly the same position, can live in northern climates, where the light is almost continued in summer; whilst it is in the regions of the south that we find, as miglit naturally be expected, those species which are remarkable for the alternate elosing and expanding, or slecping and waking, of their flowers, a motion which has an intimate connexion with the alternation of days and nights. Thus we see why it is found so difficult in our country to cultivate many of the tropical vegetables, or, at any rate, to bring them to perfection. M. de Humboldt has proved that it is less owing to the absence of heat than to the want of sufficient solar light that the Vine does not ripen its fruit beneath the foggy skies of Nornandy; and M. Mirbel has satisfied himself that the uninterrupted action of the sun's rays, during a grent number of days, is the cause of the astonishingly rapid developenent of alpine plants in high northern regions. \dagger Dr. Richardson, too, states that the sugar-boilers in the Canadian forests observe that the flow of sap in the Sugar Maple (Negundo fraxinifolium) is not so immediately influenced by a high mean temperature as by the power of the direct rays of the sun. The greatest quantity of sap is collected when a smart frost during night is sneceeded by a warm sunshiny day. Again, Humboldt assures us, that in all places where the mean temperature is helow $62^{\circ} 6^{\prime}$, the revival of nature takes place in spring in that month whose mean temperature reaches 42° 8^{\prime}, or $46^{\circ} \mathbf{4}^{\prime}$. At Cumberland Ilouse, Dr. Richardson found vernation to begin in May,

[^6]when the mean temperature wus only 49°, nearly 3° below that which Baron Humboldt considered neccssary for the evolution of deciduous leaves; but he alds, "the influence of the direct rays of the sun luas at this time very great, and the high temperature of the last decale of the month compensated for the first." We can imitate the native climes of many of the delicate exotics, as far as regards temperature; and in suminer, when the tays are long, we see them flourish alnost as if they were in their natural situations; but in winter they languish, and often die, especially the more tender species, such as the Ifedysarum gyrans, and the humble plant (Mimosa pudica). It is evident that they want that distribntion of light which is most congenial to them.

Plants, then, are arrauged in their different localities, according to the certain quantity of light which they may require. All those with very watery leaves, which evaporate much, which are of a succulent nature, which, having few pores or organs of evaporation, need a stimulus to determine their action, all which have a tissue abounding in carbon, or which contain very resinous or oily juices, or which offer a great extent of green surface, require much light, and are generally found in exposed places; the rest, according as they are more or less distinguished by these properties, exist either under the slight shadow of bushes, or beneath the more powerful ebelter of hedges and walls, or of forests; or, as is the case with many Fungi, in caves and darkness. These last are, indeed, destitute of any green colour; but Mosses, Ferns, and even some evergreens, such as the Ivy, flourish best beneath the shade of dense forests, if the trees of those forests have deciduous leaves; and in situations where plants that vegetate only during the summer could scarcely live.

The subject, however, of the action of light upon vegetation, has not yet received the attention which it deserves. Many more observations and experiments are required before we can employ it with certainty in connexion with botanical geography.

Subsect. 3.-On the Infuence of Moisture.

Water being the vehicle by means of which nourishment is conveyed intw the plant, and, indeed, itself yielding a large proportion or even the whole of the nutriment of many vegetables, it follows that this element is not only of the highest importance in vegetable economy, but one of the causes which affects most powerfully the geogruphical distribution of plants upon the surface of the globe.
Those vegetables, in partivular, necessarily absorb a great quantity of water, which have a large and spongy cellular tissue; those which possess broadly expanded soft leaves, furnished with a great number of cortical pores; those having few or no hairs on their surface; those whose growth is very rapid, which deposit but little nily er resinous matter; those of which the texture is not subject to be changed or corrupted by lumidity; those, in fine, whose roots are very numerous, generally need to absorb much moisture, and cannot live but in places where they find naturally a large proportion of it. On the other hnnd, those plants which are of a firm and compact cellular tissue, which have small or rigid leaves, firmished with very few pores, which are abuulantly elothen with hairs, of which the growth is slow, and which deposit, during the progress of their vegetation, much oily or resinous matter; thase whose cellular tissue is liable to be changed and decayed by too much inoisture, and of which the roots are not numerous, require little water, and prefer, for their natural situation, dry places. Great differences, however, are produced, according to the nature of the water that is absorbed; the less it is charged with the nutritive principle, the more necessary is it that the vegetable slall absorb, in a given time, enough to suffice for its support. Again, the more the water abounds with substances which alter its fluidity or transparency, and which, masmuch as they are solid particles, tend to obstruct the orifices of the pores, or to impude absorption by their viscosity, the less do such vegetables imbibe in a given time.

The very nature even of those substances dissolved or suspended in the water has a great influence upon the topographical distribution or the locality of plants. The mntters se dissolved are, 1. Carbenic acid. 2. Atmospheric nir. 3. Animal and vegetable substances. 4. Alkaline principles or earths. Those plants whose cellular tissue is found to contain much carbon, such as trees producing hard wood, avoid, more than others, the vicinity of waters which are extremely pure, and which contain but little carbenic acid gas. Plants which exhibit mucla azote in their chemical composition, such as the Cruciferous Plants and the Fungi, seek those spots where there is much animal matter in solution. These, ugain, which present, when chemically analyzed, a considerable quantity of certain earthy substances, such as silica* in the Monocotyledonous Plants, gypsun in the Leguminosa; \&e, will reyuire it in a greater or less proportion in the soil where they grow; and if it does not exist there naturally, the agriculturist must supply it artificially ; and these species which yield,

* This silica, wre know, nhomals in the grasses, as well as in olhr monocotylpdonous plants ; and M. If Candolle olserves, that it is in annafiuence of its existence it thet graspes, \&e. Antl of the eomparative indissolubility which is thr result, tiat it in preferred by almost atl nations of the wrild for a rovering lo their houses. The people of the North thus employ straw lor that purpose, on the same priacipe that those of the tropics use the leaves of the palms.
when burned, a more abundant portion of alkaline substances than usual, can only flourist. or even live where these matters abound. The species which have need of carbonate of soda will only grow successfull, near the sea or saline lakes or springs. Thus the different property of the substances dissolved in the water is evidently one of the many causes which determine the stations of the vegetable species.

Subsect. 4.-On the Infuence of the Soil.

The influence of soil M. de Candolle considers as perhaps more complicated than that of the proceding agents. He reduces it to the following heads:-
(1.) The soil serves as a means of support to vegetables, and consequently its consistence or tenacity ought to possess, in this point of view, a peculiar fitness for sustaining, in a greater or less degree, plants exhibiting very various forms. Thus, soils composed of blowing sand can only serve as a support to vegetables which are of very humble stature and prostrate growth, so that the winds may not overturn them; or to trees, furnished with very deep and branching roots, which may attach them into this moveable matrix. The contrary holds good in regard to very compact soils. Small-rooted plants msy thus be firmly enough fixed, and they may subsist; but the very large roots are incapable of penctrating into soils that are very tenacious. The two extremes of these soils present an equally sterile vegetation. Sands which aro not sufficiently stationary (as those very remarkable ones on the northern shores of the Moray Frith), water which is subject to very rapid currents, clay of an extremely compact nature, or rocks of great hardness, are equally unfriendly to the growth of plants.
(2.) The chemical nature of the earths or stones of which the soil is composed, affects the choice of vegetables, as regards their flourishing in such situations. But this subject, simple as it appears at first sight, is in reality very complicated. For the different carths act upon vegetation by physical circumstanecs; as, for example, according as they absorb the surrounding water with more or less facility, retain it with more or less force, or part with it more or less easily. Now, the celebrated Kirwan ascertained by a comparative analysis: "enrths which were reckoned excellent for the growth of wheat in various countries, "hat y^{\prime} vontain more silica if the climate is more subject to rain, more alumine if the r. x ne case; in short, that the soil, to be good for any given vegetable, ought to have : ff is or of sbsorbing more moisture in a dry climate, less in an humid atmosphere: whence it is plain that in different localities the same species of vegetable may be found in different soils.
(3.) Every kind of rock has a cortain degree of tenacity, snd a certain disposition to decompose or become pulverized: whence results the greater or less fucility of particular soils to be formed either of sand or gravel, and to be composed of fragments of a nearly determined form and size. Certain vegetables, from causes which we shall presently indicate, will prefer such or such of this sand or gravel; br". the peculiar nature of the soil does not act here immediately; thus, when we find calcarcous rocks which decompose like argillaceous sehist, the same species of vegetation is observed. These two considerations are particularly applicable to lichens.
(4.) Rocks, according to their colour or their nature, aro more susceptible of being heated by the direct rays of the sun; and consequently they may, in some degree, molify the temperature of a given place; and influence also, though slightly, the choice of plants capable of succeeding upon them.

But, independently of all these physical canses, it may be asked, whether the clucmical nature of rocks has any effect upon vegetables? It is generally considered to he so; but it must be allowed that this action has been frequently very much exaggerated. Bory de St . Vincent, indeed, has assured us that calamine, or native carbonate of zinc, in the vicinity of Aix-la-Chapelle, is always indicated, to a certainty, by particular plants; and the fact is confirned by a little work, since published, called A Florn of the Environs of Spa. The yellow heartsease, a small varicty of the common eyebright (Euphrasia officinalis), the white Campion (Silene inflata), a Sandwort (Arenaria), a shrubby Lichen, a species of Bromus (Brome-grass), constitute this poor but censtant vegetation. These, however, no doubt, grow in greater abundance and perfection in other soils: the wonder is that they do not altogether perish here; for even the gallinaceous birds, which eat gravel to triturate their food, die from swallowing fragments of calaminc. It must be remarked, in reality, that plants do not often live upon pure rock, but among the deconposed matter of that rock; that the rocks, even though very circumseribed, eften present very different natures; that vegetable mould is not only formed hy the rocks which immediately surround it, but also by the admixture of earthy substances carried by the waters, and transported by the winds, or by the remains of animnls and vegetables which have before existed there. Hence it will be 'inderstoxl how the vegretable earths differ much less in themselves, than the rocks which proluce them or serve to support then; and that the greater numher of plants yield, in most situations, the alimentary eurths which are necessary for them. Indeed, after various iotanical journeys made through France, M. de Candolle has found nearly the same plants
vegetating spontaneously in almost all the differcut rocky substances. It has been said that the Box (Buxus sempervirens) grows only in calcureous soils, and it certainly prefers them; but it is found ahundantly in the argillaceous calcareous schistose rocks of the Pyrenees; and it is even seen among the granite of Britany and upon the volcanic parts of Auvergne. The Chestnut has been stid to avoid a calcnreous country ; but there are beautiful chestnuta on both sides of the Lake of Geneva, at the foot of the caleareous mountains of Jura and Chablais.
Pure magnesia, M. Carradori has found, by chemical experiment, aets as a poison on most plants: yet M. Dunal, in visiting a portion of the environs of Lunel, where the soil presents a great quantity of almost pure magnesia, found there the same plants as in the surrounding calcareous soil, and the roots flourishing in the clefts of this magnesian rock. Thus we must be careful nut to attach too much importance to the nature of the earth, which is frequently acted upon by causes purely physical.

Subseot. 5.-Atmospheric Influence.

The atmoophere, taken in its pure state, we know to be composed, at all times, of the same proportions of azote and oxygen; and in such cases we may suppose its action to be similar upon all vegetubles. But the atmosphere also is of different degrees of transparency or density; it holds in solution other matters or substances, which mix with it in certain plsces, and render it more or less suitable tocertain species of plants. In mines, for instance, the quantity of carbonic acid gas, or of hydrogen, may be so great as to preelude vegetation altogether : or to aliow only of the growth of such individuals as are very strong and vigorous, or particularly absorbent of these substances. Then, too, the air charged with ssline emanations from the sea injures some plants, and on the other hand encourages the developement of such as require carbonate of soda; as may be seen in the valleys of the south of Europe, where maritime plants affording soda may be cultivated at a considerable distance from the ocean, provided that they lie open towards the sea, and are exposed to the winds that blow from it.

We cultivate in our inland gardens, languidly and but for a year or two, many of the maritime plants, such as the Lithospermum. The Nitraria Schoberi is improved by employing salt where it is grown. Many of the Statices may be, however. easily cultivated, and one of them, the common Thrift (S . Armeria) even succeeds in crowded towns, whence its English name; yet its native country is either on the shores of the sea or in salt marshes, or upon the summits of the lighest mountains.

The most general influence, however, exercised by the stmosphere, is its power of containing and parting with moisture, or its lyygroscopic action. The atmosphere is habitually charged with moisture ; sometimes in such a manner as to be invisible, and then only ascertainable by the hygrometer; at other times visible in a state of vapour or dew; and we find that vegetables in general succeed better in a climate where, at a given degree of temperature, the air is moderately moist, than in another where it is either too much saturated with moisture or too dry. 'This is a circumstance which cannot well be imitated in the cultivation of plants in the open air: but in our strves, and especially by the aid of steam, the various degrees of humidity necessary to a vigorous vegetation may be produced to the greatest nicety.

The agitation or movement of the air by winds and other causes excrcises some power over vegetation; but we are too little acquainted with this subject to be able to deduce any particular theory from it.

Of all the atmospheric influences, the most difficult to reduce to its proper value is that of density; or, what is the same thing, the influence of height or elevation above the level of the sea. This M. de Candolle has made the subject of a memoir in the volume of the Society of Areueil, and we shall here give his general ideas upon it.

In proportion as we are elevated in the air, the temperature as well as the moisture continues to diminish ; a circumstanoe which appears to depend upon this, that the rare air has more capacity for heat than dense air. The facts that go to prove that the diminution of the temperature upon high mountains is one of the causes which most affect the distribution of vegetables, are the following :-
(1.) The natural situation of each plant at a determined elevation above the level of the ses is so much the greater in proportion as the country is nearer the cquator, and less in more temperate regions; that is to say, the farther we recede from the equator, the greater influence has the exposure upon the temperature.
(2.) In temperate climates, as France, for instance, those plants which are but little affected by temperature, and which grow in all its latitudes, are found slso at all those clevations where the earth is not covered by eternal snows; from the level of the sea to the summits of the mountains. M. de Candolle has detected about 700 examples of this lav; the common Heath, the Juniper, the Birch, \&e. grown indifferently at the level of the sen, and at a height of 10,000 feet.
(3.) If plants which, according to their nature, avoid either too high or too low a degree oit
aid that s them; renees; ivergne. hestnuta Jura and presents rounding we must 'equently
s, of the ion to be ssparency in certain : instance, e vegetatrong and rged with arages the eys of the nsiderable ssed to the
any of the ved by emcultivated, ns , whence It marshes,
wer of cons habitually only ascerand we find ree of temh saturated in the culsteam, the ced to the
ome power deduce any
e is that of he level of of the Soci-
pisture conrare air has ninution of listribution
evel of the and lest in the greater
ittle affecte elevations le summits ; the comser, and at

Boox III.
IN ITS REIATION TO BOTANY.
temperature, yet grow at different latitudes, we may observe that it is at heights where the effect of elevation may compensate that of latitude; thus the native plants of the northern plains will be scen to grow upon the mountains of the south.
(4.) Plants which are cultivated upon a large scale are guided by laws which entirely correspond with the preceding ; those which are cultivated in various latitudes will grow indifferently at various heigits; those which are only found at certain latitudes will extend uo further than to proportional elevations. The potatoc, which succeeds so well in our plains, is cultivated in Peru at an elevation of 10,000 feet above the levol of the sea: the olive, which nowhere passes 44° north latitude, will not grow at a height exceeding 125) feet.
(5.) The elevation above the level of the sea, when wo compare the temperature of the seasons, establisl 3 effects very analogons to those which result from the distance from the equator; so that ..ere is the more analogy between the results on vegetation in the two cases. In proportion as we rise in a dircet line, it follows, from the lessencd density of the air, that the intenseness of the solar light continues to increuse; this effect is represented in the line of distances from the equator, because the perpetuity of light during the continuance of vegetation is so much the greater in proportion as the latitude is more clevated.
(6.) In proportion to the greater height upon the inountains, so will the hygrometer be seen to indicate a less degree of humidity; the same general effect takes place us we recede from the equator towards the poles.

On mountains, covered witli perpetual snow, where the plants are constantly moistened with water in a freezing state, those species, to which a warm temperature is unfriendly, will live at inferior heights to those which they brave in the same latitude, when they are net watered from those cold sources.

It would appear therefore, from all these considerations, that the situation or fixed locality of plants at certain heights depends mainly on the fill of the temperature attributable to that elevation. Now, the only purely theoretical point of view, says M. de Candolle, according to which we can comprehend how the rurefaction of the air bears in itself a direct influence upon vegetation, is this; that plants require to absorb a greater or less degree of oxygen gas in their green or their coloured parts. It cannot be doubted that there is a certain point of elevation where the atmosphere becomes too much rarefied to supply the wants of ${ }^{-}$ plants; but where this is the case the mountains are always clothed with suow. M. de Ifumboldt, too, inclines to think that the pressure of the air way act in encourtuging and increasing the quantity of evaporation. But we must say that direct experiment is still wanting to confirm these opinions (and this is perhaps unattainable in the present state of seience), in order that we may form a conclusive julgment on their value.

Sect. III.-Station and Habitation of Plants.

The station and habitation of plants must next engage a portion of our attention. They are both important: the former implies their situation as regarding local circumstances, and the action of physical causes upon vegetables; the latter implies the geogrsphical position. When we say that such a plant is found in marshes, on the sea-shore, in woods, or upon mountains, in England, in France, in North America; by the marshes, shore, woods, or mountaine, we mean what we here terin the station; and by England, France, or North America, the habitation: such is the sense, at least, in which we shall here use the terms; for in systematic botanical writings the meaning is by no means always thus restricted.

The seeds of plants, by varied and beautiful means, are widely dispersed by the liberal hand of nature; whilst some, however, fall upon barren ground, or a soil unfit for the nature of that particular vegetable, others take root in situations, both with regard to the earth and surrounding medium, which are in harmony with their growth, and produce, "some thirty, some sixty, and some an hundred-fold." There are, again, tribes which, under these circumstances, increase so prodigiously that they destroy vegetables of a less vigorous growth, and, to the exclusion of others, appropriate to themselves a great extent of the surface of the earth. Such are termed by Humboldt social plants. In this way, and netwithstanding the extreme poverty of the soil, the Seaside Nedge (Carex arenaria), the upright Sea Lamegrass (Elymus arenarius), and the Sea-reed ir Miarram* (Arundo arenaria), occupy a prodigious surface of the sandy shores of Great Britain, almost to the exclusion of other vegetation; their long, crecping, and entangled roots serving to bind the sands together, and thus fomming a barrier to the enemachanents of the sea. Thus it is with the heaths in the same country, where the sterile moors are purple with the blossoms of the heath.

The flowers of the Gentians cover, as with a carpet of the nost brilliant ultramarine blue, the sides of the alpine hills in Switzerland and the sonth of Europe. In England the fields are too often red with Poppics, ant the marshes are whitened with the "snowy beard" of the Cottongrass, and the pastures with the blossoms of the Cardamine prateusis, so that

* The Colfic name of this plant in Mfaraim. A village upon the sea coast of Norfotk is nanoll Marham, from the groal abumbare in whirhthe Arundo archaria grows in its vicinity.
they appear at a distance as if covered with linen laid out for bleaching, whence arises the vulgar English name* of thu latter plant. Some of these planta thus living in society are continually striving with their neighbours, till the strongest ubtain the victory. Many low perennial and herbaccous vegetables are overpowered by a colony of tuller shrubs; such as the Whin or Furze and the Brom: and theso in their turns must occasionally give place to trees and shrubs of a larger and stronger growth. Mr. Brown has, however, noticed a curious fact in regard to thu Field Eryngo (Eryngium eampestre,) und the Starthistle (Centaurea Calcitrapa), which cover much cultivated ground upon the continent: viz. that these twe engrossers are never mixed tegethor indiscriminately, but that each forms groups of partial masses, placed at certain distanees from their rivals.

On the other hand, there are plants, which, from the cireunstance of their net increasing much by root, or bearing few sceds, or such seeds as from their light and volutile nature are much dispersed, and which are not particular in their choice of soil, do nct forn groups, but lie scuttered (Plantes éparses, egrenées, or rares, of the French).

The former kind, or "social plants," are those which it will be most important for us to consider in relation to Botanical Geography.

The stations of plants being thus, as we have already mentioned, liable to the influence of physical agents, it becomes necessary to define them by terms which are calculated at once to point out the places and the circumstances in which they grow. This, however, is i task of ne sinall difficulty; fur, without swelling the list to an immeasurable length, it will be impossible to define the various local situations of plants. There are many situations which produce only one or two kinds: for example, the snew, in the highest arctie regiens to which travellers have attained, has been found to nourish and to bring to the greatest perfection that highly curious vegetable, the Red Snow (Protococeus nivalis). The truffe (Tuber cibarium) is found entirely lid beneath the surface of the earth. Some fangi are detected upon the dead horns and hoofs of animals (no plant exists upon living bodiest), and upon dead chrysulides; and both fungi and mosses grow on the dung of animals. Paper nourishes the minute Confcrva denilroidea: the glass of windows, and the glass table of the microscope, if laid by in a moist state for a certain length of time, proluce the Conferva fenestralis. Wine-easks in damp eollars give birth to the Racodium cellare: and Dutrechet has detected living vegetables in Madeira wine and in Goulard water, (a solution of Saturn). These, however, and many others that inight be noticed, may be nuinbered among the extraordinary stations, and they principally affect cryptogramic vegetables. In a popular view of the subject, though we cannot altogether omit the notice of such minute yet curious vegetable productions, we shall mainly direct our attention to the more conspicuous plants; and they may be this divided. 1. Maritime or saline plants. These nre terrestrial, but growing upon the borders of the ocean or near salt lakes; as the Saltworts (Salsole) and Glassworts (Salicernia), \&tc. Hence these plants abound in the interior of Africa and the Russian dominions, where there are saltpins, as well as on the shores. 2. Marine Plants. This tribe is indeed mostly cryptogamic, and comprises the Alge, Fuci, Ulva, \&uc. The phænegamous, or jerfect marine plants, are the Nea-wracks (Ruppin and Zostera), and a few others allied to them. 3. Aquatic plants. Growing in fresh water. Both stagnant pools and running streams in various situations, abound in plants. Some are entirely submorged, but in this case, with the rare exception of the little Awlwort (Subularia aquatiea), the flowers rise to the surface of the water for the purbose of fructification. \ddagger 4. Marsh or swamp plants. 5. Mcadow anl pasture plants. 6. Ficld plants. This tribe often ineludes such as, introduced with the grain sown in those districts, are equally placed there by the hand of man. 7. Rock plants, which may inelude the natives of very stony spots, and such as grew upon walls. Walls, although artificial structures, are knowi to produce many plants in greater perfection than natural rock; yet we must not suppose that any vegetable is exclusively confined to this habitat. The Holosteum umbellatum and Draba muralis may be cited as examples of this tribe in England ; unl nmongst mosses, the Grimmia pulvinata, Tortula muralis, \&c. 8. Sand Plants. 9. Plants of dry moors, where heaths (Ericæ) abeund. 10. Plants which attach themselves to the vicinity of pluces inhabited by man. Such are the Doch, Nettle, \&c.; these species follow everywhere the human footsteps, even

[^7]Buok III.
IN ITS RELATIUN TO BOTANY
to the huts and cabins of the lighest mountains; encouraged, perhaps by the presence of animal substances, and the azote which in such substunces is known to abound. 11. Fores: plants, consisting of such trees us live in society. 12. Plants of the hedges, as are many climbing plants, the Honeysuckle, the 'Iraveller's joy, the Bryony, \&e. 13. Subterranean plents. Those that live in mines and eaves, and which, though tolerably numerous and important, are yet mostly cryptogamous. One species, a fungus, yields a pale phosphoric light of considerable intensity. 14. Alpine or mountain plants, for it is very diffieult to draw the limit, and indeed they will depend much upon latitude. A plant which grows upon a hill of inconsiderable elevation in Norway, Lapland, and leeland, will of course inhabit the loftiest Alps of the south of Elurope. Again, upon mountains that have no perpetual snow lying on them, alpine plants will be found much higher than on such as have centinued streams of cold snow-water descending, which affeet the state of the atmosphere st mueh lower regions. 15. Parasitic plants, such ns the Misseltoe, the various species of Loranthus, \&e., and the most wonderful of all vegetable productions, the Raffesia Arnoldii: these, as their name implies, derive nourishment from n living portion of the vegetable to which they attaeli themselves. This is the ease, too, with many Fungi which subsist upon the living foliage of plants; some exclusively on the upper, others as invariably on the lower side of these leaves; and, lastly, the name of 16. Pseudo-parasiles has been given to a very extensive tribe, which subsists upon the decayed portions of the trunk or branches of the trees to which they aro attached, as many of the Lichens, Mosscs, \&c.; or which are simply attached by the surface of their roots to tropical trees, obtaining no nourishment from them, but from the surrounding element. Ameng this number may be reckoned that numerous and singular family of the Orehidca, called, from their nature and property, "air plants." Greatly as this list might be swelled, we shall find that even here there is a gradation and an approximation of one tribe to anoth, but these are amply sufficient for our purpose.

We have been able to account in some measure for the stations of plants, affected as these are by local eircumstances; but the study of the succeeding part, whieh refers to their habitations, eonsilered in their most extensive scale, for instance, as belonging to certain regions or countries, we shall find to he mur': inere difficult; and we must frequently be content to study and to admire the amazing variety of vegetable forms which the beneficent land of nature has seattered over the different parts of our world, without being able to account for these important phenomena. In New Holland we find almost exclusively, all the species of Banksit, Goodenia, and Epacris, and the curious Acacia without leaves, but with petioles so much enlarged as to assume the slape and perfirm the finetions of leaves. At the Cape of Good Hope, the Fig Marigolds (Mesembryanthemu), the Stapelia, the numerous kinds of Ixia, Gladiolus, Pelargoniam, and Protea abound. The Aurantiacca, the family of plants to which the Orange and Lemon belong, are of Asiatic origin; as the Camellia and Thea are of Chinese. Those curious plants, the Mutisia, the various speeies of Fuehsia, the Cinchonce or medicinal barks, the Cacti, are all peculiar to South America. If a few of them are found in other countries, such eireumstanees are of very rare occurrence, and do not overturn the general laws for the exelusive existence of many plants in certain countries. There are in the temperate parts of Europe one species of Ixia, one of Cladiolus, and in the north of Africa and south of Europe a few kinds of Fig Marigold. Within the tropics the genera of plants throughout Asia, Africs, and America, are similar, but rarely are the species the saine. This rule nearly holds good on the opposite continents in tentperate climates. We find the Oriental Planc (Plutanus orientalis) in the old world, and the Oceilental Plaue (\mathbf{P}. oceidentalis) in the new. Even in the two hemisplieres, in similar parallels of latitude, the genera of plants have a great affinity: the southern extremity of the great eontinent of Anerien has many in common with the north of Europe; and the plants of the latter region, transported thither, succeed extremely well.
To what extent plants migrate, unaided by man, it is not ensy to say; but that sueh migration is going on, by various means and cuuses, cannot be questioned. Islands which lie near to continents, and which evidently appear at one periol to have been joined with them, as England for example, althocgh they may contain a vegetation similar to that of the neighbouring continental shores, have always a smaller number of species; and this can only be accounted for b; tie cuterruption which straits or scas oceasion to the progress of the seeds.

The Field Eryngo (Fryngism campestre), to which we have already alluded, the Venus's lookiug-glass (Campanula Speculum), and many other plants of France and Germany, seen to stop at the line formed by the sea; yet these, and many other vegetables of France, reach a limit upon the same continent more northern than any part of England.

The migration of plants may be reckoned to be facilitated by the following eauses. 1. Th seu and its currents, but to a very limited extent; for if the seed be of such a nat're tha the water penetrates its integuments and reaches the embryo, life is destroyed. Fet in such adistanee are they carried lyy this medium, that upon the coasts of Britain, of Fecland, and Norway, the seeds of the West Indies are frequently east, and it is said sometimes even in a fit state for vegetation. 2. Rivers, by the continual movement of their waters, convey many plants to in considerable distance from their original place of growth; and the banks
of streams are generully udorned with a vegetation of a more varied kind than the districts remete from them. Tlius, too, the diflerent species of Saxifrace and other ulpine plants are, in mountuineus regions, brought down from the higher situtions, and flourisli in the valleys. 3. Wiads, which watt the light, winged, nnd puppose seeds to immense distanees, and by means of which they ure widely dispersed. 4. Auimuls, which, in wandering from place to place, often carry on their conts those seeds which have hooked hrintles, \& e. 5. Birds, which, swallowing berries und other fruits, pass the feeds in a pertect state, and, it is even suit, semetimes better fitted for germination than before. In this nunner the seeds are otlen deposited in the places necessury for their growth, and to which thoy conld not otherwise have reached; of which n familiar instance is found in the Misseltoc.

Man is however the most netive agent in the dispersion of plants, sud we must mot overlook the important consequences of his influence. Sometimes, indeed, the canses are aecidental, but more frequently intentional. The shipwreck of a vessel on the island el' Ginernsey, having some bulbs on board from the Cape of Good llope, cunsed a plant to propagate in the sands upon the shores of that mild clininte, to which has been since given the name of Amaryllis Sarnicnsis or Guernsey Lily, and a branch of trado of some importance is carried on in the sale of this very root. At Buenos Ayres, a species of Artichoke (Cynara Cardunculus) has increased so mnch by seeds imported from Furope, that Mr. IIend, in his amusing "Sketches of a Jeurney aeross thi l'ampas," \&c. tells us thint "there nre three ragions of vegetation between Buenos Ayres and the base of the Cordilleras; a syace of $9(0)$ miles: the first of which is cevercd, for 180 miles, with clover and thistles. "This region," the anthor continues, "varies with the seasons of the yeur in n most extruordinnry mnnner. In winter, the leaves of the thistles* aro large and luxuriant, and the whole surfice of the country has the rough appearence of a turnip field. The elover in this season is extromely rich and strong; and the sight of the wild cattle grazing in till liberty on such pasture is very beautiful. In spring the clover has vanished, the leaves of the thistles have exteruled along the ground, and the country still looks like a reugh crep of turnips. In less than n month the chinge is most extraordinary; the whole regien becomes n luxuriant wout of enormous thistles, which have suddenly shot up to n height of ten or eleven feet, and are all in full bloom. The road or path is hemmed in on both sides; the view is completely obstructed; not an animal is to be seen; nnd the stems of the thistles are so close to erch other, and so strong, that, independent of the prickles with which they are nrmed, they form an inapenetrable barrier. The sudden growth of these plants is quite astonishing; nud though it would be an unusual misfortune in military history, yet it is renlly possible that an invulius army, unacquainted with this country, might be imprisoned by these thistles before it had time to escape from them. The summer is not over before the seene undergoes nother rapid change: the thistles suddenly lose their sap and verdure, their heads droop, the leaves shrink and fade, the stems become black and dead; and they remain rnttling with the breeze, one against another, until the violence of the pampero or hurricane levels then with the ground, when they rapidly decompose und disnppear, the clover rushes up, and the seene is again verdant."

The streng-scented Everlasting (Elichrysum foctidum), a native of the Cape of Good IJope, has found a soil and climate equally suited to its growth on the shores of Brest, where it cevers a great portion of the sands, to the exclusion of the aboriginal natives of the soil, Wheat is supposed to be indigenous to Barbary. The pataloe, first found in Sonth America, is now cultivated all over the world. Rice, from Asia, is grown to nn immense extent in America, \&ce. ; these, and many other plants similarly circumstanced, which we could mention, together with those that ndorn our gardens, often owe their wide tiffusion to having escaped into uncultivnted places, and become to a certain degree naturalised there,

But there are limits to migration, for some of which we can necount, and for others we cannot. Even many garden plants, which, escaping by accident, or designedly placed in uncultivated spots so as to uppear wild, have only for a time maintained a lamgnid existrnce, and then have disappeared altogether. Thus we know that the beantiful Gentianclla (Gentiana acaulis) cannot have a title to a place in the British Floris, nor can some others, which are mere outcasts from gardens. Some plants are wholly confined to particular spots, und can be found nowhere elso. The Tree-Pink (Dianthus arboreus) grows still on the single rock in the island of Crete, where Prosper Alpinus first detected it; nal the Double Cocounut of the isle Praslin, one of the little group of islands called the Seychelles, notwithstanding the annual migration of its nuts for many thousands of milos, has never established itself in nny ether place. Nature has planted the comunou Thrift (Statice Armerin), the Scurvy Grasses (Cochlenria anglica und daniea), and the Rose-ront (Rhodiola rosen), in rocky and stony places, upon shores nnd on the tops of the highest monntains; yet these plants nre never found in any intermediate places.

The visible obstaeles to the migration of phents are-
(1.) The sen, which, though we have introluced it as a means of exteneling lio habitations

[^8]of plants, is yet a far ${ }_{\text {a }}$ reater impediment, by the injury it does to the seeds, and the difficulty of thnir being conveyed to distant countries in a sufficiently alort time to prevent the natural denth of the seed. It must bo observed, too, that the greater number of needs have a specifle gravity heavier than that of water when in a living state. The Double Cocodnut, when found flonting, has always lost its vegetative property. The living nut is immensely heavy, and would inevitably sink.
(2.) Dry und burning deserts. These, in spite of their ouses, which have been happily assimilated to the isles of the ocean, prove a powerful obstacle to the transport of serds. Thus, thase districts of Afriea which are separated from one another by the scorching sinds of Salara exhibit a great dissimilarity in their vegetation. The plants of Morocco and the northern parts of Africa have littlo resemblance to the indigenous growth of Senegal ; whilst the affinity of the vegetables brought by Cailland from Upper Egypt to those collected by Palisot de Benuvois in Oware and Benin would in itself load to the conclusion that no verv great and continued deserts intervene between these far distant countries.
(3.) Mountain ranges. The barriers which these present would almost be insurmountable, were it not for the defiles which here and there occur, forming passages for men and animals, as well as for plants. Thus, the plants on the Italian side of the Alps are quite ditherent from those on the Switzerland side; those of the Spanish Pyrenees from those of the French Pyrenees; and it was a subject of peculiar regret to the enterprising Drummend, when he reached the summits of the Rocky Mountsins in North America, that his commis. sion did not allow him to penetrate farther into the western side of that great continent, where he found, every step he took, a vegetation very different from what had been presented to him by the eastern side.
A knowledge of the Natural Orders of plunts is in no departme-'r of hotany so importuut as in treating of their geographical distribution. The system of Linneus, or the Artificinl Arrangement, does not, as we know, regard the habits and affinities of vegelules, but simply and beautifully points out to us, by certain characters, the means of arriving ut he knowledge of my given species. The natural method, which owes so much to tho latreins of Jussieu, Decandolle and Brown, has a higher object in view, that of grouping plants together according to their natural affinities; and by such an arrangement we are often led to other and very important results. The primary divisions of the Natural Method are, first, acotvlifdonks, or plants which have no cotyledons to the seed: these are synenymous to the Cryptognmia, and include the Mosses, Lichens, Sea-weeds, Fungi, Ferns, \&c.; secondly, monocoty nadones; those whose seeds have one cetyledon, such as the Giasses, Iiliaceous Plants, the Rushes, Sedges, the Palms, qee; and, thirdly, micorylemones, or the plants which have two or rarely more cotyledons to the seed, such as our Shribs and 'I'rees, and very many IIerbacenus Plants. Each of these possesses external characters whit, though not very easily defined in words, yet cannot fail to strike the observer who devotes his ationtion, even for a little while, to the subject; and we find that, in a great proportion of instanees, they have not only a peculiar station, but that their geographical distribution is different.
The acotviedonovs plants increase in number in proportion to the other great classes, as we recede from the equator to the poles; with the exception, however, of the Ferns. The latter abound more within the tropics than anywhere else: not, however, so much in open plains as in the sheltered, moist, and hilly conntries; so that their maximum is in the mountainous part of the tropics. The island of Martinique aflorded to the Abbe Plumier a rich and abundant harvest of ferns; and some isles of small extent are said to have one-third of their vegetation composed of this kind of plants.
Among the monocotvledonovs Plants, the Palms are exclusively confined to the trapics: the Liliaceous plants abonnd there and in the warm zones; the three families of Grasses, Sedges (Cyperacem), and Rushes (Junci), present some important differences in regard to a comparison with the phenogmons or flowering plants. The disparity between these latter and the grasses is not great in each of the zones; whiks the two other families, the Cyperacea and Jnnci, diminish near the equator and increase towards the north. Nevertheless, there are exceptions to this rule; for the grasses are very rare upon the coasts of Greenland. In what we have now said, we alluide to the grasses, \&c. in a wild state; having no reference to those regions where so many of the grass tribe, as the Wheat, Barley, Oat, Maizf, Rye, Rice, \&e., are foum simply in a state of cultivation.
The dicotvisionous plants are the most extensively distributed, and we must offer some further remarks upon them. The Compound or Syngenesious plants (Composita), as every one knows, form a very extensive natural family. They are diffused throughout the whole earth, but they are most abundant in the temperate and tropical climates. Fever, hovever, of them are found in the warm regions of equinoctial America than in the sub-nlpine and temperate districts of the same country. At the Congo and Sierra Loone in Africa, in the East Indies and Now IIolland, they exist in comparatively smaller numbers than in other regions situatel in similar parallels, but which afford situstions more congenial to their
Vol. I.
growth. Agnin, in the frozen zone, in Kamtachatka and lapland, the relative proportion of plants of this family is one-lualf less than in the temperute climates.
The Ifguminoiug plants (to which the l'ea, the Bean, \&c. belung, and such as bear papilionaceons thowers, nhound most in the equinoctinl regions: they diminish gradunlly in each hemisphere in diverging linom the equator, except indeed in certain countries where particular geurra, by the multiplicity of their species, give a peculiur feature to the vegotution, as in Sibrrita and the vast previnces of Russia, where so many Antragali or Bitter-vetches are found.
Mr. Brown has judiciously separated the natural order of Rubiacea into two greups: those with verticillate leaves and no stipulea (the Stellate of Linneus), to which belong tho (ioosegrewss (Galium), Madder (Rubia), \&c., and whiel are alnoat peculiar to the temperate zones; and the true Rubiacea, with opposite pairs of leaves, and two opposite stipulea (whiel aro in lact abortive leaves, and thus shew their affinity with the Stellata), te which belong the reul medieinal barks (or Cinchona), and seme other nearly related plants posgessing similar virtues: these latter aro almost whelly confined to the equinoctial regions.

The twe well-known and extensive natural families, the Umbellifcrous and Cruciferous plantr, ure very rare in the tropics, if we except the mountains. Thoy abound in the south of Europe, and especially about the valley er basin of the Mediterranean.

Secr. IV.-View of Botanical Regions.

To divide the globe into botanical regions or districts will not be difficult, seeing that certain conutries possess a peculiar vegetation, and that numerous impediments prevent emigration; seejng, too, that certnin forms or tribes are incompatible with certain climates. M. De Candolio has constituted twenty of those regions; but altheugh each is, to a certain degree, peculiar in its vegetable productions, it weuld require more space than we can devete to sueh a subjeet to charucterise them. We must, therefore, centent eurselves with giving a bare list. 1. Hyperborean region. This district includes the northern extremity of Asia, Europe, and America; and gradually merges into the following. 2. Europecth region; comprising all Europe, except the part bordering upon the pole, and the southern districts appronehing the Mediterranean. To the east it extends te the Altaic mountains. 3. Siberima region, comprehending the great plains of Siberin and Tartary. 4. Mediterrancan region; comprising all the basin of this great inland sea; that is, Africa on this side the Saliara, and that part of Europe which is sheltered from the north by a more or less centibued range of mountains. 5. Oriental region; thus called relatively to sonthern Europe, and contuining the conntries bordering upon the Black and Caspinn Seas. 0. India, with its archipelngo. 7. China, Cochinclina, and Japan. 8. New Holland. 9. The Cape of Good Hope, or southern extremity of Africa, beyond the tropica. 10. Abyssinia, Nubia, and the Mozimbique Coast (imperfeetly known). 11. Equinoctial Africa; viz. the neighbourhood of the Congo, the Senegal, and Niger. 12. The Conary Isles. 13. The United States of North Ameriea. 14. The Western and Tempernte Coasts of North Anerica. 15. The Wrst Indiun Isles. 16. Mexicn. 17. Tropical South Ameriru. 18. Chili. 19. Southern Brazil and Buenos Ayres. 20. The Straits of Magellan.

Muny of the productiens of these regions will be considered somewhat at large in other parts of this work; and we shall conelude our introductory sketeh of Botanical Geegraphy by a notice of Professor Scheuw's Phyto-Gengraphies or General Botanical Division of the Globe. This is illustrated by a map, which accompanies this memeir. Unlike M. De Candolle, Professor Schouw characterises the regions by the most remarkable feature of thei vegetation, adopting commonly used geographical terms only where he conceives that a certhin division of the earth ought to constitute a distinct region, but is not sufficiently :equainted with its productions to determine and define their forms. He makes the characteristic feature of his regions to depend on these facts: first, that at least one-half of the species should be peculiar te that regien; zecondly, that at least a quarter of the genera should belong exclusively to it, or at loast have there a decided maxinum, so that their species in other districts might merely be censidered as their representatives; and, thirdly, that individual families of plants be either peculiar to the region, or else have their maximn there; nevertheless, when this last characteristic is wanting, while the difference in genera and species is very considerable, it may yet be arlmitted as a region.

Professor Schouw in this manner reekons twenty-two regions:-
(1.) Rraion of Saxiffages and Mosses, or the Alpine Aretic Flora.-This corresponds with De Candolle's first region, and comprehends all the comntries within the polar eircle; namely, Iaplund, the north part of Russia and Siberia, Kamtsclatka, Russian Aineriea, part of British America, Greenland, and Ieeland; but Professor Schonw adds to it, with mueh propriety, part of the Scottish and Scandinavian mountuins, as far as they fall within the alpine regrion, as also the monntains in the southern and ceutral parts of Europe, inasmuch us they are rolated to the alpine regions. It is characterised by the abundance of mosses and liehrus, the presence of the Nuxifragrs, Gentians, Chickweed tribe (Alsimer'), Nedges, and Willows; an entire absence of tropical funilies, a considerable decrease of the peculiar

Part II. portion of bear papily in each e marticuetution, as etches are
o proups : relong the temperate e stipules to which lants posregions. uciferous the south

Book III.

IN ITS RELATION TO BOTANY.
forms of the temperate zono; by the forests of beceh or fir, or else the total want of trees; the scarcity of animuls, und the prevalence of cuspitose plants, whose blowsons ase harge in proportion, and generally of a pale coleur.
(2.) Region of the Uinbelliferons ant Cruciferous plants.-This trile takes in the whole of Europe, except what belongs to the preceding division, from the I'y renees, the thontains of the suath of France, of Switzerland, and the north of Greece, the greater part of Siberia, and the country about Mount Caucasus. Sehouw has charncterized it hy the rucifirous und unbelliferous plants, because they form a larger portion of the total number than any other kinds, und becuuse it may thus be best separated from the vegetation of North Ainerica in the sames purallel. It is not ensily distinguished front tho next region; but it may be suid of it, that Fungi abound more, that the Rosaceous family and the Crowfoots (Ranonculacee), the Amentacebus and Coniferous tribes (l'ines), form rather a large proportion; that it beara a resemblance to many of the polur forms, especially in the abundance of its Nedges (Cyperaceu); that its meadows are most flourishing, and thit nlmost all the trees aro deciduous in winter. In the northem part of this region, the Cichoracea (a tribe of the Cumpositas or syngenesions plants, inchading the Endive, Lettuce, Dundelion, se.) much prevail; while in its southern division, or in northern Asia, the Cynarocephala (Artichoke und Thistle tribes), together with the Butter-vetches (Astragali), und Sulise plants (Sea-worts and Glassworts), seem to have their maximum.
(3.) Region of the Labiate flowers and Caryophyllea (to which the Pink, the Catehfy, the Sumdworts, \&c. belong); or the Mediterranean Flora.-This is bounded on the north by the Pyrenees, the Alps of Switzcrland and of the south of France, and the north of Greece, and thus includes the three peninsulas of southern Europe, namely, Spain, Italy, and Greece; on the cast by Asis Minor and its islands; on the south it takes in Egypt and all the north of Africa us fur as the ileserts; and, lastly, it includes the Canary Islands, Madeira, and the Azores. It is marked especially by the two families above mentioned, which are mueli rarer both to the north and sonth of the countries just enumerated, and in the corresponding parsllels in North America. The Composita, the Stellate (Goosegrass, Madiler, \&cc.), and the rongh-leuved plants (Asperifolia), ure here in considerable numbers, as well us in the similar latitudes. A few tropical plants, or individuals allied to them, now appear; one or two Pulins, the Laurels, the Arum tribe, the Terebinthucea (Pistacia, \&e.), sone tropical grasses and true Cyperueve, Nightshales (Solancue), Leguminous plants, the Mallow and Nettle tribes, and the Spurges (Euphorbiacea), increase; Evergreens are numerons; vegetation never ontirely ecases, but verdant mealows are more rare. 'l'his region may be subdividod into provinees: of the Cisti, Spain and Portugal; of the Sage and Seabious, the south of France, Italy, and Sicily ; of the shrubby Lubiata, the I evant, Greece, Asia Minor, and the southern part of the Caucasian country ; and of IIonselerks (Semperviva), the Canary Isles, probably also the Azores, Madeira, and the north-west coast of Africa. Many Semperviva, somo succulent plants, Spurges and Cacalia, characterise especiully this province.
(4.) The Jopanese region.-The eastern temperato part of the old continent, namely, Japan, the north of China, and Clinese Tartary, probably forms a peculiar region; but we are too little acquainted with the botany of these countries to almit it with certainty, and still less are we able to define correctly the characteristics of its Flora. Of the $\mathbf{3 5 8}$ genera found in Japan, 270 occur in Europe and the north of Africa, and about the same number in North America; so that its Flora scenis to occupy a middle place between those of the old and new worlds. Its vegetation, indeed, appronches more to the tropical than to the European; for we meet with the Cyeas family, the Scitaminea (to which belong the Ginger, Cardamom, $\mathcal{\&}$.), the Bunanas, the Palms, the Anona or Custard-apples, and the Sapindacea; so that there is a consilerable affinity, as might be expected from its situation, to the flora of India. The timilies of the Buckthorns (Rhamnj) and Honeysuckles are found in a relatively considerable number, and they exhibit some peculiar genera; thos, perhaps, this region might be corrcetly termed that of the Rhanni and the Caprifoliacea.
(5.) Regiou of the Asters and Solidagos (Michaelmas-daisics and golden-rods.)-The eastern part of North America, with the exception of such as belongs to the first or srctic district, comprehends without doubt two regions; for amongst. 417 genera in Walter's Flora of Carolina, 117 are wanting in Barton's Florn of Philadelphia. The northern divisions of the United States have, indeed, but few genera which do not occur also in the southern; but this only shows that a similar relation exist. here to what takes place between the north and south of Europe. The southern region will include Florida, Georgia, Alabama, Mississippi, Lanisiana, und Carolina; the northern contains the otleer states of North America. What chamaterises this region is (besides the number of specics of the genera Aster and Solidago), the great varicty of Oaks and Firs; the very few Crucifera and Umbellifera, Cichoracea and Cynarocephala; the total absence of the genus Erica, and the presence of more numerons specics of the allied family of Vaceininm (Whortlebersies) than are to he met with in Kurope.
(6.) Regrion of Mugnolie.-This, which comprises the southern parts of North Americe, is separated from the preceding region by the number of tropical forms which here appeat,
and which show themeelven more frequently than on the ximilarparallels of the old continent (such, for instnnce, an the Scitaminea, Cychilea, Anonaccar, Sapinducca, Melastomea, Cueti, de.) From the old world, too, in corresponding latitulen, it is still flurther diatinguishod by a ymaller proportion of Labiata and Caryophylliat; and by laving more trees of
 chestnul, sc.) and with pinnated leaves (the (ileditsihia, Rodinlar, Acucia, s.c.)
(7.) Region of the Caeti, Prppers, nnd Nelnstomun ; a very exteusive repion, ineluding the lower districts of Mexico, Guatemala, the West Indies, New Grenula, Venezuela, Guiana, und l'eru, perhaps also, a purt of Brazil; in short, all intortropical dmeris, ' The three fumilies liere mentioned appear peculinaly to characterise theae conntrina ; for the flrst belongs exclusively to Americn, and of the other two there exint compuratively few species out of theme districts. Palms, the Rubiacea, the Solanea, (in which aro clasmed the Nightshades and l'otatoe), the rough-leaved plants (Boraginew), the Passion-flowers and Composita, are liere very common. It may admit of soveral provinces, as that of the ferns and Orchidea (in the West Indin islands); of the Palms (the continent of sunth America,) Brazil ought certainly to constitute a peculiar province, if iudeed it be not a distinct region; and the worke of Spix and Martius, St. Itilaire, the I'rince de Neuwied, \&c., will soon enable us to characterise its vegetnble forine. The Melastome and Palma appear tobelong to the more numerous inmated of this region.
(8.) Region of the Cinchonce (or Medicinal Barkn.)-It appears from Ilumboldt's workn that the middle districts (such at least in respect to their altitude) of ' South America shoulal form a distinct region from that last mentioned, as they differ considerably from the low lands; and the nane now proposed seems to bo churacterintic of their vegetation, at least of Peru and New Grenada, though certainly not of Mexico, where the epecies of Cinchona are wanting.
(9.) Region of Escallonia, Vaccinia (Whortleberries), and Wintere (Winter's Barks). -These, according to IIumboldt, occupy the higheat parts of South America. Bewides the plants mentioned, there belong to this region many species of Inobelia, (isntian, Nlipperwort (Colceolaria), Sage, several European genern of Girasses, Brome, Festuca and Pon, the Cichoracea, as Iftpocharis and Apargia; as well as the more atrictly apeaking alpine plants (Saxifruges, Whitlow-gresses, Sumdworts, and Sedges.) Perhaps aleo those parts of the high lands whero the specties of" Onk and Fir flouriali beleng to the same region, though in ull probability they constitute a peculinr province.
(10.) Chilian region.- It appenrs that Chili should form a distinet region; for annongst the genera which appear there, not one halt are found in the low distriets of South Anerica. Its character, perhajs, most resembles that of the mountainous country in its slipperworts, Escallonia, Weinmannia, Baa, Bellfowers, and Budellea; but yet the difference is scarcely sufficient to constituto it a province. The Florn of this ceuntry uppears to be essentially distinet from that of New Holland, the Cape, and New Zealand; though an approtich to them is observable in Goodenia, Arancaria (Chilian pine,) the I'rotea finnily, Giunura, sad Ancistrum.
(11.) Region of arborescent Composita (syngenesious plants with tree-like stems.)This takes in Buenos Ayres, and in general the casteru side of the temperate part of South America. It has been already remarked, that the Flora of this district of the world agrees to a considerable degree with that of Europe; mongent 109 genera, 70 aro likewise Europeun, nnd 85 in the north temperate zone. On the other hand, it differs considerably from the Floras of the Cape and of New Hollund, for the Proteus, the Myrlle tribe, and the Mimosas are either wholly wanting, or are scen but sparingly; and there are no Epacrida, Ifeaths, Iridea, Mesembryanthema, or Geraniums. Nor can it be compared with the Flora of the north-west const of America; for amongst 189 genera mentioned, only 85 are found in Chili. The charucteristics of this region seem to lic in the great number of Arborescent Syngenesia, (particularly of the sub-fumily Boopidec), which, however, do oot exclusively appertain to it, but are also seen at the Cape.
(12.) Antaretic region.-This includes the countries near the Strsits of Magellan. There is a considerable affinity between the vegetation here and what is seen in the north temperate zone; for, amongst 82 known genera from thence, there are 59 of them which have species in the northern hemispherc. The arctic polar forms also appenr, such as Sedges (Carices), Saxifrages, Gentians, Arbutus, and Primroses. Some resemblance to the highlands of Sonth America and to Chili is also shown in the Slipperworts, Ourisia, Baca, Bolax, Wintera, Escallonia; to the Cape, in the gencru Gladiohes, Witsenia, Gunnera, Aneistram, Oxalis; and to New Holland, in Proteacee and Miniarum,
(13.) Region of New Zealand.-This well deserves to be characterised as a soparate region, although its vegetation be a mixture of what prevails on the nearest continents, as South America, Southern Africa, and New IIolland. It has, in common with Sonth America, Ancistrum, Weinmannia, Wintera; with Southern Africa, the Fig Morigolds, Gnephalium Xrruuthema (Everlastings), Tetragonia (the fumous New Zealand Spinach), Woodaorrel, and Passerina; and with New Holland, the Epacris, Mclaleuca, Myoporum; with

Boos 11I,
IN ITS RBLATIION T'O BOTANY,
253
both the latter, the fumilies of' Protenefan and Rentiacea: some apecles also aro conumon both to New Ilolland and Vna liemsen's lamd, fior instanco Mniarum biftorum, Nomolun littoralin, (ientiana montana; the flrut ulom a mutive of the Ntraits of Magetlan,
 Ioltand, together with Van Ijemen's Iand,-'This region is very markeal. 'I'he thmilies of Stuekhousce and Tremandrea are quito peculiar to New Holland, the Fiperridea nearly mo, Irotencea, Acacia, Aphyllac, and tho greater number of the Myrile finmily (expecinlly of the genera E'ucalyptus, leptospermum, Nlelalenca): the Stylidea, Rentimio, Cinnarinee, Diosmea, separate it from other regions, Tho tropical part of New Jlolland, according to Brown, can hurilly be united to thin, but must be either a particular region, whose Flora rearmiles that of ladin, or elve a province of this latter region.
(15.) Region of Fig* Marizolds (Mesembryanthema) and Stapelian.-This comprehends the sonthern extremity of Africh, the Flora of which is distinguished by a high degree of peculiarity. By the families Protencea, Reatiacee, Polygale (Nilkworts), Ifiasmeer, it may be recognised trom nost others, except New Hollani, and from this it is distinguisied by the two numerous generu Mesembryanthemum and Ntapelia, nud by the family Firieere, which is here more abundunt than anywhere else. Further charicteristica of this region may bo found in the many Iridea, Gerunia, Oxnlidea, and tho extremely large proportion of Compusitic. On the other liand, there oxist in this listrict, as in New Ifolland, but very sparingly, those peculiur forms of the northern temperate zones, the Crucifera, Ranunc:lacea, Rosaceaf, Umbelljfera, Caryophyllea.
(10.) Region of Western Arica.-We are only acquainted with Guinca at.d Congn, the vegetation of which, as we bave alrealy remarked, possesses but fow peculiar ties, and is a nixture of the Floras of Asin and America, though most renembling the former. The imerican tropical fumilies of C'ncti, Peppers, Palma, Pansion-fowern, are either abseut chitisely, or they occur in small nusnbers. Leguminose are more numerous than in Amencus. Alove two thirds of the genera and some of the species of Guinea are found also in the Fust Indies. On tho other hand, this region approximates to Ainerica, in jowsessing many Rubineca, as alno in the gonera Schwenkia, Shais (a palm), Paullinin, Mulpighia, and severa! boro which uro wantiug in Asia, and in severnl species which it has in common with America. A consilerablo proportion of Crusses and Selges (Cyperacens), with the peculiar gencs Adamsomia (the Baolah, which is the largeat known tree in the worlid), belong to the ch rnetcristics of this country. The interior of Africa is unknown to us.
(17.) Region of Eastern Afrien.-Of the coast of this side of Africa and the adjncent islands cur knowledge is imperfect. We are tolerably acquainted with tho islunds of Iourboand France; of Malagascar we know but little; and of the east coast itself scarcely anything. 'The Flora of the two first-named islands has a considerable resemblance to thit of India. Amonget 290 known genern, 106 of them (eyual to two thirds) are fonud also in India; and of tlse species, not a fow are likewise Indian; many of these, hewever, may have been introduced by the constant intercouree that takes place between these two parts of tho globe. 'Ilse genera Eugenin, Fieus (fig), Ertica (nettle), Euphorbia (spurge), Mr'lyaarua, P'anicum, Andropogon, Sida, Pandants (scrow-pine), Drucana (dragon-wood), Conyzu are very numerous in species, as are the same genera in India. In frrins, these islands are peculiarly rich. Again, their florn differs considerably frons the South African; an analogy existing, however, in their possessing single representatives of the Cape geuera Frica, Ixia, Gluhliolus, Bleria, Mesembryanthemum, Seriphiam, and nevernl arborescent Syngenesia. Still less is the affinity to the extra-tropical parts of New Ilolland. The similarity is stronger to the tropical portion of that country, of which the flora nlso appronclies that of India. Single gencra are all that it geems to possess in common with Ainorice; for instance, Meliencca, Ruizia, Dodonan, Dichondra. Tho liolowing are, perhm, we culiar to this region, Latania, IIabertia, Poupartia, T'ristemma, Pissilin, Cordyline: A: misia, Furnalia, Lubinia, and others. The flora of Mudagascar seems very peculin. It agrees with the jslands last mentioned; and several genera are seen nowhere else than in theen und Madagascar ; for example, Danais, Ambora, Dombeya, Dufouretr, Didymomilos, Senacra; several species ulso are common to both; as Didymomeles Nulugarcerjannis, Danais fragrana, Cinchona Afro-inda. Still, among the 161 known genera from Madagascar, FA only are lound in the Isles of France and Bourbon; so that there nigl to good grounds for forming a separate region of the first; unless, perhaps, the eaft eonst of Afrien shonld come uniler the same. With New IIolland and the Cape, Madagnsear bas probably still lows in common than the two other islands.
(18.) Scitaminean region (of the Turmeric, Zedoury, ('urilamom, Imlim-shot, \&c.), or the Indian Flora.-To this appertain India, cast and west of the Gangong torether with the islands between India nal New IIolland; perhaps, also, that divisions of New Holland whith falls within the tropics. The Neitanincer are here in fir greater numbers than un Anerica; also, though to a less degree, the Jeguminone, Cucurbitacra. Tiliaced. The previonsly mentioned South Ainerican forms are rare, or else wanting. This region shonld be separated

Vol. I.
into several provinces; but as yet we know too little to undertake such a division with any degree of certainty.
(19.) The Indiun highlauds ought to form one or perhaps two regions, their vegetation being very dissimilar to that of the lowlands: in the inidlle region, Melastoma, Orchidea, and Filices, appear to prevail; in the ligher, the vegetation is more like the European and North Asiatic, and prolubly the Japanese: these districts perhaps constitute one region with the whole of Central Asia; but of all these countries we shall know much more when the Flura of India by Roxburgh and Wallich is completed.
(20.) The Flora of the Nouth of China and of Cochinchina partly resembles that of India, especially in regard to families; but still Loureiro's Flora contains a great many peculiar renera. It is truc that perhaps the number of these genera might bo reduced; but even then, the vegetation of this tract will probably prove sufficiently peculiar to constitute a distinct region.
(21.) The region of the Cassia and Mimosa, which prevail particularly in Arabia and Persin, seems likewise to have a goosl right to be separated from India, as it is already sufficiently distinct from the Mediterrancan region (No. 3.); for, of 281 genera mentioned by Forskal, 109 only are found in the south of Europe. It is more probable that the Flora of Nubia and part of Central Africa appertains to this region. Abyssinia perhaps forms a distinct region, its elevated parts possessing such a different climate.
(22.) The islands in the South Nea which lie within the tropics form perhaps a separate region; though with but a slender degree of peculiarity. Among 214 genera, 173 are found in India; most of the remainder are in common with America; for instance, Chiococca, Weinmaznia. Guajacum. Of the species which exist equally in them and Asia, are Zapania nodiflora, Kyllingia monoccphala, Fimbristylis dichotoma, Tournefortia argentea, Plumbago zeylanica, Morinda umbellata, Sophora tomentosa. In common with America, Dodonea viscosa, Sapinilus saponaria (soap-berry): with both Rhizophora Mangle (mangrove tree): it has also some in common with New Holland, as Daphne indica (n species of Spurge Laurel). Peculiar families, or such as have there a decided maximum, can searcely be cited; though, on the other hand, most of the species are peculiar. The Breadfruit is among the characteristics of these islands; though this tree is not confined to the South Seas.
The limit of the present essay does not allow of the intended introduction of the geographical situation of many of the more useful and important plants, which Professor Schouw has so ably delineated; such as that of the Beech, the Vine, the Fir tribes, the Heaths, Corn, and such fruits or vegetables as are employed as bread: the Palms, the Protcaca, which form so remarkably striking a feature in the Cape of Good IIope and in New Holland; the Composita, which are perhaps more universally diffused than any other kind of plant; the Crucifere, to which the Cabbage, Turnip, Mustard, Scurvy-grass, \&c. appertain; and the leguminous tribes, whose seeds (as the Pea and Bean) are so valuable for man, and whose foliage, as the Lupine and Trefoil, \&e. affords most of the nourishment to cattle. We must endeavour to incorporate these with the vegetation of the various regions where they are found in the greatest abundance.

CHAPTER II.

grography considered in relation to the distribution of man and animals.
The geograplic distribution of animated beings is a branch of natural history which only of late years has engaged the attention of philosophers. The celebrated Blumenbach was the first, we believe, who generalized the numerous facts connected with the plysiology of man, and proved that all the varietics may be referred to certain types of form, equally distinct in their physical structure and in their geographic distribution. But whether from prejudice, or from the varied and comprehensive sphere of zoology, which renders the subject too vast for the power of any one mind, certain it is that animal geography has been almost neglected. Isolated details, relative to particular countrief, classes, or families, have been successfully investigated; but no one has yet attempted to generalize these materials, and use them towards the discovery of the laws of creation. An attempt to ascertain the range of particular species simply within a certain distriet or kingdom, is merely an inquiry into their local distribution; but it our views are extended beyond such confines, and we embrace a large portion of the globe, tracing the relations of ite animals, with those of the remaining portions, it is then only that we enter upon the comprehensive subject of geographic distribution.

The inquiries relative to physical distribution, when directed to the animal world, assume a higher importance than those, however interesting, which regsrd plants: for not only do animals appear incalculably more numerous than vegetables, but their natural range, dependent in a multiplicity of concurrent causes, appears to be much more distinctly marked.

Part 11. with any

cgetatien

 rchidea, pean and gion with when the t of India, peculiar but even nstitute a rabia and is already nentioned the Flora s forms a
the geo-

 Schouw c Heaths, Protcaca, Holland; of plant; ppertain; for man, to cattle. ns whereمodes III.
IN ITS RELATION TO MAN.
Plants, inderd, in a great degree, nre stationary beings; but nature has wisely providec' for their removal and dispersion to the most distant regions, by the diversified structure or tenacious vitality with which the seeds of numerous families are endowed; hence they becone rransjoited by various natural causes to distant shores, and, withont any assistance from linman aid, take root, flourish, and incresse, in lands far distant from those which appear to tave been their native regions. It is otherwise with animals: they may, it is true, be removed from their birth-place, and even become domesticated snd naturalized elsewhere; but, with the exception of those which scem to have been originally destined for the service of nam, such naturalization is only effected by artificial means, and by slow degrees, through several generations. If such transported animals be left to themselves, or rather to the natural resources for supporting life peculiar to their new abode, they almost invariably pine and die. Again, plants, from being inferior to animals in the complexity of their structure, are, perhaps, necessarily dependent on fewer causes for retaining the vital energy; their dispersion is, consequently, upon the whole, much more extensive. It msy be mentioned, in support of this remark, that out of $\mathbf{6 0 0}$ plants discovered in tropical Africa by Professor Smith, one-twelfth have been ascertained, by Robert Brown, to be natives also of India and South America. Now, if either the vertebrated or invertebrated animals, not aquatic, of Western Africa, were compared in a similar way with those of the parallel latitudes in America and India, the proportion collectively would hardly smount to one in a hundred: indeed, with regard to the vertebrated orders, it is very questionable whether even one species is truly indigenous to tropical Africa and to America; so totally different are the zoological features of these continents, even at their nearest approximation: and yet, in the above number of plants, no less than twenty-two species are enumerated, as common to equinoctial Africs, India, and America. These facts, while they strengthen the belief that zoology is a more favourable field than botany for discovering the laws of natural distribution, lead us to consider the modes by which such inquiries are most beneficially prosecuted.

Sect. I.-Modes of investigating the Subject.

The powerful effect produced on animals by temperature, food, and loculity, are known to all: whether as regards the range of any particular species, or the numbers of which it may be composed. The effect of these agencies is indeed so great, that some writers have looked upon them ss primary causes, and have imagined that by such laws alone has nature regulated the distribution of the whole animsl creation. Very many instances, no doubt, from among the diversitics of animal structure, may be urged in support of this theory; but how far it can be reconciled with other and more general facts, which will be apparent on a wider view of the subject, we shsll hereafter investigate. It is clear that, by whatever laws Nature may have been guided, numerous exceptions will be found, proportionate to the vast and slmost infinite variety she has displsyed in her productions. There is, perhaps, no theory professing to explain the laws of Nature, whether on animal distribution or natural affinities, which the wit of man could possibly devise, that might not be supported with great plausibility, by certain facts, presented by those radiating threads of connexion, and those apparent deviations from her general laws, which are everywhere appsrent: yet these will frequently be opposed to other facts; and thus it becomes necessary, before determining on which side the preponderance of evidence lies, that we take as wide a survey of the general distribution of animals as the existing state of knowledge will admit. To set out with the belief that the laws of geographic distribution are fully ascertained, and that nothing remains but to make ourselves acquainted with the range of individusl species, is a doctrine which can only be compared to those principles of classification insisted upon by the methodists of the last age in natural history, who considered that all the generic groups had been discovered, and that future naturalists had nothing left but to appropriate to them the newly discovered species, in the best manner they could.

Towards the discovery of the natural geography of animals there is, however, another mode of investigation, analogous to what we now pursue, in searching after the truo serie: of their affinities: this is, to lay aside all preconceived theories, and to begin with considering the primary causes of geographic distribution to be, what in truth they really are, totally unknown. We are thus compelled to take a general survey of all the existing animals yet discovered, and now dispersed over the globe; and, from the facts so elicited, endeayour to attain such general inferences as are supported by a preponderance of evidence, turnished by nature herself. By the first method, as it has been truly said, we make nature bend to our own arbitrary theories; white by the sec ond we humbly enleavour to receive her instructions; striving to obtain a glimpse of that stupendous plan which can never be fully understool by fallible and imperfect mortals.
The gengraphic distribution of man is connfeted in our survey with that of animals; not so much in compliance with the popular notion, by which the noblest work of God is classed as a genus next to the brute, but because we may fairly presume, from the great diversity
observed among the human species, that their variation and dispersion is regulated by some general plan; and that such plan may be analogous to that which is apparent in the distribution of animals. It may be urged, indeed, that such a remarkable coincidence, if proved, might tend to sanction the modern theory of classing man and brutes together; but the only legitimate construction which we think could be fairly drawn from such a fact would be, that there is but one plan of geograplic distribution and of creation throughout nature.

Against classing man with quadrupeds we must enter our decided protest. And here we cannot refrain from expressing regret that a naturalist of no ordinary talent has zeeently adopted this degrading theory, in apparent opposition to his former most just and philosophic views of the subject. He admits "the greatness of the gulf between man and the orang outang;" yet, becanse they possess certain analogies of physical structure, is it a necessary conclusion that they form one group? (Linn. Trans. xvi. 1. p. 22.) This, at least, was not the opinion (as this philesopher candidly admits) of either Aristotle or Ray, whom he justly considers the two greatest zoologists that have ever existed. It has been argued that the natural pride of plilosopby withheld such men from classing themselves with brutes; but we are more disposed to think they were influenced by ligher considerations. However this may be, there is an innate repugnance, or rather a disgust and abherrence, in every human mind, enlightened or illiterate, against the admission of such a relationship. Revelation cverywhere places mas, cven in his fallen state, in absolute contrast and contradiction with "the beasts that perish." It is not merely a feeling of pride; it is an innate loathing, engrafted in our nature, apparently for the very purpose of teaching us how immeasurably far we nre removed from the brutes that have no understanding. Man has fallen, miserably fallen, but this is from the corruption of that pure spirit with which he was created: his form was then, as it is now; nor are we to suppose that man, as he came fashioned by his Creator, without sin, was clothed in a different form to that which he now, in a sinful state, exhibits. Are we then to place such a being in a zoological circle, surreunded with npes and baboons? or are material and imınaterial natures so closely allied, that they may be classed together?
There is another argument against including man in the zoological cirele, furnished by the very theory upon which that hypothesis is built. If the circular system is part of the system of nature, which at this time of day is perfectly demonstrable, every being has two aifinities: by the one, it is connected to that which precedes it; by the other, to that by which it is succeeded. Now, belore we can bring man within the cirele of the Quadrumana, on the strength of his affinity (whether near or remote) to the orang outang, we must show to what elass of animals he is connected on the other hand. What then are our douhle affinities in the vertebrate circle? We may be allied distantly, perlaps, to Simia. But where is the secend affinity? If this cannot be pointed out, the whole theory, in our estimation, falls to the ground, since the prespmed type of the animal kingdom contradicts the laws by which creation is supposed to be iegulated; man exhibiting a single affinity, and the rest of organised matter a double one. Take him from the animal circle,-place hin between matter and spirit;-and his double affinities become at once apparent.

A general sketch of the plysical peculiarities of man in all his variations will first claim our attention; the regions inhabited by the different races, and the affinities by which they appear connected, will also be briefly noticed. This part of our subject will be conductel on a somewhat different plan from that which we shall pursue in the sequel. The profound researehes of Blumenbach and Cuvier, and the acnte and patient investigations of Lawrence and Pritchard, have all conspired to produce nearly the same general cenclusinns on those points to which we shall particularly draw the reader's attention. These conclusions, moreover, demand our fullest confidence, from being founded on as rigid analysis as the nature of the subject will admit. Hence, we have no need, in this place, of entering into details, or of pursuing the sume mode of investigation to which we shall have recourse when subsequently treating of animal distribution.

Sget. II.-Varieties of the Human Race.

The varicties of the human race, according to the opinion of the greatest comparative anatomist, may all be includel under three primary divisions, between which, in their typical examples, a very marked difference is observed. These M. Cuvier has termed, 1. the fair or Caucasian variety; 2. the yellow or Mongolian; 3. the black or Ethiopian.

The elassification proposed by the celebrated Bhmenbach, although apparently different, is but a modificution of that promulgated by Baron Cuvier. The former considers the Ethiopian type as divisible into three, 1. the American; 2. the Negro; and 3, the Malay. The latter indicaters these alditional races, but considers their peeuliarities as less prominent than those of the two former; he does not therefore admit them among the primary divisions of the human race. Without, at present, offering any opinion upon this question, we shall first take a rapid survey of the peculiarities, physical and moral, of all these groups.
(1) The Caucasian race (fig. 70.) is typically characterised by a white skin; red cheeks;

copious, soft, flowing hair, generally curled or waving; ample beard; small, oval, and straight face, with the features very distinct; expanded forehead; large and elevated cranium; narrow nose; and small mouth.

The moral fcelings and intellectual powers of this race have been developed in the highest degree of perfection which human nature has ever exhibited. The Caucasian has given birth to the most civilized nations, both in ancient and modern times, and has always exercised dominion over the rest of mankind, when not opposed ly a vast superiority of physical strength. The mighty nations of antiquity, and the no less resistless powers concentrated in modern Europe, evince the superiority of this race in all that ennobles the immaterial part of man, and all that renders him formidable to his fellow-creatures; while every age witnesses a progressive but a surprising advance in all those qualities which indicate intellectual endowment.
The original scat of the Caucasian race is supposed, as the name implies, to have been that lofty chain of mountains between the Black and Caspian Seas. This supposition, as Lawrence observes, is in unison with all that can be traced of the original abode of our first parents; and is further confirmed by the natives of these regions being, to this day, the most beautifully formed of all the irhabitants of the earth. From the Caucasian Alps different branches of this race diverge in every direction, as from a common centre; the peculiarities of each being modified, altercd, and finally lost, in proportion as they recede from the original seat of their tribe.

Of the branches of the Caucasian race, the most powerful is the Pelasgic, which spreads over the greater part of Europe and Western Asia at its most northern limits, while it blends with the Mongolian race by means of the Fins and Laplanders. From this branch sprang the powerful nations of Greece and Rome, which have been succeeded by the mighty kingdoms of modern Europe. The next is the Syrian, which takes a southerly direction ; and includes that portion of Asia formerly inhabited by the Assyrians, Chaldeans, and the ancient Egyptians. The Indian branch, by some thought to be the same with the Pelasgic, passes to the East, and loses itself among the inferior casts of Hindostan. A fourth branch is the Scythian or Tartaric, which spread over the more northern parts of Asia; and gave birth to those wandering and ruthless hordes who, by the physical power of numbers, devastated and finally overthrew the polished empires of Greece and Rome. The wandering and pastoral halits of this tribe have conspired to prescrve their peculiarities unmixed with those of the neighbouring nations; except, indeed, in Lesscr Tartary, where this branch of the Caucasian race loses itself in the Mongolian.
(2.) The Mongolian varicty (fig. 71.) has these characteristics:-The skin, instead of

white or fair, is olive yellow; the hair thin, coarse, and straight; little or no beard; broed flattened face, with the features running together; smail and low forehead; square-shaped cranium ; wide and small nose ; very oblique eyes; and thick lips. Stature inferior to the Caucasian. In this race the moral and intellectual energies have been developed in an inferior degrec. Tradition, indeed, has assigned to the most powerful nation, the Chinese, a high degree of civiization, at a period when Europe was in a state of barbarism. Yet there are many circumstances which throw considerable suspicion on this fact: and even if it be allowed, a stronger proof could not possibly be produced to show the limited intellectual powers of this

Vol. I.
22*
2 H
race; for while the European Caucasian nations have advanced from rude savages to become masters of the world, the Chinese, after reaching a certain state of civilization, have remained stationary, in every respect, through a long serics of ages; Solitary exceptions cannot invalidate the fact; and while we know that, not only in our own times, but so thr back as history informs us, neither the sciences, the inventions, nor the improvements of tho last threo centaries have changel the Mongolian nations from what they then were, we can cone to no other conclusion than that they are nationally incapacitated from further inprovenuent. Cuvier supposes that the origin of the Mongolian race may lhave been in the mourtains of Altaï. From theuce it has spread over the whole of central and northern Asia, where it is lost among the Esquimaux on the one hand, and the Caucasian Tartars on the other. It further extends to the Eastern Ocean, and includes the Japancse, the Coreans, and a large portion of the Siberians. Its limits to the south appear to extend no farther than to that part of IIindostan north of the Ganges, while the Mongoiian fentures only predeminate over those of the Indo-Caucasian in the lower casts of the Eastern Peninsula.

The origin of the Esquimaux and other polaric nations found on the most northern limits of Europe and America, has given rise to great diversity of opinion. Arguments of nearly equal weight, but of opposite tendency, have been employed to show, on the one hand, that the Esquimaux belong to the American variety; and on the other, to prove their structure more in unison with that of the Mongolian. The latter epinion has been supported by Mr. Lawrence; and although we consider the weight of argument to be on this side, it appears not at all improbable that both these suppositions are in part correct. We have before observed, that the characters of each race become less and less apparent, the farther they are removed from their particular type. The proximity of the northern regions of Asia to those of America, renders it highly probable either that their respective inhabitants mingled their races at a remote period, or that the northern Mongolians, whose civilization is supposed to be of so great antiquity, were the first to emigrate, and people the northern regions of America. At all events, it appears certain that the Esquimaux nations unite in themselves many of the characters of two distinct races; and the only theory by which we can reconcile these doubts on their true origin, is that of supposing thein to form the link of counexion between the Mongolian and that race which spreals over the remaining portion of the new world. The brief notice we have now taken of tho two most powerful races or varieties of the human form is sufficient to show their marked superiority over all others, whether as regards the symmotry or beauty of their physical structure, or the still more striking developement of their moral powers. Hence they both become typical, although in different degrees, of that perfection which the Creator has bestowed upon man, in this his probatory stale of existencc.

The third primary division or leading varicty of the human race, according to the views of the illustrious Cuvier, is the negro or Ethiopian. This, again, presents three variations, considered by Cuvier as secondary, and by Blumenbach as primary. Although these variations are not so great as those between either the Caucasian, the Mongolian, or the African (the latter being considered the type of the Ethiopian variety), still they are sufficiently important to merit a particular specifieation under distinct names; and they are accordingly termed the American, the Ethiopian, and the Malay varieties.

In the American varicty (fig. 72.) the skin is dark, and more or less red• the hair black,

straight, and strong, with the beard small; face and skull very similar to the Mongelian, but the former not so flattened; cyes sunk; forehead low; the nose and other features being somewhat projecting. The moral and intellectual character of this race is in nnison with the great difference it presents in outward form frem the Cuucasian. Liko the Mongolian, it has remained stationary; but stopped at a point very much below that to which the Asiatics lave reached. The ancient and now extinct empires of Mexico and the Incas may lec considered analogous to those of Clina and ludia, exhibiting the highest point of eivilization to which the two races have ever reached; but farther than this the comparison cannot be carried. Arts, sciences, and all those intellectual endowments which have fol-

Part II.

 es to become lave romais. tions cannot thar back as of the lust we ean come er inproven the mounrthern Asia, rtars on the he Cotcans, extend no ngolian feathe Easternthern limits ts of nearly e hand, that ir structure ted by Mr. , it appears have before arther they of Asia to nts mingled tion is suptern regions themsolves can reconof connexrtion of the es or variears, whether re striking in different is probatory o the views variations, these variathe Atrican iciently imaccordingly

Booz III.
IN ITS RELATION TO MAN.
lowed the progress of the Caucasian race, and to a certain extent belong also to the Asiatics, appear to have made little or no progress among the Americans, even in the gorgeous court of Montezuma. When that monarch despatched messengors to bring him an account of the first Spaniards who landed on his territories, so ignnrant were the Mexicans of figures or of writing, that their report was made in complicated hieroglyphics, mixed with rude figurea of the horses and persons of these unknown invaders. Their idolatrons worship enjoined no moral duties, like those of the superstition of Fo ; and its rites were celebrated by human sacrifices of such a revolting nature as to be worthy only of demons. It deserves attention, that while the central portion of America presented in its original inhabitants such a degraded picture of the human mind, the northern nations of the new world, partaking more of the Mongolian aspect, evinced a higher degreo of intellect. It is true they were only wandering tribes of hunters, yet they appear to have had a full belief in the existence of one "Great Spirit"" and in a blissful immortality for themselves. The American race, blending with the Mongolian to the north, spreads over the whole of the new world; but whether any traces of this type exist beyond these limits, is a question which has not hitherto been investigated.

In the Ethiopian variety (fig. 73.), the skin is black; hair short, black, and woolly; skull

compressed on the sides, and elongated towards the front; forelead low, narrow, ard slanting; eheekbones very prominent; jaws projecting, so as to render the upper front teeth oblique; eyes prominent; nose broad and fiat; lips (especially the upper one) particularly thick. The African or Ethiopian race has ever remained in a rude and comparatively barbarous state. Their cities are but congregations of huts; their laws, the despotic whim of the reigning ehief. Incessantly oecupied in war or in the chase, they seek not to perpetuate their ideas. They have no written language, nor even a code of hieroglyphies. Abundantly supplied by nature with every necessary of life, they have retained their character unchanged, after centuries of intereourse with the most enlightened nations. Different branches of this type spread over the whole of the African continent, excepting those parts bordering the north and east of the Great Desert, which are occupied by the Caucasian Syrians, and where all traces of the negro formation disappear.

The Malay variety (fig. 74.) varies in the colour of the skin from a light tawny to a deep

74

brown, approaching to black; hair black, more or less curled, and abundant; head rather narrow; boncs of the fitee large and prominent; nose full and broad towards the tip. Under this variety, observes Mr. Lantence, are inclnded races of men very diflerent in organization and qualities. They nevertheless present certain general points of resemblanee, which forbid ticicir association with either of the foregoing varicties. Under this head are, therefore, ineluded the inhabitants of Malacca, of Sumatrs, and of the innumerable islands of the Indian Archipelago and the great Pacific Ocean. Most of these tribes are stated to speak the Malay language, which may be traced, in the various ramifications of this diversified race, from Madagascar to Easter Island. Their moral character is no less various than their
outward form. In such as, by the colour of their skin and their woolly hair, show a general approximation to the African type, the mental powers are little developed. Their language, however, is stated to be peculiar, and they appear to have a copious bushy heard. (Laworence, 489.) Branches of this division of the Malay race spread over the great islands of' Sumatra, Borneo, and Andaman; and they appear also to occupy the Molucea and Philippine Islands. They are described as living in the same state of wild and savage barbarity as do the Bushmen of Southern Africa, and such other branches of the Ethiopian variety as appear the lowest in the scalc of form and intellect. There is, however, a lighter-coloured and superior race, inhabiting some of the Indian islands, where an oval countenance, longer hair, and finer form, evince a much greater affinity with the Indo-Caucasian type on one side, and a strong analogy to the New Zealanders and Pacific tribes on the other. Proceeding along the same insular chain, we meet with "negro-like men" having curly hair, in the immense island of New Guinca, and in those south-western groups denominated New Ireland, New Hebrides, and New Caledonim. The natives of the vast continent of New IIolland show strong indications of the same origin, and of the sane untameable barbarism; yet their features ure deseribed as not unpleasant, their skin is rather copper-coloured than black, and their hair either curling or straight. The natives of the interior have been described as somewhat morc civilized, and as speaking a language different frem that used on the coast. In the neighbouring islund of New Zenland a considerable change frem the black Malayan tribes takes place. The superior castes of these islanders in their persons are tall, active, and well made; their skin is brown, and their iong black hair is sometimes straight, sometimes curling. A degree of intellcet, superior to all the tribes we have enumerated, accompanies these personal advantages. Retaining many of the barbarous customs of their neighbours, the New Zealanders have, nevertheless, made some progress in the arts of life since their intercourse with Europeans: they believe in a Supreme Being, and in a happy immortality ; and evinee, in various ways, a desire to improve their condition. The natives of the Friendly Islands have the dark complexion of the New Zealanders, but are a much superior race. They are of the ordinary European stature, though some are nbove aix feet high ; their colour is a deep brown, verging in the better elasses on a light olive; their features, like those of the New Zealanders, are various, approximating in some respects to them, and also to the true Europeans. Their progress in civilization and in intellectual developement is considerable; as a proof of which, it is mentioned that they have terms to express numbers up to 100,000 . The Otaheitians have long been celebrated for their personal beauty: the lower orders, indeed, are of the same brown tint so generally prevalent in the Friendly Islands, but in those of a superior caste this is gradually lost, until we find in the higher ranks a skin nearly white, or at least but slightly tinged with brown; and although the usual colour of their hair is black, yet it is of a fine texture, and frequent instances occur in which it is brown, flaxen, and even red. Their persons are well made. their features sometimes even beautiful, and a blush may be readily observed on the cheek of the women. The harmony of their language, and their simple though refined manners, have been universally remarked. These natiounl characteristies extend to the Society Islands. Lastly, The natives of the Marquesas have been deseribed as the finest race in the Southern Ocean: "in form they are, perhaps, the finest in the world." Their skin is naturally "very fair," and the ewlour of their hair exhibits all the varied slades, (excepting red), which are found in the different tribes of the Cancasian race.

Sect. III.-On the Causes of these Varieties.
The following questions naturally arise from considering these characteristics of the most prominent varieties of the human race; founded as they are on the concarrent testimony of travellers, and generalised by the most eminent physiologists:-1. Whether these races, so dissimilar in their typical peculiarities, have originally proceeded from one, or from distinet stocks? 2. Are they so strongly marked ns not to present many and great deviations? and, 3. To what causes are they to be attributed?

In regard to the origin of the human race, there have not been wanting those, who, disbelieving the evidences of the Mosaic history, have attempted to establish the hypotheais that these races have each sprung from different stocks; or, that they are, in fact, so many species. Now, this, at the best, is but an assumption perfectly gratuitous; not only because every record from which it could receive any support is expressly opposed to it, but because it is in direct violation of a primary and universal law of nature: a law by which the lowest being of the animal creation shrinks instinctively from intermixing its species with that of another. It has, moreover, been fully ascertained that, however great the variations of the human form may be, such variations among different breeds of the same species of animal are even greater. Unless, therefore, it can be proved that the laws of nature with respect to man and animala are contradictory, we shall, by attaching the least weight to the above theory, openly violate every principle of philosophic reasoning, as well as renounce all belief in revealed religion. On this head the Mosaic reenrds are clear and explicit; nnd however the sceptic may deny their inspiration, he cannot bring forward, on his side, any testimony

Book IIL

IN ITS RELATION TO MAN.
of such remote antiquity, or of such generally admitted credibility. As to the second quettion, it must not bo understood that, in arranging the varieties of man under a certain number of divisions, and assigning to each a peeuliar character, there does not occur many and very remarkable exceptions in each. So much, indeed, is this the case, that there are not wainting instances of native African tribes having the light skin of Europeans, Cancasians combining the Mongolian with the Malay structure, Americans resemlling whites, and Afrieans with the copper-coloured skin of the American; nay, even in the sume island or prevince, it great diversity both in language and in physical structure, is sometimes apparent, and this hetween tribes lordering elose upon each other; so that, with the exception of a comparatively small portion of each principal race, we find so much diversity in tho remaining or aberrant branches-the typical peculiarities become so modified, altered, or evaneseent, that it is totally impossible to draw an absolute line of demareation between them.

This point has frequently been adverted to by a well-known physiologist, who says." there is no circumstance, whether of corporeal structure or of mental endowment, which does not pass by imperceptible gradations into the opposite character, rendering all those dictinctions merely relative, and relucing them to differences in degree. It is concluded, therefore, that every arrangement of these varieties must be in a great mensure arbitrary." (Luwrence's Lect. p. 472.) Yet, admitting this variation to the fallest extent, it eannot alter the correctness of the principle on which these distinctions are founded. Whatever might have been formerly thought as to the nature of terms employed by naturalists to designate the partienlar groups of animals, it is now generally adinitted that, throughout nature, there are no isolating distinetions, save such as separate species. The claracters of every zoologicul group, of whatever magnitude or denamination, are subject to exceptions equally mumerous. The typical peculiaritios may, indeed, be prominent; but in proportion to the nunober of objeets which are embraced under any definition, will be the diversity of those imperceptible gradations, those threads of connexion, which shoot out in all directions, and unite not only genera and orders, but the primary kingdoms of the animal and the vegetable worlds. It is, therefore, irrelevant to argue that, because these divisions are liable to numerous exceptions, and are not always uniform and constant, they are either artifieial or objectionable: for as we find that all natural groups, both in the animal and vegetable worlds, are subject to the same variations, they are therefore liable to the same objections. In short, if such rensoning is valid, the distinction between plants and animals can no louger be maintained; for it is to this day unsettled at what point the peculiarities of one are lost, and those of the other assumed.
The causes that may have led to these variations in the human species, form the only question of a general nature remaining to be discussed. It has been argued by some writers, that particular climates, food, and modes of life, have gradually operated, through a succession of ages, to proluce these effects on the colour, stature, and intellect of different nations. But, however greatly these causes may affect individuals, or even to a certain extent a whole people, they entirely fail when brought to solve our present question; were it otherwise, the same causes would naturally have the sume effect on all the inhabitants of a particular region; but such, as is well known, is far from being the case. The negro, under a tropieal sun, is black; while an Indian of Para, in the same degree of latitude, is reddish brown. No race produces men more athletic, or more finely formed, than are witnessed anong the Gold Coast negroes; yet they inhabit, proverbially, some of the most pestilential districts of Africa. On the other hand, the New Hollanders, and the South African Bushmen, living in a salubrious climate, are deseribed as lean, squalid, and with an appearance scarcely human. It is therefore obvious, that neither the physical nor the moral condition of man can he so affected by elimate, or other external agencies, as to produce any great or permanent variation in his form. Indeed, when we consider that such agencies have not produced any physical ehange in any one nation, within the memory or the records of man, we are tempted to believe that in a general point of view, their influence has been very slight; otherwise, there is no reason to doubt but that the same natural causes which operated at one period of time, would still continue to do so at another; and that we should find the descendants of Europeans long since settled in the New World, and in Southern Africa, begiming to assume the red tinge of the American, or the black skin of the Ethiopian. Still less can it be supposed that this departure from one common standard has been effected by civilization, a consequent developement of the mental faculties, or even by diversified modes of life. Man, in remote ages, must have lived pretty nearly the same life in every region; whether as shepherds, hunters, or tillers of the field, their fool, habits, and modes of life, must have been simple and regular. Whence comes it, then, that nations which still retain a great portion of what may be conceived their primitive simplicity, do not exhibit a corresponding resemblance in physical structure? It food, rainent, and moral improvement have such a powerful effect in modifying the human frame, it would naturally follow that tribes living nearly in a state of nature would all show a close approximation to one common type; that they woukd, in short, retain more of the lineaments and characters which mast have belonged to our first parente, than it they hal devinted from their primitive simplicity; yet the very revers. of
this is the fict. The apparent uborigines of every nation are those in which the leading characters of their own tribe are most conspicuous; und which exhibit the strongest contrast to those of others. It is only when they have made some progress in tho urts of life, when conquest or cemmerce has led to a unien with other ruces, thit the uational charucteristics, both personal and mental, give way, and begin either to blead or to be lost in other modificutions. These reasons, did they more immedintely concera the purposes of this essay, night be much enlarged upon, more particularly as they have been offered by some deservedly ominent writers as a satisfactory solution of the question we are now discussing. Yet, allowing to ull these cunses the full ellect they are known te havo produced, we nust yet contexs they appear to us tetally inadequate to explain the origin of the races of man. A writer intimately versed on thas subject has well observed, that "external agencies, whether physical or moral, will not account for the bodily and mental differences which characterise the soveral tribes of mankind." (Lavorence's Lectures, p. 431.) We have, in short, now brought the inquiry to a point where humun reason is baffled: there is neither history nor tralition to guide us in a researeh which carries us back to the obscurity of ages; to that remote periol when the earth, for a second time, was again peopled, if not by a single pair, yet by the three sons of a single family.

We nre now to view the question in another light. It has been generally admitted, even by those who reject the Mosaic testimony, that the diversity in the human structure can in no way be accounted for by any known combination of natural causes: are we, therefore, to suppose, in a question which concerns the most perfect earthly being mado by Omnipotence, that nothing supernutural is to enter? thnt canses which effect the developement not only of the materinl but of the spiritual essence of man, have been left to chancel Is it not more reasonable to conclude, that, for purposes unknown to us, a supernaturn! agency vas employed? nnd that the imnediate descendants of the sons of Noah were as distinctly markel in their outward form ns they were in their moral character? The sncred writings, it is true, are not written to answer philesophic iupuiries. Those who, in the present age, have breen the most profound investigators of nature, iliscover in every part of creation n symbolic relationship; a mysterious system of types and syınbols, which extends from the most complex to the most simple of organized beings: nall when we know, for instance, that even the colours of n birl or an insect have n direct reference to such n system, and are employed ns typical indications of its station in nature, can it he supposed that such a system does not extend to man? That this will not, in the present infancy of our inquiries, ndmit of such direct and unanswerable proof as amounts to mathematicul denonstration, we do not attempt to deny; but that such a supposition is in harmony with that perfection which belongs to the works of Omnipotence, every reasonnble persion must adnit. Nor are there wanting circumstances which give some degree of sanction to this belief. The curse pronounced upon Canann as the son of Ham has unquestionably been fulfilled. Learned commentators agree in considering that central Africa was peopled by his descendants, and these have been for nges, nnd still continue to be, " n servant of gervants," to their more favoured brethren. Even their own despotic governments render the subjects but slaves. In them the human form is most debased, the divinity of mind least developed. They atill exhibit those leading resemblances which rendered Cain a type of Canaan: with few exceptions, they are, to this day, but "wanderers and vagatonds" on the earth. The blessings pronounced on the two remainiug sons of Noah, it has bees well observel, are of a very different nature: Shem wns more peculiarly favoured than his brother; from his race not only the grent patriarchs who typified Cbrist, but even Christ himself, descended. The peculiarity of the Jewish polity, which preserved the physical peenliarities of their race pure and unmixed through successive generations, lenves us in no doubt that they belong to the Caucasian type, in which, both in structure and intellect, a markel superiority over ull the nations of the earth lans been universally admitted. The early descendants of Jupheth, ns is plainly intimated by Moses, were eminently warlike. All writers agree in considering that from the Mongolian race descended those vast and overpowering hordes of barbaric warriors who, at remote periods of time, conquered all Asia, nad devastated Europe under Attila, Zingis Khan, and Tamerlane. "It is remarkable," says Dr. Seott, "that the first king of whom we read in anthentic history, is Nimrod, the mighty hunter." The same learned writer mentions that there is some gronnd for believing that the grentest part of $\Lambda \sin$ (now peopled by the Mongolian race) descendel fron Japheth. The population of Asia has heen frequently mentioned ns in nn equal ratio to the superiority of its size over Europe, or rather of those countries over which the Cuucasian variety hins spread. Thus, in every sense, it appears, that the promise to Noah's first son, "God shall enlarge Japheth, and Canaan shall be his servant," has literally and figuratively been fulfilled.
Thant the three sons of Noah overspread and peopled the whole earth, is so expressly stated in Scripture, that, if we had not to argue arainst those who unfortunately dishelieve such evilenec, we might here stop: let ns, however, inquire how far the truth of this declaration is substmiated by other consilerations. Fnough has been said to show that there is a curious, if not a remarkible, analogy between the predietions of Noah, on the fiture descend

Part II.

the leading 3nt contrast - life, when acteristics, r modificasay, inight deservedly Yet, allowyet confers A writer ether phycterise the ow hrought tradition to noto peries y the thrre. successive hich, both h has been by Moses, golian race te periods nd Tamerauthentic at there is olian race) d as in an ver which promise to es literally

expressly

 dishelieve this declathere is a a descendants of his three sons, and the actual state of thoso races which are generally supposed to have sprung from them. It may bero be aguin remarked, that although, to render the subject more clear, wo hnve adopted the quinary arrangement of Blumenbach, yet that Cuvier and other learued physiologists aro of opinion that the primary varieties of the human form are more properly but three; namely, Caucasian, the Mongoliun, and the Ethiopian. This nuunber corresponds with that of Noah's sons: assigning, therefore, the Mongolian race to Jupheth, and the Ethiopian to Ilam, the Caucusian, the noblest race, will belong to Shem the third son of Noal, himself descended from Seth the third son of Adam. That the primary listinctions of the human varieties are but three, has boen firther maintuined by the erudite Pritchard, who, while ho rejects the nomenclature both of Blumenbach and Cuvier, as implying absolute divisions, arranges the leading varieties of the human skull under three sections, difiering from thoso of Cuvier only by uame. That the three sons of Noah, who were to "replenish the earth," and on whoso progeny very opposite destinies were pronounced, shuuld give birth to different races, is what might reasonably be conjectured. But that the oheervations of those who do, and of those who do not believo the Mosnic history should tend to confirm its truth, by pointing out in what respect these three races do actually differ, both physically and morally, is, to say tho least, a singular coincidence. It amounts, in short, to presumptive evidence that a mysterious, but a very beautiful analogy pervados throughout; and tenelies us to look beyond natural causes, in attempting to account for effects apparently interwoven in the plans of Omnipotence.

To reconcile the different theories regarling the number of primary variations in the human form is our next object. Tho greatest nuthorities on this subject are Blumenbach and Lawrence, Cuvier and I'ritehari. The first two, as already observed, maintain that the primary divisions are five; while the latter, with more show of reason, contend that there nre but three, although they readily almit the distinctions ressigned to the other two. In what manner, therefore, can these opposite theories be reconciled! To do this, we must revert to a third and very remarkable one, which, although ii bas hitherto been solely directed to the animal kiugdem, will yet be found to exercise a viry important influence on tho present question: we a!lude to the circular theory of Maclany. It is the opinion of this learned naturulist that every groul of organised beings divides itself; as it were, into two branches of affinities, which finnlly uniting ngain at their ,pposito extremities, form a circle ; and that this disposition of affinities holds good, not only in every group, of whatever magnitude or denomination, but throughout the animal aud the vegetable world. It has been liurther shown that as such a circular arranyement of beings cannot, of necessity, present any absolute or isolated divisions, (for it could not then te continnous and circular), yet, that there may be traced, in each circle, five deviations or varieties of structure; which, however censpicuous in their typical examples, are blended and lost the nearer they approximato to each other. Now, so lir as regards the affinities of animals, this circular theory has been demonstrated; but it long remained a matter of doubt what number of primary divisions every group contained. Mr. MacLeay considers there are five; and this accords with Blumenbach's arrangement of the human species. M. Cuvier, and Dr. Pritchard, as we have before stated, limit the loading varieties of man to three. In our arrangement of the order Insessores (North. Zoology, vol. ii.), one of the most comprehensive divisions in ornithology, we lave shown that the primary divisions of every natural group are only three ; one of which, by forming a circle of its own, includes three of those pointed out by Mr. MacLeay,-thus making the number five. Now, this theory, on the natural divisions of birds, rests upon no speculative assumption; it is founded on the most rigorons and minute nualysis, and has thus been capable of nathematic demonstration. The question, whether this theory is applicable to one part only of the animal creation, or whether there is presiumptive evidence to conclude that it pervades all nature, has been discissed at some length in the "Introductory Observations on the Natural System," prefixed to the same work. In some respects the trinary and the quinary theory of divisions may be thought virtually the same; and so far as regards our present subject, considered abstractly, this observation may be true. We can nalyze a group of insects, of birds, or of other animals, but how are we to analyze tho different modifications of man? The thing is ntterly impossible. Now, as every true theory must rest upon analysis, our present views on this subjeet would be purcly speculative, did they not so strikingly and wonderfully coincide with those in other departments of nature, into which we can prosecute minute research, and attain logical demonstration. Besides, by supposing that there are five prineipal varia tions in man, each equally important with the other, we entirely destroy the beantiful analogy betweers these variations and the sacred writings. But without entering farther upon this question, it will be sufficient for our present purpose to repeat, that, in regard to man, the views of Blumenbach and Cuvier ure virtually the same; for if, with the former, we reckon five, there will be two groups more conspicuously typical of perfection, and three others, which. however distinet in many respects, possess several characters in common. If, on the other hand, we follow Cuvier and Pritcharl, and restrict the number to three, we have the Cancasian and the Mongelian us the two principal groups, while there is a third, typi-
cally represented indeed by the Ethiopian, lut atill so diversifited as to ndmit of a threefold division, into the Americun, the Africm, and tho Malay varioties.

That the variation of man has heen regulated by similar lawa to those which have been trueed throughout nature, is a conclusion supported by strong and presumptive evidence; druwn both from the sacred writings, and frum inferences in zooiogicul science, which no one has ventured to dispute. In extablishing this point, I have studiously confined myself to sucll facts, connected with tho physical history of man, as rest on high und indisputable authority. On a subject so vast and intricnte, illustrnted by the united lubours of the most acute philosophers now living, little that is new could be said, and that little might have heen suspected of being brought forward to favour a particular theory. In the preceding aketch of the principal differences in man, wo have, therefore, merely condensed the observations and facts detailed in the writings of Blumenbach, Cuvier, Pritchard, Lawrence, and Summer; rather wishing, that, whatever inferences nro drawn from such sources, the ficts themselves should rest un testimonies of so much weight.

The onler in which these races nre here placed leuls us to other considerations. Blumenbach is of opinion that tho American form is intermediato between the Caucasian and Mongolian; but we have failed to discover any assigned reason for such a disposition, which also seems at variance with the progression of developement. The geographical situation of the two continents, as we have beforo observed, renders it highly probable that the American variety is moro Immediately connected with the Mongolinn; and tho simple fact, that the Esquimaix have been by sonie considered as of Asiatic origin, while by others they nre thought to exhibit more of the American type, is, perhape, the strongest pronf of their intimate relationship to both. Neither does the American raco exhibit any direct affinity to the Caucasian; while, on the conirary, both their physical structure and mental developement seem to place them in close approximation to the Africans. For these and subsequent rensons, we have felt no hesitation in adopting the series intimated in the Rigne Animal. We must now advert to another peculiarity in this arrangement, which renders its similitude to the zoological series still more remarknble. This is the progressive series of affinities. resulting from placing the five leading varieties in the order in which they have been liere noticed. The Caucasian and the Mongolian mees present the highest degree of eivilizntion, although in very different degrees when compared with each other: the regions they respectively inhabit, in like manner, approximnto so closely as not to be divided by water. Yot the configuration of these races is so remarkahle, that they cannot be mistaken or confounled. In the third race, comprehending the American, the Malay, and the Ethiopian, very marked deviations from the typical endowments of the two former nre manifest. This inferiority is first shown in the American, whoso outward form and noral capacity is nevertheless superior to the African. Yet, ns nature in the animal kingdom is cever prone to retrace her stepe, and to return again to her original type; so we observe thint, after exhibiting, in some of the African hordes, the lowest debasement of the human form, and the least elpacity for mental improvement, she begins, as Blumenbach observes, in the diversified races of the Malay variety, to show a progressive hut a very marked inclinntion to return through them to the Caucasian type. So strong, indeed, does this appear in many tribes of the South Sea Islanders, not only in the heauty of their forms, but in the advance they are continually making towards intellectunl improvement, that every voyager, who has visited their shorea, concurs in likening them to Europeans,
The inferences to be drawn from this circular disposition are important, if merely considered in relation to those systems, which, by presupposing a lineal scale in creation, wonld place the nagro in immediate contact with the monkey. Now, withont laying any stress upon that primary characteristic of man, n reasoning, thinking, and immaterinl soul, of which the lody is but a tempornry receptacle, we must, hefore we consent to this hypothesis, get over difficulties which nppear insurmountable. That the Ethiopian holds the lowest station nmong the varictics of his species, is fully grinted; but that this admission implies an affinity to the ape, does by no means follow. There may be an approximation: but it is necessary, before we decide on the degree of such approximation, that we should exnmine the relntive affinity which tho Ethiopian bears to the Caucisian. For if it should appear that the difference between the most perfect and the most imperfect of tho human races is unquestionably less than between the latter and the brutes; or, in other words, that the similarities between the negro and the Caucasian are decidedly grenter thun those between the negro and the ape; we must admit that this latter npproximation is too slight to be termed an affinity. If, on the other hand, we consider man only as a materinl being, he stands so far removed from brutes-the interval hetween him and them is so great-that it would be a violation of natural affinities, and certainly nn insult on his better nature, to claes him in the sume system. To arrive at π just conclusion on this subject, we must not look to much to any one point of comparison, or to mere auntomical analogies, hut bring the distinguishing characters of each into direct comparisoll. Does the negro, it may then be asked, evinee a deficiency of those gunatities which belong to the Cancasinns? we allude not to the nutural affections, for these are, in some derree, common to brutes: lint in self-orivation,

Part II fathrectold h huve been evidence; e, which no ned myself indisputable of the inost might linve e preceding d the obserwronce, and es, the fincts

18. Blumen-

 n and Monition, which n] situation le that the simplo fact, others they onf of their ect affinity al developesubsequent ne. Animal. sts aimiliof affinities, c been here of civilizncgions they 1 by water. ken or conEthiopian, ifest. This ty is neverer prone to ter exhibitad the least diversified n to return y tribes of ee they are has visitedrerely conion, woinld any stress l soul, of ypothesis, est station mplies an but it is d examine hld appear n races is , that the e between ight to be being, he t-that it e, to clnse ot look so the disbe asked, not to the orivation,

Boor III
IN ITS RELATION TO MAN.
compassion, and heroic lovo of their country. Are they incapable of learning European arts, or of inventing others suitahle to their wunts or habits? To deny them auch qualitice would te preposterons; they pwsess the germs of others infinitely higher, which, under favourablo circumstnuces, have proxuced expert artisuns, skilful physiciana, pions diviaes, and plearing poets. "I protest expecially," observes Mr. Lawrence, "apainst tho opinion which either denies to the Africuns the enjoyment of reason, or ascribes to the whole race propensitips which would degrade them even below the level of the brute. It can be proved inost clearly, that there is no circunstance of bodily structure wo peculine to tho negro, as not to be fimul also in other fir distant nations; no charucter which does not run into those of other racen, by as insensible gralations as those which connect together nll the varieties of mankuad." (p. 428.) To pursue this comparison frirther is needless; and to usk whether the least indicution of auch powers has ever been manifested by the quadrumanous unimals weuld be ridiculons. The learned and eloquent Bishop Numner forcibly observes, "There is nothing philosophicnl in the comparison of a being possessed of improvable reason with one that is governed by nitural instinct, because there is no just affinity between the talents which aro compared." (Records of Creation, vol. 1. p. 23.) We consider this argument as conclusive. To class man, therefore, in the same zoological division with apes, merely becanse both have a hyoid bone, is, to our apprehension, as glaring a violation of natural affinities as to arrango bats with birds, because both fly in tho nir, and possess a crest to their sternum. So far, indeed, from considering man as the type of a zoological order of bruter, we cannot allow that ho even belongs to the samo system in which they are arranged. It may be, that tho deviations of his structure are regulated by those laws which govern the universe ; yet, nevertheless, by his nobler qualitice (which in fact are his true distinctions) he belongs to a higher order of beings: that he is, in short, a link between matter and spirit; that he carries this ovidence, through rovelation, within himself; and will hereafter be most assuredly rewarded or punished, according as he suffers hia spiritual or his earthly nature to preponderate.

Sexr. IV.-On :he Geographic Distribution of Animals.

The geographic distribution of animals over the globe, is the next subject of inquiry. In the general outline of the variations in man which has been given above, we have deemed it more important to seek nfter generul results than to enter upon minute details. Our attention has been fixed, not so much on those ramifications which shoot out near the extremities of every brancll, and become too indistinet for clear clucidation, but rather to tho leading branches themselves, on the mature of which there has been little diversity of opinion.
In the inquiry regarding tho geographic distribution of nnimals, on which we now enter, the same mode will be adopted, bit with this difference, that wherens we have hitherto drawn our inferences solely from the facts and general opinions of others, wo shall now put nside all theories heretolore promulgated on the distribution of animals, anil merely depend on sinple facts for the support of thoso inferences which they may appear to sanction. We shall first briefly notice those principles which have been applied to elucidate the phenomenn of animnl distribution, and then inquire how far they appear conducive to that end.
That climate, temperature, soil, and food, exercise a paramount influence on the distribution of nnimals, has been generally belioved; and on this assumption naturalists have divided the world into climntes, zonea, or provinces regulated by degrees of longitude or Intitude. Such has been the favourite theory not only of physiologists, but of professed naturalists, whose knowledge of details might linve furnished them with insuperable objections agsinst such views. Thus, the celebrnted entomologist Fabricius conceived that the ineect world could be muturally divided into eight elinates: one of which is made to enmprehend all thoso muontains, in every part of the world, whose sumnits are covered by eternal snow. It is, therefore, not surprising that M. Latreille should consider such a theory as altogether vague in some-respects, and arbitrary in others. But will not the latter objection be equally npplicable to the distribution which this eminent naturalist has himself proposed for this part of the creation! At lonst, such is the opinion of one fully cempetent to judge the question. "A chart of nnimal geography," says Mr. Kirby, "which is divided into climates of 24° of longitude and 12° of Intitude, wears upon its face the stsmp of an artificial and arbitrary syatem, rather than of one according with nature." On much the same principles another theory has been built, by which the enrth is divided into seven zoological provinces, or zones, unainly dependent on the respective degrees ot latitude they occupy. Now, so far as regarda one of these provinces-that comprehended within the arctic circle-this view of the sulject, at first sight, appenrs perfectly just : for there is not only a strong anslogy between the groups of animals inhabiting such parts of the two continents as enter into this circle, but there is also an absolute affinity between them; inasmuch as the arctic regions contain not only genera, but numerous species, common to both continents. This theory, however, loses all its forec when applied to such divisions as are made to include the tropical regions of Africa, America, and Asin, in one province, and the southern extremities of Λ merica and Λ fricn in another. The zoologist immediately perceives that the only relation which these canntries
Vol. I.
23
bear tw eneh other in their animal prouluctions, is purely analogical; and we are thus eampelled to relinguish a theery which uppeare correct only in one point of view. These and other leser eminent writera appear to have erred in the very timmintion of their methools They nemmo us grated, what has mever yet heen proverl, that temperature exereises a primary influmee on animal distribution. Were sheh the ense, it would naturally follow that the auinsils of such partw of America, Africa, and Asia, as aro phaced in corrempoming degreen of latitude, would be nearly of nimilar npecies; or, at least, of the same natural gencru. Y'et such, as we shall herentor alow, is not the fact. Hetween the mumals of these regions there ia, imieel, in very many instances, a strong analogy: such, fior instance, ns is nplitent between the 'Irochilida of the New Worlh, the Cinnyride of Asin amil Atrice, nuil tho Vh lliphanile of the Australiun islands. Nuch, again, is that betwoen the Toucans

75
 birds occur in any two of these countries. Nevertheless to camut be denied, that the temperature and contiguration of a country exercises a powerfill intluence on the distribution of animali. But these efficets are of a secominry nature, and totally fhil when employed to elucidate those general principles which appeur to regulate the whole system of animal geograply. Nuch agencies, however, may be affely allowed to pxwsews much weight, when we descend to details und investigute tho local Fauna of any particular ceuntry er digtrict. It has been observed hy the celebrated ILumbolit, and contirmed by an authority of nearly equal weight, that, with regarll to certaiu tribes of insects, their geogruphicnl distribution does not appear to depenil solely on the degree of hent or humidity to which they are exposed, or on the particular situntion they inhabit; "but rather on locul circumatnnces, that aro diflicult to charucterise." This opininn is in unimon with the whole tenor of the ficts to which we shall herenter alvert. We must, therefore, urreo with Mr. Kirby, and consider that the dintribution, wot only of insects, but of nnimals in general, is "fixed by the will of the Creator, ruther than certuinly regulated hy any isotherimal lines." (Introduction to Entomology, vol. iv. p. 481.)
The distribution of abimals, in comexion with that of the buman race, remains to be considered. Fron what has been already stated, there appears strong reason to believe, that the variations in the structure of man und of apimals nre regulated by similar lawn; and this supposition will receive considerable weight, should it appenr, upon investigntion, that those divisime of our globe which have been npportioned to the diffrent varieties of man, ure equally claracterisel by certnin peculiarities in their animal tribes. Now, to establiwh the truth of such a theory, it is necessary to waive all general absitract reasoning, and to iraw deductions from known facts. And it is equally obvious that, if such ticts are to be collected from the whole animal kingrlon, this essay must be extended to several volumes, even almitting that our materials were sufficiently extensive for such a purpose. But the truth is, that the data for sach a comprehensive investigation are so few, so meagre, and wo unsatisthetory when compared with the diversity and vastness of the subject, that they sink into insignificunce. Nor will this appear surprising, if we consider the astonishing number of nuimals that havo been alroady described by naturalists, or are known to exist in cabinets; setting aside the loosts of species yet unknown, which, in many depnrtments, mny possibly amomint to double or treble the number we are nequanted with. Yet, as detnils of some sort must be gone into, it becomes absolutely necossary to select for such a purpose some one department of nature; and the result which might follow, we may firly presume, would be in unison with those that would attend the investigation of other divisions of the animal world, could they be investignted upon the same principles. Nature, in all her operntious, is uniform: and it cannot be supposed that the distrihution of quadrupeds, biris, insects, or reptiles, would each be regulated by different laws.

In choosing, theretore, from the animal kingilom some one order of beings for particular investigation, it might be thought that the distribution of quadrupeds would present the hest field of iuquiry. It possibly might, did not their investigation involve certnin points of controversy connected with geology, which, however important, are not so intimately connected with our present object as to render their discussion necessary in this place. The division of reptiles is subject to the same objection, and is not sutficiently extensive for our purpose. The annulose animals, on the other hand, are so numerous that they appear to haffle our infuiries; nor can we hope, while yet in the infancy of geographic naturnl history, to do more than has been already done by the genins of Latreille. Birds nlone rebuin. It has, indeed, been argued, that no very certain results can attend the study of their distribution; becanse, from possessing the powers of locomotion, and the instinct of migration, in Ω high degree, they nppear more widely dispersed than nuy other class of nnimals. How fir this may be true lrits never, indeed, been made npparent; yet, nllowing the nssertion its full weight, we may sately conchude, that if, under these disalvantages, nuy delinite notions of geographic distribution can be gathered from the stuly of such volatile beings, the

Book III.

IN ITS RELATION TO ANIMALS.
reanlts would lie materially atrengthened if fomul to harmenian with what in alrondy known on tho dinstribution of other ofdern of animaln, which, from their physical comstruction, arn Sesn capaiblo of extending their geagraphic runge. It in here, however, necemsiry to premine, that in this, as in all other branelies of matural history, the necomats and rehtions of travellers, not in themaelven zoologistm, mint be received with great eantien. Domequainted with thosen nice dintinetione noms which not only the differencen of speciew, but of genera and faniliem, are now known to depend, they perpetually contradict, by a hasty application of well-known namen, some of the mont acknowledgel trutha in nnimal geograply. Nor ean the facts detuiled in the compilations of nore aclentific writers be always depended upon. The vohuminous worka of a most industrious and zenlous ornithologint of the 'Linnasun nehool ubound with mixtakea of this nature; wherein net only rpecies bit genera are mill to inhabit countries whern they have never been found oxcept in the vague and erroneous narrative of travellera. It in the misfortune of those who complain againnt the multiplicity, and regret the adoption, of molern divisioms, that by mo doing they debar theuselves from studying the varintions of physical atructure, und neglect the innin clue to enlarged conceptiens of zoologienl seience. It is necessary to make these allusions, that the reader may be apprised of our ndoption, in this place, of the principal molern geners; and our rejection of many of the loculities erroneously given to certain species in the general hintorien of birds.

1. The Caurasian or European Province.

The ornithologieal features of the Caucasian range, or of the regions over which the Caucasiun variety of the human speeies in maid to be alintributel, will firn elniun our attention. It has been already shown that this range comprises such portion of Africa an lies north of the Great Desert, neurly the whole of Europe, and a censiderable extent of Western Asin. The ornithology of the ceuntries boriering upon thia region has been but partially inventigated; yet sufficient is known to slow that it presents a mixture of thowe species which have their chief metrepolis in other countries. It han leen thought thut the animala of tho arctic circle are wo peculiar, as to justify us in considering that region in tho light of a distinct zoological province. The objections ngainst this idea have nlready heen alluded to; and they heceme moro foreible when we diseover, that on calculating the number of birds, both terrestrial anul apuatic, which occur within tho aretic circle, they do mot mount to more than twenty-two; and that most of these, during the greatest portion of the year, are found in the more northern parts of Brituin and America. They prolally oceur in similar latitudes on tho Asiatic continent; lut on this point our information is defective.

The swimming birds nre known to possens a very wide range; but thin is less extensive, perhaps, than is generally imagined. The number of species found on the shores of Furope and Northern Africa, independently of those more peculiar to the aretic circle, is sixty. Of these, two alone have been discovered in the four quarters of the glebe; three nre continon to Enrope, Asia, and Ainerica; one to Europe, Asia, and Southern Africa; nal twentyseven to Europe nid Northern Amerien: thus leaving twenty-seven (or nearly ene-balf the number of European nataterial species) as peculiar to this zoological division of the world.

Ameng the Grallatores, or widers, soine particular species are so wilely dispersed ns to suggest the iden that the geographic range of this order is even wider than that of the Natatores; nall this, generally speaking, may be true. Of the sixty-five species described as natives of Europe, thirteen only occur in America, nnil two enly can be reckoned arctic birls, although several others occasionally frequent those regions. Of the remainder, four
 occur in Asia; two in Asin and Africa; four in Asia nnd America; seven in Asia, Africa, and America; and the Whimbrel (fig. 76.) (Numenius Phopur) is said to be the same in all the five divisions of the gloke. It is consequently ameng the wading birds that wo find thowe whose range is most extensive; yet, on a general calculation, the number of species peculiar to Europe is considerably greater than those of the Natatores ; the former being na ono to two, the latter nearly as one to four. It thus appenrs, that, even among birds of the most vagrant habits, the ornitholegy of Earope is characterised by a decided superiority in the number of its own peculiar species.
The rapacious birds, next to tho aquatic orders, are thonght to be the most widely distributed; particnlarly the nocturnal species. It is very remarkable, that ont of thirteen different owls inhabiting Europe, five only are peculiar to this continent; and two of these mere particularly frequent the arctic regions. Of the rest, five oceur in America, two in Southern Africa, and one both in Asia and Americn. The Falconide, or diurnal birds of prey, in regard to their species, have a more restricted distribntion; yet, of these, the cagles enjey no inconsiderable range. Ont of eight diseoverel in Eorope, one is more properly aretie, three have been found in several parts of Arica, and one oceurs in America; leaving three only to burope. It is singular that those rupneions birds which, from the peculiar structure of then wings, have been supnosed to enjoy the greatest powers of flight among

Part II.
ved $b y$ the , two enly the Falco ; Southern biting the confounded the distrire Arctic, America;

dispersion

 avy bodies ange than igeniously lich many cies being ists, heware pecuwho have o have recnera, in ty of the er is very ends from Asia; and ings, perrica, over 8 birds as e regions s galbula, ceristic of allintucea, are thus n desert, rica. swallow, for their an Kingy : hence its of the confined diversity their nuean list; gions in northern end both ty peculean are ve must e family he Ars:ological leficient should plained. lie 1 nropenn. orthernis wibair 3 wrich ne inle, vo we a inge of cter inBows III.
IN ITS RELATION TO ANIMALS.
America; and that the identity of one of these (Parus atricapillus L.) with an Europeen epecics (Parus palustris $\boldsymbol{L}_{\text {. }}$) is very questionable.
The Omnivorous birds, as the Sturnide, Corvide, \&c., are the last requiring notice. A few of these appear widely dispersed; but upon the whelc, several species, and even peculiar genera, are left to characterise this portion of the world. We may state their rumber at twenty-one : thirteen of which, or more than one half, habitually reside in Europe; rour occur in Northern and Central Africs; one (Pastor roseus T.) inhabits both the table-land of Asia and the deserts of Central Africa; and three have been found in Amp-ica.
These details, tedious perhaps to the general reader, but interestirg to the man of science, it becomes nccessary to dwell upon, before any valid deductions can be drawn from the facts they exhibit. In this difficult and somewhat laborious investigation we have been much assisted by the writings of Wilson, Temminck, and Le Vaillant; but more than all by the liberality which throws the magnificent collections of the French Museum epen to the use of all scientific inquirers, whatever their object or their nation may be.* It cannot, however, be supposed that, even with greater sources of information, some inaccuracies may not have occurred. Such calculations, in short, from their very nature, can never be perfect; because they are founded upon present knowledge, and that is perpetually extending. The most that can be done is to make as near an approximation to the truth as circumstances will admit; and having done this, the result may be entitled to some dcgree of confidence.
As a genera! recapitulation of the European birds, wo may state the total number, exclusive of a few which occasionally appear at remote intervals as stragglers, at 388. Of thesc, thirty-onc are more peculiar to the arctic regions of Europe, America, and probably of Asia; the proportion being as one to thirteen. Sixty-eight (forty being aquatic) occur also in temperate America; nine are dispersed over four divisions of the globe, to neither of which can they be particularly appropriated; and either one (Numenins Pherpus) or two extend to Australia. With these deductions, the number will thus be reduced to about 280. If from these we abstract such others as may possibly have a partiul range beyond the limits already defined, the number may be further reduced to about 250 ; so that, even with this allowance, nearly two thirds of the birds of Europe, Northern Africa, and Western Asia may safely be considered as zoologically characteristic of those countries.

Another character in European ornithology deserves attention. This regards the superior number of generic types which it exlibits, in proportion to the number of species. These genera amount to 108, omitting those which have not been generally adopted, or which, from the modifications of form being but slight, should mere properly be termed sections. The proportion which these gencra bear to the number of species (estimated before at 388) amounts to more than two to seven; or, in other words, does not give seven birds to two genera. It is further remarkable, that most of these exhibit in their structure the greatest perfection of those orders or families to which they respectively belong; and which groups are denominated by naturalists typical. Truc it is that euch genera are widely dispersed; but in no division of the world do they appear so numerous, in proportion to the species, as in Europe. This remark not only applies to the typical genera, but is frequently applicable to the number of species they respectively contain. One instance may suffice. The noble falcons, or those to whom the generic name of Falco is now restricted, are generally considered the most typical group of their family : of these, the Kestril (fig. 79.) and five cthers
 have their metropolis in Furepe and Northern Africa. The whole of North Ainerica has hitherto produced but four. Le Vaillant enumerates the same number from Southern and Central Africa. Those of Centrul Asia are not known; but enly two have been recently describell as peculiar to the vast regions of Australin. Now, if we merely look at these respective numbers, the difference docs not appear very remarkable; but when the great inferiority between the Caucasian regions and those of America, Africa, nul: Australia, in point of extent, is taken into the account, it will be immediately seen that the proportion of these eminently typical species in the Europenn regiona is particularly great. Among the typical groups of the wading and swimming birds this is still more apparent; so that, if we endeavour to define what is the most striking feature in the ornithology of this zoologicul province, none is so remarkable us the number of purely typical groups. This peculiarity will be more apparent on looking further into the matter. The total number of birds throughout the world, existing in museums or clearly lescribed in nuthentic works, may be estimated at 6000. These have been arranged under about 380 gencra; but as several of these genera will comprise mure than one sulbgenus, we will put down 400 as a nearer opproximation to

[^9]correctness: this would leave ratlier more than fourteen species to each generic group while, it' the ornithology of Europe and Northern Africa is alone considered, the proportion is no more than one to three; and oven this will be firther diminished when those geographic groups among the Pringillide and Sylvaida, which are decidedly peculiar to this portion of the globe, are invenstigated and defined. Now, it is very singular that, in speaking of the leading varieties of the Caucasian race, a writer, whose testimony is no mean authority, observes, "that the tribes among the Cancas ans are more numerous than in any other." And again-" Whether we consider the several nations or the individuals in each, bodily differences are much more numerous in the highly civilized Cnucasir
sty than in either of the other divisions of mankind." (Lawrence, p. 442. 475.) Wh
rlance over the list of those nations generally supposed to have sprung from this typu, we are struck with the justice of these observations. It is the more remarkable, as the regions they occupy are disproportionably smnll, when compared with those peopled by the Mongolian and Ethiopian races. That there are instances wherein typical forms of higher groups than generit do not occur within the European range, is a circumstance which will not materially affect the question. Thas the only European bird belonging to tho Tenuirostres of M. Cuvier is the Earopean Hoopoe (Upupa Epops), which is certainly not a typicnl example; but this, so far as tribos are concerned, is the only exception to the rule. It is curious, also, that this exception should oceur in that division which comprises the smalleet and weakest of birds. If we descend to families, there is scarcely one pre-eminently : ical of its own perfection which is not European. A further objection may possibly be urged, that, although such forms are indeed abundant in this Fnuna, they are nevertheless found in nearly every other part of the world; and cannot, therefore, be looked upon as characterising Europe more than buy other country: but this will not be a just conclusion, unless it is first shown that the proportion of such types to the total number of European species is not decidedly greater than in any other region. Now the facts we have already stated prove this beyond doubt.
'These results, obtained from unquestionable data, are so important to our present inquiry, that their hasty notice would not have been sufficient. The materials for illustrating the ornithology of Europe are naturally more numerous than can be expected for other portions of the globe; and it became very desirable to ascertain how far the ornithology of those regions, occupied by the Caucasinn race, presented n peculiarity of character sufficiently strong to show a mutual relationship with the geographic distribution of this variety of man. We are, I think, sufficiently authorised to consider that both are in unison. At least, there are so many singular points of analogy, as to render it highly probable that there exists mn intimate relationslip, between the distribution of one race of mankind and one of the principal geographic divisions of birds.
How far this view of European orni: $10 l o g y$ woukd be borne out by nn extended investigation of other orders of animals, it is impossible to say. Yet even if our present limits would permit the inquiry, we should have to rely more upon theory than flacts. Many of the quadrupeds of Europe have long been slowly but certainly disapparing, in proportion as culture and civilization have advanced; and any conclusions drawn from those which still remain in it wild state would be open to great objections, particularly as the question must neressarily embrace the nature of those no longer existing, but whose bones occur in a fossil state throughout Europe. We think it may fairly be presumed that, in nll those convulsions which have agitated our globe, birds have suffered less than nuy other vertebrated animals. Their fossil remains are few, and of rare occurence; while extensive deposits of bones and skeletons, belonging to quadrupeds, reptiles, and fish, occur more or less abundantly in aimost every region, and attest the wide destruction to which such animals were exposed. It naturally follows that, in trucing the distribution of the fenthered creation, we are left unshackled ly geological controveray.
The few olservations on the Jehthyology, Entomology, and Conchology of the Mediterranean we shall hereafter make, in conjunction with those of Britain, will be found in unison with those features in the geographic distribution of birds we have already traced; and will equally evince the propricty of including the whole under one zoological division. This we propose to nume the European. Such a designation is, indeed, somewhat objectionable, inasmuch as it emhrices not only Eurnpe, but Northern Africa and Western Asia; yet it will, perhaps, convey more definite ideas than if the name were adopted from the particular race of men belonging to these regions.

2. The Mongolian or Asiatic Provente.

The hirds of the Mongolian range will be now alverted to. The typical nations of this variety of man occupy the remaining portion of the vast continent of Asia; while their characteristic peculinrities appear blended with the Mnlays in the more eastern islands of the Indian Archipulago. The ornithology of such a vast proportion of Asia is as varied ns it is remarkable; but the very imperfect nature of the materinls litherto furnished for its elucilation, readers it impossible for us to give those satisfictory lata which have beer

Part II. leric group proportion a those geoculiar to this tt, in speakis no mean than in any mals in cach, sty than in rlance over e are struck they occupy an and Ethithan genera erially affect of N . Cuvier ple; but this, also, that this kest of hirds. vn perfection lthough such y every other ppe more than thown that not decidedly d prove this esent inquiry, lustrating the other portions ology of those or sufficiently ariety of man. At least, there here exists an te of the prin-
ded investigaat limits would Many of the projortion as ose which still question must cceur in a fossil ase convulsions brated animals. ts of bones and abundantly in , were exposed. on, we are left
of the Mediterfound in unison raced; and will division. This at objectionable, ern Asia; yet it n the particular

Boor III.
IN ITS RELATION TO ANTMALS.
furnished by writers on tho birds of Europe. Naturalists look forward with the greatest interest to the speedy termination of tho zoological researches of General Mardwieke, as likely to supply these deficiencies. The vast stores of knowledge which a long residence in the East, and an ardent passion for natural history, have placed at the command of this naturalist, render him peeuliarly qualified for such an undertaking.

For our present purpose, minute detail is not, however, essential. Whatever doults might at first have arisen on the propriety of considering Europe as the centre of an ornithological provinee, there can be none with respect to Asia. It is in these regions that the chief seat of the typical Gallinacee is placed; they abound in China, Thibet, the Indian Peninsula, and even extend to those isiands which t re considered the confines of the Mongolian race.
 The larger species, arranged in the genera Pavo and Polyplectron, appear to characterise the more elevated and central parts of the continent; while those of the genus Gallus are more numerous in Sumatra, Java, and the adjacent - 'rnds. The pheasants of China and Thibec sorm a no less striking fenture in Asiatic ornithelogy; five species of magnificent plumage are peculiar: one of these, the elegant Silver Pheasant (Nycthemerus argentatus) (fig. 80.) has been long lomesticated in our aviaries. Three other superb species represent a group (Lophophorus Tem.), diseovered only upon the continent. The whole of these Gallinaceous genera are totally unknown in Africa, Australia, or in the New World. When to these we add the Ilornbills (Eucerida), the Sun-birds (Cinnyrida), the short-legged Thrushes (G. Brachypus), the short-tailed I'brushes (Pilla), certain groups among the Psittacida, and many others totally unknown in Europe, Northern Africa, and Western Asia, yet abounding in the Mongolian nations, no further details appear necessary to mark the ornithological peculiarities of Λ sia, as clistinct from these of Europe.

From the Asiatic islands it would, perhaps, be more natural if we proceeded at onee to notice the Malay or Australian range, as it js here that the Fannas of these divisions of the globe evidently meet. But as this would interfere with the order observed in the early portion of this essay, we shall pass from the northern regions of Asia to those of the New Wordd; particularly as both present a mixed race of men, probably originating from the Asiatic continent.

3. The American Province.

We proceed to a rapid sketch of American ornithology. It has already been shown that. excepting the Natatorial birds, there are fewer species common alike to Northern America and to Furope than might, perhaps, have been supposed; yet, were the proportion mueh greater, the circumstance would only prove that nature knows no abrupt distinction. It is not to the remote ramifications which she employs to connect her chain of operations that our attention is to be fixed; for they are too subtile to be unravelled by beings with faculties so limited. But as soon as she quits these inexplicable mazes, and again displays herself in a new but decided form, we may hope to gain some acquaintance with lier laws. It is not, therefore, from either extremity of the New World that we must form our opinion on its zoolegical peculiarities. The ornithology of the Northern latitudes is evidently blended with that of Enrope, and in all probability many of these species exist in Northern Asia; those of the more southern parts of America, beyond the Rio de la Plata and Paraguay, are nearly unknown. It is only within the last few years that the provinces, elevnted on the Mexican Cordilleras, and new constituting a great repul'io, have been opened to the naturalist; and although, as yet, but superficinlly explored, there is perhaps no region in the New. World which promises to yield more interesting facts, as cennected with the animal geography of that hemisphere. Even the configuration of the continent, at the junction of its two great divisions, is typical of this distribution. It appears as if nature, elevated as on a throne upon this vast table-land, 7200 feet above the level of the sea, had dirpensed her forms to the right hand and to the left, retaining immediately around her a typical representation of every group. To the north she has given innumerable flocks of slenderbilled insectivorous birds (Nylvicola, \&c.), which annually depart to breed in those more temperate climes. These are accompanied by particular species of Flycatehers, Thrushes, Pigeons and IIangnests (Icterina); the two latter in such countless numbers as to darken the air. To Southern America has been more particularly assigned the Macaws, Toncans, Scansorial Creepers (Dendrocolaptes), Ant Thrushes (Myotherina), Ground Doves (Chamapelia), Tanagers (Tanagra), Trogons, Fruit-caters (Ampelida), and the numerous and splendid race of Itumming-birds. Yet of all these groups, savo one (Ampelida), typical examples are concentrated on the table-land of Mexico. These, moreover, are accompanied by some peculiar forms, not yet discovered in either portion of Amerien, and by species among the natatorial tribes litherto found only in the more northern latitudes.

The typical Galinaceous birds begin to show themselves adjoining the equator, nearly in the same parallel of latitude as they occur in A. "hey belong, however, to distinct and peculiar types; as the genera ? Ouras, Phosphea, Ortalida, and Opistloconus. - unse find their representatives, for tho most part, in the ancient, continents, but not one species has been detected beyond the New World. The foregoing remark applies to the two great divisions of the Simic, or Monkeys, so accurately illustrated by those distinguished naturalists, MM. Cuvier and Geoffroy St. Hilaire.
The Melliphagous groups of Ameriea, at the head of which shine the splendid fanily of Lumming-birds ($f_{i} .8 \mathrm{BI}$.), form the chief peculiarity of its ornithology; other races, scarcely less benutiful, occur in Africa, Asia, and Australia: yet the natural genera are totally distinct. The number of species, and the variety of forms, among the frugivorous birds is another striking feature in the productions of the New World. Under this term we must include the richly coloured Chatterers (Ampelida Sw.) and Manakins (Piprince Sw.); together with the whole family of Tanagers (Tanagrenc), Hangnests (Ictcrina), and Parrots (Psittacida). The first four belong solely to this continent, which more than any other abounds in vast forests of lofly trees, affording a perpetual and countiess variecy of fruits and berries, adapted to nourish all the families of hard and sofbilled frugivorous birds. If we turn to the other orders of vertebrated animals, the Mollusca. Aanulosa, or Radiata, nach und all conspire to stamp certain peculiar features on the zoology of the New World, and to mark it as a distinct zoological empire.

4. The Ethiopian or African Province.

The chief seat of the Ethiopian variety of our species is central Africa; while most writers agree in thinking that its northern limits do not pass the Grent Desert. The pestilential atmosphere of tropical Africa has been an insuperable bar to the researches of Europeans; and all the ideas that can be formed on the zoology of such regions must be gathered from the partia! gleanings made by travellers on the shores of Senegal and of Sierra Leone. The ornithologieal productions receivel from these districts evinee n total dissimilarity from those of Northern Afriea, but intinately accord, both in species and genern, with the ornitholegy of the south: to this, however, there are several exceptions. The Plantain-eaters (Musophagida), and the bristle-nceked Thrushes (Trichophorns Tem.), are among the groups hitherto found only towards Sierra Leone. The Guinea Fowl, as its name implies, is most abumlant in the interior of that country, where three species have been discovered. The common Bee-eat \mathbf{r}, and the Golden Oriole are the only species among the land birds of Western Africa that occur in the European range; and these extend southward to the Cape of Gool Hope. The whole extent of Africa south of the desert exhibits, in short, a marked difference in its ornithological groups and species from these belonging to Europe, Northern Africa, and Western Asia. The comparatively few exceptions of birds common to Europe and the Cape cannot diminish the general foree of this remark, but merely shows that a few exceptions must never be taken as the groundwork of any particular theory. It is to one of the greatest ornithologists that France, or indeed any other nation, has produced, that we are indelted for the nost perfect accenut of South Airican ornithology yet published; but it must ever be regretted that thas portion of Th. le Vaillant's labours terminated abruptly; leaving the Gallinaceous, Wading, and Swimming orders to be completed by some other, who, with equal enterprise and abservation, should visit the same regions, and record their manners with the same veracity.

Between the ornithology of Africa and of America there is, within the same parallels of latitude, a very strong analogy, although (in the sense in which we apply the term) there is noue of affinity. We know not, in short, a single perching bird common to both continents; although in the rapacions order, which among terrestrial birds are well known to have nearly the wilest range, two or three species occur which likewise inhabit both extremities of Africa no less than North America.
The other vertebrated animals, and the insects of Southern Africa, furnish similar results. On examining the large collection of insects formed by Mr. Burchell, in the territories of the Cape of Goorl IIope, we could nut discover one out of many humèreds which was to be found in a much more considerahle collection brought bv us froin South America, although many generic groups, particularly among the Lopidoptera, appeared common to both continents.

Between the fianas of Africa and America the diflerence is unquestionably striking; yet there are several points of comexion between the ornithology of Africa, Asia, and Australia; and these appear not merely in generic groups, bat even in species. The Irongo Sherikes ((G. Didlius), the larva-caters (G. Ceblepyris), the typical Fly-catehers (G. Muscipetu, C.), the (ralreaters (G. IHtcyon), the Grakles (Lamprotonis), the Afriean Saxicole, the two grouss of tropical F'incher; (Estrelda Amadina Sw.), are all genera common to these three ragions, to meither of which, in a geographic livision, can they be exclusively assigned. But we nerd not dwell further on such resemblances, which, atter all, are but se
many points of connexion between geographic divisions, sufficiently distinct in their more prominent characters.

5. The Malay or Australian Province.

The regions peopled by the Malay tribes is the last zoological division requiring elucidar tion. We have already adverted to the great diversity of tribes comprised under this variety of the human race, and the little authentic information yet collected concerning their origin or history. The zoological results, however, are more definite.
On looking to the Indian Archipelago, as to that region where physiologists concur in thinking that the Malayan form is first apparent, we are told that several of these islands are pecpled by two different races of men (Lawrence, p. 489. and Cavier, p. 187.); the one frequently confined to the inland tracts, while the other people the maritime districts: their respective origins, hewever, are so little known, that it is still a matter of doubt which has usurped the territories of the other. (Marsden's Sumatra, 326, 3:7.) We confine these remarks to Sumatra and Java; for with regard to the vast islands of Borneo, Celebes, and those smaller groups to the enstward, we know little or nothing of their productions or of their people.
That the isthmus of Malacca and the aljacent islands exhibit the first indications of a peculiar race of people, is a fact upon which all writers appear to agree; and that we here begin to discern the indications of a new zoological regien is equally certain : yet it would be altogether rash, with our present linited information, to hazard any theory which would respectively assign to these islands a definite character in its inhabitants or productions. But the zoology of Java and Sumatra have been of late so zealously and ably investigated not only by two distinguished British naturalists,* but by otherst sent from France, that we shall in this place attempt to draw some results from their labours. The ornithology of these islands, with some few peculiarities, differs in no very decided manner from that of southern India. In both, the Gallinaceous genera, when they eccur, a:a the same, although some of the Javanese species differ. Of the more typical Sturnida, common to the Old World, but as yet unknown to the Australian or Oceanic islands, no less than three inhabit Java. Te these groups must be added, Parus, Sitta, Bucco, Cursorius, Clareola, Buceros, Oriolus,

82

 Brachypus, and many other genera characteristic of the ancient continents. The number of typical Scansorial birds within thr narrow limits of these two islands is truly remarkable. Eight species of Picus are described by Dr. Horsfield, and four or five others; one, the Malacolophus Concretus, Sw. (fig. 82.), of a remarkably small size, have been sent to France by M. Diard. The total absence of this family throughout the whole Australian runge, is a circumstance in itself sufficiently stroug to place the ornithology of Java and Sumatra beyond such limits; to which, nevertheless, it approximates very closely.
The birds of Java and Sumatra, which indicate an approximation to the Australian province belong to certain genern common to both regions; but unknown in sifrica or India: these are, Pitta, Ccntropus, Ocypterus, Prinea, Pogardus, Crateropus, Dacelo, \&c. In the Suctorial birds (the Tenuirostres of M. Cuvier,) we find in Java an evident departure from the typical form of Cinuyris towards the Melliphagida of Australia, in the genus Dicaum; four of the known species being Javanesc, and three Australian. What little is yet known of the birds of New Guinen, and its surrounding islands, exhibits a still greater deviation fron the ornithological features of India. These enchanting regions, long the fairy-lund of naturalists, remained nearly unknown uatil visited by learned Frenchmen, to one of whom has been assigned the distinguished honour of giving to the world the fruits of their scientific and important disceveries \ddagger It is in these islands that the Melliphagous genera begin to bedcveloped in the most novel forms, and the most sumptuous plumage. The grand Promerops of New Guinca can only be likened to the Australian Ptiloris. Several typical Melliphagida are in M. Lesson's collections. To these we can now add two species of genuine Pliledons (Cuvier), and two of the genus Vanga. The group of which the Muscicipa carinata (Sw .) \& is the type, displays itself in three new und beantiful birds, accurately described und figured by M. Lesson. The stay of the French naturalists on the coast of New Guinea was comparatively short, and their gleanings of its ornithology could not, from necessity, be otherwise than scanty; yet it is surprising that, among the birls thus procured, so large a proportion should belong to groups hitherto supposed peculiar to New Holland. It is clear, therefore, in a natural arrangement of ornithological geography, that the islands of New Guinea may be safely brought into that division which includes New Itolland, New Zealand, and their dependencies: this distribu-

* Sir Siamfori Raffes and Dr. Horsfield.
\dagger M. Lesson, Voyage autour du Monde.
VoL. I.
t MM. A. Duvnucel and Diarl.
§ Zoological Illustrations, vol, iij. pl. 147. Zool. Journ. i.p. 306
tion has, indeed, been generally adopted by geographers, merely from the relative positions of these islands.

On the zonlogy of New Holland it is.scarcely necessary, in this place, to expatinte. All naturalists coneur in viewing this insular continent as the chicf uetropolis of a peculiar creation of animals; whose limits on one side we have already traced, and whose range on the other extends over the innumerable islands scattered in the great Pacific Ocean. The Mcnura
 Superba (fig. 83.) is the most remarkable gallinaceous bird of this range. The Australian province is thus in full accordance with the distribution assigned to the Malay variety of our species: its connexion with Asiatic zoology is unquestionable; hut we have no means of judging into which of the three renaining divisions it blends, at its opposite extremity. Or the birds peculiar to those remote clusters of islands adjoining the north-west const of America we are completely ignorant; nor are our materiale sufficient to furnish even a plausible coujecture on the subject. Whether the Australian provinee, it its northern limita, unites again with the Asiatic, the American, or the Eiropean, must therefore be left to future discovery
We: have now completed a general survey of the distribution of birds over the globe. The Gul ; we have stated show the propriety of arranging the whole moder five great divisions or provinces, which may be distinguished as the European, the Asiatic, the American, the African, and the Australian: each of these corresponds, with little variation, to the geographic distribution assigned by authors to the different races of nan. We must, therefore, now adent one out of the two following conclusions: either that there is just and sufficient grewind for believing that the distribution of man and animals in general has been regulated by the same laws; or, that man and birds have been distributed alike, and all other animals differently. To us, at least, the latter conclusion appears highly improbable; not only as being unsupported by the least sladow of evidence, but as opposed to that harmony in creation, which is more apparent the more it is viewed in all its relations.

Secr. V.-General Summary of the Subject.

In offering these elucilations of a subject no vast in itself, and so important in all its lmarings, it will be resdily perceived that two different relations between animal groups are alluded te; one we have considered as of affinity, the other of analogy; and as the truth or fallacy of these views will mainly depend on the justness of these distinetions, a few observations upon them appear necessary. Naturalists, in general, have considered those resemblances which exist between certain groups placed in different regions, but in the same parallels of h^{4} : f me, as indicating affinities; and on this supposition, as before stated, have framed theorics by which animal geography has been divided into zones or provinces, limited more or less by certain degrees of hatitude. It nust be confessed that, upon a superficial view, there are many circumstances which appear to justify such a theory. Confining our attention to that department of nature which we have throughout selected, we shall partly recapitulate our former observations.
The aretic regions, in one sense, may be considered an ornithological zone; for not only the same groups, but the same species are found in such parts of Europe, America, and probably Asia, as enter within its limits. But admitting this to the full extent, let ns ask if these regions-by the numbe - variety, and peculiarity of their animals, are entitled to hold a primary rank with the great geographic groups already mentioned? Is there to be met with among the aretic birds numerous species which are not distributed far beyond such limits? Are there any gen"re or sul *reneric groups which do not oceur even towards the central parts of Europe, Asi", a d Ane ica ? These questions which inust be answered in the negative, sufficiently prove. that the arctic regions do not possess the characteristies of a primary division; they must rather be looked upht as a point of junction, where the ornithology of the three northern erntinents blends and inamonizes together.
The tropical regions of the OM and the New Worlds have likewise been united in one provinee. Ilow widely the ornithology of these conntries really differs, has been already explained. True it is, that in mmerons instances one group typifies another, as in the case of the Amer:can Hunning-birts ('Trochilida) being represented in the Ohd World hy the Sun-birds (C'innyride); and such relationship, in one sense, is certainly an afinity, inasmuch as in the natural system they apperur to follow one another; but if we ulmit such a degree of affinity to be a sulficient guide to at distribution of birls, we must also do the same with regard to the varicties of mon, sinc: both appear disporsed upon the same plan. The red Indian of America as eertainly represents the hack negro of Afriea as the latter does the sooty inhabitant of New Guinea; yet no one would think of classing them in the same race, merely becanse they inhabited countries under similar degrees of latitude. The dis-

Part IJ. ve positions
atiate. All eculiar creange on the The Menura arkable gal-- Australian with the dis riety of our c zoology is pans of judging divisions Of the birds f islands aderica we are ir materials e conjecture s again with covery.
globe. The divisions or nerican, the the geograaerefore, now and sufficient en regulated ther animals only as being - in creation,
ant in all its tal groups are s the truth or a few obserthose resemin the same stated, have inces, limited a superficial Contining our e shall partly
; for not only rica, and pro, let us ask if ntitled to hole ere to be met r beyond such in towards the e answered in acteristics of a here the orni-
united in one s been already as in the case World by the 1 affinity, inas ? admit such a so do the same ne plan. 'The the latter does m in the same ude. The die-

Boox III. IN ITS RELATION TO MAN IN SOCIETY.
persion of particular groups and of their species, upon the whole, is more in a longitudinal than iu a latitudinal direction. This is exemplified in a remarkable manner by the migratory hirds, which invariably proceed from north to south, or from south to north. It would, indeed, appear, that if animal distribution is to be regulated by geographic degrees, as accurate notions might result from making the divisions of longitude as of latitude : both, however, would be clearly artificial.

These parallel relations of analogy, which everywhere present themselves in the animal kinglom, nevertheless deserve our greatest attention, as fraught with peculiar interest to the reflecting mind. There are throughout nature so many immediate and remote relations, $s 0$ many unexplained ties of connexion, that the most careful of her students are perpetually misled in attempting to trace lier footsteps. In ordinary cases, the admirable distinction that'has been drawn between affinity and analogy (Hor, Eut.) is, perhaps, the best that can be given; yet instances might be named, in which even this is totally inadequate to the end propused. Natural relations are so complicated, that series of affinities apparently incontestable, will frequently, upon rigid analysis, turn out completely erroneous; proving no more than that nature, however diversified, presents so many points of general resemblanee and of connexion, that partial harmony will result even from a false combination of parts. Let us not therefore conclude, as is now too generally done, that by synthesis alone we can exhibit the true affinities of nature; that we may henceforward, without hesitation, assign to each of her productions its true station in the scale of being; that we have suddenly, and as if by magic, got full possession of that mighty secret which at once explains her laws, and expounds all that has perplexed the wise and confounded the learned, since science first dawned upon man. That the circular system is the nearest approach yet made to the true disposition which pervades nature,-a system which, from the perfections of its Creator, must be replete with order and beauty surpassing our utmost comprehension,-is indisputable, because none other has attempted to explain the relations of parts and the unity of the whole ; but farther than this its pretensions must not be carried: it still involves questions of great weight, since by one theory the number of its primary divisions is stated to be five, while by another, founded on much more extensive analysis, it is maintained to be three. The searcher after truth will give to these his patient investigation, his cool and unprejudiced judgment: he may then hope to make one step nearer to truth; for science, in all ages, has ever remained most stationary when the advocates of any system have been most prejudiced.

It is with these qualifications that the views here taken on the distribution of man and animals are given to the reader. It has been our desire to trace a connexion, and a unity of plan, in both, and to simplify a subject hitherto involved in much intricacy. How fir this object may have been attained, it is not for us to determine; but he who draws proofs of a Divine Creator from the harmony and design apparent in his works, has surely not written in vain.

CHAPTER III.

geography considered in its relation to man in gociety.

Man, when considered not as a mere animal, but as a being endowed with thought, reason, and contrivance, capable of social intercourse and union, must be regarded as the most conspicuons object in the delineation of the globe. These attributes raise him to the first rank in this lower world; and in every region occupied and improved by him, the communities which he has formed become the most prominent characteristic; all other beings are there subordinate and subservient to him. The description therefore which, in the succeeding part of the work, will be given of the different regions of the globe, must be chiefly employed in delineating the aspeets which man, as an aetive and social being, presents. At present, however, it would be premature to enter into the numerous details which this subject embraces. We can do little more than indicate the following general heads, under which it will be treated:-1. IIstorical Geography. 2. Political Constitution of the different countries. 3. Productive Industry. 4. Civil and Social State of Man. 5. Ianguages.

Sect. I.-Historical Geography.

A survey of the history of man is necessary for enabling us accurately to understand, and duly to estimate his present condition. Not only inanimate nature, but even the animal and vegetable kingdoms, if left to themselves, would remain constantly in the same situation : the changes and modifications undergone by them have been produced entirely by man's interposition. That improved and civilized form under which he now appears, is the result of a continued suecession of changes, which have been taking place from the carliest periods of authentic history. All the revolutions, both of ancient and modern times, have had a greater or less influence in producing the preserif moral, political, and social condition of man in the more improved quarters of the globe.

Subsect. 1.-Ancient IIstory.

Aneient history ig generally considered as comprehending the period which elapsed from the earliest authentic records, and particularly from the rise of the great monurchies, to the downfall of the Roman empire. The various forms which gevernment and society assumed during that long periol, though they were instrunental in prepariug thase which have existed in the modern world, did not bear any exact resemblance to them. Through the conquest of Rome by the barbarous nations, with which the first of these eras closed, alnost every connexion between them was eut off, except those of record and tradition.

The rise of the great munarchies, Egyph, Assyria, and Babylen, constitutes the first grand epoch in ancient history. It nearly coincides with that of the great cenmercial republics, Tyre and Carthage. Human society, which had before exiated in a very rude and iniperfect slape, began to assume a regular, orderly, and even splendid character. All the arts which contribute to man's support and accommodation were carried to a considerablo degree of improvement; and the foundation was laid of those intellectual attainments, which were to constitute hia highest honour. Alphabetic writing was invented and widely diffised; the arts of painting, sculpture, and architecture, made a eonsiderable progress; there were even formed some elements of science and philosophy. During this period, too, while the world generally was buried in the darkest superstition, a divine revelation, preparatory for another more perfect, having been first communicated to the patriarchs, was more formally disclosed to the legislator of the Jewiah nation.
The Persian empire embraced a wider extent of the globe than any that had previously existed, and compreliended those countries which had been most remarkable as the seats of improvement and civilization. Although, however, it thus became instrumental in linking distant nations together, it bore chiefly the character of empty and barbarous pomp, and does not appear to have produced any material aivance in krowledge and improvement.
The rise of the Grecian States formed, perhaps, the proudest era in the history of the human race. The constitutions then formed afforded a degree of political liberty, and a developement of the higher energies of the human mind, which could not be attained in extensive empires, subjected to the arbitrary rule of a single individual. The military exploits of the Grecian people, by which they bafled the force of almost the whole known world united under the sway of Persia, were the most splendid that had hitherto illustrated tho annals of mankind. Genius was exerted with neurly unrivalled power in every department; the historic page unfolded its utmost degree of euergy and beauty; und many sublime lessons of morality were taught by the Grecian snges. The fine arts, poetry, painting, nad architecture, reached an eminence which they have scarcely since regained, and in each the purest models were left for fiture imitation. After Greece had long maintained a glorious defensive war against Persia, her o.rms were directed to conquest. T'he reign and triumphs of Alexander, while they subverted her admired forms of civil polity, diflused her language, her arts, her knowledge, over a wide extent of the eastern world, nnd thas spread a eirele of civilization, the traces of which have never been wholly obliterated.

The dominion of Rome, which succeeded and overpowered that of Greece, extended over a still greater variety of countries und people, than had been comprehended under any former empire. Her character, at first stern and nustere, was gradually softened; and ou arriving at her highest pimacle of wealth and power, she made at the same time an unrivalled display of the ponp and refinement of polished life. She emulated, without fully equalling, what was most brilliant in the urts and intellectual attainments of Greece. But the most signal service which Rome rendered to the cause of civilization, was by extending its empire over wide regions in northern and western Europe, which had previously been the seat of alnost complete barbarism; though they now form the most enlightened and improved portion of the globe.

Subsect. 2.-Modern History.

The downfull of the Roman Empire, which marked the commencement of modern history, formed one of the most remarkable and disastrons eras in the destiny of the world. During the fourth and fifth centuries, a succession of barbarous hordes from Germany, Scandinavia, Russia, and even the remotest extremities of northern Asia, poured in upon civilized Europe, and exterminated or reduced to bondage the greater part of its people. All the arts and sciences, which had shed such a lustre on the Greek and Roman name, disappeared, leaviug only some imperfect remnants, which were preserved in the depth of monasteries. The empire was partitioned into a number of disorderly little kingdoms, gradually merged into a few great monarchies, which, in their general outline, have continued to the present day. This era was also distinguished, in the East, by the introduction of the religion of Mohammed, and the rise of the Saracen power, which undertook, by force of arms, to diffuse that religion over the world. Ys armed voturies overran n grent part of Asia, Africa, and even of Europe, and continue atill to maintain a powerful influence over the destinies of the human species. For some time, the states formed under this system pre

Book 111.
IN ITS RELATION TO MAN IN SOCIETY.
pented a somewhat enlightened aspect, and cven revivol the expiring lamp of reience; but the final issue of Mor'en necendency lans been, to ditlise throngh the world, ignorance, despotism, barkarisun, nud every prineiplo hostile to human improvenent.
Thie feulal system wis on. iblished gradually among the barbarons states firmed out of the dismenbered portions of the Roman enpire. The king, or chief; distributed the territory nuong his nobles or followers, suliject only to the condition of militnry service. Theso nobles, possessing almost uncontrolled jurisdiction within their own limits, holding at their disposal the services of mumerous vassals, took alvintage of every interval of weakness in the reign of the sovereign, and readerod lis power little more than nominal. They reduced the body of the people to a state of comparative slavery, waged numerous private wars with each other, and practised various robberies and extortions. During this turbulent era, all retined arts and pursuits languished, while, on the basis of ignorance, superstition erected an absolute and tyrannical dominion. The institutions of chivalry, however, which were then formed and gradually improved, introluced a sense of honour, nnd a dignity and refinement of manners, which have beneficially influenced modern society. This period was also marked by the piratical inroads of the Scandinavians or Nortlimen, who ravaged nll the coasts of Europe, and obtained at least a temporary possession of considerable districts and even kingdoms. It was marked, lastly, hy those memorable expeditions into the last, called the crusades, which, though attended with great extravagance, and occasioning much disuster and bloodshed, tended, on the whole, towaris the improvement of European policy and socinl life.
The subversion of the feudal power, accompanied by the revival of knowledge, arts, and industry, formed a most menorable era in the history of mankind. This change, which had been for several ages silently prepuring, wns carried into complete effect during the fifteenth and sixteenth centuries. The turbulent rule of the grent nobles was then broken down, and was suceceded by several extensive but mildly administered monarchies, along with some free and commercial republics, and in one instance a limited constitutional monarchy. The reformation of religion eminently distinguished this period; but being opposed by the violent intolerance of the Catholic church, it gave rise to a series of dreadfinl and sanguinary struggles, A general activity prevailed thronghout the whole sphere of human exertion. The revival of loarning, the invention of printing, the extension of maritine enterprise, leading to the discovery of new regions, and of new routes to those firmerly known, rendered the age peculiarly eventful and interesting. It derived, however, a somrwhat disastrous elaracter from the establishment of the Turkish empire in the East, by which the throne of the Greck emperors at Constantinople was finally subverted, and very serions alarms spread through the whole boly of the Europenn nations.

The modern system of polity followod, as the rosult of the great elounges which had taken place in the preceding period. During the sevouteenth and eighteenth centuries, when it prevailed, eivilization made very remarkuble advances. The manners of social life hecame more polished and refined. The arts and sciences were carried nearer to perfection, and more widely diffisel through the great body of mankind. Amicahie relations, betore unknown, were established between the different nntions of Europe; fixed laws were agreed upon for regulating their intercoures ; and war, when it did oceur, was earried on with greatly diminished terocity. The system of celonization in the other quarters of the globe was also carried to a vast extent, particularly in America; and though its first establishment was attended with many circumstunces of injustice and tyranny, it had the effect of bringing those quarters of the world into a more improved and civilized condition.
The era of political revolution, which conmenced townrds the end of the eighteenth century, boing that which is still in progress, cannot be characterised in so decided a manner. The formation of the great monarchics had delivered Europe from the turbulent awny of the feulal chieftains; yet the almost absolute power with which the sovereign was then invested, was found productive of many evils. The hereditary nobles, exchanging their rural seats for a residence in the great capitals, and indulging in ease and lixury, lost all influence over the borly of the people. The diffision of intelligence and wealth through the middling and, in some degree, even the lower ranks, was followed by a demand, on their part, to be admitted to some share in the ndministrution of public affairs. This spirit, after ternenting for sone time, and being diffused by the exertions of many distinguished writers, produced the French revolution, and the extraordinary series of events which have thence arisen. That great erisis did not merely ngitate the interior of France, but by exposing it to foreign interference, and then impelling its own rulers to schenes of eonquest, it changed tor some time, in an extraorlinary manner, the aspect of all Europe. Then, however, by a grand re-nction, France was driven back within her original boundaries, and the politicnl relations of the Continent were re-established nearly on their former footing. Considerable agitations, however, still prevail in the interior of different kingdoms, and their political constitutions have suffered, and are likely to suffer, material alterations.
Vol. I.

Sectr. II.-P'relitical Constitutiom.

The political censtitution under which any community subsists, forma a most inportant element in its social condition. Being usually established within certain lecu! boundaries, and accompanied with a similurity in manners, religion, and other characterintic circumatances, it is the leading agent in constituting a country or state. In distributing, theretiore, the four quarters of tho globe into their smaller portions, the geographer uses chiefly political divisions. IIe finds states which have made uny progress in civilization arrangod into kingdoms, empires, and republics. The elements of political power appear to censist of monarchy, aristocracy, and democracy; while the public functions, to be exercised within any state, are the executive, legislative, and judiciul.

A kingdum is a state of considerable though not vast extent, governed by a single person, as France, Spain, Prussia. The subjects are usually united by a similarity of language and manners, and pervaded by a national epirit. The power of the sovereign is cemnnenly extensive, though controlled in some instances by national assemblies; and there is almost always a body of nobles possessed of high privileges and inmunities.

An empiro generully consists of a number of detached kingdems, which have been united ly cenquest under one heud, as the Turkish, Persian, and Chinese. Being thus formed of uan aggregation of diflerent states, empires are usually of very great extent; and as military force has been the instrument of their combination, the sovereigns exercise almost always an unlimited authority. 'I'he different members having been brouglit into unien ly force only, rarely feel united by any national tie, and remain very dissimilar in manners, religion, and social institutions.

Republics consist of states which own the supremacy of no king or sovereign, but are geverned by a senate, an assembly of the people, or by both conjoined. Theugh these governments have acted a conspicuous part in the history of the world, they have been generally of amall extent, consisting, in many instances, of not more than a single city, with a limited circle of territory. Where this form of government has been diffused over a great surface of country, it has censisted usually of a number of states, joined in a federal union. This is remarkably the case with the United States of America, where such a government has been introducel on a scale of greater magnitude than in any other quarter of the glabe.

Monarcly, among the flenents which compose the political system, holds the mest conspicuous place, and is the most generally prevulent. : In some cases, tho power of the monarch is wholly or very nearly absolute. In a majority ef instances, hewever, it is mere or less controlled by tho influence of eertain powerfil und privileged bodies. In some constitutions the power of the monarch is conibined with that of aristocratic and popular bodies, which sharo with the sovereign all the higher functions of government. These are called limited monarchies, and are well adapted for the preservation of a great people in a state of peuce and prosperity. This forn of government, after being for a long time confined to Britain, is now spreading, though with some difficulty and confusion, over the rest of Europe.
Aristocracy, or the power vested in a distinguished und privileged class, is found existing much less frequently as a distinct and decided form of government, than as an element cembined with monarelyy and democracy. Veniee, perlaps, afforded alinost the enly example in which aristacracy subsisted for a series of ages pure and unmixed. In monarchies, the aristocracy consists of a boly of nobility, pessessing vurious gradations of personal and hereditury titles and rights; while in a republie it is formed into a deliberative body, or senate, exercising or sharing tho powers of the state. In mixed menarchies, both these privileges are usually lield by tho nobles.
Democrucy is the name given to the government in which the sovereignty resides in the great body of the citizens. They exercise it, either in a general assembly of the whole nation, or by means of persons elected, during a certain period, to act fur the body of their constituents. The former was the mode usual among the ancient republics; the latter is more prevalent in modern times, and is alone compatible with the great extent of territory occupied by the leading republics of the present day. Popular government has been very generally combined in a greater or less degree with ariatocracy, though there seldom fails to be an ulinost incessant opposition between the two parties.

The legislative, aunong the different functions of the body politic, is justly considered supreme; it establishes the laws and regulations, accerding to which all public affuirs are to be alministered, and to which the persons exercising the other functions are bound to conform. Countries in which the legislative as well as the executive power is exercised by one nan, form inbsolute monarehies, where every thing depends upon the aritrary will of that single individual. A purcly aristocratic legislature is commonly felt to be severe and oppressive by the great boly of the people. A government cannot be considered as free, unless the varions elasses of which the nation is composed have a voice in legislative arrangements. Those political systens, however, in which the laws are enacted by the whole body of the assembled people, are titted only for a single city with a territory of limited extent. Of such a nature und scale were the ancient republics of Greece, and also that of Rome, during

Part Il.

 nt important (bounduries, intic circumig, therefire, hiefly politirranged into to consist of reised withinaingle person, language and commonly exere is alunost
e been united lus formed of and as military 10st always an by force only, , religion, and
reign, but are I these governjeen generally e city, with a ed over a great federal union. ingovernment or of the globe. a the most conpower of the ever, it is more

In some collpopular bodies, hese are called ple in a state of ine confined to rest of Europe. s found existing an element come only example monarchies, the of personal and erative body, or chies, both these
ty resides in the bly of the whole he body of their ics; the latter is ktent of territory it has been very re seldom fails to
justly considered blic affairs are to are bound to conexercised by one trary will of that evere and oppresed as free, unless ve arrangements. vhole body of the ited extent. Ot t of Rome, during

Book III.
the earlier pririods of her history. But when the whole of a great people are convened into one place, they form a mere tumultuary crowi, incapable of any regular or eflectual exercise of legrishative finctions. 'This disadvantage line, mung modern nations, been studiously remedied by the representutive system, under which the inhabitnits of each different diutrict elect an individun! understoon! to juwness their confidence, who excreises in their stead the legislative finction. Upon this bisis have been founded thoze constitutions that have been considered an exhibiting the most perfect forms of civil jolity.

The julicial power provides lor tho security of person and property mmong all ranks of individuals composing the political boxly, and torms thus ono of the arrangements inost essential to gencral prosperity and well-being. Tho institutions for this purpose vary greatly in different nations and stapres of society. Among very rude tribes, the individual has only his own strength and that of his kindred to uid in repelling aggression. As society advances, the administration of justice between man and man becomes a leading olject of public concern. In the earlier forms of polity, however, tho exceutive and legislutive functions are usunlly blended; the monarel, or his deputy, sits on the tribunal of judgment, and the forms of procedure are exceedingly simple. The parties appear, and plead their,cause viva voce ; white the judgro decides promptly and on the spot. In tho further progress of improvement, it is discovered that this branch of public economy cannot be duly executed, without being entirely separated from the legislative and judicial departments, and made independent of them. Hence arise the different orders, julges, lawyers, and agents, by whom the different stages of procedure are comlucted; written and voluminous coles of law are formed, with the view of providing for every particular case. Yet tho expense and delay consequent upon these complicated arrangements sometimes cause tho society to look back with regret on the simple nud expeditious maelinery employed by their rudo ancestors.

Other important particulars aro comprehended in the politicul state of a society :-the titles of nobility, nud the badges of lonour and distinction among individuals; the military and nuval force employed in the defence of n country ; the elements which conpose it; and the manner in which these are arranged and directed. Tho samo subject embraces also the revenne, its amount, the sources whenco it is derived, and tho manner in which it is levied and expended.

Sect. III.-Productive Industry.

The inlustry of a nation is employed in producing tho necessaries, the conveniences, the ornaments, and the luxurios of life-all that is comprehended under the namo of wealth. It forms thus one of the most important constituents of their prosperity and well-being.

The sourees of national wealth aro usually divided into three; agriculture, manafactures, and commerce: each of these is divisible into several distinct brnaches, nor can the catalogue be completed without including the two occupations of mining and fishing.
Agriculture, including the means of procuring every part of the produce of land, or what. land bears on its surface, is unquestionably the grand sourco of human subsistence and accommolntion. Hence chiefly aro derived the materials used in manuficture; the objects, in the exchange of which commerce consists. The moles in which support and the means of enjoyment are obtained trom land may be divided into three; lunting, pasturage, and tillage, which last being the only form in which labour is employed upon the ground itself, is nore specially considered as agriculture. The collection of the spontaneous fruits of the earth, being confined to n few tribes in the lowest stage of improvement, scarcely requires to be taken into consideration.
Hunting, or the chase of wild animals, to obtain their flesh as food, and their skins as raiment, is the earliest and rudest mode of procuring humun support. This employment requires art and contrivance as well as bold adventure; but is usually accompanied with rude and turbulent habits, and, combined with them, constitutes what is called the savage state. As eulture advnnces, and the greater proportion of the soil is devoted to the plough, or to the support of tame animals, its range is grently limited, and in a high state of cultivation becomes little more than the amusement of the opulent. The ehase of the fur-bearing animals, however, still afforts one of the most valuable materials of commerec.

Pasturage, or the deriving of subsistenco from herds and floeks, tamed and trained so as whe subservient to the use of man, forms a more improved and comfortable oceupation than hunting. Peculiar habits of lile usually distinguish nations subsisting solely by pasturage. They are often destitute of any fixed abodes, moving from place to place in large bands or encampments, living within their tents in putriarchal simplieity, but towards other nations practising on a great scale war and robbery. These habits constitute what is cailed the bar barous state, still pevodent anong the Arabs, Turtars, and other nations occupying an exten sive portion of the earth's surface.

Tillage, or the culture of the soil by the processes of ploughing or sowing, is employed, by all the more improved nations, as the most efficacions means of drawing subsistence from the rarth. In proportion to the general improvenient which any people have attained, is usually the ekill and diligence with which this most important art is practised. The com-

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

manity which derives its chief subsistence from the culture of the soil, merits gencrally, to a great extent, the character of civilized. Some of the oriental people, as the Hindoo and Chinese, practise this important art with an indefatigable industry applicd to every available portion of their soil, which is scarcely to be paralleled elsewhere; but in Europe, and especially in Britain, the use of machinery, the skilful rotation of crops, and various improved processes, render the same measure of industry much more productive. The objects of culture vary exceedingly, and for the most part according to the varietics of soil and climate. Grain, the main ataff of human subsistence, forms everywhere the most extensive and important object of tillage. Climate chiefly determines the grain cultivated in any particular region. In the tropical countries it is rice; in the best part of the temperatu zone, wheat and barley; in the colder tracts, oats and rye. Of luxuries, wine and oil are the most gratoful, and in the most general demand; they have their almost exclusive growth in the warmer tracts of the temperate zone. The delicate fruits, from which they are produced, do not fleurish in the excessively luxuriant soil of the tropics. There, however, the fragrant aromatic plants, and those filled with rich and saccharine juices, produce valuable aubstances, which are eégerly sought after by the natives of less genial climates.

Fishery, by which subsistence and wealth are derived from the waters, forms a peculiar branch of industry, which flourishes in every stage of socicty. Even the rudest savages, wherever their situation admits, conjoin it with hunting, as a means of affording an immediate supply to their wants. They practise it often with a great degree of diligence and contrivance; but the progress of industry leads to various processes for extending and improving this branch. By the operations of salting and drying, fish is rendered fit to be conveyed as merchandise to the most distant countries. Some of the great maritime nations send large fleets into remote seas, where they find situations favourable to this pursuit. The whale, the cod, and the herring fisheries have, in this manner, been raised to the rank of great national concerns.

Mining, or the extraction of valuable substances from beneath the surface of the earth, can be extensivery pructised only in a somewhat advanced atate of human industry. Yet nature has lodged in these dark repositories objects the most essentially conducive to the uae and comfort of man, and others which afford his most brilliant ornaments. Here are found the bright and attractive metals of gold and silver; there the solidly useful ores of iron and copper; here glitter the diamond, the ruby, and the amethyst; there extend vast beds of coal, lime, and freestone. Gold, the most precious of the metals, is often the most easily accessible; but we can scarcely give the name of mining to the operation by which the savage mercly collects its. grains in the sands of the rivers, or even extracta it by pounding, when mechanically combined with other substances. But metals, in general, when lodged in the bowels of the earth, exist in the form of ore, intimately and even chemically united with other materials, from which they can be separated only by smelting, refining, and other elaborate and even scientific processes. From the toilsome nature of these opcrations, and from the gloomy depthe in which they are conducted, it is often difficult to procure a supply of workmen; hence slaves and individuals condemned for crimes have been employell to a later period in this than in most other species of labour. Whatever skill may be cmployed in mining, it is necessarily a local occupation, nature having irregularly and almost capriciously distributed its objects over the different regions of the globe. Even the experiments made to discover whether metals are lodged in any particular spot, are often attended with considerable cost, and even peril.
Manufactures may be regarded as a process by which man creates, as it were, a value for himself. He cannot, indeed, make any new substance; he can seldom even alter essentially the quality of that which is furnished to him; but he can altogether change its character and quality, can convert a rude and shapeless substance into one eminently conducive to benefit, convenience, or ornament. The excrescence shorn from an animal, the pod hanging from a shrub, objects in themselves neither useful nor beautiful, are converted into commodious and magnificent. robes, adorned with the most brilliant tints. Almost every natural product requires to undergo some change before it is fitted for the use of civilized man. Grain must undergo the process of grinding and baking; the juice of the vine, that of fermentation; cven animal food, that of cooking. But the name of manufacture is not given to these processes, nor to any which do not, to a material extent, increase the value of the substances on which they are cmployed. The various articles of clothing form the principal objects of manufacture; next to which rank stuffs for furniture, metallic implements, and utensils. Manufacturing skill and industry, carried to a certain extent, mark, beyond almost any other circumstance, the advance of a people in arts and civilization. The savage usually employs unaltered the substances with which nature furnishes him. He feeds on the flesh of the animals which he has killed in the chase; he clothes himself in their skina; he consumes in their crude state the roots and herbs which the carth spontaneously affords. Even the nations which subsist hy prasturage, and lave made, perhaps, a certain progress in agriculture, though they have usually acquired a desire for articles of fine manufacture, prefer to obtain them from more industrioua neighbours, in exchange for
their men, out an that th of the for abt and ha Con new a veys it someti where which The divided and aff less no be by r basis cr other r dustry of one where
distant
canals.
lar to th
as the r
contigu
it has b
which t commod this illit
distant
The ext
them to
tance, al
continer
as to re
The i
shipping
of a cou
infancy,
countrie

The
if not th
and one
The and
importar
war. S
that pop
a level
abundan
for chec
The a
in cona
North A
made.
observat
be peop
A nat
often ex
viduals;
and ano
and refir
absence
Vol.
their own rude produce. The eastern empires, for the consumption of their courts and great men, produce a few articles of exquisite fineness and beauty by mere manual labour, without any capital or any machinery at all costly or complicated. It ia among. European nations, that the two principles, the division of labour and large capital employed in the constraction of the most ingenioua machines, have enabled the manufacturer to produce fabrica which, for abundance, elegance, and cheapness, have surpassed those of every other age or nation, and have found their way into all the markets of the globe.

Commerce, the third grand aource of national wealth, doea not even aim at producing any new article, or altering the texture or quality of that in which it traffica. It merely conveys it from a place in which it is superabundant, to another in which it is wanted. This sometimes confers an exchangeable value on that which previously had none; in every case, where judlciously exercised, it very considerably enhances the value attached to the article which it conveys from one place to another.

The home and the foreign trade form the two great branches into which commerce is divided. The former, in consequence of each of its transactions being on a smaller scale, and affording little scope for brilliant adventure and splendid speculation, attracts, in general, less notice, and is considered of inferior political importance; yet it is proved by Smith to be by much the most extensive, as well as the most conducive to national prosperity. Its basis conaists in the exchange between the country and the town, of the grain, cattle, and other raw produce of the one, for the varied commodities framed by the manufacturing industry of the other, or, in countries of great extent, of the raw or manufuctured productione of one section for those of another. Home trade is either coasting or inland, the former, where practicablo, being preferred for bulky commodities, or those to be conveyed between distant parts of a kingdom; much of the interior commerce also passes along rivers and canals. Foreign trade has no limits but those of the habitable globe; and, for reasons similar to those juat hinted at in another case, the more distant branches are considered generally as the most brilliant and important; while, in fact, the trade with the countries most closely contiguous, from its quicker returns, ranks highest in real amount and value. Unfortunately, it has been hitherto much fettered by the jealousy and rivalry between neighbouring nations, which make each imagine the prosperity of another to be gained at its expense, and every commodity received from them, to be so much abstracted from its own wealth. Although this illiberal aystem has somewhat abated, yet the consequence still is, that intercourse with distant colonial possessions is more sure and steady than with any power entirely foreign. The extensive capitala now poosessed by aome European powers, especially Britain, enable them to earry on the most extensive commerce with countries situated at the greatest distance, and even at the opposite extremity of the globe. In the interior, also, of the great continents, there is a foreign trade by land, carried on by caravans, which are so numerous as to resemble armies, and proceed to an immense distance.
The inatruments employed in conducting and facilitating commerce, and which are chiefly shipping, roads, and canals, form the most important part of what is called the fixed capital of a country. Under the head of roads, the invention of railways, though yet only in its infancy, promises to facilitate, in a remarkable manner, the interior communications of the countries in which it is employed.

Ster, IV.-Civil and Social Condition of Man.

The population, or the number of individuals, of whom any community is composed, forms, if not the most important, at least the most prominent circumstance in its social condition, and one on which its magnitude; and its place in the scale of nations, intimately depend. The ancient statesmen cunsidered the increase of the numbers of a people as one of the most important of national objects, with a view both to its prosperity in peace, and its strength in war. Some politicians of the present day take a different view of the aubject, maintaining that population in all circumatances of tolerable peace and prosperity easily keeps itself on a level with the meana of aubaistence, has even a tendency to riso higher, and by its auperabundance to produce a distressing degree of national poverty: they have auggeated schemes for checking the progress of pupulation.
The actual amount of the population in any particular period or country, has been involved in conaiderable uncertainty. It is only in modern Europe, and in the United States of North America, and there very recently, that general or careful enumerations have been made. But in all the other quarters of the globe, the estimates are formed upon very vague observation, founded on the density with which, on a superficial view, the districts appear to be peopled.
A national character is found to pervade every community. The particulars lave been often exaggerated, fancifully delineated, and rashly and indiscriminately applied to individuals; but to a certain extent such a variation may be always traced between one people and another. The grand distinction, founded upon the progrese of arts, letters, knowledge, and refinement, is into savage, barbarous, and civilized: the first being marked by the total absence of these improvements; the second, by the possession of them in only an imperfect
Vol. I.
24*
2 L
and progressive degree; the third, by their having arrived at a certain maturity. The savage state prevails among the natives of America, and the islanders of the South Sea; the former, however, being now in a great measure supplanted by European colonists. The barbarous atate is gencral throughout Africa, and extenda over a great part of Asia. The civilized state is found in the great empires of Eastern Asia, and in a higher degree, as well as under different characters, among the nations of Europe, and their widely-spread colonies. In these last, too, civilization appeara to continue in a progressive and advancing state, while over the rest of the world it is nearly stationary.

The religion professed by any people is a remarkable and most important festure in their social cundition. Religious opinons do not come directly under the cognizance of the geographer; but he is called upon to mark this, as a particular in which nutions strikingly differ from each other. The inhabitants of the earth may, in regard to religion, be divided into three great clasees,-Christian, Mahomedan, and Pagan. The first, as to numerical amount, does not exceed the second, and still falls short of the third; but the nations professing it, have acquired such an ascendency in arts, social improvement, and political. power, while their colonies have filled, and are multiplying over all the lately savage and unoccupied portione of the globe, that in all probability this faith will, in a few generatione, be more widely diffused than any other. The Mahonsedan nations, theugh in numbers they perhaps equal the last mentioned, and though they occupy a large proportion of the most fertile regions of the globe, are yet aunk into auch a state of slavery and degradation, and so decidedly surpassed by the Christian people, that their away is not likely to endure above two or three centuries. Of the Pagan religions, much the most numerous, and the only civilized, professors, are those attached to the kindred creeds of Brahma and Boodh, established, the one over the greater part of Hindostan; the other in China, and other continental kingdoms, sud insular territories of Eastern Asia. From their peculiar habits, and the immutable nature of their institutions, they are likely to adhere to these systems with greater pertinacity than the votaries of superstition in Africa, the South Sea, and other quarters, where the train of belief and observance, however fantastic, is of a slighter and looser texture.
The progrese of knowledge forma a most conspicuous chapter in the history of the human species: it follows generally that train of civilization which we have already delineated. In aurveying different communities, various particulars connected with this subject are highly deserving of the attention of the geographer. Among these we may mention the most eminent philosophers, men of science, and authora who have flourished in any nation,-the institutions formed for the promotion and advancement of science,-the degree in which knowledge is diffused throughout the community, 一the establishments formed for public and private education.
The finc arts,-which are intimately connected with the more elevated and intellectual part of man's nature, and of which the successful cultivation confers glory on a pcople, and polishes and improves their manners,-merit to be considered similarly, and under the same general heads, as their intellectual attainments.
There are various points of minor importance, which yet are dietinctive and characteristic of a people, and excite thus a just and natural curiosity. Such are the amusements in which they chiefly delight, the peculiar costume in which they are attired, the species of food on which they subsist, and the liquor by which they are exhilsrated, as well as the mode in which these articles are prepared for their use.

Srer. V.-The Languages of the World.

On the subjects now enumerated, it has been judged aufficient to indicate their nature, and the light under which they will be treated, reserving the details for the succeeding part of the work, when they come to be considered successively in reference to the various regions of the globe. But there is one subject into which it will be expedient, even at the present stage, to enter more particularly.

Language is one of the strongest characteristics by which nations are distinguished from each other; at the same time the dialcets spoken by different communitics, even when most widely dissimilar, display in many casca relations and alliances indicative of a common origin. There exist over the world classes of languages, each of which comprehends the speech of numcrous people, and forms a tie between them, marking carly relations and connexions. Language thue acquirea a character especially geographical, illustrating the origin and families of nations, and the connexions between different countrics. It will then be advantagcous to consider, in a large and comprehensive view, first, the languagea spoken gencrally over the globe, and then those which prevail in its different quarters.
The languages by which the nations of the carth are distinguished, and from which are derived the names, not only of its princtal features, natural and artificial, but of its different regions, and of the places contained in them, constitute an important department of geography. When we contemplate those names in maps, a little reflection suffices to convince us that most of them are to be regarded, not as mere arbitrary or fortuitous appellations, but

Boor

as term impose we are them w civil, a without msy ob empire, romark world, the dist ancient is at ev modern she retu unequiv imperial Spain, p ment in Sarago nor can dalquivi the Aral whether lers; an when wt between Deutsch nounces far hight consider kind," is different
"repleni
Ethno
cal scien
doms, far
from beir
many ar
For this
have coll ment, an Asiatic, ever, tha widely d remotest in regard cal treat to offer,
languag
The scriptura tion to tl languag been plo and Inla observat geograp

On re
the sons
elder.
in the or
"The
over the
Arabia.

Boor IIt.

IN ITS RELATION TO MAN IN SOCIETY.
as terms of definite meaning, or as significant memorials of the people by whom they were imposed; and, in tracing those of ancient origin through the mutations they have undergone, we are compelled to summon listory to the aid of geography, for the parposes of explaining them with reference to the great events which have, from tine to time, altcred the politicai, civil, and sucial condition of the nations composing the great family of nankind. Thus, without adverting to the rise, growth, and extinction of kingdoms and empires in Λ sia, we may observe, that the series of revolutions which ended in the overthrow of the Roman empire, and the foundation of the existing system of Europe on its ruins, is in nothing nore romarkable than in the change which it contributed to produce in the greater part of the world, through the migration of nations; a change so absolute, that it has gerved to mark the distinction between ancient and modern history, ancient and modern geography, and ancient and modern languages. Of this change the geographer, equally with the historian, is at every step of his investigations reminded. France, for instance, commemorates in her modern name that branch of the Germanic fanily of nations whe prevailed in Gaul; yet ahe retains, not less in her topographical vocabulary than in ber language generally, unequivocal traces of Roman dominion; and we recognise, though strangely curtailed, the imperial appellatiens Augustodunum and Aureliana, in Autun and Orleans. Italy and Spain, preserving a semblance of their ancient names, exhibit similar ingtances of disfigurement in those of particular places: Forum Julii and Cesar-Augusta survive in Frinli and Saragossa; but the Trasiniene suggeats a less classic reminiscence as the lake of Perugia; nor can the Betis and the Durias be recognised under the more sonorous names, the Guadalquivir and the Guadalaviar (the great river and the white river), conferred on them by the Arab conquerors of Spain. Appollatives, also derived from languages little known, whether ancient or modern, are liable to mutilation from the varying orthography of travellers; and we can no longer wonder at the confusion caused by voyagers in this particular, when we call to mind the difference not only between foreign and vernacular names, but between their written and oral expression; as when a German spells his native country Deutschland, and pronounces it Teytshland; or a Persian writes for Persia Irän, and pronounces it Eeraten. But the different idions of the human race claim our attention from far higher considerations than the mere naming of places or of countries; for geography, considered as an auxiliary to what has been emphatically called "the proper study of mankind," is principally valuable as combining, with a description of the earth, a vicw of the different branches of the great luman family by whom such vast portions of it have been "replenished and subdued."

Ethnography is the term which has been employed to designate this branch of geographical science. It distinguishes nations by their languages, and professes to class them in kingdoms, families, genera, apecier and varieties; but this systematic arrangement is as yet far from being completed. Of the numerous languages that are or have been spoken on the earth, many are so imperfectly known that it is difficult to determine to what family they belong. For this and other reasons it has been deemed expedient by a modern writer, who appears to have collated the labours of his predecessors on the subject,* to adopt a geographical arrangement, and consider languages in their relation to the five great divisions of the globe; the Asiatic, the European, the African, the Oceanic, and the American. It is obvions, however, that the ethnographical and geographical limits of a nation and its language may be widely different; the Spanish and the British, for instance, extend ethnographically to the remotest regions of both the Indies. Adopting this arrangement, not only as most convenient in regard to a branch of knowledge still in its infancy, but as most suitable to a gengraphical treatise, we shall proceed, without pausing to discuss the merits of any particular theory, to offer, in this and subsequent parts of the present work, such a succinct view of the known languages of mankind as its just proportions will allow.

The distribution of languages into Shemitic, Hamitic, and Japhetic, according to the scriptural account, seems however entitled to some notice, as being well warranted in relation to the early languages of the world, if we can reconcile our thoughts to an affinity of languages after their confusion, and the consequent dispersion of the human race. It has been placed in a striking point of view by the able author of the "History of Maritime and Inland Discovery," in Dr. Lardner's Cabinet Cyclopadia; and a brief sketch of his observations may be useful as an introduction to an account of languages more strictly geographical.

On reference to the sacred records, we find that in the order in which the gencrations of the sons of Noah are given, Japheth takes precedence of Ham and Shem, and is called the elder. This the learned writer we are now citing has not noticed; he has taken the names in the order which long and univergal usage has sanctioned.
"The family of Shem," he observes, "comprised the pastoral nations which were spread over the plains between the Euphrates and the shores of the Mediterranean, from Ararat to Arabia. The Hebrews themselves were of this stock; and the resemblance of their lan-

[^10]guage with the Aramean, or ancient Syrian, and with Arabic, sufficiently proves the identity in race of what are called the Shemitic nations. There is no difficulty in assigning to each of the sons of Sliem his proper situation. Elam founded the kingdom of Elymeis; Assur, that of Assyria; and Aram, the kingdom of Aramoa or Syria, a name still clearly preserved in that of Armenia. From Arphaxad wero descended the Hebrews themselves, and the various tribes of Arabia; and this close nffinity of origin was alwnys manifest in the language and in the intimate correspondenco of the two nations. Some of the names given by Moees to the children of Shem are still used in Arabia as local designations: thus there is still in that country a district called Havilah; and Uzal, the name given to Sana by the sacred historian, is not quite extinct.
"The descendants of Ham," continues this learned writer, "constituted the most civilized and industrious nations of the Mosaic age. The sons of that patriarch were Cush, Mizraim, Phut, and Canaan. The name of Ham is identical with Cham or Chamia, by which Egypt has in all agea been called by its native inhabitants; and Mizer or Mizraim is the name by which the same country, or more probably the Delta, is atill known by the Turks and Arabians." [We may add, that it is the name by which, in the original Hebrew, Egypt is called in the admenition that precedes the decalogue.] "The land of Phut appears to signify Libya in general ; and the name Cush, though sometimes used vaguely, is obviously applied to the sonthern and eastern parts of Arabia. The names of Saba, Sabtah, Rat nah, and Sheba, children of Cush, have long survived in the geography of Arabia. The posterity of Canaan rivalled the children of Mizraim in the early spleadour of arts and cultivation. Though the Canaanites, properly speaking, and the Phonicians, were separated from each other by Mount Carmel, yet, as the same spirit of industry animated both, they may in a general sense be considered as one people. The Phœnicians possessed the knowledge of the Epyptians, free from superstitious reluctance to venture upon the aca. Their local position naturally engaged them in commercial enterprise. Their chief cities, Tyre and Sidon, had reached the higheat point of commercial opulence, when the first dawn of social polity was only commencing in Greece."

To Japheth, "the Japetus of the Greeks," this writcr concurs with others in ascribing the superiority over the sons of Noah, if not in the number of his descendants, in the extent of their possessions. All the Indo-Teutonic nations, strctching without interruption from the extremity of Western Europe, through the peninsula of India, to the isle of Ceylon, he considers as belonging to this common ancestor. The Turkish nation also, occupying the elevated countries of central Asia, boasts the same descent. Their own traditions accorl with the Mosaic history; and indeed the affinities of languagc, which are atill cvident among all the nations of the Japhethian family, fully confirm the relation of the sacred writer; yet the meaning assigned to the patriarch's name in the Sanscrit language, Yapati, "lord of the earth," tells for nothing unless we can suppose the name Japheth to be thence derived.

To Gomer, the eldest of Japheth'a sons, is ascribed, on the nuthority of Josephus, the distinction of being ancestor of the Celts. Magog may have been the founder of some Scythian nation. Madai is recognised as the ancestor of the Medes. The posterity of Javan and Tubal, and Meshech and Tiras, may be traced from Ararat, always called Masis by its inhabitants, through Phrygia into Europe. Tubal and Meshech left their names to the Tibareni and Moschi, Armenian tribes, whose early emigrations appear to have extended into Mœesia. In like manner the Thracians may have owed their origin to Tiras.

That the progeny of Japheth peopled Europe, seems apparent on another ground, which we shall explain, after mentioning the remaining branches of his posterity. Ashkenaz, the son of Gomer, is thought to be that Ascanius whose name so frequently occurs in the ancient topograpliy of Phrygia, and from whom, probably, the Euxinc, at first the Axine, Sea derived its appellation. "In Togarmah," observes this writer, "we see the proper ancestor of the Armenian nation, and it is even asserted by the Turks."
"Javan was the Ion of the Greeks, the father of the Ionians. In the names of his sons we find fresh proofs of the consistency of the Mosaic history. In Elishah we see the origin of Ellis or Hellas. The name of Tarshish is supposed, with little foundation, to refer to Tarsus in Cilicia. Kittim is said to mean Cyprus; and Dodanim, or Rodanim, is understood to apply to the island Rhodes." Here we may remark, that the sacred text contains a most important record relative to the descendants of Japheth: "By these were the isles of the Gentiles divided in their lands, every one after his tongue after their families, in their nations." Now, if the Oriental latitude of expression be allowed in this instance, the isles of the Gentiles must include not only the 18 Lbs of the Mediterranean and other European seas, but the peninaulas of Asia Minor, of Greece, of Italy, and of Spain.

To the Phænicians must be partly ascribed the discovery of those territorics collectively called "The isles of the Gentiles," and the earliest intercourse with thein. Unfortunately those enrly navigators have left no records of their discoveries; and the little we know of their enterprises is derived from Scripture, and from the scattered notices of the Greek and Latin authors. They were, as elsewherc observed, the pilots of Solomon's fleet; and as often as the fleets of Egypt are mentioned by ancient historians, we find them manned und guided
by Pheenicians. Their commercial enterprises had contributed to augment the wealth of that kingdom, which had attainod a high degree of social order and economy seven hundred years before the Greeks became acquainted with the use of money. The numcrous soloniea which they planted along the sheres of the Euxine, the Mediterranean, and the Atlantic, beyond the Straits of Gibraltar, atteat tho extont of their early voyages. Those of Utica, Carthage, and Gades, or Cadiz, were founded between twelve and eight hundred ycars before the Chriatian era; but the seas of the west were prebably explored for ages before settlements were formed at auch a distance from the parent state. Their geographical knowledge, even In the fabulous times of Greece, probably embraced as large a portion of the earth ns that of the Romans in the time of Augustus; but, with the caution characteristic of a mercantile people, they forbore to communicate thst knowledge to the rest of mankind. The silence of these descendants of Ham leaves us in uncertainty as to the progress of those of Japheth in peopling the continent, the peninsulas, and the isles of Europe. In still deeper mystery is involved the descent of the negro tribes of Africa from the father of Canasn. Having thus briefly characterized the Shenutic, Hamitic, and Japhetic races, we lave to the consideration of the curious the theories that have been framed upon them in respect to the different idioms of mankind, and revert to the geographical arrangement which we propose to adopt.
Separating all the known languages of the globe into five grand divisions, we name them the Asiatic, the European, the African, the Oceanic, and the American, according to the part of the world in which they are spoken. Then tracing, according to the best authorities, the several languages by their affinities, we class those which appear to be sister idioms in one group, assigning to it a distinctive name; as the Mongolian family, the Celtic family, or the Sanscrit family, conformably, in most cases, to the name of the principal people of each of those families. But here a difficulty arisea from the variance between geographic and ethnographic limits. Several nations included in one of these groups have dwelt from time immemorial at once in Asia, Africa, and Europe; others in regions partly European, partly Asistic: to which part of the world then must the family be assigned to which those nations belong! Two reasons influence the decision; the historical importance of the people, and its mass, or relative number, as may be better understood from one or two examples.

That the Chaldeans, the Assyrians, the Arabs, the Hebrews, and other nations of the great Shemitic family, were from the earliest times inhabitants of Western Asia, we know from the writings of Moses, with which the results of the most eminent philologers and mathematicians wonderfully agree. These nations, therefore, belong unquestionably to Asia; and the comparison of the Gheez and Amharic vocabularica having demonstrated an indiaputable affinity between them and the people of Abyseinia, who speak the idioms comprehended in the branch called Abyssinian, the languagea of the latter also are classed in the Asiatic branch, thongh in all epochs, even anterior to historical tradition, those nations have dwelt in Africa.

The great msss of the Malay people occupies almost all the isles of the Indian Archipelago, those of Polynesia, and some of Australia. Hence we regard the Malay family as Oceanic, and class all the people characterized by this idiom as belonging to that great ethnographical gronp. Thus, besidea the Malays of the peninsula of Malacea, whose settlement in the extremity of Asia is of no remote date, this division includes the Si Deila or Formosans of Asia, and the Madecasses of the African isle Madagascar.
The Uralian nations belong equally to Europe and Asia; because, from the little we know of them, they have inhabited, time out of mind, the north-east and east of Europe, and the north-weet and west of Asia. Following the demarcation prescribed by M. Malte Brun, we find that the great mass of the Uralian or Finnish nations belongs to Europe. We therefore regard the Finnish family as European, and class among them all the ancient and modern nations who, from striking analogies in their respective idioms, seem to belong to them.

The Esquimaux have from time immemorial extended over all the north of the New World; while the sedentary Tchutchhis, who speak a language evidently relaied to the idioms of those American tribes, occupy only the extreme north-east of Asia. The Tchutchhis we therefore consider as American colonies, and, following the precedent of Balbi, re-unite them as such to the cther nations of America who form the family of the Esquimaux.

Under a perfect ethnographical arrangement, the languages of the Indo-Germanic nations, extending from Ceylon and the Ganges to the extreme west of Europe, and even to Iceland, would form, not a single family, but rather an etlinographic kinglom divided into six familice.
In subsequent parts of this work, the languages of the earth will be considered as divided into five principal branches; the European, the Asiatic, the African, the American, and the Oceanic.

PARTIII.

GEOGRAPIIY CONSIDERED IN RELATION TO THE VARIOUS REGIONS OF THE GLODE.

In the sccond part of this work, the principles of geograply have been treated of ay founded upon a general aurvey of the globo. The most extensive portion of our tank atill remains. We must delincete the leading objecta of nature, art, and human life, as they appear successively in each different region Into which the earth is divided.

Five great general divisions of the earth are now uatally recognized:-1. Europe. 2. Asia. 3. Africa. 4. America. 5. The extensive and numeroua islanda of the South Sea, to which the Freuch give the name of Oceania, the English those of Australasia and Polynesia, to which we may edd the islande of the Polar Sea. Eech of these will form the subject of a aeparate book.

BOOK I.
 EUROPE.

Europe is the smalleat in extent of the four great continente, and yot we may pronounce it the most important of all the divisions of the globe. Asia, indeed, was the cradle of civilization and knowledge ; but her empires soon became, and have over since continued atationary; while Europe has carried the sciences, arts, and refinement, with almost unin

Referencea to the Map of Europe-Wes Part.

ND.		6. 4 ints	SWITZER	1	ria
1. Dithani	9. Prederioknhall	7. Krema	1. Conatunce	4. Priva	83. Malaga
9. Norpeih		8. Praburs	8. Berae	4.5. Chamberry	57. Ecija
$3.8 \mathrm{corlul}{ }^{\text {a }}$	GWEDEN.	10. Vienna	3. Geeeva	46. Arenoble	5 5. Carmons
5. Vork	9. Tnpa	11, Grats	WPgT PRUsgIA.	49. Draguionn	00. Suath
6. Mnnchester	3. Lidan	18. Priok	1. Mimater	41). Toulon	6. Gibralter
7. İneula	4. Ontapaend	13. Villaoh	2. Wemel	50. Avignom	6. Cadis
8. Cheater	5. Sundawall	14. Enitaburs	3. Minvem	51. Nisme*	
If. Si. Aspm	6. Ijedo	15. Hell	4. Colozne		RIUAA
10. Curoligan	7. Tara	18. Brisen	5. Coblenis	dPAIN.	1. Mniance
1. 1. Inadaif	8. Sarma	17. Milan	6. Pruym .	1. Perrul	9. Araganta
12. Worcentrr	8. Iferikguail	18. Manue		9. Yantiano	3. Almeida
13. Glonerstor	10. Aoderhamn	19. Pedua	NETHRRLANDE.	3. Vign	4. Oporte
14. Petcrborough	11. Iluaby	20. Yenice	1. Amaterdama	4. Orense	5. Aveypo
1\%. Norwich	12. ©nla	al. Bellune	2. Rothordam	3. Luro	8. Guarda
16. Caunbridza	13. Orebro	93. Rimi	3. Apiwarp	6. Aaturge	7. Cuimbre
17. Canterbury	14. Caplabad	23. Laybach	4. Ghont	7. 1000	8. Laria
18. Dover	15. Oville	24. Ampra	5. Arumsela	8. Oviedo	9.1
19. Conilun	16. Nyoping	25. Cariotad	6. Ainge	9. Lanem	10. Obi
20. Manchenter	17. Linkoping	97, Zapala	7. Luromburis	10. Fantander	Ahrnntipe
91. Brimei	18. Jonkoping	27. Epalatro	FRANCE	19. Pimpas	Evita
4.5. Breter	20. Fultanber		1. Calais	3. Vittoria	14. Ourique
	91. Malmo	1. Genoa	2. Amirni	14. Burgoe	15. Lanos
Thumo	23. Kalmar	2. Turia	Rouen	Zammer	16, Faro.
2. Invernesm	24. Emin	3. Alesenadria	5.8 Preux	17. Enlamance	River and Late.
3. Braff		8. Pologoa	6. Caen	18. Ciudad Rodrizo	a Dal, R.
4. Aberiean	DENMARK.	4. Florence	7. El. Briest	19. Avila	${ }^{6}$ Mginen, ${ }_{\text {L }}$
6. Perth	1. Aflors	7. leahorn	8. Hreal	21. Soria	d Wetior, L \%
7. Selkirk	3. Veile	8. Orbetello	10. Quimpar	9.7. Tudela	${ }^{\text {a }}$ Odor
8. Ayr	4. Ripen	10. Nettune	11. Vannee	93. Hueece	f P1
	5. Sleawick	11. Naplea	13. Alennea	24. Angreelona	h Whiner, R.
1. Londenderry	7. Copeohagea	12. Poplicastro	14. Vhartra	26. Tarrasoma	Mene
2. Sligo	7. Copeohazoc	13. Tarante 14. Bitonto	16. Pnria	98. Perida	
3. Gimerick	1CELAND.	15. Foaria	17. Mets	2i. Sprayoma	1
S. Cork	1. Holar	18. Pencira	18. Munaburg	30. Tpruol	m mour
6. Weaford	2. Bempated 3. Sandfall	17. Ancona	19. Epinal	11. Utrilla	0 Thene,
7. Duhlin 8. Dragheda			20. Chaumomt 21. Chatilion	32. Hundaxnra	${ }^{\text {a }}$ Goantiana, \mathbf{R}.
9. Belfast	PRUGSIA.	GERMANY.	92. Triyea	34. Toledo	9 Elimprim
NORIVA	1. Colberg	1. Atralaund	93. Orlenns	35. Malrid	I Bhore, R.
1. Aalidales		3. Bramen	25. Anzerm	37. Truaillas	Conslance, I.a
2. Selna	4. Berlin	4. Tidanhury	28. Nuntun	38. Badajoz	$\boldsymbol{u} \mathbf{P r}, \mathrm{R}$
3. Rys Vand	5. Frankforl	5. Oannburs	27. 1.a Rucho	3). Monra	\checkmark Drava, R
4. mimvig	6. Powen	6. Ilanover	23. Puitiers	40. Zarra	w Danube, \mathbf{R}.
5. Jrautheim	7. Gnesba	7. Brunswick	29. Gueret	41. Cardova	ORS
f. Rthridal 7 Furde	8. 11sen D. Hrealau	9. Fundan	31. Lons	4i. Cimded Reni	1. Curte
8 Ardut	10. Gialz	10. Dirmatadt	32.10	44. Turrenueva	2. Portis Vecchio
9 Imerif	11. $\mathrm{g}_{\text {mgn }}$	11. Wurma	7t. Macnn	45. Alvacele	
10 Barsen	12. Torgau	12. Ifeilhronn	34. Slermont	40. Villa de Clana	Aa
11. Tontal	1.1. Magdaburg	13. Prayburs	35, Perianus	47. Murviedro	2. Oriannenl
12. Alayanepr		14. Ulm	31. Bordeauz	48. Vilencia	7. Capliari
13. Christiansand	AUSTRIA.	15. Aumahute	37. Dax	49. Villencia	
14. Tonnherg	1. Oimuiz	17. Munich	38. Pnu	54. Alfuente	gICILSY.
1.5. Konglers	2. Prinan	17. Nupembure	3. Tuulouse	51. Murcia	1. Meatina
17. Corriatiania	4. Prabur	19. $110{ }^{\text {a }}$	40. Roder	5i. Vers	2. Pnlermo
18. Fasldbera	5. Pilsen	20. Dreaden	4. Agen	54. Gracada	4. Syracue

terrupted progress, to the comparatively elevated atate at which they have now ancival. All the brancioas of industry are conducted with a akiil and to an extent unattained in anv othor part of the earth. European voswels carry on the commerce of the most distant regions. The military and political influence of Europe is now of a magnitude with whlch the mont powerfll and populous empires of the other contineate can no longer be compared. European coloniats havo now peopled, and are more and mora peopling, all tho formerly mavage and unoccupied quartern of the earth; and, with the exception of some atrongholde of ancient and imperfect civilization, the whole world in, through their infuence, rapidly becoming civilized and European.

CHAPTER I

OENERAL GURYEY OP EUROPE

Europr: is bounded on the north by the Arctio Ocean, and on the weat by the Atlantic. On the south, the grand iniet of the Mediterranean divides it from Africa ; and the Grecian Archipelago, with its aubordinate branch, connected only by a narrow atrait, the Euxine or Black Sea, divides it from a great part of Asia. Betwoen the north-east extremity of the Black Sea and the Northorn Ocean ia an interval of 1400 or 1500 miles of land, forming the eastern boundary of Europe. Had this been known to the ancients, they would perhaps have identified Europe with Asia; but the separation is now too deeply markod, and is defined by too many characters, moral and political, ever to be altered. The abeence of sea, the natural anil most obvious boundary of a continent, has somewhat embarrassed modem goographora; for even a river limit is hero wanting. The chain of the Urals, running from

References to the Map of Europe-Ead Parh					
GWEDEN	Ovin	Yambure	78. V	943 Novagrignaver	. Toherpete
flyonrinard	5. Sinhomam	11i. . Movel	18. Porunea	94.: Etamatimotavi	- ${ }^{\text {prodina }}$
Ofinive	63. Borovak	17. Perpi	18.	246	
Orkaliz	- Minuelejamaya	19. ${ }^{10180}$		\%14. ${ }^{\text {ceo }}$	-
${ }^{\text {Arjepplog }}$	On Vertamuki	190. Vatda	19.001	949. Tiramel	6.10
7. penlos	17. Sheotizurakn	18. Ontithraj	,	930. Nov Doubacari	
o. Dyekmolo	50. Karabalavika	123. Viehnei Vola-	17. Sorhilew	\$5. heoder	9\%
10. ${ }^{\text {ofrat }}$	60. Thateravike	tolight	198		
	\%. Metverikeva	125. Pettuvak	190. ${ }^{\text {Bor }}$		Nioopol
13. Upenil	Gi. Yurnar	128.	19.	PRUSSIA.	8
14. Brockholm	65. Kal ant siwolak	127. Nianey No			- ${ }^{\text {diof }}$
RUSsIA.	60. Teherd	129. Hiulinak	19. Noworr	,	\%. Conematino
Enura	67. Enlikeme	Ainbir	105.	5. Mantenhatic	
ornnezkaya	ti. Oriove	zzen	¢	ana	99. Cavalla
Panol	71. Obvi	3. Kianader	10. Loblin	Cu	
umba	T: Miohmenn	44. Potehink!	200. Bren Lito	Protak	
kotiro	71.10	13. Nurovichat	20. 2 ,	10. Po	3. Scutari
	75. Velitouswog $^{\text {a }}$	187. Mo	\% ${ }^{\text {a }}$ 3. Pm	19. Ratibot	
	7. Vienk		20. Vis		GREECE
(emitra	78	${ }_{10}^{139}$ K Kome	gish. Orozir	1. Troutcon	Buralinto
Ornea	70. Pieplizer	14. Poke	207. Chorimitoh	fechemoles	
job	irilo		\%	zpuries	5. Arta
reen Novolok	8.	Zabizav	g1o. kib	neesen	Tripolism
7. Kuanla	Tehuehloma	15.8	Q11. Soum	3. Aria	Corint
13. Andozero	Nitam	47. Cholm	813.0 Onol	Boda	S
,	goratioy	188. Pakay	114. Voloulki		10. La
njant Brekentol	Kotern	10. Jupoy	810. Pav	Iaria	Rivere
23. Cerinby	.0. vink	51. Valk	817.7 Zato	is Bater	
- Piopinarvi	Nolimak	ism. ${ }^{\text {manam }}$	818. Mamenin	14. Telymeawar	${ }^{\text {a }}$ S Pitchor
thellir	Dehanuk	154. Mitau	93 T Tarisio	+	
9.9. Purnmia	9.1. Perm	155. Memel		17. ${ }^{\text {c }}$	17
\%. Wapes	95. Kratharfupak	157. Soventzianl	${ }^{2 \times 3}$. Sheolibulotch-	18. Carlabe	O
30. Girrialneatad	90. ${ }^{\text {arimk }}$	159. Vileika	kaya	10. Hermantadt	Do
32. Aiotroberg	9\%. Emproul	100. Prototak	䋁. Dowlak	\%1. Taroopi	Dileper,
33. Kilkale	90. Malminh	181. Witeput	20.7. ITunt		
M. Tavanehua	100. Kqzinn	162. ${ }^{163}$ Smilizenak	228, Potarav	23. Simmbers	m D
3, yyhrre	102. Knzinodemi-	164. Dorogubua	2ai, Novomoukovik	5. Pandeez	
37. A, Peternbar		16.		${ }^{\text {min}}$. Cracow	
Petrrafy	101. Yeilnage	167. Tools	272. Kozeletz		L
Prien	105. Yamavin	16. Kinzan	*3. Kiev	TURKEY	
Onega	107. Inrevetz Povol-	170. Tumbay	25. Jitomir	\%. Bitiol	One
Arehangel Roun!	10. Knatrom	172. Penza	27. Kamelz	4. Gugiz	\checkmark Gernot.
45. Etaruiabischo	190. Jaralav	173. Pompuvak	839. Balia	5. Ibreila	w viso, L.
cazena	111. Poumehon	175. 8uratiov	240. Teherk		1 mp in
	112. Ontinju	177. Balashev	21. Navomirgorod	8. Slatina	Enare,
9. Ousa	113. Tikvid	177. Navokbopeck	22. Oiviopal	9. Crotova	
Vor. I.			25		2 N

morth to south, formas so important in feature, that it han been taken as the grand line of division; and la protracted to the Black Sen by meana of continuous portions of the groat rivers Kamn, Volga, and 1)on.
Tho furm of thia coutinent is singularly broken and variex. While Asis, Aflca, and the ewo Americas aro each formen into a vast inland expanne, Furope is aplit into many diatinct portions; peninmolne, largo islands, and kingdome, with extended and winding consta. This form nrimen chiefly out of its inland seas, which penetrate farther, and aro more deeply ombayed, than those of any other part of the globo. Numerons gulfa, scarcely secondary n magnitule and importance, branch out from them. The Mediterranean, which forme, as it were, a littlo ocenn, moparating Europe, Aaia, and Arrica, la connected with the Atlantic only by the celebrnted Straits of Cibraltar, twenty milon in breadth. Its great enclosed ornnclies of the Adriatic and tho Black Sea penetrate, and render maritime, some of the most inland districts of the continent. In tho north, the Baltic, with its great gulfit of Bothnin and Finland, is neither indecd so extenaive nor so accessible; but it is of the higheat commercial value, as affording a channel by which the rude noceasarles, the metals and woods of the north, may be exchanged for tho winee, the ailks, and other luxurien of the wouth. Tho British isles, by thoir varied conflguration, enclose bewoen themselves and the opposite continent several important seas and channels. We may edd, that the mountalas and the plaina or Europe do not display those immense unbroken groupa, or thowe level and almost endless expanses, which givo so vast and monotonous a character to the intorior regions of Asia and Africa. In general they are separated into smaller portions, and are happily and commodiously interchanged. They havo kept Europe divided into a number of ecparate nations, holding easy intercourse. Probably, thia relativo position has been one great cause of that intellectund activity, and thoso vigorous exertions in all liberal and ingenious arts, which havo raised this part of tho globe to so high a pre-eminence. The immense inlnnd plains of Russia and Poland, prosenting an aspect wholly Asiatic, remained, even after the civilization and improvement of all western Eurupe, sunk in the deepest barbariam, from which they are but slowly and with difficulty emerging.

Secr. 1.—Natural Features.

The surface of Europe, as wo havo observed, is very diversified. Its mountaina do not reach that stupendous height, nor atrotch in such unbroken chains, as those of Asia and America: novertholess, we may trace pretty distinctly two highlands, tho northern and southern, and an intermediate lowland. Tho southern lighland comprises the most olevated mountains of the continent, tho Alps and the Pyrenees, connected together by the low chain of tho Cevennes. Inferior branchea from the I'yrenees extend through the Spanish peninsula; whilo from the Alps branch forth the Apennines, which range through all Italy, and sprend their lower slopes over the grenter part of sonthern Germany. Tho extremity of the Jolian Alps, and the mountains of Dalmatia, connect the range with the great Turkish chains of Hemus and Rhodope; parallel to which, though with a large group intervening, stretches the circuit of the Carpathian mountains. North of this, tho great Furopean lowland comprises the largest part of France, tho south of England, the Netherlunds, Northern Germany, nll Poland, and tho preater part of Russia. In the extreme north of Europe the mountainons character agnin prevaila. Tho Dotrines reach through Senndinavia; while the north of England and nearly all Scotland is covered with mountains of secondary magnitude. Of all the European mountaina the Alps are by much the highest, and perhaps may rank fourth to the IImalaya, tho Andes, and Caucasus, among the mountain chaing of tho globe. Mont Blanc and Monte Rosa exceed 15,(0)O feet above the sea. The numorous other sumnits of this chain exemplify all the descending grades of elevation. Tho Apennines vary from 3000 to 6000 feet; but Fina, at their intmost extremity, is nearly 11,000 . The most elevated of the Pyrenees rises somowhat above that height. The Spanish suminits are in general of the level of tho Apennine, except the Guadarrama, which exceeds 8000 fect, and the Sierra Nevnda, which equals the Pyrenees. The Thracian chains have not yet been subjected to survey; but they doubtless exceed thoso of Greece which ascend to 6000 or 7000 fect. The Dofrines, notwithstanding their snowy and terrible aspect, are not of first-rate elevation. The great Norwegian chain does not quite reach 9000 feet; Ben Nevis is ooly 4300 feet; and none of the English mountains reach that altitude.
The rivers of Eurnpo are numerous, hut none of them of the very first magnitude. The two largest flow through the great eastern plain, a semi-Asiatic region, and terminate in distant and interior sens, where they contribute little to commercial intercourse. Tho Volga, which alone can come inte rivalry with the great rivers of Asin, passes the Asiatic limit, where it spreads into the great interior expanse of the Caspian. The Black Sea absorbs the other rivers from the great plain of Russia nnd Poland: it receives also tho noble stream of the Danube, which helongs indeed to the central region of Europe; but directing its lower course through barbarous nnd uncultivated regions, and terminating in this distant receptacle, it conduces only in a secondary degree to the distribution of wealth and plenty
through the continent. Western Furope is too much broken into separate portiona, and eromeel by high mountain barriera, to allow to its rivern a length of more than from 400 to 000) miles; and they have usually thnir entire couruo through a single country, -the Rhine. the Elhe, and the diler, through Germany ; the loire, the Rhone, und the Garonne, through Prance, the Po through Italy; the Ebro, the Douro, the Tagua, and the Guadalquivir, through Spain. The northern rivers of Britain and Scandinavia, reatrictod to an atill narrower feld, aeldom accompliah mo long a coume as 200 milea, Yet, though Europe does not present the grand rivers which dintinguish the greater continonts, it is on the whole happily and cominoliously watored. Almowt every part of it enjoya the beneft of river cominunication; it is neither overspread by the dreary swampa of Amorica, nor the sandy deserta which render uninhabitable mo great a part of Asia nud Aftica.

The lakes of Europe ure numerous, chiefly eneloeod within its mosntain regiona; but few of thein are of auflicient magnitude to rank an inland aeas. Thowe alone ontitiod to this 'diatinction are the Ladoga and the Onega, which, forming a sort of continuation of the Gulf If Finland, and being situated in bleak and frozen regione, ministor very little to internal intercourse. Finland is covered with similar lakgs, The Wener and Wetter of Sweden rank next in magnitude, and, aurrounded by immense wooda and ir in minea, posaesa considorable beauty and value. Switzerland, with its Italian border, in the chlef lake-region of Furope: ita watern, particularly thosu of Geneva and Lucerne, encloeed between the loftient snowy pinnacles of tho Alps, prosent scenes of grandeur and beauty almowt unrivalled; but they aro not on such a acale or so situated ns to afford any important inland navigation. Those of England and Ireiand are merely small picturesque featurea. Those of Scotland are larger and more numerous; and a chain of them, having been connected by a broad canal, was expected to form a great naval moute across the ieland.
The European soil is diatinguished for productiona, perhapsesurpassing in value thowe of nuy other guster of the globe. It does not, indecd, posecess that brilliant luxuriance of vegetation which adorns the equatorial regions of Azia and America. But corn and wine, the most aubstantial and most agreeable articlea of human diet, are nowhere produced on so great a acale or in such high perfection. Grain, of one description or another, is raised over ith whole aurface, excepting in the extreme north; wines throughout all its ecuthern kingdoma, In hemp, flax, and wool, thoee ataple materinls of clothing. Europe is equaily preeminent. Silk, another valuable commodity, it produces copioualy, though not no as to be independent of aupplica from Indin and China. Cotton is the only great material which the immense manufactures of Europe derive altnost entiroly from foreign regions. If we except the horse and the cumel, for which Asia is renowned, Furupe contnins tho most valuable as well as the most numerous broeds of domentic animals. Its northern foreats produce thn finent timber in the world, with the excoption of the toak; and its iron, the most useful of metals, surpassea that of the rent of the world: but all the more precious substances, gollt. silver, pearls, jewels, exist in an extent so limited as scarcely to bo doserving of mention. The cultivation of the soil is carried on with much greafer diligence than in any countrien excepf in the south-east of Asia, while in science, akill, and the extent of capital employel upon it, European agriculture is quite unrivalled.

In manufacturiny industry, this quarter of the world has, within these fow conturies, far surpassed all the others of the globe. Asia, indeed, has long boasted some fabrics of extraordinary beanty,-silks, muslins, carpets, and porcolain,-which aro not yet altogether equal. led : but the looms and workshops of Europe now yield a varicty of fine and beautiful fabrics, in auch profision, and at so cheap a rate, as to place them within the reach of almost every class of socioty. This continent thus clothes all the young nations which have issued from her own bosom, and which fill nearly two entire quarters of the habitablo enrth.

Commerce, on en great a scale as to connect together the distant quartors of the worh, can hardly be said to exist out of Europe. Buropean vessele are found in the utmost bounds of Asin and America, in the snowy regions of either pole, and crowding the ports of the Austril continent. There is not now a place on carth, however remote, affording any scoje for the employment of commercial capital, which is not immediatoly filled with the same promptitude as if it had been situnted in the heart of Europe. The ships of that continent exceed thoes of all tho others in number and dimensions: they are also the most akilfully constructed, and navigated by the only seamen who are qualifiod to guide a vessel acrnss the great oceans, All these observations are liablo to onc exception: the new American atates are beginning to form a commercial and maritime system, modelled on that of Europe-a system which may one day surpase the original.

Szot. II.-Inhabitantr.
The population of Europe, though more closely calculated than that of any other quarter of the globe, is yet far from being ascertained on data that are very precise. In rogard to some districts, and in particular to the wholo of the Tarkish enpire, no census has ever been instituted; in others, the computation is founded only on the number of houses: and in wome, ten, twonty, and thirty ycars havo elapsed since any was attempted.*

- Bee the Table at the cloee of this book.

The people of Europe are divided chiefly into three great races, which differ, to a very, marked degree, in language, political situation, and habits of life. These are the Sclavonic, the Teutonic, and a third which Hassel calls the Romish, as occupying the chicf of those countries which once composed the Western Empire.
The Sclavonic races cover the greater extent of Europe, since they occupy the whole of the eastern plain bordering on Asia. The people have a.resemblunce to thone of that continent; and were considered almost as beyond the social and political pale of Europe, till within the last half' century. They have now forcibly thrust themselves into the European system, and rank among its most influential members. The Sclavonic people consist of about twenty-five millions of Russians, ten millions of Poles, Lithuanians, and Letts, and about ten millions of other races, known under the names of Windes, Tcheches, Slawakes, Croats, Morlachians, which have found their way into eastern Germany, Hungary, and Illyria. Without wishing to censider intellectual and moral qualities as necessarily belonging to any particular race exclusively, we may nolice it as a fact, that the Sclavonians are, in both respects, less improved than other Europeans. They have only some infant forms of art and literature, which have sprung up from the imitation of those of the eastern nations. They are generally subjected to absolute monarchy, and the greater part of them are only beginning to emerge from the degrading conditien of personal elavery. All the habits of life which connect them with polished society bave been recently and studiously imported from the west, and are atill interningled with deep remnants of barbarism. The majority profess that superstitious form of Christianity acknowledged by the Greek church. Yet they are a brave, enterpriaing, and persevering race, and have established themselves as a ruling and conquering people, in reference to all the contiguous nations of Europe and Asia.

The Teutonic race occupies generally the centre and north of Europe; besides Germany, their original seat, they have filled the greater part of Scandinavia, the Netherlands, and Great Britain, and may be reckoned at upwards of fifty millions. Under the limitatic.is above atated, we may describe the Teutonic people generally as brave, hardy, intelligent, and induatrious, though somewhat blunt and unpoliehed. All the sciences, and even the arts, both useful and ornamental, have been carried among them to the highest perfection; yet they are accused of wanting some of the graces and agrémens which embellish the courts and fashionable circles of the south, by whom they are treated as semi-barbarians. A great majority of the Teutonic nations are Protcstants; and that profession is in a great ineasure confined to them, and to the natiens in the other parts of the world who have sprung from them.
The race called Romish, which comprehends the modern inhabitants of France, Italy, and Spain, has only a very imperfect claim to that title. The Teutonic nations, in conquering thees countries, poured into them a vast muss of their own population: but Roman manner and the Roman language had taken such deep ront in countries which once constituted the main body of the western empire, that the latter forms still the chief basis of the dialects spoken in this part of Europe. The Romish were the most early civilized of the modern nations. They have carried the polish of manners and the cultivation of the elegant arts to a higher pitch than any othci known nation. In solid energy and intelligence, they scarcely equal the Tcutonic nations. The Roman Catholic is the ruling religion in all these countries, and has among them her metrepolitan seat.

Certain interesting and antique races inhabit the rude and mountainous extremities of Europe. The Celts were the most numerous people, and at a period of high antiquity, the possessore of all western Europe. Subdued and disarmed by the Romans, they rapidly declined when the falling empire could no longer protect them, and became the helpless victims of that mighty torrent of barbarous invasion which poured in from the remotest extremities of Europe and Asia. At this dreadful period they sought or found a refuge, partly in Ireland and the Highlands of Scotland, where they exist under the name of Gael ; partly in Wales and Britany, where they are called Cymri; and partly in the north of Spain, where they are termed Basques. Having retained their condition unaltered during so many ages, they cherish a fond attachment to antiquity, and trace their pedigree higher than any of the Romish or Teutonic nobles. They have a traditional poetry celebrating the exploits of their ancestors, to which they are fondly attached; but in general they bave, in the rapid progress made by the more modern races, been left somewhat behind; though individual emigrants have raised themselves to eminence in every department. Hassel calculates the Gael at $3,720,000$, which, from the last census of Yreland, must be much too low; the Cymri at $1,610,000$; the Basques at 630,000 . The Greeks, once the most illustrious of all the races, no longer plant their colonies along the shores of the Mediterrancan, but still occupy their old seats, and are spread through different parts of the Turkish cmpire. Dcpressed by two thousand years of slavery, they had ceased to display those high attributes which excited the admiration of mankind; but the prospects of independence which they have now opened for themselves, afford some hope that they may regain their place in the scale of nations. Their number may be about $2,100,000$. The Jews, that singularly interesting people, are spread through all Europe, but especially the eastern countries, Poland,

Book 1.
EUROPE
203
Russia, and Turkey. They are supposed rather to exceed 2,000,000. The Gipsies, in ant humbler sphere, are strangely scattered over all Europe to the supposed number of 340,000 ; a wild, rouming, demi-savage race, of unknown origin, but probably Asiatic rather than Egyptian.

Several Λ siatic nations have penetrated by conquest or migration into the east of Europe. These are chiefly Tartars, whom Hassel estimates at $3,250,000$ heads. The most proninent branch is that of the Turks, the ruling people in the Ottoman empire, though they form in a few districts only a majority of the population. It seems doubtful, however, if all the Tartars who wander over the southern steppes of Russia can be considered as Asiatic in their origin. The Magyars, who, to the number of $3,000,000$, prevail in Hungary nnd Trancylvania, appear to be also Asiatic, or at least to have sprung from that most eastern border of European Russia, which can scarcely be distinguished from Asia.
The religion of Europe is aluost entirely monotheistic. A mere handful of pagans, the Samoiedes, are found in its north-eastern extremity, on the shores of the Icy Sea. Europe is almost entirely Christian; and the small population of Mahomedans who have found their way into it consist of Asintic races, Turks and Tartars. The Jews, however gencrally diffused, have nowhere a national church, nor are they in any nation fully identified with the body of the people. The Christians of Europe are divided into three great churches, the Greek, the Latin or Roman Catholic, and the Protestant.
The Greek or Eastern church, which was that of the Constantinopolitan empire, was severed from the Latin by the great schism in the ninth century, caused by some abstruse questions respecting the nature and person of Christ. It is still professed by the modern Greeks, is the established religion of Russia, and has votaries in Hungary and all its appendant territories. Hassel reckons its numbers at $32,000,000$; Malte-Brun at $50,000,000-\mathrm{a}$ strange discrepancy. We should think the former much nearer the truth, though perhaps somewhat under it. This religion having been long prevalent among unenlightened and degraded nations, has become encumbered with empty pomp and childish ceremonies; and many of its elergy are ill-informed and of irregular lives.
The Roman Catholic religion, which reigned so long with supreme sway over Europe, embraces still a numerical majority of its people. In Italy, Spain, France, and the dominions of the house of Austria, it is dominant and almost exclusive. It still holds attached to it a large portion of the smaller states of Germany, and of the Cantons of Switzerland. The greater part of Ireland and of Russian Poland continue attached to it, without regard to the opposite systems supported by the atate. That intolerance which gave birth to so many struggles in attempting to extirpate the Protestant faith, has been greatly mitigated, and, except in Italy and Spain, all professions enjoy an almost complete toleration. The rumber of Poman Catholics seens to be fairly estimated at between $90,000,000$ and $\mathbf{1 0 0 , 0 0 0}, \mathbf{0 0 0}$. The absolute authority of the Pope in matters of faith and worship, auricular confession, the prolibition of the Scriptures in the vulgar tongue, and a splendid ritual calculated to dazzle the eyes of the multitude, form the peculiar characters of the Roman Catholic system. The inonstrous pretensions once advanced to excommunicate and depose kings, and to grant indulgences to commit crime, seem now to be generally withdrawn.
The Protestant or Reformed religion raised its standard early in the fifteenth century, and made most rapid progress, especially in the north of Europe. It sought to purge Christianity from the superstitious observances which had enveloped it during many ages of darkness; to introduce a more spiritual and simple form of worship; to break up the institutions devated to celibacy; to deny human authority in matters of doctrine, and rest it solely on the foundation of Scripture. It had to maintain a dreadful atruggle against the Romish see, which armed in its cause all the great monarclis of Europe; and in France and Bohemia, after taking deep root, it was nearly extirpated. It has been finally established, however, in Great Britain, in the Netherlands, the north of Germany, and the Scandinavian peninsula. Notwithstanding its numerical inferiority, it now ranks among its votaries the most powerful, the most opulent, and the most intelligent nations of Europe and the globe. Its rejection of human authority, and direct appeal to the Seriptures, have caused it to be split into numerous sects and divisions. The most prominent is into Lutherans and Calvinists; the Lutherans retaining still many of the Romish rites and doctrinee, to which, in every point, the Calvinists place themselves in the most decided opposition. The English church may be considered a sort of medium between the two, inclining nearer to the Latheran. In the Protestant countries, numerous smaller sects have asserted the right of private judgment, on which the Reformation was founded. Among these are the Anabaptists, chiefly in Gerinany, the Netherlands, and England, whom Inssel perhaps underrates at 240,000; Methodists and Quakers in Britain, estimated at 190,000 ; the Moravian brethren in Germany, 40,000. The Unitarians have an established church in Transylvania, coroprising 40,000 souls, and are diffused, openly or secretly, through the other European conntries, especially Britain.
In learning, art, science, all the parsuits which develope the intellectual nature of man, which refine and enlarge his ideas, Europe has far surpassed every other continent. The envires of Southern and Bastern Asia alone have an ancient traditional literature, of which
the remains are yet prescrved. But, besides being now in a very decayed atate, it never included any authentic history, sound philosophy, or accurate knowledge of nature. An extravagant though sometimes postical mythology, proverbial maxims of wisdon, and a poetry replete with bold and hyperbolical inages, compose alinost its entire circle. The science of Europe has been employed with equal success in exploring the most distant regions of the universe, and in improving the condition of man in socicty. Astronomy, which elsewhere is a mere mass of superstition and wild conjecture, has here not only delineated with perfect precision the situation and movements of the heavenly bodies, but has disclosed numberless aystems of worlds, of which without her aid the existence could never liave been suspected. Chemistry, which was formerly a mere collection of empirical receipts and chimeras, is become a mighty science, which analyaes the most secret operations of nature, and discovers important, and before unknown, substances. A similarly sound and comprehenaive character marks her attainments in physical science, and in every branch of uatural history. In regard to poetic fancy, although some natural flights may be found among the rudest tribes, and though the Orientals possess a peculiar vein of learned and atudied ornament, it is in Europe, during either ancient or modern times, that the polished and classic models of poetical composition have been exclusively produced.

The invention of printing, and the consequent general diffusion of information among all classes, are features especially European. By their means, in its enlightened countries, the essential branches of knowledge are now placed within the reach of the humblest classes, and even the highest branches are not absolutely beyond their sttainment. The endowments for the support of learning are very extensive, founded in a great measure during the middle ages, and bearing some stamp of the then infant state of literature; but they are now adapting themselves to modern improvements. The extensive and extending institutions for the instruction of the lower orders have produced a general diffusien of intelligence, to which in the other parts of the world, if we except America, there is nothing analogous.
The political state of Europe is also peculiarly fortunate. Elsewhere, with rare exceptions, a turbulent anarchy prevails, or vast empires are subjected to the absolute sway of a aingle despot. It is in this continent enly that the secret has been found of establishing a regular and constitutional liberty, in which the extremes of tyranny and licentiousness are equally avoided. Even the absolute monarchies s re generally administered with mildness, according to legal forms, and afford to the bulk of the people a tolerable security of person and property. The European states have also established among themselves a balance of power, which sets bounds to the encroachments of any particular state, and has repeatedly rescued the whole continent from the imminent danger of universal subjugation. The military and naval power has been raised to a height, to which none of the other continents can offer nny effectual resistance. A great proportion of them has now been conquered, occupied, or colonised by Europe; and if the whole is not reduced under this condition, it is only through distance and extensive deserts that many great ceuntrics still preserve their independence.
The geology of Europe will be more advantageously treated of under its respective countries.

Sect. III.-Botany.

The botany of Europe presents some gencral characters, which it may be important to notice. In the preliminary observations, we have given a very general and rapid sketch of the vegetable geography of the globe, taken in its more enlarged sense. We must now survey it in its subordinate divisions; and the plan which we have prescribed to ourselves, is, in the first instance, under the great principal divisions of the earth, to mention the more striking vegetable features; and then, under each respective country, to give a more particular statement of the planta belonging to it which deserve netice, either from their extreme abundance, their rarity, their peculiar propertiea and qualities, or some circumstance of general interest.
The nature of the present publication only allowing us to consider, in a very general way, the vegetable productiens as connected with their geographical distribution, we cannot devote much space to what concerns the primary divisions. The artificial boundaries of Europe, especisily to the cast and to the south, are of that nature that many of what might otherwise be ranked among its more striking botanical features are gradually blended into those of Λ sia on the one hand, and of the north of Afriea on the other. Local circum stances, as we have slready seen, affect the presence or absence of certain plants, to an extent more than equal to that of any artificial geographical arrangement. Temperature, which has so powerfil an effect upon them, varies in a regular progression upon a lofty mountain; but it is not so in all situations, nnd with the same regularity, especially on the great contineots, upon the plains and low grounds. "Sometimes," says the eloguent Mirbel, "a chain of mountains forms a barrier agninst the freezing winds of the north,* and receives and
*In one apet, in the exireme pouth of Gweden, fheing the sen, and backed by Infty hills, oliven have succeedent in the open air, and ripwod thoir fruit; while, at the distance of six Sweilish miles northvard, the inhabitanta clothe themselves with firs in the winter, to prolect themselves from the severity of the cold. y rescued litary and offer nny cupied, or y througls endence. respective
portant to sketch of must now d to ouro mention to give a ther from ne circum-
y general , we canboundaries y of what ly blended al circum an extent ire, which mountain; reat conti"a chain ceives and
refracts upon the plants the beat which it derives from tho solar rays; sometinus a parching sirocco from the south raises the temperature; in some places, the winters are tempered by the proximity to the sea; whilst at other times all these causes combined, produce a climate so mild, that, to judge of its geographical position unly by the indication of the thermometer, we should suppose its latitude to be much nearer the tropics than it actually is. Again, continued plains of vast extent, exactly on a level with the sea, are of rare occurrence; and if there be but an clevation of 1000 or 1100 feet, it suffices to produce a considerable reduction of temperature. This, in its turn, obtains an influence over the vegetable creation; it changes the line of the progress of plants in their migration; it arrests them, and limits their boundaries. Sometimes tho northern species proceed southward towards the tropies; sometimes those of the south migrate northwards; and sometimes groups belonging to both of these
 tribes exchange countries, passing one another; each about to establish colonies in privileged stations, in the midst of a vegetable population to which they are no less strangers by their physiogriomy than by their temperament."

We shall licre confine, as much as poosible, our observations to a table, by M. Mirbel, of the phennogamous (or flowering) plants of Europe; to which have been added, for reasons already alluded to, part of those of Asia and of Northern Africa. He divides the northern liemiaphere into imaginary belts or zones; the equatorial, the transition temperate, the temperate, the transition frozen. and the frozen zones. The tempcrate transition, where European vegetation commences, is limited, to the north, by the disappearance of the Olive; the temperate zone by the cessation of the Oak; and the frozen transition by that of the Fir (Pinus sylvestris) in the weat, and of tho Spruce (P. Abies) in the east. The frozen zone is divided into two bands; the lower or vouthern, and the upper or northern. Buth are entirely destitute of trees; but in the first band are many shrubs and suffruticose plants:* whilst in the second scarcely any thing is found but small herbaceous plants; and these cease where the line of perpetual snow commences. \dagger Here, too, another important fact must be considered,that, in the frozen or arctic regiuns, almost exactly the same flora is exhibited in Europe, Asia, and America.
In the extent of country to which the following table is more peculiarly applicable, the Uwarf Palm (Chamarops humilis), and the Date Tree (Phanix dactylifera), (fig. 86.), are he plants that have the nearest approximation to a tropical vegetation, and which are, of

87
 course, the most southern. The plant which is found the nearest to the pole, and which, there is every reason to believe, ascends to it, is the Palmella nivalis (Hooker), Red Snow (fig. 87.) of aretic navigators, belonging to the Cryptogamic family, and which will be more especially noticed hereafter. In speaking of vegetation, however, generally, and except tho contrary is otherwise expressed, the Cryptogamic plants nere not taken into account; partly because we are at present but imperfectly acquainted with their extent or limits, and partly because they are not of such general interest.

[^11]COMPARATIVE TABLE
Ir the phenagamaue vegetation of a part of the Temperata Troneition Zone (Puletine, Syria, Asia Minnr, and the Caucasian regioulo; a portion of the north of Africu and thr toutio of Europe being comprised in thig zona); of the Tomporate Zosi (Cantral Europe as far as tino Urai Mountainn and the Cappians See, nud parte of Tartary corvering upon that eea); or the of the Old and New World. Extracted from M. Mirbei' (ubla, in the Jrom. du Museun d'Hist. Nat. do Pario.

In the temperate transition zonc, out of 8103 species, 1202 have been ascertained to be woody, and 6898 herbaccoua; and of theac latter 3861 are known to have perennial, and 2373 annual or biennial roots.
In the temperate zonc, out 8 f 3982 species, there are 257 svoody, and 3025 herbaceous; of which 2610 are understood to have perennial, and 944 annual or biennial roots.
In the frozen tiansition zone, out of 2129 apecies, are 103 woody plants, and 1036 herbaceous; of which 511 are supposed to have perennial, and 363 annual or biennial roots.
In the frozen zone, of the 438 species, 46 are woody, and 392 herbaceous; of which 371 are estimated to have perennial roots, and only 15 annual or biennial roots.
We have already stated that in the frozen or polar region the vegetation is very similar throughout the north of Europe, Asia, and America; which may in part arise from its limited extent, and from the continents approaching comparatively so near to each other. There must necessarily, too, be a greater equality of temperature than in the other zones; the vegetation everywhere sppearing nearly upon a level with the eea. In Greenland, Schouw estimates that there is hardly one-sixth of the plants that are not equally found in Lapland. Of tho genera of Greenland only two are not found in Lapland (Streptopus and Coptis), and both occur in North America. We shall, by-and-by, notice low analogoua ia the vegetation discovered during Captain Parry's arctic voyages to that both of the European and American continents, in corresponding latitudes. Even in Kamschatka, one half of the plants fuund by Wormskiold are European; and of the genera only eight or ten are not European; and they are North American. But, as we proceed from the Arctic Regiona to the south, wo find the vegetation gradually becoming more and more dissimilar between America and Europe; except, indeed, when the high mountaina in the reapective countries are examinod, and then tho resemblance again appears. Pursh, whose flora comprises, to a very limited extent, the plants of the arctic or sub-arctic regions, or of the lofty mountaina of North America, but is principally confined to Canads, and to those districts of the United Statea whose latitude corresponda protty nearly with that of the more temperate parts of the European continent, has about one-seventh of his species only European; and if the doubtful natives, those probably introduced from the Old World, be taken into account, only onetenth: out of 716 genera of North American plants, 480, or two-thirds, also occur in Europe, or in Northern Africa.
Schouw estimates the most striking disparities between the vegetation of the western parts of the Old World, and the eastern parts of the New, to be as follows :-

1. The Cruciform (fig. 88. a) and Umbelliferous families (b): those of the Pinks (c) and Labiate flowers (d) are much the most numerous on the old continent. The first, in North America, may be cstimated at $\frac{1}{2}$, in Europe at about $\frac{1}{20}$; and the other familice may be classed in the following proportions:-

2. Of the family with Compound flovers (Composita), the groups of the Endives (e)

(Cichoraceas), and of the Artichokes and Thistles (Cynarocephale), are more abundant in Europe; whilst, on the other hand, North America possesses such a number of species of Michaelmas Daiey (Aster), and Golden Rod (Solidago), that they constitute onethird of the compound flowers of that country, forming a striking feature in the vegetation of the United States, and carrying the preponderance in favour of North America.
3. The family of Bellfowers f) (Campanulacea) abound most in the Old World; that of the Cardinal Flowers (Lobeliacea), in the New.
4. Not a single species of Heath (g) is found in the new continent ; while, in the old, immense tracts are covered with them; but their places are taken in America by the Whortleberries (Vaccinia).
5. Both in North America and in Europe, the foresta are constituted by the familics of Vot.
the Cone-bearing (Conifera) and Amentaccous (Amentacea) trees; but in America they far exceed those of Lurope in respect to the number of apecies.
6. In North America we find the types or representatives of many tropical families; as, for example, of the Cactuses, Scitamineous plants, the Sago (Cycadea), the Custard Apples (Anonacea), the Sapindaceous, and the Melastomaceons plants: these are wholly wanting in similar latitudes in the Old World; and in regard to many others, which are common to buth countries, such as the Palms, Laurels, Swallowworts (Asclepiadea), Sumachs, Cassias, and Mimosas, they are more abundant, and generilly reach a higher northern lutitude, in North America than in the Old World. In Europe, again, there are fewer arborescent plants; for, according to Humboldt, while North America has 137 trees whose trunks reach the height of 30 feet and upwards, Europe possesses only 45 of that character.

Siberia, bounded as it is on the side of Europe by the Ural Meuntaine, differs from the latter country in a much less degree; and it is mostly in North American genera that this difference lies; as in the prescnce of the genus Phlox, Mitella, Claytonia, \&c. and in the predominance of the tribes of Michaelmas Daisy (Aster), Golden Rod (Solidago), MeadowSweet (Spiran), and especially of the Milkvetches (Astragalus) and Wormwoods (Artemisia), as well as (on account of the numerous saline lakes) the Goosefoots and Saltworts.

In the southern hemisphere, the vegetation is very different from that of Europe in the corresponding degrees of latitude. In Southern Africa, Thunberg enumerates 118 species which are analogous to those of Europe; which would probably be found considerably to exceed the truth, if the species were accurately examined. Mr. Brown assures us that the Alpine Catstail Grass (Phleum Alpinum) and the Moonwort Fern (Botrychium lunaria) exist in the lanksian herbarium, which were gathered in the extreme parts of South America: and the same accurate writer observed 45 Eurepean phenegamous plants in Terra Australis, of which 23 are dicotyledonous and 21 monocotyledonone, and 121 ncotyledonous or Cryptogamia; namely, 2 of the Fern family, 25 Mosses, 14 Hepatice, 38 Lichens, 10 Fungi, 12 Alga.* The very general distribution of plants of this class over the surface of the globe, we have befere, indeed, had oceasion to notice.

Sect. IV.-ZOology.

The zoolngical features of Europe, although sufficiently important to render this continent a primary division of geographic natural history, are neither so extensive nor so varied as those of mere genial regions. We have already shown the propriety of including within this range the southern parts of Africn bordering the Great Descrt; while the western provinces of Asia appear to partake both of the European and the Oriental zoology. It might be imagined that such a division, including countries suffering by the extremes of cold and heat, would present animals of the most diversifier nature : but such is by no means the case, at least to any great extent. The chief seat of this zoological province appears to be on the southern side of Central Eurepe, towards the Alps, or thosc countries lying between the latitudes of 40° and $50^{\circ} \mathrm{N}$.; as within these parallels the greatest proportienate number of species appear to be found. It may, however, be more natural to consider this zoologicsl region as presenting three miner divisions: 1 . The arctic ; 2. The central; and, 3. The southern.

The aretic division will include Greenland, the islands of Spitzbergen and Iccland, and a considerable part of Norway, Sweden, and Northern Russia. The centra? division may be said to commence towards the northern limits of Scotland, and to reach the shores of Northern Italy; or, more properly, to about the 45th degree of north latitude. The soulhern range includes the whole of the Mediterranean countries, Northern Africn, and Asia Minor.
The animsls more particularly belonging to the arctic circle are few in species. Those dreary and inhospitable regions afford but little sustenance to ruminating quadrupeds, or to insectivorous land birds; while the intense celd is as inimical to vegetation as to the production of insects. Yet these undisturbed solitudes are instinctively chosen by multitudes of marine animals, as secure rctreats from the interruption of man, for breeding and providing for their young. The polar seas abound with innumerable water-fowl; they congregate and build among the rocks, whose surface they almost cever by their numbers.
Of the Herring, (fig. 89.) Pennant was among the first naturalists who believed that

Britiah Herring. the countless myriads which annually visit the northern shores of Europe, migrated from the Arctie Ocean. The aecount given by this elofuent writer is so interesting, that we shall repeat it nearly in his own words:-" The great winter rendezvous of the herring is within the aretic circle. There they continue for many menths, in order to recruit themselves after the fatigue of spawning; the seas within that space swarming with insect food in a degree far greater than in our warmer latitudes. Thus renovated, this mighty army begins to put itself in metion in the spring. They appear * Of the 121 neoty tedonnus planta it may be obnerved, that all, exeept one, the Marsilea quadrifitia, are fiund in Greal Brilain.
off the Shetland Isles in April and May : these are only the furerunners of the grand division, which comes in June; and their appearance is marked by certain signs, and by the numbers of birds which follow to prey upon thein: but when the main body approachece, its breadth and its depth are such as to alter the appearance of the very ocean. It is divided into distinct columns, of five or six miles in length, and three or four in brealth; and they drive the water before them with a kind of rippling. Sometimes they sink for ten or liftcent minutes, then rise again to the surface, and, in bright weather, reflect a variety of splendid colours, like a field of the most precions gens."

The zoology of arctic Europe has received much less attention than that of Northern Anerica; we must, thereforo, be somewhat concise on this head. Among the few original writers who have treated on the fauna of arctic Europe, the learned and acute Otho Fabricius, many years a resident in those dreary regions, deservedly ranks forcmost. He enumerates thirty-two species of Mammalia as natives of Greenland, nine of whici bplong to the genera of Walrus and Seal ('richecus and Phoca), and fifteen to the cetaceous order; thus
 leaving but eight species of terrestrial quadrupeds, a proportion at once explained by the wild and desolate nature of these regions. The number of birds, comprehending such as are occasional visiters, amounts to fifty-two. Seven of these are rapacious, and five are referable to the families of Warblers and Finches (Sylviada and Fringillida); the remainder, with the solitary exception of the Ptarmigan ($\mathrm{fg}, 90$.), or Lagopus mulus, belong to the wading and swimming orlers, to whose nourishment and increase the arctic solitudes are particularly congenial. - Nevertheless, by far the grcater number of these birds occur abundantly in more southern latitudes; and many extend their flight to the warm shores of the Mediterranean. Those species, in fact, which habitually live within the arctic circle, as if by preference, are remarkably few, and offer no good foundation to ground a belief that these regions constitute one of the primary gronps in animal geography.

The zoology of Central Europe may be said to commence towarls the 60th degree of northern latitude, where a sensible change in the number and specios of animals may be perceived; vegctation assumes a marked and decisive character; and those animals which depend for their support both on the produce of the earth and on the insect world are greatly increased, at once in number and in species. Vegetables furnish nutrition to insects, and
 seeds to birls: the former, again, become the prey of the latter; and thus the supplies of nature are nicely and accurately balanced, with a just regard to the preservation of all her creatures. The dark pine forests of Norway, Sweden, and Lapland are the most northern boundaries of the Woodpeckers; one of which (Apternus trilactylus Sw.) is remarkable for having but threc toes to its feet (fig. 91.), and is more peculiarly a native of these high latitudes. The insectivorous and omnivorous tribes begin, also, to be common; while the wading and natatorial birds diininish in numbers, though not in species; for as they congregate at certain seasons in the polar sens, so during winter they disperse themselves on the shores of Great Britain and the Continent. We have no very precise information as to the extreme northern range of those birds whose chicf metropolis is in Central Europe; and we are still deficient in a Fauna Scotica.
Most of the Arctic birds occur on the northern shores of Scotland, the islands of Orkney and Shetland, and on the coasts of Norway, Sweden, and Denmark. Müller, in his Zoologia Danica, enumerates 57 species of Mammalia, and 131 of birds, as natives of that kingdom. Among the former, 3 only are marine, and 14 arc Cetacee: while the land birds amount to 87, exclusive of 26 belonging to the rapacious genera of Eagles, Falcons, and Owls. On comparing these numbers with those of the Grcenland fauna, we observe, on tho one hand, a considerable diminution of marine Mammalia, and a very large addition to the list of terrestrial birds; this latter circumstance is easily accounted for,-they are not formed to endure extreme cold; and being dependent upon insects and seeds for their support, their dispersion is naturally limited by the facilities afforded by nature for supporting life. Proceeding to those countries which lic towards the centre of Europe, there is a gradual ang mentation of animal life: we may even trace this change in tho local distribution of the animals peculiar to the British islands. Many species, in every department of zoology, are common in the southern and western connties of England, which are totally unknown in the northern counties and in Scotland. Even among the domesticated races, a greater developement of structure under a more genial climate is apparent in the horse, the sheep, and the ox of Britain, when compared to those of the islands and mountains of Scotland; while among birds the gallinaceous genera, which, in the former climates, breed and live at all seasons in the open air, are reared and preserved with difficulty in countries farther north; of these the peacock and Guinea fowl mav be cited as examples.

The southern part of central Europe is, then, the field best calculated for studying the peculiarities of European zoology. Commencing with the existing quadrupeds, wo may remurk, that while two species alone sppear to inhabit the cold regions of Denmark, there are thirteen described as natives of France and the adjacent kingdoms, seven of which have been enumerated among British quadrupeds. The great white Bear, which is perhaps more suly an arctic animal than any other, disappears on the southern shores of the Polar Sea, and is replaced in temperate Europe by the cominon brown species. Of this genus there are, ccording to Cuvier, but two recent species belonging to Europe, the brown (fig. 92.) and the
 black bear. Others imagine, with some show of reason, that there are more; ss the varictics frem the first are very remarkable. The second is the black bear of Europe, differing from that of America in many important points of structure: only one living example appears to have been seen and dissected; and this, having died in confinement, afforded no clue to a knowledge of its haunts or manners.
The Wolf and the Fox, under different varieties or species, appear generally distributed over Furope : to these we must add the Lynx and the Wild Cat, as the only true rapacious or carnivorous animals that have been appropriated to this division of the globe. The Lynx, once common in central Furope, is now only known in some parts of Spain, the Apennines, and in the northern kingdoms. The wild cat is still said to be a native of Britain, and is spread over other kingdoms on the Continent. A recent author includes among the "extinct animals" of Britain the hymna and tiger whose bones have been found in the caves of Kirkdale, as forming part of the modern geographic distribution of animals. This hypothesis lies open to many and great objections. If such formidable and terrific carnivorous animals have existed in Europe since the last revolution of our globe, what others constituted their prey? Thoir frod being flesh alone ${ }_{4}$ what were the other racee of quadrupeds destined by nature to furnish them with subsistence ? These questions must be first considered, before we can assent to an opinion so confidently advanced. Whatever might have been the character of European zoology before the deluge, certain it is, that in its present state it exhibits that harmony and consistency which peculiarly marks a wise provision for all crested things. As the number of European Mammalia is so disproportionably small, when compared with those of Asia, Africa, and America, so are the apecies which are to keep their own class under aubjection feeble and few; and this law is not only apparent among quadrupeds, but is equally observable in every other division of animals. Now, as birds are much more numerous, we find that in addition to the natural enemies in their own class, there is a group of quadrupeds more particularly destructive to the feathered tribes. These are the Mustela, or Weasels; few perhaps in species, but important in their numbers, and in their powers of destruction. No less than cight species inhabit different parts of Europe. Like the monkeys of the tropics, many of them climb trees and suck eggs; and by thus destroying birds in every stage of life, from the egg to the adult, are peculiarly adspted to prevent an undue increase of numbers.

On the granivorous quadrupeds it may be observed, that although the woods of Europe are deficient in that variety of pulpy fruits so abundant in tropical countries, and upon which the numerous monkeys, bats, and other animals of those regions principally live, yet there is a

03

Beaver. great diversity of nuts and grain. Hence we find a proportionate number of small quadrupeds, whose subsistence entirely depends upon these bountiful supplies of nature: under this head may be enumerated the Hedgehog, Squirrel, and the various Mice, of which seven species belong to Europe. The Beaver (fig. 93.) is found in the vicinity of the Rhone, the Danube, the Rhine, and other of the larger European rivers. If naturalists are correct in considering this to be identical with the American beaver, it is one of the very few instances of the same species of animal inhabiting the temperate parts of the old and new continents. The black bear of Europe was long confounded with that of America; and a similar difference may possibly exist between the beavers of the two continents.

The different species of Mice, \&c., now arranged under many genera, form an important part of European zoology; as will sppear from the following list, furnished by Mr. Griffith from the valusble Mammalogie of M. Desmarest:-

Arvicola amplibjus Water Rat.		Mus musculus House Moyse.	
- arvalls Field Monke.		- messaring. 1 arvest ditlo.	
- fulvis Fulvoris dillo.		- minitus Sunill dilto.	
—_ argentoratensis Sl rashurg dirl			
Georychus Norvegicus. The Lemming.		- нoriminus Anrew-like ditt	
Mus sylvalicus. Fied Mouse.			

The IIamsters, remarkable for their cheek pouches, and belonging to the same natural family as the mice, have their chief metropolis in Siberia; yet one specice (Cricetus vulgaris) extends to contral and northern Europe. Tho Marmots (Arctomys Marmothu, Bobac) are likewise nucivorous, and occur on the mountains of central and northern Enrope. togother with the Spermophilus citillus, or Soulisk of the Germans. Of the llare, four species are European, the snowy, the common, the calling, and the rabbit; and theso complete the list of European Glires.
Among ruminating quadrupeds, the Elk and Reindeer are well-known inlabitants of the northern countries; the latter giving plsce to the Fallow-deer, the Stag, and the Roebuck, in the midland parts of Europo. In the lofty mountains and inaccessible precipices of the Alps and Pyrenees, the Chamois, Yzard, and Ibex still live in partial security, notwithstanding the daring intrepidity of their hunters. The Musmon is another European quadruped deserving particular notice, as being generally considered the origin of all our domestio breeds of shoep. It appears still to exist in a state of nature among the high mountains of Corsica and Sardinia; and although now extirpated upon the continent, is well ascertained to have formerly been common in the mountains of Asturin in Spain. Iastly, it appears incontestable that the ox, one of the most valuable of nature's gifts to man, originally existed in a wild state over the whole of Europe, but whether as a distinct apecies or mere variety is still uncertain. The white ox of Scotland is a peculiar breed, etill preservel in some few parks of the nobility, and will be noticed hereafter. But a much larger race, distinguished by Hamilton Smith under the name of the Fossil Urus (Griff. Cuv. iv. 414.), although, probably, in existence long after the invasion of Cæsar, is now only known, like the elk of Ireland, by its gigantic bones.

From this brief enumeration of the European quadrupeds it will be perceived that their numbers are too few, and their original dispersion too obscure, to allow of any correct notions being formed as to their natural distribution. With regard to the origin of our domestic animala, and the several races, breeds, or varieties that have apparently sprung from them, the reader must be referred to the writings of F. Cuvier, and the extensive resoarches of Hamilton Smith, whose acquaintance with the order of ruminating animals, more particularly, is, perhaps, superior to that of any other living zoologist.
The ornithological features of the zoological province to which Europe belongs, have slready claimed our attention. We shall, therefore, now merely notice a few circumstances
 connected with the ornithology of central Europe. On the highest summits of the Alpe, and in the vast forests which elothe their sides in Hungary, Switzerland, and the Tyrol, are found all the four species of European Vultures: only onc of these, Vultur fulvus (fig. 94.), appears to have a range in countries farther north; yet all are distributed over the southern kingdoms, and two are again met with on the northern limits of Africa and western Asia. The Iceland or gyr Falcon, long supposed to be peculiar to the high northern latitudes, is now considered the same with the Falco candicans of the northern parts of Germany. The wide geographic range of the rapacious order has already been adverted to; nor do we find any species besides the Vultures which serve to mark the ornithology of central Europe. The forests of Germany, Austria, Switzerland, and France appear to contain all the European Woodpeckers, which, notwithstanding their wide dispersion, are but thinly and partially scattered in the northern and southern kingdoms.

The range of the small insectivorous birds, or warblers, requires much investigation; nor are we at this moment aware of any species in Germany which does not occur in France or towards northern Italy. The few gallinaceous birds of Europe are nearly all found towards its centre, although the different species of grouse seem to affect the more northern latitudes. The warm covering of feathers which protects their foet, is peculiarly adapted as a defence from the intense cold of the polar regions. The Bustards, on the contrary, occupy the middle regions of Europe, and extend latitudinally from the confines of Asia to the shores of the Atlantic. The Bee-eater (Merops apiastcr), the Roller, the IIoopoe, and the Golden Oriole, in their annual migrations from Africa, visit all the central parts of the Continent, but become progressively scarce as we advance northward.

In the third portion of the European range, we comprehend the south of France, the whole of Spain, Italy, and Turkey, together with the coasts and islands of the Mediterranean Sea bordering Asia Minor, and Northern Africa.

On the geographic range of the quadrupeds more peculiar to these countries, little can bo said; as the materials to be gathered from the relations of travellers unacquainted with zoology are generally most imperfect. There is no evidence of the great northern ruminating animals, sucl as the Elk anl the Reindeer, being found wild in any of the countrics which border the Mediterranean Sea, although a small species, probably the fallow deer or the rocbuck, Vol. 1.
in represented as still to le met with in the extensive forests of Calabria. The Porcupine, now wild in thone countrics, is supposed, (but with a slight show of reason,) to have been introluced flom Africa; but for what purpose we are uninformed. The Buffalo is domestiented in (ireceo nad 'Turkey, and some parts of southern Italy; where it is sometimes, though rarely, used for draught.
The ornithology of the countries bordering upon the Mediterrancan presents many interesting peeuliarities. The vultures, which aro seldom found northward of the Alpe, oceur mere frequently as the climate becomes warmer. This tribe appears to follow tho course of tho Apennines in Italy, and of tho higher mountains of Spain and Grecce, from whence they extend their range to Asia Minor and northern Africa. The Imperinl Eagle (Fulco imperialis Tem.) is chiefly found in sonthern Europe, while the Golden Fagle is much more numerous in the colder latitudes. The gigantic Owla of the polar regions are hero unknown; but two or three horned species, of diminutive size, follow the migratory troops of smaller birds in their annual journeyn acrose tho Mediterrancan. Two of these small owls huve not yet been described. In the extensive family of the warblers, many appear peculiar to Itnly, Spain, Sicily, and Sarlinia ; and in the latter bland there has recently

gluannu Unienlor. been discovered a accond species of European Starling (Sturnus unicolor Tem.) (fig. 95.) The grouse of northent Europe are rarely, if ever, seen. But two species of bustard (Otis Tetrao and Houbara) pelilom met with farther north, are common in Spain, Italy, and Turkey. Here also we first meet with the African and Asiatic genera Cursorius and Hemipodius ; birds which delight in the dry and arid plaina of those continenta, where they run with amazing swiftness. The rocky and uncultivated wastes of Spain, Turkey, and Aaia Minor, furnish two species of rock grouse (Plerocles) long confounded with that northern genus, of which it is the representative in warm climates. The beautiful Wall-creeper, with its bright rosy wings, although rare in other parts of Europe, ia not uncommon in Italy; while the Golden Oriole, the Bee-cater, the Hoopoe, and the Rollcr, four of the most beautiful European birils, are so abundant in the two Sicilics during the spring and autumnal migrationa, that they may occasionally be seen hanging in the poulterers' shops of Nsples and Palermo. The union of the African, European, and Asintic ornithology on the coasts of the Mediterrancan is further apparent among the water-birds. The Pelican, the Spoon-bill, and the Flamingo, are atill to be met with in theso countrics; although, from their large size attracting the sportsmen, they are never seen in any considerable numbers.

The European reptiles are too few to afford any material illustration of animal distribution. The most remarkable forms and the greatest numerieal proportion occur in southern Europe, particularly in Italy and Greece, and tho islands of Sicily and Malta : some of these, as the Gecko, or house lizards of Naples and Sicily, belong to genera not met with farther north, but common on the opposito shores of Aftica and Asia Minor.

The fish and other marine animsls of the Spanish and Portuguese coasts bordering on the Atlantic have not been well investigated, snd our slight acquaintance with them is insufficient to give us uny correct idea of their nature; but on entering the Mediterrancan, we find, at Gibrnltar, many of those peculiar to much more southern latitudes. Spain and Portugal cunuot be said, like England, France, or Holland, to have national fisherics; but no sooner do we pass Gibraltar, than these natural sources of prosperity and plenty are agnin opened to the industry and support of man. The enormous shonls of Anchovies, (fig. 96.) annually

Anchavy. employ, in their capture and preparation, a grest number of persons: and the exportation of this highly flavoured little fish, to all parts of the world, creates an important branch of permanent commerce. The Herring and, we believe, the Pilehard, are not unknown in the fish-markets of Sicily and Malta; but, notwithatanding their abundance in northern Furope, they are scarce in the Mediterranean, and never scen in any consideruble numbers. The tunny fishery is peculiar to Sieily, nlthough there is very little doubt that the same fish frequents the shores and islands of tho Peloponnesus; yet the tota' disregard of the Turks to nll sources of national wealth blinds them to this, and to every other sdvantage which Nature has placed within their grasp. The Ichthyology of southern Enrope is certainly of a more marked and peculiar character than any other department of Furopean zoology. Of nearly 150 species observed in the Mediterranean Sca, not more than one-third belonged to the Ichthyology of Great Britain and northern Europe.
The Turtle of the Mediterranean is that deacribed by authors under the name of Testudo carella: writero have uniformly copied each other in asserting that thia is the same as the Loggerhead Turtle of the West Indies; and that its flesh is coarse, rank, oily, and not
edible. The ace aracy of both these statements may bn questioned. Whatever may be the
 qualitics of the Woat Indian Ioggerlicad, wo know, fiom personal experlence, that the flesh of tho Mediterrancan species is delicious. We were once becalned off tho Isle of Elba, and in one morning captured a sufficient number of small turtle to supply tho cabin table fir a week. They made exquisite soup; and although one of the company war ill, it arose from repletion. We omitted to draw und describe the animal, from a belief that it was the Ilaw k's-bill Turtle, the only species described as inhabiting the Mediterranean; tho figure given by Gottwold (fig, 97.) has been considered, by Dr. Shaw, an representing the Tcatudo carella.
Of European insects, a bare enumeration of the genera would alono fill a volume; and in the half-artificial, half-natural, arrangement in which our entomological systens at this moment remain, it is impossiblo to form any precise idea oven on the uatural distribution of tho families. As we approach the provinces of southern Italy and the Peloponnesus, w find many genera which more properly characterise Western Asia and Africa; while, in

Sicily and Malta, the geodephagoue groups, particularly the Linnean Carabii, are diminished; apparently in species, but certainly in numbers. It is in theso countries that the Ants, those universal scavengers of nature in tropical countries, begin to appear in almost every situation, and to perform those offices which in more temperate regions havo been assigned to the Gendephaga, Brachelytra, and Necrophoga among coleopterous insects. Most of the northern Butterflica (Papiliones Nw.) aro common even in Sicily, where, notwithstanding a dissimilar vegetation and a more heated atmosphere, we find only three or four specics unknown to the Britial fauna: among theso, the Gonepteryx Cleopatra (fig. 98.) or Cleopatra's Butterfly, much resembles a British species, but has the middle of the anterior wings of a rich orange.
The Radiated animals of the Mediterranean are particularly numerous; tho many har-

- bours, coves, and sub-immersed rocks, sheltcred from those violent commotions which agitate the mighty Atlantic, afford them secure protection, and contribute to their rapid increase. Their investigation, hitherto much neglected, offers a wide field for the discoveries of naturalists who can atudy them in their native seas. Numerous apecies of Sea Anemone, or animal flowera, unfold themselves in the crevices of the rocks; one of these (fig. 09.), ornamented with rich purple, is particularly common on all the shorea of Sicily.

The tubular and cellular polypes, whose habitations are termed corals and corallines, are generally abundant in warm latitudes. Among these a vast number of speciea occurs on the shores of Sicily, Italy, and the Greek ialands, which do not inhabit the British coasts. Sicily, for many ages, has been celebrated for its fisheries of the true red coral (fig. 100.); and it still affords employment at certain seasons to many fishermen: but the produce of the old grounds of late years has materially diminished, through want of care and due preservation. The Bay of Naples likewise produces this beautiful substance, but the pieces usually found are small, and in no great abundance.
The Molluscous animals or shell-fish of southern Europe are in
101
 great variety; and are much prized by
 all classes, as general articles of food. It is no uncommon thing to see from twelve to fifteen different sorts of ahell-fish, none of a small size, exposed in the principal market at Naples; and we havo been assured that double this number are not unfrequently served at the tables of the higher ecelesiastics and nobility of Tarentum during Lent, that city being highly celebrated for its shell-fish. The Solen strigilatus (fig. 101.) is abundant at Naples, and considered most delicate food.
On comparing the conchology of the Mediterranean with that of Britain, there does not appear so much difference as at first might have been imagined; nor are we aware of more than three or four genera in those southern latitudes of which examples have not been found in the Britiah seas. Yet, on descending to apecies, the difference is much greater. Perhaps
two-thirds or three-ffitis of the Mediterranean ahells have been found in the Channel, and on the wextern or other coosts of Dritain. The remaining portiou indieate a atrong aflnity with the conchology of India and the lleil Soa on one hand, and that of Africn, towarda Benegal, on the other. The fluviotile apecies are mout numerous in central Europe, where the heat of summer is less calculatell to dry up thone mall pools and shaliow streama, in which mont of these mivalve mollusen delight to dwell. The fuviatile bivalves are fuw; but are of species which neem peculiar to the European rance. Independently of those common alike to Britnin anil the Continent, there are others in France and the wouth of Burope (Ag. 102). Unio littoralis (a) and the true U. batava (b) are common in the Seine; and we liave received another shell from near Gibraltar, which we suspect to be a now apecies, intermediate be
 tween the latter and ovatus; we name it provisionally Unio intermedius (c, c).
The Cephalepoda, or cuttle-finh of the Mediterranean, though not of many apecien, are sometimes found in prodigioua numbora, and frequently frow to an enormous aize. The zoology of the Black and Caspian Sens is very little known.
The phosphorescence of the Mediterre. nean is at times so brilliant, that it excites the admiration of all voyagers; it therefore deserves to be particularly mentionel. This phenomenon, is entirely produced by varioua marine animals. Spix, the Bavarian naturalist and traveller, in his passage down the Medjterranean, caused several buckets to be filled with thia luminoua water; and the following results attended hia experiments:-
These luminous animalcula adhered to whatever was wetted with the water, and continued to shino thereon; the buckets, when shaken, appearing full of luminoua particles. The water, examined by a microscope, was filled with little bodiea, seme roundish, sone oblong, and generally about the size of a poppy-sced; each of these had, at one end, a mall navellike opening, encirclod by from six to nine delicate fllaments which float within the bladder, aud with which the animal seems to attach itself to other bodios, and to seize ita neurishment. In the inside of these bladders there were many other small darket points, crowded together en one side, or here and there some larger ones, which might be either the remains of smaller animals which they had ewallowed, or their own spawn. These globular animal. cula (which Spix considers to be of the nsture of Meduse) have been named by Péren and Lechenault Arelhusa pelagica, and by Savigny Noctiluca miliaria. They swim in greater or lees numbers at night, but in the sunshine they appear to the naked eye like little drops of grease. When put into a vessel they soon die and full to the bottom; when they come near together, they appear involuntarily to attach each other, se that they form wholo groups. The same phenomenon is sometimes observed in the day-time, when the sky is dark, which rarely happens: as these animala are seldem found in water taken up in the day-time, it is probable they then sink to the depths of the ocean, and only return near the surface towarda night. (Spix, Trav.)

Other lumineus bodies resemble balls an large as a nut; and every wave striking a ship, when filled with these animals, lights up all surrounding objects. Besides these, there are sometimes insulated luminous bladders, like fiery balls, a foot in diameter, which rise singly above the water; and the striking of two waves together produces a shallow bluish streak of light, resembling the reflection of lightning on the water. (Spix, TYav. i, 44, 47.)

The quadrupeds of Europe, according to the most recent distribution of the species (Griff. Cuy.), under the modern divisions, comprise about ninety species, arranged under the following genera and sub-genern. To these must be added the fish-quadrupeds, or Cetacea, chiefly inhabiting the high northern latitudes:-

The genera of Furopean birds, in reference to our former remarks on the geographic distribution of animals, deserves particular attention. Those marked* are typical of families or sub-families; those \dagger include sub-genera, or subordinate variations of structure to which we shall not attach a distinct patronymic name; either because the higher groups have not been sufficiently anslysed, or because these subordinato forms have been mistaken for genera. Decided stragglers are excluded; other genera, of uncertain rank, are not marked. The typical genera of tho wading birds have not yet been ascertained.

Book I.

- Twiline Aurf. - arpmio hiow. Nelmate Buan pampon mas Hallistur Ras. Ayulla Rans: anet secepliter - Yals fhuten Cimpan Nacipaptra. Cyprimulan Cypolua IIt. - Krompe Coracho - Alemar	
	- Muwiexpa - lanius - Merrula ang.
	tinelas - IJriolue
	- mbicienla Sryiheen Aus
	Phionieun siv.
	1 Cumuas foch
	- Hincos k
	Aceontipe ment. Malyten (w

Prita Cime	- Uyepa lim.	te
- Pyrrbule ciwe	Callinamees 8 inde	1 Luevicuar
gnemata	Jilito 2 im	
Nueifraga Amo	yru. fita	
- ICinerus	- Crinumita 2 in	
- Garmilua	- yooule hater	celame
- 1 ficeothra	,	
Caylirs emm.	Prem not	
clumblar	Une lim	0
- Cuendue		
Irinilimenpens	Pivares an	'califer livfic.
A	A+	碞
- min 5	Previe firenam Linh	Trinem
- Min Lim. - Corthia 2 -	Platilion 'Tuntaluat	Vamition
Tichuslouns	lut fint,	Odicmeaneo c
uplodytm		

EUROPE.

Suot. V.-Languages.
Europe, considered in regard to its languagen, comprehends the whole globe, through those immense colonies which have been founded by the natiois of this continent in every other quarter of the world.

The Europenn languagea, ancient and modern, fonn six families:-1. The family of the Berinn lnuguages ; \$. That of the Cellic languages; 3. That of the Thraco-Pelasgic or Ciraco-Latin langunges ; 4. The fanily of the Germanic languager ; 5 . That of the Sclavonic languages; 0 . The family of the Uralian languages, commonly called the Finnish or Chudic.

Sumazot. 1.

The Iberian or Basque family has been dividnd into the two following branches:-1. Ancient languagea loug extinct, under which are classed the idioms spoken by the lberians in the grenter part of the Spanish peninsula, in southern Gaul, and in some parts of Italy and its three grent islands. 2. Ancient languagea still living ; of which the only one remaining is tho Escuara or Busquc, formerly spoken in a large portion of Spain and of southern Gaul, and now spoken only by the Vascongatos or Basques in the Spanish provinces of Biscny and Navarre, and in solne parts of the south of France. The Bampues are the descendants of the ancient Vascones. Their language, which resembles no other European idion, though it has ndopted several Latin and some German words, appears to have a certain nffinity to the Shemitic languages, and, In its conjugations, some analogy to the languges of America.

Sumezot. 2.

The Celtic family exlibite, like the Basque, two branches:-1. Ancient languages long extinct, among which are clussed the idioms spoken by the numerous Celtic natione in Gaul, in Belgium, in the British Isles, in parts of Germany, Italy, nud also Galatia in Asia Minor. 2. Ancient languages still living, of which there are two: 1. The Gallic, Gaflic or Celtic Proper, spoken in different dialects by tho descendants of the true Celts, in a large portion of Ireland, in the Ilighlands of Scotland, in tho IIebrides, and in the Isle of Man. 2. The Cambrian or Celto-Belgic, formerly spoken by the Cymri or Belge in Belgium and Dritain, and now confined to a part of England and France. In this language are distinguished three principal dialects: tho Welsh, spoken and written by the people of that name descended fron the ancient Britons; the Cornish, formerly spoken throughout Cornwall, but extinct since about the middle of the last century; nnd the Bas-Breton, culled also by French writers the Celto-Breton, spoken in the part of France formerly cailed Lower Bretague, by the descendants of thoso British fugitives who, in the fifth century, sought refuge and settled in Arnorica. The Bas-Breton has many sub-dialects and varioties.

Subsect. 3.

The numerons finmily of the Greco-Latin languages may be divided into four branches: 1. The Illyrian ; II. The Etruscan; III. The Hellenic ; IV. The Italic, including the Latin, the Romaic or Romano-Rustic, the modern Italian, the French, the Spanish or Castilian, the 'ertyguese, and the Valaque or Wallachian.
I. Thie Thraco-lllyrian branch inclules all thoso Thracian and Illyrian nations once seated in Asia Minor west of tho river Halys, and in Europe nll over its eastern portion, from Noricum, occupied by Celtic tribes, to the mouths of the Danube and the Dnieper, and even beyond. Of those nations, long extinch or confounded with others, the principal were the Plirygians, the Trojans, the Bithynians, the Lydians, the Carians, the Lycians, the Cimmerii, the Tauri, the Thiracians properly so called, the Mesi, the Gete, the Macedonians, the ancient Illyrinns, among whom wore the Dalmati and the Istri, the Pannonians or Peones, the Veneti, and the Siculi. In this branel, according to M. Malte-Brun, may be not improperly placed-
The Albanian, spoken in Albania and other countries by the Skipatar, named Arnauts by
Vol. 1 .
26*
the Tmks, and generally known under the name of Albanians. They form the prineipel population of Albania, nind are scattered throughout European Turkey, especinlly in Roumelia, Bulgaria, and Mucedonin; others on the Slavonic military confines of tho Austrian enpire, und others in varions parts of the kingdom of the Two Sicilies. This Scyp, or Albanian lunguage, accorling to M. Malte-Brun, appears to be formed of one-third of ancient Greek, especially the Follic dialect, one-third Latin, and one-third of'sn idiom not yet ascertained, probably the Illyrian. The Albanians have three different alphabets: one sacred or hieratic, now fallen into disuse; another, the Greek alphabet; a third, the modern Italian or Iatin.
II. The Etruscan, (we are here reminded of the Osci and Heterosci, quasi Etrusci?) spoken by the Etrurians, called also Tyrrhenians by the Greeks. This nation, according to some, appears to have been a mixture of Rhetian Celts with the Aborigines of Italy. The Etruscan ulphabet was the same with the primitive alphabet of the Greeks; it had sixteen letters, and was written from right to left.
III. The Pelasgo-Hellenic, including the idioms in ancient times spoken by the famous Pelusgi and Hellenes, long since incorporated with other nations. The people of early erigin whe may with probability be classed under this branch are, the Pelasgi, the Leleges, and other tribes enumerated ly ancient geographers among the population of Greece and its isles, espeeially the Greci, originally a small community of Thessaly, but remarkable for having given name to the whole of that celebrated nation, whose language was-

The Hellenic, or ancient Greek, formerly spoken in Greece and its dependencies, and at a later period in a great part of Sicily, Lower Italy, Asia Minor, Egypt, and its dependencies, in part of Gallia Narbonensis, and in other districts bordering on the Mediterranean.

During the Macedonian empire the Hellenic was spoken at all the courts of the descendauts of Alexander, and by persons of distinction in all the countries subject to the Macedonians. In a subsequent nge, it was studied by all the most distinguished subjects of the Roman empire, and was the prevaling idiom in the East until the fall of Constantinople, at which period it was studied with renewea ardour in the West. In this language, 270 years before Christ, was written the famous version of the Hebrew Scriptures called the Septuagint; in this language also was the Gospel promulgated by the Apostles; and it thus became tur ever sacred. It appears not the least wonderfil among the dispensations of Providence, that the light of Cliristianity should have been originully diffised under the most powerful empire and in the most cultivated language of the ancient world, and that it ahould prevail notwithstanding the power of the one, and the learning and philosophy for which the other was so proudly distinguished. The literature of the Greeks, conıprehending some of the finest proluctions of the luman mind, is, perhaps, the richest in the world, and presents an unpuralleled series of eminent writers, extending from the age of Homer to the midille of the fifteenth century. The language is one of the most flexible, harmonious, and copious that have ever existel; its grammatical torms are almost identical with those of the Latin, to the formation of which it has greatly contributed, but in many eesential points it is superior, and especially in che umlimited faculty of making as many compounds as can br required. M. Malte-Brun distinguishes in the ancient Greek two different idioms:-1. The primitice Hellrmic, which he subdivides into three principal dialects-the Arcadian, the Thessahun, with the ancient Mncedonian, and the Enotrian, transported into Italy and mingled with the Latin; 2. The Hellenic of the historical times, dividel into four principal dialects and several varieties.

The Romaic, or the modern Greek, spoken hy the Greeks of our own times, especially in the Morra, in Livadia, Thessaly, the isle of Candia, the Archipelago, part of Alhania, Macedonia, Roumeli:, Thrace, Asia Minor, Cyprıs, and by the Greeks established in Wallachia, Moldaria, Syria, and Egypt. The Romaic is also spoken by the inhabitants of the Ionian Isles, by considerable numbers of Greeks in the Austrian and Russian empires, and some hmodred of Mainotes in Corsica, near Ajaccio. It is divided into two principal dialects, the Romanic and the Aolo-Dorian, ench including various sub-dialects.
IV. Thie Italic branch, so called, as including the langunges of the aborigines of Itnly, which form the sten of the modern idioms comprised in this branch. Those "borigines were, the Euganei, the Ausones, the Lucani, the Brutti, the Piceni, the Marsi, the Latini the Sabines, und the Samnites. From a nixture of the three last idions, primarily with the original Mellenic, afterwards with the old Eolian and ancient Doric, was formed, as M. Malte-Brun inclines to think, the language spoken hy the Romans, and called the Latin langunge. The languages included in that branch are,-
The Latin, which was the written and current language of the ligher elasses in Italy and throughont the Roman empire. It was very different from the lingua plebeia or rustica, spoken in the rural districts of the peninsula, and by the lower classes in Spain, Gaul, and the other provinces. Its grammatical forms are similar to the Greek, though less perfect. Iatin literature, formed on that of Greece, is very rich in all branches of knowledge, and, torether with the Greek, is the source from which flows the literature of the molern nations cf Europe. Its most brilliant epoch was the Augustan age. In this language St. Jerome

Part III.

he principal nlly in Routhe Austrian his Scyp, or rd of ancient ot yet useerne sacred or rn Italian or

tsi Etrusci ?)

 according to Italy. The lad sixteenby the famoua ople of early , the Leleges, Grecce and its emarkable for asendencies, and its dependenditerranean. f the descendo the Macedosubjects of the astantinople, at nage, 270 years led the Septuait thus became of Providence, most powerful t should prevail which the other ag some of the nnd presents an o the midalle of pus, and copious se of the Latin, tial points it is unds as can bo dioms:-1. The Arendian, the o Italy and mino four principal imes, especially part of Albania, pblished in Wal. habitants of the nn empires, and rincipal dialects,
origines of Itnly, Those aborigines larsi, the Latini i, primnrily with ns formed, as M. called the latin
classes in Itnly Debein or rustica, Spain, Ginul, and nugh less perfect. knowledge, and, e modern nations guage St. Jerome

Boox 1.

EUROPE.
wrote the Vulgate, or Latin translation of the Bible which is used in the Romish church. The overthrow of the Roman empire in the fifth century gave birth to n cerrupt Latin, mingled with a great number of barbarous words, and named low Latin, which, until the fourteenth, was, almost exclusively, the written language throughout tho West. In the two succeeding centuries, Latin litorature again flourished, especially in Italy; but it was only to contribute to the improvement of modern languages, which being diligently and successfully cultivated, the Latin was restricted to works of erudition alone. Its phraseology has had a marked influenco on that of the nost polite nations of Europe. It is now a dead language, exeept in Poland and Ilungary, where some educated persons speak it in ordinary life with considerable purity, and with the continental pronunciation, of course almost unintelligible to English travellers, who cannot or will not relinquish the Saxon diphthongal sounds of the vowela A, I, and U, the chief causes of their embarrassment. Latin is no longer employed except in the Catholic liturgy, in medicine, in the diplomacy of the court of Rome, and partially in the literature of all the civilized nations of Europe. The alphabet, of twenty-three letters, having been improved in its characters by the Italians and French, is used by all the people of Europe, except the Greeks, the Russians, and some other nations who have particular alphabets. Thia same Latin alphabet, with the Gothic forms it assumed under the pen of the writers of the middle ages, is used by the Germans and Dancs, and by the Bohemians, and other Slavonic nations; and, according to some authors, its capital letters, truncnted and squared to facilitate the inscription of them in wool or stone, constitute the Runic alphabet, formerly used in the north of Europe.
The Romana, or Romana Rustica, spoken in the brightest ages of Rome by the lower classes in the south of the empire, excepting Greece, and some other counties. After various modifications more or less considerable, it appears still to subsist among the vulgar dialects spoken throughout a great part of Spain, France, Switzerland, and some districts of Italy. The chief of those dialects, according to M. Chnmpollion Figeac, are the following, classed with reference to those four regions:-In Spain, Sardinia, and the Balcaric Isles, the Catalan, the Valencian, the Majorcan. In France, the Languedocian, the Provençal, the Dauphinois, the Lyonnais, the Auvergnat, the Limousin, and the Gascon. In Switzerland, the Romanic, or Celto-Romanic, (frequently called Romance, Khurwelsh, and Rhetish,) the Valaisan in the Valais. In the states of the king of Sardinis are spoken the Savoisian; and the Vaudo's in the vales of Lucerne, Pcrosa, nud part of Piedmont. To these might be added the jargon called lingua Franca, in which Catalan, Limousin, Sicilian, and Arabic are the principal ingredients. The Romance literature is also called that of the Troubadours. Frons the mixture of this language with the different Germanic, Slavonic, and other idions, were formed, in the tenth century, the following languages:-
The Italian, spoken by the Italians in almost all Italy, in the isles geographicslly connected with that peninsula, and in various Alpine territorics; also frequent in Dalmatia and the isle of Tino; very common at Constantinople, and in several mercantile towns of the Ottoman empire. The written language, which is nowherc generally spoken, is conmon with all well-educated Italians, and differs considerably from the vulgar tongue, which is subdivided into a great number of dinlects. The principnl of these are, the Piedmontese and Genuese ; the Milanese, or Lombard proper; the Low Lombard; the Bolognese, the Bergainase; the Venetian, the Friulian, the Tyrolean, the vulgar Tusean; the Roman; the Sabine and Abruzzan; the Calabrian and Apulian; the Tarentine; the Nenpolitan; the Sicilian, and the Sardinian.

The French language, spoken by the French alnost throughout the north of France; by the Walloons and Flemings in various Netherlandish provinces; by the Swiss, in several of their cantons; by the people of Jersey and Gucrnsey; also in some parts of the Austrian and Russian empircs, and of the Prussian monarchy; by the French colonists in Asia, Africn, and America. The following nre the principal dialects:-the Picard, the Flemish, the Norman, the Willoon or Rounchi, the vulgar French, the Breton French, the Champénois, the Lorraine, the Burgundian, the Frauche-Comté, the Neufchutelain, the Orlénanois, the Angevin, and the Manceau. To these might, perhaps, be added the jargon spoken ly the negroes and creoles in the French West Indies.

The Spanish or Castilian language, spoken by the Spaniards in the greater part of Spain, and, with some variation and ndmixture, by their descendants in Occanin, Africa, and Anerica; also by the numerous Spanish Jews estahlished in the Ottoman empire, and in other states of Europe, and of North Africa; in the isle of Trinidad belonging to the crown of Great Britain; in some parts of Florida and Louisinna; and in the enstern part of Hispaniola or St. Domingo. This language is also common to all the inhabitants of the towns of Spain where the Basque and Romance languges nre spoken. The written and polished language is almost identical in its grammatical forms with the Romance and the Portugnese; and differs little from the Italian; it is very rich and harmonious, notwithstanding some guttural and aspirate sounds taken from the Arabic, from which it has horrowed muny words. It is singular to remark, that the German is charncterised by similar gutturals or aspirates. The reigns of the emperor Charles V. nnd of his son Philip II. were the golden age of Spanish
literature; after which it fell into decay, but partially revived under the Bourbon kingy Philip V. and Charles III. Of the dialects, which differ little from each other, the following are the principal:- the dialect of Toledo; that of Lieon and the Asturias; the Audalusian; the Murcian; the Galician, or Gallego; and the Transatlantic, spoken in America; where, next to the English, the Spanish language is spoken by the greatest number of inhabitants.

The Portuguese language, spoken by the Portuguese in Portugal and the Azores, and, with some differences, by the Portuguese Jews settled in Hamburg, Amsterdam, the Tyrol, and other parts of Europe, Asia, and Africa; also by the descendants of the Portuguese in their Asiatic, African, Ocennic, and American colonies. The Portuguese is as rich and concise as its sister languages; it has borrowed some words from the Arabic and the French; to the French it seems indebted for the soft sound of g, and for the nasal syllables; it is sonorous, soft, and unimpeded by the aspirates and gutturals of the Spanish; but the frequency of hiatus, and of the modern nasal ao, equisonant with the French am or an, injure the harmeny of the language. Its origin, like that of the Spanish, is lated in the eleventh century; and it had attained its maturity in the sixteenth. The Portuguese literature, which Camoens illustrated with one of the finest epies in existence, is as varied and rich as the Spanish, though less known. It revived in the memorable reign of Joseph. The language may be said to exhibit no differences of dialect; there are only varicties: those which differ most from the written language are, the Minho, Algarve, and Azores varietics in Europe; the Brazilian in America; those ef Congo and Mozambique in Africa; and of Goa and Macao in Asia. Some, however, regard as a dialect of the Portuguese, the jargon called lingua geral, spoken along the east and west coasts of Africa, also along the coasts of Ceylon and the Indian peninsula. In Africa, as well as in Asia, it presents the phenomenon offered by the lingua Franca in the Mediterranean, and attests the power formerly held by the Portuguese in those regiens.

The Valac or Wallachian, spoken by the Rumanje or Roumouni, better known as Valacs, a people apparently descended from the ancient Roman colonists settled in Dacia and Thrace, and the Slavonic and other nations dwelling there. Its literature is very meagre. Among its numerous dialects the more remarkable are the Roumounic or Valac proper, spoken in Wallachia, Moldavia, and Bessarabia; the Hungarian Valac, the Macedo-Valac, and the Kutzo-Valac, spoken in various sub-dialects, in several parts of European Turkey, south of the Danube.

Subsect. 4.

The family of the Germanic languages next claims eur notice. Without entering into the history of the Germanic nations, which rivals in importance that of the Greco-Latin, we may class these different idioms, according to M. Malte-Brun's theory, in four branches; the Teutonic, the Sa.con or Cimbric, the Scandinavian or Normanno-Gothic, and the AngloBritannic.

The Teutonic branch, which comprises the idioms of the various ancient nations and tribes recognised as German by the Roman historians and writers; as the Bastarnw, the Suevi, the Marcomanni, the Hermonduri, and the Franci, presents the following idioms:-

The ancient high German (alt hoch Dcutsch), formerly spoken in different dialects throughout South Germany, Switzerland, Alsace, Hesse, Thuringia, Wetteravia, and a great part of the countrics once subjected to the Franks. It has been extinct for several enturies: its three principal dialects were, the Francic, and the Alemannic, which are of contemporary origin, and contain the most ancient productions of that language, and the Middle High German, which succeeded them. The Francic or Thulesc was the language of the Franks: it was spoken at the court of the Merovingian and Carlovingian sovereigns, until Charles the Bold; atter whose reign it gave way to the old French in France, but continued to be the court language in Germany until the times of the IIehenstaufen. The Middle High German is the language in which were composed the numerous works of the Sunbian, Bavarian, Austrian, and Swiss writers, nnd several other authors in Mildle and Lower Germany, from the eleventh to the fifteenth centuries. Its finest proluctions are dated in the periol of the Hohenstaufen, from 1136 to 1254, ealled also the Minnesinger, the trouveurs and troubadours of Germany. The Nibelungen-lied, the finest epic in this language, is supposed by Winter to have been composed in 1290, by Conrad of Wirtzburg.

The German, called also ncu hoch Derusch, in which distinction must be made between the written and the spoken language. The latter is divided into a grent uumber of very different dialects, sublivided into several sub-dialects and varieties. The written language is nowhere spoken by the people: it was fermed at the periol when lather, rejecting the Middle IIigh and the Midlle Low (ifrman, adopted in preference the dialect of Misnin or Meissen, which had begun to be written much later. This Misnian dialeet, ubly employed by that great man and his numerous followers, scon became, as the language of hooks and of good society, common to all well-educated Germans, and also ranked as the learned language of the north and grent part of the east of Europe. The literature of Germany, in regard to the quality of its productions, rivals those of France and England, and surbasses

Part III.
Book I.

EUROPE.

them in abundance. The German is the richest in words of any language in Furepe; and this distinction it owes to the great number of its monosylhabic roots, with which it creates new terms ad infinitum, by derivation and composition. Its principal dialects are, the Swiss; the Rhenish; the Danubian, with its four sub-dialects, the Bavarim, the Tyrolean, Austrian, and Bohemo-Hungaro-Silesian; and the Frunconian, or Mittel-Deutsch. To these, on the authority of Adelung, we may add two others, remarkuble for the strange admixture of words totally foreign; these are, the German Jewish; and the Rothwelsh, spoken by the Jenish or Jauncr, who are generally reported to be thieves and vagabonds. It contains a multitude of terins and expressions quite different from German.

The Saxon, or Cimbric, which comprises the idioms anciently spoken by the Cimbri; also by the Angli, who, with the Jutes and Saxons, afterwards made so great a figure in northern history; the Bructeri and Chauci, the Menapi, the Tungri, the Batavi, the Frisones, and other nations of less note, the uncient Saxons, and probably the Longobardi. This branch includes the four following idioms:-

The ancient low German (alt nieder Deutsch), called also the ancient Saxon, after the people who spoke it. This language, now extinct, was current throughout lower Germany and the Netherlands, except in the countries occupied by the Frisooes and the Angli. About the eommencement of the seventeenth century it wholly ceased to be written. Its principal dialects are, the Saxon proper, or idiom of Lower Snxony; the Eastern Saxon, spoken in various sub-dialects in Prussia, and the Westphulian, or Western Saxon.

The Frisic, formerly spoken along the coast, from the Rhine to the Elbe, by the Frisones, and their allies the Chauci, the ancestors of the present Frisians, who are now far from numerous, nnd speak a language very different from the ancient Frisic, being mixed with other idioms. Its three principal dialects are, the Batavian Frisic, the Westphnlian Frisic, and the North Frisic, or Cimbric.

The Netherlandish, or modern Batavian, has two principal dialects, the Flemish, and the Hollandish, or, as it is commonly called in this country, the Dutch. The Flemish is spoken in the southern provinces of the kingdom of the Netherlands, excepting those where German and Frencl are spoken. It was the written and oral language of the seventeen provinces once snbject to the Counts of Burgundy. After their extinction, and under the Spanish rule, the Flemish idiom gradually gave way in the north to the Dutch, in the scuth to the Fronch language. The Dutch is spoken in different varieties in the seven provinces of the North, and in some bordering districts of the South: with certain changes and admixtures it is nlso spoken, or at least understool, in the various settlements founded by the Dutch in Africa, Oceania, nnd America, and in several places in Ceylon, India, and the peninsula of Malacen; in South Africa; at the Cape of Hope; and on the American continent in Guiana. Some descendants of Dutch settlers also in the United Stutes retain their native language. It was only in the sixteenth century that this vulgar idiom of the province of IIolland, in some degrec polished nnd improved, became the national language of the Dutch. It is a vixture of ancient Francic, Frisic, and low German.

The Scandinavian, or Normanno-Gothic, comprises the idioms formerly spoken by the Jutes, the Goths or Gute, and other less considerable nations of purc Gothic race. There are five different idioms in this branch:-

The Moso-Gothic, formerly spoken by the Goths established in Mosia. According to Grimm, this is the richest of the Germanic languages in grammatical forms: it has not less than fifteen declensions, with 120 cases, and sixteen conjugations. The Meso-Gothic has been ilead many centuries. Its most ancient productions are, the famous Codex Argentevs of Upsal; and other fragments of the trinslation of the Bible, made between the years 360 and 380, by Bishop Ulphilas. The Maso-Goths appear to have been the first to embrace Christianity of ull those nations who overthrew the Roman empire.

The Normannic, called by Grimm the Alt-Nordisch. It is the language of the Edda, of the Voluspa, and other poems of uncertain date, and was generally spoken throughout Scandimavia in the eighth, ninth, and tenth centuries.
The Norwegian, ancient Norweginn, Norrena tunga, not to be confounded with the modern Norwegian or Norsk, which is only a dialect of the Danish. Its principal dialects are, the Icelandic, the Norwegian proper, the Dalska, or Western Dalecarlian, the Jämtlandish, and the Norse, apoken in the Shetland IEles.
The Swedish (Nuenshi), spoken by the Swedes throughout the greater part of the Swedssh monarchy; nlso in the principul towns of Finland and the isle of Runoe, in the Russian empire. It has two principal dialects, the Swedish, and the modern Gothic, subdivided into several sub-dialects and varieties.
The Danish, spoken ly the Danes in Denmark, and in their Asiatic, African, and American settlements; also by the higher classes in the Feröe Isles, and in Iccland. It has two principal dialcets, ench lanving several sub-dialects and varieties: the Dawish proper, which includes the insular Danish, the nneient sul-dialect of Bornholm, the modern Norwegian, and the idion of Seania. The Jullandish, or modern Jntic, including the Normanno-Jutic, the Dano-Jutic, and the Anglo-Jutic.

The Anglo-Britannic (not to be confounded with the British, which is Welsh), comprisea only two idioms.
The Anglo-Saxon, formed by a mixture of the idioms spoken by the Angh, the Saxons, and the Jutes, who, invited by the Britons against the Picts, finally took possession of the country, where their language was successively preserved in three dialects, until the eighth century. During the invasions and temporary ascendency of the Danes, it was so modified as to become Dano-Suxon, or rather this may be called a dialect of the Anglo-Saxon. For several centuries this language has been totally deal.

The English, spoken in England, in the east and south-esst of Scotland, in part of Ireland and of Wales; in the Shetland Isles, in the isles of Jersey and Guernsey, in the British colonies of Asia, Oceania, Africa, and Anerica. It is the national language of the United States of America. It is also cultivated and spoken by a great number of persons of different nations in all parts ef the world on account of its literary, political, and commercial importance: the two latter considerations render it very current in the kingdom of Hanover, in the Ionian Isles and Malta, in Portugal and Brazil, and in the republic of Hayti. The English language is a mixture of the Anglo-Saxon and the Neustrisn French or FrancoNorman, with some Celtic worls, and a few of ancient British origin. It has imported largely from the Greek and Latin, as knowledge and culture advanced in the nation. If the number of words in the language be taken at thirty-eight thousand, those of Saxon or northera origin will be found limited to about eight thousand, the rest being principally Greek and Latin derivatives. Copious and energetic, the English language is the simplest and most monosyllabic of all Luropean idioms; and it is that also of which the pronunciation differs most from the orthography. It did not become the language of the state until the reign of Edward III., since which time it has rapidly improved. Towards the commencement of the seventeenth century may be dated its regolar developement, and in the beginning of the eighteenth it took its fixed and invariable form. The English language occupics one of the most eminent places in European literature; it is comperable with any of them in elegance, and perhaps, surpasses them all in energy. It is ne less graceful than concise ; its poetry is at once manly and harmonious; and, like that of the cognate languages of the north, is admirably adapted to depict the sublimitics of nature and pourtray the stronger passions: as the language of political and parlismentary eloquence, it is without a rival. Of the number of its dialects it might be difficult to speak with precision: foreign philologers distinguish four as the principal :-the English proper; the Northumbrian English, called also Dano-Eaglish from the great number of Danish words retained in it, and spoken in various sub-dialects in Yorkshire, Lancashire, Cumberland, and Westmoreland: the Scottish or Anglo-Scandinavian, ineluding the Lowland Scotlish, with the Border language; and lastly the Vltra-European English, prevalent in the English colonies and in the United States. It has been observed that the English language is spoken by the greatest rumber of the inhabitants of the New World.

Subsect, 5.

The family of the Slavonic languages is widely diffused. From the neighbourhood of Udina in Italy, from Sillian in the Tyrol, and from the centre of Germany to the remotest extremities of Europe and of Asia, and even to the north-west coast of America, are nations of Slavonic origin to be found; the tract of country over which they hold sway amounting to about a sixth part of the habitable surface of the globe. These nations exhibit almost all the varieties of the human race, both physical and inoral, if not from the most exalted, at least to the most degraded.
The Slavonic languages, so far ns is at present known, may be regarded as forming three branches:-1. The Russo-Illyrian. 2. The Bohemo-Polish. 3. The Wendo-Lithuanian.
(1.) The Russo-Iliyrian is so called from its chief people, the Russians, and from the general appellation Illyrian given to most of the nations who speak Servian or Croate. The langnages comprised in this branch are :-
The Slavonic, Servian, Serbe, or Illyrian, called also by some authors Rutena, spoken in different dialects by the more southern Slavi, generally denominated Illyrians. They dwell in the Austrian and Ottoman empires, exceptimy a small number, settled as colonists in south Russia. The dialects differing most from each other, and from the ancient Slavonic, are the Servian or Narblin, with various sub-dialects; the Italiano-Slavonic, spoken on the coast of Dalmatia; tho Usioke, spoken by the wandering tribes in Servia, Bosnia, Dalmatia, Croatia, Maritime IImgrary, and Carniola. It is mixed with many Turkish words. Lastly, the Bulgarian, spoken in Bulgaria, in the Ottomnn empire.
The Russian, Ruski, or modern Russian, spoken throughout the Russian empire by the Russians, who are the ruling nation; also spoken in a great part of Gallicia and part of IJungary in the Austrian empire. Since the reigu of the Czar Peter, when the Slavvenski was abandoned for the Ruski, it became the language of literature and of business throughout Russin. It has the following dialects, which difier little from eneh other, the Valiki-Ruski
or Russian of Great Russia; the Malo-Ruski, or Russian of Little Russia; the Suadalian; the Olonetzitu, and the Rusniac.

The Croate, spoken by the Croates or Khorbates, who delight to call it the Illyrian.
The Wende or Winde, spoken by seyeral Slavonic nations sulject to the Austrian empire, and known by different names in the countries they inhabit. In the Wende appear to be distinguished three principal dialects, the Carniolan, the Carinthian, and the Styrian.
(2.) The Bonemo-polish, named from its two principal nations, the Bohemians and the Poles. The languages belonging to this branch are the Bohemian or Chekhe, including the Bohemian proper, and certain idioms, bearing the character of principal dialects, and spoken in the Austrian empire.

The Bohemian proper, or Chekhe, is spoken in several very different sub-dialects by the Chekhes or Czecks, better known by the appellation of Bohemians. The dialect of Prague is the most elegant and pure. The others are the Slowac, the Hannac, the Straniac, the Passekarsk, the Sallashac, and the Szotac.
The Polish is spoken by the Poles, called in the middle ages, Leehen or Liachy. They form more than three-fourths of the population of the present Russian kingdom of Poland, almost the whole population of the province of Cracow, and of the western part of Gallicia, in the empire of Austria. They also form three-fourths of the population of the grand duehy of Posen, two-thirds of that of West-Prussin, and part of that of Silesia. The Polish is also the national language of the nobility and part of the commonalty in all the countries formerly belonging to the kingdom of Poland, and is spoken by thousands of colonists in Russia. Its principal dialects are those of Great Poland, of Little Poland, of West Prussia, of Mazovia, of Polish Silesia, of the Geralys or highlanders, belonging to part of the Carpathians in Gallicia. The preference given in Poland to the Latin, long retarded the progress of this national language.

The Serbe or Sorabe, spoken until the fourteenth century by the Serbes, or Sserske. It has two dialects; the Upper Lusatian, and the Lower Lusatian.
(3.) The Wendo-Iatiluanian, ealled also the Germano-Slavonic. This branch comprises the following idioms :-

The Wend, spoken until the fourteenth century in different dialects throughout the north of Germany, from Holstein to Pomerania, by various nations, as the Wagrians, the Polabes, the Wilzians, the Obotrites, the Rugians, and the Pomeranians. Since the fourteenth century it has been extinct, with the exception of the Linonish, improperly called the Polabish dialect, which subsisted in some districts, until the latter half of the eighteenth.
The Prucze or ancient Prussian, formerly spoken in cleven very different dialects, by the tribes forming the powerful nation of the Pruczi, dwelling between the Vistula and the Pregel. It is almost entirely extinct.
The Lithuanian or Littauish, formerly spoken by those powerful nations the Lithuanians and Kriwitschi, and now current only among the common people; as the higher classes speak Polish, with Russian or German, according to their different countries. Its principal dialects have been thus classed :-The Lithuanian proper, the Samogitian, the Kriwitsh, and the Prusso-Lithuanian.
The Lette, Lettwa, Lettonian, or Lettish, spoken by the Letts or Lettons, forming the bulk of the population in the government of Mitta, a large part of that of Riga, a suall portion of that of Witepsk in Russia, and of the province of East Prussia. It has five principal dialects, subdivided into a multitude of very different sub-dialects. The former, according to Mr. Watson, are, the Lette proper; the Semgallian or Sengallish; the Letto-Livonian or Lieflumdish; the Seelian, spoken by the Secles in Courland? the Wende by the Wendes, in the north-cast of that duchy, particularly in the neighbourhood of Windau. This language abounds with Gcrman phrases and expressions.
The Slavonic nations employ five different alphabets:-1. The Cyrilian, invented by St. Cyril in 805, called also the Servian or Ruthenian. 2. The Glagolitic, Slavonic, Krukovoitza, or Divinica, called olso that of St. Jerome. 3. The Russian alphabet of the Czar Peter, which is the Cyrilian modified by that emperor: it has thirty-five letters, and is in use throughout the Russian empire. 4. The Sorabes, Bohemians, and Slavo-Silesians use the German alphabet or character. 5. The other Slavonic nations, as the Poles, Lithuanians, Lettes and Wendes, use the Latin or Romen letters. To these five alphabets may be added the Runic Wend, the Greek alphabet, adopted, according to Karansin, by those Shavi who, in the eighth century, settled in Pelopounesus; and lastly, the Bulgarian, imi tated from the Glagolitic, and used by the Bulgarians.

Subsect. 6.
The family of the Uralian languages, also called the Finnish or Chudic, completes the ethnogruphic division of Enrope.
From the north-west coast of Norway to the long chain of the Urals, and beyend those
mountains to near the Yenisel in the centre of Siberia, in another direction from the Leitha to the Seret, and from the Carpathians to the Danube, nations of Uralian race live among other nations, and retain the manners, habits, and language of their forefithers. In marking the gradations among the peoplo composing this tamily, we may consider the IIungarians and the Ostiaks as exhibiting the two extremes in a moral as well as physical respect, notwithstunding the great affinity of their respective languages.
The Uralian family includes lour branches, accoriling to Klaproth; but some languages not included in them may be separately considered as a fifth.
The Finnish, or Germanised Finnish branch, inchudes the four following languages:-
(1.) The Finnish proper, or Sumenkieli, spoken by the Suomi, better known ns the Fins or Finlanders. Its principal dialects are, the Finlandish, the Tawastian, the Carelian or Kyriala, the Olonetzian, and the Watailaiset.
The Esthonian spoken by the Esthonians or Esthen, whose ancestors were formidable pirates, and who now form the most numerous part of the population of the government of Reval, and of the circles of Pernau ond Dorpat in that of Riga. Its two principal dialects are that of Reval and that of Dorpet.
The Lapponian, spoken by the Sames, better known as the Lappons or Laplanders, inhabiting the northem extremity of Europe, partly under the monarchy of the Swedes, and partly under the Russian empire. This language, which is said to have more affinity with the Hungarian than with the Finnish, has a great number of very different dialects, which have been classed under the Lappo-Norwegian, the Lappo-Swedish (western and eastern), the Lappo-Russ, spoken in the circle of Kola, in the government of Archangel. Through the beneficent care of the Swedish government, at the close of the last and the beginning of the present century, the Iaplanders have been reclaimed from idolatry, and have begun to enjoy the blessings of Christianity and civilization.
The Livonian, spoken formerly by the Lives or Liven, who gradually abandoned this idiom for the Lettish, in consequenco of which it is become nearly extinct.
(2.) The Wolgaic branch includes the linguages spoken along the Wolga and its tributaries. They have a strong admixture of Turkish, and may rank under two classes, the Cheremisse and the Morduine, including as dialects the Mokshau and the Ersan.
(3.) The Permian branch includes two languages, the Permian proper, spoken by the Korit or Perminan, and the Syrenes or Syranes; and the Wotiequc, spoken by the Udi or Wotiaks scattered among the governments of Wiatka, Oremburg, and Kasan. They are all Christians, and the most industrious people of Uralian race in the Russian empire, except the Fins and perhaps the Esthonians.
(4.) The Hungarian branch includes the following languages:-

The Intugarian or Magyar, spoken by the Magyars or Illungarians. They form about a third of the population of Hungury, and almost a fourth of that of Transylvania; several thousands also of this people are settled in the Bukowine in Gallicia, and about forty thousand in Moldavia, under the Turkish sway. The IIungarian, according to Czaplovicz, has four principal dialects:-1. The Paloczen. 2. The dialect of the Magyars beyond the Danube. 3. That of the Magyars of the Theiss; and 4. That of the Szekler, living in Transylvania, in the Bukowine, and in Moldavia. The IIngarian language is very harmonious; and is mixed with many foreign worls, especially Slavonic, German, and Latin.

The Wogoule, spoken by the Mansi or Manskum, more known as the Woguls, and ealled Wogoulitshe by the Russians. They are almost all Christians, and live principally as hunters and fishermen, seattered over the government of Saratow, in the high valleys of the Ural, in that of Perm, and in that of Tobolsk, between Kourjan and Beresow. Klaproth distingushes in it four dialects, that of Chiasow, those of Werchoturia, and Cherdin, and that of Beresow in the government of Tobolsk.
The Ostiak, or Obi-Ostiak, which is not to be confounded with the Yeniseil family. The As-juchs or Ostiaks of the Obi, who speak this language, are mostly Christians; some are still idolaters. The principal dialects are those of Beresom, Lumpokol, Wass-i-gun, and Narym. Under the branch still uncertain are ranked the Hunniae, the Awur, the Bulgarian, and the Chazar.

CHAPTER II.

ENGLAND.
Trie British islands, placed nearly in the north-western angle of Europe, commani ;eculiar udvantages, no less for natural strength in war, than as an emporium of curnuree in peace : on the southern side, they are almost in contact with France, Ifolland, and Germany, for ages the most enlightened and flourishing countries of the eivilized world; on the past, a wide expause of sea separates them from the bleak region of Seamlinavia; on the west, they overlook the Atlantic Ocean, whose linit in another hemisphere is the coast of Aurerica: white, in the extreme north they may be almost said to thee the mexplored expmine of the Polar Sea. Exclusive of the northern insular appendages, they may be considered as

situated between the fiftieth and fifty-ninth degrees of north latitude, and between the mecond degree of east and the tenth of west longitude. Thoy are geographically divided into two islands of unequal magnitude, Great Britain and Ireland: Britain, again, is divided into two unequal parts: England, which, including Wales, contains 57,960 square miles; and Scotland, which contains 30,500 . The three, though united into ono kinglom, respectively exinibit peculiarities which characterise them as distinct countrics. It will, therefore, be requisite to describe each separately, commencing with England, the seat of empire and legislation. The chapter which treats of England will aflord the proper place for many details, particuiarly of a political nature, which aro alike applicable to the two sister countries.

References to the Map of the British Islands.

en the divided divided miles; respec erctore, or many o sister

lyyhire, presenting rocky seonery in every picturemue and fintantie shape; while in Deventhire low broal steepm overvinulow wide and henutiful vales,
With one exception, the nowt important rivers of Fingland traverse the breadth of the kingdom: rising among the western hills, and tlowing toward the German Oevan, they do not attain that length of course which the extent of its territory in another direction would have admitted. 'Though delifient, however, in nagnitule, they are numerots, conmodious, nurl valpuble; llowing through broad vales and wide-sprending phanas.
The Thames, though not the longent, dewsrves ta be rankel as the first of British rivers. It originatea from a number of rivuleta on the borders of Wilta and Gloucestershire, which,

References to the Map of Eingland.-South Part.

AhiliEs.	91. Sberyatwith	meth	253. Minehinhanyp-		minater
Wh	67. Slieffowy				
4. Polayly	ent, Prilly Yotwith	c. $\quad 1$	04, N!	(4). Blankf	4. Hupiten
3. Pinamimwddy	9, Dapullare	19. fandaina	0.5. Murkeliny	71. Liduewater	:4, Colytun
1. İandry	ini. Rhay ideruwy	21. ragarun	Un. Jinckney	21. Whatehos	01.
6. Port ${ }^{\text {3 }}$	19. New Rading	176. Nuw Cuate	2 ck , Vamata	78. $\mathrm{Pamt}^{\text {ame }}$	
Nunifhir	iri. Knighton		251. Chepatow	74, Combe Mrarion	81, Collympton
4. Whrewalio	91. Cluin	ardiunn	yor Yewport	25. 1 Ir	10.
II. Onweatry	143. Cuidow	IR Nuw	enf. Nerthyr Tydvil	76. Ilarjatapla	61. Ch
1. Wenlimatin	M1, ('leobury Mor-	万3. St. Dayid' ${ }^{\text {a }}$	W. Alan	27. Applydat	1.0. Crackerawell
Nowymit	Jimut	6. LIAvediord $\mathrm{V}_{\text {anl }}$	git. inn	71. Hidef	6t. Onkhampton
Mtaflom	07. linwillay		cisi Pywbuge	7. Marian	\%
Garnueck	(6, Ki, Kilderminater	ne. Pumiriok ki. Tenby		4. Turringtinn	th. Nheep wath
15. Adichfielth	Mi. Noburbrimee	H. Napberth	Gin. Noith 24f. Aluernant	at. Thiverion	if7. fintutuon
iii. Hation	101. Drumagrove	Clea	200, Poutardylala	k). Wiveliseambe	f4, Jacolatow
17. Adhloy de la	10. Lrotwich	\%3, Innve	9H6, Kiuwelly	8. Wellinsten	th. Camelford
Zunch	j181. Puonley in Ardan	17\%. Cunrmarthen	470.		70. In
	$\begin{aligned} & \text { li4, Warwick } \\ & \text { MS Goventry } \end{aligned}$		gOITTI EERIES.	67. Ammaporion	72. Tavialuen
	101. feaminston	10. Lammavery	homh	*, Lehem	Ninufard
\%1. Mamm Muwliray	107. basentry	17, Trucanile	8. Clippine Sod-	60. Milhern Pant	
\%i. Oathem	10. Mughy	16. Sracun	2. Priatul	10. Enalte Cary	17. Muretan Hamp
	10. Xuthampt	Abergavanny	Vrintion	¢1. Thaftentury	73. Five
Hyamfued	Kelt	115, \%t. Weunard'a	enamiond	16.) Mere	70. (huallaigh
Market Deoping	Thrapolin	14.1. Piyme	6. Narshlie	44. Wriminaler	77. Newtoo Buahel
ruwlar	1.7. Kimbubin	117. Niteheldenn	7. Irathard	19. Himpul	Aahhurton
- Mpalda	11. Ni. Nrota	1w. Nowunt	\%. Thippealuam	14. Wilion	71. Tutneme
tel Hollome	15, llantingdon	Hipe, (iluyceajer	13. Calie	67. Paliabury	H0. Dntimush
3im, Wrabunch	18. Ne, lvea	g(o). Towkenhary	10. Wathen Bramat	(4.) Hawniun	H.) Kimataridese
31. Inlingtion	117. Willinulinm	Eth. (haltunhasi	1. Marlowrough	(14. Romety	N2. Modiury
(\%) tymi Hagia	IIN, Nuwminket	2res. Northlench	15. Hungerfind	100. Hochoridas	1N. Hymptan Ear
P, Nirburuazh	118.1 linle lintun	sur. Eiow in the	13. 1mphurise	16, Vinchentor	14. Prymuth
34. Intulion	320. Brary Et. Ed-	Wuid	14. Ex. Inley	108. Dramdenn	1M5. Salteah
65. Ewatitum	mend ia	901. Moretion in the	13. 8indiv	1ai, Paterafield	N1, Sl, Germune
36. Fuan lheethim	19, Atow Market	Marah	10. Vokinghnm	(1 , Mushurat	47. Jukeard
37. Funlabats	192. 1ewnth	915. Chutbury	17. Npidanheed	315, Petwerth	104, ¢010e
:10. Jylatura	121. 1Piou	9n. Wooxlstork	14. Wimanar	116. laalomere	Mi. fowey
:9. Nirwroh	14. Ero	217. perlinston	19. Veluride	3117. Juraham	HM, Lontwithsol
9i1. Wruxhsm	125 Delienhnm	948. Sivenme	80. Kineato	3im, (uckfich	111. Jodm
41. Yarnusuh	191. Winzfluly	291. Winalow	91. riweli	1ine. Mekneld	M. El Minver
f.t famestall	10.7. Finmplangham	210. Aylendury	ape Conydon	150. Tuntrise	13i. Padato
17. llueclea	124. Buathwodl	g11. Wendover	21. Whald	Wol	IIIC, Rr, Miehual
11. Jabldut	199. Hunwich	21. Ivinghe	8. Woolwich	111. Wadhurat	145. Grampound
f. Monuay	ISil. Renmundham	gj3. Iexirhton liuz-	25. (ravesulid	1, Goudharut	119.7. Treatiny
10. Iarlestion	1:1. Wherrough		2. Hocheatr	1. Cmphronke	197. ${ }^{\text {drups }}$
ti. Nrw liuekine-	1.2. Wourbrafo	21. Cutuo 215. Steven	27. Chathum 2x. Ehenrnems	14. Appleloro	lie. Bredruth
19. Wymondham	3'H. failleinh	Hfor Maidicek	29. Paveraham	1i, , yide	2ati. Ifrivton
f1. Hiumbam	135. Whatfield	217. finfinld Blahep	30. Annterbury		gill Maramion
-a. Whiton	13i. Dildeator	218. lertfard	31. Margnto	18.Winchelues	
31. Finst Mlarling	117. Nreulinun	219. Diahop'a Stert-	32. Nandwieh	16. \|lastinga	203. Peazsace
\%e. Thetfurd	1a, Davenham	ford	33. Desi	12. Hettle	
ai. Hroman	13. Andhury	20. Dunmow	34. Duwer	191. Bribham	a Riotra.
5. Nethwold	10. Tiaverhill	2.2. Thasted	35. 1kthe	1hat E, Boume	${ }^{\text {a }}$ Welland
35. Nownhat	141. Linton	aren. Iraintrpe			
if. Ely	14. Combridge	(2x). Cogreenali	37. Aahfurd	14. ${ }^{\text {a }}$ Wem	
57. Matmery	18. Cotion	(x). Inates	1. smurden	12. Wrighton	d Oil Oump
S. Anmary	14. Rayation	603. Helchrater	40. ${ }^{\text {anhnmm }}$	197. N. Shprehem	${ }_{\text {A O }}$
mi. Petprburough	14. Perford	27. St. Oayih	11. Vrosham	109. Wothing	2 Coln
b1. Norman Crosa	17. Olney	924, Bradwell	44. T'onbridas	121. Arundel	Ies
0.1. Oundle	148, Newpprt Pa**	(2). Ruchfurd	4. Eprenoaka	110. Chichester	Thamen
6i. Pnekiouthm		930, Maluton.	4. Weaterhinm	131. Invent	Charwell
fr. Uppingham	149. Fanny Atrntfiud	s:11. Chelmaliond		19. Furbham	Konnot
th. Jaicrater	151. Tuwcestr r	972. Inentimetune	43. Deigate	18. Noubinaptun	Wey
Wh. Market linabo-	15. Huckionhain	23. Hupndan	47. Working	14. Newlown	mMnle
(i7. Jfilterwort	52. Brackiry	\%t5. Chimping Ongar		3, Newpart	n Medwa
f*. Ijunckley	35. Kinetorn	916. pppint	di. doodulming	:\%iz. D, mington	p flother
89. Numertion	135, Shipaton upun	Eri. Fomeld	51. Alton	13N. Ciristchureh	4 Arun
Eil. Atherstono	Stout	20k, Ef, Nilan'm	52. Oiliham	1:3, Kingwiod	f Avion
7. Jamwinth	1:N. Cambden	9\%. Whtorn	51. Wunigutake	14. Wole	9 \%xe
7., Coleshi!	157. Stratiurd on	e40. Merkhnmpatead	5. Newbury	14. Wimborn Alin-	1 Tramer
Ii. Aptoun Coldfiuld	Avon	241. Aintrahain	5.1. Whitchoreh		u Taw
i4. JValanll	818. Alceater	91:. Maptow	53. Andovers	12. Blandford	\checkmark Pertot
-i. Arminalamin	150, preahats	213, Wualligutiod	5\%. Ladgershall	14:. Pper Regia	W Axa
2f. Wulverimmpton	1年. Wurcenter	94. $0 x$ (014	9.4. Amestury	31. Wapham	\% Avon
2. Jtrutgenorth	163, Pershare	44, Alisation	59. Alunuhengo	14. Gurle Cantlo	$y^{\text {g Suveru }}$
-A Bromellay	162. Ipan	"46. Wantaga	10. Durvizes	146. Nelcombe Ro-	2 'reme
73. Murh Wenlock	383, 7, edhury	git. Whitney	81. Trowlyidze	gil	\%* Wy
\%0. Hiahop's Caxto)hid. Mromyard	O, Jurford	1.2. Wenthary	17. Weymouth	1)* Tanf
AI. Nunimmery	355. \%ompinater	949. ${ }^{\text {dechinde }}$	OK. Hath	14, Dorchenter	${ }^{0}$ Tower
82, Nawlown	36. Weobly	250. Cirpncester	f4. liruton	149. Cerne Abbaa	de Te
${ }^{\text {Nit }}$. IJanfir	167. ILerefurd	21. Malmembury	65, Shepton Mallet	150. nridport	${ }^{*}$ Yaiwith
85. Nachynileth	1f9. Jhruaton	254. Wotton under	66. Glaatunbury	151. Lyme Regla	* Dovoy
85. Tuwy	160. Hey	Edze			

uniting at Cricklade, form a atrenin which is about nine feet brond in aummer, und is called the Thame. Nonr Oxford it receiven the Charwoll and the Inis, amuming on ita junction with the lattor river the cempound name of Tamenin, which has been abbrevinted into Thamea. Aftor a courne alnose mouthwaril to Reading, it winde northwird through the wexkledl vale of Lienjey and Maidenhead, and thence by the cantollated hoights of Winisor. Ita course to Iomion la by Chertsey, IIampton, Twickenhain, and Richmond, among the maguificent wooly and palaces of thin prrudies of England. Near T'evldington its current is slightly acted upon hy the extreme ebb and flow of the tide, which rises higher in this than in any other river of Burope. It dividen the capital Into two unequal parta, having on its northern hank the citios of INied on and Wentminster, and en Ita mouthern the borough of Southwark. Bolow London Bridge it in navignble fir vesele of large burthon ; its ample channed, and the apacious docks connected with it, are there conatantly filled with forests of mastr, and seem to contain, as it wore, the wealth of the world. It windy its way to the ocean through a country presenting few ebjects of interest, except the vast naval establishimentas situated on the south bank ef the rivor. Wcolwich claims particular attention, not only on uceount of the royal dockyard, and the national depot of artillery, but for its inilitary academy, which ranks as the first in the empire. The estuary of the Medway, opening into the river from Kent, afforis commodions sites for the naval atations of Chatham and Sheerness. The entire course of the Thumes is about $2 \mathbb{2} 0$ miles.
The 'Trent, with its tributury, the northern Ouse, traverses the wholo midland territory of England, nnil soveral of its principal manufheturing districts, to which it affords a connmunication with the enstorn, and by canals with the western, ocean. It rises anong the low Staffordshire hills, and at Burion, it becomes navigable for vessels of molerute size. Receiving the Dove and Derwont, which, nfter dashing through the rocky reconses of Derbyahire, have already subsided into peacoful atreams, it passes Nottingham, and at Gainsborough becomes navigable for steam-boats, and other vessels of larger lurthen. After a larther courso of alout thirty miles, it flows into the Ilumber, alrendy rendered n broud entuary by the Oase, which has collected tho principal streams ef Yorkshire. The Ouse, formed by the confluenco of the Aire and tho Swalo from the uplands of the North Riding, is subsequently augmented by the Wharfe. The Aire, with its tributaries the Calder and Dan, ennhle it to communicate with all the great manufucturing towns of the Wert Riding, and tho confuence of tho Derwont from the East Riding renders it equal in maguitudo to the '1'hames. The Oune, with its branches, forms one of the most useful and least beautitul of Buglish rivors. It winds a sluggish courso through manuficturing districts and rich arablo flefls withont any diversity of scenery. The llumber, formed by the junction of the 'Trent and Ouse, resembles an ann of the sen; and its trade contributes mainly to the commercial prosperity of Hull.
Tho Sovern is the enly great stream which runs from north to south far a considerable part of its courso. Rising in Wales, near the foot of Plinlimmon, it flows through the vales of Montgomery; and, after winding round Shrewsbury, directs its course to the southward through sone of the richest and most beautifal plains of England, passing by the cities of Worcester, Tewkesbury, and Gloncester. In commercial importance it also ranks high, since it flows through Colebrook Dale, and other principal seats of tho iron trade; while tho tracts on its lower courso have for ages been distinguished for the manufacture of fine woollens. Its navigation is not free frem obstructions, but much has been deno to olviate these disadvantnges, and to connect the Severn by cnnals with the other great rivers. In approaching Bristol, it receives the Wye, which, rising in Wales, flows through scenery that renders it the most picturosque of English rivers. The Severn then expands inte the estuary of the Bristol Channel, the seat of a commerce once second only to that of the inetropolis, but now surpassel by that of Liverpool.
The other rivers of Eugland are small; the Eden, the beautiful river of Cumberland, forms the Solway; the Mersey of Lancashire, with its tributary the Irwell, is important, for the mass of commolities which it conveys from the great manufacturing districts to Liverpool; the sonthern Ouse, combines with the Witham of Lincolnshire in forming that bronl, shallow, marshy estuary called the Wash, through which is exported a considerable quantity of grain from the agricultural districts; the Tyne and the Tees in the north of England are the channels of extensive trade; the Tyne, in particular, which carries down tho product of the vast conl mines of Newcastle.
The lakes of England occur principally in tho countics of Cumberland and Westmoreland, which are denominated the country of the lakes. These, of which Windermere, the largest, is only twelve miles long and ono broad, have been raised to distinetion by the taste of the age for picturesque beanty, rather than as geographical features of the commtry. Their number, which is considerable, entites them to notice; and a description of them will accempany that of tho districts to which they belong.

Sect. II.-Natural Geography.
This subject will be treated under the heads of Geology, Botany, and Zoology.

Subsect. 1.-Geology of England.

While in Scotland the prevailing formations belong to the primitive and transition classes, in England the deposits that most abound are the secondary, tertiary, and alluvial. Hence it is that Scotland appears lofty and rugged, when contrasted with the hilly, flat, and low land of England. To enable our readers to forn a gencral conception of the geognostical structure of England, we slall consider the mineral formations in the following order:-I. Primitive and Transition. II. Sccondary. III. Tertiary. IV. Alluvial.
I. Primitive and Transition. Theso rocks are principally confined to the more moun tainous parts of England, and appear most abundantly, in Cumberland and some neighbouring counties; in Wales; and in Cornwall and Devon.
(1.) Cumberlanl district. This district is bounded to the west and the south by the Irish Sea and Morecombe Bay; towards the north it deseends into tho plain of the new red sandstone, within the basin of the Eden; and on the east it is bounded by the central carboniferous chain of the north. Within these limits there are two sets of rocks, viz. Plutonian and Neptunian; the more central parts being Plutonian, and the others Neptunian. The order in which they occur, is as follows:-

1. Granite and Syenite. They form the geognostical axis of all this region, and extend from the centre of the Skiddaw range to the neighbourhood of Egremont. There is a fine display of tho granite in the bed of the Calden, where it is intersected by veins of quartz, and contains, besides other minerals, molybdena, tungsten, wolfram, and phosphate of lime.
2. A series of crystalline slaty deposits, forming the centre of the Skiddaw region, extending across Cromac lake, and by the foot of Ennerdale, as far as Denthill, is composed of gneiss, mica slate, hornblende slate, and chiastolite slate. In some parts of Skiddaw and Saddleback the curious mineral named chiastolite occurs: veins of quartz and galena occur in Thornthwaite, Newlands, Loweswater, and other places; a copper-mine was fornerly worked in Newlands. The salt springs of Borrowdale issue from these reeks.
3. Deposit of clay slate.
4. An enormous formation of a green felspathose slate, intimately associated with porphyry, like that of Snowdonia in Wales, and the Needle's Eye in Scotland. The famous graphite or black-leal mine of Borrowdale is situated in the upper end of the valley of that name, where the graphite occurs in irregular veins associated with calc spar, brown spar, and quartz. The graphite is in nests in these veins, and the veins are contained in a Plutonian rock, viz. felspar porphyry, which is in some places amygdaloidal. Some nests of graphite theve afforded 30001 . worth of that mineral.
5. Greywacke, with subordinate bels of limestone enclosing organic remains. A gryphea and turritell: occur near to Kirby-Lonsdale; a pecten, plagiostoma, trigonia, and patella near to Keswick. On the north side of the geognostical axis the Neptunian formations are repeated, with the exception of the greywacke series, which is probably buricd under the old red sandstone and mountain limestone; and on this northern side, notwithstanding jits less extensive developement, there is a group of mountains, almost entirely composed of diallage rock, and other minerals; of which, it is said, no trace occurs in the south. These occupy the place of the green felspar slate and porphyry series of No. 3. of Wales, afterwards to be noticed; and seem to be in the precise place of the serpentine of the Lizard in Cornwall. Further, there is on the west side of Cunberland another formation of granite and syenite, which underlies, traverses, and overlies the clay slate, No. 8., and is considered the great centre of clevation of the region. It never overlies, it is said, the mica slate, chiastolite slate, \&c.; hut is probably connected with veins of syenite, and other detached masses of erystalline rock, which ao not belong to the ordinary rocks of superposition. A range of transition limestone extending from Mellam in Cumberland to the neighbourhood of Wasdate Head in Westmoreland, nearly across the whole region we are now describing, is finally cut off' by a protruding mass of granite, newer than the limestonc.
(2.) Wales, including the Isle of Anglesea. The Neptunian and Plutonian rocks in this extensive district are urranged as follows:-1st, Granite rising among the clay slate strata in the Isle of Anglesea. 2 dly , A group of slaty rocks consisting of mica slate, chlorite slate, and quartz rock. These appear upheaved by the subjacent granite. They occur in the Isle of Anglesea. In this island are the great Mona marble and Paris copper mines, in which the ore is common copper pyrites. The Mona marble, a beantiful compound of marble and serpeutine, occurs ainong these rocks. Bdly, A great group containing a very large proportion of felspathose roeks and porphyrics. Of these the distriet of Snowdonia is probably the lowest portion. Some of the slates of the Snowdon range contain organic remains, principally of shells, some of which appear referable to the genus Producta. 4thly, A vast deposit of clay slate. 5thly, Greywacke, which forms the uppermost or newest member of the great series of deposits. Connected with these scries are great beds of limestone. Fossil organic remains are met with in this series, and much more abundantly than in the deeper-seated slates. Corals of various kinde, crinoil animal shells, and crustacea occur among these rocks, in a fossil state. Of fish, the remains of bones, teeth, and the defersive
fin-bones named ichlhyodorulites, are met with. In the lists of organic remnins of these slates we find extinct genera, and genera that still exist: anil, judging from the nature of the remains, we infer that some of the animals were inhabitants of deep, others of shalluw, seas. The organic remains in greywacke rocks are rare, and form a very small proportion to the extent of the rock.
(3.) Cormoall and Devon. In this district of England the recks of the primitive class are arranged in the following order:-1st, Granite. There are four great projecting masses of granite rising through the bounding slaty strata: they send arms or veins among the Neptunian strata, and have upraised and variously modified them. The granite is traversed by contemporaneous veins of granite, and also encloses centemporaneeus masses and $\mathrm{v}^{n} \mathrm{ins}$ of a compound of quartz and schorl, named schorl-rock. It is also traversed by veins of porphyry, called elvan. 2dly, Resting upon, or adjacent to, the granite there is a vast deposit ef clay slate, named, in the county, killas. It abounds in ores, hence is sometimes named metaliferous slate. Where in the vicinity of granite, there is interposed gneiss or mica slate, or both; and in many parts it contains subordinate beds of greenstone, felspathose slate, \&c. Baly, Apparently above the preceding slates there oceurs, in two places, a formation of serpentine, which, in the Lizard, contains diallage rock, tale slate, hornblende slate, and mica slate, and appears to occur below the greywacke. 4thly, Greywacke. This, which appeurs to form a great mass, is the uppermost and newest member of the stratified series. It contains considerable beds of limestone, including various organic remains.

Mines in Cormoall and Devon. Cormwall and Devonshire present three principal mining districts. The part of Cornwall situated in the vieinity and to the southward of Truro, the neighbourhood of St. Austle, and the neighbourhood of Tavistock. The first of these districts is the most important of the three, from the number and richness of its mines, in which copper, tin, and lead are ebtained. The ores of copper, which are principally copper pyrites and gray copper, form regular veins, having a direction nearly from E. to W. in the rock named killas; and sometimes in the granite which projects amongst the slaty strata. The tin occurs principally in veins, which, like the preceding, traverse the killas and granite. They have also, very often, a direction nearly from E. te \mathbf{W}.; they have a different inclination from that of the copper veins, which intersect and interrupt them, and which are, consequently, newer. The tin also occurs in contemporaneous masses and veins, and disseminated through the granite. Some veins afford, at the same time, copper and tin; but mest of them produce only one of these metals in any quantity. There are also in Cornwall cross veins, that intersect the veins both of copper and tin ; these contain argentiferous galena, native silver, and eres of silver. Near to Tavistock there are veins of copper, tin, and lead. Mines of antimony occur at Huel Boys in Devonshire, and at Saltash in Cornwall. The tin and copper ores of Cornwall are accompanied with arsenical pyrites, which is turned to profit by manufacturing oxide of arsenic from it.
II. Seconilary Rocks. The rocks of this class form the largest portion of the surface of England, and the districts composed of them ure generally flat or hilly; never assuming the mountainous character, unless where the old red sandstone or mountain limestone appears. We shall now describe the different formations in the order in which they occur, beginning with the deeper-seated or oldest (the old red sandstone), and finishing our view with an acceunt of the newest, or chalk.
(1.) Old red sandstone. This sandstone, which is distinguished from those newer in the series hy its greater hardness and red colour, occurs in greatest abundance in Herefordshire and Brecknockshire. Smaller portions cceur in the Cumberland district, the Isle of Man and the Isle of Anglesea.
(2.) Monntain limestone, metalliferous limestone, or carboniferons limestone. This rock is generally grey coloured; sometimes, however, it exhibits various tints when it is worked as an inferior kind of marble. Its fracture is compact, lustre glimmering, and opaque or translucent on the edges. Its structure is sometimes oolitic, as is the case in the vicinity of Bristol. Veins of calcareous spar frequently traverse it, and occasionally contribute to the beauty of the varicties used ns marble. Sometimes remains of the encrinus are se abundant in it, that it is named encrinal limestone. Its name carboniferous is from its sometines oceurring along with coal, as that of metallifcrous from its, in some districts, abounding in ores. It alounds in organic remains of various genera of corals, radiaria, and shells; also some genera of crustacea and fishes. These bear a strong resemblance to the fossils of the transition limestone in the greywacke districts. Derbyshire, Northumberland, and Cumberland afford fine displays of this formation.

Mines in mointain limestone. The mountain limestone furms several mountainous districts in England and Wales; in which there are three districts rich in lead mines. The first of these comprehends the upper parts of the valleys of the Tyne, the Wear, and the Tees, in tho counties of Cumberland, Durhum, and York. Its principal mines are situated near Aldston Moor in Cumberland. The veins of sulphuret of lead or galena, which ferm the principal object of the works, traverse alternately beds of linestone and sandstone. They. are remarkable, from the circumstance that they suddenly become thinner and poorer on

Vol. I.
$2 Q$
passing from tho limestone into the sandstone; an arrangement probably connected with some electro-magnetic action. There is also a copper mine S. W. of Aldston Moor. The ore is conmmon yellow copper pyrites, which is associated with galena in a vein of great extent, and which does not seem to belong to the same formation as the other veins in this county. The iren mines of Ulverston are in this district. The ore is rel hematite, which traverses tho limestone in the form of veins; some of which are said to be 30 yards wide. Near Whitehaven great masses of reniform hematite alternate with red beds of mountnin limestone. The sccond metalliferous distriet is situated in the northern part of Derbyshire, and the contiguous parts of the neighbouring countiea. The districts called Peak and Kingsfield are the richest in ore. The blende, associated with the lead, is worked as an ore, and zinc is obtained from it. A vein of copper pyrites occurs at Ecton in Staffordshire, on the borders of Derbyshire. The Derbyshire veins have been long famous on account of the beautitinl minerals they produce, especially fluor spars, and also from the interruption which the metalliferous veins experience on meeting with trap rocks, ealled toudstone, which occurs alternately with the limestone. The third metalliferous district is situated in Flintshire and Denbighshire, which form the N. E. part of Wales. It is the most productive next to Aldston Moor. Besides lead, it furnishes also calamine or true ore of zinc. The mines are situated partly in the mountain limestone, partly in varions rucks of older formation. To the S. W. of this district there are also lead mines in Shropshire: like the preceding, they occur partly in mountain limestone and partly in older rocks. They yield a great annual return of lead. Some mines of galena and of calamine are mentioned as occurring in the Mendip hills to the south of Bristol; but they appear to be now abmandoned. Many beautiful and interesting minerals are met with in these mines. Of the vein stones, quartz, in Cornwall, is the most abundant; while it is fluor spar and calcareous spar in Derbyshire; in Yorkshire heavy spar or sulphate of barytes; and in Cumberland, heavy spar and fluor spar.
(3.) Coal formation. This, which is the most important of the secondary deposits, follows in the regular auccession the mountain limestone, on which it therefore rests. The lower beds of this deposit sometimes alternate with the upper strata of the momtain limestone. The rocks of which it is composed are shale, sandstone, clay ironstone, induratel elay, and coal, alternating in various ways with each other. The shale, sandstones, ironstones, and clays contain numerous fossil remains of extinct species of plants, rarely of animals, the animal remains occurring principally in the limestone. No country of the same size in the world affords so much coal as England, and nowhere has its natural and economical history been so well examined as in this island. Messrs. Conybeare and Phillips arrange the different coal districts in the following manncr:-

1. Coal slistrict north of the Trent, or grand Penine clain.-1. Northumberland and Durham. 2. North of Yorkshire. 3. South York, Nettingham, and Derby. 4. South of Derby. 5. North Stafford. 6. South Iancashire. 7. North Lancashire. 8. Cumberland and Whitehaven. 9. Foot of Crossfell.
2. Crntral coal district.-1. Aahby de la Zouch. 2. Warwickshire. 3. South Stnflord or Dudley. 4. Indications near the Lickey hill, \&e.
3. Western roal district, divided into, 1. North Western or North Welsh.-1. Isle of Anglesen. 2. Flintshire.
4. Middle western or Shropshire.-1. Plain of Shrewsbury. 2. Colebrook-dale. 3. The Clec hills and South Shropshire. 4. Near the Λ bberley hill.
5. South Western.-1. South Wales. 2. Forest of Dean. 3. South Gloucester and Somerset.

These different districts are accurately described in Conybeare and Phillips's Geology of England and Wales.
Changes of the coal firlls from the British Channel to the Twecd. The great coal fields in England experience a great change of structure in their range from the Bristol Channel to the valley of the Tweed: these changes we shall now enumerate, using the view given by Sedgwick. In the various coal basins on the Bristol Channel, the limestone strata are developed only in the lower, and the coal beds in the upper, part of the serics; and the two members are separated by nearly unproductive deposits of millstone-grit and shale The arrangement in Derbyshire is nearly the same; there, however, the millstone-grit is more varied, and is of very great thickness, and subordinate to the great deposit of shale, and, here and there, very thick masses of a peculiar argillaceous sandstone, disposed in a tabular manner. On the re-appearance of the carboniferous limestone, at the base of the Yorkshire chain, we still find the same general analogies of structure; enormons deposits of limestone form the lowest part, and the conl fields the highest part of the whole series; and, as in the former instances, we also find the millstene-grit occupying an intermediate position. The millstone-grit, however, lecomes n very complex deposit, with several subordinate beds of coal; and is separatel from the great inferior calcarems group (the scur umestone), not merely the the great shale and shale-limestome, as in Dorbyshire, lunt by a still more conplex deposit, in some places not less than 1000 feel thick; in which five groups of limestone etrata alternate with great masses of aandstone and shale, ahound in

Part III. nected with Moor. The vein of great veins in thia matite, which 10 yards wide. o of mountain of Derbyshire, ak and Kingsas an ore, and rushire, on the account of the rruption which e, which occura d in Flintshire luetive next to The mines are formation. Te preceding, they I great annual ccurring in the Many beautiful quartz, in CornDerbyshire; in ar and fluor spar. deposits, follows sts. The lower mtain limestone. lurated clay, and ironstones, and y of animals, the same size in the conomical history range the different
rthumberland and by. 4. South of
8. Cumberland

3. South Stafiord

Velsh.-1. Isle of
rook-dgle. 3. The

th Gloucester and

Fillips's Geology of
he great coal fields he Bristol Channel ing the view given nestone atrata nre he series; and the ne-grit and shale e millstonc-grit is at dejosit of shale, tone, disposed in a at the base of the enormous deposits f the whole series; ig an intermediate mosit, with several ous group (the scat Dorbyshire, luyt by a nick; in which five nd shale, ahound in

Boor I.
impressions of coal plants, and three or four thin beds of good coal extensively worked for domestic use.

In the range of the carboniferous chain from Stainmoor, through the ridge of Crossfell to the confines of Northumberland, we have a repetition of the samo general phenomena. On its eastern flanks, and superior to all its component groups, is the coal field of Durham. Under the coal field, we have, in a regular descending order, the millstone-grit, the alternations of limestone and coal measures nearly identical with those of the Yorkshire chain, and at the base of all is the great sear limestone. The scar limestone begina, however, to be subdivided by thick masses of sandstone snd carbonaceous shale, of which we had hardly a trace in Yorkshire; and gradually passes into a complex deposit, not distinguishable from the next superior division of the series. Along with this gradual change is a great developement of the inferior coal bede alternating with the limestone; some of which on the north-eastern skirts of Cumberland, are three or four feet in thickness, and are now worked for domestic: use.

The alternating beds of sandstone snd shale expand more and more as we advanee towards the north, at the expense of all the calcareous groups, which graduslly thin off and cesse to produce any impress on the features of the country. And thue it is, that the lowest portion of the whole carboniferous system, from Reweastle Forest, along the skirts of the Cheviot Hills, to the valley of the Tweed, has hardly a single feature in common with the inferior part of the Yorkshire chain; but, on the contrary, has almost all the most ordinary external charactera of a coal formation. Corresponding to this change, is also a gradual thickening of carbonaceous matter in some of the lower groups. Many coal works have been opened upon this line; and near the right bank of the Tweed (almost on a parallel with the great scar limestone) is a coal field, with five or six good seams, some of which are pretty extensively worked. The beds of sandstone, shale, and limestone, forming the base in the earboniferous system in the basin of the Tweed, are often deeply tinged with oxide of iron; and have been compared sometimes with the new, sometimes with the old, red sandstone: to the new red sandstone they have no relations; "and I would rather compare them," saya Sedgwick, "especially as the old red sandstone of the north of England seldorin exist but ans a conglomerate, and is seen in that form on the flanks of the Cheviot Hills, with the red beds of mountain limestone and sandstone, which, both in Cumberland and Lancashire, sometimes form the base of the whole carboniferous serieg."
These coal fields are traversed and variously deranged by great faults; interesting descriptions of which, particularly those in the northern fields, have been published by Messrs. Phillips and Sedgwick.
The coal strata, or metals as they are sometimes called, are in some parts of England affected by Plutonian trap rocks, hut in a very inferior degree to what takes place in Scotland. The primeipal trap rock i is greenstone, which appears in the forin of overlying masses, as at Clee Hill and at Dudley; in the form of intersecting tabular masses or dikes (veins), as in Northumberland and Durham. Sometimea the trap mass has been forced between the strata, when it has the character of a bed, or these bed-like masses may be some of the roeks of the coal formation softened and recrystallised in situ by heat from below. The great whin sill of Northumberland, and the toadstone beds of Derbyshire, are examples of these trap beds. The strata near the trap frequently appear changed, the clays hardened, the limestone rendered crystalline and magnesian, the coal charred, and the sandstone hardened, \&c.; and these strata are either moved from their original position, or are unehanged.
Althongh rather foreign to our subject, we may, as an illustration of the importance of the coal formation to England, mention the quantity of iron manufactured, and of coal consumed, in the carboniferous district of Wales. The quantity of iron, zecording to Mr. Forster, annually manufactured in Wales, has been calculated at 270,000 tons. Of this quantity a proportion of about three-fourths is made into hars, and one-fourth sold as pigs and eastings. The quantity of coal required for its manufacture on the average of the whole, including that used by engines, workmen, \&c. will be abont $5 \frac{1}{2}$ tons for each ton of iron; the annual consumption of coal by the ironworks will, therefore, be about $1,500,000$ tons. The quantity used in the smelting of copper ore imported into Wales from Cornwall, in the manufacture of tin-plate, forging of iron for various purposes, and for domestie uses, may be calculated at $\mathbf{3 5 0 , 0 0 0}$, which makes altogether the annual consumption in Wales, $1,850,000$ tons.
(4.) Magnesian limestone formation. The upper part of the coal formation has sometimes a red colour with an arenaceous and conglomerated character. Above or resting upon it we have the magnesian limestone deposit. This deposit extends through Yorkshire and Durham, Ita lower part is said to be scparated from the coal formation by a deposit of sand and sandstone, with occasionsl red marl and gypsum. The magnesian limestone itself consists in its lover part of a bituminous marl slate, abounding in fossil fishes of the genus Palcothrissum; the middle and upper parts being a yellowish small granular or glimmering magnesian limestone. The organic character of this limestone approaches nearly to
that of the mountain limestone already described. It contains Prodacta, which, however do not occur higher in the series; also Spirifere, a tribe found as high as the oolite.
(5.) Variegated or new red sandstone, with the red variegated marl deposit. As the shell limestone is wanting in England, the variegated saudstone and the red and variegated marls come together, and may here, thereforc, be viewed as one formation. They rest immediately upon the magnesian limestone, but of the two sets the marl appears in general to be the uppermost or newest. The sandstone is of a looser texture than that of the old red sandstone deposit, has a red or variegated colour, and the strata are generally horizontzl. The marls are red or variegated in colour. In theee sandstones and marls, beds and great masses or nodules of gypsum occur, as in Derbyshire, Staffordshire, \&c. All the salt mines in England are situated in this deposit. At Northwich there is an extensive deposit of solid rock salt, forming two beds, together not less than 60 feet in thickness. These beds are supposed to form large insulated masses of this mineral, extending in length about a mile and a half, and in breadth about 1300 yards. The salt works at Droitwich in Worcestershire are also in this red marl deposit. Iron-sand and iserine are said to occur in this sandstone on the banks of the Mersey opposite Liverpool; and in other places sulphuret of copper, gray oxide of cebalt, and black oxide of manganese occur in the sandstone or its marls. It forms the surface of vast tracts extending with little interruption from the northern bank of the Tees in Durham to the southern coast of Devonshire. We find a tract in the great plain in the centre of England of about 80 miles in length and sixty in breadth, principally covered with this deposit; several islands of the older rocks, however, rising, in varions places, through it. These are, 1at, the syenite, greenstcre, and slate diatrict of Charnwood forest in Leicestershire; 2dly, the coal district surrounding Aohby de la Zouch in the same county; connected with which are several patehes of the carboniferous magnesian limestone, and a patch of millatone-grit at Stanton-bridge on the Trent; 3dly, the coal-field of Warwickshire; 4thly, the coal-field in the south of Staffordshire, with the transition limestone on which it rests; 5thly, the lower and nerthern range of the Lickey hill, near Bronsgrove in Wercestershire, which exhibits strata, probably of transition quartz rock. Some rrap rocks occur in this formation at Upton Pyne, a village five miles north of Exeter, and at other points near that town.
(6.) Lias and oolite formation. This great formation occupies a zone having nearly 30 miles in average breadth, extending across the island from Yorkshire on the north-east, to Devonshire on the south-west. It is eminently remarkable on account of the number and variety of fussil organic remains which it contains, anl its wide distribution not only in England, but also in many other parts of the world. In this formation, at Stonesfield, the first or earliest remains of mammiferous animals were found. Crocodiles and many vast and strangely organised reptiles occur in this deposit, with a vast variety of shells, many radiaria, and also corals. Fisues are also met with in a fossil state, but by no means so frequently as reptiles. Fossil plants of various tribes also occur, and thus add to the organic variety of this remarkable formation: they belong to the Alga, Equisetacea, Filices, Cycadea, Conifera, and Lilia. Beds of coal, generally of an indifferent quality, occur in different parts of the country in this deposit.
(7.) Wealden clay and Purbeck stone. This formation, which lies immediately upon the oolite, consists of limestones, sands, and clays abounding in fossil organic remains, principally of terrestrial and fresh-water plants and animals, marine species being rare. In the lower part of this formation, in the neighbourhood of Weymouth, there is a bed of black carth, called the dirt bed, containing, in a silicified state, long prostrate trunks of coniferous trees, and stems of Cycadeoidece. These trunks lie partly sunk into the deep black earth, like fallen trees on the surface of a peat bog, and partly covered by the incumbent Purbeck limestone. Many trunks of trees also remain erect, with their roots attached to the black soil in which they grew, and their upper part in the limestone; and show that the aurace of the subjacent Portland stone was for some tinue dry land, and covered with a forest; and prebably in a climate such as admits the growth of the modern Zamia and Cycas, remains of these genera being found here. This forest has been surbmerged; first, beneath the fresh waters of a lake or estuary, in which were deposited the Purbeck beds, and sauds and clays of the Wealden formation (amounting together to nearly 1000 feet), and subsequently beneath the salt water of an ocean of sufficient depth to accumulate all the great inarine formations of green sand and chalk that rest upon it.
(8.) Chalk formation with green sand. This great deposit consists principally of chalk, with less exteusive subjacent beds of green sand and tuffaceous chalk. It stretches, with little interruption, from Flamborough IIead on the const of Yorkshire, to near Sidmouth on the coast of Devonshire; forming a range of hills often of some hundred feet high, and of which the most precipitous face is generally on the north-west side. From this long range several ranges shoot toward the east and south-east. Chalk does not often bear the character of a level or flat country; but, on the contrary, is subject to perpetual undulation of surface, the hills being remarkable for their smooth rounded outline, and the deep hollows and indentations on their sides.

Book I.

ENGLAND.
The upper part of this formation, through a grest part of England, is charaeterised by the presenee of common gun-flint, arranged in thin beds or in variously-shaped masses, disposed more or less in parallel lines. In the lower part of the formation the flints become less and less abundant, and at length entirely disappear. .This arrangement, however, is not always to be observed, for in some plsces the lower chalk abounds in flints. In the chalk formation, the upper and middle parts are of chalk, while the lower and under are of sands, sandstones, and clays. The upper part may be considered an original deposit, the matter derived from the interior of the earth; the lower of a mechanical and alluvial nature. Chalk alounds in fossil remains of animals, and also contains fossilised plants. Corals in great variety, radiated animals, particnlarly echinites, are in vast numbers; shells of all the grand divisions and in great variety add to the zoological interest of the formation, whieh is further heightened by the fossil crabs, fishes, and reptiles, occasionally met with in it. The plants are Conferva, Fuci, Zostera, Cycadea, with dicotyledonous wood perforated by some boring animal. The formation, as it occurs in England, appears to have been variously elevated and depressed at different times by some subterranean actions; but, as far as we know, it does not anywhere occur in contact with trap or other Plutonian rocks.
iII. Tertiary rocks. Hitherto, in England, these deposits have been found only in what are called the London basin and the Isle of Wight basin; two spaces conjectured iormerly to have had the basin shape, but now nore or less filled with tertiary rocks; an opinion, however, which the late observations of Professor Buckland have shown to be less plausible than has been generally believed. The boundsry of the first of these supposed basins may be stated, generally, as a line running from the inner edge of the chalk, south of Flamborough Head, in Yorkshire, nearly south, till it crosses the Wash, then south-west to the upper part of the valley of the river Kennet, near Hungerford, in Wiltshire ; and thence trending sonth-east to the south of the Thames, and the north-west angle of the Isle of Thanet: in all these directions the boundary line is formed oy the chalk hills; on the east side, the boundary is the coast of the German Ocean. The boundaries of the lsle of Wight basin may be stated as follows:-on the north, a few miles south of Winchester; on the south, a little north of Carisbrook in the Isle of Wight; on the cast, Brighton; and on the west, Dorchester. It is everywhere circumscribed by chalk hills, excepting where broken in by the channel between the Isle of Wight and the main land. The different members of the tertiary series met with in England, are named Plastic clay, London elay, Bugshol sands, the Freshwater formalions of the Isle of Wight, and the Crag.-Plastic clay. This deposit consists of a plastic elay with gravel beds, alternating with beds of sand (sometimes in a state of sandstone) and clay. Its organic remains are principally marine shells, with layers of lignite or brown coal.-London clay. This is a bluish or blackish elay, sometimes so much impregnated with earbonate of lime as to forin a kind of compact inarl. Layers or nodules of septaria (a calcareous coneretion) frequently occur in it. It is the great clayey deposit on which Iondon is built. It has been bored to a depth of 700 feet, without reaching its botton. The highest point it attains is the summit of High Beach in Essex, being 759 fect above the sea. It abounds in fessil organic remains from the animal as well as from the vegetable kingdom. Crocoliles, turtles, fishes, and crabs have been observed; but wese are few in number compared with the host of fossil shells. These shells are often rery beautifully preserved, frequently retaining the appearance of recent species. There are very few genera of recent shells which have not some representative in this formation, but the specific character is usually different; on the other hund, but few of the extinet genera so frequent in the older formations, occur in this. The Isle of Sheppey, formed of London elay, affords a vast variety of fossil fruits and seeds, very few of which agree with any known seed-vessels; many of them are conjectured to belong to tropical plants, some to the cocoa-nut and spice tribes. Fragments of wood pierced by a shell animal, resembling the Teredo navalis, are met with; a fact which shows that the wood may have floated about in the sea.-Bagshot sands. These rost upon the London clay; they consist of sand, with greenish-coloured clay, variously coloured marls, containing grains of green ssnd, and fossil trochi and pectinites.-Freshwater formations of the Isle of Wight and Ilampshirc. The Freshwater strata of the Isle of Wight are divided into two deposits by a rock characterised oy the presence of marine remains, and named the upper marine formation, from being a supposed equivalent to the sands which intervene between the two freshwater deposits of Paris. The lower freshwater deposit of Binstead, near Ryde, consists of a limestone formed of fragments of freshwater shells, white shell marl, siliceous limestone, and sand. One tooth of an Anaplotherium and two teeth of a Palcothcrium have been foum in the lower marly beds of the quarries at Binstend. In the same quarries several rolled fragments of pachydermatous animals, and the jaw of an animal allied to the musk-deer tribe. In Colwell Bay the upper part of this deposit contains a mixture of freshwater and marine shells.-The upper marine formation. This deposit of calcareous beds abounds with freshwater shells in the lower part, but in the upper part we find marine sholls; hence it is conjectured to have heen formed in an esturry.- Vppor freshwater formation. This consists prineipally of yellowish white marls. The organic remains are either freshwater or land. The geoYol. I.
logical history of the tertiary deposits in England has not yet been placed in direct connexion with that of similar deposits on the continent of Europe. No trap or granite recks have hitherto been met with in England in any way comected with the tertiary strata.
IV. Alluvial rocks. Nearly tho whole of England is more or less covered with alluvium, or débris of previously existing rocks: thus it occurs on mountain ridges, and on the sides and bottoms of valleys; it is spread over plains, fills up, wholly or partially, fissures in rocks, and caves, and caverns, and forms beaches and other accumulations of greater or lesser extent on the sea coast. It varies in age, from the oldest called diluvium, which stands in immediate connexion with the crag or upper tertiary deposit, to the newest, those forming at present through the agency of the atmosphere, springs, lakes, rivers, and the waves and currents of the occan. It encloses numerous remains of plants and animals, either more or less mineralized, or simply bleached: those of the oldest deposits appear to be of animals, and sometimes of plants, which are cpparently extinct; while the newer enclose remains only of living animal and vegetable species. Although our limits do not allow us to enter into tintails on this very important and curious department of geology, we may remark, that the characters and modes of distribution of these alluvia are, in many instances, intimately connected with risings and depressions of the land; and consequently with apparent sinking and rising of the waters of the ocean, and the violent agitations sometimes induced in the great mass of the occan, and also in lakes, by changes in the level of the solid parts of the globe.

Subsect. 2.-Botany.

The botany of the different parts of the British empire is so similar, that we propose to treat under one head that of England, Scotland, Ireland, and their adjacent islands.
Extending through cleven degrees of latitude, Great Britain includes a considcrable variety of climate, but everywhere, more or less tempered by the surreunding ocean; so that, in no part of the island, except on the mountains, or ligh table-lands, can the temperature be compared to similar latitudes, upon the European, nuch less upon the Americen continent. Yet, from its proximity to the former, the vegetation is, with few exceptions, similar to that of the adjacent districts of Europe. Although in consequence of the unfavourable summers, the frequent obscurity of the sun, the damp and foggy atmosphere, it is not possible, without artificial heat and protection, to bring many of the fruits of more favoured climates to perfection; yet the mildness of the winter renders it easy to introduce and to naturalise plants of much more southern latitudes: so that the gardens, parks, shrubberics, and even forests, are adorned with the most varied vegetntion, producing the most beautiful flowers, or the most valued timbers.
On the extreme southern coast of England and Ircland, the native vegetables of the warmer temperate zone are successfully grown in the open air, and come to considerable perfection. In the south of Devonshire, the orange and lemon trees are loaded with fruit of the finest kind, trained, indced, to a wall, but without protection, or only provided with it during a very short portion of the winter months; the Lemon-scented Vervain (Lippia citriodora, formerly called Verbena triphylla, becomes quite a tree, without any artificial protection; the American Agave, the creeping Cereus, the Prickly Pcar, myrtles from the south of Europe; the Tea, Camellias and other Chinese and Japancse plants, thrive well in the open air, as well as the Magnolias, and many other trces, from the southern states of North America, whose native latitudes lie many degrees nearer to the tropics.
The only two floras of Great Britain; which are so complete as to demand particular attention, are Sir J. E. Smith's English Flora, and Gray's Arrangement of British Plants; the former classed according to the Linmean system, extending, however, only to the end of the class Polygamia, and the first order of the class Cryptogania Filices. Gray's Flora includes the whole of the British vegetables, arranged according to the natural method, and is the only one that approaches, however deficient it may still be, to any thing like a catalogue of nur present state of knowledge of the Cryptogamia. Among the Phænogameus plants, however, Mr. Gray has ineluded a great number that are ouly known in a state of cultivation, as has been done by De Candolle, in his Flore Francaise, and many other continental botanists. We have, therefore, deemed it convenient thus to give a list of the plants, according to each of these authors; and the increased number in the columns of species, according to Mr. Gray, will be thus easily accounted for.
booz 1 .
ENGLAND.
A Lier of the Number of Apeciee of Britiah Planle, urranged according to the Ciasaes and principal Femilies to which thay beiong; exhibiling the relsilive proportion which thase latter bear to the whole of the reapeelive Classes.*

							$\begin{array}{\|c\|c\|} \hline \text { A Liut of the Species of } \\ \text { Bcollish Planls } \dagger \end{array}$			
			Speci							
Fung					- 800	1 to 2	1 to 2			
Algm				- 400	1 to		- 465			
Lichene				- 400	4	4	-26		4	
Heparice,			$16{ }^{\frac{1}{6}}$	- 97	163	187	- 73		14.	
Musci, by Hooker	- 20		58	- 290	50°	$5{ }^{4}$	- 264		4.	
Flices		-	26	- $58-$	$28 \frac{1}{4}$	27			$22 \frac{1}{2}$	
Acor									$\frac{3}{3}$	
Grami	121 -	-	124	170 - -	${ }^{95}$	11				
Cyperacee. . Juncer and R	${ }_{32}^{\mathbf{9 2}}$	-	17	${ }_{33}^{91}-$	18	171				
Juncer and Glumecew. .			${ }_{6}^{47}$	${ }^{33} / 294=$	49 ${ }^{1}$	48				
Orchdem		7. -	40	- 330	49 ${ }^{1}$	45	- 19			
Monocotyledunes en		-		- 89 -			- 53			
Monосо	-	355	$4{ }^{1}$	- -416	$3{ }^{\frac{18}{18}}$	-	- -		41	
Coniferm		-	376	- 7 -	234	305				
Ament			194	- 72 -	223	21				
Euphort		6	94	- 16 -	$102{ }^{1}$	08				
Stropluu1. and Orobanchew			$28 \frac{1}{2}$	- 55	29	291	- 37		2091	
Latialm an	-	-	26㐌,	- ${ }^{69}$	283	251	- 39		$28!$	
Doragincm.		-	1 to $65 \frac{1}{3}$	- 23	1 to $71{ }_{1}$	1 to 683				
Ercineee and			67	- 22 -	74]	$70^{\text {a }}$	- 18			
Canipanul		-	1073	- 15	109	108	- 9			
Composil	- 18	-	11	- 144 -	$11 \frac{1}{3}$	$11 \frac{1}{1}$	- 105		$10 \frac{1}{3}$	
Rubiacem			71	- 19 -	$8{ }_{8}^{80}$	785	- 10			
Umbellifera	-	1	23	- 69	$23{ }^{3}$	$23{ }^{\frac{1}{7}}$	- 44		243,	
Rosace		0	${ }_{22}{ }_{2}$	-81$\underline{-}$	203 23	${ }_{23}^{19}$	- 52		204	
Legumin		6	2231	-1 $-\quad 68$	${ }^{237}{ }^{3}{ }^{\frac{2}{2}}$	${ }_{2615}^{23}$	- 43		25	
Caryophyllem	-	9	$25 \frac{1}{7}$	- 60	$27{ }^{17}$	$26{ }^{4}$	- 45		24	
Crucifere.		1 -	$21 \frac{1}{3}$	- 73	225°	217°	- 56		19_{3}^{1}	
Ranunealacea			$41 \frac{1}{4}$	- 42	39.	$40{ }^{3}$	- 25			
Dicolyledones Dicotvieno			${ }_{1}{ }^{1}$		-					

It must be remarked, that in Cyperacea, Junceca, Salix, Saxifraga, Rosa, Rubus, and some others, the spccies are not formed on the same rules as in Smith's English Flora; and therefore, before drawing a parallel between these orders in Scotland, and in the whole of Britain, a considcrable number of species ought to be added. To make this comparison, then, about twenty specics may be added to the Monocotyledones, and about fifly (say fortyseven), to the Dicolyledonous plants, making these two, 280 and 870 ; whence the Monocotyledones of Scotland are to the whole of those in the British dominions as one to oro and a quarter, or as Sour to five; and the Dicotyledones as eight to eleven.
Ireland posscsses a flora which partakes of the nature of those of England and Scotland. A list of the phenogamous plants has been recently published by Mr. J. T. Mackay, of the Dublin College Botanic Garden. It exhibits a much poorer vegetation than its sister island, including only 934 species; of which there are, 41 Filices; 211 Monocotyledoncs, and 682 Dicotyledones. So that the proportion of Filices to Phenogamous plants is as 1 to 213; Monocotyledones to Phenogamous plants, 1 to 4$\}$; Dicotyledones to Phenogamous plants, 1 to $1 \frac{1}{3}$. The proportion of Irish Monocotyledones to British Monocotyledones (according to the species of Smith) is as 1 to $\mathbf{1}_{5}^{3}$, or as 3 to 5: of Irish Dicotyledones, 1 to $\mathbf{1}_{5}^{1}$, or as 3 to 5 .

[^12]Few, indeed, of the species ef plants now enmmerated us matives of Eugland, Scotlan!, and Ireland, and the adjacent islets, can be considered as exelusively belonging to these comtrics. For though there are many which are not reterred to as species in the works ot other authors, yet they are, for the most purt, among such thmilies as aro not well under. stood, and about which there will always exist a diflerence of opiaion; as among the Grasses, Willows, Brambles, \&c.

Many plants reach their northern limits in the south of England and Ireland. We must particularly mention the Strawberry Tree (Arbutus Unedo, fig. 107.), which forms so charming a feature in that most beautifil of all scenery, the Lake of Killarney. Some have, indeed, supposed that it was introluced into Ireland by the monks of Mucruss Abbey, at

some very remote period. Its appearance is, however, altogether that of an aboriginal native, coming to a great size,* perfecting its bright scarlet berries, which are disseminated over the rocks and islands in every directien. The Erica vagans, or Cornish Heath (fig. 108.a), is found nowhere in Britain except Cornwall; and the same may be said of the newly-discovered E.ciliaris (b), and the following, of great beauty or rarity: Lobelia Dortmanna, Phyteuma orbicularis and P. spicata, Sibthorpia europaa and Isuardia palustris, are quite southern plants in the British deminions.

The Wuter-Soldier (Ntratiotes aloides); the Water Vielet (Hottonia palustris); the small Maidenhair Grass (Briza minor); the Sweet Violet (Viola odorata); several Mulleins; the Primrose-pecrless (Narcissus poeticus and biflorus); the common Snake's Head (Fritillaria meleagris); the Agrostis setacea, the Star of Bethlehem (Ornithogalum pyrenaic lm); the two species of Squill (Seilla autumnalis and bifolia); the Mountain Spulerwort :Anthericum serotinum); the Solomen's Seal (Convallaria polygonatum); and Sweet Sedge (Acorus Calamus) ; the Yellow-wort (Chlora perfoliata); the Mezereum (Daphne Mezcrcum); the Flowering Rush (Butomus umbellatus); the Yellow Marsh Saxifrage (Saxifraga Hirculus); though on the Centinent a very arctic plant, the Clove Pink (Dianthus caryoplyyllus); and D. prolifer; several Catchflys (Nilene); Luphorbias, Cistuses, Anemones, the Traveller's Joy (Clematis Vitalba); the Ground Pine (Ajuga Chamapitys); the Wood-Sage (Teucrium Scorodonia); the crested and field Cow-wheat (Melampyruin cristatum and arvense); some Orobanches, the Vella annua, Draba aizoides, and Iberis nmaza, some Fumitories (Fumaria solida, lutea, and parvifora); the yellow and crımson Vetchlings (Lathyrus Aphaca and Nissolin); the Vicia hybrida, levigata, and bithynica, Hippocrepis comosa; Orchis Merio, \dagger pyramidalis, ustulata; fusca, militaris, tephrosanthos, hircina ; Aceras anthropophora, Herminium monorchis; all the species of Ophrys, Epipactis rubra, Malaxis Lweselii; the beautiful and rare Lady's Slipper (Cypripedium Calceolus); the Birthwert (Aristolochia Clematitis); the Roman Nettle (Urtica pilulifera); the Xanthium strumariam and Amaranthus Blitum; the Spanish Chestnut Tree (Pagus castanea); and Misseltoe (Viscum album); the Sea Buckthorn (Hippophae rhamnoiles); and White Poplar (Populus canescens): these are some among the most striking of the British plants, which do not reach the middle of the kingdom, and fail below the south of Scotland.

The nost interesting of the Scottish plants are, principally, such whese types are found on the contizent of Europe, in high northern latitudes, or in the extreme arctic regions of both Asia and America; such as Veronica fruticulosa, saxatilis, and alpina, several alpine grasses, and other glumaceons plants; such as Phlcum alpinum and Alopecurus alpinus. Eriophorum alpinum; Juncus castaneus, areticus, and biglumis; aud Luzula arctica, Primula scotica (fig. 109. a), the Myosotis alpestris (d), Azalea procumbens, Gentiana nivalis (c) Sibbaldia procumbens, Convallaria verticillata, Epilouiom alpinum, Arbutus alpina, Pyrola uniflora (b), Saxifraga nivalis and rivularis, Stellaria seapigera (the latter is exclusively

[^13]Booz 1.
ENGLAND.
British), Arenaria rubella and fistigiata, the Cherleria sedoides, Lychnis Visearia and alpioa, Spergula saginoides, Potontilla opaca, Nuphar Kalmiana, Ranunculus alpestris, Ajuga pyramidalis, Carlamine bellidiflora, Orobus niger, Astragalus uralensis and campestris, Erigeron

a, Trifid-Loaved Ciaquafoil.
a, Trifid-Loavod Cia
alpinum, Corallorhiza innata, Achillea tomentosa, Goodyera repens; the most alpine Carices and Salices, and the Dwarf Birch (Betula nana).

There are two plants which deserve particular notice, as natives of Great Britain, and found nowhere else in Europe; but these are again met with in North America; the one is Potentilla tridentata (fig. 110. a) abundant in aretic America and upon the Rocky and White Mountains, the other the Eriocaulon septangulare (fig. 110. b). This latter genus is mestly tropical, or a native of the warm temperate zones in America, the East Indies, and Australia. The only exceptions to this rule are the Eriocaulon pellucidum of Michaux, and the plant in question; the former being found in North America as high as Canada; and, upon exanination, the two species prove identical. In these instances, the Eriocaulon and the Potentilla seem to have overcome many obstacles in their migration, and to have reached their eastern boundary. The Eriocaulon is confined to a few lakes in the IIebrides, where we have been surprised in the month of September at the high temperature of the water, which probably never freezes; and in some spots in the south and west of Ireland: the Potentilla is only found on one hill in Angusshire.

It is worthy of remark, that the genus Pedicularis, which is so numerous in species, in the eastern and southern parts of Europe, almost wholly disappears in Britain; for, notwithstanding the vast numbers of it which are found in Siberin, the Sonth of IRussia, Switzerland, extending even to the Pyrenees, and Germany, Great Britain possesses but two, which are equally abundant upon the Continent; and although almost wholly an alpine genus, the British mountains possess not one really alpine species. It would appear that the climate is peculiarly unsuited to their nurture: for in North America, in the same and especially in still higher northern latitudes, they again become abundant.

Ireland exhibits a few striking peculiarities in some of its vegetable productions. Besides the Strawberry tree (Arbutus unedo) already mentioned, it can boast of Pinguicula grandiflora (fig. 111. a), a beautiful flower, native of France and the Pyrences; Menziesia poli-

Vol. I.

[^14]
b, Irish Menziesin.
c, Marah Ledum.
$28 *$

DESCRIPTIVE GEOGRAPHY.

Part III.
folla (b), a species belonging to the latter country and to Spain, and found in a wild gtate in no other parts of the worlf; it is, too, a most lovely one: also St. Putrick's Csbbage (Saxifraga umbrosa) anil the london Prile (S. (deum, c) and their varieties, which are scarcoly known to 1 xist but in Switzerlund und the Pyrences; Arenaria ciliata, a native of the mountains on the continent of Europe; and to these rarities lave lately been alded by Professor Giesecké, the Yellow l'oppy (Papaver nudicaule, d), and the Ledum palustre (e,) both of them peculiarly aretic productions, and plentiful on the northern extremity of America and Greenland; and with these we must he permitted to number, though Cryptognmic

a, True Maiden-IIair.
b. Shurt-utyted Dristle-Fern. o thit plants, the Trichomanes brevisetum (fig. 112. 6), which scarcely grows anywhere else in the world but in Madeira and in Yorkshire (if it be not now extinct in the latter habitat), the Adiantum Capillus Veneris (n), whose only locality in the Britisll dominions is the west of Ireland, and one spot in Wales, but which is frequent in the south of Earope, and even in the tropical parts of Americn; and two mosses, Hookeria latevirens, and Dultonia splanchnoides, entirely peculiar to Ireland.
That country also possesses three remarkable vegetable productions, now pretty generally distributed in gardens and shrubberies throughout the kingdom, and universally known by the names of the Irish Broom, Irish Furze, and Irish Yew. The former we beliove to be the Spartium patens of Linneus, a Spanish species, with very hairy pods; and it is, probably, not wild in that country. The Irish Furze has an appearunco very different from that of the European or Dwarf Furzes

Iriah Yew it it were kept close clipped with shears. It blossoms rarely,
but we have seen both flowers and secd-vessels, which do not differ in any materinl point from those of Ulex nanus. In some gardens it is called U. curopeus var. strictus; but Mr. Mackay considers it to be quite a distinct species, and ho has called it, in his "Catalogue of the Indigenous Plants of Ireland," Ulex strictus. Still, the only stations for this plant aro in the Marquess of Londonderry's park and shrubberies, at Mount Stewart, county of Down, where there are some very largo bushes; but whence it came, no one can tell. This would, however, be a very valuable plant to the agriculturist; for, it has been plantel (it increases readily by cuttings) in dry hilly pustures in the north of Scotland, and in the early spring throws up an abondant crop of succulent shoots, which are greedily eaten by sheep, when there is little or no grass to support them.
The third Irish botanical curiosity is the Irish Yew (fig. 113), Florence-Court Yew, as it is called in that country, from its being first discovered at Florence Court, the seat of Lord Enniskillen. Mr. Mackay does not consider it to be wild; but Mr. Hervey, in the Agricultural Magazine for October, 1828, says, that it is an undoubted native, and plentiful in the neighbourhood of Antrim, where there are trees at least a century old. It is distinguished by its upright branches, which give the whole plant somewhat the habit of a Cypress; by the leaves growing, not in a distichous manner, but from all sides of the stem: the drupe or berry, too, is of a different form from that of the common Yew.
The trees that are aboriginal natives of Britain are the Oak (two species); the Elm (five species) ; the Beech, the Ash, the Maple, Sycamore, Hornbean, Limo (three species); the Spanish Chestmut (?); the Alder, Birch, Poplar (four species) ; and the Scotch Fir ; to which may be addeit the Mountain Ash, which ir some parts of Scotland attains to a great size. Of these, then, the Oak, the Beech, Birch, and Scoteh Fir, live in socicty, forming vast. forests, almost to the exclusion of other trees. The finust forests of Oak and Beech are to be seen in the southern parts of England; the latter flourishing, in an extraordinary degree, in the chalk and deep clay soils of Sussex and some of the neighbouring counties. In Scothand, the oak, though there may be some exceptions, gercrally forms copse voods, and is mostly confiued to the valleys. Its northern limit is scarcely within the British domi-

Rook 1.
ENGLAND.
nions. It extends to lat $B 0^{\circ}$, on the continent in Russia, and 04° in Norway; and if in Scotland oaks aro not found in the extreme nerth, it is rather owing to want of shelter and of suitable soil, than to any other circunstance.
'The Pine, (Pinus Sylvestris, fig. 114.) constitutes noble forests among the mountanous districts of North Britnin, fllling the valleys, and ascending, probably, to the lieight of 2500 feet upon the hills, among the nerthern Grumpians, and exhibiting individual specimens of great size and beanty.
Of the fruit trees which are successfinlly cultivated in the epen air, the number is limited. In the south, exclusively, or, perhaps, as far as the centre of the kingdom, under favourable clicumstances, the Vine, the Fig, the Quince, the Mulberry, Cheetnut, Walnut, and Medlar may be advantageously planted. The Apple, Peal, the Plum of various kinds, the Peach, Nectarise, End Aprisot; all, according to soil, exposure, and other locni circumstances, ripen their fruit in the open air, if afforded the protectien of a wall, as high north as Inverness, and some of the most hardy ones much higher; but the want of sun must ever be a hindrance to the thorough perfecting of good fruit in the nerth of Scetland.

Ot the various kinds of Corn, which are used as food for man or cattle, Wheat, Barley. Bere, Bigg, Oats, and Rye are the universal crops; and these all succeed in situations not too much elevated above the level of the sea, as far to the northward as Inverness, beyond which the wheat becomes a very uncertain crop; and even considerably south of Inverness, to the north of the Forth and Clyde, in lat. 56°, the cultivation of wheat is almost wholly confined to the eastern eide of the country, the west being the district for pasture.

In regard to ihe height at which certain planta will grow above the level of the sea, the southern and nudland parts of Great Britain do not contain mountains upon a sufficiently lofty scale to render their investigation particularly interesting. The northern parts of Eugland possess mountnins of upwards of 3000 feet ; and as Winch's " Essay on the Geographical distribution of Plants througho' the Counties of Northumberland, Cumberland, and Durham," of which the lat. 55° may be considered the medium, embraces a very great protion of this very country, which, from its situation, may, in point of climate, be considered as intermediate between the more northern and southern floras of Great Britain, we select from his work what concerns the more valuable and more striking vegetable productions.
The Oak, in lat. 55°, attains a large size in the valleys; it ascends the hills, but gradually becomes of stunted growth in Weardale and Teesdule, to the elevation of 1600 and 1700 feet.
The Common Elm (Ulmuss Campestris) is not indigenous north of the Tees; its place being taken by the Wych Elm (U. montana), which skirts the mountains at a height of 2000 feel.
The Beech and Aspen flourish beautifully in the low sheltered spots, but do not climb the hills to equal heights with the oak. The White and Black Poplars (Populus alba and nigra) are douttful natives of the north of England, as of Scotland; though the White l'oplar is remarkable for withstanding the north easterly winds, which are so destructive to vegetation in the counties of Northumberland and Durham. The Lime, (Tilia Europaa), the Chestnut (Castanea vesca), and the Hornbeam (Carpinus Betulus), stand in the same predicament.
Holly trees are among the chief ornaments of the woods in Durham, Northumberland, und Cumberland, as is the Yew (Taxus Baccata). The Birch (Betula alba) is not found on the mountains at a greater elevation than the Sycamore (Acer Pseudo-platanus), which in the subalpine regions seems to be as vigorous, and to attain as great a size as it does near the sea-coast. The Mountain Ash (Pyrus aucuparia) is found on the hills; the White Beam (P'yrus Aria) may be traced from the High-Force of the river Tees to the coast ; the Alder (Alnus glutinosa) and the Guelder Rose (Viburnum Opulus) accompany the streams; and the Hazel, Black Cherry (Prunus Cerasus), Bird Cherry (Prunus Padus), the Spindle-tree (Euonymus europaus), the Raspberry (Rubus idaus), and the common Elder, (Sambucus nigra), are found in all the woods from the sea-shore to those situated on an elevation of 1600 feet: but the common Maple (Acer campestris) occurs only in the hedges, in some parts of the flat country.
The Ash tree (Fraxinus excclsior), the White Them (Mespilus Oxyacantha), the Crab tree, or Wild Apple (Pyrus Mralus), and Black Thorn (Prunus spinosa), abound throughout
the district in question. The Bullaco (Prunua innitilia) in rare: and the Plum-tree (Irunua domesticu), l'ear (1'yrus communis), led currant (Ribrs rubrum), tho lherlwery (Ilerlerris vulguris), nad Gonseberry (Ribes (irosanluria), though of frument occurrenee, appenr not to be original matives of the soil. But the Rock Currant (Ribea petramm), the Achi Momntain Currant (Ribea spicatum), Alpine Currant (Ribrs alyinam), Black Currant (Riben nigrum), and Privet (Liguatrum vulgare), are indigenons, nal not untrequent.

T'ho Furze (Vlex europaus,) attains to un elevation of $\mathbf{Z O N O}$ leet in sequestered mpoth, accompanied by the Bramblet. Juniper may be traced from the const to the height of 15001 feet. The Cloudberry (Rulhus Chamamorus), the Bearberry (Arbutua V'ras Vrsi), and Nund Willow (Salix arenaria), attain the same elevation; while the Dwarf Willow (Nalix herbacea), but without its usunl attendant the Reticulated Willow (S. reticulata), renches to the tops of the loftiest mountains, upwards of 3000 feet above the level of the sea.

Coarso Grasses, Nedges, and Rumhes too often cover the wet moors with a scanty and almost useless vegetation. To tho agriculturist the different Henths are scarcely more acceptable; but they are unquestionably among the most beautiful of the native plants, and their abundnnce and tho vast extent of ground which they clothe, give a peculinr character to very many parts of Great Britain, especiully in the North. In the districte in question, the common Heather (Calluna vulyaris), tho Fir-leaved Heath (Ericu Cinerra), nad the Cross-lcaved Heath (Ericis Tetrulix), the latter, however, lens thagrant, and preforring moist situations, flourish in various situatione, from $10(1)$ to $30(M)$ feet above the level of the ren, but nover in caleareous soil, which circumstance occasions the striking difference between the heathe of Durham and Northumberland, and the Yorkshire Wolds as they are called, where the substratum is chalk.

The most considerable elevation to which the cultivition of wheat extends in the north of England does not exceed 1000 feet above the level of the sen, Oats grow nt nearly double that height; but in unlavourable years the sheavea may often be seen standing among the snow, which not uncominonly eovers the tops of tho mountains in October, and is never later in falling than the middle of Novenber. The limits of Barley and Ryo ure between those of wheat and oats; but Bigg, a more harily kind of grain than either of the former, is no longer cultivated. Turnips, though of small size, and l'otatoes, grow at the sane height as Oats. On the soil of the inoors being ploughed for the first time, and lime applied, White Clover (Trifolium repens) comes up in abundance.

Subsect. 3.-Zoology of Great Brilain.

The Zoology of the United Empire might be treated of under tho threo kingloms of whirh it is composed, were our materials sufficiently ample to mark the peculinrities of ench, But althongh every year witnesses an accession of new species to tho British fumn, no attempt has yet been inade to generalise theso discoveries, with reference to the geographic range of groups or apecies. The zoology of Ireland has been sadly negleetend, and we are still without a Fsuna Scotica, We must therefore consider tho natural history of Britain in the aggregate; noticing such species as more particulurly belong to the northern aml the southern extremities.
Of Quadrupeds, the most recent catalogue contrins sixty living species, including the whale tribe; besides those which progressivo civilisation, and the effects of tho chase, have now extirpated from the islands. Nine species of Bats have been detectell, four of which 'savo as yet been found only in the southern and weatorn counties: two belong to the division of horse-shoe bats, so named, from their nostrils being furnished with a complicated membrane, like a horse-shoe; an appendage which is probably intended to act na a sucker to nssist the animnl in retaining its prey. The Vespertilio murinus, or common hat, hins been so fur tamed as to take flies out of its master's hand, carefully throwing asile the wings. The woods and heuths still shelter the Iedgehog (fig. 115.), a harmless and a most usefill nnimal

Hedgehon. in destroying snails, slugs, and worms; but persecuted by the vulgar for a long list of imaginary and nousensical properties, These prejudices lave boen extended to the Mole, whuse ;ittic hillocks form the best top-dressing, as a sensible farmer once assured us, to poor lands, that can possibly be given: their sot fur has long been mixed with that of the Benver, in the making of hats. Allied to the Mole, in general conformntion, are tho Shrew Mice, of which two species are natives, the common and the Water Shrew (Sorex araneun and foliens): both thest: appear to be widely distributed. Of true Nice there are three di: tnet sorts: the Common or House Mouse, the Field Mouse, and the Harvest Monse; the latter' being as destructive to the farmer as the first is to the housewife. The Brown and the Black Rat infest dwellings, nad are equally injurious: tho latter is known by the tail being longer than the holy; wherens, in the Brown Rat, both these parts are equal. The pretty little Dormouse (Myoxus avellanarius), like the Squirrel and Jerhon, eats its fooul in an erect attitude, sitting on its haunches, nnd using its forefeet as hands. The Water Rat pear not it Mom. Ribex nired spots, it of lown , and Nand Sulix her), renches sea. scanty and cely moro plaits, and character in question, a), nad the orring moist of the soa, ce between are called, n the north w at nearly uding among and is never ure between he former, is sune height plied, White
toms of which of ench. But to attempt has nge of groups till without a ie aggregute; uthern extre-
inclualing the e chase, have four of which to the division ed membrane, r to issist the is been so far wings. The usefil animal ecuted hy the onl properties. c, whuse ilitic firmer once en: their soft in the making ation, are the common and : hoth thest here are three it Mouse; the he Brown and wn by the tail e equal. Thie rats its fool in he Water Rat

Boos I.

ENGLAND.
and Short-tailed Monse of Pemant (now phaced in the gemas Arvicola) oceur in England: mut the former instated not to have been bund in the northern infands; the latter is a most devtructive littlo mumal in garions, where it grube up seedn, purticularly pees, just atter they have begna to germinate. A few years back, the ahort-tailed monso siddenly nppeared In immenso immbers in the New Forest, and notwithatanding every artillec employed to stop their ravagen, they destroyed many housunda of young trees, and devastuted whole aceres of young plantations.
'Ihe ladger is a nueturnal feeder, meeping in its hole during the day, yet, when attacked, is remarkably quick in its motions, and suceesstiul in its dofence. If undisturbed, it is harmless and inoffensive, chletly sulsintium upon vegetubles, although it will likewise devour thigs and sluga. The Otter has becone much less frequent than furmerly; it was once considered an a beant of chase, as old game-books mention otter hounds particularly trained for lannting this nuimal. It fouls entirely upon fish, which it dives after with groat celerity; and, unless pressed by extreme lunger, invariably leaves the tuil extremity untouchod. 'l'he legn aro very short; and the toes boing connected together by a membrane, gives to the animal the power of swimming very rapiilly.

The rapacious or carnivorous quadrupeds of Britain are very few, and from their small sizo too insiguificant to inlliet much personal injury upon man. Tho Bear and the Wolf have long been extinct in Britain, and the Fox might have shared the game fate, had it not been preserved as a beast of the chase since the extirpation of more formidniblo game. Pennant mentions three varioties of this animal found in Wales and other mountainous parts of Britain:-1. The MiIgri, or Groylound Fox, is the lurgest, tallest, nud boldest, und is distinguished by a white tag or tip to tho tuil. 2. The Mastiff Fox, which is less, but more strongly built. 3. The Curgi, of Cor Fox, of a still smaller size, and laving the tip of the tnil bluck. (Brit. Zool. i. 87.) The varieties do not appear, however, to have fallen under the actual observation of subsequent unturalists.
The Ferret tribe comprehende the I'olecat, Weasel, Stoat or Ermine, the Conmon Marten, and the l'ine Marten.

Tho Polecat (P'utorius vilgaris Cuv.), ealled also the Fitchet, Fitehew, or Foumart, measures, with the tail, about twenty-three inches. Its fetid smell is proverbinl. Although inchuded in the list of British quadrupeds, it appears, according to Strabo, to have been imported from the north of Africa. Like all its congeners, its habits are sunguinnry; for it will destroy und suck the blood of many victins, before it attempts to carry off their bodies. The well-known Ferret is considered only a variety of this species. Tho Weusel is much smaller, and although repulsive from its olour, is yet an elegant-shaped animal. It feeds on mice and small birds, but will occasionally attack nnimals of a much larger size. Fow persons suspect that the skins they see miled against farm out-honses frequently belong to an animal whose fur, in unother state, forms a most elegant and expensive ornament to femalo dress. This animal, despised in one state, and valned in another; is the Stoat (fig. 118.), tho pest of the farmer, and the destroyer of his poultry. In the temperate and

pouthern parts of Europe, its far is yellowish-brown above, and pale yellow bencath; yet so soon us'its geographic range enters on the more northern countrics, as Russia, Norway, and Siberia, these colours vanish, leaving the fur of a pure white in every part but the tail, which is tipped with deep black; and in this state tho skin is called erminc. In Scotland the animal, during winter, is frequently found in an intermediate stage of summer and winter elothing. Alhough small, it will attack large rats, and has been known to pursue a young hare by the scent.

The Comuon or Beecli Marten (M. Fugorum Ray) seems to prefer dwelling near habitations, choosing the slelter of out-honses and farm-buildings, as convenient retreats for carryng on its depredations among poultry, of which it is a great devourer; it nlso breeds occasionally in thie hollows of trees.

The I'ine Marten (M. Abictum Ray, fig. 117.) is rather larger, and is further distinguished from the last in having the throat and breast yellow, instend of white. It is wild and solitary; shunning mankind; and only dwells in thick woods and forests, principally those composed of pines. It climbs with great facility; preys upon birds and their egge, and also upon squirrels; the female generully making uso of the nest of one of her vietims for the rearing
of her own young. The skin of this is much more prized than that of the common Marten. and appears to have been formerly, at least in Scolland, a lucrative article of commerce.

The Wild Cat eloses our list of these small but ferocious indigenous amimals. Its manners are similar to those of the lynx, and Mr. Pemant justly calls it the British tigcr. In its savage state it appears to be much larger than the ordinary domestic cat; and the teeth and claws, for the size of the animal, are tremendous. It is still found, although rarcly, in the mountainous and wooly parts of Great Britain. Formerly they appear te have been mish more numerots, and to have been considered a beast of chase. The best authorities agree in considering this species, common to the forests of Europe, as the origin of our domestic breed, the usual varicties of which are well known. Another, which seems peculiar to Cornwall, is without any visible tail, and is stated to be an hereditary variety. (Cuv. ii. 489.)
To enumerate the varieties of the Doy now domesticated in Britain would be tedious, particularly after the luminous manner in which this subject has been treated by Pennant (Brit. Zool. i. 70.). Britain has been famous for her dogs from remote antiquity. The British mastiffs were held in such estimation by the Romans, that their emperors appointed an officer in the island, with the name of Procurctor Cynegii, whose busincss was to transmit thence such as would prove equal to the fyrocious combats of the amphitheatre. Strabo also mentions that the mastiffs of Britain were in great repute, being trained for war, and used by the Gauls in their battles.
The Bloodhound, during the troubled periods of English history, was in high estimation, and much used to traek the footsteps of robbers and maranders; but the breed is now extinct. A remarkable varicty of the Greylound, more peculiar to Ireland (hence called the Irish Greyhound or Wolf Dog), is nearly lost, a few couples alone having been preserved in one of the parks in that island. The Terrier is the best house guard; while the Sheplierd, the Water, and the Newfoundland dogs are probably the most sagacious.
Of ruminating animals now existing in a state of nature, there are but three; the Stag or Red Deer, the Fallow Deer, and the Roebuck. It would appear, however, that the first two are not indigeneus to these islands. Mr. Pennant writes-"We have two varieties of fallow deer, which are said to be of foreign origin: these were introduced by King James I. out of Norway, which he visited for his intended bride, Anne of Denmark. He first brought some into Scotland, and from thence transported them to his chases of Enfield and Epping, to be near his palace of Theobald's." The only memorial of this palace is probably preserved in the name of The 'nald's Road. M. Cuvier, indeed, expresses a doubt whether the stag was originally European; but Major Hamilton Smith, with much better reason, censiders the Fallow Deer (Cervus Dama) as indigenous to Eurepe; adding, that it is still found wild from Sweden to Gibraltar, and from Ireland to Constantinople. The Stag (Cervus Elaphus) seems to be unquestioned as an indigenous species; ard although the wild breed is yearly diminishing in numbers, it is still found in Gloucestershire, the north-west part of Devon, and in some of the remote distriets of Scotland. Pennant, by some unaccountable mistake, has placed the Stag and the Fallow Deer as varieties of one species.

The Roebuck (Cervus eapreolus Ham. Smith) is much less than the two preceding, and is, indeed, the smallest of Enropean decr. It is remarkably graceful and active, habitually preferring the sides of elevated woods or forests. As he leaves a strong scent, nature has given him peculiar sagacity to perplex his pursuers: he begins, after a forward dash, bv doubling over his track, to mislend the hounds, and then by some great bounds he springs forward to a cover, where he lies down to let the chase pass. The roehuck is now become very scarce in Britain, and was equally so in Scotland, but we are told it has re-appeared of late ycurs in Fifeshire, in consequence of the increased plantations. (Brit. An. p. 26.)
The $O x$ is the only remaining animal of this order which claims a place among the indigenous quadrupeds. We have before observed, that in remote ages, a gigantic race of oxen was numerous throughout Europe; and that, although now extinct, there is reason to believe that the colossal speeies mentioned by Cessar, as existing in his time, was of this race, now only known by its fossil bones. These remains lie scattered through the whole of temperate Europe, in the same strata with the lost species of Elephant but that the race was preserved to a much later period is proved by sinilar bones occurring in more recent formations, as in pest moeses, drained lakes, marshes, and heds of sand. 'The wild races, of inferior size, belonging to this species, may probably, as Major Smith observes, even now exist in Asia. However this may be, it appears certain that the real Urus was found wild in the Vosges mountains, and in the forests of Ardennes and Germany; while its existence in England is incontestably proved by Fitz-Stephen, who speaks of the Uri silvestres, which in his time (that is, about 1150) infested the great forests-round London!

The only existing breed of wild oxen now known, is the white Urus, or Urns scoticus of Ham. Sinith. Its skull agrees with the fossil breed in being "square from the orbits to the oceipital crest, somewhat hollow at the forehead, and the horns showing a peculiar rise fiom their root, at the side of the above crest, upward, and then bending outwards, ther. forwand and inwarl: no domestic race shows this turn." The true Urus was further dis
tinguished by a mane, which is still observed about two inches long, in old bulls of the Scet-
 tish race (fig. 118.). When this breed was exterminated from the open forests is not known; but it was confined to parks long before the Reformation. The colour is entirely white, with the muzzle wholly black. Their manners are aingular: upon perceiving a stranger, they gallop wildly in a circle round him, stop and gaze, toss their heads, and show signe of defiance; this is repeated several times, each circle being made sinaller, till they approach eufficiently near to make an effective charge. The cows conceal their young eight or ten days: and when one of the herd is wounded or enfeebled, the others gore it to death. The breed is atill preserved at Chillingham Castle, near Berwick-upon-Tweed, Wollaston in Nottingbam, Giaburne in Craven, Limehall in Cleshire, and at Chartley in Staffordshire.

The domestic Ox (Bos Taurus), conaidered by some as a variety, and by others as a distinct species from the last, is supposed by Hamilton Smith to havo been first domesticated by the Caucasian nations of western Asia. It is stated to have fourteen ribs, whereas those of the B. Urus are but twelve; a diatinction sufficiently important to sanction the belief of a specific difference. Whether or not this parent of our domestic races ever existed in these ialands in a atate of nature, is very doubtful. The various breeds for which Britain has long been justly celebrated will be noticed under the head of domeatic animals.

The marine and cetaceous mammalia are few, and are not very generally dispersed. Two species of seal have been noticed by Pennant. The Piked Whales (Balcnoptera musculus and boops), the Razor-back Whsle, and eeveral others of the great norther: cetacea, wander near the Hebrides and Orkney islands, and occasionally visit the shoree of Northumberland and Yorkshire. The Porpoise and the Grampus have a wider range, and large shoals roam unmoleated near all the coasts.

Exterminated native animals. In every country the increase of civilization and agriculture is marked by the progressive diminution and final extirpation of the larger quadrupeds, particularly of such as are injurious to man. Among those which history clearly informe us were once living in Britain, the most remarkable are the Bear, the Wolf, the Beaver, and the wild Boar. To the writings of Pennant and Hamilton Smith we are indebted for the following notes on these lost inhabitants of our forests.
It appears that Bears, in the time of Plutarch, were transported from Britain to Rome where they were much admired. They appear to have been extinct in Britain long before Queen Elizabeth's time.

Wolves. It seems to have been a vulgar error that the wolf was extirpated in Britain by the salutary edicts of King Edgar, who accepted their tongues and heads as tribute, or as a commutation for certain crimes: for in the reign of Edward I. these animals had again increased t ω such a degree, that officers were appointed to promote their destruction, and lands were held by hunting and destroying them. Wolves infested Ireland many centuries after their extinction in Engband ; some having been killed so late as 1710. In Scotland, the last on record was destroyed in 1680 .

The Beaver was still an inhabitant of the Welsh rivers in 1188, as is attested, according to Pennant, by Giraldus Cambrensis; but even at that remote period they must have considerably diminished, as the historian only mentions their being found on the river Teivi. Local names of other waters in the principality attest their existence in other places. Fossil remains of this species are etated to have been found in bede of marl, under peat moss in Berkshire; and similar bones laave occurred in Perthshire and Berwickshire.

The Wild Boar, from which have sprung the domestic breeds of swine, must be reckoned among indigenous quadrupeds, although now extinct in Britain. Willium the Conqueror punished those who killed the Wild Boar, the Stag and the Roebuck, by the loss of their eyes. Fitz-Stephen affirms that the vast forest, which in hia time stood on the north side $6 f$ London, was the retreat ef Stags, Fallow Deer, Wild Boars and Bulla. At a more recent period, Charles the First turned out Wild Boars in the New Forest; but they were destroyed during the civil wars.
Fossil quadrupeds. The splendid discoveries that have resulted from the investigations of Buckland, Mantell, Conybeare, and other eminent geologists, havo opened a field of research, which in Britain had long been overlooked or neglected. Without entering into the quegtion whether theee fossil remains belong to animals which did or did not at some period inhabit the spots wherein their bones have been found, it is sufficient to confine ourselves to simple facts. The remains of the cave bear of Dr. Buckland occur in several caverns, and are sufficient to prove the living animal must have equalled a horse in size. The Kirkdale and Plymouth caves abound with the bones of an extinct lyyena, somewhat resembling in its osteology that now existing in South Africa; with these have been found the bones of a tiger, which must have been as large as the Bengal species. The tusks, teeth, and other
fragments of an extinct species of elephant，totally different from those now in existence，

Jaw of Marsupial Animal． have been detected in marl clay，\＆c．joined with those of two other gigantic qusdrupeds，a rlinoceros and hippopotamus；while the jaw of a marsupisl animal，unknown among the existing raco of beings，has been found in the Stonesfield slate quarries （fig．119．）

Domestic quadrupeds．No nation，perhaps，has been more solicitous to improvo their originally poor breeds of domesti－ cated quadrupeds than the British；snd hence their present superiority over most of those on the Continent．Under this head we commence with the ruminating animals，as the ox， the sheep，and the goat，so essential in supplying food and clothing to man；while the horse， the sss，and the dog assist him in his labour，or protect his property．
The principal breeds of oxen more peculiar to Great Britain have been arranged by Majer Hamilton Smith under nine divisions．Of these，three belong to England，three to Scotland， two to Wales，and one to Guernsey．
The long－horned or Lancaster breed（fig．120．），as the name implies，is remarkable for

The long－horned Ox． long horns；they have firm thick hides，long close hair， large hoofs，and give in proportion less milk，but more cresm．They are of various colours，but are in general finebed，that is，with a white streak above the spine and a white spot inside the houghs．The improved Leicester is a slight variety，originally bred near Co－ ventry．

The short－horned breed includes those that are named the Holderness，Teeswater，Yorkshire，Durham，and Northumberland．This has been the most improved， producing usually twenty－four quarts of milk per day， and three firkins of butter per season．Their colour varies，but is generally red and white mixed；called by the graziers fleeked．
The middle－horned includes th．o Devon，Hereford，and Sussex breeds：they are active， hardy，snd much esteemed for draught：but although they futten esrly，do not milk so well as the last．The pure Devons are of a ligh red colour，without spots，a light dun ring round the eye，fine in bone，elear neek，thin faced，and the tail set on high：the north Devon is most esteemed for eating．The Sussex and Hereford are larger，the ox weighing from 60 to 100 stone．
The Seottish breeds may be arranged under the Polled，the Highland，and the Fifeshire．
The Polled Galloway is the most esteemed：it is straight in the back，the hair soft，the colour black or dark brindled，and the size not large．They travel well，snd reach the Iondon markets without deterioration．The Suffolk Dun is a variety of this race．The Highland race includes several varieties，the most valuable ones being the West Highland， Argyle，or Skye，and the Kyloe from the Hebrides．The Norlauds is another variety，with coarse hiles，long legs，and of a narrow make．The Orkney or Shetland are very diminu－ tive：an ox weighing about 60 lbs．a quarter，and a cow 40 lbs．＇Their colours are various， and their shapes bad；but they give an abundance of excellent milk，and fatten rapilly The Fifeshire nppears an improved breed of the Highlands，crossed with the Cambridge－ shire；they are blsck，spotted with gray；the horns small，white，and very erect：a variciy occurs in Aberleenshire．
The Welsh have two breeds：the first is large，dark brown，with some white；the legs long and slender；the horns white，and turned upwards：these，next to the Devon，aro the hest in yoke，and are a cross of the long－horned：the second is lower，well formed，blsek with little whits，and are good milkers．The Allerney or Guernsey rnee is proverbially small：their colour is mostly yellow or light red；marked with white about the face and limbs，and with erumpled horns The true breed is known by being yellow within the ears， and at the root of the tail and its tuft．
Respecting draught Oxen，we cannot refrain from here inserting nn excellent and judi－ cious remark of Pennsnt．＂It is now，＂observes this sensible writer，＂generally allowed， that，in many eases，oxen are more profitable in the draught than liorses：their food，harness， and sloes being cheaper；and should they be lamed or grow old，an old working beast will be as gool meat，and fatten as well，as a yuung onc．＂（Brit．Zool．i．23．）
The Sheep is searcely inferior in utility to the ox：and the breeds now cultivated in Brituin，taking all their qualities into consileration，are perhaps the most valuable in the world．It is a curious fact，that the famed Merino sleeep of Spain originnted from the Eng－ lish breed，sent to that country by Elward IV．as a present to King John of Arragon．（Bak． Chron．p．2if．）Mnjor II．Snith estimutes the present annual value of wool shorn in Eng land，at five millions sterling．
The British sheep，according to Mr．Culley，may be arranged under fourteen different breeds，sud some others might also be enunierated．These may be classed under two prin－

Part III. existence, hose of two mus; while he existing ite quarries been more of domestiost of those s , as the ox , le the horse,
markable for ig close hair, ilk, but mere re in general re the spine, he improved red near Co-
hat are named Durham, and ost improved, milk per day, red and white
cy are active, milk so well light dun ring ic nerth Deven ighing from 60
the Fifeshire.
o hair soft, the and reach the iis race. The Vest Highland, or variety, with e very diminuirs are various, fatten rapidly. the Cambridgerect: a variecy
white; the legs Devon, are the 1 formed, black is proverbially t the frec and within the ears,
ellent and judiherally allewed, ir food, harness, rking beast will
v cultivated in valuable in the from the EngArragon: (Bak. , shern in Eng
urtecn difforent under two prin-

Buok I.
ENGLAND.
cipal divisions; those derived from the ancient race being furnished with horus, while the others in gencral have none.
Of the horned breeds, the most ancient is the hiack-faced (fig. 121.), still met with in some heathy parts of Yorksli.ire and the adjacent northern counties: the wool is coarse and shaggy. The Norfolk and Suffolk sheep, also, have the horns large and spiral, with the face black, but the wool is short and fine: they have a voracious appetite, and a restless disposition. In the Dorset the face is no longer black; but both sexes are usually horned. This breed is remarkable for producing lambs at almost every season, and is therefore highly valuable for supplying the Londen markets with house lamb. The Wiltshire is a much larger variety, having no wool on the belly. The Hertferdshire is a fine productive variety, with shert tails. The Exmoor comes from Devonshire : it is small, the wool long, and the face and legs white. Scotland furnishes three breeds of horned sheep; the Dun-faced, the Sletland, and the Hebrideen.

The Hereford इheep.

The hornless race may be divided into nine breeds. The Lincoln has long wool and a white face: in the Teeswater the wool is shorter and lighter, and the legs longer. The Dishley, or new Leicester, is distinguished by a clean head, and the excellency of its flesh. The Devonshire Nots, like the threc preceding, are long-woolled; they have white faces and legs, thick necks, short legs, and large bones. The short-woolled hornless breeds are the follrwin:-The Hercferd (fig. 122.) have very fins wool, which grows close to their eyes, tha len A face being white: the store sheep of this country are called Collings or Rylands. The ". "wn, principally cultivated on the chalky downs of Sussex, have the face and legs :. mare highly esteemed for the table. The Chevist have the head bare and clean, and a matimes spotted with gray or dun; the flecee is very short and fine. The Hurcwicke is peculiar to the rocky districts of Cumberland, and is speekled on the face and legs.

The Goat, which in some parts of Italy supplies the only milk and butter known to the inhabitants, is of little utility in a country abounding in sheep and oxen. But to the Welsh mountaincers it is a valuable nnimal: the suet will make excellent candles; the meat is little inferior to venison, and those who have habitually feasted upon meuntain kid, know how superier its flaveur is to lamb.
The Horses of Britain, improved as they have been by the most scdulous care, next to the Arabian, are the finest in the world. The British breeds, originally but ill adapted for the saddle, have progressively improved; and the crossing of the indigenoua kind with those of other countries has produced feur principal classes of horses,-the Racer, the Hunter, the Rondster, and the Dray Horse; to these may be added the Poney, one of the eriginal breeds.

The Ornithology of Great Britain, after the general observations already made on that of Europe, will be here but briefly dwelt upon. The native birds may be arranged under three natural divisions:-1. the rapacious; 2. the perehing; and 3. the wulking, running and swimming orders.
The rapacious birds, as in all other countrics, are the smallest in number, but the most formidable in strength. Among these the Golden Eagle (Aquila chrysaëtos, fig. 123.) is the
 largest known in the British islands: this noble bird weighs twelve pounds, and is still found among the highest of the Welsh and Cumberland meuntains; it is said also to breed in Orkney. The Erne or Sea Eagle is somewhat smaller, and is principally confined to the maritime rocks of Wales and North Britain. The Falcon tribe is more numerous in species; but the destruction to which they are dooned by gane preservers has long been diminishing their numbers: somo species are almost extirpated, and nearly all are now become rare. The Osprey (Pandion Halictus), or Fishing Eagle, is now seldon met with. The two specics of 'lienharrie (Circus cyaneus and cinerascens) were first discriminnted by Montagu. The Owls are similar to those of the Continent, but the great Snowy Owl has only of late years been detected in the north of Scotland as a native bird. The Eagle or great hornes! Owl is of the same size; the former hunting by day, the latter by night. The Barn or White Owl is known to every farmer, and appears to be distributed over the whole habi table globe.

Vol. I.

The toothed-bill or perching birds (Dentirostres Sw.) are those furmiahed with a notch to their bill, by which their food is held firm before it is swallowed. Some are formed to climb, ,thers to hop on the ground, and a few eatch their food (like the swallows) upon the wing. They are united to the rapacious order by the shrikes or butcher-birds, so calleal from their singular custom of impaling insects and small birds upon the thorns round their nests. Three species of these birls are known in Britain. The melody of the Blackbird and Song-thrush need not be eulogised; and during spring and summer the woods and hedges are enlivened by numbers of warblers, or amall insectivorous birds, which viait them in the breeding season: ainong which the Nightingale is most conspicuous. Large flocka of Finches, and sinilar lard-billed birds, feast, in winter, upon the red berries of the black and white thorn; while Crows, Starlings, and Fieldfares devour prodigious quantities of slugs, worms, and other animala noxious to the farmer. The Woodpeckers, Creepers, and Titmice prey only upon those insects prejudicial to trees; the Swallowa, during summer, join with the warblers in leeping within due bounds the myriads of insects, which would otherwise increase to an ularming extent.

The entire-billed birds (Curtipedes Sw.) are those which have no notch at the end of their bill, and never seek their food among treea: they are united to the former by the Pigeons, and comprise the gallinaceous, wading, and swimming tribes. Among the first Britain posscesses the Partridge, Grouse, and Quail, but more particularly the Great Bustard, the largest of the European gallinacea: its weight is about 25 lbs., and its flesh excellent. To enumerate the wading and swimming birds would far exceed our limits; they visit the coasta principally in winter, and depart in spring.
The exterminated birds are very few; for alchough some, as the Egret (fig. 124.) and the
 Crane, are no longer common in Britain, yet individuals are sometimes met with, showing that man and not nature haa scared them from their hereditary range. Perhaps the only extirpated species is the cock of the wood, or capercaillie grouse (Tetrao Urogallus L.), a noble bird of game, weighing near thirteen pounds; once common in the fir forests of Scotland, but which has not been seen, it is said, since 1760 .
Of domesticated birds the Pheasant originally came from Asia Minor; the Guinea Hen from Africa; the Teacock and Fowl from India; and the Turkey from America.
The fishes, botli marine and freshwater, are numerous: most are edible, and many highly esteemed. Whale, and other cetacea, are mostly confined to the northern shores: but those of the west are fimous for the herring and pilchard fisheries. The John Doree is as remarkable for its grotesque form as for its exquisite flavour. The Turbot, Cod, Sole, \&c. are well known. The chief river fish are the Salmon, Trout, and Char; and these are principally furnished by the northern counties. The salinon fisherics are highly impurtant, and have long engaged the attention of the legislature: the eggs of one fish will often exceed 15,000 . The Char is contined to the lakes of Cumberland and Westmoreland; those of Windermere ure the best, and when pottel become a great delicacy. The Herring and Sprat supply the poor, during winter, with a wholesome dish; while the citizens of London consider another species, called the White Bait, as possessing a peculiarly tine flavour. The Anchovy is not unknown in some of our estuaries; and even the Flying-tish has occasionally wandered to the Welah const.

The reptiles of Britain, known in a living state, sre very few. Besides the Warty Eft (Luccrta palustris Lin., fig. 12i.).) there are two other water lizarde, and probably as many

125

120

-prcies inhahiting the land. Of the Frog and Toad two sorts of each occur. The snakes itul the hlind-worm are harmless; the Common Viper (fig. 126.) being the only venomous reptile: yet this species varies so much in its colours, that nnturalists have described it under several names. The Great or Gigantic Frog of Pennant is only a varicty of the common -oad.
Faxtinct reptiles. The researches of geologists have brought to light the remains of fuch kigantic and extraordinary reptiles, that, but for such indubitable prools, their existence inight be thought fabulous. At the head of thrse we may place the Megalosururus, resem Wing both a lizard and a crocotile, whose probable length was near 40 feet! The Ichehyo
plants; 4 shady str Native are the p mon in m
Pritish p tain pos. e largest) enumeasts prinn seen, it ?owl from
most are tacea, arc west are a Doree is flavour. river fish ipally furhave long ed 15,000. indermere supply the er another hovy is not andered to

Warty En y as many

The snakes venomou: red it uniler e common
hins of such r existence rus, resem he Ichthyo

Boor 1.

ENGLAND.
auurus, uniting the characters of a lizard with the snout of a dolphin, the teeth of a crocodile, the fins of a turtle, and the vertebres of a fish, is scarcely less wonderful. The Plesiosaurus is still more extraerdinary ; for with the fins of a turtle, it had the head of a lizard, and a long neck, formed like the body of a serpent. Lastly, the remains of several distinct species of crocodiles have been discovered in similar strata. All these attest the existence, ut some unknown period, of a atupendous race of aquatic monsters, which have long been swept away from the existing animal creation.

Among the radiated animals, vast shoals of transparent Medusa wander about the coast during summer, and are frequently by a sudden change of wind cast up on the beach in great numbers. But the deep recesses of the ocean frequently give to the nets of the fisherman anımala still more singular. The Black Line Worm, or Sea Long Worm (Linneus longiss, 'us Sow., fig. 127.), whose mouth is hardly a quarter of an inch wide, is said, by the fishermua, to measure twelve fathoms in length: it is soft, and so fragile, that the entire animal seems not yet to have been procured.

Ellis was the first to make known the true nature of those plant-like productions generally termed corallines. Of Corals, the British scas afford few native species; the largest and most elegant is the May-blossom coral (Caryophyllia ramea), (fig. 1288.), common in the Mediterranean, and occasionally found upon the Cornish coast: it is cinnamon-coloured; and retains, for many years, a slight scent, like that of hawthorn.
The Conchology of Britain, in the number and interest of its species, compensates for its deficiency in large or richly coloured objects. The beautiful varicties of Pec:en opercularis are, nevertheless, frequently varicgated with the most lovely tints of yellow, orange, pink, and deep red; they also afford a nutritious food to the lower classes. The most celcbrated edible shell-fish is the oyster, well known and highly prized by the luxurious Romans; and every one is acquainted with the superior excellency of those from Colchester and Milton. Fluviatile shella, in a country so humid and watercd as Britain, are more abundant than towards the south of Europe. Most of the rivers produce Unio pictorum (fig. 129. a), and Unio ovatus (b): Cyclas cornea (d) is gencrally found in the same situations. The ponds and stagnant waters are frequently covered with Lymncus palustris (e), ovatus (g), and Planorbis corneua (l; while the large Duck-mussel (Anodon anatinus) (c) burrows in the

Unio Marganitifera.
muddy bottom, Λ little fragile shell, Succinea amphibia (f), crnwls upon rushes and aquatic plants; and Physa fontinalis (h), Ancylus lacustris (i), and Planorbis vortex (k) prefer clear shady streams and ditches overhung with wood.
Native pearls were reckoned by the Romans among the productions of Britain. They are the produce of a fluviatile bivalve ahell, the Unio margaritifera, (fg .130 .), still common in many of the northern counties; but it was on the banks of the Welsh rivers that the British pearl fishery was chiefly carried on.

Insects. Considering the nature of the climate, it may excito surprise, that more than 10,000 different species have actually been found to inhahit Britain. Yet the bee may lie reckoned the only insect whose services are immediately and obviously beneficial to man. Among the butterflies, are many of great benuty; while Eurymus Europome, or the Clonded Sulphur (fig. 131.), is considered one ef the rareat British insects.

Scotland. The zoology of Scotland exhibits many arctic animals as common inhabitants, which are only known as rare visitants to the western ahores of England; in other respects, it does not materially differ from that of South Britain. The northern islands give shelter to innumerable wild fowl, and to many peculiar land birds, as the Ptarmigan and the Golden Eagle. The great horned or Eagle Owl, is found to breed in Orkney. The Highlands are famous for an abundance of Grouse, the red species (Lagopus scoticus, fig. 132.) being the only bird peculiar to Great Britain,
The domestic animale are of a small aize; in other respects, they are highly valuable. The polled or hornless cattle, with the Highland and the Fifeshire, have already been noticed. The Kyloe breed are so named, because in their progress to the south from the Ifebrides, they crose the kyloes or ferries in the main land and Western Islands. (Ham. Smith.) The same writer considera that the sheep of this kingdom spring from three principal breeda: the first is generally named dun-faced sheep; they are a small, horned race, said to have been originally imported from Denmark or Norway, and are still found, with slight variations, in the North of Scotland and the isles. In Kincardineshire, this breed is known by its yellow face and legs, and by the dishevelled texture of its fleece, which is in part coarse, and in part remarkably fine wool; its flesh also is delicate and highly flaveured. The Shetland breed carry a very fine wool, in three different successions yearly, two of which resemble long hair more than wool, and are called Fors and Scudda. The wool is of various colours. The Hebridian sheep is the smallest animal of its kind; its horns are usually short and atraight, the face and legg white, the tail very short, and the wool of different colours.
The Highland Ponies and Shetland Ponies (fig. 133.), notwithstanding their diminutive size, are greatly esteemed for their activity and strength.

Among the numerous lireeds of dogs, there appear to be three more particularly found in Scotland: the true Shepherd's Dog, or Colly, is still preserved, unmixed, in many of the sheep districts: the Shetland Ilound, approaehes in character to the Greenland Dog; while the Scuttish Greyhound (fig. 134.), common in the Highlands, is possessed of great sagacity, strength, and swiftness.
The Zoology of Ireland has leen much neglected ; nor are we prepared to show what peculiarities belong to its natural history. The Irish Wolf Dog, ealled also the Irish Greyheund, has generally been thought peenliar to this island; but others consider it the sume breed as the French matin (Canis laniarius L.) It is a noble amimal, standing near four feet in height, and seems to have been mainly instrumental in elearing the country of the numerous wolves which once over-ran it. The cattle and sheep are inferior to those of Britain. Yet Ireland exports vast quantities of salted provisions, besides the supplies firnished to the navy and shipping interests. The remains of the Fossil Elk (fig. 135.) are of frequent occurrence in bells of shell marl, beneath peat. Its antlers measure from the extreme tip of each, no less than ten feet ten inches, and from the tip of the right horn to

How I.
ENGLAND.
its root, five feet two inches. Remains of the same animal have been also found in England, and a very perfect specimen in the Isle of Man. The Irish shores furnish the conchologist with several native shells, beldom seen on the British coasts, particularly the lsocardia cor, or Heart Cockle (fig. 186.).

Sect. III.-Historical Geography.
Britain was originally peopled from Gaul, by inhabitants of the Celtic race. For a long time it appears to lave been noticed only as a country supplying tin; a rare and useful metal, not then found in any other part of Europe, or in Western Asia. To obtain this valuable inineral, the coasts of Britain were at an early periol sought by the ships of various mercantile states, especially the Carthaginians; and the $t i n$ of Tarahish, mentioned by Ezekiel, was doubtless brought from the mines of Cornwall.
Britain was invaled by the Romans, about fify-five years before the Chriatian era. Of the thirty tribes of barbarians amo: whom the country was then divided, the most considerable were the Relge in the west, the Brigantes in the north, the Silures in South Wales, the Ieeni in Norfolk and Suffolk, and the Cuntii, who occupied Kent and part of Middlesex. The latter had made some progress in agriculture and the arts of civilized life; but the other inhabitants derived their sulsistence from flocks and herds, elothed themselves in skins, and painted their bolies. The precarious authority of the chiefs derived support from the influence exercised hy the Druids, in one of the most terrible forms of superstition that ever enslaved the human mind. Besides the ordinary implements of war, they had armed chariot: which they managed with surprising dexterity; and they were united in a species of political contederacy, of which Cassivelaunus was the head. They could not, however preveat the landing of Julius Casir, but that conqueror was prevented by more urgent affairs firm prosecuting an enterprise of which the difficulties were not likely to be compensated by it: glory. In the reign of Claudius the hardihood of Caractacus, and the heroic desperation of Boadicea, failed of exciting an effectual resistance to the disciplined legions of Rome, whose vietorions progress was continued during the reign of Nero. In that of Domitian, the Roman dominion was extended by the wisdom and valour of Agricola, who defeated the Caledonians under Galgacus, at the foot of the Grampians; and the only part of the island which remained unsubdued was the region which lies north of that natural rampart.

The Britons now subjected to the Roman empire were compelied to cultivate the habits and arts of peace: but when that empire, weakened, distracted, and verging to its decline, was compelled to withdraw its protection from its distant provinces, the Scots and Picts, energing from their mountain tastnesses, then broke in, and committed dreadful devastations among their unwarlike neighbours. The Romans had recourse to the expedient of frentier walls; first, one between the Forth and Clyde, called the Wall of Antonine, and afterwards a similar rampart between the Tyne and Solway, called the Wall of Severus. About the middle of the fitth century, the Roman forces were finally withdrawn, and the Britons were left to depend entirely on their own resources.

The Sixons were called in as allies, about forly years after the dissolution of the Roman rovernment. These hardy adventurers, originating from the north of Germany, and occupying the line of const from dhe mouth of the Rhine to Thtland, had long infested by their piracies the neighburing paris of Britain und Gaul. They eagerly accepted un invitation to a country so stperior to their own. In the year 450, $\mathbf{1 6 0 0}$ men under IIengist and Horsa, arrived in Britain, and obtained an easy vietory over the Seots and Picts. The success of the two brothers attracted numerous bands of their countrymen; and in the course of a cen tury, colonies arrived from the months of the Elbe, the Weser, and the Rhine, chiefly composed of three valiant tribes, the Jutes, the Old Saxons, and the Angles. From nllies, they became formidalle enemies to the Britons; whom, after a long and sanguinary strugrle of one hundred and finty years, they compellel to retire into Wales and Cornwall.

Thus was established the Heptarehy, or Seven Saxon Kingdoms in Britain: viz. 1. Kent, 2. Sussex, including Surrey ; 3. Fast Englas, including Norfolk, Suffolk, the Isle of Ely, and Cambridgeehire; 4. Wresex, including all the southern counties from Berkshire to Cormwall; 5. Northumberland, incloding all the northern counties of Englaud, and the sonthern countirs of Scotland to the Frith of Forth; 6. Fssex, inchuding Essex, Middlesex, and part of

Hertfordshiro; 7. Mercrye, or Mercia, the largest division, including the midland distriets of England to the confines of Wales.

About the year 800 these sunall states were united into one kingdom, unler the name of Engfaud, by Egbert, king of Wessex. Tho Anglo-Saxon dynasty derived its chief lustre from Alfrel, one of the wisest and most virtuous monarchs that have appeared in any age or country. lle delivered his country from the thraldom of the Danes; but in the course of the ensuing century, however, they regained the ascendency; and in 1017, Canute, king of Denmark and Norway, added England to his dominions. It wes held successively by his sons, Harold and Hardicanute; but on the death of the istter, it was restored to the Saxon dynasty, and Edward the Confessor ascended the throne.

The conquest by William of Normandy, in 1066, overthrow for a time the liberties of the people of England. Claining the crown by virtne of a pretended grant from Edward the Confessor, and acquiring it by victory over Harold II., himself an usurper, to tho prejudice of Edgar Atheling, tho rightiful heir, he inaintained by tyranny a dominion gained by fraud and violence. One of the consequences of the acquisition of the English erown by William was to convey to the kings his successors certain claims on the French territory, which led to long, expensive, and sanguinary wars.
Henry the Second, surnamed Plantagenet; son of Geoffry of Anjou, who married Matilda, daughter of Henry 1., in the right of his father, was muster of Anjou and Touraine; in that of his mother, of Normandy and Maine; in that of his wife, of Guienne, Poiton, Saintonge, Auvergne, Perigord, Angoumois, and the Limousin. To these states he afterwards annexed that of Bretagne. The possession of provinces composing above one-third of tho Freneh monarchy, and superior in opulence to the rest of the territory, rendered this vassal more powerful than his liege lord, and contributed to provoke that rivalry which for ages existed between England and France. Henry the Second acquired the sovereignty of Ireland; Edward the First annexed Wales to his dominions, and for a time subjugsted Scotland. The contending claims of the houses of York and Lancaster for the crown of England, after n civil war of nearly sixty years, wero adjusted by the marriage of Henry the Seventh with Elizabeth, daughter of Edward the Fourth. Anoong tho memorable events that oceurred unier the Plantagenets, may be noticed the signature of Magna Charta, extorted by the betons from King John; the rise of the House of Commons in the reign of Henry the Third; nud the reformation of the church, commenced by John Wickliffe, in 1369.
The reign of Henry the Seventh was signalized by the overthrow of the feudal sway, and by the introduction of the modern system of polity. The emancipation of the kingdom from pajal dominion was effected by his successor. In the reign of Elizabeth, the most strenuous exertions were made to strengthen the maritime power of England, and extend her commercial intercourse. The result of these measures was to raise the nation to a very prosperous and flourishing condition, and to overturn the lawless domination of the nobles, substituting for it, however, an authority alinost absolute on the part of the sovereign.

The union of the two crowns on the accession of James the Sixth of Scotland to the throne of England, terminated those animosities which had proved alike injurious to both countries. Tie despotic conduct of Charles the First led to a struggle in which he lost both his crown and his life. In the interregnum which ensued under the Commonwealth, the vigilant, energetic, and decisive policy of Oliver Cromwell exercised a commanding influence over every cabinet in Europe. Charles the Second suffered England to lose the ascendency which she had attained, and the infatuated conduct of James the Second led to the revolution of 1688, from which epoch to the present time, the industry, commerce, and weslth of (ireat Britain, rapidly rose to a height unparalleled in any other nation, ancient or molern; but her political power sustained various fluctuations. She acquired in the East and in tho West two empires, each far more extensive than her own territory. That in the East she retains and is continually extending; that in the West, having become independent, is he: rival in commerce, and inanifests a disposition to dispute, at no distant periol, her maritime supremacy. Among the memorable transactions and events of this period may be ranked the union with Scotland in 1707; that with Ireland in 1801 ; the Scottish rebellions in 1715 and 1745; the Irish rebellion in 1799 ; and a series of wars with France, occurring at intervals rarely exceeding eight or ten years. The contests nrising from the French revolntion were distinguished by the most brilliant naval achievements, und afterwards by successes which raised the military glory of England to a level with her maritime renown, rendering her influence paramount ainong the states of Europe.

Sect. IV.-Political Geography.

The constitution of Great Britain centres in the laws hy which the country is governed, and in the union of powers by which the laws are made and the government is ndministered. The legislutive power is vested in the Parlinment, consisting of the Kiso, an hereditary rovereign; the Lords, an hereditury aristocracy; and the IIouse or Commons, consisting of members chosen by the people from among themselves, and therefore said to represent tho commons of the realm. The exceutive power is entrusted to the king.

Th
of the
of con
he car
ment
he can
he mu
alter t
cannot
He has
of pard parties

Of the three ec ates of the realm thus composing the legislature, the King is the highest: he is the head er chicf of the parliament: und except in extreme cases, a parliament cannot be held unless conveked by him, nor can it except by him be dissolved or proregued. IIs assent is requisite to give the force of law to any measure proposed by either of the two honses, and agreed upon by them. Propositions of laws, or bills as they are technically called, may be breught forward in either house ; all money bills must take their origin in the House of Commons; but only in one instance can the king initiate an act of parliament, and that is, an act of grace, for the pardon of persons after a rebellien, or for the reluase of insolvent debtors.

The King is not supposed to hold his throne by divine right, or in virtue of any indefensible hereditary clain. The nation, by its supreme council, has dictated certain rules ef exclusion with regard to the successien, of which the most important is, that the sovercign shall maintain the Protestant reformed religion, and, either at his coronation or on the first day of the first parliament, shall repeat and subscribe the declaration against popery. On the death or demise of the king, his heir becemes instantly invested with the kingly office and regal power.

By a constitutional fiction accordant with the feudal policy, all lands are held mediately or immediately from the crown. Thus the king is entitled to all lands left by the subsiding of the sea; and estates may revert to him by eschent, from the commission of crime by their possessors. He is sovereign in ull seas and great rivers; he alone has a prerogative to erect beacons and lighthouses; he is entitled to all royal mines of gold and silver, and is entrusted with the coinage. All persens born in his dominiens are his subjects, and owe to him all allegiance which they can neither renounce nor transfer to anv foreign prince. He is supreme head of the church within his dominions; and as pat-,: parameunt of all the benefices in England, he has a right to present to all dignities and ienefices of the advewson of archbishoprics and bishoprics during the vacancy of their respective sei. He is the fountain of justice, and has an undoubted prerogative in creating officers of atate, s: 'nisters, judges, and other functionaries. To him, as parens patrie, belengs the care of all wi., are unable to take carc of themselves; he has an original right to superintend the disposal of charitic:, and in all such cases the application is to the Court of Chancery. He has, in certain caser, the high prerogative of pardoning, and likewise that of issuing special proclamations for the prevention of offences. The power of making war or peace is lodgecisingly in the king. Ite is held to be incapable of doing wrong, and if an unlawful aet be done, the minister instrumental in that act is alone obnoxious to punishment. By virtue of his prerogative the king may make grants and letters patent, conferring various rights and privileges. Lastly, the king cannet be attainted, and is never a miner; theugh when the crowa has devolved to a very young heir, it has been thought prudent to appoint a regent, or council of regency. The same expedient has been adopted when, by reason of grievous illness, the exercise of the royal functions has been interrnpted.

All supplies granted by parliament are given to the king; but of these the largest proportion belongs to the public or its creditors; that which pertains to the king in his distinet capacity, called the Civil List, is the provision for the support of the honour and dignity of the crown. On the cemmencement of the reign of William IV., the civil list was entircly new-modelled, being limited to the persenal expenses of the sovereign, and the maintenance of his state; while the branches of administration hitherto defrayed out of it were charged upon the Consolidated Fund. The sum of 510,0001 . was granted, under the following heads:-
Privy purse, King's,
Queens,
Manitenance of ryal estalishment,
Sqlarien in the departments of Chamberlain, Steward, Master of the horse,
hom 171,000
Pensions,

Thus the reyal preregative is counterbalanced by the centrol which the representatives of the people in parliament exercise over the public purse. The king has the prerogative of commanding arnies and equipping fleets; but without the concurrence of his parliament he cannot maintain them. He can confer appointments to offices; but without his parliament he cannot pay the salaries. He can declare war; but without the aid of parliament he eannot carry it on. He has the exclusive right of assonbling parliaments; but by law he must assemble a parliament evory three ycars. Though head of the church, he cannot alter the established religion, or call individuals to account for their religious opinions. He cannot create any new office inconsistent with the constitution or prejudicial to the subject. He has the privilege of coining noney; but he cannot alter the standard. It has the powe: of pardoning offenilers; but he caonot exempt them from making compensation to the injured parties. Even with the military power he is not absolute, since it is declared in the Bill of

Ilights that a standing arony without the consent of parlinment is illegul. The king himeelf' cannot be arraigned; but if any abuse of power bo committed, those who wero either the advisers or tho instruments of the measuro nay' bo impeacied and tried before the Ilouse of Lords ; in which case it is of no avilil to plead the king's command, or to produce hits pardon. A dissolution of parliament does not abate an impeachment, neither can the roynl authority interpose to stay or suspend its course. Other restraints on the prorogative exist in the uncontrolled freelom of speech in parliament, secured by the Bill of Rights, and in the inportant provisions by which, during the reign of George III., the independence of the judges was established.
The Ilouse of Loris is composed of the lords spiritual and temporal of Eurglanl ; sixteen teinporal peers of Scotland; one archbishop, three bishops, and twenty-oight temproral peers of Ireland. The roll of the lords spiritual and temporal forming the llouse of l'eers, in tho session of 1833, exlibits 428 lorde, including the Catholic peers of England. They are thus distinguished:-

Rnyal dukes	Enris. 10.108	Peors of Plentland 10
Archbiniupe ${ }^{3}$	Vinentmbs..................... ds $^{\text {a }}$	of Irelant. ${ }_{\text {d }}$
Dinkes will English Illes...... 91	Birhops ${ }_{\text {, }}^{\text {g7 }}$	
Marquenses................... 19 1	Harons 181	Totai...... did

The Iords Spiritual are, for Englaal, two archbishops and twenty-four bishops; and for Ireland, one archbishop and three bishops; the English liold their seats for life, the Irish by rotation. 'The archbishops rank above all dukes except the princes of the blood; the bishops next below viscounts.

The Jords Temporal are not limited in number, it being the prerogative of the king to raiso to the peerage any of his subjects whem he thinks deserving. They consist of dukes, marquesses, earls, viscounts, and barens. The sixteen peers of Scotlanil are, by the articles of union, elected by the peers of that country from among themselves: the election is renewed for every parliament. The Peers of Ireland are, as established by the act of union, four lords spiritual sitting by rotation of sessions, and twenty-eight lords temporal elected for life by the peers of Ireland. As a supremo court of judicature, the Iouse of Lords exercises jurisdiction in civil causes upon appeals or writs of error from the inferior courts; and in criminal questions, when brought before thern, by presentinent of the House of Commons, in the form of an impeachment.
All members of parliament have the privilege for themselves and their menial servants of being freed from arrests or inprisonment for debt or trespass; but not from arrests for treasoln, tillony, or breach of the peace. The peers have other privileges peculiar to themselves. In nll cases of treason, felony, or misprision of felony, a nobleman is tried by his peers; but in misdemeanours, he is tried like a commoner. In judicial proceedings, a peer gives his verdict not upon oath, but upon his honour; he anewers also to bills in chancery upon his honeur; but when examined as a witness in the inferior courts or in the high court of parliament, either in civil or criminal cases, he must be sworn. Slander against a peer subjects the offender to very heavy punishment, being branded by the law with the term scandalum magnatum. Every peer, by license from the king, may make a proxy to vote for him in his absence, a privilege which cannot be held by a member of the lower house. All bills which may aficet the rights of the pecrage, are, by the custom of parliament, to originate in the Honse of Peers, and to suffer no changes or amendments in the lower house.

The House of Commons, as a distinet branch of the legislature, is the peculiar boast of the British conatitution. In the carliest times of which any record exists in English history, there appear to have been asscmblies of the nation, convoked to deliberate on ocensions of great emergeney; but it was not until (A. D. 1266) after the overthrow of Siinou Montfort, earl of Leicester, that the people were regularly summoned by the king to send representntives to the great council of the nation. The crown, little apprehensive of the formidnble eharacter which the IIouse of Commois was afterwards to assume, favoured ull the steps of its early progress, hoping by those means to cominterpoise the overbearing sway of the great barons, and at the same time to obtain supplies of money from the growing wealth of the people. The decline of the feulal system had for some time favoured such a course of policy. Baronics escheated by forfeiture or fir want of issue hat been subdivided; henee truse a class of men called minor barons, hodding by knight's serviec; and these being too numerons and too poor to be all called to parliament, and to rauk with the greater barons, were allowed to sit by representatives. Of these hnights, each shire was summoned to send two; writs to that ellect being addressed to the sheriffs of the several counties. The Cinque Ports probably aloout the same period sent their barons, and the cities and boronghs their burgesses. fa early times these representatives appear to have considered attendance in parliament tos " hardship rather than an advantage. It was expensive, …d, from the imperfect police then established, often insecure; and the summons, being always the prelute to a demand for money, was by no means welcome. With the granting of supplies, however, was necessarily combinul the right of petition, of statiog grievunces, and demumbing gurantees; and these conld not, by a sovereign pressed by rarious exigenciee, be always deniel.

The perty, an copyhold of the v except th be of min legislatu gymen, the crow bailiffs 0 county is
The q! the elect value of of the sat unless it to a bene

The election of the Commons never rested on nny principle of universal or even general suffrage, excepting perhaps that of knights for each shire. As the kings, lowever, could only attuin their objects by assembling the most powerful and influential of the people, they endeavoured to muko an equal distribution of the right of election, so fhr, at least, as related to property and influence, at the time when such a measure was alaptel to countervail the preponderunce of the barons. In after-times, when seats in parliument came to be appresinted as conferring a desirable privilege, and as constituting a poworfill check on the prerogntive of the monareh, it would have been irregular to have allowed to the king an arbltrary selection; and all parties allhered to the rights conferred on them by early git or long usage. 'This jermanence of the elective franchise, amidst the local changes that ensued in the courso of ages, gave rise to some very striking anomalies. Manchester, Leede, and several other towns, which within the last century havo become the commercinl capitals of the kingdom, did not send a single representative; while places once important, but now dwindled into insignificauce, returned each two members. Cornwall, at a period when the rest of the kingdon was poor and rude, enjoyed an abundent source of opulence in its tin mines, and retained a number of chartered boroughs, beyond all proportion greater than those of any other county. The places holding the right of election were in many instances so small, that what is called the patronage of them was easily acquired; and that patronage of course invelved the advantage of nominating one or both candidates for the representation. These were called close boroughs, or, more reproaclifully, rotten boroughs. Another anomaly consisted in a number of what were called treasury boroughs, the nomination of which rested with the administration. With the view of remedying these delects, tho Reform Bill was passed, in 1832, after long discuasion and opposition. By this bill fifty-six of the smallest boroughs were ontirely disfranchised, and thirty were reduced from two memhers to ono, while Weymouth and Melcombe Regis were reduced from four to two; n reduction was thus made of 144 members. In the rooin of these, twenty-two large places,-Manchester, Birmingham, Leeds, Sheftield, Greenwich, Sunderland, Devenport, Wolverhampton, Bolton, Blackburn, Bradford, Brighton, Ifulifux, Macelesfield, Oldham, Stockport, Stoke-upon-Trent, Strond, and four districts of the metropolis, viz. Narylcbone, Finsbury, Tower Hamlets, and Lambeth,-received each the right of electing two members; whilo twenty smuller towns,-Ashton-uuder-Line, Bury, Chatham, Cheltenham, Dudley, Fronie, Gatealhead, Hutdersfield, Kidilerminster, Kendal, Rochdale, Nalford, South slisiells, 'Tynemouth, Wakefield, Walsall, Warrington, Whitby, Whitehaven, and Merthyr Tydvil,-acquired tho right of nominating one member each. At the same time twenty-seven counties bequired tho power of sending each two additional members, and seven that of sending one additional member.
The representation of Great Britain now stands as follows:-

The qualifications requisite for a member of the House of Commons, in respect to property, are these:-A persor to be eligible as a member for a county nust have a freehold or copyhold, or must haye been mortgagee in possession at least seven years, of a clear estate of the value of 600 l . per annum; und to be eligible for a city, borough, or other place, except the universitics, of tho value of a00l. per annum. The person so qualified is also to be of mature age, and must take the oaths imposed as indispensable to a member of the legislature. Among the persons who cannot sit in the House of Commons aro judges, clergymen, persons holding certain offices under the crown, and persons having pensions under the crown during pleasure or for any term of years; sheriffs of counties, and mayors and bailiffs of boroughs, are ineligible in their respective jurisdictions; but a sheriff of one county is eligible as knioltt for another.

The qualifications required in electors differ, as they relate to comntics or to boroughs. In the election of county members overy member must have a freelold of the clear yearly vnlue of forty shillings, over and nbove all rents and charges payable out of and in respent of the same, and must have been in the aetual possession of it for twelve calendar month., unless it came to him within that time by descent, marringe settlement, devise, or promotion to a benefice in the chureh, or to in office. To these frecholders the aew bill has adied all
Vol. I.
persona holding property to the smount of ten pounda on copyluold, or on lenwe of not leas than sixty yeurs; and also those necupying lands or tenements for any period, at a reat of not less than 6OK. por annum.

Tho qualifications of electors for cities and horoughes wero, provionn to the present act, extromely various. The right of voting in different places revided varieurly in the treeholdorn, the curporatione, the burgago tenanta, and monetimes in the whole body of roedidont householders. The now act, however, admits only the simple qualification of occupying a thouse rated at not less than 10\%. per annum. Those, howevor, who were freemon under the former systom are still entithed to vote, although not powsessed of tho 10\%. qualiflcation, provided they reside within the borough.

The moxlo of proceeding to an election for a county and for a borough is nearly the same, On a dissolution of parliament, writa, pursuant to a warrant from the king, aro ismued under the great seal, addressed to the sheriffi of counties, directing them to summon the peoplo to elect two knights for ench connty, and one or two burgesses for each borough. To aupply a vacuncy whife parliament is sitting, tho warrant for the writ proceeds from the House of Commons. A certain day after, the date or teate of the writ ia fixed for the election to commence; and on that day the candidate or candidates are put in nomination, at the place appointed, in the presence of tho returning officer. In a county election, the sheriff or the under-sheriff is the returning officer; in a city or borongh, the mnyor or bailiff, If there be rival candidates put in nomination, tho returning officer calls on the voters fir a decision by a alow of the hande, after which the friend of nny candidnte, if dissatisfied, may demand a poll. The poll was farmerly taken at only one place, and might last for filteen days; but under the new act, the cities and counties are divided into districta, with separato bouths, or polling-places, nppropriated to each. The poll is allowed to continue only for two daya, which must be successive, and it must close at four o'clock in the afternoon of the recond day. Poll clorks attend, to recorl the names of the voters, and their accuracy is watched by inspectors nominated on each side. The returning officer who presides must, if refuired, oblige tho cundidutes to swear to their qualifications. At the elose of tho election, or on the following day, the roturning officer declares the names of the persons who have the majority of votes; and, unless a serutiny be demanded, ho forthwith makes hin return.
Tho duration of a l'arliament has, for more than a century, been extended to the term of seven years, from that of three, to which it was formerly linited. The king, howover, has the power of dissolving parliament at any time; he can also prorogue it at any time and for any period; and, as such prorogation conchudes the session, it puta an end to ull bills or other proceedings depending in either house, which must in tho next session bo again instituted, as ir they had never been begun. Either house, or both houses, may adjourn of their own accord, and, at their meeting again, may take up tho bills and other proceedings in the state of advancement in which they wero left. A scesion of parliament usually commences in January or February, and continues until June or July.

At the commencenent of every session committees of the whole houso aro appointed; one called the Committee of Supply, to consider the amount required by the erown for the service of tho nrmy, navy, ordnance, and other departments; and the other the Committee of Ways and Mcuns, to devise moles of raising, by taxes or loans, the sums which the house havo granted. In this committee of ways and means, the chancellor of the excheyuer, in an exposition technically called the Budget, demonstrates to the house in detail that the sums voted are sufficient to justify the committee in imposing such taxes, or annctioning such loans, as are then recommended. When the two committees are closed, the Houso of Commons pass a bill in which the grants made in the committee of ways and means are recapitulated, and directed to he applied to the services voted by the committee of supply, specifying the particular sums granted for ench service.
Parliament have the sole right of making, altering, and amending all tho laws of the kingdom, and by their authority alone can taxes be imposed or levied. An annual vote of tho House of Commons is requisite to maintain the land and sea forces at tho degree of strength which is every year fixed and determined upon. By these and other privileges, the annual meeting of parliament is secured without any express stipulation to that effect. By withholding these annual votes they may testify tieir disapprobation of the measures of government, and even compel it to change its ministers; indeed, tho principle has now become indisputable, that the minister who cannot rely on a majority of votes in parliament is disabled from conducting the affitirs of the nation.

The Privy Council is composed of persons, appointed by the king, who are bound by onth to advise their sovereign to the best of their judgment with all the fidelity and secrecy which their station prescribes. The king with the advice of his privy council publishes proclamations binding on the subject; but they are to be consonant to, and in execution of, the laws of the land. The power of the council is, to inquire into nll offences against the government, and to conmit the offenders to safe custody for trial in some of the courts of law; but persons so committed are entitled to their habeas corpus as much as if they had heen cominitted by an ordinary justice of the peace. The privy council is a court of appeal in plant-

Boox 1.
ENGL.AND.
347
ation and admiralty causen, which ariso out of the jurisdiction of the kingilom, as also in sasen of idhotcy and lunacy. When gueations arine between two coleniew rempecting the extent of their charter, "the king in council" exercises original juriadiction in thens, on the principles of tiexalal sovereignty; he also determines, on the samio principle, the valifity of claims to ull islund or province benaded upon grant from the king or hia ancentors. But from all the dominioun of the crown oxcepting Great Britain and Ireland, an appellate jurisdiction, in the last resort, ia vested in the privy conncil. The judicial authority in exercised in a committee of the whole privy council, who hear allegations and proofh, and make their report to his majesty in council, by whom judgment ia finaily given. The dissolution of the privy eouncil depenta on the pleasure of the king, who may at his own discretion diacharge any meinher, or the whole of them, and appoint another council. It centinuca six mentha aller the demine of the crown, milesa nooner determined by the succensor. Any naturalborn subject of England is capable of being a member of the privy council, taking the proper oatha for security of the government and teat for the aecurity of the church. A privy counsellor, if he be only a private gentlenan, is styled right honourable, and takea precedenco of all knights, baronots, anl the yeunger sons of all barons and viscounts.

A cabinet council in not, strictly apeaking, recognised by the conatitution, but by usage it is regarded as a boxly melected by tho soveroign to conduct the busiranse of the state; and the menbern composing it are held to be the responsible advisers of the "rown. The cabinet council namally consints of those ministers of state who exercise the mos impertant functiona of the executive authority; their number ansl aolection depond only on the king's plezaure; and each nember receives a summons for every attendance. Though this bow, an cornituting what in essentially the government, be composed principally of officers of utate; yet a privy connsellor selected by the king as a member of his cabinet council, may hold l : 3 seat as such, without accepting any particular office. The officers of state are those enulserated in the following lists:-

Lord Chanceltor.
Chlef Eecpelary. Forcen.
Allopmey.Genera
Sellicitor General.
That officer of stato who holds the appointment of First Lord of the 'Treasury, is by eminence the minister. In the event of a change of ministry, the person who is directed by the king to form snother, recejves an implied offor of that high office, and is generally placed at the hend of the administration. The first lord of the treasury, that is, the first of the fivo lords commissioners for executing the office of lord high treasurer, possesses most of tho powers formerly held by the lord high treasurer, and is , thetimes, though not invariahly, chancellor and under treasurer of the exchequer. Th: Ne ape aplicable to the general purposes of the state is, with a trifling exception, derived catirely from taxes. In the ceurse of the last century it increased to an amount unparalleled in the history of any other country; but in consequence of the wars in which Great Britain was engaged with little intermission until the year 1815, it did not keep pace with the expenditure, and an enormous debt was gradually contracted, the interest on which occasioned a correspondent incrense of taxation.
Since 1817, a deduction has been made of about niaty millions from the principsl of the debt, and about five millions from the annual charge on its account. This diminution has been principally effected by taking advantage of the fall in the rate of interest since the peace, and offering to pay off the holders of different stocks, unless they consented to accept a reduced payment.
The system of funding by which the debt has been rendered national, rests on the principle of assigning for the amount of a lonn, an equivalent amount of noosinal capital, bearing interest charged on the national revenue in half-yearly payments called dividends, or of terminable anmuities also payable half-yearly. Annuities granted for an indefinito period are called redecmable debt, being redeemable at the option of government when at par; those granted for a limited period are called irredecmable debt; they exist only for a certain number of years, and a portion of the capital is amnually alsorbed in the interest. The
funds are respectively designated according to the rato per cent. they bear; and the sharr which a public creditor holds in any of them, being transferable by sale under the name of stock, they constitute a kind of circulating capital.

The rato of interest granted on certain portions of the national debt, though nominally lower than that of five per cent. allowed by faw, has been rendered advantageous to the lender by being charged on a larger amount of nominal capital than tho sum borrowed. loans lave been made in funds at four and five per cenl., but the greater part has been made in a fund bearing three per cent. interest, on the nominal capital, and commonly called tho three per cent. consolidated annuities. The prices of these and other annuitics constituting the redeemable debt are rated according to the money value of one hundred pounds on such stock; terminable annuities according to the number of years' purchase which they are supposed to be worth.

Particular taxes werc, at an early period of tho funding system, appropriated to defray the interest of different descriptions of debt; but in the year 1786, the whole were collected into one fund, called the Consolidated Fund. The particular branches of revenue included in it were the customs (with the exception of a certain amount applicable to other public services), the excise, the stamps, the land and assessed taxes, und the post-office. To this fund are applicable moneys arising from other resources, specified in the unnual uccounts.

The following statement shows the progress of the national debt, from the Revolution to the present time:-

	Prinejual.	Interest.
Dible at the Revolution in 1689.	$\underset{(i x, 903}{f}$	$\underset{31, x 55}{f}$
Excess of debt contractad during the reign of Willian 111, above debt paid off.	15,730,439	1,971,097
Debt at the accession of Queen Aone, in 1702.	10,394, 702	1,310,94:
Debt at the accession of George I. in 1714.	54,145,363	3,351,354
Debt at the accesaion of George It. ia 1727.	52,092,238	2,917,551
Debt at the peace of Paris, in 1763.	138,865,430	4,852,951
Debl at the commeneement of the Anerican war in 1775	148,58:1,035	4,471,571
Debt at the conclusion of the American war in 1784	94,851,628	0,451,352
Deht at the commencement of tho Fronch war in 1713...................... Debl contrected during the French war.	2:21,350,148 4,08,412,320	$\begin{array}{r} 0,208,495 \\ 9,645,971 \end{array}$
Total funded and unfunded debt, 5th Janunry, 1817, when tho English and Irish Exchequers were consolidated.	E48,282,477	33,854,4611

A sinking fund for the gradual reduction of the debt lad been formed by Sir Robert Walpole in 1716, but had been so frequently encronched upon, that in the course of half a century, it had not extinguished above fifteen millions. Its revival formed part of the financial arrangements of Pitt in 1786. Out of the aggregate of the taxes applicable to the consolidated fund, government then pledged itself, that one million annually should be paill to the commissioners for the reduction of the national debt. To this annual million were added the amount of government annuities as they successively expired, and the interest of such stock as was annually redeemed. In 1792, Pitt obtained an act of parliament, declaring, that besides a provision for the interest of any loan that might be thencelorward contracted, taxes should be imposed for a sinking fund of one per cent, on the capital stock created by it, which should be exclusively employed in the lifuidation of such particular loan; and that no relief should be afforded to the public from the taxes which constituted the one por cent. sinking fund, until a sum ot capital stock, equal in amount to that created by the loan, had been purchased by it. That being accornplished, both the interest and the sinking find were to be applicable to the public service. It was calculated that, uniler the most unfivourable circumstances, each loan would be redeemed in forty-five years from the period when it was contracted. The provisions in this act, and in the former act of 1786, were altered by subsequent enactments; but, by an net passed in 1813, those alterations were rescinded; and it was provided first, that, as a sum equal to the debt of 1780, and bearing an interest nearly equal to the interest of that debt, was then vested in the hands of the commissioners, the debt of 1780 should be declared diseharged as soon as the interest of the delt redeemed should become fully equal to that debt; the sums appropriated to its interest and sinking fund applied to the charge of fiture loans, and no new taxes imposed for interest and sinking fund of those loans, till the same should amount to a sum equal to the interest of that considered as released. Secondly, that, instead of applying the one per cent, sinking fund on each loan to the separate discharge of that ban, the whole funds of that kind mited should

Boos

be ap
of all
quent
syste
passe
tund
their
quart
upon
existi
exper
On
in the
naval
to 5,0
partie
sum
to acc
borly,
the et
parlia
cease
truste
of the
the ba
the to
bank
Bes
navy
are is
public
and th
charge
raised
excher
necess
holder
and up
every
due to
ment.
by bill
the sur
plodge
receive
Nun
returns
warran
depend
of this
nents,
The
former
countr
system propric
This h
The
indeper
eignty
session
the exe
war, th
mission
be applied to the disclarge of the first centracted loan, and successively to the redemption of all the loans contracted since 1792; the whole sinking fund created in 1786, or subsequently, being continued for the redemption of all debts then existing or to be created. The system established by this act continued until March, 1823, when an act of parliament was passed, directing that on the 5th of April of that year, all payments out of the consolidated fund to the commissioners fer the reduction of the national debt should cease, all stock in their names be cancelled, and that in future the annual sum of five millions shall be payable quarterly to the commissioners, and set apart for the reduction of the debt, not to be infringed upon until the accumulation of this sum shall amount to one hundredth part of the debt then existing: at present, however, the sinking fund is declared to be the excess of income over expenditure, whatever that may be. In 1830 it amounted to $2,792,707 \mathrm{l}$. 14s. 0 g d.
On the consolidated fund are likewise charged the annuities for forty-five years, created in the year 1822, for the purpose of apportioning the burden occasioned by the military and naval pensions and civil superannuations (collectively called the Dead Weight), amounting to $5,000,000$., into equal amnual payments. The original intention was to contract with parties who might be willing to engage to pay into the exchequer within forty-five years the sum wanted, for a fixed amount of annuity for forty-five years; but no capitalists being found to accept these terms, it was agreed, instead of assigning the fixed annuities to any corporate body, or to private individuals, that they should be vested, namely, $2,800,000$. terminable at the end of forty-five years, and charged upon the consolidated fond, in trustees appointed by parliament; payable at the exchequer half yearly (viz. October 10. and April 5.), and to cease in April, 1867. In Mareh, 1823, a portion was sold to the Bank of England by the trustees, on condition that the bank should undertake the payments to be made in pursuance of the act, from the 5 th of January, 1823, to the 5th of January, 1868, upon the transfer to the bank of an annuity of $585,7401$. , to commence from the 5 th of April, and to contimue for the term of forty-five years. The total amount of payments undertaken to be made by the bank in consideration of the said annuity is $13,089,419 l$.
Besides the funded debt, there is generally a considerable amount in exehequer bills, navy bills, and ordnance bills, denominated the unfunded or foating debl. Exchequer bills are issued in consequence of acts of parliament, for obtaining part of the noney required for public service. They are sometimes granted on the credit of supplins for the eurrent year, and the produce of the annual taxes is in this way often anticipated. Sometimes they are charged on the supplies of the following year; and in time of war, a large sum to be thus raised is generally authorised by a vote of credit previous to the rising of parlianent. New exehequer bills are often issued in discharge of former ones; and it has frequently been found nocessary to fund them, by glanting capital in some of the stocks on certain terms, to such holders as are willing to accept them. Exchequer bills are issued for 100l., 500l., $1(0) 01$. , and upwards, but none for less than 1001. ; and they bear interest at two-pence a day for every 100l. After being in circulation they are received in payment of taxes or other debts due to government, and sometimes they are paid off parsuant to previous notice by alvertisement. The daily transactions between the bank and the exchequer are chiefly carried on by bills of 10001 . each, which are deposited by the bank in the exchequer, to the amount of the sums received by them on account of government; they remain in the exchequer as pledges or securities, of course bearing interest until the advances on which the bank first received them are paid ofi:*

Number of persons deriving incomes from the funds. It appears from the regular returns, that in 1830 (and the number has not sensibly varied since), 274,823 dividend warrants were issued to persons deriving incomes from the funds. The number of persons dependent upon the funds for support is, however, much greater than appears upon the face of this aecount: for the dividends upon the funded property belonging to public establish1ments, are paid upon single warrants, as if they were due to so many private individuals.

The customs and excise form the two main branches in the collection of the revenue; the former reluting to goods imported, tho latter to those produced and manufactured within the country. Among the accomuodations to trade, establisled by Mr. Pitt, is the bonding system, by whicir the goods of merehants are warehonsed under the joint enstody of the proprieto: and of government; payment of duty not being demanded until a sale is effeeted. This has been also extended to British spirits.

The navy is the foree on whieh Great Britain mainly relies for maintaining her own independence and her ascendency over foreign nations. By it she has aequired the sovereignty of the seas, and the advantages, which that sovereignty confers, of securing her possessions in the most distant quarters of the globe, of protecting her commerce, and sustaining the exertions of her armies during war. During the most active periol of the last maritime war, the number of seamen in employment amounted to 140,000 ; and there were in conmission 160 sail of the line and 150 frigates, with 30,000 marines. The estimate for $18: 31$

The Court of Exchequer has jurisdiction both in law and equity. In it are tried all questions relating to the revenue, and, by fict ins of law, various civil actions and personal suits. The judges are four; a chief baron ar ithres puisné barons.

Trial by jury, an inatitution coeval with the origin of the constitution, and justly valued by the people as the bulwark of their liberties, ia employed in all cases between the crown and the subject, in all criminal cases, and in all those for which damages are awarded. The jury in Eingland consists of twelve persons, whose verdict must be delivered by their foreman aa unanimous, or, in the technical phrase, as agreed upon.

Courts of Assize and Nisi Prius are auxiliariea to the auperior courts at Westminster for the trial of causes in every county in England, twice a year in most countics, once a year in others. The countiea are comprised in six circuits: 1st, the Home Circnit ; 2d, the Midland; 3d, the Norfolk ; 4th, the Oxford; 5th, the Northern; and 6th, the Western Circuit. These circuits are supplied by the twelve judges, two being appointed to each. In these courts, the senior or superior judge generally sits on the crown side for the trial of criminale, and the junior or inferior judge on the nisi prius aide, for the decision of cases of property.

A Court of General Quarter Sessions of the Peace, held in every county once in every quarter of a year is the most important of the minor tribunals. Its jurisdiction extends to all felonies and trespasses; but capital felonies are usually remitted to the assizes. The sheriffs tourn is also a court of record, held twice a year at some place within the county. The court-leet or view of frank-pledge is a court of record held once a year, within a particular hundred, lordship, or manor, before the steward of the leet. It is the King's court granted by charter to the lords of those hundreds or manors. In aid of these, and other institutions tending to the maintenance of order and tranquillity throughout the country, subordinate magistrates are appointed in each county, under the name of justices of the peace. They hold special commissions from the king, and are empowered to suppress riots and affrays, to take eecurities for the peace, and to commit felons and inferior criminals. Their jurisdiction is enforced by constables and other subordinate officers.

Secr. V.—Productive Industry

The productive indusiry of England, at this moment, far surpasses that of any other country, either ancient or modern. Her fabrics clothe the most distant nations; her vessels traverse alike the polar and equatorial seas. The downfall of the fcudal power; the civil and social advantages which the people acquired under the last Henries; and, above all, the spirit of enterprise diffised among them under Elizabeth, gave a great impulse to commeren and industry. It was not, however, till the era of the Revolution, that the nation entered upon that grand career of prosperity, in which she has ever since proceeded with accelerated activity.

Agriculture, as the greateat and most essential seurce of human wealth and comfort, must always claim pre-eminence over the other branches of human industry. For two or three centuries the English tenantry have been an independent and substantial race. Such had been the progrese of agriculture, that, even in the middle of the last century, England had become a regular grain-exporting country. Still, fifty years ago, the practice of this important art was comparatively cumbrous, costly, and unproductive. Since that time, nobles and statesmen have vied with each other in their zeal for the promotion of agriculture. Prizes, exhibitions, and other institutions calculated to excite a spirit of improvement, have been established on a great scale. Even royal patronage was extended to this most useful of arts, and a board waa formed under public anspices for its promotion. An extraordinary impulse was also given by the acarcity at the close of the eighteenth century; when the continental ports were closed, and grain rose to an unprecedented price, from which it has aince been reduced, indeed, but not to its former rate. The old routine system was, after that crisis, broken up, and every exertion made to augment the products of the soil. Commons were enclosed, marshes drained, grasses of the most useful species cultivated, and every process that multiplied experiments had proved to be advantageous, introduced. Particular attention was beatowed in improving the breed of cattle and sheep; and for the accomplishment of this purpose, the best species were imported from abroad. At the sarne time, economical farming was greatly studied; the disproportionate number of horses and oxen was reduced; and machinery, particularly the threshing-machine, came into general use. Thus a great augmentation took place in the produce of the soil; still greater in the profit of the farmers, and much the greatest in the rent of the landlord, which, in many instances, was more than tripled. The reduced prices, however, which have ultimately been the result of this augmented production, have, at last, rendered it difficult to suppor the great advance in this last particular.
The natural fertility of England is not equal to that of the countries in the south of Europe. IIer pasturea, however, are richer; and her soil is capable of yielding all the valuable kinds of grain in abundance, and of good, if not superior quality. These natural advantages, improved by her extraordinary industry, raise the agricultural products of England to a much greater amount than those of any other country in Europe.

The surface of England is thirty-seven millions of acres, About half a million is occupied by roads; and if we also make allowanco for waters, natural and artificial, \&c., we may probably have to deduct two millions from the part which forms the proper subject of agriculture. Of this, half is under the plough, and half devoted to pasturage; upwards of threc millions are in wheat; nbout three millions in onts and beans, and between two and three millions in barley. About $300,000 \mathrm{cewt}$. of hops, of the value of $£ 200,000$, and $4,400,000$ gallons of cider, are annually produced.

The manufactures of Britain, still more than even the immense products of her agriculture, have astonishel tho world, and raised her to a decided superiority over all other nations. This distinction she has attained, not so much by their extreme fineness; for, as to this particular, France excels not only in silks and cambrics, but even in woollens; and British parcelain does not equal that of Dresden. But she stands unrivalled in the immensity of useful and valuable products, calculated for the consumption of the great body of mankind; and above all in the stupendons exertions made in contriving and constructing the machinery by which they are produced.

The woollen munuf. ture is the old staple of the country. As soon as England began to exercise any kind of industry, her first aim was to manufacture her own wools, instead of leaving this operation in the hands of the Flemings. The fabric began in Kent and Sussex; but soon spread, and fixed itself in the interior districts; that of coarso woollens in the West Riding of Yorkshire, and that of the finer cloths in Gloucestershire und Wiltshire. In 1800, the total value of the fabrics was $20,000,000 \mathrm{l}$., of which not much less than half was exported. In the courso of the century it has continued increasing, though not with the same rapidity as some other fabrics. The quantity exported has not, however, been augmented in proportion. In 1802, it exceeded 7,000,000l; but in 1832 was only $5,240,000 l$. This manufacture, however, depending chiefly upon home consumption, is less liable to viciss:tude than those which have their principal market in foreign countries.

The wool is partly produced in Britain, partly drawn from abroad. English wool is divided into long and short. The former was long considered as exclusively adapted to worsted stuffs; but the recent improvements in machinery have enabled the manuficturer to proluce these stuffs almost equally well from shorter wool. The short wool is fitted for cluth and hats; but all that is produced in England is of secondary fineness. Efforts were made, about the close of the last century, to introluce the merine breed from Spain, and not without success; but the flesh being bad, the farmers gave it up, and, devoting themselves to the improvement of the carcase, have allowed the wool even to degenerate, though the increased quantity is supposed to indennify them. The best short wool is that of Sussex (Southdown) and Norfolk; the best long wool that of Lincoln. The number of short-woolled sheep throughout England, in 1898, amounted to about 14,850,000, that of long-woolled tc $4,150,000$; and the produce was 264,000 packs of long, and 120,000 packs of short wool; to which might be added 69,000 packs of lamb's wool, and 9000 for Wales; making in all 463,000. The defect of English wool renders it necessary to import a large quantity from abroad. The fleece chiefly valued is that of the merino, long confined to Spain: and Spanish wool, in the early part of this century, was introduced to the extent of $0,000,000 \mathrm{lbs}$, annually, but in 1827 it fell short of $4,000,000$ lbs., and in 1832 did not exceed $2,626,000$ lbs. It has been supplanted by the wool of Saxony, and other parts of northern Germany, where the merino breed has been introduced and propagated with the greatest success. The importation from Germany, which in 1810 was only $778,000 \mathrm{lbs}$, was in 1830 so high as $26,073,000 \mathrm{lbs}$, though in 1832 only $19,832,000 \mathrm{lbs}$: New Holland and Van Diemen's Land in that year furnished $2,377,000 \mathrm{lbs}$. of very fine wool; and the supply is increasing. The entire imsport amounted in 1830 and 1831 to about $32,000,000 \mathrm{lbs}$; in 1832 to ouly $28,140,000 \mathrm{lbs}$.

Tho annual value of the woollen manufacture appears to be about $20,000,0001$. sterling, and the persons employed between 400,000 , and 500,000 . There were exported, in 1832, 390,661 pieces of cloth; 23,453 picces napped contings, duffels, \&cc.; 40,984 pieces of kerseymeres; $\mathbf{3 4 , 8 7 4}$ pieces baize; $1,800,714$ stuffs or worsted; $2,304,750$ yards flannels; 1,631,810 yards blanketing; 690,042 yards carpeting, \&c. There were exported also $4,109,000 \mathrm{lbs}$. of British wool, and $2,204,000 \mathrm{lbs}$, woollen yarn.
The cotton manufacture is oí muel more recent introluction, and for a long period the progress of this branch of :ndustry was slow. In 1760, the value of the fabric was only $\mathbf{2 0 0 , 0 0 0 1 .}$. In 1767, James !iargreaves, a common Lancashire weaver, invented the spinning jenny, by which at first 8 , and finally 120 spindles were moved hy a single spinuer. IInrgroaves became exposed to the persecution of the working people employed in this operation: was olliged to flee to Nottingham; nad died in poverty. Richard Arkwright, a harber of Nottingham, invented the water-twist, or "perpetual twist," spiming frame, in which the whole process was performed by the machine, and the workmen had only to supply the material ond witch its progress. Samuel Crompton, in 1775, produced the machine called the mule, a combination of the two preceding, which it soon superseded both in the finer and more valuable articles.
That machinery should weave as well as spin, was necessary to consummate the triumpl?

Book

of art vented and at the las mense and 5, pounde The mentio and oth brough the prit The in 1808 is that lina.
Island
from th
25,805, sumptio dress, a lent. ' is about
The paid in whe are not muc was 13, descripti and crap veteens, chiefs, \& and yarn

The w most dec of a stap field, per solid and while Bi which, th two grea the same metals is ware and tons; val
The sil the revoc country. ploys abo country, facture w $5,000,000$ importatio increasing 1,814,000 from Itrly chiefly to
In the vanees, an in Stafiori but it was elegance a are the oh white war finer produ cup passes
Vol. I.

Book I.
ENGLAND.
of art. This was accomplished by the Rev. Mr. Cartwright, a clergyman of Kent, who invented a machine by which eloth was woven ; but the first trial was unsuccessful as to profit, and an impression long prevailed that cottons could be wovon cheaper by the hand. Within the last few years, however, the system of power-loom weaving has been adopted to an im. mense extent; it is estimated that there are in Britain 80,000, absorbing $10,000,000 l$. of fixed and $5,000,000 \mathrm{l}$. of floating capital, employing 160,000 operatives, and working up $124,800,000$ pounds of cotton.
The steam-engine, the moving power, the greatest of all these diseoveries, remsins to be mentioned. Machines moved by horses and water, originally employed in insnufacturing and other processes, were cumbrous, expensive, snd often unmanageable. The steam-engine, brought to perfection by Watt, became at once the moving power of all this mschinery, and the principal cause to which its vast results may be attributed.
The cotton wool imported into Britain, which in 1781 little exceeded $5,000,000 \mathrm{lbs}$, rose in 1809 , to $93,000,000$; in 1817, to $126,000,000$; and in 1832, to $288,000,000$. The finest is that ealled Sea Island, a name given to what is grown on the cosst of Georgis and Carolina. The bowed Georgis, produced in the interior, is not of equal value. Next to the Sea Island rank the West India and Brazil. Of the quantity imported in 1831, there came from the United States, 219,333,000 lbs.; from Brazil, 31,695,000; from the Last Indies, $25,805,000$; from the West Indies, 2,401,000; and from Egypt, 7,714,000 lbs. The consumption of printed cottons has diminished in England, silk being preferred as an ornamental dress, and the use of cotton, printed or dyed previously to weaving, having become prevalent. The demand abroad, however, is still extensive, so that the amount of pieces printed is about $4,500,000$, giving employment to 100,000 persons.
The produce of the cotton manufacture is $34,000,000 l$. anne: lly. Of this $18,000,0001$. is paid in wages to 800,000 persons employed in its different brat hes; and allowing for those who are dependent upon them, and for the subsidiary employme.ts, it aflords subsistenee to not much fewer than $1,400,000$ people. The value of cotton manufactures exported in 1831 was $13,282,000 l$.; of twist and yarn, $3,975,000 l$. They were chiefly of the following descriptions:-Calicoes, cambric muslins, dimities, \&e., 299,597,000 yards; lace, gauze-nei and crape, $48,164,000$ yards; cotton and linen, mixed, $1,668,000$ yards; velvets and velveteens, 404,000 yards; counterpanes and quilts, number, 23,000 ; hosiery, shawls, handkerchiefs, \&e., 536,000 dozen ; tapes, bobbins, \&e., 99,000 dozen ; thrend, $1,105,000 \mathrm{Jbs}$; twist and yarn, $48,098,000 \mathrm{lbs}$.
The working in metals is also one of the branches in which England has attained to a most decided pre-eminence. About the middle of the sixteenth century it rose to the rank of a staple; and within the last half century it has greatly increased in importance. Sheffield, perhaps the original seat of the trade in England, is still distingnished for the most solid and useful articles, knives, grates, and their appendages, agricultural implements, \&c.; while Birmingham adds to these utensils a variety of small articles, ornaments, and toys, which, though minute in detail, smount to a vast value in the aggregate. Each of these two great cities forms, as it were, the centre of a large circle of population, all employed in the same manner. The number of persons enployed in the product and manufacture of metals is estimated st 253,000 , and the entire produce st $17,000,000$. The export of hardware and cutlery in 1831 amounted to 16,799 tons, value 1,620,000l.; in 1832, it was 15,294 tons; value, $1,433,000 l$.

The silk manufacture was of late origin in England; but it was considerably improved by the revocation of the edict of Nantes, which drove a number of French weavers into that country. It is established in a quarter of the metropolis, called Spitalfields, where it employs about 95,000 men: at Macelesfield, Manchester, Coventry, and in other parts of the country, the number occupied in it may amount to 40,000 . The entire value of the manufacture was estimated some years ago at $4,000,000 i$.; and may now, probably, be between $5,000,000 l$. and $6,000,000$ l. Notwithistanding the removal of the prohibitory duties on the importation of foreign silks, the British manuficture has maintained its ground, and gone on increasing. The importation of raw and thrown silk in 1832 was $4,224,000 \mathrm{lbs}$: of which $1,814,000 \mathrm{lbs}$. were from the East Indies and China; 1,006,000 lbs. from France; $564,000 \mathrm{lbs}$. from Italy ; and $458,000 \mathrm{lbs}$. from Turkey. The exports amounted in 1832 to 525,0000 ., cliefly to North America and the West Indies.

In the manufacture of earthenware and porcelain, England has of late made vast advances, and brought its various products to a high degree of beauty and elegance. Burslem in Staflordshire had, for centuries, been noted for its fubrication of a coarse kind of ware; but it was reserved for Mr. Wedgwood to earry this art to perfection by a combination of elegance and cheapness. Fine white clay fron the south-western counties, and ground flint, are the ehief materials of this celebrated ware, which hears the name of its inventor. The white ware of Derby and the porcelain of Woreester, though on a smaller scale, are still finer productions. The latter is composed of a mixture of 13 different materials, and each cup passes through 23 hands. Earthenware pays no duty, so that its amount cannot be offiVol. I.

30*
2 U
cially ascertained; the export, however, has diminished from nearly 700,000l. in 1815-16, to only $490,000 l$. in 1832.

Hides aro imported from all quarters of the world; the entire quantity in 1824 was $300,000 \mathrm{cwt}$., value $700,000 \mathrm{l}$. In 1830 only $225,000 \mathrm{cwt}$. were imported. In that year the hides tanned or otherwise manufactured amounted to $46,800,(100 \mathrm{lbs}$, value $3,900,000 \mathrm{l}$; and us the value of the finished article is supposed to be three times that of the material, this value will amount to nearly 12,000,000l. The shoes made in England are estimated at $0,800,000 l$, and the whole inanufacture employs about 250,000 persons.

Beer, glass, soap, and candles are branches of production which empley a large capital and numerous workmen, and yield a yearly amount of great value. In London the quantity of malt liquor annually brewed is $\mathbf{1 , 7 0 0 , 0 0 0}$ barrels, of which 38,000 are exported. This is chiefly porter, a liquor peculiarly appropriate to London, and for which she is famous throughout the world. In all Englanl, there were brewed, in 1829, about $7,400,000$ barrels, of the value of upwards of $22,000,000$.; without including $1,500,000$ barrels of table-beer. Can-illes.- In 1829, the manufacture amounted to $110,000,000 \mathrm{lbs}$, which would make a value of $3,208,000 \mathrm{l}$. Soap. - The manufacture, in 1899 , was $100,000,000 \mathrm{lbs}$. which would umeunt to $3,175,000$.

The linen manufacture is that in which England is most deficient; fer theugh she is supposed to produce the value of $1,000,000 l$. a year, this does not supersede the necessity of large imports from Scotland and Ireland. Of late, the elegant manufacture of lace has been carried to great perfection by means of bobbinet frames. By this manufacture a value of $160,000 l$. in silk and Sea Island cotton is wrought into lace, estimated at $1,890,000 l$, and omploying 208,000 persons. Distilled liquors or spirits, too, though they produce a revenue of $2,000,000$., are neither equal in quality nor amount to those of the sister countries of Scotland and Ireland, whose produce, if it had not been excluded by national jealousy, would probably by this time have driven that of England eut of the market. The quantity distilled in 1831 and 1832 averaged $7,350,000$ gallens.
Mines form one of the most copious sources of the wealth ef England. The useful metals and minerals, those which afford the instruments of manufacture and are subservient to the daily purposes ef life, are now drawn from the earth more copiously there than in any other country. Her most valuable metals are iron, copper, and tin; her principal minerals are ccal and salt.
Iron, the material of so important a class of manufacture, abounds in England, particularly in Wales, Staffordshire, and Derbyshire. While it was supposed, hewever, that the blast firnaces could be composed only of charcoal, the limited supply of wood depressed the produce, and in the middle of the last century, the iron made in England frem fifty new furnaces did not exceed 17,000 tens. It was then found, however, that, furnaces filled with coke might be heated to the same degree as those of charcoal, and the inexhaustible supply of coal might be employed in bringing the iron mines into value. Hence, the increased production has been astonishingly rapid. In 1796, it amounted to 125,000 tons; in 1806, to $: 50,000$ tons; in 1830 , it was 680,000 tons, werth $5,100,000 l$; and which the additional labour of forming it into bar iron may raise to $6,300,000 l$. The export amonnted in 1832 to about 150,000 tons, worth $1,120,000$. It is exported chiefly in the forms of bar iron, to the amount of 74,024 tons; bolt and rod iron, 6938; pig iron, 17,566; cast iron, 12,495; hoops, 9417; nails, 4347, \&c.

Copper, also, has risen to importance in the course of the last half century. It is found chiefly in Cornwall, to the amount, in 1832, of 11,947 tons, and is carried thence to Swansea, to be smelted with the coal of North Wales, which itself produced 1320 tons of copper. The total produce is 14,449 tons, which, at $90 l$. per ton, will be $1,300,410 l$.

Tin, a rare and peculiar metal, is found only in Cornwall and part of Devon. So early was it known, that we find the British Islands first recognized by its name, and it is enumerated among the articles with which the Carthaginians supplied the markets of Tyre. As Cornwall, with the exception of the Indian island of Banca, is the only tract known to proluce tin in large quantities, there is a considerable export to most countries of Europe, particularly France and Italy. The annual produce of the mines amounts to $83,000 \mathrm{cwt}$; of the value of $115,000 l$.

Lead is found in Cumberland, Derbyshire, and Northumberland, to the supposed amount of about 16,000 tons annually; which, at $20 l$. per ton, will be worth $320,000 l$. In 1833 , the British lead exported was 13,898 tons.

Coal, the most valuable of all the mineral substances from which Britain derives her prosperity, exists in almost inexhaustible quantities in the counties of Northumberland, Derby, and Statfori, and in that of Glamorgan in South Wales. It fuses the metals, produces the steam which sets the machinery in motion, and is, indeed, instrumental in bringing almost every substance into a usefil and merchantable form. By superseding also the necessity of extensive plantations for fuel, it enables a much greater proportion of the soil to be devoted to cultivation. The Northumberland and Durham field has been estimated at 732 square miles, the South Wales field is 1200 ; which, allowing for the average depth, will.

Soom 1.
ENGLAND.
it is calculated, be sufficient to supply all Fingland for $\mathbf{1 7 0 0}$ or 2000 years. At all events, it seems cortain that she is secure for many centuries against any deficiency. The quantity uhipped from Durham and Northumberland is stated at $3,300,000$ tons; and the whole employed as fuel, and in the manufactorics and mines throughout England (adding 700,000 exported to Ireland), at not less than $\mathbf{1 5 , 5 0 0 , 0 0 0}$ tons. Tho mines on the Tyne employed 8491 persons underground, and 3463 above; those on the Wear, about three-fourths of this number: the conveyance of these coastwise employs 1400 vessels and 15,000 men; while, in London, 7500 whippers, lighter-men, factors, agents, \&c. are engaged in landing and distributing it. Taking into view the whele of Great Britain, Mr. M'Culloch considera that the ceal trade will give occupation to not less than $\mathbf{1 0 0 , 0 0 0}$ persons. In 1829, the total quantity shipped was $6,224,125$ tons; of which, $5,014,132$ were sent coastwise; 840,246 , to Ireland; 128,803, to the British colonics: $\mathbf{3 5 6 , 4 1 0}$, to foreign countries.
Of salt, Britain possesses an immense supply. The finest and most valuable kind is the rock salt, drawn from mines and from brine springe in the county of Chester. The aalt is refined by being boiled along with the brine of the springs, and is then called white salt. The annual produce is $15,000,000$ bushels, of which about $10,000,000$ are exported, chiefly to North America, the Netherlands, and Ruasia.
The cemmerce of Britain, like her manufacturing industry, is now completely without a rival: The exports of Britain consist almost wholly of her manufactured produce. Cotton takes the precedence of all others. In 1830, the quantity exported, including twist and yarn, was valued at about $15,000,0001$. sterling; being two-fithe of the whole exportation. They are sent to every country, but most especially to those from which the raw material is imported. The United States take an immense quantity; the Weat Indies and Brazil import largely; the market in the independent states of South America is daily enlarging, and they make their way in increasing quantitics even into the Last Indies. In Eurepe, Portugal and Italy are extensive markets; and though studiously excluded from Spain, large consignments are sent to Gibraltar, evidently with a view to clandestine introduction. Germany takes a great quantity both of manufactured goods, and of yarn and twist for her own manufacteries. The woollen manufacture has a different and less extensive range. The United States, the greatest market, take three-eighths of the whole; after which rank the East Indies, Russia, Portugal, and Germany. The wrought metals find a great variety of markets. Of bar iren, 7000 tons, and cepper 50,000 tens, go to the East Indies. Ireland takes 7000 tons of bar, 700 of cast, and 2300 of wrought iron. The West Indies take largely both iren and copper.*
Among the imports, a large portion consists of raw materials, brought in vast quantities to be manufactured, in many instances for the use of the regions from which they come. Under the head of manufactures, we have enumorated the principal of these articles, and the countries from whence imported. They are chiefly cotton, wool, silk, and hides; to which may be added, bark, ashes, and barilla; cochineal, indigo, madder, and other dyeing stuffs. Although grain and provisions are now produced in sufficient quantity for internal consumptien, there is much want of the raw prodnce of uncultivated land. Under this head a prominent rank may be asaigned to timber and naval stores. Fir and oak timber, and staves, are brought chiefly from North America; masts, deals, and deal ends, from Norway and Russia; oak plank from Prussia.
The import trade of consumption is, after all, the most extensive: it consists chiefly in obtaining from southern regions, and those warmed by trepical suns, the accemmodations and luxuries which cannot be matured under a less genial sky. Wine would have been introduced to a very great extent, had net its exclusion been made a prime ebject of fiscal regulation. This, however, has been so potently applied, that the use of wine has not increased in any propertion to the general wealth of the nation; and it has been forced from the nearest and hest wines of France, to the less palatable produce of Spain and Pertugal. Brandy, also, still accounted the fiucst of spirituous liquors, forces itself, to a certain extent, into the circle of ianports. But the saccharine and aromatic products of the tropical plains form the basis of an immense commerce, which even the adherents of the mercantile system cherish, under the idea that much of it is carried on with English colonies. The leading articles are sugar, tea, coffee, tobacce, and spices. Notwithstanding the immense cotton mamufacture of Britain, the piece goods of India, by their peculiar excellence, still find their way into the country.
The shipping by which so extensive a trade is carried on, must necessarily be very cxtensive. In 1663 it was only 95,000 tons. It rese in 1701 to 273,900 ; in 1751, to 609,000 ; in 1792, to $1,186,000$. The vessels belonging to the British empire at the end of 1834, were $\mathbf{2 5 . 0 5 5}$, of $2,716,000$ tons, and navigated by 168,061 men. The entrics and clearances for the coasting trade, in 1832, amounted each to $8,500,000$ tons. Besides these, in the same year, 4546 foreign vessela, comprising 639,979 tons, and navigated by 35,399 men, entered the ports of Great Britain.*

- See Slatistical Tables, al end of Chap. IV.

The fiaheries do not seem to have been so much cultivated in Britain, as the hardy entorprise of the nation might have led us to expect. The whale fishery was considered so valuable, both for its products, and as a nursery for seamen, that, till 1924, a bounty was granted in proportion to the tonnage of the vessela employed. They havo found their way to the antarctic polar sea, in search of in oil which, though not superior for burning, is better adapted to the purposes of manufacture, than that drawn from the arctic regions. This fisbery, within the last twelve years, has conaiderably diminished both in amount and in the value of its products, owiug to the use of gas, the greater cheapness of rape-oil for manufacture, and also to a larger part of the trade being ongroseed by Scotland. In 1829 there sailed from England only 41 vessels, of 13,760 tons burden; which brought in 4912 tuns of oil, and 289 tons of whalebone. The following year was still more deficient, owing to the disasters enceuntered by the vessels engaged in the fishery.
Of the fisheries in the British seas, that of Herrings, the most important, belongs almont entirely to Scotland. Noxt to this ranks that of Pilchards, on the coast of Cornwall and part of Devon. The fiah is found there in euch immenee shoals, that it forms the chief food of the people during the greater part of the year, and is alse largely salted for exportation. The value annually taken is reckoned at 50,0001 . or 60,0001 .

The interior navigation of England is justly regarded as one of the prime sources of her prospority. Till the middle of last century, the making of canals did not enter into the system of English economy. In 1755 was formed the Sankey canal, a line of twelve miles, to supply Liverpool with coal from the pits at St. Helen's. The example then eet by the Duke of Bridgewater gave a general impulse to the nation. Since that time, upwarde of $30,000,000$. sterling have been expended in this object. Twenty-one canala have been carried across the central chain of hills, by processes in which no cost has been spared; all the resources of art and genius have been employed; every obstacle, however formidable, which nature could present, has been vanquished. By locks, and by inclined planes, the vessela are conveyed up and down the most rugged steeps; they are even carried across navigable rivers by bridges. When other meana fail, the engineer has cut through the heart of rocks and hilla a subterraneous passage. Of these tunnels, as they are called, there are said to be forty-eight, the entire length of which ia at least forty miles.
The Duke of Bridgewater formed the plan of opening a communication between Manchester and his extensive coal-mines, at Worsley. The obstacles were so great, both from nature and art, that the attempt must have proved abortive, had he not been seconded by the genius of Brindley, who, from a common millwright, raised himself to be the first engineer of the age. The canal was carried through vast excavations, made partly in the interior of the mine itself; it was led by aqueducts over a succession of public roads, and over the river Irwell by a magnificent bridge, which left space for vessels with their sails apread to pass beneath. By deep cuttings, and by artificial mounda, in some places supported upon pilee, a level of upwards of fifty miles was completed. The Duke expended, in this undertaking, hia whole fortune, amounting to $350,000 \mathrm{l}$; and its failure would have left him destitute: but, as it immediately enabled him to reduce the price of coal in Manchester to one half, the trade in a short time yielded twenty per cent. upon his outlay, and rapidly produced an immense income.
The Grand Trunk Canal, an undertaking on a still greater scale, formed under the patronage of the Marquess of Stafford, by a course of ninety miles through Staffordshire, connects the Trent with the Mersey, Liverpool with Hull, and the eastern with the western coasts. It gave animation to the trade of all the districts through which it passed, particularly that of the Potteries, and served as a basis for various canala and railways branching from it. From a point near the commencement of the Grand Trunk, the Ellesmere canal has branched far into Wales, and conveys to Liverpool the mineral and agricultural produce of that principality. From its eastern termination, large branchea have been extended to Derby, to Nottingham, to Grantham, and other considerable towns.
The Leeds and Liverpool Canal, by a more northerly line of one hundred and twenty miles, connects the Mersey with the Aire, a tributary of the Ouse, and thus enables Liverpool and Hull to communicate by another line across the great cloth-manufacturing districts. An important branch of this canal is carried to Lancaster, and on to Kendal.
From the vicinity of London the Grand Junction, at an expense of two millions, was carried by a line of ninety miles to the neighbourhood of Coventry. Near Daventry, the Grand Union strikes off, and joins the Grand Trunk, thus securing for Iondon an inland communication with Liverpool, and with all the great manufacturing cities of the West. A great system of canals was formed round Birmingham, of which one result was to connect the Grand Trunk with the Severn, and thus to form a connexion between all the four great rivers of England, and all its commercial and manufacturing cities. A canal had already been formed from Coventry to Oxford. That of the Thames and Severn joined these two main rivers at the highest navigable point of the former. The Gloucester and Berkeley is a lateral canal to the Severn, by means of which Gloucester is connected with the Bristol Channel by a direct line. The principal canala to the south of the Thames are the Kennet

The
from v
2,300,0 was pro Spanish At the mencem followin

Englan Wales. Army, elve miles, set by the apwards of e been cared; all the tble, which the vessels 8 navigable rtt of rocks e said to be

ween Man-

 , both from nded by the st engineer interier of er the river read to pass upon piles, ndertaking, h destitute: ne half, the roduced an under the taffordshire, he western ed, particubranching mere canal ral produce xtended toind twenty bles Livergg districts.
ss, was car, the Grand i communiA great onnect the four great ad already these two Berkeley is the Bristol he Kennet

Book I.

ENGLAND.

and Avon canal, and the Berks and Wilts canal, through which a commmication is formed from the Thames near Abingdon to the cities of Rath and Bristol. The total length of canaly in Great Britain, exclualing those under five miles, is 2581 miles.
Railways form snother contrivance, by which the conveyance of goods is wonderfully facilitated, by causing the wheels to roll over a smooth surface of iron. Railwnys were at first used only on a small scale, chiefly in tho coal-mines round Newcastle, for conveying the mineral from the interior to the surtace, and thence to the place of shipping; and it is reckoned that round that city there is an extent of about three hundred miles of these railways. They were gradually employed on a greater scale, particularly in Wales, where the county of Glamorgan has one twenty-five miles long, and in all two hundred miles of railway. The railway between Manchester and Liverpool extends thirty-one miles, and is carried over sixty-three bridges, thirty of which, pass over the turnpike road, and one over the river Irwell. The entire cost was about 820,01001 ; but the intercourse has been so extensive as to afford an ample remuneration. The Cromford and High Peak railway is carriel over the high mountainous distriet of Derbyshire, connecting the two canals which bear these names. Its length is thirty-three iniles, carried over fifty bridges, sad rising to a level of 992 feet above the Cromford canal. The entire expense has not exceeded 180,0001 .

The common high roails of the kingdom are also an object of high importance to trade and general intercourse. Half a century ago most of them appear to have been in a miserable state, but they are now, perhaps, the best in the world, chiefly through the spplication of the turupike system, under which they are made and repaired by tolls levied upon the travellers, and administered by county trustees. There are a few cases where reads aro to be carried through poor provinces, or form grand lines of national comınunication, in which government judges it expedient to assist, or even to undertake the entire construction of them. In 1823. the turnpike roads extended in all to 24,531 miles in length. The amount of tolls was $1,214,0001$., burdenel with a debt of $5,200,000 \mathrm{l}$.

Bridges, in a country intersected by numerous and often hroad rivers, necessarily attracted a great share of attention; and the ingennity and wealth of England have been omployed in making extensive improvements in this branch of architecture. Southwark Bridge is the most complete of sny yet formed of iron. This species of bridge has the advantage of being lighter, and of requiring much fewer arches than those of stone. Λ still more daring form
 has been given to this material by bridges of suspension, formed by iron chains stretched across, and supported by fixel points on cach side. This construction, on a certain scale, has existed in China from the carliest ages. The Americans were the first to adopt it of any western nation. The greatest undertaking of this kind yet executed is the Menai Bridge (fig. 137.), over the strait which separates Wales from Anglesea. Arches of masonry on each side, at the distance of five hundred and sixty feet, are united by a bridge of suspension, composed of iron chains.

Sect. VI.-Civil and Social State.
The population of England in former times was imperfectly known, being calculated only from very vague surveys and estimates. In 1377 the resilts of a poll-tax were given as $2,300,000$; but from the many evasions to which such a census would give rise, that number was probably below the truth. In the reign of Elizabeth, during the alarm of a menaced Spanish invasion in 1575, , pretty careful survey was made, the result of which gave $4,500,000$. At the time of the Revolution, the increase appeared to be about a million.* From the commencement of the present century decennial enumerations have been made, of which the following are the results:-

	Populatiknt 1601.	$\left\lvert\, \begin{aligned} & \text { Increase\| } \\ & \text { per cent. } \end{aligned}\right.$	Population, 1811.	$\begin{aligned} & \text { locrenae\| } \\ & \text { per cent. } \end{aligned}$	Population, 1521.	$\begin{array}{\|l\|} \text { Increase } \\ \text { per cent. } \end{array}$	Population, 1831.
England.	8,331,434	14\%	0,551,848	177	11,201,437	30	13,094,338
Wales. .	541,546	13	611,788	17	717,438	12	- 055,236
Army, Navy, \&c.	470,598		640,500		319,300	977,017
Total.	9,343,578	979	10,804,170	347	12,208,175	28	14,180,591

- Population of the British Fmpire and Colanies.

\qquad

Proportion of ieaths, marriages, ofc, to the popmlation.-Ameng the facta that attent the improved cendition of the people of England since 1770, the extraordinary diminution in the rate of mortality is one of the least equivocal. In 1780, the deaths in Eugland and Wales nmounted to about 1 in 40 of the population; in 1790, to about 1 in 45 ; in 1811, to 1 in 52 ; and at an nverage of the five yeara ending with 1830, 1 in 54 . The improvement has been particularly conspicueua in the great towns ; anil is to be agcribed to the mure comfortable wituation of all classes, the greater attention paid to cleanliness, \&c. The proportion of marriages to the population has recently declined. In 1700, there was 1 marringe for every 116 individuals; in 1780,1 in 118 . During the five years ending with 1810, it was as 1 to 122 ; and during the five years ending with 1830, it was as 1 to 120 . But this decreaso is to be ascribed wholly to the greater prevalence of meral restraint, the proportion of illegitimate births net having increased. The number of birtha to a marriage in England in about 4. Consumption is the most fatal disease.
The national character of the English exhibits some very bold and marked features. Of these the most conspicuous is that love of liberty which pervades all classes. The liberty for which the English have successfully contended, includes the right of thinking, saying, writing, and doing most things which opinion may dictate, and inclination prempt. The knowledge that the highest officea and dignities in the atate are accessible to all, redoubles their activity, and encourages them to perseverance. It is but littlo more than a century since they began to be distinguished as a manufacturing and commercial people, yet they have alreudy outstripped other Eurepean nutiona in mechanical ingenuity, in industry, and in mercantile enterprise. The enormous increase of capital, and the substitution of machinery for human labour in most of their manufitctures, seem likely at no distant periol to proluce a total change in the condition of British society. Much of its tone is given by the landed gentry ; a numerous body, whose estates, though generally considerable, are not enormeus: while, on the Continent, landed property is usually in one or other of two extremes; either divided into minute portions, or partitioned into a few princely demains. The English gentry, unlike their continental neighbours, reside during the greater part of the year at their coun-try-seats; appearing in London and at court only for a fow months in the spring. In this class, and indeed among the English in general, an uncentrolled temper, elevated by the feeling of independence, etten impels individuals into extremes both of goxd and evil. Nowhere exists a purer spirit of patriotisn; nowhere break forth more violent excesses of faction. In no country of Europe, perhaps, are there so many men who att steadily upon principle; yet in none exists, at the same time, so large a proportion of individuals living in habitual and open vielation of all principle, and frequently in contempt of legal ordinances. Domestic life is cultivated by the English more seduluusly than by any of the continental nations; the sanctity of narriage is more carefully guarded; and chastity in the female sex more strictly observed. In its minor features, the English character has undergone various changes. The vices of drinking and awearing, once so prevalent, are happily no longer fashionable. Horse-racing, hunting, and rural sports, are carried to excess by some of the country gentlemen; and the more barbarous practice of boxing still has cultivators. Perhaps the most estimable quality of the English is their love of justice; the source of all honourable dealing among the higher elasses, and of what is emphatically colled fair play, in the transactions of humbler life. The principle, that a man's word sheuld be his bond, is acted upon most rigorously where the greatest interests are at stake; as on its ebservance more than on that of any law that has been or can be devised, the commercial and financinl prosperity of the country depends. The English are the most provident people in the world. More than a million of individuals are members of friendly societies, and the deposits in savings banks exceed $13,000,0100$. The great extension of hife insurance affords another proof of this laudable disposition. The English also deserve to be called a humane people, zealous, both from feeling and from principle, for the promotion of every thing that tends to the welfare of their fellow-creatures. Crime in England has undergone a considerable change. Highway rebbery, so prevalent towards the beginning and middle of last ceutury, is now nearly unknown, and all sorts of crimes and vielence have been materially lessened. On the other hand, there has been a very rapid increase, particularly within the last twenty years, of crimes against property. A material change has recently been effected in the criminal law of England, by the abolition of an irnmense number of capital panishments.

Procision for the Poor. A compulsory rate has been levied on all kinds of tixed property, for the support of all umpotent, phor, and nimpaployed persong, ever siuse the reign of Elizabeth. Int 1700 the raten amounted to about 1,000,000l, and, notwithstanding the increase of gopmlallob and iaxation in the literval, they were little minto than $2,000,0 \mathrm{~m}$, . et the elone of the American war. In 1705 several ith-considered changes were made in the mode

 tively removed. A refirm of thisw writ would of itwelf take nearly a third part from the rates. [By the act of ifth Angust, 1834 , which provilfes for the mpoinlinent of three procr-law commissionsers, with power to make rules and reublations for the managenent of the poor and the administration of the poor lawn, these aboses have beez reformed.-Am. Ed.]

The English are, in general, a people soberly religious, though the nation, among it other excesses, has presented atriking diaplays of intidelity and tinaticism. The Church of England was established in the reign of Queen Elizabeth, when the reformation was completed which had been begun in that of Menry VIII. It ia an integral part of the constitution, having for its head the king, who, ns head of the church, nominates to vacant bishoprice and certain other preferments, constitutes or restraing ceelesiastieal juriadictions, inflicts ecclesiastical censures, and decides in the last resort in all ecelesiastical caures, an appeal lying ciltimately to him in chancory, from the sentence of every eeclesiuatical julge. In reapect to its ehurch government, England ia primarily divided into two provinces or arehbiehoprica, Canterbury and York. Each province contains various diocesea or seats of suffragan bishope, Canterbury including twenty-one, and York three, besides the bishoprie of Sodor and Man, which was annexed to it by Henry VIII. Every dioccae ia divided into archdeaconries, of which the whole number amounts to sixty, each arehdeaconry into rural deaneries, which are the circuits of the archdeacon'a and rural dean's jurisdiction; and each deanery into parishes, towns or villages, townships, and hamlets. The principal church of each ece is approprintely called the cathedral cliurch; it is possessed by a spiritual body corporate, called a dean and chapter, who are the council of the bishop, but derive their corporate capaeity from the crown. Cliapters are usually cemposed of canons and prebendaries; the maintenance or atipend of a canon as well as of a prebendary being a prebend. Prebendariea are diatinguished into aimple and dignitary. Λ aimple prebendary has no cure, and nothing but his revenue for his support; a digniffed prebendary haa alwaya a jurisdiction annexed, which ia gained by prescription. The arehdeacon has authority in the bishop'a absence to hold visitations, and under the bishop to examine clerks previous to ordination, and also before institution and induction. He has also power to excominunicate, to impose penances, and to reform irregularities and abuses among the clergy, and has charge of the parish churches within the diocese. Below the archdeacon and the ecelesiastics composing the chapter, no member of the Church of England is eutitled to the appellation of dignitary. The inferior orders constitute what is called the parochial clergy. The principal person of a parochial ehurch is entitled either rector or vicar, that title, which is really more appropriate and honourable, having become corrupted by vulgar misuse. The revenues of the church of Eingland are very extenaive; and considering the different offices and gradatione of its members, very variously distriboted. The rental subject to tithe has been stated, in returns made to parliament, at $20,000,0001$. Besides the tenth of this omount, that is to say, the tithe, the clergy have other funds, which are supposed to raise their entire income to upwards of 3,000,000). The Episcopal revenues nfe of varioue amounts; that of the see of Durham is eatimated at 30,000 . per annum, and is usually considered the largest. The loweat, that of Landafl, falls short of 3000 l. The prebends enjoyed by canons and prebendaries are some of them very ample; those which exceed 1000. a year are called golden prebends. Those dignitaries are also competent to hold livings as rectors and vicars. The salaries of curates were formerly in many cases extremely small; but, by a legislative provision and by funds allotted out of the public revenue, most of them have been augmented in proportion to the value of the benefice and its population; 80l. a year is the lowest stipend, and, if the living be worth 400l. per annum, the bishop may allow the eurate of such living 100l. a year, whatever be ita population.
In her intellectual charaeter, England may be justly considesed as standing proudly eminent. Bacon, Boyle, Locke, Newton, Davy, with a long train of coadjutors, have disclosed to mankind perhaps a greater sum of important truths than the philosophers of any other country. Strong, clear, sound sense nppears to be the quality peculiarly English; and her reasoners were the first to explode those scholastic subtleties which, having usurped the name of plilosophy, so long reigned in the schools. It was their merit to discover and establish true philosonly, and apply it to objects of real interest and utility.
In works of imagination, the genius of the English is boll, original, and vigorous. In the drama, Shakspeare stands unrivalled anong ancient and modern poets, by his profound and extensive knowledge of mankind, his boundless range of observation throughout all nature, his exquisite play of fancy, and his irresistible power in every province of thought and feeling, the sublime and the pathetic, the terrible and the humorous. In epic poctry, Milton is acknowledged ly common consent to stand first among the moderns. Spenser and Dryden are alike eminent, the one for sweetness, the other for versstility; while in correctness of taste, and the polished harmony of numbers, Pope has no rival among the poets of any modern nation.
In historical writing, England has many illustrious names, ameng which that of Gibbon deserves on honourable place. In oratory, some of her statesmen have aequired great renown, though the general taste both in the senate and at the bar seems to delight rather in plain sense and in cogency of argument, than in those claborate, ornate, and deelamatory flights by which the grest speakers of antiquity acted on the imagination and passions of their hearers.
The institutions for public education in England are extensive and splendidly endowed.

The two univerwities of Oxford nul Cambridge nre not only the wealthient but the mowt ancient in Eurcpe. They enjoy anong other priviluges that of returning euch two members to prrliament, and of holding courta for the deciaion of causes in which meminers of their own boly are interested. They were of' ucelowiastic origin; but they have loug tween considered as lay corporationa, Their resourcea havo been nugnented by the muniticence of zoverelgns, und of opulent individuald. The enteblishlmenta compusing them are dintinguinhod into colleges and halls; tho latter being academical honsen not incorporated or endowed, though they have had considerablo benetactions, which aro clispensed to the atudents in exhibitiona limited to a stated periol. Oxtord has nincteen collegen and five halls; Cambridge has thirteen colleges and finur hull, which lant, however, powsess the same privileges as the former. Each university is under the government of a chancellor, high ntoward, vicechaicellor, and other officers ; the persons who preside over the different establishonents as masters, wardens, rectors, principals, or provosts, bear the general tenomination of heads of celleges, and each college has a number of fullowships to which largo emoluments and enay duties are attached. They possess also extenaive patronage in church livinge, and a number of' exhibitiona or acholarmips. These, though of considerable value, are not supposed adequate to defray the expense of a reaidence at a university, which, at the lowest, in calculated to amount to 150l. a year. On the booka of each university are the names of many members who have long ceased to reside; but, exclusive of these, the number aetually resident at Oxford may be stated at $30(0)$, and those at Cambridge amount to considerably more. Students, according to their proficiency in learuing, are entitled to the legrees of bachelor and master of arts, bachelor and doctor in divinity, and bachelor and doctor in the faculties of physic and law. The time required by the atntutes to be occupied in study before ench student can be qualified for taking those degrees is three years for a bachelor, and about four years more for a mastor of arts ; soven yeara after that he may commence bachelor of divinity, and then five years more entitle him to take the degree of doctor in divinity. In law, a student may commence bachelor after six years', and in physic after five years' utanding. Only ono year's nttendance and the hearing of a single course of lectures are required as preparatory for entering into holy orders, the lowness of the inferior church livings, and the expense of residence, rendering it difficult to exnct moro from the greater number of candidates for ordination. The qualifications for a bishop include the degree of doctor in livinity.

The reole of instruction is by private tutors, who teach classical literature and the mathematies, the latter branch of study being particularly cultivated at Cambridgo. The public examinations are conducted with grent diligence, and excite emulation. The lucrative fellowships may sometimes tempt their possessors to indulge in luxurious case; but to those who are seriously disposel to study, they afford facilities for researela hardly attainablo in any other sphore.
Two educationa! establislments, the Iondon University and King's College have been recently instituted in Iondon.
Of the public schools of England, the most distinguished are those of Westminster, Eton, Winchester, nud Harrow. Although originally founded as charity-schools, yet being now appropriated to the education of boys of the first fumilies, tho habits formed in them are very expensive. Greek and Jatin are almost exclusively taught there by masters eminently gualified; and Englishmen of education generally excel in tho knowledge of both languages.
For boys of the middle rank, and those destined for commercial pursuits, there are numerous private acadomies.

Colleges for the particular study of law and equity have long been established in the metropolis, under the names of imss of court and inns of chancery. The principal of these are the Middle and Inner Temple, Lincoln's Inn, and Gray's Inn. Before any person can be admitted to practise ns an advocate, he must be regularly entered in, and bo a member of, one of the inns of court for five years, and must have kept his commons in such inn, twelve torms. In favour of those who have taken a degree of master of arts or bachelor of laws at an English university, three years are sufficient to be a member of the inn. After complying with these conditions, and paying the regular fees, the student may bo called to the bar without having been required to make any public demonstration of his proficiency or ability.

Of primary schools for the great body of the people, there formerly existed a considerable number; but the deficiency of them, at present, is greatly to be deplored. The metropolis, indeed, contains several, of which the most considernble is Christ-church Hospital or the Blue-cont School, in which abont 1100 children are maintained and educated. The number of charitable foundations in different parts of the country amounts to 3,898 , yielding an income of $65,395 \%$. Of these, however, many give also board and lodging, so that their ndvantages cun extend to only a small number; others have been neglected, and lett exposed to those abuses to which old establishments are generally linble. So greatly was the influence of these institutions on the great borly of the lower orders diminished, that within the last 30 years the larger proportion of labouring people were unable to real. The evils

Bouk 1.
ENGLAND
arising from want of education anwong them have, at length, been atrongly felt; and very great excrtiona have been made, ehiefly by the benavolence of private individunim, to remedy the defiect.
Of tho welentifle Institutions of England the foremoat is "tho Royal Society of Jondon for improving Natural Knowledge." In its infancy it owed much to the protection of Oliver Cronwoll; mind having nurvived the Commonwealth, was incorporntod by roynl charter, in 1043. T'le Society publinll an namal volume under the name of Philomophical I'ransucfimm. The Nociety of Antiquaries truces ita origin to the reign of Queen Blizabeth, but was not incorporated until 18:1. It has publiwhed a sarien of volumes entitled Archeologia. Several private societien have been formed for the cultivation of particular lranchea of knowleige, hy the union of individuals distinguished for their attainments in or devotion to those hrauches. Benides these and other institutiona in the metmpolis, most of the great provincin! towns, an Manchester, Bristol, Derhy, Liverpool, and Noweastle, have formed literary and philosophical societics, which have inade some huportant contributiona to meience and literature in their 'Transactions.
The principal public libruriea hava owed their origin to the aplrit and enterprine of private individunls ; tho Redleian Librury at Oxford wua the bequeat of Sir Thomna Bodley, and was euriched by muccessive donntions. The British Musenu derived ita first treasures from the collections of Sir Robert Cotton and Sir Ilana Slonne ; but hana nequired, through purchase by parlianeut, the Ilarleian and Lanslowne MSS., the libraries of Major Edwards and Dr, Burney, and several valuable collections of coins anil minemils. It has also been enriched by tho entire collection of Georgo III., presented to the nation by his anccessor. With this accession, the library, which previously connisted of 120,1000 volumes, has been augmented by one-hall'. The Museum in also very rich in specimens of natural history, particularly of mineralogy.
Institutious of a highly uselul charneter have sprung from the general desiro of knowledgo which marka the present age. Their object is to conmunicate knowledge to the commercial classes, as well as to persous who lave not opportunities for a regular eourse of study; and the chief neans employed for this purpose are a library, a rending-room, anl courses of lectures. Of theso establishmente are tho Royal Institution, the Iondon Institution, \&c.; and all the great cities and towns have now their pablic libraries.

Of tho Fine Arts, that of painting has been groatly neglected in England. Portrait painting, indred, ulways met with eucouragement; yet Vandyke, the leader in this branch of art, was a forcigner. It was only towarl the eluse of the last century that Reynolds formed a style decidedly English, and of distinguished excellenee.
The Royal Acalceny, baler tho iumediato patronage of the king, consists of forty artists, including the president, whilo a number of others are attuched in expectancy as nesociates. Thero nre four professors, viz. of painting, of architecture, of anatomy, and of perspective, who annually read public lectures on the subjecta of their several denartments. To the schools of this neadeny free admission is given to all stadents properly yualifien for receiving instruction, and thero is an annual exhibition of paintings, sculptare; and architectural designe, to which all artists may send their works for admission, if approved by the committeo appointed to julgo them. The splendid collection of paintings formed by tho reyent duke of Orleans was imported entire, and the greater part of it now embellishes the gallery of the Marquess of Stafford. The nobles of Italy, also, on the devastation of that country wero olliged to strip their palnces of these valued ornaments, and to dispose of them at low rates to English speculntors. From those sources were formed the Grosvenor, the Angerstein, nnd many other privato collections. On tho death of Mr. Angerstein, in 1894, his collection wat purchasal by parlinment, and made the basis of a national gallery, which has since received considerable additions both by purchaso and bequest.

In the other departments of the fine arts, music, seulpture, and architecture, the English have been tirr excelled by the continental nations; in ongraving, they have produced some distinguished names.

The publishing and selling of books form one of tho prinelpal branches of her productive industry. Periodical literature has a very extensive circulation. In the metropolis nearly sixty maguzines and reviews nre published, of which the monthly value has been estimated at 60000 . Another important characteristic of the national spirit mny be remnrked in the immense circulation of newspapers, notwithstanding a heavy stamp-duty. There nre in London eight daily norning papers, and five daily evening papers; seven papers published thrice a week; and upwards of forty weekly papers. Of the latter species of newspaper, every proviacial city has two or three, and every town of consequence has one. The number of stamps issued fir the London newspapers in 1832 wns $21,432,882$. The produce of the duty in that year was $400,4: 12$,
The favourite numsements of the English are thoso which combine the nivantages of air and exercise. The stage, thourg eminently rich in dramas, and supplied with actors of high talent, is not the linbitual resort of the people. In former times hunting was almost the sole business of life anong the English siquires; nnd though their tastes are now much

Voth I.
31
2 V
varied. this original pastime, in ail its forma, continuea to be eagerly foliowed. By the nobility and gentry, horse-racing is supported with equal ardour, and no country rivals England in the high excellence to which she has brought the breed of animala employed in this diversion. The races of Doncaster, of York, and above all of Newmarket, sre attended by the most distinguished persons in the country for rank and opulence; and other race-courses attract great multitudea of miscellaneoua spectators. Among the common poople boxing matches present a similar occaaion of laying wagera. Bull-baiting was put down only by statute. Of the national out-door games, those of cricket and tennis deserve especial commendation, from their tendency to enliven the spirite and invigorato the frame.
In their hsbits and modes of ordinary life, the English may be called a domestic people, especially when compared with the French. In common with other northern nations, the English retain a taste for fermented or distilled liquors, which, however, has been in a great measure corrected and aubdued among the higher and middle classes. Beer and porter constitute the ataple drink of the great body of the people; but malt spirit of a cheap and very pernicious kind ia consumed in great quantities by the lowest orders, especially in the metropolis, where it ia rapidly avcelerating their degeneracy. Among the middle classes the wines of Spain, Portugal and Madeira are in general use; but the cellara of the rich are stored with the choicest products of the French vineyards. Convivial excesa, so long the reproach of the English, has become comparatively rare.

Sect. VII.-Local Geography.

England and Wales are divided into counties or shires. Walea, until the time of Edward I., was an independent principslity, but is now an sppendent territory, of very inferior magnitude. It has still, however, its own courts of judicature, and retaina some national peculiarities. The number of countics in England is forty, and in Wales twelve; making in all fifty-two. The following statistical table, gives a general vicw of the extent, population, employment, and wealth of each county :-

[^15]TABLE-continued.

Countion.		$\left\|\begin{array}{l} \text { Howere } \\ \text { 101. shd } \\ \text { upwadda- } \end{array}\right\|$	Rental of Hoyme	Popralathog, $t 531$.	Income in 1814-15, arising from				Poc: Bates, totar	Clitem and Towne.	
					land	Trade.	Ofices.	E			
Lancashire (a)	1,806		\boldsymbol{E}795,832		$\begin{gathered} c \\ 3,130,043 \end{gathered}$	$\begin{array}{c\|} \hline \mathcal{L} \\ 2,292,079 \end{array}$	$\begin{gathered} \mathcal{E} \\ 30,020 \end{gathered}$		$\begin{gathered} \epsilon \\ 413,5290 \end{gathered}$	(Manchester. . 182,812	
				$1,336,854$						$\left\{\begin{array}{l}\text { Liverpool.... } \\ \text { 165,175 }\end{array}\right.$	
										Luncnster . . . 12.813	
Leiceste	810	$3,357$	62,748	197,003	051,908	210,607	5,827		152,594		
				107,00	-	10,			152,504	Lincoln 11,843	
Lineo	2,787	$4,026$	78,694	317,244	2,096,612	373,671	6,550	228,052	$\left\{\begin{array}{lr} \text { Bosion } & 11,240 \\ \text { Stamford } . . . & 5,837 \end{array}\right.$	
M	2971	116,270	5, 143,340	1,358,541	5,763,373	15,255,245	1,174,865	…	779,125	Part of London and Westminster.	
Monmouth	516	1,688	31,572	98,130	298,081	102,571	437		32,080	Mnnmouth . ${ }^{\text {a }}$ 4,016	
Norfulk (c)	2,013	5,333	07,007	390,054	1,516,65]	523,010	16,505			Nurwich..... 01,116	
Northamp-	065	1,238	40,007	120,054	, 0475	185,901	10,508		338,007	$\begin{cases}\text { Yarmouth ... } & \mathbf{2 1 , 1 1 5} \\ \text { Northempten } & 15,351\end{cases}$	
Iton......	065	2,2	40,3	170,276	947,578	185,20	1,421		173,018		
$\left\{\begin{array}{c} \text { Northum- } \\ \text { berland (d) } \end{array}\right\}$	1,809	0,14	120,404	222,912	1,291,412	436,404	5;763	50,000	88,035	$\begin{array}{lc}\text { Neweautle . . } & \text { 42,240 } \\ \text { Berwick . . . } & 8,920\end{array}$	
Nottingham. .	774	3,50	71,390	225,320		314,501	2,073		100,707	Notlingham - 50,6E0	
Oxfor	742	3,628	01,869	151,720	790.860	312,809	4,815		151,235		
Rucland	200	241	4,621	10,385	138,216	30,938	799		12,872		
Salnp	1,403	3,402	63,091	222,503		279,032		20,205		$\left\{\begin{array}{l}\text { Blirewshury. . } \\ \text { Wenlock } \ldots . . \\ \text { 27,492 } \\ \text { We, }\end{array}\right.$	
					1,083,701		4,861		00,605 $\{$		
										Ludiow $\ldots .$. 5,953 Bath 38,063	
Somerset (0) . . 1	1,349	16,568	512,900	403,008	2,308,723	1,329,205	13,827	20,100	209,566	$\left\{\begin{array}{lc}\text { Bridgewater } & 7,897 \\ \text { Taunton } & 11.139 \\ \text { Southanıton } & 11,139 \\ \text { S }\end{array}\right.$	
Sonthamp-	1,533	0,302	108,321	314,313	1,240,547	923,713			239,122		
ton........							16.751	8,700			
										Staffird. 6 6,050	
Stafiord	1,100	6,129	108,507	410,485	1,200,324	536,720	10,826	48,600	171,578	Newenstle . . . 8 8,192	
										(Liclifield. . . . $\quad 00.499$ (1)	
Suffulk	1,506	3,573	61,909	908,304	1,151,304	453,484	11,972	209,684	$\left\{\begin{array}{ccc}\text { Bury St, } \\ \text { nund'y } & \text { Ed- } & \\ \text { nut } & 11,436\end{array}\right.$	
Surrey	811	33,865	964,438	486,326	1,589,701	1,564,532	21,023	\cdots	321,30-1		
										Brighton . . . 0 40,634	
Busse	1,461	6,818	202,837	272,308	019,350	372,058	4,610	...	289,05]	3 Lewes. $\quad 808,590$	
Wa	n84	0,308	190,f02	336,988	1,269,756	669,309	12,066	102,303		$\left\{\begin{array}{lc}\text { Coventry . . . } & \text { 27,070 } \\ \text { Warwick. . } & 9,100\end{array}\right.$	
Weatinnore- tand.....	7		,120	55,041		52,			12,044	Kendal 10,015	
	1,283	3,622	$\begin{array}{r} 68,577 \\ 100,826 \end{array}$	219,181 $1,215,619$		$\begin{aligned} & 370,070 \\ & 2 \pi 3,303 \end{aligned}$	$\begin{aligned} & 6,981 \\ & 1,137 \end{aligned}$	$3,100220.931$		Salishury . . . 0, 0 , 878	
Werceater (1).		4,872		$\begin{gathered} 211,356 \\ 1,371,296 \end{gathered}$	820,020			3,800	07,178	$\begin{array}{cc} \text { Worcester } & 18,610 \\ \text { York } & 20,434 \\ 1 \text { needs. } & 123,303 \end{array}$	
						$1,710,886$					
Ye	6,013	20,189	415,539		4,700,424		9,4,410	62,200	580,126		
					94,760	$3,998$				$\begin{cases}\text { Reaumaris... } & \mathbf{2 , 4 9 7} \\ \text { Holyhead. . . } & \mathbf{4 , 2 8 2}\end{cases}$	
Anglesea.....	402	200	4,080	48,725				19,190		
Caernarvon (l).	775	538	7,982	65,753	131,212	20.641	220		23,440	Cnernarynn.. 7,042	
Dénbigh		850	14,411	83,107	312,570	19,977	30		41,139	Denbigh 3,780	
Flint (n)		176	3, 1775	60.012	175,115	11, Cite		15,4	\$1.513	Ilulywell . . . 8 ,900	
Merioneth.		202	4,578	35,409	112,516	7,961	68		10.710	Dolgelly 4,007	
Montgomery S. Wates.		605	7,071	60,485	212,083	18,748	794		38,665	Welshpool... 5.255	
Breeknock		460	7,509	47,763	161,089	22,783	500		21,928	Brecknock . . 5 5,028	
Cardigan (0)	781	74	(919)	64,780	146.816	13,727	282		20,685	Cnrdigun . . . 2 ,795	
Caurmarthen.	926	570	8,363	100,655	282,001	30,320	5,361		37,057	Caermarthen 0,055	
Glamm		1,712	31,268	196,612	372,603	103,203	3,1	55,9	42,301	Swaneca . . . 13,004	
Pembroke		740	12,701	91,424	990,241	45,348	1,531		93,308	Pembroke . . 0,511	
Radnor		174	2,202	24.651	101, 0501	$3.420 ?$	40		15,90]	Hatnor 1,980	
(a) Bultor -				15,983	(f) Wol	hamp-		with		7 (l) Pnarar - 4.751	
Sulcimi -	40,780		horley : -		Bion -	:- 24.7	72 c (k)	hitby	- 11.7		
Ruchilala - Preston -	35,735		Lepeuthbo-	5,055	Bilston (g) llaution	ges : 14.0	972 ${ }^{\text {ace }}$	birley			
Prphion ${ }_{\text {Oldhnm }}$	32,\%81		loughbo*	10,900	(g) Rqu -	ge - 3.7	15	verley	- 10,84		
Pilkington	11,006	1 (c) 1	Lynn Heqis	1:190	(h) Lanmi	ington 6,	098112	lideroflc	$1{ }^{\text {d }}$ d 113	5 (o) Aberyal with 4.129	
Cramplon	7,004	$1{ }^{4}$ (d) 7	Trnemouth	10,1989	(i) Komlwo	urtı - 3,0	$49^{47} 18$	lifax	- 15.28	(p) Methyt Tyd - 0 -	
Blacklurin	27,011		urth Shielde	- 6744	(i) Dullery	- 28.0		dfinil	- 21.23	:1 vil ${ }^{\text {c }}$ - 22.0183	
Chortion liow	2i,5m		arpeth:	3, 310	Kıarnatil	alcester 0.1	14 N	osiey-	- 10,304		
Warrington .	16,018	$18:(e)$	Wella -	- 6,049	Evesham	\% 3 3,	91 Pu	ntofract	4,8	2 Trenby	

The topographical details of England may be distributed under the following subsec-tions:-1. Southern counties; 2. Eastern countics; 3. Midland counties; 4. Northern counties; 5. Western counties.

Subsect. 1.-Southern Counties.

Under this head, Kent, Surrey, Susscx, Berkshire, ILampshire, Wiltshire, and Dorset, the counties south of the Thames, and aleng the Channel, will be comprehended. This fine district is, in general, of a level character; but is traversed, however, by r neres of low hills. or downs, which give to it a varied and picturespuc aspect. Chalk is - minant feature in its soil; and, on the coast, forms those bold cliffs, which charneteris eunthern boundary of Britain. Many tracts are under high cultivation, yielding, in perfection, the usual agricultural products, with others of great value, peculiar to this district; particularly hops, in Kent, and part of Sussex and Surrey. A prominent feature consists of large expanses of downs, composed of chalky soil, scarcely fit for the plough, but pastured by vast flocks of shecp.
Kent, the largest and finest of thesc coum: ?, holds a conspicuous place in Eaglish annals. The men of Kent have been noted as an race peculiarly stont, hardy, and courageous. In the west are extensive wealds, presenting still many finely wooded districts; also large marshy tracts, interspersed, however, with dry cultivated portions, in which tho best grain in the kingdom is raised. The interior around Maidstone and Ctnterhury forms almest a continued garden, supplying fruits for the markets of London; and abo e all, hops, that essential ingredient in the staple bevcrage of the English nation.
Canterbury, the chief place in Kent, is one of the most ancient and vencrable of the English cities. It is the ceclesiastical metropolis of the kingdom, the residence of its primate; who, ns such, places the crown on the sovereign's head, and ranks next in dignity to the royal
 fanily. Its cathedral (fig. 138.) is of early origin and of vast extent; while revered through the Catholic world as the slirine of the murdered Becket, it was visited hy crowds of pilgrims, and enrichel with offerings; lint of these treasures it was stripped by Ienery VIII. Canterhury is built in the form of a cross, and intersected by liranches of the Stour. Manufactures of cloth, silk, and cotton were early introluced, and still subsist, thongh they canno: bear a comparisen with those of the great towns of the interior and of the north.
Maidstone and Tunbridge are among the agreculbe inland towns in Kent. The former, of great antiquity, has ene of the most elegant parochial churches in the kingdom. It is the chief market for hops; and has some manufactures, particularly of paper. Tunbridge Wells, situated five or six miles from the town of Tunbridge, have long been a place of public resort. The springs are considered efficacions in cesces of debility and certain chronic disorders. The town has also a thriving manufacture of Tuubridge ware, consisting of various wooden ornaments, snuff-boxes, children's toys, \&c.

But the chicf places of Kent are maritime, the most ancient being those called the Cinque Ports. At an early period, they were considered the most imporiant stations for the defence of the kingdom, and were bound to furnish and equip fifty-seven vessels, each mamed with twenty-one sailors; in return for which, their citizens held the rank of barons, and sent two members to parliament from each port. Their greatness is now departel, and some of their harbours have been filled up by sand.

The Kentish Cinque Ports are Dover, Sandwich, Hythe, and Romney. The first is still a place of considerable netc. The spacious castle on a commanding eminence, the white and towering cliffs, present to the approaching mariner an imposing spectrele. As the main chennel of communication with Frunce, it maintains twenty-seven packets in constant service. Romney and Hythe are of little maritime importance. Sandwich on the cast coast,

Dover Castle. yields in inportance to its nominal dependencies, Deal, Margate, and Ramsgate. Deal derives its prosperity from the vicinity of that fine anciorare, the Downs, where the outward-bounil fleets: of England usually remain for a certain periml, when they obtain supplies and refreshments from Deal. Margete is crowled, though not fashionable; and the estabisislunent of stram-packets allows duily intercourse with the metropolis. It likewise carrirs on sone trade

Pailr III. owing subsecNorthern coun-
and Dorset, the cd. This fine res of low hills miumnt feature ulthern boundction, the usual rticularly hops, ge expanses ef flocks of sheep. English amnals. eurageous. In so large marshy nin in the kingst a continued essential ingre-

2 of the English ; primate; who, ity to the royal 38.) is of early revered through ne of the mur, crowds of pilgs ; but of these niy VIII. Cana cross, and inour. Manufac were early ingh they cannot the great towns
are umong the
The former, kingdom. It is er. Tunbridge been a place of certain chronic , consisting of
rese called the stations for the 1 vessels, each rank of barons, v departed, and
le first is still nee, the white

As the main n constant ser thic east coast is nominal dete, aud Rams rosperity from mechorare, the rid-hound flect: in for in certain t supplies and

Margate is hionable; ant int-packets alith the metrio on some trade

Buok I.
ENGLAND.
with the Baltic, and supplies the metropolis with grain and fish. Having risen within the last half' century, it is built with regularity, and contains twelve marble baths, into which the sea-water is admitted for those who prefer that mode of bathing. Ramsgate, situated on the isle of Thanet, possesses the arlvantage of a sinooth and cxtensive beach. Considerable improvements have been made in the harbour at the expense of government, with the view to its yiclding pretection to vessels navigatiug this coast, where the dangerous sheals of the Goodwin Sands have often proved fatal.

Deptford, Woolwich, Clatham, an d Sheerncss, are grand establishments for the censtruction of ships of war. Deptford contains also the Victualling Office. Woolwich is the depot of artillery, and the theatre of all the operations cennected with its censtruction and preparation. Here is also the Royal Military Academy, in which an hundred young men of respectable family are trained in all the branches of knowledge necessary for the enginecring department; and who, after a strict examination, are appointed to commissions in the service. Chatham is the grand magazine of naval stores. The rope-ho is 1128 feet long, in which cables 101 fathoms in length, and upwards of two feet in circumference, are constructed. Twenty forges are constantly employed in the fabrication of anchors, some of which are five tons in weight. This important post, with the exception of Pertsmouth, is now the strongest in Britain. Sheerness, on the Isle of Sheppey, is a smaller station, chiefly employed in the repair of shattered vessels.

Greenwich, about two miles below Deptford, is celebrated for its superb hespital (fig .140 .)
 for disabled and supcramuated mariners. This clifiee was begun by Charles II., on a design of Inigo Jones, as a royal palace. It remained unfinished, until the reign ef William III., when it was converted into a naval hospital. It was enlanged by the addition of three wings, enriched by donations, and by a tax of 0 d. a month from every seaman, and it now supports 3000 boarders, and pays pensions to 5100 in different quarters of the kingdon. In Greenwich park stands the celebrated ebservatory, furnished with the best instrunents that can be obtained for perfecting astronomical observations. The recorded observations of Flansteed, of Halley, of Bradley; and of Maskelyne, rank among the most important contributions to astronomical science.

At Gravesend, near the mouth of the Thames, the vessels employed in forcign commeree, both! in going up and down, mast stop and undergo an exanination. Rochester, with an ancieut eathedral, contains in its vicinity numerons seats, among which may be particularly noted Cobhan IIall. Lee Priory is also remarkaile for its works of art; and Knowle Park furms a magnificent structure ef great extent.
Sussex extends about forty miles along the Channel. It is covered to the extent of 170,000 or 180,000 acres with noble oaks which are sought for the use of the royal navy. The Sussex sheep are peculiarly valued both for mutton and wool.

The capital is Cliichester, an ancient little eity with a cathedral. Winchelsea, Rye, and Hastings are Cinque Ports, which have lost their ancient importance; but Hastings, from its fine views of land and sca, attracts numerous visitants during the summer. Brighton, the gayest of all the sonthern watering-places, from being a large fishing village, rapilly rose to be an elegant town. Its extensive lawn called the Steyne, sloping towards the sea, forms an agrecable promenade. The Pavilion, or palace built by Geurge IV., and the chain pier are ainong the objects of note.

The rongh downs and bieak heaihs of Surrey contrasted with its numereus fine parks and wooded districts, give to its scenery a striking and picturesque character. Southwark is in Surrey; but it is too entirely a pirt of London to be treated separately from the rest of that capital. Along the southern bank of the Thames are Kew, with its palace and fine garlens, containing plants from every quarter of the world; Richmond and its hill, which commands a magnificent view of the Thames winding among wooled parks and palaces. Camberwell, Clapham, and other villages in the vicinity of the capital, are entirely composed of the villas of opulent citizens, and the seats are numerons. At St. Anne's Hill, a beantiftl villa on the Thames, Fox passed the latter years of his life in literary retirement.

Berkshire contains extensive sheep pastures; and a great expanse of its enstern horder is oceupied by forests; yet more than lalf its extent consists of fine arable land. The sherp fair of llsley is the mest considerable in the kingdom, the annmal munber sold averaging twe hundred and fifty thousand. The hogs also of this county are in high repute. Berishire is remarkable for its manufictures of copper, which is brought from Awansea to the annual extent of six hundrad to che thonsand tons.

31*

Reading, the capital of Berkshire, $2 s$ remarkable in historv a several parliaments were held there, and a siege was sustained during the civil war. through the export of the produce of the fertile surrounding : .uict
Windsor, from the beauty of its site, on an eminence near the Thames, and the magnificence of its royal castle (fig. 141.), forms a commanding feature in the prospect for many

Windeor Casile.
miles around. William I. constructed here a fortress of considerable size; but the whole structure was re-modelled by Edward III. Since it ceased to be important as a place of strength, it has been occupied as a palace; and is the only one, in fact, suitable to the dignity of the monarch. The noble terrace walk 1870 feet in length, commands a finely varied and extensive prospect. George III. completely repaired St. George's chapel, and partly restored the north front of the upper ward; but in consequence of his illness, the improvements were suspended for eleven years. George IV. resumed them on a scale commensurate with the importance of so veneralle an edifice; and large sums of money were voted hy parliament for this national purpose. The royal apartments contain an extensive collection of paintings, among which are some fine portraits by Vandyke, and some historical pictures by Guido, Correggio, Carlo Dolci, and Leonardo da Vinci. The chapel of St. George is considered one of the finest specimens of the ormamented Gothic in the kingdom. The choir in particular is of admirable workmanship, and adorned with banners of knights of the garter ranged on each side. It includes also the iunbs of many of the English prinees, particularly their late majesties, and the Princess Charlotte; and some of its windows are painted after the lesigns of Reynolds. To the south of the palace extend Windsor Great Park, and Windsor Forest, grand features, first formed by Willinm the Conqueror. Even after the considerable abridgment that has taken place, the domain is still fifty-six miles in circumference, containing within its range some noble timber. Parts of it were devoted by George III, to his favourite pursuit of experimental farming.
The other towns of Berkshire are small; at Nowbury, two obstinate battles were fought in 1643 and 1644. Maidenhead (formerly Mainluthe), on the Thames, is beautifully encircled with villas.
Hampshire enntains rxtensive remains of those grand forests which once overspread so great a part of Engiand. The principal is the New Forest, bordering on the Channel and the bay of Southumpton. From this tract of about 92,365 acres, William the Conqueror drove out the inhabitants, and demolished tae parish churches, that the royal sports might te carried on undisturbed. The forests of Bex, Holt, Alice, \&c., containing npwards of 30,000 acres, belong also to the crown. The wood is chiefly oak and beech; the former with a short thick trunk and strong erooked branches, rendering it of excellent service as kneetimber for the navy, while the masts and acorns feed hogs of vast size, weighing sometines eight hundred pounds, and producing the best bacon in the kingdom.

Winchester is one of the most ancient and venerable cities in England. During part of the Saxon period, it was the metropolis. It had at one time upwards of ninety churches and chapels, with colleges and monasteries attached to them. Being frequented on account ef its fairs, and chosen as one of the staples for wool, it hecame at one period the seat of a very extensive commerce. After the Norman conquest, when London became the royal residence, the decline of Winchester commenced, and was aceelerated by the removal of the wool trade; but ahove all by the dissolution of the monasteries, in the tine of IIenry VIII. It now owes its importance to its rank as an episcopal city, and a county town in which assizes are held alternately with Southampton. Its venerable eathedral (fig. 142.) has been the work of successive ages. It was fusderl under the Saxon kings, enlarged by William of Wykeham under Edward III., and completed hy Bishop Fox, in the sixteenth century, when
extensive additions were made to it in the highly ornamented and pointed English style;
 of which several of the specimens here preserved are reckoned the finest in the kingdem. The college, or rather schuol, founded by Bishep Wykcham is also a magnificent edifice, and is onc of the four great classical schools to which the distinguished youth of England resort. Seuthampton now surpasses Winchester, and is a flourishing town, at the head of the bay called Southampton Water. It carries on a considerable trade with the south of Eurepe, and regular packets anil frem it to Havre de Grace.
Portsnouth is the grand arsenal for equipping the powerful navies of Great Britain. The harbour is formed by a considerable bay, with a commodious entrance, perfectly landlocked, and sheltered from every wind, affording secure anchorage all round ; and capable from its dimensions of containing tise whele British navy. The Isle of Wight forms at its eastern extremity the safe and magnificent road of Spithead, the principal rendezvous of the national fleets. The place has been strengthened by fortifications, till it has become the strengest and most finished fortress in the empire, and is considered absolutely impregnable. Portsmouth itself is situated on an island about fourteen miles in circumference, separated from the land only by a narrew :ianncl. The suburb of Pertsea, on the same island, begun only a century ago, has new eutgrown the original tewn, and centains the principal dockyards. Here are carried on, upon a gigantic scale, all the operations subservient to building, equipping, and refitting ships, and supplying the navy. The sea-wall of the deckyards extenils nearly three quarters of a mile, and encloses sn ares of ene hurdred acres: the forge, where anchers of huge dimensions are formed; the repery, above a thousand fect long; the spacieus dry docks; the endless range of warelouses; the gun-wharf, the armoury, are objects which astonish by their immensity.
Cliristchurch is noted for a fine ancient church; Beaulieu for the ruins of its venera ee abbey ; Andever, Basingstoke, and Romsey are considerable towns.
Tho Isle of Wight is about twenty-three miles in length, and thirteen in breadth; divided by a channel of enly a few miles from the coast, on which are the bays of Portsmouth and Southempton. It is traversed by a ridge of chalky downs, in which are fed about forly thousand finc-wooific: sheep of the Dorsetshire breed. On the north are luxuriunt meadows supporting valuable breeds of horses and cattle; while on the south are finc arable plains, yielding grain much beyond the consumption of the island. The island is celebrated for its striking and peculiar scenery; the grand views of land and sea enjoyed from its high oper. downs; the deep and dark ravines of its southern shore, and the bold romantic cliffs which it there presents to the expanse of the English Channcl. One of the most censpicuous featurcs is the range of coast called the Undercliff. This district presents the appcarance of a series of gigantic steps rising from the shore, to the summit of the great perpendicular wall. The chines, or chasms, with torrents bursting through them, are also claracteristic features.

The western part of the Isle presents the rugged and pointed cliffs, called the Needles, and a range of magnificent white cliffs, rising perpendicularly to the height of 500 or 600 fect. These precipices are inhabited by gulls and puffins, the cggs of which arc taken by the islander, suspended in a basket, which is fixed by a rope to thic summit. The eastern shore presents the Culver Cliffs, a range of precipices which, in grandeur and ruggednese, are net surpassed by any other on the island.

The castle of Carisbrook is an ancient edifice, in which Charles I. was for some time imprisoned. The towns, Newport, Yarmouth, Cowee, and Ryde, are small.

Derset consists of open chalky downs, fit only for shecp, which are here of a breed calle.l 143

the Southdown (fig. 143.), peculiarly fine both as to carcase and wool. The flecce is very short and fine; the mutton fine in the grain, and of an excellent flavour. The number of sheep is estimated at 800,000 , producing $2,700,000$ pounds of wool. The islands of Purbeck and Portland arc valuable for the production of fine frecstone.

Dorsetshire has no remarknble towns. Dorchester, the capital; Poole, with an excellent harbour; and Weymouth, finely situated for a bathing-place, are the principal.

Wiltshire is a finc county; the chalk hills here terminating, form the tabie-land, termed Salisbury Plain; a nakeil, undulating surface, which affords paturage for sleecp. The northern part of Wiltshire, watered by the Thames, is chiefly underwood and pasture, and sopports a valuable breed of cattle, from whose milk is made the excellent
cheese hearing the name of the province. Wiltshire is a manufacturing county. The produce is of the finest description; superfine broadeloth, kerseymeres, and fancy articles; fine flannels at Salisbury, and at Wilton the carpets whieh bear its nume.

Salisbury, the capitnl, is a handsome and well-built town. The strects are spacious and regular, crossing each other at right angles, and kopt clean by streams of water, from the river Avon. The pride of Salisbury is its cathedral (fig. 144.) completed in 1258 , which is considered the most olegant and finished Gothic structure in the kingdom. It has also the loftiest spire, rising to the height of four hundred and ten feet.

Wiltshire has a number of tlriving little towns, in which fine woollen manufactures are carried on with activity: Devizes, Marlborough, Chippenham, Malmsbury, Warminster, Wilton, \&c. Nost of them are adorned with fine eld churches.

Stonehenge (fig. 145.), in Salisbury Plain, a remarkable monument of antiquity, is supposed to be the remnant of a temple of the Druids. "It consists," says Mr. Sullivan, "of the remains of two circular and two oval ranges, having one common centre. The outer circle is one hundred and eight feet in diameter, and in its perfection consisted of thirty upriglt stones. The upright stones are from eighteen to twenty feet high, from six to seven broad, and about three feet thick; and being placed at the

145
 distance of three feet and a half from caeh other, are joined at the top by imposts or stones laid across. Tho inner circle is somewhat more than eiglit feet from the inside of the outward one, and consisted originally of forty smaller stones; of which only eleven are standing." In the interior of all are two oval ranges, supposed to be the prineipal part of the work, composing the cell or adytum. The stones that form it are stupendous, some of them measuring thirty feet in height. The whole number is computed to have been originally one hundred and forty.
Ni_{i} county is adorned with so many fine seats as Wiltshire. Wilton House contains the finest private eollection of ancient sculpture in the kingdom. Corsham House and Longford Castle contain celebrated collections of pictures. Wardour Castle is distinguished for its grand terrace; Stourhead for the romantic beauty of the grounds: Longleat is a superb seat.

Svasect. 2.-The Eastern Connties.

Under this title are comprehended the countics of Essex, Suffolk, Norfolk, Cambridge, Huntinglon, and lincoln. The surface of this division is flat and unvaried. Its sluggish streans unite in the shallow marshy estuny of the Wachi ; a great proportion of its waters, however, never reach that receptacle; but, spreading and stagnating over the land, form the Fens, a tract which is not "uproductive to the husbandman, but sends forth pestilential rapours, silljecting the inhabinants to attacks of fever and ague. The district contains wide portions of good arable land, which are well cultivated ly skilful farmers with large eapitals; and is noted for its breeds of c ttle, an ? for the prolucts of butter and checse.

Essex, sitmated along the n uth ot ae Thames, is, perlaps, the richest of the Finglish counties. It is diversified by gentle undulations, whicl do not interrupt the careful culture given to its rich alluvial soil. Its wheat, with that n? Kent, is reekoned the best in England; but the districts near the metropolis are chiefly in pasture, or artificial grass, for supplying calves ti, the London markei, or for fittening the cattle brought up from the north.

Chelmsfird, the comnty town, is a small regularly built place, with a handsome town-hall. Colchester, the anciont Cameloh mum, contains a strong castle, said to have been founded ly the Romans, It is supported by a manufictare of baize, and by the oyster fishery. Ifarwinh, a semport with a dirp and spacions harbonr, is the place where the government prekets, in time of peace, sail for Iolland and Germany. Many villas have been erected in his county, in consequence of its vicn 'ty to the metropolis.

Suftilk is l.ardered by only a small portion of eastern coast. The greater part of it is

Part $1 l l$.
The procles; fine
cious and from the bury is its 1 in 1258 , legant and kingdom. sing to the feet. riving little anufuctures : Devizes, Malmsbury, ost of them ches.
Salisbury of antiquity, of a temple " says Mr. two cireular one common one hundred all in its peren to twenty laced at the et and a half ire joined at or stones laid er circle is an eight feet the outward originally of 2s; of which o be the print are stupenbuted to have
contains the and Iongford ished for its superb seat.
, Cambridge, Its sluggish of its waters, and, form the prestilential ontains wide rge capitals;
the English reful culture best in Enfrass, for supthe north. e town-hall. cen founded ster fishery. government n erected in

Boor I.
ENGLAND.
capable of good cultivation, and is carefully tilled. The ceunty is almost purely agricul. tural, there being neither trade nor manufactures of any importance.

Among the towns of Suffolk, Ipswich is considerable, thongh its employment is confined to sending down the Orwell malt and grain, the produce of the county. Bury St. Edmund's, an ancient town, is rendered venerable by some fine old clurches. Lowestoff, the most easterly print of England, is a noted seat of the herring fishery.

Norfolk, though inferior in fertility to the two counties now described, has, by its industry, rendered itself more flourishing than either. The soil generally is a light sund, scarcely fit, originally, for any thing but sheep; beneath, hewever, is a bed of rich soapy marl, which the farmers, with great labour, dig out, and spread over the ground. The light sandy loam thus formed is peculiarly favourable to the growth of barley, in which grain two-thirds of the country is laid out. Norfolk has extensive manufactures; producing various ornamental tabrics of sulk and worsted. The ports carry on a considerable export of grain, and a spirited fishery.
Norwich is the finest city in the east of England. The chief industry of Norwich, however, consists in manufactures. Towards the end of the sixteenth century, a large coleny of Flemings settled there, and established the fabric of woollens, which soon reached an inprecedented height. The light and ornamented forms became the staples; bombasines, crapes, fine camblets, and worsted damask. In its general structure, it has the defects of an old town, the streets being narrow and winding, though those recently built are in a more improved style. The cathedral (fig. 146.), founded in the eleventh century, ranks among the finest ecclesiastical edifices in the kingdom. Its style of architecture is the Naxon, of that broad and massive character which prevailed before the introluction of the pointed arch and the light ornamental style. The castle, placed in the centre, is more ancient still, since antiquaries refer it to the reign of Canute. Its style is Saxon; the keep remains entire.

Yarmouth, hy commerce and fishery, has attained a prosperity almost equal to that of Norwich. Situated at the mouth of the Yare, it is the chief channel by which the manufactures of that city are transported to foreign parts. A more important resource is its herring-fishery, which employs six thousand seamen, and produces annually upwards of fifty thousand barrels. Its quay, upwards of a mile Jong, is snid to be second only to that of Seville. Yarmouth is also much frequented as a watering-place.
Lynn Regis is a flourishing seaport on the Wash, at the mouth of the Ouse, which, with its tributaries, brings down the agricultural produce of many rich counties.
Seats.-Norfolk contains several of the most superb seats in England. ILolkhan, built by Lord Leieester on a design of Inigo Jones, and particularly noted for a gallery room, is richly adorned with sculpture and paintings, and has also a very extensive library. Houghton is a magnificent seat.
Cambridgeshire presents a considerahle variety of surface. Its northern district, called the Isle of Ely, intersected by the lower channels of the Ouse and the Non, exists almost in an intermediate state between land and sea. Drainage, however, to a great extent has been elfected, and many tracts have been converted inte fine meadow, or made to yield large crops of oats, though the danger of inundation can never be wholly averted. The classic stresm of the Cam or Granta, in descending to join the Onse, waters a valley called "the Dairies," where some gool cheeses and long rolls of excellent butter are prepared for the tables of the Cambridge students. The southern and western districte, encroached apon by the downs from the south, are only fit for the pasture of sleep.

The capital of Camlridge is the seat of one of the two great universities. There are thirteen colleges and four halls, in which the masters, tutors, and students, not only teach and are taught, but are lodged and boarded. "Some of the largest of these endowments are stated to be for "poor and indigent seholars;" but are filled with the sons of opulent farnilies, who cannot live there but at a very considerable expense. Yet the resort continues to increase, und the existing colleges are insufficient to contain the applicants, who must otten wait several years previonsly to almission. These colleges are large, and generally fine and landsome buildings; yet they do not produce the sanse noble and imposing effect as those in the sister university. There are, however, two structures such as its rival cannot

Vol. I.
2 W
match. The first of these is the chapel of King's College, (fig. 147.), built between the reigns of Henry VI. nud Henry VIII. Its
 interior has been called matchless; the roof' is of the most perfect workmanship, and its support without pillars has been viewed as an architectural mystory. But the most striking characteristic is the proligious blaze of painted glass, on ench side, from twelve brilliuntly tinted windows fitty leet high, giving to the fabric tho appearance of being walled with painted glnss. Tho other is Trinity Colloge, particularly admired for its library, two lundred feet long, designed by Sir Christopher Wren, and perians the most elegant library-room in the kingdon. The hall is also the largest in Cambridge; and the roof is ornumented with fine specimens of old wood-work. Its chapel is marked by a beantiful simplicity, and contains Roubiline's statue of Sir Isnac Newton, supposed the best resemblance that exists of that great man.

The principal library contains 100,000 volumes, many of which aro scarco and valunble. Trinity college, in its ornamental hall, has $\mathbf{4 0 , 0 0 0}$. Earl Fitzwillinm, from his seat near Richmond, presented lately a handsome library, some fine pictures, and a large collection of engravings. The botanic garden is inferior to none in the kingylom, except those of Kew and Liverpool. The collection of valuable manuscripts and antiquities is likewise extensive. Since the university was adorned by the immortal name of Nowton, mathematics and naturad philosophy have been the ruling pursuits; and, notwithstanding tho lustre reflected on it by Milton, as well us by Bentley and Porson, it has left to Oxford the foremost place in classica! knowledge.

At Nowmarket, horse-racing has chosen its most fivourite gronnd. This town lies anid bleak hills, that have, however, a sufficient extent of level heath to make the finest course in the kingdom. It consists of mue long street, cluiefly filled with iuns and coffice-houses for the reception of the eporting world, who erowd thither in the appropriate seasons, which are April, July, and October. The hustle is then immense. "Trains of horses," says Dr. Spiker, "were led up and down the strects. Fxcellent equipnges, gigs, curricles, landnus, lew past us and past each other with the swiftness of an arrow. Ilorses were prancing thout with their riders; jockeys were carrying bridles to and fro: in short, all was life and oustle." The conrse is covered with turf, whence the pursnit of horso-racing itself is usually designated the turf. Close to the goal is drawn on rollers a small woolen house, in which sits the judge, usually an experienced groom, who decides which is the winner. The stand is an open raised house for ladies and other curions spectators; mit men of real business crowd round the betting post, imnedintely belind the judge, where they remain closely wedged together, "und nothing is heard but the continual cry of twenty, thirty, forty, two hundred pounds on such a horse."
The small city of Ely rises like an island nmidst the snrrounding fens, and displays a magnificent cathedral. Wistreach, a thriving town on a navigable branch of the Ouse, combines a prosperous trade with some spirit of literary enuphiry.
Huntinglonslire lies to the eastwarl of Cambridge; the two are governed by the same sheriff, ehosen altermately in each. Huntingdon is entirely agricultural; the prostures are peculiarly rieh, and adapt it for prolucing the fimous Stilton cheese. Huntingdon, the county town, thongh small, has nn antique and respectable appearance. St. Jves is a large village on the Ouse.
Lincolnshire occupies the eastern coast from the Wash to the Humber. The southern -erritory, ealled, from that circumstance, "Hollnnd," comprises inore than half" of the Bedtord level, or fen country, and is naturally an almost continuous swamp; but a great extent of it has now heen drained, and produces fine pastire land, and excellent crops of oats. The rearing of live stock forms the chief occupation; and Lincoln has breeds of every deseription that are held in high estimation. The sheep, which amount to upwards of $2,000,(000$, produce the long wool, which, from the length of its staple, is chiefly fitted for worsted, baize, and other tubrics. Rabbite, almost innumerable, are bred in the upper districts; and the unrechaimed fens, during the wet season, swarm with teal, ducks, geese, and aquatic game of overy form and description, with which Iondon and many other parts of England are cliefly supplied from this county. Manufactures have entirely deserted it; even its own wool, since the late inventions in machinery, is no longer spun or carded within itself. The Trent, during all its cousse through this county, is navigahle for large vessels, and artificinl chamels unite its streame, particularly the Foss Dyke, between the Witham and the Trent. Poreign coomerce, however, is much limited by the inereasing sand-banks, by which the coasts and harbours are obsiructed

Part 111
t between the nry VIII. Its aless; the roof ansslip, and its een viewed as But the most ho . prodigions ach side, from dows fifty fect appenrance of nss. The other tly admired for long, designed nd perhaps the n the kingdom. fine specimens ains Roubiliac's at great man. :c and valunble. n his seat near ge collection of t those of Kew ewise extensive. atics and natural eflected on it by olace in classical
s town lies anid he finest course coffice-houses for tasons, which are orses," says Dr. arricles, landana, s were prancing , all was life and ing itself is usuwoorlen house, in he winner. The hen of real busiey remain closely thirty, forty, two
s , and displays a ch of the Onse,
ned by the same the pestures are Huntingdon, the St. Jves is a large

The sonthern half of the Bedat in great extent rops of oats. The of every descriprds of $2,000,000$, tted for worsted, per districts; and eese, snd aquatic parts of England rted it; even its ded within itself. arge vessels, and the Witham and hg sand-banks, by

Book I.
ENGLAND.
The city of Lincoln was, during the middle ages, one of the most conspicuous and splendid capitals of Ergland. The cathedral (fig. 148.) still holds the first rank ainong religious
 edifices. From a distance its three towers appear conspicuous; two of them 180, and one 300, leot high, and ornamented with varions pillars and tracery; and as the structure stands on a hill, in the milat of ${ }^{\circ}$ a vast surrounding flat, it has tho most commanding site in the county. When plundered by IIenry VILI., it was fuund to contain an extruordinary treasure, in gold snd silver, pearls, diamonds, and other precions stones. Lincoln, supported only by its county trade, and by the remaining opulence of the cathedral, now holds a moderate rank arnong provincial towns. Its fifty churches are reduced to eleven; and the fragments of the others are dispersed throughout the town, many ordinary houscs being adorned with Gothic arches, doorwaye, and windows.

Boston, on the Witham, carries on the trade of Ilolland, or sonthern lincolnshire. It exports the grain, and affords a great market for cattle ; and has thus doublod its population. Λ fine Gothic church attests the early prosperity of Boston.

Subsect. 3.-Central Counties.

Under this term wo comprehend that part of the interior which is bounded on the south and south-west by the two divisions already described; on the north and north-west by Yorkshire and Iancashire; and on the west by the counties of Salop, Worcestor, and Gloucester.

In a description of this portion of the country, Iondon claims a distinct and separate notice. As the metropolis of the united kingdom, it is the seat of legislation, jurisprudence, and government; the principal residence of the sovereign, at which nffairs of state are transacted, and relations maintained with foreign courts; tho centre of all inuportant operations whether of commerce or finunce, and of correspondenco with every quarter of the globe. London, in its comprehensive sense, ineludes the city aud liberties of London, the city of Westminster and its liberties, the borough of Southwark, and the parishes and precincts contiguous to those three component parts of the metropolis. Its extent, from Poplar in the cast to Belgrave-square in the west, is nearly eight miles; its breadth, from Islington in the north to Walworth in the south, exceeds five miles. The cireumference, allowing for inequalities, is computed at thirty miles. The buildings, streets, squares, and other spaces, including that taken up by the river Thames, winding from the eastern to the western extremity, about seven miles on an average breadth of a quarter of a mile, oceupy an aren of eighteen square miles.
By a more convenient topographical arrangement, London has been divided into six grand portions: 1st, the City, which may be termed the central division; 2d, the western division, including Westminster ; 3d, the north-west division, including the district north of Oxfordstreet and west of Tottenkmin-court-road,-these two last mentioned divisions constitute the west-end of the town; 4th, the northern divisien, comprising the whole district north of Holborn and the City from Tr ttenham-court-road on the west to Shoreditch and Kingslandroad on the east, including St. Pancras, Somers-town, Pentonville, Islington, IIoxton, and Kingsland; 5th, the eastern division, including the whole district east of the city nnd of Shoreditch; 6 th, the sonthern division, comprising the borough of Southwark, and the mass of buildings extending from Rotherhithe to Vanxhall, and ranging southwnrd for more than two miles. The divisions north and sonth of the Thames cominunicate by five bridges, -Iondon Bridge, Southwark Brilge, Bhaekfriars, Waterloo, and Westminster bridges. The port of London extends from London Bridge to Deptford, a distanee of about four miles, with an average breadth of from four hundred to five hundred yards. Its divisions are the Upper, Middle, and Lower l'ools, nat the space between Limehouse and Deptford. Connected with it are certain spacious locks, which will be hereafter noticed.
The population of London, according to the returns in 1831 of the ceusus in 1830, is thus stated:-

Persins

 City of Westminster..29.10x0 Parishe:s within the billa nf mottality ... 761,348 Adjacent parishet nol within the bills ..293,567

The north division of London, as viewed from the mont central and elevated print, riwes gently trom the Thames, and extends to the tioot of a range of hills on which aro situntel tho villages of Hampstead and Highgato. On tho enst and wext ure fertile plains extending at least twenty milew, and watered by the wiuling and gently flowing Thames. On tho south, the distant view in bounded hy the ligh grounds of Rielmond, Wimbledon, Epwom, Norwool, and Blackhenth, terminating in the horizon ly Leith Hill, Woxhill, and the Reigate and Wrothmin Iills. Shooter's Ifill ly a conspicnous object to the eastward; and, in a more northerly direction, parts of Epping lorest and other wooled uplauls of Essex.

So early as the roign of Nero, London had becomo a place of considerable traffic, as appears from Tacitus, the earliest of the Roman historians who mentions it by name. The Ronaans fortified it with a wall, and made it one of their principal stations. At the beginning of the third century, it is represented as a great and wealthy eity, and considered to be the metropolis of Britain. In the end of the sixth contury, it became the capital of the East Saxons, whoso king, Sebert, is reputed the founder of tho cathedral church dedicated to Saint Prul, and of the abbey and abbey church of Westminster. After the union of the seven kingdoms, Egbert, in 833, held hero his first wittenagemote, or council: but Iondon was not constituted the capital of England until its recovery from the Danes by Alfred. William of Normandy, whose interest it was to conciliate the citizens, though he built the fortress called the Tower, to keep them in awe, confirmed the privileges and immunities which they had enjoyed under Edward the Confessor. Notwithstanding several visitations of fire and pestilence, London continued to increase, especially after the accession of tho Tuders, when the overthrow of feudal vassalage, and the more frequent resort to the capital, caused an nugmentation so rapid as to alarm the government. The dissolution of monasteries, of which Iondon contained so large a proportion, accelerated this increase, while it gave an impulse to industry and commerce. In the reigu of Elizabeth, the influx of strangers driven from the Netherlends, by the persecutions of the Duke of Alva, heiglitened tho alarm, and the queen was even induced to issue the absurd decree that no more dwelling-houses should be built: a prohibition which did not retard the growth of the city. In 1636, the refinements of Paris and Madrid were emulated in London by tho introduction of hackney coaches and sedan chairs.
The reign of Charles II. inclurles the mest memorable epoch in the history of London. In 1665, a plague swept away 100,000 persous. In September, 1666, broko out that great and awful fire which destroyed 400 streets, 13,000 houses, and 89 churches. For the rebuilding of the city, an admirable plum was presented by Sir Christopher Wren, the architect: the difficulty of reconciling contlicting intereste, ullowed it to bo but very partially adopted. He rebuilt the cnthedral of St. Paul aul most of the parish churches in tho Grecinn style, and the front of Guildhall in the original Gothic. Instead of wood and plaster, the chief materials of the former city, the new buildings were of brick, in the substantial though heavy style then in vogue. Thero were no flagged footpaths; the streets were illpaved: und as there was no system of drninges by sewers, and no distribution of pure water by pipes, they were in some places far from endurable. Tho eity, however, gained by the changc, though with the sacrifice of many interesting memorials of its aucient state, and of its most glorious times.

Westminster, though founded in the time of the Saxons, and chosen nt an early period as a royal residence, did not at first keep pace with London. The abbey mid its church, founded by Sebert, were rebuilt by the nrchitects who reared so many splendid fabrics of Gothic unasonry in the reigus of Henry III, and Edward I. The celebrated hall was built by William Rufus in 1097 and 1098, and it underwent a thorough repair in that ot Richard II. On the dissolution of monasteries, Henry VIII. converted this religions establishment into a college, and ntterwards into a bishopric. Westminster thus became a city, and has ever since retained that rank by courtesy, though it never had but one bishop, having been transferred by Edward VI, to the see of Norwich.
The city of Westminster is comprised in the united parishes of St. Margaret and St. John; the liberties include seven other parishes. St. Martin's in the Fields, St. James's, St. Ann's, St. Clement Danes, St. Mary's le Strund, St. George's Hanover Square, and St. l'aul's Covent Garden, with the precinct of the Savoy and that of St. Martin's le Grand. Several of the parishes westward of Temple Bar had each its church and contiguous village, communicating with ench other by roads and footpaths. The Strand was originally a high road connecting London with Westminster by the village of Charing. After the Restorntion, the west end of the town rapidly increased; and its inhabitants, affecting superior refinement of manners, claimed to be considered as a distinct class of beings from the industrious, merchnnts east of Temple Bar. By degrees, as the vacant ground wes built upon, the two cities and their suburbs were united; and at length the distant villages of Mary-le-bone and St. Pancras became integral parts of the metropolis. A splendil quarter, now oreupied by the most fashionable part of the community, has been built to the west of' St. Sames's Park and the new palace. The villages sarrounding London, formerly at some distance,-

Part III.

point, rises aro situnted extending res. On the edon, Epmom, and the lleird; and, in a Basex. fic, as appears The Romans beginning of ered to be the d of the Eat dedicated to union of the : but London nes by Alfred. th he built the nd immunities cral visitations ccession of the t to the capital, tion of monascrease, while it lux of strangers ened the alarm, lwelling-houses

In 1636, the tien of hackney
tery of Ionden. out that groat es. For the reWren, the archiut very partially churches in tho ood and plaster, the substuntial streets were illon of pure water , gained by the ent state, and of
early period as church, founded abrics of Gothic built by William ard 1I. On the at into a college, a ever since re on transforred by
argarct and St. St. Jnmes's, St. e, and St. Paul's Grand. Severnl pus village, comally a high road the Restoration, superior refinethe industrious it upon, the two of Mary-le-bone er, now occupied st of St. James's some distance,-

Book I.

ENGIAND.
on the east, Stepncy and Ilmehouse; on the sonth, Peeklam, Camberwell, Brixton, Clapham; on the west, Brompton nnd Knightabridge; on the north, I Iackney, Hoxton, Islington, llighgate und Ilampstead,-being now joined to the metropolis by continued ranges of wtrecta, may be considered ns integral portions of it. 'I'le popilation within a railius of cight miles from St, I'mul's, which is all virtually loudon, does mot full short of $\mathrm{I}, \mathrm{Si}(\mathrm{M},(\mathrm{MN})$.
'I'he growth of lamon, as a port, was nt first by no means rapid. In 1883, besides bouts und othur eratt not registered, there belonged to the port of Iondon : 2660 ships, of the barthen of 515,174 tons; manned by 34,750 men and boys. In the mame year, the gross customs dhity collected in the port of Landon amounted to $0,434,854 l$. Ihe port of Iamdon has alremly leen described as extending from London Bridge to Deptford, a dintance of four miles; the average breaith being fully a quarter of a mile. Fven theso linits were far from atbirding aderuate accommolation to the shipping; and the example of improvement exhibited by liverpool at length roused the merchants of Iondon to form compmies for conlstructing docks, with commodious ןunys and warchonses. The Weat India Docks, stretching across the isthmus forming the Islo of Dogs to the Middlesex side of the river, were opened in 1802. They consistel originally of an import and export dock, the former containing about 80 and tho latter about 25 acres of water, exclusive of basins. To theso have recently been added the south rock, formerly the City Canal. The warehouses at the West India Docks are of vist extent, and are, in all respects, mont commodious. The landon Dockr, also of very great extent, are situatel at Wrpping. The tobacco warelouse belonging to then is the largest and finest huilding of its kind in the world. It covers a space of near 5 ncres! 'The vaults underneath the gronnd are $18 \ddagger$ acres in extent, and have gtowage for 66,0M0 pipes of wine! There are also the St. Kuthurine's Docks, adjoining the T'ower; the Eitst India Docks, at Blackwell; and the Commercial Docks, on the Surrey side of the river.

Nouthwark, the third great portion of the metropolis, (more commonly called the Borough, and as such returning two members to parliament,) is situated on the sonth bank of the Thames. The Borough was governed by its own bailiffs until Edward VI. granted Southwark to the city of Jondon for a sum of money ; after which it becume one of the city wards by the name of Bridge Ward Without. It is much frequented hy agriculturists from Kent, Surrey, and Sussex; und is the principal hop-market in the kingolom. Numerous streets in every direction connect it with the surrounding villages; and by the five magnificent bridges it communicates with every quarter of London and Westminster.

Iondon, is well built, well paved, well lighted, and abundantly supplied witlı water. Forcigners who visit it tor the first timo soon discover that utility, not ornament, is tho main elaracteristic of the town, and that basiness, not nmusement, occupies the minds of its inhabitants. The main streets are spacious; and all the strects have the advantago of flagged foot-pavements on each side. The houses are of brick; and though in the nost populous streets discoloured by smoke, have by no means a gloony appearance. The charm of Iondon, as n grent city, is its varicty. Those who dislike the narrow streets of the city, shady in summer, and sheltered from cold winis in winter, may delight in tho spacious streets and squares of the west end; those who desiro to contemplate what Dr. Johnson called "the till tide of hmman existence," may visit Cheapside, Flcet Street, or the Strand : Bond Street is the resort of gaiety and fashion; and Regent Street, for architectural effect, is one of the frandest streets in Europe. Great improvements have been marle on the north side of the Strand from Charing Cross to Burleigh Street, by taking down an immense mass ot small and old houses, partly in narrow streets and courts, and erecting others of lurge dimensions and forming wide and handsome streets. Herc also has been erected the elegant and com-

t. Paut's. molious structure of Hmgerford Market. Another improvernent is that of opening a line northward from Bridge Street. Blaektriars, through the site of Fleet Market nad across Clerkenwoll, to Islington: it is inteuled that a parallel line should extend from Wrterloo Bridge across the Strand, pest the portico of Covent Garden Theatre, and into the northern distriet of the metropolis.

St. Paul's Cathedral (fig. 149.), the masterpiece of Sir Christopher Wren, is the finest specionen of modern architecture in the kingdom, and, after St. Peter's at Rome, may rank as tho finest ecelesiastical structure in Cliristendom; but it is so surroundel with Yol. I.

$$
\rightarrow
$$

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

buildings that the beauty of its exterior cannot be appreciated. The style, which is Grecian, unites grandeur of design with justness of proportion. The interior of St. Paul's is too bare of ornament; but the defect is partly supplied by marble monuments of various degrees of merit.

Westminster Abbey (fig. 150.) is a noble specimen of Gothic architecture. The interior is grand in design and rich in detail, and the interest which it excites is enhanced by the numerous monuments of kings, warriors, statesmen, plilosophers, and poets, which it encloses. The chapel built at the western extremity by Henry VII. in honour of tho blessed Virgin, is in the richest style of the later
Gothic, and its exterior has been skilfully renovated.
Among the parish churches of the metropolis, that of St. Stephen's, Walbrook, is distinguished for the fine proportions and finished elegance of its interior. The stately portico of St. Martin's, Charing Cross, excites universal admiration ; next to which may rank that of the new church of St. Pancras; the steeple of which is constructed on the model of the Temple of the Winds at Athens. The other public buildings are too numerous to be described, and a bare mention of them would give little sstisfaction. The principal inns of court, and their subsidiary inns, are remarkable rather for plainness than magnificence of architecture. The
 pile called Somerset House (fig. 151.) would have a grand effect if. its eastern wing were completed; and this desideratum is partly supplied by the buildings assigned to "King's College, London." The Banqueting House at Whitehall is a memorial of the fine taste of Inigo Jones; and its ceiling is decorated with an allegorical painting from the pencil of Rubens, which is still exposed to view, though the apartment has been converted into a chapel. Weatminster Hall, of which the portal has been roluilt in the original style, is reputed the longest hall in Europe unsupported by pillars. It is 276 feet long by 76 broad. Within it, on coronation festivals, $\mathbf{1 0 , 0 0 0}$ persons have dined. On its south side are entrances to the new law courts, the King's Bench Common Pleas, Exchequer and Chancery, with an additional court for the vice-chancellor. The House of Peers is a spacious and lotly chauber, decorated with tapestry representing the defeat of the Spanish armada. The subordinate
 apartments and passages are of recent construction and of a dignified elegance. The House of Commons, originally a chapel dedicated to St. Stephen, retains, perhaps, too inuch of that character in its front and side galleries, the seats rising on either hand beneath them, and the speaker's chair exactiy in the place where a pulpit might have stood. The house was alterel and enlarged, to admit the accession of members consequent on the union with Ireland.* The Bank of England, a building of great extent; the Royal Exchange; the East India House, in Leadenhall street; the Tower, which has still an arsenal and a garrikon, being the depository of the regalia of the United Kingdom; the Trinity House, and the New Mint, both situated on Tower Hill; the new Post Office, in St. Martin le Grand; the now Palace in St. James's Park, \&c. deserve mention.

The Monument (fig. 152.) is one of the most conspicuous ornaments of the metropolis. The pedestul is 42 feet, the shaft of the column 120 feet, the cone at the top with the blazing urn of gilt brass 40 feet, making the total height of the monment 202 fect. It was erected by Sir Christopher Wren, to commenorate the fire of Iondon, in 1666.
has n
fourt
arch
piece
with
indiv

Bridg
chose
magi
body
the
ranki
forme
milit
can
greit
catior h justrior of ment ; ied by us deand in nd the is enments n , phiit enat the y VII. rgin, is later distintico of that of「emple ed, and id their e. The se (fg. 1 effect e comthm is cilding e, Lonlouse at of the and its an allepencil pxposed ent has chapel. ted the thin it, s to the n addiranker, rdinate a dig. el dediaracter r hand where larged, on with nt; the street ing the Trinity Il; the e in St.
us ornat of tho of gilt
1 by Sir

Boor 1.
ENGLAND.
375
The bridges of London attraet attention by their beauty and utility. Until the year 1740, the only one existing was London Bridge, built in the twelft century, with arches so narrow, unequal, and ill-placed, as to form a sort of breakwater, occasioning a rapid or fall of the stream, highly dangerous to bonts and barges. The new London Bridge (fig. 153.) com-

153

New Londun Bridee.
menced in 1824, and opened in 1831, has taken its place. The bridge consists of five semielliptical arches; the centre arch 152 feet span, with a rise above high water mark of 29 feet 6 inches; the two next the centre arch, 140 feet span, rise 27 feet 6 inches; the two abutment arches, 130 feet span, rise 24 feet 6 inches. The length of the bridge from the extremities of the abutment is 928 feet, within the abutments, 782 feet. The roadway is 53 feet between the parapets; of this width, the footways occupy 9 feet each, and the carriage-way 35 feet. Southwark Bridge leads from Queenhithe to Bankside, Southwark. Of its three arches of east iron, the central one is 240 feet span; the others 210 feet each. The piers and abutments are of stone, the rest of the work iron: this is the most stupendous bridge of these materials in the world. Blackfriars Bridge, built between the years 1760 and 1769, has 8 piers and 9 elliptical arches; length 995 feet. Watcrloo Bridge (fig. 154.), of granite,

154

has nine arches, each 120 feet span; the piers are 20 feet thick. Westminster Bridge has fourteen piers supporting thirteen large and two small arches. The width of the middle arch is 76 feet; that of the two next, 72, that of the last, 52. Waterloo Bridge is the finest piece of masonry in Europe: the expense exceeded $1,000,000$. These immense works, with the exception of London Bridge, have all been accomplished by associations of private individuals.

The municipal institutions of London have received from time such nodifications as were requisite to improve them. The city is divided into twenty-five wards, the Borough, as Bridge Ward Without, making the twenty-sixth. Each has for its magistrate an aldermau chosen for life : and those persons collectively form the Court of Aldermen. The chief magistrate, styled Lord Mayor, is elected annually, from the Court of Aldermen, by the great body of freemen called the livery. The Common Council is an elective boly representing the several wards.-These public bodies form a sort of parliament, the court of aldermen ranking as peers, that of common council as the commons. The military force of the city formerly consisted of the Train Bands; but under an act passed in 1791, two reginents of militia are raised ly ballot, each consisting of 2200 men . No troops can enter the city, nor can its own militia depart from it, without permission of the lord mayor. His power is very great ; and though his office le elective, his authority does not cease on the demise or abdication of the king, as that of the commission oflicers does: and in such cases the Lord Mavor

Boox
ance consic to 2,0 inetro
Some
such
costly
parlia
ss cal
Iondo
able is
while
ture 1
in the
harnes
the pe
barrels
was p
extens
The
nity of
with II
of Lon
wealth
nance.
very ht
The
all the
to the
of the
constan
in Grea
includis
Lond
1694, h
amount
ment, a
are cur
legal to
brokers,
The est
annually
which a
the stoc
ject him
nated a
and four
of whic poses im panies.
As the cipal per Christma of strang
The to dences f rature o emphatic destined
Middle gravel ; nearly th of nurser But the which st being said

Vot. L

Boor 1.
ance are there printed and published; and thence distributed over the kingdom; forming a considerablo branch of commerce. The annual value sold is estimated at from $1,000,0000$. to 2,000,000l, sterling. Being also the centre of intelligence relative to public affairs, the metropolis gives circulation to a prodigious number of newspapers and periodical journals. Some of the newspapers circulste upwards of 8000 a dsy ; and by the profit derived from such extensive sale, and from advertisements, they are enabled to maintain complete and costly establishments for obtaining early political intelligence, and for reporting trials and parliamentary proceedings. The number of single papers, published annually in London, as calculated from the stamp returns, exceeds $16,000,000$.
The manufactures of the metropolis are too miscellaneous to be particularised; indeed, Iondon may be called a commercial rather than a mafufacturing city. The most considerable is the Spitalfields silk manufacture, which, however, has for years remained stationary, while that of other parts of the kingdom has been rapidly extending. In household furniture the artisans of London take the lead bath in the design or fashion of the articles, and in the excellence of their construction. The same may be said of coaches, carriages, and harness, of watches, of gold and silver plate, and of jewellery. Of articles of consumption, the peculiar product of London is porter. In 1823-4, the quantity brewed was 1,168,000 barrels, including a comparatively small quantity of ale; and almost the whole of which was produced by eleven great establishments. The distilleries of British spirits are very extensive.
The foreign trade of London has, since the peace, continued nearly stationary. The vicinity of Liverpool to the manufacturing districts, snd her more easy and frequent intercourse with Ireland, give her considerable advantages. But, on the other hand, the vast population of London and of the basin of the Thames, her proximity to the Continent, the immense wealth and connexions of her merchants, will most probably suffice to ensure her predominance. The charges on vessels frequenting the Thames, though within these few years very heavy, are now extremely moderate.

The inland trade of London is very extensive, as appears from the number of arrivals by all the great roads of the metropolis, and by the Regent's Canal, extending from the Thames to the basin at Paddington, a sort of internal port, communicating with the principal canals of the kingdom. Sixty-four mail-coaches and a great number of steam-packets maintain a constant communication between the London General Post-Office and the cities and towns in Great Britain and Ireland. The regulated speed of the mails is eight miles an hour, including stoppages.

Iondon is the great money market of the empire. The Bank of England, founded in 1694, has become the greatest bank of circulation and deposit in Europe. Its usual issue amounts to about $20,000,000$ l. sterling ; it advances nbout $10,000,000 l$. sterling to government, and discounts bills to the value of about $3,000,0001$. Though some of its privileges are curtailed by the late act, this is compensated by the regulation which makes its notes a legal tender. The Stock Exchange is the place where purchases and sales are effected by brokers, at a commission of one-eighth per cent. on the amount of stock purchased or sold. The establishment consists of a certain number of brokers, about thirteen hundred, elected annuslly by ballot, and beund in a certain sum to the observance of certain regulations, which are superintended and enforced by a committee. None but members are admitted on the stock exchange; and no stock-broker can, by the regulations, become a dealer, and subject himself to the operation of the bankrupt laws. If he becomes a bankrupt, he is designnted a scrivener. The property bought and sold In this market, between the hours of ten and four, is sometimes enormous. The Insurance Companies are about twenty in number, of which only three are incorporated by charter. Of other joint-stock companics, for purposes immediately connected with London, the principal are the Water and Gas Light Companies.

As the scat of legislation and jurisprudence, London is necessarily the resort of the principal persons in the kingdom during the session of parliament, which usually continues from Chisistmas to midsummer; and as that period includes three of the four law terms, the sfflux of strangers is increased by those who are interested in any proceedings before the courts.

The town mansions of the nohility and gentry are not so remarkable as their country residences for architectural beauty; but some of them are celcbrated for their treasures of literature or srt. The grounds of St. James's Park, Hyde Park, and Kensington Gardens, emplaticully called the lungs of Iondon, and the fine enclosure of the Regent's Park, are destined for the recreation of the public.

Middlesex may be regarded as the dairy and garden of London. Its soil is mostly a poor gravel; but, by the application of manure, it is fitted for kitchen gardens to the extent of nearly three thonsand ncres; the same extent of fruit gardens, and nbont half that extent of nurseries, whence the greater part of England is supplied with choice plants and exotics. But the largest portion of Middlesex is in grass, partly for the support of $\mathbf{1 0 , (1 0 0}$ cows, which supply London with milk, and partly for furnishing it with hay, that of Middlesex being said to be made in a superior manner to any other in the kingdom. Great profits have Yot. L.

32*
2 X
been derived fron that species of clay which is convertible into brick. Large tracts have yielded 4000). an acre; and after this clayey substance has been pared off, the soil has been easily restored, by manure, to the uses of agriculture.

Hampton Court (fg. 155.), built by Cardinal Wolsey, and enlarged by Sir Christopher Wren, forms one of the largest of the English palaces. Here are many fine pictures, among which are eeven of the cartoons of Raphael, regarded as the masterpieces of that renowned painter. Bushy Park, the seat of William IV. while Duke of Clarence, is surrounded with magnifcent woods. Chiswick, the villa of the Duke of Devonsbire, and Osterley Park, both in thia vicinity, contain fine paintings. Syon House is the seat of the Duke of Northumberland. But the chief ornaments of Middlesex are the villas of the wealthy citizens of London. At Twickenham, barbarous hands have demolished Pope's villa. Strawberry Hill is a light fantastic fubric, built by Herace Walpole. The villas which cover the hills of Hampstead and Highgate command beautifill prospects.

Hertford, Bedford, Buckingham, Oxford, Northampton, Leicester, conaist generally of a vast plain, varied by gentle undulations; the air is healthy and pure; the agriculturists are careful and laborious. The horses and black cattle of Leicestershire are famous throughout the kingdom. Bedford and Berks liave some fabrics of shawls, straw hats, and bone lace. Silk and woollen hosiery have found their way into Leicester and Oxford alites, and Coventry has for cẹnturies been renowned for its silk manufacture.

Oxford justly claims the first rank among the midland cities Its university, the most richly endowed in Europe, and the nursery of so many great men; the numerous and extensive edifices connected with it, arranged in such a manner as to produce a truly noble effect, render it one of the most interesting places in England. The visiter, as he passes along either of the two main strcets (fig. 156.), beholds at every step some antique and majestic etructure; even the houses of pri-
 vate individuals, presenting the aspect of ornamented cottages rising one above the other, have a better effect than the usual mechanical lines of atreet. This beautiful city is supported almost entirely by the university, which is of great antiquity, and the principal buildinge which now ornament it were built between the times of Henry VI. and Elizabeth. Oxford, in the reign of Charles I., was a place of considerable political importance; parliaments were summoned to meet there, and the king maintained it long as his last atrong-hold. It has nineteen colleges and four halls, in which reside above three thousand persons, of whom about a third are maintained out of the funds of the colleges; and many, under the character of masters, fellows, and other functionaries, enjoy liberal incomes.
The Bodleian Library is the most extensive in England, after that of the British Muscum. In the spacious quadrangle which contains this library are also the public schools; a large gallery of portraits having reference to the university; the Arundel marbles, and the Pomfret statues, which, though much mutilated, present some fine specimens of ancient sculpture. The Radcliffe Library is the finest library rocis in Oxford; but it labours under a deficiency of books. Christ-church is an ample and venerahle edifice, adorned with some fine old painted glass. In an adjoining apartment is the collection of picturea bequenthed by General Guise, which contains some apecimens of unquestioned excellence. New College chapel attracts admiration by its fine series of paintings on glass, executed by Jervis, after the designs of Sir Joshua Reynolds. All-Souls College, Magdalen College, and Queen's College, display architectural beauties of no common orier.

Woodstock has a gay aspect; to the interesting features in English: history and romance it adds the solid benefit of a large manufacture of leather gloves. Buckingham and Daventry are sunall antique towns. Newport Pagnell, in Bucks, forms a sort of centre of the lace trade. Bedford carries on somo manufactures of this description; and being situated in

Boos I.
ENGL.AND.
a rich valley, watered by the Ouse, has a consilerable stir in transmitting its proluce. The industry of Dunstable is attested by the straw hats which bear its name. Ifortford is a amall provinciad capital, chiefly remarkable for the college which the East Indin Company have fiunuled, for the education of the civil servants whom they send abroad: St. Alban's is venerable for its antiquity, and its cathedral. Nerthampton, a place of censiderable name in Euglish history, a well-built town on the Nen, with a market-place which has been reckined the finest in the kingdom, has a manufactory of boots and shoes for exportatien, and of lace. It is a great centre of the inland travelling between London and the north; and the trale in herses has always been carried on in great fairs at this place. Leicester is a still mere important provincial capital. It is a place of noto in English history, and attests its ancient importance by some fine old churches; but it had fallen into considerable decay, till it was revived by the prosperity of the surreunding conntry, chiefly in ceneequence of the introduction of new breeds of stock into fine pastures. Leicester has also a large fabric of woollen stockings, in which it is enly excelled by Nottingham, and which, under favourable circunstances, employs seven er eight theusaud persons. Oakhum, the capital of Rutlandshire, is a very small town.
The seats of this extensive district, though not se thickly planted as in the sonthern, are
 yet numerous. Feremost stands Blenheim (fig. 157.) that proud menument of a nation's gratitude to its long unrivalled hero. Its exterier displays that minuteness of detail and general heaviness, which characterise the designs of Vanbrugh: some of the apartments, however, are of almost unequalled grandeur; particularly the great hall, fifty-three feet by forty-four, and sixty high; and the library, ene hundred and eighty feet by ferty-three. The woods, also, the lake, and the general disposition of the grounds, are greatly admired. The gallery of pictures is one of the very finest in the kingdom, centaining some of the best works of Rubens, Vandyke, and Titian. Stowe, the seat ef the Duke of Buckingham, is celebrated as the mest elaborate and splendid example of the species of gardening called classical, in which an attempt is made te present nature herself in an ornamented form. Her own proper ornaments, of wood, water, hill and plain, are heightened by the introluction of temples, ruins, statues, inseriptiens, and ether objects calculated to excite lofty and poetical ideas. Modern taste rejects many of these accessories, as breaking in upon the iden of simple nature, to which it seeks to make the nearest possible approach; yet, a space of four hundred acres, filled with groves, temples, and meandering streams, nust present many beautiful sites. "The rich lundscapes," says Walpole, "occasiened by the maultiplicity of temples and obelisks, and various pictures that present themselves as we shift our situation; occasion surprise and pleasure, sometimes recalling Albano's landscapes to our mind, and oftener to eur fancy the idelatrons and luxurious vales of Daphne and Tempe." The house also is handseme and richly ornamented, and centains some fine paintings. Woburn Abbey, where the house of Russel, by princely shows and festivals, have thrown a new lustre en British agriculture, is a magnificent edifice. The stables, experimental farm, and other appendages of the most useful of arts, excite the admiration of every farmer and even amateur; nor is this residence deficient in the lighter embellishments of painting and statuary. Althorp, near Northampten, is alorned with many rare and valuable works of art ; but it is ${ }_{\mathrm{m}}$ Londen chiefly that Earl Spencer keeps his library, the first in the kingdom. Opposite to Stamferd is Burleigh, a neble old residence of Cecil, Elizabeth's minister. It contains a fine library of books and manuscripts; and the Exeter family have enriched it with a cellectien of paintings, generally supposed to be the most extensive in England. Near Oakham, is anether Burleigh on the hill, onee the seat ef the gay revels of Buckingham. It has a noble terrace in front, and contains a good library, with some curious paintings. On the border of Leicestershire and Lincolnshire, stands the Duke of Rutland's proud castellated edifice of Belveir. From a lofty height it overlooks a vast extent of country, including the vale of the same name, ene of the richest and mest beautiful in England. The collection ef paintings is of great value.

Worwick is a noble county. Its woodlands, the remains of the wide ancient forest of Arden, are still extensive, and a great part lies in fine natural grass. Pasturage predominates greatly ever agriculture, eccupying nearly two-thirds.

Warwick, an ancient and well-built town, still preserves a portion of its prosperity by the manufacture ef woollens. Coventry is a large old town, huilt very irregularly, and inany of the houscs exhibiting the uncouth architecture of a distant period. Its ecelesiastical monu.ments. however, are of importance. St. Michael's is a very light and elegant structure, with a spire rising to three hundred feet. The fabric of silk, introducel more than a cen-
tury ago by the French refugees, has mado a most rapid progress, so that in 1810 it employed 2810 looms. In the making of watches, also, this city now rivals London. Leamington, though its spa is mentioned by Camden, never became a sceno of crowdel resort, till the beginning of this century; yet so great since that period has leen its attraofon, that it has risen from a mere village to be a flourishing place. There are both hot and celd baths; and the waters are used either for drinking or bathing. Lcainington now possesses, on a handsome scale, baths, inns, a theatre, an assembly-room,-all tho sccommodation for the sick and the gay. Stratford, a considerable town on the Avon, to which the muse has given a deathless name, is the birth-place of Shakspeare; the poetical pilgrim hero beholds the genuine tomb of the poet, and the site of the honse chosen by him for his final residence; though the house itself a barbarous hand has demolished. Birmingham is in Warwickshire, but as it is the capital of the iron country, which is almost wholly in Staffordshire, we shall class it with the grest towns devoted to the working of that material.

There are two castellated seats in this county, Kenilworth and Warwick, both of almost
matchless grandeur; but the former presents only the picturesque remains of its pristine 158
 stste (fig. 158.). Founded in the reign of Henry I., it was extended and adorned by John of Gaunt; and remained with the princes of the house of Lancaster till wrested from them by the triumph of the house of York. It continued thenceforth a royal appansge; and was bestowed by Elizabeth on her handsome favourite, Leicester, whose residence here, and the splendid fetes and roThantic incidents connected with it, have been so happily worked up by the greatest romsnce writer of the age. At the close of the civil wars, it was given up wholly by Cromwell to his soldiers for plunder, and was reduced to the totally fallen state in which it now appears. The walls were indeed entire, but completely naked and roofless; and the visiter who stands at the interior foot of the tower can trace only by chimneya, and other slight marks, the successive apartments rising sbove each other till they are terminated by the dome of the ${ }_{j}$ sky. Kenilworth exhibite the feudal age in its total downfall; but the traveller has only to proceed a few miles in order to see it entire and in full glory. This is the proud mansion once inhabited by the king-making Earl of Warwick (fig. 159.). It was built by the Earl

Warwick Cante. of Warwick, who, in the fourteenth century, distinguished himself at the battles of Cressy and Poitiess. Edward IV. seized an opportunity of ammexing it to the crown. It was sfterwards bestowed by King James on Lord Brooke, who spent a large sum in restoring it from a state of decay; and the late earl repaired it so judiciously, and made his additions in such harmony with the oricginal pile, that he may be considered almost the creator of the edifice in its present state. The entrance, cut through a rock, and opening at once on three of the loftiest towers, has an effect truly striking. The interior is equally grand and interesting. First is a passage or corridor upwards of 300 feet in extent, seen from end to end, and along which the state apartments are arranged. The grand hall, 62 feet long, is wainscoted with oak, luung with armour, and maintained in full feudal keeping.

Staffordshire has a somewhat bleak and uninviting aspect; the farms are smaller, and improvements less advanced than in the other midland counties, but its mireral stores are immense. The region of coal is supposed to be about 50,000 acres in extent, and cannot be exhausted for ages. Besides its economical uses, this mineral is the main basis of the works and manufactures of the county, and of all thoso in the north-west of England, which, but for this ample supply of fuel, could never have attained their present astonishing height. Iron, the most useful of metals, exists in equal abundance; and since the discovery that it could be worked with coke, imon works have been established on an immense scale. The whole district from Wolverhampton to Birmingham may be called a Cyclopean land, where furnaces without number are continually pouring out fire and smoke. The clays afford the material of the pottery, which forms the other great Staffordshire manufacture. It is long since some coarse vessels were made at Burslem; but Mr. Wedgwood raised this fabric to aington, till the t it has ths ; and a handthe siek given a olds the sidence ; ckshire we shall pristine 1 in the xtended int ; and 3 of the ted from house of eforth a reatowed some faesidence 3 and roromance mwell to appears. ho stands arks, the e of the s only to mansion the Earl he fourhed himes:y and eized an it to the bestowed Brooke, restoring and the diciously, in stich nal pile, d almost e in its nce, cut ect truly ridor upients are our, and
ller, and ores are annot be ic works bich, but height. y that it e. The d, where fiord the is long fabrie to

Boor 1.
ENGLAND.
the highest perfection, and rendered it an object of national importance. Not content with tho native materials, he imported the finest white elays and best fints from the southern counties; and formed that varicty of articles called Wedgwool's ware, applicable to all purposes of use and ornament, and superior in some respects to the best porcelain. Hence has sprung up a rango of villages forming a district called the Potterice, of which Burslem is the centre, and which contain about 00,000 inhabitants.

The principal eluster of large towns in Staffordshire consists of those in the euthern quarter which are employed in making iron, and manufheturing it into various forms. Of this district Birmingham is the eapital; and at the remotest periods iron is mentioned as its staple, but tho grand impulse given was early in the last eentury, when John Taylor, the founder of the wealthy family of that naine, Matthew Boulton, Esq., and other individuale, by the spirit of their undertakings, and by their liberal patronage of akill and ingenuity in every line, contributed greatly to the establishment of the manufneturing fane of the town. Mr. Boulton, having secured the celcbrated Mr. Watt, eatablished, in conjunction with him, at Soho, near Birminghan, their immense manufactory, in which talent, seience, capital, experience, united every thing whiel, could raise hardware artieles to perfection. Pre-eminent above all is the steam-engine, which Mr. Watt, its great improver, not only applied to the use of his works hore, but constructed for the rest of England. The copper coinage exeeuted at Soho by steam-power for tho use of government has been greatly admired. Under the impulse of such an example; the eitizens of Birmingham soon produced their standard articles of a cheapness and excellenee which defied all competition. The articles manafactured in Birmingham consist, in a great measure, of such as, individually, appear unworthy of being named, yet astonish and dazzle by their magnitude, when half the world is to be supplied with them; such as pins, buttons, nails, paper trays, filigree, and toys. There are not wanting, however, fabrics of greater magnitude, taken even singly, such as that of fire-arms, \&e. During tho last war, the gunsmiths of Birmingham met the demand with such energy, that, on one occasion, they delivered to government 14,000 muskets in a wed Of ponderous machinery, none, perhaps, is more interesting than that of the metal rollingmills. Birmingham is commodiously built, with suitable ehurches and other edifices, but witheut any thing prominent in architecture, or any antique monuments. The town can boast of enlightened eitizens, under whose auspices letters and the arts have been cultivated with ardour. The institutions for the edueation of the poor are not, perhaps, surpassed by any in the kingdom for extent and efficaey.
The other great manufacturing towns, almost all in Staffordshire, are Wolverhampton, a very populous place, of considerable antiquity, with a fine old chureh; but indebted for it: present greatness to the making of locks and keys in a manner superier to any town in the world. Wednesbury has a tine old Gothic chureh; but its main boast at present is, the making of all the hard materials of eoach harness in an unrivalled manner. Walsall flourishes by the making of every thing connected with sadulery; Dudley by its nails: but it has also a eastle of some note in history, commanding a view of seven counties.

The neminal capitsl, Stafford, is yet to be noticed; an ancient but small town, of neat appearance, ornamented with the usual county buildings. The Grand Trunk Canal, however, passing by it, has given an impulse to its industry; and it carries on a considerable manufacture of boots and shoes. Newcastle-under-Line, and Tamworth, are both considerable towns on one of the great London ronds.

Lichfield is a more elegant and interesting place. Its most prominent object is the ca're:dral, of high antiquity, the tinest part of which was built in 1140; some particular portions are equal to any thing of the kind in Britain: such are the portieo, richly adorned with sculpture; the ehoir; and St. Mary's chapel. The society fixed there by this richly endewed establishment, together with the neatness of the town, and its pleasant situation, have induced many of the gentry in this quarter to make it their residence. These eircumstances have contributed to give to Lichfield that intellectual character which is so eonspicuens, and has made it almost the literary metropolis of south-western England. The birth and carly education of Johnson and Garrick are alone sufficient to immortalise it. Lichfield enjoys high privileges as a city, having a disirict of some extent round it considered a county of itself.

Derbyshire, in its natural features, is perhaps the most remarkable of any county of England. Except in the lower and southern districts on the Tient, the whole county is traversed by ranges of rugged and rocky hills, penetrated by vast excavations, and separated by narrow valleys. Lead is abundant, cliefly in the form of galena. Iron is also worked very plentifully. This county is also celebrated for the varicty and beauty of its calcarceus substances, particularly the kind called Blue John (fluor spar), which, by the skilful application of a gentle heat, is made to exhibit the most brilliant colours. Lastly, there are numerous hot springs variously impreguated; and the county contains two of the most remarkable watering-places in the kingdom, Matlock and Buxton.

In proceeding to Castleton, the traveller passes through the Winyats, or gates of the
winda, a narrow road of about a mile in length, between precipices a thousand feet high,

Peak Cavern, Dorbychive. dark, rugged, and perpendicular, At the end of this rond opens on one side Mam Tor, of the Shivering Mountain, 1300 feet high; on the other the High Peak crowned with the ruins of a Saxon fortress; and at ite foot, the wonder of wonders, "the Peak Cavern." (fig. 100.) T'tis is a huge gulf, 42 feet high and 120 long, at the foot of perpendicular cliffis. The viaiter is thence guided through a succession of dark cavernous apartniente, and is ferried along a subterraneous river; above which the rocks rine so close, that lie must lie flat on hia face. At the end of somewhat above 2000 feet the cavern terminates, or, at least, becomes no longer passable. Elden Hole is a fissure near Buxton, which descenda perpendicularly to an unknown depth. A line of 2052 feet has been let down without finding a bottom. Poole's Hole, near Buxton, is chicfly remarkable for the petrifactions with which it is filled.
On descending into the Low Peak, a milder grandeur presents itself. The most rugged chaina of Derbyshire are interspersed with beautiful valleya; but none equala that of Matlock, where
 the banks of the Derwent are bordered by extensive woods, interspersed with the boldest and most varied forms of rock. Dovedale (fig. 161.) is a wilder scene, where the river Dove is hemmed in by perpendicular rocks, of forms so bold, and covered with such variety of trees and shrubs, that this has sometimes been deemed the most pieturesque spot in England.
Derby, the capital of this county, on the Derwent, is handsome and well builh, and has extensive manufactures. Silk, introduced at the commencement of the last century, has continued to flourish. Porcelain is also manufactured here; and what is called its white ware is censidered nlmost unrivalled. A considerable number of workmen are employed in cutting and polishing marble; and the Derbychire spar is fashioned into a variety of beautiful forms.

The watering-places in Derbyshire have the next elaim to notice. Matlock contains mineral springs, efficacious in consumptive and rhcumatic complaints. Buxton, in the High Pesk, surrounded by naked mountains, attracts a much greater multitude; and its waters are considered very powerful in rheunatism, gout, and other diseases. The Duke of Devonsliire has here constructed a superb crescent; occupiel by inns, shope, ball-rooms, and every thing that can contribute to the accemmodation and gaiety of the visitants.

Of seats, Chatsworth has sometimes been considered the finest in England. It was built by William first duke of Devonshire, in 1702; and is 191 feet square, of the Ionic order, richly ornamented both within and without. Keddlestone House has a fine Doric front, 360 feet long, considered one of the finest architectural features in England. Ilardwicke Hall was long the residence of the unfortunate Mary; the furniture and the portraits remsin, in many respects, in the same state as during her residence.

Nottingham is watered by the broad stream of the Trent, its tributarics, and numcrous canals. The Vale of Belvoir, to the south-east, ranks with the riehest tracts in the island. The north-western part contains the remnant of the great forest of Sherwood, famed for the revelries of the merry outlaw Robin Hood. Being covered, also, in a great measure, with the ornamented grounds of noblemen of high rank, it is called the "dukeries." The manufactures of hosiery in this county, Leicester and Derby, employ 33,000 fromes and $\mathbf{7 3 , 0 0 0}$ operatives, prolucing in cotton 880,0001 ., worsted $870,000 l$., silk 241,0001 . The lace trade employs 150,000 embroiderers in this county.

Nottingham is a large town, boldly and picturesquely situated upon the Trent. Its strects ure arranged nlong the fuce of a hill so steep, that the ground floors of the street behind, in some instances, rise higher than the roofs of those in front. The rocky materials of this hill are so soft and yielding, that they are cut to a great extent into cellars and warehouses. The making of stockings has always been the staple of Nottingham. They are worked cut

Arames, which, in the middle of last century, scarcely exceoded 1200, and at preeent amount to 10,000 . The lace trade recently alded in of very great importance. There are stated to be 1240 machines in the town, and 1070 in the neighbourhood; and the lace sold In its market is valued at $\mathbf{1 3 0}, \mathbf{0 0 0}$. Nottingham has also a grent inland trade by the Trent and canala connected with it.

Newark is noted for its castle, and for a parish church, said to be the finest in the kingdom.

Nottinghamahire may bonst sonne splendid neals. Worksop Manor, built by the Duke of Norfolk, contains fine portraits of the Iloward family. Clumber l'ark is titted up in a nag. nificent atyle by the Duke of Newcnatle, with a very valuable collection of pictures. Welbeck Abbey, a seat of the Duke of Portland, is noted for its fine stables. Newatead Abbey had been stripped of its fine furniture and paintings before it came to the late Lord Byron.

Sumeret 4.-The Northern Counties.

The northern counties of England may be described, genorally, as reaching from the Humber and the Mersey to the Scottial border. They include the wide extent of Yorkshire, divided into three ridings, and of Lancashire, Durham, Northumberland, Cumberland, and Westmoreland. The eastern portion is intersporsed with large bloak tracts of mountain, moss, and moor. Its ports carry on a thriving trade in conrse, bulky, and useful commodities. The south-western, comprising Lancashire and the west riding of Yorkshire, by the vast produce of its manufactories, leaves far behind it every other diatrict in the world. The northwestern, or the country of the Iakea, has a higher degree of picturesque beauty than any other part of England.

The counties of Northumberland and Durham are hilly and elevated; and their chief wealth is subterrancous. A species of coarse coal, mixed with lead, everywhere abounds; and the lead is exported to the extent of from five to ten thousand tons. But within this mineral region there is enclosed a smaller one, reaching from the mouth of the Coquet to the Tees, a length of about fifty miles, and having its greateat brcadth of about twenty miles upon the Tyne. Within this tract are found uninterrupted beds of that valuable coal with which London is wholly supplied, and of which great quantities are either sent to other parto of the kingdom, or exported.

Newcastle was famed at an early period in the military annals of England. It formed a leading point in the wall of Hadrian and in that of Severus. Robert, son of the Conqueror, built here a castle of immense strength, more than two miles in circuit, which served long as the main bulwark against Scottish invasion. Scarcely a trace of it now remains; and the occupations of Newcastle are entirely changed. Both banks of the river, down to Tynemouth, form an immense wharf, to which, by railways and steam wagons, coals are conveyed from the contiguous pits. In 1830, the quantity exported was 867,513 chaldrons, about $2,300,000$ tons. Newcastle carries on very extensive manufactories, particularly that of glass. There are thirty-one works on the Tyne, which in some ycars have produced glass to the value of $500,000 \mathrm{l}$. In shipping it is second only to London, having belonging to it, in 1832, 1077 vessels, of the burthen of 220,784 tons. Foundery, pottery, weaving, are not on a very great scale. Newcastle is now, on the whole, a well-built town, though some of the strects are inconveniently steep: it is highly ornamented by the spire of St. Nicholas, considered by the best judges as one of the finest specimens of the Gothic. It possesses a literary society, which has publishod valuable transactions; and an antiquarinn society, destined particularly to receive the Roman coins, \&c. which are frequently dug up on this line. The large town of Gateshead, on the opposite side of the river, though placed in Durlam, is really part of Newcastle, and raises its population to 57,000 .

A continued range of great commercial towns cluster thick uround Newcastle. Near the mouth of the Tyne are North Shields and South Shields, on opposite sides of the river; the latter being in the county of Durham. They carry on with activity the coal trade, and the others proper to Newcaetle; particularly ship-building and the making of ropes and sails. Tynemouth, at the immediate opening of the river into the ocean, displays, on a bold 'promontory, a castle, a light-house, and a fine old abbey; they form a striking and romantic scene, which contrasts with those immediately above. At the mouth of the Wcar, are Sunderland and Wearmouth,-the one a very great, and the other a considerable port. Their prosperity is supported by the same great trade of coals, of which in 1832 they sent 600,000 tons to the port of London, two-thirds of that which comes down the Tync. They carry on also the same manufactures, particularly ship-building, in which Sunderland is supposed to exer a greater activity than any other place in the kingdom. The bridge there has long been celebrated: it consista of one arch of iron framework thrown across the river, 200 feet span, and 100 feet high, allowing very large vessels to pass under without lowering their sails. "Nothing," says M. Dupin, " can be more striking than this view of the two citics, and the bridge that unites them ; that majestic arch drawn ngainst the sky, which allows large vessels to pass under its vault with their saila flying." • He afterwards udds, in regard to those ports generally: "It is an admirable thing, within an extent of coast which a man may walk over
on foot in three or four hours, to see two great rivers receive 10,010 vowsela, and send them awny loaded with the proluce of their benka. On the same narrow space are aix flourishing towns, contulning a population of 85,927 persons, all devotod to coinmerce and industry."
Durham is hamdsomely builh, though on very uneven ground; ite grand ornament in tho cathedral, reared in the oleventh century, which is perhaps unrivalled an to its situation, ranging ulong the aummit of a precipitous rock eigfty foet high above the Wear, which winds aloug its base. The see of Durham is the rlcheat in England; and the cathedral, besides a dean, twielve prebendaries, and two archdencens, has attached to it about alxty spiritunl servants of various ranks.
The number of smaller town in those counties is atill censiderable. In Durham, Stockton near the meuth of the Tees carries on the trade of that river; in 1882 it carried 173,000 tons of coal to Iondon, and has aleo the Baltie trade, and the manufucture of maileleth and other naval materiala, Hexham, on the Upper Tyne, is the capital of interier Northumborland, and of the grand ancient acene of border debato. Morpeth has a weekly market for the cattle brought up from Acotiand.

The seats are chiefly great beronial cautles, at the head of which stands Alnwick (fg. 162.). This proud keep of the Percies covera five acres, and in defended by aixteen towera. An expense of 200,0001 , has been incured in converting the interior from a feudal castle into the most splendid of modern mansions. Warkworth Caatle, another aoat ef thu Percies, retaine its antique character. Lumloy, the feudal castle of the Earle of Scarborough, presents entire its august and formidable front. Raby Castle, Howick, Lambton Hall, and Bishop Auckiand, sro fine seata.
Yorkshire is next in order: its eastern divition resembles the two counties just described; while the wostern forms part of the great central scat of English manufacture. The Yorkshireman has a character of his own, marked by shrowdness, simplicity, pood humour, and a specice of drollery; so that the London comic atage is considered incomplete without one of his representatives. The North Riding connists, to a great extent, of moorlanda; the hilla of which rise otten to a considerable height. These dreary tracts apread over the whole Riding, so that culture ean exist only in the valleys. The Enat Riding, which extends to the Humber, is traversed also hy a range of high wolds, which, thongh rugged, have not been able to resist the encrgiea of British industry. These Ridings present to the German Ocean high and often precipitous meks, of which Flamberough Head, nearly 500 foet high, forms one of the boldest features in English landscape. The Weat Riding is cemposed chiefly of a wide, flat, fertile plain, traversed by the Aire, the Calder, and other navigable rivers, which convey its proluce to the castern, aud, by means of canals, to the western sea. In this tract is placed the immense manufacturing district of Yorkshire; in its extreme west is the district of Craven, the most rugged and mountainous of all Englanil; for here rise Ingloborough, Whs ruside, l'emigent, each to the height of nearly three thousand feet. There is scarcely a county in which the spirit of agricultural improvement has been so active as in Yorkshire ; and vast tracts of waste and common land have been reclaimed und rendered productive.

Hell, the prineipal port, is the fourth commercial city in England, only surpassed by London, Liverpool, and Bristol. It carries on a most extensive export of goods brought by the interior system of rivers and canals. It is the principal of the whale-fishery ports; though this branch has lately declined. During the nine years ending with 1818, the average number of vessels fitted out from Hull for the whale fishery amounted to $53 \frac{5}{s}$; while in 1830 , it sent out only 83. In 1832, it owned 557 ships, carrying 68,892 tons, and there enterel its port 1279 vessels, of the burden of 102,661 tons. The Old Dock, completed in 1778, the Humber Dock in 1809, and the Junction Dork in 1829, contain a space of twenty-three acres. Goole, on the Ouse, a little above its junction with the Humber, is beginning to share with IIull in the exportation of woollens. Though a few years ngo a mere village, and still, in 1831, containing only 1870 inhabitnnts, it has two spacious docks, and in 1829 the customs excceded 40,0001 ., and the declared value of exports amounted to 625,0000 . Guods sent from Leeds or Wakefield by rivers or canals can be embarked at Goole in the cuurse of twelve hours.

Whitly is a very ancient town, with the remains of a fine abbey built soon after the Conquest. Its inolern importance is derived from large mines of alum. The export of their preduce forms a considerable trade, to which Whitby soon added the other branches prevapent on this coast, and became second only to Holl.

Searborough, romantically situated on a promontory between two rocks overlooking the sea, is the chief watering-place of the north of England.

York, the capitul, is the first ohject that strikes un as we proceed into the interior of the North and Woat Rilings. This celebratod city, thongh mo much ecllpwed by several that are only of to-day, still boasta a dignity superlor to thein, and to almowt any other in England. Ehoracum was a diutiuguiahed Roman utation; for mone time York diaputed with Landon the distinction of being the capitul of England; anl when obliged to give up this claim, continued the uugueutioned metropolis of the north, till the creative powers of trade raised up rivale to it in the north-west. The housos are high, and the ntreets narrow ; yet, altogether, York is a handsone, respectable-looking old city. It boasta one featuro of almout unrivalied beauty,-ita cathodral. (fig, 103.) On the exterior all the richnesa and elegance of Gothic

York Cathedrel. ornament has been laviahed, particularly upon the wenteru front and the large window in the eastern. But the interior is without a rival in the empire; ita effect is altogether aublime: ita numeroua windows of painted glass shed a dim, solemn, religioua light, in accorlance with the charactor of the ellifice. The chaptor-louse is of singular elegance and magnificence; and, though of great extent, has its roof supported by a aingle pin. The choir of this splendid edifice suffored severe injury from a fire kindled by the hands of a maniac ; but by grent oxertions has been fully repaired. The remains of the ruined abbey of St. Mary, and those of several of the twenty-turce churches of York, are also deserving notice. There are likewise somo elegant modern edifices, particularly the assembly room, the county hall, guildhall, the mansion-louse, and the museum of the Yorkshire Phílosoplical Society. York is still a gay town, visited by many of the northern gentry, particularly at the time of its races. It carries on some inland trade by the Ouse, which passes through it.

Doncaster is much frequented luring the time of its races. Pontefract is surrounded by a great extent of garden and nursery ground, the pruluce of which is sent to a considerable distance. Scarcely a vestige remains of that immense and powertil keep, covering seven acres, in which Thomas of Lancaster, Richard II., and many other fallen chiefs and atatrsmen, were immured. Tho parliament, during the civil wars, having taken it after three successive and arduous sieges, caused it to be completely demolished.

Leeds is the capital of western Yorkshire, and, in a commercial sense, of the whole county. Although it was of some note even in early times, its present greatness is modern, and of the most rapid growth. The population, which in 1775 was only 17,117, amounted in 1831 to 123,303 ; being thus nearly quintupled. A peculiar activity and spirit of enterpriso has been obeerved among the manufucturers of Leeds: it was, doubtless, greatly favoured by the vast extent of iuland navigation, which seemed to eentre here, connecting it with the eapital, with both seas, and with the counties to the south, from which it derives inexhaustible supplies of fine coal. The woollen manufacture is not carried on wholly in large towns; the cloth is wrought to a certain state of forwardness in the numerous villages, thence sent into Leeds, where it is purchased and worked up into a saleable state. The cloths are sold in weokly markets, held in the cloth halls, the most remarkable feature in Leeda. That for mixed cloths was built in 1758, that for white cloth in 1755 . They form quadrangular edifices round an open area, and are divided into stands, of which in the first hall are 1800, and in the second 1210. These are let at a moderate rent to the owners of the cloth, who, on the ringing of a bell, oceupy their stands, and though the market remains open only an hour, goods to an immenso value aro often disposed of, Although the staple of Leeds and of Yorkshire be common cloth, yet other bronches are in some degree included, as sail-cloth, cotton, carpets, and auperfine cloths. Mr. Drinkwater states the persons employed in the mills for wool at 5290; worsted, 702; flax, 2434; cotton, 80 ; silk, 158; in all, 8664 ; of whom 5318 are males, and 3346 females; to which may bo added 1814 in the suburb of Holbeck. The town of Leeds is mostly well built, with several brod and spacious streets; and the theatre, the new court-house, and the commercial buildings, finished in 1829, are elegant structures. Kirkstall Ahbey, three miles distant, presents, in a beautiful situation, tho most complete specimen of the architecture of the 12th centary that is extant. The people of Leeds have formed a literary and philosophical society, and an institution for the promotion of the fine arts; for the purpose of which a very handsome and commodious edifice has been erected: meritorious exertions have also been made for the education of the poor.

Of the other towns of the elothing district, which eluster round leeds, Wakefieli, beaut1fully situated on the Calder, has a cloth market, on a smaller scale, resembling that of Leeds, and also great grain and cattle markets. Halifax, and the wholodistrict about twenty miles round it, has been converted from a desert into a populous and prosperous scene, containing

Vol. I.
33
$2 \mathbf{Y}$
altogether 110,000 inhabitants. Its stapics are what are properly called atuffs; shalloous, serges, baize, morcens, kerseys; and it has lately embraced a considerable share of the cotton manufacture. Hudderstield is also a very thriving town, employed nearly in the same branchics; and its market hall is supposed, next to that of Leeds, to present the greatest show of woollens,in the kingdom. Bradford and Keighley are large towns, which carry on to a great extent the manuficture of worsted: besides which, Bradtord has great iron found--ies in its neighbourlood.
In tho southern part of this riding, the manufactures of iron and cutlery take the place of those of woollen; and Hourish to such an extent, that they are second only to the great iron district around Birmingham. Sheffield is the capital of this district. It carly derived importance trom the fabrication of arms, but it has reached a much higher degree of greatness since it betook itself to the more useful fabrics of knives, forks, razors, snuffers, scissors, combs, buttons, saws, sickles, and various instruments of husbandry. The art of plating goods with silver is carried to a vast extent. The silver is soldered upon the copper; and the articles are wrought by the hand or stamped. The cutlers of Sheffield keep many hundred patterns of knives, of which some are of the value of seven or eight guincas, containing twenty-eight blades within the handle; while others, after passing through a multitude of different hands, are sold for a penny each. The rapid growth of Sheffield commenced sbout the year 1750, when the river Don was rendered navigable to within a few miles of the town. Since that time its advance has been steady; new branches having been constantly adding, and the former ones extending. The houses are chiefly modern, and well built; and the town makes a tolerable appearance, notwithstanding the smoke of the forges in which it is involved. The military barracks erected here form an extensive pile of building. The infirmary is considered equal to any in the kingdom; aid great credit is due to Shefficld for the excellence of the schools which it maintains for the educntion of the lower orders. It supports also many public charitics; has a literary society, a mechanics' institute, and a library.
Barnsley produces wire, nnils, and other articles, but derives its chicf importance from the linen manutacture. Rotherham has a great foundery for cammon. The first iron bridge was constructed here at the works of Messrs. Walker; and they have since executed those of Sunderland, Staines, and Yarm. Rotherham, being in a fine country, has also a great corn and cattle market.

The superb seats which alorn Yorkshire are so many, that to enumerate even the most distinguished can with difficulty suit our limits. Castle Howard is a magnificent pile, noted fir its classical collection of sculpture and painting. Dunconbe Park is admired for the noble view obtained from the terrace in front, and for the ruins of Rivaulx Abbey, situated in a beautiful vale at a little distance; Studley Royal, an almost unrivalled specimen of an ornamental park, encloses within its precincts, Fountain's Abbey, one of the grandest of monastic remains, covering several acres. Wentworth House is generally considered the noblest mansion in the north. The principal front extends upwards of $\mathbf{6 0 0}$ feet, forming a centre ard two wings, in the middle of which is a fine Corinthian portico.

Lancashire, situated beyond the hilly border of York West Riding, forms the capital or central seat of mannfacture for Britain, and even for the worlh. Its soil and climate are untavourable; the upland tracts being rocky anl barren, and the coast too low and flat, while the moisture from the Atlantic is injurieus to the growth of the finer kinds of grain. But coal traverses in large beds the sonth and sontli-eastern parts of the county; and being conveyed by short canal lines to all the great towns, affords cheap and abundant fuel for the steam-engines and other grand manutacturing apparatus. Canal navigation, which originated in Lancashire, has been carried to a greater extent there than in any other part of the kingdom. Resiles those smalter canals which connect all the great thriving towns, it has the Lancaster Canal running north and south through nee:ly its whole extent, and inte Westmoreland as far as Kondal; and the still more important line of the Leeds and Liverpool Canal; while, in the southern border, the Grand 'Trunk connects it with Londen and the whole centre of England. A most important additiona! ro:mumication has recently been opened by the railway, elsewhere described, by which Livrrpool and Manchester, so tar as respects personal conveyance, are brought alinost into contact.

Manchester, the centre of British industry, und the manufacturing capital of the empire, is favourably situated on the Irwell ; though this stream, navigable for barges, scarcely makes eny figure beside the vast artificial liues formel from its waters. Slthough the cotton manufacture is now widely diflised throngheut England, Manchester continues the centre of the trade; receiving and distributing the raw material, collecting the produce worked up in ummerous towns and villages, and transinitting it to the various markets. From the midhle of the last century she has advanced with amazing and acceleruted rapidity; mud the system of inland navigation having afforded copious channels by which the material can be introduced and the manufactured article exported, cvery obstacle to the absorption of the whole into this centre was removed. Its manufieture embraces the finer muslins and other delicate fabrics, with the plain and useful forms of dimitics, fustiuns, velveteens, cheeks, shirtings
ginghams, diapers, cambric muslins, figured muslins, calicoes for printing, and various fancy goods. The different cotton fabrics generally denominated Manchester goods, are not all manufactured within the town itself, but in the neighbouring towns and districts; and, after being bleached, and some of them printed, are sent in a finished state to Manchester to be sold; the chief market days being Tuesdays and Saturdays. Thus Marseilles quiltings, cambric imuslins, ealicoes for printing, bed quilts and counterpanes, checks, fustians, and shirtings, are brought in from the surrounding towns and villages. A vast deal of yarn is also spun for exportation. Manchester has extensive establishments for printing and dyeing; also, for construeting and keeping in repair steam-engines, as well as other machines employed in manufacture. Even iron founderies aro necessary to supply the materials. Other important branches have recently been added. Manchester now rivals Macelesfield and Norwich in the manufacture of silks, and Nottingham in that of lace. In 1832, there were at work in the townships of Manchester and Salford, 86 cotton mills, 16 silk, 4 woollen and worsted, and 2 flax mills. The number employed in cotton factories amounted to 20,585; of whom, 5361 were male and 7035 female adults; 4286 male and 3903 female children. The wages paid to them per month were $40,333 l$., making about $9 s .9 \mathrm{~d}$. of average weekly earnings to each individual. There were 7174 mule spinners, earning $15,106 i$. per month, averaging 10s. 6d. each per week; 1497 spinners of a higher class, esrniug 8491l. per menth, or 1l. 8s. 4d. each per week. Pieccrs' scavengers 2944, earning 3287 l. per month, each weekly $5 s .6 d$. In the power looms, women receive 8 s , to $12 s$, ; men, $13 s$. to 16 s . 10 d. ; dressers, 28 s . to 30s. per week. Manchester is not an elegant town; some parts of its interior are narrow, crowded, flll of warehouses and factories in huge masses The entrances, however, have been made handsome; and, in the extremities of the town, streets of elegant houses have been built for the accemmodation of the opulent merchants. It has one handsome Gothic collegiate church of the fifteenth century, and several more modern, that are creditable to the taste of the town, as the Exchange, which includes a news-room and a good library ; the Infirmary (which in one year received above 12,000 patients); the Town Hall, which contains one of the most splendid public rooms in Europe; and the Royal Institution for the Promotion of the Fine Arts. The prison called the New Bailey is an immense structure,-the inmates of which are classel and provided with employment to a consideruble extent. Manclester is remarkable for its charitable institutions; hospitals of different kinds; and schools for the education of the poor. Cheetham's Hospital, maintaining eighty poor cliddren, has a library of $18,0(\mathrm{~K})$ or 20,000 volumes, containing rare and valuable works. In 1781, a literary and philosophical society was formed at Manchester, and produced several valuable volumes of Transactions, enriched by the centributions of Percival, Ferriar, Dalton, Henry, and other eminent gentlemen there resident. In 1774, the population of the whole parish was 41,000; the ameunt of 142,000 for 1831 by no means comprehends all that may be considered Manchester. The large towns and villages which have sprung up within its parish form really its suburbs, snd raise the entire population to 270,000 . Of these, the most important are Salford, immediately contiguous, and now raised to the rank of a borough; and Chorlton Row, which in 1801 contained 675 inhabitants; in 1831, 20,565.

Huge towns, resembling cities, devoted to the cotton manufacture, are found in every direction round Manchester. To the north are Blackburn and Bolton; the former chiefly employed in the branch of printed calicoes, which are supposed to be produced to the annual value of $2,000,0001$. A great sdvantage is derived from the Leeds and Liverpool Canal passing close by it. Bolton is a town anciently of seme strength, but now supported entirely by industry. Some of the greatest improvements in the cotton manufacture, have been made by Arkwright and Crompton, residents in this place. Preston, a flourishing seat of manufacture, elects two members on a basis of almost universal suffrage. Wigan is a large town, which adds to those of cotton and linen some manulactures of brass and pewter. Bury, very near Manchester, besides extensive cotton works, has some of woollen. Oldham was early a place of some consequence, carrying on a large fabric of hats; but the introduction of the cotton manufacture has caused it to make an astonishing progress, so that in thirty years it has nearly trebled its population, and the parisl, ineluding Pilkington, Crompton, and other towns, contains 67,500 inhabitants. There are here now 65 cotton mills and 140 steam-engines, almost all erected during the present century.

Some large towns employed in other manulactures than those of cotton lie on the borders of Lancaslire. Rochdale, near the western point of Yorkshire, and in character a Yerkshire town, has for its staple woollen stuffis und flamels, of which 8000 pieces are made weekly; fifty-seven steam-engines are employed here, and about $84,000 \mathrm{lbs}$ of cotton yarn spun in the week. Warrington, on the Mersey, which is navigable for vessels of eiglty tons from Liverpool, in Henry VIII.'s time was superior to Manchester; but it is now left far behind. Its staples of saileloth and coarse hinens have been exchanged for cotten, to which it adds glass and pins. Prescot is noted for the making of watch-wheels, springs, chains, \&e. several of which have been invented and improved by its workmen. Near it, at St. Helen's, is a great manufactory of plate glass, employing 300 persons.
town is well lighted with gas. The public building have an elegant and classical character,
 almost peculiar to Liverpool. The T'ownHall (fig. 164), is a fine Grecian edifice, ornamented with a superb cupola and appropriato statues. Tho Exclange forms behind it an elegant scquare, in the midst of which is a sculptural composition by Westmacoth, representing Nelson and his victories. The new edifice erected fora market is, perhaps, the most spacious and commodious of any employed in the king!om for that purpose. There are also several elegant modern churches, one formel of castiron. The finest view of Liverpool is obtained from the sea, where the vast height and extent of the exterior dock wall, the forest of masts above, and the town lychind, make a most imposing appearance. The charitnble institutions are administered on n great scale, and with activity. Foremost stands the Blind Asylum, the first estallished in England, which receives inmates from all parts of the kingdom. The infirmary is in a very spacious and airy situation; and, among the other institutions common to great towns, the Strangers' Friends' Socicty distinguishes itself by its generous exertions. The Englishı mercuntile towns generally show a zeal to combine intellectual pursuits with those of wealth; but none, perhaps so successfully as Liverpool,-one of whose merchants, while carrying on an extensive business, produced works which rank him among the most classical English writers. Although this example be single, it is connected with a general spirit, which displays itself in the liberal procedure of several individuals; in the Lyccum and the Atheneum; two pullic libraries and literary institutions, supported by subscription; and in a botanic garden, which ranks as the first that was formed, and nt least the third as to eminence, in the kingdom. Both the Atheneum and the botanic garden owe their found ation to the public spirit and tho munificent example of Mr. Roscoe, who had also the magnanimity to exert his powerful talents for the abolition of the slave trade, in a town long devoted to that traffic.
Lancaster, the county town, is handsomely built of a beautiful free-stone; the Town-lhall
 and some other buildings are handsome; but the castle (fig. 165.) forms one of the grandest monuments of the feurdal age. Its vast extent; its commanding site; the greatness of all its features, even now, when three of its sceven towers are fallen into ruin; produce the most powerful impression. It has been converted into a well-arrangel prison for the county. Lancaster, though its river, the Lane, is not navigable for vessels of more than 250 tons, possesses 73 snil. It builds some ships, makes sailcloth, and manuffictures, upon a small scale, some cotton fabrics. About a mile from is, the Ianconter Canal is carried over the Lune by a very noble aqueduct bridgc.
The connties of Cumberland and Westmoreland, or the country of the Lakes, form a bold and pceuliar region, presenting a striking contrast to those recently surveyed; bcing eurielled neither by natural wealth, nor by human industry. Wile ranges of high and rocky mountains, enclosing long lakes and narrow valee, afforl scanty space for the plough. A great proportion of these fells and moors is absolutely barren; in the more favoured spots the herbage is often ecanty; and even the arable tracts are, in general, fit only for the coarser grain of oats. But hic multitude of mouutains crowded together, their bold, perpendicular, and often projecting forms; the plensing though not extensive lakes, and soft pastoral valleys, which they enclose, render this the most beautiful country of England, and the favourite resort of all the almirers of the pieturesque and sublime.
Three divixions are distinctly seen in these counties, reaching from north to south. I. A plain castward of the mountains, through which the high road runs by Kendal and Carlisle to London. II. The moumtains and lakes, occupying the larger portion of their surface. III. A sea-coast, contuining some harbours of importance.

The first purt consists of a plain, which, though narrow, is in many places fertile; and contains some large towns. In the northern part is "merry Carlisle," long distinguished in the lorder ammals, and the seene of interesting events in the contest of 174:. Carlisle heing a military $\mathrm{p}^{\mathrm{k} s t}$ of the fir-t consequence, its castle and walls were considered a model of
strength, according to the ideas of the middle ages; the cathedral is an ancient edifice, still nearly entire, in the, heavy Saxon style. Carlislo has of late begun to earry on some manufacture, chiefly cotton; also woollen, linen, and a few minor articles. A canal connects it with the Solway, and enables it to employ some shipping. Eastward from Carlisle is the great debateable line; and near Brampton is Naworth Castle, that powerful station wher: Lord William Howard undertook to bridle the license of the border. Yet, however strong, it forms rather a dark border keep, than a display of feudal grandeur. Lord Howard's, apartments, which, with their books, furniture, and armour, remain almost undisturbed, ar: separated by four strong doors from the rest of the castle ; and secret passages lead te every part, and to the dungeons beneath. Farther south is Kendal, the chief town of Westmoreland; a considerable place, with an old manufactory of woollens bearing its name, and some of cotton and leather. Burton and Kirby Lonsdale are small neat towns on the border of Lancashire.
The second division comprises the country of the Lakes, forming the peculiar character-

Uliawater. istic of the country, and chiefly distinguished by its scenery. Ullswater, (fig. 166.) divided into three reaches. The mountains are numerous, steep and lofty, net broken or impending, but of a bold and swelling form. The two highest in the regien are Helvellyn, and the square rocky mass of Stone Cross Pike, rearing their almost perpendicular ferms to an amazing height above the wooded hills which cluster round them. Opposite rises the immense precipitons steep of Place Fell; and the whole produces a scene of solemn and simple grandeur. At Patterdale, though the features be grand, the beautiful predominates. From the meadows bordering the lake, the numerous glens branching off, with the seattered aboles of the shepherds and oalesmen, present one of the sweetest of alpine pastoral scenes. Keswick or Derwentwater (fig. 167.) is of equal grandeur, but a quite different aspect. The mountains preserve no regular form, but are broken, shattered, impending, shooting into a thousand fantastic shapes; and though they de net produce the same grand unity of effect, astonish by a continual change of scenery. In

Ambleside. Winderınere (fig. 169.), is of much wider extent; not shut in by mountainous eliffs, but bordered by wooded and ornamented hills. Around its northern banks, however is ranged an amphitheatre of very high mountains, whieh, with their raried summits, forn. a sublime background to all its landscapes. These are generally grand, epen, diffusive, and extended. The other lakes, Coniston, Grasmere, Butternere, Cromack, Wastdale, Emer- ancets it le is thr a whers r strong, Ioward's rbed, are to every estmore. ame, and te border
haractery distin. ter, (fig 3s. The and lofty, of a bold ighest in le square , rcaring as to an ded hills Opposite steep of oduces a rand, the rom the , the nawith the crds and sweetest swick or of equal t aspect. regular cred, imsand fancy do not lery. In ig. 168.), 3 to have beauty is views of 1 ; and in lern bore road to

Boox I.
ENGLAND
dale, have attractions for the admircrs of nature. In this district, the only places to which the name of towns coold be given are Keswick on Derwentwater, ath. Aimbleside on Windermere; and even these are only large villages, supported by the resort of travellers, and by some persons of distinction who are induced to reside there by the beauty of the neighbourhood.
The third division consists of the sea-coast. The most considerable port is Whitchaven, which has become flourishing in consequence of the immense coal mines found and worked in its immediate vicinity. Some of them have a depth of 320 yards, supposed to be greater than any ether in the world; and some extend several milcs beneath the sea. The total quantity worked is estimated at 100,000 chaldrons, chiefly exported to Ireland: besides which, Whitelaven has pushed its trade to Africa, America, and the West Indies; and carries on much ship-building.

Subsect. 5.-Western Counties.

The western counties form the last difision of England Proper, comprising the ceunties south of the Mersey, which form the western boundary of England. This extensive line has scarcely any character which can be said generally to apply to it. We mention Cheshire, Shropshire, Hereford, and Monmouth, as bordering on Wales, and the last three partaking somewhat of its rude and romantic character; Worcester, Gloucester, and Somerset, occupying the fine valley of the Severn,-a region filled with commerce and cultivation, and containing several great cities; lastly, Cornwall and Devon, the extreme corner of Eagland, but marked by a mild climate, rich mines, and a surface agreeably diversified.
The soil of Cheshire is gencrally fit for all the purposes of agriculture, particularly in the valley of the Dee: but the dairy is the branch pursued with peculiar success; and it produces the checse which, bearing the name of the country, equals in richncss, though not in delicacy, any other in Britain. There are valuable mines of coal, and some of iron; but the mincral substance of which Cheshire chiefly boasts is salt. The pits were discovercd about a century and a half ago, at Northwich, Middlewich, and Nantwich, and have proved of the highest importance to the nation, at once for internal consumption, for the curing of fish, and for exportation.
Chester is, perhaps, the city in Britain which bears the most vencrable character of antiguity. The very name implics a Roman camp, the form of which is atill preserved in the direction of its principal streets. The effect is heightened by the mouldering red stone, of which its most ancient edifices are built. The principal streets have a very peculiar structure. The lower story, which has been hollowed out of the rock, consists of shops, above which is a paved way covered by the projecting upper story ; but the middle part of the house appears thus retired from the open street belind this species of areade. The arrangement is neither very elegant nor very convenient. The castle of Chester presents a very complete specimen of early military architecture ; connected with it is a range of handsome Grecian buildings, containing the barracke, county hall, and county gaol. The cathedral displays considerable grandeur, and has a very elegant chapter-housc. The improvements on the Dee enable vessels of 300 tons to come up to Chester, which has 62 vessels, of above 4000 tons; yet its trade with Irelnad has been transferred to liverpool.
Of the other towns, the most remarkable are those near which the salt mines are situated, particularly Northwich. There are fourteen pits of rock salt, and between thirty and forty of brine salt. The rock salt is hard and brown; the pits, after being dug to a certain depth, are excavated horizontally, leaving a portion of the salt for a roof. They thas form apartments, often of more than an acre in extent; and the reflection of lighte from the mineral, like that of numberless precious stones, produces a magical effect. Stockport and Macclesfield have flourished greatly in consequence of the introduction from Lancashire of the cottpn manulacture, to which Macelesfield adds some branches of that of silk.
Among the seats are Eaton IIall, a magnificent Gothic edifice, which Earl Grosvenor has erected nt an expence, it is said, of $400,000 l$.
Shropslire, or Salop, consists chiefly of a wide plain watered by the Severn. On its castern border it shares to a great extent in the mineral wenlth of Staffordshire, coal and iron. These are carried on in a remarkable manner at Colebrook; a deep-wooded vale on the Scvern, here traversed by the first iron bridge erected in the kingdom. This county is also interesting to the student of English history; many spots having been the scenes of remarkuble events, on which the destinies of the kingdom have depended.
Shrewsbury, the enpital, is particularly rich in inemorable recollections. Being the strongest fortress on the western marches, it became a rendezvous of the royal army, both for overawing the Welsh, and for northern expeditions; many of the streets nre narrow, winding, and irregular, and the old and new buildings too closely intermingled; only a small part of the castle remains; St. Mary's church is elegant and entire. The free school, founded by Wdward VI. nud Queen Elizaheth, has produced several eminent tenehers and pupils. Shrewshury is praised for its house of industry, and for the arrangement of its county grol.

Ludlew, an ancient town, was frequently the residence of royalty, and the regular station of those powerful officers the 1 ards Presidents of the Marches. The castle, placed on a wooded rock overhanging the Terne, was considerel one of the strongest places in the kingdom. In its vicinity occurred many of the most distinguished cvents in the contest between the houses of York and Iancaster. It was atterwards dismantled; yet remained a splendid private mansion, in which Milton's "Comus" was first performed, and where Butler wrote a part of his "Hudibras." It is now entirely roofless and covered with ivy, but still adorns the town, which is well huilt and plensantly situated.
Hereford and Monmouth, two demi-Welsh conuties, till the interval from Shropshire southwards to the Bristol Channel. Being traversed by the Wyo, the most picturesque of the English rivers, they vie in beanty with almost any part of the kinglom. T'he chief industry is in the rearing of fruit, and the whole country is as it were covered with orcharils: hence Hereford draws its staple proluction of cider and perry, in peenliar nbundance and perfection. The crop is precarious; but in a good year tho proluce of an acre will be from eighteen to

170
 twenty-four hogsheads, sometimes of such fine quality, that it will sell from the press at 201. a hogshead. The western district of Hereford produces also a large turantity of hops, and has one of the fincst breeds of eattle in the kingdom, both for draught and feeding. The breed of slicep, called Ryeland (fig. 170.), besides the excellence of their flesh, bear the yery finest wool in the kingdom. Monmouth is not so fertilo: its clief' wealth is mineral, conl being most abundant; and iron works are established to such an extent, that they have been known to produce a thousand tons in the week. Of the towns, Hereford bears venerable marks of antiquity, particularly its cathedral, not-
 withstanding the tall of its principal tower. Ross, once the residence of Mr. Kyrie, celebrated by Pope as "the Man of Ross," is a beautiful village, considered as a sort of centre of the picturesque scenes of the Wye.
The towns of Monenouthshire are mmall. The capital has a limited trade along the Wye; but its situation, in a delightiul country, has attracted the neighbouring gentry. There are still remains of its once powerful castle, and of a Benedictine priory. A few miles from Monmouth is Tintern Abbey (fig. 171.), the most picturesque, perhaps, of all the English monastic remains. This arises, not merely from its extent and heauty, although these be great: but from its roofless and ruined state, whence the wulls, both within and without,

Ragland Casile, are overgrown with luxuriant ivy, and decaying art and nature are blended together. In another direction is Ragland castle, the seat of the dukes of Benufort (fig. 179.), and considered one of the strongest of the ancient fortresses; but, after the gallant defence made by the marquess of Worcester for Charles I., "Cromwell," says Gilpin, "laid his iron hand upon it, and shattered it to ruins; to which it owes its present picturesque form." Chepstow; at the mouth of the Wye, is a neat town, and carries on some trade. It is chiefly interesting, however, from the remains of its castle, one of the most striking of all the mighty fortresses of Wales. Five or six large towers still remain, with the outer walls of a magnificent chapel.

Worcester and Gloucester occupy the lower valley of the Severn, which there becones a river of the first magnitude. This valley is broall, smowth, and fertile, yet nowhere degenerates into a dead unvaried level. Worcester has, on the west, the Nalvern Ilills, some of - whose summits rise to the height of nearly 1500 fect. Gloucestershire, again, has to the east the Cotswold Hills, more rugged, though not so elevated; while to the west are the rugged remains of the Forest of Dean. Worcestershire has, besides, the valley of the hower Avon and of Evenhan, famed for their lieanty and fertility. The vales of these fine counties ure fitted for proluce of every dexcription,- grain, fruits, pasturage, with some preference of the two latter. Glouceter is particularly distinguished for its dairies, which produce that
rich cheese well known under its name. The best, or double Gloucester, is produced in the vale of Borkeley, situated along the lowest part of the courso of tho Severn. Both counties have flourishing manufactures, though not on the vast scale of the northern districts. Gloucester, in particular, has a very extensive fabric of fine woollens, carried on through numberlces villages, in what are called "the Bottoms," a range of territory along the lower part of the Cotswold Hills. Its scarlet and blue woollens are in particular repute.

Worcester is a considerable and very handsome city, the principal streets being spacious and regular, with many good houses, and presenting a general air of neatness and conffort. It is of high antiquity, the cathedral (fig. 173.) having been founded in the 7th century,
 though the present structure was almost entirely erected in the 13th and 14th centuries. It is of great extent, simple and august, without the rich ornament which distinguishes some others. It contains the tomb of King John, one of the most ancient in England; also that of Prince Arthur. Worcester is chicfly noted in history for the great battle in which Cromwell totally routed the Seots army, and compolled Charles II. to quit England as a fugitive. The city has lost its woollen manufacture; but has still one of porcelain, the finest in the kingdom. Fifteen different materials are used, chiefly white granite, and steatite from Cornwall ; and every piece passes through twenty-threc hands before it is brought to perfection. Gloves are also made; and there is a considerable trade up and down the Severn.

Kidderminster is large and flourishing, in consequence of a very extensive manufactory of carpets. Droitwich is noted for its salt springs. They are covered with a deep stratum of gypsum: and for a long time the salt was made only from the brine which penetrated this hed; but, about a century ago, it was hored through, when the brine rushed up in vast quantities, and a large salt river was found to flow bencalh. Thus the salt can now be procured in any quantity, and supplics a great part of England.

Gloucester is also an ancient and fine city, though not quite so large as Worcester. It bears, in the arrangement of its strects, the marks of having been a Roman station. It was formerly also, a place of great strength. The manner in which it frequently baffled the utmost efforts of Charles I. was one of the circumstances which contributed most to the downfall of the royal cause. The most conspicuors feature at present is the cathedral, built in the Saxon snd Norman styles, between the 11th and 13th centuries. The beautiful lightness of its tower; its east window, said to be the largest in the kingdom; and its whispering gallery; attract peculiar noticc. The gaol, built at an expense of $40,000 \mathrm{l}$., afforded one of the first applications of the beneficent principles of Howard. Pins are the chief manufacture of Gloucester; and, small as the article is, the sale is so great as to render the umount it returns considerable. Its trade has been much obstructed by the bad navigation of the Severn; butsince the parallel line of the Berkeley Canal has just been completed, by which large ships can come up from the Clannel, Gloucester is placed almost on a footing with Bristol.

Cheltenham, by the fame of its waters, and its attractions as a place of fashionable resort, has become a greater and more crowded place than Gloucester. The waters are at once saline and chalybeate; and, being thus both tonic and aperient, are efficacious in indigestion, biliary affections, and similar disorders. Cheltenham now ranks second only to Bath. both as a resort for invalids and a gay rendezvous of the lashionable world.

There are other interesting towns in Gloucestershire. Tewkesbury has in close vicinity the "Bloody Meadow," on which was fonght the great battle which finally crushed the fortunes of the house of Lancaster. l'laced at the junction of the Severn and Avon, it is n vencrable old town, containing the Abhey church a remnant of that grand monastery, of which the superior, being a mitred abbot, sat in the House of Peers. Cirencester, a town of great historical name, covers only part of its ancient site, but contains one of the finest parochial churches in the kingdom. Stroud is the centre of the woollen manufacture carried on, not in itsclf, but in the surrounding valleys, and raising the population of the parish to 42,000 . Bristol we shall consider as belonging to Somerset.

Of the seats the most interesting is Hagley, the grounds of which Lord Luttelton adorned with elassic taste. Near it is the interesting spot of the Leasowes, embelished by Shenstone with ull the taste of a poet. Berkeley Castlo is a grand castellated edifice, almost as old as the Conquest, and the scene of Edwarl II.'s denth; retaining still its sntique character.

Somerset has vales nlmost as extensive as those of Gloucester, yet it is crossed by long ranges of those rurged hills which pervale all the extreme west of England. The most Vol. I.
easterly are the Mendip Hills, rich in mineral stores; farther west are the Quantock Hills, while on the borders of Dovon lies Exmoor Forest, the mowt elevated of all these tracty-its highest point Dunkerry Beacon, being 1668 feet high. The prevailing husbandry is pasturage, chiefly of rich natural grass; and, besides a number of cattle sent to the London markets, tho dairy is a great branch of industry. Chedder checse is considered equal to any in England; and a great puantity of what is called Gloucester is produced in Nomerset. The orchards are extensive, and cider and perry nearly as abundant as in tho counties on the Severn. The Mendip Hills yield excellent coul, lead of fine quality, and calamine. The manufuctures aro considerable, both wsollen and linen; the former chielly of the finer sorts; the latter, mostly dowlas, tickers, and sail-cloth.
Bristol, since we have attached it to Somerset, must hold the first place. This eity ranked long as second to the metropolis in commercial importance; but in tho course of the last century, it has remained nearly stationary in extent and population, thougl not in wealth. In 1736, it had 80,000 inhabitants; in 1821, 87,771; but in 1831, with its suburbs, 104,886. It has still a very extensive trade, chiefly with Wales, Ireland, and the West Indics. Nor does its spirit seen abated; since, in 1809 , it completed, at an expense of $\mathbf{6 0 , 0 0 0 l}$., a series of extensive improvements, by which the rivers Avon and Frome were spresd out into vast basins, for the commodious reception of vessels. The manufactures of Bristol are very considerable; its glass-works are twenty in number; its brass founderies the most extensive in the kingdoin ; to which it adds shot, pottery, \&c. In 1832 there belonged to it 296 ships, of the burthen of 46,567 tons. The amount of custons, in 1831, was $1,168,9781$., chiefly from duties on West India produce; and there entered its port 2547 vessels, of the burthen of 625,000 tons. It has still the remains of a magnificent cathedral, and the beantiful church of St. Mary Redeliffe, with many interesting monuments. The old interior of Bristol is ill-built and inconvenient; but the merchants in the new quarters of the eity have rearel some bandsome strects and squares. Bristol has wells, considered very efficacious, especially in consumptive complaints. Visiters chiefly resort to the beautiful village of Clifton, about a mile distant, amid the romantic rocks of St. Vincent. Bristol stands conspicuous for its beneficent institutions, in which those for education stand prominent. Chatterton, Southey, and Coleridge were natives of Bristol.
The name of Bath (fig. 174.) implies the circumstance to which from the eurliest ages it has owed its importance. The Romans made it one of their principal stations, and built

splendid baths, of which the remains have been discovered. Near the middle of the las: century, it became very distinguished as a scene of fashionalle residence, and continusd to increase till recently, when its attraction was slared by Cheltenham and some newer places of resort. It became the most besutiful, we may nearly say the only beantiful, city in England. The houses, built of a fine frecstonc, while those of almost all the other great towns are of brick, have a decidedly superior aspect; and several of the streets, as Great Pultency Street, the Crescent, the P'arades, \&e., being not only composed of fine houses, but formed on a regular plan, may vie with the finest in Europe. The city, moreover, rising by a gentle ascent from the Avon, large portions of it may often be seen at once in the most advantageous points of view. The pump-room, the assembly-room, and every structure raised for the sick or the gay, are unequalled in splendour. Bath has a Gothic cathedral one of the latest built, nud on a small scale, but the most highly ornamented in the kingdom; the chief beauty is in the west front.

Other venerable and interesting cities are found in Somersetshire. Wells is chiefly distinguished by a cathedral (fig. 175.), which ranks with the finest in England. The
 weatern front, built in the 13th century, is one of the most splendid specimens existing of the light and highty ernamented Gothic. In the interior, a chapel dedicated to the Virgin is much almired; the rest is saxon, and heavy. About two miles distant is Wookey Hole, a natural cavern; the aperture, ut first, merely allows one man to pass; but it soon opens into a sucesssion of large apartinents, flled with spars, concretions, petrifactions of the most fantastic forms. A subterraneous river prevents farther advance. Glastonbury contains the small remains of the most extensive monastery in the kingdom; which, with its various gardens and offices, covered sixty acres, supported 500 monks, and enjoyed a revenue of $25,000 l$. Even the church attacled to it rivalled the greatest of the Englieh eathedrals. Bridgewater and Taunton are towns of note in history, which carry on some trade and manufuctires. Wellington gives a title to the greatest commander of the age, in whose honour a pillar is there erected. Frome is a large and flourishing town, employed in the woollen manufacture.

Devonshire is traversed by ridges of hills, low, broad and flat, which, seen from a height, appear often as one uninterrupted plain; but on minuter inspection are found separated by deep valleys called coombs, walled in by the steep sides of the hills. This structure produces many sequestered and romantic sites; it renders, however, many of the roads steep and cireuitons, and in some places scarcely passable. The forest of Dartmoor, an extensive district on the west of the county, is of a character peculiarly rugged, broken into fantastic summits, and the valleys chiefly under wood or lying waste. On the other hand, the Vale of Exeter, and what are called the Hams, in the southern districts, are distinguished for fertility, which is rather heightened than injured by the moderate inequalities of the surface. Grain, cattle, sheep, potatoes, excellent cider, are raised according to the situation, and are all generally good. The cattle are of a very superior breed, both for feeding and draught. Devonshire does not rank high as a manufacturing county; yet woollens are made to some extent in Excter and several other places. Fishing is carried on with spirit and success, beth in the sea and in the rivers; of which last, the Exe and the Tamar are the principal. 'lhe Western Canal, joining the two channels, passes chiefly through Devonshire.

Exeter, the capital, is an ancient and pleasantly situated town, near the mouth of the Exc. In consequence of its advantages for education and society, many of the gentry from different parts of the county have made it their residence. Its manufacture and export of serges and kerseys have declined, but are still considerable; the East India Company taking them to the annual value of $\mathbf{4 0 0 , 0 0 0 l}$. The cathedral holds a high rank among ecclesiastical antiquities. Some part of it is traced to the ninth century; but the greater proportion belongs to the thirteenth and fourteenth. The painted east window, and the bell of 12,500 lbs, weight, the gift of Dishop Courtenay, are particularly noticed. Some modern einhellishments have been added.

Plymouth is the most important of the towns of Devonshire, and one of the great naval arsenals of Britain. The main and central depôts lie at Portsmouth and on the Thames; but it is important that the flects should have this exterior station, where they may rendezvous, and reccive their final equipment and supplies before leaving the Channel; where also, when exhausted, they may put in and refit. The Plym and the Tumar, at their junetion, form an estuary of nearly two miles broad, composing a harbour, or rather a scries of harbours, capable of containing 2000 vessels in a state of perfect security. In that of Hamoaze, on the Tamar, 100 sail of the line may be safely moored. Catwater, the port at the mouth of the Plym; and Sutton Pool, immediately adjoining the town; are both excellent and extensive. Plymouth Bay forms also an excellent roadstead, though exposed to the heavy swell which came in from the Atlantic. To remedy this, government undertook that stu-

pendous work the Breakwater, a mole formed by inmense stones heaped upon each other stretching across the entrance, ard at a certain distance from either shore (fig. 176.). The
estimated expense waa $1,170,0001$; and the quantity of stone, $2,000,000$ tons. It has completely answered expectation; and,' in proportion aa it has ndvancod, has rendered the roadstead more securs. As the appronch was also rendered dangerous by the Eddystone rocks, a light-houso has, after much difficulty and several unsuccessfill trials, been erected there by Mr. Smeaton, eufficiently firm to withatand the flurious assaults of tho Atlantic waves to which it is exposed. Hlymouth is now divided into two nearly equal partsPlymouth and Plymouth dock, at the mouth of the 'Tamar, recently called Devonport, and raised to the dignity of a separato borough. The dock-yard is most auperb; 3500 yarda in length, and from 1000 to $\mathbf{1 0 0 0}$ in breadth. All the establishments connected with it, the ropery, smithy, saw-pits, mast-houses, as also the victualling departments, are on the most extensive scalo, yet conducted in the mont regular order. Plymouth is not, on the whole, a well-built town: but it containa some handsome edificea; as tho government-house; the theatre, chiefly of cast-iron; the public library, \&e. The charitable institutions are numerous.

Barnstaple is a sort of cupital of North Devon, situated on a rich plain, and retaining a few msnufactures. Dartmouth carries on some foreign trale; while between it and Telgnmouth is Torbay, where, sheltered from the heavy gales that blow up the Channel, the Britiah fleet can ride safely at anchor.

Cornwall is a peninsula of a triangular form, bounded by Devon, and tho sea. The hills form a bleak central ridge, terminating in the rugged and obtuse point called tho Land's End. But some of the narrow valleya wear the aspect of smiling fertility. In somo secluded spots the elimato is so genial, that the myrtle and other shrubs peculiar to tho south of Europe flourish in the open air. Cornwall has from the earliest ages been renowned for its mineral products. These aro principally tin and copper; it also yields some lead. These metals occur in the granite chain, extending eastward as far as Dartmoor in Devon; but at present the principal mining district is that between the Land's End and St. Austel, The most celebrated are the tin mines of Palgooth,* about two miles west of that town : in these there are no fewer than fifty shafts, of which twenty or thirty are constantly in use. The principal vein of ero, which is about six feet thick, runs from east to west, and dips to the north with an inclination of about six feet in a fathem. The ore is of the vitreous kind, but rarely found in crystals; the colour for the most part grayish-brown; the country of the ore is a gray killas. The water is carried away. Steam power has been substituted for that of horses in moving the machinery employed for raising, washing, and stamping the ore ; after which last operation it is carried to the smelting-house. Tin cannot be sold until it is assayed and stamped with the duehy seal; for which purposo meetings are usually held four times a year. The annual produce is estimated at 20,000 er 25,000 blocks, each block weighing from 24 to 37 ewt., and valued on the avernge at ten guineas. Grain tin, which is obtained from stream ore, is deemed superior in value to the common metul, and has been procured to the amount of 2000 or 2400 blocks annually. The annual produce of copper is abont 13,000 tons, estimited at $1,300,000$. The lead mines are not much worked. The tinners are in many respects a distinct body of men; they have a court and parliament ef their own. Tho stannary laws, by which the mines and the operations connected with them are regulated, do not appear to have undergone any change singe the reign of Charles II. The mines give empleyinent to abont $16,000 \mathrm{men}$.

The pilchard fishery affords another source ef westh to Cornwall. The pilchards appear annually in vast shoala about the middle of July; and are taken in large nets of a peculiar furm, called seans, each sean managed by three boats, containing eighteen men. After lying salted in store for six weeks, the fish are packed in hogsheads, so closely that the whole contents, when turned out, appear in a compact state. The oil expressed from them is so considerable in quantity as to have beeome an article of trade. The quantity annually exported from the Cornish coast may be worth $50,000 \mathrm{l}$. including the receipts for oil. The number of persons employed in this fishery is about 5000 .

The towns of Cernwall are small. Launceston, situated on the Tamar, extends up the side of a hill, on the summit of which are the remains of a small fortress called Castle Terrible, where a vigorous stand was made to sustain the sinking fortunes of Charles I. Truro is a neat thriving town, the trade of which consists in a considerable export of tin. Penzance, near the Iand's End, from the mild salubrity of its air, has been found highly beneficial to persons of delicate constitutions, particularly of a consumptive tendency; and those who take up their residence at Penzance, are agreeably surprised by the lovely fcenery in its neighbourhood. Falmouth, tho westernmost of the fine harbours on the Chsnnel, is the principal packet station for Lisbon, the Mediterranean, and the West Indies.

Subsect 5.-Wales.

Wales is a territory which, though united to Englend by early conquest, still retains the utle of a separate principality, and possesses a national aspect. The verdant and extensive

Boon 1.

ENGLAND.
plains of western England here give phace to the lenty mountain, the deep valley, the roaring torrent, and the frighttul precipice. Wnles has rivers and torrents without number, which roll turough its mountain valleys, and whowe banks, adorned with verdure and cultivation, combine in the most striking mamer with the lofty and vuried sunmits which tower above then. The lottiest mountains are in North Wales; its valleys ore deeper and nurrower; and it presonts more strikingly all the characteristic features of Wolsh scenery. In South Wales, on the contrary, the valleys are broader, more fertile, and fuller of towns and villages; they often even expand into wille plains, still encircled by a mountain boundary. Agriculture, in such a country, labours under many disadvantages, and is carried on too often upon the old system of infleld and outheld. Manuffactures are nearly confined to the article of tlannel, which has alwaya been a fabric of the Welsh, in which thiey still excel their Yorkshire rivala. It is to mining, however, that the industry of Walen has been chiefly attracted, by the profusion of mineral wealth which nature has lodged in the bowels of its mountains. The Iead of Mlint, Cuernarvon, and other counties of North Wnles, the copper of Anglesey, and above ull, the iron of Glamorgan and other counties in the lritish Clammel are objects of extensive importance. Coal is found almowt everywhere, and is empooyed either for domestic purposes, or in fusing and refining the metallic ores.
The Welsh are a Celtic race, the descendants of the ancient Britons, who, in these mountain recesses, sought refuge from the destroying sword of the Saxons, which so completely dispossessed them of the low country of Eagland. They could not resist the overwheiming power of Ealward I., who annexed Wales to the English crown. In order to hold it in subjection, however, he was obliged to construct, not only on its frontier, but in its interior, castles of immense extent and strength. Yet they did not prevent formidable insurrections, in one of which Owen Glendower maintained humself for years as an independent prince. Within the last 300 years, the Welsh have been as peaceable as any other subjects of the empirc. They have retained, of their teudal habits, only venial failinge. Among these is national pride, through which the genuine Cambrian holds his country and his nation superior to all others; and regards the Sasna or Saxon as a lower race of yesterday. With this is comucted, in a high degree, the pride of pedigree; even the humblet Welshman tracing his origin far above uny lowlund genealogy. Strong tics of friendship subsist between the landownors und their tenants: manifested, on one side, by indulgenco and protecting kindness; on the other, by a profound veneration for the representatives of the ancient chiclis of their race. The Welsh have many superstitions, mixed with much genuine religious feeling. They are hardy, active, lively, hospitible, kind-hearted; only a little hot and yuarrelsone. Thoir English neighbours complain that they havo not yet attained that pitch of industry and cleanliness in which the former place their pride.
North Wales conuprises the counties of Cuermarvon, Merioneth, Montgomery, Denbigh, and Flint, with the island of Anglesey. The churacteristic fenture of this division consists in the very elevated cluins of mountains which cross it from north to south, facing the Irish

Channel. The chief is Snowlon (fig. 177,) which raises its head to the height of 3700 fect; yet it is only the most elevated of a crowd of summits, many of which rear their peaks almost as high. They cover a great part of the county of Csernarvon, at the northern part of which they present to the Bay of Beuumaris the lofty stoep of Penmanmawr, whose broken fragments threaten to bury him who travels the difficult puth which has been formed along its almost perpendicular sides. Merioneth is chiefly covered with inferior, but lofty and rugged mountains, till towards the southern extremity, they tower into Cader ldris, the second summit of Wales. It is cvery where stecp, craggy, and precipitous. Lastly, in the heart of Montgomery, towers the hage mass of Plinlimmon, with a crowd of attendant mountains.
The vales which intervene between these heights diversify bleak and barren regions, otherwise calculated to inspire only impressions of dreary sublimity. The most extensive is that of Clwyd, in the county of Denbigh, where the mountain chains graduully sink. It is about twenty miles in length, snd four or five in average breadth; and presents a more brilliant picture of fortility, heightened, doubtless, by contrast, than almost any other spot in the island. The narrower vales, however, present more of picturespue beauty, particularly that of Llangolen, where the Dee, winding through cultivated and pastorul scenes, overhung by high rocks and cliffs, presents at every step a vurying landscupe. The island of Anglesey is generally level, and its scenery presents fow striking features, except the rocks of its western shore. It has happened, fortunately for the inprovement of this formidable range of territory, that it lies on the highway from London towards Dublin; and with Vol, I.
the view of freilitating the intercourse between the kinglons, goverument, at the national expense, has formed one of the finest rouds in the world; among the principil festures of

C'uernarven C'antla. which in the fron augpenuion-bridge, formed acrows the arm of the sen, called the Menai Channel. The chief centre of thn flannel manuficture is in Montgomery anil Morioneth. 'The lead mines of IIolywell and the copper mines of Anylesey posspas an importance scarcely inferior to thowe of Nouth Walea.
Caerbarvon is a handwone, well-built town. Its chiet ornament is the castle, a stately edifice (fig. 178.), built by Edward I. to curb the apirit of the nowly subdued Welshl. It encloses an area of twe acres and a half; tho towers are of stupendous magnitude, and crowned by light and beautiful turrets. To the routh of Caernarvon ls tho steep arecent of Snowdon, whence a view of astonishing extent is commanded; though only to be seen in those fortunato days
 when the veil of mist, which usually wrnps it, has been dissipated. On its declivity is the wild and rocky lake of Lanhierie, with the ruined castle of Dolbadern everhanging ita banks. Nearly nt the opposito extremity of the county is Conwny; a poor town, but contuining the walls of a still more magnificent castlo (fig, 170.), also erected by Fdward 1. The interior is in a state of total ruin; but the viow, from a little distance, of its eight inighty towers, ranging along the summit of a lofly rock, which overlooks tho Bay of Beaumaris, presents nn image of grandeur which scarcely any other castellated structure in the kinglom can rival. About inidway between those two castled sites ia Bangor, a pleasant little Lown, on the high road to Holyhead and Dublin. Herc, and
 at l'enryn, is n great slipment of slates, brought from the steep sides of the neighbouring mountsins.
Merioneth has ufow large villages, cacli enclosed by a circuit of lofty and almost inaccessible mountains. Bala is supported by a small manufacture of knit gloves and stockings, and by the vicinity of the largest of the littlo laken of Wales, which has clear water and abounds in tish. Delgelly, about midway between Snowdon and Cader Idris (fig. 180.), is scated in the very heart of all the grandest scencry of Wales. On the coast, the castle of IIarlech, built also by Edivard, bears marks of great strength.
Montgomery, though its centre is occupied by tho "huge Plinlimmon," whence liranches shoot out in every direction, is yet, on the whole, of a milder aspect. The town of Montgomery is small, pleasantly situated on the declivity of a hill, crowned with the ruins of a once noble castle. Welshpool is an ill-built straggling town, but has a great market for flannels; and communicates by a canal with Chester and Ellesmerc. Near Montgomery is Powis Castle, which dates from the twolfth century, and was long one of the proudest fortresses in Wales: it is still a superb modern seat.

In proceeding to Denbigh and Fint, we come to broader valloys, and hills gradually diminishing down to the level plain of western England. Denbigh, a pleasant, ancient little town, is crowned by a castle, scuted on a high rock, looking down to the vale of Clwyd, proverbinal for its smiling fertility. In the valley of the Dee, is Wrexham, noted for its fairs, in which Welsh flamnel is tho stuplo commodity. But the cliof ornament of Denbigh is Llangollen Vale, on the apper Dee, where the mixture of culture and willness produces the moet striking variety of scenery. Among its leading features are the rained castlo of Dinas Bran, crowning the steep summit of one of the principal hills; and the remains of the Abley of Valle Crucis. This last is situated in a valley connected with that of Llangollen, enclosed by lofty mountains verdant to the summit, and sprinkled with trees. The edifico has been in the simplest style of Saxon architecture; but the situation renders it one of the most
rocks,
Sout
broke,
mingle
product
Radr
greater
Radnor
Card
in parti
it almo
arch th
which
grande
though
digan
small y
place;
Brec
of the
the ren
afterwa
Caer
large f
border.
of the
Pem it presc
Its brec
bours ir
feudal
sulated
vast re
The to
forms t
induced
yards a
of Sout
atructur
picturemque spots In Fingland. Chirk han near it a castle, one of the most perfect of the mnny with which Wales in adorned. Near it also is the tine aqueduct of loont-y-Cynilte, by which Mr. Telford has conducted the Eillesmere Canal over the Jee, reating on 18 pierf, 1007 feet in longth, and 126 feet above the levol of the river.

Flint la rich in lead and other mineral ntores. The connty town of Flint, and its enatle, havo entirely lowt the inportance they posemed when they wero the prisul of Richard II.; and the glory of Caerwy, the ancient acene of musical and pietical contest, has entirely passed away. Holywell, besiles ita extensive leud mine, carries in works in brass and coppor, and even wome cotton fabrics. Here the sacmed well of St. Winfrede, from which it derives its name, in beneflicially applied to the purposen of industry. 'The lend mine of Llan-y-l'ander is the most extonsive in the kingdom, and employs four vast steam-englines in clearing off the water. Mold is a pretty large town, in the centro of a rich plain of the same name. St. Asaph attracts notice by its nent cathedral.
The Island of Angleasy is generally a naked and ploomy flat. It was anciently the contral aeat of druidical superstition, atill attested by the cromlecha, or largo, that, stone tables supported by, rude pillari, which, are mere numerous hero than in any other part of Britain. Ita importance has reated almost entirely upon its copper minee, hut of late they have become

181
 unproductive, and the annual amonnt is only from 750 to 950 tons. Beaumaria, the capital, is a neat little town. Much more importanes attaches to Holyhead, now the main point of communiestion between England and Ircland. To render it such, government has constructed a noble road from 1 ondon aeross the most ruggeel part of North Wales, and also innde an adinirable harbour. The neighbouriug const is very bold, and the promontory, called the Ilead (fig. 181.), consiats of immense masses of precipitots rocks, hollowed into deep caverna. The town itself has been rapidly extended and improvel. South Wales comprises the counties of Radnor, Cardignn, Brecknock, Caermarthen. Pembroke, and Glamorgan. It presents scenery equally romantie with that of North Wales, mingled with a greater degree of eoftness and cultivation; and its agricultural and mining products are of considerably greater value.

Radnor is composed of bleak ranges of mountains, in some parts almost impassable; the greater part is only fitted to afford pasture for sheep, the wool of which is valuable. New Radnor, once a fortified city, is dwindled into a village.

Cardigan includes some of the boldest festures of Welsh scenery. The domain of Hafex, in particular, has been covered with extensive plantations, so happily disposed as to render it almost a seene of enchantment. At a few miles' distance is "tho Devil's Bridge;" an. arch thrown over a deep and narrow rocky chasm, overgrown with wood, at the bottom of which rolls the Mynach, after rushing down three lofty cascades; forming altogether the grandest seene of the kind in the kingdom. The lead mines of Cardiganslire aro extensive, though the want of fuel has eaused the working of many of them to be discontinued. Cardigan is a small old town, which carries on a considerable consting trade, having nearly 300 small vessels belonging to it. There is great resort to Aberystwith, an agrecable bathing place; its trade also is considerable.

Brecon, or Brecknock, is mountainous and rugged, but has some fertilo lands in the valleys of the Uske and the Wye. Brecon, an ancient town on the Uske, smid loty mountains, has the remains of a castle, which was once strong, and held by Buckingham, tho favourite and afterwards the victim of Richard III.

Caermarthen includes an amplo proportion of bleak and barren hills, intermixed with large fertile valloys. There are abundance of coal, and somo iron works on the Glamorgan border. . The capital, situsted on the Towey, which admits to it vessels of 300 tons, is one of the most flourishing and best built towns in Wales.

Pembroke consists of a peninsula branching out between the Irish and British channels, it presents merely an undulating surface, rising at most to elevations of 200 or 300 fret. Its breed of cattle is in high repute, and its indented consts contain some of the finest hurbours in Britain. Two Roman roals cross this comnty, which is ulso rich in druidical mol feudal monuments. The ancient city of Pembroke is strikingly situated on an almost insulated neek of land on the bzy of Milford Haven, the highest part of which presents the vast remains of its castle, one of the most magnificent structures of Wales or England. The town contains some ancient churches. The large bay composing Milford Haven forms the most eapacious and secure harbour in Britain. Hence government have been induced, at the new towns of Milford and Haberstone, on its northern shore, to form dockyards and establish packets for the south of Ireland. St. David's, the ecclesiastical eapital of South Wales, is now only a large dirty village, adorned, however with vencrable anciens structures.

Glamorgan is the finest county in South Wales, and, as to wealth, superior to any other in the principality. Its coast, along the Bristol Channel, and for some miles inland, is level, and fertile in the extreme. Thence the gruand rises into hills of continually increasing elevation, till, on the frontier, they rise to the lieight of upwards of 2000 feet, and unite with the Brecon chains. From these heights descend numerous streams, which, in their progress to the sea, proluce all the varieties of ravines, wooded vales, fills, and cataracts; which, with the beauty of the plains below, and the fine views over the Bristol Channel, render Glamorgun equal in picturesque beauty to any other county in Wales. The crops of every deseription of grain are ample; and there are good breeds both of cattle and sheep.

But these objects are trifing, when compared with the mineral treasures of Glamorgan. It forms tiee centre of a vast field of coal and iren, frem which branches extend into the neighbouring counties. Since it was found that iron could be smelted with coke, the work ing of this metal has prodigiously increased, and the town of Merthyr Tydvil, near which it is most abundant, has grown from a mere village to be the nost populous place in Wales. In consequence nise of the abundance of fuel, the copper ore dug out in Anglesey, Cornwall, nul Ireland, is brought hither to be smelted and refined. The plating of iron with tin is also an extensive occupation. The iron is reduced by rollers to the requisite thinness, and is then cut by scissors into plates, which afterwards require little more than simple immersion into the smelted tin. The coal, besides its essential use in these various works, is in itself a most extensive ebject of exportation, amounting in some years to 300,000 tons. The rivers of Glamorgan are very imperfectly navigable; but this defect has been supplied by industry. From Neath, Cariliff, and Swansea, canals reach far into the interior; and their benefits being extended by railways, a claannel has been opened for conveying to the sea the produce even of the most interior mines. Cardiff ranks as the county town, but is now much surpassed by others. Yet it carries on a considerable trade; having a commodieus harbour, and being comneeted by a canal with the interior works at Merthyr Tydvil. It is now much surpassed by Swnnsea, which has risen to its present importance by immense werks in iron and copper, and by the exportation of coal; which is furnished in such abundance, that a large vessel may enter at one tide and go out loadod at the next. Its pleasant situation on
 a fine bay has also made it an extensive resort for sea-bathing, and led to the erection of many elegant buildinga. Swansen has thus risen into a sort of capitnl of South Wales; yet it is not so large as Merthyr Tydvil has been rendered by the extensive iron werks in and round it. There are near it seventeen furnaces, in one of which 11,000 tons of pig iron and 12,000 tons of bar iron are produced annually. Caerphilly, a thriving little town, with some manufactures, deserves notice chiefly from the remains of its immense castle (fig. 182.), which present a most stupendous scene of ruins. It is stated to have been a mile and a quarter in circumference, and capable of containing a garrison of 20,000 men. Llandaff, the only nominal city in the county, is only a village, the seat of the least richly endowed bishopric in Wales. The cathedral, however, is a fine ruin.
The small islands attached to England are unimportant. Man, thirty miles in length by twelve in breadth, is nearly equidistunt from each of the three kingdoms. It comprises a considerable extent of level territory; but rises in the interior into high mountains, among which Snowfell, nearly 2000 feet high, stands conspicuous. Man ranked long as an independent sovereignty, held by the Earls of Derby, and is celebrated for the gnilant defence made by the countess of that name for Charles I. It descended afterwards to the Duke of Athol, from whom the sovereignty was purchased, in 1763, by the British government, with a view to the prevention of smuggling, and to the establisliment of a free trade. The natives are a Celtic race. Castletown, the capital, is the neatest town in the island; and in its centre, Castle Rushen, the ancient palace of the kings of Man, rears its gloomy and mnjestic brow. Douglas, however, as being the spot in which the whole trade circulates, is now of superior importance, and has attracted a great number of English settlers.
The Seilly isles, situated at some distance from the western extremity of Coruwnll, arc tenauted by 2000 por inhabitants, who raise a little grain, but depend chiefly upon fishing, pilotage, and the making of kelp.
Jersey, Guernsey, and Alderney, with Sark, form a group naturally French, nnd originally part of the patrimony of the Norman Kings, whieh the nnval superiority of England has evabled ber to retain. They enjoy certain privileges and immunities, founded on this dis. tinction, as laid down by Coke, that, "though parcel of the duminion of the crown of Eng.
lanil, they are not, nor cuer were, parcel of the realm ef England." The climate is mild und agreeable, and the soil gencrally fertilc. Jersey, the finest of the group, is so abundant in orchards, that cider forms the chicf ebject of exportation. St. Ieclier, the capital of Jersey, is a handsome town.

CHAPTER III.

sCotiland
The place which Scotland holds as part of Great Britain, has already been exhibited in the introduction to the chapter on Fngland. We shall now describe in detail this important, though sccondary, member of the empire.

Sect. I.-Geographical Outline.

Scotland is bounded on the south by England, from which it is separated by a line drawn along the Tweed, the Cheviot Hills, and thence to the Solwsy Frith. On every other side
 it is bounded by the Atlantic, the Northern and the German oceans. The ength of Scotlend, from the Mull of Galloway (fig. 183.), in about $54^{\circ} 40^{\prime}$ to Dunnet Head, Caithness, in $58^{\circ} 40^{\prime}$, is 280 miles. The greatest breadth, from Buchan-Ness to a point on the opposite shore of Inverness is 130 miles. This breadth varies little in the interval between the friths of Forth and Moray; but to the south of the former, the average breadth scarcely exceeds 100, and to the north of the Moray Frith, 40 or 50 miles. The entire extent of Scotland is 29,600 square miles.
Scotland, in its gencral outline, consists of wo great and perfectly distinct parts: the Lowlands and the Highlands. The former conprehends all Seotland south of the friths of Forth and Clyde; for the pastoral hills of the southern and western borders, less elevated than the northern mountains, and inlabited by a different race, are not considered as forming any tie between these and the Highlands properly so called. Immediately north of the Clyde, the highland ranges hegin to tower in endless succession ; but on the east coast, the Lowlands extend beyond the Forth and northward through the counties of Fife, Forfar, Kincardinc, and Abcrdeen; though thesc last are closely encroached upon by the mountain territory. The lowland district also extends round the northern promontory of Aberdeen, and along the borders of the Murray or Moray Frith, which contain as level tracts of territory, and enjoy as mild a climate, as any part of Scotland. This level tract does not comprehend quite the half of the country; even the Iothians, and still more the western provinces, are hemmed in by low ridges of bleak tablelands, covered, in a great measure, with heath and moss. The arable lands are almost solely comprised in broad flat valleys, chicfly along the friths, called straths or carses. Several of these are much fumcd for fertility, a blessing but partially bestowed even on the best districts of Scotlend.

The Ilighlands, which comprise the whole west and centre of northern Scotland, form a region of very bleak and rugged aspect. A chain of long and lofty ridges extends from south-west to north-east, not reaching, however, the Gecman Occan or the Moray Frith, but leaiving between them the level interval of the northern lowland. These mountains usually dip, alinost perpendicularly, into the lakes and seas on which they border; and even the interior valleys are on so high a level, that in this climate they admit only in scattered patches the culture of the coarser kinds of grain, particularly oats and bigg. These mountains, particularly the great Grampian barrier, which extends across from Ben Lomond to Blair-Athol, lock in closely with each other, and can be entered only by formidable and casily defended passes. The consequence has been, that they have preserved within their recesses a primitive people, who, in dress, language, and the whole train of their social idens, differ cssentially from the Iowlanders, and have retained antique and striking characteristics, both physical and moral, that are obliterated in almost every other part of Great Britain.

The Isles comprise the third part of Scotland. On the east, indeed, and even on great part of the south-west coast, only a few bold and naked rocks rise perpendicularly from the ocean. But the western lighlands sro bordered by the Ilebrides, an extensive range of large islands, some of which are separated from the continent by such narrow channels, that they may almost be considered as forming part of it. Again, the northern extremity of Scotland is prolonged by the two ranges of the Orkncy and Shetland islands, in a continuous line with cach other, but at some distance. These islands are rocky and bere, exposed

Vol. I.
34*
3A

Book I.
SCOTLAND.
to excessive moisture and the perpetual storms of the Atlantic. The population bears, in language and features, the marks of a Scandinavian origin; dating from the period when the pirntical rovers of the north made extensive inroads on the western states of Europe.
Among the Scottish mountains, the most considerable are the Grampians, a name which is given very generally to all those which cover the surface of the Highlands, but applied more particularly to the chain running across the counties of Perth and Argyle, and comprising Ben Lomond, Ben Jedi, Ben More, Ben Lawers, anil others of that elevated ridge which directly faco the low country of Stirling and Perth. Several of these mountains exceed the altitude of 4000 feet. Ben Nevis rises to the height of 4315 feet. On the borders of Inverness and Ross-shire, Ben Wyvis, and some others, are of nearly equal elevation. The south of Scotland is also very hilly; but its heights are seldom more than 2000 feet, green and pastorul. The most remarkablo are the boundary chain of the Cheviot, celebruted in the annals of carly feud, hunting, and border warfare. The Iowthers, a steep high ridge, including valuable lead mines; the pastoral hills of Ettrick and Yarrow; and Criffel and Cairnsmuir, in Galloway, form important objects: the lower ranges of the Pentland and Lammerinuor border the Iothians.
The rivers of Scotland are not so much distinguished for their length or magnitude, as for the pastoral scenery through which they wind their early course, and for the magnificent estuaries which they form at their junction with the sea.
The Forth rises near the foot of Ben Lomond, flows east towards Stirling, near which it is swelled by the larger stream of the Teith; whence, after many windings through the beautiful plain overlooked by Stirling castle, it opens into the great frith on which the capital of Scotland is situated.

NORTII PART.	68. Bnnff 69. Turreff	135. Aranaig 136. Aminusary	28. Lach Voil	94. Panton 11. Feclea	160. Laurieston
2. Bunnet	70. Aurrefit	187. Loch Shell	30. Glenurchay	98. Gerden	163. Kirkeadbright
3. Fraswick	71. Frapersburgh	139. Cromer	31. Cladick	97. Thennelkirk	
4. Wick	72. Atriches	139. Etrana	32. Kilmure	48. 1,under	
5. Ultatar	73. Peterlead	140. Hen Noyia	33. Ardmedily	9. Middleton	n Navar Watar
6. Faskay	74. Crudell	141. Fort William	3. Crnigmeh	100. Linton	b Tharao Water
7. Thisrau	75. Pilon		35. Kimartin	10. Paublen	c Oikel
9. Sirathy	77. Meldrum	194. Dalwhinme	37. Sirachur	10.j. Lanntk	
19. Fnrr Kirk	78. Cusalurend	155. Eirieb	39. Kilmoriwh	1仿. Llamilton	Findhorn
11. Riviegill	79. Kinnethnient	146. Clachay	3i. Ilen Lomend	105. Fealeshem	Spey
12. 'rongua	80. Achindore	177. Cluva	40. Lock Karring	103. Slewartos	h Devaran
13. Inch Keanloch	91. Huntley	14. Mennuir	41. Inch Lalinaig	107. Dalry	- Den
14. Wach Eribull	č. Kinnucoit	14. Cragumr	4. Jonone	108. Irvine	3 Dee
15. Gradey	8.1. Aberlour	16.). Glanbervie	43. Whllinmitown	${ }_{106}{ }^{\text {Ar }}$	E Eak
16. Drumactay	8. Grantown	151. Hervie	41. Nuehart	10. Manelsina	Tay
17. Scouria	8. Pdenikilte	152. Mentreme	45. Forleviat	11. Kilmarnuek	m Earn
18. Calearame	83. Dymer	13 Brechin	411. Kinrusa	12. Straihaven	
19. Inver Bagnaly	-7. Cairıoichyle	154. Danan	47. Faikland	13. Dususlan	- Tweed
90. loch Nayer	6. Invernese	155. Oaiblaw	48. St. Andrew'm	14. Crawforujohn	p Annan
2. 1uch Baden	c9. Jarea	58. Gleainla	49. Annrutier	15. Crawford	- Nith
2.3. Achnshoe	91. Kifmuir	158. Blair-Athol	Si. Kinahor	17. Galashiala	1 Ken
24. Rerrydele	92. Meauly	159. Jainacardech	59. Dunlirmline	18. Melrawe	1 Clyde
25. Holmedala	0?. Mucrich	160. Sbechalliun	50. Clackmennen	119. Syltirt	
26. Clyne	94. Kildecrew	161. 1.ach Runnoch	54. Airsh	120. Kelae	SKYE ISLE.
27. Achintran	25. Atradale	169. Loch Ericht	55. Elirling	191. Yetholme	1. Dig
92., Dalmor	96. Torridua	163. Loch Treag	58. Dumblane	1노, Ilownnm	2. U1
co Laire	97. Veneljane	164. Kinlochmpera	57. Milton.	123. Suuthdean	3. Totnecrach
30. Tulleeh	14. Applecrese	165. Corriherich	58. Camprio	124. Jdburth	4. Snizert
31. Lach Slim	g9. Killilan	16. Aryhoulan	59. Lach Liomend	125. lawick	5. Stein
継. Asaynt	100. Glen Ehiel	107. Bcarnadala	60. Tarbat	126. 19edfurd Green	6. Ruas
33. Stotr	101. Affrrie	168. Lental	61. Kilmodan	197. Kirkpatriek	7. Iracadale
34. Durney	102. Punilmgen	189. Eiduretelo	62. Gijphead	109. Sanquhar	8. Drunah
35. Cannahoulinh	163. Fuch Nees	179. Kinlurhaline	61. Achahoimb	19\% Kirkconnol	9. Gillan
36. Ulapan	104. 1relialsin	171. Murven	64. Carnmote	130. Ochiltrea	19. 7ruadford
37. Purtinlick	105. Aberarder	172. Arinamurchan	65. Kılerraw	131. Dalrymule	11. Kyla
32. Bra	106. Avipmore		60. Kilchnnzie	132. Giryan	
39. Gulgpie	167. Kincardine	SOUTH PART.	67. Soutbenil	133. Inalintras	MULL ISLE.
40. Dernoch	108. Abernethy	1. Appin	68. Camphellton	1:14. Hallach	1. Kilninian
41. Terbat	109. Achenraw	2. Ardehettan	69. Suditale	1.3.6. Gnry	9. Tobermorie
42. Cromarly	110. Atrathion	3. Glencos	76. Gorten	1.6. Minihiva	3. Keallan
43. Tain	11. Tewiv	4. Joch Hivn	71. Skipness	1:7. Dunscure	4. Aros
44. Invergerden	12. Clany	5. King'n Ilonme	72.18 uban	13.3. Penpont	5. Achmaraig
45. Kineardina	113. Kintere	6. Fingar	73. Grornock	139. Lachunatien	6. Chmbun
48. Kildrionote	114. Inverajy	7. lieflisawers	74. Kilbirnie	140. Weatprhirk	7. Aloy
47. ben Wyvia	11. Foveran	8. Killin	75. Dumburten	141. Langholm	8. Fidden
48. Lochbramm	16. Fintray	W. 10ed Tay	76. Painley	19. Giretna Grcen	
49. Loch Fuir	17. Old A herdern	10. Kpnmore	77. Bruftew	143. Annan	JURA 1SLE.
S0. Timafidine	118. New Aberdeen	11. Abarfeldy	78. Glungow	14. Dlumfriea	1. Jenahall
51. Melveg	19. Stenehavin	12. Amubrie	79. llothwell	14.5. ('nerlavereck	2. Lakg
59. Frridaln	120. Ternan	13. Dunlseli	80. Airdria	146. Dougla	
50. Geirluch	121. Birgo	1. Hlairgowrie	Q1. Whithurs	147. Urr	ISI.AY 1SLE.
54. Jush Marce	jos. Halmoral	15. Cupar-Angua	8_{8} 2. Falkith	$140.10{ }^{\text {dol K K }}$	1. Saraig
55. Lech Fannich	12. Brganar	16. Meiple	83. Linlitheew	149. Nowten Stew-	2. Kilchomen
36. Luch luichurd	129. Inck	17. Arbranils	84. Berrowatown-		3. Bupha
57. Kilcearn	12.5. Invarnahaven	19. Muirirum	nees	150. Crnighach	4. Axkaig
58. Fertrine	126. Lakyan	19. pundee	85. Fadinhurgh	15. Now tace	5. Anwmore
59. Forl Gearge	127. Fort Aurustus	90. Kilmeny	Hi. Dalkeith	150. Sranpary	6. Kildalton
\%4. Naim	129. Inch Gary	21. Conpar	87. Muselburah	13. Purtpariok	7. Kintra
61. Forrem	199. Joch Lochy	93. Nowburgh	88. Ilatdington	154. Maidentir	
©2. Elgin	1:0. Cluncs	23. Perih	80. North Berwick	15. Ardwell	ARLAN ISLE
63. Rothey	131. Dech Arkeg	24. Crieff	90. Dunbar	156. Grentinco	1 Oran
64. Fuctinbers	132. Roshy	25. Xomrin	91. Scateraw	157. Mnchrum	2. Corrie
65. Culan	134. Ruddrech	28. Loch Earn	92. Bunkle	159. Wigton	3. Kilbride
tif. Marnoch 67. Portsoy	134. ,och Morrey	27. Craggea	93. Dunse	159. Wigton	4. Kilmory

The Clyde rises on the borders of Dumfries-shire ; flows for a considerable space through a wild pastoral valley; and descends, by a succession of most picturesque cascades, into the lower region of Lanarkshire. After passing through a tract which may be denominated the garden of Scotland, it enters Glasgow, becomes a broad stream, and expands into a winding frith, not so broad as the Forth, but the scene of a much more active trade.
The Tweed rises from the same chain as the Clyde, and running eastward, waters the most beautiful and classic of the pastoral districts of Scotland, in whose verse Tweed is the favourite name. Of similar fame are its tributaries, the Yarrow, the Gala, the Teviot; swelled by whose waters it forms, on reaching Berwick, a capacious harbour.
The Tay rises in the central Highlands, descends into the lowlands of Perthshire, and after winding beautifully round the city of Perth, expands into the Frith of Tay, and forms the harbour of Dundee.
The Spey has a longer course than any other; but, rising in the midst of the Perthshire highlands, and rolling northward through the wild recesses of Athol and Braemar, its line is comparatively obscure. The other rivers of Scotland are of subordinate rank; the Dee of Aberdeen, the Esk of Montrose, the Nith and Annan of Dumfrics, the Ayr and Irvine of Ayr.
Lochs form a characteristic feature of Scotland; many of them are long arms of the sea, running up into the heart of the mountains. Among these, Loch Lomond is pre-cminent. The traveller admires its vast expanse, its gay and numerous islands, its wooded promontories and bays, and the high mountain barrier at its bead. Loch Katrine, in a smaller compass, presents a singular combination of romantic beauty. Loch Tay, enclosed by the loftiest of the Grampians, presents alpine scenery on the grandest scale; while at Inverary, Loch Fyne unites the pomp of art with that of nature. The long chain of Lochs Linnhe, Lachy, and Ness, stretching diagonally across Scotland, comprises much fine ecenery, and has afforded facilities for making a navigable communication between the German and Atlantic oceans.

Sect. II.—Natural Geography.

This section will contain Geology only, as the Botany and Zoology of Scotland were described along with that of Great Britain in general, under the head of England.

Subsect. 1.-Geology of Scotland.

Scotland may be divided geologically into the following great districts:-1. Southern; 2. Middle; 3. Northern; 4. Inaular.
(1.) Southern division. This division includes that part of the country bounded on the south by the northern frontier of England; and on the north and west, by the comparatively flat country between the Forth and the Clyde. It is traversed from St. Abb's Ilead on the east coast to Portpatrick on the west coast by a high land, named the great southern high land of Scotland, in which are situated the highest mountains in this division of Scotland. This lofty range sends out branches in different directions, many of which reach the seacoast, while others terminate in the lower and flatter parts of the country that lies around them. Although abundantly supplied with rivers, the southern division contains but few lakes, in this rcspect forning a striking contrast with the middle and northern divisions. The mountainous regions are composed of transition rocks, while the lower and flatter consist principally of secondary and alluvial formations.
I. Transition rocks. The predominating rocks of the Neptunian class are greywacke, with subordinate beds of clay slate, flinty slate, and transition linestone; the Plutonian species are granite, syenite, porphyry, serpentine, and trap; by far the most abundant rock is the greywacke, in which the principal lead-mines in Scotland, those of Leadhills and Wanlockhead, are situated. They have been worked from an early period, and during a long course of years have yielded to the proprietors o very rich return. Of late years, owing to the disturbed state of the worid, their prosperity has been interrupted. Copper ores have been raised in Galloway, but not in considerable quantity; and the same may be said of the sulphuret of antimony, formerly mined at Glendinning in Dumfries-shire.
II. Secondary rocks. Scotland is distinguished from England by the smaller number of its secondary formations, and their more limited distribution; the southern division contains a greater proportion than the middle or northern; and hence approaches more nearly to England in a general gengnostic point of view. The following secondary formations have been observed :-I. Old red sandstone. 2. Mountain limestone. 3. Coal formation. 4. New red sandstone. 5. Various trap and porphyry rocks.

1. Old red sandstone. This formation skirts the transition chains of mountains lying immedintely upon the greywacke, \&c. It is well exposed in the Pentlands, the upper part of the river district of the river Clyde, in the course of the river Tweed, in various points in Durnfrics-shire, \&c. In the districts where it occurs, it is frequently quarried as a building-stene.
2. Mountain limestone. The beds of limestone in the lower part of the coal formation
in the neighbourhood of Edinburgh, and the beds of limestone upon which the coal formation rests in other quarters, as in Dumfries-shire, belong to the nountain limestone.
3. Coal formation. This important deposit occrpies considerable portions of Enet, Mid, and West Lothian, and extends westward to Glasgow. It forms extensivo tracts in Ayrshire; in Dumfries-shire; and in Berwickshire. The coal mines in the Lothians and around Glasgow are the most productive in Scotland. The anmual quantity of coal brought into Glasgow is 561,049 tons ; of which 124,000 are exported. It may also be noticed, as connected with coal, that in Glasgow, during twenty-four hours in the winter months, the gas company make upwards of $500,0(0)$ cubic feet of gas from coal; and during the same period in the summer months, about $\mathbf{1 2 0 , 0 0 0}$. The pipes extend to more than 100 miles through streets. The great iron-works at Carron are supplied with the ore from which the iron is obtained, from the coalfields of this and the middle division of Scotlund. The ore or stone, which is an argillaccous carbonate of iron, occurs in beds and embedded masses, and principally in the slate of the coal deposit. The admirable building-stone around Edinburgh and Glasgow is a sandstone which occurs in beds in the coal formation.
4. New red sandstone. This formation in the regular succession rests upon the coal formation, in which position it is to be seen in the neighbourhood of Cannoby in Dumfriesshire.
5. Trap and porphyry rocks. These ignigenous masses occur in many parts: they abound, for instance, all around Edinburgh; forming part of the Calton Hill, Castle Hill, Salisbury Craigs, Arthur Seat, the Pentlands, \&c. : the beautiful conical hill named North Berwick Law, the Bass Rock, the Isle of May, Traprain Law, are also fornned of trap and porphyry rocks. Renfrewshire and Ayrshire also abound in splendid and interesting displays of trap and porphyry. In many parts of the country these rocks are used as building-stones, and the greenstone of the trap series affords an udmirable material for road-making. The splendid causeways and roads around Edinburgh are of greenstone.
III. Alluvial rocks. In various parts of the country there occur deposits of old alluvium, or what is called diluvium; and everywhere the modern alluvium, or that daily forming meets the eye.
(2.) Middle division. This division of Scotland is bounded to the south by the southern division; on the north by the Moray Frith and the great chain of lakes extending from Inverness to Fort William and the Linnhe Ioch. It is traversed in a north and southwesterly direction by the Grampian range of mountains, which extends from the Mull of Cantyre to Stonehaven in Kincardineshire, and to the rocky northern coasts of Aberdeenshire and Banffshire. The country in general fulls rapidly to the west of this great mountain range, and comparatively gently to the castward of it: hence the western acelivity is steep and short, the eastern gentle and long. On the eastern acclivity and the low lands connected with it are situated the Sidlay, Ochil, and Campsie hills, forming a pretty continuous range; and Kellie Law, Largo Law, the Lomonds, und the Saline Hills in Fiteshire, forming a less continuous and lower range of hills. Water is abundantly distributed over this district, in the form of rivers, lakes, and springs. Lakes, which are so rare in the southern division, are here abundantly distributed, and exhibit many beautiful and splendid scenes. Of these lakes the most considerable are the following: Lnch Lomond, Loch Tay, Loch Ness, and Ioch Awe. The rocks are more varied in this than in the southern division; magnificent displays of primitive, transition, and secondary formations present themselves to our attention.
I. Primitive and transition rocks. The Neptunian kinds are granite, gneiss, mica slate, clay slate, talc slate, chlorite slate, quartz rock, greywacke, limestone: the Plutonian rocks ure granite, syenite, porphyry, trap, and serpentine. The Neptunian rocks generally range from north-cast to sonth-west; most frequently dip under an angle of about 45°; and are variously upheaved, broken, and disturbed by the Plutonian rocks. They are principally confined to the Grumpian high land and its branches. The most remarkable granite and syenite districts are Cairngorm, Benaehic, Aberdeen, Peterhead, Ben Cruachan; and Ben Nevis conjoins along with its slaty Neptunian strata, granite, syenite, and porphyry. In some quarters the limestone is raised as marble, as in Gilen Tilt; but more frequently it is burnt into quicklime. The clay slate quarries of Luss, on the banks of Loch Lomnond; these of Balachulish, in Argyleshire; and the slate quarries in the interior of Aberdeenshire, are of considerable extent, and employ many workmen. There were formerly lead-mines in the neighbourhood of Tyndrum, where the lead glance, or sulphuret of lead, was disposed in veins in quartz rock and mica slate.
II. Seconlary rocks. These are, old red sandstone, mountain limestone, coal formation, and new red sandstone, and probably the lias formation: these strata are variously intermingled with trap and porphyry rocks.
6. Old red stindstone. This rock, in some parts of the country, as in the vicinity of Stonehaven and near Bhair-Gowrie, exhibits magnificent cliffs of conglomerate. It forms the principal reek in the great tract of country included between lines drawn from Stonenaven by Blair-Gowric, Comrie, Callender, Dumbarton, Stirling, Kinross, Dundee, Arbroath,

Montrose, and Bervie. It appears again near Inverness, and on the banks of Loch Ness, In many localities there are extensive quarries, the sumdstone being used as a building-stone, and as a pavement-stone. The Kinguddie sandstone and the Arbroath pavement-stone, from old red sandstone localities, are well known.
2. Coal formation. The coal formation in the middle division of Scotland has not been met with farther north than Fifeshire. The counties of Fife, Clackmannan, and Stirling, abound in coal; of these counties, Fife is that which contains the greatest fields of this valuable mineral.
3. New red sandstene occurs apparently in some points on the east coast, and also on the north coast between Cullen and the Cromarty Frith.
4. Lias formation. Near to Banff there are beds of clay, which, from the organic remains contained in them, may turn out to belong to this formation.
5. Plutonian rocks. These are various traps, as greenstone, aunygdaloid, trap tuffa, and basalt; and porphyries, having a basis of claystone or clinkstonc. The famous headland the Red Head, on the east coast, exhibits a fine display of Plutonian rocks, connected with the red sandstonc. Bervie Head and the vicinity are interesting from their porphyry rocks. The trap rocks of Montrose are famous on account of the agates they afford. Kinnoul Hill, at Perth, is composed of amygdaloid, tuffh, and other rocks of the trap series, and abounds in agates. The Ochil Hills are principally composed of trap and porphyry; and trap rocks nbound in the Campsie range. The Fifeshire hills, viz. Kellie Law, Largo Law, the cones of the Iomond, and the Saline Hills, are of trap. These various traps and porphyries have, ns is generally the case, broken and chnnged more or less the Neptunian strata with which they are intermingled.
III. Alluvial rocks. These have the same general characters as those met with in the southern division. In a few districts, however, as near to Peterhead, and in the vicinity of Banff, there are numerous chalk fints. These, by some, are considered as alluvial, and foreign to Scotland; while others are of opinion that they are remains of the chalk formation, formerly distributed in some of the tracts where the flints are found.
(3.) Northern division. This division is bounded on tho south by the chain of lakes which forms the northern linit of the middle division, and on the north, the east, and the west, by the ocean. The high land ranges throughout its whole length, from south-west to north-enst. The western acclivity is steep and slort; the eastern comparatively gently inclined and long. Rivers, springs, and lakes are numerous. The whole of this division, nearly, is composed of primitive and transition rocks, the sccondary occurring principally along the east coast and a small extent of the north-west coast.
I. Primitive and transition rocks. The Neptunian species are disposed in strate that eflen range from south-west to north-east, nre of gneiss, inica slate, clay slate, quartz rock, talc slate, limestone, and greywacke. The Plutonian rocks are less abundant than in the middle and southern divisions of Scotland; and are granite, syenite, porphyry, and trap. The only mines are those at Strontian, where the ore is lead glance, or sulphuret of lead, in veins traversing gneiss. The mineral in which the Strontian carth was first found occurs in these mines, along with other curions minerals, of which the cross-stone is the most interesting.
II. Secondary rocks. The formations of this class are both Neptunian and Plutonian. The Neptunian are old red sandstone, new red sandstone, lias, and colite ; the Plutonian, trap and porphyry.

1. Old red sandstone. Much of the county of Caithness, end some tracts on the east coast, and a few points on the west, are composed of this formation.
2. New red sandstone. The county of Caitiness affords examples of this deposit, which is remarkable on account of the beds of fossil fishes it contains.
3. Lias and oolite. This formation occurs on the east const of Sutherland. The coal mines at Brora are situated in this deposit; the conl is, however, of indifferent quality.
4. The Plutonian rocks are not frequent, and consist principally of trap and porphyry.
III. Alluvial rocks. These exhibit the eame characters na in the middle and southern divisions.
(4.) Insular division. This may be sublivided in the following manner:-1. Forth Islanis; 2. Clyde Islands; 3. Hebrides; 4. Orkneys; 5. Shetlands.
(1.) Forth Islands. The Bell Rock is of a rel saudstone, having the same characters as that on the neighbouring const at Arbroath. The other islands are principally coinposed of trap rocks, occasionally associnted with clinkstune porphyry, and rocks of the coal formation. (2.) Clyde Islands und the Cumbrays are composed of secondary rocks; the Neptunian rocks are chiefly old red sandstome, which is traversed and overlaid by different kinds of trap rocks, ef which there are magniticent displays in these islands. The southern part of Bute is almost entirely composed of rocks of igneous origin, belonging to the trap series; the middle, of old red saulstone; the northern of clay slate, mica slate, quartz rock, and trap. Arran affords highly illustrative exnmples of Neptunian and Plutonian rocks of the primitive and

Book I.

SCOTLAND.
transition classes, viz. clay slate, mica slate, greywacke, as Neptunian deposits; snd granite, as a Plutonian rock. 'The junctions of the granite, of which there are two formations, with each other and with the Neptunian slates, are inost instructive. Reposing on these rocks is a deposit of the old red sandstone, on which rests the coal formation; and the whole are cevered, mere or less completely, with now red sandatone. These Neptunian secondary rocks are traversed in all directions by Plutonian rocks of tho porphyry and trap series, affording an admirable study to the geologist. Alluvial deposits occur all round the coast, and covering, more or less deeply, the bottom and sides of valleys. Both old and new alluvium are met with in Arran. The Craig of Ailsa, which is 900 feet high, is composed of secendary syenite, in several cliffs disposed in magnificent columns, and traversed by veins of secondary greenstone, \&c.
(3.) The Hebrides or Western Islands form two groups; the one, ranging immediately along the coast, the Inner Hebrides; the other, lying beyond, to the weatward, the Outer Hebrides.
Inner Hebrides. Gigha, Isla, Jura, Colonsay, Oronsay, Scarba, and the Slato Isles, are principally composed of Neptunian primitive and transition strata, having frequently a northeast and south-west direction; and variously disposed, from the slightly inclined to the vertical position. The rucks are mica slate, quartz rock, tale slate, chlorite slate, hornblende slate, clay slate, limestone, and greywacke. These are traversed by, and intermingled with, Plutonian rocks of the trap and porphyry series. The clay slate is extensively quarried in the isle of Eisdale, one of the Slate Islands. In Isla there is a great deposit of limestone, in which formerly lead-mines were worked. Iona, Tiree, and Coll are principally composed of gneiss, mica slate, quartz rock, hornblende rock, with occasional intermixtures of granite and syenite, and all traversed, more or less frequently, by veins of trap rock. Mull, with the exception of two or three points, which are composed of granite, gneiss, and mica slate, is composed of secondary trsp and porphyry rocks, with occasional intermixtures of lias limestones, and lias coals. The usual alluvial deposits appear in different parts of the island. Staffa, which is composed of basalt, amygdaloid, and trap tuffia, has been long celebrated on account of its splendid columnsr basaltic cave, tho Fingal's Cave of travellers. Eigg is principally composed of trap rocks, occasionally intermingled with lias limestones. The Scure Egg is a remarkable columnar ridge of pitchstone porphyry, presenting the most splendid display of the nstural columnar structure to be met with anywhere in the British islands. Canna is entirely composed of secondary trap rocks; and Rum, a wild, rugged, and hilly island, besides red sandstone, which forms a prominent constituent part, also contains many varieties of trap, somo of which are remarkable from their containing agates, bioodstone, opal, \&ec. Skye, the largest of the Inner Hebrides, exhibits great variety of scenery and of geological arrangement. The southern part of the island is composed of primitive and transition rocks, principally of the Neptunian series; namely, mica slate, clay slate, chlorite slate, hornblende rock, quirtz rock, greywacke, and limestone. The middle part sffords magnificent displays of Plutonian rocks, as syenite, porphyry and trap, which are frequently observed intermixed with lias limestone, which in many places is seen converted into marble through the agency of those ignigenous rocks: the northern division of the island is principally composed of various trap rocks, often abounding in zeolite and other curious minerals, and intermingled with lias limestone and coal. The alluvium here exhibits its usual characters. Rasay. The southern and middle parts of this island are of secondary formation, prineipally of oll red asndstone and lias sandstone; the northern extrenity is of primitive rocks, principally gneiss. Rona. This island, which appears formerly to have been a part of Rasay, is entirely of primitive formation, the prevailing rock being gneiss, with subordinate mica slate, quartz rock, hornblende rock, \&c., traversed by splendid veins of granite.
Outer Hebrides. This group, which lies in a north-east and south-west direction, consists of the following islands; viz. Lewis, Harris, North Uist, South Uist, and Barrn. The whole range of islands is nearly of primitive formation, and the predominating rocks, which are gneiss and mica slate, range generally from north-east to south-west. The following rocks, which are generally subordinate to those just mentiuned, viz. quartz rock, clay slate, ehlorite slate, hornblende rock of various kinds, limestone (!), serpentine, with masses and veins of granite, syenite, and porphyry, present mauy interesting phenonena.
(4.) Orkney Islands. This group of islands is distinguished from ail others that lie around the coasts of Scotland, by the uniformity of its structure and composition. With the exception of a small extent of transition rocks near Stromness in the island of Pomona, the largest of the Orkneys, that island snd all the others are composed of the old red sardstone, with some rare uppearance of secondary trap.
(5.) Shelland Islands. This very interesting group of islands exhibits great variety in its geognostical structure and composition. Mainlant. With the exception of a band of old red sandstone extending from the line of Sumburgh Head to Rovey Head, on the east const the whole of this inland is formed of primitive rocks. The Neptunian strata are
gneiss, with subordinate mica slate, clay slate, quartz rock, limestone, and hornblendo rocks; the Plutonian rocks, which frequently alter and upraiso the Neptunian strata, are granite, syenite, porphyry, greonstone, and epidotic syenite. Yell is almost entirely compowed of gneiss, variously intersected by veins of granite. Unst is composed of gneiss, mica slate, talc slate, chlorito sate, and limestone, which are varionsly intormixed with serpentine and diallage rocks. Ilermaness, the most northern point of the British dominions in lurope, is composed of gneiss; while the Land's End of Cornwall, the must south-westerly eape of Britain, is formed of granite. Unst and the noighbouring island of Fetlar abound in chromato of iron. Hydrate of magnesia, grenatite, precious garnot, and other benutifut mineruls, occur in this island. Fetlar is composed of serpentine as the predominating rock, with diailage rock, gneiss, nica slate, chlorite slate, and quartz rock. Whulsey is composed of gneiss. Bressay, Noss, and Mousa are composed of old red sandstone. Barru and House are composed of gneiss and mica slate, with suburdinate limestone; Papa Stour is a mass of porphyry. In Foula the preduminating rock is old red sandstone; at one point there is a limited display of primitive rocks of granite, gneiss, mica slate, and clay slate.

Sect. III.-Historical Survey.
To the Greek and Roman writers, Scotland was not known as a diatinct country. Albion, or Britain, was viewed as one region, parcelled out among a multitude of different tribes. Agricola first penetrated into that part of Britain, which we now call Scotland. He easily over-ran the low country, but encountered the most obstinato resistance when he approached the Calcdoniang, who appear then to have held all the northern districts. An obstinate battle, the precise place of which has never been sscertained, was fought at the foot of the Grampians. All the rude valour of Caledonia could not match the skill of Agricola and the discipline of the Roman legions. The whole open country was abnandoned to the invadere, whose progress, however, was stayed by what they termed the Caledonian forest, under which they seem to have vaguely comprehended the vast pine woods of Glenniore, and the steep barrier of the Grampians. Their military occupation, however, is attested by the formation of numerous camps, of which that of

Camp at Ardoch. Ardoch, (fig. 185), ten miles north of Stirling, is the most extensivo and complete. The Romans endeavoured to resist the incursions of tlic natives, by rearing at different periods, two walls, one between the Forth and Clyde, and the other south of the low country of Scotland, between the Solway and the Tync. The northern tribes, however, continued their inroads, now chiefly under the name of licts, who seem clesrly to have been the same people with the Caledonians. In the fifth century Britain was abrandoned by the Romans, and over-run by the Saxons, who occupied the eastern part of the south of Scotland, as far as the Forth.

The western part was formed into the kingdom of Strathelnyd. It flourished for about 300 years, and was rendered illustrious by the name and exploits of Arthur and his knights, whose power from 508 to 542 , is represented by tradition ss having been predominant over the sonth of Scotland and the north of England. The cspital and bulwark of this kingdom was Alchiyd, called afterwards Dun Briton and Dumbarton, seated on an insulated precipitous rock at the mouth of the Clyde. The Stratheluyd Britons, closely pressed by their Saxon neighbours, endeavoured to defond themselves by a lengthened fosse, of which the traces have heen supposed to remain in the Catrail or Picts'-work Ditch, drawn across the counties ef Solkirk and Roxburgh. Such feeble defeuces could not support a sinking monarchy; in 757, Aleluyd was taken by the Saxons, and the kingdom subverted.
The Scots, before this time, had come from Ireland, their original seat, which, in the fourth century, was often called Scotland. Even before the departure of the Romans, the Scote, joined with the Picts, are mentioned as the ravagers of defenceless Britain. They nppear at one time to have been driven back into Iroland; but in 503 they again landed in Cantyre, and during the next four centuries, spread gradually over the kingdom. At length under the victorious reign of Kenneth, which commenced in 836, they wrested the sceptre from Wred the Pictish king, and establishod supreme sway over the whole of that country, which, from 'hem, was ever afterwarle called Scotland.

Book 1.
SCOTLAND.
The Scoto-Saxon era. as Mr. Chalmers calls it, is memorable rather for an insensible कhange, than for any surden revolutien. After the subversien of the kingdom of Strathcluyd, by the Saxons, that people had colonized and filled the whole south; and the Seottish kings, though of Celtic origin, having estublished themselves in this mere furtile part of their territories, soon began to imbibe the spirit of its occupunts. From this or other causes the whole lowlands of Seotland is in langange and manners Teutonic, and the Gael or Celts were again confined within their mountain boundary.

An era of disputed succession arose out of the contending claims of Bruce and Baliol, aftor the death ef Murgaret of Norway. Edward I., availing himself of this dissension, suceceded in iutrolucing himself under the character of an arbiter, and having established Balol on the throne by an armed interference, sought to rule Scotland as a vassal kingdom. The result was a struggle, ealamitous to Scotiand, but which, however, placed in a conspicuous light the energy and heroism of the natien, and brought ferward the names of Wallace and Bruce, ever afterwards the foremost in her annals. The result was glorious; the concentrnted farce of the Engliah was finally defeated in a pitched battle at Rannockburn; they were cempelled to renounce their ambitieus pretensions, and allow the kingdom to be governed by its native princes.

Under the turbulent and unfortunate sway of the Stuarts, Scotland continued for several centuries without any prominent revelution, though with a centinual tendency to internal commotion. This dynasty, from their cennexion with the Frenel and English courts, had nequired the idea of more polished manners, and habits of greater subordination as due from the nobles. Such views were ill suited to the power and temper of a Douglas, and many other powerful chieftains, through whose resistance the attenpts ef the monarehs were followed with disaster, and often with violent death. The introduction of the reformed religien especially, in open opposition to the ceurt, which granted only a reluctant and precarious toleration, was unfavourable to the crown, and fatal to a princess whose beauty and misfortunes have rendered her an object ef enthusiasm to the gay and chivalric part of the Scottish nation.
The union of the crowns, by the accession of James VI. in 1603, to the English throne, produced a great change, in itself flattering to Scotland, whose race of princes now held sway over all the three kingdems. The struggle between presbytery and prelaey gave rise to a cenflict which still powerfully influcnees the temper and character of the Scots. The efferts of the presbyterians, aeting under the bond of their League and Covenant, first enabled the English parliament to rear' its head, and had a great effect in turning the seale of centest against the crown. The Scots revolted, hewever, at the excesses of the independents, and endeavoured to rear again, on a cevenanted basis, the fallen crown of the Stuarts. These brave but unsuccessfil efforts were ill requited by an embittered persecution against all the adherents of presbytery, till the Revolution finally fixed that system as the established religion of Scotland.
The union of the kingdoms, in 1707, placed Scotland in that political position which she has ever since maintained; and, by allaying internal contest, and opening a free trade with the sister kingdom, this union has produced results highly beneficial, although the devoted nttachment of her meuntain tribes to the exiled Stuarts repeatedly impelled them to attempt to replace that house on the threne; attempts which, at one critical mement, spread alarm into the heart of England.

Sect. IV.-Political Constitution.

The political system of Seetland being new almest completely incorporated with that of England, little is to be added te the statements given under the head of the sister kingdom. A few peculiarities, however, may be deserving of notice.
The representation allewed to Scotiand at the unien was somewhat scanty. It consisted, fer the IHouse of Commons, of forty-five members, fifteen frem the boroughs, and thirty from the counties. The members were elected, net by the burgesses, but by the magistrates, who themselves were appointed chiefly by their predecessors in office; thus constituting close boroughs, in which a paity having once obtained a majority might keep it in perpetuum. In county elections, the right of voting was nttached to the possession of lands held immediately of the crown, and of the valued rent of 400l. Scots. But the feudal superiority which entitled to vote was separable from the actual possession of the property. The original proprietor, who, perhaps, had a number of these votes en his estate, might either sell or distribute them among his friends, so as to multiply his own elective influence. The frecholders of Scotland amounted to not quite 3000, of whom a certain number, for the reason stated, had no actual property in land. The peers of Scotland are represented by sixteen of their number, elected at the cemmencement of each parliament. There are, besides, upwards of twenty whe are British peers, and sit in their personal right.
Vol. I.

By the Reform lill of 1832, the power of returning members to the House of Cusamons is vestod in the following citices and burghn:-

These members are returned by the inhabitants paying rent to the value of 106 . and upwards. The countiea continue each to elect a member, except that only one in conjunction is returned by Elgin and Nairn, one by Ross and Cromarty, and one by Clackmannan and Kinross. The power of voting, too, is attached to the possession of actual property yielding 101. of yearly rent.

The judicial adminiatration of Scotland has always continued distinct from that of the aister kingdom. The supreme court, or Court of Session, consisted until lately, of fifteen members, sitting together, and deciding in all civil causes, while six of these constituted a Justiciary Court for tho trial of criminal casea. The trial by jury was employed only in the Justiciary Court, and in revenue questions, which are tried before the Court of Exohequer. But tho supremo court is now divided into two chambers, one of six and tho other of seven members. Trials by jury, in civil cases, have been introduced, and are now carried on, like others, under the direction of the Court of Session. The Court of Exchequer, which conaisted of five barona, the Consistory and the Admiralty Courts have been ubolished, and their jurisdiction transferred to the Court of Session.
The revenue of Scotland has beca hitherto coilected separately from that of England, and by separate boards for each brancli; but, under recent regulations, the whols has been placed under the direction of boards resident in London, and the systems have bee., his a great measure incorporated together. In the year ending 5th January, 1831-

$$
\boldsymbol{£}
$$

Sect. V.-Productive Industry.

Scotland has always ranked as a poor country ; and, for a long time, natural obstacles were enhanced by moral impediments. The Scots showed an aptitude to embark in all schemes of turbulence; but indolence, and dislike of plain hard work, might be recognized as a national characteristic. Since the age arrived, however, when industry came into honour, and when improved processes were studiously applied to all the useful arts, the Scats have entered with peculiar spirit and intelligence into this new carecr; and in its prosecution have been more successful, in some respects, than their southern neighbours.
The agriculture of Scotland has to contend with obstacles which must be manifest, when we look at its rugged aspect, and its vast hills and morasses. Forty years ago, moreover, the progress of Scotland in this primary art was generally hehind that of the rest of the empire. As soon, however, as the great syatem of agricultural improvement was aulopted throughout the kingdom, the Scottish farmers not only shared in it, but carried it farther than those of England. The farmers of the Iothians, of the Carse of Gowrie, and even of the district on the Moray Frith, made a complete reform in the whole train of agricultural operations. They brought extensive tracts of common nnd waste under cultivation, reduced the number of cattle and improved the breed, cultivated the artificial grasses, dismissed
auperfluous hands, and adopted the use of machinery, of which the most importnnt, the threshing machine, was of Scottiah invention. The consequence was, that considerable fortunes were made by successful fhrmers, and that rents were in almost every instance trebled, and in some casea raised to eight or tea times their former amount. In the mountainous districts, also, a new system was introduced, which provel more profitable to the landlora. The numerous little farms hitherto held by tenants or vassala, were threwn into extensive slreep-walke. Considerable depopulation, in the agricoltural districts, was the consequence; a great proportion of this brave and warm-hearted race were forced to quit their native glens, to which they were fondly attached, and to seek support, either in the great manufacturing towns, or in settlements formed on the other side of the Atlantic.
The cultivated lands of Scotland, and the amount of its produce, after all these improvements, are still limited. Of the $18,044,000$ acres, its computed extent of land, only $5,043,000$ are under regular cultivation, and not more than $1,800,000$ under grain. Ot these only 140,000 produce wheat, though this is considered the most profitable crop, and ia raised of good quality, where the soil and climate admit. Oats, a hardy plant, is tho staple produce of Scotland, and the food of its rural population: it covers 1,280,000 acres. Barley occupien 280,000 acres, being raised chiefly for distillation; but in the higher districta it is the ruder species called bear or big. The chief exportable produce consists in cattle and sheep, which are sent in numbers to the English markets. The sheep are not equal to the fine English breeds, but the mutton of the Grampians and Cheviets is of exquisite flavour.
The manufacturing industry of Scotland has, within the last century, advanced with prodigious rupidity, being quite equal, compared with the extent and population of the country, to that of England. Woollen, the grand original staple of England, has never obtained more than a very partial footing in Scotland. Linen, with other producta of flax, is the original staple of Scotland. It was throughout the country a household manufucture, and for household use. Flax, in almost every family, was diligently spun into yarn, which was then sent out to be woven and bleached. The coarser kinds of linen still form the staple of the eastern counties, though Dunfermline excels in fine sheeting and diaper. The linen made in Scotland was estimated, in 1810, at $26,457,000$ yards, value $1,265,0000$. The increase in the manufacture has aince been so great, that in 1831, Dundee alone exported more than $57,000,000$ yaris! By far the greater proportion of the raw material is imported, very little hemp or flax being grown either in Scotland or England; almost all the former, and more than half the latter, is brought from Russia, the rest of the flax flom IIolland, Flanders, and Germany.
The cotton manufacture, though of comparatively recent introduction, has, in Scotland, no less than in England, risen to be the first in point of magnitude. Glasgow and Paisley produce fabrics carried te an extreme degree of fineness. Tho muslin of Paisley is one of the most delicate fabrics existing. The printing of cottons, particularly shawls, is also carried on to a greater proportional extent in Scotland than in England. The total quantity of cotton wool spun in Scotland in 1832, amounted to $24,500,000 \mathrm{lbs}$. of the value of about $4,000,000 \mathrm{l}$.

Distillation of spirits from grain has been long a characteristic branch of Scottish industry; and in the highland districts, the quality of the article has been carried to very great perfection. It has been much cramped by fiscal restrictions, which have, of late, been almost entirely abolished. In the first seven years of the present century, the quantity paying duty averaged $2,000,000$ gallons; it then gradually approached to $4,000,000$; but in 1824 , upon the reduction of the duty, it suddenly increased to above $5,000,000$ and in 1830 it rose to $6,070,000$.

Scotland has various other ordinary manufactures, and generally supplies itself with all the common necessaries of life. The ale of Edinburgh and of some Scottish towns enjoys reputation even out of Scotland. In 1829, there were brewed in Scotland 110,000 gallons of strong beer, and 220,000 of table beer. Glass is made to the extent of nearly double the consumption of the country; the surplus being exported, chiefly to Ireland. Salt, which does not exist in a mineral form, is largely extracted from sea-water by boiling; and though not equal in quality to English rock salt, nor fit for use in the fisheries, its cheapness recommends it for common culinary purposes. Candles, soap, starch, leather, paper,"are produced in quantity sufficient for the slupply of the inhabitants. In 1829, the produce was :5,731,000 lbs. tallow cendles; 12,721,000 lbs, hard soap, and $2,332,000$ lbs, sot soap; 812,000 lbs.6; stareh; $6,002,000$ lhs. hides; $7,162,000 \mathrm{lbs}$. paper.
The mineral wealth of Scotland is chiefly of an humble and useful description. tis mountains are not metalliferous. In Lanark and Dumfries is a large deposit of lead mixed with silver, which, together with some sinaller mines in the IIcbrides, is supposed to yield 136,000l. in the former metal, and 10,0001 . in the latter. Ironstone occurs extensively in the upper coal districts. In 1825, the annual production of pig iron in Scotland was 29,200 tons, which is not, however, sufficient to supply the founderies at Carron and elsewhere. Those ut Carron are considerable, the casting being chiefly of ordnance, grates, and culinary vessels. Coal, lime, and stone, compose the solid mineral wealth of Scotland. The great coalfield extends in a diagonal line of 100 miles nlong the friths of Clyde and Forth; beginning
south of the former, and ending north of the latter. It is inmenwely rich in coal of pretty gool quality, though not equal to the beat binglish. - A large quautity is exported to Ireland. Lime is turniwhed abmudantly, both fur building und manure. Preestone, chiefly on both sidea of the Forth; granite, in Aherdeenahire ; slate, in the Ilebrides and Argyleshire, afford excellent materinly for building.

The fimherien form a considerable branch of industry in Seatlami; the herring, col, and haddock abound on varioun parts of its shores. The Dutch long monopelisesl the grent northern herring bank; and, by a superior molo of enre, obtained a preferenco in all markets. The British government, however, has for mome time male great exertions for the promotion of the Scotish fisherien ; and there has been a wonderful fincrenee in the quantity caught, and a corresponding improvement in the processes of cure. The former, which in 1810 whe only $\mathbf{1 0 0}, 000$ barrele, had risen in 1830 to 320,000 , of which 237,000 were exported. In tho same year, $03,500 \mathrm{cwt}$. of cod were cured in a dried state, and 5100 cwt . in pickle; of tho former, 23,000 were exported. Salinon, taken in all the considerable rivers, and kept fresh by being packed In ice, chiefly supplies the Iondon market. The whalo fishery in Greenland and Davis'a Straits has for some time been prosecuted by Scotland with increased activity. In the nine years ending in 1818, she sent at an average only 40 ships: in 1830, she sent 47; the produce of which was 5013 tuns of oil. Kelp was in extensive deinand during the late war; but the repoal of the duty on salt, and the reduction of the duty on barilla, have ruined this branch of industry.
The relative foreign commerce of the prinelpal ports of Scotland ls exhibited in the following Table:-

	Tunnane in 1×30.			Tonname in 18.0.	Produce of Cuslums In tiva.
Aberdeen....................	46,200	$52,400$	Invernewn.	7,300	8.000
§0'nems. .	9,100	5,4100	Irvine.....	13,300	4,400
Dundee.	2f,000	60,000	Leish........................	14,400	(1,400
Clagnow	41,100	95000	Monlrowe	98,300	44,400
Grangemouih.	24,301	05,000	Perth.:'.....................	30,100	11,400
Greenock.	30,800	431,000	Port Ginugow.	6,600	248,600

Commerce, till the union of tho crowns, and even of the kingdoms, could scarcely be coneidered as existing in Scotland; but it has sinco been cultivated with great ardour and enterprise. One branch of commercial intercourso is that with her opulent sister kingdom. In England she finds a market for eattle, her chief agricultural surplus; for her wool, such ne it is; for her sail-cloth and other coarse fubrics from flax and hemp; for part of her fine calicoes nnd muslins, \&ec. In return, she receives almost all tho woollen cloth, nnd a grent part of the silk consuned by her; hardware and cutlery of every kind ; tea and other East India goods; and through this channel a part of all the foreign luxuries which she requires. The trado with Ireland is ehiefly supported by the exchnage of conl and iron for oats and cattle. That with the Baltic, particularly Russia, is very active; the eastern part of tho kingdom deriving thence the hemp and flux, which form the material of her staple manufacture; also timber, iron, and the other bulky and useful staples of that trade. Having fow articles of her own with which this market is not already stocked, the payment is made chiefly in bullion and colonial produce. The flourishing trade carried on from the west coast with America and the West Indics, is supported by the export of cottons, linen, wearing apparel, and other commodities; and by the import of cotton, sugar, rum, and the various luxuries of those fortile regions. The Mediterranean trade is not neglected; and since the opening of that to India, Greenock has adventured into it with considerable success.
The roads, which half a century ago were almost impassable, are now, through all the Lowlands, little inferior to those of Eugland. After the rebellion of 1745, government constructed excellent roads into the heart of the IIghlands as far as Inverness; and in 1803, a body of commissioners was appointed by government, for improving the roads of the north of Scotland. They proceeded upon the principle, that half tho expense must in every case be defrayed by the county proprietors, and in eighteen years good roads wero formed into the remotest tracts of Inverness, Skye, Ross, and cven to the farthest point of Caithness.

Artifieial navigation mects with peculiar obstructions from the raggedness of tho surface, and hence canals have never become very numerous. The "Great Canal," admits vessels of considerable size to pass from the Frith of Forth to that of Clyde, and thus unite the German and Atlantic oceans. Branches to Glasgow and to the fine coal-field at Monkland havo been advantageously opened. The Union Canal, completed at nn expense of nearly 400,0001 ., connects the Great Canal, near its eastern point, with Edinburgh, by a line of thirty miles through a country very rich in coal and lime. The Caledonian Canal, uniting the chain of lakes which crosses Scotland diagonally through the counties of Inverness and Argyle, allows even ships of war to pass, from the east coast, into the Atlantic, without encountering the perils of the Pentland Frith and Cape Wrath. It was finished in 189:, at an expense of nearly $1,000,000$. sterling, entirely defrayed by government. The gates of the

Part ill. al of pretty It trelaml. fy on both whire, afferil
ng, coxl, and 1 the great in all martions for the the quantity er, which in are exported. t. In piekle; ers, and kept le fishery in ith increased ps : in 1830 sive demanil the duty on
ell in the fel-

arcely be cenour and enterkingdom. In wool, such ns art of her fine h, and n great and other East a she requires. on for oats anil rn part of the - staple manurade. Ilaving yment is made the west coast linen, wearing nil the varieus and since the uccess. rough all the vernment ennand in 1803, a ls of the north in every case ere formed into f Caithness. of the sarface, admits vessels - unite the GerMonkland have early 400,0001 ., of thirty miles g the chain of is and Argyle, hout eneounter182u, at an gates of the

Book 1.
sCoTLAND.
locka are of iron; the expense of ench lock was moxnt. The locka are twenty-tiree in all, eight of which, looking fown from Lach Bil, where it opens into the wentorn men, nre callow hy milora the "atnir of Neptome." The cannl in fifty feet broad ; leugth twenty-two milea, with forty milen of lake navigation.

Sect. VI.-Civil und Social State.

Of the populatien of Sculland an extimate was first attemptent in the yenr 1755, when it was compuited to be $1,2(5)$, will. The reports of the clergy fir the "Nintietical Accennt," between 1702 and 174O, gave 1. 30,4122 ; which wan rained by the government enomerntion of 1801 to $1,500,(000$. The cer ua if 1811 gave $1,805,000$; which wat mised by that of 1921 to $2,0 \% 3,460$. In 1831, it was $2,363,842$.

In point of dinposition, the scots are n grnve, seriona, and reflecting peophe; but bold, enterprising, ambitions, and inbued with a deep-rooted deternination to pursue tho objecta of their desire, and repel those of their aversiom. Under theae inpulsea, they quit, without nuelh regret, a land which aflordy few opportunities of distinction, and seek, vither in the metropolia nnd commercial towne of Englanil, er in the mowt diatant tranmarine regiens, that wealth and fame which thoy engerly cevet; yet, amid this distance and thene cager parmitn, their hopes and affections remain fixed on the land of their nativity; and they usumlly meek to apend the evening of their daya in Ncolland. The Neotm nppenr nnturally brave; a quality which is partienlarly observable ameng the highlund triben, nad by which they reudered themselves fornaidable, first under Montrose, nud afterwards in the reliellion ngainst the house of Hanover. Since they were cencilinted by the wise measuren of Pitt, they have crowded into the Britiwh army, and formed sonno of its bravest reginemts. Ainong the lower elaseps, crimes agninst the order of society are of comparatively mure ocentrence, nud there is lems necessity tor capital punishment ; there is also lenn of extreme lissolutenesa among tho higher ranks. Among tho Scottinh females, in particular, the obligntions of the marriage tie are much more nellom disregnrded; and if the other nex too often abuse the license which public manners are supposed to allow, they are at least obliged to observo some outward uppearancee. The pride ef birth is ntill prevalent, particularly nomoug the highland cluns; and it is accompaniod with a general ambition to rino above their original station, and a propensity, with that veew, to spend their molerate wealth rather in outward whow than in solid romfert. The sister nations aceuse the Ncots an selfinh, yet Ncotwuen raised to power have mut shown any buckwardness, either in the general ollices of hunanity, or to pronote the prosperity of their country and countrymen.

To their roligions duties the Scots peeple have always shown an oxemplary attention. In catholic times, the Romish church in Scotland enjoyed more infuence, nat had aepuired a sunch greater proportion of the nutional wenlth, thun in England. But they entered upon the cause of reform with an ardent zeal, which left behind it that of all their neighlonirs. Ater a desperate struggle, on which, for nearly a century, the political destinies of the kingdom depended, they obtained their favourite form of prewbytery, the most remote from that pompous ritual, for which they have entertained the most rooted abborrence. The principle of presbytery consists in the complete equality of all its clerical members, who lave each a separate parish, of which they perfirm all the ecclesiastical finctions. I'he title of bishop, so leng connected with wealth and power, has been rejected, und that of minister substituted. In the management of the poor, and some charch fimetions, tho minister is nesisted by a body of lay members called elider, who constitate the kirk acession. The government of the church consists in presbyteries formed by the mecting of the ministers of \mathbf{n} certain district, with lay members from ench wession, the last of whom, however, nttend only ocensionally. A aynoll is formed by the unien of several presbyterien; and the (ieneral Assembly in composed of deputies, partly clerical and partly lay, from eaeh presbytery and borough. They meet every yenr, und an appeal lies to them apon every sabject; but the laws of the clurch, though proposed in the Assembly, ean be passed only by a majority of preshyteries, after being debatel in each. The king sends a Commissioner, whe is present nt the ilebates of the Assemhly, nol seems even to claim a right of constituting and dissolving it; but this is denied by the church itself, which neknowledges no hmman hend, and accounts itself and the state as powers entirely independent.
The nobles availed themselves of the downtall of the catholic establishment, to appropriato nearly the whole of the immense incone with which it had been eadowed. They took at first not only the lands, but the tithes; and even when obliged to make a provision for the preshyterian clergy ont of the latter, they retained part, valued otten nt a very low rute, hut subject to be called upon if needed. Thus the Scots clergy have enjoyed only such ineomes ns enabled them, with strict economy, to maintuin their place in the middle rank of soeiety. When even this hreame impossible umler the inereased experse of living, augmentations were granted out of the tiends, or valued tithes; and where these were exhausted, the legislature have come firward, and raised the lowest stipend to $\mathbf{5 5 0 l}$. a year. No body of elergy have maintnined a fairer eharneter, or mere efficiently performed their important doties, than those of the Scottish elarel.

The dissenters from the Scottish church consist chiefly of persons zealously attached to presbytery, and who have seceded because they considered its principles as not maintained in sufficient purity within the establishment. Their chicf complaint is against the system of patronage exercised by the landed interest, who present generally to the vacant parishes. Two great bodics, into which they were formerly divided on the subject of the burgher oath, have, since the abolition of that test, been united into what is called tho Associate Synod. A considerable proportion, especially of the ligher ranks, is attached to episcopacy, either as it was established in Scotland under the Stuarts, or as it now exists in England; indeed, an union has been recently formed between these once separate branches. None of the other sects, independents, baptists, metholists, \&c. are numerous; and the Roman catholics consist chiefly of emigrants from Ireland, though their form of religion still prevails in some of the remote highland districts.
Litcrature, soon after its revival in Europe, was cultivated in Scotland with peculiar ardour. Even in the age of scholastic pursuits, Duns Scotus snd Crichton were pre-eminently famed throughout the Continent. When the sounder taste for classical knowledge followed, Buchanan acquircd the reputation of writing Latin with great purity. Letters were almost entirely suppressed during the subsequent period, marked by a conflict between a licentious tyranny and an austere religious party, who condemned or despised the exertions of intellect and the crcations of fancy; and literature lay dormant till the middle of the last century, when Scotland, with a church and universities alike poorly endowed, produced as illustrious a constellation of writers as had been called forth by the most lavish patronage in the great European capitals. We shall only mention, in history, Robertson and Hume; in moral and political philosophy, Hume, Reid, Smith, Ferguson, Kames, Stewart, Brown; divinity, Blair, Campbell, Macknight; poetry, Home, Thomson, Beattie, Burns; physical science, Gragory, Black, Playfair, Leslie. In the present gencration, the most popular of fictitions writings, and one of the most able periodical works known in modern times, have issued from the Edinburgh press.
The universities of Scotland have been a powerful instrument in supporting her literary fame. Though not richly endowed, the fees of well-attended classes afford a libcral income, and have enabled them to attract the most learned among the clergy; while, in England, a weslthy church draws eminent scholars from the universities. The students live generslly in the towns, without any check on their private conduct, or even any obligation to attendance, except what arises from the dread of the refusal of a certificate at the close. The clief exertion of the professors is bestowed on their lectures, by which they hope to attract students to their class and seminnry. The more diligent combine with them examinations and excrises, but not on the same systematic and searching plan as in England; and the degrees are conferred, in muny instances, with culpable laxity. 1 much greater proportion of the people receive a colicge education than in England. The church exacts an attendance of eight years; four for languages and philosoply, and four for divinity: the faculty of medicine requires nlso several ycars; and the gentry and higher grades of the middle ranks in general consider mn attendance on the elementary classes as an essential part of education.
The public librarics are not rich. That belonging to the advocates or barristers of Edinburgh contains upwards of 100,000 volumes, among which there are ample materials, both printed and in mamascript, for elucidating the national history. The university library is half as large ; snd those of Glasgow, King's College Aberdeen, and St. Andrew's, are highly respectable. Each of thesc universities can claim a copy of every new work.
Scotland has a native music, simple and pathetic, expressive of rural feelings and emotions, to which she is fondly attached. Golf and foot-ball are the only amusements that can be deemed strictly national. Skating, and curling, or the rolling of emooth stoncs upon the ice, are also pursued with great ardour during the scason that admits of those amusements. The recreations of the higher ranks are nearly the same ns in England. Dancing is practised wvith peculiar ardour, especially by the Highlanders, who have favourite national steps and movements.
The Highlanders retain the remnants of a national costume peculiar to themselves; the tartan, a mixture of woollon and linen cloth, adorned with brilliant stripes variously crossing each other, snd marking the distinctions of the clans; the kilt, or short petticoat, worn by the men, the hose fastened below the knee, which is left bare; and the bonnet, which in another shnpe is also still worn by the shopherds of the border.
In regard to food, t.e Scote, in general, are temperate. Even the rich attach less importance than their sonthern neighbours to the gratifications of the palate. The peasantry, previously to the rise of wages, which took place about thirty years sgo, were content with the hardest fare. Neither wheaten bread nor animal food formed part of their ordinary diet. Oatmeal, not accounted in the south of England an article of food for human beings, was prepared here under the forms of cakes or porridge, and constituted the chicf means of subsistence. To this was occasionally added barley broth, with greens or kail, the chief produce of their little gardens. The Scots have some dishes which they cherish with national

Boor I.

SCOTLAND.
enthusiasm, and among which the haggis holda the foremost place. This is a mixture of oatmeal, fat, liver, and onion, boiled up in the bag which composed the stomach of the animal. They have, moreover, hotcl-potch, and other soups, the merit of which has been acknowledged by English palates.

Sker. VII.-Local Geography.

The following is a table of the extent, population, and rental in the different counties of Scotland, derived from agricultural reports and parliamentary returns:-

Couaties	Square	Acree under Cul. tivation.	Anatal in 1812.	Houpen in 1891.	Popula. tion in 183.	Towne, wilh Poputation in 1831.			
Aberdee	1,900	451,000	$\overline{301,000}$	27,579	177,651	Aberdeen . . .	58,019	Pelcrhead.	6,698
Argyia.	3,129	270,000	207,000	10,059	101,425	Campbellion	9,472	Inverary	2,133
Ayr	1,039	325,000	309,000	17,842	145,055	Ayt	7,606	Kilaiarnock .	18,093
Banff	645	123,000	85,000	8,971	48,604	Banff......	3,711	Cuilen	1,593
Berwi	442	137,000	286,000	5,803	34,048	Dunge	3,469	Leuder......	2,063
Bute	181	29,000	20.000	2,205	14,151	Rothesey ...	4,819		
Cailhne	687	92,000	32,000	5,319	34,529	Thurso	4,070	Wick	9.850
Clackm	48	23,000	39,000	2,145	14,729	Clackmannan	4,2466	Alion	6,379
Dumbarten	228	54,000	63,000	3,536	33,211	Dumbarton .	3,623		
Dumfriss	1.253	232,000	264,000	12,248	73,770	Dumfries ...	11,603	Sanquhar ...	3,268
Edinburgh	354	145,000	713,000	19,077	219,592	$\left\{\begin{array}{l}\text { Edinburgh } \\ \text { Dalkcilh.. }\end{array}\right.$	136,303 5,586	Leith	2,853 8,961
E1gin................	473	121,000	66,000	6,668	34,231	Elgin.......	6,130	Forres	3,895
Fifa	467	209,000	378,000	18,044	128,839	Cupar	6,493 5,034	St. Andrew's	5,621
F						Dundea....	45,355	Montrose ...	17,008
F	888	369,000	320,000	16,812	139,608	Forfar	7,949	Arbroath....	6,660
Haddinglon	272	139,000	213,000	6,230	36,145	Haddinglon.	5,883	Dunbar	4,735
Inverness.	4,054	244.000	172,000	17,055	94,797	Inverness...	15,394		
Kincardi	380	92,000	88,000	5,894	31,431	Bervie	1,137		
Kinrosa.	72	27,000	24,000		9,072	Kinross	2,917		
Kirkeudbright.......	8214	168,000	192,000	6,441	40,500	Kirkcudbright	3,51]		
Lanerk	942	271,000	018,000	47,010	316,819	Glaggow ...	$0,4,46$	Hinmilon	9,503
Linlithgow	120	57,000	01,000	3,302	23,291	Linjithgew .	4,874		
Nairn	195	37,000	12,000	0.170	0,354	Nairn	3,266		
Orkney and Sheliaud	1,280	46,000	20,000	0,176	58,239	Kirkwail . .	3,065	Lerwick . . .	2,750
Peebles	319	24,000	60,000	1.750	10,578	Peebles	2,750		
$\mathbf{P e}$	2,588	580,000	512,000	26,718	142,894	Perih.......	20,010	Dumblane...	3,298
Renfrew	225	72,000	234,000	10,490	133,443	\{ Paisley	$\begin{array}{r} 57,466 \\ \times \quad 5,19 \sigma^{\circ} \end{array}$	R.culuock...	27,571 2,133
Ress and Cromarty..	2,885	170,000	111,000	13,638	74,820	Dingwall...	2,191	Tain........	3,078
Roxburgh...........	715	216,000	242,000	6,587	43,663	Keiso......	4,033	edburgh.	5,647
Selkirk	283	16,000	41,000	1,081	6,883	Selkirk	¢,283		
Gtirling	489	195,000	207.000	8,984	72.621	Elirling	8,340	Falkirk.	12,743
Butherland.	1,754	63,000	28,000	4,054	25,518	Dornoch	504		
Wigten	451	101,000	131,000	5,818	36,218	Wigton \{ Portpartick	$\begin{aligned} & \mathbf{2 , 3 3 7} \\ & \mathbf{2 , 2 3 9} \end{aligned}$	Siranraer	3,321

In treating of Scotland in detail, we shall divide it into three constituent parts:-1. The Lowland counties; 2. The Highland cuunties; 3. The Islands.

Subsecr. 1.-The Lowland Counties.

The whole of the south of Scotland, though diversified by elevated rangea of hills, is always considered as belenging to the Lowlands. It presents, however, three districts of opposite character:-1. The agricultural counties along the German Ocean and the Frith of Forth; 2. The southern pastoral counties; 3. The manufacturing counties of the west.
The agricultural district of southern Scotland consiats of the counties of Bervick (formerly the Merse), of Haddington, Edinburgh, and Linlithgov (fully as familiar under the appellations of East, Mid, and Weat Lothian), and of Stirling, which touches westward on the highland bo:ndary. Even of this range, the cultivated part is closely hemmed in by Lammermoor, a low, broad, moorish ridge, which fills all the eastern interior, and has even a considerable extent along the shore of the German Ocean.

The cultivated part of Berwickshire consists of the Merse, extending chicfly along the Tweed, and reaching to the sea. Above it is Lauderdale, or the Valley of the Lauder, which is fitted chiefly for grazing, and touches closely on the heaths of Lammermoor. Ber-wick-upon-Tweed, though its harbour be indifferent, is the chief channel for exporting the valuable produce of the Merae, to the annual amount, it is said, of 80,000 bolls of grain. The strong wall and deep ditch, which once defended Berwick, still remain, though neglected; and large barracka have been erected. Greenlaw, the seat of county business, and Lauder, the only borough, are but small places in the upper district. Dunse, in the agricultural tract,
is the most thrixing. Coldstream, a large village on the Tweed, is noted as the seene of Monk's retirement. In the western part of Berwickshire is Dryburgh Abbey, a fine old Gothic editice, in which rest the remains of Scott.

Haddingtonshire, or East Lothian, runs along the Frith of Forth, between which and the range of Lamnurmoor extends a plain about twenty miles in length and twelve in breadth, perhups the largest in Scotiand, and all under high cultivation. Edinburgh is ehietly supplied with wheat from the market at Laddington, which is considered one of the first in the country. The towns are of secondary importance. Haidington is supported only by the market and by its court for legal proceedings. Dunbar has a little trade and fishery. Its castle, the ruins of which extend over a promontory of broken rocks, stretching out into the sea, forms a truly grand object. The Bass, "that sea rock immense," which rises to the height of 4101 feet, forms a perpendicular precipice, on which build crowds of that rare species of senfowl called Solan goose. Their young, whose down is of sone value, are taken by the perilous exertions of fishermen, suspended by ropes from the top of the cliff. There are still some remains of the fortified prison which was in ancient times reserved for state offenders, and in which some of the most eminent covenanters were confined for several years. On the shore imunedintely opposite, crowning a perpendicular cliff, appears Tantallon, a strong castle of the Douglasef, now in a ruinous state. Prestonpans, a long dirty village, has some manufactures of salt and vitriol.
Mid Iothian, or Edinburghshire, is penetrated by a branch of the Lammermoor, and by the long range of the Pentlands: and, at the distance of a few miles south from Edinburgh, a general high level begins, which is favourable only to the production of oats and bailey. There are no manufactures of any consequence, the county being entirely supported by the motropolis and its appendages.
F.linburgh, the capital of Scotland (fig. I88.), is a city of no very high antiquity. The Castle Iill, indeed, whose rocky and precipitous sides support on the summit a level spr.e

Edinburgh.
of some extent, accessible only by a narrow ridge at one point, must always have been of importance in a military age. It is named in the Pictish annals under the title of Castrum Puellarum, which is supposed to have originated from the custom of placing the princesses and ladies of rank to be educated there, as in a place of security. In the tenth century, mention is first made of the town of Edin; but David I., in the twelfh century, founded the abbey and palace of Holyrood; and, under the sway of the Stuarts, Edinburgh became the capital of Scotland. Edinburgh is built upon three ridges, running from east to west, and separated from each other by deep ravines. The Old Town, which, till the last half century, formed the whole of Edinburgh, is situated on the middle ridge, extending nearly a mile of gradual descent from the Castle to the palace of Holyrood. To secure the protectinn afforded by this site, the houses were crowded into the very smallest possible space; they are raised six or seven stories on the side faeing the street, which from the acelivity of the ground, gives to that facing the ravine a height of ten or even fourteen stories. From this central street, there ilescend on each sile closes or lanes about six feet broad, and sioping very abruptly. The Cowgate, a poor street, inlubited by small tradesmen, extenils along the botton of the ravine, and terminates in a spacious Girass-market, completing old Edinburgh. Although it contains many excellent houses, it is now occupied only by the infetior orders of tradesmen, who occupy spacious apartments at very low rents. The wenlthy eitizens have migrated to two towns, built on the opposite sides of the Old Town; one on the south side, or St. Leonard's Hill, occupied by citizens of the middle class, those conuected with the miversity, or such as are fond of retirement; the other, ealled properly the New Town, is on the north; and comprises the residence of almost all the opulent and fashionahle classes. Being built on a regular plan, and of fine freestone, it torms one of the most elegant towns in Britain.
The heauty of lalinburgh is enhanced hy its situation; heing overlooked on one side by the eminenen of the Castle, and its nneient towers, and on the othre by a range of bold hills, the highest of which is called Arthur's Seat. The lowest, the Culton Hill, round which walks of easy access have been formed, commands a fine view of Edinburgh, the Frith of Forth, in breadth, ly supplied irst in the only by the shery. Its ut into the the height cies of sea. ken by the ere are still e offenders, years. On on, a strong e, has some oor, and by Edinburgh, and bailey. orted by the
ave been of of Castrum e princesses th century, ary, founded gh became ist to west, e last half ling nearly the protecible space; e acelivity ies. From broad, and en, extends pleting old y the infete wealthy n ; one on those conoperly tho alent and one of the
ide by the dhills, the ich walks of Forth,

Bode I.
SCOTLAND
and its surrounding shores. The general effect, rather than that of any partisular edifices, constitutes the merit of Edinburgh. Of antique structures, there is nothing very fine, exeept the large hospital for boys, erected from the funds bequeathed by Georgo Heriot, the celerated goldsmith. The great cathedral of St. Giles has been admired almost solely for its spire, and llolyrood Palace, a comparatively modern structure, for its little ancient chapel. The former has been now externally rebeilt on a very liandsone plan, and the latter has undergone a thorough repair. Four miles south, in a very commanding situation, are the remains of Queen Mary's pleasant country palnee of Craigmillar. The Register Office, the new College, and new Jigh School are elegant structures; but the National Monument, on the Calton Hill, begun on the model of the Parthenon, is stopped for want of funds.

The inhabitants in 1801, ineluding Leith, were 82,560; in 1831, they had increased to 162,156. The principal support is derived from the law; the professors of the university, and private lecturers, \&e. constitute a considerable number; and genteel families are attracted frem every part of Scetland by the opportunities of education and agrecable society. Edinburgh is a city cminently scientific and literary, and has even become known under the appellation of the " modern Athens." Connected with these pursuits, an extensive trade in printing and publishing books is carried on by some enterprising individuals. There are few manufactures, with the above exception. A great quantity of ale is brewed, which has attained to a high reputation; and there are in the neighbourhood some considerable distilleries. Shawls are manufactured equal to any in the empire. There are extensive banking establishments, both public and private, and considerable fortunes have been made in that branch of commerce.

The University of Edinburgh, founded in 1581, has risen to great fame, both as an institution for teaehing, and a nursery for eminent men. The medical school, in particular, attracts students from all the three kingdoms. The annual number of students at the University exceeds 2000. They are lodged in the town, and are not subject to any personal discipline, except that of attendance on the lectures. Edinburgh has its Royal Society for physical and literary researches, its Antiquarian and Horticultural Societies, an Institution for the promotion of the Fine Arts, and an Academy for Painting.

Leith is the port of Edinburgh, and carrics on a considerable import trade for the supply of that capital and all the interior country, for which purpose she carrics on a constant intercourse with London and ether ports on the custern coast. Her intercourse with the Baltic is very extensive; and that with the West Indies considerable. The harbour of Leith is not good; but large sums have been expended in the construction of an extensive range of docks for the accommodation of its shipping; and of a pier stretehing far into the sea, so as to enable vessels to enter at all times of the tide, with a breakwater opposite. The roads, ut the distance of about a mile, afford excellent anchorage. Leith, originally a collection of dirty lanes, is now everywhere skirted by excellent streets, and ranges of villas, ereeted by the opulent inhabitants for their private residence. In 1832 there entered its port 334 vessels, tonnage 46,200 .

Besides these great towns, Mid Lothian contains only some large pleasant villages. Portobello is the principal bathing place of Edinburgh. Musselburgh has a good turf, which has supplanted Leith sands for the annual Edinburgh races. The valley of the Esk contains the finest scenery in the Lothians. Roslin chapel, though not on an extensive seale, exhibits some exquisite specimens of Gothic sculpture; and the ruins of the castle bear marks of great strength. All the south and west of this county consists of wild, hilly, and pastoral scenery, in the heart of which is a pleasingly retired spot, chosen by Ramsay as the scene of his Gentle Shepherd.

Linlithgow or West Jothiar consists, in its upper part, of a bleak table-land; in its lower, of an extensive, fertile, and highly cultivated plain. It abounds with coal, freestone, lime, and marl. The Union Canal passes through this county. The towns are small;
 but Linlithgow still retains somewhat of the aspect of grandenr suited to a once royal residence. The palace, (fig. 189.) situated on a hill behind the town, and overlooking a beautiful little lake, forms one of the grandest aneient editices in the kingdom. There is also a Gothic chureh of some beauty.

Stirling, an extensive and beautiful county, the link between the Highlands and Lowlands, extends for thirtyfive miles along the Forth. It encloses several of the richest carses in Scotland; but the greater part is hilly and pastoral, while many of the lower grounds consist of fine meadovs, adorned by the beautifil meanderings of the Forth. It even encroaches on the Highlands, since its western extremity includes Ben Lomond. This county is traversed by the colebrated Roman wall between the Forth end Clyde, usually ascribed to Antoninus, though,

Vol. I.
3 C
from the account of Tacitus, it would appear to have been first forned by Agricola. It seems to have reached from near Dunbarton to Carriden, rather more than thirly-six miles. Stirling is also crossed by the great cunal between the Forth and Clyde.

The town of Stirling can boast a situation as noble and cominanding as any in Scotlaml. The view from its eastle, which inclutes entire the principal range of the Granpians, the meadows or links throagh which the Forth winds, and a part of thisteen eounties, is generally considered tho finest in the conntry. The main street, like that of Edinburgh, descends gradually down the ridge of the hill on which the castle stands (fig. 190.). This 'ertress,

100
 in feudal times, was accounted one of the hulwarks of the kingdonn; and Stirling was the frequent seat of royalty, and the scene of many of the most memorable and tragic events in Scottish history. The town owes its present limited prosperity elicfly to its carpet manufacture and other brancles of industry. Falkirk is a larger town, situated in a broad and beautiful carse, through which the Forth flows. The three great annual trysts exhibit an immense slow of highland cattle and sheep brought up for the supply of the southern districts. Near Fulkirk is Carron, accounted only a village, but the seat of the greatest ironworks in Scotland, in which, during war, 2000 men were employed. It particularly excels in grates, and in that speeies of artillery first cast here, and hence denominated carronades. Grangemouth, at the conneeting point of the great canal with tho Frith of Forth, derives from this sitnation a considerable trade.
The next district, including the counties of Koxburgh, Selkirk, Peebles, Dumfries, and part of Lamark, may most properly hear the appellation of pastoral Scotlund. It is covered with long ranges of hills, from one to two thousand feet high, elothed with pasturnge to their summits. This is the region of Scottish poctry. It was umid these scenes that Thomson and Scott caught that inspiration which has rendered their poetry the delight of their country. The ehief oeecpation in this tract is sheep-farming.
The towns in this tract are generally small and agreeable. Kelso is one of the most beautiful in Scotland, being surrounded by ornamented villas and extensive woods. The abhey is not without grandeur; and the ruins of the castle of Roxburgh are striking. The village of Melrose is only distinguished by its abbey (fig. 191.), founded by David I., in the
 twelfth century, and the finest edifice ever crected in the south of Scotland. The profusion of the ornaments, and the beanty of the sculptures, which remain nearly entire, have rendered it the study of the painter and the theme of the poet. Selkirk and Peebles, capitals of their respective little countics, are only pleasant villages, bordering on the great pastoral vales of Ettrick and Yarrow. Dunfries, a well-built, gay-looking eity; is a sort of southern Scottish capital, and it has been so distinguished from an early period; hut no traces remain either of the castle, or of the monastery in wheh Cumming fell by the hand of Bruce. The town carries on some trade by the Nith, which admits vessels of one hundred and twenty tons, and it has two great annual markets for the eattle from the west; but it is cliefly supported by the gentry whe make it their residenec. Annan is agreeably situated at the mouth of the river of that name. A small spot, famed in the annals of gallantry, is Gretna Green, close on the English border; whither fly many a fond matrimonial pair, to eseape the jealonsy of parents and guardians: On the bleak northern boundary is Wanlockicad; and nearly eontiruous to it Leadhills, in Lanarkslire. Wanlockhead yields annmally leai to the amount of about 15,000 bars, of nine stones each; and Leadhills about 18,000 .

Drumatarie Comle.

Seats. The Duke of Buccleugh has numerous seats in the district, of which the chief is Drumlanrig Castle (.fig. 192.) a magnificent elifice, on the Nith, and surroumed by extensive parks and plantations. Among many others round Kelso, is Meurs, the splendid seat of the Roxhurgh family. Abbotsfori, from the many udditions made by its ilhnstrious proprictor, has become a striking and pieturesque object.
of the most voods. The iking. The vid I ., in the inest edifice of Seotland. aments, and ures, which ve rendered er and the rk and Pee ective little nt villages, storal vales Dumfries, a y, is a sort ital, and it the castle carrics on and it has ted by the of the river 11, close on jealousy of nearly conhe amount
leugh las of which
fig. 192.),
Nith, anl nid plantad Kelso, is Roxburgh nany addirictor, has pue object.

Book I.
SCOTLAND.
The three counties of Ayr, Wigton, and Galloway compose what is called the West of Scotland. They are chiefly under pasture, and the cultivators are mainly occupied in the rearing of cattle. The range of mountains which separates Ayr and Galloway is almost us elevated as any in Scotland; but the upland country of the latter is, in general, diversified only with steep rocky eminences of two or three hundred feet high. In Ayr, too, though the southern district of Carrick be very mountainous, the middle one of Kyle has a level coast; while Cunniugham, the most northerly, consists almost entirely of a fertile plain. Roth counties, from the boundary line of mountains, are watered by fine rivers; in one, the Ayr, the Doon, and the Irvine; in the other, the Dee and the Cree. The Ayrshire breed of harses, called also the Clydesdale, is highly esteemed; and generally supplies the markete in ihe east of Scotland; but the little active breed called galloways are now become ecarce. The kine of Ayrshire are valued chiefly for the dairy. The Galloway bulloek produces beef of a peculiar excellence. The northern division of Ayr participates to a certain extent in the flourishing manufactures of Lanarkshire. It has immense beds of valuable coal, which not only serve for the supply of the inhabitants, but are exported to Ireland in auch quantities as to form the clief trade of this county. To facilitate the transport, the Duke of Portland lias formed a fine harbour at Troon, and has connected it by a rail-road with Kilmurnock.

Ayr, at the point where the rivers Doon and Ayr fall united into the sea, forms a sort of capital for the gentry of a considerable part of Scotland. It was the principal seene of some great listorical events in the time of Wallace and Bruce; and was carefully fortified by Oliver Cromwell; but the har at the meuth of the harbour has been unfavourable to its progress. It exports, however, chiefly to Ireland, a considerable quantity of coal, brought by railways. The town is irregularly built, but has one handsome principal street. Its theatre, its academy, and some charitable institutions, are on a greater scale than the size of the town might lead us to expect. Tue ports of Troon, Saltcoats, and Ardrossan send large quantities of coal to Ireland; whence they receive grain for the supply of the great interior towus. Saltcoats, which has sprung up within the last century, is also noted for the manufacture of salt; and Ardrossan is now a watering-place of increasing resort. Largs, the celebrated acene of the defeat of IIaco, the last Danish invader, attraets many visiters by the extreme beauty of its situation. In the interior of Ayrshire is Kilmarnock, its largest and most thriving town. The manufacture of various woollen stuffs, and fabrics of leather; and latterly branches of the cotton weaving from Glasgow, place it high in the list of Scottish manufacturing towns.

Galloway is alnost entirely a rural district. Its capitals, Wigton and Kirkcudbright, are pieasant country towns, and the latter, having a good harbour, has, of late, considerably increased. Portpatrick, the nearest point of Great Britain to the Irish ceast, is the main channel of communication between Scotland and Ireland; for which purpose an improved harbour has lately been constructed, and regular packet-boats are established.

The counties of Lanark and Renfrew constitute the valley of the Clyde, the grand theatre of Scottish commerce and industry. Lanarkshire, or Clydesdale, is divided into three regions, of widely different character; the upper valley is altogether a rude pastoral region Below Tinto, the banks of the Clyde assume a softer and gayer character, exhibiting a succession of gardens and orchards. Below Hamilton comes the flat district around Glasgow, which supplies that city with inexhaustible stores of excellent coal.

Glasgow is the commercial eapital of Scotland, and in population ranks as the third town in the island. Tradition ascribes its origin and erection into a bishopric to St . Mungo, in the year 560 . Its rapid rise commenced with the union, which upened to it the trade with America and the West Indics, hitherto monopolised by the English ports. In 1718, for the first time, a vessel from the Clyde sailed across the Atlantic. By the middle of the century, the merchants of Glasgow imported more than half the entire amount of tobacco which came into Great Britain ; and to them the French farners-genoral chiefly looked for their supply of this important article.

Their intercourse also with the West Indies, which had hitherto been very limited, was now carried on to a vast extent. A still greater source of wealth was opened at home. Glasgow had, in the course of the century, become a great manufacturing city, employing her inilus'ry on the old staple of linen of the finer descriptions, as cambrics, lawns, gauzes; also in the making of stockings and of shoes for exportation; but its product in these branches never exceeded 400,0001 . But when cotton was extensively introduced into Britain, Glasgow devoted herself entirely to this new manufacture. She became the rival of Manchester; and, if circumstances did not allow her to obtain so great a share of the manufacture, she produced some finer fabries, and was as prompt in availing herself of every improved process; immense fortuncs were realizel, and an annual value of nearly $4,000,000 l$. sterling produced. Glasgow was one of the first pluces which adopted the invention of power looms, and she has now 10,000 of these, and 32,000 worked by the hand. In 1830, the number of persons receiving parochial aid was only 5000 , not quite one-fortieth part of the inhabitants, and the sum expended on the poor was only 17, $\mathbf{刃 y 7}$., although

Glasgow is now the largest town in Great Britain, London and Manchester excepted. The harbour is at the Broomelaw, where there is an extensive quay along the Clyde; but oo great are the obstruetions to its navigation, that Glasgow depends chiefly for imports on Greenock and Liverpool. In 1832 there entered its port only 79 vessels, of 8154 tons. Glasgow is a handsome and well-built town. Its original streets of Argyle and Trongate are broad and spacious; and several handsome squares have been built within the limits of the city ; but the fashionable residences are now almost exclusively in the west, where, along a range of somewhat elcvated ground, a number of clegant and spacious streets have becu erected. Gorbals, Calton, Bridgeton, IIutchesontown, Tradeston, and Anderston, are the
 principal suburbs, and form the manufacturing part. of the city. The public edifices descrve admiration. The cathedral (fig. 193.), one of the finest in Scotland, is a massive structure, with a wooded hill adjoining, on the top of which a monument has been erccted to the memory of Jolin Knox. The modern edifices are also handsome; the Inanatic Asylum, the Assembly-rooms, the Infirmary, the Roman Catholic chapel, the new Exchange Reading-100ms, \&c. dcserve mention. The bridewell is esteemed the most perfect in Scetland, both in point of construction and management. Glasgow is not a mere commercial town; its university, founded in 1450 by Bishop Turnbull, has been adorned by a long succession of illustrious teachers, of whom Simson, Hutcheson, Reid, Smith, Millar, are sufficient to ensure its celebrity. It is at present attended by 1400 students, and its name stands as high as at any former period. The library contains 30,000 volumes. The Muscum bequenthed by the late Dr. Hunter, is rich in anatomical preparations, shells, insects, fossils, as well as in coins and medals. An elegant Grecian edifice has bcen erected for its reception. Auxiliary to the University is the Andersonian Institution, founded with the view of communicating to the commercial classes a knowledge of the el nents of physical science; for which purpose it has been found highly efficacious. The utellectual spirit of the citizens is also proved by three libraries, and a botanic garden, all supported by public subscription.

Paisley, though in Renfrewshire, may be considered next, in order to connect together the great seats of manufacture. This town anciently derived its distinction from its ecclesiastical character. The abbey founded in 1160, was in a great measure demolished at the period of the Reformation. Several of the windows, however, still afford fine specimens or the ornamented Gothic ; and the nave was left so far entire, thst it has since served as a place of worship. Paisley was a small town until the middle of the last century, when it contained little more than 4000 inhabitants. Soon after, its manufactures, which were alrcady begun, made most rapid advances. Down to the year 1783, they consisted chiefly of linen, fine thread, ganzes, both of linen and silk, and other delicate and elegant fabrics. On the introduction of cotton, the manufacturers of Paisley, like those of Glasgow, cultivated this branch slmost exclusively, preferring its most clegant species. Muslin, the finest of all the productions of the loom, became the staple of Paisley. In 1805, there were 20,500 persons employed in weaving muslin, the entire produce of whose labours was rated at $1,250,000 l$. Since that time, the population having increased onc-half, the productive industry has not, probably, advanced in a less proportion. By the improved nevigation of the Cart and a eanal, this town has communication with the Clyde, and the cansl from Glasgow likewise, destined for Ardrossan, has been carried as far as Psisley. The county gaol and bridewell form one of the finest structures of the kind in the kingdom; the town-hill and several of the churches are very handsomc. The operative weavers of Paisley are equal in intelligence to sny class of the same rank clsewhere; and this spirit has led to the formation among them of a number of book societies, reading rooms, and subscription libraries.

Greenock is entirely a commercisl snd maritime station; it is the only grent western port of Scotland, but by far the larger proportion of the vessels belong to Glasgow. The principal tradt consists in importing the produce of the West Indies, to which is added a very extensive herring fishery, and a share of the cod fisheries of Newfoundland and Cape Breton. The sum of 90,000 . has been lately expended in the improvement of the harbour, which can now contain 500 sail, and a handsome custom-house has been built by government. In 1832 there entered this port 282 vessels, tonnage 78,131. Greenock is not an elegant town; but the hills behind it command a noble view of the river, and of the mountains of Argyle on the opposite coast.

Port Glasgow, about thrce miles higher than Greenock, and a much smaller port, continucs subservient to Glasgow, receiving such vessels belonging to that city as are too bulky to ascend the Clyde; in this capacity, its trade is very considerable. Here was built the first dock in Scotland, in front of which a specious quay extends along the Clyde, for the accommodation of those vessels which do not require to enter the basin. Renfrew, the capital of

Bons I.

SCOTLAND.

the county, is an old town, which has not shared in the prosperity of its neighbours. The .nhabitants, however, receive a little employment from the manufneturers of clasrow.
The banks of the Clyde above Glasgow, whowe vicinity forms only a small part, however mnportant, of the extensive county of Lanark, are still to be surveyed. First occurs Bothwell (fig. 194.), one of the'principal seats of the Douglases. Ilere Edward I. placed the
 chief garrison, which was intended to held Scotland in sulbjection. It is now a bold and strilting ruin, rising atove the river hanks. A little above is Bothwell Bridge, so noted ns the disastrous scene of the rout of the covenunting army. Farther up is Hamilton, a pleasant handsome town in a fine country: it is supported by the resilence of the family of Hamilton, and by a hranch of the cotton manufacture. From Hamilton the road leads through a range of orchards, and the nost beautiful scenery, to 1 anark. This town, though bearing the name of the county, is only a large straggling village; but about a nile distant is New Lanark, noted for the extensive cotton mannfactory established by the late Mr. Dale, and lately conlucted ly Mr. Owen. Whatever may be thought of the speculative tencts of the latter gentleman, the attention paid to the belaviour and comforts of thown employed presented, certainly, in many respects, a mordel worthy of imitation. But Lanark has a still greater attraction in the falls of the Clyde, Boniton, Corra, Stonebyres, situated above and below it, at about two miles' distance from ench other. Their height does not exceed cighty or nincty feet; but the mass of water, with the grandeur of the rocky walls and hanging woods, render them one of the finest examples of this description of seenery.
The northern Iowlands, beyond the Forth, form a belt of almut twenty miles in hrealth. reaching the shores of the Moray Frith. The coast is generally level and fertile; but a great part of the interior is bleak and moorish. This district contains, however, sever::] cities and seaports of considerable magnitule and importance.
Fife was formerly distinguished as the centre of Sentish industry ; and one of its cities forms the ecelesiastical capital of Scotland. All the foreign commeree of the country wns carried on in its ports; and less than two centuries ago its rental amounted to a tenth part of that of the whole kinglom. Since Scotland has ceased to be agitated by war, Edinhurgh and the opposite side of the Forth have attracted all these advantages; and the numerons seaports on the northern coast of the Forth, have ilwindled into fishing villages. Fife is, in general, a level count.y, yet diversified by a few hills of considerable elevation, as the Iomond Hills, and Largo Law. A great part of the interior is bleak and unproductive; and farming is less advancel than in the Lothians; the spinning and weaving of flax is carried on chiefly for domestic use, unless at Dunfermline, where there is a large fabric of fine sheeting and diaper. The western const abounds in coal, and in fine linestonc, which is exported to a very great extent. The county town is Cupar, a place of molerate size, neat, with come stir of gaiety. A greater interest attaches to St. Andrew's from its former greatness,

from the remarkable scenes there acted, and from its splendid edifices, of which frag. ments still remain. It is seated on a bold coast, facing a wide bay of the German Ocean; and has two fine, broad, parallel streets, of which one is now almost descrted. The castle and eathedral (fig. 195.) have been demolished; but a high square tower, and a gable of the chapel of St. Rule, still attest the rleganee of the latter structure. The university contains a school of theology and philusophy, but has no classes in law or medicine. Fonuded under the anspices of Buchanan, it can boast many eminent professors and pupils; though, from its almost insulated situation, it does not attract so great a concourseas Bdinburgh. Kirkaldy has some foreign trade, and a considerable linen manufacture. Dunfermline, anciently the most flourishing town in Fife, was a place of importance, and the frequent residence of royalty. Malcolm Canmore founded here an abbey, which became one of the richest and most spaciors in the kinglom; it has been nearly demnlistiel, yet its ruins evince its former splendour; und part of them has been appropriated as the parish ehurch. On a contiguous spot, the tomb of Bruce was lately discovered. Dunfermline is distinguished by an extensive mnufactory of damask, diaper, and other fine linen cambries, which employ 1 Fin) looms, and yield.an estimated annual produce of $120,000 \mathrm{l}$.
Kinross, the capital of the commy of the same nante, is a pleasant little town, chiefly Vion.

36
noted for its situation on the shores of Lochleven. T'his is a little lakc, of considerable beauty, having, on an jeland in its centre, a castle, (figr. IOKI), ancsently of great strength, and noted in history, even betore it nequired the romantic interest derived from the imprisomneat of Mary, and her adventurous escape. Only a square turreted bulding and one of the walls of the chapel now remain. Un another island are the traces of a very ancient and considerable priory.
Clackmannanshire is a pleasant littlo county, with a considerable extent of fine carse land, and great quantities of coal and lime. The town of Clackmannan is distinguished for the beauty of its situation. Close to it is an ancient tower, built by Robert the Bruce. Alloa, two miles farther down, is a thriving little place, in whose vicinity are mines of coal, of which about 35,000 tons are annually exported.

Forfar, more usually termed Angus, is of somewhat rough aspect, the western border being encroached upon by lower branches of tho Grampians, while the Sidlnw Hills, a range of considerable height, traverse the centre. Between those is a portion of the great valley of Strathmore, whieh is here fertile nud beautiful, as is also the plain between Sidlaw and the coast. lis prosperity depends chinefly upon mnnufietures, commeree, and fishery.

Dundec, the largest town in Forfarshire, ranks fourth in Scotland as to popnlation and wealth. It was of carly importance and strength, deriving its origin from Malcolm Canmore, nul it obtained a fatal celebrity through the sieges, by Edward I.; by the Maryuis of Montrose; and by Monk, who gave it up to indiscriminate pillage. Dundee, however, has recovered from these disasters, and is become one of the nost flourishing commercial towns in Scotland. Her staple employment consists in the importation of thax and hemp, and working them into coarse linens, snileloth, \&c. There have been exported in one year 100,718 pieces of Osnaburg, 148,377 of sheeting, 81,754 of snileloth, with bagging, sucking, dowlus, and other tabries, of the entire value of about $1,500,000 l$. ; four-tithes of which were made in Dundee itself: Dundee has belonging to her, 270 vessels of 33,000 tons; and in a single yeur a tonnage of $21: 2,000$ his entered the port. The linrbcur lims been grently enlarged by wet docks and other additions; and a railway opens a communiention into the valley of Strathmore. The population, exceeding 45,000, shows a remarkable increase since 182I when it was only 30,500 . Dundee is agreeably situated on an eminence above the Tay; the old streets are narrow and steep, but new and handsome ones are built and building in every direction; and the vieinity is alorned with elegant villus. There is an academy, distinguished by the seiertific attainments of some of its teachers.

Arbroath carries on upon a smaller scale, the same branches ns Dundec; and is adorned with the ruins of a magnificent abbey. Montrose is prettily situated at the mouth of a
 river, bearing, in common with many othcis, the name of Fsk. Its trade and industry ure considerable; and it has a safe harbour. A number of the neighbouring gentry have been attracted by its agrecable situation, which renders it the most fashionable place in the county. Forfar, the county town, situated in the valley of' Strathmore, is chiefly supported by the business of the courts; there is also a manufacture of brown linens. The village of Glammis is distinguished by the magnificent enstle (f fg. 197.) in its vicinity.

Kincardine is closely hemmed in by the Grampians on the west : it contains, however, in its southern district, the termination of

Dunnotlar Cealle. the great valley of Strathmore, which is here cnlled the "How of the Nenrns;" and forms a tract equally fertile and dolightful. The northern part consists chiefly of montains and moors of the most bleak and dreery aspect. The coast is of great extent, and very bold, presenting in many parts high precipitous cliffs, covered with innumerable flocks of sea-birds; on one of these are the extensive remains of the castle of Dun

Part III. siderablo its centently of , history, romantic risonment is escape. ding and l now rethe traces ble priory. sant littlo extent of antities of situntion. her dewn, 00 tons are
ern border lls, a range reat valley fidlaw and ery. lation and a Canmere, is of Monr, has recoal towns in and workar 100,718 ng, dowlus, were made in a single enlarged by e valley of since 1821 e the Tay ; building in 1 academy,
is adorned mouth of a with many
Its trade ble; and it mber of the e been atsituation, fashionable Forfar, the the valley pported by ; there is wn linens. vicinity. owever, in ination of , which is Mearns;" le and det consists ors of the The coast bold, prerecipitons ble flocks e are the e of Dun
nottar, (fig. 109.), considered formerly as impregnable, where the regalia of the kingdom were at one time depwsited. Stomelaven, the county-town, carries on some trade, and has a manulacture of brown linen.

Aberleen is a large and important northern county. It has a very considerable line of coast, iwth to the enst and to the north, and extends, with increasing breadth, far into tho intorier. 'Ilhere it forms Mar, or Braemar, a highland district, one of the most elevated in the kingdon, some of the mountains rising to above 4010 feet, and containing extensive forests of ancient pincs, with large flocks of wild deer, in the deep glens or valleys. From the heights of Braemar lescend the Dee anl the Don, the first of which forms some very picturesque falls in its early course. Even the Lowland districts aro in general bleak and moorish, adnpted only to tho cultivation of inferior species of grain, and the rearing of cattle. The oll staple fabric of knitting worsted stockings has been greatly injured by the cheapness with which these are now produced elsewhere by the aid of machinery; but other woollen branches, together with those of linen and cotton, the latter to a considerable extent, have been introduced. The beantiful rock crystals called cairngorms, and also the topaz and the beryl, are found in the mountains of Braemar; and the fine granito which abounds near Aberdeen, yields 12,000 tons to be annually slipped to London and elsowherc. The fishories also constitute a leading occupation. That of salmon in the Don und Dee, and the whale-fishery, are extensive branches; and from the German Ocean, haddocks, eod, ling, turbot, and shell-fish, are taken in great quantities.

Aberdeen, "the Qucen of the North," and the largest city beyond the Forth, is situated between tho Dee and the Don. Old Aberdeen is situated near the Don, whose entrance is obstructed by a natural bar, which renders this harbour inadequate for the town. The mass of population has sottled on the banks of the Dee, the narrow entrance of which opens into a basin, forming an excellent harlour. It had, however, a bar at ite mouth, liable to continual increase by the sand blown from the beach which extends along the coast; a mole of 1200 feet in length has been carried out into the sea, and a channel has been formed, by which vessels of 700 tons may enter. New Aberdecn is a handsome city, especially the principal street, composed of a long range of new and gool houses, built of its fino granite. Its commerce, manufactures, and fishery are those of the county, all these branches centering in Aherdeen. This city is now the principal ship-building port in Scotland, possessing, in 1832, 355 ships of 41,071 tons burden. The old town has rather the aspect of a village, if we except the detachel houscs of the professors of the university, and a range of villas, the opulent tenants of which have been attracted by the agreeable situation. It is allorned by the fine odd edifice of King's College, from which rises a square tower, with a light and elegant crown. This seminary was founded in 1494; the salaries are modorate, but the bursaries for poor schools are very extensive. Attached to it is a library of considerable value. Marischal College, founded by the Earl Marischal, nearly a century later, is situated in the heart of New Aberdeen. It is not so well endowed as King's College; but has an excellent cabinet of natural philosophy, and a well-filuruished observatory.

Peterhead, an improving place, much frequented for sen-bathing and for a mineral water in its vicinity, has twe natural harbours. It sends thirteen ships to tho whale fishery, and carries on that of herrings with considerable spirit. To the south is a range of precipitous eliffs, called the Bullers of Buchan, against which the waves dash with perpetual fury.

Three counties, Banff, Moray or Elgin, nnd Nairn, occupy the southern shore of the Moray Frith. The interior districts border on the loftiest highlands; but the ceast, only diversified by gentle hills, constitutes the ancient province of Moray, which the carly Scottish writers describe with almiration as the most fruitful part of Scotland, and as enjoying fifteen dnys more of summer than any other district. Its rivers afford ample fisheries of salmon, which is exported to the computed annual value of $25,000 \mathrm{l}$. The herring fishory also is prosecuted with considerable success.

Elgin is an aucient town, situated on the Lossie, and has a tolerable harbour; but its chief distinction rests on its cathedral, which, even in ruin, may dispute with Melrose the glory of being the finest Gothic edifice in Scotland; in 1568 the privy council ordered its leaden roof to be taken off for the payment of the army, and from that time it gradually decayed. In a neighbouring valley are also the remains of the fine priory of Plascardine. Banff is a somewhat larger and more thriving place, situated at the mouth of the Deveron; carrying on some liven manufactures, and a considerable herring fishery. Nairn is a neat littlo county town, possessing some industry, and frequented for sea-bathing.

Sunsmer. 2.-The IIighland Counties.

The llighlauds of Scotland comprise somewhat more than half the surface of the kingdom. They include the whole region north of the Forth and Clyde, except the belt on the eastern coast, between the friths of Forth and Moray, which has just been described. This region consists altogether of continuous ranges of lofty mountains, which on the borders,
leave between them some of the fine nud broad valleys, called atrathr, but in the interior only the deep and often rocky intervals ealled glens. They are peopled by a raco totally distinet from the Lowlanders. These momitaineers wear a costume, in ready dereribed, quite peeuliar to themselvea; they speak a Celtic dialect, deep, strong, and gutural, hearing no resemblanee to the Teutonic speech of the Lowlands amd of Buglnud. They have ever mnintained that valour, which, under Galgneus, set bounds to the career of Roman conquest, and preserved their monntuins untoucherl by the invader; and they hinve sinee been converted from formidable foes into gallant defenders of the rest of the empire. Down to the year 1745, they aeted in clans, led by hereditary chiefs, to whom they were entirely devoted, and who exercised over them a paternal bat absolnte sway. The upirit of clanship, led them to attach themselves strongly to the hereditury right of the Stuart, of which, under Montrose, they gave powerfil proofs, which hall nearly turned the tide of war in its favour. Afterwards, in 1745, they suddenly invaled England; and, in the abseneo of tho army in Flanders, struck alarm into the dynasty of Hanover. The issue of that contest hroke entirely the independence of the lighland chiefs. A number were either bronght to the scaffold, or sent into exile; military rouds were made, and forts erected in the heart of their territory; they wer? deprived of their fendal privileges; even the national dress was prohibited, on account of the recollections it was calculated to excite. Afer the tlrat alarms, however, had subsided, the British governnent adopted the plan of concilintion. Pitt conceivel tho iden of forming the highlanders into national regiments, allowing even a limited use of the approprinte dress; and they bave since ranked with the bravest and most distinguished troops in the British army. Out of the forfeitod estates and other finds voted by government, vast suma have been expended on the Culedoninn Canal, roads, bridgee, and other great works for the :xprotement of this rude territory. The lairds, deprived of their absolute power, and attracted by the gaicties and luxuries of cities, soon accustomed themselves to view their estates only ns "material capitals, to be worked according to the grent principles of political economy." The multitude of little spots, divided among vassals, in whose numbers they placed their strength, were thrown into Inrge sheep-farms; nad the tenants were driven out to seek a home wherever they could find it. Some migrated to the lowland eitics, and a great proportion went to America; yet, in consequence of the advance of commerce and fisheries, even the highland counties nugmented their population during this period, though not in the sanie proportion as the Lowlands. Between 1801 and 1821 , it increased from 434,001 to $512,(000$. There is ono great manuficture, generally diffused throughout this region, which tonds rather to disturb the pence than to inprove the condition of the community; this is whiskey, which the people prepare in small stills from their berc, or coarse barley, and give it a flavour superior to any other spirit made in England or Seotland.
The Highlands are composel of two great districts,-the west and the north. The formel comprehends the shires of Dumbarton, Argyle, Bite, and part of l'erth; the latter embraces the counties of Inverness, Ross, Sutherland, \&e. The Ifebrides, or Western Isles, belong to the counties of Bute, Argyle, Ross, and Inverness.
Perth is a noble and extensive county, forming the link, as it were, between the lowlands and Highlands; in its different parts uniting the beauty nad fertility of the one with the yrandeur of the other. The former qualities are conspicuous in the carse of Gowrie; s broad sloping plain, on the north bank of the Tay, profusely covered with orehards nad cul. tivated fielis. The upper part of Strathearn, also, between Perth and Crieff, varied with gentle hills, caltivated valleys, and the windings of two great rivers, may ulinost be called the garden of Scotland. As we proceed to the north and west, the Grampinns gradually swell, a. d at length are found occupying the whole interior of the county, in a line from north-east to south-west, and comprehending the mighty summits of Ben Lawers, Benmore, Bengloe, Schehallion, Ben Voirlieh, Benledi, Benvenue; all from 30h0 to upwards of 4000 feet high. Within their recesses they enclose the three large lochs, Tay, Farn, and Katrine. These lakes, varied with woods and verdure, exhibit in muny parts seenes of great grandeur and beauty. In the lowlands of Perth, agrienlture is earried to great perfection; the highland traets, on the contrary, are in general fit only for pasturage. They are, however, covered with the remains of ancient forests, to which the great proprietors have heen making very extensive additions. The towns of Perthshire participate in the different national manufactures: the bleachfields and printfields are numerous; but this can in no view be generally regarled as a manufacturing county.
Perth is well built, und, as to situation, one of the most beautiful cities in the kinglom. The view of it from the north, in particular, in the heart of a finely wooded plain, with the Tay winding round it, and the Mill of Monerieff rising bove, is nlmost without a rivul in the kingdom. Perth might, for a long time, be considered the eapital of Scotland. It was the frequent residence of the kings. Parlimments and General Assemblies met there ofteurer than in any other place; and, in the eivil contests, the possession of Perth was eonsidered of vital importanee by the contending partios. At present it has deelined to a rank theided!y vassals, in ; and the ted to the e advance ion during and 1821, ly diffused condition their bere, ad or Scot-

13002 1.
SCOTLAND.
provincial; and its commerce, once conaderable, has been alnost whelly transferred to Dundee. It has linen and other manuffactures, which produce an annual value of about $\mathbf{3 0 0},(000)$. ; while its ndvantageous sito, and the excellent education afforded by the grammar school and neademy, attract a number of the neighbouring gentry, and render it gay and fishionable.

The other towns of Perthshire are manall, but distinguished for the grand and preturespue seenery amill which they are situated. Dunkeld, in this respeet, is generally considered the pride of Scotland; the finely wooded and rocky hills through which tho T'ay meandera, with

109
 the valleys and glens opening on every side, produce a diversity of landscapo scircoly equalled elsewhere. The late Duke of Athol, whose spacious domains cover this part of Perthahire, was most active in respect to plantations, since those of Dunkeld alone cover 11,000 acres; and the wholo number of trees planted by the duke umount to $30,000,000$. A route of twenty liiles, directly north, passing opposite to the fine mountaln village of Logiorait, and through the bold pass of Killikrankie, lealls to Blair, also part of the Athol te:ritory, niad unco of the most pieturesque spots in Scotland. Its striking fentures consist in the lofty mountain Bengloe, the glens of the Tilt and the Garry, and the picturesque rocky falls of the Bruar (fig. 199.). Westward is Loch Ramnoch, surrounded by extensive forests of fir, and overhung by Sehehallion, on whose lofty summit Dr. Maskelyne performed some of his operations for the measurement of the earth. Out of it flows the Tumel, a rapid stream, which forms some romantic cascades. From the Tumel, a military road leads to Loch Thy, the largest of the lakes, and surrounded by the loftiest mountains of Perthshire. Ben Lawers, with a chain of attenlant mountains overhangs it from the north; while Benmore shuts it in on the west ; and perhaps there is no lake in Britain enclosed by so grand a circnit. The sides of the mountains are somewhat naked; but the gr unds of 'Taymouth, at the head of the loch, forin a rich foreground.
Farther south is the vale of Strathearn, at one end of which, Crieff, a thriving little town, looks up on the windings of the river, and the vast monntains from nonil which it issues. Loch Earn, a small lake, is bounded on the south by grand ranges of very lofty mountains.
The upper valleys of the Forth and the ieith have some very remarkable seenery. On the Allan, is Dumblane; a pleasantly situated little town, with the remains of a fine cathedral ; Callender, overhung by Benledi, is c^{2} iefly frequented us the key of Loch Katrine, situated about ten miles to the westward, and appronched by a narrow road aloug the small lakes of Venachoir and Achray. The scenes of beauty and grandeur which adorn the eastern extremity of this lake, the mighty cliffs of Benvenue, the wild wooled glen of the Trosachs, and the beautiful little island in the centre of the scene, have obtained celebrity from the muse of Scott. Farther south, the Forth, rising from Ben Lomond, rolls through a pastoral mountain valley, once the seat of the power and the seene of the adventures of the outlaw Macgregor. It forms several little lakes, of which Lacil Ard is the largest and most beautiful.
The county of Inverness is purely highland, presenting range after range of mountains, of which Ben Nevis, Cairngorm, and several others, are the most elevated in the United Kingdom. The intervals between thein are filled either by long lakes, or by narrow glens, the level space of which does not usually exceed a mile in breadth. The principal one, called the Great Caledonian Glen, reaches from Inverness in an oblique direction neross the kinglom, filled with an almost unbroken chain of lakes,-Loch Ness, Loch Oich, Loch Iochy, and Loch Linnhe; which last opens by the Sound of Mull into the western sea; a continuity which facilitated the formation of the Caledonian Canal. In the east, the district along the upper course of the Spey, bearing the name of Strathspey. comprises an unusual extent of level land. Only about a fortieth part of the county is capable of eultivation; but that fortieth, composed of haugh or alluvial land, on the rivers, or the lakes, is extremely fertile. The greatest branch of industry consists in the rearing of black cattle, sheep, and toats. Game of all kiads abounds, and there are still considerable romains of the great Caledoninn forest, composed chiefly of fir.

Inverness, the gay capital of the Highlands, is of a very different character from that of the wild region over which it holds a sort of dominion. Seated on a bay, at the liend of the Moray Frith, it partakes in a great measure of the mild and fertile character of its shores, and stands at some little distance from the awful ranges of mountains by which it is enclosed.

Vor. I.
36 *
3D

After auffering a considerable decline from ita ancient importance, it has, within the laut thirty years, nearly tripled its extent nod population. In general, a eousiderablo poliwh of inannera is observable; and it has been remarked that tho Englishly languge is spoken in greater purity than ill any other part of Scothand; a eircumstance which has been ascribed to tho residence of Eaglisht officers after the lmatte of Calloplen. • Inverness has 1 town house, inflimary, ansemily-rowis, and theatre, Manuficturos of hemp, flax, and tartan have been extublishled. The views, both of sea and land, in its vicinity, aro alnost unrivalled.
Inverneso-shire has scarcely another place which can make much pretension to the naine

Fall of Fyeto. even of a village. Hen Nevis, usually convidered the loftiest mountain in Seotland nut in tho United Kinglom, is 4370 feet atove the level of tho sea; the view from the sumunit is very extensive, embracing a great portion of the Ilebrides, To the east of loch Ness, the rivulet of Fyors or Foyers (fig. 200.), forms the gre teat waterfill in Scotlanil; the lower or priacipal fill ilescenda from a height of 212 feet; but the stream is not very copious.

Argyle, commonly called the Western Highlands, is a wide and irregular territory, stretching into long promontorice, and indented by deep arms of the sen, so ns to form a coast of very grent extent. In general the shore is bordered by high hills, nad the interior covored with ranges of rugged mountains. Its industry is ahoost entirely pastoral; heris of black cattle and vast flocks of sheep are fed on tho sides ot its mountains. The herring of the west coast, and especially of loch Fyne, eajoys a high reputation. The county is chietly tenanted by Camptells, who were wont to rally round the Maccallunımore, a devignation of their chief the Duko of Argyle, with all tho ardour of kindred and national attaclment.

Dumbarton is inowtly a part of the same district; yot it lins a lowland strif extending along the northern banks of the Clyde. In the western part are the Great Canal, joining tho Clydo at Dunghass; and the wall of Antominus, culled ly the Scottish vulgar "Graham's dike." The appronch to Dumbarton nffords one of the most striking prospects in Scotland; and its castle (fig. 201.), the ancient and mighty hold of the Britons, towering on the summit of a perpendicular rock, still inaintains its inuprtunce as a fortress. Dumbarton las a large munutactory of crown glass, which is exported to toreign purts ; and on the banks of the Leven there are extensive printfields.
Loch Lomond (fig. 202.) is celebrated for the expanse of its waters, and tho many beautiful

Loch Lomond. islands with which is studded. From its foot, bordered by cultivated hills and ormanented villas, to its mountain head, there is a continued transition from beanty to grandeur, and at the central point oi Luss they are remarkably united. The numerous and beautiful islands, and the long wooded promontories stretching into the water, with the majestic form of Ben Lomonl in the backgronnd, produce a combination of landacape which perhajs no other spot in Britain can equal.
On turning the head of Inch Iong at Arruchar, the viow opens on the romantic valley of Glencoc, enclosed between two runges of monnuins rising almost perpendicularly to an amazing height, and leaving between them only a narrow vale, through which a rivulet tlows. The vale of Glenfinglas is then passed, whose high sloping sides covered with inmumerablo flocks inspire pleasing pastoral images, and at the termination of which appears the grand estuary of loeh Fyne.
Inverary, the c nital of the Western Highlands, is situated near the head of Ioch Fyne.

Book 1.
SCOTILAND.
Its environs are not mountainous ; but ita noble cantlo (fiy, ghin.), marronned ly woxd-

203
 ed hilla and wide lawn, with the lotty mountaina which shint in the distunt view, render it a magnificent aud delightful apot. The town is small nod nent, withont any employmont, except tho herring fixhery. About ten miles below Inverary, the Crinan Canal joins lach Fyne to the western sea, and has made lachgiljphead a place of mons consépuence.
The interior and the wentern conat of Argylenhire are in many respects intereating. Warallel to Iuch Fyne, at thedistunce of ton or twelve miles, is the long line of loch Awe; an interior lake, over whose head towern Ben Cruachun, the loftiont mumint in Argyle. 'The cantle of Kijehurn, rising on one of the inlands, produces n highly pieturempue eflect. Beyond thin, lach kitive, a narrow arm of the sen, ntretehes fir into the interior. Climbing the high momitains at the head of Jach Eitive, we come to Glencos, which in terrific prandeur surpasses perhaps every other apot in Great Britain. This effect is proxuced by its bold null broken momitain tirma, its spiry rocks, and black precipices; the tho hottom of which, in a deep chusus or ravine, flows the rivalet of Coe. S'his streant is the Cona of Osxiun, believed the fiverutite hnunt of that celebrated Caledonian baril. The valo has also a glowny recollection attached to it, from the massacre of 1001. Fimerging from this scenc, the traveller is cheered with the gny aspect of Loch Leven, which presents much plensing highland scenery, white the hills round the ferry of Balachulish attord valuable guarries of slate. From Balachulish, along the broad expanse of the Linnhe Iach with which the great Caledonisn chuin terminntee, extends Appin, a beautifil district, diversifled with fine woods, rich pasturage, and more culture than is nemal in Argyleshire. On the opposite side of the Limuhe lach is a peninsular district called Ardnamurchan, separated only by a narrow oond fron the Island of Mull. The district of Strontian contains lead-mines of sone value. Crossing the Linule, and passing Lismore, a long, level, and fertile islaud, we tind Iorne, separatell hy Loch Creran from Appin, to which it is even superior in benuty and fertility. Near the opening of Lach Etive into the sea, tralition places Beregoninm, the reported capital of the l'icts in tho third century; and near it is found Dunstallinge (fir. 2th4.), once
 the scene of Scottish regal pomp, now a ruin, crowning a eliffilong the western sea. I'he long peninsula of Cantyre atretches far out into the sea, being visible from the lrish conat of Antrim. The Macionnlds, lorils of thio Isles, long held sway over it, till they wero driven out by the earls of Argyle. Campbeltown, near its sonthern extrenity, is a thriving port, now the largest on this coast, and serving in particular as a general rendeavous for the herring fishery.
The three extreme counties, Ross, Cromarty, and Sutherland, form the most remote nnd northerly portion of the Highlands, and, Caithness excepted, of all the muinland. The southeastern border of the friths of Moray, Cromarty, and Dornoch contains some fine Innd, and several thriving towns; the rest is a continued range of rock, mountain, heath, firest, and loch, similar to Inverness, but still wikjer. The lochs which indent the western coast are large and muncrous, particularly Loch Carron, Loch Terridon, and Loch Broom; and they have generslly grand mountain boundaries. Cape Wrath, the north-western point of Scotland, is a lofty pyramidal rock, standing in front of a vast range of broken cliffs, and breasting

205
 the whole wide expanse of the ocean. On the northern coast is Loch Eribol, a wido inlet, borilered by limestone rocks, perfornted by caves of grent extent and remarkable form. Sutherland presents numerous Duns, or ancient forts of peculine structure, of which the most remarkalile is Dun Dornalilla (fig. 205.), situated on the lofty sides of Ben Ilope, nut far from Loch Eribol.
Cromarty, the cnpital of the little county of the same name, stands at the foot of its
own frith; while Dingwall, the county town of Rose, is situated at the head. Cromarty is a consilerable fishing station. On the south side of the Dornoch Frith is Tain, and on the north is Dornoch, an ancient town, of whose cathedral some part still remains.

Caithness forms the north-eastern angle of Scotland: it is searcely a highland county, only the Paps of Caithness rising to the character of mountains. Its surface is moist, bleak, and bare, filled with little lakes, and covered with extensive moors. The chief branch of industry is the herring fishery. Kelp is also made from the sea-weed thrown on its shores. Thurso, the county town, is an improving place, in the midst of a cultivated country. Its bay affords a safe roadstead, peculiarly valuable for ships, which, in rounding the north of Scotland, must pass through the Pentland Frith, rendered dangerous by its violent and rapid currents. Wiek, the grand rendezvous of the herring fishery, owes to this advantage a very rapid inerease. The north-eastern point of Caithness and of Scotland bears the familiar appellation of John o'Grout's house; though there is not the vestige of a house to correspond to this title, which is founded on a mere traditionary story.

Subsect. 3.-Scottish Islands.

The islands appendent on Scotland, form one of its most conspicuous features. Though neither rich nor fertile in proportion to their extent, they exhibit a great variety of bold and striking scenery, and are peopled by a race whose habits of lite and forms of society are peculiar to themselves. They may be divided into the islands at the mouth of the Clyde; the Hebrides, or Western Islands; and the Northern Islands, or those of Orkney and Shetland.

The islands of the Clyde are chiefly Bute and Arran, with the smaller ones of the Cumbrays and Ailsa. Bute is of besutiful nspect, with a climate accounted the mildest in Scotland, and for that reason resorted to by invalids; a considerable part of the surface is srable and well cultivated. Rothsay is a pretty town, much frequented for sea-bathing, and enriched by a considerable herring fishery. Arran presents much bold alpine scenery, the centrsl mountain of Goatfield rising to nearly the height of 3000 feet, while the glen of Sanox at its base has the highest character of savage and romantic grandeur. Lamlash, the principal town, possesses an excellent harbour. Ailsa, off the Ayrshire coast, is a rock 900 feet ligh, with lofty basaltic cliffs, formed into columns several hundred feet in height.

The IIebrides, or Western Islands, strotch far into the Atlantic. Their general aspect is highland, with rude rocks and mountains, deep and dark valleys, large expanses of peat-moss, hill pastures, and scanty har sts; the meuntains ascend rather in single peaks than in long ranges; and the rocky eliffs which face the sca assume, in many places, columnar forms of peculiar grandeur. The elimate is moist; yet milder than on the mainland. The earliest inhsbitants seem to have been Celtic. About the eleventh century, they were conquered, together with Man, by Harold Harfager, and were geverned for several centuries by a Norwegian dynasty, after which they owned the nominal sovereignty of the Scottish kings, but fell really under the sway of the Macdonalds, lords of the Isles. Thicir territory including a great part of the west coast of Scotland, formed a considerable power, till it fell partly under the dominion of the Scottish crown, and was partly divided among a number of petty chicfs, whose feuds deform the subsequent pages of Hebridean history. At present these islands may be considered as retaining more of highland habits and feelings, than any part of the mainland.

The Hebrides may be divided into two main ranges. One of them consists of the large islande of 「slay, Jurs, Mull, and Skye, with several minor sttendants, which sre nearly contiguons vo the west coast, and separated from it only by narrow straits and sounds; the other is composed of North and South Uist, IIarris, Jewis, which are considerably out at ses, and are classed, with no very strict propriety, undes the general appellation of Long Island.

Islay contains a good deal of level and fertile territory, which induced the lords of the Isles to make it their residenee ; good crops of barley, cats, and even wheat, are raised; and the black cattle, which form the main export, are held in great estimation. Jura is separated from Islay only by a sound, the opposite sides of which correspond so exactly as to suggest the idea of their having been disjoined by some violent shock; it is one continued tract of brown and rocky mountsin pasture; all the inhabitants, if collected, would scarcely people a large village. Scarba consists of a single conical mountain broken into rocky precipices, and forming a striking object. Between Jura and Scarba is the perilous strait of Corryvrekan, a whirlpool noted for shipwreck. Colonsay and Oronsay form one long island, the channel between them being passable at low water. The former has a verdant appearance; at Oronsay are the remains of a priory, ranking as the finest in the Highlands next to that of Iona.

Mull is a large, rough, stormy island, with winding and deeply indented shores, separatel by a long narrow sound from the Argyleshire coast. The shores are almost everywhere rocky and precipitous; the twe once mighty holds of Duart and Aros crown roeky cliffs on its eastern shore. The great keep of the former, with its walls nine feet thick, encloses an area
of thirty-six feet by tweive. Black cattle, black-facel sheep, celehrated for their delicate mutton, kelp, and herrings, are exported.
Stafia, a large rock, about a mile and a half round, and encircled by eliffs, which nowhere
 exceed in heiglit 144 feet, containe the Cave of Fingal (fig. 2016.) Almost all the rocks of the island are basaltic and columnar; but here they are arianged so as to prosluce the most singular and magnificert effect. An opening, sixtysix feet high and forty-two wile, formel by perpendicular walls terminuted by an arch at the top, admits into a natural hall, mere than two hundred feet long, and bounded on each side by hasaltic columns rising in regular symmetrical succession. Two other caves, the Cormorants' Cave and the Boat's Cave, present similar scenes. Of the columnar rocks, which extend over a great part of the island, many are bent and twisted in a remarkable manner.

Iona (fig. 207), a small island near Siaffa, excites the deepest interest by the venerable
 ruins which attest, in this seeluded corner, the early existence of religion and learning, at a time when the rest of the kingdom was buried in balbarism. St. Cetumba, about the middle of the sixth century founded here a monastery, and made it a centre whence he endeavoured to diffuse the light of Christinnity. This religious establishment was enriched and extended, and a nunnery was afterwards instituted under the same auspices. The Culdees, or followers of Columba, appear to have rendered very great services to Britain, and even to the whole North. Teachers were often drawn from among them for seminaries in England; and they undertook missionary expeditions to Norway, and even to Russia. They tanght, in a great measure, the principles of primitive Christianity, rejecting both the vows of celibacy, and the ceremonies of the Romish church. Iona, however, at length became Roman catholic, and continued to flourish till the Reformation, when its monks were dispersed, and its edifices demolished. The ec netery also remains, in which, according to tradition, were buried forty-cight kings of Scotland, eight of Norway, four of Ireland, and one of France. Allowing the scepticism of Dr. Macculloch us to this magnificent list, it appears confirmed, from the ornaments on the tombs, that many of the West-Insular chicfs chose this as a sacred spot, where their ashes might repose. The ruins aro extensive. The cathedral is 164 feet long aad 34 broad; and near it is a chupel sixty feet long. The style of architecture is early and rude; and the sculptures, though pretty numerous, are, with a few exceptions, grotesque in design and execution.

Skye, the most northerly of this inner chain, is the largest of the group. It is fortyfive miles long; but its shores are so winding, and so penetrated by lochs, that it may be said to form a cluster of peninsulas. Ranges of rocky mountains, many of them 3000 feet high, cover almost the entire surface, and the high rocks with which it is everywhere bordered, display objects of striking and romantic grandeur. In Strathaird, near the southern point, is the celebrated spar cave; it is about 250 feet from the entrance to the extremity; but a great part of the passage is gloomy and rocky, and only in its most interior part do the stalactites begin to branch out into that variety of intricate and brilliant ornaments which make the eave so beautiful. The great body of the island is a hilly moorland, barren, brown, and rugged; the peaks being generally from 500 to 1000 feet high; hut some points are level and arable. The exportation of cattle, with that of a considerable yuantity of kelp, forms the chief trade of the island; large quantities of herrings are also thken, anil cured by fishermen, who carry on this branch of commerce on a small seale. The property of Skye is almost shared between the family of Loril Macdonald who elains descent from the ancient lords of the Isles, and that of Macleod. Duntulm, the almost ruined seat of the Macionalds, and the Macleods' castle of Dunvegan, a magnificent pile, founded in the thirteenth century, are on the north-west coast. On the east is Rasay, masked by long lofty eliffis of fine sandstone, which have on their tops green and cultivated farms. To the south-west is Rum, a wild and rugged mass of mountains, surrounded by shores scarcely
accessible, and involved in almost perpetual tempest. On the east of Rum is Egg or Eigg, which contains several large cavee.

Long Island is the general name given to the exterior chain of the Hebrides, which consists of five large and many smaller islands; so closely contiguous that the whole may be censidered as onc island. It is a strange mixture of bogs, rocks, lochs, and sands; its pastures aru chiefly occupied with cattle destined for the markets of the mainland; and large quantities of kelp are produced, which yield censiderable profit.

Lewis is the largest of all the Hebrides, being upwards of eighty milea from north-east to south-wert, and, at some points, more than twenty in breadth. Of its inhabitants, those occulying its most northern point, called the Butt of Lewis, appear to be Danish, the remnant of that coieny who once ruled the island. The people are industrious in cultivating their rude soil, and in the fisheries which have rendered Stornoway, the capital of Lewis, a place of some consideration. Harris, a peninsula on the southern point of Lewis, consists of a mass of rugged rocks, which project in long promontories into the sea, giving to the shore a very picturesque aspect. The arable patches are small, and in such inaccessible sites that they can be cultivated only by the spade. Sheep are more numerous than black cattle, being better adapted to this rugged surface. North and South Uist, with Benbecula, exhibit the general aspect of Long Island, of whose length they compose about eighty miles. The cattle are small, and not exported in very large quantities. The most flouriahing branch of industry is kelp, of which they yield annually about 2500 tons. Barra is distinguished for the industry of its fishermen, who carry their cargoes through the Crinan canal to the Greenock market. About half \mathfrak{a} mile from the southern shore is Chisamil, the castle of the Macleans, now partly in ruin, but of such extent as to have been capabjn of containing 500 men.

St. Kilda is the remotest point of the Hebrides; small and solitary, far out in the Atlantic, whose waves dash continually against its perpendicular cliffs. It is about three miles iong, girt on all sides by a wall of rock, which at one point is about 1300 feet high; Conoxhan,

Fig. 203. Map of the Orknay Filandt.
 the loftiest hill on the island, being there cut down perpendicularly from the summit to the base. "Dizzy heights, from which the eye looks down over jutting crags; a boiling sea below, without a boundary; dark cliffs beaten by a fonming surge, and lost in the gloom of involving cleuds; the mixed contest of rocks, ocean, and aky," are the scenes which characterise St. Kilda. On the top of the rocks is a green and somewhat fertile surface, on which are fed sheep of the Norwegian breed, with short tails and coarse wool, but whose mutton is delicious; there are a few cows, and a little very tine bear is grown. But the favourite food of the natives is drawn from the face of the perpendicular cliffs, which in fearful and dizzy height overhang their shores. Suspended by a rope, they step from point to point, and take the egge or young of the solan goose, puffin, cermorant, petrel, and others of the numerous species which breed on their sides.
The Orkneys form a group of about thirty in number; but Pomona or Mainland contains nearly as much ground as all the rest put together. Nething can be more irregular than their form; the deep sounda by which they are penetrated, and the narrow straits which separate them from each other, cause a complete intermixture of land and sea. These etraits are rendered dangerous by numerous currents and eddies from the two oceans which rush in from opposite sides.

Reference to the Map of the Orkney Islands.

NORTH RON. ALDSIIAY.	WESTRAY. 1. Newark	2. Kirkbupter 3. Holland.	6. Tnbo 7. Kirkwall	16. Bursar 17. Birsh	2. Bring 3. Air
	2. Spuansay 3. Jytawall.	POMO	8. Firth	18. Marwick	4. Et. Welby.
ganday.		MAINLAND.	10. Wank	20. Hnlorow	SOUTH RON.
1. Taftanes	1. Savarkel	1. St. Andrew's	11. Orphir	21. Mandwink	ALDSIIAY.
$2.8 n v i l$	2. Wealaide.	2. Findaide	12. Chearren	22. Stromness.	1. Cara
4. Maykith		3. Popm	13. Turnation	IIO	2. Betwick
4. Croes and Burnesa 5. Stove	1. Wallness	5. Galnip	15. Woodwick	1. $\mathrm{Hoy}^{\text {H }}$	4. Broush.

LRT III.
or Eigg,
ich conmay be its pasid large
rth - east s, those he remtivating Lewis, a consists g to the cessible an black nbecula, t eighty flourishBarra is e Crinan mil, the pable of les iong, onoxhan, ng there e summit m which crags; a oundary ; rge, and uds; the nd sky," rise St. a green vhich are ed, with nose mutows, and But the wn from s, which ng their hey step eggs or rmorant species
ff about r Mainnd as all can be he deep om each ngerous e sides.

Boor 1.
SCOTLAND.
The Pentland Frith, in particular, between Orkney and the Mainland, is a most formidable passage. The opposing currents keep the channel in a stats of perpetual ebullition, and produce at several points, violent whirlpols. Orkney is in general low, bleak, boggy, and bare; though its western islands face the Atlantic with some very bold and ragged cliffs. About a twelfh part is cultivated in a rude manner with the plough; a somewhat larger portion is under regular pasture; the rest is moor and waste. The cattle, though small, are of a good breed; and about 50,000 sheep, almost in a wild state, roam through the connmons. The fisheries are not extensive ; kelp is the staple commodity for export: it has averaged annually 2500 tons, employing 3000 men. There is some coarse woollen, and of late there has been some linen manufacture. As most of the vessels destined for Hudson's Bay and the whale fishery, and many of those which, from the east coast, sail to all parts of the work, pass by the north of Scotland, the ports of the Orkneys are frequented, and a market is afforded for their provisions.
The topographical details of Orkney do not possess any peculiar attraction. Kirkwall, however, bears marks of the periods wher it was a Danish capital, and a residence of the

Fig. 810. Map of the Shetland Islands.
 sovereign Earls of Orkney. There is a large and massive cathedral, in some parts very elegantly ornaniented; also ruins of a king's palace, an earl's castle, and a bishop's palace. The town has of late been considerably extended and improved, and it has a good natural harbour. Stromness has one of the best harbours in the kingdom, and is the favourite resort of vessels which seek on this coast for shelter and refreshment. Near Stromness is that remarkable remnant of antiquity the "standing stones of Stennis,' which in magnitude and singular character almost rivals Stonehenge. Shapinshay, Stronsay, Rowsay, Eday, Westray, Papa, and Sanday, are small islands stretching to the north-east. Burra and South Ronaldshay are towards Caithness; and to the west the long island of Hoy, which presents a series of bold and rugged promontories.
The Zetland or Shetland islands, called by the natives Hialtland, form one of the extremities of Europe, encircled by the illimitable extent of the Arctic and Atlautic occans. Placed thus far north, and amid so wide a waste of waters, the climate of Zetland is cold, bleak, swept by furious winds, and deluged by torrents of rain. The surface is rugged, without being mountainous; it is everywhere penctrated by long lagoons with flat shores, called voes, by which even the largest islands are so intersected, that there is scarcely a spot in them two miles distant from the sea. The extensive mosses, and the trunks of trees dug out of them, prove that a vast expanse was once covered with natural forests; but these are now totally eradicated, and the violence of the winds and sca-spray has rendered abortive every attempt to replace them, s that the aspect of the country is now completely naked, scarcely producing even a shrub. The coasts are peculiarly steep, rocky, and bold, the rocks being hollowed into deep caverns, and broken into precipices and cliffs of the most varied forms. The aspect of these slores, against which the waves of the great surrounding ocean dash with almost perpetual fury, is equally grand and terrible. The

References to the Map of the Shetland Isands.
UNST

1. Norwick
2. Vengrth
2 Now
1 Windhause

3. Quendal.

MRFSSAY 1. Gordizu
2. St. Andrews
uuthor of "The Pirate" draws a most lively picture of these "deep and dangerous seas of the north, their precipices and headlands, many hundred feet in height-their perilous straits, and currents, and eddies-long sunken reefs of rock, over which the vivid ocean foams and boils,-dsrk caverns, to whose extremities neither man nor skiff has ever ven-tured,-lonely and often uninhatited isles, and occasionslly the ruins of ancient northern fastnesses, dimly seen by the feeble light of the arctic winter." The dangers of the navigation, however, are considerably mitigated by the spacions and commodious hsvens, formed by the deep bays and voes, or by the sounds and channels, between differont islands.

The Shetland Islands contain ebout 20,000 acres of arable land, and nearly as meny of good meadow; but this comprises little more than a twentieth part of the surface, all the rest consisting of waste or common, on which the horses, cattle, and sheep are iurned out, to find pustures as best they may. The horses are of a very small size, with o huge mane, but active und hardy. The cows are equally diminutive, and give very little milk, but both the milk and the flesh are of good quality. The sheep are most numerous of all, being reckoned at seventy or eighty thousand; they are stunted, like the other animals, and their wool is very scanty; but some of it is peculiarly fine, affording the material of almost the only manufacture of Shetlsnd,- that of knit hosiery, of a texture close, soft, snd warm. The greatest branch of Shetland industry, however, is the cod and ling fishery. All the coasts abound with these fish; and, within the last few years, a particularly rich and extensive bank has been discovered to the westward. At the proper season, fleets of boats issuc from all the hays and voes, to the haff or decp ses-fishery, which is carried on, not without peril, at the distance of from twenty to thirty milcs from the coast. The fishermen are supplied hy the laullords with boats and implemicnts, on condition of their delivering to them the fish at a stipulated rate; snd as their farms are held at will, they are in a state of vassalage more complete, perhaps, than any other class in the United Kingdom.
The annals of Shetland are Norwegian. These islands, according to the eurliest tradition, werc peopled from Norway. In the nintli, century they werc conquered by IIarold Harfager, or the Fair-haired, the most powerful and formidable of all the sea-kings of the north. The Norwegian sway extended for scveral centuries over all the Scottish islands; but in the Shetlands it was undisputed, till the cession of them, along with those of Orkney, as the dowry of a princess of Norway marricd to James III., in the end of the fifteenth century. Lerwick, the capital, is a thriving village, ill and irregularly built, but inproving.

210

Nous Holm, Shelland. The opposite island of Bressay forms Bressay Sound, one of the finest harbours in the world, and the renlezvous of all the vessels destined for the north and the whale fishery Off Bressay is the Noss (fig. 210.), a small high island, with a flat summit, girt on all sides by perpendicular walls of rock. The communication with Bressay itself is maintained by strong ropes stretched aeross, slong which a cradle is run, in which the passenger is seated. The promontorics of Sumburgh and Fitful Head, at the southern extremity of the Mainland, are also distinguished by the boldness of their aspeet and the perils with which they threaten the mariner. The number of the Shetlands has been variously estimsted, according to the gradations of islets and rocks ineluded; but only sbout forty are inhabited. Of these, Yell, and Unst, stretching northwards from the Mainland, are alone of any magnitude. The last, though the most northerly, is rather the most fertile of any, and distinguished by its numerous caves. Adjacent to Yell is Fetlar; on the east of the Mainland sre Whalsay snd Bressay; to the west, Burray, Housa, Frondray, Papa Stour, Muckle and Little Rooe, all so close as to be little more than peninsulas. Considerably out at sea, Foula, a small rocky islet, faces the Atlantic, with ligh! cliff covered with numberless flocks of ses-fowl.

CHAPTER IV.

InELAND.
Ireland is a fine extensive island, situated to the west of England, and forming one of the threc grand portions of thic United Kinglom.

Sect. 1.-General Outline and Aspect.
The greatest dimension of Ireland is from Cape Clear, in $51^{\circ} 19$, to Malin Head, in 55° 23 N. lutitule; making ubout $\mathbf{2 5 0} \mathrm{miles}$. The utmost breadth, if reckoned from the mos' perilous d ocean er venorn fastrigation. d by the ned out, ge mane, but both 11, being and their the only m. The 1e coasts extensive sue from out peril supplied n the fish vassaluge

tradition,

 old Herfathe north. Is; but in rrkney, as li century. mproving. as Bressay rs in the he vessels de fishery)., a small firt on all bck. The f is mainross, along 1 the pas of Sum. thern exso distinspect and on the malands has ; but only the Mainthe most ir; on the rsy, Papa Consideraered withBook I.
IRELANL
easterly point of the county of Down (opposite Bur Island) to Dunmere IIead in Kerry, wall be 218 miles; but it is nowhere so broad under the same parallel of latitude. The island, according to Beaufort, contains more than 30,000 Fnglish square miles, or nearly 20,000,000 acres; but, till the survey be completed, precision on this subject cannot be attained.

The surfince of Ireland ernnot on the whole be called mountainous; ita central districts composing one vast plain, which crosses the kingdom from east to west. It is, howover, diveraified by ranges of mountains, superior in extent, and, with the exception of those of Wales, equal in elevation, to any in England. Wicklow, in the vicinity of Dublin, may be classed as an alpine region. On the borders of Leinster and Munster, the Slieve-Bloom, the Knockmele Down, and the Galties, form long and lofty ranges, commending an extensive view over the wide plains that stretch beneath them. All these, however, are much surpassed hy the e-treme aouth-west county of Kerry, which presents a complete chaos of lofty and rocky al mits. The most elevated are those which enclese the beautiful and finely wooded lakes of Killarney, Mangerton and Macgillicuddy's Reeks, the last of which is considerably more than 3000 feet high. At the opposite or north-eastern extremity of Ireland, Antrim presents to the Scottish aeas a barrier of rocky cliffa, leas lofty, but of a very bold and peculiar character; precipitous, and formed into long columnar rangea; a phenomenon which the Giant's Causeway exhibits on a greater scale than any other spot in the known world. The Mourne mountains, a lofty granite range in the south of the county of Down ; those of Carlingford, which extend into the county of Armagh; with considerable ranges in Tyrone, Derry, and Donegal, may dispute the pre-eminence with those of the south. In Counaught there are also some considerable detached mountains, of which Croaghpatrick in Mayo has been reckoned by some to exceed even Macgillicuddy's Reeks; but Ireland has no extended tablo-lands, like those which cover a considerable part of England. The most elevated part of the Bog of Allen, in that central point where the rivers divide, is net more than 270 feet above the level of the sea.

Tho Shsmnon is without a rival in the three kingdoms. It rises far in the north, from Longh Allen in the province of Connaught, and has a course of 170 miles, throughout the whole of which it is more or less navigable, the only obstruction which existed having been remeved. Below Limerick it expands into an estuary about sixty miles in length, by which the largest vessels have access to that city. The Barrow is also an important river, which runs southward through the greater part of Leinster, receives from the west the Nore and the Suire, and finally forma the harbour of Waterford. The Boyne, so celebrated for the victory gained on its banks; the Foyle, which, after passing Londonderry, forma Lough Foyle; the Bann, which passes through Lough Nesgh, and affords a flourishing seimon fishery ; and the Blackwater, which terminates in the bay and port of Youghsl, are also deserving of mention. The other rivers are rather numerous than of long course; but they almost all terminate in wide estuaries and loughs, which diffuse through Ireland the means of water communication, and afford a multiplicity of spacious and secure harbours.

Lakes or loughs are a conspicuous feature in Ireland, where this last name, like the similar one used in Scotland, is in many instances applied to arma of the ses. Lough Neagh is the largest lake in the United Kingdom, covering nearly 100,000 acres. Its banks are flat, tame, and in many places marshy and inundated. Lough Erne, also in Ulater, is divided into two reaches, the united length of which is about thirty miles, while its circuit includes a great variety of rich snd ormamented scenery. Iough Foyle, Lough Swilly, and Belfast Lough, are properly bays. The Shannon forms several lakes, of which Lough Ree is the principal; and the whole of its course downwards from Limerick resembles more a lough or bay than a river. Connaught has several extensive lakea. That of Killarney, in the south, is famed, not for its extent, but for the singular grandeur and beauty of its shores. A fuller deseription of this and some othere now mentioned will be found under the local section.

Sect. II.-Natural Geography.
The Botany and Zoology of Ireland, having been treated under the head of England, this section will be confined to Geology.

Subsect. 1.-Geology of bieland.

The geology of this part of the empire is not so well known as that of Great Britain. The following sketch will enable our readers to form a general conception of the geognostical structure of those parts of the islarid which have been already aurveyed; viz.-1. North of Ireland; 2. Connanght coal district; 3. East of Ireland; 4. South, and part of the weat of Ireland.
(1.) Nerth of Ircland. This district, limtted by Dundalk Bay on the south-esst, and by Lough Foyle on the nortli-west, is marked by three distinct aystems or groups of mountains, one of which eccupies the more southern counties, while the more nerthern are divided between the two others.

1st system. The Mourne mountains.-The Mourne mountains ferm a well-defined
Vol. I.

group, extending from Dundrum Bay to Carlingford Bay, in the southern extremity of Down. Slieve Donard is the highest summit of this group, and rises about 2654 feet above the level of the sea. The north-west of the main group, the Fathom Hill, Slieve Girken, or the Newry mountains, and Slieve Gullen, are situated in tho south-east of Armagh; and the Ravenslale and Carlingford mountains, in the north of Louth, may be consilered as its appendages. Granite, which is the prevailing rock of these monntains, contains heautiful rock crystals, also felspar and mica crystals, topaz and beryl. To the north of the Mourne mountains Slieve Croob, composed of syenite, and Slieve Anisky, of hornblende rock, form an elevated tract, dependent upon, but placed at some distance from, the main group. Hornblende rock, greenstone, and porphyry are said to be abundant on the skirts of this granite district. The Plutonian granite and syonite hills rise through strata of transition recks, which are greywacke, greywacke slate, transition clay slate, and transition limestone. The Plutonian rocks besr but a small proportion in superficial extent to those of the transition class, the latter advancing west and north into Cavan, and to Belfast Lough and the peninsula of Ards. The points of the coast of Scetland, directly opposite the peninsula of Ards, present in the neighbourhood of Portpatrick, and throngh the great alpine band which traverses the south of Scotland, and terminates on the east coast of St. Abb's Ilead, the same transition rocks. Hence it is probable that the great southern high land of Scotland was formerly joined with the transition hills of the Mourne mountain group by a ridge of land extending across the Channel from Scotland to Ireland. In this district, there are some patches of mountain limestone and of old red sandstone.
2d system. Primitive chain of Londonderry.-This mountain group rises at the distance of about 30 miles to the north-north-west of the external chains of the first system, including the counties of Iondonderry and Donegal. One of the highest points in this district is Sawell, said to be 2257 feet above the level of the sea. This grest tract of country is principally composed of mica slate, with various bordinate beds, as limestone, quartz, \&c. On the castern bank of the Roe, these mica siate hills and monntains are succeeded by a range of secondary hills covered by a great platform of secondary trap, and forming a part of the third system of lills, afterwards to be described. These newer rocks repose upon and con-

60. Denaghadea 61. Gray Abtey	
	Pomaferry
	Downpatrick
64. Killinchy	
65.	lliteborough
66. Dundrum	
67. Rathirland	
68. Loughbrick-	
69. Armegh	
71. Newtown II milton	
	Monazhan
	Augher
74. Goghri	
75. Fivo Mile	
76. Donaugh	
78. Callowhill	
79., Enniakillen	
O1. Stridack	
	Slig
83. Dunatr	
84. Runra	
	Killala
*8. Mettiplat	
87. Inver	
	Clogan
89. Inilina	
91. Ewineford	
99. Inlcarra	
	Baliymote
94. Leitrim	
9. Relturbet	
97. Uavn!	
19	n-un
19. Fullybny	
19.6. Cunte Blaney	
102. Newry wit	
111. Kilkeel	
103. Carlingord	
108. Dundalk	
107. Lauth	
116. Larknn	
110. Ciadyrath	
11. Nohber	
112. Nrynalty	
13. Bally botough	
	Roeduft

References to the Map of Ireland.

117. Jamentown	17. Mort a Grenugue	76. Killennula	135. Abbey Oderne
118. Elphin	18. Diallimore	17. Aurrisleagh	136. Trale
9. Carrick on	10. Philipiawn	78. Tomomara	137. Liapole
Elamnon	20. Tyret's Pasa	79. Silver Mine	138. Dingle
Tulak	21. Bellydembt	80. Nawpor	189. Cahir
21. Hallyhadireen	22. Jang wood	81. Limerink	140. Aphart
129. Hallihaunt	23. Cloncury	82. Bridyefow	141. Ginnliagh
123. Kikely	24. Clane	83. Six Mile firidge	142. Millewn
194. Kilculman	25. Mayncoth	8. Patadise	143. Kpmmure
12. Toartree	26. Raloath	85. Clanderlagh	144. Killarney
126. Ballinvary	27. Batheoole	86. Kilruh	145, Shinauh
127. Nawport	28. Dublin	27. Dunbegg	146. Mill Street
189. Cratlebar	99. Killenbbin	8, Rallyheigh	j47. Macrnmp
129. Westport	30. Innimkarry	89. Lixnaw	148. Cork
130. Killery	31. Wieklow	90. Millerre	149. Ferinoy
13. Claggan	32. Dunerd	91. Ballylongiord	150. Rntcormuck
132. Aunowen	33. Mlearington	92. Lithowel	151. Liamors
133. Cong	34. Nant	113. A hibyieale	159. Duggnivan
4. Ballinrabe	35. Ord Kilcullan	94, Glynn	153. Agliah
5. IIolly mnunt	36. Kildara	95. Ardagh	154. Youghal
136. Kilmainmore	37. Portarlington	90. Auknaton	155. Cloyne
177. Blenwell	38. Mountmelick	97. Kiddngh	158. Carliale Fart
138. Dunmere	39. Birr	98. Firutea	157. Pasage
139. Glanamoddy	40. Danghar	99. Patrick'e Well	158. Camiten Fort
10. Ballintobnt	4). Eyre Cuurt	100. Bruf	15. Kinale
141. Reacommon	42. Portumna	101. Cullen	160. Innialiannon
149. Tarmnnharry	4i. Aughrim	102. Tipperary	101. Inchigeelarh
14.3. Ifongfind	44. Joughrea	103. Ceppagh	162. Tunmanaway
144. Kenagh	45. Carnamart	104. Ganden Bridge	163. Glengart
145. Edgaworthe*	48. Grrt	105. Cazhel	194. Gnrinish
town	47. Killany	106. Fehard	165. Rantry
146. Johnutnwn	4. Killienora	107. Pally	166. Dunmanus
147. Mullingr	49. Innialymon	108. Knocktopher	167. Ilalimore
8. Conmellun	50. Fnnia	109. Innibtioge	168, Skibbereen
140. Trim	51. Gara	110. Thomation	16. Ieap
150. Summerhill	59. Talla	11. Nnw Rnas	170. Timoleague
151. Navan	53. Ecurriff	112. Enniacorthy	
152. Skryna	54. Killalue	113. Killane	Rivers, \&c.
153. Dragheda	55. Nenagh	114. Rallymartin	Foyle
154. Naut	50. Murrearkan	115. Trimmen	b Bnnm
155. 8 worde	57. Roperas	116. Wexford	
	58. Rathdowny	117. luncornuck	d Newry Canal
SOITH PART.	59. Bullynatil	118 Clonminea	e Boyse, R.
1. Kilkerran	60. Mafy horcush	119. Whitechureh	f Jiffey, R,
2. Inveran	61. Athy	120. Waterford	8 Elmney, R.
3. Runna	¢2. Carlow	121. Kilmacow	h Rnirow, R.
4. Killnmeen	fi. Strniford	123. Kilmactiomas	Nore, R .
5. Galway	64. Rattinalnss	123. Cloninel	Enire. R .
6. Iendford	85. Ruthville	124. Bally namuls	k Blackwater, R
7. Heldare	66. Tinchely	125. Cahir	Lee, R.
8. Athenry	fi7. Mathilum	126. Hallyporeen	in Banilot, R.
9. Monivia	68. Arklow	127. Araalin	n Flesk
10. Tuam	1i9, Gnrsy	128. Kilworth	- Shannon,
11. Cartie Blackncy	70. Farns	129. Hinlyhooly	p Carnaisart, R.
12. Pnllinamloe	71. Clanegnll	130. Tonnraile	q Mnyne, l .
13. Pailinamare	79. Hurria	13t. Nallow	
14. Knockroughry	73. Old leighlin	132. Liecarrol	- Mos
15. Atilona	74. Kilkenny	133. Newmhrket	
16. Maystown	75. Urlingford	134. Cas Island	u Murree, R.

ceal the mica slato in the eastern part of Derry, but the mica slate again emerges from beneatha thia covering, after an interval of about 30 miles, on the north-east coast of Antrim, and rises into hills, which break down abruptly towards tho coast between Tor l'oint and Cushenden Bay. The mica slate rocks on this part of the Irish coust may be considered a continuation of thoso that occur on the opposite coast of Scotland at the Mull of Cuntyre, or, on a more general view, as a continuation of tho great Grampian rango, which may, it this way, be said to extend from the north-east coast of Scotland to the western shores of Ireland, on the coasts of Donegul. In the eastern part of l'yronc, which intervenes between the transition mountains and the mica slate mountains, a coal formation occurs associated with that kind of limestene which is usually found below coal in Great Britain. The position of this coalfield offers another analogy with Scotland, where the space between the southern and northern mountains is principally occupied by rocks of the coal formation.

3d aystem of mountains. The Trap group. -This group may be described as separated into two chains, bounding on the east and west the trough or valley through which the river Bann flows from Iough Neagh to the ocean. The eastern chain lies in the county of Antrim, being comprehended between the valley of the Bann and the North channel. It presents an sbrupt declivity towards the sea, falling with a gentle slopo towards the west, in which direction the beds composing its mass incline. Knock-lead, in the northern extremity of the chain, is the highest summit: it rises 1820 feet above the level of the sea; but the basis of this hill is occupied to the height of 500 feet by primitive nica slate rock, leaving only 1820 feet for the thickness of the secondary strata peculiar to this system. Diris Hill, near the southern extremity of the chain, is wholly compoeed of secondary strata, and attains an elevation of 1475 feet. The western part of the chain included between the Roe and the Bainn forms the exact counterpart of the former; but the strata here dip nearly in a contrary direction, viz. towards the north-east; the fall of the hills being gradually in this direction, while they front the west and south with abrupt and precipitous cliffs. Cragnashoack, at tho southern extremity, rises 1864 feet above the sea, and is the highest summit of the group. Tho geological nature of this third system is very different from that of the two former; all the principal formations belonging to the secondary class of rocks. These rocks are partly Plutouian and partly Neptunian. The Neptunian rocks are gencrally covered with an enormoue mass of secondary trap, which appears to attain its greatest thickness on the north; the trap cap of Beny-Avenagh, the most northern summit of the western chain, measuring more than 900 feet: the average depth of this superimposed mass may therefore be estimated at 545 feet, and its superficial extent at 800 square miles. The trap rocks are greenstonc, basalt, amygdaloid, wacke, and red bole; occasionally associated with them, forming isolated tracts, as in the Sandybrea district, there are porphyries of different kinds, as pitchstone and pearl-stone porphyries. The amygdaloid and also some of the other rocks of this series contain cale spar and white calceduny, semiopal, fellspar, and steatite, or serpentine. The basalt contains olivine. Iron pyrites is a mineral frequently disseminated in the greenstone. Wood coal occurs in seams varying from two inches to four or five feet in thickness, alternating with trap rocks, near Ballentoy; also in the cliffis of Fortnoffer on the east of the Giant's Causeway, at Killymoris near the centre of the trap area, and at Portmaoc, and other places on the castern shore of Lough Neagh.

Veins of trap. Trap veins exlibit many interesting phenomena, particularly in their passage through chalk, which they sometimes convert into a kind of marble. They traverse not only the Neptunian strata, as chalk, lias, and coal formation, but also trap itself. The most interesting and splendid displays of the trap rocks occur at the Giant's Causeway and Fairhead, so well known to travellers; and the cliffs of Kenbaan exhibit very interesting displays of the commingling of the trap and chalk.

Underneath and sometimes interiningled with this vast mass of trap are the following Neptunian formations:-Chalk, which is frequently very compact, and sometimes, as where in immediate contact with the Plutonian rocks, clianged into a granular limestone resembling marble: the average thickness does not amount to more than 200 feet. Underneath the cbalk occurs the deposit known under the name mulatto stone, the green sand of English geologists, lying upon the lias limestone. Underneath the lias occur beds of red and variegated marl, variegated sandstone with gypsum, and from these issue salt springs. These four formations, which, together with the trap, form the whole mass of the hills belonging to the thind system, cannot be estimated as posscssing a less average thickness than from 800 to 1000 feet. The whole system appears at the north-enstern and southwestern extremities to repose upon the coal formation and its accompanying rocks, and these on the transition or primitive rocks.* Coal occurs in 'Tyrone, at Coal Island and Dungannon, and in Antrim, near Ballycastle. Of these, the collieries at Ballycastle, which occupy an extent of not less than one English mile along the coast, are the most considerable. They have been long wrought, and were once in a more prosperous state than at present, as

[^16]Part III. rerges from of Antrim, - 1'oint and onsidered a of Cantyre, ch may, in n shores of intervones tion oceurs eat Britain. ce between formation. s separated ch the river unty of Anol. It prehe west, in n extremity ea; but the ock, leaving Diris Hill strata, and between the re dip nearly gradually in diffs. Cragtighest sumfrom that of ass of rocks. :ks are genen its greatest ummit of the imposed mass miles. The lly associated hyries of dif. aso some of fellepar, and al frequently wo inches to in the eliffis re of the trap
in their pashey traverse itself. Tho auseway and y interesting

the following

 hes, as where stone resemUnderneath sand of Engs of red and salt springs. of the hills gre thickness rn and southg rocks, and ind and Dunastle, which considerable. at present, asBoos I.
IRELAND.
they used formerly to send from 10,000 to 15,000 tons of coal to the market yeurly; whereas now the quantity exp rted does not amome to more than $\mathbf{1 5 0 0}$ or $\mathbf{2 0 0 0}$ tens. the coal of these districts is altoost entirely what Berger culls satate coal. In one of the works, however, in Coal Island, a bed of caunel conl, six feet thick, is saill to have been wrought.
The most remarkable minerals of the nlluvinl kind found in this part of Ireland are the fossil woods of 1ough Neagh, a sheet of water 132 feet above the level of tho sea, about nineteen miles six firlongs long from N. W. to S. E., and forty-five feet deep at its centre. The wood is silicified, and in some specinens one extremity wifl bo petrifled, while the other remains in a ligneous state. The oak, the holly, and the hazel appear to have been the trees thus affected. It occurs in alluvium in the neighbourhool of the lako.
(2.) Connanght Coal District. This district occupies a portion of the countics of Roscommon, Sligo, and Leitrim, in the province of Connaught, and purt of the county Cavun in the province of Ulater. Lough Allen, situated near the heal of the river Shannon, forms a basin in the centre of the district.
A range of primary mountains, varying in breadth from three miles to a quarter of a mile, extends from Foxford in the county of Mayo, to Colooney in the county of Sligo, and terminates two miles to tho north-enst of Manor-Hamilton, which may be viewed as the base on which the newer formation of this part of Ireland rests. This range of country is principally composed of mica slate, with some subordinate rocks. Benbo Mountain, near ManorHlamilton, 1403 feet above the sea, may be cited as exhibiting an interesting display of the various primitive rocks. Tho summit, and about 800 fect immediately below it, are composed of a fine granular granite: the granite is covered on both sides of tho mcuntain with gneiss, dipping in the direction of its deelivity at an angle of 50°. At the base of the mountain, mica slate, with garnets, hornblende rock and hornblende slato, are seen. Large blocks of beautiful syenite, also of serpentine with embedded garne 3 , were found in a stream at the base of the mountain near Lurganboy. The western si'? of Benbo is traversed by a vein of copper pyrites, which was formerly wrought, but apparently to no great extent. Veins of iron pyrites also occur there.
Resting upon these old rocks in many places, we observe the first or wic red sandstone formation. A trnct of this sandstone extends in Roscommon from west to east, lism Derrynaslieve to Cashearrigans, and in grentest breadth in a southerly and northerly direciun, from Leitrim to the neighbourhood of Drumshambo. Resting upon this sandstone, forming the base of the coal district, and encireling it, is the mountain or earbnniferous limestone. This limestone exhibits the usual character of the formations. The cal fermation rests upon the limestone, and is the uppermost or newest of the secondary deposits met with in this part of Ireland. The external aspect of this coal district is deseribed tis being hilly and dreary, and as extending in greatest length in a north and south direction, fromi Down Mountain to Kedduc, about sixteen miles, and in greatest breadth from the hills above Swadlinbar to Killargy, sixteen miles. The area of the whole coal conntry within the edge of the limestone is about 114,000 Irish acres; exclusive of Slieve Russel, which is actached from the great district by the limestone valley of Swadlinbar. The rocks which forn: the cornl scries in the Connaught coal district are similar to those met with in other coalfields. Besides coal, which is the black bituminous species, the formation conlains sandstone flag, slate clay, bituminous slate, clay ironstone, and fire clay. Some kinds of the coal afford in the 100 parts, 71.42 carbon, 23.37 bitumen, and 5.21 gray ashes. Iron-works. The beds of clay ironstone that occur in all parts of the Connaught coal district appear, at an early period, to have attracted the attention of miners; and works, on a small scale, called bloomeries, were carricd on in various parts of the adjoining country, as long as any wood remained to supply them with eharcoal, but they have since been given up.
(3.) East of Ireland. This district extends nearly 100 miles from north to south, and between sixty and ninety miles from east to west, comprehending about a third part of the island. It is bounded on the east by the Irish Chamel, on the south and west by the mountains which confine the Suire and the Shannon, and on the north by the clay slate hills of Louth and the mountain limestone hills of Meath, the clay slate hills ef Cavan and the mountain limestone of Longford, and by a line produced from thence to the bay of Galway. In the landsenpe of Ireland there is one very remarkable feature, which cannot fail to strike every observer: in traversing most parts of the island, we meet with ranges and groups of bold mountainous and lilly tracts, in some degree isolated, while the interval between them is generally occupied hy a surfice that appears nearly level, when viewed on the great scale, but which is found, on a nearer view, to present a gently waved outline: a considerable expansion of the plain oecupies the central counties of Ireland, and extends across the island from Dublin lay on the east, to Galway Bay on the west; and in general, where a similar plain surface occure, the immediately subjacent rock is mountuin limestone; to the abund ance of which mineral, nest to the mild temperature and gencral moisture of the elimate, the soil of Irelamd is probahly more indebted for its superior fertility than to any other cause

In this district mount ininous and hilly tracts arise above the surfice of the limestone plain on the east, the sonth, the west, the centre, and the north. The eastern chain extends from
the north side of Dublin Bay to the confluence of the Barrow with the Suire on the south. The highest point ia Lagnaquilla, which io 3070 feet above low-water-mark in Dublin llay. It consists alinost wholly of primitive and transition rocks, of which the following apecies occur : granite, mica slate, quartz rock, clay slate, greywacke, trap and porphyry. Metalliferous minerals are wanting on the weat side of the granite chain, but abound on the cast side. In the granito and nica slate districts there are veins of galena or lead glance; of these the most considerable aro in Glenmalur; in the clay slate tract eleven ditferent metallic substances have been met with, viz, gold, silver, copper, iron, lead, zinc, tin, tungsten, manganese, arsenic, and antimony.
Native gold occurs in the Ballinvalley streama at Croghan Kinaheln: and in 1801, regular mining was commenced, but did not lead to any important restles; and after a time the working was given up. The gold of Croghan Kinshols occurred in grains and masses from the smalleet size to lumps of coneiderable weight; one piece weighed twenty-two ounces. The gold was found in alluvium, accompanied with other metallic substances, as magnetic iroa ore, iron glance, red iron ore, brown iron ore, iron pyritos, tinstone, wolfram, gray manganese ore, and tragments of quartz and chlorite. In some specimens the gold was observed ramified in slender threads through the wolfram, and in others incorporated with iron uchre: some of the gold was crystallized in octahedrons, snd also in the elongated garnet dodecahedral form. Nutive gold was also found in Croghan Moira mine, about seven miles distant from the former mountain, but in small quantity.
The copper mines of Cronbane and Tigrony, in this district, are situated in clay slate and quartzose clay slate. The ores, which are copper pyrites and black copper ore, are associated with iron pyrites, and rarely with galena; and auriferous silver occera in beds in the slaty strata. In the twelve years ending in 1811, the produco of the mines was 10,342 tons 13 cwt . of ore; yielding 1040 tons 10 cwt . of copper. The mineral waters flowing from the mines are impregnated with blue vitriol or sulphate of copper. Theee waters are received into tanks, in which the muddy particles are allowed to subside. The clear waters are then passed into pits filled with plate and scrap iron, which occasions a precipitation of the copper.
The other tracts of this district are composed of secondary rocks, more or less deeply covered with diluvial and alluvial deposits. The secondary rocks are old red sandetone, mountain limestone, (or as it is called in Ireland, Irish limestone, and the coal formation. Of theso formations the mountain limestene is by far the most abundant; indeed, with the exception of the counties of Derry and Antrim in the north, and Wicklow in the east, there is no county in the island in which it doos not prevail more or less. The coal formation occurs in the Leinster coal district. The sandstone, slate, ironstone, clay, and coal, which constitute the series, alternate with each other, and the whole rests on the mountain limestone, and is frequently disposed in the basin shape. Tho coal of this district is glance coal, the blind coal of miners, the anthracite of French geologists, the Kilkenny conl of some authors (so named because the town of Kilkenny is situated in this coalfield).
The most interesting allavisl phenomena are those exhibited by the limestono gravel, the granite blocks, and the vast pent bogs. The great limestone field abounds in hillicks and ridges of limestone gravel. Sometimes these ridges appear like regular mounds, tho work of art, forming a continued line of several miles in extent. That which passes by Maryborough, in the Queen's County, is a remarkable instance of this kind; and similar mounds, hillocks, and ridges occur also in the counties of Meath, Westmeath, Kildare, Carlow, snd other portions of the limestone field, in which the limestone gravel and sand frequently exhibit a stratified arrangement, the alternste beds being very distinct from each other. The inequality of surface thus produced, seems to have ocessioned the formation of those extensive tracts of peat bog which cover so considerable a portion of the limestone plain of Ireland.* Tho natural course of springs and streams being obstructed, stagnant lakes and pools of water were formed; thus promoting the growth of those aquatic reeds, grasses, and rushes, which, by their constant increase and decay, appear to compose the mass of the bogs of Ireland. In this manner it is conceivable that shallow lakes may in process of time have become entirely filled with peat; and thet peat bors may thus have gradually acquired s convexity of surface, or nt least that greater declivity by which their borders are distinguished. The average depth of these bogs is commonly from sixteen to twenty-five feet, but the extreme depth observed is forty-seven feet. In the samo manner we may conceive tho gradual growth of peat bog to have successively extended from the higher regions to the flanks, and thence to the feet, of mountains. That tallen forests were not the primary nrigin of these peat bogs seens evident from the circumstance that two and even three successive growths of trees have been olserved at different depths in a section of the same bog. In these instances, the trees lie horizontally, frequently crossing each other, and either attached to their roots or broken over; and in the latter case the stumps usually stand erect where they grew. The prostration of trcee, however, may to a certain extent have acted
as an auxilinry in prometing the growth of peat bogs; and this prostration appeara in general to have taken place either from natural decay, or from trees pussessing little hold of a wet epongy soil having been ovorturned by storms. This may partly account for trees of all ages being found in tho bogs of Ireland, whether theae bogs be situmted in plains, or form the im. mediate cover of high mountain tracta. The universal destruction of the forests of Ireland is principally to be attributed to the general introduction of iron furnaces, as the most profitable mode of consuming the timber, then a material esteemed of little value; and hence the almost total neglect of copsing those tracts in which the woods had been felled. The marl beds, so frequantly mat with in these peat boge, are curious in a zoological view, from their occasionally centaining remains of that splendid animal the fossil elk. But the remaine of the extinet apecies occur also in the gravel; and the late Mr. Edgeworth observed the remains of the red deer in the anme marl as that which contained the extinct apecies.
(4.) South of Ireland. Under this division we comprise the counties of Cork, Kerry, Clare, Watertord, Tipperary, and part of Galway.
This mountainous, hilly, and diversified region is chiefly composed of chaina having generally a direction from east to weat, and attaining their greatest elevation in the mountaina of Kerry, whore Gurrane Tual, one of Macgillicuddy'a Reeks, near Killarney (the ligheat land in Ireland), is 3410 feet abovo the soa. The rocks in this elevated county are chiefly of the transition class: they decline gradually towards the north, and finally pass under the old red sandstone and mountain limeatone of the midland countice. The following may be considered a general estimate of the geognostical relationa of the south of irelend:-

Transition rocks. In Kerry, the transition strata range from east to weat, and dip to the north and south, with vertical beda in the axes of the rangea; the strata, as they diminish in inclination on each side, form a succession of troughs. The rocks are chiefly Neptunian, the Plutonian being comparativoly rare. The Neptunian are either simple or compound; the simple are clay slate, quartz rock, hornstone, Lydian stone, and limestone; the compound are, greywaeke, greywacke slate, sanilsione. The Plutonian rocks are greenstone and porphyry. Organic remaius occur in the limestone, alate, nod greywacke, but mort frequently sind abundantly in the limestone than in the other rocks. In Kenmare these fossils consist of a few bivalves, and some crinoidal renains; and these also are most numerous in the Mucruss and Killarney limestones. At the foot of the Slievenneesh range this limestone includes asaphus caudatus, calamine macrophthalma, with orthoceratites, ellipsolites ovatus, ammonites, coomphalites, turbinites, neritites, melanites, and several species of terebratula, spirifer, and producta. Near Smerwick harbour similar organic remains are abondant in slate and greywacke, together with hysterolites, and many genera of polyparia.

Transition coal. All the coal of the province of Munster, except that of the county of Clare, is referable to the transition class. At Knockasartnet, near Killarney, and on the north of Tralce, there are three beds of glance conl, alternating with atrata of grey wacke and alate. In the county of Cork this glanee coal is more abundant, particulurly near Kanturk, extending from the north of the Blackwater to the Allord. The ravines of the latter river, and varieus other defiles, expose clay slate, greywacke, tale, and sandstone, in nearly vertical strata ranging from west to cast. This transition tract extends to the river Shannen on the north-west. As tho strata range from west to east, in a geries of parallel narrow troughs, they exhibit grest variety of inclination, dipping rapidly either to the north or south, and becoming horizontal between the rilges. I'he glance coal is raised in sufficient quantitiea for the purposa of burning the limestone of the adjacent districts.

The coal and the strata with which it is accompanied abound with impressions of equisete and calamites, and ufford some traces of fucoides. Beds of glance coal also occur in the county of Limerick, on the left bank of the Shannon, north of Abbeyfeale, and at Longhill; and on the right bsink of the river at Labbasheada. The transition rocks of Kerry and Limerick extend into Cork and Waterford.

Mines. Copper mines occur in limestone in Ross Island in the lake of Killarney. In the county of Cork, therc are copper mines at Allihice, Audley, and Ballydehol; and others, prolucing lead, at Doneen and Rinabelly. The mine at Allihies is one of the richest mines in Ireland; it was discovered in 1812, and yields more than 2000 tons of copper ore annually. The ore occurs in a large quartz vein, which generally intersects the slaty rocks of the country from north to south, but in some places runs parallel to the strata. It is remarked that all this portion of the county of Cork indicates a very general diffusion of cupreous particles, so much so that in the year 1812, there existed a cupriterous pent-bog on the enst side of Glandore larbour, torty or fitty tons of the slied peat producing when burnt one ton of ashes, containing from ten to filteen per cent. of copper. The lead-mines of Doncen and Rinabelly are in slute.

Coal formation of Clare. The transition elay slate of this county is bordered by a zone of old red sundstone, to which succeeds, in ascending order and conformuble position, the mountain limestone and coal formation, both of which occupy flat and undulating hills, and
the atrata are nearly horizontal. The best sections are reen in the cliffis on the went coast, where bituminous shale, slate clay, mandstone, and sandintone flag, rowt upon limestone. Coal, however, is of rare occurrence, ond when foum, is of indillbrent quality.

An in every other part of Ireland, the distriet abounds with nlluvinl deposits. In regard to the distribution of the elder of these, or the dilavium in the south of Ireland, it is remarked, -1. That bouldera, gravel, and sand, derived fron the transition rocks, are distributed along the bordore and siden of the mountalns in Kerry. 2. In a snall district of Limerick and Tipperary, situated between tho Gaulteen and Slieverola-muck, the rolled nasses consist not only of portions of contiguous rocks, but contain nlso porphyry, which tis not to be found in silu near the vicinity of ''allis hill.' 8. In the peninsula of Nenville, near Gnlway, the surface of the mountain limestone is strewed over with numerous loulders of red and gray granite, gyenite, greenstone, and saudstone, which must apparently have been conveyed from the opposite side of the bay of Galway.

Sect. III.-Historical Geography.

The earliest inhabitants of Ireland, from which the native raco now existing han sprung, appear, by the language atill spoken, to have been Celtic. The Ronians, in occupying Britain, conld not fail to acquire much information relative to lerne, Hibernia, or Ireland; and accorlingly wo find that the map of thint country by I'toleny is less defective than the one which hagives of Scotlind. About the fourth century, we find Ireland benring the name of scothand, from the leading peoplo on its eastern shore, who afterwards passing into Argyle, and making thomsolves masters of all Caledonia, conmunicated to it the name of Scotland, finally withdrawn from the country to which it originally belonged.

The Danes, during the height of their powor, from the ninth to the twelnh centuries, possessed almost the wholo castern coast of Ireland, making Dublin their capital. Before this time Irelnad had been converted to Christinnity, and a number of celebrated monnsteries had been founded, the tenants of which were distinguished, even over Europe, for their piety and learning.

The English away commenced in 1170. Richard Stronghow, earl of Pembroke, na n private individnal, formed the first settlement; but IIenry II. soon assumed the title of " lord of Ireland." The range of dominion was long restricted to a portion of the kingdom enclosed within what is called the English pale, without which the Irish remnined still under the rule of their native chieftains. Ifenry VIll. assumed the title of "king of Ireland," but without any material extension of his authority over that kingdom.

The Irish masencre was a dreadful outrage, to which attachenent to popery and zeal fol untional independence united in impelling n proud nad fierco people. Forty thousnnd English settlers are supposed to have perished, nad tho rest wero driven into Dublin. Cromwell, however, atterwards crossed the Channel, and made cruel reprisals; ho took the principal fortified towns, nad reduced Ireland under more fill subjection than ever. Yot the disposition of the people remainel the same; and when James II. was driven from tho English throne, he was recoived with enthusinsm in Ireland, and beeame for some time its master. The battle of the Boyne, followed next year by that of Aughrim, decided the fate of the empire, and more especially of Ireland, which then felt for the first time the miseries of a conquered country. Tho estates of mnny prineipal native proprictors were confisented; the Catholics were deprived of all political privileges; they were rendered ineapablo of holding any office or employment in the state; they were debarred even from holding land, from devising property, nid from exercising other important functions of eivil society. Under these severities they pertinacionsly retained their political attachments together with their religious creed; and a continual ferment prevailed, which broke out from time to time into partial rebellions.

The gradual emaneipation of Jreland commenced at the period of the American war. Till that ern England had denied to her the right of trading directly with any foreign nation; and had compelled her to export and inport every commodity tirough the cluinnel of Great Britain. The extremity, however, to which Britain was rednced ennbled the Irish to place themselves in a formidable attitude; and by forming nrmed nssociatinns, and ndapting other threatening measures, they inducell parliament to grant them free trade with all nations. From this time also the most obnoxions of the restrictions on the Catholies were urndunlly repenled or fell into disuse; and before the end of last century, they had obtained nlmost every political privilege, except that of sitting in parlimment, and of holding the very highest offices of state. The propriety of conceding these also became one of the leading questions which long divided the public mind.

A very formidable rebellion broke forth in spite of these concessious. The French revolution, which caused a general ferment in Europe, was intensely felt thronghout Ireland. A society was formed of "United Irishmen;" and secret meetings wre held, laving in view the entire sepratation from Fagland, and the formation of the kingrdom inte nn independent republic. The vigilunce of government, and the failure of the French ir their attempts to land a foree of any magnitude, prevented matters from soming to the las' consist not ae found in ay, the surand gray iveyed from

has sprung,

 oceupying or Ireland; ive than the benring the passing into he nalle ofh centurice, ital. Before I monasteries or their piety
ke, as a prie of " lord of lom enclosed ndor the rule ' but without
and zeal for rty thousnnd into Dublin. ; he took the n ever. Yet ven from the ome time its ided the fate the miseries confiscated; incapablo of holding land, ciety. Under er with their p to time into an war. Till I nation ; and nel of Great Irish to place lopting other inll nations. pre gradually ained almost very highest ing questions The French throughont * were held, kingrlom into the Frend in Ig to the las"

Buok I.
IRBLAND.
extremity till 17!s, when a violent inwirrection nrose in four of the comitiea nearcat Dhblin. Tho rebela, thomgh zealous and brave, boing without discipline, were routed in succeasive encountern with nueh luterlor bodiow of regularm and militia; and being unsupported by frond nid wero complotely pit down in a fow mouths. The exusperation, however, producel by the trugical ovents of this short periol continned lonig to rankle in the minds of the lridi, and to aggravate the evila under which they laboured. 'Iu soothe this irritation, another expedient was employed, which materinlly aflected the sitistion of Ireland.

The diflicull and reluctunt union of the two kingdoms wan effected in 1800 by Mr. Pitt. Ireland gained thus conwiderable commercial advantages; and, from the example of Ncotland, it was hoped that a grailual tranquillity would be the result. This expectation fas not yet been fulfilled. The peasantry of the eouth, inflamed by national jealonay, by religious animosity, and by the severe privationa uniler which they labour, have continued, if not in open rebellion, at least in a state of turbulence constantly tending towards it; and their dis. contenta have lieen increasel by the indiscreet zeal of the l'roteutant party.

The bill for Catholic emancipation, so unexpectedly introduced, in 1820 , by the Duke of Wellington, and curried aftor wuch a violent ferment of parties, has made a remarkable change in the political constitntion of Ireland. The political disabilitiee under which the Catholics liad hitherto laboured have been finally removed. They are made admissible to thu highest offices of state, with the excoption of that of lord chancelle: i an exclusion decided upon, unt so much on account of the dignity of that office, as the niensive church patronuge attached to it. Roman Catholics are also male admiseible to si in both houses of parliament, and to every other political privilege enjoyed by their follow i:ountrymen.

Sect. IV.-Political Geography.

The potitical evils under which Irelnnd Inbours will sumficiently appenr from the foregoisy survey of her history. From the earliest times ahe has been in the situation of a conquered country, without ever becoming reconciled to the yoke, or assimilated to the ruling nation. Within the last two centuries, lier devoted adherence to a religion which had been renounced by her rulers, has had a most fatal tendency, which we may however hope to see much mitigated by the healing mensures that have now been adopted. In consequence, alse, w. repeated acenes of rebellion and forfeiture, by much the greater part of the lands are is tha possession of English and Protestant proprietors, who, having no natural influence ove the occupiers of their estates, hold their place only by the hated tenure of dominion ard inw. Being connected with the country by no natural ties, and attracted by the superior brillianey of the English and French capitals, most of them quit Ireland, and become haitual absentces. When the Scottish IIighlanders arrayed theinselves against the government, they acted under the influenee of a few leading chiefs, whose interests and passions aflorded a lever by which the people could be moved. But the Irish people, deprived of any such guidance, chose their leaders from among themselves, or from those who courted their fuvour by fetering all their national propensities. Secret associations, party badges, mysterious names, have exerted an influence over their minds, the oxtent and nature of which it is impossible to calculate.

Ireland, like Scotland, has been united to England; yet it retnins somewhat more of the aspect of a separate kingdom. Λ lord lieutenant still displays a portion of the state and exercises some of the finctions of royalty. He has not only a houschold establishment, but n chancellor, a secretary, and other ministers of state. The courts of justiee, and the different orders of magistracy, are nenrly on the same footing as in England; yet they have not the reputation of exercising their functions with quite the same dignity and impartiality. The violence of party spirit acts upon judges, and still inore apon juries; wit in the country, the absence of great propriotors, and the want of any middling class, wors it difficult to find materials for n respectable and effective magistracy. Ireland sent to the Imperial parliament 100 members of tho House of Commons, of whom 36 were for citios and boroughs, and 64 for counties, which latter sent two members each. The large proportion of this latter class was expected to render the representation more resprciable; but, unfortunately, the low qualification required, amounting only to 40 s ., enabled the great proprietors to split votes among their numerous little tenantry to such an oxtent an almost to produce universal suffrage. The very system of letting farins on leases fiv lives, which confers the right of voting, extended that right to almost every tenant. This could scarcely be said to confer the real right of suffrage, as the dopendence of the tenants was almost always such as to enable the landlord to dictate their vote; thotigin late eloctions, the influence of the priests was in soveral counties suecessfitly exerted. To remedy these evils, the same act which removed tho disabilities of the Catholics, raised the qualification of froeholders in Ire!nad from 40 s . to 10 . a year, and thus reduced them to less than a third of their former number. Many also of the prineipal boroughs, as Belfast, Wexford, Cashel, Sligo, Dundalk, Enniskillen, were entirely close, the members being chosen by twelvo selt-olected burgesses; while, in others, the whole ground on which a borough stood belongod to the nearest great

Vol. I.
3 F
proprietor. The consequence was, that an oligarchy, formed by the possessors of those vast properties into which the greater part of Ireland is divided, held an almost unlimited sway over the country. Previous to the union, the influence of tho three houses of Beresford, Ponsonby, and Foster was such, that the aid of one, and, if possible, two of them, was necessary for carrying on the measures of government. That influence, however, has been on the decline, und there is no prospect of its renewal.

The Reform Bill gave to Ireland only five additional members, and it made no material change in the returning boroughs; but, by placing the election in the hands of all householders paying 10l. annually, it rendered those nominations spen which had formerly been made by the small number of individuals composing the corporation.

The naval and military force of the empire in general defends Ireland. There is a commander of the forces resident in Dublin; acting, however, under the orders, not of the lord lieutenant, but of the British commander-in-chief. The number of regular troops atationed at different points is alwaya considerable.
The revenue levied in Ireland has never borne the same proportion to her natural resources as that of England. The ratea in all the principal articles of consumption have been lower. The tax on hearths, however, was found very oppressive; as it required inquisitorial visits, and affected the lowest of the people. This and all the other assessed taxes were so irregularly levied, that, notwithstanding the discontent excited by them, they did little more than cover the expensos of collection. For this reason, by a motion of the chancellor of the oxchequer, they were entirely remitted. In 1800 the revenue was $2,684,000 l$. and the debt $25,662,0002$. At the union, the stipulation was made that Ireland should pay two-seventeenths of the whole expenditure of the empire; this arrangement has led to a continual increase both of debt and revenuc. In 1811 the former amounted to $77,382,0001$., and the latter to $3,906,9001$. In 1830 the revenue was $3,548,822$., and in 1835 it amounted to $4,400,9531$. The particulars for the latter year were:-

The public expenditure in 1830 was as follows:-

The national debt of Ireland in 1817, when it ceased to form a separate item in the public accounts in consequence of tho consolidation of the British and Irish exchequers, was 134,602,769l.
For local und patriotic objects in Ireland, very considerable sums are allowed out of the public revenue. Of these, for the year 1832, there appear the following:-

A	,	Femala Orphan Ilouse.	1,423
Protestailt Char	3,000	Roman Cathollc Colleg	8,028
Foundjing Ifospi	96,314	Mnya! Dublin Society	5,300
Four ather llospitals	10,045	Relfast Academical Inat	1.500
UInuse of Indusiry	21,199	Nonconforming and ollser Minlatern.....	24,224
Richmond Linnalic Asylum	1,388	Public Works	33,564
Hibernian Marine Sociely.	050	Dunmore Harbour	7,500

Sect. V.-Productive Industry.

Ireland, in this respect, has long presented a painful spectacle; a great proportion of her people being involved in extreme and squalid poverty. The Irish do not want enterprise, or even industry; but various causes have combined to degrade thein in the scale of improvement. Among these the conduct long held by Pritain must be considered ss prominent; thus, after other expedients had proved ineffectual, it was prohibited to export woollens to foreign countries. Similar measures were taken with regard to glass, hops, and nvery branch in respect to which any rivalry was appreliended. There was one article, however, the production of a large surplus of which could by no meana be avoided. This was black cattle and sheep; but the value of these was effectually cut down by the prohibition to import them into England, the only accessible market. Under these regulations, all the exertions of Ircland to better her condition were cramped, and while Britain was making the most rapid advances, Ireland continued in the same state of depression. However, in consequence of her spirited efforts at the end of the American war, and of the embarrassments of the British government, the most odious and pernicious of these restrictions were repealed. Further advantages were obtained at the time of the Union; and at present, every excrtion is making to place the two countrics in a state of perfect reciprocity. The consequence has been, that in the course of forty years, Ireland has made a rapid progress in industry and commerce; yet some of her greatest evils are so deeply seatel, that they have seatcaly yet hegun to give way to the influence of a more ouspicious system.

Agricu.ture has been long in a buckward and very depressed state. The farms were, for the most part, sinall, managed by the farmer himself and his family, destitute of capital, with wretched imploments, and with a pertinacious adherence to all the obsolete practices of a rude age. 'The best soils exhausted a great portion of their strength in throwing up weeds, which no effective measures were :aken to extirpate. The system also of infield and

Book 1.
outfield was strictly adhered to, the ground being heavily cropped ne long as it would yield any thing, and afterwards of necessity allowed two or three years to recruit. Although these defects still exist to a considerable extent, yet in all parts of the country, hut particularly in the east and north, improved practices and implements are beginning to be introduced.

The Irish tenures are long, some of them perpetual, in which ease they may be considered as property, the rent bcing a mere trifle; a lease of thirty-one yoars and three lives is very common. These long leases are attended with scar ely any of the benefits which might bo naturally expected. As the farmer commences ususlly without any capital, trusting for the payment of the first year's rent to the produce of his farm, he almost always fills more or less into arrear, and thus lies at the mercy of his landlord. This would be less pernicious, were it the landlord himself with whom he had to deal; but the landlords of Ireland, holding usually properties of immense extent, and being mostly resident out of the country, cannot or will not undertake the task of dealing with chis impoverished multitude of small tensnts. They devolve it upon the intermediate agents and middlemen. The latter, a class peculiar to Ireland, take a large extent ef ground, which they let out in small portions to the real cultivator. They grant leases, indeed; but as the tenant, from the circumstances above mentioned, soon comes under their power, they and the agents treat him with the greatest harshness, exact personal servicos, presents, bribes; and draw from the land as much as they possibly can, without the least regard to its permanent welfarc. This system, while it crushes the tenant, is not less injurious to the landlord, into whose coffers there often passes less than one-balf of the sum paid by the tenant. The only use to which the latter turns his long lease is to divide and subdivide the lands among his children, till the share of eseli affords only the most miserable aliment, and an overgrown population is fixed upon the farm. An attempt to let land on a different footing can only be effected by the ejection of more than half its existing occupants, who in that case are apt to fly to violent and revengeful courses, so that even a partinl endeavour to introduce such improvements has been a main cause of the existing disturbed state. Another injurious mode is that of partnership leases, in which a number of persons take a farm jointly, and make it a sort of common property. Each is allowed to put upen it a certain number of collops; the collop consisting of one horse, two cows, or twelve goats. A degrading stipulation is often introduced into leases, by which the occupant is bound to work for his landlord either without wages, or at a rate lower than ordinary.

Tithe is one of the evils of which the Irish cultivator most grievously complains. Although it must in all cases fall ultimately on the landlord, yet to take from the cabin of the peasant the pig which he has reared, or the handful of potatoes which he has raised for the support of his family, is an act peculiarly diseouraging and irritating. The exemption of grass lands tends also to discourage tillage. Meesures taken by parliament to promote the commutation of tithes, have been attended with considerable success; and by a late act arrangements are made by which the church rates, instead of being taken out of the farmer's produce, are paid by the landlord out of his rent.

The extent of country, and the objects of culture in Ireland, vary considerably from those of the sister kingdom. Its superficial extent is computed at $12,000,000$ Irish, or 19,278,760 English acres. Of this, notwithstanding the considerable amount to be deducted for mountain, lakes, and bogs, Mr. Young calculates that there is a greater proportion of productive land than in England. The soil of Ireland is shallow, consisting most generally of a thin sprinkling of earth over a rocky ground; but the copious moisture wafted from the sea, by which it is everywhere surrounded, produces a quick and rapid vegetation, and in partieular a brilliancy of verdure, not equalled perhaps in any other region of Europe. Such a country is of course highly favourable to pastrrage; and as this pursuit is suited to the imperfect stages of culture, the rearing of live stock has been long the main staple of Irish husbandry. Its luxuriant plains are depastured by vast herds of black cattle; and from this sourco is derived the very large quantity of salted provisions shipped from the southern ports. The number of oxen and cows annually killed for this purposo was reckoned at 18,000. This trade has considerably decreased since the peace; but the export of live eattle is extensively carried on. Great facilities have been lately afforded for it by the steam packets. The dairy is also a great branch of industry in Ireland. None of its cheeses, indleed, have acquired a reputation; but butter of excellent quality is made and largely exported. Another species of live siock is an essential article to the economy of an Irish cultivator. The pig ususlly shares his cabin, and is fed, like himself, on potatoes. It is too great a luxury to be killed for his own consumption; but is sold and driven to the ports to be salted for exportation. Sheep ure bred extensively on the mountain tracts, which are unfit for roaring any other stock. In many places they are bred for the wool and milk. In this last respect, however, goats are more productive; and they are reared in inmense quan tities in the mountain districts in the north. The Irish horses are small, hardy, and capable of doing nuch work upon littlo food. Poultry are fod in great numbers in and around all the cabins, the interior of which they are admitted to share; a practice extremely favourable to
their incrense. Great quantities of geese are kept for the sake of the feathers, which are cruelly plucked from the animsls alive. The produce of grain is also large, notwithstanding the imperfect processes employed in cultivating it. Wheat and barley were little raised till of late, when both the culture and export of the former have been greatly extended. Still the main ebjects are oats and potatoes; the former as the subject of a large expor., the latter as the staple food of a considerable body of the people. The Irish boast of the potatoe, as if it were nowhere else produced in equal perfection. Compared with grain of any kind, it certainly sffords the means of supporting a greater population upon a given extent of ground. The scope, however, which it affords for the multiplication of the people in miserablo circumstances, is generally considered by the political cconomists as one of the causes of the present distress in Ireland. Flax is also a valuable product of Irish husbandry, affording the material of the linen manufacture. According to a return made to the trustees in 1809, the extent sown was 76,749 acres; in addition to which, the varioua little scattered patches raise the number probably to about 100,000 acres, supposed to produce at an average about 30 stones per acre; which, at 10 s . 6 d . per stone, weuld make the entire value about $1,500,000 l$.
There ia a want of trees in Irelsnd. The immense forests which some centuries agc cevered a great proportion of ita surface, have fallen and been converted in a great measure into moss or bog. The bogs of Ireland present an extensive obstacle to cultivation. They are estimated by the parliamentary commissioners at $2,330,000$ English acres. From them, indeed, fuel is supplied to many districts, yet the draining of a large portion would be certainly desirable; and the commissioners seem to think that, from their generally elevated position, this might be done with great facility and advantage. The great quantity of water beneath these bogs causes often a aingular phenomenon, that of moving bogs. Bursting the surface, the bog inundstes the surrounding lands, spreading desolation nnd barrenness through its whole course, which in one instance extended no less than twenty miles.
In respect to manufactures, the atate of Ireland cannot be described as flourishing ; a misfortune for which she may accuse the oppressive policy of England. One species of fabric, however, she has been allowed and even encouraged to cultivate, and it has attained to a very considerable magnitude.
The linen manufacture was first introduced by the Earl of Strafford, who brought flaxseed from Holland, and workmen from France and the Netherlands. His attainder, and the subsequent troubles, suspended the undertaking ; but it was revived by the Duke of Ormond, whe eatablished near Dublin a colony from Brussels, Jersey, and Rochelle, and gave lands on advantageous terms to those willing to embark in the busincss. After the Revolution, the English parliament created a board for :ne promotion of the linen manufacture, and granted bounties both on the raising of flax and the export of linen. These excrtions met with great auccess; and the manufacture has become general throughout Ireland, and particularly in Ulster. The following, according to a late parliamentary report, was the reputed value of brown or unbleached linens sold in the markets of Ircland in the year 1824 :-

The mode of conducting this manufacture is, however, in several respects, very rude and inperfect. It ia generally practised by individuals holding little spots of ground, the culture of which they combine with that of weaving. The same person, or at least the same family, in many cases raiees the flax, dresses it, spins it into yarn, and wesves it into cloth. There is too much anxiety to obtain the greatest possible quantity of yarn out of a given quantity of flax, withont regard to the quality; and the sorting of the yarn, so that it may be of an uniform texture, suited to the kind of linen intended to be woven, is almost wholly neglected. Ir some instances, however, it is worked to a most extraordinary degree of fineness. Anne m'Quillin, in the county of Down, could spin 105 hanks to the pound, which would reach 214 English miles. Exertions have lately been made to introduce mill-spinning, which, it is supposed, would generally improve the quality of yarn, though it could not produce it of such extreme fineness as some of that spun by the hand. Twenty years ago the mill could not produce above fifteen cuts to a pound; now it can make nearly fifty.
The export of linen from Ireland, in the year 1824, amounted in all to $49,491,037$ yards, of which $46,466,950$ were to Great Britain ; and $3,(124,087$ to foreign parts. The real value of the whole was $2,412,8581$. Of that sent to Great Britain, $31,314,533$ yards were retained for home consumption ; the rect were re-exported to the same quarters as Scetch linen. This great manufacture is chiefly supported by its own growth of flax. Ireland, however, imports 25,000 tons of hemp from alroad, and 3300 from Britain; also abeut 7500 tons c^{-} linen yarn; of all which materials the value falle short of $\mathbf{4 5}, 0001$.

Book I.
IRFLANI.
Distillation is another branch of industry characteristic of Ireland, but by no means attended with the saine happy effects. It las hitherto been carried on chiefly in defianco of the revenue and government, and has given birth to a vast systen of contraband, equally destructive of meralis and of public order. All the mountains, bogs, and deep valleys of the north and west abound with illicit stills, in spots where the most diligent search can scareely discover them; and where detected, they can scarcely be seized without the aid of an armed force. When the troops are seen advancing, concerted signals are made, and the small light stills are soon conveyed to a distant quarter. The farmers and proprietors encourage illicit distillation as the most ready mode of affording a market for their gruin. The quality of the spirit was long much superior to that produced by the legal distillers, owing to restrictions imposed on the latter; so that, in selling, it was considerell the highest recommendation that it " never paid duty." The most rigorous laws were enacted in vain, for they only rendered the people concerned in this practice more desperate and determined. Of Iste, however, the duty, as in Scotland, hes been reduced and free exportation permitted.
The effect has been remarkable; the quantity of spirits paying duty, which from 1818 to 1822 varied from $3,000,000$ to $4,000,000$, rose in 1824 to $7,800,000$, and in 1832 to $8,657,000$; thus warranting a presumption, that the contraband fabrication of this article has been grestly diminished.

The killing and salting of beef and pork for sale forms a great branch of Irish cominerce. Tho beef is packed in three different forms, called planter's beef, India beef, and common beef; the first two, having the coarse picces taken out, and charged $4 s$. additional per cwt. While the export of salt beef has diminished, that of pork has of late been much extended.
The cotton manufacture, since 1822, has spread through Ireland in a very surprising manner, particularly in the counties of Antrim, Down, Louth, and part of Dublin. The coarser linen fabrics are disa j_{j} pearing before it, and proceeding to the westward and southward, retaining still an equal hold of the kingdom in general. More recently this fabric has rather declined, and linen has regained the ascendency.
The other manufactures are not of primary importance. A great quantity of wool is, indeed, worked up by the peasantry into frieze, linseys, and flannels, for their dorestic use; but the only fabrics on a great scale, which are those of broadcloth at Carrick-on-Slaannon, and of flannels at Kilkenny, are on the decline. Breweries have been established in the principal towns, and are rather in a flourishing state.

In the distribution of minerals, Ireland has by no means been neglected; but some unpropitious circumstances lave prevented any of them from being turned to great account. Of these impediments the most material is the want of a sufficient supply of good coal. The fuel of Ireland is in general either coal imported from England and Scotland, or the turf dug out of its immense bogs; but the latter has not yet been found spplicable to the fusion of metals. From these causes the veins of iron ore, which are very extensively diffiused through the island, have not yet been turned to any important use. The copper, also of fine quality, which is found in the countics of Wicklow and Cork, must be sent over to Swansea to be smelted. The lead, however of Wicklow is worked to a considersble extent with imported coal.

Fishery is a branch of industry for which the extended shores and deep bays of Ireland would be peculiarly adapted. Nor do the inlsnd waters, the rivers and lakes, less abound in the species of fish appropriate to them. The diligence of the Irish in taking fish for immediate consumption is considerable, being urged on by the frequent abstinence from other food which their Catholic profession enjoins. Their trout and salmon are distinguished both for size and taste : the salmon are canglit by weirs, stake-nets, and other contrivances, but with so little precaution that their number lias been sensibly diminished. The curing of fish has made very little progress, when compared with the opportunities which the coasts of Ireland afford ; and Ireland cannot come into competition with Scotland.

Commerce.-The manufactured prolucts of Ireland are quite inconsiderable; she has, however, great facilities for the production of raw materials; and it is in all respects more suitable for her, as well as for England, that she should direct her efforts to this department, and import manufictured articles from Britain, than that she should attempt to enter into an unequal cor.petition with the latter in manufacturing industry. In 1825 the restraints on the intercourse between Ireland and Great Britain were mostly abolished; and owing to thia circumstance, and to the estahlishment of a regular intercourse by steam packets between Liverpool, Glasgow, Bristol, and the principal towns on the east and south coasts of Ireland, the trade between the two countries has been vastly increased. Owing to the circumstance of this intercourse being now placed on the footing of a coasting trade, no account has been kept later than 1825, of the reciprocal imports and exports of each, except in the case of corn.

In 1829, the imports frum foreign parts were valued at $1,669,4061$.; in 1831 , they were $1,552,228 l$; ; in 1832, they were $1,348,828 l$. The exports in 1831 were 608,0381 . ; in 1832 they were $452,775 l$. Within the last few years there has been a most extraordinary in-

Vol. I.
crease in the quantity of grain and live stock imported from Ireland into Great Britain. The former, on an average of 1830 and 1831, amounted to 543,618 quarters of wheat, and $1,563,503$ quarters of oats and oatnieal. In 1832, there were imperted into Liverpool alone, 338,640 quarters of wheat, value 948,2171 .; 325,720 quarters of oats, $\mathbf{3 0 9 , 4 3 4 1 .}$; 14,486 quarters of barley, $24,6261 . ; 69,624$ cows, 765,864l.; 149,090 pigs, 484,542l.; 74,200 sheep, 120,955l.; 24,077 lambs, 24,077l.; 160,817 loads of meal, 203,780l.; 177,252 sucks of flour, $407,679 l$; 10,771 bales of bacen, 64,6261 . ; 292,830 firkins, 15,801 half firkins, and 10,348 coolies of butter, 819,141l. These, with some minor articles, mado up a value of $4,444,5001$. The imports into London, Bristol, and other ports, may be presumed to be as much more, and perlaps the whole may not fall short of $10,000,0001$. sterling.

The following table exhibits the relative forcign commerce of the principal ports of Ireland in the year 1824. We uld the ships and tonnage belonging to and the amount of customs on each, which a recent remort enables us to bring dewn to $1829:-$

Entered at	Tonnage Entered.		Belongling.		Paid.
	$\begin{aligned} & \hline \text { Brilish. } \\ & \hline \text { Tons. } \end{aligned}$	$\frac{\text { Forelgn. }}{\text { Tons. }}$			
			Ships.	Tonnage.	Customs.
Iterfast	${ }^{159.123}$	${ }_{\text {c }}^{11,992}$	${ }_{24}^{24}$	${ }^{23,000}$	$\xrightarrow{259,000}$
Cork...	${ }^{15,025}$	${ }_{40}^{13,970}$	30	17,000 2,300	
Duhin....................................	24,306	10,467	299	2,000	6000000
Galway...	5,223	3,489	39	1,2000	85,700
Londonderry....................................	3,203	5,479	32	4,300	74,000
Newry..	6,705	7,612	161	8,000	55.000
Sliga	1.085	${ }^{2,463}$	20	1,900	1,600
Wuterford..	7,600 $\mathbf{1 , 4 0 9}$	3,177 22	78 135	7,000 6,700	116,000 4,800
Wexford...........................			135	6,700	4,800

The shipping of Ireland is small, compared with that of the sister island. On the 31st December, 1830, she had 1424 vessels; the tonnage of which was 101,820 , navigated by 7794 men and boys. In 1832 there were built twenty-five ships, of 1909 tons. There were entered inwards, in 1831, 14,499 ships, of 1,420,382 tons; outwards, 9801 ships, $1,073,545$ tons. Of this were employed in trade with Great Britain, 13,584 ships, and $1,262,221$ tons, inwards; 9029 ships, 921,128 tons, outwards; in forcign trade, 915 ships, 158,161 tons, inwards; 772 ships, 152,417 tons outwards.

Canals have been undertaken in Ireland on an extensive scale, but with only a small portinn of the expected benefit. This seems partly owing to the excessive magnitude of the plans, and partly to the prevalence of jobbing. The two chief undertakings are the Grand and the Royal canals, both proceeding from Dublin into the interior. The former, commenced in 1756, has, by large advances from government, been completed, at an expense of !:pwards of $2,000,0001$. It is earried across Kildare and King's County to the Shannon, neur Clonfert. This distance is eighty-seven miles, which, with a branch to the Barrow at Athy, one westward to Ballinasloe, and several others, makes an entire length of 156 miles. The Royul Canal, of nearly the same dimensions, reaehes from Dublin through Meath and Longford, nearly eighty-three miles, to Tarmonbarry, on the Shannon. The expense was $1,420,0 \% 1$., while the tolls, in 1831, amounted only to $12,700 \mathrm{l}$.

The roads of Ireland have long been excellent. Any person may present a memorial to the grand jury of the county, showing the necessity of a new road, and if this presentment be approved, the work immediately proceeds. Government has established mail-coaches to all the principal towns, and, since the rebellion, has made fine military roads into the interior of Wicklow; but stage-coaches and other means of conveyance are indifferent.

Sect. VI.-Civil and Social State.

The population of Ireland, from its great amount and rapid increase is considered as one of the chief causes of the scvere povert which presses upon the body of the people. Till the census of 1821, the data upon whic': it was calculated were conjectural. Between 1712 and 1726, upon a calculation from the number of houses, at six to a house, it was represented as varying from $2,000,000$ to $2,300,000$. Calculations founded on the produce of the hearth dnty gave in $1754,2,372,000$; and in $1788,4,040,040$. In 1812 , it was cstimated at $5,937,000$. In 1821, a census gave $6,801,000$. That of 1831 amounted to $7,767,401$, of whom $3,794,880$ are male, and $3,972,521$ female.

The Irish character presents very marked features, many of which are amiable, and even adinirable. Hospitality is an universal trait, and is enlanced by the scantiness of the portion which is liberally shared with the stranger. The Irish are brave, lively, merry, and witty; and even the lowest ranks have a courtcous and polite address. They are celebrated for warmth of heart, and for strong attachments of kindred and friendship, which leads them, ont of their scanty means, to support their aged relations with the purest kindness. Benevolence is a distinguishing feature of the higher ranks. They are curious, intelligent, ans

Boos 1.
IRELAND.
eager far information. With so many good qualities, it were too much to expect that there should not be some faults. They are deflcient in cleanliness; have little taste for conveniences or luxuries; and are destitute of that sober and steady spirit of enterprise which distinguishes the English. The love of fighting seems to be a general infirmity. The fairs, which, in every town and village of Ireland, are regular and of long duration, afford the grand theatres, first of unbounded mirth, and ultimately of bloody conflict. The Irish de not fight single-handed, but in bands, and on a great scale. On receiving a supposed injury, they go round to their companions, friends, and townsmen, and collect a multitude, with which they make a joint attack on the objects of their wrath. The other blemishes of the Irish are rather frailties than sins. They are represented as vain, talkative, prompt to speak as well as nct without deliberation: this disposition, with their thoughtless gaiety, betrays them into that peculiar blunder called a bull, which their neighbours have so long held forth as a national characteristic.
The ecelesiastical state of Ireland has been one of the chief causes of ita unsettled condition. The native Irish did not share in any degree the reformation so unanimously adopted in England and Scotland. When, therefore, the English church was introduced as the established religion, it threw out, as dissenters, the bulk of the Irish population. Even of the protestant part, a large proportion introduced as colonists from Scotland, were attached to the presbyterian form.
[From a parliamentary paper, it appears that, in 1835, there were,-

Although there is here some slight inaccuracy, yet this statement serves to show very nearly the proportion of the different sects. The places of worship are stated in the same paper to be,-

In 41 benefices there was no member of the Established Church.-Am. Ed.]
The Roman Catholic clergy receive no stipend from government, but are entirely supported by their flocks. They are formed, however, into a regular hierarchy, at the head of which are four archbishops; Armagh (the primate), Tuam, Cashel, and Dublin. Under them are twenty-two bishops, with a vicar-general, dean, and archdeacon in each diocese. The number of Catholic priests has been stated at 1400, besides several hundred friars. Their income arises less from any fixed allowance, than from dues, offerings, and presents; and the bishops, to make up their incomes, receive from the parish priests a portion of what they have collected. Mr. Wakefield has attempted an estimate, according to which, Christmas and Easter offerings amount to 337,000l.; marriages produce, in licenses, fees, and collections, 78,500l. ; christenings, 12,500l.; burials, 12,5001 .; in all, $440,500 l$. According to Archbishop Curteis, the income of a bishop is about 500l. a year; that of a priest varies from 100l. to 400 l . Although a congé is asked from the pope, the real election to vacint places rests with the clergy themselves; but as their incomes depend entirely on the favour of their hearers, they are subject to a necessity of choosing popular prieste, which is not felt by the established Catholic churches. Hence the influence of the pricsts, always so remarkable under the Catholic sye: ;n, exists in Ireland to an extent perhaps uncqualled. On the other hand, many, especially among the bishope, are remarked for their exemplary life, and for the diligent discharge of their functions. They are even sometimes instrumental in preventing riot, in discovering theft, and procuring restitution. The recent admission of Roman Catholics to all political privileges, though it does not make any change in the condition of the clergy, has been hailed by the body in general with peculiar satisfaction. It is hoped that it will either make them more friendly to the established government, or diminish their influence in estranging from it the minds of the people.
The Prerbyterians, as already observed, are nearly confined to Ulster, where they are the most numerous sect. The synod of Ulster is formed into a sort of establishment, consisting of 201 congregatiens, besides which there are 110 congregations in communion with the Scottish seceders. The ministers receive a royal gift of 14,0001 . annually, which afforls from 50l. to 100l. to each. The Presbyterians form the most industrious, thriving, and intelligent portion of the people; yet a great proportion have imbibed republican ideas, and ther emigrate to America more readily than any other class.

The Fstablished Church of Ireland is in union with that of England, and every way similar. It consists of four archbishoprics and eighteen bislooprics ; but by an act recently passed, two erchbishoprics are to be converted into bishoprics; and ten bishoprics are to be abolished.* The entire revenuo of the Irish church has been ascertained to exceed 150,000 . for the bishoprics, and 715,2001 . for other bencfices. The lands helonging to the bishops aro of far greater value; but in consequence of being let on old leases renewed from time to time on payment of fines, and never coming to a termination, the rent derived from them was greatly under the real value. It is proposed now to effer these leasea to the present incumbent, in perpetuity, on payment of six years' purclase of their estimated value, which, it is calculated, will prorluce about $3,000,000 l$. \quad tax, moreover, varying, according to the amount of income, from five to fifteen per cent., is to be laid on all livings above 200l. ; and its produce to be applied to the augmentation of the poorer livings, and the building of glebe houses and of new churches. I Ience the parochial tax, called the vestry cess, or church rate, amounting to ebout 90,0001 . a.year, is no longer to be levied.

The literature of Ireland in modern times, cannot boast any very distinguished pre-eminence; yet she has maintained her station in the literary world. In wit and eloquence, indeed, she has excelled both the sister kingdome. In the former quality, Swift and Sheridan shine unrivalled; and in the latter, Burke, Grattan, and Curran have displayed daring and brilliant flights. In her graver pursuits, Ireland has not been so happy; though Üeher attained the first eminence in theological learning, and Berkeley was the author of a highly ingenious system of philosophy.

The Irish establishments for education are scarcely adequate to the magnitude of the country. There is only one university, that of Dublin, founded by Elizabeth on the model of those of England, hut not on so great a scale. Of it and of other Irish literary institutions, an account will be found under the head of Dublin. As the conatitution of this university is strictly Protestant, and does not allow the teaching of Catholic theology, the students of that faith must have been all educatel abroad, had not government endowed for their ese the College of Maynootl. It is supported by a revenue of about 9000 l . a year, and containa a president, vice-president, and eleven professors, all with moderate appointments. The students receive bourd and education; and the whole annual expense of each is not supposed to exceed 20%. The students of the north resort chiefly to Glasgow for theology, and to Edinburgh for medicine; though there inas been an attempt to obviate this necessity by the formation of un institution at Belfast.

The education of tho poor in Ireland is a subject which excites the deepest interest in all the friends of that country. It appears that by the 8th of Henry VIII., every clergyman, on his induction, becomes bound to keep or cause to be kept an English school. This ect, however, is either obsolete, or so far evaded that only 23,000 children are now taught in these purochial schools. The greatest effort at Irish education, however, is that made by the Charter Schools, instituted in 1733, which, by parliamentary grants and private benefactions, have enjoyed an income of 30,0001 . a year. But this sum, which might almost furnish sehools to the half of Ireland, is spent upon 2000 boye, who receive board as well as instruction. Although the act recites no other object than instruction in the English tongue, proselytism has become almost the sole aim. The Hibernian Society, the Baptist Society, and that for discountenancing vice, support schools to a very conaiderable extent. The Kildare Street Society, established in 1812, founded numerous schools, in which they endeavoured to induce the Catholics to attend by renouncing all attempts to gain proselytes; but from the entire Scriptures being read in these schools, and other alleged causes, the Catholics were supposed to view them with jealousy. The allowance made to this society was therefore withdrawn, and a new plan instituted, in which the moral and literary is separated from the religious education, and is communieated to the youth of both religions during four or five days in the week, while, in the remaining period, religious instruction is expected to be administered by the clergy of the respective churches. Extracts only from the Seripture, approved by the leading Catholic clergy, are read in the common

[^17]
schools. Jocul funds, to a certain extenh, are required to be contributed. Although this system has met with many opponents, yet, in the beginning of 1833 there had been established under it between 500 and 000 selools, calculated for the education of about 00,000 acholars. In 1824, the number of achools in Ireland was 11,823, and scholars $500,549$. Of these scholars 394,742 paid for their own instruction, and ameng this number were 307,000 Catholics, who thus showed no small ardour in obtaining the bencfits of knowledge.
The following table, frem parliamentary documents, ahowa the number of pupila receiving public instruction in the years specificd.

Total.
\qquad

The fine arts do not appear to have attained any great excellence in Ireland. Her best painters have sought for patronage in the British metropolis; and the attempts to eatablish an annual exhibition in Dublin have not succeeded. The Irish harp and native Iriah melodies enjoy considerable reputation. The ceclesiastical structures have net that splendour and richness which so atrongly mark many of those in England; but the modern edifices, especially in Dublin, display a taste as well as magnificence which render that capital almost pre-eminent.
In funcrals, marriages, and similar solemnitice, the Irish retain several old national customs. The practice of hired howling women at funerals, called ululates, is very prevalent; a considcrable sum is paid to those employed, theugh, in cases of necessity, they howl gratis. A still more unfortunate custom is that of the wakes, where thirty or forty neighbours assemble, are entertained with meat and drink, and indulge in every sort of fun. Marriages in many parts of the country are marked by some real, or at least apparent, vielence; the bridegroom collects a large party of friends, seizes and carries off the seemingly reluctant bride. Alluding to this custom, her geing to her husband's heuse, even in ordinary cases, is called the "hauling home." This ia net prompted by any peculiar shyness on the part of the fair sex; on the contrary, the mothers, with whem the affair chiefly rests, display even a feverish anxiety that their offspring should not remain long in a state of single blessedness. Thr fair sex are treated among the higher ranks with a gay and romantic gallantry; among the lower almost as slaves, being subjeeted to the most degrading labour.

Amusement forms a cepious element in the existence of an Irishman. Ample scope is afforded to the Cathelics by their numerous holidays, and the Protestants vie with them in this particular. The fairs afford a grand theatre for fun ef every description. The chief bodily excrciae is hurling, which consists in driving a ball to opposite goals; to this are added horso-racing, cock-fighting, cudgelling, leaping, and dancing; to say nothing of drinking and fighting. The conversation of the lrish is distinguished by loud mirth, seasoned with a good deal of humeur, by singing, and telling long stories. Thus employed, even the poor will often sit up to a late hear.
The houses of the Irish, if we except those of the rich, or in towns, which are formed after the English model, are mere hovels formed of earth, taken out of the ground on which they stand ; whence the floor is retuced at least a foot below the outer level, and becemes a receptacle for all the superflueus moisture. This is the more incommodions as it has no boards, and the bed ne frame; nor is the latter raised from the ground, being merely straw spread upon the floor. This humble mansion is shared by all the living creatures, which the family are able to muster; cows, pigs, geese, and fowls; which are rarely separated by any partition from the other tenants.
No compulsory prevision exists in Ircland for the support of the poor ; a circumstance to which we are inclined to ascribe much of their distressed state, as well as of the backward atate of the ccuntry in general. Not being obliged to contribute any thing to their support, the landlords nnd occupiers have, genorally speaking, manifested great indifference to the condition of the peasantry. Few among them have hesitated to allow their eatates to be zubdivided into minute portions to advance their political interests, or to obtain an increase of rent. But it is nbundautly certain that they would have paused before venturing on such a course of proceeding, had they been made responsible, in all time to come, for the paupers they were thus introducing upon their propertics.
The dress of the Irish peasantry consists chiefly of the native wool, werked rudely up into frieze or linscy; for they seldom can afford to wear the fine linen which they fabricate. But the most prominent feature of this attire among the lowest class, is its lamentable deficiency; in many instances it covers little more than half of the person, and presents an image of extreme poverty. When this deficiency does net exist, the Irishman loves to display the extent of his wardrobe; when going to a fair, he puts on all the coats he has, though the season be midsummer.

The food of the Irish peasant is ne less scanty than his dress and habitation. It is almost.
wholly comprised in the potato, without any other vegetable (for he is a stranger to the luxury of a grilen), and only in faveurable circumstances is it accompanied with milk. This ford, however, is sufficient to preserve him in full health and vigour. In the north, the use of oatmeal in the ferm of cakes and pottage has been derived from Scotland.

Sect. VII.-Local Geography.

Ireland is divided into four provinces, or rather regions: Leinster in the east, Munster in the south, Counaught in the west, and Ulster in the north. This is independent of the minuter English division into counties, a number of which are cemprised in each of the four provinces. These last, indeed, when Ireland was ruled by nativo governments, formed sepurate kingloms. They are still distinguished by marked boundaries, by a different aspect of nature, and by a considerable variation of manners and customs.
The following table exhibits the leading provincial statistics of Ireland. The population statements differ considerably from those hitherto published; but they have been furnished by Mr. Porter, of tho Board of Trade as the result of the latest and most nccurate digest of the returns for 1831.

Provincese and Counde	Sayare	Improved Acrach.	Vinim. Acres.	Estimated Annual value	Herrees ha 1621.	Popula. 1$10 m$ 1831 183.	Clitee and Towne, with ihar Population.			
Leinatar.		037810			35.740	390197		204155		
Louth.	173	1913	14.016	164.701	21,302	129,846	Drogheda	17,3*5	Dundalk..	9.258
Mealh.	512	561.587	5.100	510.414	27.942	174, $\%$ 2;	Trim........	2,470		
Wieklow	48.8	400,704	04,000		17,240	121,557	Wicklow	2,043	Arklow......	3,808
Wexfard	535	545,079	18.500	395,134	gil 154	142,713	Wexford....	8,328		
Longford...	209	192,500	55,247	151,595	18,6887	112,558		$\begin{aligned} & 3,783 \\ & 3,537 \end{aligned}$	ew Ros	,475
Weutmeath	301	313	55,088	251,063	23.015	136,872	Mullingar ...	4,100	Aldone	62
King'a Co.	,	394,5	133,349	317,019	22,504	144,225	Philipstown -	1,031	Birr	5,408
Queen'a C	307	335,833	60.972	277.767	23.105	145,851	Putlamare....	2877		
Kildars	a	32	66.447	255, 0×2	11,478	108,424	Alhy	3,603	Naan.	3,073
Kilkenny	469	417,117	M0,500	43, 3087	29,7x)	103,880	Kilkenly	23,741		
Cariow	214	196,833	21,030	114,495	1:1,024	81,92\%	Carlow	8,035		
	4,350	4.113,260	635,424	11,472,460	458,3,318	1,009,713				
Dow	544	502,67	109, 5 50:	469, 1×11	9, 4.4	352,012	Newry \qquad Dunnarhadeo	$\begin{gathered} 10,013 \\ 2,795 \end{gathered}$	Downpatrick	
Anlrim	605	, 1	25,97	1, 1	48,0	325,615	Delfast.......	53,009	Carrickfergus	8,706
						$\square 02012$	Antrin.......	2.485	dishurn ${ }^{\text {a }}$....	4,684
Douegal	1,004	5	$\begin{aligned} & 134,0,02 \\ & 6+4,3,1 \end{aligned}$	349,501	44,800	2901, 14.	Rmilyalanion	3,R,11	Liffr	970
Fernianagh	440	320.539	101,052	250,201		149.763	Enniskillen..	2.391		
Cavan.	45**	421.462	: 10.04 HL	:007, 7 - 1	34.148	297,932	Cavan.......	2.392		
Monagh	90	300, 9 \%ric	11.23:	214.581	32.178	105,5idy	Managhan...	3,738		
Armagh..	200	207,31\%	42,172	17,955	36.420	200, 134	Armagh	8,493		
Tyrona	724	550,820	171,314	522,065	47,164	304,468	Omagh	2,015	Dungammon.	3,243
	4,894	3,749,354	1,460, 0 (202	11,205,374	350,201	2,820,				
Clare	744	524.113	251,544	441,243	35,373	25e,322	Ennia			
Kerry	012	1,109	552,88	34,6 6	35,507	213,126	Tralee.	${ }_{4}^{7,5177}$	Killarney . . .	7,014
Cork	1,033	1,008,20,	700,760	1,203,900	114,45:	810,732	Cork	107,016	Handon.	10,179
							Kinsale......	7,0118	Yourhni.	8,068
Whterford	410	35	118,0:4	205,	2: 8 80	177,054	Waterfori	20,821	Nallow.	
Tijperary..	86	$81!$	$1 \times 2,14$	($-6,5,53$	55,2017	402,56:1	Clonmel	15,510	C	6,548
							Tipperary ...	0,348	Carr.on-Suir	7,460
Limerick...	604	$5 \times 8,842$	91,081	623,932	42,409	315,355	Roscren......	5.239 60,554		
	5,925	3,935,85	,205,308	3,801,670						
				3,						
Teitrim	400	216,040	129.16\%	210,187	21,712	141.594	Carrick-on-Sh.	1.673		
sliga..	304	257.217	HR, 11	227,44,	27,05!	171,715	slipa.......	0,243		
Mayo.	1,225	871888	425,124	550, 1118	51,051	31963,394	Cnatlebar...	5,404		
Galway...	1.510	(155, 715	470,057	868, 794	52,137	134,684	Gelwny......	3,120	-	4,571
noscommon	541	453,453	131,013	379,629	37,390	249,613	Roscommon .	3,015		
	4,108	2,405,008	1,330,022	2,831,070	197,408	1,343,914				
	* $14,0,013$	14,10:3,47:1	,34,	12,715,574	1,142,769	7,767,401				

Sunsect, 1.-Leinster.
Leinster is the richest and mest cultivated of the four great divisions, and, as containing the seat of qovernment, the most important theatre of political events. Though the surface be level to a great extent, it is net destitute of considerable ranges of mountains. These

[^18]include almost the whole county of Wicklow, whose hold and pieturesque summits are seen even from Dublin. In the interior, the long range of Slievc-Blooru stretches towards the horders of Munster. A considerable part also of tho midland countics is covered by the great bog, which crosses the whole centre of Ireland. After all deductions, however, there remains a large extent of level land, fit eithor for tillage or pasturage. This is the part of Ireland where wheat is grown to the greatest extent, onts being elsewhere almost the only grain; and its rich pastures supply tho capital with cattle and the products of the dairy.
Leinster comprises the counties of Dublin, Kildare, King's county, Queen's County, Wieklow, Carlow, Kilkenny, Wexfuri, Meath, Westmeath, Longlerd, and Louth.
The county of Dublin owes its distinetion almost exclusively to its containing the capitn of Ireland. The city of Dublin disputes with Edinburgh and Bath the reputation of being the most beautiful city in the empire. If the brick of which the houses are built impair the effect of the general range of its streets and squares, its public buildings, composed of stone, surpass in grandeur and taste those of any of its rivals. There is no period of Irish recoril in which Dublin was not an important place. It is mentioned by Ptolemy under the name of Eblana. The Dunes, in the ninth century, made it their capital, and enclosed it with a wall about a mile in length, tho course of which may still be traced. As soon as the English began to establish themselves in Ireland, its proximity induced them to make it their heal-quarters; it grew with the improvement of Ireland and the extension of the English sway, but all its splendour has arisen within the last sixty or seventy years. The numerous strects and squares formed during that period have been built on a regular plan, and contain several superb mansions, which once belonged to the principal nobles. The squares are particularly admired; that of St. Stephen's Green is nearly seven furrongs in circuit; Merrion Square, which contains the splendid mansion of Leinster House ; Rutland Square, in the interior of which sre the gardens of the Lying-in Hospital; and Mountjoy Square, are also spacious and fincly laid out. Of the streets, the finest is Sackville Street, 170 feet wide, and adorned with many splendid mansions. To the west is the old town, now besring marks of decay, and still farther west is the tract called "the Libery," as being out of the jurisdiction of the magistrutes. It is inhabited only by the lowest orders, and exhibits scencs of filth snd wretchednoss not to be paralleled in any eity of the sister island. A room fifteen feet square is frequently let to three or four families; and one house was ascertained to have lodged 108 persons. Dublin lias been "shorn of its beans" since the Union; when the nobles and gentry, no longer culled to attend parliament, transferred their own residence to the metropolis of the empire, and thoir Dublin mansions have been converted to humbler purposes. The Castle, the residence of the lord lieutenant, is extensive; but its arcliitectural beauty is slmost confined to a modern Gothic chapel. The cathedral of St. Patrick (fig. 212.), and Christ Church have a venerable aspect; but they can rank only sceondary to the fine

SI. Patrick's Cathadral. structures in the English cities. The splendid structure, formerly the parliament-house of Ireland, and now the national bank (fig. 213.),

Bank of Ireland, Dublin. was built between 1729 and 1739 ; but an eastern front was added in 1785, and a western front shortly stler. The portico is 147 feet in length, supported by lofty lonic columns; the whote covering an nere and a half of ground. The Royal Excliange (fig. 214.), forms a square of 100 tiet, and its principal front has a richly decorated portico of six Corinthian columns. The Four Law Courts, situated on the north bank of the river (fig. 215.), form

Breharge, Dubila.

Four Courta, Dablin.
also one of the nobleat atructures in Dublin: it consists of a aquare of 140 feet, presenting a front of sia Corinthian pillars, supporting a circular lantern and magnificent dome. The quay is ornamented by the Custom-house, ef which the front is entirely of l'ortland atone, embellished with a Doric colonnade, and extending 375 feet. The l'ost Office, in Nackville Streeh, is extensive and magnificent, with a front of 223 feet, adorned with an Ienic portico of Portland atone; the main structure is of granite. In the centre of Sackville Street, is the monument crected to Nelson; an olject by no means ornamental. The inna of court, the theatre, the half-finished Roman Catholic inetropolitan chapel, and several other churchea and clapels, with many of the hospitale, may be mentioned as adding to the architectural splendour of Dublin. All the usual associations for the relief of distress are bupported on a liberal scale, and great zeal is shown in favour of all institutious for the prometion of knowledge. Trinity College was founded in 1593; and its studenta amount to 1600 . There are 25 fellowstips, and the livinga in the gift of the university, which are censiderable in number and value, are offered to the fellows in the order of aeniority. The gradations of rank, amonget the fellows in Trinity College, are indicated by a different dress and table. The library contains 100,000 volumes ; but its other collectione are not equal to those of the Dublin Society. Usher, Swift, Berkeley, Chandler, Leland, Parnell, Burke, Grattan, Curran, with other distinguished characters, are mentioned as pupils of this meminary. The buildinge of the College are on a large scale, divided into three quadrangles, for the accommodation of the fellows and pupils. The front towards College Green extends 300 feet, and is adorned with columns of the Corinthian order. The library forms a fourth quadrangle, built of hewn utone, with a rich entablature; and the principal room, 210 feet long and 41 feet broad, is elegantly fitted up. At a shert distance from town is a botanic garden. The Royal Dublin Society, incorporated in 1749, for the promotion of husbandry and the useful arts, has a botanic garden; a museum of natural history; a achool for drawing, with modela; and teachers in all these departments. The Royal Irish Academy, incorporated in 1782, has published many volumes of Transactions. The Dublin Inatitution has been formed on the model of that of London, and a city Library established. Although a great literary spirit prevails in Dublin, there are few books printed there, and the art of printing is in a backward atate. The works of Irish authors issue from the London presses. Dublin has very little foreign trade; but she has a considerable trade with England, particularly with Liverpool. The bay is spacious, and has gool anchorage; but the entrance ia beset with formidable sand-banka, particularly those called the North and South Bulls, which cannot be passed by large vessels at low water; so that vessels embayed at that time of the tide, and attacked by atrong easterly gales, can scarcely escape being driven upon one of them. To svert these evils, a double wall has been constructod three miles in length, composed of enormous blocks of granite, dovetailed into each other, the interval fillod with gravel; and a light-house erected at the end. Another pier of great extent has been built at Dunleary, now Kingstown, on the southern aide of the bay, which is conuected by a railway with the capitul. To these advantages Dublin unites that of being placed at the termination of the Grand Canal on the south, and the Royal Canal on the north, which penetrate by different lines to the Shannon and the interior of Ireland. In 1829, Dublin paid the sum of 660,000 . of duty on imported goods, while that paid at all the other ports of Ireland amounted only to 910,000 l. The environs are celebrated for their beaity. The vast numbur of villas and villages which cover the adjacent districts, and are rendered conspicuous by the ground sloping down to the bey; the foreground of the Dublin mountains, and the picturcsque summits of those of Wicklow in the background, render the situation atriking and delightful. To the weat, Phernix Park, a royal demeene of several miles in circumference, affords an agreesble promenade, and has lately been adorncd with an obelisk, 210 feet high, in honour of the Duke of Wellington. The rest of the county contains only villages, and the interior possesses fow interesting objects. The shores of the bay, however, include many striking sites; and the view from the Hill of Killiney is almost matchless.

Wicklow is in general composed of bog, forest, and mountain, and contributes little to the wealth of Ircland. It is, however, celebrated for pictureaque beauty. Its coast, diversified by hills, broken into glens, and richly wooded, is almost covered with the seats of the gentry and opulent citizens of Dublin. These varicgated and embellished grounde, having on one side the expanse of the Irish Channel, and on the other the lofty mountains in the interior, produce a number of beautifill sites. The demesne of Powerscourt is pre-eminent, the waterfall (fig. 216.), descending 360 feet down a steep hill, amid vast hanging woods. The interior of the county presents features of a very different description; glens between lofty mountaing, naked and desolate. Among these is Glendalough (fig. 217.), which is aurrounded by a most majestic circuit of mountains, and contaius some remarkable eccleaiastical monuments attributed to St. Kevin, a great patron saint of Ireland in the seventh century. One of his disciples founded at Glendalough a little city, long celebrated as a seat of religion and learning. Only its aite can now be traced; but there are distinct remains of seven churchee, among which the cathedral and St. Kevin's kitchen are the moet entire. Loughs Dan and Brav
situated in tho bosom of the wildest mountains, and enclosend ly dark and lofty reeks, prenent nature under an aspect the most rudely sublime. Wicklow hus veins of cepper and lead: gold was collected in ene year to the value of 10,0001 ; hut the vein was soon exhausted.

Powerccourl Waterfal! The towns of Wieklow and Arklow, though well built, are inconsiderable; yet the latter, at the month of the Ovoca, has a little trade, and was once the resilence of the kings of Ireland. It was the scene of a memorable action in 1798, when the in-

Glendalough
surgents, above $\mathbf{3 0 , 0 0 0}$ atrong, were defeated by a small British detachment.
Wexford, to the south of Wicklow, is separated from it by a renge of mountains; but the interior contains a great des. of level land, in which agriculture is pursued with greater diligence, and the tenantry are more confortable, than in most other parts of Ireland. Barley is a prevailing crop. The woodlands also are extensive and valuable. Wexford ia a place of sone eonsequence, with a harbour much obstructed by sand; yet it carries on some traffic. Some woollens are made both at Wexforl and Enniscorthy. Now Ross, in the western part of the county, is a flourishing town, on the Barrow, which almits of large ships coming up to its quay.
Kilkenny, a fine and extensive county, separated from Wexford by the Borrow, is watered not only by that river, but by its tributaries the Nore and the Suire. These streams carry off the superfluous moistare, and prevent the formation of bog or maish to any extent. Kilkenny, being cliefly level, or intersected only by hills of moderate height, is composed almost entirely either of arable or fine pasture land. The latter is employed in extensive dairies, but the system of cultivation is still imperfect. Kilkenny, the capital, advantageously situated on the Nore, is partly built of the marble of the surrounding quarries. Its cathedral is one of the fineet in Ireland, and the castle, with its remaining gates and bastions, exhibits indications of that strength which enabled it to hold out against Cromwell longer than any other city in Ireland. At present Kilkenny flourishes by inland trade, and by a manufinctory of blankets and other woollens. The foreign trade of the county is carried on by Waterford.

Carlow is encompassed by mountains, which however enclose a champaign tract of great beauty and fertility, equally fit for tillage and pastore, and producing the best butter in Ireland. The town of Carlow is a considerable place, distinguished by an abbey and castle, both of great antiquity. The town has a manufactory of coarse woollens, and carries on a considerable trade down the Barrow. An extensive Catholic seminary has lately been founded here.

Queen's. County and King's County form a table-Jand of molerate elevation. Part of the great chain of bogs crosses these countics, and renders a large proportion of them unproductive, though it suppliee them with cheap and abundant fuel. The remaining surface is highly fertile. Queen's County is situated along the heads of the Barrow and the Nore; King's County reaches to the Shannon; and both communicate by canals with Dublin. Pertarlington, on the borlers of the two counties, is a well-built place, with good schools, and the residence of a considerable number of gentry. T'ullamore, on the great canal, and Birr or Pursonstown, are the most thriving towns in King's County.

Kildare, with the exception of about a sixth part of bog, forms a plain of the finest arable soil, well cultivated, and whence the capital is chiefly supplied with grain. The Grand and Royal Canals, whicl: both cross its northern border, afford the means of ready conveyance to Dublin. Kildure-town, presenting a lofty round tower and some other vestiges of past apportunce, is only supported by the races lield on the curragh of Kildare, an expanse of several thousum acres of the very finest turf. Naas and Athy are larger towns, and the castle of the former bears testimeny to the period when it was the residence of the kings
of Ieinater. In this county is Maynooth, a small towin containing the college establini, ed by govermuent for the ellucntion of the Roman Cathosies.

Meats ia one of the momt fivoured conntien of the kingilon in respert to noil. Ita rich partures support vant herds ol black catte, which anpply the markets of the capital, and are exported to Eingland. 'The producta of the dairy are ahmalant, though not of very superior quality. Trim, where the assizes are held, is a small town; Navan and Kells are larger.

Louth, though the amallent in area of nay Irish comuty, ts one of the frat in point of nuthral und acpuired advantages. An active apirit of improvement has brought almont every part of its excellent soil under cultivation. Ita linen manafacture produces chiefly dowlas und sheetings, with some cambric. Lanth presonts many sumples of the earthen mounls called rathn. Dundalk, the capital of the county, is ancient, populoum, and flourishing. It has been the theatre of important historical events; but its lofy towcra and castles are now demolished, and have given place to conifortable dwelling.. The town consiata chielly of one large and brond street, whence many lunes are suen diverging. It is the only place in Ireland where the cambric manufacture lias been introluced, and continuen to flourish. Drogheda, at the mouth of the Boyne, wat of atill greater importance as a military station, being considered one of the keyy of Ireland. In the great rebellion of 1041, it stool a long siege, but was afterwarda taken by Cromwell, who punisied ita resistance by a mowt barbarous masacre of the garrison. In 1000, two miles above Drogheda, was fought the battle of the Boyne, that memorable field which cstallishod the civil and religious libertien of the empire. The fortifications are of obsolete structure, and are commanded on several sides, The place has an excellent harbour, and extelsive commerce in grain brought down the river in considerable quantities for exportution; in return for which, couls and other commodities are imported.

Westmeath and Longford, renching westward as fir an the Shannon, consist chiefly of a very extonsive plain considerably encumbered with lakes, bogs, and morasses, and subject in part to the overflowing of the Shamon, but including tirtile tracts of great extent. Athlone, the largest inland town of Ireland, is situatod partly in Westmeath and partly in Roscemmon. It is memorable for its resistance to Gencral Ginkle in 1091, previous to the battle of Aughrim, and is still considered an important military station. It is divided by the Shannon into two parts united by a lrilge. With this exception, these provinces contain only sinall country towns and large villages. Mullingar, in Westmeath, lase a considerable trade. Longford is the capital of the connty of that name.

Subsset 2.-Munster.

Munster inclules the south and south-west of Ireland, nud, thoulh not the most extensive division of the kiugdom, is one of those which presents the boldest and most atriking features. Most of the great mountain chains of Ireland traverse Munster; among which are conspicnens the Galties and the mountains of Kerry, which encircle Killarney; so that, notwithstanding the almost boundless plains of Limerick and Tipperary, and the level character of a great part of Cork, it may be considered as a mountainous region. It has manufactures, though not on so great a scale as those of the north ; and its commerce is very considerable, chiefly in the export of salted provisions. The Catholic religion prevails, with little intermixture of that of the Egglish church. Munster is divided into larger and less numerous portions than Leinster; its counties are Tipperary, Waterford, Cork, Kerry, Limerick, and Clare.

Tipperary, extending over almost the whole frontier of Leinster, is crossed by a long chain of mountains called variously. Slieve-Bloom, the Devil's Bit, snd other uncouth names; and on the south it includes part of the Galties. On the north a small portion of the great central bog extends across the county; but one district, slong the upper course of the Suire, bears the appellation of the Golden Vale. The sheep and horned cattle are of excellent quality. There are manufactures, chiefly for domestic use; and some coal, similar to that of Kilkenny. Clonmel, the county town, is one of the most considerable in the interior of Ireland: it stood a long siege against Cromwell, who after its reduction demolished the strong wulls and castles by which it was defended. It is a well-built town, with four strects crossing ench other, and carries on a brisk inland trade. Cashel is a large and handsome city, the seat of an archbishop, to whose residence a considerable library is attuehed. In ancient times, it was the capital of the kings of Munster, of whose palace some remnants may still he traced. Noblo fragments remain of the ancient cathedral, majestically seated on the summit of a precipitous rock. The choir and nave, 210 feet long, are strewed with the remains of its rich ormaments. ITere was depnsited the Lis Fale, or fatal stone, on which the kings of Munster were crownod. 'The structure is now abandoned to decay, and a modern cathedral of fite Grecian architecture has been substituted. Cashel contains remains of other monastic edifices, of which IIore Abbey, on the same rock with the cathedral, is a magnificent specimen, still almost entire.

Waterford is a mountainous county, and only a small portion is under cultivation the

Boor 1.

IRELAND.

chief branch of rumal induntry is the dairy, and great quantities of butter are walted for exportation. Waterford, ita capital, one of the principal nea-ports of the empire, being placed at the comlluence of the Barrow and Nuire, the meeond and third rivers of Ireland, enjoye a mowt extensive intercourne with the inturior. 'Ther qunntity of beef, pork, butter, and grain

 monthern packet communication with Bingland in carried on from Waterfort to Milford Haven Within thesu fow yeare, neventy vemels have heen fitted out for tho Newforndland fidiery Waterford enjoys the benefit of a deep and wpaciona harbour, and a fine quay half a mile long. Its eccleaisatical monuments are of considerable magnitude, and it has an elegant modern enthelral, with other fine public'edifices. Twenty miles to the west, on a amall bay, ia Dungarvan, the largent lishing town in Ireland ; and its antiquity in attested by a cantle and neveral monautic romains. Lismore, on the Blackwater, is now deserted; but its cantle, erected ly King John, in 1185, atill presente marka of anclent grandeur, and has been lately repaired.

Cork is the largent county of Ireland. On the northern border la the lofty range of the Galties, which present many picturemgue fentures, and command extenaive and beautiful prompects; its western border partnkes of the mountainons character of the neighbouring districts of Kerry ; and the rocky shores and headlands wanhed by the waven of the Atlantic, are of an awtial and torrific charncter. Ahout a fith of the county consists of mountain and bog; the rent la only traversed by hilla of molerate elevation, enclosing fertile and often beantifth valleys, eapecially that along the river and bay. The atyle of culture is altogether Irish; in mall farms, by pror tenants, chiefly by the spade, and potatoea the provailing crop. The manufucturea consist of sailcloth, course linens and woollens. There are also some oxtensive distillerice.

Cork, the great mouthern emporium of Ireland, has n population of 107,000; being, in point of weslth and magnitude, the second city in the inlanil. Its monastic structures, once considerable, have almost entirely disappeared. Its grent prosperity is moklern, in consequence of the provision trade, of which it has become the chief mart. The river Lee, at its junction with the sca, torms the spacious enclosed bay, called the Cove of Cork, composing ona of the flnest harbours in the world. In conseruence of its convenient situation, the West India bound fleets usuully touch there, and tako in proviwions. The export of salted beef' and pork has nomowhat diminished sitee the peace; but thit of provisions in general, and particularly grain, has been greatly augmented; and Cork, on the whole, is in a very flourishing nend prosperous state. \boldsymbol{A} great part of the old town consists of miserable and crowded alleys; but a number of handsomo new streets lave been built, and soverul channels branching from the lee, which flowed through the city, and were detrimental to the health of the inhabitants, have been flled up. Cork haw a literary institution, with the usual appenduges of library, lectures, and botanic garden; and it supports the charitable establishments usual in great citios on a liberal scale.

Kinsale, on a fine bay at the mouth of the Bandon, was much more frequented than Cork by the early Euglish monurchs, who bestowed on the placo extensive privileges, and viewed it as the key of southern Ireland. It hns now, however, sunk under the superior inportance of its neighbour; and it is chicfly supported by a fishery. Youghal, at the mouth of the Blackwater, has a good harbour, though obstructed by a bar; nnil carries on some trade and menufiscture.
Kerry presents an assemblage of mountains wild, rocky, and dosolate. These are interapersed with valleys and narrow plains which are almost wholly employed in pasturage; and Kerry has a small breed of cows, which yield plenty of excellent milk. Its coast is broken into several very deep bays, particularly those of Dingle, Kenmarc, and Tralee. A considerable quantity of herring is caught in these bays. Tralee, the county town, exhihits the remsins

Laken of Killarney. of a strong castle, once the residence of the Earls of Desmond, when, under the title of Palntinc, they exereised the real sovereignty over this purt of Ireland ia sway which terminated with their attainder under the reign of Flizabeth.

Killarney and its lakes, as to scenery, have no rival in Ireland. There is only one body of water, to which, however, the term lakes is usually applied; so completely is it divided into three bays united only by narrow straits, and presenting each a different aspect. The lower Jake, immedintely adjoining Killarnev (fog. 218.), forms the main expanse of water, and presents all the features on the greatent
scalc. On the eastern shere rise the meuntains known by the name of Macgillicuddy's Reeks, the highest of which rises to 3400 feet, the most elevated point in Ireland. On this side also are the mountains of Tomies and Glena, with their immense forests. Near the western bank is the beautiful island of Innisfallen, At the most southern point of the lower lake a much smaller bay branches off from it, through channels formed by Dinis Island. This bay, called Turk Lake, is overhung on one side by the precipitous sides of the lofty mountain of that name, and bordered on the other by the long wooded and winding peninsula of Mucruss. The vencrible ruin of Mucruss Abbey (fig. 219.) adds greatly to the interest of this part of the scenery. From Dinis Island, a long winding channel of more than two miles leads to the Upper Lake. The scenery seen in this passage is of surpassing grandeur and beauty. The most atriking spot is at the Eagie's Crag (fig. 220.), a stupendous and rugged cliff, which bursts auddenly on the view, rising in a pyramidal form from the water. Throughout all the rocks of Killarney, but here most particularly, the effect of echoes is most powerful and striking. The Upper Lake, the least extensive but the most sublime, exhibits all the loftiest mountains under the most imposing point of view. Its shores are winding and varied with numerous islands, whose rocky sides contrast with the brilliant green of the arbutus. The ascent of the highest mountains, Mangerton to the north, and Gheran Tual, the highest of the reeks to the south-cast, discloses awfill ranges of rugged precipices and of dark and rocky ravines; and their summits command an astonishing riew of the mountain glens and rocky shores of Kerry, and the expanse of the Atlantic, and the distant plains of Cork and Limerick.

Limerick is one of the finest counties of Ireland. Its borders include aome branches from the high mountains of Kerry and Tlpperary; but the main body consists of a fertile plain. An alluvial tract, two or three miles broad, along the Shamon, is quite exuberant. That noble river, now expanded into an estuary or bay sixty miles in length, runs along the whole northern border of Limerick.
The city of Limerick, now ontstripped by Cork, is the third in Ireland Its situation, in the centre of the grand internal navigation of the kingdom, secures to it an extensive trade; and the largest vessels can ascend to the harbour. Limerick is one of the great marts for the export of grain and provisions; the value of those shipped from it in 1831, having been estimated at 854,6000 . It was anciently the strongest fortress in Ireland, and has always stood out to the last extremity for the Catholic cause. Ireton, Cromwell's lieutenant, reduced it only after a long siego, aided by a party within the place. In 1690-1, it stood two long sieges, and yielded only upon those advantagenus terms called the "capitulation of Limerick." Its capture was considered as closing the contest in enpport of the Stuarts. At this day, not more than a twelfth part of the population of Limerick is protestant. The spacious monasteries are almost entirely demolished; the streets are narrow, crowded, and gloomy; but since the fortifications were demolished, they have been carefully widened. In a quarter built by Lord Perry, and bearing his name, they are spocious and regular; and the houses, though only of brick, built in the most handsome modern style. The assembly-rooms, theatre, and other modern structures, are elegant and commodions.
Clare cotnty is a wild, hilly, romantic slistrict, abounding with finc creeks and harbours, but without commerce, and with mines of lead, iron and coal, which have not been turned to account. Mure than half the surface eonsiste of mountain, bog, and waste; its hills, however, support numerous flocks of sheep, the wool of which is of superior quality. The plains on the banks of the Shannon and the Fergus vie in fertility with any in tho kingdom. Ranis, the capital, is situated on the bunks of the last-mer ioned river, hy which it communicates

nches from

 tile plain ent. That the wholetuation, in sive trade; marts for aving been tas always tenaut, restood two culation of tuarts. At tant. The bwded, and idened. In r ; and the ably-rncms,

Boor 1.
IRELAND
with the Shannon. It is constderable, cheugh irregularly built; and its abbey, in the purest style of Gothic architecture, is considered the finest in Ireland.

Subsect. 3.-Connaught.

Connauglit forms a great peninsula, the most westerly part of Ireland, extending from the Shannon to the Atlantic. This division is of all others the most decidedly Irish, having centinued unsubdued leng ater the English kings claimed the proud title of lords of the island. It still centains fewer English inhabitants; the religion is nore universally Catholic, industry and manufactures have made less progress, and all the imperfect agricultural implements and processes are in morc general use. Disturbances, hewever, have never taken place here to so great an extent as in Munster and Leinster. Its shores are penetrated by deep and extensive bays, forming some of the finest harbours in the world. The countiea in Connaught are Galway, Mayo, Sligo, Roscommon, and Leitrim.

Galway presents to the sea ranges of steep eliffs, which, with the waves of the Atlantic dashing against them, exhibit a grand spectacle. The interior contains two extensive lakes, and is diversified with hills, though there are few which are not fit for pasturage. The cattle are of good quality, and the flocks of sheep are more extensive than in ether parts of Ireland. The fisheries of herring and salmon are considerable. Galway has always been a considerable town, and is still supported by some inland and foreign commerce, by a considerable fishery, by the resort of the gentry to it for sea-bathing, and as the only scene of gay society to be found in Connaught. It was once very strongly fortified both by nature and art; and to obtain the protection of the walls, the streets were made narrow, and the houses high massive, and gloomy; but they have of late been considerably opened, and suburbs built, of a more gay and elegant description.

Tuam is an ancient, handsome town, of considerable extent, the seat of an archbishopric. Ballinasloe, on the eastern border, holds the greatest cattle fair in Ireland, where the exen and sheep of the pastoral ceunties of Galway and Mayo are mustered for the capital. At the mouth of the bay of Galway are the bold and rocky islands of Arran.

Mayo is chiefly elevated and rugged; some of the mountains rising to upwards of 2600 feet; but many of their sides are verdant, and the valleys rich and well watered; so that Maye is a fine pastoral county. The estates are large, but the farms small, and much subdivided. Maye contains no town of suffieient importance to return a member to parliament. Castlebar, the county town, is well built, with a linen hall; and the linen manufacture flourishes. Killala, a straggling village, on a bay of the same name, is chiefly noted for the landing effected in 1798, by a body of French troops under General Humbert, who penetrated to Castlebar, but were finally obliged to surrender to Marquess Cornwallis.

Slige contains a considerable quantity of bog; but the remainder consists of a sandy gravelly soil, well adapted to the production of barley and oats; so that pasturage is not so exclusively the employment here as in the two last-mentioned counties. Salmon is caught in large quantities. The linen manufaeture has made considerable progress, and is extending. Sligo, the capital, at the mouth of the river and the head of the bay of the same name, was in carly times a considerable place: it has suffered severely in civil contention; yet, by the advantage of a good situation and harbour, it has attained considerable importance and trade. In the vicinity is a remarkable circle of stones, called the Giant's Gmve, somewhat resembling Stonehenge.

Roscommon is mostly level, finely watered, and celebrated for rich pastures; but the inerease of' population and manufactures has caused a great part of them to be lately brought into tillage; it contains some pretty little lakes, among which Lough Key is particularly admired. Roscommon is ancient, and marked by some ecclesiastical antiquities, but it is not now so important as Boyle, pleasantly situated on a river of the same name, over which there are two fine bridges; in its neighbourhood are the ruins of a stately abbey, founded in 1512, the arches of which, forty-six feet in height, are deemed models of Gothic architectural grandeur. Elphin, the seat of a very ancient episcopal sec, is only a village.

Leitrim is filled with high meuntains, presenting nature under bold features, often heightened by the ruined castles which crown their summits. There are veins of iron, lead, eapper, and coal, the last of which has been wrought. There are good pastures in the valleys, and on the sides of the hills; and pretly large quantities of oats are raised. The linen manufacture is extending, and there are some censiderable potteries. Carrick on Shannen, the county town, and Leitrim, which gives name to it, are only villages.

Subsfct, 4.-Ulster.

This part of Ireland presents in many respects a superior character to the other three, its population being more industrious, better instructed, and in mere comfortable circumstances. The Presbyterian form of worship, introluced by the Scottish settlers under the reign of James I., is the prevailing one. The linen manufacture, the staple of the country, las here its clicf seat, and is carried on almest in every village. The harheurs of Belfist, Londenderry, and Laugh Swilly, are sutlicient for the wants of commerce. The coist of Antrin,

Vol. I.
39
3 H
in the boldness and peculiar character of its rock scenery, is without a mateh in any other part of the world. The counties of this province are, Fermanagh, Denegal, Londonderry, Antrim, Down, Armagh, Tyrone, Monaghan, Cavan.

Fermanagh is a somewhat rough county, comprising a large proportion of mountain and bog, but with fertile valleys, in which, besides the usual products of oats and potatoes, flax is cultivated to the extent of about 5000 aeres. The waters of all the high grounds how down into Lough Erne, a noble lake, upwards of twenty miles in length. It is studded with numerous islands, coverel with fine woods; long wooded promontorics are seen stretehing far into the waters; and, though the immediate borders of the lake are not mountainous, .ofty distant eminences form the general background to its prospects. Castle Caldwel' turbet, and Belleisle are the spots in which its beauties are peculiarl; concentrated chief town is Enniskillen, delightfully situated on an ishnnd, accessible only by two oppoate bridges; this site enabled it to make its noble stand against the army of James II.
Donegal includes a great extent of the north-western coast of Ireland, fill of deep bays and fine harbours. In its interior, however, it consists almost entirely of mountain, moss, and moor, with only a few productive valleys. It is often called, witli some adjoining districts, "the black north of Ireland." Distillation forms an active branch of its industry. Litford, its snatl county town, stands on the Foyle, upon the borders of Derry. Ballyshannon, almost at the opposite extremity, is a thriving town, beautifully situated on the channel by which Lough Erne pours its waters into the Atlantic. Raphoe is a celebrated episcopal see, but now only a decayed village.

Derry, or Londonderry, a large and fine county, is cressed by a range of mountains, whose principal peaks are from 1000 to $\mathbf{1 5 0 0}$ feet high, and a considerable part of whose surface consists of heath nnd bog. There are, however, fine valleys, and extensive plains, which are cultivated with some diligence, but according to that syatem of minute subdivision which is the bane of Irish agriculture. The linen manutacture flourishes in full vigoun, chiefly according to the Irish system, among the little tarmers and cotters, who combine it with the cultivation of a few acres. Londonderry is a fine city, situated at the point where the Foyle. after traversing a great part of this county and that of Tyrone, falls into the broad basin of Loug h Foyle. It is ancient, being the theatre of remarkable events even in the time of the Dane. In 1603, after the attainder of O'Neate, it was granted by James I. to the eitizens of London, whence it derived the first part of its name. But its chict distinction was from the siege sustained by the city in 1690-1, against the united forces of Ireland under James II. Londonderry is composed of four main streets crossing each other at right angles, and surrounded still by its old walls in full repair, serving rather for ornament than defence. It has an ancient Gothic cathedral, and some handsome modern cdifices. It is now supported by an extensive commerce, for which Lough Foyle, though its entrance is somewhat impeded by a bar, affords a spacious und secure harbour. Its chief intercourse is with the United States and the West Indies, to which it exports the linen manufactured in this part of the coontry. Coleraine is a well-built town on the Bann, which flows from Iough Neagh, and on which is the most extensive salmon fishery in the island; but the rapidity of the stream obstructs the navigation upwards.
Antrin, occupying the nortl-eastern corner of the kingdom, opposite the coast of Scotland, is one of the most remarkable districts of Ireland, in regard to natural features as well as to commerce and industry. A great part of the surface consists of rugged mountains, composed chiefly of rock and moss, and even its best soils are starcely available for agricultural purposes till improved by the use of the lime with which the country nbounds. The mountains, where they face the ocean, are broken into vast perpendicular precipices, exhibiting the basaltic columnar form on a grander scale than exists in any other part of the wortd.
Of these objects, the Giant's Causeway (fig. 221.) is the most celebrated and magaificent.
 Three natural piers or moles, 400 feet in height, here streteh out into the sea, and are visible above the water for about 300 yards. The walls are composed or dark hasaltic columns, of the nost regular form, and so closely united, that only the blate of a knife ean be thrust between them. Ench column is distinct from the others, and divided into jointed portions, ns perfect as if art hud formed them; there being in each part a projestion, which is lodged in a corresponding concavity or socket of the one contiguous. The coast eastward of the causewny is composed of a succession of enpes, presenting the most sublime seenery; dark precipitous clifs, rising reguliarly in gradually retiring strata, and formet into various broken colonnades which might suggest the inlen of palaces overwheline! ia ruins.

Other striking features distinguish the coast of Antrim. Conspicuous alove all others is

Book I
IRELAND.
Fairhead, called also Benmore; a promontory which forms nearly the north-eastern point of Ireland. It consists of a vast mass of columnar greenstone, composing a mural precipice, rudely columnar, and 250 feet high. At its feet lies a chaos of huge inasses of rock, heaped together in the wildest confusion, and forming a scenc of ruin the awful grandeur of which

Carrick-a-Rede. has scarcely a parallel. Against this the sea heaves in a solemn majestic swell, the peculiar attribnte of the Atlantic waters. Carrick-a-Rede (fig.222.) is a small island composed of a mass of basalt, imperfectly formed into columns, separated trom the continent by a chasm of sixty feet. The fishermen, however, have occasion to resort to it with the view of placing nets to intercept the salmon; to reach it, therelu. they have constructed a daring and singular bridge, formed of two strong parallel cables fixed to each side, with planks inserted between them. This slight pontage is subject to violent movements, and, if not judiciously trodden, may precipitate the passenger into the abyss; but the fishermen, accustomed to tread it, carry great loads across without the slightest apprehension. Several of the precipitous cliffs are adorned with the ruins of ancient castles, the grandest of which is Dunluce (fig. 223.), whose extensive area covers the long ridge of
 an almost insulated rock, which presents its perpendicular face to the ocean. The walls enclose the entire surface of the rock, and rise up as a continuation of its precipitous sides. In one place, the rocky base having given way, the apartment above actually overhangs the sea.

Belfast, the grand emporium of the north of Ireland, has risen to greatness by rapid steps. Carrickfergus, by means of peculiar privileges, monopolised all the trade of this part of Ireland, till these privileges were bought up by the Earl of Strafford. The career of competition was then opened to Belfast, and she gradually outstripped all her rivals. In 1660, the town contained about 6500 inhabitants. At present the population is 53,000 , exclusive of a large suburb in the county of Down. The linen manufacture is very flourishing at Belfast, and that of cotton is rapidly extending; besides which there are various minor fabrics. Commerce, however, is the main source of its wealth. The linen fabrics of the north are largely exported, along with oats, ontmeal, and salted provisions; the entire value of which, in 1810, amounted to $2,900,0000$. The dnties of customs, which in 1801 were $182,314 l$., had risen in 1829 to 259,0000 . Belfast Lough forms a noble and secure bay, and the channel at the mouth of the Lagan has been so deppened by art that vessels drawing thirteen feet water can come close to the wharves. Belfast is mostly built of brick; but several public edifices, recently erected, the Cominercial Buildings, the Muscum, St. George's Chureh, \&c., are ornamented with pillars of freestone. Belfast has several commercial and literary institutions; and in 1810, the Royal Academical College, a seminary on an extensive scale, was founded.

The other towns of Antrim can boast little more than names known in history. Antrim itself has lost its former importance, though beautifully situated near the great body of water called Lough Neagh, which covers about 100,000 English acres, and borders on five coun-ties,-Armagh, T'yrone, Londonderiy, Down, and Antrim. Its flat shores possess little of interest or beauty; and its overflowings have converted into bog about 60,000 acres round it. Carrickfergus, at the mouth of Belfast Lough, is a very ancient town, once the emporium and key of northern Ireland, but it has yielded the palm of commerce entirely to Belfast, and is supported only by being the county town anil resorted to as a watering-pluce. Lisburn is a prosperous town, with a manufacture of damask.

Down is a fine comnty, penetrated hy several large lakes, as those of Strangford and Carlingford. The last of these receives the Newry, which communicates by a canal with Lough Neagh. The Mourne mountains, on the southern border, exceed 2600 feet in height, and form a conspicuons object; but a large extent of the county is level, and a greater proportion is moder tillage than pasturage. The combination of farming and weaving exists in a remarkable degree; and the linen fabrics are not only extensive, but some of them very fine. Of late, however, those of cotton have gained a preference in many districts. Down, or Downjatrick, ectebrated in tradition as the burial-blace of the patron saint, is of moderate
dimensions, and its public buildings respectabls. Newry is larger and mere flourishing. These advantages are owing to its situation in the bay of Carlingford, e^{-}. *a canal communication with Lough Neagh, which enable it to export the liven manuf . . and provisions produced in an extensive district. It is ancient, but in 1689 was redu, u to ashes by Marshal Berwick; so that it is now quite a new town. Donaghadee, a considerable port, with a large substantial quay, is chiefly remarkable for the ferry between it and Portpatrick, the shortest sea commimication with Britain, and by which packets are despatched and live stock in very great quantities conveyed over.

Armagh is also a fine and agreeable county. In general it is only pleasingly diversified with little hills, the bogs are no more than requisite for supplying fuel, and only a small part is left unproductive. Both culture and manufacture are prosecuted with great activity. The linens produced in 1824 were reputed at 568,000$)$., exceeding a fift of the produce of the whole kingdom. Armagh, the capital, was celebrated in the early history of Ireland as one of its most extensive and populous cities, and has always been the ecelesiastical metropolis of the kinydom. The Augustine monastery, and the college attached to it, rankel for a long time ariong tiee most celebrated institutions in Europe for religion and learning; the latter, it is said, could once boast of 7000 students. Armagh sunk, however, under successive ravages by the Danes, the Finglish, and, finally, the Irish insurgents under O'Neale, and fell into decay; but by good fortune had for its primate Dr. Richard Robinson, to whose munifieent exertions is aseribed its revival and its having become one of the prettiest little cities in Irelsnd. To him Armagh is indebted for the repair of its cathedral, for a library, and an ebservatory. The linen market is well supported by the flourishing state of the manufacture in Armagh. The only other place of consequence is Lurgan, a thriving manufacturing town.

The three counties of Tyrone, Monaghan, and Cavan occupy a grcat proportion of the interior of Ulster, and present a very uniform aspect; a considerable extent ef mountain and bog; fertile plains, rude cultivation, and the linen manufacture. O'Neale, Earl of Tyrone, was long one of the most formidable enemies of the English power. Omagh is the countytown of Tyrone, but is not so considerable as Dungannoa, a large, populous, and handsome place, once the chief seat of the O'Neales; but this powerful castle was demolished by the parliamentsry forces. Strabane is also a populeus place, finely situated on the Foyle. Monaghan and Cavan are both tolerable county-towns, which alone possess any importance in their respective shires.

FINANCES OF TIIE UNITED KINGDOM.
I. Income for the year 1834.

II. Expenditure for the year 1834.

Payments out of the gross Revenue. \qquad

Paid at the Exche	
erest and Management of Permanent Debt	
Terminable Annuities.	691, ${ }^{\text {and }}$
Ruasian Loan, raised in	
Civil List....	0
Civil, Naval, Military and Judicial	
Salaries sut Allowances.	162,930
Diplomatic Sularies and	181,448
Courts of Jualice	
	6,402
Navy.	1,503,910
	1,018,223
Advances for Public Wor	2,014,513

Total Expendifure....... .. £53,441,95s
III. Public Debt_January, 1834. Charge for 1833.

c27.78. 116
775,769
Totals.
5770,565.783
I. Account of the Officia) and of the Real or Declared Value of the principal Articles of British Produce and Manufacture oxported in 1832, 1833, and 1834.-(From tha Annal Financs Book for 1835, 113. 121-128.)

Articles.	Official Value.*			teeclared Value.		
	1893.	1833.	1894.	1832.	1833.	1634
Arana and copper manufacturee ('ation manulactures			$\begin{array}{ccc} L_{1} & A_{1} & d_{1} \\ 1,0 \times 6,590 & 9 & 4 \\ 44,266,000 & 13 & 4 \\ 6 & 0 & 0 \end{array}$			
Mary yarn	$\begin{aligned} & 6,726,502 \\ & 67 \\ & 67836117 \end{aligned}$	6,279,075 8 8	6,802,297 18.9	4,721, 159	4,704,104 91	$8,211,01417$ e
Hardwareen and	678461171	960,503 4	047,478 1611	1,44,431 711	1,466,361 1211	$1,460,221311$
			2,621,672 9	1,190,747 18, 10		
Liden mu-vfacturea:		3,5404539		1,774,726 13.0		2,4,43, 1341418
galt . yarn	350384188	392,053 76	071,469 1810	$16,67875$	$\begin{array}{r} 72,148 \\ 184,450 \\ \hline \end{array}$	
Bilk manutaclure	475,165 198	69632308	643,6837	${ }^{529} 9981010$	737,403 1710	$637,189 \%$
Soap and c neilles	34x246 \% 3	438910175	362,189 100	315,644 163	302,284101	$240.072{ }^{4} 11$
Sugar, rebinal	1,922,469 988			1,004,769 18 180		
	149,991, 12	${ }_{155479} 1243$	370 81,132 817 10	356,36 9 810,300 1	368,168 332,500 17	2070,362 1105
Woollen end worned yarn ...	192, 124198	16,191 7 7	804,933 11 8	203307 78	24620400	234643169
Woollen manuiscturei	6,536,244 88	7,776,812 683	6,514,709 310	6,444,388 118	6,204,438 306	8,716,670 11
All ntiver articies .	4,202,981 16	4,578,646 1211	4,678,680 116	5,532,203 119	6,097,113 03	6,194,358 1 a
Totals -	65,028,502 110	69,969,339 138	73,831,550 16 (36,444524187	39,667,347 06	41,619,191 0
Whersof from Greal Britain From Ireland	$\begin{array}{r} 64,58,03767 \\ 44466515 \\ \hline \end{array}$	$\begin{array}{\|r\|cc\|} \hline 69,633,853 & 16 & 1 \\ 335,405 & 17 & 7 \\ \hline \end{array}$	$\begin{array}{rll} 73,495,535 & 11 & 3 \\ 336,013 & 4 & 1 \end{array}$	$\begin{array}{\|r\|r\|} \hline 36,046,027 & 11 \\ 305,497 & 7 \\ \hline \end{array}$	$\begin{array}{\|ccc} 30,305,512 & 10 & 8 \\ 361,834 & 8 & \theta \\ \hline \end{array}$	$\begin{array}{\|r\|r\|} \hline 41,288,594 & 8 \\ 3 \\ 342,597 & 4 \\ \hline \end{array}$

II. Account of the Real or Dectared Vatue of the various Articlea of the Manufacture and Produce of the United Kingdom, exported to Forsign Countrics during the eight years endiug with 1834 ; epecifying their Value, the Countries to which exported, and the Vafue of thoso annually shipped for each.-(Papers published by Board of Trade, vol. iv. p. 227.)

Countries to which exportot.	Esports.							
	1827.	1823.	1529.	1830	1831.	1572.	1833.	184.
	$\boldsymbol{L}_{1,40,970}$		$\mathbf{t}, 43, \underline{1}, 505$		L.		$L_{1,51,001}$	
	$1,400,970$	$1,318,936$	1,433, 38,252	$\begin{array}{r} 1,4: 9,538 \\ 40,488 \end{array}$	1,101,565	1,557,250	1,531,002	64,094
Norway	39,129	63,jk2	64,34	63,928	58580	31,528	65,038	61,988
Deamat	104,916	111,880	95; 247	118,613	94, 204	43,3146	09, 531	94,596
Prusia	174,388	179,145	189,011	177,023	192,818	2in+566	144,179	136,4:38
Germany	4,6\%1,618	4,394,104	4,473,555	4,463,605	3,642,951	8,068,997	4,354,518	4,547,166
Holiand.	\} 2,104,581	2,142,736	2,050,014	2,022,453	2,002,536	2,749,398	$\left\{\begin{array}{l}2,181,543 \\ \substack{6,464}\end{array}\right.$	2,770,267
Braicu.	446,959	498,938	401,388	473,884	602, 088	674,791		1,119,085
Puttugal, Proper	1,400,0+4	945,018	1,195,404	1,106,695	970,991	540,792	867,091	1,600,123
Arore			-31,244	23,629	41,638	77,920	54,430	663,275
Made		39,902	40,2<3	39,444	38960	2s,039	33,411	35,455
Spain and the Bal	225,44	301,135	561,675	607,063	597,484	442,928	442,637	325,907
Canary idand	48,821	-38,152	50010	42, 6120	36,242 3672×5	21,033	30,507	30,666
Gibraltar...	1,045,266	1,038925	504,183	3, 8 82, 760	- 367.2×5	+661,470	-355,460	450,719
Italy and the Ita	$1,942,752$ 800,948	9,179,149 $\mathbf{2 9 9 . 4 5 8}$	2,202,030	- $\begin{array}{r}\text { 3,851,379 } \\ 1 \leqslant 9,135 \\ \hline\end{array}$	2,490,376 1134,519	$2,361,772$ 66,994	2,316,260	3,202,777
Ionian Islands	37,196	11,078	30,165	66,463	50,883	65,725	35,915	-94,498
Turkey and Contineolal Greece (exclusive of the Murea)	531,704	185,842	568,684	1,139,616	888,654	015,319	1,019,604	1,207,041
Morea and Greek Islands	$\}^{51894}$	335	S0	8,694	10,446	10,149	25,914	37,179
Ekypt (larts on the Medilerranean)	$\underset{8,204}{54,624}$		80,305	116.227	122,622	113,109	145,647	158,877
Tripoli, Dartary and Moroceo	18,201	13745 101,45	344.233	272, ${ }^{1238}$	234,768	200,061	2,350 329,210	14, 148,883
Cape of Cood tlopo	2163538	8180	257,501	330.186	257,245	2492,405	346,197	304,302
Cape Verd Izlands.		3,856	240	1,10	${ }^{215}$	\cdots	1146	51530
St, Helena	41,430	31,362 39,188	45,531	38,015	39,43!	21,236	30,041	31,615
Iule bf Bourt	196,713	-	16341 205,588	161,2029	48	163,101	83.124	70,61
Arabua.						,		250
Eant India Company's Ter:itories and Ceylno	3,682,012	4,236,562	3,659,218	3,885,530	3,377,412	3,514,779	3,403,301	2,578,509
Cbias	810,637				,		,	842,869
Sumalra and Jova	120,747	159,200	255,683	162,102	28\%,296	150006	471,712	410,273
Philippine Ialands	65,026	300	4,721	11,220	39,513	102,284	185,998	76,614
Nawnd, and Swao hiver. . . .	330,958	443,909	310,688	314,677	308471	466,938	658,372	716,014
Naw zealaud, and Soulh Sea fsiauds	172	2,467	845	1,396	4,753	1,538	936	
Porte of Siami. . .	1397350			105,467	- 090			16,749
British North American Colonies.- British West ludies . . .		$1,691,044$ $3,299,704$	1,681,723	1,857,133	$2,068,327$ $8,581,949$	$2,075,725$ $8,408,408$	$2,092,550$ $2,507,589$	1,671,069
Hayt	257,981	-24*918	2977,709	-321,789	376,103	643,104	361528	357,287
Cuba and nther Foreign West Judies	619,378	569,728	672,176	611,029	663,31	633,700	677,228	013,005
Unlled Stales of Americs	7,018,273	5,810315	4,223,415	6,132,346	0,053,543	6,468, ${ }^{\text {a }}$,	7,578,6\%4	6,844,969
Mexico	692,500	307,029 6,191	303,562	YT8,441	728,858	193,291	421,487 3,700	449,610 30,366
Colonibia	213,972	261,1313	232,703	216,731	248,250	280,568	121,226	30,366 199,996
Brazil .	2,312,109	3,314,297	2,516,040	2,452,109	1,234,371	2,14,903	2,575,650	2,460,670
Stales of the Rin de la Plata.	154,993	312,398	75×540	632,172	339,470	660,158	815,362	831,564
chill	400, 134	709,371	818,930	540.626	681.617	70, 193	916,817	896,271
Peru	225,466	37,4,615	300.171	206,403	409,003	275,610	367,524	299,203
and Man	320,959	329,428	310,988	344,036	394,644	317,496	336,934	360,665
Totala.	37,181,935	36,812,756	35,842,023	38,871,597	37,164,372	38,450,504	30,667,347	41,640,191

* The rate at which ali articles of export and import are officially valued was fixed in 1696 , but an account of the real or declared value of she exports is nlas prepared; there is, however, wo such account of the importa, and therefore their olficial value atone can bo given.

	Quatilitirs ingurtol.		4 Hanlities repurted.		Quantition retainel for Cumaumptioul.		Nelt Hevenue,	
	1183.	184.	1833.	INSA,	15×3.	1184.	1×13.	1834.
Allect, persil and puth civis. Harilis and alhali	103,729 814,123	$\begin{gathered} 21,134 \\ 103,971 \end{gathered}$	11,395 2,458	4,130 3,233	106,624 819,603	60,960 180,410	4,505 16,700 Itraw luak kik rejuyumente	$\begin{array}{r} 4 i, 928 \\ G \mathrm{mman} \quad \mathrm{my} \mathrm{\%} \\ 17,764 \\ 4,460 \end{array}$
Hark for tamalng of dyel	612,201	849,200	334	1,132	84, 278	8NL, 60 !	80,074	$\begin{aligned} & 13,989 \\ & 88,476 \end{aligned}$
 E:ass linla wat Mauritiun - Fioveg plantation	$8,375,400$	22,000,123 9, 311,141 4, $, 24,847$	$\begin{array}{r} 194,080 \\ 3,206,047 \\ 11,15 k, 404 \end{array}$	768,046 $6,203,462$ 8,177,972	20,941,184 1,798,319 1,171	12,224,073 1.6isi, 604 9,418	$\} 601,241$	614,484
Totala	34, 2040109	41, 963,111	13,349,878	15,2\%0,410	22,741,904	23,703,005		
Cом Humk and athelle	$\begin{gathered} 4, \cos _{3}, 718 \\ 815,6<4] \end{gathered}$	$2,484,50 / 2 \mathrm{~N}$ 404, (030	2,341,677	2208,310	$\begin{aligned} & 1,282,267 \\ & 4+0,168 \end{aligned}$	$\begin{aligned} & 1,173,795 \\ & 443,768 \end{aligned}$	\} 12,026	11,770
thisiel storen		$2 \pm 0,1 \mathrm{cos,075}$						
	20, $40.10,121$	19, 401,3036						
 tivit hatilgn osumtrien un wad mom Britint puweetons,		${ }_{2}^{2,100,8,2052}$						
	92,758,164	29,920,806						
Ain if W -t dalics, the growth	1,603,168	1,672 811						
Probic: Prat ladien, tmynoted N. 4 , 1 Tabe Jo thith juaverimu		$\begin{gathered} 624,314 \\ 47,548 \end{gathered}$						
Find quantices	303,686,437	326, 775,425	17,363,582	24,401, [6, ${ }^{\text {a }}$	283,68, 978	302,180,667	473,011	373,812
latifo lis.	Q 6305,473	4,155,198	3,664,914	3,924,20.26	2,32,300	$2,417.027$ 3063,474 1	29,471	32,066
		${ }_{31,04}$	32,811	88,244 4,54	4i3,572 17,545	3031,474 14,023	1,170 0,492	1,087 8,49
Nuther - rus.	61,397	72,004	7×6	1,547	71,160	70, 1151	14.730	7,207
Muder move -	50,6\%a	80,497	47		60,549	75,271	3,721	1,602
Hise and hiw, or contilis of dix and fertap	1,100,623	811722	120201	18,568	1,112,190	791.772	4,723	3,405
turrante	14d:394	132,780	10,634	12,167	140,45	163, 513	111,063	24.100
	315,151	4tita33	$\mathrm{Cr}_{2} 24$	1,100	319.147	254,73	69,342\%	57,434
himine cwls.	158,3/4	813,724	36,147	27,635	137,6m2	147.467	149,183	122,472
	2, 2,20	14,350	56,003	2,960	21,469	11,457	0,092	3,400
lianing uf atraw 1 ll .	22.23	45,372	8,811	$8, \times 38$	22,079	25,479	14,76is	20,915
Mipap undreasel - cuta	2017,49	673,511	32,170	18,672	612, 6×1	606,, 096	2,119	2,514
Hutlialn, bull, oa, cour, of botse hiblesents	896,300	477,291	29,360	80,127	246,461	342,718	39,027	81,769
Hhises tanned, vis. :-								
Butali, bunl, ni, eow, of hone hispc. 1 lim	6x,702	80,208	10,400	4,964	48,578	40,338	592	517
layither gluves pairs	4, 443472			84,634		1,000,428		29.963
kliks ees rwis	717,034	679,34.	1,322	2,078	643,804	cort,000	881,043	226,621
Olive nalle	(1,901,9] ${ }^{\text {a }}$	2,318,148	397,367	234,830	1,309,217	2.225,227	45,743	48,365
Pimp cwor	267, 198	270,6e9	19,738	20,112	811,223	264,506	27,04,1	83, 016
Traib, yimernaenti and bludber - , tuba	:12, 776	23,344	2,033	3,727	31,242	21,4i2	1,7ib	1,30y
Sald vetre aind enbic nitre cmma	163,746	318,48s	80,737	6x.24	${ }_{\text {1t6, }}^{2,265}$	${ }^{313,361}$	4.154	8690 13,10
Hhaz nad Livzeal - bushels	2,179,135	2,210,237	bid	7, 223	2,822,567	2,211,203	13,923	1:3,N0
	2,785,109	3,44, ${ }^{\circ} 2$			\{ 4,417,027		15,400	13,800
Waste and knubbe -	249,441	1, unter	68,187	207,007	267,472		412	4100
Camat Liguea	1,297,710	2,108b, 36	1,341.646	1,000,3.50	77,067	100, 182	1,778	2.196
Hr\|iner.	K,729,534	7,675,340	3,487,027	E,311,247	8,250353	2,47,080	111,74	142,N52
1тments	0, 044,973	1,106,770	2, $410,3 \times 4$	1,790, 4×3	350,45	322,761	6,594	6,726
	3,653,621	3,844,243		690,744				
Vast Imlua and Alauritua : . : :	7:37,613	${ }^{6} 47,141$	Refin	,	3,653,744	3,741,559	4,414,308	4,559,392
	4, 312048	, 204,640	245,694 39,945	$4 \mathrm{Cl}, 04 \mathrm{~S}$				
	3, $3,01857,477$	$\begin{array}{r} 1,397,407 \\ 39,6 ; 030 \end{array}$	$\begin{aligned} & 39,945 \\ & 254,461 \end{aligned}$	$1, \operatorname{lsi,(6)} 6$	$\begin{array}{r} 1,090,765 \\ 3!, 299,619 \end{array}$	$1,140,140$ $34,060,431$	$\begin{array}{r} 171,606 \\ 3,444,102 \end{array}$	$\begin{aligned} & 159,998 \\ & 3,059,961 \end{aligned}$
Tinutre, 11.1 -								
Bratens and hatten eudr ${ }_{\text {a }}$	10,397	13,400 67,105		K88				
Meal and dsal rode . . . - \%rowl pund.	66,798	67,105	1,096	800	67,291	6, 8,008	$841,49$	601,914
	9,169	10, 3 29	84	009	8,756	9,566	10,449	8,108
meler -	3,196	3, F is	215	210	3.209	3,812		
Masta 12 Inchee sud upwarde . . Itien	4,416	4,4:9	46	66	4,233	$3,-41$		
that planke -	2.381	2,7,29	18	9	2,544	2,616	10,149	10,442
Staves gl, hund.	68, 698	86, ${ }^{2} 5$	3.051	2,634	85, 100	$k 3186$ 49800	43,366	3 34,7566
Vir, 8 inches square avd upward, Inais	408,604	40,460	910	64	19.123	49800	437,629	440,310
Ohat, ditto . . .	97, 1 N	26,494	4.4	32	27,236	28.65	33,775	33,075
Unenumumated, dittr	32,481	41,7t	80	34	33,111	40.361	8,306	19.179
Wruseor loph ditito.		3, ©0:				3,269	8,867
Troavon, vir. itred Ite	22,002,579	39,517,481	8,000,302	12,904, 351	20,604,971	31,048,34		
Manulaturel or ugars	\$56,609	\$0\%, $\times 1$	2:0,014	473,960	143,466	14i,asi	3,140,065	3,223,4-18
wnut, sheep and limbn	38,046,067 ${ }^{3,184}$	$46,458,234$		10,361 807,362	39,066,620 ${ }^{138}$	40,840,271	$)^{1818,855}$	131,319
Wine, viz: -								
Tepre imp.galls.	4.4,3,34	44,2098	18, 136	8,368	845,101	824,081	75,075	72,048
Yrench	975,306	361,33:-	98.040	122.516	232.550	260,630	63,168	71,131
	2,226,733	4.213,427	24,3,577	queris	2. 2.596 .530	2,740,303		
	3,364,139	- $3.466,463$	7-12,	(6*N, 024	2.146,043		\{ 1,401,073	1,562,341
Onber arite	E17, 061	$8 \mathbf{5 0} 734$	312, ${ }^{\text {d }}$,	316,575	466,372	488508		
All sort	7,443,841	9,766,116	1,613,298	1,679,121	6,207,750	6,460,54	1,429,819	1,706,699

Boox 1.

DENMARK.
IV. Acconnt of the Sthipping employed in the Trade and Navigation of the Uulted Kinglotn in Iest ; mpecifying
 ager), and the Nomber of Their Crewol mparating Britixh from Forcign Veaseta; mad nimsinguiahing the Navigation whith each Comutry.

CHIAPTER V.

DENMARK.

Denmare is an ancient kingdom, formerly very powerful, holding sway over the surrounding regions, and, as a predatory state, the terror of all Europe. Thongh now reduced to the secondury rank, her situation renders her of importance in the general system of the Continent.

Sect. I.-General Outline and Aspect.

Denmark consists mainly of an extensive peninsula, slooting out from tho north-west corner of Germany, and a cluster of large islands to the east of the peninsula. The nertbern shoies of Denmark approach clese to tho southern point of the Scundinavian peninsula, bounding the great interior sea of the Baltic. Slie commands the only channel by which the countries around this sca can transmit their prolucts to the rest of Eurepe; a circumstance which gives her some consideration ns a maritime state, at the same time that the toll she imposes on ships passing and repassing the Sound, is protuctive of revenue. The Danish peninsula is termed Jutland; and the islands in the interior of the Baltic, interposed botween Jutland and Scandinavia, are Zealand, Funen, Odensee, and a few others of smaller nete. Denmark holds also the German territories of Sleswick and Holstein; with Iceland, the Faroe Islands, and some settlements on the coast of Greenland, remuants of her former maritime power.

The extent of the dominions of a country broken into such a variety of detached portions can with difficulty be estimated. The only compact mass cunsists of Jutland, Sleswick,

Boor I.

DENMARK.

and IIolstein; boundel on the west and north hy the North Sca or German Ocean; on the enst by the sounds which form the entrance of tho Bittic; on the south by the Elbe. This tract lies generally between 534° and 571° north latitude, and 8° and 11° enst longitude. We hnvo thus a length of $\mathbf{2 8 0}$ miles, and a breadth of 120. The total area of the Danish monarchy, is about $\$ 2,000$ sroי口are miles

The surfice of Denmark is nearly flat; forming, with the exception of Holland, the lowest part of the great plain of Northern Germany. The islands, in particular, in many places, rise only a few feet above the level of the sea. The soil, as in the rest of this plain, is frequently sandy and marshy ; tho climate humid, though not liablo to those aevere frosts which prevail in the interior of Scandinavia. Hence it afforda good pasturage, and its soil is favourable to the growth of the coaraer species of grain.

The waters of Denmark consist chiefly of its numerous sounds and baya; the Skager-rack, which comes in from the North Sea, and aeparatea Jutland from Norway; the Categat, which, running southward nearly at right angles to the Skagerrack, eeparatea that peninsula from Sweden ; the Sound, a narrow atrait at the extremity of the Cattegat, between Zealand and Sweden, and which forms the main entrance into the Baltic. The insular and peninsular character of her territory gives Denmark an extent of coast which certainly does not fall short of $\mathbf{6 0 0}$ miles ; and there is said to be no part of the land more than ten milea distant from the sea. This structure leaves no room for the formation of any rivers of the least consequence, except the Eyder in Holstein, and the canal of Kiel, by which an important communication is formed between the ocean and the Baltic. Jutland contains a number of shallow but extensive lakes, closoly bordering on the eea, with which they in many places communicate, and may hence be regarded as bays.

Sect. II.-Naturol Geography.

Subsect. 1,-Geology.

Denmark. The geology of this low and flat country has not been completely ascertained, As far as ia known at present, it contains neither primitive nor transition rocks: the only secondary deposits are Weald clay, and tho various members of the chalk formation; both of which are generally covered up with tertiary soils; which, in their turn, are as deeply covered

Referencer to the Map of Denmark.

10H. Nerila Jlark 117. 1nartein	50. Twaningen 51. Wealineburen 52. Tellinstetedt	Rieers. a gkiern	22. Oiteetrup 23. Trygrevelde
108. Kiergaard	35. Renidisbute	b Gieint	24. Ruholte
SOUTH PART.	54. Minrluch	d Eydar	26. Ringuted
1. Yue	55. Schnelm	- Elor	97. Euroe
2. Yerde	50, Kiel	f Elbo	98. Antvorakov
4. ilindile	57. Reewtorf	E Trave	9\%. Elagole
5. Giording	51, Preetx	I,AAI,AND.	31.8
6. Folding	60. Plisen	1. Frederiekud	32. Va
7. Viarhas	61. Stemen	2. Reumpholt	33. Nealved
8. Ondited	6. Kroken	3. Nakikev	
3. Emidalmp	1i. Dramano	4. Skibbelande	35. Wordiegbors
0. Frederiea 11. Golding	65. Hatenderf	5. Rydr ${ }^{\text {chebee }}$	AMSOE.
12. Christianafoldo	68. Otdenburg	7. Redbye	1. Nordbye
3. Aaree	67. lurg	8. Nyeatad.	2. Selves
14. Iladersleben	©. Hailigemhafen	9. Baxkioping	
15. Gram	O9. Grutneiz	FALSTER.	1. Middelfarth
17. Hyurtland	71. Eutin	1. Onalev	2. Indulor
18. Ripell	79. Surau	9. Slubbekloping	3. Rogenepe
10. 1teighye	73. Schamersdorf	3. Karleby	4. Bederuluv
20, Datluin	74. Neumunerer	4. Nyokieping	5. Kiertemiode
2. Ifuyer Klue	75. Widenmeliarea	MOEN.	6.
23. Huist	77. Ariblorn	1. Mondemark	8. Bellinge
94. Sehrudatrup	78. Mulderf	2. Stengo	9. Odenee
25. Apenrade.	79, Mar0e	3. Phanefiord	10. Eroebye
26., Gravenatein	80. Brunabutiel		1. Hunabye
07. Halebul	81. Krempe	1. Tumnaerud.	12. Oented
29. Tender	83. Gluckstadt	9. Rumlos	14. Drantetlo
30. Finbuluall	2. Ueteraen	3. Gillalye	15. Salliage
31. Jeck	85. Barmatedt	4. Elainore	16. Risling
3.3 Ockiclm	80. Hohenhorat	5. Frelcaiberg	17. Oudbier
313. Treedsteit	87. Oldealoh	6. Slangerup	18. Evendbors
34. Mlerlelburg	8, Sedgberg	7. Lynghyo	19 Peeborg
35. Jorl	99. Travemunde	8. Cupenhagen	EN.
37. Flenaborg	91. Labenz	10. Hallerup	1. Nardbutr
39. Sleprup	92. Sterley	11. Gylling	9. Angustchhurg
39. Gefting	91. Gudaw	12. Krabberholm	3. Eonderburg
40. Knppol	94. Oreven	13. lubek	
41. Windemark	9. Roitzenhurg	14. Nekkinping	ARROE.
42. Fekernforde	97. Stanara	16. Esamark	1. Koelye
44. Hallingatede	98. Walhern	17. Gierlov	
4.5. Troya	99. Lemat	18. Undlese	LANGELAND:
48. Husum	100. Pinneberg	19. Aperip	Humble K.
47. Mlildsted	101. Wedel	20. Roschild	2. Audkiohing
48. Frederickutad!	102. 11amburs	21. Kioge	3. Btoense
49. Garding	103. Hergedor		3 L

with diluvimen of sand, and calcareous loan; which latter are oceasionally concealed by newealluvinl deposits.

Icrland.' This island, so far as is known to geolegista, is entirely composed of Ignigenons rocks. These aro of two classes; viz. Phatonian and volcanic. The Platonian ermations ure zrecnstonf, and its nceompanying rocks, and busalt, with its ansocinted tulbas, anygralwids, sec. Of all the roeks of tho trap series, amygdaloid in that whieh contains the greatest variety of mincruls; and of these the zeolites and calcareous spars are the most interesting und teuntiful. The volcanic rocks exhibit the uaual claracters, and in Iceland are spread aroumd in vast abundance.

Faroc Islands. This small insular group consists of seventeen large inhnbited islands, and of many smaller, with and without inlabitants. In none of the inhuhitel islands are the most elevated summits lower than luOO feet ; the highest land is in the ishand of Onteroe, which rises to fully $2,8(0)$ feet above the level of the sen. Tho two prevailing rocks are greenstone (dolerite) and claystone. The greenstone is sometimes basiltic, sometimes porphyritic, or amygdnloidal. The cluystone is red, yellow, brown, anil green. It alternates with the greenstone, in beds of varying thickuess. The beds of greenstone and claystone of the group all incline or dip towarls a central point of the group, rendering it probable that the inlauds aro lut portions of one whole. The upper surfice of the greenstone is slaggy, showing that the mass had been in a stnte of ymeous solution. There are two principal varicties of greenstone; one porphyritic, with crystals of glassy felspar, the other. without the porphyritic structure. In some of the islunds there are beds of pitchenal, associated with fire clay, slate clay, and splirerosiderite, resting upon the trap, and covered by it. The beds of greenstone and elate clay are often traversed by veins or dikes of basoltic and porphyritic groenstone, which, however, do not appear to occasion any change in them; but the greenstones are changed in position and direction by the invasion from below of a conglomerated rock, a kind of trap tullii. Tho trap rocks of the Furoes luve been long celebrated, on account of the splondid zeorlites they affirel: somo species of this beautifil family appear to be daily forming. The chloropurite, peridote, and precious opal are also productions of this insular group.

Sunsect. 2.-Botany.
Denmark and Sweden, Norway and Iapland, the Farne Islameds, and Iceland, -the later giving a name, indeed to a plant equally conmon in the other
 countrion, Lichen islandicus, or Icelund Moss, (fig. 224.), maty be considered under one head, so fir as regards their vegetable productions; for it is diffieult to draw an exact line of demareation, und even of these the very nature of our work does not allow us to treat nuch at large: this is the loss to be regrettel, becanse the elaseical works of Linneus and Wahlenberg are in the hands of every botanical stutent; and they contain a mine of valuable information in the Flora Japponica and Surecica of both these authors, and a fund of interesting and delightiul marrative in the Lachesis Lapponica of the great Sivedish naturalist. The various writings of Eder, Vahh, und Hornemann afford much useful natter relative to the plants of Demmark. The vegetation of a great portion of these countries may be considered the same as that of the more nsthern and mountainous parts of Great Britain. Yet as tho northern regions of the continent of Europe presont an alpine and arctic vegetation, in a much more perfect degree than islands, we should scarcely do justice to our subject, did we not offer some remarks on the distribution of the vegetable productions of a portion of that more interestmg and extreme northern European territory; namely lapland. The natural boundaries of this country are formed by some low mountains, abo at 500 feet in height, at a distance of from five to eight Swedish miles from the extremity of the Gulf of Bothnia. They present no naked summits, but are covered with forests of Spruce Fir* (fig. 295.): these may be considered as the last subalpine riuge in northern Europe. Comurncing in the south-enst, a little boyond the lake Kemistrush, in lat. 67°, it tenis towarls Upper Tornea, and near to Otiver Calix in the west; stretchos south to Edifers, in Lulea; and reaches its southermost point at the Tativelsjon, in Umean Iaplame, lat. 610. This mountain chain exhibits Calla palustris (ffg. 226 .), (n phant of n poisonous finuily, closely allied to the Arum maculatum or Wake-robin, and to the Caladium esculentum of the tropies; and, as with them, a kind of bread called Misseubroil, or the bread of fimine, is made by the Laplanders from the roots); Swect gale*, common Speedwell*, Ox-cye*, Meadow Fescure-grass*, and Carex stellulatn*. The Birch* there prodnces its leaves in the beginning of June.

* The names marked with an asterisk are those of plants found also in Britain.

Book 1.
DENMARK.
The inferior and woody district of Laplund has its upper linait at Sondankylu in Kemean Lapland, between Kengis and Munonisku in Tornea, nt Jowknock in Lulea, and at Falstrak, in Umenn Inplund; and it yiclis, hesides the Spruce Fir, the Meadow Trefoil, the Lymimachia thyrsiflora*, Lily of the Valley*, nnd White Water Lily*, which grow abunduntly. Some planus which are peculiarly subalpine begin to appear, as Tofietlia palustris* and Serratula alpiua".
 I islands, ands are - Osteroe, rccks are injes poraltermates claystone probable anstone is aro two the other. coal, nsso ereal by it. soltie and them; but clow of a been long - beautifu Il are also
-the latter n the other c. 224.) mards thrir - an exact ture of our this is the f Linneus al student; the Florr a fund of ersia Lap= is writings fial matter of a great mo as that at Britain. rope prere portect some renteresting fies of this e ol from resent no ly be con-th-east, a hd near to thermost its Calla aculatum a kind of he roots); ellulata**.

IMAGE EVALUATION
 TEST TARGET (MT-3)

Photographic Sciences
Corporation

procumbens,* and, though rarely, Diapensia lapponics. Here the Lichen tartareus (fig. 228.) or Cudbear, abounds, and is, both here and in Sweden and Norway, collected snd exported to the dye-manufacturers. Wahlenberg distinguishee by the term "Regio subsylvatica," or partially wooded region, that where the Scotch Fir grows, but not the Spruce. This is more contracted than the other regions, and more difficult to be defined. It is not unfrequently eight Swedish miles broad in northern Lapland; in Kemes extending to nearly 70° of lat. Before the Scotch Fir ceases, the Carex globularis disappears, and, in the more northern parts, Prunella vulgaria. Within the Fir region, the beautiful Pedicularis lapponica appears scattered through the wooda; Viola bifolia, and Thalictrum alpinum* following the course of the streams; Salix lanata," with jts splendid golden catkins, at the margins of marshes and springs, and also Ranunculus lapponicua. The cultivation of barley scarcely succeeds, and the colonists are miserably poor. The Birch comes into leaf at the summer solstice. The lakes and rivers have an elovation of about 1000 feet above the level of the sea. The subalpine region still yields the Birch* (Betula alba), though other trees will not grow. Its upper boundary is marked by the dwarf stature of these, where they scarcely attain a height of six feet. The Aspen* (populus tremula) and the Bird-cherry (Prunus Padus) cease before the Birch: the Sorbus Aucuparia,* or Mcuntain Ash, extends as far. The Birch alwaye in Lapland reaches to a much greater elevation and more northern latitude than the Scotch and Spruce Firs. Its limits are more easily determined; yet, on a geographical map, they are with difficulty expressed, because the Birch ascends to the alpine regions, circnmscribee all the mountains, and penetratee all the lesser valleys: thus it extends almost to lat. 71° in Western Finmark, and stope but little short of the North Cape. The dry portion of thie region is again the habitation of the Lichen rangiferinus, and of Azalea procumbens,* Luzula spicata,* and Juncus trifidus.*: On the borders of Russia, the Birch as well as the Scotch Fir extend even to the Northern Ocean.

The lower alpine region, or the Lower Alps, commence where the Birch ceases to exist, and where the snow, not of perennial duration, except in caves and hollows, melts before the middle of July: There the Diapensia Ispponica, Silene acaulis,* and Andromeda hypnoides are found. The Salix myrsinites* and Dwarf Birch still grow erect. Nearly the
 same vegetation as is met with on the Lower Alps exists upon the maritime alps of Finmark, to the most northern promontory, with this difference only, that the steep and precipitous rocka harbour more moisture and snow, and the sffinity is grester with the alpine range in the higher mountains, which retain the snow during the whole summer, the partial melting of which creates a moist and even a boggy soil. Here, therefore, are seen the little Dwarf Willow* (fig. 229.) (Nalix herbacea,) Ranunculus glacialis and nivalis, Pedicularis hirsuta and flammea, Stellaria biflora, Erigeron uniflorum;* plants eminently alpine, and peculiar to those situations.
Beyond these is the region of perpetual snow. Towards the Norwegian Ocean, another form of the alps presents itself; lofty mountains without any plains, circumscribed with very narrow zones, which Wahlenberg defines as the more clevated sides of the alps, reaching nearly to the limits of perpetual snow, consequently alwsys irrigated with snow-water: they nourish a few, and those marshy, plants. The Ranunculi (Crowfoots) principally abound.

The lower, or less elevated, sides of the alps, generally destitute of perpetual snow, yield the Dwarf Birch* in the moister spots; and, on the drier, Andromeda hypnoides, the Alpine Speedwell ${ }^{*}$, Juncus bifidus*, and the Procumbent Azales.*
The bases of the alps are where the Birch grows, but ne Pines. Among the Birches, scarcely six feet high, the Purple alpine Saxifrage*, with Saxifraga nivalis and cernua, abound in the moist and precipitous places, and, in those that are more dry, Aspidium Lonchitis. The lower portion of this zone sffords tall birches, such as are found in the more northem regions, only in the inmost recesses of the deep hays, and, beneath them, Aspidium Filix Mas*, Osmunda Struthiopteris, the Blue Alpine Sowtiistle*, and the Red Currant.*

The maritime alps include the islands and promontories; so exposed to the winds that they derive their alpine character more from their peculiar situstion than from their elevation above the level of the sea; and so bare are they of trees and shrubs, that even the Juniper will not succeed there. They are almost equally destitute of the more alpize shrubs, such as Andromedas; but they are adorned with succulent alpine plants, such as Soxifraga oppositifolia*, Silene acaulis*, and Dryas octopetala. Near the shore occur some produc-
tions of the alps of the south of Europe, such as Erigeron alpinum*, Sedum villosum* and Gentiane involucrata, which in Lapland are found nowhere inland. The Norwegian alpe nourish numerous annual plants; but the dryer ones of Sweden, remote froin the sea, are remarkable for the little alpine shrubs, partieularly Azalea lapponica, which scarcely occurn in Norway; Salices alone, such as S. myrsinites*, occupying their place.

The subalpinc spots and valleys are marked by the presence of the Pine; but the most extended Fir forests are only feund at the heals of the deep inlets of the sea, in narrow ravines, sheltered by the loftiest mountains. . These valleys enjoy a mueh milder elimate than all the rest of Lapland: there are found the Convallaria verticillata*, Campanula latiColia* and Fragaria vesca*, in abundance, but no alpine plants will grow, except the Starry Saxifrage* (Saxifraga stellaris) along the margins of the rills.

A mere interesting aecount of the vegetution of Lapland, at different elevations, is published by Sir J. E. Smith, in the Appendix to the Lachesis Lapponica of Linneus. It is translated from the Swedish of Dr. Wahlenberg; his "Ohservations made with a view to determine the height of the Lapland Alpa." (1.) On approaching the Lapponese mountains (Fjail), we first reach the line where the Spruce Fir ceases to grow. This tree had previously assumed an unusual appearance; that of a tall slender pole, covered from the ground with short, drooping, dark branches: a gloomy objeet in these desolate forests : The Aretic Raspberry* (fig. 230.) (Rubus arcticus) had already, before we arrived at this point, eeased to bring its fruit to maturity. With the Spruee we lesc the Cinnamen Rose (Rosa cinnamomea*), and the Twin-leaved Solomon's Seal (Convallaria bifolia), \&e.; and the borders of the lakes are stripped of their ornaments of Reeds (Arundo Phragmites*), Lysimsehia thyrsifiora*,' Gasium boreale*, and Carex globularis. Here is the true station of the Aretic Coltsfoot (Tussilago nivea). The last beaver-houses are seen in the rivulets; and no pike nor pereh is to be found in the lakes higher up. The boundary of the Spruce Fir is 3200 feet below the line of perpetual snow, and the mean temperature 37° of Fahrenheit.
(2.) Scetch Firs* (Pinus sylvestris) are still found, but not near so tall as in the lower country. Their stems here are low, and their branches widely extended. Here are seen the last of Ledum palustre*, Salix pentandra*, Veronica serpyllifolia*, \&c. The bogs hawe already a very sterile appearance. Near the utmost boundary of the Scotch Fir grows Phaca alpina. Higher up, hardly any bears are to be met with; and the fruit of the Bilberry* does not ripen well. The Gwiniad and Grayling, two species of the Salmon tribe, soon atter disappear from the lakes. The upper limit of this zone, at which the Scotch Firs cease, is 2800 feet below the line of perpetual snow, and the mean temperature about 36° Fahrenheit. A little short of this point, or about 3000 feet before we come to perpetual snow, Barley will not ripen; but small farms, the oceupiers of which live by grazing and fishing, are met with as far as 400 feet higher; for instance, Naimaka in Enontekis, and so far also potatoes and turnips grow large enough to be worth eultivating.
(3.) Beyond this, the dwarf and stunted forests censist only of Bireh.* Its short, thick stem, and stiff, widely-spreading, knetty branehes, seem prepared to resist the strong winds from the Alps: its lively light green hue is delightful to the eye, but evinces a weakness of vegetation. The birch forests soon become so low, that they may be entirely eammanded from the smallest eminence. Their uppermost boundary, where the tallest of them do not equal the heiglt of a man, is 2000 feet below the line of perpetual snew. This zone is therefore much wider than the preeeding. Long before its termination, the Alder* (Alnus incana), the Bird-cherry* (Prunus Padus), and the Aspen (Populus tremula*), were no more to be seen. A little before the Birch eeases, we miss the Mountain Ash*, which for some time had not presented us with any fruit; the Arctie Bramble* (Rubus arcticus) was already likewise burren; the Ling* (Erica vullgaris), Aconitum Lycoctonum, \&c. Where the birch forest becomes thinner, the reflection of the heat from the sides of the mountains is the strongest. Here, in many spots, we find the vegetation of Sonchus alpinus*, Struthiopteris, and Aconitum Lycoctonum remarkably luxuriant. The dryer spots now become covered with the Iceland Moss* (Lichen rangiferinus): Tussilago frigida and Pedicularis sceptrum-carolinum extend to the utmost boundary of the Bireh. Thus far only the Char (Nalmo alpinus) is found in the lakes, and higher up all fishing ceases.
(4.) All mountains above this limit are called Fjall (alps). Near rivulets, and on the margin of bogs only, is found a little brushovood, consisting of Salix glauca*, whose gray hue affords but little ornament to the landscape. The lower country is covered with the dark-looking Dwarf Bircli* (Betula nana), which still retains its upright position. A few Juniper bushes*, and some plants of Salix hastata*, ure found scattered about. Every hill is covered with Arbutus alpina*, variegated with Andromeda cerulea*, and the Wintergreen*

Vol. I.
40
(Trientalis curopaa). The more boggy ground is decorated with Andromeda polifolia* in its greatest beauty, and Pedicularis lapponica. On the sides of the mountains, where the reflected hest bears most power, grow Veronica alpinn*, Viola biflora*, Pteris crispa*, and Angelica archangelica.* This zone extends within 1400 feet of the line of perpetual snow. The glutton (Mustela Gulo) goes no higher than this. The berries of the Cloudberry (Rubus Chamamorus) atill ripen here, but not at a greater elevation. ${ }^{\text {- }}$
(5.) Now no more brushwood is to be seen. The white Salix lanata* is not above two feet high, even about the rivulets, and Sslix myrsinites*, is of still humbler growth. The Dwarf Birch* occupies the dry spots, and creeps entirely upon the ground. The hille are clothed with the rather brown than green Azalea procumbens*, and A. lapponica, which give this zone its most peculiar feature. Verdant spots between the precipices, where the sun has the greatest power, produce Lychnis apetsla*, Erigeron uniflorum*, Astragalus leontinus and montanus, with Ophrys alpina. In boggy places, Aira alpina*, Carex uatulata*, and Vaccinium uliginosum* are observable. The only berries, however, which ripen at this degree of elevation are those of the Crowberry* (Empetrum nigrum); but theae are twice as large as what grow in the woodlands, and better flavoured. The upper boundary of this zone is 800 feet below the line of perpetual snow. The Laplandere scarcely ever inx their tents higher up, as the pasture for their reindeer ceases a very little way above this point. The mean temperature is about 34° Fahrenheit.
(6.) Next come the anowy Alps, where are patches of snow that never melt. The bare places between still produce a few dark shrubby plants, auch as the Crowberry*, destitute, however of fruit; Andromeda tetragona and hypnoides, and Diapensia lapponica. Green precipices, exposed to the sun, are decorated with the vivid azure tints of Gentiana tenella and nivalis*, and Campanula uniflora, accompanied by the yellow Draba alpina. Colder and marshy situations, where there is no reflected heat, produce Pedicularia hirsuta, and Dryas octopetala.* This zone reaches to within 200 feet of the limits of perpetual and almost uninterrupted enow.
(7.) Beyond it; the eternal soows begin to cover the ground, and we soon arrive at a point where only a few dark apots are here and there to be seen. This takes place on the alps of Quickjock at the elevation of 4100 feet above the sea; but nearer the highest ridge, and particularly on the Norway side of that ridge, at 3100 feet. Some few plants with succulent leaves are thinly seattered over the spongy brown surface of the earth, where the reflected heat is strongest, quite up to the line of uninterrupted snow: these are Saxifraga stelluris*, rivulari**, and oppositifolia*; ${ }^{\circ}$ Ranunculus nivalis and glacialis; Rumex digynus*, Juncus arcuatu**, and Silene acaulia. The mcan teinperature, at the boundary of perpetual snow, is 32 ${ }^{\circ}$ of Fabrenheit.
(8.) Above the line of perpetual snow, the cold is occasionally so much tempered, that a few plants of Ranunculue glacialis, and other similar ones, may now and then be found in the clefts of some dark rock rising through the snow. This happena even to the height of 500 feet above that line. Farther up, the snow is very rarely moistened, though some umbilicated Lichens (Gyrophora), \&c. still occur in the crevices of perpendicular rocks, even 2000 feet above the line of never-melting snow. These are the extremes of vegetation, where the mean temperature seems to be 30° Fahrenheit. The Snow Bunting (Emberiza nivalis) is the only living being that visits thia elevated spot.

Subsect. 3.-Zoology.
The native Zoology, in conjunction with that of Norway, has been ably illustrated by the celebrated Danish naturalist Muller, and shows that the fauna of those kingdoma is much rieher than their northern and ungenial climate would lead us to imagine. The total number of land quadrupeds, including the domestic species, is forty-one. Among these we find the lynx, the giutton, the beaver, the leming, and the flying squirrel; together with four of the largest deer inhabiting Europe; namely, the elk, the stag, the rein-deer, and the fallow-deer.
The Elk (Cervus Alces) (fig. 231.) of Europe is not the same with the Moose-deer of Ame-
 rica: it is found in Europe between latitude 53° and 65° : in eize it is higher than a herse; and, to support the enormous weight of its horna, sometimes nearly fifty pounds, its neek is short, thick, and very strong. Its movements are rather heuvy: it does not gallop, but ambles along, the joints eracking so much at every step, that the sound is heard to some distance. During winter it ehiefly resides in hilly woods; but in summer it frequents awamps and the borders of lakes; often going deep into the water, to escape the stings of gnats, \&c., and to feed without stooping. With its enormous horns it turns down branches of trees, to feed upon the bark, with great dexterity; and these are also used as shovels, to get at pasture when eovered with snow. The young are so simple and fearless, that they will
suffer themselves to be taken by the hand. An unusually large elk, killed in Sweden, is said to have weighed 1200 lbs. These animals do not now appeur to be employed in any domestic office.
The Wolverine, or Glutton, is one of those animals whose history has long been shrouded in fiction and romance. It is only now that its true habits have been given to the world, by that enterprising traveller, Dr. Richardson. The Wolverine of America, generally considered the same with the Earopean Glutton, feeds chiefly upon beasts that have been accidentally killed; but it will hunt smaller animals, as meadow-nice, marmots, \&c. and occasionally attack disabled animala of a larger size. In its gait it resembles the bear; and, although not fleet, is very industrious. Mr. Graham observes, that it does more damage to the small fur trade than all the other rapacious animals conjointly; as it will follow the martin-hunter's path round a line of traps extending eixty miles, and render the whole unserviceable, merely to get at the baits. Yet it flies from the face of man, and may be killed with a atick. Its total length is not more than two feet and a half.
The Birds, according to Müller, amount to 232 apecies: the greater part of these are

The Mocking Jay. common to the northern countries of Europe; but the Mocking Jay (Corvus infaustus Lin.) (fig. 232.), and the Nutcracker (Nucifraga caryocatactes) are unknown in Britain and more southern latitudes: the bill of the latter is shaped much like that of a woodpecker, and is said to be used for breaking the shells of nuts: whence its name. The species of fish, from the maritime nature of the region, are numerous.
Domestic animals. It appears that the breeds called the lesser and greater Danish Doga are much more common in other countries than in that from which they have been named. The horses and cattle are of very large-sized breeds, generally called the Holstein. The greatest number of oxen seem to be bred in Jutland: they are fattened, during summer, in the rich inarshes of IIolstein, and driven, in the autumn, to Hamburg.

Sect. III.-Historical Geography.

During the early period of the middle ages, the swarms of pirates sent forth by Denmark spread desolation and terror to the remotest extremities of Europe. Canute king of Denmark even ascended the English throne in 1017. Denmark, at the same time, carried on frequent wara againat the contiguous districts of Germany and Po「and, and often held sway over large portions of them. But her most brilliant era was the reign of Margaret of Wal demar, surnamed the Semiramis of the North, who, by her courage, popularity, and address, succeeded in effecting the union of Calmar, which placed on her head, and on that of her nephew Eric, the crown of the three northern kingdoms of Denmark, Sweden, and Norway.
The decline of Denmark began in the thirteenth century, under the violent and tyrannical reign of Christian I. The sanguinary course by which he sought to punish an insurrection of the Swedes roused all the dormant spirit of that brave people, who found a deliverer in Gustavus Vasa, and were finally freed from the Danish yoke. During the two following centuries, Sweden, led to victory by a succession of heroic monarchs, rose to the highest pitch of military glory ; while Deumark, always defeated, was stripped of many of her most important territories, and sunk into the rank of a secondsry state. Still she successfully cultivated maritime commerce and shlpping, and obtained some valuable possessions in the East and West Indies.

In the great crisis produced by the conqueats of Napoleon, Denmark was thrown into an unfortunate predicament. Placed, as it were, at the point of collision between France and Russia, she could with difficulty escape being crushed between them. Circumstances of peculiar hardship threw her into the arms of France, to whose cause she adhered, and at the great contest which ended in the downfall of Napoleon, she became a victim. First, she was deprived of Norway, that it might be ceded to Sweden, and that Russia might retain Finland. Denmark received in return Swedish Pomerania as an inadequate compensation. Next, she wns required to exchange Pomerania for Iauenburg, a territory of still inferior extent and value ; but, as it borders on Sleswick and Holstein, it has rendered her dominion inore compact, and extcuded her frontier to the Eibe, so that she is perhaps rather a gainer ly the cxchange.

Sect. IV.-Productive Industry.

The agriculture of Demmark is conducted under considerable disadvantages both of climate and soil. The climate, though not subject to severe frost or intense cold, is chill and damp; and the land consists in a great measure of sand and marsh. Every part of the kingflom, however, is capable of some cultivation, und oceasional tracts of luxuriant fertility secur. Such are the islands of Zealand Laaland, and Falster; and, in a still greater dngree,
the sea-coast of Sleswick and Holstcin; for the interior is arill and sandy. The industry of the peasant in Denmark Proper suffers many severe checks; he has been but recently emancipated from personal bondage, and is still aubjected to many feudal usages. Lifeleases, under whioh the payment is made in produce or personal services, are common. The proprietors are generally embarrassed, and unable to expend much on the improvement of their lands. The farmers of Holstein and Sleswick carry on the process of cultivation with great skill and activity. The chill moisture of the climate ls less favourable to the cultivation of wheat than of barley, rye, and oats; all of which afford a large surplus for exportation. The rearing of cattle is also an extensive branch of industry, though too little attention has been paid to the improvement of the breeds, unless on the west coest of Sleswick, on whoee moist and rich meadows is produced what bears a high reputation under the name of "Hamburg beef." Over all Denmark, the produco of the dairy forms the basis of a large export trade.
The manufacturea of Denmark are extremely rude, and consist chiefly in working up the flax and wool of the country in a coarse form for domestic use. A great proportion also of the wool is exported. Government have employed great efforts to raise Denmark to the rank of a manufacturing country; and some fabrics in the different kinds of eloth, brandy, sugar-refining, \&c., have, under its patronage, been set on foot in the large towns; but these are all languishing, and with difficulty support foreign competition.
The commerce of Denmark is in a more active state than the other branches of industry; though it is still not such as to give her a prominent place smong the powers of Europe. The basis consists in the exportation of its raw produce. The grain exported from Jutland and the islands, at an average of seven years to 1827, amounted to 29,000 quarters of wheat; 141,000 quarters of rye; 190,000 quarters of barley; 43,000 quartera of oats. The rye was chiefly exported to Norway, to be used as bread-corn, and the barley to be employed in distillation. The value of these articles amounted, in 1825, to $\$ 2,300,000$. That of butter and cheese exported was, in the same year, $\$ 1,300,000$. Holstein and Sleswick, called the duchies, exported at an average also of seven years, 78,000 quarters of wheat; 55,000 of rye; $\mathbf{7 5 , 0 0 0}$ of barley ; 130,000 of oats. The vslue of butter, cheese, and salted meat, is still greater. Denmark, from its situation between the northern and middle states, has a considerable carrying trade of the bulky articles produced by the former; and has slso a good deal of ship-building. Both the whale and herring fisheries are likewise earried on to some extent.

Sect. V.-Political Geography.

The constitution of Denmark, originally founded on the basis of the most complete feudal independence, to the extent of rendering the monsrchy itself elective, underwent a complete change in 1660, when Frederick III. had the addross to obtain an act by which the crown was declared hereditary, and himself invested with supreme and absolute power. The sway of the Danish princes has, however, been exceedingly mild and popular, and their despotic power exerted in a manner beneficial to the people, as it limited the oppressive rights exercised by the notles. These, however, continue to be extremely obnoxiona; and it is only within a very few years that the body of the people were emancipated from a state of personal slavery. The nobles are few in number, consisting only of one duke, nineteen counts, and twelve barons. The king himself presides at the supreme national tribunal.
The revenue amounts tofrom about $\$ 7,500,000$ to $\$ 8,000,000$. There is a nominal debt of $\$ 75,000,000$; but the interest paid upon it is small.
The military snd naval establishments are on a scale suited to a greater country than what remains of Denmark. The army is kept up to nearly 40,000 regular troops and 60,000 militia. The navy has not recovered from the severe shock which it received during the last war: at present it consists of six ships of the line, six frigates, and four corvettes, besides smaller vessels. The sailors being all registered, no difficulty is ever found in mauning the navy.

Ster. VI.-Civil and Sncial State.

The population of the Danish dominions in 1832, amounted to $2,049,000$; of which 1,540,000 were in its ancient domain of the islands Jutland and Sleswick; 404,000 in Holstein; 40,000 in Lauenburg ; 51,000 in Iceland ; 14,000 in Greenland and the Faroe Islands.*

National character. The Danes are generally quict, tranquil, and industrious. The inhabitants of the towns, who are chiefly engaged in trade, have a great share of the patient, shritty, and persevering habits of the Duteh. The peasantry, poor and oppressed, are beginning, however, to raise their heads; and the nobles, no longer addicted to those rude and

[^19]daring pursuits which rendered them once so formidable, live much in the atyle of epulent proprietors in other European countries.
The Lutheran religion was early and zealoualy adopted in Denmark, to the extent, indeed, of granting toleration to no ether; but the liberal principles new diffused throughout Europe, have made their way fully into that ceuntry. Science was at one era somewhat brilliantly patronised in Denmark. The cbservatory at Orienbaum was the theatre of many of the most important modern observationa; and Tycho Brahe ranks as one of tho fathers of modern astronemy. CElenschlager and other writers have introduced a school of poetry and dramatic literature, founded upon that of the modern German. The government has bestowed a laudable attention on the general education of its people, and has even passed a law, requiring every child, of a certain age, to be sent to school. The achools, on the plan of mutual instruction, amounted, in 1829, to 2500, and mere were in progress ; there are also 3000 grammar and parish schools.

Seor. VII.-Local Geography.

The local divisiona of contincntal Denmark present little variety in consequence of the unifermity of its surface, and the small number of considerable cities. Its divisions are Zealand and the othcr islands; Jutland, Sleswick, Holstein, Lauenburg; with the remote territories of Iceland, Greenland, and the Faroe Islands.

Zealand is a flat, fertile, and extensive island, separated from Funen by the Great Belt, and from Sweden by the Sound. Including the capital, and chief seats of tradc, it forms the most important part of the Danish dominiens.

Copenhagen, (fig. 233.), (in Danish, Kiebenhafn, or the "merchant port,") the capital of Denmark, is situated on the east coast of Zealand, with the island of Amak oppposite to it, and seve ral little lakes in its vicinity. Its walls enclose a circuit of five miles, a great part of which, however, is covered with open spaces, and with the harbour and docks. The housea, with a few exceptions, are built of brick, plastered over, and painted in different colours. The number of inhabitants is about 115,000; the houses are lofty, and contain many families in each. The city
feudal comch the power. d their essive xioua ; d frem duke, tional
 is divided into three parts; the old town, which contains the greater part of the population; the new town, in which are all the finest edifices; and the port, or Christian's Haven. In the midst of the principal square is the bronze statue of Frederick V., weighing 45,000 lbs. This square, with the adjoining one called the King's Mark Place, surrounded by the palace of Charlottenborg, the theatre, the principal hotel, and other etately buildings, forms the handsomest part of Copenhagen. The cathedral was destroyed during the bombardment by the English, and is left in ruins; but the Frue Kirke is an elegant Grecian edifice, 215 feet by 180 , with a Doric portico, and for which Thorwaldsen ia preparing statues of the apostles and evangelists. The palace of Rosenborg, theugh now unoccupied, contains an extraordinary display of jewels, precions stones, and porcelain. The collections in science and art are equal to those of the greatest capitals. The king has a library of 400,000 volumes, with numerous manuscripts illustrative of the history and literature of the North, as well as those brought by Niebuhr from the East; an extensive museum of northern antiquities: a gallery of pictures, comprising some fine specimens of the greatest masters, and a numerous collection of engravings. The University of Copenhagen, a highly respectable institution, has a valuable library of about 100,000 volumes, and an excellent cellection of northern manuscripts. The arsensl is said to equal that of Venice in beauty, and to surpass it in extent. The mint throws off 200 pieces in a minute.

The other towns in Zealand and the ialands are of comparatively amall magnitude. Roschild, the ancient capital of Denmark, which contained once thirty convents and thirty churches, is now remarksble only for its Gothic cathedral, in whose vsults are deposited the remsina of the kings of Denmark. Several of the monuments are fine. Elsinore, with its castle of Cronborg, is important from its situation on the Sound, which being commanded by the castle, the government is enabled to levy what are called the Sound dues. The passage to Helsinborg, in Sweden, may be made in half an hour. Elsinore, from its favourable situation and good roadstead, carrics on a considerable commerce, and contains, among ita inhabitants, many British, Jews, and even Mahometans. It has a handsome cathedral, with some finc tombs. Population 7000. At Cronborg is shown the chamber in which the unfortunate Matilda was confined. This castle commands a noble vicw over the sca, the

Vol. I.
ialands, and the opposite coast of Sweden. The terrace from which these are viewed recalla to the English reader the first ecenes of llamlet, the tradition of whose atory is still prevalent here. Soroe, in the interior, surrounded by a fine country, has a noble academy; and contains the tombe of Eric, Canute, and other princes. Odensee, the capital of Funen, has a college, and is rather a thriving town, with manufactures of woollen and soap. Nyeborg, in Funen, and Corsoer in Zealand, derive some importance from their situation on the passage of the Great Belt; and Middelfarth, in the former island, from the passage of the Little Belt.
The towns of Jutland are of amall interest, and have been little elseerved, with the exception of those which lie on the high roed from Hamburg to Copenhagen. Aalborg, near the northern extreffity, is the seat of one of the four bishoprics; and, being situated on a narrow arm of the sed,'with a good harbour, carries on some trade. Aarhuus, on the eastern coast, is the seat of another bishopric; and, being in the midst of a fertile country, exports some grain. Population, 5,000 . Colding derives some importance from its vicinity to the passage of the Little Belt. "Wiborg and Ripen are also deserving of mention.

In Sleswick, the city of that name is agreeable, though irregularly built. Its cathedral, with numerons monuments of ancient dukes, is viewed with intereat. Flemsborg, on a deep and winding haff, or bay, with an excellent harbour, possesses a much greater commercial importance, while it carries on the communication with the Baltic: it has 15,000 inhabitants. Tonningen, on the other side, near the mouth of the Eyder, communicates with the countries aituated round the Gernan Ocean; and, by the canal of Holstein, it has now a water communication with the Baltic.

Holstein, the most southern province of Denmark, ranks as a part of the German empire, to which it once belonged, and gives to the king of Denmark a vote in the diet. Reaching to the Elbe, and being more in the commercial circle, it has a considerably brisker trade than the northern or peninsular territory. Altona, a few miles below Hamburg, is a repetition of that city on a smaller scale; having $\mathbf{2 5 , 0 0 0}$ inhabitants, busily employed in the commerce of the Elbe, in ship-huilding, and in several manufactures. Gluckstadt, about twenty miles lower, though interior in extent, is a handsome and regular town, with considerable naval estsblishments. Kiel, on the eastern or Baltic coast, has an excellent harbour, and derivea importance from its situation at the extremity of the canal which connects the eastern and weatern seas. It contains an university. Lanenburg, a level tract, intersected with several small lakes, though it rounds the Danish borders, does not possess much importance, either in itself or its little capital, with 3,000 inhabitants.

Iceland, an appendage of the Danish crown, unimportant in a political view, but interesting from its physical and moral aspect, is situated in the Northern Ocean, on the border of the arctic circle, und at the farthest verge of the civilized world. It is a large island, 220 miles in length, and 210 in breadth; contsining about 40,000 square miles. Iceland belongs, by its aituation, to the polar werld ; and the mountain chains, from 3000 to 6000 fect high, with which it is cverywhere intersected, give it a still more severe and atern character. Barley is the only grain that can be raised, and this only in patches; cabbages, and a few other imported vegetableb, may be produced, but by no means in perfection. The dependence of the inhabitants is chiefly upon the abundance of fish which the surrounding seas afford ; so that the interior, compriaing about balf of the island, is a desert of the most dreary charscter.
The mountain phenomena of Iceland are very striking. According to Gliemsn, the jokuls, or hills covered with ice, rise to the following heights: Oerefe, 6240 feet; Snafell, 4572; Findfall, 5368; Hecla, 5210 ; Eyafiall Oeater, 5794. All these mountrins are, at the same time, glaciers capped with ice which never melts; but these glaciera consist not, like those of Switzerland, of great masses sloping down from upper regions of the mountaina to the valleys; they are the enows of winter melted and frozen where they fall. Beneath this mantle of ice and snow burns a perpetual fire, which in every part of the island bursts forth in the most strange and fearful phenomena. Hecla (fig. 234.), with its flaming volcano, is the most celebrated; but its eruptions, of which six have occurred in the course of a century, are at present sispended. There are six other volcanoes, which, in the course of a century, have emitted twenty eruptions.

The Geysers form a phenomena strikingly characteristic of Iceland, and rank with the most extraordinary that are produced on any part of the globe. They consist of fountains, which throw up boiling water, spray, and vapaur, to a great height into the air. The eruptions are not continuous, but announce their approach by a sound like that of eubterraneous
thunder; immediately after which, a column of water, accompanied with prodigious volumes

235

Greal Geyuer. of steam, bursts forth, and rushes up to the height of filty, sixty, ninety, or even a hundred and fifty feet. The water coon ceasea; but the apray and vapour continue to play in the air for several hours, and, when illuminated by the sun, produce the most brilliant rainbows. The largest stones, when thrown into the orifice, are instantly propolled to an amazing height, and remsining often for some minutes within the influence of the ateam, rise snd fall in singular alternstion. Stane thrown into the fountain have the remarkable effect of acting as a stimulus to the eruption, and causing it to burst from a state of tranquillity. The basin of the Great Geyser (fig. 235.), is of sn oval form, with dismeters of fifty-eight and sixty-four feet. Every spot around the Geysers is covered with variegnted and beautiful petrifactions. Leaves, grass, rushes, are converted into white stone, preserving entire every fibre.

The Sulphur Mountains, with their caldrons of boilng mud, present another phenomenen which the traveller beholds with the utmost astonishment. These consist chiefly of clay, covered with a crust, which is hot to the touch, and of sulphur, from almost every part of which, gas and steam are perpetually escaping. Sometimes a loud noise guides the traveller to a spot where cal-
 drons of black boiling mud (fig. 236.), largely impregnated with this mineral substance, are throwing up, at short intervals, their eruptions. That on the Krabls, observed by Mr. Henderson, had a diameter equal to that of the Great Geyser, and rose to the height of thirty fect. The situation of the spectator here is not only awful, but even dangerous; standing, as Sir George Msckenzie observes, "on a support which feebly sustains him, over an sbyss where fire and hrimstone are in dreadful and incessant action."
The civil and socisl state of Iceland presents features no less interesting. It wss discovered about the year 840, by Nadod, a Danish pireis. After its settlement it became a little independent republic; and the arts and literature, driven before the tide of barbarism, which then overwhelmed the rest of Europe, took refuge in this remete and frozen clime. Iceland had its divines, its annalists, its poets, and was for some time the most enlightened country then perhaps existing in the world. Surjoited first to Norway, in 1261, and afterwards to Denmark, it lost the spirit and energy of an independent republic. Yet the diffusion of knowledge, even among the lowest civir, which took place during its prosperous period, still exists in a degree not paralleleu in the most enlightened of other nations. Men who seek, amid the storms of the surrounding ocean, a scanty provision for their families, possess an acquaintance with the classical writings of antiquity, and a sense of their beauty. The traveller finds the guide whom he has hired able to hold a conversation with him in Latin, and on his arrival at his miserable place of rest for the night, is addressed with fluency and elegance in the same language. "The instruction of his children," says Dr. Holland, "forms one of the stated occupations of the Icelander; and while the little hut which he inhabits is almost buried in the snow, and while darkness and desolation are spread universally around, the light of an oil-lamp illumines the page from which he reads to his family the lessons of knowledge, religion, ond virtue."

The Faroe Islands compose a group in the Northern Ocean, between $61^{\circ} 15{ }^{\prime}$ and $62^{\circ} 20^{\prime}$ N. lat., to the N. W. of Shetland, which they resemble. The principal are Stromsoc, Osteroe, Suderoe, and Norderoe, with the smaller islands of Nalsoe, Vagoe, and Sandoe. Their only wealth is produced by the rearing of sheep, fishing, and catching the numerous birds which cluster round the rocks. With the surplus of these articles they supply their deficiency of grain. Thorsharn, on Stronsoe, is the only place that can be called a town.

CHAPTER VI.

EWEDEN AND NORWAY.

Swepen and Nonway, now united into one kingdom, form an extenaivo region, atretching from the utmost verge of the temperate zone far into the frozen range of the arctic circle. Along the north and west atretch the wide shores of the Frozen Ocean, so far as yet known. The south-west point of the kingdom borders on the North Sea or German Occan. . The Baltic and the Gulf of Bothnia encloso it on the south and cast ; so that it forms an immenee peninsula. The isthmua by which it ie joined to Russia la above 200 miles broad, but mo closely barred by mountains and frozen plaina, that the kingdom is ncarly inaccesaible, excopt by mea.

Sect. I.-General Outline and Aspect.

This kingdom is of vast extent. Its length, from the extreme point of Scanis to the North Cape, is 1550 miles. Its breadth, from tho extreme points of the provinces of Stockholm on the east, and Bergen on the weat, will little exceed 350 miles. Its area is 297,000 equare miles. Of this large territory, acarcely a half can be considered as belonging to the civilized world. The Laplander, who derives his whole subsistence from the rein-deer, can hardly be included within the pale of civilized society. Even the southern districts have a rugged and repulaive aspect, when compared to almost any other European atate. Forests of tall and gloomy pine stretch over the plains, or hang on the sides of the mountains; the ground for five months in the year ia buried under anow; cultivation appears only in scattered patches, and was long quite insufficient to furnish brcad to the inhabitants.
The mountains consist chiefly of the dark and lofty chain of the Dofrines, which were for sges a barrier between the two separate and hostile atates of Sweden and Norway, but are now included within the united kingdom. It commences near. Gottenburg, on a low scale, and becomes much more elevated in passing through Norway, where some of its pin nacles exceed 8000 feet. Chains of secondary elevation run through Lapland; but, in approaching the North Cape, they again rise as high as before, and face the polar aeas with cliffis of prodigious magnitude.
The rivers are numerous, Sweden being a country profusely watered; but, as they rise in the Dofrines, and traverse the divided breadth of the peninsula, they seldom attain any material length of course. The largest is the Dahl, which crosses Dalecarlia, and falls into the sea at Geffle, after a course of 260 miles. The most important as to navigation are those which form the outlet to the lakes, particularly the Gotha, reaching from the lake Wener to Gottenburg. The Glomme and the Dramme are pretty considerable rivers, ruaning from north to south, and down which considerable quantities of timber are floated. Lapland pours a number of large streams into the head of tho Gulf of Bothnia; but these are usually chained in ice, and at no time can be subservient to the purposes of agriculture or navigation.
Lakes form the grand depository of the surplus waters of Sweden. The Wener bears almost the character of an inland sea, and the completion of the canal of Trolliatta, by enabling its coasts to communicato by the Gotha with Gottenburg, has given them almost the full advantagee of a maritime site. The Wetter, though equal in length, covers not nearly so great an extent of ground. Maler, or Malar, is a narrow, winding loch, or, more strictly, a bay, running sixty miles into the interior from Stackholm, to whose environa ite variegated and rocky shores give a beautiful wildness. Small lakes, enclosed between hills, are of very frequent occurrence, both in Norway and Sweden.

Sror, II.-Natural Geography.

Subarct. 1.-Geology.

(1.) Geolooy or Sweden.-I. Primitive rocks. Granite occurs in the mountaine of Jamtland, in Herjeadalen, in Lulca Lappmark, in Pitea Lappmark. It occure also in the plaina, without any covering of other rocks, as in Upland, Weatmanland, Sudermanland, and a part of East and West Gothland. It passes into gneiss and syenite. Gneise occurs in many places in Sudermanland, East Gothland, \&c., with beds of copper and iron orc. Mica elate abounds not only in the principal, but also in the subordinate chains, and contains the greater number of the metalliferous beds met with in Sweden. It often alternates with vast beds of primitive limestone, quartz, \&cc. In the high mountain ridges, the strata of this rock are generally disposed at an angle of 45°; while in the subordinate chains they ase vertical. In many places it abounds in garnets, when it is known under the name noorka, or murkstein, the garnet rock of geologists. Clay slate occurs sparingly: talc alate, in aeveral quarters, occurs in considerable abundance. Porphyry occurs only in Smaland, where the basis is a quartzy hornstone (hallefinta) with embedded crystals of felspar, and grains of quartz. Primitive limestone occurs generally in the secondary mountain chains,

Boox I.
but aeldom in the neighbourhood of the central chaina. It is mixed up with hornblende tremolite, quartz, serpentine, garnet, magnetic ironstone, and mica. It in ofen inetalliferoun, containiug galena, copper, and iron pyritew. Nerpentine, with the exception of massea In some metalliferoun beds, soldom occurs pure: it is often mixed with limestone, when it occurs in primitive limestone. Quartz rock occurn either pure, and in whole mountains, an in Dahlsland, Sumaland, and many other places; or it alternintes with mica slate, as in Dahlaland, and also in the metalliferous beds of I'eraberg and Klacka. The limestone of Danemora centalna mica slate. It also occurs in veins in granite and mica slate, \&c. Porphyritic quartz, a granito rock, with embedded grains and crystals of folspar, occura in Smaland, Tornea Lappmark, \&ec. Primitive trap. Of thie interesting proup of rockn, the following kinds are met with; viz. hornblende rock, hornblende with felapar, and hornblende with mica.
II. Transition rocks. Conglomerate and sandstone, which, in mome placea, are covered with trunsition limestone, occur in Jämeland, Tornea Lappmark, Angermanland, Dalecarlia, Schornen, ielande in the Lake Wetter, East and Woet Gothland, Nerikn, Dalarnia. Transition porphyry: in the parieli of Elflal, in Dalarnia, The basis is of tho nature of hornatone. It rests upon transition mandstone, and is covered by syenite, porphyry, and traneition greenstone. Groywacke alate lies upon sandstove, and is covered by transition limestone. It sometimes contaiss cual, and then pasees into a kind of shnle. It also containa fossil remains of marino animals. Tranaition limestone occurs in Gothlnnd, Eland, Schönen, East and West Gothland, Nerika, Dalarnin, and Jamtland. In the regular succession, it liea immediately upon alum slate, but in Gothland directly upon sandmtone. It ia seldom covered oy other rocks, excepting in West Gothland, where it is covered by elay slate and greenatone. It contains many different petrifactions, aa orthoceratites, nmmonites, anomites, echinites, corallites, and entrochites. Its colour ia commonly gray, or bluish gray, and reddish brown, often varied with veins of a green colour. Transition trap is the youngest rock of he transition class in Sweden. In Elfdal it rests upon porphyry; upon transition clny slate and alum slate in Kennekulle, Billengen, the Hunne and Halleberge, and others, in West Gothland.
III. Aecondary rocka. The mountain chnin around Helsingborg, in Schönen, is composed of secondary sandstone. It contains beds of slate clay, bituminous shale, and black bituminous coal. This sandstone, which belongs to the black bituminous conl formation, is covered with other secondary deposite, as limestone, the age of which is not well known. The only one of these newer secondary deposits, the geognostical history of which has been made out, is Chalk. This interestiog formation occurs at Limhama, near to Malmo. It eneloses balla of common flint, and, at ita lower part, passes into a more solid chalk and secondary :imestone.
IV. Tertiary rocks. The tertiary deposits seem to occur in some points of the land not sar distant from the sea-coast; but they have not been carefully explored.
V. Alluvial rocks. Many tracts more or lees deeply covered with gravel, sand, and clay, occur in Sweden.
Mines. The mines of Sweden have been long celebrated all over the world, and have been frequently deseribed by travellers. Gold and ailver mines. The Adelfors mine, which formerly yielded thirty or forty marks of gold amnually, now furnishes only three or four; those of Fahlun, where copper predominates, return ammually four marka of gold and fifty marks of silver. The ailver mine of Sabla, which, during the reign of Queen Christina, yielded annually 20,000 marks of eilver, doee not at present afford annually more than 2000 or 3000 marke. Copper mines. The most considerable copper mines are those of Fahlun, which is also known under the name of Kopparberg. The mines of Atwidaberg, in East Gothland, furniah about a aixth part of all the copper which the Swedes obtain annually from mines; those of Fahlun yield more than the half of the copper raised in Sweden. The ore at Fahlun is copper pyrites, disposed in an immense irregular-shaped mass, in mica slate: 10,200 quintals of copper are yielded by it annually. Iron mines. The greatest iron mines are those in the province of Upland: of these the most important are those of Skebo, of Esterby, not far from Danemora, of Gimo, of Ronaea. Iron is mined as far north as Gellvara, which is 200 leaguea to the north of Stockholm. The island of Uto, on the east coast of Upland, also affords a considerable quantity of iron. The whole mines afford annually $1,800,000$ quintals of iron. Cobalt mines. The principal mines of this metal are those of Tunaberg, near to Nyköping, and at Awed, in East Gothland. These mines afford excellent cobalt, but the quantity is not great. Conl mines. Coal mines have been worked for some time in Scania, two leagues from Helsinborg, and are affording a considerable return. Sulphur and vitriol. The pyritical minerals of Dylta afford annually 1050 quintals of sulphur, and those of Fahlun about 100 quintals of the same substance. The vitriolic waters of Fahlun afford annually about 600 quintala of green vitriol, or sulphate of iron, and a small quantity of blue vitriol, or sulphate of copper. Alum. The annual produce of alum is about 42,600 quintals. Quarries. Sweden possesses, besides its regular mines, also valuaole quarries of granite, porphyry, and marble. The porphyry quarries of Elfdal are the

largent and most celebrated in Europe. Nearly all the fine modern worka in porphyry are In the porphyry of Elfdal.
(2.) Imology of Nostay and Iapland.-I. Primitive rocks, Thene wild but highly interesting countries are principaliy compoed of primitive and tranuitior, rocks ; mecondary rocks occur but rarely, and alluvind deposite are not mo abundant an in many other leen extensive rogiona. Granite is a rare rock in Norway and Lapland, and may be considerod one of the lenat aboudant rocks in Acandinavia. The granite frequently appears in veins traversing the primitive atratifled mekn, or running parallel with beds or strata; and mometimes it can be seen apread over the murface of mica slate, nat at Forvig, or irregularly nmociatel with clay slate and diallage rock, ns in the island of Mageroe. Greins soems to be by far the mout frequent and nbundant rock in Scandinavia, all the other primitive rocky appearing to be in mome degree subordinnte to It. Mica slate reats upon and altornnten with the gneine, but is far from being so generally diatributed as that rock. Clay alate along with the micn slate is not of frequent occurrence. Quartz rock, varioun hornblende rocks, ant limeatone, occur in beds subordinato to the gneise and mica slate. Cabbro, or dialluge rock, one of the moat beautiful of the older rockn, ocrura in great quantity, connected with elay slate, in tho island of Mageroe, anil other parts of Norway.
II. Transition rocks. This clases contains, besides greywacke, alum slate, and limeatone (which contains much tromolite), and other rocks well known to mineralogists as members of thls class, the following :-1. Granite, which sometimes contains hornblende. 2. Syenite, which contains a beautiful Inabradoric varioty of common felapar, and numerons cryatale of the gem named zircon. 3. Porphyry, and, associated with it, various trap rocke allied to basalt and amygdaloid.
III. Secondary rocka. The great primitive land of Scandinavia continues onward to the extreme northern point of Norway; but in thia high latitude some new formations make their appearance among the oliler. The sandstone quartz of Alten has been known since the publication of the travels of Von Buch. On the East, towards the Russian dominions, thero is a coneiderable tract which differa more from the primitive formations than the sandatone quartz of Alten does. Sandstone and conglomerate extend across tho aubjacent gnoiss in a horizontal position. These rocks probably belong to the old red sandatone.
IV. Alluvial rockn. Old alluvium occurs on the coast, and in the interior in many of the valleys, and the new evorywhere in greater or less quantity.

Minen. The only silver mines in Norway are those of Kongabcrg, siluated in mica slate, which formerly afforded rich returns, but of late have yiolded no profit. The gold mine of Elswold, and the mines of lead and silver in Jarisberg, have been but feebly worked. The oopper minez are principally situated in tho northern division of tho kingilom. The most onsiderable, near Reraas, were discovered in 1644 . They have afforded considerable quanities of copper: in 1805, the annual return was 7800 quintals of copper. The other mines of copper are from 15 to 20 leagues of Drontheim, at Quikne, Iakkon, Selloe, and in the district of Christiania, at Fredericksgave or Foledal. The principal iron mines are those of Arendal and Krageroe, in southern Norway. The mine of Laurwig, near tho town of that name,

References to the Map of Sweden and Norway.					
NORTH PART.	4. Adoplon	84. Ottartund	34. Moe	76. Volim	b Alton
1. Ablart	43. Hita	ch. Maritab	34. Flathen	77. Proturicksind	d faonens
2. Tana	45. Dolatad	87. Dronthelm	27. foel	79, Udilevella	${ }^{-1}$
Fabeblje.	49. Iugholm	\%, \%oinevie	3. Kleiven	©i. Wonerborg	f Nilolven
Jommerfart	47. Tama	69. Carbers	39. Berre	81. Jdikopinie	fr Ifeina
Allengmard	-	80. Itovne	40. Amravis	g. Akara	h glummen
Jukby Alanpah	Lemive	sOUTE	4. Trusen	84. Marichtad	Klar
Peivpantanta	5. Noreio	Sundawali ${ }^{\text {ar }}$	Nore	85. Nykoping	Irins
. Kauroteino	59. Gumduranen	Brade	14. Chriotiania	M3. Nothoping	-
- Kollnjaurea	83. Lulot	Lan	45, Pryinande	87. Weetrewick	in Ijume
12. Flaland	54. Pitea	8yen	Narena	\%. Dinkupias	- Nijuranda
13. Oforien	6. Albyn	5. İindealla	47. Nopnberko	, 0 , chey	o \|minal
14. Ankenps	56, Burivask	2. IIrede	48. Tuna	T0. Fikepjo	p Aprermana
15. Kurgevanta 14. Redisvani	57. Umenter	7. Tyring	49. Herlmara	91. Jonkoplag	9 Umea - Windel
17. Hooptere	$00^{\text {Nyby }}$	9. freme	5). Lomta	8i. Oreryd	- Pitea
10. Atanve	60. Selronole	10. Opdal	6. bent	94, Garehem	t Anlea
10. Hipar	92. Raska	12. Romadel	3. Wnaddu		
81. Quiekjock	6i. Busolo	13. Goedelv	55. Erockholm	97. Italmated	w Tornea
1. Ruolivnte	64. Ormpio	14. Stavum	56. Marimfiel	0. Nottehack	5 frainia
23. Ealtdalen	65. Gaddedett	15, Forile	67. Frotoping	Di. Morlundo	y Muonlo
24. Honet	64. Foldereid	17, goznedal	59, Weetera	100. Nieterhult	
28. Eflones	67. Otdernese	17. Lom 14. Rinzebo	59. Orehrn 60. Pbilipetad	10). Wuby	a" Ilorn
97. Eilbopeck	19. Hagetad	10. Ovam	71. Curlotad	10i. Anmpekulla	$)^{*}$ Stora
28. Rindijaur	70. Holmoot	20. Grotio	62. Holmedal	104. Calmar	c^{*} Ave
Waimal	71. Undarauker	21. Engedal	63. Mons	105. Borgholm	d* Jmeta
Lulen	7. Kallajon	2. Aubyn	64. Tonaber ${ }^{\text {a }}$	108. Carameroha	${ }^{\text {e* }}$ WHigomas
Orae	73. Folinge	9. Hersn	65, Ovamen	107. Crajohnmm	'e Apunus
Pulf	75. Asele	25. Apbras	67. Salimar	103. 1mudactnen	h^{*} Rtort
34. Rajala Keogla	77. Junsela	2\%. Boderhamn	68. Egpruand	110. Chrietianetad	* Formuad
35. Pollo	7. Amund	97. IImmrange	69. Bakhe	11. Borum	- Miovea
3n. Upper Tornea	78. Nordmalins		70. Christiangund	112. Falaterbo	Malor
37. Tumea	79. Parviken	29, Frhlua	71. 4.40608	113. Maimo	IVimar
	日1. Nondingra	31. Maluns	7. Mokiend	Rivers.	n^{*} Wener
meda	82. Hernosand		74. Arendal	- Tana	${ }_{0}$ - Bolmes
4. Tvara	83. Fors	33. Grued	75. Sando		

affords annually 20,000 quintals of bar-iron and 0000 quintals of cast-iron. The establishment of the same kind at Moss affords annually $\mathbf{1 0 , 0 0 0}$ quintals of iron in bars and cast. The same annual quantity is afforded by the mines of Berum, Bolvig, Ulfoss, Eidfoss, Egeland, Naes, Dikkeinarken Fossum, and Oudalen. Lastly, the mines of Hassel, Froeland, Lessoe, and Mostmarken, furnish from 3000 to 5000 quintals of iron annually. The annual produce of the iron mines of Norway is estimated by a well-known atatistleal writer at about 150,000 quintals. The mines of cobalt, which are woiked at Modum and Fossum, are extensive but not deep. In the year 1792 they yielded 2817 quintals of ore. There is a mine of plumbago and black lead at Engledal. The mines of alum, which are worked in the mountain of Egeberg, near to Christiania, afford not only a sufficiency for the consumption of the Danish states, but also a considerable quantity for exportation. Norway poseessea guarries of granite, marble, millstone, whetstone, slate and clay. Granite is exported to Holland; the marile and other minerala aupply the Danish states.

Subseot. 2.-Botany.

The Botany of these countries has been noticed under that of Denmark.

Suasect. 3.-Zoology.

The Zoology of Sweden, the native country of the celebrated Linnæus, is so well known to naturalists, by the writings of that great man, that to them the sabject ia familiar. Nor does it present any thing very different in its general character from that of Denmark. The bleak and inhospitable regions of Norway and Lapland, to which nature has denied the rich and verdant pasturage of Britain, and the consequent abundance of grazing animals, are, however, the chief metropolis of the Rein-deer, whose diversified qualities are beautifully adapted for supplying such deficiencies.
The Rein-deer (Rangifer Tarandua H. Smith) (fig. 238.) forms the sole riches of the

The Rein-Deer. Laplander, and its care is almost his only occu. pation. According to the season, he migrates to the sea shore, the plains, or the mountains. The rich often possess 2000 head; and the poorer seldom less than 100. The adult male, in a wild state, is even larger than a stag; but the domesticated races are somewht sinaller: the sight and scent of these createres are astoniahing, and guide them with wonderful precision through the most dangerous passes and in the darkest stormy nights of an arctic winter. To this sagacity the Laplander trusts his life with confidence; and accidents rarely happen: they draw his sledge with such amazing rapidity, that in twenty-four hours a pair of Rein-deer have been said to perform a journcy of 100 miles. In a wild state they are gregarious; and, when domesticated, evince an excessive attachment to each other. Daring summer they are much tormented by a species of gad-fly; but the old account of the glutton falling upon them from a tree, and then devouring them, ia now considered fabuloas. During life this usefal animal supplies its master with labour and milk; and, when dead, every part becomes serviceable, the skin for clothing, and for boots; the horns to make utensils; the sinews for thread, and the flesh for food: the intestines are also used; and the tongue is a well-known article of commerce.

The Birds are not numerous, and, with few exceptions, differ not from these of Denmark

Iceland Falcon and the other northern kingdons. The Iceland Falcon (Falco islandicus) (fig.239.) rarely wanders to more temperate climes; and a gigantic Owl (Strix lapponica Lin.) is a peculiur inhabitant of the dreary solitades of Lapland: to these we msy add two other species; the large Ural Owi, and the Great Snowy Owl. These formidable birds prey upon numerous ptarmigans and grouse, great numbers of which inhabit the confines of the arctic circle. The Curruca suecica Sw. or Blue-throated Reed Warbler, one of the most elegant birds of Europe, is not peculiar, as its name would imply, to Sweden, being common in France and Switzerland.
The insects of Sweden, during its short summer, are very numerons; and many, enumerated by Acerbi, very beautiful; but, in autumn, nearly the whole country is terribly infested by Musquitoes, these tormenting little animals being beyond calculation more nunicrous in high northern latitudes than in the woods of tropical America.

Sect. III.-Historical Gegraphy

The early history of Scandinavis is deeply involved in fable and uncertainty. Ptolemy and Pliny, the best informed of ancient geographers, seem to distinguish it from "Great Germany," of the coast of which they repreeent Basilia, or Baltia, as a large is,and, though not nearly appronching to the real dimensions. The Goths were found in early possession of Sweden, and its southern provinces have been denominated Gothland; but the question, whether they were the native possessors, or entered it ab conquerors, is one which can scarcely be now decided. Scandinavia has been called the "storehouse of nations;" and "the bluc-eyed myrisds from the Baltic coast" are supposed to have been among the most numerous of those whe spread war and desolation throughout Europe. Dr. Clarke ridicules this idea, as inapplicable to a country of unbroken forests, and a slowly advancing population, making the first essays of agriculture; yet, theugh the population could never be great, the simple snd pastoral habits of the people might dispose emigrants to seek subsistence with the aword in lappier climates.

Scandinavia, first, by a series of formidsble expeditions, made a figure in history st the end of the ninth century. Harold Harfager, or the Fair-haired, the first of the great sea-kings of the North, having united the formerly independent districts of Norway under his sway, undertook triumphant expeditions against Shetland, Orkney, and the Hebrides. For several centuries the Danos and Norwegians held full possession of those islands; gave a king to England, and formed a permanent establishment in Normandy. The defeat of Haco in Scotland, and of Harold III. in England, during the eleventh century, put an end to this maritime dominion: and the northern nations, notwithstanding their immense supply of naval stores, have never since intained to more than a secondary rank among the maritime powers.

The union of the kingdoms of Scandinavia, in 1388, under Margaret, called the Semiramis of the North, forms a memorable era. Immediately, however, after the death of that able princess, the Swedes began to struggle for independence. But their repeated attempts to establish a separate kingdom were always defeated, till the cruel and tyrannical reign of Christian II. drove matters to extremity, and brought on a new revolution.

Gustavus Vasa, in 1520, hoisted again the national standard in the province of Dalecarlia, and, in three years subsequently, entered Stockholm in triumph. After a leng struggle, the Danes were compelled to recognise the independence of Sweden.

The reign of Gustavus Adolphus formed a glorious era for Sweden. The Protestant religion having been established under Gustavas Vasa, Sweden began to he looked to as its support when assailed by a formidable confederacy. In 1630, Gustavus took the field at the head of only ten thousand Swedes; but sround this gallant hand rallied sll the Protestant powers of Germany. The splendid victory of Breitenfeld humbled the house of Austria, and re-established the civil and religious liberties of the empire. Even after his fall, in the glorious field of Lutzen, his generals continued to wage that desperate war of thirty years, which was necessary to compel the Catholic league finally to renounce its pretensions. Sweden, at the peace, obtained Ponerania, and other important possessions in Germany; and continued, till the erd of the seventeenth century, to exercise a powcrful influence on the affairs of Europe.

The victories and reverses of Charles XII. threw a wild and romantic lustre around Sweden, which terninated, however, in the loss of her station and greatness. Being defeated at Pultowa, by the Czar Peter, and driven to seek shelter from the Turks at Bender, he was obliged to purchase pesce by the sacrifice of Livonis, and others of his finest provinces. The influence of Sweden was thenceforth confined within its own barren limits, and it ranked with difficulty as a power of the second order. The only remarkable change in the course of the century was produced by the revolutions of 1772 and 1789, when Gustavus III. succeeded in converting the government into an absolute monarchy, though in other reapects his reign was advantageous to Sweden.

The election of Bernadotte, one of Bonaparte's commanders, to fill the thronc, left vacant through the rash cenduct of the legitimate monarch, made a great change in the relations of Sweden. To conciliate his new subjects, he restored in full plenitude the representative constitution, which had been reduced to a mere shadow. Having joined the confederacy against his furmer master, he received Norway in compensation for the loss of Finland, and had thus a more compact and defensible territory. The Norvegians exclaimed, not without reason, against this compulsory transference; yet Denmark had deprived them of their free constitution, which they now regained, and had in so many respects depressed the country, with the view of concentrating every thing at Copenhagen, that the connection now terminated has been considered the bane of Norway.

Sect. IV.-Political Geography.

The constitution of Sweden is one of the few in Europe, which has always preserved some portion of that representative bystem which had been formed in remote ages. Towards the close, indeed, of the last century, it was reduced by Gustavus III. to little more than a

VoL I
41
form. Bernadotte, however, an elected monarch, without any national canim, wan obliged to court the fivenr of tho nation, and, with that view, to re-establish the rights of its nncient diet. This is now rather in antique and cumbrous form of legislature, consisting of fuur orders; the nobles, the elergy, tho peasnnts, and the burghers; who sit and vote in eeparate houses.

Of theso houses, that of the nobles consists of about $\mathbf{1 2 0 0}$ members; tho head of ench fanily being, by inheritance, its legnl representntive. They are divided into three classes:herra, counts, barons, \&c.; redlar, knights; and sivena, or gentlemen who, though without any titlo, have received letters patent of nobility. The house of elergy consints of tho archbishop and all the bishops; while the rest of the eeclesiastical boly is represented by deputies. The burghers are chosen by the towis, every freeman who pays taxes having a vote: they form an independent boly, partly, perlaps, because the honour of a sent is not eagerly contested. The pensants do not exactly eorcespond to our idea of that term: they consist of a body of little proprictors, or lairds, who cultivate their own ground, and whe are numerous in Sweden. Their allowance of a dollar a day is provided by a subseription among their constituents; nnul, in some cases, two or three districts must combine to furnish out one deputy. The nobles have bestirred themselves mueh to keep down the attempts made by this class to rise in society. They hnve procured regulations, according to which no person could sit in the house who nllowed himself to be called Herr (or Mr.), or who woreacoat of fine eloth. Notwithstanding all their efforts, however, this honse, and that of the burghers, are daily inereasing in strength.
In the division of powers, the roynl prerogative is ample. The king appoints to all officea civil and military, and he is obliged to convoke the diet only once in five years, and to continue its sittings three months; but he may mnke the meetings more frequent, and longer. He has also n negative upon tho laws proposed by the diet. In regard to the diet itself, the division rests with a majority of the houses; but if they be two agninst two, the balance is atruck by the committee of state, a body compored of a certain number of membere from each. No tax can be levied, or loan obtained, without the ennsent of the diet.
The storthing of Norway, restored by Bernadotte, is posesseed of much higher privileges than the Swedish diet. It assembles more frequently, sul at its own time, without any control from the king; and it allows to him only a suspeusive veto, obliging him to aceept any project which has been three times presented by the storthing. These rights having been once granted, Bernadotte, who found them pressing somewhat hard against his prerogative, has in vain made several attempts to abridge them. A lighly repuhlienn spirit prevails in Norway, and the influence, and almost existenec, of the nobles is nearly annihilated.

The revenue of Sweden arises from a poll-tax; the proluce of the royal demesnea, duties on exports and imports, mines and forges, distilled spirits, and some monopolies. The whole produce is about $\$ 5,000,000$ a year, exelusive of lnnds assigned to soldicrs and sailors, and by which these classes, in time of peace, are ehiefly supported. The military force, is nt present,-

The troops are raised by conscription: they only receive pay when on actual service; remaining, at other times, in the provinces, where they employ themselves in cultivating lands assigued to them for their suppert.

Sect. V.-Productive Industry.

Sweden seems doomed by nature to be a poor country. Her most sonthern districts are beyond the limits of that zone, in which alone the finer and more valuable kinds of grain, and the richer fruits, cone to maturity. Her seanty harvest consists solely of rye, bigg, and oats, scarcely aecounted as food in more favoured climates. Scandinavin is described generally as one unbroken boundless forest, varied only in its aspect by little patehes of cultivated land.

Agricultural industry till of late had not done much to remedy natural deficiencics. According to the valanble statistical details collected by Dr. Thomson, the amble land in Sweden amounts to $1,818,450$ English acres, which is only a sixty-second of the entire surfuce, or, throwing out the Norrland deserts, a thirty-second. Of this, $1,363,000$ acres are returned as under cultivation. But the nverage size of a Swedish farm is only twenty-seven and a half; the annual nverage of grain sown on euch farm does not amount to a Winchester bushel; and the annual prodnce of the whole country was only $0,700,000$ spanns, or about 71,000 quarters. Hence Sweden was obliged to import grain to a great extent; and such is the scarcity, that the peasnntry often grind the hark or even wood of the fir-tree into flour

Part III. was obliged its ancient ting of four in separate ead of each a classes:ugh without of the arched by depuing a vote: not eager!y they consist are numertion among nish out one pts made by h no person vore a coat of he burghers, and to conand longer. et itself, the ce balance is embere from er privileges out any con, accept any having been prerogative, it prevails in lated.

esnes, duties

 The whole sailors, and force, is at\author{

 [^20]}
service ; revating lands
districts are ids of grain, e, bigg, and cribed geneof cultivated
ncies. Acand in Swetire surfuec, are returned seven and a Winebester ns, or about and such is e into flour

Boon 1.
SWEDEN AND NORWAY.
u nutriment equally scanty and unwholesome. These stutements are given in 1812; since which time we find it mentioned that agriculture has mado a very rapid progress; that improved processes have been introduced from other countries; and that, in the most southern provinces, a great extent of moving (and before entirely barren) sand has been rendered solid, and covered with plantations and grain. The consequence las been, that in 1827, Sweden even exportell $39,(000$, and, in $1828,104,000$ tons of grain of every description. Every farm has a tract of forest of about 1000 acres attached to it, on which cuttle are fed: theso aro reported as only amounting to 403,000 horses, $1,475,000$ cows, and $1,212,000$ sheep. The most valuable product of land is tormed by the vast forests with which naturo has covered the whale

240
 country. The trees over all Scandinavia are amall, and consist chiefly of the birch, the pine, the spruce and Scotch firs. Wooden inclosures ($f i g$. 240.) of a peculiar form, aro universally employed. The poplar and the willow are also indigenous. The timber of these trees, as well as the tar, pitch, and turpentine, drawn from them, forms the chief objects of Scandinavian exports. Those on the hills of Norway are in much demand for masts. According to M. Hegelstamm, not more than the 115th part of the surface of Norway is under cultivation, chicfly in oats; a space which might be greatly extended; yet the annual production is stated at $2,050,000$ tons.

The manufactures of Scandinavia are inconsiderable, unless we should class their mines as such. Even in the common trades the work is lazily and ill performed, and charged at a high rate, which renders this the most expensive country in Europe for those who live luxuriously. It is a curieus fact that some great merchants in the western towns send their linen to be washed in London.
The mines of Swoden are peculiarly rich in important products. Ita iron, found chiefly in primitive rocks, is the finest in the world, and is widely diffused. In 1812, there were 176 mines; 624 smelting-houses; 764 forges; producing in all 1,293,411 ewt. of iron. The exportation, in 182I, amounted to 340,000 skippund, and in 1824 had risen to 378,000 , of which 345,000 were in bars, and 28,000 in ader forms. There are also some valuable mines in the southern provinces of Norway. A most extensive deposit of copper oceurs in the province of Dalecarlia, particularly at Fuhlun. Gold occurs at Adelfors, in. Sweden, to no great amount; but tho silver mines of Köngsberg, in Norway, are the richest in Europe. The nictal occurs in masses, of which there was once found one weighing 600 lbs . There are also lead mines of some importance at Scola, and in other parts of Sweden.

Fishery appears a pursuit peculiarly appropriate to the extensive coasts of Scandinavia. Yet the Swedes are not much addicted to it, probably because the Baltic during a great part of the year is frozen. Gottenburg had once a herring fishery, now nearly lost, the shoals having taken another direction. The Norwegian fishery is considerable, though bearing only a small proportion to the almost unlimited opportunitics ufforded by its wide seas, and its deep and commodious bays. Its chicf theatre is fur to the north, off the Isles of Loffoden. The season lasts only for seven or eight weeks in the year, when fishermen crowd thither from all quarters. Codfish is the chief object: it is cut into pieces, and spread on the rocks to dry, whence it receives the names of atockfish and clipfish. According to Mr. Brooke, the number taken in a year was 700,000 , which may be worth nearly $\$ 600,000$; thicy are sent chiefly to Germany, Spain, and Italy. The roes are also salted and barrelled for exportation also the fish oil to the amount of about 30,000 berrels.

The commerce of Scandinavia is greater than its unimproved agriculture and total want of manufactures might lead us to suppose. But nature has gifted these bleak regions with an almost inexhanstible store of timber and iron, two of the prime necessaries of human life; the main implements in ship-building and in the construetion of houses, machincry, and furniture. These articles are indeed also the produce of North America; and Britain, which nfords the best market, has lately sought to favour her colonies in that quarter by a great inequality of duties. Yet the superior quality of the Seandinavian commodity always secures it a sale. The entire exports of Norway are estimated by Dr. Clarke at $1,800,0001$. sterling; but we believe that this is very much beyond the mark. The commerce of Sweden is not on so great a scale; lier surplus timber being not nearly so ample, though her iron is superior. She has suffered much injury from the absurd prejudices of the peasuntry, who ohtained the prohibition of colonisl produce, and of almost all foreign articles of consumption; and though these were regularly imported, and in daily use, the trade was greatly fettered by being carried on only as contraband. In 1828, however, conmmercial treatics were concluded on a more liberal footing. The totsl number of merchant vessels belonging to the different zowns of Sweden, in 1829, was 1178, of the burthen of 61,000 tons.

Sscr. VI.-Civil and Social State.

The population of Sweden, according to the lateat consus, made in 1825 , amounted to
 der belonged to the class of peasants. Of these, $1,332,070$ were males, and $1,438,088$ femmees $2,430,973$ resided in tho country, 281,279 in the cities. Thia was a rive of 180,502 since 1820).*

The population of Norway, by a census made in November 1890, amounted to 1,050,132; of whom 105,021 inhabitod cities, 034,414 the country. This was a riso oi' 164,062 since 1815.

The national character of the Swedes is uaually painted under favourable colours. Their honesty is described as proverbial; and Dr. Clarko considers the contrast betwoen them and the Russian people, in this respect, as most striking. Highway robbery, though it hus been known, is oxceodingly raro; and charity boxes, which are often sot up on the public rouda, have never been plundered. "The nution," saya Mr. James, "has its singularities: there exists something of a rociprocity betwoen the moral and political conatitution of Sweden. Rigidly ceremonions, they make their stiff and measured courtesios the essentials rather than the forms of life; and seem, in a stranger's eye, a peoplo cold in their nature as the very snows they dwell upon. Their characteristics, a passive courage, not unnixed with indolence; a pride not froe from ignorance; a disposition that is not ill-humoured, from having no humour at all, from indifference, from apathy. But n Swede is never in oxtrenes; even theae traits are not decply marked; and if wo review the moro favourablo side of his character, we shall find in him an undaunted spirit of persevernnce, and an honest love of freedom, to which the foelings of every one do hotnge." Tho same writor mentions a cold-blooded obduracy, connectod, perhaps, with a sanguinary turn of mind, diaplayed in thoso frequent assassinations which have stainel the pages of Swedish history. The manners of the higher ranks, in consequenco, perhups, of political connexion, have been studiously formed on the l'ronch medel, which does not nccord very lappily with the somewhat rudo simplicity of the Sweles, who find it easier to imitato tho frivolity and dissipation of that people, than their easy and careless grace. Soveral habits are enumerated as prevalent oven among the higher classes in Scandinavia, which seem to negative ita pretensions to any high pitch of refinoment. Among these are, spitting even on handsome carpets, blowing the nose with the fingers, and recording. games on the table with chalk.

The religion of Sweden is Lutheran, and the church Episcopnl. This country, which stood long at the head of the great Protestant confoderacy, is animatel with an ardent zeal for the reformed religion. The Catholice, till of late, scarcoly enjoyed common toleration, and they are still excluded from the diet and the higher offices of state. The Swelish people are commended for their regularity in performing the duties of their religion: at tho same time it has been remarked that the dissenters from the established church are much fewer than in other Protestant countries; which has been imputed to tho want of any peculiar fervour upon the subject. The wide extent and thin population of the northern districts must often render the provision for their religions instruction very defective. The diocese of 'Tornea, in Lapland, is 750 miles in circumference; nnd, what is more blameable, tho small number of clergy employed aro not required to unilerstand the langunge of the natives. Tho income of the largeat bishopric in Sweden is about $\mathbf{N} 5000$ a year.

- In science, the Swedes, considering their poverty and remote situation, have made a very distinguished figure. Gustavus Adolphus favoured the interests of literature with a degree of ardour not generally known. Of the spoils of places conquered by him, he set a particular value upon books which he trumsmitted to Sweden, in order to form the foundation of several large libraries. The Nwedes cultivated with peculiar ardour botany amd mineralogy, which somo of their countrymen mainly contributed to raise to the runk of sciences. In botany, the name of Linneeus ia yet without a rival; and Cronstadt and Bergman were in their day little inferior, though they now yield to Werner and other great names which have arisen in other countries. Bergman and Scheele made also large contributions to chemistry, which is still ably pursued by Ekeberg, Berzelins, and Afzelins. Although history and poetry have been cultivated, they have not proluced any writers whose reputation has spread throughout Europe. From the limited sphere of the Swedish language, few works of science are written in it, or translated into it: hence tho literati of Sweden are particularly well versed in the languages of toreigu nations. Ono of the subjects in which Siveden may most justly exult is, the general spread of education annong the lower orders, which seens to equal or excoed that which Scotland enjoys; and to this may probably be in a great measure nacribed their generally meritorivus conduct. Norway is not nearly so literary a country as Sweden; Dr. Clarke even atates that there is not in the whole country a single lookseller's shop. This was in a great measure owing to the jealousy of Denmark, which would not allow an university to be founded even in Cliristiania, which used to be a rival to that of Copenhagen.

[^21] them and t has been ublic roads, ities: thore of Sweden. tials rather ture as the mixed with 1, from havn oxtromes; e side of his mest love of mentions a displayed in The mano been studige somewhat lissipation of cd as prevata pretensions carpets, blowuntry, which n ardent zeal an tolcration, wedish people ; at the same o much fewer any peculiar hern districts The diocese lameable, the of the natives.
made a very with a degree et a particular ion of several ralogy, which In botany, the heir day little risen in other which is still try have been d thronghout science are y well versed iy most justly nis to equal or wure nseribed y ns Sweden; kseller's shop. I not allow an Coperhagen.

18.-As. ED.

Iboox I.
SWEDEN AND NORWAY.
Yet Norwny can boast of literary names; Holherg, Pontoppidan, Vahl the botanist, Torfane, und Nuorro sturleson, the end historiuns. A vein of bolld and rude poetry is entivated with peculiar arlour ; and Dr. Clarke exhibita a roll of mumes unknown to Larope, whose claims to distmetion appear to bo somewht justitied by a specimen given to us by Mr. Wilson.

Of the learned establishments of Nweden, the mowt eminent is the miversity of Upwal, the chief nurse of all the grent men who have distinguished ber literary records. This celebrated seat of northern learuing was founden in 1478, by Nteno Sture, was enlargeal by Gustavis Vasa and Gustavus Ailolphus, but reached its highest eminence in the last century, when it was alorned by limunens, nid all the men of science who have been distinguishewd as relleeting glory on Sweden. Sinee that time its lastre has been somewhat diminished, thongh statements on this subject vary considerably. The professors have sularies of ubont $\$ 5(x)$ a year; mul are left thas almost wholly dependent on their stulents, who live in private longrings. They attend what nul whom they please; and their exertions aro not stinnulated or tried by any public examinations. The mineralogical collection is one of the most cornplete in Eurupe; and the library contains $5(1), 000$ volumes. Its most precious trensure is the Culex Argentens, a manuseript of the fiur Gospels, written in silver elaracters, and supposed to date as fir hack us the fourth centary. The garden of Libnerus has heen neglected for a larger one lately founded, Dat whieh scarcely correspouls to the botanical frme of Upsinl. The royal library at Stockhohn is still more extensive. It is partieularly rieh in mannscripts, in sugns, and other historical works, and in original drawings by the great masters. This collection is open to the pullic. The Swedish neademy of seiences, foumden in 1739, hy learned private individuals, has pmblished alove loO vohmes. It is considered one of the most distinguished in Europe, nud the greatest men in other countrics have viewed it as an lonour to be enrolled among its inembers. In tho cellege of mines are preserved copious specimens, drawn from a country so rieh in metallic proluctions. The eabinet of models, presenting the various mechanicul contrivances employed through the different parts of Siweden, is nlso considered very interesting.

The fino arts in Sweden lave been cultivated amilst considerable difficultics. The opera is conducted with splendour and taste; Lergell, as a seulptor, has been ranked seeond to Canova, and even called the Miehacl Angelo of the North. Brela in portrait, and Fulerantz in landscape, enjoy reputation.
The hubitatiens of Scandinavia are very simple and uniform. "Having," says Dr. Clarke, "once figured to the imagination a number of low red honses, of a single story, and cach covered with turf and weeds, a picture is presentel of the oppilan scenery of Sweden." The houses, however, are well finished within, and elegantly furnished; and by means of stoves, double windows, and close doors, they are kept confortahly warm, even during the most rigorous winter. Swedes have even complainel that they suffered much more from cold in landon than in their native city.
The dress is describel by Dr. Clarke as equally uniform with the habitations. "A skullcap, fitting elose to the crown, edged with a little stiff lace, the lair being drawn as tight and struight ns possihle beneath the enp from all parts of the heal, as if to start from the roots; add to this, a handkerehief thrown over the cap when they go out; a jacket; short petticoat; stockings of coloural or white woollen; and high-ligeled shoes:" this is the
 general costune of the Swedish women. Mr. Wilson thus describes the dress of the representatives of that class of peasants:-" White worsted stockings, half-boots extending above the calf of the leg, yellow leather small-elothes with knee-buckles, a short brown coat and waistcont, and a plain handkerchief tied round their neeks." The annexed cut (fig. 241.) may give an idea of the attire and aspect of the Norwegian peasantry. In winter these garments must be reinforced to the utmost ability of the wearer, as a fence agninst the excess of the cold. The peasantry wear a sheepskin cloak, with the wool towards the body, and close fir caps. Dr. Clarke mentions as a travelling dress, thick ynrn stockings covered by stout leather boots, snd over these again boots made of the hiles of rein-deer, with the hair on the ontside, and doably lined with sherpskin envered with black wool. The people wear, besides, fur caps on the heal, bearskin pelisses over the body, befides several flannel waisteoats, and on the hands, gloves of sheepskin covered by double gloves of fur and wool. Yet these accumulated gaards are insufficient to prevent the feeling of the most intense cold, which, in those not duly fenced against it, sometimes produces death, and frequently a frost-bitten limb.

Seot. VII,-Local Geography.

This section naturally divides itself into three subordinate parts:-1. Sweden;2. Norway ${ }^{\text {. }}$ and 3. Lapland; which, though accounted partly Swedish and partly Norwegian, has a diotinct character of its own.

Subsect, 1.-Sweden.
Sweden is formed into three great divisions: Svealand, or Sweden Proper; Gotaland, or Gothland; and Nordland, or Norrland. In the following statistical table, the extent and arable produce are from materials collected in 1812, since which time cultivation has been greatly extended; but the population is from the census of 1825.

	Aralule Oround, Tunminade (13.4 mere.	$\begin{aligned} & \text { Being to the } \\ & \text { whole as } \end{aligned}$ $\begin{gathered} \text { whole } 14 \\ \text { to } \end{gathered}$	Number of faraia.	Oparative	Grain produced (1.-Soth busthes) (1.20th bushes.	Populailion.
Nordland.	8,060	2,151	592	22,894	37,570	40,024
Veulerbotten	10,530	1,415	644	221,870	51,554	44,911
Vesler Norrland	22,780	, 228	1,513	30,812	103,400	72,237
Jamtlund.	10,720	017	945	20,201	48,348	39,122
	52,110	915	3,724	103,787	245,048	195,804
Sweden. Slockhalm.	71,410	22	4,056	58,649	316,987	103,095
Upsala	84.384	13	3,548	48,1357	285,351	81,897
Vesteros	55,515	27	2,152	49,013	211,100	88,618
Nyküpling	54,011	24	3,276	50,761	225.008	106,713
Orehro ...	46,223	36	2,774	61,701	108,479	109,254
Carkinde.	82.473	42	1.708	92,599	377,514	163,372
Blora Kapparberg	51,517	129	1.702	29,313	240,781	129,38\%
Gefleborg	28,367	140	9,000	50,024	153,004	90,733
	473,016	45	22,008	499,809	2,009,017	870,153
Gothland. Linköping.	104,061	21	5,438	04,194	300,044]12,200
Calmar...........................	106,121	34	3,347	83,404	230,560	100,720
Jonkëping.	53,684	40	3,105	76.115	233,34	1891,956
Kronnherg.	37,695	48	2,877	50,010	175,229	102,709
Hekinge .	21.715	27	1,089	31,523	137, 143	85,314
Skaraborg	143,1112	12	4,404	80,010	425,864	159,614
Elfaborg .	73,808	37	4,209	102,715	334,2N2	187,021
Gottenborg	42,458	22	2,783	64,409	215,757	148,691
1lalmetadf.	$43,12{ }^{3}$	23	2,402	47,4*5	167,120	85,657
Charislianmadt	89,344	13	3.002	79,331	306,027	145,3200
Malmohus	202,509	4	4,0:3	95,837	548,334	192,190
Gothtand	30,064	20	1,098	17,560	83,523	38,151
Alockholm cily.................	028,734	20	39,487	840,262	3,204.184	$\begin{array}{r} 1,03,632 \\ 79,473 \end{array}$
Total	1,454,760	62	65,309	1,443,858	5,702,835	2,771,252

Sweden Proper occupies the centre of the kingdom, and includes tho capital, and the great mining districts. It consists of an immense plain, eovered by almost boundless forests, intermixed with patches of cultivation; only a few hills of moderate height breaking its vast uniformity. Three great lakes, like inland seas, the Wener, the Wetter, and the Malar, form almost a continuous chain across its centre. Besides these, there is an iminense number of smaller lakes, especially towards the north, communicating by river ehannels with the greater. These lakes do not display the grandeur which belongs to those of Switzerland; but their wide and winding shores, brokon with rocks, and fringed with a profusion of wood, present many romantic scenes.

The division into provinces, of Sweden Proper, as well as of Gothland, as given in the preceding table, was made recently by government, and is the only one upon which statistieal details have been collected. But there is another and earlier division, which remains still fixed in the Swedish mind; and corresponds, in fact, both to the aspeet of nature and to the peeuliarities in the people. These are Sudermanland, the province which contains the capital, and is situated on the sonth side of the lake Malar; Upland, a high territory on tho northern side of that lake; Westmanland, to the west of Upland; Nerike, a beautitill little region, eempletely enelosed between the three great lakes; Warmeland, to the north of the Wener, covered with a multitude of little lakes; and, lastly, Dalecarlia, called also Dalarne, or the Plains, a provinee which, of all others, presents the most striking and peculiar features. It is, above all, distinguished by the energetic character of its peasantry, whose exertions at one time reared the fallen monarchy, and who continue to form its most powerfill defence. They still hold as a maxim, that one Dalecarlian is equal to two of any other Swedes. Their diet is poor in the extreme, consisting in a great measure of bark-bread: Yet their liealth and vigour olo not sutfer; ant a number of them, who were quartered as troops at Stocklolm, were affected with fevers in conspquonce of the repletion caused by
ital, and the ndless forests, breaking its nd the Malar, ninense numhannels with e of Switzerprofusion of

given in the

 hich etatistihich remaina nature and to contains the rritory on the eautitin little north of the also Dalarne, peculiar feaantry, whose most powerof any other f bark-bread: quartered as on caused byeating wheaten bread. The memory of the great Gustavus Vasa, the fonnder of the Swedish monarchy, ia cherished in this pruvinco with the utmost warmth; and many memorials of him are preserved in different places.

Stockholm (fig. 242.), with which we shall commence our details, is finely aituated, at the
 junction of the extensive and beautiful lake of Malar, or Maler, with the sea. It atanda partly on some amall islands, and two peninsulas, presenting a view as beautiful and dirursified as imagination can conceive. Innumerable craggy rocka rise from the water, partly covered with houses, and partly planted with wood; while vessela of all forms and descriptiona are seen passing to and fro. White edifices, conaisting of public and private palaces, churches, and other buildings, rising from an expanse of waters, produce an effect of incomparable grandeur. When the lake and sea are frozen, they are covered with aledges of all kinds, and exhibit one of the gayest seenea imaginable. If external appearance were alone to be relied on, Stockholm might be deemed the most magniticent city in the world. This impression is not sustained by any beauty or convenience in the interior. Except the great square of Norden Malm, the streets, though of very considerable length, are neither broad nor handsome. There is no foot pavement; the houses are lofty, all whitewashed, and the shops are extremely poor. The different families reaide in separate floors or storics, one above another, the ground-floors being ustally occupied as shops. The royal palace, however, begun by Charles XI., and finished by Gustavus III., may vie with any structure of the kind in Europe. It is in the Grecian atyle, quadrangulur, four stories high, built of brick only, but faced with stone-coloured cement. Its situation, facing the quay, and commanding a view of all parts of the city, addla greatly to its beauty. It contains some fine specimens of sculpture and painting, curiositics connected with Swedish history, and a range of small apartments embellished by Gustavus III. in a fanciful manner. This palace, with the finest buildings of the city, stands on one of the islands. The kings of Sweden have in the country other palaces: that of Droteningholm is a handsome stuccoed building, roofed with copper, and having side wings; but the gardens are barbarously laid out in the old fashion, with trees and hedges clipped into fanciful shapes.

Nyköping is the only tract of Sweden Proper which is south of the lakea. The town of that name, though surall, has an air of magnificence. The houscs are of wood painted yellow.

The provincesof Westeros, Orebro, and Carlstadt, along the north side of the lakes, reach across the kingdom. Enköping, on a branch of the Malar, is the first town which occurs westward from Stockholm, but it is not of great consequence. Westeras, on the same lake, has more commercial importance, as a link between the capital and the northern and western provinces. There is only one principal strect, about two miles in length; the houses are only of one atory, and often roofed with turf. It is the sce of the richest bishopric in Sweden. The cathedral is a simple edifice; but one of the most clegant in Sweden, adorned with a very elegant porphyry monument crected to Eric IV., who died by poison in 1577. Next comcs Köping, small and poor; but celebrated as having been the residence of Scheele. It lies at the extreme interior point of the Malar. Quitting that lake, and proceeding southwest, we come to Arboga, a beautiful little town on a river which falla into that lake, and near a canal which connects it with the lake Hjelmar. A steam-packet, established by an Englishmun, now enables it to communicate with the capital. Nearly due west is Orebre, a more considerable town, and the occasional place of noeting for the Swedish dict. It is reckoned the fifth town in Sweden, containing about 4000 people, and the strects are broad and spacious, though the houses, as elsewhere in Sweden, are low, and of painted wood. The stadthus, or governor's residence, which includes also the prison, is a huge shapeless edifice. The church, which forms also the place of meeting for the diet, is an ancient structure, originally Gothic, and built of stone, but patched with brick, and in various styles. Proceeding westward, we enter Carlstadt, or, as anciently called, Warmeland, a region entirely of mines, forests, and lakelets, and bounded on the south by the extended shores of the Wener lake. Carlstadt is situnted near the point where this lake receives the Clara, in considerable river, which traverses these wooded regions, and down which immense guantities of timber are floated; advantage for this purpose being taken of the floods to which i is oceasionally subject. One company from Gottenburg has saw-mills, at which are annually cut upwards of 50,000 planks. Carlstadt is a place of from 2000 to 3000 people, presenting the ordinary aspect of Swedish towns. It collects the vast produce of the mines and forcsts of Warmehud, and transmits them across the Wener to Wenersberg, whence they find their way to Gottenburg. Considerably in the interior is Pbilipstadt, in the very heart of the iron mines, by which it is supported.

The most remarkable are those of Persherg (fig. 243.), a few miles to the enst.

Persberg Mino. ward. They are thirteen in number, dug into a mountain entirely composed of veins and beds of iron ore. Dr. Clarke, niter having, in the comse of tell years' travei, inspected many of the princijxal works of this kind in different countries, declares, that he had never beheld any thing equal to this for grandeur of effect, and for the tremendously striking circumstances umber which human labour is here performed. In tho wide and open sbyss suddenly nppeared n vast prospect of yawning caverns and prodigious machinery. Immense buckets, suspended by rattling chnins, were passing up and down; laddere were scaling all the inward precipices; upon which the workpeople, reduced by their distance to pigmies, were ascending and descending. Tho elanking of chnins, the groming of the puinps, the hallooing of the miners, the crenking of the blocks and wheels, the trampling of horses, the beating of the hammers, und the loud and frequent subterrancous thunder from the blasting of the rocks by gunpowler, in the midst of all this scene of excavation and vapour, produced an effect that no stranger could witness unmoved.

Dalecarlia, or Dhlarne, extends to the north-east of Warmelnind. It is covered with mn extraordinary profision of mosses and fungi, so thnt it is termed ly Dr. Clarke the suprence court of the cryptogamin. We have alrealy remarked the peculiar character of the people, who preserve entire the dress, habits, nal the daring energy of the ancient Swedes. The most important branch of productive industry consists in the mines, particularly the grent copper aine at Fahlun (fig. 244.). It is immediately adjoining to the town, and consists of • an enormons conical mass with the top
 downwards. The bottom of the cone, being the top of the mine, was the first workel; and the galleries being made threngh it withont due precaution, the whole tell in, producing an insmense open crater which still remains. Regular stnircases of easy descent traverse this inmense crater or basin, from its outer lip to the lowermost point, whence arise vast volumes of smoke and vapour, giving it the appearance, on n greater scale, of the Neapolitan Sollatra. It is divided into no less than 12000 shares or sections, among which the ore is divided immediately on being brought up, and it is then smelted on a small seale by the difierent individuals. The ore is not rich. In 10WM, this mine is said to have yielded $8,000,000$ pounds of copper ; in $16.50,5,50,000$; Lut at present only $1,120,000$ pounds. The workmen have new reached the bottom, or the surface of the cone, and are still werking through the ground, in the fond hope of coming to the top of another cone, reaching downwards. Unless this chimera should he realised, the mine, it is said, will, in a few years, cease to be productive. Fallon is a regularly built but oldfashioned and dirty town, subsisting solely by the mine. It has twe churches, one covered with copper, but this has not a handsome appearance, the colour of that metal being converted into a whitish green soon after exposure to the wenther. Near Fahlun is the house where Gastavus Vasa lay concealed, the proprictor of which has studied to preserve in its pristine state this asylum of the Swedish king. Ilis chanber, bel, and clothes are still shown; his shirt of worsted mail fitted similar to those made by the Circassinns, and his other weapons.
Sala, which is properly in Westmanland, may be mentioned here as another mining town on a smaller scale, neat, regular, but ill-paved. The only importunt mine is one of galena, which yiedds 2000 marks of silver, and $\mathbf{3 2 , 0 0 0}$ pounds weight of lend. There is niso a cop- dof veins rke, utter rn' travel, works of slares, that ual to this e tremender which d. In the ıppeared n and prodickets, suspassing up all the inthe workto pigmies, The clank he pumps, e creaking ampling of res, und the is thunder runpowder, no stranger he suprente the people, edes. The y the great consists of ith the top te cone, beis the first neing made aution, the mense open grular stairse this in(s outer lip arise vast , giving it cale, of the ded into no ons, among ediately on en smelted ont indivi1600, this $8,000,000$ 0,000; but or the surning to the , the mine, ilt but ohlne covered r converted mise where its pristine hown; his r weapons. ining town of galena, also n cop-

Boox I.
SWEDEN AND NORWAY.
per mine, which produces little; and one of iron, which is not considered worth the expense of working.
Upland, coinciding nearly with the modern Upsaln, is an interesting province, extending from a part of the luke to the river Dal. It is flat, but diversified with numerous little round knolls, which, with the small lakes and the numerous fine forests, render it picturesque. It contains Upsala, the seat of the great northern university, and Danemora, the most valuable of the iron mines.
Upsala, or Upsul (fig. 245.), is tho place in Sweden most venerable for its nntiquity. It
 was long the residence of tho kings, and has nlways been the chief sent of religion and learning. Even in pagan times it was the residenco of the highpriest of Odin ; nnd in 1020, Everinus, a bishop from England, was placed there, for the purpose of converting the natives to Christinnity. The cathedral is the largest and finest ecclesiastical monument in Sweden, a country not eminent for such structures. The exterior is indeed only of brick, and there is an injudicious mixture of the Gothic with the Doric towers. But the interior is very striking, adorned with a double row ot fourteen fluted columas, a magnificent altar, and above all by many monuments of the kings and heroes of Sweden. Purticular notice is attracted by that of Gustavus Vasa, and the three Stures, successively regents of tho kingdom, who, in that station, earned the title of futhers of their country. The shirt of mail of Margaret, the Semiramis of the North, is also kept as a warlike relic. Upsala contains also a palaee founded by Gustavus Vasa, now half burnt down. It is at present supportod solely by the university, of which $n \boldsymbol{n}$ account has already been given. It is destitute of all trade or industry. It is therefore small, but very regular and neat, having a large square in the centre, where all the streets converge.
Tho mine of Danomors is situated neur the sinall town of Osterby. Swedish iron is the lest in the world, and the iron of Danemora is the best in Sweden. Dr. Thomson was told at Sheffield, that cast steel could not be made with nny other. Danemora was first wrought as a silver mine, but this wns soon exhausted. The iron then began to be wrought, and soon established the high character it now holds. The great opening is fifty fathoms deep, and the mine has been wrought thirty fathoms lower down. The ore is blasted with gunpowder. At short intervals are heard tremendous explosions, like the discharge of the henviest artillery, which are echoed through the caverns, and shake the earth like a volcano, while volumes of smoke burst forth after each crash. From the mouth of the cavern enormous masses of iron ure raised up by machincry. The mino belongs to a number of private individuals, who have erected a stcam-engine at an expense of 36,000 rix-dollars. The produce is estimated at 4000 tons. There are twenty-seven other mines in the province of Upsala.
Gothland, or Gotaland, the sonthern division of tho kingdom, forms a large peninsula, with n wide circuit of shores. It enjoys a considerably milder climate, and is the only part of the kingdom where wheat is raised in any considerable quantity. It is here also that the recent improvements in ngriculture have been ehiefly observable. There is thus more land in cultivation, and troes will not grow in the inmediate vicinity of the consts; so that Gothland is not so thoroughly covered with wood, as the provinces to the north of the lakes. If we except the cnpital, this division contains almost all the sea-ports and naval arsenals; and consequently engrosses nearly all the forcign commerce of the kingdom.
The modern and official divisions of Gothland have been exhibited in the statistical table. The ancient divisions are into Eastern and Wostern Gothland, divided from each other by the long line of the lake Wetter; Smaland, an extensive but barren tract, to the south of that lake; and Scania, or Schönen, the southern peninsular extremity of Sweden, a better peopled, and better cultivated district than any other in the kingdom.
Eastern Gothland comprises chiefly the modern provinces of Nyköping and Linköping. The town of Nyköping is agrecably situated at the extremity of a small bay of the Baltic, and though small has un air of magnificence; but it carrics on little or no trade. It is now much outstripped by Norkiping, the largest of all the kijpings (i. e. markets), and the fourth town in Sweden. Norkoping lies upon the large river Motala, which communicntes between the lnke Wetter and the Baltic, and which is here broken into numerous rocky channels. The ehief braneh of industry consists in the manufacture of hroadcloth, which is produced so fine as to sell at twenty-seven shillings per ell, of one yard and three quarters broad. The breel of sheep in the neighbourhool has been considerably improved by the introluction of mirinos. The town is regularly built, of neat wooden houses. Linkiping is another proVol. I.
vincial capital, handsomer in its aspect, though much ambler, than Norkoping. The cathedral, rebuilt four humdred yeara ago, in one of the finest ecclesiastical structurea in tha kingdom, and nenr it is a very handmone theatre.
The distriet of Sinaland has for its chief town Jonkioping, situated at the extrenity of the Wetter, and commanaling grand and beautiful views over that immense lake, which has here a wide border of low but finely wooded rocks. The town has been entirely rebuilt since 1790, when it was burut to the gronnd. Though built chiefly of wood, like other Swedish towne, it contains many gool and commolious houses, the resilence of wealthy inhabitants, who have been attracted by the amenity of the site. A high ceurt of appeal for this part of Sweden is established here. About ten miles distant is Tuberg, a long round-backed hill, composed wholly of one unbroken mass of fine magnetic ironstone. It presents auch a colossal mass as in Hausmann'a epinion must continue to afford a source of richea to the remotest posterity. The upper bed, 370 feet thick, has been wrought for 250 yeara. It is merely blasted with gunpowder, when the fragments fall to the bottom, and are cenveyed to neiglibouring furnaces. The ore is not very rich, the proportion of pure iren varying from 21 to 32 per cent. ; but it is very tractable, and free from any hurtful ingredients. The hill, though only 400 feet high, commands an almost boundless view over the vast wooded flata of Smaland. This district contains also a considerable quantity of bog iron ore of inferior quality, and some copper mines.

The sea-const of Smaland, consisting of the modern provinces of Calmar and Bleking, is of a naked and unpromising aspect, but contains some havens of importance. Calmar is noted in Swedish history as a strong fortress, and still more because in one of the apartments of its cnstle was signed the celebrated treaty which uaited the three crowns of the north on the head of Margaret. Carlscrona is the chief naval arsenal and one of the largest towns in Siveden. It is built on three small islands connected with each other and with the const by long woolen hridges, while other islands serve fer the erection of works for the defence of the harbour. These are square batteries of stone, well mounted with ordnance, which nppear formidable enougl, though probably not capable of coping with a ship of the line. Separate establishments exist for the large vessels, and tor the flotilla; but one of the most remarkable features consists of the covered docks, partly excarated ont of the vast masses of solid rock. The want of tides in the Bultic is supplied by sluices, which open into the port, nad are emptied again at plensure. Carlhamn is a smaller town, romantically situated, like n eluster of nesta, on the tops of cliffs. During war it enjoyed a considerable proportion of the neutral trade, which it has since lost. Christianstadt is a fortress of considerable celehrity, the eapture of which formed the first military achievement ol' Gustavus Adolphus. Some fragments of the fortifications remain, and the spproach to them is defended by an extensive swamp which surreunds the place.
Scania begins here, n flat and fertile peninsula, forming the most southern part of Sweden. There are numerous German residents in Scania, supposed to hsve sought refuge there during the Protestant persecution in Germany; and some Scotel farmers have also sought to introduce an improved system of agriculture. In the centre of Scania is Land, the sent of the gecond university in Sweden, containing 30,000 volumes, a good observatory and botunical garden, and a noble cathedral in the Norman style of architecture. Malmo, formerly one of the Hansentic towns, is the chicf seat of trade. Helsenving and Ystadt, neat little ports, are the chief places of embarkation for Denmark and Germany. All these towns command magnificent views of the Sound, enlivened by the crowds of shipping that are continually passing.

Having turnel the southern point of Sweden, we come to the coast of West Gothland, situated on that great gulf of the German Ocean called the Cattegat. Being the part of the kingdona nearest to the great states of Europe, it carries on a principal part of the commerce of Sweden. Laholm and Ilalmstadt are ports of some consideration, in the gloomy and heathy province of Halland, but almost the whole of the western commerce of Sweden centres at Gottenburg.

Gottenburg is built in the interior of a bay set round with rugged and naked rocks, and the whole country round is sterile and desolate. It is supported by its situation at the menth of the Gotha, the broadest and most navigable of the rivers of Sweden, which by means of the canal of Trölhatta affords a full communiention with tho great interior lake of Wener, and the opportunity of bringing down those immense stores of wood and iron produced arounil its shores. The prosperity of Gottenburg was also greatly promoted by the French auticommereinl system, under which this port remained one of the few chamels by which British goods could foree their way into the Continent. It is a very handsome city, built entirely of stone, the use of wood having been prohibited since the last great conflagration, the second which had occurred in the course of ten years. A magnificent elurcll, lately built, is constructed, in a great measure, of stone imported from Scotland. The principal street, which is long and wide, has a canal running through it; the others strike off from it at right angles. The prineipal merehants are Scotch, who live in a style of great magnilicence.
West Gothland presents still some other striking features. Anong these rank foremost
the cataracia and canal of Trolhatta. Above the former the river ia a mile broad; but being confined between (wo loty rocke, it pours down its waters with proxigyions force. The deweent, however, is only a hundred feet in the course of two miles, making thus a rapid rather than a fill; the water rushing along with inconcoivable rapility, boiling up, and covered with toan. The noise la prodigious, and clouds of vapour are thrown up. These caturacts opposed a complete obwtruction to the navigation of the Gotha, which the kings of Sweden expended immenso sums in endea vouring to overcome; but their works were too imperfect to resist the impetiowity of the current. At length, in 1703, the enterprise wus thken up by a company of private merchants, who in seven yeare brought it to a lappy completion. The canal is twenty-four fieet wide, and eight feet deep. It extends only two miles; but being cut through a granite rock, sometimes to the depth of one hundred and filly feet, it proved a work of very great labour. Wenerborg, at the junction of the Gotha with the Wener, is the channel by which the products of the interior are brought down the river; yet it does not derive from this trulo much prosperity or importance. Uddevalla and Stronstadt, are sinall sea-ports, with some trade and fibliery, but they have suffered since the herrings deserted the coast. Skara and Fahlkoping are places of some consequence in the interior of West Gothlund.
Norrland furms a third division, which, if considered as including Lapland (and it is so consilered politically), would be much more extensivo than all the rest of the kingdom put together. It is, however, our intention to reserve for a particular section the vast and peculiar region known under the name of Lapland. Norrland, in a restricted sense, comprises tho four provinces anned in the table, but is better known under the divisiona of Jamtland, Angermanland, Medelpad, and Helaingland. Jamtland, where it bordera on Norway, includes some of the lighest mountaina, several of them rising to $\mathbf{6 0 0 0}$ or $\mathbf{7 0 0 0}$ feet. The rest of Norrland is flat, and the climato moist and variable, like that of Jamtland, but colder. Wheat scarcely ripens beyond Sunilswall; near to the northern border, barley and rye ripen with difficulty. Almost the only fruits are cherrics and gooseberries. Tho land under cultivation did not, in 1812, exceed 52,000 acres, which is, in proportion to the whole, only as 1 to 915. Yet the people are industrious; and Von Buch observed a greater air of prosperity here than in the rest of the kingdom. The woods which cover almost the whole country, are infested by numerous herds of wolves. Of the entire population, amounting to $159,1(1)$, only 6318 live in the towns, which of eourse inust be very unimportant. Suidswall and Ilernosand are, however, sea-ports of some little consequence, as is Umea; but this last properly belongs to Lapland.

Subsecr. 2.-Norway.

This extensive portion of the Swedish monarchy, recently, by compalsion, but in all likelihood permanently, united, comprises a very long line of maritime territory, facing the boundless expansc of the Northern Ocean. Throughout its whole length, in an oblique line parallel to the sea, runs the chain of the Dofrines, presenting many bold and lofty summits covered with perpetual snow. Sneehatta, the highest, is 8100 feet. Theso mountains throw out numerous chains, sloping downwards to the soa, which form romsntic valleys and decp and winding bays. Norway produces some corn, not nearly sufficient, however, for its own consumption ; but exports large quantities of timber and fish, receiving, in return, those commodities of which it stands most in need.
The southern Norwegian provinces of Aggerhous, Christiania, and Christiansund, include a considerably greater proportion of level territory than the others. They have the great range of mountains to the north and west, and are not separated from Sweden by these natural barriers. Through theso provinces flow southward into the bay of Christiania the Drammen and the Glommen, the two greatest rivers of the North, and bring with them an immense quantity of timber, which
 is cut into deals, and exported to all parts of Europe. The export of iron is also considerable.

Christiania, (fig. 246.), capital of all this district, with a population of 20,581 , now ranks as the capital of tho whole kingdom. It is situated at the head of n long interior hay or fiord, and enjoys a situation which Von Buch considers as altogether wonderful. The bay, its islands, the crowds of sails spread among them, with the view of majestic hills rising over hills in the distance, appeared to him equalled only on the lake of Geneva, which, however, has not the vessels and islands. Christiania is chicfly supported by the trade in deuls; and those cut in its saw-mills are considered, by the traders in this article, to be
superior to all others, Some of itn merchants, particulorly the Ankers, maintain the atate of princes, and are conmidered equal in wealth and liberal viewn to any in Binropo. Chriotiania comes more into contact than Bergen with the more advanced countripe of Europe, amb has adopted alnowt exeluaively the improvementa which distinguish them. 'I'he buildinga are regular, and mowtly of atone; so that in the course of s(0) yenm, while other Ncundinavian towis have been repeatedly reduced to anhee, Cirrintianim ham nuffered ouly slight injury from fire. Nince the union with Sweden, it has recoived an university, with two profewsorn, who have maxlorate inconea, chiefly derived from grain.

There are other havens of mome importanee in this mouthern tract of Norway. Ons the western connt of Chriutiania fiorl, the two, Bragenam and Stronmes, unite in forming what is called Drammen, at the mouth of the limportant river of that namo. 'Tounlierg, at the botton of the mame nide, la a town of some ancient celebrity, but now a groxd denl decayed. On the eastern side of the same bay is Mow, watered by a stream, turning twenty maw-mille, by which an linmonao quantity of deals aro prepared for exportation. Frederickshall, an ancient and atill umportant frontior town, is beautifully situated in an interior bay, winding among mountuins, Near it in the atrong fortress of Frederickstadt, the sceno of the death of Charles XII. The pass of the Swinmund (fire. 247.), on the immediate frontier, preseuts ono of the most romantio and picturespue seenes in Scaudinavia, Chrintiansund, the most southern province of Norway, line a capital of the same name, the fourth town in the kingdom, which, from its nituation on the Skagerrack, is visited for shelter and aupplies by numerous veasels entering and leaving the Bultic. The interior from Christiania, though it helules Ifelemarken, and other large pastoral valleys, and though its communications are facilitated by the largo Jake of Miosen, doea not contain a singlo town. That of IIanmer attests its former magnificence, by the remains of a palace, and of several ehurches now restored. The wholo of thia territory is hemmed in on the west and north by the gigantic ranges of the Doverfield and Fillefield, which separate it from Dronthcion and Bergen.

The province of Bergen is rude, rocky, and momatainour, consisting of the slope downwards to the sea of the highest part
 of the Doffine range. The town of Bergen, (fig. 248.), at the head of a long interior buy, was formerly accounted the capital, and contains a population of 18,511 . Its commerce, which is considerable, is fuundod on the exportation, less of the proluce of the country belind it, than of the northern fishery at Dafficulen, of which the produce is bronglit to Bergen by numerous barks. fts merchunts had long the monopoly of this, and still retain much the greatest share. They are chiefly Dutch, and send a vessel weekly to Amsterdam for a supply of the garden stuffs which their own soil does not yichl. Bergen is built of large masses of wooden houses, amid rocke, and has suffered severely by fire.

The province of Drontheim, to the north of Bergen and Christiania, and separated from
 them by vast mountains, corresponds in Jatitude with tho Swedish Jamtland. The eapital (fig. 249.), of the same name, is gituated on the shore of n winding fiord, but subsists less by foreign commerce than by the internal communication between numerous valleys and districts to which it forms a central point of union. Of these valleye, that of tho Guhlal is the most extensive and beautiful, and singularly celebrated in Swedish story and tradition. Ilere, it is boasted, dwelt the mighty Haco, the noble and wise Olaf Tryggvason. The society of Drontheim is always

J'ant III. ain the ntato ope. Chrier of हinrope, l'ue huildings er Neandina: alight injury wo profemsors,
ay. On the forming what aberg, at the len 1 tecayed. ity waw-milla, srickshall, an buy, winding in tho strong acene of the ; puns of the e inmediate nowt romantio scendinavia. ern prevince e ranic name, dom, which, kagerrack, ia iea by numeleaving the Christiania, en, and other large lake of magnificence, of this terrioverfield and
alope downhighest part The town of the liead of a formerly acad contans a Its commerce, is founded on tho produce t, than of the den, of which to Bergen by serchunts hau! his, and still el weekly to ell, Bergen by fire. parated from puntains, corNe with the
The capital saine name, o shore of n subsists less ree than by unication be valleys and t forms a cen a. Of these Guldal is the nd beautiful, ell, dwelt the in is ulways

Hoos 1.

EWEDFN AND NORWAY.
held forth eie reprementing under the happient light, the genuine Norwegian cinnencons ; ita warmth of kindnesa, and generoun hompitality. Dr. Clarke praisen chienly lin truly Norwem gian simplicity ; but Von Buch conaiders it an markeel ly more refinel tanto, more gracefal and attructive mannerm, than the mocinty of Christiania. In no distriet of Norwuy in thero snid to be such a feeling of putrinaivn and pulilic apirit. Drontheim in built wholly of word, and has in consecifence been seven timea burut to the grominl; yot tho houmes are handmome, and or momented with takter. There is a apacioum palace, buile wholly of this material, and partaking so iunperfectien. Imonthem aleo containa the remains of a cathedral, the largent edifice in the conntry, and to whidh the whole population of the North came once in pilgrimage. The environs are very beautiful, with numerons countrywente, and lofly nowcrowned hilly in the distance. Chrimtianmend is also a mall nea-port and fishing town in this province.
Beyond Drontheim commencea Norrland, a diatrict rather than a province, the nume being vaguely applied to all the north of Ncandinavia. Relatively to Norway, it is marked by an increaving lutemity of cold; the mountains, oven at 3000 feet high, being enpped with perpetual snow, and vant tuble-plains or flelds remaining covered with it during the whole nummer. Grain, even of the coarwest dencriptions, ripons only in a fow favoured spota, The apruce fir gradually dianpperrs, and shelter in necessary to allow the Scotch fir and the birch to apring up. The climate, however, in momewhat miller than that of regions under the mane latitude on the Baltic ; mo that, while the ports of Stockholm and Carlacrona are ohut during aeveral monthe of the year, thone of Norrland remain continually open. Yet in this dreary region occurs a busy ecene of human action and existence. The numorous ialanda, and the deep bays between them and the land, afford apota to which shonls of thali come from the farthest deptha of the North Sea to deponit their spawn. During the whole year, the herring affiorin a regular occupation to the Norrland boatman; but trom Februury to April, the ahosals, migrating from thouce, and from all the surrounding consts, crowd to the Lofficlen Ialnnds, the central seat of the northern fishery. These isfands firm n chnin parallel to the land, and separated hy unrrow chnumels through which the tides of the Northern Ocean rush with tremendoun rapidity. The sea flowasa in the mout rapid rivers, nal the name of atream ia employed:-Malstrim, the famous whirlpool, Grimetröm, Numdströn, which, when the tide is high, produce tho effect of a mighty cataract. Wrvea aro scen atruggling against waves, towering nlot, or wheoling about in whirlpools; tho dashing and roaring of which are hearil many milea out at sea. Tho produce of the fishery, which has been rendered much more abundant ly the introluction of large neta instead of hooks, is conveyel to Bergen in a great number of little barks. The Danish government endeavoured to form at Stromson a conmercial depot for the produce of Norrland; but in this blonk situation it has not flourished. The Russians ceme with numoroua vessels from Archangel, bringing meal and provisions, which they give in exchange for the fish caught.

Sunazot, 3,-Lapland.

The vast region of Lapland in divided from the rest of Scandinavia by a lino drawn across it noarly coinciding with the Polar Cjrcle, so as to render it almont entirely an nrctic region. It coneiste partly of great chsins of mountains, some of which are 4000 feet high, while other extensive tracts are level. Through these roll the Tornen, the Lulea, the Pitea, and other rivers of long course, and navignhle for the fow boats which have any occasion to pass along them. The Laplandera aro a peculiar race,
 short, atout, brown, with black hair, pointed chin, and eyes rendered weak by exposure to the amoke and snow. They are divided into the mountain or wandering laplanders, and those who dwell in what are called villages; but Kautokeino, which forms a sort of lapland enpital, when visited by Acerbi, was found to contain not more than four linuilies nud n priest. The swift-footed rein-leer, which they train to draw them in sledges over the snow, form their riches; the flesh and milk of these animals compose their food, nud tho skins their furniture. The tents of the Laplanders (fig. 250.) aro formed by six beams of wool meeting nearly at top, covered with cloth, a flap of which, left between two of the beams, serves as the door. The floor is sprend with rein-deer skins, having the hair upwards, and which thus serve for cither lying or sitting, the tent being too low to stand in, except in one place. A stone frame is made in the middle, for the fire; and there is a hole at the top, to which the smoke Vot. 1.
must find its way; but this it does not effect till it has thickly impregnated the whole tent with its fimes; which, however, are valned as affording a protection in winter against the cold, and in summer against the swarms of musquitoes with which, during a period of short and extreme heat, the air is infested. The herds of rein-deer vary from 300 to upwards of $\mathbf{1 0 0 0}$, according to the wealth of the possessor. All day they wander over the hills, and in the evening are driven, not without some occasional resistance, into an enclosed park, where they are milked. Ench yields only about a tea-cupful of milk; but rich, aromatic, and of expuisite taste. Linneus mentions nineteen farms in which milk is prepared for ford; but cleanliness dees not preside over their cookery ; and the use of the hand, without knife or fork, to curry every thing to the mouth, and of the tongue to lick the dishes, prevents an European from joining these meals with any relish. The Laplanders travel from place to place, and move
 their families, usually at the be ginning of winter and summer, in sledges nade in the form of a boat, and drawn by rein-deer (fig. 251.). These animals are tamed and trained with considerable difficulty, and they are sometimes restive ; but, in general, they bound over hill and dale with surprising celerity. The natives have also a species of snow-shoe; not a broad flat board, like that of America, but somewhat in the form of a skate, with which they glide rapidly along the surfuce of deep snow, and even up and down

Laplander deacending a Snow-Flake. the steep sides of the hills (fig. 252.). Their dress is carefilly contrived for the purposes of warmth. The under part, or shirt, is composed of sheep's skin with the wool inwards; while the exterior coat is formed by the skin of the rein-deer, or some other animal, having the fur outwards. They add fur gloves, and a woollen pointed red cap (fig. 253.).
The entire pepulation of Lapland, spread over a surface of 150 miles square, is stated by Dr. Thomson not to exceed 60,000 , or one inhabitant to every three square miles. Even this scunty measure is supported only on the seacoasts by a supply of fish. The parish of Kautokeine, in the interior, extending 200 miles in length and 96 in breadth, was reported to Acerbi as containing not more than ninety families, of whom twelve only are fixed. The Laplanders are a harmless race, among whom great crimes are unknown. Only one murder has been heard of in twenty years; and the absence of theft is proved by that of bars, bolts, and other safeguards. They do not show that open hospitality and warmth

of heart, for which rude nations are so often celebrated. They are cold, shy, mistrustful, and difficult to treat with, at least unless tobaceo or lirandy be brought in as mediators. They were formerly very superstitious; and the Lapland witches were famous for their empire over the winds, which they enclosed in bags, and sold to the mariner. The magic drut.. or against period of 00 to upider over to an enbut rich, lk is prethe hand, he dishes, ers travel and move at the be 1 summer, form of a rein-deer nimals are with condid they are t, in genehill and ; celerity. o a species e form of a p and down fig. 253.). ntrived for The under I of sheep's ; while the the skin of her animal, They add pointed red
of Lapland, hiles square, bt to exceed every threc canty mean tho sethThe parish lth, was ree only are own. Only ved by that and warmth

Boos 1.
HOLLAND AND BELGIUM
(fig.254.) and the enchanted chain (fig. 255.) are still in occasional use. Yet the laplanders
 have been converted to Christianity, and are nttentive to its duties, coming often from vast distances to attend divine service, though the instructions are conveyed to them only through the broken medium of an interpreter.
The sea-coast of Lapland presents a continuation of the same bold and rocky features which distinguish that of Norway. Here, too, the fishery is carried on with activity. It is chiefly in the hands of a Finnish race, called Quans, who lave pushed across Lapland, and exert an activity unknr mat to the natives oi that region. The Russians from Archangel, also, not ony bring their meal to exchange for fish, but carry on the fishery themselves to a great extent. In July and August they cover with their small three-masted vessels all the fiords and sounds, and throw out lines that are sometimes two miles long, and contain 600 or 700 hooks ; so that their vessels are filled with the utmost rapidity. The government has founded, on the large island of Qualoe, the town of Hammerfest, the moat northern in the world, and destined as a rival to Archangel; but the settlement has never taken root in this ungenial climate, and continues also, with one exception, to be the smalleat that exists. On the other side of the North Cape, on the extreme frontier, the fort of Wardhuus, defended by twenty men, forms the only barrier to prevent the Russians from taking possession of the whole country. Mageroe, the most northerly of the islands, consists of steep rocks rising perpendicularly from the sea, and ascended as if by stairs. In a rocky recess stands Kielvig, with four or five families, on a level spot, barely affording a site for the houses, and exposed to the perpetual war of the elementa. The tempests here rage with such fury, that it is often impossible to leave the house without danger of being blown into the sea. At the northern point of this islnnd is formed by the North Cape the grand boundary of the European continent, facing the depths of the Polar Ocean. It consists of an enormous mass of naked rock, parted by the action of the waves into pyramidal cliffs, down which large fragments are continually falling.

CHAPTER VII.

HOLLAND AND BELGIUM.

The Netherlands, comprising now the two kingdoms of Holland and Belgium, form n maritime territory, which, situated almost in the centre between the north and the south of Europe, and penetrated by the Rhine and its tributaries, possesses great natural advantages for industry and commerce. It has, accordingly, from a very carly period of modern history, ranked as one of the most prosperous and flourishing parts of Europe. The union of the Batavian and Belgic Netherlands into one kingdom, though in fact only a renewal of that which subsisted at a former period, was suddenly terminated, in 1830, by a revolution of the Belgians. The separate existence, however, of Holland and Belgium being yet recent, and the statistical information respecting them having for a number of years been collected with reference always to the entire Netherlands, they will be still treated most advnntageously in combination. It may be sufficient to observe, that, since the revolution of 1830, Belgium has been crected into a separate monarchy, through the mediation of the five grent powers of Europe; and the crown, with their consent, has been conferred on prince Leepold, formerly of Saxe-Coburg.

Secr. I.-General Outline and Aspect.

Holland and Belgium may be regarded as a large corner or segmont eut off from France and Germany, which form round it a species of irregular arc. Arbitrary lines, drawn conformably to treaties, mark all except its maritime boundaries; for, though several of the greatest rivers of Europe cross its territory, none of them have any limitary character. The maritime boundary, which, like the inland, extends from north-east to south-west, is the North Sea, or German Ocean, which is formed here into a species of large gulf by the opposite coast of part of the English Channel. Holland is also penetrated by the deep inlet of the Zuyder Zee. The whole territory extends between $49^{\circ} 30^{\prime}$ oיd $53^{\circ} 34^{\prime}$ N. lat., and $2^{\circ} 30^{\prime}$ and $7^{\circ} 12^{\prime}$. E. long.; making about 280 miles in length, anu 220 miles in breadth. The entire extent, according to the best calculations, amounts to 24,870 square miles, or 15,900,000 English acres.
In respect to surface, this country includes the lowest portion of the great low land of the European continent. The northern parts, composing the new kingdom of Holland, are mostly below the level to which the bordering sea rises during high tides or swells. Hence originated an imminent danger of inundation, till the Dutel constructed those mighty dikes, by which the sea is excluded. and which form so extraordinary a monument of their industry, Holland is humorously deseribed by Butler as a country that draws fifty feet of water.; The Belgic provinces are also flat, but not lower than the surface of the sea, nor much exposed

Book I.
HOLLAND AND BELGIUM
to river inundation. In the south-eastern district of Liege and Namur, branches of the Rhenish mountains render the surface irregular, and sometimes hilly, particularly in the tract forming part of the ancient forest of Ardennes.

Several rivers, which rank among the greatest in Europe, and are derived from distant sources, pass through this territory; and, separating into numerous channels, form broad estuarics at their entrance into the ocean. They all unite in the channel of the majestic Rhine; yet, by a singular fortune, this great name is not retained by the main branch of the river, which, in turning to the westward, receives the name of Waal, and afterwards that of its important tributary the Maese, under which designation it flows into the sea below Rotterdam. The Yssel, another considerable branch, runs northward into the Zuyder Zee; while the name of Rhine is retained by another, comparatively a rivulet, which passes through the provinces of Gueldres and Utrecht. The Macse or Meuse is the only great river which has the larger part of its course through the Netherlands, traversing the interior of Belgium from south to north. Its main tributaries, the Sambre on the west, and the Roer on the east, have only a portion of their course through Belgium. The Scheldt has not nearly so long a course; but this river, and its tributaries, the Lys, the Dyle, the Dender, and the Neethe, water the most improved districts, and visit the greatest cities of Belgium. When united under their main branch, they form a broad navigable ehannel, opening intc an estuary, which affords to Antwerp the means of carrying on an extensive maritime commerce.

References to the Map of Holland and Belgium.

HOLLAND. 1. Fibesland.	04. Wesepe 65. 1feyne	124. Scloonheven 125. Leerlam	188. N. Anwen 187. Morsch	56. Hamme 57. Burcht Town	116. Grand Menil 117. Tohegne
1. Pyugena	76. Deventer	128. Gercum	18., Ettabruck		110 Mierai
2. Buitenpor	Curderiand.	129. Charlai	190. Echtenach	59. Doel ${ }^{\text {a }}$	120. Neuvilu
4. Leuwarde	66. Elburg	192. Stryen	191. Grevenma*	60. Envelda	32. Omal
5. St. Jacob	67. Posthuia	130. Helveetsluy	cheren	61. Et. Laurena	1\%2. Liadas
6. Franeker	68. Herderwyk	131. Goeree			123. Flemalle
7. Harlingen	tin. Jeuvenum		BELGIUM.	V. West Fanders. 62. Cueeke	$124 . \bar{y}$
9. Bornwort	79. Harneveld	172. Zierrikzee	1. Arendonck	Gii, Hiankenburg	128. Limburg
10. Workum	73. Kooty ${ }^{\text {a }}$	133. Goea	2. Turnheut	64. Bruges	127. Heren
11. Ilindelopen	74. Apeldoem	134. Veare	3. Minderhout	65. Ostend	198. Baufay
12. Stavoten	75. Vensen	135. Middlebura	4. Goring	6i. Nieuport	199.8pa
13. Sluten	77. Zotphen	3, Sh. Suya	5. Oost Malle	67. Therout	330. Solvantra
14. Koinder	78, 1.ochem	137. Biervliet	6. Gant Vlist	68. Dixmuide*	131. Jouflame
15. Terkuppel	79. Borkule	13. Axel	7. Fort lillo	69. 1,00	132. Stavelot
17. Grouw	80. Ruerle 81 Brodever	139. Auiat	8. Fort St. Philip	70. Pountbrugge	133. Thestion 134. Vieil Salm
19. Noordwel	82. Heerenberg	141. Eteenbergen	10. Bergenhaut	72. Warneten	
19. Heestcr 7wa	33. Deunichem		11. Berchem	73. Ypres	Auzemburs
20. Doukerbouk	84. Doeahurg	1X. North Brabant.	12. Roo	74. Menin	135. Traillee
	85. De Woent Hoef	142. Bergen ep coom		75. Cauntray 76. Reusselaere	. Natorne 7. Neuville
Marum	\%7. Huiser	144. Wilfiemetad	15. Yosdencken	77. Thielt	138. Chau de Be-
22. Girypskerk	88, Herveld	145. Breda	16. Herenthala		
21. Zolikamp	89. Wageningen	146. Chnam	17. Gestal	V. Hainault.	139. A
24. Uskert	90. The	147. Tjuburg	38. Lemmul	78. Potter	14. Virton
25. Droppersum	91. Kuilenburg	148. Geertruidepberg 349. Heusdin	II. Jimbu	80. Temp Leuve	142. Perensart
27. Winschaten	V1, Uirecht	150. Bemmel	19. flelck Tuen	81. Teurnar	13. Bovillon
29. Fort Bourtanga	92. Wyk	151. Fort St, Andries	a. Pcer	82. Fentenoy	14. Orchimont
29. Ter Ape!	03. Vanandaal	152. (rave	21. Hamen	83. Peruvel	45. Anlay
30. Tor Masrsch	04. Inselitein	153.7 echel	22. Mewey	84. Qulvra	18. Rec
31. Kelham	95. Montfourt	154. Bris le Dus	23. Aech	85. ${ }^{\text {ar }}$	147. Neur Chateau
32. Graniagen	97. Utrecht	155. Rouvel	2. Reckem		vers.
III. Drenthe.	98. Nearden	157. Luiks Geatel		89. Ath	Schu
33. Roon	71. Ainarsfoort	158. Eerze!	27. Tungres	60. Enghien	6 Heorn
34. Gnateren		159. Leende	28. Manaheven	90. Roeulx	c Kninder
35.5. Assen	Vil. North Hol-	160. Aten		91. Goaseinee	d Reest
37. Dieverhurg	99. Ameterdam	162. Wanroy	29. Tirlemon	03. Nerbes le	f Vecht
39. Weaterhorg	100. De Koog	163. Verlingheck	30. Incourt	Chnteall	\% Regae
39. Oduorı	101. Monnlkendam		31. Mpmatiet	94. Reaumunt	h Yaoel
40. Stheonebeek	10.2. Pormerend	Limbu	\%2. Nivelle	15. Racree	Chipbeech
41. Koovarden	113. Fdeio	164. Velten	3x. 1n Relle Alliance	96. Shimey	Berkel
4.3. Ruinen	104. Hourn	16. Peterwerth	34. Watarino	II. Namur	$1{ }^{\text {chea }}$
43. Mcppel	108. Mellenblick	167. Helden	36. Brumela	97. Marienbourg	m Meuse
, Overy	107. Kolhorn	168. Mryel	37. Vlanden	8. Philipville	- Great Aa
44. Steenwyk	114. The Heitler	16. Weert	38. Louvain	09. Lizny	- Denmel
45. Blockeyl	102. Calandsoog	170. Ruremande	39. Haerlen	100. Thil Baudian	p Merk
40. Vollenhoven	110. Petten	17. Werten	40. Dieat	101. Graux	7 Soheldt
47. Suaricgluis	11. Broek	172. Oirabenck	41. Aerschet	103. Gemblenx	
49. Kampen	113. Eqmonda	174. Maentricht	43. Denderzed	104. Eghezes	t Benne
5i1. Z,woll	13. E\%os	175. Gulpen	44. Archa	105. Audennes	${ }^{4}$ Haine
51. Genemuiden	114. Bevnrwyk			108.	Dambre
5\%. Ommen	115. Zandvoort	170. Wraemourg.	IV. Alost Franders.	107. Persioulx	${ }^{\mathbf{W}}$ O Dermer
53. Mardeoberg	116. Hearlem	170. Wieg Wam-	40. Ninev	109. Sambelina	y Little 1, ethes
5.5. Almelo	Vhil. South Hol-	177. Clervanx	47. Gramment	110. Beay Raing	Grent Latnes
5in. Ootmaraum	land.	178. Vianden	48. Parieke	Jil. Gedinae	a* Our
57. Oldenzial	17. Ligee	170. Nachderf	50. Lecuwershem	8.	${ }^{*}$ * Sure
50. Eellen	19, Leydan	141. Nider Pallen	51. Denenock	112. St, Hubert	$\mathrm{d}^{\text {* }}$ Semoy
(i0. Ilasbergen	120. The Hague	142. Luatembutg	52. Deinso	113. Beaunninte	1
6i1. Goer	21. Graverande	183. Frach	53. Ghent	115. Marcha	Almetta Moselle
63. Rymen	123. Wouda	185. Canach	55. Caleten	125. crercour	
Vat. I.					3 N

The only considerable lake in IIolland is Haerlem-Moer, n wide shallow expanse; which, however, was of great service to the Dutch during their grand struggle for independence by giving them the means of laying the surrounding country under water. There are several smaller lakes of the same character in Friesland.

Secr. II.—Natural Geography.
 Subsect. 1.-Geology.

The higher parts of this country are composed of strata of transition slates and quartzes more or less inclining to sandstone, generally directed from N. E. to S. W., and traversed by numerons veins of quartz. These slates are clay slate, whet slate or hone, drawing slate or black chalk. Resting upon the transition rocks occur various secondary deposits. The first formation is the old red sandstone, upon which rests the mountain limestone. Associated with these rocks are various slate clays, and beds of anthracite or glance coal. Mines of brown iron ore, or hydrate of iron, and of red iron ore, or oxide of iron, occur among these rocks. A grent field of the coal formation, resting upon this mountain limestone, extends from Aix-la-Chapelle to Donay. The coal formation in this tract of country forms a series of irregular basins, of which the most considerable are those of Liège and Charleroi, which are separnted from each other by a small ridge of limestone. The chief rocks of these coal-hasins are sandstone, slate, clay ironstone, and coal. The most important coal mines are those in the neighbourhood of Mons and Charleroi; but the mines of Liège are remarkable on account of the difficulties the miners meet with in their workings; the number of beds of coal being reckoned as high as eighty-three by M. Dumont. From Aix-la-Chapelle by Maestricht and Brussels, the country is composed of chalk, with occasional displays of green sand, gault and Shanklin sand, rising from under it.
The tritonian or lower tertiary rocks form in the Netherlands a very consilerable hasin, in which is situated the city of Brussels. It is composed principally of sands, ferriferous sandstones, white sandstones, flint, limestone, and clayey marl. These tertiary deposits are observed more or less deeply covered with diluvium; and at the mouths of the Scheldt, Meuse, and Rhine, there are vast deposits of river alluvium, which alluvium forms also the islands of Zealand, and the greater part of ILolland.

Subsect. 2.-Botany.
The Botany of this country is noticed under that of Germany.
Subsect. 3.-Zoology.
The Native Zoology offers nothing peculiar. The Dutch horses (fig. 257.) are only valu-

Dutch Ilorso. able for dranght: those of Friesland, Berg, and the country of Juliers, are the best; but their feet are generally large, they eat much, nnd have little endurance. This race appears to have been derived from Denmark, and to have produced the IIolstein, which was the parent of the old unimproved English breeds of horses. The Flemish sheep are of a breed common to France and the Netherlands, being in general hornless, high on the legs, and derived from an intermixture with the Barbary long-legged sheep. The Dutch oxen are of an immense size, sometimes weighing 2000 pounds.
Sect. III.-Historical Geography.
The Netherlands formed, in ancient times, the principal part of Gallia Belgica. The Belge were the rudest, the bravest, and the fiercest of the three nations of Gaul. 1 desperate struggle was maintained before they yielded to the genius of Casar, and the superior discipline of the Roman armies. At length the country within the Rhine was reduced to the condition of a Roman province; hat the Batavi the ancient Hollanders, united themselves to Rome rather as allies than subjects.

During the middle ages the Netherlands passed through a series of vieissitudes. So early as the era of Charlemagne, they had acquired distinction in the pursuits of industry; and some of their fabries were sent by that monarch to the caliph Haroun Alraschid, as specimens of the arts and industry of Europe. When the empire of Charlemagne fell to pieces, these states were divided into a number of separate principalities, all successively united, by marriage contract or inheritances, unier the sway of the house of Burgundy. It was at this time that the Flem'sh provinces rose to the highest pitch of manuficturing and commercial prosperity. They received all the raw materials of France and Fngland, countries then rude and ngricultural, and returned them in a manufactured state. Ghent alone is said to have emmloved 40.000 loms: though this is most probably much exaggerated. Bruges first,

Part 11. ase ; which, lependence, are aeveral
nd quartzes nd traversed rawing slate posits. The tone. Assocoal. Mines occur among in limestone, ountry forms nd Charleroi, hief rocks of mportant coal of Liège are ; the number n Aix-la-Chaional displays
derable hasin, ds, ferriferous y deposits are the Scheldt, forms also the
are only valuBerg, and the - feet are genethe endurance. ed from Denin, which was lish brceds of eed cominon to general hornan intermix-

The Dntch veighing 2000

Belgica. The aul. A despend the superior was reduced to , united then-
dides. So carly industry; and chid, as specifell to picces, vely united, by It was at this nd commercial countries then lone is said to Bruges first,

Boos 1.
and then Antwerp, formed the grand depot for the commerce of the northern and middle states of Europe.
The house of Austris, by the intermarriage of Maximilian I. and Mary, the heiress of Burgundy, succeeded to the rich dowry of the Seventeen Provinces. They formed one of the chief sources of the power of Charles V., who transmitted them, with Spain and his Italian dominions, to hia son Philip II.
The Reformation was early introduced into the Netherlands, and had a most powerful influence upon their destiny. Being suited to the sober and thinking habits of a manufacturing population, it was soon embraced by a majority of the people, who were thus placed in direct collision with the ficree and gloomy bigotry of Philip II. The Inquisition being introluced, in its most unrelenting severity, with a vicw to the guppression of the new doctrine, drove the people into open rebellion; and a contest of fifty years' duration arose, the most fierce, bloody, and important in its consequences, of all these to which differences of religion have given rize. The duke of Alva, who boasted that, during his government in the 1ow Countries, 18,000 persons had petished on the scaffold, was, however, unable to subdue the independent spirit snd determined enmity to Spanish dominion which he had been instrumental in kindling. The more moderate conduet of his suceessors, and, above all, of Alexinder Farncese, succecded in re-establishing the Spanish sway over the Belgic provinces which were not defended by any natural barriers. Even the Duteh were reduced to the disastrous necessity of opening their dikes, and allowing a great part of their territory to be inundated. Their courage and perseverance, however, the grest talent of the first two princes of the houso of Orange, and the aid afforded by Elizabeth, enabled them finally to achicve their independence. The union of Utrecht, when they constituted themselvea into an independent state, by the title of the Seven United Provinces, was coneluded in 1597.
From this period the deatiny of the United Provinces, called more commonly by the name of Holland, the chief province among them, was entirely different from that of Belgium. They specdily attracted many of the manufaetures, and all the commerce, which had raisel the Flemish citics to prosperity. The Dutch conquered from Portugal, at that time under the dominion of Spain, the finest of her possessions in the East Indies; obtained a temporary footing in Brazil; and rendered Amsterdam the centre of a flourishing trade with India: they carried on the fisheries, especially those of herrings, upon an unprecedented scale; and became the first maritime people in the world. The commercial greatness of Holland presents so remarkable a phenomenon, that we cannot forbear availing ourselvea of some part of that luminous illustration of it , which has been afforded by the researches of Mr. M'Culloch. That able writer observes:-
"Between tho years 1651 and 1672 , when the territories of the republie were invaded by the French, the commerce of IIolland seems to have resched its greatest height. De Wift estimates its increase from the treaty with Spain, concluded nt Munster in 1643, to 1660, at fully a half. He adds, that, during the war with Holland, Spain lost the greatest part of her naval power; that since the peace, the Dutch had obtained most of the trade te that country, which had been previously sarried on by the Hanseatic merchants and the English; that almost all the coasting trade of Spain was carried on by Dutch shipping; that Spain had even been forced to hire Dutch ships to sail to her American possessions; and that so great was the exportation of goods from Holland to Spain, that all the merchandise brought from the Spanish West Indies was not sufficient to make returns for them.
"At this period, indeed, the Dutch engrossed, not by means of any artificial monopoly, hut by the greater number of their ships, and their supcrior skill and economy in all that regarded navigation, almost the whole carrying trade of Europe. The value of the goods exported from France in Dutch bottoms, towards the middle of the seventeenth century, excceded $40,000,000$ livres ; and the commerce of England with the Low Countries was, for a very long period, almost entirely carried on in them.
"The business of marine insurance was largely and successfully prosecuted at Amster. dam; and the ordinances published in 1551, 1563, and 1570, contain the most judicioua regulations for the settlement of such disputes as might arise in conducting this difficult but highly useful business. It is singular, however, notwithstanding the sagacity of the Dutch, and their desire to strengthen industrioua habits, that they should have prohibited insurance upon lives. It was reserved for England to show the advantages that might be derived from this beautiful application of the science of probabilitics.
"In 1690, Sir Willian Petty estimated the shipping of Europe at about $2,000,000$ tons, which he supposed to be distributed as follows:-viz. England, 500,000; France, 100,000; Hamburg, Denmark, Sweden, and Dantzic, 250,000; Spain, Portugal, and Italy, 250,000 that of the Seven United Provinces amounting, according to him, to 900,000 tons, or to nearly one half of the whole tonnage of Europe! No great dependence can, of course, be placed upon these estimates; but the probability is, that, had they been more accurate, the preponderance in favour of Ilolland wonld lave been greater than it appears to be; for the official returns to the eirculars addressed in 1701 by the commiesioners of customs
to the officers at the different ports, show that the wholo mercuntile navy of Eugland amounted at that period to only $201,2 \mathrm{LL}$ tons, carrying 27,100 men. (Mucpherson's Annals of Commerce, auno 1701.)
"It may, therefore, be filirly coneluded, that, during the seventeenth century the foreign commerce and navigation of Iollanil was grenter than that of all Europe besides; and yet the conntry which was the seat of this vast commerco had no native produco to export, nor oven a piece of timber fit for ship-building. All had been tho fruit of industry, economy, and a fortunate combination of circumstances.
"Holland owed this vast commerce to n variety of causes: partly to her peculiar situation, the industry and economy ol her inhabitants, the comparatively liberal and onlightened syatem of civil as well as of commercial policy adopted by the republic; and partly also to the wars and disturbances that prevailed in most Europeun countries in the sixtcenth and seventeenth conturies, and prevented them from emulating the successful career of the Dutch.
" Many dissertations have been written to account for the decline of the commerce of Holland. But, if we mistake not, its leading causes may be classed under two promiuent heads, viz. first, the natural growth of commerce anil navigation in other countries; and second, the weight of taxation at home. During tho period when the republic rose to great eminence as a commercial state, England, France, and Spain, distracted by civil and religious dissensions, or eugrossed wholly by schemes of foreign conquest, were unablo to apply their encrgies to the cultivation of commorce, or to withstand the competition of so industrious a people as the Dutch. They, therefore, were under the neccesity of allowing the greater part of their foreign, and even of their coasting trade, to be carried on in Dutch bottoms, and under the superintendence of Dutch fictors. But after the accession of Louis XIV. and the ascendency of Cromwell hail put an end to internal commotions in France and England, the energics of theso two grest nations began to be directed to pursuits of which the Dutch had hitherto enjoyed almost a monopoly. It was not to be supposed that, when tranquillity and a regular system of government had been cetablishad in France and England, their active and enterprising inhlubitants would submit to see one of their most valuable branches of industry in the lasis of forcigners. The Dutch cessed to bo tho carriers of Europe, without any fault of their own. Their performance of that function necessarily terminated aa soon as other nations became possessed of a mercantile marine, and were able to do for then:selves what had previously been done for them by their neighbours.
"Whatever, therefore, might have been the condition of Holland in other respects, the nutural advance of rival nations must inevitubly have stripped her of a large portion of the commerce she once possessed. But the progress of decline seems to have been considerably accelerated, or rather, perhaps, the efforts to arrest it were rendered incffectual, by the extremely heavy taxation to which she was subjected, occasioned by the unavoidable expenses incurred in the revolutionary struggle with Spain, and the aubsequent wars with Franee and England. The necessities of the state led to the imposition of taxes on corn, on fleur when it was ground at the mill, and on bread when it came from the oven; on butter, and fish, and fruit; on income and legacies; the sale of houses; and, in short, almost every article either of necessity or convenience. Sir William Temple mentions that in his time -and taxes were greatly increased nfterwards-ono fish sauce was in common use, which directly paid no fewer than thirty different duties of excise; and it was a common saying at Amsterdam, that every dish of fish brought to the table was paid for once to the fislicrman, und six times to the state.
"In consequence principally of the oppressiveness of taxntion, but partly, too, of the excessive accumulation of capital that had taken place while the Dutch engrossed the carrying trade of Europe, profits in IIolland were reluced towards the middle of the seventeenth century, nad have ever since continued extremely low. This circumstance would of itself have sapped the foundations of her commercial grentuess. Her capitalists, who could harilly expect to clear more than two or three per cent. of net profit by any sort of undertaking carried on at home, were tempted to vest their cupital in other countries, and to speculate in loans to forcign goveruments. There are the best reasons for thinking that the Dutch were, until very lately, the largest creditors of any nation in Europe. It is impossible, indeed, to form any nccurate estimate of what the sums owing them ly foreigners previously to the late French war, or at present, may amount 1 s ; bu; there can be s.o doubt that at the former period the amount was immense, and that it $s=5 \mathrm{n}$ very considerabic. M. Demeunier (Dictionaire de l'Economie Politique, tome iii. p. 720.) states the smount of eapital lent by the Dutch to foreign goveruments, exclusive of the large sums lent to France during the American war, at seventy-threc millions sterling. According to the nuthor of the Richesse de la Hollande (ii. p. 292.), the sums lent to France and Fingland only, previously to 1778, amounted to $1,500,000$ livres tournois, or sixty millions sterling. And besides these, vast sums were lent to private individuals in foreign countries, both regulurly as loans at interest, and in the shape of goods advanced at long credits. So great was the difficulty of finding an advantageous investment for money in Holland, that Sir Willism Temple mentions, that

Book 1.
HOLLAND AND HELGIUM.
tue payment of nny purt of the untional delit was looked upon by the creditors as nn ovil of the first muguitude. 'I'hey receive it,' says he, 'with tearm, not knowing how to dispose of it to interest with sucli safety and ease.'
"Among tho subordinato causes which contrihuted to the decline of Dutch connnerce, or which lave, at all events, prevented its growth, we may reckon the circumstance of the commerce with India having leen subjected to the trammels of monopoly. De Witt exproses his tirm conviction, that the alolition of the Hast India Company would have added very greatly to the trado with tho bast; and no donbt can now remain in the mind of' any one that such would have been the case. The interference of the ndministration in regulating the mode in which sone of the most important branches of industry should be carried on, seems also to have been exceedingly injnitious. Divery proceeding with respect to the herring fishery, fir exumple, was regulated hy the orders of government, carried into ellict under the inspection of officers appointed for that purposo. Some of these regulntions were exceedingly vexatious. The period when the fishery might hegin was fixed at five minuten past twolve o'clock of the night of the 9 lth of June! and the master and pilot of every vessel leaving IIolland for the fishery wore obliged to make oath that they would respect the regulntion. 'Tlm species of salt to be mule use of in euring different sorts of herrings was also fixed by law; lund there were endless regulations with respect to the size of the harrels, the number and thickness of the staves of which they were to be made; the gutting and packing of the herring; the branding of the burrels, \&c. \&e. (Histoire des Pêche's, of. dans les Mers du Nord, tom. i. chap. 24.) These regulations were intended to secure to the Hollanders that superiority which they had early nttained in the fishery, und to prevent the reputation of their herrings from being injured by the bad faith of individuals, But their real effect was precisely the reverse of this. By tying up the fishers to a system of routine, they prevented then from making any improvements; while the facility of counterfeiting the public marks opened a much wider door to fraud, than would have been opened hal government wisely declined interfering in the matter.
"In despite, however, of the East India monopoly, and the regulations now described, the commercial policy of Holland has been more liberal than that of any other nation. And in consequence, a country not more extensive than Wales, and naturally not more tertile, conquered indced, in a great incasure from the sea, has accumulated a population of upwards of two millions; has mnintained wars of unexampled duration with the most powerful monarchies; and, besides laying out immense sums in works of utility and ornament at home. has been ennbled to lend hnndreds of millions to foreigners."

The French revolution proluced a movemont so great, and with which Hoiland was in such close contact, that it acted powerfilly upon her political destinics. The revolutionary armies, after having defentel those of all the nllied powers on the plains of Belgium, advanced into IIolland; where, meeting with support from a powerful internal party, they had no difficulty in subverting the dynasty of the house of Orange. In its stead was formed the Batavian republic, virtunlly nnited to, and ruled hy, the republican government of France. A vigorons attempt, made in 1799, by Britain and Russia, to re-establish the old order of things, was baffled; and no sooner had Napoleon been made emperor of France, than he bestowed Holland, furmed into a kinglom, on his brother Louis. This prince, of a mild and amiable temper, was disposed to promote the welfare of the Dutch; but he was allowed only to act as viceroy to his brother, and was obliged to assist in forwarting those measures by which Napoleon, in the voin hope of ruining Britain, endenvoured hermetically to seal all the ports of the Continent against foreign conimerce. This system was most distressing to all countries snbjected to it; but to Holland it was peculiarly ruinous: that maritnne commerce on which her whole greatness had rested, received a blow from which, perhaps, it will never recover.

The kingdom of the Netherlands grew out of the measures adopted by that great coalition which, after a long series of triumphs, totally overthrow the colossal fubric that had been raised by the genins of Napoleon and the bravery of the French. After its fall, Austria might have advanced a claim to the Netherlands, so long a portion of her extended dominion. Being, however, so remote, and so mich detached from her other territories, it was likely to prove a dependency inconvenient and difficult to defend. She therefore consented to accept indemnification in another quarter, and to allow Belgium, with Holland, to be formed into a representative kingdom, under the house of Orange; believing it might serve ns a harrier against any fiture encroachment of France. The kinglom of the Netherlands, thus formed, was divided into two distinct parts, Holland and Belgium; but the latter, differing in religion, language, and manners, was always discontented at this union, and considered itself as a subject state. Inspired by the example of France in 1830 , the people rose in arms, and, after a short but desperate struggle, succeeded, with the ultimate consent of the grent powers, in forming themselves into a scparate kingdom, under the name of Belgium. It comprises the jrovinces of South Brabant, East and West Flanders, Antwerp, Hainault, Namur, Liege, the greater part of Limburg, and a small part of Iuxemburg. Melland,
vesides the ten United Provinces, has nearly all Luxemburg, and a small part of Limburg, containing, however, Maestricht, its largest town.

Seot. IV.-Political Geography.

A limited monarchy was the constitution established for the new kingdom of the Netherlands, and continued, with some modifications in Belgium, in both the parts into which it has been separated.
The legislative power in Holland is vested in the States-Genernl; a popular assenbly, modified, however, somewhat differently from those either of Britain or France. Each province, as under the ancient Dutch system, has an assembly of its own, which regulates local affains, and has even the power of imposing local taxes. It cannot, however, injure commerce by imposing heavier dutice on the produce of other provinces than ita own. The members of these provincial assemblies are chosen by electoral colleges formed in every great town; not by public mecting, or open election; but by the police officers going froms house to house, and collecting billets signed and sealed. The members of the second chamber of the States-Genersl are chosen for three years, one-third of the number being annually renewed. The upper chamber does not consist of hereditary nobles, but of a council of from forty to sixty, named by the king for life. [The Belgian chambers are both elective; the Senate or upper house being chosen for the term of eight, and the Representative chamber for that of four years.-Am. Ed.]
The revenue of the kinglom of the Netherlands announted to about $\$ 35,000,000$, raised by the usual expedients of land-tax, excise, customs, stamps, post-office, and by a tax on patents. These are required to be taken out by all persons exercising trades or professions; and partake of the character of an income tax, inasmuch as their inagnitude is determined ly the extent of the sales made by the partics during the preceding year.

Produce of the principal tranches of the Revenue of the Netheriands. Io Fiarisen			Prideipal Imaches of the Espenditure of the Nellierlanda, In Hiorina.		
	1816.	1824.		1816.	1820.
Dineet Tares .i. ,	$\begin{aligned} & 23,363,700 \\ & 12,316,266 \\ & \hline \end{aligned}$	(24,872,813	Kingin llousebold $\ldots \ldots \ldots \ldots$.	\$,000,000	$2,100,000$ $1,083,430$
			Grest Offices or Slate	-1,46,633	$\begin{array}{r}1,073,430 \\ \hline 766,969\end{array}$
Duties and Exeve	22,127,999	31, 21,668	Juatice -	3,391,511	2,191,048
Warranty on Gold and Silver	131,786	158,904	Interiur and Waterstast*	7,24s,910	6,139,249
	$\begin{array}{r}1,068,308 \\ 4 \times 1 \times 208 \\ \hline 148\end{array}$	1, 1081,478		1,281,261	1,327,311
Leitery of prumela	$1.445,047$	1, 0129.307	Education, Arts, Commerce, a ad Colocien -	3,994,738	1,78,018t
High Roads	1,548,080	1,108,423	Flmanees ${ }_{\text {Navy }} . ., \ldots, \ldots, \ldots, \ldots, \ldots$,	23,314,342	
			Narmy $\ldots, \ldots, \ldots, \ldots, \ldots, \ldots$.	27,128,574	6,542, 642 $18,444,539$

The total average anmual produce of the revenuc, during this period, was $88,044,152$ floring.
The article finances means chicfly the interest of the public debt. This amounted, in 1826, to upwards of four per cent. on a capital of $832,334,500$ florins. The debt was almost wholly contracted by the Dutch, principally during their protracted and glorious struggle for independence, and partly during the period that Holland was connected with France.
The total annual aversge expenditure, during the above-mentioned years, was $98,106,820$ florins.
[It has been settled that Holland shonld assume six-thirteenths of the Netherlandish debt, and Belgium the remaining seven; but the latter has not hitherto paid any part of the interest. The expendituro of the Dutch kingdom in 1833 was $49,385,849$ florins, exclusive of $44,000,000$ for extraordinaries on sccount of the war establishments. The former sum includes the interest on the whole debt, amounting to $21,021,484$ florins.
The expenditure of Belgiun was $73,000,000$ francs, comprising no charges on the debt; but nearly three-fifthe of this sum wss absorbed by the military, which it has been necessary to keep on the war establishment.-Am. Ed.]
The military force of the kingdom of the Netherlands was in a somewhat large proportion to its resources. This was supposed to be rendered neeessary by the proximity of so great a power as France, whose attack, or at least whose dictation, there might be room to appreliend. The army, before the late changes, amounted to about $6:, 000$ men. The Belgic provinces, having been long the prineipal theatre of hostility between France and Austria, were guarded by a line of strong fortresses. These had been allowed to fall somewhat into decay; but the allies, having brought their contest with France to a triumphant conelusion, determined to strengthen them as a barrier against the future encroachments of that power; and the large contributions levied upon her were, in a great ineasure, employed in restoring the fortresses to their original condition. Sovoral of these, however, by an agreement made between the Freneli and English governments, have been recently dismantled. Both powers have kept up large forces since the revolution; but will soon re-

[^22]Part III.
f Limburg,
the Nethervhich it has tr assembly, Each prorulates local injure comown. The sed in every going fronl the second mber being es, but of a jers are both - Represent-

0,000, raised by a tax on professions ; determined

s 88,044,152
amounted, in The debt was and glorious nnected with
as $98,106,820$
rlandish debt, y part of the ins, exclusive former sum
on the debt; een necessary
large proporoximity of so it be room to f men. The France and to fall somea triumphant oachments of ire, cmployed however, by been recently will soon re-

Boor 1.
HOLLAND AND BELGIUM.
duce them to a regular peace establishment, of which it is impossible at preeent to give any acceunt.
In naval affairs, Holland, no longer the maritime rival but the close ally of Britain, made only faint attempts to raise her navy from the low state to which it was reduced by the disasters of the revolutionary war.
[It consists, at present, of six ships of the line, sixteen large class and aeven amall clase frigates, thirty corvettes and brigs, four ateam vessels, and about eighty armed barks, of five guns, for the defonce of the interior waters,-Am. Ed.]
The foreign poseessions of Holland, after being entirely wrested from her during the war, were, with the exception of Ceylon, the Cape of Good Hope, Dernerara, and Berbice, restored in 1814. In the East Indies, she possesses the Moluccas, the extensive and fertile island of Java, with settlements on Sumatra, Celebes, and Borneo; and some factories en the coast of Malabar and Coromandel. In Africa, she retains EI Mina, and other factories on the Gold Coast. Her West India colonies are not, and never were, very considerable, unless as commercial depots. Both the navy and the colonial possessions, in the separation of the two kingdoms, remain with Holland.

Szor. V.-Preductive Industry.

There is no country, perhape, which in proportion to its extent and original resources, produces so great an amount of valuable and useful commodities as Holland and Belgium.

The agriculture of the Belgic provinces, though, contrary to the usual course, it was founded upon their manufactures and conunerce, being exempted from the vicissitudes which befell them, continues to form the most ample source of wealth. The whole territory of Flanders is cultivated like a garden. A great proportion consisted originally of harsh, barren sands, producing nothing but heath and fir; yet by the application of manure these were gradually reclaimed, and brought into their present state of high fertility. The culture of artificial grasses, and especially of clover, is the characteristic process of Flemish husbandry, which it has taught to the rest of Eurupe. The care of the Flemish farmers in collecting manure was early conspicuous, and as naturally grew out of the use of artificial grasses, and consequent stall-feeding. The use of liquid manure, collected in large reservoirs, is common to this country with China, and not known in any other part of Europe, except, perhaps Norway. Turf ashes, especially those imported from Holland, are in high estimation, and are said to produce an almost magical effect on the vegetation of clover. In general, the Flemish agriculture is conductel on n careful, economical, antique practice ; the farmers not having adopted many modern improvements in the arrangements of husbandry, such as the crossing of the breeds of cattle, and the use of machinery, which have been adopted ir. England with such happy effect. But this system of agriculture, after supplying the most dense population in Europe with the standard productions of the soil, yields several articles, such as madder, rape, clover, and mustard-seeds, hops, \&c., for exportation.
The objects of culture in the Dutch provinces, in consequence of their humid climate, and of the demand for animal food for the great citics, are almost entirely connected with pasturage. Holland is as it werc one great meadow, intersected by canals, and traversed by rows and groups of trees. The cattle are stalled in the winter, and fed on hay, turnips, \&c.; but in summer they are kept constantly grazing in the open air. The produce of the dairy has been brought to such a state of improvement as to be an object of exportation ; Dutch butter enjoys a high reputation, and the cheese is in good repute over all Europe.
Horticulture, which elsewhere is only a recreation, has in the Netherlands attained such importance, as to become a national object. Bosiles amply supplying its own markets with culinary vegutables, Holland exports them in large quantities to Norway, and other districts, where the growth is prevented by the rigorous climate. Ornamental gardening has been cultivated with peculiar ardour, especinlly in its floral department. When the tulipo-mania reigned in Holland, it was carried to such an exccss, that lots of 120 tulip-roots sold, in 1637, for 100,000 fiorins; and particular specimens have brought from 8,000 to $\mathbf{1 0 , 0 0 0}$. In point of fact, however, these roots formed a kind of imaginary currency, or medium for a systematised species of gambling. They were never actually transferred from one individual to another; but were a sort of stock whose whole value was derived from caprice. The government at length put down this species of gambling, and the prices of tulips fell to their naturill levei.-Careful enquiries carried on by the government of the Netherlands are considered ns having provel that the agricultural capital of the whole country amounted to 10,395,000,000 francs. The following estimate was made of the growth and proluce:-

	Hectares.	Value in Prance	Hectares.	Value in Franca.
Whent	350,010.	154,010,000		3,000,060
Rye	700,000.	168,001, 1410	Vpgrtables........... $08,000$.	55,000,000
Buckwhent	200,000.	32,040,000	Ilemp and flax 210,000.	124,000,000
Parley	180,000.	-1,002.000	Mahter $30,000$.	\$1,000,000
Pulse.	110,000	4., mio vmo	Cattle and animals......	150,000,000
Potaloes	1:11,000.	41,0130,000		
Oats	300,000.	E4,000,000		906,000,000

Manufacturing industry is the branch in which the Belgic provinces formerly moet excelled, and in which their decay has been most conspicuous. Three centuries ago, the linens and woollens of Ghent, Louvain, Brussels, and Mechlin, elothed the higher ranks in all the surrounding countries. Since that time, the fabrics of France and England, have attained such an astonishing superiority, and aro at onco so cheap, and so welf alapted to the taste of the age, that the Low Country manufacturors can with difficulty maintnin their ground even in internal consumption. In cottons, especinlly, they are quite unable to withstand British competition. There are still, how cver, somo fine linen fabrics, Jaces, lawns, cambrics, in which the manuficturers of Mechlin, Brussols, \&cc, continue unrivalled, and which, though so much superseled ly muslin and Nottinghan lace, still cnjoy a certain denand throughout Europe. The fine laces have been sold for seventy or eighty Napoleons a yard. The Flemish brewories nre also very extensive.

Tho manufacturing industry of Holland is not on so great a scale as her commerce. The pottery ware of Dolf has I'wt most of its ancient reputation, and even in IIolland is superseded by the earthenware of England. Tho spirit called gin, genova, or hollands, is produced at Sehiedan, Amsterdam, and other towns, of an excellence which is universally acknowledged. The refining of sugar, and the manufacturc of snuff, are continued on a great scale, chiefly in Amsterdam and Rotterdam, and the making of tobacco-pipes at Gouda is said to employ 5000 persons. Silk, loather, and woollens, are still manufactured, though not to such an extent as formerly, nor much with a view to exportation. The geueral value of Dutch and Belgian manufactures has been estimated as follows:-Iron, 40,000,000 francs; copper, $5,000,000$; woollens, $80,000,000$; linens, $05,000,000$; lace, $25,000,000$; cottons, $50,000,000 ;$ refined sugar, $14,000,000 ;$ salt, $10,000,000 ;$ spi. it $1,40,000,000 ;$ becr, $110,000,000$; tobacco, $28,000,000$; oil, $30,000,000$; soap, $10,000,000$; leother, $28,000,000$; carthenware, $4,000,000$; bricks, $0,000,000 ;$ books, $15,000,000$; bleaching, 11,000,000; dyeing, $10,000,000$; paper, $8,000,000$: in nll, $675,000,000$ france.
The commerce of the Netherlands has declined, both absolutely and relatively, but in a less remarkable degrce. The causes have appeared in the hisiorical survey. Tho total suspension of all maritime intercourse with other countries during the subjection of Holland to France, and the conquest of the Dutch colonies by Figland, rendered it necessary, as it were, to begin every thing afresh at the restoration of peace in 1815. But the large capitals in the hands of the Dutch merchants, their commedions situation in the centre of the most improved states of Europe, the recovery of some of tho most valuable of their foreign possessions, and the considerable surplus of nntive commodities which their country affords for exportation, secured for them, as sow, as the ports were open, a considerable trade. Since the peace, it has been continunlly inceraing; and, previously to the late revolution, was more equally distributed thun before aming tho Belgic as well as the Duteh ports. Holland exports, of its own prodnce, butter, cheese, geneva, tobacco-pipes; of the produce of its fishery, herrings, stockfish, whalebone, whale oil; from its foreign possessions, coffee, sugar, rum, cotton wool, cloves, nutmegs, mace, pepper; with linens, wool, and various articles from Germany and the Baltic. Belgium exports madder, vrgetable oils, lace, lawn, and fine linen.

There are no official returus of imports and exports published; but a very able writer in the Foreign Quarterly Review, to whose researches we have been much indebted, has given from original sources the following account of the importation of the principal articles of merchandise into the Netherland ports during the year 1827:-

ARTICLEP.	PORTV.			
	Amsterdem.	Rotterdam.	Antwerp.	
Coftec, bnles	111,059	07,3977	378,102	2,678
Ditto, tons.	9.603	1,079	3,5m	117
Sugar, clicsta	12,160	7,508	56,356	
Ditto, mals.	9.107	8.145	50,93)	79
Ditto, tons.	18,1653	3,829	4,043	2,009
Tobacco of America, tons.........	15,205	11,034	1,331	
Tice, bales .	1,0\%a	13, <12	10,359	
Ditto, tons .	8,412	5,301	14,035	
Cotton, halen..........	12,012	19,907	:2, R\%	152
Indigo, chests	16	470	1,0132	
Dirto, seroons	198	88	611	
Tea, quarter chests	15,124	0.527	1,467	4,200
Skins, 妾eces	0,271	34,50]	215.044	
Pepper, hales.	31	5,247	21,847	
Wheat, lasts	12,494	1,602	26	
Rye, ditto.........................	7,835	5,130	96	
narley. dirto	878	1.412		
Potash of Ruskia, puds*............	50,583	24,791	108,920	
Itinated Oil of do. do.............	1,246			
Tailow of ditto do.	0,411	835	1,191	
Jtimp of ditto do.	19,110	4,555	8,372	

* A Russian weight of 36 lbs
erly moet 3 ago, the ruika in land, have ulapted to thin their lo to with:es, Inwne, called, ani a certain Napoleone
arce. The 1 is supernde, is prouniversally inued on n es at Gouda red, though ?neral value 000 francs; 0 ; cottons, 10,000,000; arthenware, 10,000,000;
ely, but in a lie total susf Helland to essary, ns it a large capientre of the their foreign untrj affords trade. since velution, was ts. Holland roduce of its coffec, sugar, tous articles iwn, and fine
ble writer in ndebted, lias cipal articles

The herring flahery, which once fermed so ample a mource of Dutch wealth, (thongh in this reapect its importance has been greatly exnggerated,) was ulmost annihilated luring the war; and the ground having since been occupied by neighbours and rivala, Holland has been able to recover ouly a mall portion. Instead of 1500 herring busses, In 1819 she sent out only 200. Not more than aixty ships go annually to the whalo ${ }^{*}$ and col fisheries; and, during the late war, the Englinh undertook the task of supplying their own markets with freah fish; In which business, however, the Dutch still employ abont 6000 bronts.

For othor commercial particulars, M. de Cloet atates, that on an averuge of twenty years, between 1775 and 1705, the nember of vessels entered inwaris in all the Dutch ports was 4140, and outwards the samo; making a total of 8290 a year. The cutries inwarde, in 1822, for Amsterdam, Retterdam, and Antwerp, were 4051; which, alding f00) for Harlingen and Dort, becomes 455I. The number outwards for the same three ports was 4045, which we may, with a similar addition, call 4545; making a total of 0006 elipe. In 1827, the number entered inwards was 5203, outwards 4548, making 0751 altogether. Taking the averaye number, however, at 10,000 (instead of 9751), se as to cover the trifling trade of Ostend und Nieuport, and valuing each cargo, with M. do Cloet, at 40,000 france, a sum moderate enough, the amount of the traile by sea will bo $400,000,000$ francs. The traile by land with France and Germany, whieh, in 1814, was estimated at 152,000,000 francu, may new be tnken at $100,000,000$; so that, if the calculations be at all correct, the annual value of the foreign comaerce of the Netherlands is altogether about $560,000,000$ francs.

Mines. The south-eastern provinces in the neighbourlood of Mons, Charleroi, and Liege, are said to contain 350 mincs of coal, employing 20,000 men; but this number, we sheuld think, must be a good deal exaggerated. Turf is the fuel chiefly used, especially in Ielland. There are also in the southern district ironworks, supposed by Mr. Jacob to yield about 1000 tons. Clay suited for the manufacture of porcelain is found in Helland, and there are atone quarries in the south.

Canala form one of the most remarkable features in the ccenomical arringements of Holland, and a leading source of her prospority. From thin atructure of the country, thesc are formed with peculiar facility, and it is everywhero intersected with them; every town, every village, being connected by canals of greater or less dimensions. They run through the streeta of the cities, enabling vessels to load and unload under the eyc of the merchant. When frozen, they serve as highways, on which the Dutch females, heavily taden, convey themselves along on skates with surprising rapidity. In general, from the flatness of the country, and the abundance of water, canals may be made without much excrtion of art or skill. There is an exception, however, in the canal of Pannerden, constructed with the view of draining off the superfluous water of the Rhine, by which a grent extent of ground was converted inte a marsh. It is two miles long, and 200 fect below the level of the sea, the waters being received into three different sets of sluices. It is considered a masterpiece, and completely answered its object. Another, on a most magnificent scale, connecting Amsterdam with the Helder, was commenced in 1819, and finished in 1825, at an expense of $10,000,000$ florins. It is 50 miles long, 125 feet wide at the surface, 36 fect wide at the bottom, and 21 feet deep. It is calculated to admit ships of war of 46 guns, and morchantmen of 1000 tons burden. It was constructed so avoid the troublesome navigation to and from Amsterdam threugh the Zuyder Zee, and the necessity of lightening large vessels before crossing the Pampus.
The canals in Belgium are spacious nnd commodious, connecting all the great cities, though not nearly in equal number, nor uniting every village, as in Holland.

Sect. VI.—Civil and Social State.

The population of the kingdom of the Netherlands, though not comparable, as to absolute amount, with that of any of the great states, is superior to them all in one highly important particular, that the country contains a greater density of population on the same surface than any other in Europe, or perhaps in the world. This, in the Belgic provinces at least, is the more remarkable, as they are inhabited, not by a manufacturing population, drawing subsistence from agricultural countries, but by a population subsisting exclusively on the produce of the land itself. The census of 1816 gave a total population of 5,491,045: $\mathbf{2 , 4 7 6 , 1 5 9}$ for the northern provinces; 3,240,841 for those of Belgium; nnd 225,945 for the duchy of Luxemburg. This gives an aggregate average density of about 212 to the square mile; but the rate rises much higher in certain provinces. Throughout Belgium the proportion is 296 to the square mile; in the province of East Flanders, however, it is as high as 560. In the United Netherlands the average density is only 180 per square mile; and in luxemburg, which has much of a German character, it is as low as 66. The census of 1525 gives a population of $6,013,578$; and some further nugmentation has taken place since. \dagger

[^23]The following details with respect to the population of the Netherlanila are extracted from the piblications of M. Quetelet, one of tho ablest atutistical writers of the Continent:-

Table of the Movement of the Population in Hollund and Delgium for Ten Years.

Provinew	Population,		Birsha	Dealdo	Marriagee.	Divorctes
	1816,	103.				
Zealnnd.........	111,108	129,329	85,331	48,436	10,645	87
(laelderland....	214,097	94.3n3	(01, H1) 2	50, HiN	10,3677	13
Narth Hrimant	241,047	324,817		69,607	901,901	1
Narth llullund.	375,257	392,016	145,744	181.785	3.740	209
\$outh llollated.	348.506	438,208	165,74t	143,850	34,942	148
Utrecht	107.017	117,405	41.038	90,928	8,9+3	30
Friealand	176,544	208, SH^{6}	65,566	828,219	15,347	46
Overyses!	117929	160,987	61,061	37.179	11,040	13
fironlugen	135,048	151,045	81.673	30,639	11,498	37
Dresithe.	46,499	68,304	16,783	0,488	3,004	8
İmabitg	947, 013	321.246	101,781	70,049	29, 110	8
Lidge	238,185	331.101	113.623	82,098	24,3N7	84
Namar	164,400	189,303	88,000	34.134	12,892	8
Laxemburg	213,547	248,610	02.242	04,605	18,740	1
llainanlt	484, 5905	616,180	183,198	118.940	30.591	27
Elouth Hrubnnt	411.649	495,105	169,181	110.109	30.423	5
Viant F'himlerm	$615,8 \mathrm{HP}$	1314.207	218,830	162, 131	41,120	0
Weat Flundera..	516,324		191,139	141,310	37,843	6
Antwerp	941,96is	323,678	101,471	70,623	23,475	2
	5,424, 302	6,013,478	2,015, $\mathrm{f4} 46$	1,421,600	480,247	0105

The birtha and marringos in tho Netherlanda are proportionally more numerous, while the denths are about equal to those of France, and exceed those of Great Britain in the ratio of three to two. The account standa thus :-

Thero has been a very material increase in the healthiness of the people of the Netherlands, and particularly of Holland, luring tho last thirty or forty years.

The provision for tho support of the poor of the Netheriands is protty ample, and it is applied with great econemy and skill; forming, indeed, an important braneh of the public administration. The following table, compiled from authentic sourees, by M. Quetelet, cannut fail of being interesting:-

Charitable Institutions of the Netherlands

Nature of fmilluion	Number of Instifutlons.	Individuala reheved.	Expeusen of Relien.	:-pense for each lindividual.
Adminisurations fur relieving the l'oor at home	5,129	745,652	Vorins. 5,44N,7.10	$\begin{aligned} & \text { Florins. } \\ & 7.3! \end{aligned}$
Commianions for distribuling Food, dec.......	36	22,056	89,421	3.73
Socintien of Maternal Charity	4	1.448	11,498	9.32
Ilospilals .	78.1	41,172	4,09t,157	90.37
Funds for Military Service	1	2,277	110,912	48.73
Royal Jlospital of Memina*.	1	156	21,290	149.30
Poor Schools .	28	147.206	217,176	1.07
Workhouses nf Charity...................... .	34	6,169	406,704	65.92
Depoter of Mendicity	8	2,508	249.587	88.37
Societien ol' theneficence for the Coloniea. . . .	2	8,553	353,529	41.33
Establialmments for the Duaf and Dumb.....	4	239	41,991	175.70
Totala.	6,228	977,616	11,0419.036	A vernge 11.30
Mnnts de Piŕté. .	124		4,208,068	A - 0108
Savings l3nnks...................	50	18,0,25	2,7\%1,608	Averagel53.03

The national character of tho Dutch lias been long meulded into the form nutural to a highly commercial people; solid, steady, quiet, lalorious, eagerly intent on the necumulation of wealth, whieh thry scek rather by economy, steadinesk, and perseverance, than by speculation. They carry the virtue of cleanliness to an extreme. Ontward ilecorum of manners, at lenst, is better observed than among tho neighbouring continental nations. Yet the spiel housos in the grent towns, where the nost respectable citizens used to mingle with persons entiroly destitute of character, preseuted in this respect a strange anomaly. But at present these can liardly be said to exist; and are frequented only by the very dregs of the popilace. A traveller in Itolland will rarely meet with a drunken person; or with a man, woman, or child, in rags. Fivery class of people seems confortnble, the ressilt of their great frugality and unwearied inilustry. Were a young sturdy beggar discovered teasing pnssengers for

* In Went Flandera, fir the daughters of soldiers Invalided or kilted in aervire

Oreat Fritala
-. 3,584

- $0,7 \times 6$
- $1,1,063$
- the Nether-
de, and it is of the publio M. Quetelet,

Fi-penve for ach Juxividua

Mlopins.
7.31
7.31
3.73
9.82
99.37
48.73
149.30
1.67
65.92

88,37
41.33
175.70 cumulation of y speculation. iners, at lenst, spicl houses rions entirely present these populace. A n, woman, or reat trugrality mssengers for

Boos 1.

IIOLIAND AND DELGIUM.

aima, he would instantly be nent to the workhonse; where, if he refused to perfirm hin allodted task, lie would be compelled to aave himwelf from drowning ly working at the pumpt Holianl is, and alwayn ban been, a country of short credit. Inaliknitey in rure. Notwithoranding the invation of the French in 1700, and the consequent interruptima to ali sorts of buwiness, the hankrupteien were not comparatively mo numerour an in Fongland in ordinnry yearm. The Belgic provincon, long nubjected to a foreign yoke, and in constant intercourso with forelgneru, neem to have lont in a great meanure the original blemish character, and to present no very distinctive featurea.
It in not very eaxy, thom the differeneen of their judicial organization, to compare the state of crime in different countrica. In this reapect, however, the Netherlamin would have nothing to fear from a comparison with France and England. In Ilolland, the police le excollent, and robberies very rare.
The prevailing religion of Holiand in Calvinimm, while that of Belgium is almont exclusively Catholic; a difference which contributed not a little to that rooted dislike entertained by the linhahitants of the latter to those of the former. The lutel have the honour of being the firmt people whe established a ayatem of unrestrainell toleration. Even popery, notwithatanding the grounds which the nation had to dread and hate it, wan allowed to be profesmed with the utmost freedom. The government allowa malariea, of a greater or lene amount, to the clergy of every perauasion, only making those of the I'rewlyterian ministern higher than the others. The latter retain, beniden, the old parish churcher, and the exclusive privilege of using belln. They amount to about 1000, and are all yaid nud nppointed by govermoent, which, howover, reapecta the wishes of the leating parinhionerm. 'I'lieir malariea are vory moderate; $\mathbf{3 0 0 0}$ florins in the great cities; 800 to 1000 , with, house and glele, in the conintry. They are divided inte incolerate and high Calvinistic partien; the former, which are anil to be the inowt numerous, linving the command of the university ef Utrecht, while that of Leyden ia attached to the opposite interest. There are about 300 or 400 Catholia congregations, in general very mmal). The Armenians or Remonstrants, who originnted in Holland, have only about forty or fifty ininisters; but their tenets are preached in many of the presbyterian churches. The Anabaptists, called here Mennonists, have about 100 congregations, composed of many opulent and reppectable members, The Luthernns have fifty or sixty churches; and tho French l'rotestants about thirty. [By the budget of 1833, 1,330,000 thorins were voted for the mupport of the Protestant wornliip, and 400,000 for the Catholic.- 1 m. Fid.]
In Belginm, the Catholic clergy have shown a very rooted apirit of intolerance, with the bishop of Ghent at their head, nad vehemently objected to the indulgent treatment of the other sects. The bishop was imprisonel for two years by Napoleon, on account of his obstinacy in thia particular. The great possessions of the church, however, have been forfeited, and the elergy receive very moierate salaries from government. The nonasteries have been rooted out, and generally also the nunneries, though that of Ghent atill retaina all its poinp. [There is an archbishop of Mechlin with a salary of 21,000 francs, and the five bishops have enell 14,700 francs n year. These, with 64 vicars general and canons, 246 curates, and 4,288 inferior officers, form the body of the Catholic elergy. There are only about 5000 Protestants in Belgium, with 19 ministers, clerks, \&c., who are paid by government.-Aм. F.d.]
Learning in the Netherlands no longer boasts such names as Erasmus, Grotins, and Boerhave ; but the institutions for its diffusion centinne to be very ample. Holland retains its two famens universities of Ieyilen and Utrecht. The former, which, under Boerhave, had once the reputation of the first medical school in Europe, is still highly respectable. The professors, who are twenty-one in number, receive salaries of 3000 florins, independent of fees; and this being a better income than any of the ecclesiastical livings, the university draws from the church its most learned mernbers. The medical educution, however, cannot he completel unless at Amsterdam, which affords the ailvantage of hospitals and other accommolations peculiar to a large city. The university of Utrecht is not so considerable as that of Leyden; and that of Groningen is still inferior. In 1833, the number of students was, in Leyden 684; in Utrecht 478; in Groningen, 284.
The universities of Belgimm, of which the most celebrated were Ghent nil Louvain, were partially stripped of their anople endowments, first by Joseph II., and then by the French, who in their room substituted lyccums, which are now continned nearly on the same footing, under tho name of colleres. Only the languages, and some general branches, are taught; education for professional purposes being received in separate appropriate seminaries, Ghent and Brussels have the lighest reputation; but the salary of professors in the former does not exceed 1500 francs. The threo universities of Louvain, Liège, and Ghent have lately been restored; and in 1827 the first was attended by 678 students; the second by 500; and the thirl ly 404 students. Besides atheneums, which are only colleges on a smaller scale, Holland has primary schools in every village, by which the benefits of education are communicated to the lowest ranks. Belgium is at present very deficient in institutions for
popular education.* But at sn sverage of the Netherlands, the proportion of children st school to the entire population, in 1827, was ss high as 1 to 9.5 ; a proportion not exceeded in any European country, with the exception, perhaps, of Prussia.

The fine arts were cultivsted with zeal and success in both parts of the Netherlands. Wealthy merchants liberally patronised the arts of design; and the gentry and landholders being induced by the constant wars, of which the Low Countries were the theatre, to live much in towns, acquired more refined tastes than could have been formed in a country residence. Antwerp, during its prosperity, became, in some measure, a Belgic Athens. Yet the Flemish snel Dutch painters never attained that grandeur of design, and that pure and classic taste, which were formed in Italy, by the study of the antique, and the refined taste of its nobles. The Flemish school, under its grest masters Rubens and Vandyke, displayed, however, may excellences in a degree not inferior to any other in modern times; splendour of colouring, grandeur of composition, and force of expression. The Dutch school has been eminently successful in a lower sphere. Under Rembrandt and his disciples, subjects of common life and vulgar humour were treated with a native force, which, being aided by brilliant effects of light and shade, have rendered this sclool exceedingly popular, though it has failed in all sttempts at high and heroic delineation. The landscape painters have seldom employed their pencils upon the grand scenery delineated by Claude and Poussin; but Berghem, Cuyp, Ruysdael, Hobbima, Vandevelde, snd others, have represented, in the most natural and pleasing colours, the pastoral scenery of their country; its meadows, its woods, and the banks of its seas and rivers.
Amusement is far from being a primary object with the Dutch. They have most of the diversions of the neighbouring nstions, though they do not follow them with much ardour. A great portion of their time is passed in smoking; the Dutchman having seldom the pipe out of his mouth. The rivers and cansls passing through the streets, afford the opportunity of fishing from the windows. The great Flemish kermes, or fairs, though no longer subservient to commerce, exist still as festivals, st which there is a great display of humour and character, such ss we find hsppily illustrated in the works of the Flemish painters. There seems nothing peculiar in the Dutch style of cookery. The peasantry both of Holland and Flanders have their peculiar local costume; ss the huge breeches of the men, snd the short jacket of the females; but the higher classes dress in the French or German style.

Sect. VII.-Local Geography.

The following, according to recent official statements, are the extent and population of Belgium snd Holland, respectively:

* In 1889 there were 5,929 primary schnola in Belgium, with 370,996 pupile, beside 1,318 in the Athensumi, and 1789 In the universities. Aanual expense. 743,200 francs,-Am. En.j

Part III.

 ff children at not exceededNetherlands. d landholders reatre, to live country resiAthons. Yet hat pure and refined taste ke, displayed, es; splendour :hool has been s, subjects of eing aided by alar, though it painters have and Poussin; sented, in the meadows, its
e most of the much ardour. eldom the pipe he opportunity no longer sublay of humeur mish painters. wth of Holland men, and the man style.
population of
\qquad

Book I. HOLLAND AND BELGIUM.

Subsect. 1.-Belgium.

South Brabant, which nearly coincides with what was formerly the Austrian part of that large province, forms a rich plain in the heart of Belgiam, and is the seat of the finest manufactures carried on in that country.

Brussels (fig. 358.) is the capital of Belgium. Considered as such, it is small, yet it is one of the gayest and most elegant cities of Europe. Its situation is fine, in a valley watored by the Senne and the canal to Antwerp. The Allée Verte, consisting of three rows of trees bordering the canal, makes a beuutiful approach. The market-place and the park are the two great ornaments of Brussels. The former is of great extent, and surrounded by the town hall, one of the most elegant Gothic structures in Europe, sdorned with a tower, 348 feet high, and by the old halls of the different corporations. The park forms an extensive range of pleasure ground, interspersed with rows of lofty trees, and pleasing lawns, ornamented with fountains and statues; and it is surrounded by all the most spacious and sumptuous edifices. The church and chapel of St. Gudule are also distinguished for the elegance of their ornaments. Brussels has an academy of painting, attended by 400 or 500 students; and in the palace there is a library of 12,000 volumes, and a small but valuable collection of paintings. It was on the plains of Brabant, near the little villages of Quatre Bras, St. Jean, La Belle Alliance, and Waterloo a few leagues from Brussels, that the fate of Europe was decided in 1815.

Another ancient and important city is Malines, or Mechlin (now in the province of Antwerp), still retaining traces of the prosperity derived from the lace bearing its name, which is considered the strongest, though not the finest, made in the Netherlands. Another branch of industry consists in the making of excellent brown beer. The houses are ancient, and very spacious, often constructed in a curious and grotesque manner, and most nicely whitewashed. The tower of the cathedral is highly finished, and rises to the height of 348 feet. The other churches contain many of the masterpieces of Rubens and Vandyke. Louvain is equally fallen from the period when its extensive cloth manufactures and its university, one of the first in Europe, gave it a population of 150,000 . It is a large ill-built town, whose bulky walls, seven miles in circumference, are now falling to decay. Its Catholic university, an attendance on which was once required as a qualification for holding any office under the Austrian government, perished in the French revolution, and was replaced by what could only be called a lyceum; but the ancient institution has since been restored. The town hall, enriched by numerous carved figures, and the collegiate church, whose spire, beforc its fall, at the beginning of the seventeenth century, rose to the height of 500 feet, are the chief ornaments of Louvain.
Antwerp (fig. 359.), formerly the port of Brabant, has now a province, to which it gives its name. This territory is situated along the Lower Scheldt, and is covered to a great
 extent with pleasure-grounds and houses, erected by the rich merchants during the period when Antwerp was in its glory. That city, down to the close of the fifteenth century, was almost without a rival nmong the commercial states of Europe. In the great struggle which then arose, Antwerp embraced with ardour the reformed cause, in support of which it suffered the most dreadful calamities. In 1576 it was sacked by the Spaniards; and being afterwards wrested from them, surrendered on favourable terms, after being besieged for more than a year, to the Prince of Parma. Subjected to the bigoted and tyrannic sway of Spain, and oppressed by the active rivalry of Holland, it lost all its commerce, and presented the mere shadow of its former greatness. Its renewed prosperity dates from its occupation by the French. Bonaparte made it one of his grand aval arsenals, and erected immense works, in the vain hope of creating a fleet which might rival that of Great Britain. Since the peace, Antwerp, having been placed on an equal footing with the ports of Holland, has availed itself of the advantages of its situation, and regained n considerable commerce. Having a ready navigation into the interior, and com
municnting by canals with the principal seats of manufacture, it is destincd by nature to be the chief cinporium of Belgium. In 1828 there entered its port 955 vessels. Antwerp is still n noble city, containing numerous stately buildings, both private and public, which include some of the finest specimens of Gothic architecture existing. The cathedral, which occupied 1 (K) years in building, is celebrated over Europe. It is 500 feet long, 230 wide, and 360 high. The spiro is 466 feet high, of extreme beauty, and from its summit is obtained n nagnilicent view of the windings of the Scheldt, with the distunt towers of Ghent, Malincs, and Breda. The interior is adorned with the greatest masterpieces of Rubens and Vandyke, which, after being carried off to Paris, have beon again restored. Numerous fine specimens of the Flemish school are found in the other churches, as well as in private mansions. Antwerp has always been the centre of Flemish art; the birth-place of Rubens, Vandyke, Jordaens, Teniers, nud all its greatest masters. Zealous patronage is still bestowed upon the att; an academy is supported, at which $\mathbf{4 0 0}$ or 500 students are almost gratuitously taught: annual prizes nre given, nnd crowns placed on the heads of the successfill candidates. This encouragement has called forth some respectable talents, though none, as yet, to rival the fame of the old masters.
East Flanders is chiefly an inland district, and is the part of Belgium in which culture has been carried to the highest perfection. It displays an aspect of uniform luxuriant fertility, resulting altogether from the application of art and capital. Even in journeying along the road, the traveller finds the wheels of his carriage sinking in the sand, while beyond the hedge on each side, the soil consists of the richest black mould. The most fertile district is called the Waes, or St. Nicholas.
Ghent, even in its fallen stste, is still one of the noblest of the old cities of Europe. That vast circuit of walla which, according to the boast of Charles V., could contain all Paris within them, may still be trsced. It is built on twenty-seven islands, most of them bordered by magnificent quays, nad connected by three hundred bridges. The streets, with a few exceptions, are spacious and handsome, and there are many fine old churches: but the great cathedral docs not display the architectural grandeur of that of Antwerp, though the interior is rich in the extrenic, adorned with numerous pillars of white marbie. This and the other churches, as well as the acadeny, contain numerous paintings by the old Flemish masters. Ghent, though it can no tonger send its 40,000 weavers into the field, is still one of the most manufacturing citics of Belgium. Prior to the revolution, its staple was sorted lace; but since the great improvements in the cotton manufacture, scveral large fabrics have been established at Ghent. The society is gool, this being a favourite residence of the old Flemish nobles, and now frequented by a considerable number of English families.
The other towns in East Flanders are Dendermonde, a small but strong place, which has stood repented sieges; Alost, on the eastern frontier; St. Nicholas and Tokerem, two large villages, of more than 11,000 inhabitants each, in the centre of the Wacs, flourishing by means of corn-markets and of some considerable manufactures. Sas-van-Ghent is the centre of the sluices on the canal to the Scheldt, by which the whole country can be laid under water. Hulst is a strongly fortified little town.
West Flanders is a continuation of the same richly cultivated plain which has now been describerl; yet, being partly mixed with sand and marsh, and exposed to the blighting influence of fogs and sea breczes, it does not display altogether the luxuriant aspect of the Pays de Waes. It has no place comparable to Ghent, yet it comprises an extraordinary number of ancient cities, which still retain a portion of their former prosperity.
Bruges, formerly the residence of the counts of Flanders, and one of the factories of the Hanseatic lesguc, was the greatest commercisl city in the Low Countries, and perhaps in the north of Europe, till it was first surpassed by Antwerp, and then, from the same causes, shared its fall. Its situation in the midst of so fertile a country, and its communications by spacious canals with the sea and with the interior, still secure to it a considerable trade. Bruges has the character of an old town, the streets being narrow, and the houses lofty. The town hall is its most conspicuous edifice, and it is adorned also with many noble churches, containing some of the finest works of the great Flemish painters. The invention of painting in eil has been ascribed to this city.
Ostend is an ancient town, early celebrated for its fortifications. The siege by Npinola, which began in 1601, and lasted two years, was one of the most memornble in molern history ; and upon its issue the destiny of the Low Countries was considered to depend. But though it ultimately fell, the exhaustion of the Spanish army, and the time which had been afforded to Holland for collecting her energies, prevented its capture from having the ruinous effects anticipated. Uniler Anstrian sway, Ostend, which has one of the few good harbours in Flanders, became the chief theatre of the limited trade of the Belgic provinces. Napolean restored its fortifications, which were still farther strengthened by the allies. It has not now above a third of its former population, but still carrics on a brisk intercourse with Englnnd, and has nlenost the appearance of an English town. In 1828, 574 vessels entered its port.
Other large fortified places, celebrated in the military annals of Europe, are found in West ame causes, nications by rable trade. mouses lofty. le churches, ion of paint-
by Spinola, modern hisepend. But ch had been the ruinous od harbours ces. Napolies. It has course with sels entered

Boox I.
HOLLAND AND BELGIUM.
Flanders. Courtray, Ypres, and Menin have the usual character of Flemish towns. They are large, rather well built, with handsome churches and town halls; fallen from their ancient prosperity, yet retaining considerable manufactures of linen and beer; and having, in the long course of the Low Country wars, been repestedly taken and retaken. Courtray is noted for the very fine flax grown in its neighbourhood. Oudenarde, the scene of one of Marlborough's victories, Dixmuide, and Furnes, present the snme characters on a smaller scale. Nieuport is rather a noted fishing and trading town, surrounded by sluices, by means of which the country can be inundated.
Hainault, to the east of Flanders and the south of Brabant, presents a long range of military frontier to the once hostile border of France. It is watered by tho upper courses of the Scheldt and the Sambre; and, instead of presenting the same dend level with Flanders, is varied by gentle undulations, still highly cultivated, yet not with the same extreme care or ample expenditure. In this province are rich mines of coal, a mineral not found in any other part of the Low Countries; and though Hainault never formed any of the great seats of manufacture, it is by no means deficient in this branch of industry.
Mons, Tournay, and Charleroi are the chief towns of Hainault. The description given of the secondary cities of Flanders may apply to them. Mons, called once Honnonia, is very ancient; it is well built, but appears often almost buried under the smoke of the steamengines employed in working the neighbouring coalmines. It has a very extensive foundling hospital. Tournay, a fine large, old city, with a handsome cathedral, has stood many sieges. Charlerei, besides its military reputation, has that of making very fine nails, with which it supplies all Belgium. In front of Mons is Gemappe, and eight miles east of Charleroi is Fleurus, both celebrated for signal victories gained by the French during the revolutionary war. The large and strong cities of Condè and Valenciennes are now nnnexed to France.
Namur, to the east of Hainault, presents a striking variety from the tame and flat surface which covers the grester part of the Low Countries. Consisting of the valley of the Meuse, which traverses the whole province from north to south, it contains numerons rugged eminences, which give to it a varied and picturesque character. The banks of the river, from Namur to Liège, overhung by wooded rocks, and opening into deep valleys, abound in the most romantic scenes.

Among the cities, Namur is one of the most ancient in the Low Conntries, its origin being traced to the time of the ancient Germans. It lies in a beautiful valley bordered by high mountains, at the confuence of the Sambre and Meuse. The costle, on a high rock, was formerly considered almost impregnable, and stood many sieges, till Joseph II. dismantled, and the French afterwards almost demolished it. The cathedral anid the Jesuits' church are fine edifices, and, unlike the other churches of the Low Conntries, of Grecian architecture. Namur has in its neighbourhood extensive iren mines, which employ many of the inhabitants; the manufactures of the city consist in working up this metal into fire-arms, cntlery, \&c. Ascending the Meuse towards the French frontier, we come to the small fortified towns of Dinant and Charlemont.

The provinces of Liege and Limburg, which are much intermingled with each other, form the eastern frontier of Belgium. They run from north to south along the Meuse, fronting Germany, and are, indeed, half German. On the banks of the Mcuse, and in some particular districts, the territory is broken and rocky; but most of it consists of an extended and highly cultivated plain. The eastern district is distinguished by the peculiar richness of its pastures, which produce butter and cheese of great valne. Its manufactures, also, especially those of fine woollens, are very flourishing.

Of the cities in these two provinces, Liege, once the seat of a sovercign bishop, is ancient and large, but upon the whole ill built and gloomy; and though some of its buildings are large, they do not display the taste conspicnous in other Belgic cities. The church of St. Paul is, however, admired, as was that of St. Lambert, till it was destroyed during the revolution. Liège has a manufacture of fine woollen cloths, which sell at a high price. The town of Limburg, now included in Liege, has lost much of its population and industry; and a great part of its precincts is in ruins. Spa, situated amid romantic rocks, is one of the most celebrated watering places in Europe. The resort, though much diminished, is still considerable, and composed of persons of distinguished rank. The inhahitants work the beechwood, which grows in the neighbourhood, into a variety of toys, for which they find a ready sale among the visiters. St. Tron and Tongres are ancient towns, the former having a celebrated Benedictine abbey. Eupen, like Verviers, has flourishing manufactures of cloth. Hervé is the chief market for the Limburg cheese, which goos by its name. Stavelot is noted for its leather.

Sussect. 2.-Holland.

The province of Holland is of paramount importance, including all the great cities and principal scats of commerce; so that its name was most usually given to the whole republic. It forms a long narrow strip, almost evervwhere enclosed and penetrated by water; on one
side it is washed by the North Sea; on the othe, by the Zuyder Zee; in its centre it has he large lake called Hanrlem-Meer; while the Rhine and the Lech intersect its numerous channels. The whole country is so low, that it is habitable only by means of enormous dikes, which exclude the sea: when these give way, the waters rush in, and inundate the whole territory. The country forms, in fact, one vast well-watered meadew scarcely any where subjected to the plough, though extensive gardens are cultivated, both for use and ornament. But the chicf products are cattle, butter, and cheese, for the supply of the population of the cities, and for export.
Amsterlam (fig. 360 .), the capital of the province and kingdem ef Holland, is situated at the point of confluence of the river Amstel with the Y, an arm ef the Zuyder Zee. It was
 a considerable town in the fourteenth century; but it was not until the sixteenth cencury, when the persecutions of the Spaniards in Belgium proved fatal to the trade and navigation of Antwerp and the southern previnces, that Amsterdam attained to the distinction which she enjoyed tillabout the middle of the last century, of being the first commercial city of Eurupe. It is but justice, however, to state that her extraerdinary progress depended as much, or more, on the liberal and enlightened policy of her rulers, as on external events. Every individual, whatever might be his country or his religion, was received with open arms at Amsterdam; and acquired, by means of a trifing payment, the right of citizenship, and the enjoyment of all the privileges of a native. All the public institutions were calculated to promote commerce; and at a time when trade and industry in other countries were oppressed by prohibitions, in Holland they were comparatively free. When most prosperous, Amsterdam is supposed to have contained about 240,000 inhabitants; but at prescnt the population is net supposed to exceed 200,000 . Being built in a marsh, the foundations of the city are laid on piles; and it is a common complaint that a house costs as much below as above ground. The three principal streets are parallel to cach other, and are not casily to he matched for length, breadth, and the magnificence of the houses; many of which, though antique, are splendid, and are kept in the best possible repair. The city is intersected by an immense number of canals, communicating by draw-bridges, and having sluices for the purpose of regulating the level of the water: these canals are for the hoost part bordered by fine trees. The expenses incurred in kecping the sluices in order, and in clearing the canals and port of mud, are very heavy. The matchless industry and perseverance of this wonderful people, are in nething so signally displayed as in their works and contrivances for conquering the difficulties incident to their situation, and making the waters, which threaten to overwholm them, contribute to their comfort. The stadthouse (fig. 361.), now the royal palace, is the fincest building in the city ; and is, indeed, one of the noblest anywhere to be met with: it is of large dimensions, and is adorned with pillars, and with sculptures emblematical of commerce and navigation. Above 13,000 piles are said te have been employed in forming its ioundation. The harbour is inconvenient, large slips being obliged to lighten before they can pass the Pampus er bar at the menth of the Y, and the navigation of the Zuyder Zee is also difficult. To remedy these inconveniences, the large canal to the Helder, alrcady alluled to, has been constructed. The trade of Amsterdam has increased considerably within the last few jears; and abont 200 ships new annually elear out for foreign countries. None of the water from the canals is made use of for culinary purposes; the town being supplied with fresh water, eonveyed in carts from the Veeht, about five or six miles distant; but most of the houses have cisterns, where the rain-water is collected. There is o national muscum of pietures, which eontnins many fine specimens of the Duteh school. The various prisons and houses of correction ind industry at Amsterdam are said to be managed on more approved principles than similar institutions in mest parts of Europe. The police is execllent; crimes rare; and no beggars to be seen in the etrects. The inhabitants seem vigorous and healthy; but the mortality, though materially diminished within the last thirty or forty years, is still greater

Book 1.
HOLLAND AND BELGIUM.
than in most European cities; a consequence, probably, of the humidity of the climate, and of the eflluvia arising, in summer, from the canals.
Rotterdam (fig. 302.), the second eity in Holland, is more conveniently situated for commerce than Amsterdam, having a readier access to the sea; and the Maese on which it is situated, being so very deep as to admit vessels of the largest draught of water to lie close

ω the quays. Its commerce is rapidly increasing. Its principal exports are geneva and madder; and it carries on the business of sugar-refining on a large scale. It has all the characteristics of a Dutch town; being neat, clean, uniform; the houses high, and built of
 very small bricks. The canals intersecting it are numerous, deep, and, unless in a few of the most crowded etreets, connected by draw-bridges. Rotterdam boasts of being the birthplace of Erasmus; to perpetuate whose memory, she has erected a handsome statue (fig. 363.).

The Hague (fig. 364.), though ranking only as a village, is, in fact, one of the handsomest cities in Europe. The streets and squares are well built, bordered with fine walks and avenues of trees. Neither the old nor the new palace can boast of any splendid architecture; but the former ia large, and contains some valuable collections. An avenue of two milea leads to the neat fishing town of Scheveling, whence the dealers are daily scen bringing their commodities
 in little carts drawn by large dogs. Leyden (fig. 365.) is a finc old city, situated in the licart of the Rhineland, where this ancient bed of the river is cut into an infinity of canals, which render this the rjchest meadow land of Holland. The beer, the butter, and the bread of this district are held in the highest estimation. Leyden, during the war with Spain, was the most important city in Holland, and on the frent of its siege the fate of that country was supposed to depend. The Spaniards, by a lengthened and strict blockade, reduced it to the last extremity; while the Dutch could muster no foree adequate to its relief. It was then that they formed the magnanimous resolution of breaking down their dikes, and admitting the ocean. It was some time before the full effect was produced; but at length, impelled by a violent wind, the sea rushed in, overwhelmed all the works of the hesiegers, and forced them to a precipitate flight. The little fleet of boats which had been prepared for the relief of Leyden, immediately sailed over the newly formed expanse, and triumphantly entered the city. The Prince of Orange offered to Leyden the option of two benefits,-an immunity from taxes for a certain period, or the foundation of a university in the eity. The citizens crowned their former glory by choosing the latter alternative, and a university was aceordingly founded, whieh speedily became one of the most eminent schools. in Europe; and, though much injured by the numerous rivals which have since sprung up, it continues to maintain a high reputation, particularly as a classical school. Leyden is still a handsone and flourishing town; carries on the woollen mannfacture with success, though on a diminished seale; and is a great market for lutter and cheese. Haarlem (fig. 366.) is nnother eity of ancient importance. In the great struggle for independence, it stood a

Vol. I.
35
memorable siege of seven months; when it surrendered upon honourable terms, which were basely violated by the Duko of Alva. IIarlem is still spacious and flomrishing, and excels peculiarly in the bleaching of linen and cambric, which it porforms for all the neighboring
 provinces. The mutcliless and brilliant whiteness of the Haarlem lineas has been itnputed to a peculiar quality in the water, but is more probably the result of the extreme skill of the inhabitants, acquired by long practice. Flowers are principally raised for sale in the vicinity of'Ilaarlem. Delf, an ancient gloomy town, was formerly celebrated for the manufacture of the ware which bears its name; but this, as already observed, has been almos: entirely supplanted by English earthenware. Dort or Dordrecht, enclosed by branches o_{5} : the Maese, was the ancient capital of Holland, while the main commerce of that country consinued to centre in this its most natural quarter. It still retains very considerable traces of this early itnportance. The town-hall and grent chnrch are magnificent structures. There is a considerable trade in goods coming down the Rhine, particularly floats of timber, so large that one of them has been valued at 350,000 florins. Gonda is a large flourishing village, in a rich comntry, and carries on an extensive manufactory of tobaccopipes. It is celebrated for the excellence of its cheese.

North IIolland forms a cousiderable peninsula, nlmost entirely encircled by the Zuyder Zee and the North Sea, and lordered by sand-hills of some elevation; but the interior is covered with rich pastures, on which are fed large herds of euttle. The ancient and not ungraceful costımes (fig. 267.) of the Dutch peasantry are preserved with greater exact-
 ness in this sequestered part of IIolland, than in any other; and the fishery, for which their situation is peculiarly adapted, is carried on with great aetivity. Alkmaar is an agrecable town, with a great traffic in butter and cheese, and a manafacture of nets. The most important places in North IIolland are the Melder and the Texel, two grand navill stations; the one n strong fort, commanding the entrance of the Zayder Zue; the other an island opposite, in which the Dutch fleets used to rendezvous, from the facility it nfforded for their getting to sen. Along the const of the Zuyder Zee are the considerable towns of Hoorn and Enkhuisen, und the smaller ones of Edinn and I'urmerend.

Zenland is a region more completely enclosed by, and sunk below, the level of the water, than any other part of the United Provinces. It consists of nine islands, formed and environed by branches of the Muese and the Scheldt, as, passing from the state of rivers into friths, they unite with the ocean. 'The mariner, in approaching, sees only points of the spires peeping above the imunense dikes whieh defend them from inundation. The soil is moist and rich, peculiarly adapted to the enltivation of madder. The damp air, however, and the exhalations from the waters, reuder these islands unhealthy, and even futal to foreigners, as was dreadfully experienced by the British troops while quartered at Walcheren; but the natives do not experience the same pernicious effects. Niddleburg is a considerable city, with a town-hall and several elurelies, which afford fine specimens of Guthic architecture. Flushing is in eminent mavi!! station, und has a considerable trade and fishery. The island of Schowen has Zierikzee, the ancient capital of the counts of Zealand; and Sunth Beveland has Goes, or Tergoes, with a considerable trade in salt.

Utrecht, a more inland province than IIolland, forms a contiauation of the same tract of fiat meadow land, interspersed with gardens and conntry residences. Utrecht, the capital, is a remarkably agreable city, and being a little elevated, the view from its ramparts and the top of its catlicdral over the vast plains and broad waters of IIolland is extensive and delightful. The Romats called it Ulpii 'Trijectum, as commanding an important passage over the Rhine; and in the middle ages it was held by the warlike bishops of Utreeht. In this eity was conchuded the treaty of collfederation, in 1597, by which the United Provinces were constituted, and ulso the celelorated treaty of 1715 , which terininated the long war of the Spanish succession. Amersfoort, pleasantly sitnated on the Fins, and noted as the birth-place of Barneveldt, has considerable fabrics of dimity and bombazeen, and extensive. and excels ighbouring matchless ness of the s been itnr quality im more proof the exinhabitauts, 3 practice. pally raised ity of Ilaarient gleomy y celebrated oserved, has enclosed by serce of that y cunsideraficent strucirly floats of a is a large of tobacco, the Zuyder se interior is ient and not reater exactt of Ilolland, fishery, for iarly adapted, :tivity. Alkwith a great and a mantest insportant e the IFelder aval stations; manding the ; the other an Duteh fleets the facility it considerable
of the water, ned and enviers into friths, of the spires soil is moist cver, and the foreigners, as ren; but the iilerable city, architecture.

The island I Suith Beve-
same tract of it, the capital, nparts and the nsive and det. passage over celit. In this ted Provinces c long war of noted as the and extensive

Boor. I.
HOLLAND AND BELGIUM.
beaching grounds. Naarden, a small town, forms the key of all the water communieations of Holland.

North Brabant, comprising that which was the Dutch part of the province, is a flat, sandy, marshy tract, not distinguished by either the natural fertility or manufacturing industry so conspicuous in the rest of Holland and Belgium. Ferming, hovever, the barrier by which the Dutch maintained their independence, it contains several of the strongest fortresses in Burope, whieh have indeed the reputation of being almost impregnable. Preda is one of the most conspicuous. After Prince Maurice of Nassau took it by surprise, in 1500, its fortifications were greatly extended, and the surrounding country, being intersected by rivers and marshee, can be laid under water. It is an agreeable eity, commanding from the ramparts a fine view, and both its church and its town-hall are admired Gothic edifices, Bois le Due, or Herzogenbosch, on the Dommel, so uaned from an old hanting-wood of the Dukes of Brabant, is a large town, and equally streng. It is so interseeted by eanals, that eighty bridges are required to cross them; in winter the place is entirely surrounded by water, and can be approached only in boats. Bergen-op-Zoom, farther to the west, is similar as to strength, and was esteemed the masterpiece of the celebrated Cohorn. The disastreus attack made upon it by the British in the last war is well remembered.
The outer provinces of Guelderland, Friesland, Overyssei, Drenthe, and Groningen, which lie between the Zayder Zee and the Ems, are rather appendages than integral portions of Helland, and form by their situation part of the great level plain of northern Germany. The country is similar to Holland, hewever, in its aspect and the general state of cultivation, though a somewhat greater preportion of the land is employed in the raising of grain. Friesland has a very fine breed of horses and horned cattle; and the linen manufacture flourishes to a considerable extent. In these provinces, particularly in Guelderland and Overyssel, there is a large extent of sandy and marshy ground, which is not forcel into cultivation with the same minute care, as in the central provinces. Much benefit, hewever, is expeeted from the pauper colonies lately established there.

The towns of this region are pretty numerous and considerable, though nene are of the first class. Nimeguen, in Guelderland, is ancient, strong, and handsome, commanding a noble view over the Rhine. Zutphen is an old imperial city, dreadfully pillaged in 1572 by the Duke of Alva. It has a magnifieent chureh; and the fens around it have been so completely drained, as to render the air no longer unwholesome. Arnheim is a large and beautiful town, at the foot of the hills of Veluwe, and forming a great thoroughfare into Germany. Deventer, in Overyssel, is an ancient member of the IIanseatic league, and has a venerable cathedral. Zwoll, on the Yssel, is strong, large, and well built. Assen, though capital of the new province of Drenthe, is only a village. In Friesland, Leuwarden, on the Ee, is a large and populous town, in a country surrounded and intersected with canals, which enalle it to communieate with the sea, and to carry on a considerable trade. Carnpen, an ancient Ilanse town, has lost its importance, the harbour being now choked up. Harlingen, Franeker, Dokkum, Bolswari, are ports on the Zuyder Zer, and manufacturing places of some importance. Greningen, capital of the provinces of th same name, is the most important of all the towns east of the Zuyder Zec. It is well r It, and adomed with noble edifices; and its university was onee distinguished among $\mathrm{m}^{\text {. }}$ it seminaries. Large vessels can ascend the IIunse from the Zuyder Zee.
Juxemburg, an extensive province, though political revolutions attached it to the Netherlands, and now to Holland, forms part of Germany, entitling the king to a vote in the Germanic diet. Its character is every way in decided contrast to the rest of Holland and Belgium. Instead of a dead, rich flat, traversed by navigable streams and canals, Luxemburg presents almost throughout high mountains and woods, forming scenes of savage grandeur, similar, though on a smaller senle, to those of Switzerland. The country is destitute of water communications, is imperfectly cultivated, and does not contain a population of mere than sixty-six to the square mile. Its breeds of eattle and sheep are of smal. size; but, as usual in mountain pastures, of delicate f-iour. The horses are active and haroy; and the traet which borders on the Moselle priduees valuable wine.
The cities and towns are by no means on the same scale as those in the rest of the kingdom. Luxemburg, the eapital, siunted on two rocks, whose steep sides form a glacis, while the river Else, at their feet, serves as a wet diteh, is one of the strongest fortresses in Europe. The horse and cattle markets are considerahle. Theux has in its neighbourhood mines of a beautiful black marble.' Maestricht, the principal town of Limburg, has, along with all the part of that province east of the Meuse, been assigned to Holland It is large, handsome, and well fortified. Ruremonde and Venle, alse neat towns of some strength, are ineluded in the same district.

Fia. 200.
Fio. 269.

TH

CHAPTER VIIL．

FRANCE．
France is a groat and powerful kingilom，placel，as it were，in the centre of the civi－ fized world，and for several centuries distinguished by the conspicuous part which it has acted on the theatro of Europe．Its population，military power，central situation，vast re－ sources，and active industry，render it peculiarly deserving of an attentive aurvey．

References to the Map of France．－Weat Part．					
NORTII PART．	${ }_{62} 1{ }^{\text {ma }}$		XXV．Vendeo．		101．Aire
Pravinfon	6i．Mritenne	XVII：Martuane．	184．La Roction	3．Treignae 35．Tulla	102．Mont do Maran
	6．Alo	121．Craon	185．Chatollernull	3．Tu	，
1．Mrait of Cnlias．	17．Tincliebray	0．Chatenu Gon－	10．0．Alumilua		．Ft．Vincent
	68．Mrtainh	）	10．0．Mhunfs	dul	促
linalogne	\％0．Puaturne	131．Charlean do	100．Ubatillon aur	Departmientr．	P
4．Dinuereuil	nvi	134．St．Cainis	$\begin{gathered} \text { jopl. Purange } \\ \text { Bount Mompike } \end{gathered}$	tumn	M
Projnce of	Depmetments．	\％．${ }^{\text {anizea }}$	Ti Moatur	VIII．Lot and Giar	Oleron
	X．Mila and Vi－	178．Juval		X Bordeas	1．Orthea
1．Suamme．	I．Nuring Coa	30．Mayonne	Talmont	18．Thiviera	\％，Pau
5i．Cresay	1 －Finaterre	41．Prean en Pail	197．Gourbon－Ven－	30．Napyon	118．Ani
7．st．Vollury	xiv：Lowor Loite	43．Manny	198．Luen	41．Perikuemux	
Q．Airainea	71．Antrain 7．At．Malu	144．La Ferte Der－	soo．Chatnizneray	42．Mareuil	$\begin{aligned} & \text { BEARNA } \\ & \text { FOIX. } \end{aligned}$
mineo of the	74． 8.	145．Moatmirai！	200．Partheney	14．Mueidan	
Departments．	75．Ouingamp	Provincenf	204．Pumit，Envin	48．Coutres	
IV．${ }^{\text {IV }}$	77．	Diparimenta．	2at．Manmorilion	48.8	XV．Arriese
10．Grudyill	78.	XVIII．Eure as．d	207．＇ivray	50.	0．Terby
S，Cleir	80．Lamnilus	XIX．Loiret	20．Mello	31．Capiefneu	121．Lua
13．Moulan	cithr irent	XX．Loir and Cher	20．Nioft	53．Af ATotude Bu	192．Bagrorem
14．Houdis	82．Chater	146．Hrou	211．Sauze	54．©nstrea	1－4．Basmeren du
．Mantea	4．4．Andier	Noget	soU＇II PAdL．	S	chun
vi	Mi．Ouimper	148．Allinta	－		13．6．Taruscun
	87．Guurin	150．Mainte	AD AUNI	5j．Mastillo	128．${ }^{\text {Fxim }}$
partments．	89．	35．Chatre		60.	120．Pamiers
Vi．Euro	10．Ukel	盛．Thanny	I．Lower Charunte．	vol	
vil．Orno	0．1．murleae	134．Arlenay	1．Marann	63．Starlat	LaNGUEDOC
X．The Chan	63．Jopif	105i Chateaud	8．An rochelle	64．Thumme	
La Manche	\％4．Medo	157．Vondorino	l．Jound＇An－	66．Giuurdon	$\mathrm{GB}^{\text {a }}$
16．Yernon	9\％． $\mathrm{E}_{\text {\％}}$	159． 1 Diloin	Anat		XVII．Tarn．
zourn	9．Fous	1fio．Orloana	6．Marenne：	6\％．Fizeero	130．Cesteloaudary
Neufchatel	9．\％La	101．Comon	7．Ro		131．Yillarranche
21．Em	10．Chatenubriant	163．Bommorantin	8．Jon	71.	172． 1.
\％	10．Cervin	164．Chaismen	10．Mirumbeeu	77．Camande	134．Grenate
21．Fecamp	101．Redon			74	13
．llayre de	105．Plocrmel	Pruinco of	${ }^{\text {Provinee }}$ nf	76．Castelanracín	173．Muret
	10．10．Hand	trartueat of	Depnrtme	77．N1．	
癷．Roucnf	108．Amprion	XXI．Imilre and	Churente	79．Finnel	101．St，Gaudena
\％．Lauriera	19．1． $\mathrm{V}^{\text {Orient }}$	168．Chateau	12．Anbierte	dencuvo－	41．St．Beat
31．Brimne	11．Rochn－Brernard	nault	14．Cognao	91．Agell	Rivers．
3i．Pont Audemef	12．${ }^{\text {Nozay }}$	167．Tourm	15．Angruieme	\％．Nerao	a Seine
3．Linfeux	11.3 Ancenis	168．Suvigne	36．La runcherou－	很．	${ }^{\text {b Diven }}$
35．Cen	15．Savenay	170．Chinn	17．Nanale	85．Capliouz	d Vire
37．İitigy	16．Guerrande	171．Manilbye	19．Cunfolens	rovince	${ }^{\circ} \mathrm{O}$
Ta	18．${ }^{\text {Pourgmauf }}$	173．Lochea		Ascony	
40．Valuznes	119．Citamon	174．Beauliuu		Wepritzaents．	5 Meyenne
41．Brafimut		vincor	Limoutin．	Xil．Luwer ${ }^{\text {Pry }}$ ．	Sarthe
92．Cherbuurg	Pravince of		repart	renpes	Roanyron
19．Diarnevilie		Oenartiment of	Cppry Vienne	Xin．Gera．	Le Clier
nnce	Department of	1：5．Chatilon	V．Creune．	87．More	
47．Goutances	XV．Mnyennit and	Indre	20．Tella	c．	－Vienne
\％	120．Bearspreau	176．Vevrnux	2． 1 ，Din	\％．${ }^{\text {a a }}$ Bualie	
0 The	21．©huliet	178．Velan	2i．Cumrat	ii．Eaise	Lale
	122．Chalonne	179．Chateaurmux	24．Buarranouf	tre．Cendom	Dordozne
Punt ajourily	21．Vinurs	180．Lin Chetre	2．）Eymuntiars	93． 1 ectiburo	\％ezore
1．Falaise	125．Haurc	TH：Arzenton	27．St Leonara	4．Fine en Jeurden	\checkmark Carnnne
54．Arace	120．Anserm	123．Le Blane	2．8．El．Junien	18．Diombez	
56．Orbee	128．Sear		29．Ruchechuu	97．	
59．Rurlew		POITOU．	31．At．Yri	03．Vic Ferenzac	－Gaveda Pau
59．Ewreus	Pravince of	nes．	32．Pierre lluffiere	100．Nogaro	
60．Verneuil	MANEAND	xxIV．Vienne			

Suct. I.-General Outline and Aspect.
France 18 bounded on the North by the Chunnel, which aeparates it from. England, and
o of the civiwhich it has ation, vast revey.
 Provine nf
LANGUREDOC x Dipintmenfer xvir. Tarm.
 Y. . Trantube 5i. Touluane
 141.

Rieers. n Sein
b Dive
a Ouro

Quat
Laire
Salthe
Lovire Laire
linguyran
Le Chef
Ludre
Indre
Greuso
Charento
Zifenne
Pardingne
Lat
G Garonne
wiveyrod
w Aveyro
z
Adonr

by part of the frontier of the Netherlands. On the cant it ia benmed ly Germany, from which it is divided by the Rhine, and by Switzerland and Italy, whieh lie on the other side of the mighty barrier of the $\mathrm{A}!\mathrm{pa}$. Its southern limita aro tho Mesiterranean and the broul isthmus fillel by the l'yrenees, on the other side of which extents the Spamsl peninsila, On the went is the Atlantic, and more enpecially that last gint called the May of Itiscay. The southern extremity, on tho line of the l'yrunees, fulls in $42^{\circ} 30^{\prime} \mathrm{N}$. lat. the northern beyond Dmakirk in $51^{\circ} 10^{\circ}$, making in length eight and a hulf degrees of latitude. 'The
 tule. 'Tlis will give dimensions nearly sfuare of 595 miles fonn north to enuth, and 5iv)

The surfico of this very extensivo territory is in general level, althongh it borlers, anal ia encroached upon by the greatest mountain ranges of Europe. The Alps cover the full half of its eastern Itontier, and their branehes extending into Jauphing and l'rovence, render them very ruggel nol romantic ingions. The l'yrenees, which rank aecoul anoug the chains of the Continent, range nlong the southern border, and cover with their branches Roussillon and Gascony. On the east, where Frunce renchen to the Rline, aro tho Vodges and other ehains ol'moderate hoight, paralle! to that river. The only range exclusively Freuch, in that of Auvergue, in the centre of the kingdom. which not only inclades all that province where it rises to the height of $\mathbf{5 0 0 0}$ or 6000 feot, but strctelies by n winding line along the left bank of the Allier to Languedoc, parallel to the const of the Mediterranemm, where it is called the Cevennes. But by fur the greater part of France, including the whole north and the whole west, is ono widely extenled plnin, which yields in very high perfection all the fruits and prolucts of the temperate zone.

The rivers of France, though not of tho first magnitude, are noble nad commodions. Traversing almost every part of the kingdom, they afferd ample means of internal nnvigation; and the broad plains which lorler on them yield the most luxuriant harvests. Thu Loire, which is the principal, rises in the south, on the borders of Provence, and flows for some time nearly north, parallel to the course of the Rhone and the Snomn, though in an opposite lirection. Nenr Nevers it receives the Allier, which in a parallel and nearly equal stream has hitherto accompanied it; it now gradually hends ronnd into a westerly course, which it follows through tho plains of Orleanais nal Touraine, the garden of Frnnec, till nfter a course of 700 miles, it falls inio the sen a little below the grent commercial city of Nanteg. The Rhone is not at first a Fiench river: it rises in the heart of Switzerland, amid the eterna! snows and glaciers of the Grimsel and tho Shreckhorn, and rolls its earliest course beneath the mighty mountain walls of St. Gothard, Monte Rosn, and the Simplon. It now expands into the Leman lake, from whence it emerges near Geneva, whero it soon enters France, and rolls direct towards Lyons. At that great eity, it receives the Sadne, bringing down an ample strenm from the Vosges, swelled by that of the Doubs from the Jurn. The Rhone, now following the direction of its tributary, turns directly south, anul, after a rapid course through Dauphiny and Provence, enters the Meditorrancun ly severnl mouths. In this course, the Alps transmit it to the Isère, and the elassical stream of tho Durance: its entirc leugth may be $5(0)$ miles. The Seine, though of inferior magnitude, claims distinction as flowing by tho metropolis: it rises on the fronticr of Burgundy, and runs nlmost due north till it. receives the parallel and nearly equal Auhe, when their united waters flow west and northwest. Before reaching l'aris, it receives from the south tho Youne, and from the north, almost under the walls of the capital, its greatest tributary, the Marne. At l'aris it is navigable for vessels of considerable burden, Beyond P'uris, the Seine makes some extensive windings, and is augmented from the north by the waters of the Oise bringing those of the Aisne. It then parses the fine arilfourishing city of Rouen, and, spreading into an estuary, joins the English Channel at the ancient port of Jlavre. The Garonne has a course of still less extent, though its broad navigable stream, flowing through a magnificent plain, the most productive in valuable wine of any in France, gives it a high commercinl importance. It rises near the enstern Pyrenees, and flows northward to Toulouse, where it assumes a stoady north-west course, during which, swelled from the north hy the Aveyron, the Lot, and the Dordogne, and passing the great haven of Bordeaux, it becomes an eetoary, eapable of receiving the largest vessels. The Rhine is to France only a limitary river for somewhat above 100 miles; but its great tributaries, the Moselle and the Meuse, rise and have most of their early course within its territory. The important Belgic river, the Scheldt, also rises within the French territory.
France has no lakes, which, in a general view, seem worthy of mention.

Sect. II.-Natural Geography.

Subsect. 1.-Geology.

Primitive and transition disiricts. In France there are six distriets where the older ocks, or those of the primitive und transition elneses, prevail: viz. Western Normandy, witt. e ether aidu 1] the lirond 1 peniusula. of IBiscay. be nerthern itude. Thas ses of longi"th, and 5ivt or somewhat borders, nnt ver the full ence, ronder 1 among the eir branches , the Vougen vely French, that province ne along the 1 , where it is ole north and ection all the
commolinus. I navigation ; The Loire, for some timo pposite direcal stream has , which it folufter a course Vantes. The d the eternal ourse bencatli now expands nters France, ging dewn an The Rhone, rapid ceurse In this course, entire length ion as flowing se north till it. est and northom the nerth, uris it is navime extensive g those of the to an estuary, ourse of still plain, the most portance. It uines a steady Iot, and the capable of refor somewhat ad have most ldt, also rises

Boorl.
MRANCE.
Britany and Anjou; the northern sile of the Pyrenees; the departinenta of the Iower Alpe, Upper Alps, ami part of the lispe; Contral France, or the table-land of France; central part of the Vowges; and the Ardennes.
(I.) Western Normandy, Britany, and Anjou. In this region the rockn are partly Nep. tunlan, partly Plutonian: the Neptunian atrata are gneisa, mica mate, clay blate, greywacke, quartz rock, und limeatono; the Plutenian rocks are granite, syenite, greenstone, and porphyry.
(9.) Northern side of the Pyrenees. On the French side of the Pyrences the centml rocks are of primitive formation, and consint of mica alate, clay slate, limestone, or marble; reposing upon these, and foming the great boly of the range, are rockn of the transition clavis piz. clay slate, greywacke, and tranaition limestons.
(3.) Departments of the Iower and Upper Alpa, and petpt of liere. In this mountalneum region there are magnificent displays of many of the more intereating furmations of the primitive and transition clamser.
(4.) Central table-lind or platsan of France. The centre of France is oceupied by a vast tabledand or platean of old rocks, in general granite, which forms the mountains of Burgundy, the Idmousin, Aveyron, Arleche, and the Cevennes. It is more than eighty leagues in brealth from the heights of limnges; but in proceeding townrds the wonth, it gris. dually thins off, and terminates in a point which connecta it with the Montagno Noire. This latter greup of old rocks forms a kind of peninsula, which is separated from the Pyrences, by a longitudinal basin of secondary and tertiary formations. Tho acelivities of this central granitic tuble-land, and some of its hollows, are covered mere or less densely with newer rocks of various descriptions, Besides these, there occurs on its eastern part a aplendid display of volcanic rocks. The primitive and transition rocks of this enble-land aro the following; viz. granite, porpliyry, talc slate, serpentine, gneiss, clay slate, greywacke, and limestone.
(5.) Central part of the Vonges. The oldest rocks in this range ef mountaine, and which ere said to belong to the transition class, are the following: granite, syenite, lorublende rocks, greenstone, red quartziferons porphyry, nugitic porphyry, dolomite, diallago rock, serpentine, tale slate, clay slate, greywacke, with anthracite, granular and cempact marble or limestonc.
(8.) Ardennes. Thant part of this range ef mountains included within the limits of France, which belongs to the older part of the geognestical series, is composed of varions clay slatex, with greywacke, all of which seem to belong to the transition class.

Sccondary districts. The lewer and flatter parts of France which extend from the primitive nnd transition districts, are composed of secondary and tertiary deposits, more or less covered with alfuvinl matters; and in some quarters internaingled with voleanic rocks. The secendary formations are arranged in tho same order, and exhibit similar relations with those already described in our account ef Britnin. The inountain limestone and con! formations form, when contrasted with their abundance in Britain, but a sinall portion of the surface of France; while the new red sandstones, with the series of the dura limestone, including the oolites, form great tracts of country. Chalk, or uppermost rock of the secondary series, oceurs in vast abundance, forming twe basins, the one the northern, extending in length from the northern extremity of Artois to the southern limit ef Touraine, and in breadth from Havre de Grace to near Bar le Duc. The northern side of the southern basin extends from Rochefort to Cahors, and the southern side ranges along the nerthern fice of the Pyrenees.

Tertiary districts. France is remarkable on account of the great extent of its tertiary deposits; of these the following may be censidered as the principal ones:-1. That of which Paris forms the central point; which extends towards the north as high ns Iaen, and southward to Blois; while it stretches across from Pentoise en the west to Epernay on the east. 2. The grent southern deposit, which extends from the south side of the river Gironde to the south bank of the river Alour. 3. The south-eastern deposit, which covers part of the Departments of IIcrault, Gard, Mouths of the Rhone, Var, and Vaucluse. 4. The deposit in the valley of the river Allier, and that in the upper part of the course of the loire. 5 . The grent deposit in the course of the Rline and Snône, extending from about Vnlence to Dijon. 6. The tract along the Rline, extending from Basle to the neighbourhood of Carlsrhue.

Volcanic districts. Truc volcanic rocks occur in France only in the grent central tubleland or plateau; in the Departments of Loire, Upper Loire, Cantal, and Puy de Dome. The velcanic rocks are basalt and basalt tuffa; trachyte with its tuffa; and lavn, with its tuffas, scoria, \&c. The newest of these rocks are the lavas; while the basalt and trachytes appear of more ancient date, although still not very old, as we find them breaking through rocks of the tertinry elass.

Allnvial districts. Alluvia ef every description occur in France. Diluvium or the old alluvium forms extensive tracts in many quarters of the kingdom, where it centains remains of extant species of animals, of which the most charactoristic are those belonging to the order pachyderma, as the elephant, rhinoceres, \&c. Diluvium is also found in caves alorg

Vol. I.
44*
30
with bones of extinct animals, particularly of the carnivorous genera; and rents and fissures in strata are sometines filled up with a diluvium also containing remains of extinct animals, of which the most characteristic are the small herbivora. Bone caves and bone breccia occur at St. Antonin and St. Julien near Montpelier; at Billargues, Vendargues, and Peze-nas-Herault; at Anduze and St. Hippolyte, in Gard; at Aix, in the department of the Mouths of the Rhone; at Villefrancho and Lauraguais, in the Upper Garonne; and at Perpignan, in the Lastern Pyrenees. Thia diluvium is covered, to a greater or less depth, with the various well-known kinds of modern alluvium and of vegetable soila.

Mines and Quarries.

Coal mines. Coal of various descriptions, as gnthce, bituminoua, and brown coal, are mined in the tollowing departments in France, affording annually but a sinall return for so vast a country:-Allier, Aveyron, Mouths of the Rhone, Calvados, Gard, Herault, Isère, Upper Lnire, Lower Loire, Mayenne and Loire, Moselle, Nièvre, North, Pas de Calais, Puy de Dome, Upper Rhine, I ower Rhine, Lower Saòne, and Tarn.

Iron mines. Iron mines, some of them of considerable importance, occur in the following departments:-Ardenues, Charente, Cher, Côte d'Or, Dordogne, Doubs, Eure, Eure and Loir, Forets, Indre, Indre and Loire Isère, Jura, Iower Loire, Upper Marne, Moselle, Nièvre, North, Orne, UpperRhine, Lower Rhine, Upper Saône, Saóne and Loire, and Vosges

Mines of silver and lead. The principal lead mines and silver mines are the following:-

	Mines of	Quintals of lead	Marea of
Finislerre.	. Poullaeen	. brint 8,000.	... 1210
Ditte	. Juplegeet	3,010.	
1,0zer	, Vitt	8.	

Copper mines. These are situated in the following departments:-Upper Alps, Rhone, Rhine and Moselle.

Mines of manganese. This metal is mined at Romanèche and St. Micaud, in the department of the Sadne and Loire; at Suquet in Dordogne; in the mountain of Tholey in Moselle; at Lavoline, near Saint Dier, in the Vosges; and at Saint Jean de Gardonenque in the Cevennes.

Mincs of antimomy. Antimony occurs in the provinces of Charente, Upper Loire, La Vendée, Cantul, Allier, Gard, and Puy de Dôme.

Mines of vitriol and alum. The principal mines of sulphate of iron or vitriol are those of Saint Julien de Valgargue, near Alais, which furnishes annually 30,000 quintals; and that of Becquet and of Goincourt, near Beauvais, which in some years nffords 15,000 quintals; that of Ural, in the department of Aisne, and of Gersdorf, in the department of Lower Rhine. There are celebrated manufactories of alum at Montpelier, and at Javelle near Paris. Some considerable beds of rock-salt have been discovered at Vic, in the department of Meurthe. One of these is upwards of fourteen yards thick, and another has not is yet been cut through. Although cobalt, arsenic, nickel, and tin also occur in France, no considerable mines of those minerals have been established.

Quarries. The most extensive quarries are those of marble, building-stone, slate, gypsum, millstone, and flint. Different kinds of marble are raised at Givet, Brabancon, Mons, Namur, Boulogne sur Mer, Caen, Troyes, Montbar, Cosne, Tournus, Narbonne, Aix, Marseilles, Tarb, and in many valleys in the Pyrences. There are quarries of excellent buildingstone in the departments of La Manche, Calvados, Moselle, Côte d'Or, Yonne, Oise, Scine, Loire, Dordogne, und in many departments in the sonth. Vast slate quarries are worked in the departments of La Manche, Meuse, Ardennes, Maine and Loire, and nt the foot of the Pyrenees. In many other places, and particularly in Champagne, \&c., there are quarries and pits of clay for brick and tile-making. The gypsum of the neighbourhood of I'aris, the clalk of the departments of Marne and Seine, the tale named chalk of Briancon, the millstone or buhr-stone of Ferte sous Jouarre, are objects of considerable commercial importance. The departments of Yonne, Cher, and Lower Charente, supply all France and different foreign nations with gun-flints. Among the clays met with in France, that of Forges les Eaux, was formerly in great repute in Holland for the manufacture of pipes; the clay or earth of Bellceuf, near Rouen, is considered an excellent material in the purifying of suggr; and the potters' clay of the vicinity of Beauvais and Montereau, and the porcelain earth or kao-lin of Snint Yrieix, near Limoges, are highly esteemed.

Subsect. 2.—Botany.

Having devoted already so great a portion of our space to preliminary remarks upon vegetable geography on its more extended scule, and to that of Grent Britain in particular, we must content ourselves with a inore limited account of the plants of other countries, otherwise we should greatly overstep the hounds prescribed to us by the nature of the present work. Following the plan here adopted for the arrangement of the different cointries, France comes next under our notice; and a more interesting field for the gengraphical botanist does not exist in Europe; not only because of its extent and vast variety of surface, the

Part III. 1 and fissures inct snimals bone breccia s, and Pezement of the and at Per. depth, with
wn coal, are return for so erault, Isère, e Calais, Puy
the following e, Eure and me, Moselle, , and Vosges following:larea of Silyer
$\because 1200$
$\because \quad 1140$
. 1100
$\cdots 150 x$
Alps, Rhone,
in the depart. Choley in Mourlouenque in

por Ioire, La

triol are those quintals; and S 15,000 quinnent of Lower Juvelle near he department has not as yet nee, no consi-
ne, slate, gypmuçon, Mons, ne, Aix, MarHent building, Oise, Scine, are worked in the foot of the e are quarries 1 of l'aris, the con, the millal importance. and different of Forges les ; the clay or ing of sugar; elain carth or
ks upon vegeparticular, we intries, otherof the prescut ont cointries, raphical botaf surface, the

Boor 1.

FRANCE.

great height of its mountalns, and its geological structure; but because, by the labours of its naturalists, especially Lamarek and De Candolle, the vegetable productions of Franco have been better explored than those of almost any other country in tho world. All that we can do here, however, is to notice in general those that are the most interesting, from their utility, their beauty, or some circumstances connected with their history; or as showing how vegetable forms or groups are situated, in regard to their distribution, upon the surface of the earth.

France, extending, as it does, from lat. $42^{\circ} 30^{\prime}$ to $51^{\circ} \mathrm{N}$., or nearly to the latitude of Loudon, and trom 9° east longitude, to 0° west, is bou:ided by the Mediterranean, and the grest chain of the Pyrenees on the south; by the Atlantic on the west; by the British Channel and the Netherlands on the north; and on the east by Savoy, Switzerland, and Germany, which form, for its entire length, a vast mountain barrier. Such an alpine region cannot fail to exert a manifest influence on the vegetation of a conntry; not only because of its own peculiar productions, depending in part on their elevation, and in part on their seil aud geological structure, but by their exposure even at the same elevation, on two opposite sides; that of the south will be found to exhibit very different vegetable forms from that of the north; and such mountains often exercise a more powerful influence in limiting the surrounding vegetation, than even seas and rivers.

Lamarck and De Candolle, in a very interesting Botanical Map which accompanies their Flore Mrançaise, 3d edit., lasve divided France into five regions:-
(1.) The region of maritime plants, which of course extends everywhere along the coast, from Ostend to Bayonne on the north and west, and from Perpignan to Oueille on the Mediterranean; together with the Salines of Dicuze and Chateau Salins near Nancy, and those of Durkheim and Frankensthal near Mayence in the interior. Thus we find that a vegetation similar to that of the sea-shore exists in the interior, whenever that interior yields a sufficient quantity of marine salt. All the maritime plants of the north of France, according to M. de Candolle (and they have the preatest affinity with those of Fngland), are equally found in the south; but the reverse does not hold good; for a very large proportion of the French Mediterramean plants of the sea-shore grow very sparingly, if at all, upon the shores of the Ocean, principally indeed on the coast of Gascony, and reach no higher than the month of the Loire, or at nost to the middle of Brituny.
(2.) The region of mountain and alpine plants. When the French, hy their conquests, included the I'yrenees, the Alps, and Savoy within the runge of the floras of their own country, this region constituted the very richest of any flora in Europe; fer it included a country, not only of considerable extent, but mountains, and in very southern latitudes, many of whose crests rise greatly beyond the line of perpetual snow. As France is now limited, the mountains of the Vosges near Strasburg, and of tho Cevennes, and those of Auyergne, whose origin is volesnic, exhibit its most alpine scencry : among the fatter, the Puy de Sasi, one of the Monts d'Or, rises to an elevation of 6300 feet sbove the level of the sea. The Ploub du Cantal is estimated at 6200, and the Puy de Dôme at 5000 feet. If the summits of the Pyrenees and of the Jura be considered as forming the natural barrier of France, as constituting her line of separation from the adjacent territories, she will still possess an exceedingly rich alpine flora in the northern side of the former and the western side of the latter mountains. But the line of demareation of this region is nevertholess not so distinctly marked as in the preceding region. The valleys exposed to the sun often participate in the regetation of the southern provinces, while the cooler valleys exhibit a growth which has more in common with the vast plain in the north and centre of France. However, it is undeniable that these same districts do contain a very considerable number of plants which are peculiar to them, and found on almost all the more elevated mountains of Franco; for whatever differences the chain of the Vosges and the Jura may present from those of Auvergne, the Cevennes, and the Pyrenees in the south, it is allowed that the aspect of their vegetation oflers considerable traits of similarity, and that the greater part of the mountain plants are alike found on the different chains.
(3.) A third region, and a very important and interesting one, is that of the Mediterranean plants : this, of course, is bounded on the south by the Mediterranean Sea, and stretches. inland till you come to the foot of the mountains, or following the course of the Rhone, extending north as far as Montelimart on that river; or it may be said to occupy or constitute the grent basin of the mouth of the Rhone.
(4.) A vast region is occupied by the plains, whose vegetation is very uniform. This comprises more than one-half of France, and especially all the plain country situated to the north of the chmins of mountains. Many of these plants are found in other regions already indicated; but it wants the spocies which are peculiar to each of those respectively.
(5.) and lastly-MM. Lamarek and De Candolle indicate an intermodiate region, whiels includes plants partaking of the nature of the plains of the north and tho provinees of the south. This occupies a large portion of the south-west of France, and some districts up the valley of the Rhone between Montelimart and Lyous.

The map just alluded to has these diflerent regions represented in different colours, and
is atyended with this advantage, that, by the slightest inspection, a general iden is conveyed of the prevailing nature of vegetation in any given district. We see that the plants of the southern provinces resemble more those of the north as you advanco by the west side of France than by the east; that the floras of Mans on the border of Normandy, und of Nantes upon the Loire, in lat. 47° and 48°, scarcely differ from those of Inix and Agen, between lat. 43° and 44°; whilst on the east side of France, the productions of Dijon and Strashurg vary considerably from those of Montpelier and Aix, situmted nt nenrly similar relative distances from each other. All this is accounted for on tho principles we have already laid down, namoly, that the stations of plants are mainly influenced by tompernture; and thut the mean temperature of a place is greatly determined by distunee from the equitor, und elevation above the level of the sea. According to M. de Cundolle, an altitude of 4610 feet above the level of the sea affects the temperature nearly to the same extent as a degree of latitude nearer to the north in the eastern hemisplare.
By comparing the western provinces of France with the castern, wo see that the surface of the former is but little raised above the lovel of the sea; for, even at a considerable distance from the coast, the hills scarcely exceed $3(1)$ feet; whilst, on the other hand, upon the western side, in the midst of a mountainous region, the phin has generally an elovation of from 13100 to 16010 feet. This hoight diminishos, it is true, on the Belginn frontier; but there the temperature is sensibly affected by the second cuuse adduced, namely, the distance from the equator. Thus, there is nothing but what is conformable to physical laws, in the southern plants having a greater resemblance to those of the north upon the wost, than on the enst side of France.

But even where the mean temperature is the same, the distribution of plants between these two parts of France may yet be very different, on account of the different degrees of temperature at particular seasons of tho year. We have alrendy stated that, the latitudes being the same, maritime countries enjoy a more equal temperature than districts removed from the sea; in other words, that the summers are less warm, the winters less cold: thus, the provinces of the west of France, which are all maritime, oxperience this degree of uniformity ; which cannot take place in the east, being fur from the sea, and in the vicinity of the mountains.
Plants now, in what concerns climate, may be divided into two classes: those which suffor from a severe winter cold, but which, during suminer, do not require an excess a* heat; and those which can endure great severity of cold in wintor, but, during summ.2., require a great proportion of hoat. In the first class, M. de Candolle places all those tree which, without being resinons, preserve their leaves, and consequently thoir sap, through the winter; in fact, the greater proportion of the treos of the south being found, whether indigenous or naturalised, towards the north in the maritime provinces; such as the Live Oak, the Cork Tree, the Kermes Oak, the Strawberry Tree (Arbutus), the Bay, the Fig,

the Plillyrea, \&c. On the other hand, in the second elass, that is to say, among such as can brave a great degree of cold, and do so because the movement of tho sap is interrupted

PARt 111. s conveyed lanta of the veat side of 1 of Nantes vetween lat. asburg vary ve distances laid down, at the mean ml elevation et above the of latitude frontier ; but the distance laws, in the vest, than on
ants between it degrees of the latitudes ricts removed ss cold: thus, egree of unihe vicinity of
those which an excess ring summ all those tree p , through the mul, whether ch as tho Live lay, the Fig,

Boor 1.
FRANCE.
by the fall ef the foliage, is the Vine, \&c., and those that avoid cold because tho plants, or at least thoir stems, are annual, such aa Maize. It may be readily supposed that tho individuals belonging to the second class will flourish better, and becomo more easily naturalised on the east than on the west coast of France.

Let us apply this law to a poculiarity in regard to the cultivation of those most precious Vegetable productions of France, namely, the Olive (fig. 270.), the Maize, and the Vine (fyy. 271.). Mr. Arthur Young, during his travels in France, paid great attention to agriculture and the mode of cultivation adopted there, and publishel a map of the country, in which he represented, by three nearly parallel lines, the northern limits of the three plants just alluded to, the Olive, the Maize, and the Vine. It excited the surprise of many, that the lines should ascend most to the north on the enst side of the country, or, in other words, that the plants in question should grow farther north in the eastern than in the western districts; directly the reverse of what takes place in regard to the aboriginal native productions of the soil. This apparent contradietion is reconciled ly the twefold comparison of the physical nature of the east and west of France, and of the character of the platits cultivated, tas compared with the wild species.
The nature of tho cultivated productions in question forms a striking feature, which cannot fail to arrest the attention of a traveller while journeying through the districts thus appropriated, and forcibly to exhibit their agricultural riches. In the extreme south of France, between a line drawn from Narbonne, in lat, $43^{\circ} \mathrm{N}$. and in the meridian of Paris, to a little below Grenoble, he will find the plains, parched and dry as they naturally are, rendered etill more melancholy by the lurid green of the olive-groves. Between that line and another drawn from the mouth of the Garonne rather below 40 ${ }^{\circ}$, to near Strasburg, in the north-west, he will nbserve, together with the vine, which is by no means wanting in all the southern provinces, fields whero the giguntic maize (fir. $\mathbf{2} 72$.) takes the place of

what we nsually term bread-corn; again, between it and a line extending from the mouth of the loire to the Rhine, passing at algut an equal distance between the Mense and the Moselle, ho will find, intermingled with vineyards, fertile fiellys of corn, wheat (fig. 273.), oats, and barley; whilat, north of that line, there exists a most perfect similarity in agriculture with that which prevails throughout the greater part of England. Fruit trees of all the kinds that are grown in Britnin, here attain a much greater degree of perfection than in that country, because of the increased heat of the summers.
Thus, in what coneerns a great portion of the territory of France, its vegetable productions much resemble those of the southern parts of Great Britain.
It is not, perhaps, generally known that that most useful root, the Potato, was cultivated in almost every part ot Europe before its value was apprecinted, and its culture became general, near the capital of France. To England is duc the credit of first growing it upon a large scale. Upon the Continent it was introduced between the years 1714 and 1724 into Swabia, Alsace, and tho Palatinate; and in 1730 to the vicinity of Berne. In 1774, potatoes were known on the mountains of the Cevennes, where they now constitute a main portion of the food of the people: but it is principally to the famous M. Parmentier that France owes the general use of potatoes. The following ancedote nay give somo idea of the assiduity with which this philanthropic individual laboured to generalise their culture : it is well attested that he farmed some spots of ground in the vicinity of Paris for this sole purpose, thongh the prejudice against potatoes was then so strong, that few of the poor persons to whom he offered the roots would accept of them. However, M. Parmentier soon suspected that people occasionally stole his potntoes to eat them: he was well pleased at this, and continued to plant what he hoped would be purloined, rightly concluding that the experience of the thieves would contribute to diminish the established prejudice. Ater much trouble and many years, he had succeraled in propagating potatoes in several situations, when the dreadful scarcity, the consequence and effect of the revolutionary disturbances, suddenly rendered their cultivation universal; and now thry form so constant an article of food, that the common people generally believe them to be aboriginal natives of the country.
The mountains of France exhibit the British alpine plants, with many others that are peculiar to themselves, and which they possess in common with the higher Alps of Nwitzerhnd, Savoy, Germany, and the Pyrenees.

Of the intermediate region, as De Candolle terms it, a great portion lying in the south-
west of France, embraces a country called the Landes, where the shepherd-peasantry whether walking, or at rest during the day, live upon stilts (xcangues, in the language o!

the country): this custom gives them the opportunity of viewing the land around in search of their sheep, for a great extent, of wading through the numerous shallow lakes of water;

The Pine. and by these means it is said they can traverse triple the space of ground they could do by the ordinary mode of walking; when they stop, they support themselves by a long stick behind. In this same district a vast extent of flat land near the ocean, and extending from Bayonne in the south to the Tete de Buch in the north, and for a distance of from four to twelve leagues inland, is occupied by forests of Pine (Pinus maritima) (fig. 274.): these arc called Pigna lass, and they give a remarkable feature to the Iandes, in conjunction with the labits of the people and their dress, the latter consisting eutirely of sheep-skins with the hair outwards, little different in outward appearance from the flocks which it is the great object of their lives to tend. The resinous substances of the pine are extracted in immense quantities; in doing which, one man takes care of 3000 trees. The comitry being so dry, these pignadas are liable to alarming couffagrations; one of them that took place in 1803, continued burning for two months. The mode aclopted for extinguishing them is renarkable: when one part of the forest is in flames, it is customary to set firo to another spot, at a greater or less distance, according to the magnitude of the evil; a current of air soon takes place between the burning masses, which drives the conflagration from 'oth sides on the intermediate trees; these are shortly consumed, the fire dics out for want of fuel, and the rest of the forest is preserved.

But the Mediterranean region, which we have already mentioned, and whose vegetation partakes of what is found to characterize the whole shores of that vast inland sea, has many plants so different from those of the rest of France, that it would be unpardonable did we not particularise some of them.

Almost everywhere in this region, the soil is described as consisting of the secondary iiinestone of the Jura, extending to the very brink of the sea, forming arid coasts, often utterly destitute of vegetation, or elothed with Wild Olives and the Aleppo Pine (Pinus

Part II .
peasantry nguage of
nd in search es of water ; they can trand they could alking : when lves by a long listrict a vast cean, and exsouth to the and for a diseagues inland, (Pinus maricalled Pignaeble feature to -ith the hatits ess, the latter skins with the nt in outward Which it is the to tend. The he are extracth doing which. 0 trees. The pignadas are ations; one of 303, continued ie mode adopts remarkable: is in flames, it nother spot, at cording to the current of air the burning conflagration nediate trees; , the fire dies
ose vegetation sea, has many ble did we not.
the secondary 1 coasta, often Pine (Pinus

Book 1 .
FRANCE.
halepensis), with Evergreen Oak, Pistachin-Nut, Myrtles, and numerous species of Cistus. Here, too, is found one species of Pahn, the Chammrops humilis (Palmetto or Dwarf Palin); but it grows principally in the environs of Nice. At the opposite extremity of the Mediterranean region, namely, about Roussillon and Provence, and there only in the hotter parts, are seen the Indian Fig (Cactus Tuna), and the American Aloe (Agave americana): the introduction of these is due to the Spaniards, who brought them to Europe from the New World. Schonw regards the Mediterrnncan shores in general as the kingdom of the Caryophyllen: and Labiate; this latter family eapecially abounds in the south of Frnuce, and particularly the genera Phlomis, Teucrium, Thymus, Lavandula, and others, remarlahle for their aromatic qualities. In the same places, and always on very stony ground, the elegunt Coris monspeliensis excels the heathe of Britain in beuuty. The mulberry is cultivated througlout this territory; and among other useful fruits, the Fig, the Jujube, the P'omerramate, the Date, and the Pistachio, all arrive at great perfection. The Orange can scarcely be said to be cultivated without shelter in any part of France. It is grown, however, and somewhat extensively, at the Isles d'Hières, and in the vicinity of Nice, that happy climate which is probably unequalled by any part of Europe. Corn, which is but a secondary article of culture, ripens at a very carly period : so much so that it is not unfrequent to carry barley which has been reaped on the coast into the mountains, where the seed is sown, and a second crop is produced the same year. Many plants may be here enumerated which this country possesses in conmon with Greece and Italy, and even the Spanish peninsula, and which seem to accompany the Olive. Nirbel has drawn up the following list of woody kinds, which inhabit these provinces:-Pinus Pinaster, and Pinea, Juniperus phenicea und Oxycedrus, Quercus Ilex, Suber and coccifera, Celtis australis, Ficus Carica, Osyris alba, Laurus nobilis, Fraxinus Ornus, Phillyrea Intifolia and angustifolia, Jasmiumm fructicans, Vitex Agnuseastus, Nerium Oleander, Diospyros Lotos, Styrax officinale, Arhutus Unedo, Viburnum Tinus, Tamarix gallica and africana, Myrtus communis, Punica Granatum, Pliiladelphus coronarius, Crategus Azarolus, Mespilus pyracantha, Cerntonia siliqua, Cercis Siliquastrum, Rhus Cotinus and Coriaria; Pistacia Lentiscus, Terebinthus, and vera; Rhamnus Alaternus, oleoides, and infectoria; Zizyphus vulgaris, Paliurus australis, Capparis spinosa, Melia Azedarach, Acer monspessulanum, \&c.

Hitherto the attention of naturalists in the study of vegetable geography has been directed to those planta that grow upon the surface of the earth: Humboldt alone, in his Carte Géographique des Plantes, has indicated the station of some subterranean Fungi, and in a

general way las marked the ocean as the habitat of Ulve tand Fuci (fig. 275.). It remained for M. d'Orligny tce describe to a certain extent at least, the Zones and Bunds inhabited by thr: marine Algo (Sea-Weeds). This he accomplished upon the coasts in the Gulf of Gascony, and particularly on the shores of La Vendie and the Lower Charente, partly by diving to considerable depths in the sea, and partly by means of drag-nets fixed to graduated cords; and the results of his ohscrvations are given in the Mémoires the Muséum el Histoirc Naturelle, vol. vi. With extracts from this, as we shall scarcely have again the opportunity of touching on this beautiful and interesting tribe of plants, we shall conclude this sketch, already too much extended, of the vegetable geography of France. Maritim plants, says M. d'Orbigny, grow in the most opposite temperatures: every country, every latitude, and every situatien possessing some which are peculiar to itself. Still, climatand temperature appear almost alike to many of these productions, which are found by voyagers in every different ocean, while others require particular spots and climes: sone few preferring the montins of rivers, and the brackish waters of salt marshes, where the bitterness of the sea is nodified by the admisture of fresh water, and in such situations attaining to an enormous size, as Ulva lactuca var. altissima, while to the greater number of these plants, fresh water proves absolutely destructive.

As for those kinds which grow indifferently everywhere in the sea, they scem to be increased without any attachment to solid bodies, as Fucus natans, $\mathcal{d c}$. Bauks of great extent formed by this plant, are often found within the tropics of such dimensions as to retard the progress of navigation. Some individuals among these groups may frequently be seen which bear the appearance of having been originally fixed to rocks; their tattened, disc-like stem yet retaining a portion of such substance. There scems to be ground for the supposition that, though these sea-weeds are capable of living and growing in the water,
unattached to any soil, yet that they must primarily spring from some solid body, as no young plants of this kind are ever found between the tropics.

Some of the Alga prefer the southern sides of rocks, others affect an eastern, western, or northern exposure; but they change their position according to the difference of latitude: those which are found on the southern side in cold climates, being generally seen on the northern in the warm or temperate regiens. Certain species live near the surface, and close to the sea-bench : others, at various degrees of depths: the first would seem to enjoy the regular exposure to light and heat which they experience during the turninga of the tide; the second, on the contrary, shun the influences of the atmosphere; and, growing and fructifying in depths where the light can scarcely ever penetrate, they bear, without receiving any injury, both the enermous column of water which censtantly presses upon them, and the severe cold which exists in those regions. There are even parasitical Alga, which grew indifferently upon all the others, and some which only affect peculisr species.

Many sea-weeds prefer such spots as are exposed to the fury of the waves and the action of the currents, where they are perpetually floating in an agitated medium: ethers dwell in the hollows of rocks, or in marine gulfs, where the water is generally calm. The lapse of a few days puts a period to the existence of some kinds, whilst the tempests of auccessive winters fail to destroy others. The general asp ect is apt to change in several individuals, so that, were it not for more stable characters, derivable from their fructification, texture, \&c. they might be mistaken for novel species.
A number of the more delicate marine plants are quickly destroyed by a remeval from their native place of growth; but the grester proportion, being coriaceous, and insoluble in salt water, live for a length of time in different situations; and it is not uncommon to find, upon our own shores, the Alg \mathcal{C} of the most distant regions, which have traversed the ocean, and yet remain unchanged in their general appearance. We must thence necessarily infer that it is not all the Alge that are found in any country that may be said to belong to that country.

The proportions of marine plants are as variable as those of terrestrial ones. Some are barely discoverable with the highest magnifiers; while others rise from the various deptha of the mighty ocean, and, torming at its surface an angle of greater or less acuteness according to the force and velocity of the currents and the tides, then suffer their long summits to float on the waves, and receive the benign influences of atmospheric light and heat. During the great equinoctial floods, the sea often fersakes, periodically, certain rocks, which are only uncovered at such times. If, during that interval, the sun shines forth, or the north wind blows, many of the minute and delicate Alga, thus exposed, dry up and die; while others, though equally circumstanced, revive immedistely upon the return of the genial fluid.

A certain proportion of marine plants are natives of the French seas, while we must refer the accession of many species to the force of the winds, waves, and currents, especialiy to that which generally goes under the name of Gulf Strcnm, and is called by the French the Mexican Current. Almost sll the northern Alga grow in the Gulf of Gascony. It is net so with those from the Mediterranean and Southern Ocean; a very small number of them are there seen in a living state, and their almost northern limit never exceeds the mouth of the Loire, or at firthest the rock of Morbihan. Independently of the influence of temperature, this circumstance msy be attributed in a measure to the current, which, generally setting in on these shores from north to south, brings the seeds and plants themselves of northern seas to these rocks, while these of southern growth are wafted by the same current to Africa and the Atlantic.

But few are the kinds of ses-weed which prefer sny peeuliar spot, or show a predilection for one substance above snether whereon to fix. Deriving no nutriment frem their roots or points of nttachment, they need nothing farther than a temporary support; thus, they cling indiseriminately to any solid marine body, equally to granitic and calcsreous rocks, to foating or sunken picces of wood, to the bones of terrestrial or marine animals, to shells, polypi, \&e.

Netwithstanding that many highly respectable naturalista have averred that the growth of these plants proceeds with most vigour on such and such substances, on some or other peculiar rock, in the vicinity of rivers, or in the open ses; it has been fully ascertained, by a great number of ebservations, that marine weeds do grow with equal vigour, though planted upon rocks or substances of very different natures; and that, if we except some few Llva, which affect brackish water, those which vegetate in situatiens where freeh water mingles with the salt, are gencrally bleached, produce little or no fructification, have a thin and weak texture, and contsin but little soda. The qualities requisite for the different uses of which I shall treat hereafter, are only found united in such sea-weeds as grow in pure sea-water, where they have found a spot which is sufficiently tenacious to fix them in that zone of habitation which they prefer.

Some kinds certainly prefer sand or mud; but then their roots become elongated, and strike deep, till they meet with somo stone or shell or other body which may serve them as a point of attschment, and offer the requisite degree of resistance.
If the nsture of the bottom appears indifferent, in a great measure to maritime plants: it is not so with the level which they select in the ocean, or with the distance of their birthplace from the surface. Every species of maritime vegetable appears to affect, to as great
nn extent na the terrestrial kinds, certain zones or regions of different depths in the sea: places where the superincumbent weight of water, and the relative proportion of light and caloric are adapted to its peculiar organs. Those indiviluals which are found townrds the centie of their proper zone contain all the elements requisite for their perfeet developement, and generally show an aetive stato of vegetation; they are vigorous, they fructify at the season suitable to their degree of immersion, while those which grow at the extreme limit, or out of the lounds, of this same zone, prove languishing, fructify imperfectly, are always covered with marine animals which destroy them, and live but a short time in eomparison with their well-situated congeners. The seeds which escape from these plants would appear, by their various specific weights, to gain an equilibrium equivalent to the column of water which they displace, or, in other words, to flont in that peculiar zone which the future Alga would prefer to inhabit. Those which become developed either above or below it, are inevitably driven from their spot of nature or of election, by the agitation in the waves at the vicinity of the consts.

Lower down than a hundred feet from the surface of the sea, (taking a medium between the high turd low tides,) it is rare to find living sea-weeds in the Gulf of Gascony, and even these are attuched to portions of roek severed from more elevated rocks, and before long they inevitably perish.

It may be observed that the lower we investigate the sea, the fewer will the number of plants appear, anl the more numerous the polypi. For instance, below forty feet from the surtice of the wnter, but very lew Ulva are found; beyond sixty feet, no living Ceramium; and after having descended to the depth of a hundred feet, not a Fucus is to be seen, and the verratable kingdom wholly ends.
1st sne, extending from one foot above the medium height of the sea to twenty feet below, is inhabited by Ulva compressa var. β; U. intestinalis, ventricosa, Lactuca var. a; Fucus pygmeus, amphibius, \&c.
2d Zone, from five feet below the medium height to thirty feet:-Ulva articulata, Nostoc, bullata, fistulosa, Lactuca var. 3 , umbilicalis, lanceolata, purpurea, Linza, contorta, serratn, diehotoma, crispa, pavonia, atomaria (?); Fucus vesiculosus, spiralis, ceranoides, serratus, canaliculatus, eæspitosus, laceratus, hybridus, longissimus, pinnatifidus, viridis, arbuscula, fastigiatus, tenuissimus (?), confervoiles; Ceramium spongiosum, rupestre, Mertensii, penieillatum, fueoidos, nodulosum, graeile, linum; Zostera marina and mediterranea; Diatoma rigidum, floeculosum, \&c.

Bd Zone, from fifteen to thirty-five feet below the medium surface. . Ulva ocellata, palmata, lingulata, polypodioides, caulescens; Fueus longifruetus, lumbricalis, bifurcatus, ericoides, barbatus, nbrotanitolius, vermicularis, norvegicus, obtusus, asparagoides, Wigghii, verrucosus, helminthocortos; Ceramium simplicifolium, casuarina, cancellatum, coccineum, incurvum, elongatum, polymorphum, forcipatuin, filum, capillare, glomeratum, elegans, \&c.
4th Zone, from twenty to forty fect below the medium surface:-Ulva Phyllitis, saceharina, digitata, bulbosa, ciliata, edulis; Fucus nodosus, uvarius, furcatus, ciliatus, alatus, plocamium, plumosus, corneus, gigartinus, aculeatus, plicatas; Ceramium verticillatum, equisetifolium, sericcum, seoparium, \&c.
5th Zone, from thirty to sixty feet:-Fucus siliquosus var. a, purpurascens, ligulatus, pistillatus; Ceramium coccineum, mgagropilnm, \&c.
6th Zone, from forty to a hundred feet :-The flattened Fuci; F. siliquosus var. β, loreus, sanguineus, fibrosus, coronopifulius, \&c., and Ulva tomentosa, which is, in fact, a polypus.

Sunsect. 3.-Zoology.

The zoology of France assimilates less to that of central than of southern Europe. Notwithstanding the narrowness of its separation from Great Britain, it possesses many animals unknown as natives, or even as visiters, of that island. With regard to quadrupeds, this circumstance is not surprising ; for any channel of the sea, however narrow, forms an insurmountable obstacle to the wanderings or migration of purely terrestrial speeies: while others, of a semiaquatic nature are too small and fechle to effeet the passage. These con-
 siderations, however, are insufficient to explain the limited range of the smaller birds, hitherto found only upon the Continent. The distribution of insects is dependent, in a great degrce, upon that of plants; and the numbers of both common in France, but unknown in Britain, are nearly proportionate; on the calculation that has been made of six species of insects to one of plants.

Among the wild quadrupeds of France is the wolf (fig.. 276.), which is still not uncommon in the wooded and mountainous districts: when pressed by liunger, it descends to the firms, and even attaeks the inhabitants. The beaver is said still to exist in the southern parts, and probably the wild boar may not be wholly extirpated
Vol. I.

45
3 R
from the existing furests. Bears wero once common, while three or four of the smaller quadrupeds appear peculiar to France.
Several interesting and beautiful birds, unknown or but rarely met with in Britain, arn here not uncommon; such as the wool-chat (fig. 277.), shriko (Lamius rufus T.) the grossbeuk or hawfinch, tho bluc-throated warbler, and several others of the samo fanily. In sloort, from the connection of this country with the central and sonthern kingdoms of Europe, the ornithologist might probably disfover in France inore than three-feurths of all the continental birds.

The marine proluctions of those provinces bordering on the Channel, as may be expected, do not offer any marked difference from those of tho British ceasts; but on the warm shores of Nice and Marseilles the naturalist meets with numerous productions, indieativo of the rich stores of tho Mediterranean Sea. The entomology of these southern provinces, in like manner, presents us with many of those more striking insects, which properly belong to the fauna of Italy. The beautiful Papilio Podalitius (fig. 278.) so rare in England that its existence there is still doubtell, is here a cemmon insect. France hes leng stood foremost in promoting and lillustrating the study of nature; and a society comprising some of her most ablo zoologists is at this moment engaged in publishing a Fauna Gallica. An able and indefatigable naturalist, M. Risso, has particucularly illustrated the fishes and crustacea of Nice. It was near this place that one of the

Mitra Zonata.

Papilio Podalirius.

rarest and most beautiful shells of Furope, the Mitra zonata (fig. 279.) was fished up by the anchor of a vessel; only one specimen is known to exist in collections.
Among the domestic nnimnls, the French horses are not very excellent; yet those used in the public stages are strong, nctive, and compactly made; nor have their masters copied the ridiculous and barbarous custoon of disfiguring these animals, by cutting off their tails or ears. The stullions of Enghand are inuch prized, and have been judicionsly used to improve the native breeds.
The exen are of two races; the one called beutfs de heut crî are of a middle or small size, with a fierce look, thick hide, and coarse hair; they ure principally lired in the mounthinous provinces of Gascony, Auvergne, \&c. The others are called boufs de nature, and are larger, with a mild aspect, thin hide, and sof lanir: they fatten easily, and belong to the plains.
The native breeds of sheep, not in themselves good, have been of late sedulously and successfully improved. The Flemish breed, common buth to France and the Netherlands, is generul!y hornless, with long legs, nnd is derived from an intermixture with those of Barbary. The Solognot are mostly without honns, and the weol is curled only at the ends. The berichonne are likewise hornless, but are known by their long neck: the fice is covered with wool; that on the body being fine, white, close, short, and curled. The Roussillonne is lerived from the merino race; and has very fine wool, the flaments of the piles being twisted spirally. Lastly, the Ardennoise is horned, and bears a very finc fleece: this breed likewise extends over part of the Netherlands. (IIam. Smith.)
A large and elegant variety of the Demestic Cit is very common in some parts of France; it is nearly double the size of the common cat, and is bearded much in the same manner as the lynx.

Sect. 11I.-Ilistorical Geography.

The Gauls, the ancient inhabitants of France, and the chief among the Celtic nations, were an active, powerful, and ambitions people. Their emigrant hordes repeatedly erossed he Alps, possessed the whole north of Italy, once sacked the imperial city, nind even penctrated into Greece and Asia Minor. Both Switzerland and Belgium were then included ns , art of Gaul. The people, though still barbarous, had made some steps toward civilisation.

Part IIl.

aller quad-
Sritain, arn the gross. imily. In of Europe, I the conti-
bordering offer any coasts; but s the natudicative of The entoke manner, ing insects, The beauin England o a common of nature engaged in bas particuit one of the
fished up by
ct those used hasters copicd off their tails y used to im-
iddle or small in the moune nature, and belong to the
edulously and Netherlands, with those of y at the ends. Hice is covered Roussillonne e piles being ce: this brecd
rts of France ; me manner as

Celtic nations atedly crossed nd even penc. en included as rd civilisation.

Boos I.
FRANCE:
The nobles and Druids enjoyed high power and influence, and had reduced the body of the nation almost to n state of vassalnge. They combated with obstinacy, and made a long resistance to the pregress of the Roman arms; but boing opposed to Cæsar, the greatest of the Roman captains, after a war of twenty years, they were entirely and permanontly subjected.
The conversion of Gaul into a Roman province, theugh it lumbled the chiefs and quelled the martial spirit of the people, was attended with many beneficial changes. Poace was estublished; cultivation and industry promoted; Koman and even Greek literature introduced; nul the people finally converted to the Christian fiaith.

The irruption of the 'Teutonic tribes, on the decline of the Roman empire, was early felt in Gaul, where the Goths, tho Heruli, the Burgundians, and the confederacy called the Franks, overwhelmed and ravaged the whole kingdom, anl drove the Celtic population and language into its remote and mountainous corners. From amid a chaos of convulsions, the vigorous hand of Clovis established the undisputed supremacy of the Franks, and founded the monarchy of France.
The reign of Charlemagne, son and successor to Pepin, who from mayor of the palace had occupied the throne, formed the most brilliant period in French history. That eminent and powerfill prince not only placed on his head the iron crown of Lombardy, but reduced to his dominion, after o. long and olstinate resistance, the intractable tribes of Germa.ly, who had defied the utmost efforts of the Roman eagle. In penetrated also into Spain; but the fierce encounter of the Saracens, and the disastrous adventure of Roncesvalles on his return, cemplotely stopped tis career in that direction. Charlemagne, though himself illiterate, made some efforis to rekindle the den!!ang light of science and letters in Europe.
The contests among the slecessors of Charlemagne were attended with the most violent and bloody convulsions, and with cont'rual changes in the position of the three great kingdoms which composed his empire. At ite:reth it fell entirely to pieces. Germany retained the title of empire, and the claim to the domis. $\cdot n$ of Italy; and in France the Carlovingian dynasty, or that of Charlemngne, having becone en: innt under Iwuis Outremer, the throne was seized by the Capets, the most powerful among the noble French families.
Hugh Capet, hnving in 987 assumed the title of king, the real power attached to which had already been exercised by his father, Iugh the Great, foundeu the present dynasty. The administration, however, was long marked by a strong feudal character, and a high spirit of independence among the great nobles, of whom the counts of Provence and Britany, and the dukes of Burgundy, ranked altogether as separate and often hostile princes. The teadal nge of France was also marked by chivalric ard eventful wars with England, which long held severnl of the finest provinces, end whose king, IIenry V., was crownel at Paris; but frool that seemingly approaching downfall, the monarchy, through the romantic exploits of the Maid of Orleans, suddenly revived, and became more mighty than before.

The establishment of monarchical power in its plenitude was chiefly effected by the profound and insidious policy of Louis XI., farourd by the circumstances of the uge. All France was united under the sway of the kings, who were thus enabled to form great armies, which, under Charlos VIII. and Louis XII, overran nearly the whole of Italy. But it was nnder the gay and enterprising reign of Francis 1 . that its energies were filly developed. It then, however, came into collision with the house of Austria, whose extensive possessions in Germany, Spain, the Netherlands, and Italy, wielded by a powerful hand, secured to it during this period a docided, though not overwhelming, ascendant.

The civil wars arising out of the persecution of the Pretestants agitated France for a very long time, and produced scenes of the most bloody and calamitous description. They lasted for a hundred yeare; for the popular reign of IIenry IV. conld scarcely be considered as more than a truce. At length Richelien, by the reduction of Rochelle, terminated the longstruggle of the Protestants for religions liberty, which in France alone, of all the countries where it was maintained upon a great scale, had this fatal issuc. At the same time, this daring and despotic minister finally crushed the power and pretensions of the nobles, and formed France into a simple monarchy.

The reign of Lovis XIV., during which a single hand wielded all the energios called forth during the prior struggles, exhibited France more powerful than she hal heen since Charlemagne. The honse of Austria, now divided into the German and Spanish branches, of which the latter had become weak and inert, was humbled by repeated blows, which at length almost threatened her existence. France seemed advancing in the enreer of universal monarchy, when the interposition of England and the victories of Marlborough turned the tide of success, and rendered the last days of Louis humilinting and disastrous. The final issue, however, by which a Bourbon was placed on the throne of Spain, and the conse quent family alliance, gave to France an increased woight, especially in the maritime concerns of Europe.
The French revolution was an event attended with awfill and mighty vicissitudes, so fresh in the memory of the world, that it would be quite superfloous to attempt to enumerate them. Atter tearing up France by the roots, nnd holding all Europe in chains; atter exhibiting
during twenty years the vicissitudes of republicanisn, total anarchy, and pure despotism; at length, by a mighty re-action, it terminated nearly nt the point from which it commenced. France, however, obtained clieeks on the arbitrary power of her monarchs, which, notwithstanding their opposition, she rendered more and moro effective. At length Charles \mathbf{X}., having rashly attompted to brenk through nll the limits placel on his authority, was driven from his throne, which was filled by Louis-lhilippe, head of the collateral line of Orleans, under the titlo of King of the French.

Sxct. IV.-Political Geography.

The political constitution of France, prior to the Revolution, was almost purely despotic. The privilegea of the nobles consisted nemrly altogether in unjust exemptions from taxntion, and in corveies, or iniquitous and oppressive clains upon the labour of the peasantry. The only very salutary limit to the royal authority consisted in the parliamenta, liereditary bodies, by whom the laws were very fuirly and honourably administered; and the parliament of Paris hal even the important privilege of registering every new tax before it could become legal. The exorbitant powers vested in the scwereign being however inconsiatent with the growth of national intelligence and the augmented force of the tiers étal, a collision took place, the most terrible on record, which ended in the temporary subversien of the throne. When the Bourbons were restored by forcigu victories, they felt, and were warnell, that France ceuld no longer be governed by the former absolute system; and they beatowed by charter a represeutative government formed on the admired model of Eugland. The nobles and parliainents, however, had been entirely swept a way in the late convulsions, and left ne hereditary aristocracy out of which an upper house could be composed. A Chamber of Peers was formed, by the royal appointinent, of a body of individuals, many distinguished rather by talenta and influence than by birth; and in the number were included some of the moat distinguisherl of Napoleon's generals. Pensions were assigned to support the dignity of the Peers, which was at first hereditary, hut by a recent enactment is to continue only for life. The Chamber of Deputies, corresponding to the House of Commons, is chosen by electors united in certain bodies called electoral colleges. These include all persona paying a certain amount of direct taxes; which limits the right of voting to the middling class, and to an entire number throughout France scarcely excceding 130,000. The number of Deputies is 430. The functions of the French chambers are high. Their annual vote grants all tho supplies of the year, and the expenditure of the preceding one is submitted to their rigorous examination. No taxes can be imposed, or loans cont:acted for, without their concurrence. Their debates are regularly made public, and an arraugement is enacted by law for the convenience of the reporters. Yet the chambers want some of the functions of a British parliament. They cannot fix the amount of the army, unless by limiting tho funds to be employed in its maintenance; nor can they call in question tho eugagenents held by government with foreign powers, unless by withholding the funds necessary to fulfil them. The liberty of the press was professedly granted by the charter; but there hns been much fluctuation in its exercise; it was oven repentedly made sulject to a censorship: even since the last great clange, its freedom has not been established on as anple a basis as in Britain.
The adninistrution of justice in France, which, before the Revolution, was still more complicated than in England, has been simplified in a very remarkable degree. The National Assembly early applied themselves to form a now series of codes, which might supersede those vast and voluminous records in which the law was formerly containel. They projected five codes, respectively referring to civil law, civil procedure, commerce, criminal law, and penal infliction. These were completed under Bonaparte, who gave to the whole the name of Code Napoleon: it is comprised in a moderate volume, sold for a few france. All the ancient parliaments and scigniorial authorities being swept away, a new system of jurisdiction bas been formed. Of the judicial authoritics, the lowest class are the juges de paix, who momnt to nearly 3000 . They liave saluries of 800 to 1000 franes, and decide finally on all cases where the question at issue does not exceed fifty francs. Immediately above them are the tribunals de premiire instance, botore whom all questions and charges come in the first instance, and who judge finally respecting any property not exceeding 1000 francs. There are 360 of these courts, and the judges are supposed little short of 3000 . To them are attached the tribunal of correctional police, which lims cognizance of nll minor offences. Above these rank the cours royules, sometimes called cours d'appel, because an appeal lies to them from the inferior courts. They are twenty-seven in number, attached to the chief cities in the kingdom. They consist, in populons towns, of twenty, thirty, nud in Paris of fifty members; who, in that case, are divided into several chnmbers. Attached to then are the cours d'assise, or, as we would call then, jury courts, to which all criminal cases of importance are referred hy the cours royales. A French jury consists of twr've, and a simple majority decides. From the decisions of the cours royales an appeal lies to the coiert of cassation, the highest tribunal, which also exercises a general jurisdiction over the sthes judicial bodies. All the judges are app inted by the crown, but hold their offices for liis. nmenced. nutwithharles X., vas driven f Orleans,
y despotic. n taxntion, atry. The tary bodies, liament of ull beceme nt with the ollision took the thronc. varned, that bestowed by The nobles and left no her of Peers ished rather of the most tignity of the only for life on by electors ing a certain id to an entire puties is 430. ho supplies of rous examina. rence. Their e cenvenience h parliament. mployed in its ernment with The liberty of uetration in its the last great
till more comThe National ight superselle d. They proerce, criminal e to the whole a few franes. new syetem of - the juges de ces, and decide Immediately s and charges xceeding 1000 slort of 3000 . ce of all minor el, because an nber, attached aty, thirty, and ers. Attached chall criminal ists of twr've, peal lies to the iction over the their offices for

Book I.
FRANCE.
[The following tables from official documents contain important lata illustrative not less of the moral history of mankind, than of the ntate of eociety in France.
 frotin lym thin inis.

	$1 \mathrm{~N}+\mathrm{Na}$.	1ens.	1830.	$1 \mathrm{Sl1}$	1×32.
	$1 ;$	15 s	0145	Hise	1,004
Murder noil Manslanghter	880	\% ${ }^{\text {and }}$	flis	tias	011
Parricite..	15	11	4	15	$9: 1$
Infantieife	! 11	4	10 HI	K11	N ${ }^{\text {c }}$
Cuthonk and Wumbling .	$5: 11$	4.61	\%	; 10	14:
Assanila upon Women	167	14	1:4	115	$1: 11$
" 0 - Shildiren	157	1:3	117	1101	111
Perjury and Suhurnaton of Perjury	$7: 1$	71	71	72	10.1
Higamy	0	11	7	2	II
Onlier Crimea.	52	14	52	54	83
Totale.	1,844	1.701	1, (taill	2.1446	2,644
Crimes agalnat Property. Cointur	29	in	49	105	
Furgery of Commeicial Papern	H ${ }^{\text {a }}$	16	141	\%11	RM
Other Furgurien .	323	3\%	2×1	301	327
Robbery and 'licef in Churehea	47	4.7	47	3	: N
	188	185	$1: 15$	121	1 lis
" " by Domestice	[14\%1	1,215	1.016	H231	115\%
Ohher klodif of Mohlwery	3,542	3,4.5	3, 200	3,1~1	3,3,32
Fradulenl Hankruptey.................................	80	15	84	178	71
Incenuliarimm.	9 Mf	$\mathrm{H8}$	138	122	1 Hiil
Otter Crimis......................................	123	175	177	314	:42
'Tutala.	3,554	5,8m2	3,241	5,560	5,53.1
General Tot	7,3013	7,373	6, (1i2	7,1041	8,937

II. Statement showing the Degree of Insiructian of Persona eharged with Crimen befirn the Cumple of Asaize, in encli year, from 182v to 1 H 0 g .

Yeas.	Unable to read or writs.					Able to read or write Imperfeelly.				
	Crimes arainat Ferson.	Crimex agnint Property.	Tolal Accused.	Acquitud.	Couvicted.	Crimes agalnat 1'егяни.	Crimer actinat Eroperly.	$\begin{gathered} \text { Trital } \\ \text { Accumel. } \end{gathered}$	Arquithed.	Convicted.
1838	1,000	3.157	4.116it	1,5\%	9,627	505	1.353	1,898	715	1.118
1×29	1,01:1	3,4ti0	4,543	1,tilt	2, 207	4!4]	1.451	1,1147	7107	1.110
1430	000	3,22:1	4,110	1,0i54	2,tith	415	1,311	1,424	Oliti	1.4n:0
1831	1,144	3,4513	4.100	1,14N	9,1854	54.8	1.471	2,047	1.000	1.0147
1832	1,133	3,410	4,749	1, HE 3	\$, etit	850	1,ti04	$\underline{20.4511}$	1.162	1,2:4
	5,539	10,818	29,357	$8,7 \div 0$	12,337	9,FE4	7,950	113,134	4. 4.10	5,504
	Able to real and write well,					Reczlved a degree of Intruction beyond niere reading and writiog.				
1828	215	3015	780	312	4.38	314	89	118	77	4)
189	185	544	799	23\%	41.4	44	12.4	170	$8!$	H1
1*30	174	514	fixe	1330	35 N	37	09	194	82	47
1831	294	531	717	420	341	188	62	190	1:3	58
3832	292	54, 3	77.5	373	402	100	84	257	14%	15
Tutal Five yeara	1,100	9,6\%	3,75	1,7:14	1,043	120	478	864	542	32.2

Fiancial system. During the periol of the Revolution, France shook off tho heavy burden of debt which had been a main iustrument in bringing on that eatastrophe. Yet the amount of taxes had not exceedel $\mathbf{5 5 0 , 0 0 0 , 0 0 0}$ livres, and the nation way erushed rather by the arbitrary and injudicions modes of levying the imposts, than by their netual amonnt. Napoleon, to support his contimual wars, laid on large ndditional taxes, chiefly in the form of land assessment, and contracted, a debt of $3,000,000,000$ francs. This was augmented by the events of 1815 , and the occupation of the French territory by the allied armies at the expense of France. The debt is now expressed in the form of rentes or annuities, which in the bndget of 1830 amnunted to $249,496,000$ livres: this, with other funds for which government were responsible, wis consilered as representing a capital of $4,088,738,000$ franes.
The statement of receipt and expenditure for the year 1830 is as follows:-

neceitr.	Frabs.	exienmitire.	Frnem,
Direct Taxem, miefly nn lathl............	9\%M0.815, $21!1$	Civil List	
Registration Stampa nul Donains.......	197,205, 138	Clinnilur uf Peera	780909
Costom-housen mul Snll.	154.2211,103	Chandler of Deputies	
Liquors, Sumiry Dusies, Tobareo and Gun-		Legion or IToumur	3,45at. 209
	103,081.593	Sinking Fu	41, 14:5, 250
Pest Offire	33,489!01139	belt.	-aic, 3.ji, itick
Forls of Tiender	94,010, 1297	Instice	19,5ificiova
Falt-works	1,209,000	Foreign Aftuirs	$8 .-$-í, оия
Gaming lnuses	$4.3 \mathrm{mb}, \mathrm{NHz}$	Itriowinn nad Pahtic Instracti	3-2,411,500
Royal lattery	10,042,76	Interior	124,1:2.alli
Сиппйе	141.341	War	E33,313, 617
Sundry \|rucerals .	11.585,418	Marin	318.527,474
Extrantionary resourcers	$4{ }^{4} .4152 .241$	Finatce.	92.477.167
Deductions on Recelpts	8.190, (10	Alministration	$190.079,251$
	98:1044 060	Hepayments.	4(0,300,808

The urmy of France is no longer that vant and terribln mas⿻, which for so many yeary held the whole of enitinental Burope in thrall. The evente of 185° having proved too clenrly tho attnchment of the old troops to their former master, they were nemrly all disbauded, and their place supplied by fresh conseription. 'Tho government has the power of levying \quad (10, 1 Mo men in the year. By a rognhation, breathing still the republicnn spirit, oncthird of the ollicers must be raised from the ranks. 'The army in the year 123: was on o very formiduble finting. It nanounted in all, Inclading 19,0:30 ofticorn, and 3710 children ol soldiers, to 411,810 men. Of theag, the inthantry consinted of (0in5 ollicers and $\mathbf{2}(1,141$ men; the cavalry of $\$ 8015$ officers and 51,335 mon; the artillery of 1100 ollicers and 32,501 men, bepidea gendarmerie, engineers, \&ec.
The French nary, which, in 1701, nmounted to seventy-four sail of the line and sixty-two frigaten, lost lalf' during the war; and those which romained, having never ventured for many ycurs to stir out of port, lost all their experience and eflicioncy. At present, it consists of 55 shipe of the line, 00 ifigutes, 30 corvettes, 103 maller vessels, 17 stenn-vesmels, mumerous urmed transports, \&ec. The French unvy is now in a high state of efficiency, and is rapidly increauing.

Sect. V.-Productive Industry.

France, with regnrd to internal ecenomy, is one ef the richest and most flourishing comntries in the world. In point of industry she ranks third after Britain and the Netherlands. while sle possesses a greater extent and more natural advantages than either of those great seats ef comuerce nud manufacture.

Agriculture is the most Hourishing brunch, yet is net in se advnuced a state as in (ireat Britain. It has gnined grently by the French revolution, in consepuence of the abolition of feudal rights, corvées, and tithees. The great possersions of the umbility were then-broken up, and during the grand emigration, the farmers, or neighbouring little proprietors and capitaliste, were able to purchase at a very cheap rate portions of the forfeited domains. It has becomo a ruge in France for every one to poseess a little spot of land; and the division of a man's property annong lis children, which the law enfurces, tenuls to split it perpetually more and moro into minute portions, Travellers have even observed three or four proprietors obliged to join in keeping a common plough. In vincyards nad other garden cultares, whero nice care and diligence are chielly requisite, this minute partition seems advantageoos. Chaptal even calculates, that a small vineyurd cultivated by the proprietor's own hand will yield double the quantity of that which is leasel out by a large proprioter. But in corn lands, where a considerable capitnl, good machinery, strong and well-fed cattle are necessary, the cultivation is thus kept down to a much lower standard than it would etherwiso reach. Tho little occupants, also, are by no means pronpt in discovering any improved processes, or in ndopting those discovered elsewhere. Artificial grasses, and the rotation of crops which they ficilitute, are by 110 means generally difflused; and nn old viciens circle, of whent, onta, and fallow, is still very generally adhered to. In shert, all operations on a great scale, and requiring a censiderable outlay, are deficient in Franee. M. Dupin, in a discourse on the effects of public instruction, in the introduction to his normal course of lectares on geometry, has drawn a striking contrast between northern and soothern France. Although the former proluces neither the olive, the vine, nor any of the finer fruits, yet it pays of taxes $127,030,000$ francs on a surface of $18,090,0010$ hectares; while the south pays only $125,410,000$ francs upon $34,840,000$ hectares. Even in the south, the districts least favoured by nature are both the most enlightened and the most industrious; the high Alps, the high Pyrences, and the departments immediately adjoiniag to them.

Grain, notwithatnnding the imperfection in its cultivation, is produced with such diligence as to yield enough in ordinnry years to supply the extensive population of France with food. The only exception is in part ot its southern const, which, when permitted, draws a supply from Odessa. Frnnec is not distinguished for any very superior quality of grain, nor is it an exporting country. It secms to have attended less than most other rountries ef Europe to the culturo of potntoes, which are still planted only in gardens, along borders, or in tracts unfit for grain. Maize is mixed with wheat in the southern departments. Chaptn! has given the following statement, calculatel on an average of twelve years, from 1800 to 1812, of the entire products of this branch of French agricalture :-

A more recent estimnte, in a memoir read to the Society ef Statistics in 1830, mnkes the average produce of the years 1825 to 1829 nmount to $60,553,000$ hectelitres of wheat; 114,7:33,000 of other grains ; 46,232,010 of potatoes and chestnuts.

Wine ranks next in importance to grail, and forms a most valuahle part of French industry. 'I'loe wines of France, thongh mint so strong as those of' more sonthern climates.

Pakt III
zany yeare proved too rly all dis. e pawer of spirit, oneis why oll a children of 1,141 men; 12,501 men, entured for t, it cousints onun-vennela, ficiency, and
rishing counNetheriands. f those greal
e as in (ireat e abolition of then-broken oprietors anil domains. It ithe division it perpetually e or tour pro-- garilen culurtition seems he proprietor's rge proprintor. woll-fed cattle than it would iscovering any rasses, and the d; and an old

In short, all ent in Frunce. n to his normal m and southern ny of the finer res; while the south, the disnlustrious; the them. such diligence ance with food. draws a supply ain, nor is it an s of Europe to ers, or in tracts

Chaptal has
n 1800 to 1812.

Fthitites
576,503
-400,741

1830, makes the litres of wheat;
part of French uthern elimates.

Book I.
FRANCE.
are generally accounted the most delicato in the worla. Those of Burgundy and Champagne are withont a riva), if wo except a fow rare specimens of Tokay. The wines of the Garonne do not rauk quite so high; but, from their Ight, suff, and agreable qualitiea, are Irunk nore fredy, and exported on a inrger acale. The thent and atrongent of those winea aro cultivated chiefly to aupply tho consumption of Britnin and the other northern nutions. Tho interior consumption of France connista chiefly of the light winea, drunk at tuble, neurly as our beer. 'I'wo elatornte attempta have bren made to eatimate the proluce of the French vineynrda; one by Chnptal, in his "General 'Jreatise on F'rench Induatry", niul the other in the report of a conumittee of the Clinmber of D'eors, preserted in 1×24 by the Duc ile Dodeauville. They ditter pretty conniderably. Chaptal auppowes that $1,081,000$ hectnres are employed in producing wine to the avernge annual nmount of $\mathbf{3 5 , 5 0 0 , 0 0 0}$ heetolitres. The table, howover, fiven by the duke, of the produce of ench department duen not exceed $31,033(0,000$ hectolitres. The difference ns to vilue is atill inore remarknble. Chaptal, after leaving out a sixth, as made into brunly, eatimatea the remainuler at 678,000 , 0 (NO franca: he aupposem that there ne $8(00,000$ worth each 240 francs; $1,800,000$ worth 50 ; gradually descenting
 to mere than $4810,000,0000$. The highest average value he a tigns to the wines of any department is to those of the Oise (chas:pagne), 38 franea; those of the Marne, Yonne, and Cote I'Or (burgundy), 20 to 94 ; of the Gironde, und Lat, ane Inronne (elaret), 10 to 21 ; the rest from 17 to 0 . Ilis estimate, livariver, seems too low; since M. Dupin (Forces Produetives, fre de lu Franre) culculates tha value, necoriling to the tax pnid to government. at $543,155,078$ ftmes. 'I'he brandy into which one-sixch of the above proluce is mnde, is, liko the wine, the finest in the worlh, and in gramu : taple "iFreneh trade. Chaptal estimates the vilue distilled at $\mathbf{4 0 , 0 1 0 0 , 0 0 0}$ franca. M. Jupin states the quentity at 400 , it hectolitren; that of other spirits at 90,000 . He calculntes also $8,869,4$ hectolitro fider, and 2905,022 hectolitres of atrong beer.

Live stock does not form the most approved part of French husbr .a' y. Chaptal moneiders that the animnla are too fow, whether for culture, for use, or fin cid production of manure; and also that the measures taken to improve the breed have beeia very partial uldefective. The number of horses, ineluding mules, in 18:27, wa" 8 , 51,0000 . Of these in wis reckonod that 300,000 were employed in riding, posting, the ustiliuiv, \&e. The stock refuires to be kept up by an importation, which in 1309 to 1612 " 28 vald dut $3,51.0100$ francs minuas'y, but necoriling to N. Senac had risen, in 1822 to $\mathbf{8} 82 \mathrm{~s}$, to $7,5(5),(41)$. In return, thero is ur extensive breeding of mules on the P'yrenean frontier, and they nre exported to Npain to the value of $1,400,000$ francs. Frnace had in 1812, 214,000 bills, $1,701,000$ nxen, $3,900,001$ cowe, 858,000 heifers. Tho importation at that time umounted to ondy $2,360,(60)$ frnucs, but in 1825) it was 7,680,000. The exportation is, however, considerable. Sherp are n species of stock very considerable in amount, particularly in the departnents bordering on the Alps and I'yrences, in those which conposn the mountuin ifis'rict of Aivergne, and on the pastornl bauks of the Eure and the Cher. The number of aheep in 1812 was 760,310 merinos, $3,578,090$ mixell, nall $30,943,0100$ native or unimproved. The first introduction of merinos was in consequence of the trenty of Basle, which stipulated that $\mathbf{4 0 0 0}$ of these highly prized animals should pass into France. An experience of thirty years has shown thint the breed might be preserved and exteuled in fill perfection; but tho above atatement will show that the diffusion of it is, as yot, very partial. Pare merinos are valued at thirty franes, mixed at twelve franes, and native sheep at only five franes. The number of swine in France is estimated by Balbi, in 1826, at $4,000,000$. The ass is considered by M. Senae to be, from the poverty of his owners, in an "Imost hopeless state of degradation; and the fowls, the bees, and the pigeons to demnnil a thar,ughly improved system of rearing. Chaptal has pot attempted to estimate the whiter : queciea, but has guessed their entire vnlue at about $51,000,0(00$ frunce.

Among the materials of manufacture, the most important is silk, which was at first introduced near Tours, but was soon fund to be well suited only to the most southern districts. The amount, secording to Chstal, is about $11,400,000 \mathrm{lbs}$, and the value $15,440,000$ francs; but this is only about two-finha of the quantity consumed in the manufactures, so that a large importation is necessary firm Iombardy. Hemp and flax are cultivated universally, but alwaye on a small staie, every farmer having his little patch for domestic use. It is difficult to estimato these ; but Chaptal guesses the value of hemp at $30,000,000$ francs, and flax at $20,000,000$ franes. Vegetable oils are prolucell to the supposed extent of $1,300,000$ quintals, worth about $75,000,000$ franes; yol so great is the quantity consurned in domestic use, and in the different manufactures, that they are imported to the value of nearly twentyfive millions.
There are certain tropicnl and colonial productions which it was the enger wiah of Napoleon that Franco should cultivate, in order that she might be independent of commerce. One of his favourite projects was the culture of the beet-root, for the extraction of sugar, an article of consumption with which Furopeans can least dispense. The admission of coloniai nnd foreign sugnrs, under reasomable dities, after the overthrow of the continental sys-
tem, gave a severe cheek to this spurions branch of industry. To prevent its decline, henvy additional duties were laid on colonial nnd foreign sugnrs in 1816 and 1822 ; and, in consequence of this encouragement, the production of beet-root sugar has been rapilly increasing during the last five years, and is now supposed to amount to about 8000 tons, or $8,960,000$ lls. The nrt has been a good deal improved; and it is supposed by many that it will, nt no distant period, be so much ameliorated thint the beet-growers will be able to withstnad the competition of the West India planters under the same duties: but nuy such expectation seems to us to be quite visionary. The entire consumption of sugar in France amonnts, at present, inclusive of that from the bect-root, to about 72,000 tons a year; being not much more than a third part of the consumption of Grent Britain and Ireland, which nmonnts to about 190,000 tons. Tobacco, after the removal of the rérie or reyal monopoly, rose to $50,000,000 \mathrm{lbs}$; but since the restoration of the regie in 1312 , it has fallen to $5,000,000$.

Wood is an important article, especially in a country which is nearly destitute of any other fuel. Chaptal estimated the woollands nt 7,072,000 hectares (about $17,500,000$ neres); but according to a more recent memorial in 1824, by M. Herhin de Halle, sub-ndministrator of the forests, it is only $6,521,000$ hectares (abont $18,000,000$ acres). Of this, $1,122,000$ hectares belong to the state, $1,896,000$ to the communcs, 65,969 to the crown, 192,000 to princes of the royal fumily, and $3,243,000$ to private individunds. Woods thus ocenpy a little more than an eighth part of the soil. The greatest proportion exists in the depnrtments bordering on the Alps ant the Pyrences, and along the Rhine, the Moselle, the Snone, the Marne, and other eastern rivers. Chaptal estimates the value of the annun] cuttings nt ubout $141,000,000$ francs; but if this be reduced according to M. de Halle's estimate, it will give only $130,000,000$. Fruit trees are also of importance, especially chestnuts, enltivated on a large seale in several provinces, and valued by Chaptal at abont $10,000,000$ francs. He estimates the fruit growing open in orchards at $22,500,000$ franes, and that on walls, or in rows as single trees, at $63,750,000$. He is afraid that this last will be thonght too low; we should rather apprehend an opposite error in this instance, as well as in that of reekoning the herbs which grow in 398,000 hectares of garden ground, at $200,000,000$ francs.
On the whole, Chaptal calcuintes that in the $52,000,000$ hectares of which France consists, twenty-three nre nrable; ten woods, vines, fruit-trees; seven pasturnge; the rest waters, roads, buildings, waste. He makes the anmual avcrage produce of an acre 28 francs. By this and other estimates, the annual territorial produce comes to nbout $1,500,000,000$ francs. The entire agricultural capital he estimates at $37,500,000,000$ francs. M. Dupin, in 1827 , reckons the territorinl revenue at $1,696,000,000$ francs.

The manufuctures of France, though they do not present the immense results of thoso of England, are considerably more productive than those of almost any other nation. Colbert, the celebrated minister of Louis XIV., finding this branch in a very depressed state, compared with its prosperons condition in some neighlouring countries, bestowed on it almost an exclusive attention. Chaptal calculates, that during the Revolution it made still greater progress than ngriculture. He regards as almost miraculous the adinnnce made in the cotton and other fabrics. The miracle, lowever, was wronght solely by the rigid exelusion of British goods; and amid all the boasted proofs of French ingenuity, he is obliged to confess, that when, as minister of the interior, he sought eagerly the means of introdneing new manufactures, he could find no effectual expedient, except that of alluring Fnglish manufacturers into France, und of copying their processes. However, these prohibitions, which have been continued to a great extent under the royal system, have in fact forced a number of manufactures which could not otherwise have withstool British competition.

Silk has heen long one of the most prominent objects of French mannficture. Even the revocation of the edict of Nantes, though it drove many of the most industrious citizens out of the kingdom, left that branch of industry still very flourishing. It suffered more from the dreadful calamities which befell Lyons, its chief seat, luring the height of the revolntionary mania. The 15,000 establishinents that existed in 1788 for the mamfacture of silk, were reduced in $18(0)$ to 3500 ; but amointed, in 1831 , to about 15,000 , employing above 21,000 workmen. It is chiefly in eloths that this city excels all others, both as to the luillinney of the dyes, and the richness and beauty of the staffs. Nismes excels in taffetns, mixed silk and cotton stuffs, gauzes, and crapes; Tours in furniture stuffs : Avignon in satins, levantines, \&c. The Cevennes are fanous for bonnets, while nlmost all the silk ribanils are fabrieated in the department of the Ioire. The entire value of the manuficture is estimated at $125,000,000$ franes, of which $30,000,000$ is exported.
Tho woollen manufacture is still more extensive nad valuable than that of silk. The woollens of France are either very eoarse or very fine; the former are established chiefly in the hilly tracts of the southern border, where the sheep yield nhundance of conrse wool, and the shepherds spend the leisure of winter in working it up into serges, friezss, and similar stuffs. On the other hand, at Sedan, Jonviers, Ableville, are manfartured finer eloths than nny of those of Britain, though the Intter produces a much larger quantity of good and substantial cloth. Although France proluces $81,060,(000$ the of wool, she yet inpmerts to the value of $12,000,000$ or $11,(000,000$ of franes: Chaptal estimates the whole unmanufactured

Paric Ill. ne, henvy in consenereasing 30,000 lbs. nt no disistand the xpectation nounts, at not much mounts to y, rose to 0,000 . ite of any OO acres); ninistrator 1,1 22,000 192,000 to py a little partments Saône, the uttings at te, it will cultivated 00 franes. n walls, or t too low; reckoning . rance con; the rest 29 franes. (0),000,000 M. Dupin,
of those of Colbert, state, cem0 it almost ill greater the cotton clusion of to confess, icing new ish manuons, which a number

Even the

 tizens out e from the olntionary silk, were ve 21,000 lliancy of nixed silk ns, levanare fibriinnated at
jlk. The

 chiefly in wool, and yl similner er eloths d and subts to the ufacturedwool at $93,000,000$ franes, and the finished work at $238,000,000$, of which the exports nmount th about $25,000,000$.

The raking of linen is as widely seattered as the culture of hemp and flax. The coarse cloths ase eliefly fabricated by the peasontry, eaeh out of the produce of his own little patch of land. Thero are, however, large manufactures of plain useful cloth in Normandy ann Dauphinc, the latter from hemp; and great quantities of sailcloth are made in the maritime countries. In the departments along the Belgic border there are extensive fabrics of lawns, cambrics, and lace; which last, though net of equal reputation with that of Brussels and Mechlin, forms yet an important object of trade. We may reckon the raw material of hemp at $37,000,010$ franes; the finished manufacture at nearly $110,500,000$; flax, raw material, $20,000,000$, the finished fabrie, $\mathbf{7 5 , 0 0 0 , 0 0 0}$. The exportation is about $37,500,000$, almost wholly of the finest kinils of the manufacture.
The cotton manufacture was established in France during the continental system; and has been propped up since the restoration of the Bourbons by the prohibition of importation from abroad. In 1810 the imports of raw cotton amounted to above $25,000,000 \mathrm{lbs}$,, and during the next ten years they were more than doubled. But the ligh price of machinery in France, the rearcity of coal, and the want of skill on the part of the workmen, seem to oppose almost in superable obstacles to the further progress of the manufacture. It is at pre sent in a very depressed state, and the following account shows that it has been nearly stationary during the last ten years:-

Inports of Cotton Wool into France.

	$\text { 1bsu, } 61,758,100$	1897.	$87,184,100$
1823.	500,953,500	1828.	61,239,000
1824.	75,3*2, 200	1829.	72,660,000
1825.	61,371 600	1830.	$8.8 .85,100$
1820.	06,052,000	1831.	15,5,517,100

[In 1834, it again rose to 279,674 bales, or about $73,250,000 \mathrm{lbs}$; nd in $\mathbf{1 8 3 5}$, to 314,350 bales, or about $94,000,000 \mathrm{lbs}$ - Am. Ed.]
Of the secondary objeets of manufacture, that of leather is perhaps the most extensive, though not peculiarly French. It is supposed that in France the annual product amounts to 857,000 cow-hides; 110,000 horse-hides, and $2,032,000$ ealf-skins. There are 31,000 shoemakers in Paris, who make upwarde of eight millions of pairs of shoes yearly, not only for the city itself, but the provinces, nnd even foreign countries. Chaptal reckons the whole produce of tanning, currying, sloemaking, and all processes connected with leather, at 143,000,000 francs. Hard soap was formerly supplied by Marseilles to ait France and the colonies, but its produce of 225,000 quintals is now reduced by a third; owing partly to the reduction of the colonial demand, and partly to the more general iliffusion of the manufacture. It is thought still to amount to $30,000,000$ francs. Starch, including lair-powder, may amount to $\mathbf{1 8 , 0 0 0 , 0 0 0}$ pounds. There are sundry little natters of jewellery, trinkets, furuiture, perfunery, seented waters, volatile salts, which elsewhere are only petty trades, but which taste and fashion in France raise to the dignity of manufactures, the whole produce of which is reekoned at upwards of $\mathbf{1 0 0 , 0 0 0 , 0 0 0}$ franes. Crystal, glass, and pottery are brunehes in which the French have recently made great progress; and, from being dependent on foreigners for these articles, are now able to export them. The first two branehes are estimated at $21,000,000$; porcelain made at Sèvres and other places, at $5,000,000$; pottery in imitation of English, a little more; coarse pottery for the lower ranks, $1 \overline{5}, 000,000$.

Mineral kingdom. France yields in abumdanee the most solid and useful of all metals, iron. There are about 400 forges in the kingdon, chiefly in the Pyrenenn and Alpine departments, and along the heads of the Marne, the Moselle, and the Saóne.
The produce which M. Chaptal reekoned only $81,000,000$ kilogrammes, had, aceording to M. Dupin, risen in 1825 to $161,000,000$ (about 101,000 tons), the valuo of which would be about 75,000,000 francs. Chaptul supposed the workmanslip bestowed even on the smaller quantity produced in his time sufficient to raise the value to $200,000,000$ franes. Nearly all the copper nod lead employed in Prance is imported from abroad. Salt is extracted on the southern coast from sea-water evaporated by the lieat of the sun, and in the north from brine-springs artificially evaporated. During the period when salt, relieved from the old oppressive monopoly, was left entirely free, its production and use rose to the extraordinary height of upwards of 20 inillions of quintals. Since the re-establishnent of the tix, it has fallen to not quite two millions; upon whieh there is paid a duty of $45,000,000$ frincs. This astonishing diminution seems chiefly owing to the disuse of it in agriculture; a circumstance however very injurious to that branch of ininstry. Other mineral products, with their supposed value, are, almm, $2,500,000$; saltpetre, $3,000,000$; nitric acid, $6,000,000$; muriatic acill, 250,000).
The total value of the products of the mines and manufuctures of Frnnce is estimated at $2,000000,000$ franes. The particulars are alout 450 millions of home raw materials; 225 millions of foreign raw materials; 900 millions of workmanslip; 225 millions of general exVol. I.

3 S
pense, as imporments, repairs, lighting, interest of fixed capital; 200 millions for the profit of the manufacturer.
The commerce of France, while all the other branches of industry were thus advancing, has pereeptibly deelined. It was reduced, indeed, to a state of temporary annihilation by the violent policy of Napoleon, who absolutely lined the coast with troops, that not a single vessel might enter. Thus all the commercial ties of France were broken, every channel closed by which she was accustomed to exchange her commodities with those of foreign countries. Indeed, the anti-commercial spirit secms to have become rooted in the mind of the nation; and when we find even the enlightened mind of Chaptal extolling the prohibitory system, and considering every thing as a source of loss to France which she imports from abroad, there can appear little prospect of any amendment. That writer considers the year 1789 as the mest flourishing period of French commerce; when the exports amounted . $18,200,000 l$. sterling, and the imports to $26,500,000 \mathrm{l}$. This extraordinary excess of imports, a result, according to old ideas, considered so disastrous, he explains hy ebserving, that the imports include ten millions from the colonies, while the exports thither were only four, and also two millions and a half in gold and silver. Whether this explanatien be sound or otherwise, we have no idea that there could be any permanent or extensive difference between the two branches. Chaptal has, with grief, declined to give any record of the feeble efforts at revival made by the French commerce. Since the appearance of Chaptal's work, however, it has considerably improved. In 1827, the import trale was carried out by 3350 vessels, under the French flag, tonnage 353,000 , value of cargoes $230,140,000$ francs; and by 4439 foreign vessels, tonnage 474,000 , value of cargoes $136,041,000$ francs. There were besides, inported by land, goods to the value of $199,621,000$ francs; making the imports in all, 565,802,000 francs.
In the same year the export trade was carried on by 3522 French vessels, tonnage 346,000 , value of cargoes $235,120,000$ francs; and 4141 foreign vessels, tonnage alse 346,000 , value of cargoes $167,728,000$ francs. The exports by land amounted to $156,767,000$ francs; making in all, $559,615,000$ franes.
The following was the value of the leading articles of import and export:-

Mercantile navy. In 1827, the mercantile navy of France consisted of 14,530 vessels, of the burden of $\mathbf{7 0 0 , 0 0 0}$ tons. Of these there belonged to-

The interior commerce nant be very extensive, though it is difficult to esti ate its amount, as, notwithstanding consilerable advantages for navigation, the bulk of it arried on by fand. The old medium of fairs has been not only preserved, but greatly ev. , wed. M. Bottin. upon documents furnished by the minister of the interior. caleulates that " ie are 96,314
fairs in Franer Seme of these are held on the frontier of a province or kingdom, others round a gre te cati..edral or noted place of pilgrimage ; some at the foot of high mountains on the meltin:; of tha snows, which have kept the inhabitants imprisoned for several months. Sometimes they open with burlesque representations, as processions of giants, of flying dragons, or monstrous fishes. The fuir of Longchamps, held in spring at Paris, those of Benueaire in Languedoc, and of Guibray in Normandy, are the most extensive.

The cunals of France were long entirely undertaken by the government, which carried on these works with some spirit. The earliest was the Canal of Briare, to unite the Seine and the loire. It is about 38 miles long, 4 feet deep, has 40 locks, and cost $1,060,000$ francs. The canal of Languedoc is on a much greater scale, snd was considered in its day a stupendous undertaking. It was intended to unite the Mediterranesn with the Δ tlantic, and is 170 miles long, $0 \frac{1}{2}$ feet deep, with 100 leeks. The cost was $32,000,000$ francs, which would have been, at least, doubled had the work been executed in the present day. It was considered the largest canal in Europe, till it was eelipsed by the Caledonian, which is threc tines as deep, and admits ships of war; wherens the canal of Languedoc has afforded a mere inland navigation, along which pass 1900 vessels of 100 to 120 tons; but it has not, for the most common merchant-vessels, superseded the necessity of going round by the Straits of Gibraltar. The Canal of the Centre, joining the Skône and the Loire by a line of 70 miles, was completed in 1793, at an expense of $10,000,000$ tranes; but only 5 feet deep. The Cansl of Picardy, from the Oise towards Lille, remarkable for its long tunnel near St. Quintin, was completed in 1810 , at an expense of $10,800,000$ francs. Still, France, in this grand natienal improvement, remained far behind England, which, by M. Dupin's estimate, made a few years ago, had more than four and a half times as much canalization in proportion to its surface. Very reeently, however, France has displayed an extraordinary sctivity in planning, and a considerable diligence in executing, designs of this nature. This too has been displayed not by government only, but by private associations, asking only aid and advances from the-state. Independent of the finished works above stated, twelve great new canals are in progress. These are,-1. The Csnal Monsieur, joining the Rhine and the Rhone by the Saône and the Doubs; length 180 miles. 2. Of Burgundy, joining the Saóne to the Loire by the Yonne, 145 miles. 3. Of Angoulême, making the Somme navigable to Amiens. 4. A lateral canal along the Loire, to svoid the difficulties of its navigation, from Dijion to Briare, 120 miles. 5. From Nantes to Brest, with a view of provisioning the ports of Britany, 220 miles. 6. Of Ille et Rance, joining Nantes to Brest and St. Malo. 7. Of Nivernais, joining the Yonne to the IAre. 8. Of the Duke of Berri, joining the Cher to the Upper Ioire. 9. Ardennes. 10. Blanct. 11. Arles. 12. Oise. Several canals, on a still more marnificent scale, have been recently contemplated, and what the Freneh call the studies of them are even far advanced; but no part of the works has yet been com. menced. Doubts are even entertained if they will repay the immense expense required for their completion. The principal of these are,-1. A maritime canal from Paris to the sea, avoiding the cireuitous navigation of the Seine, and admitting slips of large burden to thst capital. The estimate is $150,000,000$ franes, and $1,500,000$ franes for a harbour at Paris. 2. 1 canal from Paris to Strasburg; which would become, ss it were, the French Grand Trunk, and might easily be extended to the Danube. The length would exceed 300 miles. 1. The Pyrenean Canal, from Toulouse to Bayonne, forming a more direct communication from sea to sea than at present. Length, 210 miles.

The roads of France, st least the high roads, have been chiefly supported by government. They are broader, more spacious, more direct, and on the whole of grander aspect, than the English roads; but the, have not been kept in such good condition for travelling. Roads have been made and repaired rather for political and military purposes, from solicitation snd favour, thas for objects of real utility. The systen seems to have been, to negleet them ss long as possible, till the clamour of the district became irresistible, and then to give them a thorough repair; to whieh Dupin justly prefers the system of keeping roads constantly in a good state by small repairs as the necessity arises. The French roads, however, have been greatly improvel since 1810, and the msintenance of a great proportion of them has been undertaken by the departments; so that they are now divided into royal snd departmental. The royal reads, in 1828, extended 9631 leagues, and there was expended on them $199,000,000$ franes; but this was chiefly on repsiring and extending different parts of them. It was thus divided:-

> Fract. $\mathbf{9 , 3 4 9 , 0 0 0}$

To mnintain 4205 leagues, coss . $\mathbf{9 , 3 4 9 , 0 0 0}$

Works of art.........
The departmental ronds, in 1828, extended 7704 leagues, of whieh 6040 had been opened, and to complete the remaining 1604 would require an expenditure of 112,000 , h (1) francs.

There are several rail-roads in France, but of no great extent; the principal are that of Andrezicux and Roanne, 50 miles in length; that of St . Etiemue and the Loire, 15 miles; and that of St. Etienne and Lyons, 45 miles.
Of the bridges of France several are handsome, as those over the Loire at Orleane, Tours, and Nantes; over the Seine at Paris, Neuilly, and Rouen; over the Rhone and Saône at Lyons; and over the Garonne at Bordeaux. Bridges of suspension have been constructed at Paris in front of the Hôtel des Invalides, and over the Rhone, between Tain and Tournon. These eperations have been eatirely in the hands of government.

Sect. VI.-Civil and Social State.

The population of France, which in 1780, by the enquiries of Necker, appeared to be $24,800,000$, was found by the census of 1791 to amount to $26,303,000$; by that of 1817 , to upwards of $29,000,000$; and by that of $1820-21$, to $30,616,000$, ineluding Corsica and the army. According to the royal ordonnance of March 15th, 1827, it amounted to 31,851,545. There were in that year 965,634 births; of which 898,329 were legitimate, and 67,305 illegitimate. The births consisted of 498,187 boys, and 467,447 girls. The marriages were 229,613, the deaths 772,428. At an average the proportion of male births in France to female birthe is as 16 to 15 ; the marriages are to the population as 1 to 133; the births are to the marriages nearly as 4 to 1 ; and to the population as 1 to 31.53 ; the deaths are to the population as 1 to 39.4. The extrsordinary improvement since 1780 in the condition of the people is obvious from the fact that at the last-mentioned period the deaths were to the wholc population as 1 to 30.2: so that while, in 1780, one individual died annually out of every 30 individuals, in 1832 one only died out of about 39.*

The French national character has very marked features, and has been the object of mingled admiration and contempt to the neighbouring nations. In the eyes of Frenchmer. especially of the old school, la belle France is the centre of all that is refined and polished in humen existence, and whatever lies beyond its sphere is marked with a deep taint of barbarism; while their rougher neighbours brand them as artificial, effeminate, and fintastic. The art of living in society seems certainly carried to greater perfection than in any other country; and the manners are characterised by a peculiar gaiety, amenity, snd courtesy. The polish of the higher ranks scems to have descended even to tho lowest circles. "The man who breaks stones upon the road takes off his hat to the woman that leads her cow in a string; the tinker and the shoeblack whip off their hats to each other." A ccrtain openness and kindness of disposition is certainly evinced in the eustom of whole families, wich married sons and daughters, continuing to dwell under the paternal roof. The Frenchman lives as it were in public: his house, for a part of the day, is open to a large circle of acquaintance. He enjoys society without expense and ceremony. He resorts habitually to the theatre, spectacles, and scenes of public amusement. In more serious points of view, the French possess estimable qualities. Intoxication is a vice confined to the lowest ranks; and swearing is repelled at least as a mark of barbarism. The French are ingenious, acute, active, and intelligent. If they have not what can strictly be called patriotism, they have at least " very strong nationsl feeling. To exalt the glory and promote the influence of France, is the prevailing impulse which actuates the mind of almost every Frenchman. It is, however, alleged, that there is a want of that sterling principle, that openness and integrity, which forms the boast of the English character. Iissimulation and insineerity seem widely diffused through the intercourse of the higher circles. The honesty of the lower classes is, however, remarkable; and the system of higgling in shops, is a consequence of the contracted state of commerce. The deportment of the female sex, however embellished by tournure, and the graecs, does not accord with our ideas of social and domestic propricty. The young ladies are strictly watched, and held in almost monastic seelusion; but the era of marriage is the signal, if not of positive irregularity, at least of a syetem of regular flirtation, which we cannot reconcile to the conjugal and matronly character. It is probable, however, that the impression of the general dissoluteness of French manners has been elhiefly derived from the opulent circles of the capital; while, ss a late writer has observed, Paris and the pievinces form entirely separate worlds. Among the peasantry, and even among the trading class in the cities, there appears to be much that is respectable and amiable. The great activity and prominent station of the female sex are everywhere conspicuous: they are seen managing the shops, carrying on great manufactories, and joining in the hardest toils of the loom and the field. It is not at all uncommon upon a farm to see the master sowing, his wife guiding the plough, and a fine girl filling the dung-cart. Such nvocations ${ }^{\text {livest }}$ the fair sex in the provinces of any great portion of beauty. Indeed, the gay hilarity of the French character does not seem quite so universal as is generally supposed. Travellers in the south, from Arthur Young to those of later date, complain rather of a singular gravity and taciturnity. Nr. Matthews remarks in his "Diary of an Invalid," that a very con- 15 miles ; es. "The er cow in a n openness ich married an lives as quaintance. be theatre, the French and swearactive, and e at least a ance, is the , however, rity, which widely difclasses is, contracted tournure, The young f marriage ion, which vever, that Aly derived ris and the the trading The great y are seen toils of the sowing, his divest the rity of the avellers in ar gravity very con-

Вдок I.
FRANCE.
siderable change of manners has taken place sinee the Revolution. All the distinetions of rank have been cut down like the old trees of the forest, and the new generation, like the coppice, aro all on a level. "You will seek in vain," he says, "for that high-bred polish of manners, which has been so much boasted as peculiar to the haut-ton of France. A republican spirit prevails, and shows itself in an independent ronghness of manner, savouring of sans-culottism."

The Roman Catholic has been the ruling religion in France, ever since the fatal issue of the long struggle for religious liberty. Previously to the Revolution, however, a general seepticism pervaded all the well-informed classes, both as to the Catholic tenets, and as to religion in general. This was doubtless one great eause both of the Revolution and of many of the fatal and digastrons aspects which it assumed. A furious anti-religious fanaticism reigned; all form of public worship was suspended, and even prohibited; the churehes were rifled and defuced in a barbarous manner. At this time the vast domains of the clureh, by which so many dignitaries and so many convents were supported in splendour, were voted the property of the nation, and sold at a low price to supply its necessities. Napoleon had the merit ot re-establishing religious worship, and on a very liberal footing; an allowance being male for the support of the Protestant clergy, proportioned to the number who still hold that faith, and who amount to about $1,500,000$. As all the former fonds however had disappeared, the establishment is supported out of the public revenue, and is frugal, and even scanty, both as to numbers and salary. In 1831, there were four cardinals, ten archbishops, and sixty-six bishops. After the intermediate classes of vicars and canons come the curés, or parish priests, amounting to 3000 , with incomes of $\mathbf{1 0 0 0}$ or 1500 francs; but the chief labour devolves upon 23,000 desservans, or acting curates, who starve upon 400 or 600 francs a year with the addition r only some small fees. The whele church expenditure, in 1823 , amounted to $1,575,000$ liv s, but in 1832 was reduced by a third ; and the churels has been in a somewhat unsettlew state. The Bourbons were supposed to aim at restoring it to all its former power, splendour, and privilege; a course viewed with extreme jealousy by the republicun party. The high ehureh party endeavoured to remedy the deficiency of the establishment by sending sound missionaries who were listened to by the people with enthusiastic delight. The author of "Four Years in France" mentions one who in departing from n city had his cassock torn off his back, and cot into pieces to be distributed as relics. The liberals deride them as ignorant fanatics; but some travellers who cannot be charged with superstition, report them as displaying a good deal of natural eloquence, and that their doctrines appeared really very edifying, since many persons who had been guilty of thefts, even at remote periods, were induced by them to come forward and make confession and restitution.
The intellectual character of the French has been brilliant, and since the age of Louis XIV. has had a powerfill influence, in matters of taste, on the genernl literature of Europe: that prince, ambitious of glory in every form, extended a munificeat patronage to letters and arts: The French Academy, though its endowments were not very splendid, and though intrigue often influenced its ndmissions, gave a fixed and ligh place in socicty to men of letters; who, amid all the frivolity of French character, were received even among the highest ranks with a distinction not accorded to them in any other modern country. The aim of Louis to make the French a sort of universal language was in a great measure successful; it became the established dialect at all the courts, and the chief medium by which the different nations communicated with each other. The departments in which the writers of that nge excelted, were chiefly pulpit eloquence, poetry of a light and satirical character, and the drama in a somewhat fettered and artificial form. The writers of the following nge took a bolder and more varied flight, and sought to turn the opinion of mankind into new channels upon all subjects. The wit and varied talent of Voltaire, the eloquence of Buflon and Rousseau, the comprehensive views of Montesquien, and the science of D'Alembert, gave a new turn to the ideas of the thinking world throughout Europe. These writers, with their successors of the same sehool, had a powerfil influence in bringing on this revolution, in the ruins of which several of them were buried. Learning was for some time almost extinguished in France; but as soon as the revolutionary frenzy abated, the National Assembly constituted a new body called the National Institute, round which, under the changed nppellations of Imperial and Royal, all the highest names in science have since contimued to rally. The French during this period did not shino in poctry or general literature; but in mathematics, physies, and chonistry, the labours of Lavoisier, Laplace, Ialande, Chaptal, and n number of others, have, notwithstanding the powerfinl rivalry on the other side of the Channel, raised them perhaps to the very first place. Recently France has produced some very eminent historinne, and popular poets of a peculinr character; there has been also a remarkable extension of the habits of realing. The periodical sheets printed were in 1814 only 45,000 ; in 1896 , they were 144,000 . The most solid and useful branches nlso are those which have most incrensed, as appears from the following table, formed by M. Dupin:-

Vol. I.

The literary and scientific collections of Pris are the most splendid in Europe: the roynl library contains 800,000 pi ated volumes, $100,(000$ manuseripts, 50100 volumes of engravings, and $1,0(1), 000)$ listorieal documents. Thero are sixteen other libraries in l'aris, containing $8(00,010$ volumes. The Museum of Natural Ilistory and the Jardin des Plantes are equally copious in their respective departnents. All these are opened to the public in the most liberal manner. The provineial collections are also respeetable, though they do not equal those of the ininor princes of Germany ; and France is, on the whole, less rich in this speciea of treasure.

Among the establishments for public ednetion in France, the universities, which are twenty-six in number, hold the first rank. That of Paris is perhaps the most celebrated in Europe, and was, oven in the dark ages, the grand theatre of those dialectic combats, which then usurpel the honours of science. Though destroyed during the fury of the Revolution, it has been re-extablished on a great scale, and with a larger appointment of professors than any other in Furope; it attracts students from every part of the kingdom, as none of the rest enjoy equal repute, and indeed bear at present only the name of academics. The Iycees, now called royal colleges, are an institution of Napoleon; the expense of board and education is from $3 \overline{50}$ to 750 franes a year; but they enjoy a very unwarrantable monopoly of the right to teach Latin; they were attended, in 1825, by 10,000 pupils. Primary sehoola intended for the general instruction of the people smounted in 1825 to 22,900 , and were attended by 116,000 seholars. Lancasterian sehools have since been introducel, and announted in 1820 to 800 , attended by 80,001$)$ scholars. M. Dupin remarks striking local differences in this respeet. In the north, $13,000,000$ of inlabitants bend to school 740,000 children; while in the south, $18,000,000$ send only 375,000 : even in the seuth, the proportion is largest in the distriets least favoured by nature, the Upper Alps and the Upper Pyrenees; while in Touraine, emphatically called the garden of France, it is only one in 229. All these establishments are under the patronage and control of the government, which grants anmually about $5,000^{\circ},(040$ franes for their support.*

The fine arts were zcalously promoted by the regent duke of Orleans, and by Louis XIV.; and though they never reached the splendour of the Italian or even of the Flemieh sehools, yet they could boast several masters of the first class; the Poussins and Claude Lorraine, having fixed their residence and even found their scenery in Italy, became half Italian. Le Brun and Le Sueur were the ehief artists deeidedly French: of whom the former enjoyed the favour of the king, and the chief direction of the great works; but the latter bas been pronounced by posterity to be his superior. After this the French school sunk greatly, snd was employed in delineating only the artificial forms of court society; but within the last thirty years a new school has sprung up, in which David, Gerard, Guerin, Girodet, and their followers have songht, not without success, to imitute the highest classical models. The Freneh school has produced a series of very eminent engravers; snd the names of Desnoyers, Bervic, and Massaril still support its reputation, though it no longer surpasses, or perhaps equals, those of England and Italy. The French galleries of art have passed through many vieissitudes: before the revolution they were certainly the first out of Italy. During that convulsion, all the collections of the princes and nobles were put up to sale; the entire Orleans collection was carried to England; the Crozat went to Russia; various minor collections shared the same fate. When the French, however, over-ran Italy and the Netherlands, they were seized with the desire of enriching Paris with treasures of art, and carried off whatever could be removed from among the masterpieces of the Flemish and Italian masters, and of ancient sculpture. Thus wis assembled in the Iouvre a display of all that is most hrilliant in art, such as nothing before existing in the world could bave rivalled. But

\footnotetext{

* [ti appenfs from officinl doc:snents, that in 1833 the mamber of children between the nyeg of two and six years, whs 2, ,it,524, of whum nhout 200,000 attended infmitschools; of tiose between six oulf fifeen yenrs, there
 of wham $14,355,856$ coild neither rend onr write;-mo that there were nearly $19,490,000$ persons athove the age of two yoars, who received no instruction ot all. The snume pmpers give the fullowing statements of the schooly exigting, and of the number required to educate the whale pmpulation:-

which are obrated in tts, which cvolution, ssors than one of the e Lycécs, nd educaoly of the ry schools and were uced, and iking local ol 740,000 the proporthe Upper nly one in ent, which lels. The Desnoyers, or perhaps through During the entire minor colac Nethernd carried nd Italian of all that alled. But

two and six

 years, therc re $22,066,170$ ve the are of f the scheolsAn. Ed.]
a dire reverse awaited the nation. The allied armies who cenquered at Waterloo, and thence advanced to occupy Paris, deternined to exact full restitution of all this brillinnt booty. The Vennes, A pollo, and Transfiguration wero sent off for Rome; the Descent from the Cross for Antwerp; and numberless other masterpieces were restored to their ancient possessors. The unseemly gaps thus left were filled up by native productions and others taken from the palaces; nill the gallery presents a coup d'ceil almost as brilliant as ever; the intriasic value, however, is vastly diminished; though since the purchase of the Borghese collection it still comprises some of the finest specimens of ancient sculpture.
The honses in France under the former régime presented a qreat variety; for while the mansions of the nobles displayed a profuse splendour and luxury, and might be charaoterised as palaces, those of the body of the people, compared with the English, were very deficient in neatness and comfort ; the rooms being dark, the passages straggling, the floors of stone, the doors and windows by no means well finished. The palaces, however, can no longer be maintained as such by their impoverished owners; and all the fine old chiteaus thronghout France are converted into barracks, prisons, or manufactories. On the other hand, the habitations of the peasantry, as well as their general cendition, appear to be sensibly improved.
Amusement used to form as it were the life of a Frencliman, and was sought for in every various nnd possible shape; but since the Revolution a very great chango has tnken place in this respect. Paris still clains to be, as it were, the centre of gaiety to the civilized world. The Parisians go from home in search of amusement much more than their neighbours; almost all their leisure is spent in places of public resort, which are open on terms that render them accessible to all classes. Duncing is an exercise peculiarly French, in which, ns to agility, and perhaps grace, they excel most nations. Much of their time is also spent in the open air; and the extensive ranges of gnrdena in Paris are provided with every recreation suited to the tastes of its citizens. Although many improprieties doubtless mingle with these entertainments, especially in Paris, there is less of intoxication, turbulence, or quarrelling, than in the amusements of the lower orders in England: so far, even as concerns the public places, there are fewer open violations of decorum.

Dress is a particular in which the Freneh long claimed, and were allowed to give the law to the rest of Furope. Paris has been tor ages the grand magasin des modes. In that capital seems to have originated the system which ia termed fashion, and which consists in the continual change, according to a prescribed model, of the form and construction of evcry part of the human attirc. Such light and constant changes, however, while they indicate an inordinute attention to the object, seem as inconsistent with the formation of a pure and elegant taste, as the immutable costumes of our ancestors and of the East. The empire of Paris scoms considerahly shaken by the extinction of its brilliant societies, nnd its long separation by war from the other countries; but its influence remains still very considerable in this department.

In the preparation of food, the French equally boast of a refinement and rccherche superior to that of the other European nations. Instead of plain joints presented in thoir natural form, French cookery delights in what are called made dishes, stews, fricassecs, nnd ragotts, which retain few traces of the original material. On the merits of this systom various epinions have been entertained; but at present the fashion of this cookory out of France is on the decline, and the time scems past when it was considered a matter of state that the tables of the great should be covercd with French dishes.

Sect. VII.-Local Geography.

The local divisiens of France, prior to the Revolution, were provinces, thirty-two in number, most of which had formed indeperdent states, and even little kingdoms, when they were merged into the mass of the French monsrchy. The National Assembly, howover, superseded this division by one much more minute, into departments; which has beon retnined by the Bourbons, and is the basis of all administrative operations. It is indeed very convenient, being founded upon natural divisions of rivers and mountains: all the departments are tolerably equal as to magnitude, and each has its scat of administration nearly in the centre. All the exclusive privileges and restraints upon internsl communication, which were attached to the arrangement into provinces, have been happily removed. Yot these divisions must still be kept in viow, not only because they are neccssary for the uuderstanding of history, but because they remain rooted in the mind of the nation, and often mark striking differences of race, of manners, and even of langunge. It would not consist with our limits, or he interesting to readers out of France, to enter into a detailed description of oach department; but the following tables will exhibit a very comprehensive view of their respective statistical details. The first exhibits the departments in their relation to the ancient provinces, their extent according to the report of the commission of the Cadastro, thoir populntion acenrding to the census of 1827, and their chief cities and towns. The square French league may be reduced to the square English mile by multiplying by 8 , or inore clnsoly, 7.84.

The following table exhibits both the provinces and the departments as nearly as possible in their relation to each other, with their extent in square leagues, nnd the population of the capital and principal towns according to the estimate formed by the French government in 1827 .

The taining tion of channe quarries

Th a following statistical table exlibits a compurative view of the state of culture and production in the different departments of France. The amounts of grain, cattle and wool are furnished by Chaptal. 'Ilie wine is drawn from the report presented to the peers by the Duc de Dodenuville, and tho forests from the memorial of the sub-administrator, M. IIerbin do Halle. Tho entire annual amount of land revenue is derived from an estimate of the average produce of the arpent in oucl department, founded upon the Cadastre or general survey of the kingdom. It is furnished by Chaptal:-

ISeparimentis.	Whesh	Rye.	Onis.	Cutia,	Wool.	Whes		Poreoter	lani havinue.
	Hesloh.	Mectoi.	Hects.	No		1 veloin. de 1.240 Jons *met.	A varese Framo.	Hoce	Prabes.
Ala Aluve	(874,000	1,040,000	148,000	91,000	00,000	373, 0 O	10	64,000	
Allier	1,622,000	$1,040,000$ 746,000	suci, $1,721,000$	14,000 II,000	1,107,000	21.000	8	103,000	10,002,000
Alfan bur	180,000	166,100	1, 13,000	1,4000	348,000	201,000	17	108,050	8, 236,000
Aniew	183,000	103,000	Tiskou	11, 200	S36,000	101,000 80,000	18	74,000 60,010	3,614,000
Anlech	100,000	394,000	34.000	64,000	3481,000	77,000	18	(60,010	4,684,000 $11,767,000$
Artenuri	663,000 162,000	458.1000	2,000	v0,000	$\underline{657000}$	35,000	90	150,000	$11,767,000$ $12,200,000$
Auriege.	162,000 469000	1381000	$2{ }^{2}, 000$	ct,0us	12000	117,000	15	\$3,000	11,818,000
Aulu	1,260,000	631,000	147,000 00,010	43,000	16t,000	372,000	17	77,000	13,646, 010
Avejmm	'318,000	143,000	27,000	71,000	1,412,000	601,000 241,000	10	66,000 41000	17,469,000
Bincthes dun Rhooe Calvados - . .	307,000	13,000	120,000	2,000	598,000	650,000	14	48,000	12,462,000
Calvados.	1,152,000	28,000	249,000	93,000	301,000	60, 0 O6	1	32,000	$17,903,000$ $43,657,000$
Charal	82,000	574,000	123,000	tasti00	425000	4,000	12	30,000	10, 172000
Chareate Lower	191.000 700000	241,000	92,000	70,000	856,010	1,290,000	1	82,000	17,323,000
Cher - . . .	700,000 40,000	34,000 200000	1,21,000	67,000 42,000	811,000	1,791,000	10	3, ${ }^{2} 010$	98,254000
Curreze	104,000	2000000	1, $1 \times 3,000$	42,000 66,000	13,0000 213,000	233,000	∞	130,000 13,000	2,30,000
Coniea	104,100	14,000	2,046,010	ce,	104,000			SS,000	0,572,000
Cote dur . ${ }^{\text {cose }}$	${ }^{9} 9160000000$	811,000	120,000	16, 000	210,000	370,000	42	328000	87,309,000
Creuze . ${ }_{\text {cold }}$ -	416,000 9,000	323,000 855,000	24,010 82,000	160,000	134,000			18,000	18,346, 000
Pmurdogue . . .	650,000	303,000	42,000	120,000	\$31,000	427,000	18	87,000	G, $14.49,000$
D Duts	863,000	183,000	30,000	104,000	83,000	138,000	${ }^{18}$	118,000	14,431,000
Druma	672,000	223,000	277,000	10,000	Dex, 000	251,000	is	92,000	\$0,749,000
	1,398,000	641,000 162,000	202,000 696000	43,000	413,000	65,000	2	97,000	87,46,000
Euriand Loir.	1, ix	162,000 470,000	696,000 44,001	56,000 800000	917,000	1,034,000	20	\$4,000	16,912,000
Gard......	351,000	134,000	77,000	rob, 2000	70,000 7000			12,000 81,000	13,60, 000
Casonne, Upper	1,197,000	47,000	76,000	76,000	SSO, 00	1,467,000	14	81,000 60,000	$18,313,000$ $18,006,000$
Gern......	1,011,000	116,100	115,000	61,000	160,000	1,046,000	9	11,000	10,560,000
limande	415,000 801,010	${ }^{3681000}$	46,000	88.000	468000	2,363000	19	90,000	18,130,000
	601,000 619,000	87,000 450,000	73,100 E3t,000	104,000	000009 0×000	1,713, 000	19	70,000	11,000,000
Jndre-. ${ }^{\text {a }}$	477,000	885,000	37,	102,000	${ }_{016,000}$	2,000 382,000	13	80,00 102,000	$16,451,000$ 6,49000
Imitre and Loire	737,000	315,000	243,000	63,000	226000	665,000	118	73,000	16.17a,000
lsere:	737,100	1,023,000	8111000	113,000	260,000	159,000	81	133,000	3,334,000
Jura.	499000	117,000	142,000	113,000	64,000	30,000	17	134,000	83,471,000
lamiles loir ther	231,000 534,000	23,000 874,010	16001 360,000	36,000 68,010	234,000 664,000	419,019 617,000	19	121,000 68,000	15.250000
Loire	1;7,000	132000	30,000	72.001	144,000	6.7600 276,000	19	60,000 360000	$16,397,010$ $11,269,000$
Loire, tepper -	223000	630,100	10x000	50,000	330,000	$8{ }^{8}$	14	93,000	18,760,000
Iniret Lo..	567,000 812000	867,000	20,100	131,000	230,000	710000	10	37,000	15,969,000
Lniret \ldots.	818.000	227,000	83,100	72,000	813,000	6010,000		98,010	8743.000
Ln ud Gimonre	600,000 883,000	130,000 218000	+1, 000 31,000	54,000	120,000	210,000 401,010	17 81	25,000	$7,838,000$ 17,649000
I,onere.	57,000	23,000	18,060	33,010	721,00	4, 4,000	19	28,000 21,000	17,629,000
Maine und Lo	810,000	1,125,000	144,100	IEI, 0	317,000	490,000	18	43,000	\% $3,480,000$
Manche	977,000	122,000	184,000	170,060	300,000			16,000	37,630,010
Marne Upper	780,000	1,18,000	86,000	63,400	376,000	429,000	26	81,000	K,1991,000
Mayenne	33,000 400,000	121,000 330000		81,000 1290000	109,000	600,000	14	223,000	12,026,000
Meurthe	1,100,000	71,000	i1,094,000	75,000	136,000	668,000	13	21×000	$19,414,000$ $13,15 t, 000$
Meus	700,000	32,000	43,000			646,000	16	180,000	10,393,000
Mort	511000	690000	24,400	174,000	69,000	16,00		18,000	10,601,000
M Mree	850,000	310,000	5 son 000	78,000	1861.000	960,000	17	132000	81,776,000
Nievil	$\begin{array}{r}1,294,0000 \\ \hline 1.2600\end{array}$	231,000 801,100	230,000	${ }^{99,000}$	97,000	33,000	20	18,000	10,280000
Oise	1,217,000	${ }^{7} 56,000$	i,147,000	74,000	${ }_{9} 931,000$		36	88,000	32,645,000
	840,000	12,000	1,497,400	101,000	4 912,000		3	69,000	\$0,786,000
Pas de Cala	2,010,100	307,000	136,000	146010	662,000			46,000	84,17,000
Puy de it me	615 , 000	1,022,000	nu000	103,050	\$146,000	310,000	22	65,000	21,665,000
Priences, [nw	303,000	17,000	\$2,00	${ }^{102}$, ${ }^{100}$	468,000	1304000	17	12,000	14,729,000
- Tppe	122,000	82,000	Cb,040	\$0.000	348,000	275000	11	${ }^{60,000}$	0,R31,000
Rhine, Ifwer	120,000	120,010	631,000	12000	648,000	70,000	16	40,000	8,607,000
	600,000	109,000	297,000	10,000	18,000	347,000	14	159,000	18,142,000
Rlaue	180,000	817,000	\$21,600	44,000	93,000	43k,000	16		$9,720,000$ $10,021,000$
Sume, Uprier	683,00	191.000	174,000	83,000	121,000	74,000	20	150,000	18,137,000
Sunne and Loir	800,000	597,000	02,000	113,000	76,000	405,000	19	t31.000	23,784,000
Starthe	$\begin{array}{r}4.77,000 \\ 84 \\ \hline 000\end{array}$	377,000 79,000	300,000 1 1	108,000 12,000	$\begin{array}{r}163,000 \\ 68,000 \\ \hline\end{array}$	145,000	15	58,000	$18,770,000$ $63,001,000$
Seine	[84,000	$\begin{array}{r}79,000 \\ \hline 80,000\end{array}$	$\lim _{\substack{4 \\ 4 \\ 0}}^{0} 000000$	12,000 60,000	60,000 010,000			8,000	$63,001,000$ $34,200,000$
Seine and Mlar	1,381,000	24,000	243,000	78,000	1,196,000	557,000	5	73,009	$34,293,000$ $87,348,000$
Seine and Oin	1,328,000	333,000	264,000	117,010	1,041,000	849,000	17	74,000	$32,942,000$
Sevrex, T'w	329,000	378,000	60,000	63,000	30,000	264,000	12	3p,000	12,741,000
Sonume	\$4000	1,367,090	60,000	50,000	778,000	t00	20	55,010	28,947,000
Tarn	ع4,000	650,000	1.039,000	50,000	63, ${ }^{3}$, 000	439,010	${ }_{8}^{12}$	42.000	12343000
Twn	720,000	844,000	728,0001	34,000	331,000	264,000	8	11,000	10,843,000
	435,000	13,000	28,000	11,060	\$73,000	${ }^{693,000}$	11	119.000	21,83,000
Von	279.000	130,000 37000	23,000	16400	438,000	306,000	18	67,000	10,972,000
Vieas	617,000	297,000	72.000	42,000	31,000	435,000	11	67.000	6,680,000
- U1]	76,000	565,000	766000	94,000	232,000	21,000	17	22,000	8,577,000
Yoager	607,000	168,000	1,181,000	106.000	45,000	101.000	18	218,000	7,802,000
Yonne	401,000	439,000	813,000	57,000	174,000	407,000	26	158,000	20,444,000

The Isle of France, now divided into several departments, claims priority of notice as containing the eapital. It is not, strictly speaking, an island; but being situated near the junction of the Oise, the Marne, the Aisne, and the Seine, is intersected by very numerous rives channels. It is in general level, fertile, and highly cultivated; and beneath the surface are quarries of gypsum so copious, that the substance is commonly designated "plaster of Paris."

Vol. I.

Puris, the eapital of Frunee, hins almo made pretensions to be considered an the general capital of the civilizel world, Lomion enn, in fact, alone dispute lts elain, being more extcusive, bore wealthy, and the seat of a much more extended commerce; yet the central situntion of l'aris, the peculiar nttractions rendering it the crowded reeort of strangers, nnd its brillinnt and polished society, eajecially under the old monnrchy, gave to this city a gayer angeet, mid rendered it a nore conspicnous object in the cyea of Enmpe. Puris in not only less jopulous than lomdon, hut in proportion to ita population it covers less ground. It fornis on losth hanke of tho Neine ans ellipwe of nhout four miles in length nud three in hreadth. 'The jrincipal streete are long, narrow, borderel by high honses, which, like those of KilinImrelh, ure ench occupied by several familics. The streets of shops nre firther enemuhered hy the exhibition of tho merchandise in front of the doors, a practice only tolernterl in tho uliont olvecure ilistricts of Mritish cities. Paris thus presents generally at more glouny und contiused nspect than Iondon; nor has it any structure which can match the graudeur of St. I'aul'd, or perhaps the beauty of Westminster Abbey; yet some of its quarters contuin long ranges of superb nad stately edificen, which London cannot rivnl. The pulaces of Puris, int particulur, fir excel those of the rival metropolis. The most distinguished in the louvre, finished with the utmost splendour in the style that distinguisheel the age of Souis XIV. Its front, 525 fect long, is a molel of aymmetry, the effect of which is only injured lyy the want of space before it. The Louvre is net now occupied as n pnlace, lint as n grinul depit of the objects of taste and art. The gallery, whicu is more than a yuarter of a mile long, nud the walls of which are entirely crowded with paintings that are still line, forms a magniticent coup d'ail. The hall of elatuces is still aderned with some of the finest epecimens of nncient

sculpture. The Tribleries, which is the present royal residence, was begun at an curlier periol than the Louvre, and enrried on nt successivo times; whence it exhihits varicd and sometimes discordunt feitures, but is on the whole a moble and vencrable edifice, Eurrounded with finn gardens nnd nyemurs. The paluce of the Luxembourg (fig. 24t1), , on the south of Paris, and the lialais lourlan on the west, nro plifices of grent taste and beauty. The former, now stripped of the flumous series of paintings by Rubens, which has been transferred to the Iouvre gallery, affrids in one purt a place of assermbly for the Chamber of l'eers, and in another apartinents for the exhibition of paintings by living artists; while the Palais Bourbon is in part necupied by the Chamber of Deputics.

Pelais Royal. The lalais Royal (fig. 231.) is no longer exelusively a palace, but is in part leased out to sundry persons, for prirposes partly of business, but much more of pleasure: it is filled with slinps, collec-lonses, taverns, ganning-tables, nnd every form of gaiety and dissipation which cun find acceptance in such n city. Notre Dame, the ancient enthedral of P aris, is somewhat neavy and massive, but the interior is richly decorated. The modern ehureh of St. Genévieve, called during the Revolution the Pantheon, was highly extolled during its crection as destined to eclipse both St. Peter's nad St. Paul' ; and such was the expectution enter tained in France, till, the scatjolding being removed and the front thrown ppen, its inferi-
 ority became apparent: however, it is still an edifice of n high class (fig. 282.) St. Sulpice is also n movern structure. Paris has no fine strerts, nor any of those ample squares which nre so great an ornament of lonion. It lmasts, however, of its pleecs, which, without having the regular form or dingensions of a sequare, conmand almiration by the ranges of noble buildings that surround thern. In particular, the Pluer Leutis Quinze, standing in a central situation among the palaces, presents one of the most brilliant points of view to be found in any city. This capital possesses nlso great advantages in

Boon J.

FRANCE.
the wile ornamented upen spaces which lie in the very heart of the city. The Roulevards, the ancient rampart of l'aris, when it was circumseribed within a much narrower compan, are now comerted into a walk ndorned with rows of trees, nul filled with numerous exhibitors und venders of every thing that can pomduce to public amusement. The gardens of the Truileries, and the enbellished upot called the Chumps Elysefs, are alwo open to the puhlic.

The stutinties of Paris luve been enrefilly illustrnted in a series of interesting works by tho Count do Chabrol. The population, itt $1 \mathrm{NQ1}$, nmounted to 712,0106 , but has now risen to $800, t: 11$. The birthe, in tho throe years ended 1821, averaged 21,700 ; the denths 92,080 ; leaving thus $\mathrm{gOMO}_{\mathrm{O}}$ as the anmul excess of births. A third of all the births were illegitimate, and of these ouly n third were neknowledged by the parents. The still-born chilifren were averaged 1:(1). The nveruge of murriages la the three years was about f000), In the threo years 7is died of simall-jox, and only one child out of twenty-five was vaccinatel. The violent dentha nveraged'Anio, half of whom were murried persons, and the most common causo was donestic clugrin. Drowning was the most frequent mole: 170 persona were drowned aumully ly aceident. The consumptien of Puris consisted, in 1823, of 76,880 oxen; 8142 cows; 71,759 calves; 301,918 sheop. The taxer paid in l'aris amonnt to $110,000(0)(0)$ franes. Ilense-rent arnounts to $80,000,000$ frances. The number of houses, in 1891, was 27,010 , with nu average of thirty-four domers and windows in each. 'Ihe lonns male on pledges by the charitable establishment called the Mont de Pieté nunount to $10,500,(010)$ franes, $110011,0001,(\%) 0$ articles, of which $14,500,000$ are releemed. 'there are fourteen hospitals for tho sick, and elght hospices tor the infirm. The firmer received annually $42,5(0)$, of whom nhout $40,(000)$ went out cured; the latter 18,500). The annual expense is nbout $\mathbf{7 , 0 0 0 , 0 0 0}$ francs. There is besides an offlee of clarity in each of the twelve arromlissemens, the nills of which nre alministered by "sisters of charity," who divide the poor numg themselves, make regular lists of them, nid pay frequent visits. 'They make an annual colloction in their district, the produco of' which is trunsmitted to the offico. The anmunl distributions made by the offices of charity amount to $1, \mathbf{Q 5 0}, 000$ francs in money; 747,000 quartern loaves; $270,000 \mathrm{lbs}$, meat; 10,000 ells of eloth, \&e. The mannfhetures of Paris nre considerable. The prineipal aro of works in gold and silver, which employ 7000 or 8000 workmen, and yield a value, according to M. Dupin, above 125,000,000 francs. There are manufietured also, hy $2(0) O$ workmen, 80,000 gold and 40,000 silver watehes, with 15,000 elocks, which may be worth $19,000,(000$ franes. Sugar rofinery is aleo supposed to produce $2(0,010,0 \% 1$ lbs, worth $39,000,000$ francs. Fighty printing-offices employ $8(60$ presses and 3000 workmen, and uso annunlly 280,000 reums of paper ; supposed valuc $8,750,0 \times 1$) francs. Of the various articles above enunernted, there are exported to the value of nearly $50,010,000$ franes. l'aris is visited by 12,000 or 13,000 boats, of which 1000) ure from the lower Seine, and the rest from the upper. Twenty are steam-bonts. The city lias 1000 bouts of its own.

The environs of Paris are not covered with those numerons villas and country residences which have been constructed to gratify the rurnl taste of the citizens of Iondon. Imniediately beyond the gates they present a flat open corn conntry. They are chicfly marked by the royal palaces; superb fibbrics, tho works of successive kings, and on which millions have been expended. The most elaborute and most splendid is Versailles (fig. 283.). It was

283

Chateau al Veraailles.
begun by Louis XIII. who found it little more than a village; but its chief ornaments are due to Iouis XIV., who, during twelve yenss, expended immense sums in surrounding it with every kind of magnificence. The front is highly elegant, built of polished stone, and approached by three great avenues. The interior consists of spacious npartmenta embellished in the most costly manner, and many parts of them, and of the staircases, are covered with frescoes executed by eminent French painters. The interior and the gardens are filled with crowds of statues, partly antique and partly tho work of Fronch scnlptors. Water wasnt first deficient; but it has been conveyed in such abumbance as to be lavished in fanciful aul funtantic forms,-fountains, jets d'ean, eascades, with which Versailles is more profusely emhellished than any other roynl residence. The two palaces, called tive Great and Little Trianon, are in the vieinity, and are celebrated, particularly the last, for grodens laid out in the English style. The long residence of the court at Versailles nssembled round it a splendid city formed by the courtiers and great nobles, who considered it necessary to have
at least a mansien there. Since the tragic meenes of Oetober, 1750, the palace han nevet been inhabitel; though the Bourbonn, nfler their return, placed it in repuir. Hence the city las declined in population, and the late manniontew of the nublem are in a grent measore occupied by Finglixh residents. St. Clond, four or tive milea dintant from l'aris, in purticharly admired for ita gardens and extenaive woodr, an excimion to which forma a propular amuement, eupecially on festival days. It wan the faveurite rewidence of Napnleon, whome court was thence called the cabinet of Nt . Cloud. Fontuinehlean in the hunting-seat of the monarchy, being surromided by a forent of nearly : $\mathbf{H}, 0 \mathrm{ONO}$ acres. The palace, built by successive monarcha, from Francia I. to lavin XV., is chiefiy noted for itm long and numeroun galleries. Among the few towns in this country, Meaux is distinguinhed not only by the beautiful choir of its cathedral, but by having been the see of the celebrated Bossuet, whowe tomb it contains. Melun is a considerable, but ill-built and gloomy, old town.
The northern departinents, comprising the provinces of French Flanders, Picardy, and Normandy, compowe together an extennive plain, the richest, mowt flourinhing, and mowt highly cultivated in the kingdom. The firma, though of varivas size, are generally larger Shan in the rest of France; the improved Euglish processes are gaining grounl, and the introluction of artificial grames las in a great measure aupplanted the routine of wheat, oats, and fallow. This region is also the chief sent of manufictures. These provinces have producel many men of distinguished talent, and knowledge in very generally diffured in them. The Flemings retain their national character, listinct from that of the French; heavy, phlegmatic, Industrioas, addicted to pretty clowe drinking and long rustic festivals. The Norman atill partaken the alventurous apirit of hia forefiathers; he loves expeditiona and journeys, readily engagea in any enterprise, and eagerly pursues it.

The citios throughout alf this part of France are large and flourishing. Those of French Flanders, or the Norl, rank among the atrongest fortreeses in Europe, and are the bulwarks of the monarchy. Lille perhaps holds among these the very first place, being considered the master-piece of Vauban. It was reduced by Marlborough only atter a long blockade, and is considered in any other way almost impregnable. It is alno well and regularly built, and the Rue Royale is a very splendid ntreet. Lille has also a very censiderable variety both of manufacturing and commercial industry, with institutions both for literature und the arts. Douay is an ancient and atrong town on the Nearpe, and enjoys some celebrity as a seat of rather antiquated and scholastic learning, Its university consists of three colleges, now united, one of which is called the English college, and is resorted to from all the three kingloms as a place of Catholic cducation. Cambrai is a very ancient and celebrated city, the capital of the Nervii in Cessar's time, and atterwards of the kinglom of the Franks. Here was concluded, in 1597, the league of Cambrai, which caused the downfall of Venice; and it was the scene of other important diplonatic trmnactions; lot perhaps the name is best known from its having furmed the archicpineopal see of Fénélon. It ranks still as a

Amiens Cathedral. fortress of the first class, and was one of those held by the army of occupation, after the pence of laris, in 1815. Valenciennes is another ancient belwark of the kingdom, which yielded to the allies in 1703, after a long siege; but they did not derivo any advantage from their success. It has some fine manutictures of lace, gauze, and cambric.

In liearly and the part of the Isle of France bordering on it, there are several largo and flourishing cities. Amiens has long been celebrated for its manufacture of coarse woollens, as serges, plush, velvets for furniture, and carpets; also coarse linens. Here was concluded the peace of 1801, between Brituin and France. Ite cathedral (fig. 284.) is one of the most apacious and most highly ornamented in France or in Europe. Abbeville is celebrated as one of the few seats of the manufacture of very fine woollen cloth, which surpasses even the English; it deals most extensively in sailcloth, sheeting, and other coarse fabrics from hemp and flax. St. Quentin, the acene of the great victory of Philip II., enjoys a inore humble and useful distinction as one of the most thriving manufacturing places of France. Its manufuctures consist in lawns, cambrics, and still more of late in the spinning and weaving of cotton; all which employ in the town and neighboarhood upwards of 50,000 persons. The citizens of St. Quentin display an enterprise and an activity in pushing every new and promising branch of industry, which are not usual in France. A canal is here eut from the Oise to that of Douay, remarkable for its extensive tunnels. Laon is an ancient town, with a stately cathedral. Soissons is distinguished in French history, and its bishop had, second to that of

Rleeima, the right of crowning the king of France. It does not now present any ntriking featurea. Theanvais in thriving and industrious.
'The purts of l'icarily and French Flamders are aiko vary denerving of notice. Duakirk,
 anee. Ianim XIV. having dellnitively obtained this place in 1thbs, main it om of the atrongest hurfones in Eanupes. It mon becumo monmoying to lititish trude, that alvantage was tuken of the trimmplis of the war of meceswion, to require, at the trenty of Utrecht, its entire demolition. Dy camala nind ohther means, the French enntrived nlway to replnce it in an oflestive state; hat hy puccesnive treatien, the temolition of the fortidentimes on the mide of tho sem was "gnin mid again atipulated, till the circumstancen of the peace of I7wil obliged binglanl to ceawe from exicting it. From that time Dunkirk becamo the main ceutre of then privatioering nystem. It has also a considerable share of fishery and of the Thittio trade. A menornble era in its history wis its siege by the liritigh in 170:I. They were compeliod abruptly to raise it, and this firmed tho commencement of a longs series of revernen mastuned by the allied arms. Dumkirk has a good harbomr in the centre of the city, entered by a canal of a mile and a half; it is rather well built, but for want of nprings the inlmbitunts are obliged to use min-water. 'The ueighbouring territory is low and marehy, only preserved from tho inumdation of the ana by a ridye of downs, and only enltivated by means of numerous draining canals. Calais is well known as the point of communication with Eughond, which so long held it an the key of France, oven after leer aims it the entire couguent of
 that monarchy hail ceusem. At prevent, it in chielly supported by the packet intercourse, its inlifferent hurhour (fig. 255.) unfitting it for any commerco on a great senle. Calais is in n very fat country, intersceted ly ennals, by which it might be even inumdated. Burlogne has more maritimn importance; though its port, choked with sand, will no longer recoive vessels of any size, inuless at high tide. It has lost altogether the forced consequenco griven to it by tho construction of the gramd thotilla, ilestined to sublue tho British cmpire, hat now alandoned to rot. Its proximity, however, to the coast has rendered it a great resirt of Fuglish tamilies, who inhabit it to the noment of soveral thousauls. 'The tishery of herring, mackerel, \&e. varies in value from $1,(1)(0), 000$) to $2,000,000)$ francs.

The cities of Normandy are larger and more important than those already described. Roven is one of the noblost in France. Its munu-
 factures are, perhapm, the most euterprising und industrious in the kingdom, and from their vicinity to England have had peculins facilities in borrowing her processes. Tho main staple is coton-spinning and wenvinge, which ore supposed to occupy two-thirds of the 55,000 workmen, aill so to constitute the same proportion of the two millions sterling of munutactured goxds annually proluced. The cathedral (fig. ఖ88.), commenced by Williann the Conquoror, was considered one of the finest specimens of ecelesiastical architecturo in France, till tho late disnster, which overthrew a great part of it. The streets are excessively narrow and dirty, thongh those adjoining to the Sene are agreeable. That river was long crossed only by a pontoon, composed of nineteen large barges, strongly moored together by iron chains; but us this hat many inconveniences, a handseme stone bridge has been lately substituted. At Elbueuf, near Rouen, is a manufactory of fine eloth, almost equal to that of Ionviers. Caen is a very ancient city, of great historical name the favourite residence of William the Conqueror, and the frequent head-guarters of the English armies. It is still a considerable place, rather unusually well built for a French town, contnining a handsome castle, the only remnining part of its fortifications, and sone fine old churelies. Its manufacures nre numerons, hat none of them very eninent, except that of lace, which gives employment to about 20,000 females in this place and the neighthourbood. It is of some cminenee as a sent of literature, gave birth to Malherbe and ILuet, and has a university of considerable reputation, which, though sumpressed during the Revolution, has been restored
in full lustre. Havre, at the mouth of the Seine, is the port of Paris, and one of the most active seats of French conmerce. The custom duties, in 1824, amounted to somewhat above a million sterling, and its trade has since been greatly augnented. The cliief fabric of the town and neighbourhood is that of printed cottons. It is a gloony town, the streets narrow, and the houses often built of a framework of wood filled up with mortar. Dieppe, St. Valery, Fécamp, and IIonfeur are very active stations for fishing; which is not, however, carried on with the same energy and adventure as hefore the Revolution. The immense efliorts made to render Cherbourg a naval station of the first rank, bave proved nearly abortive. The French government, after the peace of 1783, began to erect a series of cones, with the view of breaking the force of the waves; but these were overwhelmed, and retain no vestige of their original form: they lie under vater, a shapeless ruin, which llonaparte in vain attempted to make the foundation of a regular breakwater. After two millions had been spent in this undertaking, he employed cther five millions in forming an interior basin and a wet dock; but all these mighty works remain unfinished.

Britany forms a peninsula distinguished by many marked features from the rest of France: its rude surface, composed in a great measure of forests, marshes, and heaths, enabled it not only to preserve a large portion of its original Celtic population, but to give shelter te fugitives from Britain, whence it received its name. After being long a separate duchy, it was united to France by the marriage of its heiress with Louis XII. It retained, however, down to the era of the Revolution, its feudal states, which assembled every two years. The Bas Breton is a Celtic dialect. The people are very numerous and very poor. The country is divided into small properties or farms, seldom exceeding twelve acres, cultivated by the manual labonr of the occupants, according to antiquated and unskilful processes, to which they adhere with the most fixed determination. The peasantry reside in small huts, gloomy, dark, and damp; they are strongly attached to their homes; ignorant and superstitious, but at the same time frank, brave, hospitable, constant in their friendships, and faithful to their word. They are stubborn and hardy, and those on the coast make bold sailors.
Of the cities of Britany, Rennes, the ancient capital ef the Rhedenes, is the first in dignity, and was the place of meeting for the states, the discontinuance of which has dininished its importange. It is still rather a fine and handsoine city, having been regularly rebuilt since a great fire in 1720; and its cathedral of St. Peter is adorned with lofty towers. There is a library of 30,000 volumes, a fine botanic garden, a museum of natural history, and extensive collections in the fine arts. It carries on some trade by the river Vilaine, which admits barges of considerable size. Vannes, the ancient capital of the Veneti, is a much smaller and poorer town, though its vicinity to the sea gives it some commerce and fishery. Morlaix and Quimper are rather good towns in the western departments: but the finest city in Britany is undoubtedly Nantes, which seems almost to belong to the rich provinces on the Loire ; it is situated on a hill above that river, twenty-seven miles from its mouth, and has the advantage of delightful walks and environs. Its situation, at the mouth of the greatest river in France, is very favourable to commerce, which was carried en to a vast extent, till ruined by the disastrous influence of Napoleon's continental system; but Nantes is beginning again to rear its head. The West India trade and the cod fishery were the mest extensive branches. Mucls ship-building is carried on fer the merchant service, and vessels of $\mathbf{1 0 0 0}$ tons are occasionally built. Its manufactures are various, and were formerly extensive, especially sugar refinery, cutton, woollen, and linen cloths, and earthenware. It is connected with the opposite side of the river by a noble bridge, which, uniting five different islands, extends in its entire length more than two miles. In its construction Nantes exhibits the usual faults of old cities; the most agreeable parts are the suburbs, and the islands are thickly planted with trees and honses.
Brest, on the western coast of Britany, is the clief naval station of France on the ocean. as Toulon is on the Mediterranean. It was selected for this purpose in I 631 by Cardinal Richelien, in consideration of its harbour, which is secure from every wind, and of a spacious roadstead, affording anchorage to 500 ships of war. From Drest issued the fleet which was totally defeated, in 1792, by Lord Howa; and during the whole of the subsequent war between England and France, this port, with the navy which it contained, was held in almost constant blockade. The works of Brest are very strong, and the attempt made in I694 to carry them hy storm, was repulsed with considerable disaster. The town, though molern, having been built in haste, and with a sole view to utility, is crowded and dirty; but within the last half-century there has teen built a handse:me suburb, called Ia Recouvrance. Brest, besides its naval importance, carries on a considerable fishery.
There are other maritime stations of censiderable magnitude in Britany. L'Orient has been made a depôt for naval stores, and strongly fortified; it derived much importunce from being the almost exclusive seat of the commerce of the East India Company; but since that trade ias been nearly annihilated, this port has greatly declined. St. Malo centains a race of bold and hardy mariners, actively employed in the Newfoundlaud und other fisheries; and who, in time of war, exercised briskly the trade of privatecring. Morlaix carries on a con-
siderable trade with the north of Europe. Quimper, though ranking above Brest, as capital of the department of Finisterre, is now only an old town of little importance.
The provinees on the Loire, in its course from east to west, comprehending Orleanais, 'Touraine, Anjou, to which may be added those of Maine and Perche, adjoining on the north, are the most central and perhaps the richest in the kingdom. A great part, indeed, especially of Anjou and Maine, is covered with those wide wastes, overgrown with brushwood and heath, which occupy so much of the French soil. But the banks of the Loire around Orleans are generally considered the garden of France ; they consist of unbounded plains, through which the magnificent Loire winds its stately course, and which are variegated with rich meadows, vineyards, gardens, and forests. On this theatre were acted many of the greatest events in the history of the monarchy, particularly its rise from the apparent peril of total subjection, through the inspirmg influence of Joan the Maid of Orleaus.

The cities of this region are celebrated and magnificent. Orleans, in former tines, ranked almost as a second capital: though it exhibits the usual chnracters of antiquity, it is a superb and beautiful city. A very fine stone bridge of nine arches opens to the rue royale, spacious and handsome, which extends to the fine square in the centre; here is plaizd a stacue of Joan, the sculpture of which is not altogether so elegant as might be desired. The cathedral is a very fine edifice, the choir of which was raised by Henry IV. From its steeple is an almost unbounded view over the magnificent plain of the loire. Situated in the centre of France, and dividing as it were the Lower from the Upper Loire, Orleans erjoys a great transit trade. Blois is almost equal to Orleans in historical celebrity; its ancient edifices, placed on a hill above the Loire, have a most commanding appearance. The castle, on a rock overhanging the river, is an immense and lofty pile, full of windows of af shapes and sizes, balconies, galleries, buttresses, and "a strange incongruous assemblage of buildinge destined for ornament in peace and defence in war." All the parts are little; but the whole is so vast ns to be almost sublime. In this edifice the states-general once assenbled. The glory of Blois has now entirely passed away: its streets are narrow, gloomy, and dismally dirty. Tours, equally ancient, is now much more flourishing; its plain is pre-eminent, even anmong the other districts on the banks of the Loire. The silk manufacture, first introduced here, has been in a great measure transferred to Lyons, but it still employs 7000 or 8000 persons. Happily for the beauty of the city, a great part of it was consumed 50 years ago, and occasion was taken to build a new street, running its whole length, of fine hewn stone, broad, and on an elegant design; it is, perhaps, the fincst in France. It is connected with a bridge of 14 arehes, which till of lete was considered equally unrivalled; and also with a fine promenade bordored with trees. The metrojolitan chureh was almost entirely demolished during the revolutionary excesses; only two of its lofy spires remain. The beauty and abundance of the country around Tours have attracted such numbers of English residents, that Mrs. Carey was asked on the road what great convulsion was agitating England, that her people were flying from it in such crowds. Saumur, once highly flourishing and industrious, lost two-thirds of its population by the revocation of the edict of Nantes. Angers is a large, old, steep, ill-built town, but has a considerable trade; its monuments have been dreadfully shattered during the Revolution. Le Mans, capital of Maine, on the Sarthe, is very old, but large and clean, with a spacious market-place and some considerable manufactures.
The provinces between the Loire and the Garonne, Poitou, Berri, Limousin, and the Marche, are of diversified nad somewhat peculiar aspect: they present none of those boundless plains which characterise France north of the Loire; they are everywhere traversed by valleys and ridges of hills, never rising into mountains, but giving to the country a broken and variegated aspect. This, according to the nature of the soil, is sometimes rude and dreary, sometimes gay and smiling. Mr. Young ranks the Limousin as the most beautiful district in all France, such is the rariety of hills, dales, streams and wools which conpose its landscape. Mrs. Carey describes Murche, beyond Argenton, as siogularly pastoral; the hills covered with sheep, goats, kids, and lambs, the last of which at evening come down bleating, and are received intu the houses. l'oitou, a part of which is so fatally celebrated under its new name of La Vendée, is a rough country, a great part of which is covered with a forest called the Bocage. All these districts are more productive of cattle than of grain, though thry are cultivated by a simple peasantry with hardihood and vigour, but quite in the antique style, and with a strong antipathy to all modern improvements. In Poitou, the proprietors, being small, and residing much on their estates, excited feudal feelings and nttachments, that were extinct in the rest of France; hence the formidable war which they waged single-handed in detence of the ancient regime.

The cities in this range of provinces, though ancient, are neither large, nor distinguished by much industry. D'oitiors is of high antiquity, and presents some interesting Roman remains; in modern times it is distingriished by the signal victory gained here by the Black Prince. The city is of great extent, but enomprise; many empty spaces and gardens. Limoges is an ilt-built town, with many houses of timber, rooted with tiles, and projecting eaves, but
there are several handsome squares and fountains, and the public walks command a beautiful view of the Vienne flowing down a charming valley. Its cathedral, said to have been built hy the English during their temporary possession of this part of France, suffered much during the revolution, und has only one tower lefl standing. Bourges, the aneient Biturgire, is very ill-bnilt, but adorned with a fine cathedral, and distinguished for its university, and as the birth-place of Bourdaloue, und of the jesuit, Futher d'Orléans. Chateauroux is gloomy, but has a large woollen manufacture.
The two departments of the Charente, watered by the fine river of that name, form a region different in eluracter from those now deseribed; level, and extremely fertile, thongh in somo parts marslyy and unhealthful. A great part of the produce of its rich vineyards is at Cognice converted into brandy, which bears in unrivalled reputation, though, prebably, the nume is applied with a frandulent latitude to inferior liquors. The yellow tinge so generally given to brandy is the consequence of a lucal custom at Cognic. Saintes is ancient even as a French city. An ample theatre, an aqueduct, and a triumphal arch of white marble, attest its ancient inportance as a Roman city; and the cathedral is said to belong to the age of Clarlemagne. But the most conspicuous features of the Charente are Rochelle and Rochefort. The former is renowned as the grand and last bulwark of the Protestant cause; and its reduction, effected by the almost incredible efforts of Cardinal Richelien, fixed the downfall of e ${ }^{\prime \prime}$ and religions liberty in France. Though no longer a haven of the first magnitude, its colonial trade, prior at least to the late war, was very considerable. The town is handsome, with broad strects, many of the houses built on arcades, with shops bencath as in Chester. Rochefort has little trade, but is one of the principal French naval stations. It has a secure harbour, with very safe and extensive docks. Being one of the few towns in France that are not much more than a century and a half old, it is built on a regular plan, with broad open strects. Angouleme, in the interior, stands on a rock in the centre of a chnroning valley, through which winds the silver stream of the Charente. It is a elpan well-built town, having a cathedral with five cupolas, and displaying other marks of historical importance. There is a large manufacture of paper.
Guienne is a most important province, which tor several ages formed an appanage of the English crown. Jt consists of a magnificent und highly cultivated plain, watered by the Garonne, whose brond stream here resembles an urm of the sea, and by its monple tributaries, the Tarn, the Lot, and the Dordogre. It is distinguished hy various rich productions, but more especially ly the wines bearing the name of claret, which, though not quite so rich and highly favoured as some, are so light ind agreeable that a greater puantity is drunk at the tables of the opmlent, than of any other. M. Frank, in a late work published at Bordeaux. estimates the entire produce of claret at 250,000 tums. The wines of the firms Laffitte and Chateau-Margaux are the most esteemed; but much is eold under these names which has no title to them.
Bordeaux (fig. 287.), near the mouth of the Garonne, is one of the grandest emporia in France, and, indeed, in Europe.
 Situated at the month of the Garome, which here allows the largest vessels to nscend to its port, it expurts all the valuable produce of this great southern plain, of which the wines are siaid to amount to $10(0), 000$, and brandy to 20,1010 pipes annually. It is engaged also in colonial trade, and in the coll and whale fisheries. Recent trivellers remark a grenter disphay of wealth and prosprity in this thom in any other of the French commereial citics. Every thing is on a grand scale, and buildings are in progress which, when finished, will leave it without a rival in France. The thentre, designed after that of Milan, is considered : model of architectural beauty. Many of the reclesinstical structures were founded by the English. A very republican spirit is said to prevail at Borteaux.

The othe: towns of Guierne are not of the first magnitude. Montauban embraced with arlour the Protestant canse, and had a distinguished miversity, which was suppressed, when the place was taken in 16:9, by Louis SIIL, and the fortifications razed. This semimary, however, was restored by Napoleon in 141!. Mont whan is woll-built, of painted hrick. with wido and clean rtreets; and an elevatod walk, which emmands a most axtensive view, reaching to the Pyrences. Agen is a very dirty ill-milt town, but fimmous for the plums raised in its vicinty. Cahors has some thriving mambetures, and its vieinity produces the
vin de Grave, which is held in high estimation. Rhodez, on the Aveyron, is a gloomy old town, but the seat of a distinguished bishopric.
Gascuny is a large province, extending to the Pyrences, and consisting chiefly of a wide level surface, of peculiar character, called the landes. These are plains of sand, in some places loose and blowing, but mostly covered with pine trees, sometimes affording pasturage for sheep, and more rarely detached tracts fit tor cultivation. The Gascons, long an independent people under their dukes, are a peculiar race, fiery, ardent, impetuous, and proverbially addicted to boasting; hence tho term gasconade. Bayonne, though not very large, is one of the strongest and prettiest towns in Franco. Situated at the broad mouth of the Adour, it has a considerable traffic in exporting the timber of the Pyrenees and the Landes, and sends ulso vessels to the cod and whale fisheries. Mont de Marsan, the capital of the Landes, is but a smull and poor place.
The Pyrenean departments comprehend some interesting features; Bearn, the little original principality of Heary [V., which he governed with paternal kindness; and Roussillon, which underwent several revolutions, alternately belonging to France and to Spain, before it was tinally annexed to tho former. Young gives a delightful view of the state of this mountuin district. It is divided into a number of small properties, which are well enclosed, well cultivated, each contortable cottage being surroundel by its garden well stocked with fruit trees; the inhabitants smugly dressed, like Highlanders, in red caps. The sululivision of property, though great, seems not to have gone so far as to lead to misery. Pat is a considerable town, in a ronantic situation, and celebrated as the birth-place of Menry IV., whose cradle is still shown in the urcient palace, now converted into a prison. It makes a good deal of linen, and is noted for its excellent hams, which are exported from Bayonne. 'Tarbes, capital of the upper Pyrences, and Ragnères, with its mineral hot springa, a place of crowded and fashionable resort, are delightfully situated, affording an appronch to the fine valleys of the highest Pyrences. The slopes of the neighbouring mountains are richly cultivated, and often well enclosed. Roussillon is Spanish as to language and customs; but the magnificent roads effectel in defiance of natural obstacles, and the thriving industry of the people, mark the influence of a more active und enlightened government. The extensive fortifications of Yerpignan render it a barrier of the kingdom. It is gloomy and ill-built, but has some manufictures.
Languedoc, the ancient Gallia Narbonensis, nnd afterwards the domain of the counts ot Toulonse, is the pride of France in regard to climate, soil, and seenery. The air along its consts is generally considered the most salubrious in Europe. The plains of Languedoc are celebrated; yet they are encroached upon not only by the Pyrenees on the east, but by the Cevernes, which form their constant northern boundury, and in many plaees reluce them to a breadth of a few miles. But on the line from Beziers by Montpelier to Nismes, the plain is of much greater breadth, and displays a luxuriant fertility scarcely rivalled in any other part. even of this happy region. Every thing flourishes here, even what is most strictly denied to other provinces; not only grain and the vine, but the silk-worn and the olive.
The cities of Ianguedoe are not of the very first magnitude; but they are handsome and tinely situated; and they present some interesting Roman monuments. Toulouse covers a yreat extent of ground, but it has suffered in consequence of the discontinuanee of its parliament, which was one of the most important in France. The cathedral is very large, but not very beautifinl; and many of the churches were destroyed during the Revolution. There is an university attended by 1500 stadents, and two large libraries open to the public. Castres is a well-built, industrious, large town, the birth-place of Rapin and Malame Dacier. Carcassonne still retains some of the bastions and towers of the castle on its lill; hut this ancient qumrter is almost deserted in fivour of the neat pleasant town built bencath. Beziers is ugly and dirty, but has a handsome cathedral, and is important from its site on the canal of Langucdoc. Narhonne, though celebruted as a Roman capital, presents few monuments of that people; these are said to have been taken down at the building of the walls. Montpelier eujoys an unrivalled fame tor its mild and salubrious air; but late travellers have declared themselves unable to discover on what that renown is foundel. It is sabjeet to alternations of heat and cold; cloth pelisses must be worn the whole winter. and fires cannot be diseontinned till May. It is, however, an agrecable residence; the public walk commands a view over the Mlediterracan and the surrounding country, secreely equalled in Europe: there is a flourishing medical school, with good practitioners, and a library of $\mathbf{4 0 , 0 0 0}$ volumes. Montpelier is not mitiomly well-built; but it presents a noble Roman aqueduct, a fine cathedral, and other public builings. Nismes is one of the greatest and most fourishing eities in the sonth of France. The silk manufacture, as already noticel, flourishes there to a gecat extent. More than half the inhalitants are Protestant, who, as may be well remembered, were, on the restoration of the Bourbons, exposed to violent outrages on tho part of their Catholic fellow-eitizens; but these disorders were disavowed by the French court, and have ceased. The eity is ill-built, ill-paved, ill laid out; but there is a fine boulevard bordeced with trees; and it is particularly illnstrions for the magnificence of its Roman momments. 'The amphitheatre is nearly entire, and, though rather smaller than that

Vol. I.
47
3 U
of Verona, from its massive gre \because and the enormous stones of which it is constructed, suggests the idea of an imperisı. fubric. But the edifice called the Maison carree, supposed to have been a temple of Augustus, is that which has excited the admiration of all
 travellers, from its extreme elegance and graceful proportions, which ren der it almost a perfect model of architectural beauty. It remains after so many ages quite entire, "as if savage and saint had been alike awed hy its superlative beauty." Near Nismes is the Pent du Gard (fig. 288.), an ancient bridge, or rather aqueduct, forming one of the most remarkable monuments new extant of Roman grandeur.
Provence is one of the most celebrated and interesting of the French provinces, first, as the earlicst seat of wealth, civilisation, and poetry; next, as containing the ecclesiastical capital, Avignon, near which is Vaucluse, the favourite residence of Petrarch; lastly, as inciuding Toulon and Marscilies, the greatest naval and the greatest commercial city in the kinglom. The classic stream of the Durance, though it crosses the whole region frem its mipine boundary to the Rhone, and too often overflows its banks, docs net preserve the extensive tracts covered with rude calcareous hills from the evils of aridity. Although, therefore, the products of this province are various, and many of them fine, it does not yield corn sufficient for its own consumption, nor can it boast of extensive manufactures, but depends chiefly upon commerce.
The cities of Provence rank, in all respects, among the greatest and most interesting of the kingdom. Aix is not the largest, but is reckoned the capital, and was formerly the ceat of the pratianents of Provence. Its name is contracted from that of Aqum Sextie, given to it by the Romans from the copions warm baths, in whese vicinity numerous medals and inseriptions have been discovered. It is pleassunt, airy, well built, in a fine plain encircled by lofty mountains. The cours is very beantifil, formed by two rows of trees, with hot fountuins bubbling up, at which women are seen washing clothes, Grenter celobrity attaches to the name of Avignon, for some time an ecelesiastical capital, und still more illustrious by association with the names of laura and Petrarch. It is finely situated on the Rhone, with many landsome houses; lout the strects are crowded and ill-paved. In the centre rises an insulated rock, separated by the river from "range of hills on the other side, and in which are the remains of the paicece of the popes, now converted into barracks and prisons. The cathedral had aecumulated immense wealth in silver and other oflerings, of all which it was rified at the Revolution; an event more fatal to Avignon than to any other eity, except Lyons. Avignon is surroumded by a wall built only for fiscal purposes, and the Rhone is crossal by a handsome bridge built by St. Benezet in the twelth century from the produce of alms, and which yiolds 50,000 fruncs of annual toll. It would be profane for a traveller to leave Avignon without visiting the tomb of Laura in the church of the Franciscans, and making an excursion to the beantifill fomutain of Vaucluse (fir. 289.), the scene of inspiration to Petrarch. Arles was, in early times, one of the most impertant cities in the south of France; under the Romans it was the seat of the prietorian prefect; in the ninth century it was the capital of a separate kingdom, and afterwards the seat of an arelibjshop, and of thirteen successive councils. It is still a large city, and presents the vestiges of a Roman amphitheatre (of which the interior area is now huilt upon), once capable of containing $3(30,010$ persons, Tarascon is still in flourishing place, nbove which rises the ancient castle of the counts of Provence, now converted into a prism. On the opposite bank of the Rhone is Beancaire, distinguished for its great mmual tair, at which are still sold goonls of varions descriptions to the value of about 7,500, , (h) frmes, Digne and Carpentras are of sone importance as capitals of districts.
Marseilles and Tonion, the two grent sonthrin havens, form now the nost iuportant features of l'rusence. The commercial tune of Marseilles atates from carly antiguity, when it was a (ircelk colony, and carried on almost all the commerce of Gaul. In modern times it has bern the chief centre of the trade to the Levant; and thongh its prosperity suffered a total estipse under the régime of Napoleon, it las since regained much of its firmen ne elegance which ren t model of It remains entire, " as 1 been alike ve beauty." ont du Gard bridge, or g one of the uments now leur. aces, first, as ecelesiastical h; lastly, as al city in the gion from its ve the extenhough, therenot yield cern , but dopends
interesting of nerly the aeat xtie, given to s medals and lain encircled cees, with hot shrity attaches : illustrious by e Rhone, with :entro rises all and in which prisons. The 11 which it was er city, except the Rhone is on the produce tor a traveller ithout visiting in the church and making an utiful fountain 49.), the scone trarch. Arles one of the most the south of Romans it was orian prefoct; hry it was the - kingiom, and t. of ain urchbiIs the vostiges nee eapable ot hich rises the On the opposite whic! are still Digne and Car-

inportant feas-

 utiquity, when 1 modern times eperity suffered fo of it.s firmesBook 1.
FRANCE.
splendour. The harbour is spacieus and secure, but it is semewhat narrow at the entrance, and shallow. It is bordered by extensive quays of hewn stone, with spacious warehnuses; and is filled with all the shipping peculiar to the Mediterranean, among which are galloys, and beautiful pleasure-boats with silk awnings; it is crowded with all the nations of that sea, Greeks, Turks, Jews, Spaniards, Italians, and loaded with the produce of Asia and Africa. It is comparel by a late writer to Liverpool: the districts round the port are a nucleus of trade and dirt; but in the exterior, the strects are handsome, airy, and well built. Among other fine public buildings is the hotel de ville, with its magnificent marble staircase. The cours is formed by two rows of fine trees bordered by handsome houses, and the central walk is crowded like a fair. The neighbruring plain is finely cultivated, but is bounded by bold and rugged mountains that rise above the range of vegetation. Toulon, though not a seat of commerce, is the chiet naval station of France on the Mediterranean. It has two ports, the old and the new: the latter alone receives ships of war, and is bordered by most extensive arsenals, in which 5000 inen are constantly employed. This port can contain 200 sail of tho line; and without is a very spacious and well-sheltered roadstead. It is defended by two strong forls, which, however, were occupied in 1793 by the British, who, at the end of the year, were obliged to evacuate the place. This was the first oceasion on which Bonaparte's military talents became conspicuous. Teulon is a clean, pleasant town, refreshed by streams of water, rumning through the streets. The adjacent country is wild and romantic, and interspersed with some cultivated valleys.

Dauphiny is a region completely alpine, the two departments of the Upper and Inwer :lps occupying the greater part of its surface. The, ountuins are chiefly calcareous, and broken into the must picturesque, peculiar, and romantic ferms. Young even censiders the scenery of Dauphiny, particularly along the Isère, as surpassing that of any other part of the Alps. In one of the most awful recesses of these rocks and wilds, at a distanco from all the smiling scenes of earth, St. Brune erected the monastery of the Chartreuse (fig. M).), of which Gray has drawn so sublime and imposing a picture. There are other sceaes emphatically tormed the wonders of Dauphiny; as the burning fountain, the grottoos of Sassenage, \&c. Although this part of the kinglom cannot bo considered as productive, yet great numbers of cattle and slieep are reared on its high slopes by a simple race of men resembling the mountaineers of Switzerland; and eve.. the silk-worm is bred in its lower valleys.
The cities do not require very particular notice. Grenoble is a considerable place, not in built, with a library of 60,000 volumes, and some other literary establishments. It took a conspicuous part in promoting the commencement of the Revolution, and was also the first town that opened its gatos to Napoleon on his roturn from Elba. Gap is a pretty large but poor old town, in a deep hollow, amid barren mountains. Vienne is a Roman city, and presents a temple, with several other interesting remains of that people. It has also a fine modern eathedral with a very lotty spire. Valence has a military school, at which Bonaparte was educated. Noar Thain is produced the celebrated wine called Hermitage.
The Lyennais is a small territery, penetrated by branches of the Alps, in some places rough and stony, in others finely diversified with hill and dale. Its chief interest, however, centres in the great city which is its capital.

Lyons (fig. 291.) is generally censidere i a the second city in France, and as toremost in regard to cemmerce and industry. It is on the whole a noble city. The quays along the Rhone are superb; the hotel de ville is held to bo second only to that of Amsterdam; the cathedral is highly ornamented in the florid Gothic style; and the squares, especially the Place de Bellecour, with its fountains and statues, are nowhere surpassed. On the other hand, the oll streets are narrow, bordered by lotty and gloomy walls, nnd divided by a muddy stream. To turn into them from the quays has been compared to entering subterraneous passages, watored by the sluices of Cocytus. Lyons suffered dremafully under the sway of the jacolins, who made it a chiet theatre of those atrocities that rendered then the horror of mankind. To say nothing of the massacres perpetrated under the appellation of fusillades and noyades, they studionsly broke in pieces all the nanuficturing machinery, while with harbarous hands they defnced all the ornaments of the city, filled up the fountaius, brokn the statues in pieces, and
demolshed the whole of the cathed al except the walls. Her citizens have made diligent efliorts to restore her prosperity, and not without success; still the want of capital and the stagnation of trade are serions obstructions, und cause the evils of poverty amoug a lurge population to be severely felt. The Lyonnese have the propensities usially observed in manuficturing places: they dislike the Bourbons, and the sight of na Englishman is wormwood to them.
Auvergne, to the west of the Lyennais, is the only memntainous and pastoral tract which France has peculiarly its own. It consists of a continuous range of mountains which have evidently been in a state of volcanic action, the country being covered with lava, and tho houses built of it. Frem an elevated and extensive plain rises tho great P'ay de Dome, nearly 5000 feet high, with aiout sixty attendant mountains, ealled in tho country the giantess and her cliildren. The country is diversified with many rugged and precipitous rocks, having custles and even towns built on them. Yet Auvergne is not a barren country. The Puys are mostly covered with herbage, and have large level plains. The natives are laborious, and rear large herds of cattle, which are ahnost wild; they are even said to beat off the wolf, the low of the animal ntucked summoning all the rest to its assintance; but, in return, they cannot be milked unless the calf be on the other side. The people are homely, and yery republican; they lorm themselves into a number of societies, of which the principle is a common table, attended however by the men only. In winter they tuke up their abode under the same roof with the cattle which occupy each end, and by their heat save fuel which is scarce. Clermont is a considerable town, perched on the top of a hill, and built of lavn. It is extremely dirty, and Mr. Young compares several of its streets to channels cut in a dunghill; however, the mountain breezes purify the air. The cathedral, which was fine, was nearly destroyed during the Revolution. In the surrounding country are many curious caverns, petrifying wells, warm springs, cascales, \&ic. Aurillac also, Riom, and
 Thiers are elevated towns, commanding striking views of the rocks and cones of this remarkalle chain. Towards Pluy en Velay, which naturally belongs to Auvergne, the rocks hecome still more steep and romantic; and among the castlesseated in them, Mr. Young especially distinguishes that of Poliguac (fig. 292.), the form and site of which nppears to him so striking, as to cunse all the feudal ages, by a sort of magic influence, to rise hefore the mind. St. Michacl's charch, in the centre of the town of Pay itself, stands on the top of a very striking, almost precipitons rock, of tower-like form.

Burgnudy and Champagne, with the small adjoining provinces of Bourbonnais and Nivernais, form a vast plain extending north of the provinces last described. Burgundy, however, is traversed by branches from the Vosges, forming hilly tracts of molerate elevation. This is the great country of wine, prolucing the finest in lrance, ham, with very fow exceptions, in the whole world. The surfice of the winc-district is chiefly red sandstone rock, with very little soil. The vineyards are cultivated by small proprietors, who do not usually hold
 more than twenty or thirty arpents. It costs 500 fruncs to plant an arpent in vines, and 30 annumlly to keep it in repair. Three yeurs elapse before it yields any wine, and six hefore it yields good wine. Common vineyards sell at 1 5tho francs an acre; and there are some that sell so high tis $\mathbf{1 0 , 0 0 0}$. The precarionsness of the crop, however, and the want of capital, render this hranch of industry a poor employment; and the cultivators of Burgundy are the least flourishing of any in France. Few new vincyards are now laid down; though the capital invested in the old ones is a sufficient reason for keeping them up.

Of the chief towns, the first in dignity is Rheims, a noble and ancient city, the ceclesiastical capital of France, where the kings were crowned and anointed. The cathedral (fig. 293.) has been considered the most splendid specimen of Gothic srchitecture existing, though some of its ornaments are not in the purest taste. The Hôtel de Ville is also fine; and the streets, unlike what is usual in old towns, are broad, straight, and well built. Rheims is still the chicf mart of that favourite wine called champagne, and from thence the comoisseurs of Puris take care to procure their supplies. Troyes, once celebrated for its great

Part III. sado diligent pital and tho nong a lurgo observed in nan is worm-

1 tract which s which have lavil, and the "uy de Dôme, country the sipitous rocks, ountry. The iven are labodi to beat off dnce; but, in o are homely, ch the princitake up their heir heat save of a hill, and treets to chanhedral, which itry are many \%, Riom, and towns, com. s of the rocks arkable chain. ay, which ua uvergne, the ore steep ane he castles seat ing especially Polignac (fig. site of which triking, as to ages, by a sort tre of the town ver-like form. mis and Nivermily, however, evation. This ew exceptions, we rock, with ot usually hold -500 francs to cep it in repair. anil six hefore at 1500 franes igh as $10,0,000$. id the want of r employment; t flourishing of ow laid down; is a sufficient

Rheims, a no ital of France, 1. The eathe. it splendid spe (r) some of its llôtel de Ville is usual in odt Rlicimes is still d champagne, ke care to pro d for its great

Buok 1.
FRANCE.
fairs, and noted as having given its namo to the Troy woight, ranks as capital of Champarne, and is still a large and flourishing town on the Sciue. Chatons sur Marne is also considerable, and, by aseemingly capricious choice, is the capital of tho department of the Marno, instead of Rheims. Mezières and Sedan are strong fronticr towns; the latter colebrated for its manufacture of fino woollen eleth, as well ns for one of arms. Rocroy is only distinguislied for the signal vietory of 1643, which first estublished tho superiority of the Fronch arms. In Burgundy, Dijon (fig. 294.), with its nuinerous and lofly spires, presents a noble appearance to the approaching traveller; but it has lost much of its ancient impor-

tance. Its churches, now too numerous for the place in its reduced state, were dreadfully defaced and mutilated during the Revolution: one has been converted into a market for fish. another into one for corn. The streets, however, aro wide and clean. Dijon has a distinguished university, and can boast of giving birtl to Bossuet, Buffon, and Críbillon. Lutun attracts notice by a temple and other remains, which indicato its importunce us a Roman city, also by a fine modern cathedral ($f \mathrm{fg}$. 295.) Auxerre still flourishes by the excellent
 wine proluced in its neighbourhoox, and is adorned with a eathedral und several lofty spires. Chalons sur Saône is a grod country town. Sens, the see of an archbishop, and formerly the seat of several councils, presents still some noble monuments in decay. Moulins, capital of the rich plain of the Bourlonnais, though not hamtsome, is busy and cheerfiul, having a considerable traffic upon the Seine. Nevers, in Nivernais, is finely situated on the Loire, but is an ill-built and dirty town.
The provinces of Iorraine, Franche-comté, and Alsace are less an integral part of France than a series of appentages abtained by conquest chiefly during the reign of Louis XIV. They remain still in many points connected with Giermany. They are watered by the Meuse and the Moselle, tributaries of the Rhine; they are traversed ly tho chain of the Vosges, conuected with the Swiss Alps and the Black Forest; their surface is rude and irregular; their wines have the same agreeable acid quality as the Rhenish. Fven yet Alsace, both as to language and manners, is altogether German.
The cities are,-Nuncy, capital of the dukes of Lorraine, a race of gallant and accomplished princes. It is said to bo the most elegant eity in France, especially the new town, built in the sixtcenth century. The gates appear almest like triumphal arelies; the public buildings are numerous; the place royale and the adjoining area are superb. The place is lighted in the English manner. Metz is a larger town, and now more important, being one of the strongest of the French fortresses. It is nearly enclosed by the Moselle and the Seille, ind entered by successive drawbridges. The nsul complement of its garrison is $10,000 \mathrm{men}$. Metz is celebrated for its long and triumphant defence under the Duke of Guiee against the army of Charles \mathbf{V}. It is still a flourishing town, with numerons manufactures, and contains a library of 60,000 volumes. Luneville was for some time the residence of Stanislaus, the ex-king of Poland, who considerably embellished it; and it was the scene of Bonaparte's first trimmphant treaty in 1801. It is now rather a poor place, having few manufactures. Anether strong fortress is Verdum, a name familiar to English ears, as the scene of the detention of their countrymen in 100\%. It is well situated on the Meuse. Salins flourishes by means of the salt extracted from the lrine-springs, which are found also in other parts of this territory. Besancon, in Franche-comté, was a city of the German empire till the treaty of Westphalia, when it was ceded to the Spaniards, from whom it was wrested by Louis XIV. It is a large and industrions place, particularly distinguished by a manufacture of clocks and watehes, introduced towards the end of the last centnry, and employing about 1800 persons. It has also valuable seientific and literary estublishments. Dôle is likewise a very anciont town, once the capital of Franclie-conté. Vesoul and Lons le Saul-
nier aro pretty good towns, and capitals of departments. In appreaching Switzerland, the country becomes elevated, and the towns occupy picturestue sites. Ornans lies in a deep dell, skirtel by green rocky tills, like Matlock. Pontarlier stands on a height having a strong castle which guards the passage into Switzerland. Nantua is placed in a nook between two
 enormous mountains. On crossing the Vorges appears tho rich and fruitful phuin of Alsece, more highly cultivated than any other part of the kingdom except French Flunders. Ilero Colmar, Ilaguenau, Naverne, Weisemberg, are agrecably situated and rather thriving towns. But by far the most important place in this part of France is Strasburg (fig. 290.). It was early celebrated as an imperial city, enjoying extensive privileges, and enriched by the navigation of the Rhine. Its prosperity was still firther promoted in consequence of the zeal with which, ulong with the rest of Alsace, it embraced the refurmed doctrines. Strasburg and Alsace sufferel a severe inisfortune, by heing, in 1680, subjected to Franco by louis XIV. Yet the city retained privileges beyonil any other in France, and continued to be distinguished both by wealth and intelligence. Its schools were considered second only to those ot Paris, till the Revolution, wher they were severely injured, and have not yet been fully restored. Strasburg, however, has still valuable institutions, both literary and cconomical, and is one of the greatest and most flourishing cities of France. Its ancient importanco is attested by its cathedral or minster, one of the most splendid existing monuments of the Gothic. Its tower, 470 feet high, is said to be the most elevated structure in the world, with the exception of the Great l'yramid of Egypt.

CIIAPTER IX

sBAIN.

Spain forms the principal part of a very extensive peninsula; the most southern, and also 'he most western, portion of Europe. It is only connected by an isthmus about a nundred niles broud, traversed by the l'yrenees, a chain holding the second rank among the mounains of Furope. Spain is thus almost insulated from tho rest of the continent.

Secr. I.-General Outline and Aspect.

The boundaries of the Peninsula in general are, on the north, the Bay of Biscay, on the west, the Atlantic; hut this coast for more than half its extent is occupied by Portuguk, whose interior frontier forms to that extent the western boundary of Spain. The most southern point near Gibraltar is only separated by a narrow strait froni the opposite shore of Atrica. Eastward from this strait is the Mediterrancan, along which the coast winds in a northpasterly direction, gradually receding from Africa, and facing at a great interval the western coast of Itsly. From its termination, the Pyrences stretch across to the Bay of Biscay, and form the lofty limit between Spain and France.
The extent of Spain, north and sonth, is, from Tarifa Y'oint in the straits, in $36^{\circ} \mathrm{N}$. latitude, to Cape Ortegal in Galicia, $43^{\circ} 46^{\prime}$; about 540 English miles. From cast to west, the extreme points of the peninsula are Cape Crens, in Catalonia, $3^{\circ} 17^{\prime}$ E. longitude, and Cape La Roca, $9^{\circ} 30^{\prime} \mathrm{W}$. longitude; implying twelve and three yuarters degrecs, which, in this latitude, amounts to about 560 miles. Thus the Peninsula forms almost a square; allowance being made for the irrcgularity of its outline ; and, the entire extent of Portugal being taken off, Spain is reckoned to contain 183,600 square miles.
The surface of Spain is strikingly irregular. It is traversed by long and lofty ranges of mountains, having plains of vast extent hetween them and the sea. These mountrins may be considered as part of the great range which crosses Europe from the Black Sea to the Atlantic. The Pyrenees common to France and Spain, form a long continuous line of lofty summite, the most central and clevated,* of which is Mont Perdu near the source of the Cinet, which the accurate measurenents have fixed at upwards of $\mathbf{1 1 , 1 6 0}$ fect. Towards the sea, on both sides, the mountains sink into a more moderate elevation, and the barrier between the two kingdoms is less formidable. This great chain shoots lower branches into

[^24]Boor I.
SPAIN.
Catalouia nul Navarre, presenting also some striking insulated peaks, nnoong which that of Montserrat is the most conspicuous. From tho western extremity of the l'yrenees, a great chain, which has been called the Iberian, reaches almost due south, forming the loundary of the fline plains of Aragon and Valencia. All the other ranges run from east to west. The Cantabrian is moarly a continuatinu of the Pyrenees: it stretches across the whole north of Spain, covering the provinces of Asturias and Galicia, and leaving only a marrow and rugged plain along the soa-coast. Parallel to this, on the opposite side of a vast plain through which the Duero flows, is nuother transverse range, bearing in its highest points the names of Guadarrama und Somosierra, and enclosing with its rugged and romantic eliflis the elevated palaces of Sin Ildefonso and the Eseurial. On the opposite sile of the Thgus and of thu plain of Madrid is enother parallel chain, the Sierra of Toledo. It borders the wide elovated plain of La Manelin; on the southern boundary of which is the more celebrated chain of Sierra Morena, the lofty barrier of the rich plains of Andalusia. Beyond these rises another longitudinal chain, of a peculiurly bold and lofty character, called the Sierra Novada, from the snow which perpetually covers many of its summits; between which and the Mediterranean ouly a narrow though beautiful plain intervenes. These long and lofty ranges, as observed niready, are separated by very extended plains, which, in the interior, are of great elovation, and even Madrid is 2170 feet above the sea: the plains along tho Mediterranean, and almost on a level with it, display a profuse fertility, and abound in all the choicest fruits of a sonthern climate.
The rivers of Spain form as important and celebrated a feature as ita mountains. The Tagus and the Duero, rising in the Iberian cbain, on the fronticrs of Aragon, roll along the two grand eentral plains, receiving numerous though not very large tributarics from the mountains by which they are bordered. Unfortunately for Spain, they terminate in the somewhat hostile realm of Portugal, and are scarcely navigable above its frontier; so that the commercial benefits arising from them are of littlo importnnce. The Guadiana belongs to La Mancha, and on its approach to Portugal forms the boundary of the two kingloms; but the high trnet through which it flows is only distinguished for its rich pastures, and does not render its port of Ayamonte a place of any importance. Beyond the Sierra Morena, the Guadalguivir waters the plain of Andalusia, and has on its banks the noble citics of Cordova and Seville; while Cadiz, not far from its mouth, forms the chief emporium of Spain. Though its navigation is now much impeded, and practicable for large vessels only to Seville, it is the only river in Spain of much conmercial importance. The Ebro, which derives from its position a greater historical celebrity than any other, rising in the Cantalrian momtains, nearly crosses tho breadth of north-eastern Spain, and separates Catalonia nud Aragon from the cxtensive regions of the interior. Its banks at present afford few materials for trade, except a largo quantity of timber. The Guadalaviar and Xucar in Valencia, and the Miño in Galicia, are also rivers of some magnitude.

The mountains of Spain enclose no lakes, their waters finding a ready issuc along the vast plains on which they border.

Sect. II.-Natural Geography.

Subsect. 1.-Geology.

The principal mountain chains in Spain differ not only in their external aspect, but also in their internal composition: they appear more as different individuals than an members of a single system. They have this in common with one another, that their nueleus consists, in whole or in part, of primitive and transition rocks; but not only the species, but also the rolations of these, vary in the different chains. A great body of granite, which seldom reaches the highest points of the country, and contains subordinate beds of gneiss and otier primitive rocks, ranges through the Pyrenees properly so called. It is surrounded by a predominating mass of crystalline slato and of transition rocks, among which the most abundant aro elny slate and limestone. On the contrary, on the western continuation, in the Biscayan mountains, the older rocks are not widely distrbuted, and appear first in Galicia, at the western extremity of the northern mountain chain, where, according to Ilumboldt, grar' '. accompanied by crystalline slates, appears nagain, and in great extent. The principal m is of the mountain chain which separates Old from New Castile is composed of gneiss aud granite. In the chain of mountains extending between tho Tagus nad the Guadiana, accordng to Link, the principal rock is granite. Tho long ridge of the Sierra Morena contains رrincipally transition rocks; granite breaks ont on its sonthern foot towards the Guadalquivir. This rock, so frequent in the Iberian peninsula, appears to be wanting in the highest southern ehain. The middle mountain ridges consist of mica slate, abounding in garnets, which, in the ridges lying before them, passes into less erystalline mica slate, chlorite slate, and clay slate, which sometimes enclose beds, at times of vast magnitude, of compact limestone, marble, dolomite, and se:pentine. On the south coast, newer transition slate and greywncke slate, with heds of flinty slate, lie here and there on the older slate. The basis or fundamental part of the rock of Gibraltar is of these rocks.

Fic. 297

The structure of the chains of mountains corresponda in general with their chief direction. Not only the alteruntion of the different rocks, bint nlso the direction of the strata, are confirmable with the direction of the chains: hence, In the preater part of Spain, the prinelpal directien of the slaty rocks is from S.W. to N.E., or W.S.W. to E.N.E. But the inclination of the atratn varies. In the P'yrenees, properly no called, the dip of the strata ia conformable with the two acclivities of the range. In the Somosiorra and Guadarrama ranges, the principal mass of gneiss dips S.S. fowaris the granite lying before it. In the sierra Morena, the predeminating dip of the slaty strata is towards the N. W., so that they appear to rest on the granite which broaks from under them. In the Sierra Nevada, the dip of the strata is conformuble with the two acclivities of the chain. It is worthy of remark how the curvature of the south const of Spain obeys the direction of the stratn, and how the formation of the fir-projecting sonthern point of the lanul also atanda in connection with the direction of the struta. At tho fiot of the rock of Gibraitar, the slaty strata run nenrly north and nouth with a rapild dip towards the east. The Gint of Gibraltur is therefore nearly at right angles to the direction of the strata. The rocky wall between the Mediterranean and Atlantic Seas, by this dirretion of the strata, must have opposed the strongest resistance to the currents, The primitive and transition rocks, in very different places, are rich in ores. The present mines are confined prineipally to the south-weat and month-east parts of Spain. The mighty leal-glance veins of Linares occur in granite; the colosanl deposit of leadglance in the Sierra de Gador, which afforded, in the year 1828, $000,000 \mathrm{cwt}$, of lead, is distribated in masses (putzen), in a limestone which may be referred to the oldest transition rocks, and the rich mercury mines of Almaden are contained in clay slate. The secondary rocks also assist in forming the principal Spanish mountain chnins, but in a different manner. They ascend to a great height on the Spanish aide of the Pyrences; even some of the highest sounmits are of aecondary rocks. The western continuation of the Pyrenean chain consists, in the Bisenyan provinces, principally of secondary rocks; and it is probable that the lofty limestone mountain riliges which separate Asturias from Leon are a continuation of the Biseayan secondary formation. On both sides of Somosierra the primitive rocks are

References to the Map of Spain and Porlugal.					
NOHTIIPART.	501. Lugrene	11. Slerida	Ifa Mrwcha.	H. Al	m Riluagerzano
Caticin.	57. Nbjera	14. Aenilurn	17. N. Inirenzi	9. Mirandella.	$n \mathrm{flugra}$
1. Camarinua	50. Prias	15. Iraxille		III. Beira.	0 ¢ Mina
3. Conimin	59. Pringieaca	10. Almaraz,		19. Almenia	
4. Purral	01. I'nlenzuela	Nroo Cuntile.	71. Nilarina	12. Aimmreal	r Francell
5. Marn	64. Allem	17. Gaudimlupe	72. lebhnria	13. Villanove	- Anrtia
7. Line	fig. Yarram	15. Azutan	Andalunia.	14. Feira	t dinece
7. Le Gegta	6i. Sinmader	19. Orupean	73. Demucat	17. Avelige	- Manie
19. Vige	Miseay.	1) Eeyna	75. Apinjury	17. Vimen	w Arlanzon
10. 1huydavia	fis. Billbie	21. Triedo	7ii. ¢aezm	19. Trancoso	7 Pinuera
10. Abuthitea	6f. Teba	23. Eil Prade	77. Aneacar	19. Gbarda	a lisla
13. Oyense	6i. St, Sabatina	24. Nontroles	79. Aullar	21. Centello Hranco	h* Orviegn
14. La llua.	63. Vitmria.	25. Madrid	*6. Jovinr	29. Aarloni	b Tommen
A Anturind.	Navnrre,	2.: E, Jardo	N1. Nonamierse	23. Abrantem.	d\% Zozere
15. jume 14. Oviedo	71. Pumpiluna	2i4. Guailmiaxara	gis. Jnen	1V. Entremadura.	${ }^{*}$ T Temur
17. Gijom	71. Tmiela.	29. Arapher	M4. Mujnlanca	24. Preka	$\mathrm{f}^{\text {c }}$ Alberche
18. Rivadacella	72. Yerdun ${ }^{\text {Arngoa. }}$	30. La Mata do Bet-	85. Curinva	\%3. Leiria	P\% freama
10. Luanem	7i. Jach	31. Secadon	84, Oniunt	97. Eanarem	$1 \cdot \mathrm{~T}$
Lean.	74. Aimma	32. Csnavarn	N7. Carmona	${ }^{29}$.	i Gurdiana
Aguilar de	75. 11praca	33. Volinblade del	89. Arncemn	29. Reneventa	* Oilial
21. İerrers	77, firrinctns		10. Axiarcoila	31. Cinira	- * Cundalqu
22. Raldana	74, Cnlatayud	35. Frimi	01. Alimenire	\%. Linbun	$n^{*}{ }^{*}$ Jandala
Alinamzat	79. Lumes	3 m . Cuenca	仿. Aysmonta	73. Almsda	0^{*} Guadntimar
. 1,418	N0. Monleiban	37. In Parra	Oi, Seville	34. Setobal a	p* Gusdir
3. Antnfra	81. Turuel	38. Yuiuth	!is. A, Lucar	35. Alcacerde.	q* Ginuela
97. Lan Murquita	cili Sanion	30. 1lequens	Mi. Rola	3. Alcacerde.	Xucar
23. Corvijal	84. Pina	Vrlcaci	17. (ailiz	36. Portalegre	t Guadalaviar
:0, Anusers	Catalonia.	40. Tuejer	On, Tnrim	37. Filyma	${ }^{\text {n** }}$ \%erurs
31, Palenein	85. Lerida	41. Anfermir	100. Gibrsliar.	79. Olivanont	** 10
32. Vilisermancia	6. Helaguer	43. Morella	Graneda,	39. Pavaa	W* Genil
33. Yalladolid	84. Orzayna	44. Zurita	101, Ehorin	4i, गerpa	y* Guadisre.
34. Torturiltan	Mi. Firuerar	45. Penikenin	112. Mirbeiln	42. Onfigue	Ripers of Portugal
3f. 7 nmmara	iii. Curduna	46. Ft de Al	103. Renda	4i. Melidem	a lquna
17. Fuentelanaca	11. Gerona	48. Alroperizar	105. Mataga	45. Findre	b Trumaga
3\% Smatosaca		49, \upvielre	1118. Velore Mamga	46. Serdas.	- Vouza
3i. Matila	ii. Cervara	51. Vnlencia	167. La Hertadura	46. ${ }^{\text {V1 }}$	- Mondego
41. Cundiel Redrigo	15, Espital	51. Alcira	109. Mrotil	47. Meyja Arce.	a* Tıgus
12. Pemnramia	96. Flix	52. Prlipe	110. Arrm	48. 1-fkon	f Coa
43. Medina del	97. 'Tortoma	5. ${ }_{\text {3. }}$	111. Almeria	di A Aumfairy	\% 7ezora
Cumpo.	sOUTH PAHT.	53. Alicanta	112. Purchena	50. Caatre Marine.	h rours
Ohl Cistile.	Estremadura.		113. Mujecss.	Ripers of Spain.	Gusdiana.
45. Arevelo	1. PAn Siva	56. Rufurcia.	PORTUGAL.	a Tnmbre	RALEA
46. Fenpinar	3. Mustintea	37, Carthapena	1. Entra Dourge	b Mlinho	ISLANDE
47. Berovia	4. Curia	59. Almazarron	1. Vigna Mio.	d sil	1. Ivica ${ }^{\text {loica. }}$
4*. Pedriza	5. Aleantura	5). Tutasa	2. Drama	- Nnvla	1. Ivica
40. Cuella	6. Marprea	61. Murain	3. Amaranta	f Naton	2. Palmajorca.
51. Frennille	7. Budajus	62. Hellin	4. Oporto.	S Chare	3. Boller
59. Bnrronk	9. Olivk	f3. Volannera	11. Tras as MPontes.	Durungo	4. St. Lorenza,
5i.l. Ammana	11. Xerez	64. Chnehills	5. Cazabrnaco	Aragon	Minoral.
54. Aurna	11. Majscetls	66. Chicinnm	7. Mrasanza ${ }_{\text {a }}$	K Gallege	5. Mahan
55. Arnedr	12. Majacelis	66. Chicinar	7. Alirsndia de Vits	(mea	6. Ciudsdela.
VoL. I.		P Oliveses is with	in the Spanish limits.		8 V

$$
\rightarrow
$$

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic
Sciences Corporation

23 WEST MAIN STREET WEBSTER, N.Y. 14580 (716) 872-4503
skirted by those of the secondary class; but they are far from the middle and higher parts of the mountain chain. When we follow the road from Madrid to Andslusia, we incet with secondary rocks near the transition clay slate of the passes of the Sierra Morena; but we must descend very low on the south side before we meet with similar rocks. The high mountnins of Jaen are formed of secondary rocks. In the northern vorgebirge of the Sierra Nevada, between Granada and Guadiz, there are secondary deposits, which are not, however, so considerablo snd extensive as to resch to the high ridges. Also in the vicinity of Mslaga new secondary rocks lie on the foot of older mountain masses; and tho ridges of seconilary rocks extensl from the hills of Ronds towards the southern extremity of Spain. The wonderful isolsted rock of Gibraltar is also principally composed of new sccondary rock. The distribution of the rock is not confined to the immediste vicinity of the ligher mountain chains, but it extends from the one to the other, rises or falls in the intermediate spaces, and forms in this way the widely extended high table-lsnd.
The most important of the Spanish secondary rocks are the following; viz., variegated sandstone and marl, gryphite limestone, and the white limestone or Jura limestone. The first of these exhibits the same relations as in Britain, where it is known under the name of new red sandstone and red marl. The shell limestone, which, in Germany, is enclosed between Weraer's variegated sandstone and the younger marl formations, is wanting in Spain, as is also the csse in England. The sandstone and marl is rich in gypsum and masses of rock salt. At Vallecas, near Madrid, and in some other places, there rests upon it, in single beds, that rare deposit consisting of meerschaum, with nests of siliceous minersls. It is to this formation, which occurs widely spread over the high table-lands of Old and New Castile, that these conatries owe the reddish-brown colour of their soil, and the tiresome uniformity of their surface. The lias formation is widely distributed in the northern provinces of Spain. It appesrs to reach a considerable height on the Spanish side of the Pyrenees. In the Biscayan provinces it exhibits the same characters as tho gryphite limestone of the Weser, and is so widely distributed that nearly sll the older rocks are covered by it. Here it is remarkably prolific in an excellent iron ore. The immense mass of sparry iron ore, converted by decomposition into brown and red iron ores of Sommorostro, near Bilboa; and which probably forms the ironstone hills mentioned by Pliny in the 34th book of his Natural History, belongs to this formation. Probably also the vast beds of coal in the Asturias are subordinate to it. The white Jura limestone, which is one of the most widely distributed formations, is also of great geognostical importance in Spain. It forms, in most places, the immediate cover of the variegated sandstone and marl, and occurs in the north, and also in the south of Spain, in singlo ridges and great mountain masses. This formation is cxhibited in its most characteristic forms in the narrow pass of Pancorbo in Old Castile, in the lacerated mountains of Jaen, and the isolated rocky wall of Gibraltar. Wherever it occurs, its presence is announced by the yellowish-brown colour of the soil with which it is covered.
Some rnembers also of the chalk formation occur in Spain. The sandstone of the rocky ridge of the southern coast, between Cadiz and Gibraltar, and the limestone in the district of Los Barios, bring to our recollection the rocks of the Saxon Switzerland. The first agrees with the German quader-sandstein, the latter with the Saxon planer limestone, an equivalent for impure chalk.
Tertiary deposits occur in different parts of Spain. In the south, particularly near the sca-coast, there is a deposit, filled with marine organic remains, in which calcarcous sand and pebbles occur, partly in a loose mass, and partly more or less firmly compacted by means of calcareous cement. Julging from the included petrifactions, among which see beds of oyster-shells, this deposit, on which Cadiz stands, and which, in some places, rises into hillocks and low hills, belongs to the upper tertiary sea-water formation. Probably the tertiary deposit mentioned by Brongniart as occurring in the neighbourhood of Barcelona belongs to the same deposit. That fresh-water limestone occurs in Spain has heen sufficiently proved by the observations of Baron Férussac. The deposit very much resembles that so generally distributed in Germany, and is found in different parts of Spain, both in the interior and on the coast, and at different heights. The calcarcous breccis, generally with a firrruginous basis, which occurs principally in the south-west, where it is witcly distributed, belongs to the latest of the antediluvian deposits. It not only incrusts limestone rocks of different formations more or less thickly, but also fills up rents and fissures in them: thus it abounds among the calcareous rocks of Gibraltar, where it sometimes contains bones of quadrupeds no longer met with there. The formation of the breccia is ascribed to a catastrophe which affected different parts of the coast of the Mediterrancan sea. As Professor Hausnuann, to whom we owe the preceding details, had not an opportunity of travelling in Murcia, he was not able to confirm or reject the accounts of Spanish geologists, who maintain that it contains true volcanic rocks. The occurrence of other rocks, which are conjectured to have come fron below, has been noticed in but few places. Characteristic basalt occurs in Catalonia. The porphyritic and basaltic-looking rocks extending from Cabo de Gata, and from Avila, on the north side of the Gudarrama range, are still problematical. Hypersthene rock has been found by Professor Garcia in the vicinity of Salinas de Poza, in Old Cartile, , its presence ted by means ll are beds of isce into hilbably the terof Barcelona en sufficiently nbles that so in the inteerally with a y distributed, tone rocks of them: thus it ones of quada catastrophe ofessor Hausblling in Mur who maintain e conjectured basalt occurs de Gata, and Hypersthenc n Old Cartile,

Boom 1 SPAIN.
in contact with Jura limestone. Professor Hausmann found, in the mountains of Jaen, near to variegated marl containing masses of gypsum, rocks of greenatone. Col. Silvertop describes tertiary deposita in Granada.

It may not be improper, from Professor Hausmann, to point out the influence of soil and climate on the other departmenta of nature, as also on the peculiarities and occupations of man. A glance at the whole nature of Spain discovers a threefold principal difference. The northern zone, which extends to the Ebro, differs entirely in its characters from the middle zone; and this again is completely different from the southern zone, which is bounded on the north by the Sierra Morena, and a part of the Ostrandes. The northern zone, which includes Galicia, Asturias, tho Biscayan provinces, Navarre, the northern part of Aragon, and Catalonia, is a widely extended mountainous and hilly country. The snow-fields and glaciers of the Pyrenees on the one side; and on the other the north and north-west winds, have a marked influence in lowering the temperature of the atmosphere, and in increasing the supply of water. The increased humidity is favourable for vegetation, which, on the whole, very much resembles that of the south of France; and the variety of rocks containing lime, clay, and sand, and also their frequent alternations, operate beneficially on the soil. The soil everywhere invites to cultivation, and the Catalonians and Biscayana are active cultivatore of the ground. The middle part of Spain, to which belongs Old and New Castile, a part of Aragon, Leon, and Estremadura, is not so favourably circumstanced. In general, we rarely meet with either beauty or variety of aspect. The extensive and lofty table-lands, deatitute of trees, are dull and tiresome; their uniform and monotonous aurface, furmed by vast deposits of horizontally disposed secondary strata, is swept across by the wind, and burnt up by the aun's rays. Whichever way the eye turns, it meets with scarcely any thing but wretchedly cultivated cornfields and desert heaths of ciatus. Seldom, in general, more in the southern than in the northern districts, plantations of olive-trees afford a meagre shelter, and vary the scenery, although in an inconsiderable degree. Nothing, certainly, has so great an influence on these propertics of nature, with which many of the peculiarities and modes of life of man harmonise, than the high situation of the widely extended table-lands, and the uniformity of the rock which forme the support of the soil. It is owing principally to the horizental stratification, and the want of water, that the great Spanish table-lands are so widely extended, and so little intersected by deep valleys. The rivers, in most cases, carry but little water in comparison with the magnitude of the land, and the number of considerable mountain chains; and it is further surprising how insignificant the waters of most of the Spanish mountain groups are, cven when the qualities of the rocks favour the formation of springs. The causes of this great deficiency of water are principally the great dryness of the atmosphere, the inconsiderable cover of snow on the mountains, and ita short continuance; the absence of forests, and the want of great moors on the heights, and the comparatively inconsiderable breadth of the mountain ranges. The southern and southwestern part of Spain, which comprehends Andalusia, with Granada and Murcia, is very different from that just described. On the opposite side of the Sierra Morena the whole land has a more'southern and foreign aspect, a breathing of that African nature, which announces itself not only by the world of plante, but also by the animal world, and man limself. The great difference of climate is produced by the southern situation, the exposure of the acclivity on the south and south-west to the African winds, and the atrong reflection of the solar rays from the lofty, naked mountain walls. The mountain ranges are more closely aggregated, the vaileys more deeply cut: there is no room for very extensive table-lands, and the more limited ones that occur, as those of Granada, are, more amply supplied with water than those in the middle of Spain. Along with this arrangement, there is greater difference among the rocks, and also of their position. The south of Spain, therefore, possesses not only a much higher temperature, one fit for the orange and the palm, but also a more varied and a more favourable soil for cultivation. But these relations would have acted more beneficially if the air had been more humid, and moisture had been everywhere more abundant. The deficiency of moisture is the principal cause not only of the striking meagreness of phenogamous vegetation, on most of the mountain acclivities, but also of the remarkable paucity of lichens and mosses on the mountains on the coast; and in connection with this is the fact, that the weathering of the rocks, and the reforming of the original surface of the mountains, assume there a somewhat different course from what ia observed in places which are moister, and provided with a more powerful vegetation.

Subsect. 2.-Botany.

"Ohl Christ it is a goodly sight to sea
What lieaven hath dono for this delicious iand!
What fruils of fragrance blush on every trea !
What goodly prospects o'ar the hiils expand!
(Bul man would mar them with an impious hand).
"European Spain," says M. de Humboldt, "situated in latitudes under which Palni trees (Phenix dactylifera and Chamarops humilis) grow upon the plains, presents the majeatic spectacle of a chain of mountains, the tops of which ahoot up into the region of everlasting
now. By a levelling survey executed with the greatest care, it has been ascertained that in the Sierra Nevadn of Granada, the Pico de Veleta rises about 11,385 English feet, and the Mulhacen 11,660 English feet, above the level of the ocean. None of the mountains of the Pyrenees are of so great a height; for Mont Perdu, the loftiest of the Spanish Pyrenees is only 11,168 feet, and the highest of the French Pyrenees only 1722 fathoms. The peak of Mulhacen, in the Sierra Nevada of Granada, wants only 76 fathoms of being as high as the Peak of Teneriffe. Yet even this summit, if situated in the same latitude as the town of Mexico, would not be perpetually covered with snew : fer the never-melting snows begin under the equator at 2460 fathoms; under the twentieth degree of latitude at 2350 fathoms; under the forty-fifth, at 1300 fathoms; and under the sixty-second, at 900 finthoms."

Thus circumstanced in regard to climate, and the elevation of its mountsins, how greatly is it to be regretted that no country in Europe has been so little investigated in regard to its botanical productions! Eneugh, however, is known for our purpose, which may be collected from the different travels in, and accounts of, Spain and Portugal, and from the Recherches sur la Distribution Géographique des Végétaux Phanérogames dans l'Ancien Monde, already alluded to, by M. de Mirbel. This author considers the whole of this peninsula, with the exception of the northern part of Spain, which forms the shores of the Gulf ef Gascony, and which belongs to the temperate zone, as entering into the transition zone. If, therefore, its vegetation has any affinity with that of France, it is only where its mountainous parts, especially the Pyrenees, resemble the mountains of France, and its warm districts are like the extreme south of France. In East Valencia and Murcia, in the south of Andalusia and the Algarves, in Western Alemtejo and South Estremadura, the rich and varied vegetation calls to mind the fertile plains of Syria. In Andalusia, frosts are unknown, and the snow, if it ever falls, melts the moment it touches the soil: so that it is not surprising that, in the cultivated parts, the Spaniards, long famous for their voyages, should have introduced many vegetables from remote parts of the world; thua giving a perfectly tropical appearance to the country.
The Erythrina Corallodendron, or Coral tree, with its brilliant scarlet blossoms, the Schinus Molle, with its gracefully pinnated foliage, and the Phytolacca dioica, are introduced, with many other plants, from South America. Even the bananas are common to the south of the Guadalquivir; as are also the Cayenne Pepper; and, in gardens, the Convolvulus Batatas, or Sweet Potato. Everywhere about the rural habitations of the Spanish pessantry, the Date, the Orange (fig. 208.), the Lemon, the Olive, the Pomegranate, the Fig

(fig. 299.), and the Mulberry, fleurish nearly as well as in the native soil. Link notices the trees growing about Lisbon; "they are chiefly," he says, "Olive and Orange trees, Cypress, Judas trees: Elms and Poplars appear too. But of Oaks, Beeches, and Lime, there are none, and very few Willows; so that one may instantly perceive how different is the character of a Lisbon view from that of Germany." The Orange is the most striking of these : for there are many plantations in quintas, where they form compact groves, and also scattered in open spots. These trees require much artificial watering, and they are propagated by sced, and afterwards by grafting upon those seedling trees. In Deeember and January the fruit begins to turn yellow; and at the end of January and in February, before they are ripe and sweet, they are gathered for exportation. Towards the end of March and April, the oranges are very good, but they are not in perfection till early in May. In July and August, they are scaree, and over-ripe. At the end of April and May, the new flowers appear, the fragrance of which extends far and wide, and at this time the quantity of glittering fruit embosomed amid the dark foliage, "like golden lamps in a green night," relieved atill

Part III. tained that h feet, and mountains niah Pyreoms. The of being as latitude as ver-melting - latitude at cond, at 900 regard to its be collected Recherches :ien Monde, peninsula, the Gulf of on zone. If mountainous districts are of Andalusia varied vegeown, and the prising that, ve introduced pical appear-
blossoms, the $c a$, are introormen to the the CenvolvuSpanish peanate, the Fig trees, Cypress, lime, there are nt is the chariking of these : and also scatare propagated er and January before thcy are arch and April, 9. In July and new flowers apity of glittering ," relieved still

Boor 1.
SPAIN.
mere by the snowy blossoms, presents an object which continually excites new admiration, though it is one of daily occurrence. One aingle tree frequently bears $\mathbf{1 5 0 0}$ oranges, and examples are not wanting of their bearing 2000, and sometimes, though rarely, 2500. In the provinces, they sell for half a farthing apiece. Figs are exported largely from the city of Faro; they are the most important produce of the Algarve, and are brought down by the country people to the merclants in immense quantities. They are thrown in heaps in a buiding prepared for the purpose, where a syrup flows from them, which is used to advantage in making brandy. They are then spread to dry in the sun, in an open aituation, where they are left for a few days, in proportion to the heat of the weather; after which they are packed into small baskets made of the leaves of the Fan Palin, and exported. "Greece and the Algarves," M. Link observes, "are the only countries where caprification is practised; for in the latter country are some varieties of Figs, and those very excellent, that fall to the ground immature, unless punctured by gnats." Two ideas prevail respecting the effect of this operation; the general opinion being, that the little insect, on entering the Fig, (which is known by botanists to be a fleshy receptacle, including many, and often only barren flowers,) carries with it, from other figs that it has viaited, and from which it comes loaded, the farina necessary for fertilisation : while others maintain, and among them M. Link, that the puncture caused by the insect gives a fresh stimulus and a new movement to the sap or juices of the fruit, thereby not only preventing the fall of the fruit, but rendering it sweeter and better flavoured ; and it ia certain that many of our common fruits, when pierced by insects, acquire the bweetest flavour. The ancients perfected the figs in the Archipelago by means of an insect, a species of Cynips (C. Ficus). In Algarve, besides the cultivated kind, another wild sort is grown; in which the insects abound. These trees are recalled Fijos ile tora; and branches of them are, at the proper season, broken off; and suspended over those intended to be fertilised, when the little animals come forth, alight upon the fruits, puncture them, and aid their ripening.
Formidable fences are made of the Cactus Tuna (fig. 300.), and the Agave americana,

Cnclue Tune. or American aloe. The former is often mixed with the Pomegranate, but of itself it constitutes a hedge almost impervious to cattle. In Portuguese it is called, on account of its prickles, Fijo do inferno: the flowers are yellow and the fruit esculent; the latter is by no means unpalatable, and is regularly sold in Lisben. Of the Agave americana we have already spoken, and shall, therefore, simply mention here, that its leaves undergo a process by which a valuable thread is extracted, known in Portugal by the name of Filo da pita. The largest and most perfect leaves are cut off, laid upon a board, and scraped with a square iron bar, which is held in both hands, until all the juices and pulp are pressed out; the nerves only remaining, when these are found easily separable into threads. Where pasturage is scarce, as in Algarve, the cattle eat the foliage of this plant, if cut into thin transverse slices.

In La Mancha grows the Esparto grele (Stipa tenacissima), of which cords are made, and the foliage is sent in large quantities into Portugal for this purpose. To prevent the careless destruction of these valuable plants, penalties are inflicted on any person who ventures to gather them before the menth of May, when they are in perfection.
The Carob tree (fig. 301.) Link reckons the most beautiful of European trees. It attains

Carob Tree. a considerable height, forming, with its large evergreen pinnated folinge, a head of considerable dimensions, and yielding a welcome shade. Among the foliage hang down the numerous long pods, which, when ripe, are used ns fodder for cattle, eapecially the mules, and as ment for swine, though inferior to the acorns of the Evergreen Oak. Before the expulsion of the Moors, the Sugar Cane was cultivated to a considerable extent, and lately it has been re-introduced, at San Lucar, into a garden "d'acclimation," together with Coffee, Indige, and Gum Arabic. A vast extent of country is covered by the Chamærops humilis (Dvarf Palm or Palmetto), growing in waste places. This vegetation, in part exotic, follows the coasts of the Spanish peninsula, to the east and to the west. It is diffused in all its luxury in the delicious territory of Vnlencia, where the agriculture of the Moors is still held in respect. With the species already named, are here cultivated the Aloë perfoliata, Yucca aloifolia, Cassia tomentosa, Melia Azedarach, many kinds of Mimosa, Annona, \&c. In the environs of Alicant, the Date harvest is very obundant. This Pulm there grows in large plantations, VoI. I.
and often attains the height of 120 feet. It reaches along the entire coast, to tho 40 th degree, and perhaps higher. The Agave abounds in the environs of Tarragona, in the 41at degree; and the Olive continues to the ehore of France.
In gencral, tho vegetation of the east of the Peninsula differs little from that of the other shores of the Mediterranean. The coasts of the Ocean, on the west, aro less hot, according to M. Bory de St. Vincent, than corresponding latitudos on the east sides; so that the southern vegetation does not extend so far to the north. Be thla as it may, the Date, the Lemon, the Orange, abound in Algarve and Alemtejo. The Orange grows plentifully In the environs of Oporto, in 41°; and the Olive extends to 420. A great number of American plants, the seeds having been probably brought in ballast, are mingled, and, as it were, confounded, with indigenous species. Upon the whole, however, the vegetation may be considered as having more in common with that of the Atlantic than with the coasts of the Mediterranean. Link thus pictures the climate of Portugal, and its effects upon vegetation:-"A heat, equal to 96° of Fahrenheit, is not uncommon in this country; and, from comparative observations, it appears that the climate is warmer here than in Brazil, though the lieat doce not continue near so long. From Midsummer-day to the middle of Sopternber, rain is extremely uncommon, and even in the beginning of that month very scanty; tho drought often continues much longer. Immediately after the first rains, follow the uutumnal flowers, the Meadow Saffron (Colchica, two species but little known); Saffron (Crocus sativus); the Autumnal Snowdrop (Leucojum autumnale); the sweet-smelling Ranunculus bullatus, and many others. These appear in the higher landa around Cintra, where the rains aro carlier than in the low parts near Lisbon. Immediately after the autumnal flowers, come the apring plants, owing to which the interval between apring and autumn is scarcely perceptible. In October the young grass eprings up, and the new leavee shoot out, rendering it the pleasantest month of the year. In November and December fall heavy rains, with froquent storms. Days of perpetual silent rain are very rare, for in general it comes down in torrents. The brooke round Lisbon, which it was a little while before easy to step over, and which wholly disappear in summer, now rush like torrents down the hills. This swelling of the streams renders travelling difficult at that eeason, and would retard the operations of war as much in winter as tho drought in summer. In January, coht, elear weather often prevails, but becomes milder in February, which is gencrally a very pleasant month."
The most common vegetables of the plains of Spain are the Cork tree (fig. 302.), the Ilex, and Kermes Oak (fig. 303.), the Bay tree, the Myrtio, the Philyrea media and angus-

Cork Treo.

tifolia, Juniperus Sabina, Celtis australis, Pistacia Terebinthus and Lentiscus; Rhamnus Alaternus, and many other species of this genus; Viburnum Tinus, Osyris alba, Paliuruz australis, the Strawberry tree, the common and shrubby Jessamines, the Caper plant, and a great number of Cisti ($\mathbf{f g} . \mathrm{S} .44$) with other shrubs, whose foliage is of an evergreen and coriaceous nature. Immense plains are elothed with Lygeum Spartum, and the running streams are bordered with Bupleurum spinosum and Nerium Oleander.

But it has been justly remarked, that no country in Europe presents a more sorrowful aspect than the interior of the Peninsula. "No man, perhaps, aaving a botanist," says Link, "could travel with any pleasure in the barren tracts of Old Castile; but this pursuit can render travelling both instructive and interesting, even in these apparently sterile wastes. Where forests have existed there, they have yieldod to the stroke of the axe; and the naked soil remsins without any culture. Vust chains of mountains spread out in all directions, and between them are extended the Parumeras, more or less elevated plains, frequently as naked as the steppes of Siberia." M. Bory estimates at from 1800 to 2000 feet the elevation of the Paramera which divides the sources of the Douro and the Ebro. In the valleys tormed by these rivers and their tributary streams, a vegetation of great beauty is found, partaking of in tho 41s
f the other , according the south. lio Lemon, the enviican plants, :onfounded, nsidered as Mediterra-ition:-"A :omparative e heat does rain is exought eften flowers, thio tivus); the ullatus, and 3 are carlie s, come the cely perceprendering it ns , with fre nes down in ep over, and tis swolling perations of eather etten onth." g. 302.), the a and angus303

Rhamnus AlsPaliurus aust , and a great 1 and coriaceming streams
ore serrowful t," says Link, s pursuit can sterile wastes. and the naked irections, and ently as naked evation of the bys termed by partaking of

Boox I.
SPAIN.
507
that in the more temperate climates of tho north. Here are seen small fields of Maize, and even of Rye and Barley, more rarely of Whest, surrounded by lofty Oaks, Chestnuts, and Poplars, every treo supporting a Vine, which apreade over it and not unfrequently reachea to the very summit of the highest Oaks.

The great mass of tho forests which have escaped destruction are mostly formed of Evergreen Oaks; among which, besides the other species already enumerated, are found the Quercus Ballota, eggilopifolia, faginca, prasina, crensta, rotundifolia, humilis, \&c. The Intter does not exceed six inches in lieight. In the valleys and on the mountains also, grow Tilia europra (platyphyllos ?), Fagus syl satica, Castanea vesca (fig. 305.), T'nxus baccata, Pinus sylvestris, Fraxinus, Ornus, \&c. The commonest forest tree on the plains of the temperate zone, namely tho Oak (Quercus Robur), inhabits the southern slope of the Pyrenees. It is said that this tree occurs also in somo parts of the Peninsula.

The vegetation which prevails on the lofly mountains in the interior of Spain is almost wholly unknown to us. M. Ramond has made eome interesting observations on that of the Pic du Midi, one of the highest of the Pyrenees; and has compared the plants of its most elevated summit, estimated at about 10,000 feet, with that of Melville Island, as described by Mr. R. Brown. , The similarity is very striking.

Of these, eight of the Mclville Islands lichens and one of its mosses are found on the summit of the Pic du Midi; five others of the lichens, and one of its two hepatica, and six of itr moemes, grow on the crags of the poak, or in it immediate vicinity.

Subasot. 3.-Zoology.

The native zoology has been so little investigated, that nothing beyond a meagre list could be furnished of indigenous animals. In the mountains of Asturins tho Ibex is not uncommen, and the Alpine Squirrel (Neiurus alpinus) is only tound in tho Pyrences. In the southern parts, bordering on tho Afriean shore, a few speeies of warblors have recently beeu found, which are us yet unknown to the rest of Europe. The European Bec-eater (fig. 306.) Ire-

306

Europest Bee-Eater. quents the vieinity of Gibraltar in largo flocks during the season of migration.
Among the domesticated animsle, the herso and sheep of Spain deserve particular notice, as having been long celebrated throughout Europe. The best horses are generally about four feet six or eight inehes high; they have all the fire, docility, grace, and action of the beautiful Arabians of Barbary (generally called Barbs), and there ean be no doubt of these noble animals having been introdueed by the Moors, and crossed with the native breed: those of Andaluaia, Granada, and Estremadura are the most distinguished. At Xeres are found two perfectly distinct races; the onu, which possesses the fine qualities above mentioned, is still preserved in all its purity at the Chartreux. The other raee is larger, stronger, less elegant, and used for common purposes. Latterly but little care has been bestowed in keeping up the more noble breed, so that fine horses are not so common in Spain as formerly.
The mule, in so mountainous a country, is partieularly useful, and, with the ass, is principally tosed for conveying goods in the interior; the breeds of the latter are very fine, and are hardly excelled by those of Egypt. Spain is still famous for its merino race of sheep (fig. 307.). The focks are kept constantly travelling during the greater part of the summer, but are carefully pent up in winter. This race, subdivided into breeds, is extended over the greater part of Spain; but those of Cavage, and

Merino Bheep. Negrate, are the best. A third breed, the Souan, sppears
more hardy, and passes the winter in Estremadura, Andalusia, and New Castilo: these three constitute the Transhumante, or travelling race, to distinguish them from the Estantes, or those of a somewhat inferior breed, who do not migrate. The best fleeces are thoso which appear almost black on their surface, caused by the dust adhering to the peculiar greasy pilo; for it is invarinbly found that such fleeces are of the purest whito beneath. The merinos, dispersed by Georgo III. over England, have inenleulably inproved the native races. By great care and expense on the part of the native graziers, this valuable race has likewise been introduced in tho distant regions of Australia with equal success. There is a very large breed of oxen in the country round Salamanea; but the cattle of Spain have been much neglected; the mountaineers deriving all their milk and butter from goats. The spaniel appears to be a breed of dogs originating from this country; and the Spanish pointer is considered to have a greater acuteness of seent than that of Britain.

Swor. III.-Historical Geography.

The earliest inhabitants of Spain, like those of Gnul and Britain, were of the Celtic raee, and from the river Ebre (Iberus) were ealled Celtiberi. The whole country was by the Greeks ealled Iberia, nnd sometimes, from its western position, Hesperia. The people, like those of the rest of Europe, were divided into a number of small tribes, hardy and warlike, who often showed a peenliar attachment to national independence, and obstinacy in its defence.

The Carthaginians were the first civilised people who oceupied Spain, whieh, for several centuries, was considered as theirs. They fonnded colonies on the most advantageous points, worked its rich silver mines, and easily allured many of its brave but poor inhabitants into their mercenary armies; they were far, however, from having thorouglily subdued the Peninsula, the people of whieh, on the rise of the Roman power, endeavoured by its allinnee to emancipate themselves from the Punic yoke. The siege and fall of Saguntum seemed to have extinguished these hopes, and to have seeured the ascendency of Carthage; but the events which marked the close of the second Punic war eompletely humbled that prond republic, and put an end to its dominion over Spain.

The Romans, by the eapture of Numantia in n. e. 134, established their supremacy over Spain, undisputed by nny other nation; but the eomplote subjugation of its inhabitants was a long and arduous task, to which the utmoet exertions of Cossar and his lieutenants were

Booz 1.
not fully adequate. Spain, however, was at length reduced to a province, divided by Augugtua into three parts:-Tarraconenals, the north and east; Betica, the south; and Lusitania, Pertugal. The Spaniards even became civilisel and peaceable subjects; on that when Rome, sinking under its own weight, was unable to defend them, they could not resume their early intlependence, but fell a prey to the Vandala, Gothe, and other barbarous hordea that poured in from the north of Europe.

The Goths, in this terrible struggle, finally prevailed; and in 418 a Gothic dynasty was fully established over Spain. These barbaroua invaders appear here, as elsewhere, to have expellel or extirpated the native people, whose features and language are recognised only in some of the higher mountain districta. After a sway of three centuries, the Gotha were destined to yield to a new people, ceming from a remote quarter.

The Arabs, rendered invincible by fanatieism, had over-run all the north of Africa, and eatablished a powerful kingdom in Fez. The vengeance of Count Julian invited them over, and opened the way for them; their immense host coverod the plaina of Andalusia; Roderick, the Gothic king, was totally defeated. The invaders then over-ran the whole kingdom, with the exception of some mountain recesses, in which a remnant of the Gothic ehiefs found shelter; they even passed the Pyrenees, and seemed about to over-run all western Europe. But Charles Martel met them on the plsins of Aquitaine; snd, after a drendful battle of three daya, they were signally overthrown, and nover again attempted to pass the Spanish frontier. Meantime Don Pelayo, and other chiefs of the Gothic race, again raised the national standard in the mountains of the Asturias: then commenced a contest of 700 years, distinguished by numerous heroic achievements and memorable events, which gave to the Spanish character that romantic and adventurous cast which it has never wholly lost. The Arabs or Moors still retained the finest provincea, and the courts of Cordova and Granada were the most splendid and polished in Europe. The Spaniards, however, under a succession of nble chiefs and particularly of their great hero the Cid, gained ground: new kingdoms were auccessively founded; which all merging into those of Castile and Aragon, comprehended the whole or Spain, except the extreme southern kingdom of Granada.*
Spain wns again formed into one great kingdom by the union of the crowns of Castile and Aragon, under Ferdinand and Isabella, in 1474, and by the final overthrow and expulsion of the Moors. From this period commences the most brilliant era of her annals. The discovery of America, the conquest of the golden regions of Mexico and Peru, and of other dominions so extensive as to make it a plausible boast that the sun never set on them, threw an almost unrivalled lustre around the Spanish crown. Under Charles V. and Philip II., Spain continued the most powerfnl kingdom, and her armies the most formidable, of any in Europe. The throne derived even an addition of apparent lustre from the subversion of the popular part of the government, and the cenversion of a body of grandecs, once the proudest in Europe, to the condition of humble vassals.

The decline of Spain, though its causea had begun to operate, did not become perceptible till after the death of Philip II. A gloomy indolence and degrading superstition now marked her councils; her armies were vanquished by the French under Conde and Turenne; she lost her place and rank in Europe. The trade with her vast colonics, fettered by absurd restrictions, became profitable only to the industrious nations which supplied its nitaterials. The war of the succession drew notice towards this country, and called forth some displays of national energy; but the Bourbon dynaaty, which it plncrd on the throne, soon relapsed into the characteristic indolence, and Spain became little rave han n dependency of France. We know not whether to deaignate as an era, the train of wemarkable events which have

[^25]occurred between 1868 and 1822. The Spanjards excited the admiration and astonishment of Europe by theit during deflance of the power benenth which the greatest sovereigns had been reduced to the runk of vassals. Their subsequent exploits did not altogether cerrespond to this begiuning. Still, their resistanco, considered as that of a people, wus, on the whole, obstinate and glorious; it even appeared that there lum been formed a body attached to popular grovermment, and eager to redress the political grievances under which Spain laboured. Ultimutely, howevor, the eagerness with which the mnjority of the nation acquiesced in the system of absolute power, re-established by foreign interference, tarnished ita honour, and reluced it again to that imbecile and degraded stato in which it had existod for several centuries.

Sect. IV.-Political Geography.

The constitution of Spain, ever since the downfall of her liberties under Charles V., has been the nost despotic of any in Europe, except Russia and Turkey. The Cortes, that powerfill assembly, whose privileges were greater than those of any other European representative boly, have since that period been rarely assembled, and then only partially, on occasions of mern form. The only two bodies which possese any influence, are the council of state and the conncil of Castile; but as theso are entirely under tho appointment and direction of the monarch, they form little more of a check upon absolute power, than the Turkish divan.

Two attempts to restore a representative form of government have lately been made, under circumstances which must be fumiliar to our readers. Unluckily, the leading or liberal party were hurried, on this occasion, into an opposito extreme; adopting the systom of universal suffage, forming themselves into one house, and allowing only a temporary veto to the monarch. This system, which excluded the nobles and clergy, tho most wealthy and influential bolies, was from the first decidedly unpopular ; and Ferdinand found it easy, first witheut, and afterwards with, foreign aid, to subvert it, and to re-establish in full plenitude the despotic sway exercised by his predecessors,
[The Cortes wero convoked anew in 1834, with some modifications of their nncient organization. The body now consists of two houses; that of proceres or peers, composed in part of hereditary members, in part of members named by the king for life, and the procuradores or deputies, elected by colleges of electors, who are chosen by the principal citizens. The Cortes have extensive legislative powers, but their existence and authority havo emanated from the royal will.-Am. Fid.]

The grandees and other privileged orlers in Spain are distinguished for their pride beyond any others in Furope. Even Charles V. was baffled in his attempt to retrench the right of wearing the hat in the royal presence. The Spanish nobles impair their fortuncs less by extravagance thun those of the same rank elsewhere; nod as they intermarry only with each other, the number of titles or hats, as they are called, continually accumulates upon single beads. The dukes of Medina-Celi, of Alba, of Infantado, of San Estevan, of Ossuma, and some others, hold possessions truly immense, covering whole provinces. They are administered, indeed, in the worst possible manner, being kept in their own hands, managed by tribea of factors or intendants, of whom some nohles keep 300 ; so that it is truly astonishing that they should sometimes yield $\$ \mathbf{\$ 2 5 , 0 0 0}$ or $\$ 40,000$ n year. As these graulees, howevor, live not on their estates, but in the cities, in secluded pomp, they have lost all their foudal influence, and the ties which united them with the greater body of the people. The hidalgos, claiming nobility by descent from the members of great fumilies, are much more numerous, and form, in some provinces, a large proportion of the inhabitants. They are often reduced to grent poverty; in which they display that union of pride and indolence which has been supposed elanracteristic of the Spaniard. Mr. White mentions a species of illustrious birth quite peculiar to this country, consisting in a pure Christian descent, without any mixture of Jewish or Morish blond, which last is supposed to produce so deep a stain, that no time can efface it. The clergy, moreover, exercise a paramount influence over the minds particularly of the lower orders, and have been the main-spring in all the movements, good or bad, which for a long time past hnve taken placo in the Peninsula.

The revenue of Spain, though levied with iittle regard to the comfort nall well-being of the subject, has never risen to any great amount. Yet she is the only power which ever derived any from her colonies; as the quinta, or royal fifth of the mines of Mexico and Peru, after every deduction, brought home considerable treasure; but this sonree of wealth is now withdrawn. The other taxes wero the most ruinous to iodustry and trade ever contrived by any government. The alcavala, or impost upon each transference of commodities from one hand to another, seems expressly destined to impose fetters upon commerce; whilo the royal monopolies of salt, lead, powder, tohaceo, and other articles in genernl use, have the usual pernicious effects. Combined with those prohibitory elauses, by which Spain endeavoured without suceess to prevent her industriaus neighlours from supplying the wants of Ler American colonies, they gave rise to a vast contraband, carried on in almost open definnce of government. IIence the taxation of Spain, though highly oppressive to the nation, yields nishment ilgns had ter corre. en, on the attnched ich Spain ion acquinished its xistod for
les V., has ortes, that can repreirtinlly, on he council tment and r, than the g or liberal em of uniary veto to realthy and t easy, first 1 plenitude
ecient orgased in part rocuradores zens. The anated from
rride beyond h the right unes less by ly with each npon single Dssuua, and are adminismanaged by ustonishing es, however, their feudal ho hidalgor, e numerous, ten reduce ch has been strious birth ny mixturo that no time minds paronts, good or
cell-heing of which ever co anl Peru, ealth is now er contrived hodities from ; while the sse, have the Ppain endeathe wnnts of ppen defiance ntion, yields

Book 1.
SPAIN.
very little to the crown; being in a great measure aheorbed by the enpport of tho individuala omployed in its collection, who are sail to amount to 10, 6 ino. Althongh, therelore, tho entire suan taken from the people has been susyected not to fill short of $12,0000,000 /$, steriing, the receipt by government 11188 s did not exceed $5,080,0002$. The expenditure in that ycar was for tho army, $2,050,0000 l$; navy, 400,00012 . ; marine, $1,445,0001$: ; justice, $145,0000 l_{\text {, ; mate }}$ 10 e,tMNI. ; royal honsehold, 505,0001 . At the name time, Spain is burdened with a debt of 160, (N), (NO). sterling, of which the rovenuo would be whelly iuadequate to defray the intereet, hail toot moro than half consisted of tho royal vales, which do not bear any. Under the constitutional government a considorable addition of debt was Incurred, which, however, Ferdinand VII, cleared off by relising to acknowledgo it; while he himself ineffectually attempted to ralse a loan to any amount.
The navy, at the conmencement of the late war, was at least respectable, and a formidable auxiliary to France. The fital days of St. Fincent and Trafulgar, and the fruitlese expeditions to South America, reduced it to a feoble state. In 1820 it consisted of ten ahipa of the line, sixteen frigutes, and thirty maller vessels.
The army of Spain, which under Charles V. and Philip was the bravest and most fonnidablo in Europe, has for a century and a half enabled her to rank very low among military nations. It ig, however, at present the best organised part of her establishmont. According to the author of " A Year in Spain," it consists of 25,000 royal guards, and 55,000 troops of tho line and provincinl militia, which, being commanded by experienced officers, formed during a period of protracted warfare, possess a considerable degree of efficiency; and their discontent being an objout of Iread, every effort is made to pay them regularly. The royalist volunteers, amounting to about $\mathbf{3 0 0 , 0 0 0}$ men, formeda band of armed fanatics alnost entirely under the command of the pricsts and monks, and sceking in their favour to lord it bothover king and people.

Seot. V.-Productive Industry.

In respect to industry and wealth, Spain, which had every opportunity within and without of becoming the foremost bation of Europe, is, in fact, the poorest and the most uncultivated. T'he insecurity of property, and the multiplied restraints imposed by an unenlightened government, appear to bo the main causes which have paralyzed all branches of industry. The furious bigotry of its monarchs, in particular, led to the most suicidal acts against tho public weal. At the commencement of the fiftoenth century, the country contained a numerous population of Jews and Moors, who fermed its most industrious and wealtly inhabitants, and rendered it the most flourishing kingdom in Europe. The Jews, unless in the alternative of feigned conversion, wero expelled from the kingdom by Ferdinand and Isabella, the Moors by Philip III. Although it appesre to be upon exaggerated estimates that Spain has over been supposed to havo previously contained $20,000,000$ of people, yet it cannot be doubted that the emigration of mercantilo communities, with their capital and machinery, must have struck deeply at the root of the national prosperity.

Spanish agriculture, it nust be confessed, has some obstacles to struggle against. The territory, as we have had occasion to observe, is traversed in every direction by chains of rugged, and often barren, mountains. Yet these elevated provinces being the seats of com parative liberty and industry, are on the whole the best cultivated and the most populous The great extent and continuity of these chains certainly present serious difficulties to the transport of grain. When government were bringing a supply from Old Castile to the capital, it was found that 30,000 bensts ot burden were necessary to carry 2000 quarters. Another great impediment to effective agriculture consists in the habit, partly oriontal, partly formed during a long internal warfare, which leads the farmers to crowd into towns, and thus live often at many miles' distance from the fields which they cultivate. In many csses they merely pitch their tents during seed-time and harvest, and at other seasona pay only occasional visits. They are also very poor, destitute of capital, and oppressed by the burden of tithes and other exactions.

The grain produced in Spain is of admirable quality ; tho wheat of Andalusia bearing a price of ten or fifteen per cent. higher than that of any forcign wheat brought to the markets of Cadiz. But a deplorable defect appears, when it is stated that Spain, a country purely agricultural, does not grow corn for her own use, but makes a regular importation. This, hovever, according to Bourgoing, amounts only to $2,000,000$ fanegas or 400,000 quartors; a small proportion of the entire consumption, which may be estimated at $12,000,000$ of quarters. The agriculture of Spain, however, produces three valuable articles; wool, wine, and barilh.
The wool of the merino is of almost unrivalled fineness, though dearly purchnsed by the system upon which it is produced. Vast flocks, amounting to $20,000,30,000$, or even 60,000 , belong to the grandees, convents, anil dignitaries of Spain. After being pastured, during summer, on tho sides of the mountains of Leon and Old Castile, they descend, in winter, chicfly to the plains of Estremadura. According to the rules of the powerful society of the mesta, composed of the above high mombers, they must pass freely, and be allowed, on pay-
ment of a very inadequate rent, to panture upon all the unencioued landn, which form the bulk of thowe in Spain. The entire number of nheep in all these wandering flocks in reckoned at $6,0(0),(000$; and there are a great number which remain ntationary, and onjoy privilegen nearly similar. The annual mhearing taken place on a great acale, and with much celebration; and the wool im carefully morted into three kinds, according to the part of the body from which it in taken.
The winen of Spain are produced on the fine plains of the southern provinces. The most important in the Xeres or sherry, whieh han cone into nuch general usu with the English nation. Mr. Jacob reckons thint 40,000 pipes are proluced in the plain of Xeren; of which 15,000 are exported, almost the whole to England. Around Malaga in made wine still more vaiued, though not in such quantity; which, when white, is called mountain, when red, tent (tinto). The northein und central provincen yield wine only of inferior value.
Barilla, the finest known species of adien, and kighly uneful in glase-making, bleaching, 'and other procomes, is procured by burning various species of maline and aromatic planta in the provincea of Murcia and Valencia, and is one of the few articlea which other nations can nowhere olse procure of equally good quality. Silk and oil, in the Mediterrunean provinceu, are only limited by the want of culture or demand.
The manufactures of Apain have been of little importance since the expulsion of the Moors. That industrioun peeple introduced the silk mnnufacture; a branch entirely suited to a country where the matorial is produced in the greatest perfectien ; but it in now genorally decayed, unlesa in Valencia, where it was supposed lately to empioy 3000 people. The blades of Toledo were once famous over Europe, and the city has still a royal manufactory of awords, though of little importance. The Spanish government has devoted rather an extraordinary attention to manufaetures, but unfortunately seeks to promote them by the king becoming himself the producer. He has established a great factory of broadcloth at Guadalaxara, which, having fine materials at hand, in rather thriving. Yet Spain does not mupply heralf with fine cloth. Other royal works are those of porcelain, at San Iddefenso; paper, in Segovia; carda and tapeatry at Madrid : all rather for show than use.

Commerce, for which Spain seemed to have menopolised the most extensive materials, has long been in a state at least as low and depressed as any other branch. It has suffered eeverely, indeed, from the immense importance attachod to it by the government, which actually crualed it to pieces in the attea, pt to prevent any portion from escaping. To abmorb within their own circle the entire trearares of Mexico and Peru, was the first policy of the Spanish sovercigns. The gold and silver of thoso regions were to be brought oxclusively to Spain, never to be taken out of it, and only the produce and manufuctures of that country to be sent in exchange. By a sall fatality, the commerce of the wionies was carried on almoet entirely by French and English merehants; nearly all the goods exported thither were foreign; and Spain, of all her neighbours, was the most destitute of the wealth accruing from this trade. These colonies, with the exception of Cuba and the Philippines, are now gone, and with them the greatness of Cadiz, which, by the absurd monopoly granted to her, became one of the principal emporia of Europe. The trade of Spain consists now in the export of wines, fruits, brandies, wool, silk raw and manufnetured, lead, quicksilver, barilla, and a few other articles, which, according to a very imperfect document, jssued by the Spanish government, amounted in 1828 to abeut $1,544,000 l$. Of this, 241,000 . was stated to be to the colonies. Her imports consist of augar, cocoa, salt fish, spices, wood, rice, butter and cheese, hides, cotton wool, and almost every apecies of manufactured commolity. They are stated for the same year at about $3,267,0001$., of which 724,0001 . was from the colonies.

Internal communication is a particular in which Spain actually labours under natural disadvantages, from the obstructed navigation of its rivers, and its long and atcep chains of mountains. These obstacles the government has endeavoured to surmount by vast but illexecuted projects of improvement. They had conceived the plan of a grand canal, which, passing through Asturias, Old Castile, and Aragon, might join the Mediterranean with the Bay of Biscay. Of this mighty undertaking, only two mmall portions exist; the canal of Aragon, running parallel to the Ebro from Saragossa, and that of Old Castile along the Pisuerga and Carrion by Placencia; but as neither of them makes any approach to the sea, their benefit is very limited. The main roeds maintained by government between Madrid and the other great citics are good, and the mails well conducted; but most of the other communications are mere tracke worn by the feet of mules, which are chiefly employed in the conveyance of goods.

Sect. VI.—Civil and Social State.

The population of Spain, aecording to a census made in 1798, amounted to $10,351,000$. It was generally understood, however, that the jealousy of the people, and all the obstacles usually encountored in such undertakings, operated to a peculiar extent in diminishing the in reckoned privilegon ch celebraof the body nces, The "o with the of Xeres ; ya is mado lied mounne only of bleaching. atic plants ther nations ranean pro-
lation of the irely nuited now geno000 people. royal manuvoted rather them by the roulcloth at ain does not n Ildefonso; - materiale has suffiered ment, which ng. To ab3 first policy ought excluures of that ies was carxls exported of tho weulth Philippines, poly, granted consists now quicksilver, pt, issuod by 41,0001 , was spices, wood, petured com24,000., was
natural disp chains of vast but ill. tanal, which, ean with the the canal of ile along the hh to the eea, veen Madrid of the other employed in

10,351,000. the obstacles inishing the

Boos 1.
SPAIN.
amount. The cenmua, in $1787-8$, gave only $10,909,000$, of which 188,000 were clurchmen; anul among theme, 61,000 were mouks, and $\mathbf{2 2 . 5 1 0}$ num. Thero were $480,(00 \mathrm{~N})$ hi-
 $0(0), 0(0)$ dny-labourerm ; 280,000 domentic inale servantr. A censue was undertaken in 1820, which was not ifilly completed, but carried so far an to prove that the number of inhabitanta munt be considcrably greater than the above: it is entimated by Minano at 13,732,000; by Hamel at $13,053,000$.
The uational character of the Apaniard is markel by striking features. The genuine Spanierd is grave, proud, adventurous, romantic, honourable, and genemus, It hail been inmauated that this in the Spaniard of the mixteenth century, of whom the Epaniard of the present day la only, as it were, the ahadow. But though the higher ranks have certainly loat the original utamp, and become fivolous and dianipated, the bexly of the people, and especially tho peamantry, forin a very fine race. Even among the former, the late troublea brought tirward signal displays of heroism, though, as too often happens ha sueh cases. equally hne exaniples of tremehery. In the virtue and wisdom of the beat Spaniarin, there is apt to to something speculative and theoretical, not applicable to the practical purposea of life ; a want of the wimlon of action. In prowperona circumatancea they readily give way to supinenews and filmo confidence; but in sudden and overwhelining vicimitules, which sink the apirit of othera, thair latent energlen are roused, and they dieplay unexpected and surprixing rewourcen. Althnugh assansination, which way onee the reproneh of Apain, is greatly diminished, yet a promptitude to fight and to shed blood, characteristic of all nntions imperfectly civilized, in still prevalent. It is accompanied with a readiness to rise in tumultuary insurrections, and an unwillingness to aubmit to the reatrainta of diseipline. The jealousy which wan wont to dwell so deep and dark in the mind of the Spanieh husband, hae been supersedod by a general laxity of morals. The cuatom is said to prevail, that every married lady alould have a cortejo or gallant, correaponaling to the Italian ciciubeo; and though the usage may not be so decidedly criminal as it appeara to atrangers, it is cortainly inconsintent with thowe habits and feelings which form the felicity of the matrimonial state. In this singular relation, fixed rules aro observed, and a certain fidelity is exncted; the jealousy of the huaband is assumed by the cortejo; and the lady who changes, at least with any frequency, this object of attachment, lowes caste in the eyes of the public.
The religious atate of Spain need only be mentioned to suggeat the dark and gloomy foatures by which it is marked. That bigotry and auperatition which the Romish faith contracted during ages of darkness, and which in all other countries is so much abnted, retaina nearly its full force in Spain. The Inquisition, that frightful tribunal, the dingrace of modern Europe, which here held its central seat, kept alive its fires against all who exercised their reason on a subject connected with the national faith. The order of Jesuita, who have been called the militia of the Romish church, originated also in this country. The Inquisition perished in the late atruggle; yet a numerous body atill call aloud for its ro-establiyhment; and the most liberal rulers, whom the revolution raised to power, durst not attempt any approach to toleration, or to trench upon the "Catholic religion one and indivisible." This spirit of bigotry and superstition is decply diffised through the nation, who, if they no longer demand that heretics ehall be committed to the flames, never doubt at least of tho future torturea to which they are destined. All the childish and absurd customa which marked its prevalence during the dark ages, are preserved nearly unaltered; the processiona and exhibitions, in which the events of sacred history are represented, often in a familiar and ludicrous monner; the endless festivale, which impoverish the nntion, and favour its natural indolence; and the zeal of multitudes, who are induced by inistaken picty to withdraw themselves from their families and the world. Mr. Blanco Whito hae given a atriking account of the artifices by which the young female is led to make the irrevocable sacrifice; the respect and importance attached to her during the period of noviciate; the ceremonies, which resemble those of marriage, even the name of bride being given to her; and the disgrace attached to a retractation. Yet it appears evident, from the same author, that this profession is often deeply sincere; that it aids in producing that strong moral feeling which prevails throughout the nation; that many are even tormented by minute conscientious scruples; and that, with euch persons, ahsolution, fonnded on false pretensions to penitence, is considered us aggravating the guilt. At the same time, there is a combinaticn of deep devotion and dissolute conduct, which not only rapidly succeed ench other, but actually coexist, in n manner never seen in any Protestant society. It may be observed, that amid this thick darkness which covers the nation, a bolly of men has lately arisen, of activo and enquiring minds, who have discerned the errors of the national creed, and have passed to tho opposito extreme. They are comparatively few in number, however; and, as already observed, even in their greatest triumph, although they considerably reduced the conventual eatablishmenta of Spain, they never durst attempt to introduce the toleration of any form of worship different from the Catholic.

Spanish literature, during the era of the national glory, snpported itself at least on a
level with that of any other nation in Europe. Spain had, as it were, a litcrature to itself, scarcely any of the productions of which, it we except the inimitable aatire of Cervantes, became faniliar to the rest of Europe. During the middle age, she was rich in chivalric romance, the taste for which, however, was banished by the appearance of Don Quixote, a change which some lament, us having led to the decline of the national spirit. The poetry of Spain, roused by eo many vicissitudes of internal revolution and transmarino triumph, took a somewhat lofty flight. The Araucana of Ercills, celebrating her conquests in the New World, is named together, though not on a level, with the best modern epics. Garcilasso de la Vega, Villegas, Mendoza, and others, chiefly officers in the army of Charles V., introduced a style formed on the Italian model; and, having the advantuge of a noblo and sonorous language, worked up their verses to the highest polish. But it is in the drama, that the Spaniarils have been chiefly distinguished. Lope de Vega and Calderon, indeed, sonstruct their plots with an entire disregard of the unities, filled with extravagant incidents, and strained aud artificial sentiments. But they display an inexhaustible fertility of invention, and often strong traits of character; so that, though they never could be transferred entire to any other stage, they furnished useful hints both to the French and English dramatists. Mariana's History of Spain ranks among classical productions; while Herrera and Solis, though of inferior merit, have produced valuable histories of the Spanish transactiona in the New World. To Don Antonio de Solis, the Spaniards are willing to ascribe that inimitable satire on human character and manners, Gil Blas, which must, they say, have been written by a Spaniard and a courtier. As such, he might rejoice that it had amply fulfilled his intentions without compromising his security, and could very well sfford to dispense with the fame which redounded to its reputed autlior, Le Sage. These writers belong to the classic age of Spsin, which nearly expired with the seventeenth century; but of late, the intellectual spirit which has spread so actively throughout Europe, has penctrated into Spain, and made vigorous struggles against the night of ignorance and prejudice in which that country was involved. Campomanes, Ustariz, Jovellanos, and Arguclles, have endeavoured to trace the causes which have paralysed Spanish industry, and to discover the means of reviving it ; Feyjod has done much to rouse a spirit of reflection; Yriarte, Isla, and Me lendez Valdez, have produced agreeable miscellaneous writings; and Moratin has adopted a more regular drama, formed on the French model. There are extensive public libraries; one, the royal library in Macrid, consisting of 130,000 volumes, with valuable manuscripts, and a rich collection of medula; and others in the great provincial towns; but the prevalence of monkish legends, and the prohibition of many of the most important standard works, greatly limit their value. The universities are numerous, and that of Salsmanca once perhaps the most celebrated in Europe ; but education being conducted upon obsolete and scholastic principles, and impregnated with the national bigotry, they have long ceased to attract students from any place out of Spain. Some of the younger nembers were supposed to have embraced novel ideas in regard to religion and government; whence they have become objects of jealousy to the goveinment, which will probably be little anxious to rescue them from that decay into which they were thrown by the events of the revolution.

The fine arts, especially painting, could boast in Spain of a distinguished school, marked by features strikingly national and original. It is characterized by depth, force, great truth of nature, and a warm expression of devotional feeling. Murillo, Ribeira (self-named Spagnoletto), and Velasquez, are those nlone whose works are diffused throughout Europe; but by those who have viaited Spain, Cano, Juanes, Ribalta, and Moralea are mentioned in terms of equal praise. The Escurial and other roysl palaces are likewise adorned by some of the finest picces of Raphael, Titian, and Rubens. This taste scems to have declined with that of literature; and Townshend observed that the nobles set little value on the magnificent collections with which their palaces were adorned. Of late the efforts to revive painting have been considerable, but without producing any artists of much celebrity. The Spaniards are fond of music, but delight rather in detached airs for the serenade and ball, than in that higher class in which the Italians and Germsns excel. The guitar (fig. 308.) as an accompaniment for song, and the castanets for the national dsnce, are characteristic Spanish instruments.
The Spaniards have favourite and peculiar diversions. They are most passionately attached to the bull-fight: a large space is enclosed, sometimes the great square of the city, around which the people sit as in an amphitheatre. The bull, being introduced, is first attacked by the picadores, or horsemen armed with spears; a dcsperate conflict ensues; the horse is frequently killod or overturned with his rider, when persons on foot run in, and distract the animal, by holding up different kinds of coloured stuffs. He is next attacked by banderilleros, or footmen armed with arrows; and not only their akill, but their dexterity in crvantes, chivalric uixote, a he poetry triumph, ts in the c8. Garharles \mathbf{V}., noble and o drama, n, indeed, incidents, of invenransferred glish draerrera and nsactions e that inhave been y fulfilled rense with ng to the late, the rated into in which ve endeathe means , and Meadopted a libraries; anuacripts, the prevaard works, once perand echo1 to attrac upposed to ve become scue them tional and of nature, o, Ribeirn one whose who have mentioned ral palaces Raphael, lined with nobles set nich their painting ts of much ght rather hat higher ipaniment iments. ssionately o the city, ed, is first isues; the n in, and tacked by xterity in

Boor 1.
SPAIN.
escape, are the subjects of admiration : at last, when the animal is completcly covered witr.

The Fandango. wounds, the matador or alayer appeare, and closea the scene. Tumultuous applause or hissing from the populace accompanics every part of this savage performance, according to the reapective merita of the bull or his assailants. The comparative excellence of different matadores becomes often a party question, and the subject of keenly agitated discussion in the circles of Madrid. Wounds frequently, and death sometimes, are the reault to the actors in this exhibition, for whose benefit a priest with holy water is in regular attendance. Not less is the fondness for the dance, particularly under its national forms of the fandango (fig. 309.), the iolero, and the guanacho, performed with the castanet in the hands; and the two former especially consisting chicfly in movements expressive of passion, but so little consonant to the rules of decorum, that the indul gence shown to these amusements by the church cannot but be regarded as a matter of surprise.

The dress of the Spaniards is antique, and varies much according to the different provinces; that of the ladies consists ehicfly of a petticuat and a large mantilla or veil, covering the upper part of the person. The grandees, and the opulent in general, display a profusion of jewels; the dress of the men is slight, and closely fitted to the body, with the exception of a loose cloak thrown over the whole. The minister, Squillace, under Charles III, having conceived that these cloaks, by concealing the person, served as a cover to dceds of violence, atationed persons at the corners of the streets, who seized the passengers, and forcibly cut down this part of their dress to the legal dimensions; but this measure raised 80 violent and general a clamour, that the king was forced to appease it by the sacrifice of the minister who had attempted such an obnoxious curtailment.

Both in eating and drinking the Spaniards are temperate ; the only noted national dish is the olla polrida, in which various meats, vegetables, and herbs are mixed together in in manner which even foreigners admit to be palatable. The pleasures of society are chiefly sought at tertulias or evening parties, where only slight refreshment is presented; but refrescos or dinner parties are given on a large scale upon very special occasions.

Sect. VII.-Local Geography.

Of the divisions of Spain, the most prominent is into kingdoms or principalities, each of which, at some period of its eventful history, enjoyed an independent existence, though they are now merged into one monarchy. More recently the country has been aplit into a number of smaller departments or jurisdictions; but the original distinction into kingdoms, being founded upon natural limits, and maintained by feclinge and impressions derived from former independence, ia still the most interesting. The kingdoma are New Castile, Estremadura, Old Castile, Leon, Galicia, Asturias, Biscay, Navarre, Catalonia, Aragon, Valencia, Murcia, Granada, and Andalusia.
The following table exhibits the divisions and subdivisions of Spain, with the extent and population of each, according to Hassel :-

	Square Lengues.	Prpulation.		Square Leagues.	Population.
(Madrid	110	298,000	Avturias. .	3082	$5 \times 35,000$
Toledo..............	734	485,000	Gallcia	1330	1,545,000
New Castile $\left\{\begin{array}{c}\text { Giradalaxara } \\ \hline\end{array}\right.$	103	153,000	Catnlonia.	1003	1,116.000
New Cuenca	945	362,000	Navarre	905	2×8.000
La Mancha	631	257,000	Biscny $\left\{\begin{array}{l}\text { \#iscay }\end{array}\right.$	105	145.000
Estremadura :	1199	556,000	Biscny. \{ Guipuscoa	59	136,000
Burgoe	642	612.000	A Alava	002	93,000
Old Castile \{ Eoria ...	341	267,000	Aragon .	12,322	856,000
Old Castile $\left\{\begin{array}{l}\text { Segovia } \\ \text { Avila } ~\end{array}\right.$	290 215	221,000	Valencia	648	1,255,000
(Avila	215	$\begin{aligned} & 153,000 \\ & 311,000 \end{aligned}$	Murcia. Granada		493,0067 $1,097.000$
Palencia	145	153,000	S Sevill	759	1,0470000 970,000
Ieon $\{$ Toro....	165	128,000	Andalusia... Jaen.	968	277,000
Leon $\left\{\begin{array}{l}\text { Valladalid }\end{array}\right.$	271	243,000	(Cordova	348	355,000
Zamora.............	133	88,000 $\mathbf{2 7 3 , 0 0 0}$			

With New Castile, the central and metropolitan province, we commence our survey: it consists chiefly of an extensive plain enclosed between two of the long paraliel mountain range8, the Sierra de Guadarrama and the Sierra de Toledo. Along thia plain, and parallel to both ranges, the Tagus flows in a dcep rocky bed. Beyond the Sierra de Toledo, the district of La Mancla, which we include also in New Castile, extends to a third paralle mountain range, the Sierra Morena, dividing it from Andalusia and the southern provinces

The plain of Castile Proper is clevated and naked; and being thus exposed to the sun's direct rays, presents a bare and parched appearance. It includes, hewever, fertile valleys, producing wine, oil, grain, and fruits of various kinds; but the inhabitants are extremely deficient in every species ef industry.
Madrid (fig. 310.), the capital of Castile, and of "all the Spains," stands on several low hills on the immense Castilian plain, which on the north appears bounded by the high distant range of the Guadarrama, but on every other side has no visible termination. A small rivulet, the Manzanares, flows past the city, and falls into the Tagus. Madrid ia a superb but some

what gloomy capital; the heuses are high, well built of good stone, not defaced by amoke; the streets are well paved, and have broad footpaths. The main street of Alcala, long spacious, and bordered on each side by a row of princely houses, attracts particular admiration. The Prado, a wide public walk, bordered by trees, and connected with gardens all open to the public, is equally conducive to ornament and pleasure. There are many public fountains, supplied with pure, light, and salubrious water, filtered through beds of gravel and sand, from a distance of seven or eight leagues. The gates built by Charles III. are uncommonly beautiful, particularly that of Alcala; but in a miserable wall which might be battered down by a three-pounder in half an hour. The royal palace, built by Philip V., is a spacious and magnificent structure, though the taste displayed in it is a subject of controversy. It contains numerous fine paintings, which do not equal, however, those of the Escurial. The Retiro, with its fine gardens, was defnced by the French, whe made it a military post; an extensive and costly menagerie is now forming within its precincts. The museum of statuary and painting, a new and elegant building, has recently been enriched with some of the fincst pictures from the royal palaces. The cabinet of natural history, supported by the government, is also a handsome structure, and its contents valuable. The environs of Madrid are not remarkable for beauty; they are much broken into hills and hollows; so that, of the 200 villages situated in them, only three or four can be scen at once. Popnlation, 201,000.
Toledo, even in its present decay, excites an interest equal or superior to Madrid. Once the proud capitsl of Spain, it has a cemmanding site on a lofty rock, almost insulated by the Tagus. A position so strong rendered it a grand national bulwark during the long ages of internal warfare, but occasioned its desertion during peace, when it was felt as extremely inconvenient, the streets being so steep that a carriage can scarcely drive safely through them. Its manufactures of wool and silk, which are said once to have employed nearly 40,000 men, have disappeared; and government has in vain attempted to revive that of awords, of which those formerly manufactured at Toledo were valued above all others. Its population of 200,000 has been reduced to 25,000 ; and it presents a mere mass of narrow, deserted, winding, and dirty strects. Toledo, however, still exhibits two grand monuments; the Alcazar or palace, and the cathedral. The former is a noble and extensive pile, in a pure style of architecture, and the granite columns of the Corinthian order which adorn the inner court are particularly admired. The grand staircase and spacious gallery, no longer crowded with guards and courtiers, are now dirty, deserted, and silent. The edifice, though neglected and decaying, still wears a stately and imposing aspect; " and its handsome front, immense quadrangle, and elegant colonnade, declare it to have been the pride and ornament of a happicr period." The cathedral is also one of the grandest edifices in the Peninsula. It was originally a mosque, built in a grand style; but its simplicity has been much impaired - by tasteless additions, and by the profusion of gilding, relics, and statues, with which its interior has been filled. It retained its wealth and splendour, however, till the late war, when its treasures became the prey of the invader, and its six hundred ecclesiastics were dispersed, leaving only a few to perform the sncred functions.
Two other considerable towns in New Castile are Guadalaxara, to the east of Madrid, where the government has established a manufacture of fine cloth on a great scale; it is of ceurse an ill-conducted and unprofitable concern; yet it supports the population of $\mathbf{1 2 , 0 0 0}$
or 14,000 in a degree of comfort not usual in Spanish towns: and further cast, Cuença, thn capital of a mountain district of the same name, interposed between Valencia and the plain of Castile. It is a small ancient city, distinguished by a cathedral and some other monuments.
La Mancha, sometimes reckoned a separate province, is the mest southern part of Castile from which it is separated by the Sierra de Toledo. It is an immense table-plain, intersected by different ridges of low hills and rocks, without a tree except a few dwarf evelgreen oaks; or an enclosure, except mud walls round the villages. All this vast tract of epen country is cultivated, and produces corn or vines: its wine, especially that of Val de Peñas, enjoys a high repute. Its name, however, is chiefly familiar to the public as having given an appellation to the celebrated hero of Cervantes. The names of Don Quixete and Sancho Panza are familiar to the district; and the dress of the peasantry presents still an exact model of that of the doughty squire. There are a number of large villages; and Ciudad Real, the capital, is well built in a fine plain, though it has last much of its former prosperity. Almagro and Ocaña are also pretty considerable towns.
Estremadura forms a continuation to the wcst of the same plain as New Castile, traversed like it by the Tagus, and bounded by the same ranges of mountains. It is a fine, wide, wild province, diversified by rugged mountains, deep valleys, and almost boundless plains. The depopulation generally complained of in Spain eeems mere remarkable here than in any ether province; and vast tracts may be passed without seeing a human habitation. This seems chiefly owing to the pernicieus laws of the Mesta, which assign it almost entirely for tho occupation of the merino flocks, when they descend from the mountains of Leon. Fstremadura, therefore, forms a vast pastoral district; only a small proportion of its surface being necessary to furnish grain for its scattered population. Yet the Romans made it one of the chief seats of their dominion; and no part of the Peninsula exhibits more striking works and monuments of that great peeple. The Estremenos also retain much of the antique Spanish aspect and character ; and no province, during the late crisis, made more striking displays of patriotic energy.
The cities are no longer considerable. Badajos, the capital, a strange corruption of the Roman name Pax Augusta, is a considerable and strong town, but much shattered by the successive sieges it sustained in the late war from Soult and Wellington. Merida, the ancient capital of Lusitania, excites more interest, from the striking remains which it presents of Roman magnificence. The amphitheatre, baths, a lofty triumphal arch, three votive altars, and a handsome stone bridge, are all magnificent monuments, and in wonderful preservation. Truxillo, an old city, of small extent, was the birth-place ef Pizarro, whose splendid mansion is still to be scen, adorned with barbarous trophies of his conquest. Almaraz is distinguished chiefly by the very noble inodern bridge adjoining to it. Talavera de la Reyna, once splendid but now decayed, has acquired recent lustre from being the theatre of one of the greatest battles fought during the peninsular war. In the extensive plain north of the Tagus are the two pleasant little cities of Coris and Placencia ; the latter of which was the scene of the singular menastic retirement of Charles \mathbf{V}. In the mountains separating this part of the province from Leon is a rocky region, of the most savage and desolate character, called Batuecas.

Old Castile is situated on the opposite side of the chain of mountains which forms the northern boundary of New Castile. It presents a high variegated table-land, separated on the north by the Cantabrian chain from Asturias. Some parts are rugged; but it is, upon the whole, a fertile well-watered region, traversed by the Duero in its early course. There are many tracts of rich pasturage, and others equally fitted for the growth of corn. It is, however, ene of the provinces in which the marks of decay are most striking. The cspitals are neglected and ruinous; large portions are left uncultivated; and of the fine manufactures of cloth from the merino wool, only a remnant is now supported by the aid of government. Castilian pride and indolence have fixed hero their old and central seat: the hidalgos belonging to Old Castile amount to 146,000 , a much larger proportion than in any ether province.
Burgos, the once magnificent capital of the kings of Castile, and the highest in rank of any city in the kingdom, is dwindled inte a poor place, not containing above $\mathbf{1 0 , 0 0 0}$ inhabitants. Amid its gloony and decayed ot'sets, however, towers the cathedral. one of the finest specimens of Gothic architecture existi.? in Europe, and the form of which bears a censiderable resemblance to that of York minster. The strong ancient castle, which had fallen into decay, was so fur re-established by the French, that it successfully stood a long siege from the Duke of Wellington.

Of the other towns of Old Castile, Segovia presents some interesting monuments of Roman and Moorish grandeur. Its aqueduct (fig. 311.), of 159 arches, nearly half a milelong, and in one place 94 feet high, is a stupendous Roman work, ranked by Swinburne above the Pont du Gard. The Alcazar, or royal castle, was erected by the Moors on a rock everlooking a wide range ef country. After it came into the possession ef the Chris-

Vol. I.
tians, it was employod as a state prison, and is now a military school. Five centuries ago, Negovin hal very extensive manufactures of fine cloth; but thesc, notwithstanding the honour of having the king for a partner, have dwindled to a very small amount. Population 15,000. Avila, capital of a mall province of the same name, is a city of ancient distinction; and its masey walls, its towers, its Alcazar, and the dome of the old cathedral, render it inposing at a distance; but it is in a state of wretched desertion. The attenpt to establish manufactures of cloth and cotton has not been successfinl. Soria, near the site of the ancient Numantia, on the right bank of the Duero, near its source, is a tolerable country town, capital of one of the smaller provinces into which Old Castile has been subdivided.
The palaces of the Escurial (fig. 312.) and San Illefonso are striking objects in Old Castile. The "royal monastery" of the Escurial was founded ly Philip II. on a plan entirely congenial to his gloomy mind. It unites the characters of n palace and a convent; and has the form of a gridiron, the instrument of the martyrdom of St. Lorenzo, to whom it is dedicated. Attachel to it is the Pnntheon, a elassic and somewhat profane structure, in which, however, are interred all the crownel kings and queens of Spain since Charles V. The wealth of the Spauigh monarchs has been continually employed in adding new ornaments to this favourite residence, which is considered by the nation ns the eighth wonder of the world; and large volumes have been filled with descriptions of it. The church and the great altar have scarcely a rival for magnificence and grandeur of effect. The library is not extensive, but contains mannseripts, especially Arubic, that are of great value. The collection of paintings, it is probable, yields only to that which covers the walls of the Vatican. Besides select profuctions of Murillo and other masters of the Spanish schoon, it contains several of the greatest works of Raphael, Titian, and others of the first ltalinn masters. The environs are wild and naked in the extreme, without shelter from the cold blasts of winter, or tho intense heats of summer. On the opposite declivity of the same mountains, looking towards the north, Sun Ildefonso, without any pretensions to nqual magnificence, is finely surroumded by woods, gardens, and beautitul jets d'eau. Aranjuez stands in quite a different situation, on the lowest plain of Castile, at the junction of the Tagus and the Xarama. It is chicfly admired for its magnificent wookls and gardens; the former carried in long and spacious avenues, the latter containing in profusion the finest native and exotic plants.

Leon forms a continuation of the plain of Old Castile, along the lower course of the Duero, and bounded by the same ranges of monntains. For several centuries it was the seat of a kingdom, comprising the chief Christian power in Spain, until it was united to that of Castile. It is almost entirely within the domain of the mesta, and thus devoted prineipally to pasturnge. The consequent depopulation has heen very great; insomuch that, according to Townshend, the bishopric of Silamanca, which once contained 748 townships, is now reduced to 333 . The vast extent of open plain which forms the centro of this province has been found highly fivournhle to an invader who possessed superior cavalry; such as the Moors onee, and more latterly the French.

The cities of leon are almost solely interesting from the traces which they present of ancient granileur. Lean itself, ly its highly ornamented cathelral, its nine convents, and its ancient palace, testifies the remote period when it was the seat of royulty; but a heterogeneous assemblage of dirty streets filled with bepgars, splendil churches, and half-ruined family mansions, are all that it now presents. Silamanea, by its university, has acquired a much greater fame. This seminary, one of the first in Europe, was founded in 1200, and extended Inring the same century by Alfonso the Wise, celebrated for the progress which astronomy made under his auspices. From the medical knowledge of Avicenna, Averroes, and other Arabinn sages, it derived a character superior to those of the other monkish universities during the midille agen. Salamanea, however, remained stationary in tho fourteenth contury; nud, while sound science was spreading throngh the reet of Europe, continued to nding the for a partvery smanl 0). Avila ce of the uncient diswalls, its he dome of it imposing a state of atternpt to cloth and sfinl. Soria, Numantia, Juero, ncar into which
in Old Casy" of the ilip II. on a lits gloomy acters of a as the form ent of the to whom it is the Pnnhat profne er, are inand queens The wealth s been cons considerel a filled with agnificence , especially ields only to Murillo and of Raphael, aked in the of summer. ii) Idefonso, rardens, and est plain of for its mag. e latter con-
purse of the it was the wited to that oted princiomuch that, 8 townships, of this provalry; such
y present of onvents, and mit a hetero-half-ruined - acquired a in 1200, and gress which a, Averroes, nkish mivere fourteenth continued to

Booz I.
SPAIN.
occupy its students with dogmatic theology, and with the worship of Aristotle and Aquinas. Its atudents, oneo reckoned at $\mathbf{1 6 , 0 0 0}$, have been reduced to less than 2000. Salamanca is crowded with sacred edifices, to ens. he which, all the four corners of the world have been made to contribute; and on days of high festival the display of silver and precious atones was altogether dazzling. The cathedral and principal square are very magnificent, but the streets are narrow and cloomy. Captain Sherer, in 1813, found Salamanca quite a deserted city; only a fow of the old professors and youthful stulents still lingered in tho colleges, or paced the spacious aisles of the elegant cathedral. Of the latter, some, as appears from Mr. White, sotwithstanding the antiquated courso of instruction, hal adopted modern ama liheral jileas, and in tho late crisis obeyed the call of their country and of liberty. The French having mado Salamanca a military position, a great part of the place was levelled or battered down; and subsequent events have not been favourable to its restoration. We must not, however, dismiss Silamanen withont noticing the now luatro it has derived from giving name to one of the most splendid of Wellington's victories.

Valladolid has a great nsme in history. Charles V. made it his capital, and it continued to he the residenco of the Spanish court until Philip IV. romoved it to Madrid. In these splendid days Valladolid was supposed, perhaps with somo exaggeration, to contain 200,000 inhabitants, now reduced to a tenth of that number. Yet it covers a very large space of ground; and the numberless spires, domes, and turrets of its sacred edifices give it still the appearance of a large metropolis. Its university is attended by 2000 students, and taught by forty-two professors and fifty doctors. After a very marked period of decay, Valladolid experienced lately a considerable revival. Its environs are particularly healthy and agreeable.

Severnl other large decayed towns attest the former grandeur of Leon. Zamora and Toro, both on the Ducro, are capitals of two of the small provinces. Benavente is distinguished by its castle, which has been described as ono of the grandest monuments of the age of chivalry; and 'Jordesillas was a royal residence in the reign of Charles V. Astorga, once capitn of the Asturins, and one of the bulwarks of the Peninsula, has lost its strength and magnitude. Palencia is ulso a small cupital, pleasantly situated on the Carrion, having a little inland trade. Ciudad Rodrigo is a national harrier on tho Portuguese frontier, still kept up as a strong fortress, which sustained successive sieges during the peninsular war.

Galicia, separated by its mountain boundary from Leon, forms the north-western corner of the Peninsula. It is entirely a higlland and alpine region, broken into rugged rocks and narrow passea, though with valleys of great fertility and of peculiar beauty interspersed. The Gallegos are industrinus; and the country is better peopled than many of the more favoured regions of the Peninsula. They are harly and enterprising, and often leave this barren territory to seek employment in the cities of Spain and Portugal, where, like the Scottish highlanders, they act chiefly as porters and servnits. The shores and ports of Galicia aro celebrated in naval history, forming as it were the outer coasts of Europe, beaten by the waves of a tempestuous ocean, and where fleets from the distant quarters of the globe often made their first appearance in Europe, and met with hostile flects on the watch for them.

The interior towns of Galicia have for their capital, St. Jago de Compostella, the most celebrated shrine of the Peninsuln, supposed to contain the boily of St. James, its putron. In the chapel dedicated to him is his statue, two feet high, of pure gold, illuminated every night by 2000 wax tapers. Twenty-two other chapels have been enriched ly the offerings of pilgrims from every part of the Peninsula, whose numbers hnve diminished. Lugo presents the poor remains of an ancient city surrounded by a wall and towers, once of great strength, but now mouldering into ruin. Orense, a little city, formerly celebrated for its hot springs, and Tuy, a strongly situated fortress, are on the Portuguese frontier.

Of the seaports of Gulicia, Vigo had the greatest reputation, several great naval actions having been fought near it; particularly that of 1702, when the whole fleet of Spanish galleons was aunk or taken by the English. It has one of the finest harbours in Spain; which, however, since Ferrol became the chief naval station, is only employed for a limited coasting trade. Corunna on the Groyne is now the most trading place in the province, and packets sail from it to England and America. It is a steep, dirty, but well-paved town, of no strength, being colnmanded by the neighbouring heights. Population 23,000. Ferrol, since 1752, has been mnde the chiof naval station of Spain. Its harbour, besides being one of the safest and most spacious in Furope, has the advantage of being accessible only by a narrow winding passage which can be rendered alinost impassable by a chain of forts. A considerable city has heen formed, and very extensive docks and arsenals built; but since the extinction of the Spanish navy, these have of conrse fallen into considerable neglect. Population 13,000.
The Asturias form a long narrow strip between the Bay of Biseay and the Cantabrian mountains, which extend along its whole length. It is celebrated in history as the sacred retreat in which the hero Pelayo raised ugain the national stanlard, after it seemed for ever trampled under foot by the Saracen invaders. Since the fourteenth century the Asturias
have given the title of prince to the heirs of the Spanish throne. The province is approached only by narrow ravines and passes, through which torrents dash, and which are overbung by steep cliffs and luxuriant wooda. There are, however, a number of valleys, and tho whole plain of Oviedo is distinguished both for fruitfulness and beauty. Instead of wine, a good deal of tolerable cider ia made and exported: amber, jet, and coal abound, but the last strongly impreguated with sulphur. The Asturians are brave and proud, boasting that their country was never conquered, even by the Romana; and more than a third part of the population is composed of hidalgos.

Oviedo, the only large town, has more magnificence than its situation might lead us to expect: the cathedral in particular, long the only shrine aecure from the rage of the invader, afforded an asylum to many pious treasurea scattered through the Peninsula. Thesc, however, consist chiefly of relics, valuable only to devout and believing cyes. Among them are the rod of Moses, the mantle of Elias, the olive-branch borue aloft in entering Jorusalem; thorna from the sacred crown; the milk of the blessed Virgin, \&c. Oviedo is still a conaiderable town, with a rich bishopric, and many religious houses, of which the principal is a convent of Benedictine nuns. Population 10,000. Gijon, though with a costly and not very complete harbour, carries on all the little trade of the province. Avila and Santillana are large villagea, giving their name to districts. Santander and Santona are sea-ports of some little consequence, in the diatrict of Montana, on the borders of Biscay.

Biscay is a mmall, high, rugged province, on the western slope of the Pyrenees. Strcams descending from its numeroua heights, combine in forming the channel of the Upper Ebro. The Basques are a peculiar race, preserving the only remnant which revolutions have left in the Peninsula, of Celtic language and aspect. Under the name of Cantabria, this region presented a barrier even to Roman conqueat; and though the Saracena penetrated through it into the plains of France, it is still boasted that they never could reach the mountains of High Cantabria. The Basques, amid the general slavery of Spain, have still preserved some portion of their original rights. They have a cortea of their own; and the taxes, levied by provincial authority, are presented to the sovereign in the form of a free gift. Every native Biscayan ia an hidalgo or noble, scarcely owning a superiority of birth in the proudeat Castilian. With all thia they are excessively industrious; the mountain declivitics are cultivated as high as the plough can reaclı; and while the finest plains of Castile are nearly a desert, Biscay's rude valcs are covered with a numerous population.
The cities in such a district cannot be large: yet Bilboa, the capital, situated on the Ybaizabal, which admits large vessels up to the town, is one of the most commercial places in Spain, with 15,000 inhabitauts. Most of the merino wool from the plains of Castile is brought hither for exportation. Biscay Proper containa also Orduña, a neat little city, and numerous villages. Guipuscoa is another district, lying more to the east, and in closer contact with France. Its capital is St. Sebastian, an indifferent port, but a nent, tolerably large city, and so strongly fortified as to be considered one of the four licys of the kingdom; the others being Panplona, Barcelona, and Figueras. Fontarabia, close to the frontier, has a great name in history, but little clse is now left. The small village of Irun stands on the immediate bank of the Bidassoa, whose broad clear stream, descending from the Pyrenees, forms the boundary between two rival and long hostile nations. More in the interior, and on a lower level, is the district of Alava, having for its capital Vittoria, a somewhat wellbuilt modern town, and celebrated as the theatre of the complete victory there gained by the Duke of Wellington over the French army under Joseph Bonaparte, which was thence finally expelled from the Penineula.

Navarre is a small province or kingdom, lying immediately beneath the highest and steepest Pyrenees. Eight very difficult passes penetrate through them into France, but scarcely any one passable for the artillery and train of an army. The principal is that of St. Jean Pied de Port; on the French aide of which is Roncesvalles, or Roncevaux, celebrated in history, and still more in romance, for the disaster which there befell Charlemagne and his knights. For many centuries it formed a separate little kingdom connected with France, until Ferdinand the Catholic succeeded in annexing to Spain all the part south of the Pyrences. Navarre retains, however, privileges and customs peculiar to itself, and ite governor bears the title of viccroy. The population is active, hardy, and brave. The banas of gucrrillas under Mina proved the most formidahle irrcgular force with which the Frenn! had to contend in the Peninsula. Pamplona, or Pampeluna, the capital, the foundation of which is ascribed to Pompey, is one of the chicf bulwarks of the Peninsula, and one of the strongest fortresses in Europe. It was reduced by the Duke of Wellington, and by th, French, in their last invasion, after a long blockade. There are also Tudela and Calahorra, ittle towns on the Ebro. Pampeluna has 10,000 inluabitants.
Aragon, south from Navarre, is an extensive province, extending along the greater part of the course of the Ebro; whence it reaches on one side to the Pyrenees, and on the other to the chains which sluut in the Castiles and Valencia. A great part of it is rugged and barren; though other tracts in the central plains, and along the rivers, are very susceptible of culture. Aragon, during the middle ages, was a powerful kingdom, comprising Catalonıa
highest and France, but oal is that of evaux, celeCharlemagne nected with part south of tself, and ita The banas the Frene? oundation of d one of the and by thi ad Calahorra, greater part on the other rugged and y suzceptible ing Catalonia

Boor 1.
SIPAIN.
and Valencia, forming the half of Christian Spain, then divided between it and Castile. Even after the union of the crowns under Ferdinand and Isabella, it still enjoyed its constitution and its cortes, which exercised ligher preregatives, and kept the power of the kings under stricter limitations, than any similar assembly in Europe. Of these it was deprived by the unfortonate issue of the civil war under Charles V , and mere completely by the Bharbon succession, utter Aragon had espoused the cause of Charles of Austria. The pearantry of this province are a tine boly of men, stont, brave, and honest. Culture and population are generully in a buckward state; yet the canal of Aragon, conducted purallel to the course of the Ebro, though it has not yet reached the sen, according to its destunation, has given a considerable impulse to the agriculture of the distriet thro gh which it is led.

Saragossa, or Zaragoza, the capital of Aragon, is a large and celebrated city, situated amid a fine plain, on the banks of the Ebro and of the canal el Aragen. From Angustus, who enlarged and improved it, the city was called Cusar-Aagusta, corrupted into Saragossa. It is not well built, the streets being narrow and crooked ; but there are several open marketplaces, and some very splendid religious edifices. The principal is that dedicated to the Virgin, under the title of "Our Lady of the Pillar;" an object of the most profound vencration to the citizens, and enriched by offerings from every part of Spain. The church of St. Engracia is also filled with relies and gifts; and each of the forty convents of Saragossa has its peculiar boast. A stone bridge, and the finest wooden bridge in Europe, are thrown over the Ebro. The university has 2000 students, but not much literature. Saragossa has earned an immortal name by her heroic resistance against the unprincipled invasion of Napoleon, in 1808. Without walls, except an old ene of carth, which could not resist for an hour an attack conducted on modern prineiples; without army, arms, or artillery, it maintained a long and finally successful conflict with the French, in their first invasion. Afterwards, when assailed by an immense and overwhelming ferce, the flower of the French armies, without hope of relief, it made a mighty resistance; and it was only by mining operations, blowing up successively house after house, that the French finally became its masters, after having reduced it to a heap of ruins. Population 43,000 .

Aragon has some other small ancient towns, ranking even as cities; Jaca and Huesca on the northern frontier among the Pyrenees, both episcopal seats; Daroca and Calatayud in the plain bordering on Castile; the former enclosed with large reined fortifications, the latter industrious, and surrounded by a smiling country.

Catalonia, to the east of Aragon, is one ef the finest and most extensive provinces of Spain. It presents a remarkable variety of surface, from the steep and rugged heights of the ligher Pyrences, to the elevated valleys of Upper Catalonia, and the lexuriant though not very extensive plains that border on the Mediterranean. The Catalans redeem to a great extent the Spanish national character, uniting with its loftiness and enorgy a spirit and ar activity which are elsewhere wanting. They have been always commercial, industrious, and lond of liberty. After bearing successively the yoke of the Romans, the Goths, and the Saracens, Catalonia was long ruled by counts of French descent, whose posterity extended their sway over Aragon, and finally over the whole Peninsula, in which this prineipality merged. The Catalans, however, bore more impatiently than other Spaniards the loss of their privileges; and doring the war of the succession, on receiving a pledge for their restitution, espoused with extraordinary ardour the cause of the Archduke Charles. Even after its unfortunate issue, when deserted by Britain and all the other powers, they made a last dreadful struggle, which ended, however, in the loss of all those rights for which they had so nobly contended. In the last two wars, Catalonia acted a most conspicuous part; maintaining an unremitted resistance to Franee, notwithstanding the close vicinity of that kingdon, and in the late constitutional struggle making efforts, both for and against liberty, much greater than any other province.

Barcelona is, after the capital, the largest city, and at the same time the most industrious and flourishing, of all Spain, containing $\mathbf{1 5 0 , 0 0 0}$ inhabitants. It is situated about the centre of the Catuloninn coast, and draws its subsistence from a fertile and extensive plain behind. It is said to have been originally a Carthaginian town, fomnded by Hamilear Barcas; but rose to little distinction under the Romans, whe made Tarraco the capital of all eastern Spain. It was not dill the twelfh century that Barcelona begun to be distinguished for its commercial spirit. It saffered severely during saccessive wars, particularly that of the succession; but in the course of the last century, the exertions of its patriotic governor, the Marquis of Mina, enabled it to retrieve ull its losses, and become more prosperous than ever. The port is artificial, formed by solid and convenient moles, but has a bar at its entrance, which exeludes vessels drawing more than twelve feet of water. It carried on a great and various traffic; had woollen, silk, and cotton munufactories, all on a considerable seale; about a thousand vessels amnually entered its port; and the whole amount of exports was reckoned by Laborde at $1,750,0001$. According to the latest account, however, by the author of " Λ Year in Spain," the late disasters and misgovernment have caused a great declension in the ahove branches of manufacture; and instead of the ranges of tall masts assembled within
its mole, there are to be seen only a paltry assemblage of fishing-boate and feluccas. The ecclesiastical editices of Barcelona are handsome, particularly the cathedral, though not of so grand a character as those in some other purts of Spain. The convent of the Dominicans has a singular series of ormaments, the sontences of five hundred heretics decreed by the Inquisition, and under each sentence a representation of the sufferer, whom the demons, in various olapee, are torturing and devouring. The walls of Barcelona are strong, but its chief dependence is upon the citadel of Montjuich, which commands it, and is considered almost impregnable, though the Earl of Peterborvugh took it by surprise. At the clise of the war of the succession, when Barcelona was besteged by the Duke of Berwick, a terrible and almost frantic resis 'nce was made in the streets, not by troops, but by priests, students, tradesmen, and even won en: the consequences were terrible. Bonaparte, in 1808 , obtained by treachery and threats the cession of this and tho other keys of the kinglom; but in the late invasion, its resistance against Moncey was most gallant.

There arc aeveral cther large, ancient, and strong towns in Catalonia. Tarragona, the Roman capital of the east of Spain, has fallen into great comparative decay, and has but $\mathbf{1 2 , 0 0 0}$ inhabitants. It is situated on a rocky peninsula, and presents many traces of Roman antiquity, as of the palace of Augurtus, the amphitheatre, and an extensive aqueduct. More recently, the harbour has been improved, and some new streets built; and in the war of 1808, the fortifications were restored, and the city made a brave detence against Marshal Suchet, whu at length carried it by storm, with circumstances of great cruelty. Tortosa is also a conaiderable and ancient city near the mouth of the Ebro, which is there broad and uavigable. It made a distinguished figure during the wars with the Moors, chiefly through the exploits of its heroinos, to commemorate whose valour a military order was instituted by Raymond Berenger. Its position on the river affords scope for a considerable trade; and during the last war its fortifications were restored by the Spaniards. It contains $\mathbf{1 6 , 0 0 0}$ inhabitants. Between the two last-mentioned cities has arisen, within the last half century, Reus, a large, flourishing, industrious town, carrying on various manutactures, particularly of brandy and leather. Population 25,000. All these are on the coast west of Barcelona. To the east the chief place is Gerona, a large gloomy town, in a fine situation. It is well fortified; and its resistance, protracted for more than half a year, to the unremitted efforts of Bonaparte's generals, formed one of the most glorious events of the peuinsular war. Rosas, a little wwn, prettily situated in a fino bay, exports cork and other timber. In the interior, Lerida, distingnished as a Roman station under the name of Ilerda, is a large and strong town, situated in a most delightful country on the banks of the Segre. A considerable atand was made here by the patriotic armies during the French invasion. Mequinenza, at the junction of the Segre with the Ebro, is also an important military post. Cervera, the seat of a considerable university, and Igualada, are pretty large interior towns, supported by the produce of the rich vales in which they are gituated. But the most striking feature in all Catalenia is the single, lofty, and precipitous mountain of Montserrat (fig. 313.). It con-
 sists of a crowd of conical hills piled over each other, broken into steep walls of white and variously tinted limestone cliffs, the interstices of which are filled with evergreen and deciluons trees and plants. The Benedictine monastery, an ancient and remarkable structure, stands on a cleft at the top of a high rock, where space is scarcely left for the edifice, while far beneath roars the Llobregat. Numerous hermitages pitched on the top of precipices, or in cavities liewn out of the rock, increase the singular and romantic appearance of the scene. This mountain, in the last war, was converted into an almost impregnable military position. On the highest of all the Catalonian vales, which is extensive, and rich in grain, stands Urgel, a small episcopal see, and a strong military post, the roads being almost. impassablo to artillery.
Valencia, beginning from the border of Catalonia and Aragon, occupies an extensive coast running from north to south, and is the first of the southern provinces. The plain ranks as the garden of Spain, and almost of Europe. The fields of corn; the yellow green of the mulberry plantations, the pale hue of the olive; the wools, villages, and convents, thickly scattered over this great expunse, with numberless slender steeples, present, when united, an inimitable landscape. The country is finely watered by the Xucar, the Gundalaviur, nnd other rivers, numerous though not of long course. A great extent of artificial navigation was formed by the Moors, and is atill kept up, though not in a very complete state. The province yields, in abundance, the usual products, corn, wine, oil, silk; with rice enough to supply the greater part of Spain, and barilla for exportation. The Valencians are very indus. agh not of ominicans ed by the temons, in ng, but its considered se cluse of , a terrible 4, students, 8 , obtsined but in the ad has but of Roman uct. More the war of at Marshal Tortosa is broad and ly through istituted by trade; and aine 16,000 If century, particularly Barcelona. It is well itted efforts asular war. ver. In the a large and A considerIequinenza, Cervera, the upported by fenture in 3.). It cons piled over alls of white e cliffs, the with everplants. The fient and rea cleft at re space is while far bemerous herprecipices, ock, increase pearance of gnable miliand rich in being almost
tensive coast hain ranks as green of the ents, thickly vhen uniteil, lalnviur, und 4] navigation state. The ce enough tu e very indus.

Boor I.
SPAIN.
trious, and of a gay disposition. Colonies from tho south of France, introduced by the first Christian eonqueror, brought with them a portion of the spirit of that nation.
Valencia, at the inouth of the Guadalavinr, is ono of the largert and most flourishing towns of the kinglom. It is of Roman origin, but its fume dates from the eleventh century, when it was conquered by tho Cil from the Moors, and ruled as a fief by that greatest of the Spanieh heroes. It was tho scene, howover, of a long-continued contest ; and its final annexation to Christian Spain did not take place until a ceutury and a half later. The lofty walls and towers of Vulencia are now nearly demolished, and in the war of liberty neither it nor the province made any very conspicuous figure. The silk manufacture is one of the most extensive in Spain, though checked by an absurd prohibition against tho exportation of its produce. In a levy during the late war, exemption was granted to upwards of 3000 silk-weavera, that the trade might not be interrupted. There are also manufactures of woollens and paper. Tho Grau, or port of Valencia, is only an indifferent roadstead, and the commerce not nearly equal to that of Alicant. The city, though large and rieh, is not handsome; the atrects being narrow and winding, and bordered by high old houses. The churches and convents sre of course numerous, and msny of them richly ornamented, but nono very prominent in architectural beauty. They sre adorned, however, with numerous pictures by somo of the most eminent Spanish painters, natives of Valencia; Juanes, Ribalta, and others, whose works are unknown in this country, but are admired by those who have visited Spain. The religions festivals of Valencia are celebrated with a childish pomp, in some degree disused in other parts even of this country. On these occasions, all tho most memorable events and most illustrious characters in scripture history are represented either by figures in wickerwork, or by citizens fantastically attired. The exhibitions of this kind, amounting annually to a hundred and fifty, give grent occasion to idlencess and dissipation; yet the attempts to reduce their number have been hitherto unsuccessful. Population 66,000 .

Alicant, situated at the bottom of a bay on the southern frontier, ranks high as an industrious and commercial town. Its prosperity is modern, chiefly owing to the refuge which its lofly castlo afforded from the dreadful irruptions of the Barbary corsairs. Even since this danger ceased, Alicant has continued to be a fortified town; and none of the invading armies in the late war were able to obtain possession of it. About 1000 vessels annually enter its port, and are laden with barilla, raisins, and a ssnall quantity of wine and brandy. The import from England consists chiefly of salt-fish, tho great article of consumption in Catholic countries. The lierring and other fisheries are carried on with considerable activity on this coast. They are encouraged by the government, but with an alsurd limitation to a body of enrolled fishermen, amounting to about 16,000 . Population 25,000 .
Among other important towns may be mentioned Elche and Orihuela, large and flourishing places, in tho very finest part of the plain of Valencia. Segorbe and Liria are pleasant. interior towac towards the frontier of Aragon. San Felipe, under the name o? Xativa, made a distinguished figure in the war of the succession; when, after being demolished, it was rebuilt by Philip V. under its present name. Denia and Gandia in the south, and Peñiscola in the north, are sea-ports on a smaller scale. But all these places yield in ancient fame to Murviedro, occupying the rocky site of the ancient Saguntum, the siege of which formed the commencement of the career of Hannibal. The long resistance of this powerful and unfortunate city forms the first of the many remarkable sieges which have distiuguished the Spanish anmals, uncient or modern. The Romans restored and made it a great colony, and the Moors crected a range of fortifications on the summit of the hill; so that its mountain site is now covered with ruina of various dates and descriptions. Half-way up the eminence, the outline of a theatre capable of containing 9000 persons may still be traced; and a few ropemakers plying their trade alone break the silence of this august ruin. Murviedro is a small town still fortified, though the resistance made by it in the last war was not formidable.

Murcia is a small province, partly bounded on the south-east by the const, which here changes its direction from southerly to westerly. Its vale is almost without a rival for beauty and fertility, even in southern Europe. Its naturnl fruitfulness is greatly aided by the numerous eanals of irrigntion which the Moors drew from the river Segurs. These advantages ure little improved by the present inhabitants, who are noted as exhibiting, in a peculiar degree, all the blemislies of the Spanish character; its pride, its bigotry, and its laziness. Even the song and the dance do not inspire gaiety in its vales, as in all the rest of Spain; almost the whole time of the people being spent in eating, slecping, and making cigars. A sullen and vindictive spirit is said to lurk under this outward apathy. Few Mureians have made a figure in literature, in the arts, or in public life.
The cities of Murcia, if we except its port of Carthagena, do not merit particular notice 'the eapital, bearing its name, is an irregular, ill-built, ill-paved large town, with 36,000 inhabitants. The ecclesiasticul edifices, however, are very costly, and the front of the cathedral, according to Mr. Townshend, produces a splendid effect with ite sisteen Corinthian columns of marble, and thirty-two inages as large as life. The interior does not possess equal elegance, but is chiefly distinguished by the proportion of gold, silver, and jewels, not
to mention the relics, which are accounted by the faithful as of much superior value. Lorea ala large town, built with some elegance, and surrounded by fine promenader. Dopulation
 40,OMO). It had extennive faliries of silk and enltpetre, which were reviving, when n singular necident arrested their progress. $\boldsymbol{\Lambda}$ speculative individual had collected all the waters of the neightourhorel into an immense reservoir, whence he supplied them to the cultivaturs for purposes of irrigation; but this receptacle, not being fully secured, burst at ono pmint, destroyed part of the suburbs of lorca, desolated a great extent of country, and reached even Murcia. Totana, a populous village, is enriched hy the copieus production of barilla in its neighbourhool. The castle of Almanza (fig. 314.), picturesqueiy soated on a hoight, is noted as the spot near which, in 1707, was fought the celebrated battle which decided the Spanish succession in favour of the house of Bourbon.
Carthagena, situated in Murcia, though senreely belonging to it, forms one of the few great Spanish emporia, and contains 37,000 inhabitants. This celebrated capital of ancient Spain was founded by Asdrubal; and when enptured by Scipio, in the yenr of Rome 550 , was considered one of the moet opulent cities in the world. It was nearly destroyed by the Vandnls, but was restored by Philip II., and hus ever since continued to fonrish. It enjoys one of the finest ports in Europe, consisting of a buy sheltered by high mountuins from almest every wind. The staples are the same as at Alicant. The revenue, rased by a small though impolitic duty on the export of barilla, ameunts to 25,0002 . The fishery is also considerable. There are fow Murcian residents, and the trade is carried on chiefly by English, Frencl, and Italian houses. The streets are wide, nad the houses agrecable, with terraced roofs, commanding a view of the sea; but neither here nor at Alicant are there any structures, even ecclesiastical, at all worthy of nutice.

Andalusia, taken in its most comprehensive sense, is the largest of the Spanish provinces, and, we may add, the finest and most renurkable, both as to nature and art. The Guadalquivir, with numerous and large tributaries, waters its whole extent. Its mountains, covered in many places with perpetnal snow, are the loftiest, its valleys the most fruitfil, in Spain. Andulusia, indeed, comprises four celebrated kingdoms; Granada, Seville, Corlova, and Jaen, and contains grent capitals founded by the conguering Moors, which were the ecats of science and splendour, when the greater part of Europe was plunged in rudeness and barbarism.

Granada, which is sometimes called Upper Andnlusin, was the central sent of Moorish power and magnificence. Even umid the general decline of that power in Spain, Granada was still supported by the multitudes whe resorted thither from the subdued provinces. Its fall, in 1492, was considered the most deadly blow which Islumisin ever received; and in all the mosifues prayers are put up every Friday for its restoration. Grunada presents a wenderful combination of all that is most wild and sublime, with what is most soft and beautiful in natural scenery. South from the capital rises the Sierra Nevadn, covered, as its name imports, with perpetual snow to a great depth. Mulhacen, the most elevated peak, is 11,660 feet nbove the sea; while the line of perpetual snow begins at about 10,000 feet. The Alpujarras, a lower range, are cultivated with considerable diligence, by descendants of the Moors, a remnant of whom found refuge here, amid the general proscription of their race and nation. The Vega or plain of Granada, watered by numerons streame descending from the high regions, displays nature in her utmost pomp and benity.

The city of Granada is in the heart of the Vega, beneath the loftinst heights of the Sierra Nevada. This city still displays ample inonuments to attest the period when it was the great western capital of the Moslem worll. Nothing can excced the beauty of its approach. "The rich and populous country well supplied with trees, the clear rivulets descending from the mountains, and artificially contrived to intersect it in every part; the splendid city extending in a half-moon from the river, on the gradual nscent of a hill; the streets rising above each other; the profusion of turrets and rilded cupolas; the suminit crowned with the Alhambra; the background composed of the majestic Sierra Nevala, with its summit covered with snow; complete n scene to which no description can do justice." Mr. Jacob, who thus deseribes the seene, considers it not too much to have travelled two hundred miles of bad road to see it. The interior, as in most Spanish and especiully Mohammednn cities, does not correspond to the approach. The streets are narrow, the walls high and gloomy; many quarters are now deserted; and marks of decay and splendid poverty are every where visible. Its population, once comprising 400,000 souls, is now reduced to 80,000 . But the eye of

Boos 1.
SPAIN.
the curious traveller is scon attracted towaris the Alhambra ($/$ Ir. 315.), the ancient palace

315
 and fortress of the kinges of Granada. It is the noblest apecimen existing of Moorish architccture; and nothing perhape in Furope, out of Italy and Grecce, can come into competition with it. The site is fine, resembling that of Windeor, on a hill above the river. Its exterior structure, however, is the reverse of beautiful: a hugo heap of ugly buillings huddled together, without the least seeming intention of forming ono habitation; the walls only gravel and pebbles daubed over with plaster. On entering the threshold, however, the visiter seems transported into a fairy seene. He passes through a rango of npartmenta ; tho baths, the Court of the Lions; the Hall of the Abencerrages (fig. 316.); the Golilen Saloon, or

Hall of the Ambassadors; the Gate of the Sanctuary of the Koran (fig. 317.); the Tower

318

Mosaic Pavement.
Vou I.
of the Twe Sintern; with otherm, in which the various remources of Oriental pomp are displayed, aloug with all thant can refleuh the eye or the menne in a multry clinute. Ithe courtn are all paverd with marble, and murroumed with marblo pillarn, in a pure and heantifile tastu; and the wille nad pavement are profinely ornamented with gilded arabesque nnd mowaio (Ag. 318.), the colourn of which, by an ari which seemin to have beens lowt with the Menirn, are as brillinat an when they wero lirat laill on, tive humired yearn ago. Whtar la madn to epout into the uir, of, in sunooth mheetn lardersid with flowern, refreshen the interior of the apartmenta. Atter the expulsion of the Moore, Charlem V. built on part of ita nite a new palace, the extermal architecture of which was much auperior ; but it wau nevar fiminhed. The Generahifo in nuothor Moorish palace, inn a more elevated and finer situntion; but itn interior uplendour, though great, is quito eefipmed by that of lim neighbour. The cathoiral, though it must ylehd to these Moxrinh structuren, in yet of considerable extent and benuty. Granada in the gont of one of the two high courte of chancory, and of other tribunala of high juriadiction. It retaine a certain pruportion of ita former immenee ailk manufiacturen, with mome of woollen and leather; und a considerable number of perwona are employed in extracting the nitre with which the neighlouring moil is copionsly impregnated.
Maluga ham in ueslern timea attained a greater importance, and in reckoneal the thirsl port in the kinglonn, runking next to thone of Calizand Barcelona. The chiof foumation of ith trale in the fine wine called Mulaga or monntain, produced in the numorous hills bohind it. It is raisel at very great expense, and only upon the declivitien which have nn exposurn to the wun. The country prolnces almo very fine raisinn nnd other fruitn; nnd anchovien, caught and eured on the coust, have been sold to the annual extont of 20,010 quintals. Mnjagn in the only great Npanish prort of which the exports have alwayn exceeded the imports. Malaga han a very necure though not extennive lanrbour, forned by nrtificial melen. It lion in a deep bay on a little plain overhung by lofly nnd craggy cliff, which at a distance nppear quito naked, thit on approaching, every crevice is found to he filled with vines. This situation renders the heat very severe, and has aided in expowing the inhabitants to the dentructive ravages of pestilential fever. The atreets are close, narrow, and dirty; but the eathedral is a very nolle pile, and contains paintings hy great \$panish masters. Population 62,000.
Other very considorablo towns occur in Granaln. Five leagues to the east of Malaga is Velez-Nalagn, mont delightfilly situated in a plain divernified by numerons gentle hills, clothed tu the sumenit with vines, whilo the plains helow wave with luxurinet harvents of grain. Farther east are the atmall ports of Notril nud Almeria; the latter ancient, and celebrated in the history of the Moors, under whom it was highly prosperous and flourishing. Near it is the rock of Filabres, $\mathbf{S O}(1)$) feet high, composed of n single hlock of white marble; and beyond it stretches into the sea the lold and huge promentory of Cabo de Gatn. Guadix, Baza, and Purchena, are considerable interior towns, in the earteru part of this province, meated in valleys encloned thy the numerous ranges of hills which intersect it, Santa F'é, two leagues west of Granafa, is remurkably expmed to carthquakes, which have split its cathedral in two, and laid open the celle of one of the convents; yet the citizens ntill inhabit and keep it in repair. Athama is strikingly situated amida a circuit of precipitous rocks, through which danlies n rupid stream. It is frequented for the mulubrity of its nir, and for its medicinal aprings and batlis. Antequern is very uncient; pilled with Roman and Moorish monumente, and still lurge; the adjneent conntry is very fertile, nnd distinguinhed for the variety both of its vegetable and mineral proluctions. Population $20,(\mathrm{KK}$. Ronula, (figr, 310.)

319
 capital of a wide mountain distriet, is singularly situated on a rock with perpendicular cliffe and broken crags, through a deep fissuro in which the river tlows, and surrounde the city on threo aides. It in crossed by a stupenduis bridge 110 feet in lianeter, and 280 feet in height. Stairs of 350 stepe lead down to the river, and gardens have been formed on some level projecting points of the precipice. The monntaineers of Rondn are an honest, active, harly race; nol so healthy as to make it a proverb, that "at Ronda n man is a boy nt ciglity." The vicinity of Gibraltar gives them great opportunities for smuggling, which they carry on in large bands, and in open resistance to government, without, however, incurring any imputation on their general loyalty.

The kingdom of Seville, west of Grannda, is a still finer region, and perhaps superior to any other in the Peninsuln. Its plains are the most productive in wine, oil, and fruits; the noble river Guadalquivir cenveys its products to the sea; and Seville and Cadiz are, in some respects, superior to all other Spanish cities,

Boos I.
Weville (fig, 32a) is nituated in the miket of a tertile and delighttinl phin, and nenr the
 munth of the (iondntyuivir, which formerly admitted vewels of large size: it was is great city tron the enrliest perioul. Hy the Romanas it wha celeliruted under the appellatiens of Ilimpelin: ite limulation was ancriked to llercules ! anul, with tho neighlaniting colony of Padien, it formed the enpitul of Dhitiea. Under the Monrs it lineanie an indepreulent kingdom; and If it be true that, on itw enptufe hy Ferdinand the Catholic, $4(0)$, th 00 Moors marchest ont nt one of its guten, It must indoed have been an inmense city. Notwithatanding the depropilation this oceanioned by bigotry and trenchery, it suon became moro splendid than over, in cennepnence of becoming tho emporimn of tho wealth which flowed in from tho western hemisplicre. Its manaficturing industry was then nlso very flourishing. Hy a roturn made to govermment in
 men. It frepuently received an iscrease of' splendour ly becoming a royal residence. Since the nlave period, Nevillo hus not only declined with the graduif dechie of Spain, but haw sul!cred by the filling up of tho channiol of the Gundalguivir, which has rendered it nnvignble only for small shins, aud hus transiferred to Cudiz tho connuerce of Americn. Seville is
 ticularly those of Moorish origin, its streets are narrow, winding, and dirty; but it containa some splendid public edifices. Foremont stands the cathedral, tho Jargeat eeclesinstical atructuro in the Deninsula, 420 fect loug within, and 378 broad; but tho mowt striking feature is its tower, originally erected by tho learned Geber or Gunver, and usel as an olwervatory, but rnised loy the Cliristians to the height of 3 in 0 fiect. Many of the convents also aro very aplendid, nad previons to the Inte invasion by the Fremeli eontained numernus works of the gruatest Spunixh artists, of whom Sevillo was the chici' nurse. There was, ubuve all, a splendid collection of the works of Murillo, the prince of these nrtista, nad a native of Seville. Of these treasires the city has lxen in a areat mename despoiled by the raviges of the invader; Marshul Soult, in partienhar, had in his collection numeroms masterpinces of Murillo, by which the convente of Suville were formerly adorned, Seville han still :500 silk lowns; and governinent muintnims a cummon feundery and a tolaceo matufictory. The Lixchango and tho Marino Aeudemy nre also handsome edifices.

Cadiz (fig. $3: 1$.) in, in an equal degree with Seville, the loant of $\mathbf{S p n i n}$, In the emmer-
 cial aunals of the world no city is of higher nntiguity. Tartessins, occupying a sito in its vicinity, was one of the carliest and most flourishing Phonician colonien, Atterwards Gadoira, or Gades, why recognised by the Greeks und Romans an one of the chief Furopean euporia, In modern times, whell comueree dill not form part of tho Europenn systeln, Cadiz declined into a sccondary runk; anil tho intercourse with America was at first nearly monojolised by Seville. The circumstances which transferred it from that city to Cadiz took place early in tho last century, when the latter rose to ho the chief theatro of Spanish commerce. It enjoyed for some time the entiro menopoly of the American trade; and oven when, in 1778, it was throwis open to the whole kinglom, it hal taken such deep root in Carliz as to frustrate all fompetition. In 1784, when the entire imports from America wero $12,6330,000)$. that city, fur its share, had 11,280,000l. ; and of tho whole exports, amounting to $4,300,0001$., it had $3,000,0001$. Notwithatanding severe shocks, in consequence of political revolutions, and tho war with England, it always revived, and derived a temporury greatness from becoming the capital of the constitutional government. It received, however, its mortal blow ly the separation of the colonies. The merchants, deprived thus of almost their only enployment, have been reduced to the funds already accumulated, and havo in a great measure retired from the confined situation of Cadiz to the pleasant sites and villages which ure seattered round the bay. The city is situated on a small neek of land, at the point of the long Isle of Leon. It does not boast sny remarkable structures, but tho whole is elegantly built in regular squares, and streets with a equare court in the centre and an awning over it. Population 53,000.

Gibraltar (fg. 322.), though no longer Spanisl, forms also a striking and importunt fen-

Gibraltar. ture in this province. This rock is celebrated from the earliest antiquity as one of the two "Pillars of Hercules," which guarded the entrance into the Meliterrancan; though Mount Calpe, on the opposite side, is cousiderably loftier. In 1704, Sir George Rooke and Sir Cloudesley Shovel carried this fortress by a coup de main; since which time Spain has vainly attempted to regain possession of it. Her grand effert was towards the eiose of tho American war, when the fleets of France and Spain rode masters of the sea. A combined nttack was made on the 13th of September, 1782, by the two powers, with fifty sail of the line, 30,000 troops, and ten mighty floating batteries, which were expected to demolish all opposed to them. They kept up a tremendous fire from ten in the morning till midnight, at which time smoke and fire were seen rising from the batteries which before next morning were reduced to ashes, with a dreadful destruction of the assailants. No subsequent attempt has been made; nature, in fact, has rendered Gibraltar almost impregnable. The rock is pracipitous on all sides, and is connected with the continent only by a narrow neek of marslay ground. The western front alone towards the sea is in any degrec aecessible; and this is defended by batteries cut in the solid rock, and by otler works so extensive and so well planned as to bid defiance to any future effort. Gibraltar has one handsome street, the houses of which are built in the English style, with trees and flowers skilfully planted in scanty fragments of soil. The rest of the town is close, crowded, and dirty, inlanbited ly about 20,000 people, chiefly Moors and Jews, the latter of whom have sought refuge liero in great numbers from Spanish bigotry, and have four synagogues. The expense of maintaining Gibraltar is considerable: but it forms an important naval station, a depôt for the commerce of the Mediterranean, and a elannel for introducing into Spain great quantities of goods, declared contriband by the jealous policy of that country.
Among other places of some importance is Tarifa, the most southern point of Spain, and even of Europe, and the probable place of the landing of Tarik, with the Saracen srmy destined for the conquest of that country. Seated on an almost insulated rock, it is still a fortress of some strength. Algesiras, on the opposite side of the hay, has grown up as a small rival to G1braltar; its population consists chiefly of smugglers and adventurers. In the interior is the flourishing and populous town of Xeres, sitnated in a wide region of vineyards, producing the wine cailed Sherry, the consumption of which is so general in this country. Mr. Jacob supposes the entire produce to be 40,000 pipes, of which 15,000 ure exported, one half to Britain. Eeija, a large town, was famous as a seene of contest between the Christians and Saracens, and afterwards as the head quarters of a most formidable band of robbers; but its walls are now in ruin. Lebrija and Carmona are ancient towns, containing Roman monuments of considerable grandeur. The districts to the north and west of the Guadalquivir are mountainous and rugged; though Huelva and Moguer, at the mouth of the Tinto, and Ayamonte, at the mouth of the Guadiana, derive some importanee from their situation, and carry on a little fishery.
Cordova (fig. 323.), on the upper part of the course of the Guadalquivir, is another kingdom of Andalusia, deriving its chief interest from the celebrated capital of the same name. Corduba, founded by the Romans, was not only a provincial capital, but the seat of an university, which could bonst the great mames of Seneca and Lucan. It displayed, however, a far ligher pomp, when, after the Saracen conquest, it became the first capital of the Mohammedan empire in Spain. Under Abdelrahman and Almansor, it is represented as containing 1600 mosques, and nearly $1,000,000$ people. Almitting a certain exaggeration, its past greatness is elearly attested by the vast and now almost empty circuit enclosed by its walls, in a great measure filled with palm trees and gardens, and by the astonishing remains of its mosque. This vast edifice presents notling very striking in its exterior. which is in a great measure hid by the surrounding streets. But when the stranger enters any one of its nineteen grates, he is astonished and bewildered by the endless labyrinth of columns which streteh before lum in every direction (fig. 324.). These columns have almost detied the attemots to number them; by one writer they have been estimated at 1400, but are generally

Part III. portant feais roek is intiquity as Hercules," e into the unt Calpe, onsiderably Rooke and ed this forince which apted to rerrand effort Ainerican attack was ine, 30,000 opposed to which time ere reduced t has been precipitous thy ground. is defended anned as to s of which agments of 000 people, mbers from litar is conie Mediterred contr2-

Spain, and my destined fortress of nill rival to a interior is , producing Mr. Jacob one half to ristians and ers; but its man monutuadalquivir :Tinto, and tuation, and
other kingeriving its celebrated ame. Corconans, was eapital, but sity, which aunes of Se displayed, romp, when, quest, it beof the Moited as congeration, its losed by its ing remains hieh is in a y one of ites mus which etied the atre generally

Boor 1.
SPAIN.
689
stated as exceeding 400, dividing the mosque into nineteen aisles, and producing a perpetual and surprising change of scene to the visiter. The edifice, however, though it astonishes by its

324

Interior of Mongue al Cordova. inmmensity, does not equal in elegance those erected during that more refined age when Granada became the capital. The Cliristians have converted it into a chureh, and erected in the centre a choir of great beauty, but quite out of harmony with the Saracenic part of the structure. Cordova, though its days of splendour aro long departed, still enjoys delightful environs, producing a breed of horses the finest in Spain, of which a splendid stud was lately kr 'm 'y the government. There is ulso somo remnant of its once extensive manufactures, particularly of that fine species of leather called from it Cordovan. The population is 57,000 .

Jaen ranks as a fourth kingdom, though it cannot enter into any rivalry with those already deseribed. Its capital, of the same name, however, though little known, from its de tached situation, is still a large city, the see of a bishop. Andujar is a considerable place, with a very ancient castle, at the entrance of the defiles of the Sierra Morena; and to the north of it is Baylen, where the Spaniards gained that signal vietory which caused the surrender of Dupont and his army. In the upper part of this tract are the settlements of La Carolina, where an expanse of rude mountain waste has, by German and other colonists, been conve: ted into a productive territory.

The Balearic Islands, Majorea, Minorea, and Iviça, with the minor ones of Cabrera and Formentera, form an appendage to Spain of some importance and celebrity. The Bolearian slingers are celebrated in the military annals of antiquity; but the islands in general followed the political fate of Spain. Majorea, the largest, about forty miles in length, and thirty in breadth, possesses very considerable natural advantages. Several mountain chains, varying from 1500 to 4500 feet high, penctrate its centre, and defend it both from the excess of the heat and the violent action of the sea-breezes. Its summits are somewhat arid, but the intervening valleys are thickly elothed with olive trees; and corn and the vine grow luxuriantly, though with imperfect culture, on the plains below. Oranges and citrons flourish so abundantly in the northern district, that 20,000 mule-loads of them are exported to France and Catalonia. M. Cambassedes values the entire produce of the isle, in 1820, at $53,000,000$ reals, about $\$ 3,000,000$. Of this, about $34,000,000$ are in grain and pulse, $5,000,000$ in oil, and $2,500,000$ in wine, $1,500,000$ in fruits, $3,000,000$ in hops, and $2,000,000$ in sheep. Palma, the capital of Majorea, is a considerable town, slightly fortified, inhabited chiefly by the nobles, who possess the greater part of the isle, and have rarely sufficient activity or curiosity to visit their estates. In no Spanish city are indolence and superstition more prevalent. There are thirty convents, some of which enjoy a revenue of $\$ 10,000$ a year. Processions and religious festivals, celebrated often with great tumult, form the chief amusements. In these it is customary to deek up figures of Judas, with tablets containing the enumeration of his erimes, among which that of being "ehief of the liberals" was lately included! Population 34,000.

Minorea is a much sunaller island, more barren, covered with bare and rocky mountains, and destitute of any trees at all lofty, the growth' being prevented by the violent winds from the sea. But it is distinguished for one of the finest harbours in Europe, Port Mahon, which being strongly fortified, has been a subject of cager contest to the maritime nations. Having been taken by England in the Succession War, it was recovered by the French in 1756, notwithstanding Byng's attempt to relicve it. After several other vicissitudes, it remained with Spain. The harbour is extensive, possesses deep water, and is sheltered by hills on each side from every wind. The town has nothing of a Spanish aspeet; the streets being broad, the houses small but neat, the people a stirring and active race, who scarcely allow themselves to be called Spaniards. During the late French war, being protected by the English navy, they made considerahle wealth by privateering. Ciuidadelfa, though of snaller extent, is the nominal capital, and the residence of the nobility. Iviça. or I .za, is a small isle, of rugged surface, which forms one immense mountain, shooting lop into a variety of summits. The island is thus refreshed by cool breezes and numerous streams, and yields readily all the productions of this elimate, particularly figs. In the quarter calteil $\mathrm{I}_{\text {ais }} \mathrm{S}_{\mathrm{i}}$ linas, salt is evaporated by the heat of the sun, and exported to the extent of $1 \overline{5}, 000$ tons.

[Sect. VIII.-Republic of Andorra.

This little republic, with a territory of hardly $\mathbf{2 0 0}$ square miles, and a population of about 15,000 souls, has been overlooked by the author of this work. It occupies a valley on the southern side of the Pyrences, situnted between the Maladetta and the Moneal, and lying

Vol. I.
between Foix in Franee and Urgel in Spain. Beside Andorra, the capital, a town of 2,000 inhabitants, it contains five villages, which export iron and timber. It is governed by a Syndic, who presides over the council of the valley, and by two Viguiers, appointed the one by the king of France, and the other by the bishop of Urgel.-Am. Ed.]

CHAPTER X.

PORTUGAL.

Poatvoal has by political causes alone been separated from Spain. There is no physical peculiarity by which the two kingdoms are distinguished. On the contrary, all the grand natural features of Spain are prolonged into Portugal, and become Portuguese.

Sect. I.-General Outline and Aspect.

The houndaries of Portugal are the Atlantic Ocean on the west throughout its whole extent, and also on the south; on the north the Spanish kingdom of Galicia; and on the east those of bestremadura and Leon. The greatest dimension is from north to south, or from 37° to $42^{\circ} 10^{\prime}$ north latitude, and it extends from $6^{\circ} 15^{\prime}$ to $9^{\circ} 30^{\prime}$ west longitude. Its surface is 35,800 square miles.
The mountains of Portugal may be considered as prolongations of those of Spain, chiefly of the chains ol' Guadarrama and Toledo, and these in the north of Galicia. Those ranges, seldom rising to the first magnitude, cover almost the whole country, leaving between them many picturesque and fertile valleys. There are only two extensive plains, one on the south of the Tagus, and the other between the Mondego and the Douro.
The rivers of I'ortugal consist chiefly of the spacious terminations of the greatest streams of Spain in their progress to the ocean. The Douro forms the great maritime emporium of Sporto, and the Tagus that of Lisbon. The Guadiana, also, in its lower course, flows alung the eastern frontier of Portugal. The Minho, a much smaller stream, comes duwn from Galicia; and the Mondego, alone, is entirely Portuguese, flowing nearly across the breadth of the kingdom.

Sect. II.-Nalural Gengraphy.

Subsect. 1.-Geology.

This kingdom has the same general geognostical structure and composition as Spain. The mountainous parts of the country are generally of gaeiss, mica slate, and other Neptunian primitive strata, occasionally intermingled with Plutonian rocks of granite and porphyry. Secondary formations of limestone occur in the Sierra d'Estrella, and in the vicinity of Cape St. Vincent, and all around Lisbon and at Cape St. Vincent the strata are of rocks of the tertiary class, more or less intermingled with trap roeks.
Mines. It appears that the Carthaginians wrought tin mines in this part of the Peninsula. It is asserted that there were formerly mines of tin stone in the granitic mountains of the neighbourhood of Viseu, in the province of Beira, at the place called Burraco de Stanno. Lead ores were worked in the last century, not far from Mogadouro, on the banks of the Sabour, in the province of Tras os Montes, and near Longroiva, on the banks of the Rio Prisco. Near Mogadouro, mines of graphite or plumbago oceur. Iron mines also occur in the same country, near Felguiera and Torre de Moncorvo. They supply the iron forge of Chapacunla. Two veay old establishments of the same kind oceur in Portuguese Estremadura, one in the district of Thomar, the other in that of Figuero dos Vinhos. They are supplied by mines of red oxide of iron, situated in the frontier of that province and of the province of Beira. There is a deposit of cinnabar at Couna. The mountains of the neighbourliood of Oporto everywhere present indications of copper and of other ores. In Portugal, as in Spain, the sands of rivers were washed for the gold they contuin; and it is said in this way large quantities of the precious metal were collected. At present there is but one gold mine in Portugal, at a place called Adissa, in the district of St. Ubes. Its annual produce is triffing: in the year 1815 it was 41 lhs, of pure gold; 1816, 18 lis. ; 1817, 11 lbs.; 1818, 12 lbs. ; 1819, 13 lbs ; 1820, 12 lbs ; and in 1821, 18 lbs. Beds of conl occur at Vialonga, to the N. N. E. of Oporto; and there is a mine of coal at Cabo de Buarcos in the province of Beira.

Subsect. 2,-Botany.
The botany of Portugal is included under that of Spain.

Subsect. 3.-Zoology.

The zoology cannot be very different from that of Spain; but no documents have appeared to illustrate either the one or the other. The horses are rather small, and altogether infe-
rior; but the mules are fine, and nearly equal to those of Spain. Improvement, however. is neglected; nor have the indolent Portuguese profited by crossing their shecp from the merinos of Spain. A long-legged race of swine is common to both kingdoms, and furnishes excellent hams.

Sect. III.-Historical Geography

The Carthaginians and Romans who occupied the Peninsula, did not recognise Portugal as a distinct country. Their Lusitania included a part of Spain, and did not comprise the whole of Portugal: Merida, in Estremadura, was its capital. Portugal, like Spain, submitted successively to the formidable irruptions of the Goths and of the Moors.

The existence of Portugal as a distinct kingdom dates from the commencenent of the twelth century. At that time, Henry, duke . Burgundy, having married the duughter of the duke of Castile, obtained as her dowry the ..urthern part of Portugal, which had been rescued from the Moors. The capital, at that time, was Porto or Oporto, whence the modern name of the kingdom appears to be derived. His successors gained a series of conqueste, and obtained possession of Lisbon and the southern provinces, earrying their conquests to the frontier of Seville.

The fifteenth century, and the reigns of John and Emanuel, formed the true era of the greatness of Portugal, when it outshone all the other kingdoms of Europe. Confined on the land side within narrow limits, it opened for itself a vast carcer of maritime discovery and conquest. Spain, indeed, shared this pursuit; but her first acquisitions were made by private individuals, partly foreign, with only faint assistance from the government; while the Portuguese expeditions were planned, fitted out, and all the resourcea for them supplied by the government. Their flag, at one time, floated victorious over all the eastern seas; while in the west, by the possession of Brazil, they came into some competition with Spain.

A disastrous eclipse of the Portuguese monarchy took place in the sixteenth century, in consequence of the rash and romantic expedition undertaken by king Sebastian into Morocco, where he himself and the flower of his troops were cut off. IIcreupon Philip II. of Spain, a powerful and ambitious prince, raised a claim to the succession, which the superiority of his arms enabled him to aecure. Portugal, with all her eastern and western possessions, then became an appanage to the crown of Spain. The connection was every way unfortunate. Not only did she lose her political and civil liberty, but many of her finest foreign possessions were wrested from her by the Dutch, the spirited and active enemies of Philip.

The restoration of the monarchy, in 1640 , was still more sudden than its fall. The deeprooted indignation of the people was combined into an extensive conspiracy, which, having been concealed to the last moment, burst forth at once: the Spaniards were driven out, and the duke of Braganza raised to the throne, under the title of John IV. Yet Portugal did not thus achieve any revival of her ancient glory. The new monarch soon re-established absolute power: a sluggish and indolent claracter pervaded all the departments of governnent: its foreign possessions were lost or neglected; and Portugal continued a stranger to all the improvements and energies which raised Britain and France to the first place in the system of Europe. Yet, during this period, the elevation of the Bourbons to the Spanish throne, led to a very intimate alliance between England and Portugal, the natural foe of Spain. It wus cemented in 1803, by a commercial treaty, in vihich Portugal secured an exclusive market for her wines, while Britain obtained a market for her woollens, and an arrangement by which the gold of Brazil might find its way into her ports.
The recent convulsions of the Peninsula have been very amply shared by Portugul. Regardless of the neutrality which she had strictly maintained, Bonaparte, by a most unprovoked aggression, sent Jurr c, in 1807, to take possession of Lisbon. The king did not attempt a vain resistance, but sailed for Brazil, and established his court at Rio de Janciro. The British arms, and the glorious achievements of Wellington, riave the French out of this part of the Peninsula, and finally out of the whole. Afterwards I'ortugal imitated the cxample of Spain in compelling her monarch to grant a representative constitution; but again, by a counter-revolution, she re-cstablished an absolute monarchy. More recently, on the death of the late king, Don Pedro proclaimed the separation of Brazil from Portugal, reserving the former to himself, but granting to the latter a charter, the observance of which was made the condition of holding the throne.

Seot. IV.-Political Grography.

Portugal, after the downfall of the feudal system, and especially after her subjection to Philip II, became one of the most absolute of European governments. The Marquis of Pombal and one or two more enlightened men found their way into the ministry; but, in general, measures were as ill condueted as possible, and corruption prevailed in every department of the state. The course of justice was equally polluted; and, no adequate salaries being allowed to the judges, they were under an almost irresistible temptation to accept bribes.

The pride of the nobles was nearly as great as in Spain, without being accompanied by the same lofty sentiments. They are divided into two branches, the titulados and the hidalgos, and have held the peasantry in a subjection little short of slavery.
The army of Portugal, prior to the revolution, though composed nominally of $\mathbf{3 0 , 0 0 0}$ men, was in a most inefficient state, not through want of physical courage or discipline in the men, but from the incapacity of the officers, and the general defects of the military system. When the French, however, had been driven out of Portugal, an army of 40,000 men was levied, and disciplined by British officers, under the superintendence of Lord Beresford; and thus prepared, the Portugucse acted, during the eventful war which followed, in a manner that would not have disgraeed any troops in Europe. The arny is still maintained; and though the new government will not brook British command, yet, under its influence, Portuguese officers of merit have been formed.
The navy, which was never considerable, was carried out with the royal family to Brazil, and has never been restored.

Sect. V.-Productive Industry.

The industry and commerce of Portugal, which presented so brilliant an aspect during her era of prosperity, have sunk lower than those of almost any other European nation.
Agriculture did not, until very lately, experience any of the improvements which have become general in the rest of Europe. The plough is composed of three pieces of wood awkwardly put together, and imperfectly aided by the clunsy machinery of wheels. Though generally very fertile, this country did not produce a third of the grain necessary for the supply of its inlabitants. Of late some improvement has taken place, especially by the introluction of potatoes; and the dependence upon foreign supply has been considerably diminished. The chief object of attention is the vine, which, with the olive and other fruit trees, is cultivated with the utmost diligence in the valleys and on the sides of the hills, in the elevated province of Entre Douro e Minho. Here is produced abundantly the port wine, which forms the main basis of Portuguese trade, and finds so copious a market in Britain. The entire produce is estimated at 80,000 pipes. Of white wine Portugal produces about 60,000 pipes; but this is of inferior quality, and chiefly consumed at home. Sheep are bred on the hills, to a pretty large extent; but not so abundantly as in Spain, neither is their wool so fine.
The manufictures of Portugal scarcely deserve to be named. Little is known beyond the working of their wool for domestic use by each family or neighbourhood; all their finer fabrics are imported. According to a late observant traveller, ignorance, or at least an imperfect knowledge of the commonest arts, is conspicuons among the Portuguese. Their earpenters are the most awkward and clumsy artisans that can be imagined, spoiling every thing they attempt; the wool-work even of good houses being finished in a manner that would scarcely be tolerated in the rudest ages. Their carriages of all kinds, their agricultural implements, locks, keys, \&c. are ludicrously bad. Working in gold and silver plate forms almost the only exception; cambrics also are well made in some places; and a few other local objects might be enumerated.

Of mines and fisheries, the former is not at all cultivated, though great materials for it are said to exist; but in the absence of trial this may be only conjecture. Fish of the finest kinds, particularly tunny and sardinias, are caught in considerable quantity for immediate consumption; but the salt which the kingdom so abundantly produces is not used for preserving them; and a large import of salted firs; is still necessary to meet the wants of a population so rigidly Catholic.
The commerce, which formed the greatness of Portugal, when her ports interehanged the products of the East and the West, is now a mere shadow. The loss of her Indian possessions, and the separation of Brazil, have reduced her to the common routine of export and import. The staple of the former is port wine, for which the market of England was secured first by favouring duties, and now seemingly by an established predilection. The wine is raised almost solely for the English market, and all of the best quality is bought up by English merchants residing at Oporto.

Another staple export of Portugal is sall, evaporated ly the heat of the sun in the bay of St. Ubes, or Sctubal, which scems as if expressly formed for that purpose. It is earried off chiefly by the English, to be employed in curing fish destined for the Portuguese market: the annual amount is estimated at 100,000 tons. There is also a considerable surplus of wool, of which 1,000,000 lbs. weight have been imported into. England in one year; but as it is not so fine as that of Spain, the duty imposed by the British landholders has greatly checked the importation. In return, Portugal takes grain, salt-fish, and a variety of manufactures, chicfly from Britain; but as her inports cannot much exceed the exports, she cannot afford a very copious market.
The internal communications of Portugal consist of the several noble rivers which traverse her territory, and which are navigable throughout. The intercourse by land is rendered very difficult by chains of mountains extending in the same direction. Nothing has

Boos 1.
PORTUGAL.
been attempted on any important scalp, either to improve these advantages, or to amend the defects; so that travelling is worse in Portugal than in any other European country.

Sect. VI.-Civil and Social State.

The population of Portugal, according to the last census, which was taken in 1798, amounts to $3,683,000$; calculating at the somewhat high estimate of five to a family. According to more probable estimates it now amounts to $3,530,000$. Upon n surface of 39,800 square miles, this gives a density of about ninety-one to the square mile, which is remarkable, ns excecding that of Spain nearly in the proportion of three to two. The exemption from the mesta, and the high cultivation of the provinco of Entre Douro e Minho, appear to be the redeeming circumstances in her case.

No nation, as to character, owes less to the opinion of the world, than the Portuguese. They are described as indolent, dissembling, cowardly, destitute of public spirit, and at the same time fierce and deeply revengeful. In Spain it is said, strip a Spaniard of his virtues, and he becomes a good Pertuguese. From a late minute inspection, however, the peasantry

(fig. 325.) have been pronounced to be a fine people; and, on repeated occasions during the late war, they displayed energies not unworthy of their ancestors, in an age when their glory resounded throughout both hemispheres. Almost all, however, that floats on the surface is base and degenerate. There cannot be a doubt that this may be greatly ascribed to priestcraft, to the stupifying influence of a Bluggish and tyrannical government, and to the general corruption which has pervaded all the branches of administration.
The established and exclusive religion is the Catholic, in its extreme and most degrading excess; and the body of the people are almost entirely under the thraldom of the priesthood. The burning of Jewa continued till within the last half-century. The physiognomy of a large proportion of the people shows their descent from this hated race, whose tenets many, it is pro-

328

bable, still cherish in secret. There are, in Portugal, about 550 religious houses, of which 150 are nunneries* (fig. 326.). The number of two archbishops and thirteen bishops is not so disproportionate.

The literature of Portugal, during the period of its glory, was by no meane contemptible. The genius and fate of Camoens spread his name throughout Europe, and entitled him to rank among the few modern epic poets. By the students of Portuguese literature, however, San Miranda and Antonio Ferreyra are reckoned scarcely second to him; and Rodriguez Lobo held the nation long enchanted by tho sweetness of his pastorals. At the same time Di Barros, Castanheda, and Faria y Sousa, recorded, in magnificent though somewhat inflnted historical narrative, the mighty exploits of their countrymen in the African and Indian seas. The subjection to Spain gradually divested Portuguese literature of its manly and energetic character. The muse of history was silent; poctry assumed the form only of the somet, and Gongora infected it wholly with a strain of false and meretricious ornament. The house of Braganza for some time did little for knewledge; but in the beginning of the last century, the Conde de Ericeyra introduced the French literature, and founded a royal academy. In the course of the century, Barros Pereyra, Antonio da Lima, Manuel da Costa, a Brazilian, Correa Garcas, and Paulino Cabral, a bishop, made not unsuccessful efforts to revive the ancient Portuguese poetry, and to introduce that of Italy. Portugal has two universities. That of Coimbra, founded at Lisbon in 1290, was transferred to Coimbra in 1308. It enjoys some celebrity, is divided into eighteen colleges, and is still attended by several hundred students; but the course of study is of that obsolete description which prevailed during the middle ages. A smaller university was founded at Evora in 1578.
For the minor particulars of nmusement, dress, food, \&c., reference may be made to Spain, as Portugal has no peculiarities that are more than provincial.

Sect. VII-Local Geograph!.

Portugal is divided into the following six provinces, several of which, like those of Spain, in reference to events in their past history, are sometimes called kingdoms:-

[^26]

Estremadura occupies a great extent of const, both to the north and south of the Tagus, without ever penetrating very deep into the interior. It presents a rocky, varied, and pieturesque surface. It is chiefly important, however, as containing Lisbon, the eapital.
Lisbon (fig. 327.) is situated near the mouth of the Tagus, which may here be almost

327

Lisbon. considered an arm of the sea, since not only the tide flows up, but the water is salt, and the swell often tempestuous. The approach to it presents a more magnificent spectacle than that of perhaps any other city of Europe. Lisbon rises direct from the water, crowning the sides and summits of several hills; which, according to the Portuguese, are seven in number, like those of Rome. The palaces, eonvents, and churches, which crown this amphitheatre of buildings; the dazzling whiteness of the houses; the light appearance of the windows and balconics; the tasteful arrangement of plants, shrubs, and flowers on their roofs and terraces; the golden orange groves which adorn the suburbs, and the stately specimens of Indian or American botany which are seattered through the scene, produce an effect that cunnot be described. The noble harbour, slso, crowded with vessels; the numerous pilot and fishing-boats, with their large, handsome lateen sails, ascending or descending the river; and, nearer the shore, hundreds of small neat boats, with white or painted awnings, finely vary the scene. The moment, however, that the stranger lands, and enters the place, he finds that he has been imposed upon by a brilliant illusion; and the gay snd glittering city is found to resemble a painted sepulchre. The strects are narrow and ill paved; the houses gloomy, with here and there a latticed window; filth and nui-anees assault him at every turn. Lisbon does, indeed, appear to be the dirtiest and most noisome city on the face of the earth. In passing throngh the strects, a stranger encounters at every turn the most disgusting effluvia. Every species of vermin destined to punish indolence and slovenliness, the mosquito, the scolopendra, and a species of red ant, multiply to an extraordinary degree. Nor is Lisbon found, on inspection, to exhibit that architeetural beauty which it pronises on a distunt view. It might have been expected, among ferty churches and seventy-five convents, built by a superstitious people, that there would have been some signal display of this kind; but this is not found even in the cathedral. The defect seems partly owing to the mean taste of the Marquis of Pombal, who ordered them to be all built on a line with the street, to preserve a dull uniformity. Two handsome squares, however, have been formed, the Commercial and the Roscio, which are connected by well-built streets; but the absence of trees, or even shrubs, and the blinding sand that drifts through them, combine to produce a disagrecable effect. Lisbon derives in awful interest from the ruins still left of the great earthquake of 1755, the most dreadful catastrophe which ever befell a modern European city. Six thousand houses were thrown down, 30,000 inhabitants killed; and a conflagration kindled which spread a still wider destruction. The ruins are the more dismal, as they portend similar disasters, which the earth, still heaving from time to time, perpetuslly threatens. Meantimc, Lisbon displays one very grand feature; the aqueduct, to the construction of which, though it conveys the water only half a mile, peeuliar obstacles were presented. It is carried in one place through a tunnel, and in another over a defile 230 feet deep, by arches, which are said to be the highest in the world. The width of the centre arch is 107 feet. It was built in 1738, by Manuel de Maya; and is of such solidity that it withstood the shock of the great carthquake, which only caused the keystone to sink a few inches.

The vicinity of Lisbon presents some beautiful sites and palaces. Cintra is th3 most striking, consisting of nn immense mountain, partly covered with scanty herbage, partly with broken, huge, and varied piles of rock, elsowhere presenting thick groves of cork, elm, oak, hazel, and other trees. It includes many lovely and fantseate: nots; but the visw from it is naked and dreary. The town, at the bottom, with its nalace, has nothing remarkable; hut the siles are covered with delightful villas, one of which is notorious for the signature of the unhappy convention of Cittra. Mafra is a royal convent built by John V., in emulation of the Escurial ; but though a stupendous pile, 700 feet square, and containing numberless suites of ill-furnished apartments, it ranks far below its model. Only five miles below Lisbon, of which it is considered a suburb, is Belem, the site of a palace and a very

Book 1.

PORTUGAL

magnificent monastery, founded by Emanuel, and in which many of the royal family have been interred.

There are several othor towns of some note in Portuguese Estremadura. St. Ubes or Setubal lies sixteen miles from Lisbon, on the coast south of the Tagus, on a long interior lay, the waters of which, evaporated by the heat of the sun, leavo the excellent bay-salt, one of the national staples. The town is considerable, having been well rebuilt since the earthquake of 1755, when it was almost totally overthrown. The mountain of Ursabida, here extending into the sea, forms a bold and striking promontory, covered with trece and various vegetation. Ascending the Tagus, we come to Santarem, a considcrablo and ancient town, the Presidium Julium of the Romans. It has an academy of history, established in 1747. Here the great French army, under Massena, remained long posted, unable to penetrate to Lisbon. Abrantes, higher up, is an important military position, situated on a height whence it commands the passage of the Tagus. Leiria, to the north, is an ancient town, in a most productive territory, and where a great annual fair ia held for the aupply of the peasantry of the neighbouring country round. At Batalha, is a church (fig. 328.), and monastery, which, united, form the finest structures in all Portugal. It is 541 feet by 416, and is considered by Mr. Murphy to be one of the noblest existing apecimena of the Norman

Gothic. It is constructed entirely of marble, and the front appeared to him almost unrivalled in chaste and delicate ornament. Among the different parts, the mausoleum erected in honour of King John, is pre-eminently beautiful (fig. 329.). Vimiero is only a village, but celebrated for the signal victory gained by the British over the army of Junot. Three miles distant is Torres Vedras, a tolerable old town, but chiefly noted as the centre of the grand fortified lines formed by Wellington in 1810, which so completely baffled all the maneuvres by which the French had hoped to reconquer Portugal.
Alemtejo is an extensive province, comprising the greater part of Portugal south of the Tagus. The interior presents an extensive plain; but the frontier towards Spain is finely diversified with hills, wooded mountains, and deep valleys extremely well watered, and very fertile. It contains some large towns. Evora is situated on an eminence in a fine country, and is of great antiquity. Its origin haa ceven been dated seven centuries before the Christian era. It is more clearly ascertained that the Romana made it a municipal town, and adorned it with some of their finest structures. There is a noble aqueduct, of which the piers are nine feet broad, and suppoited by buttresses; also a Temple of Diann built by Sertorius, in which great elegance is displayed. Elvas, on the Spanish frontier, immediately facing Badsjos, ia the strongest fortress in Portugal, and designed as the barrier of the kingdom. The works were constructed under the directions of the celebrated Count Schaumburg-Lippe; and the fort, bearing his name, is considered a masterpiece of the art. In this neighbourhood are also Villa Viçiosa, a pleasant town, and a favourite country reaidence of the Portuguese monarcha, who have here a handsome hunting-park; and Portalegre, a handsome little town in a delightful country, with a good cathedral. Southward, in the interior, is Beja, a Roman colony, and subsequently a strong Moorish fortress. After being nearly demolished, it was rebuilt by Alfonso III., and fortified by King Diniz, and is still a considerable town.
Algarve forms the extreme south of Portugal; and is a maritime province, bearing in an especial sense, the appellation of kingdom, since it long remained independent, and was a celebrated theatre of war between the Moors and the Christians. It is tolerably fertile in wine, fruits, and oil. Faro, the largest town, is also the principal seat of trade, and lias a
regular packet to Gibraltar. Lagos and Silves are also eld little towns, the former on the gea-coast, with some shipping. Cape St. Vincent, the extrenie point of Algarve, and the most south-westerly of the Peninsula, is celebrated for the aignal victory gained by the British fleet over the Spanish, on the 14th of February, 1797.

Beira is a very extensive province or kingdom, filling nearly the whole centre of Portugal, between the Tagus and the Douro. Its surface presents considerable variety; the interior part has the usual mountainous character of Portugal, being traversed by the great chain called the Sierra d'Estrella. On the sea-coast, however, there are plains of considerable extent. The province produces plenty of wine, oil, and chestnuts, and has extensive pastures ; but the grain is not sufficient for its consumption.
Coimbra (fig. 330.), the capital, is beautifully situated on the declivity of a hill, which rizes above the Mondege; but the
 streets, as in other old Portuguese towns, are crowded, dirty, and very steep. In former times a residence ef the kings of Portugal, it was strongly fortified, and has atood obstinate siegcs; but the remains of its walls and towers are no longer sufficient to constitute it a fortress. It has been called the Athens of Portugal, from its extensive university, containing eighteen collegcs, with forty professors, and about eight hundred students. Attached to it is a library of nearly $\mathbf{4 0 , 0 0 0}$ volumes, including numerous MSS. ; but the actual value both of these and the printed works does not seem to have been fully investigated.
Beira has other towns of some importance. Among these is Almeida, the northern barrier of the kingrom and n tortress of consequence, though not possessing the great strength of Elvas. It was twice taken in the last war, first by the French under Massena, and then by the British under Wellington. Castello Branco, on the southern frontier, notwithstanding its commanding situation, retains little importance. Lamego, near the sonthern bank of the Douro, is an ancient city, and the cradle of the Portuguese monarchy. Here, in 1143, the states-general for the first time met, recognised the fundamental laws, and acknowledged the sovereignty of Alfonso. Viseu, in the centro of the kingdom, is, like Lamego, an episcopal sec, and has the greatest annual fair in Portugal.

Entre Douro e Minho forms the maritime part of Portugal, north of the Douro. Though the amallest, it is considered the most valuable, populous, and productive of all the provinces. Its peasantry have done mucls to redeem the reproach of torpor and sluggishness generally urged against their countrymen. This district is entirely covered with mountaina, partly rugged and barren, but generally separated by fertile and well-watered valleys, cultivated to the utnost possible extent; and which, besides oil, fruit, and flax, are made to produce most copiously the wine ealled port, for which so ample a market exists in England.

Oporto, or Porto (fg. 331.), the ancient capital, and atill the second city of the kingdem, is situated near the mouth of the Douro on the northern bank, though on the southern are two extensive suburbe, bupposed to have constituted the ancient city. The modern town is

well built, especially when compared with most others in the peninsula. The river affords a tolerably secure harbour, without any artificial aid, except an elevated and walled quay, to which the ships' cables may be fastened during the floods. These often come down with auch furce, that, without such a support, the vessels weuld be inevitably carried out into the
rea. The chief dependence of Oporto is its trade with England, which remains unimpaired amid the general diminution of that with America. There are about thirty English houses regularly settled here, besides a number of merchants who pay frequent visits to the place. The exportation of port wine, however, on which its trade rests, is generally cramped by the absurd policy of placing it entirely in the hands of an exclusive compeny,* who have adopted the pernicieus practice of diluting the produce of the best vineyards with wine of those of an inferior quality, by which the character of the genuine port grieveusly suffers.

Braga, farther north, ranks as the capital of the province; and, though now far outstripped hy Oporto, is of much more ancient fame. Under the Romans it was the metropolis of an extensive district, and its former grcatness is still attested by numerous antiquities. It has made a distinguished figure in the ecclesiastical history of Portugal, and is the see of an archbishop, who is primate of the kingdom. Braga is a handsome town; well built, well paved, the streets spacious and clean. There is some industry, particularly a manufhcture of small beaver hats, which supplies a great part of the kingdom. The adjacent country is hilly, but populous and pleasant. Vnlença is a small town, agreeably situated on the Minho, which separates it from Galicia.
Tras os Montes, or the province beyond the mountnins, is of great exteut, occupying the whole interior of Portugal north of the Douro. The Cantabrian chain, after traversing Asturias and Galicia, throws out branches which not only separate the territory from the rest of Portugal, but cover almost its whole surface. They leave only deep valleys, through which considerable rivers, too rapid however to be navigable, pour down into the Douro. It is much inferior to Entre Douro e Minho, both in populousness and cultivation; yet a considerable quantity of the port wine produced grows on the sides of its hills. The inhabitants are a race of active, hardy, and brave mountaineers. They rose in great force againat the French, and have since somewhat less happily distinguished themseives by the ardour with which they fought in the cause of absolute power, and in resistance to every ferm of constitutional government.

The towna are amall, and not regularly fortified; though, from the nature of the country, they form defensible military positions. Braganza is a city of ancient note, and gave the title of Duke to the first nobleman in the kingdom, even before he was raised to the throne, by the appellation of John IV. The kings of Portugal still retain the title of Dukes of Braganza. Chaves, the Aque Flavix of the Remans, still exhibits two baths and a magnificent bridge constructed by that people. Chaves gives the title of Marquis to a family; one of whom was the most active opponent of the French during their invasion; while another has lately been at the head of the anti-constitutional arny, of which the head-quarters were always in Tras os Montes.

* [The Oporto wine company, which enjoyed this monopoly, was abolished in 1834-Ax. Ed.]

$$
\nabla
$$

[^0]: * This, and the othor athitional terms whirh filow, have been proposed as English names ly Dr. Thomss ronster,

[^1]: * Profigsar Irantess, of Breslan, has publisheed a carious Treative on Falling Slars, to which we may direct the allention of our rraders.

 Vol. I.

[^2]: * Girabo saye the level of the Guif of Corinth is higher than that of the Guif of Cenchrew.
 \dagger Fide Mactaren on the level of the Red Sea, in the Elinburgh Phitomophicai Journal.
 $\$$ The mean height of the Pacific above the Atlantic is said to be 3.52 feet.

[^3]: * Horahurgh inentuons sceberga having been mel with in Sonilh lat. $355^{\circ} 544^{\prime}$, and Weat long. 170 50', PRil. Mage. | Brown's Llislory of Lie Propagalion of Chrislianily, voi. ii. p. 57
 Vol. I.

[^4]: * Vide Stevenson, Wernerian Memoirs, and Edinburgh Phil. Journal.

[^5]: he extremes of heat and coll; whence it ariser that, in cunveyng them from one country to anoller, they paet through a variety of climnte aninjired.

[^6]: * We nuny here mention n curious fact of vegetation rosting upon a hasis of ice. The glacier of Reccosecen, which firnis one of the brinnctes of the Berneria, has on its sumunt a vnlley tilled with ice; nul on this the avnlanches have bromght inwn massos of enrth. This earth profuces n number of alpino plants, that nffird abundant nud nomrishing fond to the flock of the inhabitante of Samailen. This singular pasture has been ued ever witee the yenr 153ti.
 f "Vegetables," says M. Mirbel, in his Elimens do Physiologic Vrgctale, "when secluded from the light. senil out fong, thin, and whitish shoots; their substance becomes Inx, nnd withont firmness; inf fact, thoy are btenched, The opration of the liminots beatos on these organisel beilies consists chlefly in epparnting the constituent parts of water nnil carbonic neid, which they contain, and in disengnging the oxygen of the latter. The carbolife arit, with the hyilrogen ind exygen of the wnter, proslace those gums, resins, and eils, which fow in the vessels and which fill tie eells. Tlisee juices nourish the memhranes, nuil bring then inte the ligneous stnte ; n result which becomes nore marked ns the light is atrongest and its action mest protracted. Darkness nul tighl pretluce, therefore, dinmptrically opposite effects on vegelation. Darkness, hy keeping up the sofness of the vegrinhte nerts, favours their increase in leneth; light, ly nifistering to their nourishment, consolidates them, nad arrests their growth. Tlence it follows that a bine slate of vegetntion, such ns unites in just propmrtions size and strongth,
 pring up at a perion whin the sun ls constantly ahove the horizen, and the light which inecesantly uete upon hom confirms ami purfeets them before they hive time to attain a censidernble degree of length. Thelr vegetar tion is netive, but soen over; they are robust, hut smali:"

 VOL. I

[^7]: * Lady's Smock. Such plauts wero in olden time dedicated to Our Laily the Virgin Mary.
 + Srhouw, jmicen, has a Iribe of plants whicla he ralls "Plantac Epizorr." aftached to liniug animals. Thus, he says, Fuci nod other A/gap are attachod to whales, mussels, and harnacles. Hut in this case the plants onanifestly alhere to a deat portion of the animal; like those vegetables which exish ipon the ontur mildear part of the hark of trees
 filis,) problucing its flower aul fruit wholly unleg water; mit upon a cluser investigation of the phrmomumon, he found that In these rases the ealyx enclosed n glabule of air, with whirh this inghertant functimn of frrtilization Was performod. 'The eurions aquatic, Vallisnerin spiralis, lias a atill more wonderful conlrivance for bringing the male and femate flowors ill contarl. The plant is dimecions. The frmaie fower is attnehed to the purent plant

 thev do at the proper solison; they thont upon the top of the water nlong with the fimale flowers, senttorp their pultal, and dio. The finate blossoms on the contrary, by the spiral wisting of their stalks, retire, and rijen their sembls under water.

[^8]:

[^9]: * We have beph officially informed that, by the laws of the Zoologienl Societv of London, wo one rat rective perminsion to make use of their Musenn, for general erientific purposes, who is nol a member.

[^10]: * Balbi, Allas Elhnographique du Globe. Paris, 1920

[^11]: * The shrubby or puffritiosse plants of the southern bunt of thn frozen tone, are ffteen willows: the Dwarf Bireh (Betula nana), the Itumble Jlitch (B. puini/a), the White Birch (B. alba)-this last le only found on the southern coasts of Greeuland; the lloary lirch (R. incana), the Juniper (, Juniperus communis), the Trailing Azale (A. prockmbens), the Illuc Munzieaia (.jf, faruien), the Ledum palusire and f. Intifolium, the Laplanit Diapengia, the Downy Whortleberry (Vaccinium pubescens), the Marsli Whortloberry (V, uliginosum), the Red Cowherry (V
 tha, Ihe Crowberry, the Common Ileath, the Shrubly Potentilia, and the Rowan Fir (Pyrus aucuparia), on the southern whores of Greenlath.
 t Almost the only shrubhy jilanta of the northern hand of the fruzen zonc, are the litile Arelic Willow talla polaria), the reticulated Willow (S. rctirulata), a mid the four sided Audroateda (A fetregona).

[^12]: * Drawn up by G. A. W. Arnott, Esq. of Ediuburgh.
 \dagger The proportions in the Cryptengmin will be finnid probhbly much monre correct for Sretinnd thnn those given In the tritish tathe are for the while of Britain; owing to the respntrhes madn in That tribe hy Dr. Greville, and (:aphin Cnrmichael ; parliculaty by the Intter in the Fungi and Alga; ; he discoveries of thni genteman elone in those two groups, in one stanit district (Appin) in the west highinmis of Scolland, amount to tnore apeciss than were previouely describerl as inhaliting the whole of the Britisht dousinions.

[^13]: * Mr. Maekay measured a rrunk of this fino evergreen tree on Rongh Island, nearly opposito O'Sullivan's Cascade, which, II 1N15, was $9 \frac{2}{8}$ feet io girlh, nt a foot from the ground.
 Scoliand: bit no liviug botatist, that I an aware of, hans ever gedi it there.

[^14]: a, Large-flowared Butterwort. d, Naked-staikad Yeliow Puppy.

[^15]:

[^16]: * Patches of old red sandstone occur on the east coast between Ballygelly and Glenarm Bay; and also on the atme coast to the mouthward of Gerron Point.

[^17]: * The new arrangement, when enanpleted, will be aa followa:

 Meath, ...
 Derry (wihth Rnphoe)..
 Down (will Conthor and Dromure) ..

 Dustın (will Glaudelagh and Killine) , ...221

[^18]: [${ }^{\circ}$ This ia the Iriah mite of 40 to a degree. The area has already been atated to be 30,000 English aquare milea -Am. Bo.]

[^19]: - The Danish eolonies are Christianalorg and othey alations in Guinen, with 44,000 inhabitmints; Enntu Crux, Et. Thomas, and St. John in the Weat Indies, witis 4 i, 000; and Tranquebar and factoriew on the Coromandei coand, in the East Indies, with $\mathbf{6 0 , 0 0 0},-\mathrm{Am}$. Ed.

[^20]: 8
 8

[^21]: *The only Swediali colony is gl. Hartholomew In the W. Ladies, with aboul 0000 inhabianta, Am. Ed.

[^22]: * The expenses of eanala, lifkes, and navigation in genmal.
 \dagger The charges for education are now included under the head of ", oterior."

[^23]: * [in 1827, only one ship sailed to the whate-fishery from Ilolland, which in 1680 had out si00 ships manned hy 1 4,000 saslors, engaged in that brauch of indusiry.-Am. Ed.]
 \dagger TThe population of the Iwo kiugioms in 1833, was $\mathbf{8 . 5 3 6}, 000$, of which $3,791,000$ belonged to Belgium, anil 2745,000 to lloltand.-Am. Ev.]

 Vol. I.

[^24]: * The highest point of the Pyrenees is now known to be La Madadesta, 11.494 feet in height. The highest preak of the Sierra Nevaila, calleil the Cerro de Mulhacen, Is still more clevated, being 11,060 fect above the sea.-An. Es.]

[^25]: * Tha Arabs in Spain, like the Saxons in England, established a lapting nemnerial of their dominion by engrafting their own language on that of the country whicht they gublucd. Of this, the topoyraphy of tha Penimauta
 petuatell, thoigh with niterations in some instances as nrbitrary aa those whleh were made in the ancient topography of the country: thus, the Roman station, Pax Augusta, was tronsformed by the Arats into Batalio aud anorwaris by the Spaniaris into Badajor ; Cesar Augusta, by an abbreviation less violent, became Saragossa; and Emerita Auguati was contrncted into Aferida.
 The Arabic term Medina (eity) survives in two eminent instances among the titles of the Spanish nobility: Medha Selim (the eity of Sclimi) is recognised in the dukednm of Medina-Celi; atul the colony probahly callenl New Sidon, is that of Medisa-sidonia. From the generic term gund, a river, and vcles or veled, a landed estate or dietrict, many names may be explnined which nt fret view apperr capricious and arbitrary :-

 Guad-al-higiara, now Gualalarara,The river of rocks.
 Velez nnd Veled are otten conjoined with proper names, Felez Maloge, Veled Vlti, now Valladoliii: thus, Navare and Leon, their confines never having been occupied by the Arnbs, were called hy thein V Veled Arroum, the land and Leon, their confines never having ineen occipied island or a peninaula; henco Algciira. Aldea means what of the Romans. Gezira was applisholibrereaty form. It is of common orcurrence in itinerarics, as Aldea del Rio, Aldea Gallega, Aldeas do Fonssa. From chatara, n brilge, we neconnt for the emplintic neme Alcín neara. Calúneo, a castle, enters more or lesas prominently into the composition of vnrions names; as Calint Aynt, the castle of Ayat, is now Cnlatayud; Caliat Rnbah, the castle of Rahol, is now Calntrava; Al Calint, simply the castle is Ayat, is now Cnlatayud; Calinat Anbah, the caste of Rahoh, is now Calatrapa; ;if calinat simply the enstle, is Almeria is an ohservatory. Sce Descriptian of Spain, by Gerif Alhedris, In ithe translation of Don Jose Antonio Conde, whose Mistory of the Dominution of the Arabs in Spain is estecmed oue of the most masterly works tha have appicared in the presenl age.

 Vol. I.
 48*
 $3 W$

[^26]: * [The religions honses, monasteries, and numeries, wre suppresped in 1834-Am. Ed.]

