CANADIAN ARCHITTECT AND BUULDER

VOI. V.

1892 :
C. H. MORTIMER, Pumisher,

Toronto-Canada.

INDEX

Decoming, Amacur
Decoration
Decoration, Developments in
Decorative Purposes, Brass for
Defective Buildings, Liability of Owners
Defective Construction, Linbility for
Derricks, Breaking of
Designs for World's Fair Monuments
Designing a liouse
Dictionary of Arehitecture
Drains, Sanitary Holsc
Druins, House
Drill Shed, Toronto, Cul Stone Work on $11,3^{86}$
E
EAhorescence on Brickwork, removal of 86 Electric Wiring in Montreal

86
66
Escape from Buildings in Case of Fire
Entlownent to Public Institutions
EIrraln

F

Fire Losses in the United States
Fire Esenpes for Public Invildings
Fraudulent Conveyance, Contmetors
Frost, lis Efiect on Building
G
Grinite Architectura
Grinite, Customs Regulations on
Granolthoes, a new Building Materina
Gass, Sulstitule for in Re
Hardware, Only
Hardware, to put on
37
68
Heating Apparasus, Crese of
Heating, Electricity for
Heatung nnd Ventilation
Heating. Electric
Heavy Timbering, New Methods in
Hours of Labor
Hodson, W. H. the late
How to Estimate the 1, 22, 33.49, 61, 09, 100

Montreal 'Street Railway Extension105

O. A. A. Exams
41, 118

Odds and Ends 48, 122
Ontario Soclety of Artists 88, 122
Ontario Soclety of Artists
Ontario Associalion of Architeets 1, 2, 12, 13,
25.
Ornament in Architecture ${ }^{26,46,48,107,115,117}$
-
Passing Events
Pavement, Bituminous Rock in Vrncouver 25
Pavement, Bituminous Rock in Vrncouver
Personals
10, 24, 29, 37, No. 5: 78, 20,
Presbyterian Church Compelition
Plan Designing 3, 21, 7 t
Pienum System of Ventilation as Applierl
to the new Surgical Buildings, Geneml Hospital, Montreal
Poriland Cement, Duty on 65
Province of Quebec Association of Architecs, $71,77186,96,98,105$
Provincial Iand Surveyors
Province Quebec A. A. Exams.
Practice, Viriations in
Plumbing Device, a Valurtile
Publications
5. 24. 37. 109

Queries and Answers 0
Q

R
27. 94
R. C. A. The * 121
R. 1. B. A. Examination, a Canadian Can-
didate at
"Registered Architect." use of the term
Rool, the late J. W., Proposed Memorinl
Monument to
12
P
,
School Accommodation, Additionil, Toranto 115
Stone Work. Tempering Steel Tools for
Stone, Canudian Building
Stone cutting Maclinery. .
Storm, the Late W. G., R.C. A.
II, 65, 69
Structurnl Iron Work
Suggestions
2
$-\quad 81$

St. Andjews' Church, Toronto, Remono. No. 512
St. Clair Tunnel. Ventlation of Removat of 56
Si. Johns. Nid., Destruction of $\quad 36,85$, Jc6
Strike of Granite Cutters, Effect of $\quad 26,85$
Stell Manufacture, Hastings' Process of 75
Slow-burning Consurucion
Statue of Quect Vicioria in London O. 11
Statue of Sir John A. Macdomatd at Ottawn 35,65
T
I Tax, Professional, in Quebec 95
$*$ Technical Instrucion for Artisans in Toronto 65 Term Cottin, Porous
Thomas, the Late W,
Toronto Art Stutent's League -
70
Toronto Architectural Sketch Club 41: 45, 46.85,
Toronto Builders \& Contructors ${ }^{\text {No }}$ Association $1 t 7$
Toronto Court House Difficulty $\quad 87$
'Toronto 'rechnical Scheol
Toronto's New City Buildings : 117
Toronto Street Raifyay
12, $36,60,{ }_{117}^{117}$
Toronto, Public Improvements in
Toronto Builders' Exchange
36, 46, 65,
Tunnel, Sub-marine, PECI
$36,46,65,86$
,$\quad 75$
Trade School Craduates Loycoterl by
Philadelphin Plasterer
No. 7 - ${ }^{\text {I }}$

U

Undergraund Conditions, Dangerous
Union Strtion, Proposed new, Toronto

Verandah in Australian Donmestic Architec- Page ture, the
Ventilation -
Ventilation of Sewers in relation to Saut.tation of Dwellings

56
W
Water Works, value of
Water and Waste Pipes
Woodwork in Art
Witing, Incandescent
Wuter Privilege, London, Ont.
Wires, Underground, Dangers of
World's Columbian Exhibition $\quad 26$
Water Fromt, Toronto. Improventent of 86,87
Weights, Henvy, on Floors

Y

Yonge and King Slrects, Toronto, witten-
ing interscets, of of $\quad 75$

Illustrations.

A

Alexindria School for Girls
No. V1

B

Baptist Chapel, Walmer Road, Toronto, No. V Braich Benk of Montreal, Montreal, Qut. No. Vill

C

Canada Co.'s Porch, Toronto Architectur-
C. A. \& B. Competition Subutban Coutage No
C. A. \& Boment Suburban Counge No Church of the Messiah, Tosn Cottage No. VI Chureh or he Messiah, Toronto No. III Church of St. Joseph, St, Marys No. N Club Housc. Athletic Club, Toronta No. ix Clib Fouse, Athetic Clith, Toront No. ix Cotlage, Scarloro.
Colnge, Austin Avenue
Cottage, Lakeside Road - - No. XI
Counge, A.F. Lobl - . No. Xi

F

Fire Escenpes, System or, by Mr. Chns.
Bailhivg - H

I
Interior of Hall, F. D. Monk's residence
Isohation Hospital, New, Toronto No. XII

Mantel, Drawing Room $-\quad$ Na. X
Mantel in Provost's Room, Glasgow Muns. No
isipal Buildings
No. 1X
0
O. A. A. Accepted Design for Official Seal 117

Ontario Associntion of Architects, Exam.
No. V in Design

P

$\begin{array}{ll}\text { Plenum System of Ventilation } & \text { No. } 1 X \\ \text { Presbyterian S. S. Building, Hamiton } & \text { No. }\end{array}$
Presloyteriann S. S. Building, Hamilton No
Public School, Giadstone Avenue, Toromto
Public Seliool, Gladstone Avenue, Toronto No.
Power House, Hamiloon Electric Street
Railway Co. No.
Proposed Honse for O. G. Evans Ihomus No. VI

R

Residence, Capi. S. Crangle, Rosedale
Road, Toronto - No. P.esidence, W. H. A. Massey Montreal No. IV Residence Heclor McKenzie, Montreal No. 1 V Residence J. 1. Morrison
Residence R. B. Ross, Montreal - No V
Residenee E. A. Wills, Toronto - No. V
Residence, Dorchester Street, Monirenl

S

Sketch of Summer Residence, Toronto sland

No. 111
St. Andrews Chureh, Toronto -No
Statue of Rt. Hon. Sir John A. Mncdonald,
to be erceted in Hamilton, Ont. No. Xt
Storm, W. G., Portrait of - No. Vill
U
Union Siation, Proposed new Cin No. 7
$\underset{\text { Adolplustown }}{\text { United Empirctist Memorial Churchi. }}$. No. λ

Canadian Architect and Builder.

VOL. V.-No. I.

TORONTO AND MONTREAL, CANADA, JANUARY, 1892.
$\left\{\begin{array}{c}\text { PRICE } 20 \text { CENTS } \\ \text { S } 2.00 \text { PSK Yat }\end{array}\right.$

—T畐目——
 Canadian Architect and Builder,

A Monthly Journal of Modern Construetive Methods,

 (With Weekly Intermediata Edition-The Canavian Contract Recoad), mblisited on the tilidd saturbayin each montil in the interest of ARCHITECTS, CIVIL AND SANITARY FNGINEERS, PLUMBERS, yecorators, builders, contractors, and manu. FACTURERS' OF AND DEALERS IN BUILDING Matertals and appliances.C. H. Mortimzer, Publisher, 14 King Street West, - TORONTO, CANADA. 64 TEMPLE BUILDING, MONTREAL.
 or the United States for $\$ 2.00$ per year. The price 40 kubscribers in forcign coundries, is $\$ 7.50$. Subscrioptons are mynlle in sdvance. The papar will be where no such undertanding exists, will be continted until instructions to disconttimue wre received and all arrearages paid.

ADVERTISEAENTS.
Pricess for advetising sent promptly on application. Orders for advertising
should reach the oftce of pubbication not liter than the ith dy or the tainth, and changes of adverticements not later than the sth day of the month.

EOITOR'S ANNOGNOREMENTS.
Contributions of technical value to the persons in whose interesis this journal is published, are cordially invited. Subscribers are also requested to forward newspaper elipplngs or written items of interest from their respective localities.
Tho "Canadian Archifect and Bnilder" is the ofliotal puper of the Arahtlecturat Arsoatitious of Ontarto and Queboc.

The publisher desires to ensure the regular and prontpt delivery of this Journal to every sulscriber. and regwests that any canse of comptaint in this particular be reparted at onte to the office of publication. Sudscribers who may change their address thould also give prompt notice of same, and in doing so, showld give both the old and nove addrest.

ONTARIO ASSOCIATION OF ARCHITECTS.

OFFICERS FOK 1891.

PROVINCE OF QUEDEC ASSOCIATION OF ARCHITECTS.

UFFICERS FOR 1891.

President		F. X, Berlinquet, Qurbec.
ist Vice-President	-	Victor Roy, Montrenl.
and Vice-President		J. Nelson, A.R.C.A.
Secretary		C. Claft, Monireal.
Treasurer		W. E. Doran, Montrual.

councll:

A FULL report of the proceedings of the second annual convention of the Ontario Association of Architects will be published in our next issue.

A gentleman from Toronto was a candidate at the recent examination for qualification as Associate of the Royal Institute of British Architects, and, we reget to observe, was not successful in passing.

A public libmry to cost a million dollars or more is to be erected in Chicago. It is said to be the intention to ask for competitive designs, and to give $\$ 1,000$ each to the authors of the five best clesigns. If these are the conditions, the inducements are too small to attract the efforts of men whose knowledge of the requirements of such a building could be relied upon.

The fire losses in the United States during the year which has just closed, amounted to $\$ 125,000,000$, being nearly 50 pcr cent. in excess of the previous year. This, despitc the fact that there were no great conflagrations. The Enginecring News points out that the expenditure of the money which thus goes up in smoke would no far towards rendering the buitdings more nearly fire prof.

Ir was the intention to publish in this paper drawings and specification in connection with the second of Mr. Hollson's series of articles on "How to Estimate." Some alterations in the drawings were thought necessary, however, in order that they miglt prove more instructive. This las made it necessary to defer their publication to the February issue. In this connection, if contractors see any way in which these articles might be made more serviceable, we shaill be pleased if they will forward us their views on the subject. Any suggestion which may thus come to us will be carefully considered.

THE journeymen plasterers of Philadelphia refuse to work on the same building with graduates of the Plastering Department of the Master Builders' Trade School, of that sity. The lads are desirous of completing their trade, and the master plasterers are anxious and willing to employ them. In pleasing contrast to the attitude thus assumed by the Philadelphia plasterers stands that of the Bricklayers' Union of Hoston, which has arived at the following understanding with the Master Builders' Association regarding trade schools: "Trade schools are to be established and opened evenings. Instruction therein is to be given all regularly indentured upprentices. None bu: regular appientices shall be allowed to enter these sclrools. Instruction shatll be hiven to pupils in the theory and science of the trade they propose to learn."

The Mansur-Tebbets warchouse in St Louis, constrtacted on the slow burning principle, was alinost entirely destroyed by fire recently. The result is said to bave been due to lack of promptriess on the part of the fire department and scarcity of water, rather than to defective construction. Although the contents of the building were of a consbustible nature, the fire burned for a consideiable time on the two lover floors before extending to the upper storics. Mr. Edward Atkinson, the advocate of slow burning construction, referring to the destruction of this building, says: " 1 do not think that we șball reach the true: fire-proof construction until we attain a method by which the building is constructed wholly'of fire-clay, or brịck and tile; without any wooden or iron members in the structure : similar to the method in which the new Boston Public Library
was constiucted: I think that building comes nearer to being fire-proof than any building that I know; but such construction is, as yet, too expensive in this country to be applied to mills and sommercial warehouses. It has, however, been adopted in Spain for textile manufactories, bleacheries and print works."

When a metal beam or bar is subjected to a shock, there is a tendency to change the form or to bend the beam. When the load is removed or the shock is over, the beam will assume its original position unless the strain produced by the load or shock has been in excess of what is sometimes termed the elastic limit. It may be repeated an infinite number of times and yet there will be no evidence of any weakening of material, but if it be in excess of the elastic limit, it has only to be repeated a sufficient number of times to break the beam. However, there is another featare of the action of the metal which must not be overlooked. It is that the limit of elasticity is not constant throughout the succession of shocks required to break the beam. After the load has been several times applied and removed, it is found that a greater weight is required to produce the same amount of bending, that is, the limit of elasticity has been increased. It is, however, a question whether or not the safety of the beam has been increased.

A revolution is taking place in the methods of preparing stone for the various purposes which it is required to serve in building construction. In Chicago a great deal of the work formerly done by the skillful hands of the workman is now being accomplished in much less time and consequently at greatly reduced cost by improved machinery recently designed for the purpose. A gentleman who witnessed its operation states that the modus opcrandi is very similar to that to which lumber is subjected in passing through a planing mill-the material in its rough state entering at one end of the establishment and passing out at the other and in almost finisled condition. Stone-cutters viewed the introduction of these machines with alarm, but the experience of the last two years is said to have shown that there is as great demand for skilled workmen as ever. The reduction in cost effected by the use of machinery has brought stone into use to a greater extent than before. There is like wise noticeable a tendency to indulge in more elaborate ornamentation. The employment of machinery would no doubt have lessened very materially the time and expense on the construction of the new Parliament, city and university buildings, Toronto.

The difficulties incident to the erection of the Toronto Board of Trade's new building are not yet at an end. The limit set for the cost of the site and building was $\$ 350,000$. The calculations regarding interest to be paid and probable revenue to bederived from tenants indicated that it would be possible to put aside annually the sum of $\$ 5,000$ to establish a sinking fund for the redemption of the bonds on the building. There is little reason to doubt that had the construction of the building been entrusted to local architects, it would have cost little if anything more than the sum fixed as the limit. The secretary and Mr. H. W. Darling, a former president of the Board, were apparently very desirous that an American architect should be employed, and the upshot of the matter was that the work was given to Messrs. James \& James, of New York. After a time rumors began to circulate that there were setious flaws in construction due to defects in the plans. The secretary of the Board positively denied that there was anything wrong, but eventually when this jounnal with the aid of sketches and figures taken from the work, printed the true facts of the case, it could no, longer be concealed that blunders of a serious character had been made The architects were dismissed, and another American architect employed to complete the work, as it would never have done to have ndmitted that a mistake had been made in passing by competent local men. The mistake is sone the less apparent in the fact, however, that the building required to a large extent to be reconstructed, and in consequence the limit of cost has been exceeded by $\$ 120,000$. This extra cost has wiped out the possibility of devoting $\$ 5,000$ a year to a sinking fund without increasing the fees of the members. As the only way out of the difficulty, it is now, proposed to amend the by-laws to permit of doubling the amount of the annual memberstip. fee. As a
result of this proposal we have recently heard members asking one another what advantage was derived from their connection with the Board, and the answer was that the benefits to menbers other than those belonging to the grain section, are nil. Under these circumstances it is not surprising to hear members offering to sell out. "You will never be able to pay off the debt on that building in the world !" was the statement made by-a member to one of the trustees of the Board the other day in the writer's hearing. "I know it," was the discouraging reply, and this was followed by the suggestion that it was useless to expect of economy as long as the Board had a secretary whose economic ideas were so ill-defined.

O. A. A. CONVENTION.

The second annual convention of the Ontario Association of Architects will meet on. Tuesday, the 2nd of February, at the School of Practical Science, Queen's Park, Toronto, at 2:30 o'clock, p.m. It is to be hoped that the proceedings- will be of more interest than usual. We would strongly urge on every member of the Assotciation to be present and take an active part in the proceedings.

Members who do not attend the annual meetings cannot justly nake any complaint as to the manner in which the interests of the Association are conducted. If any member feels that some question which specially interests him should be considered, he should attend and bring the matter up, otherwise there may be no one present to bring it before the meeting.

This is a critical period in the existence of the Association, and it will require the assistance of every member to tide it over the next few years. If the members are loyal to the Association its success is assured. But if the members grow indifferent and careless, it will require all the energy and perseverence of its active workers to carry the Association until it has made for itself a solid foundation on the ability and loyalty of its younger members who will have come in by passing the examinations.

There are members who complain that the Association has not benefited them because they cannot obtain 5 per cent. commission, other members being prepared to work for less. The Association is unable to make rules or regulations which will bind the members except to a very limited extent, and certainly it is unable to force its members to charge any definite commission, even if such a course were advisable. When a man does not value bis services at the regular rate of commission, but at a rate much lower, nothing can be done that will cause him to value his services at a higher rate. His services may not in reality be worth more than he is willing to receive, or he may be forced by circumstances to take what he can get.

It is a question if it would not be better for each man to settle for himself what his services are worth. A fixed rate of commission on all work of the same chamcter to be paid alike to the competent or incompetent architect is unfair and unjust alike to the architect and the client. The client, if he knows what is best for him, will go to the most competent man that he can find, as he would not pay any more for his services than he would for those of an inferior man, except that a competent man will insist upon the work being thoroughly done, thus increasing the cost to the proprietor. This and similar questions could be brought up and discussed at the convention with benefit to all.

The testing machinery which has been recently erected in the Sclool of Prnctical Science will be exhibited, and tests will be made of the building stones in use in the province of Ontario. Five well known members of the Association have consented to exhibit plans of houses and describe them, giving their rensons for arranging the plans as shown. These descriptions and the discussion which will follow will probably be of great interest.

There will be a number of valuable papers read, which, with the discussions upon them, should be of interest to every member. It is hoped that some members will come prepared to discuss the papers. Every nember may not have the opportunity nor be able to take an active part in the work of the Association, but each member is able and should take sufficient interest in the progress of the Association to cause him to do all that may lie in his power; be it much or little, to assist and encourage those who are taking an active part. The memoer who does nothing to aid in the advancement of the Asssociation
but who is prepared to find fault and object to everything that is done, is not worthy of being called an architect.

The object of the Association is to advance the interests of architecture by educating its members to a knowledge of the work which as architects they are called upon to perform. By architects studying each other's work and exchanging ideas, the profession will attain to a higher standard of general proficiency which will raise its members from among the careless, ignorant, or for-gain-only arehitects of the preselit day.

The architect who follows his profession simply as a means of livelihood will see no benefit in any Association if it does not increase his income. Personal gain is his only object, and to obtain it he is prepared to erect any manner or description of building, from the most dangerous to life to the most inartistic conception that man can be guilty of designing.

The object of the Association is not to deternine a tariff of fees and insist on its members maintaining them, but to work earnestly to raise the members to a higher standard of architectural knowledge, so that they may be enabled to demand and obtain just and reasonable remuneration through the fact that their services are absolutely necessary to the successful erection of every important building, if it is to serve the purpose for which it is being erected.

There are some who think that the architect who has a large practice is more interested in the success of the Association than the average member. This is far from true, for the man with a good practice is independent of any Association, and the more inferior in ability his opponents remain the better it is for him. It is the average man and the young architect who will benefit through the success of the Association and the general advancement of the profession.

Do not let any man think that he is unable to assist in the work of the convention. Every one can do something, and out of love to his profession let each member do all that lies in his. power.

PRESBYTERIAN CHURCH COMPETITION.

We write to draw the attention of our readers to this competition. The Presbyterian Churel recognizes that the architecture of its churches is not creditable, and desires to bring about an improvement. The metlod dec̣ided upon is to issue a pamphlet with short essays upon architecture, to instruct the congregations as to what is good church architecture. To do this, thoroughly good designs are absolutely necessary for illustration, and such can only be obtained from architects.

The church can not afford to pay for designs for publication in the pamphlet in the usual way, so it was decided to ask the assistance of the architects. This assistance is now asked, and it is hoped a hearty response will be made by the architectural profession. The profession is interested in this movement, and should give it reasonable assistance and support.

There are many architects who are not any too busy at present, who should be able to send in good and suitable designs. Some may say that they will not do so because they will not receive any recompense. Well, such is a fact, but have they not in very many instances to the injury of the profession persisted in preparing designs and forcing them upon prospective clients when they were not asked to do so in the hope of being able to obtain a commission?. Now in this instance, the preparing of a design may lead to a commission, possi'hly to many commissions, and there is nothing small nor lowering in the transaction, but the opposite, as the Presbyterian Church will be assisted in their cffort to improve the church architecture of this country, and the competitor will have the pleasure of feeling that he did what he could.

There are many young men, and for that matter draughtsmen in offices, who could enter this competition with advaniage to themselves and very probably with advantage to the object of the competition. Young men shoukd seize this opportunity to find out just how they stand in comparison with their confrerés.

We strongly urge upon all architects and draughtsmen to render every assistance that may lie in their power to make this effort on the part of the Presbyterian Church a success.

A Good Cement.-For a glass-metal cement insoluble in carbon bi-sulphide, alcohol, water, etc., dissolve gelatine in water, add a small percentage of glycerine, and also a small quantity of potassic bichromate.

MONTRKAL.

(Correspondence of tlie Canadian arciitrct and Bulloer.)
TIIE hardware manufacturers and dealors of this city have started the circulation of a petition to the Government asking that a uniform appraisement of articles charged duty under the same clauses of the tariff at various ports of entry throughout the Dominion be arranged. The complaint is made that much inconsistency is shown by appraisers, and that in consequence of imperfect knowledge on the part of appraisers, imports at small ports enter at lower rates than in the cities.
province of quebec association of ahcintects.
The semi-annual examination for admission to study and for registration of the Province of Quebec Association of Architects, will be held at the Parlament Buildings, Quebec, on Monday, isth January, at io a. m. Intending candidutes are required to give one month's notice to the secretary, Mr. Chris. Clift, accompanted by the necessary fees: For admission to study, $\$ 10$; for registration, $\$ 25$.
A meeting of the Council of the Association was beld on the 7 th inst., the president, Mr. Berlinquet, presiding. It was deetded to bave a printed list of the names of all registcred architets sent to members, that reasonable time should be allowed members to pay their fees, ankl should any fail to pay arrears wilbin the specified tume, their names will be struck from the soll.

In compliance with a request received from the Ontario Association of Architects, a Commitice was appointed to arrange for the reading of a paper by a member of the Quebec Associauton at the approaching annual Convention of the Ontario Association.
It was agreed that all monies paid into the Association by students should be used directly for their benefit.
The Comnatitee on tariff legistation reported that on account of the unsettled state of political affairs in the province at present, action by the Government had been delayed, but the indications are that if the tariff is not fixed too high, it will receive the sanctuon of the legislature.

Messrs. Dunlop and Maxwell have now a class of twenty-one students. It is the intention whien the students are sufficiently advaneed to take them out on skectling tours.
A paper was to have been read by Mr. Hayes, but the author found hintself unable to prepare it before the next meeting.
board of trade nuilding.
The sum of $\$ 200,000$ has been subscribed towards the erection of the Board of Trade buikding. This is less than half the amonnt required, and judging by the difficulty experienced in obtaining it, considerable effort will be required to secure the billance. In a wealthy commercial centre like Montreal, money should be freety forthconing for an enterprise of this kind, The nethods of the Building Committee resembling so closely those of the Toronto Board of Trade, it may be that like results are expected to follow, which may possibly account in some measure for the tareliness with which the subscriplions bave come in.

Canadian society of civil engineers.
EThe annual meeting of the above society took place on the rgth and 14 th inst. Time forbids more than a brief outline of the proceedings.
The question of co-operatining with American sacietics in entertuining members of forcign engineeriug societies at the World's Fair was not favorably regarded, but was left in the hands of the council.
Mr. D. H. Keely's paper on " Developments in Telegraphy" was atwarded the Gzowski gold medal.

A committee was appoimed to consider and report upon the standard system of testing, and also the tesis upon Camdion and foreign cement, and report at the next annual meeting.
The election ol officers resulted as follows:-President, John Kennedy, Montreal ; Vice-Presidents, P. A. Peterson, Montreal ; W. T. Jennings, Toronto; Tbomas Mumro. Colcau; Trcasurer, Herbert Wallis, Monirent;
 Secrelary, Clement H. McLeod, Montreal; Librarian, Win. McNab,
Montreal; mentbers of the Council: H. T. Bovey, Monireal; J. Jobson, Montreal ; menibers of the Council: H. T. Bovey, Montreal ; J. Jobson,
Hamiton; H. G. C. Ketchum, Firedericton. N. B.; H. N. Ruitan, WinniHamilton; H. G. C. Ketchum, Fredericlon, N. B, ; H. N. Rultan, Winnipeg; P. W. St. George, Montreal; C. E. W. Dotweil, Halifax N.S.; H. J. Camble, Vancouver, B.C.; K. W. Blackwell, Montreal: C: H. Keeder, Toronto ; H. D. Lumsden, Toronto \mathcal{F} F. W. Gisbornc, M.C.; E. A. Hoare, Quebec.

SANITARY HOUSE DRAINS.

In dealing with the question as to the proper size of drainage pipes for houses, Col. George E. Waring expresses a decided preference for soil pipes of smail bore, his own divelling being furnished wttl a soil iron pipe from above the roof to outside the building line, of three-inch diameter, this being connected with the street or main sewer by a three-inch earthen sewer from the building line; there is a fall of nearly lalf an inch to the foot, the distance outside from the house to the nain sewer being IIo feet; on this three-inch line, with its two water closets, bath tub and kitchen sink, there have been during ten years' use not more than five or six obstructions, mainly due to the presence of the running trap on the nain dritin. In proving to his own satisfaction the inability of a three-inch soil pipe and house drain to carry off the sevage and waste matter of a private dwelling of average size, Colonel Waring does not recommend the use of threc-inch pipe, but considers that a four-inch soil and drain pipe is sufficient for all dwelling houses, a four-inch being able to carry nearly 80 per cent. more than a three-inch pipe. In the stme manner be declates in favor of a six-inch pipe for street sewers, though circumstances may exist where a larger pipe should be used.

BUILDING INSPECTION.

The following paper on ". Building Inspection" was read last month by Mr. W. E. Doran, at a meeting of archileces and stadents in the city of Montreal :
1 will first treat of this question in its social aspect, as it is one, Regislation upon which must necessarily be of a socialistic eharacter: that is, it must be such as will control the actions of individuals in the interest of the public at large, and even in the interests of the individuals directly affected.
It is conceded that all maters aftecting the safety and prolongation of life are proper subjects wherein the liberty of the individual is to bee nade subjeet to the interests of socicty. That man should live in healthy and safe habitations, and that the public buildings and places he frequents should be equally healthy and sale, is now an ndinitted axiom. In rumal localitids, self interest usually prompts the individuals buiding to in some mcasure attend to these points. The conditions of tife, aud the pure atmosphere in a great mensure supply for any artificial precautions in regard to dhe formser; and the simpticity of the constraction to n eertain extent ensuras the latter.
It s then in citiss, where the aggregation of large numbers of people, their overcrowding in particular locilitics and the consequemt artificint morks of life therein adopted, render it incunibeut that autiority of sonte kind interfere as regards the habintions of meti anel their places of public resort. Thus building and sanitary precnutions are to a large extemt regulated by the slate to civie control, and the power to legisiate thereon delegnted to municipal bodies. 1 many be considered as not keeping within the proper scope of nyy subject when I refer to sanitary mallers; but having given the principles upon which cities affeet to control building operations within their limits, I hold that a sysiem of building inspection should be devised, wbich would be at once comprehensive of all the points upon which civic legislation is necessary, and which would secure as far as possible that such legislation be thoroughly enforced.

What is the first consideration in regard to a buitding? Site. Is it healthy? Is the soil capable of sustaining the structure to te placed upon it $\}$ If the answer to both these questions be "ycs," then the work may proceed. If to both or eiller the answer be negative, then competent authority should say "'The defects must be remedied or no buildiag shatl lie erected." Here then I chain is the first mater which a buildiag by-haw should govern, and the first guestion for a competent building imspector to decide.

In connection with this I will ald, even at the risk of digresson, that no street slwu'd be buth upon unith the drainage therein is as perfect as engineering seience can make it, and further, that at the time of constructing a public sewer, a connection should be made to each lot. Thus the soil would have some clance of being trained, rendering the site salubrious, and at the same timeg frequently converting bad into good billding ground.
There is a good deal of attention paid now to tle carrying of of sowage, to my minkl mis-called "drainige": whilst soil druinage is allurost universilty neglected, though from a sanitary point of view the latter is at lenst as necessary as the former. Provision should also be made for completely exeluding ground nir from divellings. whenever it might in the slightest degree prove injurious; nlso an enncument requiring the introllaction of demp-proof courses in all wnils.
and. Light and Air.-Ttre oliject for which tive building is to be erected must determine the nimount of free space which it should be inperative to adjoin it on the public street and on the property of the individual ; all this should be provided for in a model by-lnw, and it should be the duty of the building inspector to see that its provisious were complied with lefore gramting any pernit to build.

3rd. Afaterials and Ifores of Construction. - It is universally admitted that the fundamental parts of construction shothlel be of fire-proof material, or at least of such materials as woild tend to relard the progress of conflagration. In fact the first idea at ciric building inspection was founded on the prevention of fire, but as the cities progressed in wealth and opulence on the one hand, and unfortunately in poverty and degradation on the oiher, it hns become necessary to guard against sucli errors of construction in the more ambitious buildings as would render thein insecure, nol only as regards accidenis by fire, bet as regards cupidity of buman mature from lorcing the poor to herd in unwholesome, ill-built, and ill vantilated tenenvents, which might at any time become fire-traps or sources of pestilence.

How can a law be framed that will cover the various and multitudinous matters that must naturally have to be decidet on by the building inspectors Let it be borne in mind that no matter how competent that officer nowy be, to a certain extent his usefulness is marred unless the law which low is called on to administer be clear, explicit, and clothes him with suffecient authority. It is evidént that to meet the requirements of our modecm cities, classificationof buildings must be resorted to, and for diferent closses, certain matters of detail must be more carcfully attended to than for others. For instance ; For an ordinary self-contaired dwelling or emall tenement, it might be sufficient that after the matter of site, light and air had been satisfictorily attended to, that a geneml description of the building, with detnils of manner and materials of construction, drainage and plumber's fixtures should be deposited with the building inspector, and that the owner should be held to notify that officer at stated periods of the work, say at its commencement, when building should be ready for plastering. and again on completion, so that officer might see that everything was in compliance with the law. More important buildings should be graded according to their future uses, their allitude, and so forth, and for these the complete plans should be deposited in the building bareau, and any details as 10 calculations. etc., required by the inspectior should be furnithed. These slould be verified
and if satisfactory, a permit should be issued in whelh it should be mentioned the various stages at which the department would lave to be notified, so that the work would be properly inspected. No deviation should be allowed from the plans without the sanction of the building bureau, and further, on very important point, no building shoukd be used for any purpose which would require a higher classificution than that for whitch it wns built, but n justice to the designers and builders, ind in deference to public safety, a building should not be overloaded after a few yeare ly the erection of additional storics, or if designed for an ordinary store, or for light minufacturing purposes, should nor be exposed to the danger of caving in, or of being converted into an warehouse or the first elass, or collapsing from the vibrations of heavy machinery.
In no particular should building inspection be more stringent and severe than in lie matter of ultemations and additions to ofd louildings, and if the detai's of the buildings to be mised or attered do not exist, and uniess it can be clearly shown that the possibility of such alterntio: s and additions was provided for in the original construction; careful examiontion, and if necessary, tests, slould te made before the proposed improvenients sliculd be sanctioned. onet in tro ense shoukd the factor of safely be climinished.
Special provision should also be made as to puldic bxiklings in case of firc, modes of egress, etc, etc. 'Thuse in fact are pretty generilly attended to, but there is one point that is generally neglected, viz., provision to enforee proper sysiens of ventilation, particularly in sebool buldings, where clibdren are olten found to breathe tor hours a vilitied atmosphere. To this cause nay be traced many disenses. the origin of which ofttimes puzzles physicians.

And the modern tall building, does it not cull for some special attention? Is it to be allowed to tower above the reach of fire apparatus, unless constructed altr gether and absolutely fircproof? Are elevators to be allowed to daily carry up and down precious boads of humanity wihout frequent inspection and tess? A prompe nrode of dealing with existing structures which may become dangerous is also much neededt so that no one could defy the law, and one would not read as we often do after a disaster, "that the structure was condemned some years ago by the building inspector, but was nevertheless suffered to xist."

A building law should provide carcfultly for att these and many other details. Now how is such a law to be framed? Certainly not by a comnitiec of aldermen with no technical knowledge, aided by an attornay of more or less legal ability, with a medical gentleman thrown in for the health points; after sitting clown and making one or a half dozon conflicing by-haws on the subject, necepting sach suggestions as they may mink fit from their iuspector. Can they hold that genteman responsible for anything that nay occur in any building, old or new, through the lengith and breadth of a great city, whether he had any notice of bis nttention betige wanted in a particular locality or not, or the authority to interfere if he is awire that certain structurcs are dangerous? On the coutrary, such a law would need long and careful study from competent men, and in its traming, our profession should certainly be consulted. I bave purposely avoided anything savoring of local criticism, but I cunnot resist the templation of recording the fact that in one so-called by-law to regulate the construction of bulldings in in certain city (jou all know what eity) no reference is made to the exsstence of an architect; it is nltogether the owner and the builder whom the inspector is to deal with and ask for explanations. The authorities of the same city consulted the plumbers about a proposed sanitary by lav, but not the areljitects, wher are supposed and expected to govern lise former. I do not know if the same implicd contempt for architects exists elsewhlere, but I think I can safely assert that only with their ássistance can a practical by-law be framed, which men of ability could accept, and which would be of service to those who wish to build honesily. It well'd also intimidate those willing to risk the lives of their fellow citizens for the silke of a slight saving of materinis or labor, as it shootit be a penal offence to disregard in building anyihing which might be injurious to bealth or datugerous to life.

As to the officials of the building bureau. bitge cities should be districted, and an inspector appointed for each, who should be a thoroughly trained and experienced architect. All the necessories of buikling, boith for sinitation and for safety, should, I ctaim, be under one bureau, and though the detaits of interior drainage inight be teft to specin! inspectors, still these shoukd be subordiuates of the building inspector, and under his control. The latter should be an official in the citv enginecr's department. Aly matters relating to building, such as the giving of lines, levels, pernits, ete., should be attenticd to at the one office, so that infornation or plans once given by intending buiklers should serve for all these purposes.

I lave said that bulding inspection as a general rule comes under civic control, but there is properly one exception. The state must necussarily exercise a supervision over factorics, and in fact should over all public buildings where no local inspectors exist. However, in cilies and towns possessing building inspectors, all general laws should be enforced by them, and the proviacial or country inspectors should deal with the public only through them.

There is one point which I wish to emphasize, that is the publie shoukd not suppose that the building inspector is all architect employed by a paternal government, to take the place of the regular practitioner, and that the was obliged to give his services gratis to any one too mean to employ an arebitect. It should be clearly understood that the duty of a building inspector is to examine plans subinitted to hlm, not to prepare, or give instructions for preparing them; that he has to approve or condemn, not to suggest or instnet. It is true when reviewing platas whercin some ninor defects would be apparent, he might point these out, and surgest some

VoL. V.]
The Ganadian $A_{\text {Ir }}$

"C. A. \& B." Conpetition for "A Suburban Cottage."
Design by "Jack Plane" (J. W. Siddali). Torosto, Awarded Thimp Position.

Vol. v.] The Ganadian $A_{\text {rchitect and 居 }}$ euilder: [No. i.

alterations, but this shoald bu entirely at his own discretion. Again, it would be ridietlous to suppose that the examination of a building inspector at stated tines of a structure; to ste that vital points were attended to, coukd take the place of the regular and watchful supervision of the professional architect. 1 would not be'in favor of seeking any legisintion in order to compel people to enuploy architects whether they desire it or not, but I think with suitable rind rigid inspection those building would perceive that it was to their own interest 10 have the services of a competent architect.

Jlsere is one more consideration which might possibly become a subject for legislation, lunt it is a very difficilt mitter to deal with. I refer to building regulations from an rethetic point of view. Of course it would be impossible to establish a censorship over plans, and reject those which where considered ugly. Only autocmic pover, joined to absolute good taste could do this. Still when a corporation at the public expense proceeds to beautify a city with parks and suuares these improve the property in their inmbediate vicinity, and the public has a right to exact frons the owners thus bencfitied, that they slall not mar what bis been tome. If canons of good taste cannot be made law, at leist it is possible to prevent mean buildings from being erected in such localities. It seems to me that the city should bnve power to regulate the minimum, or even in places where it would be desirable, the uniform leight of buildings in parts specially favored, even if the favors consisted only of a better class of paving and sidewalks than were possessed by the city at large.
, As to erections permitted in public property, such as our own Mount Roval Park, the plans should certainly be submitted to a competent commission to decide not only if they possussed merit of themselves, butalso if they were in harmony with the scene, so that man might not mar the bennly which God created.

DESIGNS FOR WORLD'S FAIR MONUMENT.

Quebec, Jan. 5th, 1892.
Editor Canadian akciutect axd Builurk.
Dear Sir,--Through being of French descent, I might be supposed to incline to the compliment of having the Effiel tonver repeated at Chicago, and as having myself been one of the conpeting architects for the proposed London tower, I may be supposed to have somewhat maturely considered the subject. I fully agree with the editors of the Scientific American, and have no :loubt the general consensus of opinion will bear them out in deploring the fact that any imitation of the Effiel tower is contemplated at the Columbian exlibition. The proposed strucure, an engraving of which appears in their last issue, is, or will be looked upon, as they aptly foresee, as a servile and awkward innitation of its prototype, while without any of the elegance of the latter. It is, however, satisfactory to know, if they are certain they are rightly informed, that the structure is not to be lostered by the promoters of the exhibition, but to be merely a side show for penny purposes.

If the tower must be built, let us by all means have some alteration in its outline which will give it an air of originality, be it a cone or a pyramid, or the freestuns of an elongated cone, or better still, a series of superposed cylinders, decreasing in diameter, and thus leaving at eacli successive offset the breadth of a gallery with railing of sufficient height for security, and a foor at, say, every 100 fect, supposing this to be the heiglt of section, with stairways and elevalors around a central nucleus to reach the top-somelhing, in a word, after the design submitted by me for the London tower. (See design No. 5 of the illustrated catilogue of the sixty eight competitive designs for the great tover for London, edited by F. C. Lynde, M. I.C. E., S. Stephens Chambers, Westminster, London, 1890). But best of all, why not carry out that grand, that novel, that almost sublime coneeption illustrated last year in the same journal, of a sphere surmounted by a fac-sinnile of the vessel in which Columbus sailed on his voyage of discovery. Then would the Columbian exhibition be truly unique and grandiose, and unlike anything the world has seen before. And with what simplicity of construction could not this be carried our, where all the parts can be made to one and the same model, if a perfect square, which it may be for simplicity and rapidity of construction, as the extra time and trouble of making the globe spheroidal, would hardly be warranted under the circumstances: the flattening at the poles being only one 300% (3% ft. in 1,000), an inequality between the polar and equatorial diameters which no human eve, however well tutored, could detect. And this again a form, the construction of which is so facile where the Divine architect comes to our aid in the suggestion afforded by the component ungula or sections of an orange.
An erect glolie, while not uncomplimentary to visitors from the southern hemisplere, the equator and the tropics,: as less impartial to the idens of middle-latitudinarians, would no doubt
have some popular advantages, as, in such case, the polar axis pointing to the zenith, would allow of all visitors secing their respective meridians and the hour circles in a plane vertical or perpendicular to the horizon, as when, from any point on the earth's surface, looking towards the poles of the heavens; and this arrangement would, moreover, afford the opportunity of having the horizontal outer galleries to concord with the parallels of latitude, and, therefore, also with the arctic and ant-arctic circles, the equator, the tropies and the zones. These galleries could be easily reached froin the interior by radiating footways from the aterial line, around the solid or well-like nucleus of which a double spiral stairway might extend from ground level to the top, the one ascending, the other downwards to avoid confusion, or by two or more hnists or elevators stopping on their way up and down at the several to degrees parallels of latitudes ($871 / 3 \mathrm{fl}$. apart as mensured on a mericlian), or both stairs and hoists might be used at pleasure. Nevertheless, the bulk of mankind being in the northern hemispherc, and all, or nearly all, in or near middle latitucle or about half way between the equator and the polf, and as the erect globe would either place Columbus and his crew and craft, to crown the whole, in the Arctic Sea, if such there be, or lower and tilt his vessel to the latitude of the Atlantic, which would look ankward and unmonumental ; it may therefore on the whole be considered best, and so that Columbus may be the crowning figure at the summit, to tilt the axis of the tiny world to true parallelisin with the axis of the carth, thus pointing to the opposite poles of the heavens. With this arrangement, the stairs and elevators having to be vertical, as in the former case, would come out at top under the hulk of the vessel, and the outer galleries, if any, would, as they must naturally be horizontal, cut the parallels of latitude and other circles at an angle or inclination to the horizon equal to the latitude or elevation of the pole. And should this scheme on the scale proposed-a globe of a diamele of 1,000 ft,, -be considered too gigantic, too costly in view of tle advantages to be derived, let the diameter be reduced to 500 ft , and even at this figure would the proposed splere have a cubical capacity of some 66 millions of feet, that is, greater by about $6,000,000$ than that of the greatest of the far fameil pyranids of Egypt. This decrease in the total height of the structure, from 1,235 to say 617 ft ., would still leave it the greatest monument of the earth, bring its features of land and sea within easier distance of the eye and more at command of the search lighins from the surrounding 250 ft. towers or olservatories. The interior, I suppose, would be done in imitation of the starry frmannent, with incandescent lights of varied candle power to give an iden of the varied brilliancy of the stars or planets.

Yours truly,
Chas. Baidlaikge,
Architect and Engineer.

PUBLICATIONS.

The announcement that Mr. Howells will leave Harper's M/agaaine, to take editorial charge of the Cosmopolitan, on Marcl) 1st, cills attention to the process of building up the staff of a great magazine. Mr. Howells, who is recognized universally as the foremost American of letters, upon the expiration of his contract with Harper Brothers, on the first of March will take in hand the destinies of a magazine which promises to exereise a share of influence with the reading classes of the United States. His entire services will be given to the Cosumopotifan, and everything lie writes will appear in that magazinc during the continuance of his editorship.
Messrs. Mereliant \& Co. of Philadelphita, lave published a took entitled "What Visitors will be shown at the Wordd's Fair by Merchant \& Co.'s Brownies." In a series of exerutiatingly funny engravings, representntives of every elime are portmyed as coming to the World's Fair, where they view with amazement and mueh delight. Aerchants \& Co.'s varions exhibits, consisting of roofing plates, star ventihtors, sheet copper. seamkess tubing, electrical supplies, spiral rivetted pipe, solders and type metals, anti friction metals. etc. After observing their various useful applications, and witnessing the prize of nerit being bestowed upon them. the visitors depart for home bearing with then as souvenirs samples of the materints mentioned, and also no doubl un appreciative opinion of the ability of a frrm which succeeds in combining instruction enjoynuent and business profit in so happy a manner.

The Barnum Wire \& Iron Co., of Toronto Junction, have found it necessary to make an assignment for the benefit of their creditors. The linbilities are estimater at $\$ 50,000$, and the assets at nbout half that amount. A difficulty with the town anthorities concerning a bonus which was promised the collupany but which for some c.unse, was never paite to them, has had much to do with the present udfortumate result.

CANADIAN CITY ENGINEERS.

III.

Mr. Henry Norlands Ruttan (member Institution of Civil Engineers, member Canadian Society Civil Engineers), City Engineer of Winnipeg, Man., commenced the study of engineering on the Grand Trunk Railway in 1867.

From 1869 to 1874 lie was employed on the engineering staff of the Intercolonial railway--for the later portion of that time, as engineer in charge of section 6 on the Baie Chaleur.

In the winter of 1873 he made an extensive survey of Shippigan Harbor in connection with the proposed short line across the Atlantic.
In 1874 he was employed on exploritory surveys on the north shore of Lake Superior, on the line now occupied by the Canadian Pacific Railway between the Pic and Nepigon rivers.

In 1875-6, as engineer in charge, be made the connecting surveys and location of the proposed line of the Canadian Pacific Railway between Edmonton and the Yellow Head Pass of ..e Rocky Mountains.
On the beginning of construction of the Canadian Pacific Railway between the Lake of the Woods and the Red river, Mr. Rution was engared by the contractor of section 15, Mr. Jos. Whitehead, as contractor's engineer, where he remained until the work was practically completed and taken over by the Government in 1880, after which he took up his permanent residence in Winnipeg and practiced his profession as civil engineer and contractor.

The first bridge over the Red river in Canadian territory; at Emerson, was designed and built by him. The firse 50 miles of the Manitoba South Western Railway was constructed for the Oregon Transcontinental Company by his firn. The first 45 miles of the Maniloba North-western Railway was constructed by him as engineer and contractor:
In 1885 Mr. Ruttan was appointed City Engincer of Winnipeg. The duties of City Enginner in a new place like Winnipeg are not very well defined; they embrace all ordinary descriptions of engineering and architectural construction, as well as the care and maintenance of all streets and public buildings and other property of the cits. The most important works are the sewers. The system now contains about 20 miles, and is being extended at the rate of about 3 to 5 miles per annum. The combined system is used. In the construction the most approved modern practice is followed. All sewer connections and plumbing are regulated by by-law and carefully inspected. Pending the adoption of more permanent pavements, cedar blocks are now used.

The city bridges, two iron and one combination, over the Red and Assiniboine rivers, the city buildings, city hall, fire halls, etc., are maintained by the City Engineer's department.
The importance of a good water system being fully realized by the city council, all matters in connection with the construction and operation of waterworks and their relation to the city have engaged the attention of the council, and exhaustive examinations and reports have been made on the subject. The council has also caused investigations to be made by the City Engineer into the neerits of the several systems of electric traction for strect railways, and are now endeavoring to have an extensive system established in the city.

Outside the ordinary duties of City Engineer, Mr. Ruttan has made reports and estimates of cost of the drainage and development of the lands surrounding the city; on the improvement of the navigation of the Red river between Lake Winnipeg and the city ; and on the utilization of the water power of the Assiniboine river-three projects which, if carried out, will add materinlly to the wealth and population of the city.

Mr. H. N. Ruttan, City Engineer, Winnipeg.

PLAN DESIGNING.
THE best instruction in plan design is that of examining a number of designs for any kind of building, such as we meet with in a competition. By comparing the good and the inferior plans, we begin to discover what the strong points are in the good and the weak points in the mediocre plans. We shall find invariably that the poor plans are distingtished by looseness ; that they are rambling and straggling ; the corridors are long and crooked; the apartments thrown here and there without any connection. The salient mark of the good plan is invariably compactness and coherency. Again we look further. We find a method in the clever plan. If there are principal rooms or departments they have been consigned to positions having some distinct relation to the site ; they are prominently located along some axis, or brought to play an important part in the general design. The inferior plan has no such method or principle dpparent. Comparing again the plans, we find a waste of ground in the inferior set. Here there is a large space wasted in a corridor or area; but perhaps the entrance is cramped. If the site is irregular, it is ten chances to one the author has lost space along the curved or oblique boundary, that the blocks are made to follow the boundaries, and that the angles are not at right angles. The expert plannist has taken care to make his main frontages, if possible, square, so that the main walls should be parallel, and this he does because he knows the bad effect of crooked roofs and towers if their sides appear so on main facades.

Wasteful arrangements of corridors and offices are common, and so are areas for light. But the principle of economy is only learned after some experience, and depends mainly on the principle of compactness. Much space is lost in dealing with irregular boundaries. The novice is an adept at making crooked corners and leaving spaces. He generally places his blocks parallel to the oblique sides, and in thus disposing of them creates an irregular area in the centre, spoiling the interior of perhaps a hill or some apartment. The contrary process is the course resorted to by the skilful artist. The economical designer boldly makes his main blocks parallel to one principal street or boundary of the sitc, or assuming an axis, to which they are made parallel. The irregular corners left between the main building and the raking boundaries are thrown out on a rear or inferior side of the area, are filled up by subordinate offices, and are left simply as areas of triangular form for light and air.
Direct and ensy access, well lighted corridors, suitable proportions of apartments, and that architectural finesse which distinguishes the masterly from the crude attempt, are other characteristic elements of a clever plan, to each of which we may refer ; but these are details which follow from attention to the foregoing principles.-Building News.

The stone for the new Toronto drill ball will come from the Deschambault quarries, near Portneuf, Ouebec:
The Totonto Radiator Mfg. Co. have reeenly opened a brench warehouse at Victorin, B.C., in charge of Messrs. Muir.a Boyd.
The Deseronto Company tas been incorporated at Montreal with a enpital stock of 50,000 , to manufacture fire-proofing, fire brick, drain pipes, ete.
Joseph H. Farr and Joho M. Sparrow, of Toronto, have been granted a patent for a roofing composition consisting of petrolcum tar mixed while hot with pine pitch, resin. or any other gummy substance, with or without slaked or powdered lime.
The National Brick Manufacturers' Association of the United States has appointed a committee of five to secure an international exbibition of clayworking machincry for the World's Fair. The committes have issued in address invilung the views of the trade.

HYDRAULIC CEMENTS.

The following instructive paper, by Mr. Edward F. Ball, was read before the members of the Toronto Architectural Sketch Club, at their meeting on the 4 th inst :
Mr. President and Gentlemen,-lt is a popular belief that the cements used by the ancient Romans in the consiruction of their roads, aqueducts and other public works was superior to any in use al the present tinie, and that the process of its manufacture is a lost art it miny seum somewhat startling, however, to state the fact that with all the advantages they have had in hardening slowly from two to three thousind years, probably none of them is equal in strength to good Portand cement mortar made of one part cement and two parts sind one week old. On the shores of the Buy of Naples cement is made and used at the present day in subtantially the same manner as described 2000 years ago by the old architect Vitruvius.
In remote antiquity, beforc the Roman cm, the builders of ancient cities all over the world depended for strength and durability upon the extreme accuracy with which they dressed the surfaces of the large stones which were to be placed in contact, and also upon the bronze dowels used in uniting then. With the Romans, beside accurate stone cutting. two kinds of mortar were used. In situations where it would not be exposed to the dissolving action of the water earefully prepared litne mortar was employed. while for quay walls, aqueducis. drains, cisterns, cte., hydraulic cement was used, As is well known, ordinary lime mortar will not set under water, but if lime be mixed with clay and burned ut a high temperature, a substance is formed which sets and continues to harden indefinitely, even when stance is for
The purest limes, sometimes called rich or fat limes, when freshly burned combine readily with water, which process is termed slaking. In so doing they expand, evolve great beat, and fall to powder
/mpterclimes, sometimes called poor limes, do not slake so readily.
mparc hiptes, sometimes called poor limes, do not slake so readily.
Hydrantic fimes, containing a considerable quantity of clay, scarcely alake at all, and possess the property of hardening under water.
Hydraulic cements do not slake at all, and will set and harden under water.
The particles of lime have greater adhesive than cohesive force, i. e., they will adhere to other substances more strongly than to each other. In hardwill adhere to other substances more strongly than to cach other. in hatd ebing, mortar made from lime alone changes voiunte, and for these two
reasons, is well as for economy, sand is used in all mortar made from lime. reisons, is well as for economy, sand is used in all mortar made from lime.
Good hydraulic cement does not change its volume in setting or hardening Good hydraulic cement does not change its volume in setting or hardening.
and its cohesive stremgth is greater than its adhesive, so that sand is used and its cohesive strength is greate
Cements are divided into two classes, Portland and Natural or Rosendale. Portand cement was first invented or discovered in 1824 by Mr. Aspdin. of Leeds. Encland, while experimenting with some of the over-burned clinkers of artificial cement which wns then being manufaclured. After pulverizing and weiting up into enkes or blocks, it becanie very hard and in olor resembled a limestone that was being quarried for building purposes on the Isle of Portland. In taking out a patent for the new prorluct it was named "Portland." In certain localities natural deposits of rock are found, fom which Portland cement may be manufactured, but fully nineteen wentieths of the Portland used in the United States is artificial. It is mitde by thoroughly mixing together in suitable proportions elay and finely pulverized carbonate of lime (cither chalk, marl, or compact limestone), burning the mixture in kilns at a high temperatutc, and then geinding the burnt product to fine powder between ordinary millstones. In Eagland the ingredients of the cement are mixed together with a large quantity of water and afterwards dried, burned and ground. This is ealled the wet process. In Germany the ingredients are mixed dry. It is very important that the ingredients be correctly proportioned, finely ground and thoroughly mixed. No substance coarsur than the one-thirtieth of an inch will make cement, and the finer the ingredients are ground the better. Thorough mixing is even more important than correct proportioning, as the temperature in the kiln is not allowed to rise high enough to liquily the mass, and in orrier that the chemical changes may take place. the particles of lime and clay must be in close contact with each other, otherwise uncombined or "free" lime or clay will be lefl. In the wet way of mixing, the chalk and clay being of different specific gravities, are liable to become deposited ir regularly, even under the most-careful supervision. In the dry method, when the water necessary to form the mass into bricks is added, the ingredients ate liableto become separated unless the water is added carefully. The first chemical change which occurs in burning is the expulsion of chemically combined water and carbon dioxide; thus calcium carbonate $\mathrm{Ca}_{\mathrm{a}} \mathrm{CO}_{3}$ is converted into lime Ca O . The silica $\mathrm{Si}_{2} \mathrm{O}_{2}$ which is present as silicate of alumina in the clay. s partly transferred to the lime, forming a double silicate of time and alumina. A high temperature is necessary for the proditetion of this double silicate, but at a lower temperature the alumina which was present in the clay as a base plays the part of an acid, nad combining with.the lime, forms tri-calcium aluminate, $\mathrm{Ca}_{3} \mathrm{Al}_{2} \mathrm{O}_{6}$, or as it may be written $\mathrm{Al}_{2} \mathrm{O}_{3} \mathrm{Ca}_{2} \mathrm{O}$. If the temperature be too high, a lime glass is formed which has no hydraulic properties, and if the burning be continued at this temperature, a solid erystallization between the silicate and alumimntes of lime is formed, which does not set.

SETTING OF CEMENT.
The setting, of cement is a complex process, partly chemical, partly mechamical. The chemical reactions give use to substances which as soon as formed conbine with water and constitute the true cententaceous material. The tri-calcium aluminute $\mathrm{C}_{73} \mathrm{Al}_{2} \mathrm{O} 6$ is soluble in 3000 parts of water, and in the act of setting first dissolves and then begins to separnte as a mass of felted needles, consisting of ealcium aluminum bydmate, which extend in every direction and are directly the cnitse of the first setting of the cement. At the same time an action begins which requires a much longer time for its completion, and which probably consists in a combination of the first formed aluminium hydrate with the tri-calcium aluminate and the water forming a mineral of the probrible composition H ro $\mathrm{Ca} \mathrm{Al}_{2} \mathrm{Si}_{4} \mathrm{Ot}_{17}$. This substance crystallizes out as it forms, and this continues to add to the solidity and tenacity of the cement for lony periods subscquent to the first setting. Some experinients made by the writer seem to confirm the theory that aluminium plays an important part in the first selting of the cement, and also that this s dependent in a measure upon the solubility of some of the ingredicnts. The experiments are as follows: Aluninium, in the form of alum (either ruw or burned) added to cement and moistened, causes the mass to rise grently in tenjperature, showing that a chemical change is taking piace, Improved Union cement mixed neat with water, set in 20 minutes ; a sample of the same cement with two per cent. of burnt alum added, set in 8 minutes; same with 4 per cent., set in 7 minutes; same with 6 per cent., set in 7 minu'es. A solution ol aluminium hydrate in caustic potash produced the same effects, but in a less marked degree. It is a well known fact among cement testers that in order to get the full strength of the coment it must be thoroughly mixed and kncaded or stirred after the water has been added. This seems to indicate the presence of a soluble constituent which murn strength. If dry cement be forced into moulds under a pressure of
say 70 lbs. per sq. inch, and then allowed to absorb water, a very dense, hard briquette will be formed, but it will be very weak in strength, and also very uncertain. If sufficient water be added to dry cement to properly moisten it, and if the maes be stirred just sufficiently to ensure thorough and complete moistening, and the briquette put into the moulds in the usual way, it will not be so dense or compact as if made in the way described, but will be much stronger. If, instead of slightly stirring the moistened cement, it be thoroughly turned and kneaded as long as possible before setting begins, the bost and strongest Lriquette may be made. All this, in the opinion of the vriter, points to the existence of a soluble constituent as before remarked.

IMPURITIES.

If by reason of imperfect proportioning, grinding or mixing, any portion of the lime fatis to combine chemically with the silici or alumina of the clay, this is known as "free lime," and when the cement is fresh, is in the form of CaO . Upon exposure to the air it absorbs moisture and becomes slaker, thus: $\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O}=\mathrm{Ca}(\mathrm{OH})_{2}$. Upon still further exposure it slowly absorbs carbon dioxide, and returns to is original composition before being present in the unslaked form, (CaO), free lime is one of the most dangerous impurities in cement, as upon the addition of water it slakes and expands. thereby disturbing the setting of the cement. This slaking is not rapid like that of rich or fat limes, and offen its effects are not apparent for the first day. It frequently happens that sauples of cement will stand a good tensile strain at the end of 24 hours, while at the end of seven days the strength will hardly be greater than the 24 hours test-sometimes even below it, This gencrally indicates free lime, and in such a case the sample should be exposed to the air for a week and a second test mnde. free lime and the up to the standard, the trounte is due to the presence or free lime, and the cion that it be spread out and exposed to the air for a saeek or more benaition that it be spread out and exposed to the air for a week or more before
use. If the lime have sufficient activity, thin cakes of the cement immersed use. If the lime have sufficient activity, thin eakes of the cement immersed sufficient quantity or has not the necessary activity, no emcks may appear. In order to render this test more effective, the cakes or pats may be exposed In order to render this test more effective, the cakes or pats may be exposed as soon as they are hard to a high temperature saturated with moisture for
about three hours, and then boiled for twenty-four hours. T wo per cent. about three hours, and then boiled for twenty four hours. Two per cent.
should be the limit of this imputity, especially if the cement be for use under whter; for use in air the presence of free lime is not so injurious, provided, water: for use in air the presence of free lime is not so injurious, provided, of course, that it is slaked. Free lime retards the setting of cement and impairs its hydraulicity. When present in considerable quantity the cement will disintegrate on immersion, unkss first allowed to become quite hard in
air. In determining the amount of free lime in cement by chemical air. In determining the amount of free lime in cement by chemical analysis, it is customary to find the amount of CO_{2} on the supposition that the free lime is all in the form of earbonate, and them calculate the amount of $\mathrm{CaO}-1$ per cent, of CO_{2}, indicating 1.3 per cent. of CaO . This, however, is a very unreliable metbod, as the lime must first be hydrated and then carbonated. This requires a long time if exposure to the air is relied upon to effect the change, as is usually the case. Hydrogen Sulphide, $\mathrm{H}_{2} \mathrm{~S}_{\text {, }}$ is often evolved with the carbon dioxide, and this also affects the accurncy of the test.
Maguesia (in the free state) is another dangerous impurity. It may not prevent the censent from setting and becoming apparently as bard as though it were absent. For a long time it may remain inert, and perhaps for months there may be no apparent change. The magnesin, however, has an affinity for water: every two pounds of magnesin in becoming hydrated, takes up and solidifics one pound or 277 cubic inches of water, and in bulk every ton of magnesia would have to find room for about 16 cubic feet of water. In finding room for this water the mortar hecomes disintegrated. The action continues whether in air or in water, and is especially disastrous in concrete work. Instances are recorded where conerete works have failed although built in the usual manner with cement that had stood the ordinary mechanical tests. The concrete set as hard as usual, but after a time expansion set in. In onc case, n vertical wall about 35 feet high was lifted about 24 incloes, in anoller, a mass of concrete 16 feet thick was lifted from $1 / 2$ to $1 / 4$ inches. In both cases a white substance of the consistency of cream wis seen in the concrete On being analyzed, this substance was found to contuin 80 per cent. of magnesian bydrate, consisting of about $3 / 2$ magnesian oxide and K water. The writer made some experiments with five per cent. by weight of calcined magnesia added to Improved Union cement. The magnesia was found to render the paste very plastic and easily worked. It retarded the setting from twenty minutes to two hours, and greitly decreased the strength of the cement, as follows:
Neat cement, I day old, tens. strangth \quad I $\quad=45$ lbs. per square inch. Cement with 5% mag old. $=74$
$=1$

At the end of one week the pats were very soft ; the outside was light-grey and the interior the usual color. Good Portland cement should in no case contain more than one per cent. of magnesia
By the rules of the "Ecole Nationale" of Paris, if the amount of sulphuric acid exceeds $\mathrm{I} / 3$ per cent., the cement is rejected on the chemical analysis alone.

When Portinnd cement is properly burned, it forms a very hard clinker, which is expensive to grind to the fineness now demanded by engineers, as the machinery requires constont repair. To render the grindiug casier, iron slag meal is sometimes added to the cemen clinker. This slag ecment may be recognized by its lighter speeffic gravity $(2,60)$ and by its color, which is a mauve tint in powder, while the inside of the water pa: when broken is deep indigo. Its presence when mixed with Portland may be deceeted ns follows: To a gill of water. add nbout 80 drops of sulphuric acid. Into this drop 25 grains of the cement and stir rapidly with a glass rod, and while still stirning, pour in drop by drop, a solution of Condy's fluid (64 grains of permanganate of potash to one pint of water) until the red color remains permanent. Genuine Portland will require only 10 to 15 drops of the permanganate soltution. whilst an adulterated eement will take considerably more- 30 to 60 -and a cement made from slag over 200 drops. The plinciple of this test is as follows: Solid permangenate of potash is at once decomposed by the riddition of strong acids, but in water solution this decomposition does not at once take place except by contret with oxidizable substances. This action is apparent by the change of color, the deep purple being rendered colorless. All Porlland cements contain a small quantity of iron; thus with unadulterated cements a certain amount of the permanganate will be bleached, but cements containing iron in unduc proportions will blerch a much preater quantity of the solution. A slinple test for the same purpose is as follows: Place upon a clean silver coin a thin layer of cement, and drop on it a small qnantity ol dilute sulphuric acid (one acid to scves water) and afterwards rinse with waler. If the cement be genuine Portland, the treatment will only slighty afleet the color of the silver, but if slag be present in any notable proportion, a dark brown stain will be produced
Slag cement has been for some time manufactured in Germany, and works
have also been established for ils production in England．Being a mechanical mixture of iron slog with slaked lime，it is very different in its constitution from Portland cement，which is a true chemical combination． It is stated by its inventors to be fully equal in quality to Portland censent： It is stated by its inventors to be fuly eçubl in quality to Portinnd censent lis，however，is nol admitted by the lighest authorities．Cement adulter＊ ated with slig and slag cement will be found finer ground und quicker selting than Forland，and it will attuin its maximum streng th in th shorter ume than the best Portand，but retrogression then takes place whith is nost ireacherous in ils nature．The fillure of fae concrete consiruction of the Aberdeen barbor works is now attributed to the usc of cement which was not true Portland，although at lirst it was considered that the action of the sea water was the－cause，but examinations of similar construtions built with good Portinnd cement natany yeirs previously proved，that when the proper material is employed and due care exercised in consiruction，pennan－ ency is assured．
Sate is often added to the water used in mixing mortar in cotd weather， oprevent the mortar from freezing before it has set．Authorities differ regarding the effect of salt．The most reliatie information is probably contained in the report of the tests made at Governor＇s Istand， New York harbor，by Mr．John Gartland for Col．D．C．Honston，U．S． engineer，and atso of tests at the Cairo bridge．In the first mentioned tesis，sea water wats used，and was found to incrense the strength of the cement from 1080 per cent，except in the ease of Hoffman Rosendale two months old．At three and six months，this same cenient gave higher tests with sea water．About 330 briguettes from 8 brands of cement weretested， so the results seem entirely reliable．In the tests at the Caire bridge the mortars were mixed in the proportion of y volume of cement to 2 volunses of sand．The tests were niade in the nanner recommended by the American Society of Civil Engincers．Each result is the mean obuained from 10 briquettes at the age of six months．The general opinion of engincers that sea water decreases the sirength of cement is probably based on Gillmore＇s experiments，which were not nearly so comprchensive as the above．

$\stackrel{2}{\overline{0}}$		
		$\frac{6160}{610}$
\mathcal{F}		
n^{2}	O.	品1 \｜1 哭｜
	$\begin{aligned} & \dot{0} \\ & \underset{\sim}{c} \\ & \dot{\omega} \end{aligned}$	

TAbIES Showing the resutit of tests made at the calro brivgle：

The fineness should be such，that go per cent．by weight will pass through sieve of 2,500 meshes per square inch made of No． 40 wire（Stubb＇s wire gatuge）．Nade into cakes or pats about al inches square and 3 inch thick at the end of a week．The teasite strencth of Poulland a ment shoutd be at the end of a week．The casile strength of Poutland a ment should be about as follows，a very high strength within four weeks generally indicating
an unsound cement ：

COAPOSITION NEAT OR SAND	TENSHE STRENGTH		LIS，PER	SQ．INCH．
	2.4 hours．	1 wiek	1 month	1 year，
Neit cenrent．．．．．．．．．．．．．．．．． 3 parts sand to a prifl cembent	10040140	$\begin{aligned} & 75010550 \\ & 8010125 \end{aligned}$	$\begin{aligned} & 35010700 \\ & 10010200 \end{aligned}$	$\begin{aligned} & 450 \text { to } 800 \\ & 20010350 \end{aligned}$

It should not contain impurities in excess of the following quantities ： Magnesia，I per cent．：free lime，a per cent．；sulphuric acid，it per cend．： ferric oxide， 4 per cent．

ANAI．TSIS OF CEMENT．
Theoretically the ratio of the line and almmina（together）to the silica should be as 265 to 100.

Following ure two analysis of good Portland cements，Josson and Burhitm：－

	JOSSON．	burifam．
Linie CaO．	63.60%	61．04\％
Siluca SiOz ．	22．60	22.45
Alumina $\mathrm{Al}_{2} \mathrm{O}_{3}$ ．	6.72	6.91
Oxide of iron $\mathrm{Fe} \mathrm{O}_{3} \ldots \ldots .$.	1.69	3.62
Magnesia Mg O．．．．．．．．．．．．．	0.97	1.28
Prash KaO	8.62	1.86
Sulphate of line $\mathrm{Ca} \mathrm{SO}_{4}$ ：	－	－
Water $\mathrm{H}_{2} \mathrm{O}$ ．		－
Sulphuric acid．．．．．．．．．．．．．	1.30	1.44
Carbonic acid．．．．．．．．．．．．．．．．．．	1． 50	1.50
	00.00	500.00

natural celifnts．
By Natural cements are meant those which are obsaited front matural stone containing lime and clay burned at a comparatively low temperature． ＇Chis centent rock is usually found in seseral layers，containing various pro－ Chis cenient rock is usualty found in seteral layers，containing various pro－
portions of clay，lime，etc．，and it is only by n judecious muxture of stone portions of elay，limue，ett，and it is only hy in judicious muxture of stone
from the diferent layurs thint a good cennent is furnurd．The rock is quar－ from the diflerent hayers thint a good cement is furmed．The rock is quar－
ried，broken into pieces and burmed in a kiln．The burnt cenment is then ried，broken into pieces and burned in a kiln．The burnt centent is the crushed into sin ill fragnents and ground between ordinary millstones．
The description of iupurities in Poriland cenent is applicable to Natural cements，except the part reliting to maguestia．Free magnesia is ins ob－ jectionable in Natural cement as in Portland，but the greater part of natural cement rocks are argillo－magnesian linustones．In burning，几u riple silicate of lime，alumina and magnrsia is formed which makes a good cement，but any free magnesia will absorb whter and expand $n 5$ in Portland．Natural cemsent is generally light colcred norl quick setting，and is especially adnpted to sewer work and places where the morinr is exposed to running water before setting．The reguirements for good Natural cement are the same as Porthand，except as regards color，withiht，Irnsile strength and the presence of magnesia．The temsile streng th alonild be ahout as follows

COAIOSITION neat or sand	TENSILE：STKENGTH		I．DS．IPRR SQ．JNCH．	
	24 hours．	t wreek．	1 month．	1 ycar．
Nent cenicnt．	$40 \ln 80$	6010100	10010150	30010400
1 pirt cenient to I part sand		30 to 50	5010%	200 to 300

IMPROVED CEMENTE．

This name is given to Natural cements mixed with Portland．The Natural centents are usually light colored and the Portland dark，so that color of the mixture is of some value in determining the quality．It is ad－ visable to obtain samples of the natural or＂uninıproved＂cement，and also of the Portiand used In the mixturc．By comparing simples of the im－ proved cement with these，a fair iden of its quality may be obtained．
The following tests of＂Improved Anchor＂cement made at the Chiel Enpincer＇s Office，Lehigh Valley Railway，will give a fair idea of the ten－ sile strength of a good＂Improved＂cement：

COAIPOSITION NEAT OR SAND	TENSILE STRENGTH		LIUS．PER SQ．JNCH	
	24 hours	1 week	1 month	1 year
Neat cement ．．．．．． I cement to a sand	100	$\begin{aligned} & 140 \\ & 30 \end{aligned}$	$\begin{aligned} & 220 \\ & 75 \end{aligned}$	$\begin{aligned} & 420 \\ & 275 \end{aligned}$

Improwed cements eventually athin great strongth and harimuss，and are improved cements eventually atuin mreat sirengl

TESTING CEMENT．

On June 215t，1885，a Contmittce of the American Society of Civil Engi－ necrs recomanenved a system of testing cement of which the following is a brief synopsis ：
It is recommended that tests for hydraulic cement beconfined to ntethods for determining lineness．liability to checking＇or cracking and tensile strength；nud for the latter，for tests of 9 days and upward，that a mixture of 1 part of cement to p part of sind for Natural cements，and 3 parts of sand for Porthnd cen．be uscd，in addion to inial of real cement The quantities itsed in the mixture should be determined by weight． Usually，when cement thas at good reputation and is used in large masses， the testing of every fifth barral seeins to be sufficiant ；but in very important work where the strength of each barrel muy in a great measure determine the strength of that portion of the work where it is used，or it the thin walls of spwers，elc．，every barrel should be lested．In selecting the cement for experimental purposes，take the snmple from the interjor of the original paçkges at sufficient dapth to ensure a fair explonent of the，quality，rund
store the same in tightly closed receptacles，impervious to light or damp． ness，until required for manipulation，when each sample of cement should
be so thoroughly mixed, by sifing or onlerwise, that it shall be uniform. in character throughout ils mass.
The test for checking or eracking is an innportant one, and though simple, should never te omitted. It is as loltows: Make two cukts of neat cenient 2 or 3 incles in diameter, about $1 / 2$ luch thick, with thin edges. Note the time that these cakes, whent mixell with mortar to the consistency of a stiff plastic mortar, take to set liard enough to berr a one-twelfth inch diameter wire loaded witt: $/ / 4$ pound, and at one-twenty-fourth inch wire loaded with z pound. One of these eakecs, when hard enough, should be put in water and examined from day to dhy to see if it beeomes contorted or if eracks show thenselves at the eilgus, suth contortions or eracks indicating that the cement is unfit for use at that time. In some enses the tendency to crack, if caused by the presence of too inuch unslaked lime, will disippear wilh age. The scmaining cike should be kept in air and its color observed, which for a good ecment should be uniform throundiout (yellowish blotelies indicating a poor quality). the Portland cements being of a bluish gray and the Natural esments leing light or atark aecording to the chariteter of the rock of which they are merde. The color of the centents when ledt in the air indicates the quatity much beter tian when they itre put in water.
The strength of a centem ikepenkls greatly upon the finetess to which it is ground, especially when mixed with it large dose of sind. Cemsent of the vetter grades is now usually ground so tine that only from 5 to 10 per cent. 5 rejected by a s:cve ar 2500 mesibes jer square inch. and t has been made oo fine that only from 31010 per cemr. is rejected hy a sieve of 3,200 meshes per square inth. The liner the cement, if otherwise good, the jarger the
dose of sanil it will take and the genater its value. Following is at tible dose of sanil it will take and the gentur its value, Foll
showing the restus of tests made at the Catiro Bridge:

The tests should be applied to the cements as offered for sale. If satisfactory rusuits are obthined with a full dose of sand, the trials need go no urther. If not, the coarser particles should firsi be excluded by using a No. 100 sieve, in order to determine approximately the grade the cement would take if ground fine, for fineness is alunys attainible, while inlierent merit may not be The question of a stabdard sand scems one of great intportance, for it has been found that sands looking alite and sifted through the same sieves, give results varying within wide limits. The material that seems likely to give the bost results is the crushed quartz used in the manufacture of saud paper, being both clean aud sharp. The degree of fineness should be such that it will all pass a No, 20 sieve, and be caught on a No. 3o sieve. The proportions of cement, sand and water, should be carcfully determined by weight, the sand and cement mixed dry and all the water added at once. The muxing must be rapid and thorough, and the mortar. which should he stiff and plastic, should be firmly pressed into the moulds with the trowel, without ramming, and struck off level; the moulds in each instance, while being charged and manipulated, to te latd directly on glass, ilate, or sonte other non-ibsortent material. The monkling must be compieted before incipient selling loegins. As soon as the briquettes are hard enough to beir ji, they shoukd he iaken from the moulds and be kept envared with a damp cloth until they are inmersed. For the sake of uniformity, the briquettes, boti of neat cement and those containing sand, should be immersed in water at the end of 24 hours, exeept in the case of one day ests. Ordinary fresh, clean water, having a temperature between oo and 70 degrees F., should be used for the water of mixing and immersion of samples. The proporition of water required varies with the fineness, age or ather conditions of the cement, and the tempernture of the air, but is approximately as follows:

For briquettes of neat cement, Porthomd, about 25%
For briquetes of 1 part cement and 1 part sand, about 15% of the tota weight of sand and cement.
For briguettes of i part cement and 3 parts sand, about 12% of the total wejght of sand and cement.
The object is to produce the plasticity of rather stiff plasterer's mortar. An average of 5 briquettes may be made for erch test, only those breaking at the smallest section to be taken. The briquettes should always be put in he testing machine and broken immediately after being taken out of the water, and the temperature of the briquentes and of the testing roonl should be constant between 60 and 70 degrees F. The following figure shows the orm of briauette recommended by the Committer of the Antericna Society of Civil Engineers :

scile, full size.
german methol of testing portland cement.
In November, 1878 , the Prussian Minister of Public Works issued a series of standurd rules for testing lporthand cenicnt, which were adopted by nearly atl the archintectural and eng ineering associations in Germany, and subsequently served as a basis for standard sules in severni adjoining ccuntries. At the instatse of the Association of German Cement Manulucturers, these The havenow now been atered and several important moditications intoduced. The annended rules were published by the Prussian Minister of Public
Works in July, 1887 , and differ from tlic rules previously in force as follows: Works in July, 1887 , ank difter from the rules previously in force as follows: The time of seting of a slow. setting cument is now fixed at (wo hours instead of half an hour. In lesting for expamsich, the take of cenent is allowed to sel for 24 houts before immersing in waler, during which period it is to be kept moist and in the shade. The cement must be ground so finely that not more than 10% residure remains upon a sieve of 900 mesthes
 of tle ceument is to be used for ench test of the IIfesh; 100 grams (0.22 lbs.) of the cenrent is to be used for each test. The strength is ascertained by tensike und comprestue three times its weiglth of sand of a definite size of grain. The breaking area or the tensile brictutte is 5 square centintetres (0.775 square inches), and the compression. lests are made with ctibes of 50 square centimetres 17.75 scjuare inclues). The minimum tensile strengit of a mux ture of 1 patt by sand, affer lordering 1 day in air and 27 days under water, is 16 kilogram. mes per spuare eentimerre (277 s pounds per squire incl), ithe crushing mes per square cemimelre (227.5 pounds per squire inel). The crushing
strengih is 160 kilogiommes per scuarre centimetre $(2275.6$ pounds per square strength is 160 kilogbimmes per square centimere (2275.6 pounds per square
inel). The standard sand is obtained by sifting elean inel). The standard sand is obtained by sifting elpang quartz sand first
thrugh a sieve of 50 meshes per scuare centimetre i 387 meshes per square thruggh a sieve of 50 meshes per spuare ecutimetre $\{387$ meshes per square
inch), made of wire 0.38 millimetre (0.0146 inch $)$ dianter, then through a inch), made of wire 0.38 millimetre (0.0146 inch) diatueter, then through a
sieve of 120 meshes per squate centimetre (774 meshes per square inch), sieve of 120 meshes per squate ceptimetre (774 nieshes per square inch $)$, made of nire 0.32 millituctre (0.0123 inely) diameter. The sand which remains upon the finer sieve is that whiel is to be used for the tests. For each series of tests ten bricuettes at least must br: broken, the average of the tell numbers obtained being taken as the strength of the cement. In making each five briquettes for the tensile test, 250 grammes (0.55 pound of cement is nixed witi 750 grammus (1.65 pound) of standard sand and 100 prammes (0.22 pound) of resh water, ite whote mass being well mixed for hive minulcs. "spatula weighing about 250 gramures (a 55 pound) until water begins to rise. When the surfice has been smoothed with a knife, the mould is carefully removed and the biquette placed in a covered zinc-lined box for 24 hours. It is then immersed in water for the remainder of the hardening feriod. In making these briquettes by machinery, Dr. Bohme's apparatus is used; 180 grammes of the mortar is placed in the mould and subjected to 150 blows of a hammer weighing a kilogranmmes (44 pounds). For crushing tesis. Dr. Bohme's natchine alone is prescribed, the pioportion of waterand number of blows of the tammer betng the same as for tensile briquettes. All the briqueltes must be tested inmmediately they are removed from the water. In breaking the tensile briguettes, the weight must be added at the rate of ico grims (o. 22 pound) per sceond. It may be mentioned that the amount of water prescribed by the Germann rultes makes the mortar nbout the consistency of moist earth.
And now, genlemen, having discussed at considerable lengll a very dry and dusty subject, let us enquire how it is that every manufacturer produces the best cement on the market. The reason is somewhat as follows: One of the smaller towns in Canada or the States, let us suppose, has risen to the dignity of a city. with a boatd of works and a duly appointed engineer, who, we hope, is a graduate of the Ontario School of Practicn Scrence, and who is alive to the impurtance of carefully examining all cement used on puhlic works. Some engineering structure of unusual importance is about to be built, and tenders for materials are asked, among other things cement. Then up comes the great unwaslied arnyy of cement manufacturers, who. umlike their German brethren, have not awakened to the advantages to be derived from at trade union, timl each deposits his tender accompanied by circilars showing that large quansities of his particular brand have been used on important works atl ower the country. In tue tume the tenders are openex, and, as usial, the figures are all closely bunctied. The cement mell get uneasy and anxious: but not so wifl onf enginecr. We notice an unusuan gleant in his eye, and with a sardonic smile he vouchsafes the bloodcurdling information that the board has ordered a testing machine. After the tests are made (lre coniritet is awarded to Mr. A., as his cement stood tle highest in the lests. Tien another town advertises, and the same performance is reported, and Mr. B. pets the contract, and so on from A to Z. Thus all the ntanufiturers are sutisfied. for rach has found at place where his eement stood the highest test, proving conclusively that it is the best in the market.

During the discussion which followed, Mr. Barrett pointed out that in hot sumner wealher considerable quantities of sand and cement were sometimes mixed dry and stored away ready for wetting up into mortat, but this should never be tolerated as the sand, although apparently perfectly dry, contains sufficient moisture to cause incipient setting in the cement, thereby detracting from its strength.

Mr. Wells: Why are not 24-hour tests made of mixtures of sand and cement, the same as with neat eement?
Mr. 13all: Allhough 24-hour tests of neat cement are useful either in themselves or in comparison with the 7 -day tests, 24-hour tests of a mixture of sand and cement are of no value. 24 -hour tests of neat cement, in theniselves, give little or no indication of the ultimate strength which that cement will attain, but such tests are useful where a quick setting cement is required, as for sewers, in running water, Sc., where quick setting is desirable, or where a considerable strain will be brought to bear soon after the cement is in place; they are also useful when compared with 7 -day tests, as before mentioned. Sand does not diminish the ultimate strength of cement 50 much as it retards its setting and hardening, as will be seen by a comparison of the strengths of neat cement and of mortar at the ayes of 7 -days and one year. Mortar made with cement and sand it the age of 24 -hours. would possess very little strength, and would give no indication of the ultimate strength.
Mr. Johnson : I would like to ask the spenker's opinion on the practice of specifying the best quality of cement for first class masomy, and allowing inferior grades in third or second class masonry.
Mr. Ball : This is a very common mistake. Stones accurately
cut and fitted will stand without cement, as may be seen in ruins of ancient buildings, and first class masonry, with carefully laid courses, well bonded and joints dressed to half an inch for ten inches back approximates to this. But in second or third class masonry, the courses are not so carefully arranged nor the joints so accurately dressed, and more irregular pieces, such as spalls, \&c., are allowed in the heirt of the wall, in consequence of which the bond is not so strong as in first class, and there is more dependence on the binding power of the cement. Take concrete-where the stones in themselves have absolutely no bond at all-the very best cement is required; so, in my opinion, if any difference in the quality of cement is permissible in different classes of masonry, the best cement should be placed in that class in which the bond of the stones is least able to afford sufficient strength.
Mr. Barrett: Why are tests made of the tensile strength of cement instead of the compressive strength, which is the principal requirement in work $\}$

Mr. Ball: It has been found by experiment that the tensile strength of cement bears a nearly constant ratio to its compressive strengtl--about t-10. A very large and strong machine would be required to make compressive tests, beside which it is difficult to say at what particular weipht a cube is crushed, as it splits up into smaller pieces and breaks gradually, whereas tensile briquettes break instantly.

Mr. Woolnough also pointed out that in specifying the weight per struck bushel of Portland cemient it was necessary to test a whole bushel filled from a hepper placed at a certain specified height above the measure. A half or quarter bushel filled in the same manner would not be a half or a quarter of the weight of the whole bushel.

Mr. Ball stated that he did not place much value on this test, as it iequired a large quantity of the cement, was troublesome to make, and was only useful in indicating whether the cement was well burned or not, which could be ascertained by methods before described.
Mr. Virgil G. Mamni gave an illustration of a very practical and easily constructed cemient testing machine. A lever of wood is constructed, at one end of which, $I^{\prime \prime}$ from fulcrum, the appliance for holding the briquette is attached. At a distance,

say $12^{\prime \prime}$ on other side of fulcrum, in ordinary spring scales is hooked, the strain being produced by a small windlass. Therefore when scales, 12^{*} from fuicrum, register 10 lbs. a time of fracture of briquette, the cement has stood a test of $12 \times 10=120$ lbs. Before making test, the weight of scales is counterbalanced by a sliding weight at a. This, although not an absolutely accurate method, gives very satisfactory results.

PERSONAL.

Mr. J. A. Pearson, President of the Toronto Arehitectural Sketeh Club, is visiting parents and friends in England.
Mr. M. B. Aylestrorth, nrehitect, Toronto, is making a tour of Europe, in search of architectural knowledge.
Mr. Geo. W. Gouinlock, archiscet, Toronio, has recently entered into partnership with Mr. Garland, the frm name being Gouinlock \& Garland.
Mr. Willis Chipmnn, C. E., proposcs to visit Europe shortly. One object lie trasia view is to witness the effect of cotd weather upon the operntion of sewage farms in Germany.
The Hon. J. A. Oulmet has been appointed Vinister of Public Works for the Dominion, and the Hon. John Haggnt has been placed at the heud of the Department of Rnilways and Cavals.
The partnership recenily entered into betwcen Messrs. Smith \& Gemmell and Mr. E. B. Jarvis, architects, of Toronto, has been dissolved. Mr. Jarvis has again opened offiees in the Traders Bank building.

Mr, John Galt, C. E. Toronto, bas patented a steam or water leeating furnace consisting of sections, with means for uniting them and providing circulation of water or steam from section to section, said sections being provided with a firechamber in the upper part thereof, with a stratum of water above and around the same, and flues situated benenth said chambers for conducling heated products of combustion therefrom through said section to the outtet.

OUR ILLUSTRATIONS.

NEW HIGH SCHOOL, MONTREAL-ATEX. C. HUTCHISON, ARCHITECT.
This building occupies a block of land lying between Peel and Metcalfe streets, fomerly the site of the High School building destroyed by fire ovet a year ago. It has a frontage on each street of about 250 feet by a depth of about 216 feet, and a height of two stories above the basement.

The basement contains the Smead-Dowd heating apparatus, coal roons, play rooms, janitor's apartments, chemical and physical laboratories, with lecture and work rooms attached, and manual training room. The main and second storey floors contain thirty-two large and eight small class rooms, offices for superintendent, treasurer, principals, board room, \&c.

The central portion of the building fronting on Metcalfe street contains a drill hall, $90^{\prime} 0^{\prime \prime} \times 56^{\prime} 0^{\prime \prime}$, while the second storey of the central portion of the building, fronting on Peel street, contains an assembly hall capable of seating about 1300 persons. The building is wired throughout for electric lighting, and all the class rooms, lecture rooms, \&cc., are in telephone connection with the principal's room.

The elevations of the building ate faced with pressed brick with trimmings of olive green New Brunswick sand stone.
houses on bay st. south, hamilton, ont.-Jas. balfour, ARCHITECT, HAMILTON.
The comer house is a reconstruction, having formerly been a cottage.
RESIDENCE OF CAPT. S. CRANGLE, ROSEDALE ROAD, TORONTO. -GORDON \& HELLIWELL, ARCHITECTS, TORONTO.
"Canadian architect and builder" competition for a suburdan cottage-design by "jack plane" (J. W. SIDDALL), TORONTO, AWARDED THIRD POSITION.

"METHODS IN COLORING."

Mr. Scott Morton recently read a paper before the Archirectural Association on "Methods in Coloring" and commenced with the statement that "the true color-feeling is a rare thing." This talented lecturer gave in his paper a few color laws as follows: Different tones of the same color tell well beside ench other or in the same composition. Take, for example, atl the tints on a piece of self-colored velvet or silk. There are unending gradations of these. Much interesting work has been done on this idea on the lowest scale of color, viz, that of greys. Mr. Waterhouse expresses his predilections for pearly greys and drabs, including ivory, red or green, with very small points of delicate turquoise blue. Omitting the red or green meantime, his predilections for the pearly greys and diabs, including ivory, are well worthy of being kept constantly in mind, as these are in sympathy with the gencral greyness of our elimate or surroundings, but it will strike all colorists that unless these tints are handled in a masterly way, there is the danger of insipidity. Mr. Scott Moiton says that light is an important element in color work. It there is a direct sky light falling into the room, the reflection from the floor, which may be carpeted, counts for much, as its influence is felt on the ceiling and parts of walls not reached by direct light. He suggests for working out a color scheme, the mixing of a pot of what might be termed the dominant or key-color, and from that pot take more or less color for harmonizing and contrasting every tint employed.

One of the chief reasons for the failure of cheap houses to look well is the fact that they are overloaded with ornament. If those who wish to build cheaply would be content to build plainly, the result would be more satisfactory to the eye. The same fault is noticed in cheap furniture. It is always disfigured with fancy turns and machine carving, while to find a piece of plain, substantial finish, one must look at the high priced goods. Too many men only able to build a cottage, load it with weak imitations of the palace, and the result is thoroughly tnharmonious. In the chenp house let plainness of construction reign from foundation to gable. Let the ornamentation be, not in the wood-work, but in the painting. Then the effect may be whatever desired, and may be changed at the pleasure of the owner. -Ex.

American mnnufucturers of madiators are reported to have arrived at an understanding by which competition will be restricted.

new high sch oll, montreal, que.

