

IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences

Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions / Institut canadien de microreproductions historiques

The Institute has attempted to obtain the beat original copy available for filming. Features of this copy which may be bibliographically unique. which may atter any of the images in the reproduction, or which may significantly change the usual mothod of fllming, are checked below.

Coloured covers/
Couverture de coulour
Covers damaged/
Couverture endemmagde

Covers restored and/or laminated/
Couverture reathurde ot/ou pelliculte

Cover title missing/
Le titre de couverture manqua

Coloured mape/
Cartes gbographiques an coulour

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noiralColoured plates and/or illesatrations/
Planches et/ou illustrations en coulour
Bound with other materia//
Relib avec d'autres documents
Tight birding may cause shadows or distortion along interior margin/
La re liure serrte peut causer de l'ombre ou de le distoraion le long do la marge interioure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
II se peut que certaines peges blanches ajoutces lors d'une restauration apparaissent dans ie texte. mals, lorsque cela d́tait possible, ces pages n'ont pas dtd filmdes.

Additional comments:/
Commentaires supplómentaires:

L'Institut a microfilme to mailleur exemplaire qu'il lui a dé possibio de se procurer. Les d'dtails de cat exemplaire qui sont peut-dtre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans le múthode normale de filmage sont indiquís ci-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommages
Pages reetored and/or laminated/
Pages restauries ot/ou pelificuldes
Pages discoloured, stained or foxed/
Pages dicolortes, tachettes ou piqutes
Pages detached/
Pages dótachies
Showthrough/
Transparence

Quality of print varies/
Qualité indgale do l'impression
Includes supplemeintary material/ Comprend du matofriel supplémentaire

Only edition available/
Seule edition diaponible
Pages wholly or partially obscured oy errata slips, tissues, otc., have been rafilmed to ensure the best possibie image/ Les pages cotalement ou partiellement obscurcies par un feuillet d'errata, une pelure. otc., ont dte filmdes dinouveau de façon a obtenir la moillaure image possible.

This item is filmed at the raduction ratio checked below/
Ce document eat filmd au taux de reduction indiqud ci-dessous.

The copy filmed here has been reproduced thanke to the generosity of:

The leat recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"), whichever applies.

Maps, plates, cherts, etc., may be filmed at difforent reduction retios. Those too large to be entirely included in one exposure are filmed beginning in the upper laft hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the mothod:

L'oxemplaire filmó fut reprodult grace ile gêndrosite de:

La blbllothique des Archives publiques du Cenada

Les images suivantes ont étós reprodultes avec io plus grand soin, compte tenu de la condition ot de la nottot'́ de l'oxemplaire filmb́, ot on conformito avec les conditions du contret de filmage.

Les exemplaires originaux dont le couverture en papier est imprimbe sont filmbs on commençant par lo premiar plat ot on torminant soit par la dernilire page qui comporte une emprointe d'impression ou d'illustration, soit par is sacond piat, solon lo cas. Tous los autres oxamplaires originaux sont filmés on commonçant par la promidre page qui comporte une emprointe d'impression ou d'illustration ot on terminant par la dornidre page qui comporte une telie empreinte.

Un des aymboles sulvants apparsitra sur la dernil̈re image de chaque microfiche, seion ie cas: le symbole \rightarrow signific "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent étre filmés à des taux de réduction différents. Lorsque to document est trop grand pour être reproduit on un seul clicht, il oat filmóa partir de l'angle supériour gauche, de gauche à drolte, ot do haut on bas, en prenant le nombre d'İmages núcessaira. Les diagrammes suivants illustrent la méthode.

This Proof ts sent to you for discussion only, and on the express understanding that it is not to be used for any other purpose whatsoever.-(Sie Ste. 39 of the Constitution.)

Comadian Socicty of Civil © Engiuters.

(NCORLOLBATED 1887.
TRANSACTIONS.
N.B.-This Soclety, as a body, does not hold liaelf reapousiblo for the facts and optuions slated in any of tis publleations.
This Puper will be reall on the evening of Memsurs April 5th.

THE C. P. R. BRIDGES OVER THE OTTAWA RIVER AT ST. ANNES AND VAUDREUIL.

By C. E. W. Douwell, M. Can. Sod. C. E.

The Ontario and Quebee Railway, built some four years ago between Suith's Falls and T'oronto, and forming tho most inmportant part of the Eastern system of the Canadian Paeific Railway, was extended in the years 1886 and 1887 casterly from Smith's Fulls direct, thereby cutting out Ottawa, and reducing the distance between Toronto and Montreal by nearly fifty miles. The line from Smith's Fulls to Vaudreuil, about 100 miles, is as nearly ns possible an air line. At tho latter point it comes into parallelism with the Grand Trunk Railway, running close alongside it from thenee to Lueliue Bank, where it slightly diverges to the north to make conncetion with the Atlantio and Northwest Railway running from Mile End to the now bridge across the St. Lawrence at Lachine.
At Sie. Annes the line crosses a branch of the Ottawa river flowing between the Ifland of Montreal at Ile Perrot, by a bridye parallel to, and 61 feet distant, centre to centre, from the G. T. My. bridge. The bridgo consists of two ubutments and thirteen picts of masonry, and fourteen girder spans of steel.
Beginning at the cast end, and measuring from centro to centro of piers, the first three spans are 104 ft .9 ins. each. These are lattice "through " girders, the object being to give as much head-room as possible over the canal locks. The fourth span is 324 ft ., and the girder a pin-connected through truss of the most modern American design. The corrosponding span in the G. T. Ry. bridge is only 220 ft . Owing, however, to the obliquity of the eurrent in the river at this point and the consequent danger to descending ralts, the Departinent of Ruilways and Canuls required that in the new bridgo there should be no pier in the stream opposite to No. 4 of the G. T. Ry. bridge; consequently pier No. 4 of the new brilge corresponds with No. 5 of the G. T. Ky., and there is one span of the former to two of the later. The 5 th span is $101 \mathrm{ft}$.4 ins., and the 6 th $100 \mathrm{ft}$.9 ins., borlh being lattice "deck" girders. The remaining eight spans are 66 ft . 14 ins . each, plate "deek" girders.

The E:ist ahutment is built directly on the solid rock, whieh was found at a depth below the surfice of the ground of 2 or 3 fect.
The roek here is the Potsdim simdstone overinid in the immediate vieinity by the Trenton limestone. It is of the later stone that the whole of the masonry is built.

At pier No. 1, which comes between the public road and the new lock, the excavation was earried down about eight feet below the surface, at which depth solid rock was found sloping to the S. W., at an angle of about 15°. Convenient fissures in the rock enabled a trenels to be formed a couple of feet deep and ab out the sune in width, along the axis of the pier, in order to provide against the prssibility of the pier sliding on the ruck. Concrete was then dep, ited in this treuch, and brought up level to the height of the highest point of the roek, the masoory being started ou the base thus formed.

Pier No. 2 came between the ohd and new locks, and the exeavation for the fuandation encountered the pudtlo rrench and its crib-work backing, that waty formed to exclude the water fro a the works of the acw loek constructed in 1883. This puldle treneh, as well as a quantity of cribwork, bad to be reluovid in order to reatela a solid foundation. Tho last foot or two of the exeavation boing under water was finished by the aid of a diver, and at about 15 ft .; below the surface of
the ground the solid rock was struck, lying with but a slight fall to the S. W. Aftur tho purfice of the rock hail been thowoughly clemed off by a diver, it was envered ly a beil of conereto about 5 ft. thiek and abont a loot larger cach way than the botton enurse of the masoury. The first atone of the bridgo was laid in this pier on the 3rd of Augnst.
Picr No. 3 was the most troublesonio and expensive of the wholo thirtecn. It came between the old canal lock und tho river, und the Soath wall of the former and the oribwork baak of the latter contributed to reader its onnstruction both tedious und costly.
The excavation was carricd down to witer-level in the ordinary munner without mueh trouble. To continue the oxeavation below this level it becamo necossary to remove some farty fect in length of the eribwork in the river froat ; permission to do this having been obtained from the Departuent of Railwnys and Canals. A dredge was then brought ap and fixed in position in the river ubronst of the pier site, the excavation being by means of it carried down very nearly to the solid rock. Owing, however, to the proximity of tho wall of the lock, the dredge had to work with extreme care in order to avoid disturbing its fonn. dations. As soon as the dredge had done us much of the excavation as could be sufily and conveniently done by it, three divers were sent down to coluplete tho cleaniug of the botom; and a bottouless rectangular caisson 34 ft . long and 13 ft . wide was framed in position of whole timbers 12 inches square. The object of this caisson was to prevent the sides of the excavation from filling in and covering the sito of the pier, as well as to form a mould for the bed of concrete. By means of accurate soundings, the caiisson was framed as nearly as possible to conform on the upper side to the irregularities of tho rock and the projections of the loek wall. On the lower or river side there was a space bencath the lowest timber of some three or four foct As soon as the caisson was finally and aceurately fixed in position, this space, as well as the smull eavities that still remained ander tho timbers on the upper side, was enclosed by driving 3 inch planks aronnd the ontside of the caisson and spiking it firmly to the timbers. Insido the caisson as now fixed and cnelosed, three divers continued and completed the final eleaning of the bottom, about tell days being occupied by this work. When this was satisfactorily accomplished, a bed of concrete, varying from 5 to 9 ft . in thickness, was deposited within the caisson by means of a square box of $\frac{\pi}{8}$ inch boiler-plate holding a cubic yard, the bottom of which was hinged in two flaps and adapted for tripping, the scow carrying the derrick that raised and lowered it, and on the deck of which the concrete was mixcd, being in the old lock immediately abreast of the pier. The top of the concrete was levelled up and finished to a height of about 6 inches above low water, and cleven days later the masonry was begun.
Pier No. 4 is the first river pier, the site being bare rock and the water about four feet deep at lowest level. The caisson for this pier was framed to half its height at a convenicut spot out the river bank below the bridge, and then towed up stream by a tag, and lowered into position. On reaching the site of tho pier it was rigidly held in place by anchors at bow and stern, and the remainin; height of timber was added. A bed of conercte about $2 \frac{1}{2}$ feet in depth was then deposited in it, and as soon as this had set sufficicutly the water was pumped out and the masoury commeneed. Tlis pier, as well as No. 5, is built on a akew of $10^{\circ}, 30^{\circ}$ i. e., the axis of the pier makes an :aggle of $79^{\circ} .30^{\prime}$ with the centre line of the bridge.
The 5th and 6th piers were built in a precisely similar manner ; the Witer was of about the same depth, and the botton also bare rock. At piers 7 and 8 the water being less than 2 ft . decp, caissons were not necessary, tho water being excluded from the foun lations by means of plain rectingular cofferdnms of square timber built round the site. These were surrounded by a low wall or bank of padtle and then pallpud out. All the excavation necessary consisted of the removal of about a foot of lyose and shattered surface rock. At pier 7 no concrete was necess:ry, the masonry being laid directly on the rook. At No. 8 the roek after being stripped of the loose surfice was covered or lovelled up with a bed of about a loot in thickness.

Piers 9,10 and 11 are situated oo a low rocky island, the surface of which is from one to two ft. nbove low water level; none of them required either caison or cofferdam. No. 9 has no conercte under tho masoury, while at 10 and 11, after stripping the loose rock from the surfice, the bottom was merely levelled up with it.
Piers 12 and 13 coming in a foot or two of water required cofferdams and a thiu bed of concrete to level up with. At the Wost abutment,
tho roek, which watw eoversil with som a theres or four tiet of soil anil loose material, was found to dip th the North at about the same angle as at the Rast nbatment it did to the Suuth. It was benched to roceive the manning and no concrete was nsed.
A small brilgo aerows a creek between Sto. Annes and Vaudreuil consiste of iwo spuns of lattice deek girders 100 ft. 9 ins. ench; tho musonry comprising two abutments and one pier. These were built on solid rock, and present no fontures of speeial interest. The pior required a cufferlam, anil the rock muder it wus levelled up with about a foet of ${ }^{\prime}$ conerete, none buing used in the abutments.
At Vaudreuil the line erosess another branch of the Ottawa, flowing between Ile l'errot and the main land. The bridge heru is parallel to, and distant 67 feet, centre to entro, from the Grand Truak Ry, bridge. It consints ol' two nbutucnts and sixieen piers of masonry with seventeen spaiss of steel "deek" girders. Beginning at the East End and measuring from eentre to centre of piers, the first eight spans are 100 ft. 9 ins, eael, lattiee girders, the next seven spmes are 71 f. $2 \frac{1}{2}$ ins, each, plate girders, the remuining two are 65 ft . eacli, nlio plate girders. The East abutulent stands just nbove lew water mark. Its fouodation was carried down to a lurd bottom of stoney elay at about 5 lt . below the surfice. The first seven piers, and the sixtecnth, were built in water varying from 8 to 20 ft . in depth. The first operation in their construetion, aftur having elosely covered the sito of eaeh pier with acourate soundings, was the removill of the gravel, mud and boulders overlying the roek, which was accouplished by an urdinary floating stcuu dredge anchored over each foundation in suceession. Bottomless caissons built of 12 inel sfuare timber, and pointed at bow and stern, werc then towed into plaee, their exact positions being determined by means of two transits, one ol' the ceatre line of the bridge on shore, and the other on the G. T. bridge in the line of the axis of the pier prolueed. They wore then firmly held in place by suitable and suffeient anchors, and weighted until they rested on the bottona. Very necurate and careful soundiugs haviag been tuken over the exuet sites of the piers subsequent to the operation of dredging, the bottom (i.e., the bottom edges) of the caissous were framed to fit the irregularities of the rock. As soon as they were in position the bottom within their aren was thoroughly cleaned by divers of all gravel and small boulders left by the dredge, any ereviees between tho bottom timbers and the reek being tightly paeked with pea-straw. A depth of eonercte equal to about onc-third of the depth of water was theu deposited with them by means of the irou box, and tho surfice of this bed levelled up by the divers. When the conercte had set the eaissons were pumped out by a $\mathbf{6}$ inch centrifugal pump, driven by afloating engine of about 15 II . P., and the masonry commenced.
In one or two instanees when the water wats nearly all pumped out the bed of eoncrete was burst upwards by the pressure from below; when this happencd, the eaisson of course filled immediately, and it became neeessury to send down divers to repair the leak, alditional eonerete also being put in for the purposc. Piers 8 to 15 inelusive, being in shallew water, require d no caissons. The foundations were surrounded by cofferdans built of large flatted timbers, sheeted outside with 3 inelh plank and with well rammed puddle walls all round. After the spaces enelosed by these water tight danss were baled out, the exeavations were carried down to the necessary depth with pick und and shovel, and the masonry built directly on the hard bottom without the use of eonerete. The West abutment, like the East one, was built just above low water mark. A solid foundation of hard-pan was reached at a depth below the surliaee of about 8 ft . The whole of the masunry was finished about the 1st June, 1887.

The eonerete used in these bridges wiseomposed of Purthand cement, sand and limestone broken to pass through a 2 iuch ring. It was mixed in the proportions of 1 volume of cement, 1 of sand, and from 4 to 5 of broken stone, which made an exceedingly rieh eonerete. In fact, the bell upon whieh the masory was built were generilly almost as lard as the stone itself. A luss expensive eomposition in the foundatiens would have easily and safely carried all the weight they were called upon to bear; but one of the oljects in making the eonerete so rieh was hait it might be eapable of withstanding the strain of the upward pressure of water, due to the differenee in level between the eutside and inside of the enisson. 'This was occisionally considurable, in some eases being as mueh as 800 lb . per sq. ff., mud consequently any cconomy effeeted by stintiog the eement would probably have been
sunk by the additional expenso of repairing lenks, and by the loss of time in extra pruaping.

The conerete was mixed on a deeked meow anchored alongride the enis-on, In the centre of the scow was a pile of broken stone, and at cach end a number of barrels of cement and a pile of rand, lowing a clear space on each side of the pile of broken atone. A harr. 1 of coment being broken open, the e.mitents were spread ont in a layer five or sis inehes thick; an equal quantity of anad way then added, and tho wholo intimately mixed in the dry stute with shovels and hoes. A sufficient quantity of water was than pourol into the eentre of the m as, which was imusdiately worke! inti) a molerutely thin mortar. The brokon rtone was then thrown in from the heap, the quantity being si, reyulatel that each fragment of ntone was completely eovered with und imbedded in the mortar. The whole heap, atior it was thoroughly ineorporated by being turned over two or three times with shovela, wats then thrown into the box which it just filled. While at one end of the soow the concreto was being mixed, at the other end it was being thrown into the box and deposited in the eaisson; two gange wore thus kept constantly goiug and no timo lo.t. 'Tho contractors for the whole substructure of theso bridges were Messrs. Wm. Davis \& Sons of Ottawi.
The temporary stagiag for the erection of the super-tructure of theso bridges was of the ordinary eharacter of trestle-work, consisting for the uost part of four post bents ut spans of about 14 ft . ; with the execp. tion of that lor the fourth span (324 ft .) of the St. Ann's bridge, it was all crecteal in the winter, und ealls for wo special deseription.
Owing to unforeseen delay in the shipunent of the $32 \pm \mathrm{ft}$. sp:n from Glasgow, where it was made, the fulse work for it could not be crected during the timo of low water in the winter. When at length the iron did arrive, furtherdelay was caused by liaving to wait till all the ice had broken up and gone down the stream. In consenuence the false work fur this span, commeneed May 5th, 1887, had to be erected when ths river was at its highest and the ourrent at its swiftest; the depth of water at the deepert point of the channel being 37 ft ., und the current from 7 to 8 miles per hour at a considerable akuw. Preparatory to fruming the bents, ncourate soundiugs were taken at the position of each post by means of lengths of gas-pipe steadied by lines to bow and stern of a scow, which was held in place by wire c.bles to the cribs deseribed further on.
The bents were 13 ft a amart; those under panel points, i.e., every alternate bent, had five posts each; the intermeliates three ench. They were framed on a largo scow lying alongside the upper cana! pier. Before sending any of them down to their phec, two small but heavy eribs, about twelve feit syanere in plan and six or eight feet high, werc framed, loaded with stone, and sunk in the stream some four or five hundred feet above the bridge. In aldition to these anchor eribs, two tugs were employed during the greater part of the time that this span of false work was in eonrse of erection. As caoh bent was framed, the scow earrying it was lowered down stream into position, eseorted by a tug, and .wadied by wire eables to the noehor cribs. On reaching the site the lines to the cribs were made fast and tho soow firmly held. The bent was then riised with suitable tackle by two small eugines, one on top of cael of piers 3 and 4 , wire eables having first been unde fast to the feet of the posts and earried up to the anchor cribs. As the posts in the channel bents were from 65 to 70 ft . long, the current from 7 to 8 miles per hour and the water 30 ft . deep, as has been said, it will readily be scen that the diffienlties to be overeome in the construction of this temporary staging were of uro ordinary character. In one or two instances the posts, npon feeling the firce of the current, began to swing, the bracing gave way, and the whole bent had to be dropped into the stream to save the seow from bring broken to pieess by the lashing bnekwards and forwards of the posts as the motion increased. A tug was then despatehed to pick up the posts und tow them up the canal to be re-framed.

Immediately apon each bent roceling a vertieal position, it was promply stendicul from the water liue to the tops of the posts, a heipht of abont 30 ft ., by braces and waling picees of 6 ins. $\times 10$ ins. stuff bolted and spiked to the last preceding bent. Owing to the utter impossibibity of aseertaining to a fiw inches the exact depth of water in which encli post would stand, the braees and eaps were all double, and attached to the bent by bolts passing through them but not through the posts, thus leuving the latter free to move up and down to a small cxtent
to suit the inoqualitics in the botom. In addition to the wire cables atuachel to the feet of the poste, and as a further precaution against alipping, thoy were furnished with a heavy pointed apike bolt diven into the timber.

The last bent was successfully placed in position on tho 27th of June tha "traveller" was enmpleted on the 20 th, and the reotion of the span commenced on the 30th.
Superstructure. The following table gives the more important purtioulars of the superstructure of the three bridges:

			\qquad			Remarks.			
1	$\begin{array}{\|l\|} \mathrm{Fl} . \mathrm{Inn} \\ 324.0 \end{array}$	Ft. In. 323.3*	Ft. In.	931,749	$\begin{aligned} & \text { Cts. } \\ & 4.80 \end{aligned}$	Pin comnected "'Ihrough" Truas.Riveted latticeGirderas			
3	104.9	104.4	20.0	176,870					
1	101.63		10.0	108,478	4.15	"	${ }^{4}$	"Deck"	"
11	100.9		10.0	108.478	4.15	"	"	"	"
7	71.23		10.0	64,337	3.77	,	Plate	"	"
8	66.1 ,		10.0	65,541	3.77	${ }^{\prime}$	$"$	"	"
2	65.0		10.0	35,300	3.77\|	-	"	"	"

Plates 1 to 4 give general elovntions of spans 324 ft .104 ft .9 ft . 100 ft .9 ins, and $66 \mathrm{ft} .1 \frac{1}{2} \mathrm{ins}$., and oxtracts from the apecifioation are given in an appendix.

The whole of the spans are of stecl, built under the direot supervision of the Company's inspector.

Tho oontractors for the work were the Union Bridge Co. of Now York. The sub-contractors who actually built the spans wore as follows: -For the 324 ft span, Arrol Bros, Glaggow (except for the eyebars, which were mude at the Unins Bridge Company's own works in Buffalo). For the 104 ft .9 ins. spans, The Horsely Co., Tipton, Stafordshirc, England. For the 101 ft . $5 \frac{1}{2}$ ins. and the 100 ft .9 ins spuns, The Cleveland Bridge C_{o}., Darlington, England. For the $71 \mathrm{ff} .2 \frac{1}{2}$ ins., $66 \mathrm{ft} .1 \frac{1}{2}$ ins, and the 65 ft . spans, Arrol Bros., Glasgow.
'The cost of the bridges deseribed is given by the following statement:

ST. ANNE'S BRIDGE.

JTEM. QUANTITIES. RATE. AMODNT.
AMOUAT.

Earth excavation. Cub. yds. $1,830.4$	$\mathbf{8 0 . 3 1}$	$\mathbf{8 5 6 7}$	42			
Loose rock.......	"	4.	112.6	0.90	101	34

Earth and loose rock cxeara-
tion under watcr. C. yds. $573.3 \quad 2.9101,1466$
Concrete. Cub. yds.......... 474.00 15. 7,11000
1st olass masonry. Cub. yds. $5,290.9415 .00 \quad 79,36 \pm 10$
Rough rip-rap. " . $147 \quad 1.50 \quad 220.50$
888,50996
Sundry Extrus.-Removing buildings from site of E. abutment, eutting checks for girder bed-plates in pier copings, handling timber, etc., etc

1,:10 97
Iron and Steel in Superstructure.-

$\mathbf{7 4 7 , 5 6 6}$ lbs.	@	0.04^{15}	$31,023.99$	
444,328	"	©	0.03^{77}	$\mathbf{1 6 , 7 5 1 . 1 7}$
$\mathbf{3 3 1 , 7 4 9}$	"	@	0.04^{80}	$\mathbf{4 4 , 7 2 3 . 9 5}$

$92,4991.1$
Timber in Floor.-
$181,852 \mathrm{ft}$. B. M. © per M. $15^{00} \quad 2,72778$ 11,560 " " " $18^{00} 20808$
Extra work on floor, labour, ctc. 15068

Earth excavation	ub, ydx.	259.2	80.31	\% 80 35
Loose rock d"		31.4	0.90	2426
Earth and loowe roek exenvation undor water. C. yds.		37.3	2.00	i. 60
1 tbt class mavomry.	"	939.77	15.00	14,096 55
Concreto	"	4.70	15.00	70 50

Sundry Extras.-Cutting oheoks fer bol-plates, hundling
timber, etc. .. $361: 39$
Iron and Steet in Superatructure.-

$$
216,050 \mathrm{lbs} \text { © © } 0.0 .4^{10}
$$

$\mathbf{9 , 0 0 3} \mathbf{6 7}$
Timber in Floor, etc.-

$31,526 \mathrm{ft}$. B. M. (a) per M.	15°	$\mathbf{7 7 2}$	89
hanlling timber		34	19

Total cost of "Stockers" Creek Bridgo...
824,222 40
VAUDREULL BRIDGE.

Earth excavation. Cub. yds.	388.1	80.31	812031	
Loose roek do	6.5	0.90	495	
Earth and lonso rock excava. tiou under water. C. yds.	1,566.1	2.00	3,132 20	
Solid roek exeavation under water. Cub. yds.	71.6		21480	
1st olass masonry.	3,385,68	15.005	50,785 20	
Conereto	978.12	15.101	14,671 80	
Rough rip-rap	4,728.	1.50	7,092 00	
Sundry Eectras,-Handling bed-plates, ete \qquad	timber	ting	oks for	870

Iron und Steel in Superstructure.-

Timber in Floors.-

$$
213,42 \mathrm{ft} \text {. B. M. © per M. } 15^{\infty}
$$

Total cost of Vaudreuil Bridge.

St. Anne's Brilge.	8185,206 58
"Stoekers " Creek Bridge.	24,222 40
Vaudreuil Bridge.	137,229 93
Total cost of three ber	

During the progress of this work there oecurred two fatal aecidents. On Priday, Jan. 2lst, 1887, Mr. ILarold Waldruff Keefer, M. C. Soc. C. E., Assistant Eugineer, while in the discharge of his dutics, fell from the top of the girders of Vuudrenil Bridge, a beight of about twenty-one feec. IIe struek on his head and shoulders, the blow causing concussion of the brain, frem which he died at half past six thofollowing morning. Mr. Keefer was 29 years of age, a son of Mr. T. C. Keefer, C.M.G., Past-Presidunt C. Soe. C. E., and au engineer of marked nbiities and great promiso. The author is glad of this opportunity of recerding the highest appreciatiou of his excellent qualities. As an engineer he was well up in his work, aetive, encrgetic and thoroughly devoted to duty. Of sterling worth as a man, he, in every respeet aud with all who knew him, commauded the highest regard and esteem. Gewerous, open-hearted and the noul of honour, he was, in a word, his father's son.

Ou the 30 th April, duriug the erection of the false work for the long span at St. Annes, a seow with five men on it, while being towed up strean by a tug, capsized in the channel just above the bridge line. Four of the men were rescued by boats from the shore, but the fifth, a young man by the name of Rodgers, from Ghagow, an ewployee of the Uuion Bridge Co., sank before help reaehed him. His body was reeovered about a week later.

APPENDIX.

ONTARIO AND QUEBEC RAILWAY.

Extrata from General specination for the construction of the Bridgee on the Ontario and Quebeo Rallway between Montreal and Smith'e Falli.
6. Througb upany, lenu than 100 feet in the oleng, mat have oleer width betweos the trusiee of 16 fect. The 324 fuat opsn mast be 20 feet centef to avatre of trumes, Jeok opann loym than 100 feet muat bi 10 feet auntre to cuntre of trussen
Spuna of 80 feat and under may be olther pinte or inttice girdern. Those ovar 80 feet and under 100 feet in the ofear nee to be lattiog girders, and upana aver 100 . fuet in the olenr may be pin conneated.

10. All upnne muit be proportioned to earpy, in addition to the dead load, $\mathbf{6}$ wo consolidation engioes ooupled as thewn in the above dingram, followed by etrain load of $3,000 \mathrm{lh}$. per linenl foot, and the maximun atraini due to ell positione of the live load must be taked in proportioning all the party of the etrueture. Floor to be laid with $8^{\prime \prime}$: $8^{\prime \prime}$ pine tion, apaced 12 Inches centre to contre with two guardruili on enoh side of traok, one $\mathbf{0}^{\prime \prime} \times \mathbf{B}^{\prime \prime}$ and the of her $10^{\prime \prime} \times 10^{\prime \prime}$.
11. Variationy in tempernturo to the estent of 180 degreer Fub. mat be provided for.
12. All parta of the structura uball be no proportioned that maximum Jnedu absull in ao aave produce ingrenter tenilie atrain upon the net teation than the following: -

Pounds per
6q. inch.
On bottom ohorda nad dingonals.. iron 10,000
 " " " " " 14 \|teel 10,000 On Interai bracing (wlth $10,000 \mathrm{lbz}$. Initial atrain)......................... iron 16,000 " 1 " 4 " 4 ... nteel 10,000 On bottom flange of longitudinni plate girdera (over 20 fl .)............. iron 8,000 On bottom " " " " " " " " ".............. sterge of longitudinal plate girdore (under 20 ft .)...... " " " " 4 "........... teel 0,000 On suapension loops or wher mombers liable to rudden londing......... iron $\mathbf{0 , 0 0 0}$ " " steel 7,000 " 11 ateol 10,000
13. Compresion mombers shall be so proportloned that the maximum lond ubull, in no enso, casuso n groator struin than that determined by the following formula :$\mathrm{P}=8,000 \div 1+\frac{\mathrm{La}}{40,000 \mathrm{RI}}$ for equara and compression members.
$\mathbf{P}=8,000+1+\frac{\mathbf{I s}^{2}}{30,000 \mathrm{R}^{2}}$ for compression mombere with ono pin and and one square cad.
$P=8,000 \div 1+\frac{L^{2}}{20,000 R^{2}}$ for compression memberl with pin ondu.
$\mathbf{P}=$ Allowed compression por equare inch of crose seation.
$\mathrm{L}=$ Longth of compression momber in inches,
$\mathbf{R}=$ Tho least Radius of gyration of the seotion in inabes.
For stuel substituto $\mathbf{1 0 , 0 0 0}$ for $8,000 \ln$ formula.
No comprossion momber shall have a length oxceeding 45 times its least width.
14. In rolled beams and girders compresaion shall be limitod as follows:

Pound per
In rolled beams used as floor beams or stringers iron 8,000 " " 410 iteel 10,000
In rivoted plato girders used as flour benms, gross scotion................ iron $\mathbf{7 , 0 0 0}$
In riveted iongitudinal plate girders (over 20 ff .) gross soction. Iron $\mathbf{7 , 0 0 0}$ " " " $"$. "......... steel 9,000
In riveted longitudioal plate girders (under 20 ft .) gross section...... iron $\mathbf{0 , 0 0 0}$

" ". "....................................... steol 0,000
15. Dlomhors subject to alternato atrains of tension and compression shall be proportioned to resist ench kind of atrain. Both of the strains shall be masamed to be incrensed by an amount equal to $8-10$ of the least of the two at raine for determining the aoational arens, by tho above allowad straine.
16. Tu provide fur wind oteaine the tap lateral hraeing in deek apane whil the butow lateral luachag in through apana whall be propurtioned to resiat a lateral

 sure from the train ourface to be trented an a muving loail, and the preneure on the

 pur simare thet upen the vertient aurfee of lath trasere.

 acenunt when they exceed one quarter of the maximum lixeil atrain for thend mat

 lualle uily,

 Hivote must net te ased in direet tennion.

 bery are tuken an the printa of mipileation of the at ruina.
20. In unso any member bo auljeet to a beniling atrain from lto uwn woight, or frum loeni londing, sueh ne distributed flowers on deek lirhigee, in udditon to the
 thened to renist the combineil atrulan.
21. 1'tate girders shall be propurtioned upon the suppronition that the bending or eliord atralum are resisted entiroly by the upper and lower thanges and that the shenrlag or web etrailus are resisted entircly by the web plates no part of the web phate dhall be extimated as flanguarea.
22. The Iron th the web phate mail not be suljeeted to a whenring at ruin, grouter than 4,000 peunads per syluare lineh! nul ne wob plate shall be leon than threeelghthe of' an hech in thickners.
23. The web of phate girders wurt be atiffened at intervaly of ubout the depth of the
 the following formuln :

$$
\text { Allowed at rain }=\frac{12,000}{1+\frac{\mu^{3}}{3,000}}
$$

When II = ratlo of depth of web to lte thleknems.
24. No lron or atecl plate shall be used less than \ddagger inch thlek, except for lining or filling vavint spaces.
The compression fanger of beams und girders munt be atayed ngalant traneverse erippllag when thelr length is more thin 30 theses thelr width.
The unfupportell whath of nuy phate subjected to conipreselion mast not escoed thirty timus lts thecknese.
25. The flange phater of all girilere munt be linited in wilth, so as not to exteml beyond the onter linen of rivets conneeting theru with the nuglex more than tive beliea or more than eight times the thickuess of the first phate. When two or mure platex are used on the finges, they shall decrease in thicknese out waril from the anglen.
26. In members subjeet to tensile straine, full allowanee shall be made for reduction of section by rivet holes, nerew thrends, ete.
27. All apinas whill be given a camber by making the pamel lengtis of the top elard longer thin those of the bottom chord in the propartion of $\#$ it an beh to every ten feet.
28. The laner guard rails shall be let down over the thes, till the top of the 3" $3^{\prime \prime}$ nugle iren, with which the upper inner angle la eoverel, whall be level with the top of mill. The angle tron mast be straightenel, and the holes for the z ' serews, with which it is to be fantened to the timber, munt be whoted it the ends, so an to provide for a temperature varying betwoen 40° Fuhb. below zern, and 1411° Fuh. above zero. Holes to be in ench leg of the angle, three feet ajnrt in eentre, and eighteen inches npart at eneh end. The gatil rails mast be bilted to every fourth tie with a k-hecib both, so that heads of bolts on the inmer gauril will mot be abuse the top of the nugle irm.
29. All eyo bars, roids, bults und pins shall be made of a tongh, ductile, fibrous iron, unilirm in quality, and which slath be capulhe of withstanding the following teste, when applied to foll sized soctions of the muterina tested.
Bin. Itwand bars uf to $1 \frac{1}{2}$ hehes in dhaneter mast bemi domlte, or until inner vides are in ountact when offa, without showing vigne of fructure.
Squire bars manst bend cold through 180 dagrees arounul a eylinder having H dinmeter equal to two-thirds the length of ride, without showing signs of frnoture.
Fhats saust bend oold through 180 degrees armund a eylinder having n diameter equal to the longth of the slarrest sile, without sign of fructure.
The ultimnte strongth of the bar iron used shall not be lese than 52,000 -
 inches.
The chastic limate shall nut be less than 20,000 lbs. per equare linch, and the elongution of the bar before rupture shall nut be less than 20 per cent. in 12 diamoters.

The reducflon uf area of breuking priat shatl not be lean than $\mathbf{2 s}$ per cent, of the urigimal nection.
31. All filute and whape irmn used In tenmion membert, or In memhers eaposed te
 trated in epwelmen of one Inch area and ifieen Inchew length of omalleat vestion,

Thene olassen of tenmion iron munt hond enid, without frature, an followi :

32. Wrought Iron fur compiresalon mowhers inast be tough, filimus, uniform in

Npechmens of une emare inch area whall bend through fil ilegreen around a cylimier If lueh in timmoter, without wigne of froctore.

All thast lron osed whall be good, lough, groy Iron, uf wuch qualley that a bar live foet long, une lueh maare, Hul four fuet gis luehen hotween kuife edge
 bronkling
ii3, All weel used In tenston shall have a minimum tenacity of 60,000 lbs, per minure liseh, n ductility of is per eent. In iz diametery, and tert pleces is lnehes long anil I lnch In nectlonal area, eat elther or both oross-wius or lengthowlee, of phate ated, und length-whe ar bur ur whipe after being heated to a luw oherry red und enoled lin water of sadegreen of fithr., wat atand bouding double in a prove or mader the hammer to a eurve of which the radius ls one-ubd-n-hulf the longth of the whartewt yide of the teat piece. Thene toat pleces may be ent in a planing machine and may have the shary edges renoved. Two amplea shall be cot from oach phate-une or which ahall be tented for tenacity and dactllity, anil the uther for temper and bending, u* nbope deyeribed.
Sted falling ou both wote of testa shall be rejected.
Steel uf to the atamind In tomacity and ductility, but defioleat In bending and tomper test, whall be munemiod after panehing.
Stewl up to the ataniard In atl biut ductlity may be annealed anil rotented,
Steel that la up to the atandard lin all the tenta need not be annealed
34. All wtool usel in compreaslon shall be of gued qually of mild steel having 4t thlilhuin tonaclty of $65,000 \mathrm{lbs}$, or over por aquare Inch, an elantle limili of not loan than 40,000 Ibs, 4 ductility of 12 per eent. In 12 dlamoters, and nut less than is jer cent. reiluetion of area at breaklug polut.
Sjecimenn one siquire luch la aren of aection whall bend eohl through $\mathbf{1 4 0}$ degrees around a eylluder, the dlamoter of which is four thes the langth of the phortent slde of the tent-pilece.

Nu steel rianll he atruck when n hammer or workell while at a black heat.
All ateel, whether with drilled rivet-holea, or holes punched and reamel, whall he matehel with the other parts of name member, and before belng riveted up, all boles whall be matehed and brought to ant by reaming alone and wlthout the use of irlft-julus,

The watehing of the boles shall he auffelently close to perralt the parts to be riveted up without producing an lultial utrain in the steel, Spilloo riveting in stcel will be governcel by the preclionthons for top chords and columang.
35. All teaston tron whall be rolled tront pilen composell of plling plecea, eaeh the full length of the pile. The use of old rnils will not be allowed in the pllen or this grule of lrum.
All rollod lron or aleel whall the thoroughily welled during the rolling, and mat be strnight of full sectinn at all points-and free from lijurlous or unsightly nemin, bliatery, bucklew, slivern, elnder npota nul limperfeet or crooked edges,
All material ins it comes from the mill must be flist-clans In every way; rolled pieces ent the elose to the crup onds will not be aceepted.
36. All epecinene for tenting, out out from large pifoces, whether of iron or ateel, shall have n uniform loast soction of one minare inch for a length of not loss than 15 inches.

All bar and rod Ironstiall bo teated in full sized suctions whenever practicable.
No test npecimen shail be haminered ur forged ufter belug eat from the original piece.
Complete fuelities for lngiection of materinl and workmanhip must be given by the Contructor, Facilities and spectmens for tenthg, and ulso the nocessary lahor, whall he farniwhel by him without charge when enlled for by the Engincer or Inspectur. Hut when nny full sizel maninetured Iron or steel members aro tested to dentruction, and proved to be ap to the standard required, wuch matorial ahall be pail for at cost, lese serap value to tho Contra-tor.
Should such members tisil to reach the standard they will not bo puid for, nul the lasiector may reject all sitathr tombere male of the same material.
The texting machine used by the Contructor shall be eompared with the IV. S. linvernment machine at the Watertown Arxemal or the Kirendily maching in Fighlam; ; ind if the result vary, the ilfforonce whatl be equated, and mded to or wubtructed from the results ohtalned from the mavino used by the Contractor.
37. All worktunnsifip must he etrletly first-clasn, nad not whit is commonly turmed "merchatabie work." Finished ploces Namll be truo tosize, sectlon and line, seralght und ont of wind at all paints, and all machine, hydraulie, rivet or suith work dune upon them shall be of the best claracter.
All mensurements in laying out work shall be made with Iron etandards of tho snme temperature as the iron measured.
38. All cye bars winll be either upet on the solid bar, upot with pilling piece, or rolled without weldiog. No putehing ut the forgo fro will be allowed on bar or hoad. All heals whall be clean, fill-sized forgings formed euntrally on the bur in true line nud " out of wind."
Burs of tho sume elass and belunging to the anme panol shall be drilled at the pame temperature.
lill bules in eyo-burs shall be borod to exnet sizo and distances, and to a true perpendicular to the line of straln. The pla hole shall be in the middle of the
head and in the conire line of tho bar. No orror in lengtit of bur or diamotor of pin hole exceoding of of an ineh will bo allowed.
The section of metal opposito tho contra of tho pla bole nerosa the oye shail be proportioned nocording to the following tablo, thio diameter of the bar belog the unlt :

PIN,	BAR.	EYe bection.	
		Upeet Honile or Weldiesn lhar.	Hoaile Rollod on Bars.
0.67	1.0	1.511	1.113
0.75	1.0	1.510	1.33
1.01	1.0	1.50	1.60
1.25	1.0	1.10	1.50
1.33	1.0	1.70	1.60
1.50	1.0	1,85	1.67
1.75	1.0	2.00	1.67
2.00	1.0	2.20	1.75

For hanmersd oyos, tho slinpo to bo usod shatl to dotormined by tho Engineor after the oontraot is awariod. No shape, whioh on tosting alows five por eent. of brenkuges in the oye or nock, will bo ncoeptol.

Pina muat be turned true to nito and atralght, no orror of more than $\frac{1}{50}$ of an inch in diameter being nilowod.
Pins eonnocting chords, posta and the bare shall be fitted for pillot nute, and shall not be more than $\frac{1}{40}$ of an lnoh lons than the pin bolos of tho eyo bare.
Pina connecting laternia with other monbere ahall be turned down to a diametor of not more than \int_{0}^{1} of an inch tess than the pin holes,
Pin holes in wiag nuts, ohannol nuts or ot her arrangemente for lateral eonnecthone ahall bo dritled or else punched and reamed to a sizo not excoodiog ${ }_{10}^{10}$ of an ineb larger than the pin.
Rods, round or aquire, neod for tice or counters, shall bo fabriontod with tho onme procition and care as preseribed for eye bars. They many bave loop-welded eyes with reamed intridos, the proportions of the loop to bo approved by the Engineer. Sorew enda shall bo apset so ae to give 10 por cent, moro sectional arem at the bottom of the aerow throad than in the body of tho bar. Sleovo nuta, clevises, or other mombers uad for adjuatmont muat have the pia boles, if nay, drilled, and must be of aufficiont atrength to brouk the bar to which thoy aro attaohed.
Rods, ured for latoral or vertical braeing, may have pin holes $\frac{1}{1}$ of an inch larger than the pin, but otherwise are to bo made with tho same curo as counter rode.
All oye bare and oonnter rode are to be tested to $18,000 \mathrm{lbs}$. por squnre ineh, and bara elowing atrnotural defecta, permanent sot, or too great extention under atrains, shail be rojected.
39. Those shall be mado of auch iron or ateel at ia proscribed for mombere exposed to coinproseion strain, exeopt whon otherwise specifed. Tho splioes shntl be composed of odge-rolled plates in all cusos, Abutting joints shall bo milted off to exact lengthe and equare to tho lino of the chord. All pin boles shall bo bored to an exact sizo, truo to tho line of etrain, and correct as to poeition. No errors execeding ${ }^{1}{ }_{0}$ of an inch in length of part or in diancter or prosition of pin hole will be allowed. The pin holes may be bered $\frac{1}{12}$ of an inch linger than ue pin, this is the utmost limit. Rivet holes in the eplices shall he puncled $\frac{1}{d}$ of an ineh less than required, and then reamed to fit. After the splico platen aro riveted on in the shop, eneh line of ebords or columns shall be assembled-the joints mutehed, their abntting jointe brought to a tight fit by turnbucklor, and nll rivet holes in the ends of ohords and aplices in which the rivots are to to deld-driven ehall be reamed to an exnet match and fit. Mateh marks alinil then bo made on each piece.
Parta composing posts or tio atruts must bo in ono Iength, witheut apliecs between end bearings, unless plocinlly permitted by the Engineer.

When necessary, pin holes in posts, chords or tic struts shall be reinforeed by additional material, which must contain rivets enough to tranamit the strain to the original menbor. The opon aides of posts, elords, struts and tio strats ahall be eonneeted by inttiee or trellis bare, tho angles of which shatl not exceed 630 25^{\prime} for einglo lars, or 45° for double bars with rivoted intersection.

Tho ansupported length of any lattice bar shall not exceed 45 times ite thicknose. All menobers of whioh the parts aro connocted hy hattico or lirueing bars shall have connection plates at ench cuid, the row of rivets in which shall be equal to the width of the member in longt ham not more than four rivet diametors in pitch.
In all compression mombers tho connoeting rivots within two dinmeters of the ends shall be pitehed not to exeeod four times the dianeter of the rivet.
The aeveral piccos forming nay built toember shall fit elosely together, nud the member shult ho freo froo bends, twists and open joints.
40. All joints shall bo squaro and truly dressed. Rivet holes shall be accurntely epacod, and the ricets must ho of the beet quality of irun for tho parpose, and when drivon must eompletoly fill the holes.
All rivets with crooked hends, or heads not formed centrully on the ahank, or rivots which are loose, either in the hole or under tho whoulder, shall bo cut out and replaced with good rivets.
Rivet holos shalt not bo apuced lees than 23 diameters between centres, nor more than 15 times the thickness of thinnest ontside phate, -9 inches boing the inaximum pitch ullowed in pinte riveting.

No rivet hole Einll be lese thun $1 \frac{1}{2}$ dinmetera from the end of a phate, or $1 \frac{1}{2}$ diamaters from the side of a plinte, nor ever lese than it inehes from centro of hole to edge of plate, except in cases where the phate or side of ungle is less than $2 \frac{1}{2}$ inches.
Tho dimmeter of hole ahall not exceed the dinmoter of the rivet more than $\frac{1}{18}$ of ma ineh.

Where two or mare thioknessea of plate are rivoted together, the outer row of riveta shall, if practioable, not exceed three rivet diameters from the side ndge of .plate.

Whero plates more than 12 In , wide are used in the compression flanges of girders or floor beams, an oxtra lino of rivets, with a pitoh of not over 0 inches, aball be driven along eanola to draw the pintea together.
Ali joint rlvot holes allull be sn acourately spacod that rivete of the proper sine oan be paased through all the holes in the joint, after the jurts aro placed in position, without the use of drift pins.

All alloe pintes in which the bolos are miamatehed, cither in the plater themselven or with the aljoining oliord or flange, slinll be matohed and the holes resmed to fit before lenving the shop.
No Inaceurate or otherwise defeotive work will be necepted under any oiroumatanees in comectinn joints of rlveted work.
Tho riveted field couneotions of floor beniua, stringers, posts and struta, muat be socurately matehed before leaving the shops, and nll ununtehed boles renmed to fit.
All rivets in splioo or tonalon jointa must be ayinotrically arranged, ao that each half of a teuaion member or pinte will have the same uncut areu on each side of lit centro line. Whenever pructiosble, rivets muat ho machine driven.
41. All bed plates must be of such dimenaions, that the groatust pressure upon the masonry shall not excoed 200 pounda to the aquare inch. All spans shall have ut one end nests of turned frictlon rollera, formed of wrought iron or ateol, running between planed aurfacos. The rollers shall not he less than 2 inchea diameter, and shall be so proportioned that the pressuro per lineal Inoh of iron roller shall not oxoced the product of the equare root of the dianotor of the roller In indies multiplied by 500 puunds (500 V). For ateol rollers the prosauro per lineal inch of rollor shall not exceed the product of the square root of the diameter of the roller in luches multipliod by 600 pounds (600 v d). All the bed plates and boaringa under fixed and roller ende muat be fox-bolted to the manonry.
42. All iron work before leaving the shop shall be thorougbly cleanaed from all loose acale and rust, and be given one good coating of red load paint, mired and applied as directed by the Englineer.
In riveted work tho surfacoa coming in contact shall each he painted before being riveted together. Bottoms of bed-platea, bonring platos, and any parts which are not accessible for painting after orection, shall have two ooats of paint ; the paint sball be a good quality of iron ore pulnt, aubject to approval of the Engineor.
After the structure is erected, the iron wurk shall he thoroughly and evenly painted with two additional couts of puint, mixed with pure lingeed oil, of suob oolour as may be diroctod.
All turned and faced surtacos shall be ooated with white lead and tallow before heing shippod from the shop.
43. The contractor shall furnish all staging and falso work, shall eroct and adjuat all the iron work, and jut in place all floor timbers, guards, sce., complete, ready for the rnila.
The contractor shall so conduot all his oporations as not to interfere with the work of other oontraotors, or close aoy thoroughfire hy land or water.
The oontractor shall assume all risks of acoidents to men or material prior to the aoccptance of the finishod structuro by tho Railway Comprany.
The contractor must also romove all falso work, pilling and othor obstruotions, or unsightly matorial producod by his operatious.

