Technical and Bibliographic Notes / Notes techniques et bibliographiques

The Institute has attempted to obtain the best original copy available for scanning. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of scanning are checked below.

Coloured covers /

Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated /
Couverture restauree et/ou pelliculee
Cover title missing /
Le titre de couverture manque
Coloured maps /
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations /
Planches et/ou illustrations en couleur
Bound with other material /
Relié avec d'autres documents
Only edition available /
Seule édition disponible
Tight binding may cause shadows or distortion along interior margin / La reliure serree peut causer de l'ombre ou de la distorsion le long de la marge intérieure.

L'Institut a numérisé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de numérisation sont indiqués ci-dessous.

Coloured pages / Pages de couleur

Pages damaged / Pages endommagées
Pages restored and/or laminated /
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorees, tachetées ou piquees
Pages detached / Pages détachées
Showthrough / Transparence
Quality of print varies /
Qualité inégale de l'impression

Includes supplementary materials / Comprend du matériel supplémentaire

Blank leaves added during restorations may appear within the text. Whenever possible, these have been omitted from scanning / Il se peut que certaines pages blanches ajoutees lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas eté numérisées.

'THE

upper canada journal

01

MLedical, Surgical and Physical Science.

ORIGINAL COMBLNICATIONS.
 disases, deduced jiom tier anatomy. by S. J. Stratrond, M. R.C.S. England, Toronto. Contmetel from . No. 9.

Dislocation of the Fenur upon the Crest of the Pubs.
In former nombers of this Journal, we bave pointed out the three most frequent varieties of dislocation of the head of the femur-the first being upon the dorsum of the ilitus, the second into the sciatic notch, and the third into the hyroid hole; it now remains for us to speak of the fourth and last variety; that which happens when the head of the femur is removed from the cotyloid cavity, and placed upon the crest of the pubis. The causes of this kind of dispiacement of the os femoris are generally of a character very similar to those which operate upon the bones in the rariety last described; the flexure of the thigh apon the petvis has, however, been less extreme at the moment of the aceident than it was in the former case, distocation of the femur into the thyroid hole. In this variely of disphace taen, the angle of the thigh upon the trunk wonld represent anobtuse angle, white in the dislocation into the thyroid hole, faght angle, or ceven an acote angle, might be considered as representing the position of the body and thigh; at that Tmonent of time when the abducting power aeting upon the Fitremity of the limb, has beon powerfully ealled into play, and :hrough its imfuence upon the bones of the pelvis, it has heat sufficient to raise the head of the bone from the cotybid savity, and to tear the strong ligaments of the joint. it Gould also appear that the extreme eversion of the tue at his instani presented the head of the bone at the weakest zim in the whole joim, at the deep noteh or deficiency in
the margmal wall of the acotabumm. Powerful abduction under these circumstances causes the dislocation, and operates upon the extended limb as upon a lever, whale the trochanter major, resting upon the bones of the pelvis first, and secondly, the neck of the femur operating upon thr edge of the cotyloid cavity as upon a fulerum, serve to direct the head of the bone in its abnormal course ; the force being continued at an angle less than when the head of the bone was foreed into the thyroid hole, it is thrust in upon the os pubis, and lodged mader the psoas mangus, and iliacus intermus museles-pushing up the tendons of these museles under 'oupart's ligamen, so as to interfere with the spermatic passage. This accident may happen when a man walking forward, umexpectedly puts his foot into a deep hole; this reaches the ground at a much greater deph than was amicipated-u the thigh continuing in the perpendicular, the body is suddenly thrown backwards in the cflom to recover the trne position, but failins to relieve or retract the leg, which is, perhaps, stationaryfixed in a hole-the patient, twisting his body, falls upon his side, powerfully abducting the limb from its fellow; now the head of the femar resting upon the weakest point in the capsular ligament, and mosi imperfect portion of the colyloid cavity, this yields to the impulse. In this position the weight of the body suddenly comes upon these parts, lacerates the ligament, dislocates the bead of the thigh bone, and places it upon the crest of the pabis.

The symptoms presenting themselves upon our examination of the patien while laboring under this variety of displacement, are, that the limb may be somewhat shorter than its fellow; this, however, is not so extreme as in some varieties of fracture of the neck of the thigh bone, with which it is said this dislocation may sometimes be confounded; indeed, from the position of the head of the bone, resting upon the pabis, it generally lies in a plane sarcely in any degree elevated above the acetabulum-so that this shortening of the limb is diffenth to be demonstrated in many cases. The limb is always fiexed upon the body; abducted from its fellow, and the ise is rotated outwards; the head of the thigh bone may be plainly felt, and even seen moving in the groin, upon the least attempt to rotate the limb; it may be observedlying external to the femoral vessels and nerves.

The action of the museles upon the femor, althoughsimilar in direction in this variety of accident, must be some what different from the influence they exert when the headol the bone is placed in the thyroid hole; in this instance, the
head of the bone, instead of descending far below the line of the acetabulum, is slighty raised above it; at the same time it is advanced more lorwards, as well as towards the median line. 'the trochater major is thrown completely backwards, and now lies against the cotyloid cavity; so that the result t, that the rotatory museles at the back of the thigh are called into action ; the prifomis, the gemelli, the obturator intermas, and quadratus, witi: all the posterior fibres of the glatei muades, are evidemly pheed upon the stretch by the change of position; hence the pemanem abduction of the limb, and the complete rotation of the toe ontwards. The influence of the obturator extermos mascle is almost completely amihiated, the head of the bone is clearly advanced towards its origin, while the poim of its insertion by the changed povition of the trochanter major, is brough in close apporition with it. The action of the psoas magr es, iliacus internas, and pectimadis muscles, must be sonewhat danini-hed from the romion of the toe ontwards, and the advance of the trochanter minor-the insertion of thene miseles towards their origin-hence, their los of power. It is atso certain that from the position of the bone, they have lost all power of oppoing those muscles, which cause the abduction of the limb, and, consequenty permit their foll influence to come into action, so as to maintain the limb mastate of abduction, and the toe in a condition of evertion.

To restore the limb to its normal position in this lind of dislocation, we must call to mind the principles so often enunciated in the preceding varieties of displacemem of the head of the leumr from the cotyloid cavity; as in the description of accident last mentioned, we must abdact and gently thex the limb-ihis will relax all the muscles on the back of the hip-then, with poweriul eversion of the foot at the same time, we strall turn the head of the bone towards the cotylord cavity, and the maseles will restore the femur to its proper position. The same bony deficiency in the margin of the cotyloid cavity which facilitated the original displacemem, now favors the return of the head of the bone into the acetabulum; the Jigamentous and fibrous defences at this poim having been destroyed, offer to impediment to the return of the bone-hence the facility with which the reduction of this disloeation is often accomplished by the simple means we have advocated. It mast be clear that extension of the limb in this case, by means of pullies; must be perfectly unacessary, and canot fail to be painfuland imurione, as the head of the bone now lies ahmost. parallel, and hitle removed from its irue position, saw that
it has advanced considerably towards the median line. During our attempts at reduction, if we should flex the limb too much upon the body, there is a possibility that we may carry the bone round into the thyroid bole ; care, then, must be taken in all these cases that we do not very considerably exceed the obtuse angle, while by abduction we free the head of the bone, and by rotation present it io the opening in the cotyloid cavity. Should we have injudiciously applied our means of powerful traction, while the limb was still in a state of extension, we might possibly remove the head of the bone from its present position, but should be more likely to lodge it in the thyroid hole, rather than to return It into the acetabulum.

We tust that the lengthened detail and minute deseription of the several varicties of dislocation of the hip-joint wheh we have here veatured to present for the consideration of our readers, will have saceeeded in convincing them, that knowledge is power,-that a due and scientific estimate of position, a proper understanding of muscular action, with a correct appreciation of mechanical force, will far more easily accomplish the end we aim at, ard is preferable in every point of view to the employment of direct and powerful traction by means of pullies-that it is far less hikely to produce evil consequences, such as laceration of the museles, arterics, or nerves, and is certainly less likely to produce the pain and inconvenience to the patient which is sure to be caused by the powerfui extension we have alluded to. Without a just comprehension of all the faets which present themselves in each variety of these dislocations, the pullies may, as it were, by accident, in some cascs, restore the bone into its socket; but reduction cannot be accomplished with certainty and precision, without a clear and accurate knowledge of the true principles which should obtain in all these cases. The axiom which we have most strenuously cadeavored to impress upon the surgical practitioner, and which we have repeatedly attempted to illustrate, is, that we always endeavor to relun the head of the bone to the articulating surface, by a cotrsi precisely the reverse to that which it took during ets remoual: bringing it back as it were by relurned sieps, from the position in wohich it is lodged, until we can accomplish the due arrangement in its normal situation. We apprehend his is the true secret in all these cases of displacemem, that will enable us readily to relieve our patients, and we flat. ter ourselves that when it is guided with science and how. ledge, will seldom fail us in our attempts-it will be a certain demonstration that will elevate the surgeon above the
quack-will indicate the diference between science and chance-while it will certainly proclaim to the world that even in the study of surgery the old and long established proverb above alluded to, is not without its application.

CONGENITAL DISLOCATION OF THE HIP-JOLNT.

That dislocation of the hip-joint may occasionally happen prior to birth, is a fact clearly established; and that it happens subsequently to that period, from causes which have previously happened to the foetus when within the uterus, is no less certain. Congenital dislocation is always dependent upon insufficient development of the coso-femoral articulation, or malformation of the bones of the pelvis; it may proceed from an immense variety in the character and grades of these congenital defecis, each of the compopent strictures of the part being oceasionally the direct or indirect cause of the accident. Among the vast variety of these condtions, we find that the head of the femur may be deficiem, it may be smaller than natural, or it may be llattened before or behind, according to the direction of the limb -so, also, the neck of the femur may be diminished both in length and in thickness, while but a rudiment of these parts may sometimes be present, or even these may be entirely absent, so that the upper end of the femur ierminates with the trochanter major. The cotyloid cavity may be increased in depth, reduced to a slight depression, or completely defaced. Again, it may be large in size, in proportion, to the head of the femur-the cartilage covering the different surfaces of the articulation may be more or less deficient. The round ligament may be morbidly short, inordinately increased in length, or completely absent. The capsular ligament may be extremely lax and greatly increased in size in every direction-or it may be morbidly contracted and greatly hickened. We may also find that the muscles around the joint undergo changes incompatible with theirnormal condition-they may be simply discoloured -be transformed into a yellow tissue of a fatty appearance, or be entirely wanting. When congenital dislocation is conneited with defomity of the pelvis, we find a lateral compression of the sides, and a corsesponding increase of the anterio-posterior diameter, or these conditions may be completely reversed. The tuberosities of the ischium may be defomed, so as considerably to change the outer of the pelvis, while the bones may suffer from this disturbling influence, so as greally to derange ali the dimensions of its cavity.

It is evident from the above description that the original vice of conformation may produce consequences varying vastly, according to the period of fotal life at which it may originate ; for the earlier its advent the greater will be the changes that may result from it. In some cases it is clearly sufficient not only to change the character of the head of he thigh bone, to alter or totally destroy the cotyloid cavitybut also to compress and deform the bones of the pelvis, so as in after life to produce the most grave and serions consequences, impeding, or totally preventing natural delivery when the accident shall oceur in the female-while these changes may also incidentally mfluence not only the spine, turning it from the perfectly strait and erect position; but it may also alter the size, shape, and direction of the inferior extremity-impeding its normal development, and presening it as a lasting leformity. Again: the vice of conformanon may be so willing, that it may not be observable in early life, or influence the due and proper motions of the hip-joint, until some slight accident develope the deformity -produces dislocation of the femar; and, were we ignorant of the facts which we have here presented to our readers, we might be sorely puzaled to find displacement of the powerful hip-joint occurring from so trifling a cause, that we should feel inclined to doubt the evidence of our senses, and might be misled in our diagnosis in consequence.

Should the head of the femur be removed from the colyloid cavity at an early period of fetal life, from any defi. ciency in the coxo-femoral articulation, the thigh-bene may rest in every variety of position upon the bones of the pelvis; when the trochanter major alone remains, it may form a false joint with the bones of the pelvis, and here often a mere sulcus or depression marks its posinion. We may now find the cotyloid cavity completely filled up and entirely obliterated, while the complicated action of the muscles at this early period, from the false position of the bones, monld the pelvis into a great variety of forms. We find some of these museles, according to the position of the bones, inordinately developed; hence their power or form from such causes; some may be found greally reduced in size, or perhaps totally obliterated. Thus, we find causes in themselves at first of the most simple character, producing great and powerful eflects; these operating upon the soft and pliant skeleton, while yet searcely more than eartilage, they will produce effects more or less extelsive according to the cause that shall produce or influence these deranged actions. We should remember that thes canses may operate upou one articulation only, or influenoe
both sides simultaneously, and when such is the case, more or less deformity is the certain result of these several varicties in the early vice of conformation.

That surgery shenld he able to rectify or semove many of the vast vatiety of defects and deformities that we have here detailed, is totally out of the question. In some very grave varicties, however, the proper application of means may not be completely unavailing; indeed, in all cases, our ability to remedy these congenital defects, such as dislocation of the femur, must depend upon our power to reduce the displacement of the bone-and this reduction, it is needless to say, we can only hope to accomplish when the vice of conformation has been so limited as not to permit the removal of the head oi the bone from the cotyloid eavity until the bones of the pelvis have obtained sulficient solidity to prevent any very extensive deformity of the pelvis; or when the displacement has been sufficiently recent for us to hone that is letam to the normal postion may make a permanent and useful joint. Our diaguosis of the variety of dislocation, and our linowledge of hie mode in which reduction of the bone should be accomplished, will here be called into exercise. When returned into the proper position, the joint slould be firmly strengthened by a splint extending from the trunk to the ancle; the portoons of the splim should be strait, having hinges which play in the region of the hip-joint and linee; and was this properly secured to these parts by straps around the body, the pelvis, the thigh, and the leg, it would so confine the lateral movements of the joint, and prevent their excessive operation in any direction, while $1 t$ would also prevent the limb being acted upon as by a lever, and would guard against the head of the bone being again thrown out of its socket. As a matter of course the continued employment of these means must greatly depend upon the circumstances of the case; the time that has clapsed since the aceident occurred-the amount of defect in the parts concerned-these must be our guide, and decide the cominuance of such means. If the vice of conformation is but trifing, and we have succeeded in reducing the dislocation at an early period, nature and proper atiention may soon cure the accident, and may enable us to remove our splints within a moderate time; but if the condition of the parts prove more unfavorable, we may find it necessary to employ the means to strengthen the joint during after hite.

FHACTURE OF THE NECK OF THE THIGIH-HONE.

During our consideration of the several varieties of displacement which may happen to the coxo-femoral articulation, we flatter onreelves that we have found correct anatomical data the only true basis on which to found a certain and reliable appreciation of their character and divection. So, also, shall we find that a similar knowledge is the only means that will surely lead us to a proper comprehension of the many varieties and complications to which fractures of the neek of the thigh-hone is liable.

We have shown in our consideration of the difierent kinds of dislocation which may happen of the head of the femm when removed from the cotyloid cavity, that the application of indirect force acting upon the limb or applied to the trunk, constituting it a lever, operating upon the articulation, is the positive canse of the accident. So, in these cases of fracture of the neek of the thigh-bone, the application of dircet force will be found the means which invariably produces this variety of accident. The direction of this force may be infintely varied. It may be from without inwards, by a blow upon the trochanter major, as when a fall upon the hip drives the head of the bone into the cotyloid cavity, or from a power propelled in the same direction. The infuence of the force may proceed from above downwards-as, for instance, when a person, having made a false siep, descending a stair, has not reached the bottom as soon as he had expected-consequently the whole weight of the body has been thrown directly across the neck of the thigh bone, and that in its most unfavorable direction.

When the foree that causes the fracture is from without invards, it may strike full upon the trochanter major in a direct line with the neck of the bone, so as to drive it with force into the cotyloid cavity, and here mecting with suffcient resistance, the neck of the bone acting as a wedge, may burst up the superior portion of the femur between the trochanters, when it may be implanted in the bone, and become wedged into its cancelli; and if the direction of the force be perfectly true with regard to the axis of the neck of the bone, it may remain fixed, and firmly held by the compact vitrious substance of the circumference of the bone, the walls of the cancelli having yielded, so that the necke! the bone is driven deep into its structure, and being immoveable, the characteristic data of fracture, crepitation must be wanting. In the consideration of this force, we must not forget the result of those changes which occur in
the nech of the thigh bone, in youth and in old age. In youth the neck of the thigh bone stands off at an obtuse angle, is longer and firmer than in aged subjects; while in advanced years, the external dense portion of the bone appears atrophied, leaving a thin shell inclosing the cancellous texture; the neck, also, obtains a right angle, losing the obliquity which it formerly presented; and this condition may be partienlarly observed in the female; possibly in some degree dependent upon the greater widh of the pelvis. At this period, also, these structures become extremoly britte. Under such cireumstances it is more than probable that the application of the same force I here allude to will be attended with different effects in these various conditions. The blow upon the trochanter major that would at one period canse a transverse fracture of the neek of the thigh lone, wonld at another time treak up the superior portion of the shaft of the bone into fragments.
Should the action of the foree be les direct, not exactly parallel with the neck of the thigh bone, as in the injuy just alluded to, its eflect upon the superior portion of the shaft of the femur may be more extensive-the neck of the thigh bone acting as a wedge, may break it up, separating one or boh of the trochanters from the shaft of the bone. Under thes: circumstances, the numerous museles inserted into the part may cease to have any effect upon the shaft of the lemur. These fractures may have occurred withont implicating the capsular ligament of the joint; while in other cases these structures may have participated in the injuyy which has been inflicted upon the neek of the thigh bone. Should the direction of the force assume a greater angle with the neck of the thigh bone, which may readily occur in young people, when this structure obtains an obtuse angle, such a force acting superiorly upon the trochanter major, may cause a fracture of the neek of the thigh bone within the capsular ligament. Such are the varying influences which obtain in youth and old age.
Should the direction of the force be from above downFards, instead of being from without inwards, as we have pinted out; the oblique position of the neek of the thigh rone renders it liable to receive the whole weight of the body in an unfavorable direction; hence its liability to frac'ure; and the right angle which the bone assumes in old ge, renders the patient now liable, especially in the female, to the production of this accident. Fracture of the neck of the thigh bone will occasionally occur Fith so litle violence, that the fibrous reflection of the
capsular ligament that is over the neck of the bone may escape laceration, and may serve to hold the fractured portions in contact. Should this happen, the free portion of the capsular ligament may remain whole, and prevent any very considerable retraction or displacement of the boncs. Under other circumstances, the power of the force may be sufficient, not only to break the neck of the thigh bone, to lacerate the capsular and round ligaments, but also to drive the shaft of the femur high among the muscles upon the dorsum of the ilium.

The force may be so applied as to cause fracture of the trochanter major, or it may so influence the bone as to produce a separation of the epiphisis of this structure, when the accident happens in young people. Again: at a similar age we may occasionally find that a separation has occurred through the eartilage which unites the head of the bone 10 the shaft of the femur. This variely of accident is, for the most part, the result of indirect force; while that which we have just named is commonly dependent upon direet force.

The just appreciation and accurate diagnosis of this great variety in the character and degree of fracture of the neck of the thigh bone, must plainly require a correct knowledge of the structure and functions of the part-a due appreciation of the influence which the action of the vaions muscles impose upon the fractured portions-and a tue comprehension of the nature of the operating force; thesi will, if duly studied, serve to explain the complexity of ite symptoms, and the diversity of fracture which the neck d the thigh bone has experienced in each individual case. " will also show the reason of the great difference of opinion that has been held by surgeons from time immemorial, with regard to the diagnostic symptoms which indicate fracture of the neck of the thigh bone. Such knowledge of the anstomical structure of the part, will also poimt out to us the reason that union of the fractured bones may, in some casse, be accomplished, although never without a certain degreed deformity, and why, in the great majority of such accidens, we can seldom anticipate so favorable a result.

Having, in the distinctions $5:$ have drawn between frac ture and dislocation, plainly shown that the nature of th operating forces are certainly distinet, each invariably pro ducing its peculiarity of effect: that indirect force cause displacement of the bone, and that direct force produci fracture of the thigh bone; so in the consideration of fat ture, the peculiarity of the mode in which this direct fori produces its influence may be shown to cause a diverit?
in the kind and character of the lesion. Thus commonly when the direction of this force is from without inwards, we shall find fracture of the neck of the thigh bone implieating more or less of the trochanters and upper extremity of the shaft of the bone, possibly quite without the eapsular ligament; but when it is from above downwards, it most frequently has its influence upon the neck of the bone within the capsular ligament. It must be remembered, however, that these latter deductions are only comparative; for although they may lead to the just apprcciation of the case, they may be complicated in their cause and effects.
Let us now consider the symptoms and influence of each varicty of these aceidents. When the operation of the force upon the hip has been direet, from without inwards, and sufficient to drive the neck of the thigh bone deep into the cancelli of the shaft, withont breakeng ap the virious struclure, and is there firmly fised, it is called an inpacted fracture. Thishind of aceident is rare, but that it will sometimes ocenr is certaiy, while the symptoms that indicate it are always obscure, and even liable to deceive the most experienced surgeon. Upon an examination of the injured part, we commonly find the lap greatly swelled and acutely painful ; this we might anticipate from the direction of the force causing the injury-we feel the trochanter major apparenty in its teve position, moving in a circle upon the rotation of the limb, but evidently in a diministhed radius; no crepitation can be observed, for the neck of the bone, althorgh fractured, is still firmly attached to the shati, and performs its ordinary movements, as far as the injury to the sot parts will permit. Upon admeasurement of the two limbs, the fraciured one may be found shghthly diminished in length, but still the toe preserves its normal position. It may be observed that should this accident occur in you'h, when the neek of the bone is fally developed and obliquely pheed, the difference between the extremities may be sadily appreciated; but should it happen in old age, espegially in the female, the variation in the lengti will not treadily appreciated, from the angle which now obtains tween the neck of the femur and the shaft of that bone. This shortening of the limb is the only mark that indicates lis variety of the fracture, and if taken with a due appre"ation of the character of the force, will commonly lead to tcorrect diagnosis. Should the character of the above emioned accidem not be righty understood, and powerful tlension of the limb, or frec movement be attempted in ar investigations into its character, a certain amount of pepitus will, afteratime, be perceptible upon the continued
movements of the bones. We may have changed the condition of impaction, have freed the bones one from the other, but we have certainly not advantaged the patient; consequently, we should be careful in these investigations. When this condition has been accomplished, the shortening of the limb has been increased, by the muscles of the back of the hip drawing up the shaft of the thigh bone; and if the parts are only loosened, the neek of the bone will simply be placed at a right, or ceven an acute angle, or it may finally be drawn upon the dorsum of the ilium. Should it have so happened that the surgeon has failed during his examinations to discover the true nature of the acciden, and shall have separated the firmly-wedged portions, and left his patient with the supposition that a considerable bruise was the only defect, he will in all probability be vastly surprised and confounded at his next visit to fud very considerable shortening of the limb, and upon reiracion and rotation he may discover a distinct crepitus; or perhaps some rival, not a wit more intelligent than himself, has now been called in, and plainly indicates the nature of the accident; he talks loudly of ignorance and want of professional skill, and endeavors to exalt himself upon his brother's inadvertency. Such a case would be a clear demonstation how careful we should be in pronouncing a hasty opinion in many of these varieties of accidents which implicate the hip-joint, while it plainly shows the absolute necessity that exists for careful and inductive stady of these parts. In confirmation of these facts 1 once heard a celebrated surgeon and teacher in the parent land say" he hoped that he might not be called to see these "aceidents of the hip-joint, when fracture had happened, "until a few days after the injury had occurred, as it was "often then most difficult to decide upon their nature."

Should the application of the varicty of force previously alluded to cause so much injury to the vitrions structure of the shaft of the bone, that the neek is drisen deep into the cancellated structure, but is not fumly uedged in that position; in this case the parts obtain a certain amount of movement one upon the otier; hence, with the shortening of the limb, we have a distinct crepitus from the finst; as the swelling of the soft parts diminisi, the trochanter majot is found to possess an inordinate latitude of motion-ibe shaft of the bone moves freely upon the neck, and may sonn: after the accident be retracted upon the hip. The injur properly comprehended at this time; by the enployment ${ }^{\text {c }}$ proper means, we may, without doubt, accomplish a uniei of the fractured parts; but even here under the most farof;
able circumstances, and with the very best position, will it not take place without some degree of shortening of the limb, that will give the patient a trilling halt in his gan, and some appearance of deformty. The length of the limb, in the first instance, is slighty diminished, from its deep insertion into the shaft of the bone, and secondly, from the increase in the angle which the bone forms with the neek: should this point be materially overreached, the glatei museles will raise the shaft of the bone upon the dorsum of the ilium; then there will be consuderable shortening, as will be presently shown.

When the injury has been somewhat more extensive the trochanter minor may, by the wedge-like influence of the neek of the thigh bone, be forced from its position and completely separated with the fractured incel from the shaft of the bone. The trochanter major and shaft of the femur are now more or less raised upon the dorsum of the slitun, by the action of the glatei muscles. Now, the mascles at the back of the hip, the Pyriformis, the gemelli, the obturator internns, and quadratus femons, also the obturator externtes, all serve to rotate the toe outwards, while the separation of the insertion of the psoas magnus and iliacus internus, render nugatory the inthence of these muscles upon the os femoris. Ilad not this portion of the aceident been experienced as soon as the shaft of the bone was raised upon the dorum of the alium, we should have the thigh flexed 'pon the pelvis, but now, under these circumstances, the limb may be completely entended ; and this symptom is in a considerable degree diagnostic of the positive nature of the aceiden. Upon minnte examination of the injured part, we find (when the swelling consequent upon the condition will permit) the trocluanter major to be considerably raised above ita tree position, atod that it rolls freely under the hand when we use the foot as a lever; this, with a short, quick motion, evidently dilleront from the circle it used to perform durng the action of romion, when the shaft of the thigh bone stood fairly oul from the pelvis. In these cases, this facility of movemen forms a clear mark that plainly disInguishes the accident from dislocation of the hip-joint. As we have before pointed out, the limb is considerably dimmished in lenerth; but upon our applying extension this shortening is easily overcome, the fractured bones are brought into apposition, a ercpitus is perceived; but as soon as we cease our eiforts at extension, the bone is again retracted by the powerfin musces which clothe the back of the hip, and the limb scon again becomes asshort as it was before our examination.

Art. LVI.-On some Compounds of Cica, and on a new method for the determunation of Chloride of Sollum and of Lreat in Urine. By Justus Liebig, M.D., Pi.I., F.R.S., M.R.I.A.; Profesor of Chemistry in the University of Geessen; Kaght of the Hessian Order, and of the Imperial Order of St. Ame; Member of the Royal Academy of Scrence of Stochholm; Corresponding Member of the Royal Academies of surnce of Berlin and Munich, of the Imperial Academy of St. Peturshery, of the Royal Instutuion of Amsterdam, de. de. de.
In the number of the Annals of Chemistry and Pharmacy for October 1851, I have mentioned a compound of urea with protoxide of mercury, which is obtained in the form of a white gelatinous precipitate when a solution of protochloride of mercury (corrosive sublimate) is poned into a solution of urea previously made alkaline by potassa.

Werther had already previously observed that area forms, with protochloride of mereury a compound, crystallizing in flat prisms of a pearly lustre, which yields, according to Piria, a white precipitate with potassa, resembling the amide of mercury, and exploding when heated.

I have obtained three compounds of urea with protoxide of mercury, one of which is formed in a direct manner, and was described by Dessaimnes a few weehs after the publication of my notice quoted above; the other two are obtained by precipitating an alkaline solution of urea with corrosive sublimate or nitrate of protoside of mercury.
A. Urea and protoxide of mercury $2 \mathrm{HgO}+\mathrm{U}$.*

On adding to a warm solution of urea protoxide of mercury suspended in water, the first portions are, as described by Dessaignes, completely dissolved in the liquor; an excess of procoxide of mercury is gradually changed into a white or yellowish-white powder. Whendried in vacuo the colour of this compound is slightiy yellow; when heated in a tube whilst dry it is decomposed, withont explosion; ammoni. is given off, metallic mercury sublimes, and a yeliow residue of mellon remains, which disappears ouly on ignition, when cyanogen gas is disengaged. In the moist state it decrepitates under the same circumstances; in the dark, sparks of a green light are observed.

By digesting protoxide of mercmy in the water bath with a solution of urea, I have in no instance succeeded in obtaining this compond entirely free from cyanate of protoxide or suboxide of mercury ; a feeble, but very distinct disen-
gagement of ammonia invariably takes place. The yellowish white powder formed dissolves in this case in hydrocyanic and hydrochloric acids, leaving a black residue of metallie merenry behind, and disengaring a small quantity of gas. The solution, when treated with milk of lime, gives off ammonia. This is the character of the eyanates. When digested in the water-bath for a longer period, the urea compound loses its yellowish-white color, and becomes lemon-coloured and aramur. This hatter compound exhibits the deportment of a basic cyanate of mercury. 2,000 arains dissolved in hydrocyanic acid gave, on evaporation, a dry residue of urea and cyande of mercury weighing 2.394 grammes; from which were obtained, by precipitation with sulphuretted hydrogen, 1.745 of sulphide of mercury, and by evaporation of the filtrate 0.429 gramme of urea. This gives for

> 10: urea aul protoxide necreury, 'protonide of mercury xi.09, 21.1%.
> 102.31

The increase in weight, amounting to upwards of $2 \frac{1}{2}$ per cent., appears to confim the formula of Dessaigues, according to which I equivalent of water separates by the entrance of protoxide of mereury into this compound. The urea obtained by me was not, however, perfecthy dry: it remained somewhat pasty, and possessed feebly the reactions of sulphocyanide of ammonium. I am therefore not quite sure about the fact of water separating from the urea, inasmuch as in the sitver compound which contains 3 equiv: of oxide of silver, a similar replacement of water by oxide of silver dues not oceur. By the -ame procco of diresting a solation, containing about 10 per cent. of urea with protovide of mercury. until the reddish-yellow colour of the oxide was completely converted into a yellowish-white, I have in several instances obtained a urea compound containing 3 equiv. of protoxide instead of 2 , just as thr compound to be described forther ${ }^{1}$.

$$
\text { 1. Trea and protoxide of mercury } 3 \mathrm{Hg} \mathrm{O}+\mathrm{U} \text {. }
$$

On duiur solution of potassa to a solution of urea, amd mixing with it a colation of corrosive sublimate, the liquid heing continually kept alkaline by renewed addition of solution of potasia, a thick gelatinous snow-white precipitate is obtained, which when brought into boiling water while still moist, after being first completely washed, is converted into a sandy gramur powder of yellow or yellowish-white colour. The water is thereby rendered alkaline, and akes up a certanamonnt of urea. When died the powder is reddishyellow; on being heated in a marrow glass tube it is decom-
posed with decrepitation, and when moist, frequently with explosion; in the dark the substance becomes luminous during this decomposition, and beautiful green sparks are observed; water and carbonate of ammonia are hereby given off, and metallic mercury sublimes, mostly without any residue of mellon. The compound dissolves in hydrocyanic and hydrochtoric acids withont efiervescence; alkalies produce in the latter solution a yellowish-white precipitate.

The analysis of this compound from different preparations yielded the following results:--
I. 4.006 grammes* of substance, dize 1 m vero over sulphutic acid, gave 1.152 gi sulphide of mercury.

III. ${ }^{\text {a }} 1901$.-	.	*			"، 1.9605 "
V. 1.000 "	ly	bu:it	witir	xile	of comper, gare
0.1144 of $C O 2$ and 0.0 .994 of water. VL. 2.094 " yielded by diret determination 0.050 grames of urea.					
Compusition in 160 purts:					
	alculated		1	111.	.
Protoxide mercury,		81.1	\$1.3	83.91	
Uirea	60. 15.6:3				. 6

38.4. 100.00
C. Urea and protoxide of mercury, $4 \mathrm{HgO}+\mathrm{U}$.

On precipitating a solution of nitrate of protoxide of mercury, instead of a solution of corrosive sublimate, with an alkaline solution of urea, a white, somewhat less, grelatinous precipitate is obtained, which also loses this state in boiling water, and becomes a sandy powder. No distinct crystalline structure was observed under the microscope in either of these compounds.

The properties of this compound do net differ from those of the other previously described : it contains, however, more protoxide of mercury. The substance from different preparations, dried over sulphuric acid, yielded by analysis the following results:-
I. 0.087 grammes gre $0.028=91.4$ per cent. of suphide of mercurs.
II. $2.200 \quad$ " $\quad 3.08 \pi=0.5$
and $0.279=10.7$ per cont urea.
III. 3.000 " \quad " $2.800=05 . \%$ and $0.239=10.96$ per cent. ures.
IV. 2.000 " " $1.280=91$. \quad.

These numbers correspond to the following composition:-

[^0]Urea and Protoxide of Silver.-When freshly precipitated, oxide of silver in the moist state is put into a solution of urea, and the liquid left in a warm place of from 40° to 50°; the oxide of silver changes its colour after one or two hours, appears to swell up from one point, and becomes granular and of a lighter grey colour; when the mass has assumed a uniform colour, and some of it is examined under the microscope, the powder is found to consist of transparent, pretty regular, scarcely coloured, prismatic crystals. The compound is readily soluble in nitric acid without disengagement of gas, but with difficulty in ammonia. When touched at one point with an ignited body, it undergoes a tinderlike combustion, a large quantity of ammonia being disengaged, and is converted into a darker-colored coherent mass, which now effervesces with acids and evolves with nitric acid, besides Co^{2} nitric oxide or nitrous acid. On heating the burned mass in a tube, a strong smell of cyanic acid is perceived, and a white body sublimes possessing the properties of cyamelide. The urea compound is converted by the first combustion into a mixture of metallic silver and cyanate of the suboxide of silver. On being heated in a tube, a second incandescence takes place; the cyanate of suboxide of silver is decomposed, part of the cyanogen escapes in the form of cyanic acid, and another portion remains with the silver;-in fact, when the residue is boiled with dilute nitric acid, a mixture of white cyanide of silver and brown paracyanide of silver is left behind.

By analyzing the compound from different preparations there was obtained-

solutions are mixed, or according to the amount of acid in the mercury salt, three compounds or mixtures of them are formed, differing by their amount of protoxide of mercury. These various compounds possess the following properties in common:-They yield, when burned with oxide of copper, a mixture of gases containing nitrogen and Co^{2} in the proportion of 3 to 2 volumes; this is in the same proportion as that in nitrate of urea. On removing the protoxide of mercury, by means of sulphuretted hydrogen, pure nitrate of urea remains in the liquor filtered off, which crystallizes to the last drop. These compounds differ, therefore, only by their unequal amonnt of protoxide of mercury; they dissolve in hydrocyanic acid and hot nitric without leaving a residue. Potassa produces a white precipitate in the nitric solution. Heated for some time, when dry, in a current of warm air, decomposition ensues; they assume a ellowish color, and their nitric solution yields now a yellowish precipitate with potassa.
A. $\mathrm{NO}-\mathrm{C}+\mathrm{HgO}$. When the solution of urea is mixed with the mercurial solution in a very dilute and warm state, and the precipitate formed is diyested with the liquor, it quickly aggregates to a heavy white powder, which presents under the microscope the form of roundish grains, consisting of very small concentrically grouped needles. In the dry state this powder rolls on paper like fine sand. After being dried in vacuo there was obtained, by solution in hydrocyanic acid and precipitated with sulphuretted hydrogen, from-
i. 1.090 grms. of the substance 1.680 sulphide of mercury $=\$ 8.4$ per cout.
II. 2.000° " $1.700 \mathrm{H}_{5} \mathrm{~S} .=85$ per cent.
III. 2.000 gave, after the rembral of the nercury, 0.410 of nithate of urea, and after its saturation with carbonate of baryta 0 oish nitrate of baryta and urea. On treating this 0.651 gram:mes with alcolal, 0.202 of nitrate of barya was left. This compound, accordingly, comsists of-

3. NO ${ }^{5}, \mathrm{U}+2 \mathrm{HgO}$. On adding a solution of crystallized nitrate of urea to a moderately dilute solution of nitate of protoxide of mercury, mixed with some mitric acid, untia slight cloudiness ensues which does not disappear again, then filtering and allowing the mixture to stind quiedy, solid hard crystalline crusts are deposited over night, consisting of an aggregate of small, rectangular, brilliant, transparent tablets. By treatment with boiling water these crystals are decomposed; they become dim and opaque, and are trans-
formed into the compound just described, the water removing from them nitrate of urea. The analysis yielded the following resuits:-

If 9.400 grammes gave $1.604 \mathrm{If}_{6} \mathrm{~S}$.					
III. 2.000 " 0.700 gramme nitrate of urea, from , hich were ohtaned 0.780 mitrate of baryta.					
This compomm, therefore, c	Cal	$\text { ts of }-$ hated	1.	II.	III.
$1 \mathrm{eq}$. nitric................		10.38	-	-	16.1
1 ... urea		18.18			18.9
2 ... protox. :xerc.2		65.45	6.3.6	63.7	

C. NOUU +3 Hg O . On adding a dilute solution of nitrate of protoxide of mercury to a solution of urea, as long as a precipitate is formed, and allowing the white mass to stand ill a warm place of trom 40° to 50°, the precipitate is converted into six-sided tramsparent tablets, amongst which are observed under the microscope roundish grains of the first and isolated square tablets of the second compound. In no instance have 1 succeeded in ohtaining this compound quite pure and free from those admixtures: the mieroseope, however, plainly indicates that we have before us a compound totally difierent from the other two.
2.000 grammes gave 1.550 Hg S. 0.564 nitrate of baryta and urea, and from this 0.597 nitrate of baryta; 3.000 grammes gave 2.48 SHg S. 1.2 .56 nitrate of baryta and urea, and 0.830 mitrate of baryta.
The first analysis yields for 100 substance 77.5 Mg S.; the second 80.3. Assuming the compound to contain 3 eq . protoxide of mercury for 1 eq. nitrate of urea, 79.4 per cent. of Hg S . should be obtaned from it when in a pure state.
Quantitative Detenmination of Chlorine in Neuthal Liquids by Means of Protomide of Mercury.Sitrate of protoxide of mereury added to a solution of urea immediately produces a thick white precipitate; this precipitate does not take phace with a solution of corrosive sublithate. On mixing a chlorine compound of the almali metals 7ith mitrate of the protoxide of mercury, a mutual transpostion into sublimate and nitrate of the alkaline base takes place. A saturated solution of chloride of sodium, mixed with a concentrated solution of nitrate of protoxide of mertary; solidifies into a foliated mass of crystals of protochloride of mercury.
On mixing a solution of urea with chloride of sodium, and eding gradually in small portions a dilute solution of nitrate (protoxide of mercury, a white cloudiness ensues at the
place where both liquids meet, disappearing, however, immediately on slaking, leaving the liquor as bright and transparent as before; without the chloride of sodium it would have retained its cloudiness. This deportment lasts until the nitrate of protoxide added exactly suffices to transform the chloride of sodium into corrosive sublimate; beyond this limit a single drop of the mercurial salt produces a lasting white cloudiness.

From this deportment it is evident that, if we know the amount of mercury in the solution of nitrate of protoxide of mercury which has been added to a solution of urea, containing an unknown quantity of chloride of sodium, untila permanent precipitate is formed, we also linow the amome of chlorine or of chloride of sodium in this solution. One eq. of mercury in the mercurial solution used corresponds exactly to one equiv. of chlorine (or chloride of sodium). If, on the contrary, the amount of chloride of sodium in the solution of urea be known, and the amount of mereury in the mereurial solution be unknown, the latter amome may be calculated with facility. This method of determining the amount of chloricie of sodium is particularly applicable in the case of mine, inasmuch as no urea requires to be added. As a matter of course, it may also be used with advantage for the estimation of the chlorine in brine on sea-water, and, wenerally speaking, in every case where a large number of such determinatious are to be made in the shortest possible time. In those cases in which the chloride of sodimm is not to be estimated in urine, but in other neatral liquids, the method now to be described has to be modified in some points.

Preparamion of tue Nitrate of Protoxide of MerclRY. - If chemically pare mercury be at our disposat, this preparation does not offer any difficulty. Jparts of nitric acid of 1.425 sp . gr. are poured on one part of mercury in a beaker; this is then placed over a water-bath, and heated with frequent additions of a few drops of nitric acid, until no more red vapours escape, and a drop of it mined with a solution of chloride of sodium ceases to produce a clondiness; the solution is then evaporated in the same vessel, and over the water-bath, to the consistence of a syrup. The meretry of commerce camot be used for this parpose, bucanse it alvays contains lead and bismuth, which render the detemanation of chlorine uncertain. The presence of lead or bismuth immediately produces a white cloudiness, or an opalescence, on mixing the mercurial solution with a solution of chloride of sodium containing urea, which renders it difficult to recognize clearly the limit or the point when the urea
compound of the nitrate of protoxide of mercury is precipitated. It becomes, therefore, necessary tirst to obtain a crystallization of nitrate of suboxide of mercury by boiling dilute NO.: with an excess of metallic mercury, concentrating and cooling. The erystals of this salt are then separated from the mother-liquor containing the other metals, washed fist with some dilute NO. 5 , and then with water, whereby part of the salt may be transformed into a basie salt; they are next dissolved in NO. $\overline{5}$, and heated matil no further escape of NO. 5 takes place, and a drop of it tested by chloride of sodium is no longer precipitated. The solution of the salt of the protoxide is now cuaporated in a water-bath to the consistence of a syrup, and diluted with ten times its bulk of water. Should there be, after twenty-four hours, a separation of basic salt of the protoxide from the mixture, it must be filtered off.

In order to employ this mereurial solution for the determination of chloride of sodium, it must be graduated-that is to say, reduced to a definite amount of protoxide. This may be effected in two ways: it is either graduated in a direct mamer with a solution of pure chloride of sodiam of a definite strength; or the amomit of protoxide of mercury is estimated, and the solution then dihuted with such a quaritity of water that a cubic centimeter of the dilute solution indicates exactly 10 milligrammes of chloride of sodium. Both methods require a solution of chloride of sodium of a definite strength.

When pure trasparent rock salt, in coarse pieces, is digested with water during twenty-four hours at a temperathre of 120 to 24^{2}, and the liquor frequently shaken during that time, an unvarying quantity of the salt is dissolved. 10 eubic centimeters of the elear filtered solution contain a defuite, invariable weight of chloride of sodinm; a determination by the balance is hereby not required. 100 parts of water dissolve, according to the experiments of Fachs, 36 ; accordiner to the latest investigations of Fehling, 35.91; and 10 parts by weight of the solution contain 2.6423 of chloride of sodium. The specific gramme, according to Karsten, of the solution is 1.2046 ; according to Authon, $1.205: 10$ cabie centimeters of a saturated solution should consequently contain 3.183 grammes of chloride of sodium.
By evaporating 10 cubic centimeters of saturated solution ai chloride of sodium, I have obtained $3.185,3.184,3.195$, 3.175; mean, 3.184 grammes of chloride of sodium. This is the mumber obtained by Fuehs and Fehling. If, thereiore, 20 cubic ceatimeters of chloride of sodium, saturated at
the ordinary temperature, be exactly measured by means of a pipette (the drop adhering to the end of the pipette ant blown off), and mixed with 298.4 cubic centimeters of water, we have
 of dilute solution of chloride of sodium, containing 2×318.4 milligrammes of this salt. 10 cubic centimeters of this solution contain, therefore, 200 milligrammes of chloride of sodium.
(To le carinuted.)

BOOKS RECEIVED FOR REVIEW.

Amputation of the entire Lower Jaw, with disarticulation of both Condyles. By J. M. Carnochan, M. D., Professor of the principles and operations of Surgery in the New York Medical College. Chief Surgeon to the New York Emigrant's Mospital, \&e. \&c., with plates. New York: Van Norden \& Amerman, Printers, No. 60 William Street, 1852.

REVTEW.

ON RHEUMATISM, RYEGMATIC GOUT, AND SCIATICA; direv Pathology, Symptoms, and Treatment.-By Henay Whiman Fuher, M. D., Camab: Fellow of the Royal College of Physicians, Lamelon: Assstant Physician to Si. Gcorge's Hospital, fer, de. Niew York: Somadel S. and Willianz Wood, 261 Pearl Strect, 185\%. Toronto: II. Rowsell.

Conchuded.

One of the most severe varieties of acute Rheumatism is denominated rheumatic fever; in these cases the amount of constitutional irritation which accompanies, nay, often precedes the articular affection, is most marked. The high tone of the system, and the profusion of the poison are, in all probability, the true causes. In such cases, the excitement of the sanguinous system is extreme-inflammation of the blood, as it was falsely termed by the old practitioners, exists; general exaltation of the functions evinces itself, especially in the nervous and the muscular; such also is the case among the excretions, but this is somen ended by oppression and delayed action, if we except the skin, which is often abnormally excited. A poin, however, of marked importance in this condition of poisoning by lactic acid, is the extreme irritation of the lining membane of the heart and arteries, which eventually produces positive disease, and inaptness of function that issues in palpitation, dyspuce and dropsy. We apprehend that the mode in which these diseases of the heart and arteries are developed has not been indicated with that degree of plaimess of which they are susceptible, and merit a lengthened consideration at our hands; to comprehend them fully, we must rever to the anatomical structure of the parts. We have already shown that the circulating system of bloodvessels, of which the cavities of the two hearts plainly constitute a part, may be compared to a shut sac, which, at the same time that it supplies the nurritive apparatus of each structure, with pabutum for the fulfilment of its growth, or the performance of its functions, only accomplishes this supply by transudatonthrough its coats. The whole of these structures are lined like other fibrous sacs, with a serous membrane. This serzus membrane consists of a fibrous basement membrane, which has distributed upon its free surface an abundance of pavement epithelium, intended as an organic defence to that structure, besides which it possesses in the subserous tissue ${ }^{2}$ system of minute capillary vessels, which are intended to
supply these parts with nourishment; it has been said that these pavement epithelium obtain their supply of nourishment from the blood itself; but we apprehend that the laws of endosmodic action plainly dipprove the possibility of this fact; for the blood being of denser character than the flaid which transudes the cell wall of the epithelium, would rather serve to abstract lluid, than yieh nomrishment to these structures. Besides this serous membata, the sireulating apparatus is supplied with a mosenhar structure, whose fibres are, for the most part, both longitudimal and circular. In the heart this strueture is very largely developed, less in the arterial tubes, and on the capiltaries and veins most indistinctly to be demonstated. The muscular fibres of the heart have been shown to be in a transitional condition, not the perfect striated mascle, while they are in a far higher grade of development than the non-striated variety of the vascular ianics. The yellow fibrous tissue of the arteres is more strongly developed, than the same substance in the veins or capillaries; while the hird or extemal fibrous tunic bears a similar proportion. We have, then, this vascular apparatus, consisting of the following structures, doubtless cvincing vavious grades of development, but all referrible to corresponding elements. We have the serous lining membrane which consists of three principal ingredients-the organised pavement epithelium, the inorganic or lowly organised basement membrane, and the numitive capillaries, and these exist in the heart as well as in the vessels. In the second cont we have the non-striated muscular apparatus, both cireular and longitudinal fibres. As a necessary conseguence of the existence of this kind of structure, we find a capillary matritive apparatus, and a distribution of nervous filaments-added to these we have the yellow fibrous clastic eoat which constitutes the main bulk of the arteries, which in the reins and capillaries is particularly diminished, and in the heart itself is spread out and displaced. The outer and third coat of this system of tubes is formed from the white fibrous tissue, partially developed in the capillaries and veins, more marked in the arteries, and extremely prominent around the heart; when, as in other parts of the body, this substance is present, we find that constant motiondevelopes a shut sac-a burse mucosea serous apparatus-this constitutes the pericardium. From this marked uniformity of character in the vavious structures, a great correspondence exists in their diseases-while these vastly similate the affections of like structures in other parts of the body, as in most cast s are clearly demonstrated by their anatomical peculiarities.

Let us assume, for example, that al: abnormal quantity of lactic acid is the poison that abounds in the circulating system. It is, for the most part, apparenty retained in the shat sac, the circulating apparatus. It is, in some degree, natural to the muscular structure-it does not appear to act very potently upon the nervous system : hence, we would conclude that the poison does not enter into the nervous apparatus; but as the eapillary system supplies all these parts with blood, containing a varying amount of this poison, this system feels the inflnence, and is excited by it to increased action, as is shown by the rhemmatic pulse. Hence, we shall have an exalted fiunction of every organ as the result, and this is demonstrated as rhemmatic fever. In this case the peculiar poison would appear especially to irritate the lining membrane of the heart and ateries from immediate contact. It induces irritation of the muscular apparatus, caused, in the first place, by exahed nervous influence, and succeeded by increased vascular activity of the capillaries of the muscular apparatus of the heart and atteries. When continued for any length of time, a hyperemic condition of the nutritive apparatus is the necessary consequence. Hence is laid the foundation for disease in this system of vessels, which pervades the whole body. As we have before said, this condition is readily recognized by the full bounding pulse and general excitement of the whole frame when lactic acid abounds in the blood-vessels; so that, if from any local cause at this period of the disease the operation of cold, the result of an injury or any other debilitating influence, the powers of the part or organ are depressed, the local fibrous structures then suffer especially from the irritation of the poison, and acute rheumatism is developed. We may observe in this case, the poison is still operating upon the capillary vessels, for such in reality are the minute vessels that pervade the ligament; for these, although rastly diminished by fibrinous development, still they have nol been occluded, and can admit an increased amount of blond, and this lactic acid contained within it. Such, possibly, is the explanation of the proneness of this and some other poisons to attack the fibrous structures, the calibre of whose vascular apparatus is of less diameter than the smallest capillary vessel.
Physiology and pathology both teach us that the continuance of the exalted function of the muscular coats of the heart and arteries, produced by the stimulus or irritation of the poison in the blood, cannot be continued for any great length of time, without producing capillary liypercemia in lie vascular system, and after a time that this condition must eventuate in debilitated function, or inflammatory
action. Should debilitated muscular power be the resull, dilitation of the fibrous strnelures will be apt to supervete. This will be produced by the powerful action of the heart, to which the fibrous struciure now yields-hence, we have the first impulse of true ancurism in many of these cases. This condilion is greally facilitated, in consequence of the softening of the fibrous tissues which result from the increased supply of serous fluid pesented 10 it as the result of the hyperomic condition of the capillary vessels of this apparatus. The usual nourishment supplied to the fibrous element appears to be a slight amount of serous hluid that transudes the capilhary vessel and preserves to the structure a certam amount of moisture and flexibility; when the natural amoum is abnormally increased, softening and loss of tone is the result-and, facilitated by the less of muscular power, permits the influence of the heart's action to have greater effect upon the vessel, and more readily to lay the foundation of true ancurism. The next influence in the onward progess of this condition is the sympathy with which the capillary apparans of the serous lining membrane of the artery is now endowed; a softening of the membrane resalts from the increased supply of serous flaid to the basement membrane, and increased supply of nourishmeat to the pavement epibelium; that these become softencd and swelled, and instead of the beautiful, smooth surface, we find it meven and roughened; nay, these structures are not unfrequenty cast, leaving the inorganic basement membrane more or less bare. When such is the case we have a friction sound presents itself; as in olher serous membranes, we have a bruit de souflet or bruit de diable, as it is often called. This sound is cansed by the friction of the blood corpuscles comsing along the elevated irregular, and ofien brohen-up pavement epithelial cells, or on the rougher surface of the basemen membrave. Under these circumstances, his brait de souflet is a prelly certain evidence of some of the stages of inflammatory action in this serous membrane. It is said that this sound should be looked upon rather as a proof of the ancemic cordition of the blood; when the blond is particularly deficient in fibrine, albumen and the red corpuscles; when it atoounds in serum, and the blood is mach thinner in consistercy, then this condition may mfluence the epithelial cells, and may pro duce a condition similar in their structure to the one we hare explained as resulting from the impulse of inflammatory action in their own capillaries; the cells swell, are enlarged, may be brokeu up and disarranged from this cause-at all events the surface is rendered uneven, and the friction sound is produced by the action of the blood corpuscles
upon this uneven surface, while now, in consequenee of the atmenated condition of the blood, these structures have a more considerably increased influence, and produce far greater friction; hence the two conditions ge to produce similar effects, showing that the bruit de sonillet may result from an ancmic conditon of the blood influencing this serous lining of the anteries, or from general or local inflammatory action in the nutrutive structures of the part.
We have pointed out that disease of the mosenlar structure of the artery may show hiself in exalted action, as is wimessed by the full and boanding pulse of rheamatic fever; or it may evince itself in dininished power, that assists in the formation of aneurism. The hypercmic condiaion of the capillary vesselsthat form the nutritive apparatus of the museular structure evinces changes that occur as the result of his condition, and make it certain that such exists; , should this abnormal congestion cominue for a considerable period, atrophy of the fibrille and degeneration of the muscular structure will happen, muscle will be replaced by fat; heace the aheromatots developments that cominually present themselves in the diseased lining membrane of the arterises. When this comdtion bas existed for a considerable period, crystals of chloresterine and globules of olein will be observed, while, afler an mdelinite period of time, these fats may be replaced by earhy salis, when we have what is called ossification of the artery. This condition of the nonstriated museular fibre may be observed in the heart, and may be found in its openings and upon its valves. We have observed these diseases of the muscular structure to be present to a very considerable extem, whiic it is still covered wih the serous membranc. If ofien happens, however, that the epithelium are shed, the basement membrane exposed, and ever ulcerated and removed; then there is a tendency to the collection of fibrine opposite to the part-still, bowever, the impetuous currem oi the arterial circulation conslantly sweeps away any partucles that might chance to be mested. We find this fibrine constantly presenting itself in byers. It however demands great dilitation of the vessel and delayed vascularaction, to permit ine fibrine to coagulate and sccumblate in the neighbourbood of the diseased artertal mats to any great exient; should any projection or very great thation evince iself, then the carrent is delayed, congulated trine speedily accumulates in the part, and may represent se of the efforts of nature to cure the disease. Again: we an understand that in some cases of partial disease of the frous membrane, the absence of epithelium, and the conquent temporary formation and delay of coagulated fibrine Fay happen; that the course of the circulating blood may
drive such portions onwards towards the capillaries, and that it may be arrested in the blood vessels, giving rise to impeded circulation in the part to which the vessel is distributed, a circumstance that not undreguently results in softening of the brain, when such an accident happens in its murritive apparatus.

These are some of the consequences of a poisoned condition of the blood. Such influences will manifest themselves in all the varieties which occur ; but the peculiar influences here represented appear to bear more expressly upon the condition of poisoning by lacte acid. The presence of urate of soda in blood does not seem to produce the same intensity of action, either constitutional or local, as the lactic acid; it will, however, prove a more permanent source of irritation to the fibrons structures, but does not excite the same intense action in the heart and arteries as lactic acid. When the presence of oxylate of lime is manifest-and it is offen a source of irritation in some of the diseases which Dr. Fuller has so admirably deseribed-it would appear iu shed its inlluence more upon the fibrous tissues which consirtute the fascie, memibranes, and theca of nerves, than on the ligamentous structures of the joints; when, however, these last become affected, we fancy that there is a greater tenden. cy to run into the lormation of matter around the ligamem, than when the urate of soda is the exoiting cause of inflammatory action in these tissues.

In drawing the attention of our readers to some of th effects of the blood poisoning by lactic acid upon the cir culating system, we have purposely maimaned silente with regard to its influence upon the heart itself; the poinwhich we have venured to lay most stress upon are thos: which appear in some degree to explain the very practica views of our author, and which seem hatmally to lead 4 to them; consequenty, we must consider our attemper explanations comparatively uselese, noless they are folloris: up by the study of the lucid deseriptions given by Di Fuller of Pericarditis and Endocarditi-. WW, would s: cerely recommend all who are desirous of understandithe most improved and recent ideas upen rhenmatinm, a^{r} : the consequences to which it gives rixe, to con-ult the wes in question. We fear that we have already wam: mict far in this most interesting subject- hat we have conant: the patience of our reader; but wh camot terminate t: consideration of this mater without expressing our coms:tion, that this is by far the most practical and usedul trestix that has lately issued from the press on the subjects rheumatism, and we can commend the habore of Dr. Ful: to the attentive perusal of our reader.

morronlal depamtiment.

PROFESSOR LIEBIG'S PAPER.

We have great pleasure in presenting to our readers a most important paper by the celebrated chemist, Justus Liehig, "on some compounds of urea, and on a new method for the determination of chioride of sodium and urea in the urine." The article has already been published in the Quarterly Journal of Chemicel Science, but has not been printed upon the Continent of America. The ready determination of the quantity of urea in urine has long been a desideratum with the practical physician, and is a point of such vast importance in the consideration of disease, that we would desire to give the subject a most conspicuous position in our pages: trusting that a just appreciation of the facts and the facile employment of the means offered as data in the investigation of disease, will be appreciated by every medical practitione:. The prucess advocated by the celebrated chemist is founded upon the fact, that urea forms with tour equisalons of the pernitrate of mercury an insoluble compound; if, then we add to urine a solution of this substance of known strength, we can precipitate and determine the amount of urea with the sreatest accuracy.

We need not here stop to poime out the imporance of this fact, that shall emable the physicion to demonstrats: with exceeding accuracy the positive amount of urea in urine, and that with the greatest celerity: for when the method here prenented to our obervation shall have becone familiax to the practical physician, it will he as necessary in his -very-day amalysis of disase as the stethescope or microscope. It is retly curious to see how slowly the precical physician is inclined to adopt the adoantages which the improvements in science effer as aid and assistance in the investigation of diseave. The mainain that precision in the analysis of disease canooi be obtained without the assistance of such means, and we would advise every practical man to grain a kunwledge of their use and habituate himself to their
employment. Heretofore it has been the habit to guess at disease, to trust to personal experience in the case ; but ere long, we believe, that with the light oi science we shatl be able readily to interpret all the symptoms of disease appertaining to any particular complaint, with an accuracy and despatch unknown to the old school. We must confess that we should like to see the medical officers of the Toronto Gejeral Hospital set a grod example on this matter ; they have a noble opportunity of testing the advantages of these sevcral inductive processes, if they would set about it with spirit and energy. Some twenty years ago, we full well remember how the old practical mea in the protession-as they were called-used to sneer at the stethescepe; they used to ridicule the idea that it could be of the least service in the investigation of disease: at the present time the perfect accuracy in the diagnosis of chest diseases by means of the ear, is only equalled by occular demonstration. The sure advantage of the data offered by the stethescope is now universally acknowledged, and we would ask why will not the proiession generally make use of similar assistance offered by the microscope and orgonic chemistry? No hospital that lays any claim to a consistent progress in medical science should be without such aids. 'These are points of especial employment in all the hospitals of Europe and Imerica, that endeavour to keep pace with general adraicement of science; and we would ask why the Toronto General Mospital should be behind in these matters? Prrisus at a distance would imagine, from the known liberal antecedents of the prestai hospital trustees, that it would cause them to stimulate and encourage their medical ofifeers, in the fuilest dcrelopments of nedical progress, and lend them every aid and assistince necessary for the work. A microscope is an absolute secessit; in the investigation of disease in the present day, and it should form part of the houpital establishment; it is a womder and amazement to us how the medical oflicers can possibly get on without one. We sincerely trust that when tise noble hospital now buidding shall have been fimished, that the trustees will afford the required facilities for the use of such necessary investigations; and that they will even appointan assistant medical officer, whose duty should be the especial
attention to such matters. It has been urged that the acknowledred want of unanimity among the medical officers is a bar to such improvements: we should rather look upon the matter in a diflerent light-an individual having the love of science, and the advancement of the medical profession in view, if properly supported, would rather be a stimulns to union. an encomagement to the belligerents to forget their personal ami political diferences in the love and prosecution of that science, which they are all bound to honor and promote to the best of ther abilities. It has been said that the medical offeers at the Toronto General Mospital get nothing for the:r services, and camot be expected to waste their time and spend their means in the pursuit of such matters: we woald maintain that the position they oceupy, if it be used in a proper mamer, would more than compensate for all their trouble. A medical man's progress mast be onward, amd here he might find a noble field open to him for the stady of distase, in which he could prove the trath of his deductions and confirm his knowledge. In the attemdance upon the hospital, we acknowledge that the division of labor would be very desirable, and if the matter was carried ont with unamity, would greatly conduce to the benefit of all concerned. We confess we cannot see why the patients cannot have the full benefit of all the recent improvements in medical and surgical science, and the stadents gain the full arivantage in their studies of the most recent and approved methods of scientific induction in the investigation of disease. The 'Yoronto General Hospital shoukd not be behind in this matter; we wonld say, let party and politics be forgotten, let all join in a fervent desire to antwance medical science, then, and only then will the medical officers be fully respected, and the Toronto General Hospital gain that standing in popular estimation, and public usefulness, which its metropolitan position, and great advantages ronfer upon it.

TORON'IO GENERAL FIOSPI'AL.

Whin leelings of profound grief, we lay before the Medrcal Profession the following correspondence; it it is another terrible demonstration of that despicable antagonism and desperate combination of parties, that has long been the curse of the Medical Professsion in the City of Poronto. It is to a great extent, the source of the humiliating position and degraded condition of the Medical Profession in Canada West, which nothing but an act of incorporation can correct. We have every reason to believe that the determined manner in which we have adrocated this measure has cansed our present persecution; we can solemnly declare that the common good and advantage oll the Medical Profession has been our only aim, consequently we can afford to despise such attacis, and wall cheerfully suffer persecution if it shall but tend in the slightest degree 10 improve or advantage the condition of the Profession.

We present the correspondence in yuestion as it appeared in the North American newspaper of this city.

To the Edetor of the North Amcrivan:

Sir,-Having a strong desire to mantain my knowledge and improve in the praciice of my profession, I wished to attend the practice of the Toronto General Hospital in this city; consequently I offered the usual fees demanded by the hospital trast of students attending that institution; when I was informed that I had a right, and was at perfect liberty to attend the hospital under the printed bye-laws. rule the 4 , section the 7 th, which states "That all Licensed Practitioners may walk the wards in company with the visiting medical officers at the usual hour, and may attend all operations; but may not dictate or interfere in the practice." I consequently made a rule of altending the hospital at the usual hours, invariably showed the greatest respect to the medical officers, and am perfectly certain that I never infringed any of the hospital rules.

Suddenly, and to my surprise, l received the following order from the Board of Hospital Trustees :-
"Toronto Hospital, May $20 \mathrm{th}, 1858$.
"Dear Sir,-1 have received a letter from the Secretary to the Hospital Trustees requesting me to inform you that
by order of the Board in consequence of your interference with the Medical ollicers of the Hospital, your admission under the Tha chase of the th Rule of the grinted Laws of the inctitution shall cease.

> "I am, dear Sir, Your obedient servant, $$
\text { E. Clanna, R. S. }
$$

"S. J. Suratford, Esg., Surgeon, Sc."
On which I made an application for the charges laid against me, in the following letter addressed to the chairman of the Board:-
(Copy)
Dear Sir:
"j having received a letter from Dr. Clarke, Honse Surgeon to the Toronto General Itospital (a copy of which I enclose to you) to the effect that am ordered to cease my visits to that institution, in consequence of interference with the Medical olficers, will you permit me to ask you for a statement of the charges which have been made against me, and which induced such an extraordinary decision, as I deny having in the slightest degree infringed the rules of the Hospital, and ean prove that I have always treated the Medical officers of that institution with the most marked respect.
"I have the honor to be, dear Sir,
Your obedient servant,
S. J. Stratrone.
"The Hon. C. Widmer,
Chairman of the H. 'X. B."
This application was met with the following rejoinder:-
(Copy) "Office Toromo General Hospital, May 25th, 1854.
"Sir,-I am instructed by the Board of Trusices to actowledge the receipt of your letter to the Chairman, dated $32 n d$ instant, and in reply to inform you that the becision of the Board, as communicated to you through he Resident surgeon, is grounded on a fall corroboration of the evidence adduced.
" 1 am
Your obedient servant, J. Brewt, Secretary. Surgeon."
lthen addressed a second letter to the Board to the folbring, eflect :-
"Yonge Strect, Toronto, May 25, 1 S54.
"Sir,-In a letter I addressed to the Chairman of the Board of the Mozpital Trostees I solicited a statement of the charges made against me that could have induced the Board to come to so unjust and hasty a conclusion as to deprive me unceremonionaly of a right accorded by their printed regulations (Rule 4 th sec. 7 th) to all Licensed Nedical Practitioners. In answer you say, that you are directed by the Board to iniorm me that the decision is grounded on the full corioboration of the evidence adduced. Will you, a sccond time, permit me to solicit a copy of the chetriges, and I will now add of the evidence adduced also; as I emphatically deny having transgressed the rules of the Mospital, and mainain that the Board cannot deprive me of the rigit to visit that institution, without giving me a chance to disprove any false statements that have been made against me.
"I beg to assure the Board that 1 do not desire to follow a liugious course, bat consider it is a daty I owe to the pablic, to the medical profession, and to the public press, to demand the charges and evidence under which 1 am deprived of my rights in the matter. The meanest criminal in the land can claim the privilege of being heard in his own defence; so that, shonld the Board continue to evade my just demand, I must denounce such a course as the height of tyramy and oppression.
"Trusting that on rellection the Board will see the justice and propriely of granting my request, or of rescinding their order,
"I have the honor to be, Sir, Your mosi obedient servant,

"J. W. Brem, Esq.	
Secretary, H. T. B."	S. J. Stratrond.

I understand that the letter has been laid before the Board, and that no answer will be returned to me-consequently I consider it my duty to lay the matter before the public, and trust that your love of fair play, and hatred of tyranny in every shape, will cause you not to refuse this communication a place in your columns.

In thus stating my case, I will simply say that the lar under which the Ilospital Trustees manage the affairs of that institution is a public act,-16 Vic. cap. 220 . They have power to make bye-taws which require the sanction of the Governor General in Council within 30 days. In this case i have shewn that hey have made a bye-law (Rule 4, sec. 7ih) and I, as a licensed medical practitioner, had a right to avail myself of that law, until it was
repealed; when the bye-law was sanctioned by the Governor General it became a law of the Province, and was as binding upon the Hospital Trustees as it was upon me. Such a law camot surely be permitted to become an instrument of tyramy and oppression in the one case, and of favoritism in another, without some slight indication of the reason which has caused the action of the Board. Whatever might have been the seeret influence which malice bas brought to bear against me, it must be pretty evident that the crime I have committed camot be very heinous or the Board would not in all probability bave lesitated to render it public. It is to the Board I have to look for redress in this matter, and as it has been refused me, I shall be under the unpleasant necessity of laying the mater before the Executive Governmen. My desire would be, not to oppose the Hospital Trustees in this matter, as it is evdent they have been misled by false statements; but as they have assumed the case, there is no altemative left me, and consequently as all means are allowable in a state of treacherous warfare, I feel myself bound to make a complete report of the circamstances of my own individual case, logether with a detail of the condition of the Hospital, and of the treatment of the patients I have witnessed therein, for the special information of Ilis Excellency the Governor General. I regret extremely the last altemative, as I did not desire to expose any professional matters comnected with the institution; but when I have been treated so basely and tyramically, I shall, I am sure, be creused the employment of all reasonable means of bringing my opponents to a sense of their injustice. I take these means with less besitation, as I consider that the whole medical profession has been insulted and injured by the injustice heaped upon me. In its present condition the section of the Hospital by-law I have pointed out, is a smare and a delasion, if it can be so completely trampled mider foot without reason or excuse; and as long as in ean be employed after the above manner, it is simply an insult to the whole profession, any member of which may be weated precisely as I have been.
Hoping that the importance of this matter, will excuse the length of my communication,

$$
\begin{aligned}
& \text { I remain, Sir, } \\
& \text { Your obedient servant, } \\
& \text { S.J. STRA'IFORD, } \\
& \text { M.R.C.S. Eng. }
\end{aligned}
$$

Toronto, 12th June, 1854.
N. B.-I have :cason to believe that the crime which has called down the vengeance of the medical officers of
the Toronto General Ilospital, is the publication of a Clinical Lecture (to which I was publicly invited), in the Upper Canada Medical Journal, and which the subseribers to that journal know was given with faimess and justice.
S. J. S.

Sincerely desirons of avoiding the necessity of compro. mising Dr. Widmer in this unpleasant affair, wedetermine! to exhaust every effort to effect a settlement of to or to obtain the charges made by the parties who quietly shelter themselves behind him, we addressed the fellowing letter to Dr. Widmer, but have not received any reply; in consequence we give the letier, and shall make our remarks as to the cause of the combinations against us at a future period, and may possibly illustrate ow observations by the mode in which polypus tumours of the uterus are treated and amputation of the thigh is performed in the Toronto General Hospital; but we would far rather not touch upon subjects of this nature until compelled to do so.

> Yonge Street, Toronto 20th June, 1854.

Dear Sir,-The honor and respect I maturally owe to you, as one of the senior members of the Medical Profession in Canada West, would have been sufficient to have carsed me to hesitate in severely reprobating the coure you have pursued lowards me, with regard to my expulsion from the Toronto General Hospital; when this is coupled with an intimate acquaintance for upwards of twenty years, -and to it may be added the personal esteem I have ever expressed towards you, as the friend and school-fellow of my late lamented father,-this would be a still further reason why I prefer again appealing to your kinder feelings and better judgment in this mater, rather than of proceeding to extreme measures,-why I wonld prefer to solicit that you act as mediator between me and my mknown assailants, rather than that you stand in the breach asan majust and yrannical despoiler of the rights of the Medical Profession, and have yourself to bear the odium of this unpleasamt allair. In making such an appeal to you, be assured it is not from any fear of the consequences or results, for I am sure when the matter becomes public that I shall be upheld by the public, the press and the Medical Profession; but simply from a desire to save the necessity of placing you in so despicable a position before the world and of exposing the extreme degredation to which some of the members of the

Medical Profession have arrived at in Canada West. Be sure that the parties who are now urging you onwards, who are making you a tool for their own base and illiberal ends, cannot but in the end meet with the due reward which their conduct richly merits. Some of them hate and detest yon, and often call yon by the vilest epithets; and as soon as they have athaned their ends, and yon have served their purpose, will be found among the first to execrate and abuse you. These are the motives that induce me to endeavour to arense the better sympathies of your nature before! shall proceed to any dermier resort. I am sure that upon relleetion, you must be fully convinced that I have committed no ate against the Hospital laws. which had you not have been misled, or otherwise interested by your commection with some of the partien, yon could not have construed into a violation of the vules; and had you desired to act as the fair administrator of the law, with which you have been cntrusted for the public good, you woukl not have esayed in punish me, whont giving me a chance to have exposed the falseboods which may have been charged against me. Without urging any further reasons, I would simply request you to act as a mediator in this matter, and beg to assure you if it can be reasonably shown that I have erred in whatsocver is laid to my charge, I shall be (as I ever have) ready to make the amende honorable which the ease shall demand.
Ishall await your answer; bnt ill do not receive one before eleven o'clock to-morrow? shall conclude that you are disinclined to do me the justice my case plainly demands at your hands.

> I have the honor to be, dear Sir, Your obedient servant, $$
\text { S. J. Stratrord. }
$$

SELECHED MATTER.

A COURSN: OF LECTURES ON ORGANIC CHLNHSTME:

Lechm: IS.
Gentiman-
I promised you, in the last lecture, an aceont of ures as a subnance closely comnected with the three extraurhany acal which I have trought under your notice. I now proced to dencrite to you thin highly remarkable body. Urea was first abserved a early $\because=176$ b, hy a French chemist, mamed Rouclle, who described it unler the name of entactun apontean uruac. Rouelle, however, obtained this sulistance why an a state of great impurity, and it was not until 1799 or 1 s00 that its investigation wassuceesfally performed by Fourcroy and Vaupulin. We may, therefore, say, that the Lnowledge of urea dates from the ecmmencenent of this century. The first accurate analysis of urea way made by Dr. Prout. His experiments lare been repeatedy corrobozated by many other chemists, and they led to the formula

Ce $\mathrm{H}_{\mathrm{z}} \mathrm{N} \dot{2} \mathrm{Oz}$

for uren. liut let us first ascertain how this substance is procared from urine before enteriug into farther details refarding it, cheracters. For this purpose the fresh tuine of man is cuphorated to a heak syrupy consistence, and mised, after cooling, with pure concentraten nitric acid. A brownioh crystalline mass is at once separated, which ennsists of a combimaten of ures with nitric acid. These erystals, which are excecingly brown, are collected and pressed, and then redissolved in boiling water. Treatment with animal charcoal and one or two re-crystallizations renders them nearly white. It remains now only to separate the nitric acid. This may be done in a variety of ways. A simple plan eonsigts in adding to the solution an excess of carbonate of baryta, and evaporating the mixture to dryness in the water-bath. The residue, which now contains free urea, together with nutrate of bargis and excess of carbonate of baryta, is exhausted, at a moderate temperature, with strong spirits of wine, from which the urea crystallizes on cooling.

The existence of urea in so important a secretion as the trine, would have at all times secured a considerable amome of attention to this compound. Sut the inierest of this body has been very much increased by the results obtained in the study of its chemical characters, and by the remarkable circumstances under which its finmation was observed at a hater period.

In the last Lecture, you became acquainted with the salt which is produced by the action of oxidizing agents upon cyanide of potassium, and which I described to you as oxycyanide or potassium, or cyanate of potassa. You recollect, moreover, the curious procees by which Professor Wohler succeeded in producing the hydrozen-compond corresponding to orycyande of potassium, or cyanic acid. An elaborate investigation of the salts of this acid has led Professor Wöher to one of the finest discoveries which is upon record in the domain of organic chemistry. Among the several salts examined by this chemist, was the ammonium-compound. He produced this substance by the action at the common temperature of dry ammonia-gas upon the vaponer of cyanic acid,

$\overbrace{\text { Ammonia. }}^{\mathrm{NH}_{3}}+\overbrace{\text { Cyanic Acid. }}^{\text {II } \mathrm{Cy} \mathrm{O}_{2}}=\frac{\mathrm{NIr}_{4} \mathrm{Oy} \mathrm{O}_{2}}{\overbrace{$| Oxycyanide of |
| :---: |
| ammonium. |
| Cyanate of ammonia. |}}

when the compound condenses as at white, light powder, upon bringing the two bodics in contact. The substanee thas produced posesses all the characters of a true axyeyande. It is decomposed like the potassiamcompound, when boiled with cither dilute acide or alkalies; the latter crolving ammonia, an alkaline cubonate remaning behind, while the former evolve eyanic acid. the greater part of which eplite, as you have seen, at the moment of liberation, into carbonic acid, which escapes with efiervescence, atr ammonia mhich as fixed by the acid. Oxycyanile of ammonam, obtaned in this manner, is apt to contain an excess of ammonia. Professor Wohler emdervored to pmrify his substance by re-crystallization from water, in whinh it is easily soluble. The apucous solution, when concentrated by eraporation, deposits, on cooling, long acicuiar crystals of remakbble beauty. But how geat was Wobler's astonishment, when he foumi that, by this simple operation, the character of hi original substauce had undergone ata entire alteation. It exibited no longer any of the properties which distinguish the oxycyandes; dilute acids and alkalies had nolouger the slightest effect upon it, alhough its composition was still that of the true oxycgande of ammonimm. A minute cxamination of this modified compound soon convinced PrGfessor Wüher, that the substance in question was nothing else but urea, the crystalline constituent of urine. We have, in fact,

$\frac{\mathrm{NH}_{4} \mathrm{Cy}_{2} \mathrm{O}_{2}=\frac{\mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{NO} \mathrm{O}_{2}}{$| Oxycyanide of am- |
| :---: |
| monitm, |}$=\frac{\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Namate} \mathrm{O}_{2}}{\text { ammonia. }}}{\text { Urea. }}$

This discovery, to which I have alluded already in the commencement of this conrse, was of considerable inportance, imasmeh as it proved, for the first time, amd in a most striking mamer, the posibility of producing artiticinlly the proximate constituents of pants and mimals.

The artificial fomation of uea is so reamy effected, that mine is carcely anylonger used for preparing this substance. However, to prodnee conomiminy large quatities of urea, it is necessary somewhat to monify the proees. lustead of propaing the cyanate of ammona by the direct unon of its constituents, chenists produce the satne effect by doublo decmmpostion, aceording to a buethod suggested by Professor inehis,--namely, by the action of sulphate of ammenita upon cyante of potassa, - When suhphate of putassa and cyanate of ammonia, or urea, are formed.

$$
\mathrm{KCyO}_{2}+\mathrm{NH}_{4} \mathrm{NO}_{4}=\mathrm{KSO}_{4}+\mathrm{NH}_{4} \mathrm{CyO}_{2}
$$

This flask contains a solution of cyanate of potassa, obtaned by exbausting kith cold water the black residue which remans after the timder-like combustion of a mixture of dry forrocyande of potassium and binoxide of manganese. I mix this liquid vith a saturated solation of sulphate of amnonia. On agitating, crystals of suphate of yotassa are deposited, which I separate by filtration or decatation. She solution now contains the true cyanate of smmonia, as can readily be proved by the action of acids and alkalies. Witi dilute hydrochtoric acid, the liguid yowernilly effervesces: while the nddition of hydrate of lime causes the evolution of ammonis. Meanwhile, I hare heated the - manimer of our solution to clonlition; and you observe, that the solution. ow no longer affected by these re-agents. Cmier the influence of heat, the molecules of cyamate of ammonia have rearranged themselvec, and have assumed the stabler position which they hold in urea. The presence of urea in the solution may be exhibited, moroover, by the sflition of conecotrated nitric acid, which imuediately preeipitates a crystalline magma of mitrate of uea.
In order to obtain the urea perfectly pare, according to this methot, tho bixture of cymate of potassa mil sulphate of ammonia must be evaporated to iryaces on a water-bath. The residue is exhausted with alcohol, from kidich the nea crystallizes upon craporation.
The remmable change which cymate of nmmona mudergocs in all its properties, when passing over into urea, hat greally engaged the attention ch chemists. Many spectiations as to the mode in which the molecales may tearranged in urea have been brought furward, in order to explain the new bhracter which the compound assumes. These specuintions have not, as Fet, led to noy decisire reenits; the molechiar constiaction of urea still
mananq undetermined. Suffice it to day, time he propertios of cyanic acid in this substance have catirely divappeared; that uren, a its eleporment with other sabsanees, has rethmed the fomhementh! properties of ammonia which eaters into it-cumposition, Like the hatter, it combines with acids, rund atex tise to a suries of welldehned zalts. Or these the nitrate, which 1 hat repeated opportunties of nentionitg, and the walate, which falls dowa as a crystalline precipitate on mixing urea-sobution with oxalic acid,

 class of compounds genembly dewignted as "organic bases,"-a group vith which Ihope to make yon better acquanted in a future lectare, and of Which ammonia is the type. Urea am its compommes may be viewed as anmonia and ammonia-salts as*ocinted with an equiratent of eyanie acid, which has becone perfectly latent in this assuciation, nad which re-appears agan only under the inthence of powerful agents of deconaposition. Thus we find that concentrated sulphusic acid, or fuiber with an akali, protuces upon area, the sume cffect as dibute acid and ditute alkali upon cyanate of ammonia. Under these circumstances, urea andmilates $\%$ eybivalents of water, and is cos:erted into carbonic ncid and ammonia.

$$
\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}+2 \mathrm{HO}_{2}=\mathrm{CO}_{2}+2 \mathrm{NH}_{3}
$$

The same change occurs if area is left in contact vith fromenting substances. Thas we find that putrid urine contains at least not a trace of urea. Addition of nitric acid to the evaporated liquid no longer produces a paecipitate of nitrate of urea, but a brisk effervescence of carbonic acid, while the action of an alkali crolves ammonia in abundance

The presence of cyanic acid in urea may, thewise, remdiy he traced by the action of substances which destroy the amunonia in it. Chlorine deconposes free ammonia, with the formation of hydrochloric acid and erohation of nitrogen. Ammonia undergoes the same ilecomposition when associated with esanic acid; the later, in the moment of its liberation, assimilates water, and splits into carbonic acid and ammonia, which, in its turn, is likewise decomposed by chioninc.

In a similar maner nitrots acid behaves, the action of which upon ammonia gives rise to the formation of water, :ad to the evolution of nitrogen By passing the vapour of nitrous acid, lisengaged by the action ot nitric upon arsenious acid ($\mathrm{NO}_{5}+\mathrm{As} \mathrm{O}_{3}=\mathrm{NO}_{3}+$ As O_{5}), into a solution of urea, a lively effervescence ensues, and equal rolumes of nitrogen and carbonic acid are disengaged, the latter arising from the decomposition of hiberated eyanic acid.

This re-action explains why, in the preparation of urea from urine, often not a trace of urea is obtaned, if the nitric acid used in precinitating the ured, as nitrate, contain a small quantity of nitrous acid. It is, lastly, by the action of heat upon urea that the presence of cyanic acid in this compound may be readily exhibited. At a moderate temperature, urea fuses withoit change, but, when strongly heated, it is decomposed, with copions evolution of ammonia. The residue in the retort consists almost entirely of cyaruric acid, which retains but a minute gutantity of ammonia. If the process of heating be contioncd, the cyamuric acid undergoce the change which I pointed out to you in one of the preceding lectures-it is convertal into cyanic acid. This re-action is at once inteligible if you recollect that urea contains the elements of cyanic acid and ammonia. Three equivalent of urea sphtinto three equivalents of ammonia which are evolven, and three equiraleats of cyanic acid which, at the existing temperature, coalesce to form cyanuric acid, and separate again ouly upon submittiug the latter to a higher degre of Leat.

In wiver womplete the hianery of turea, it remains now only to add a few werd segating the methons wed in deternining the anome of urea in wime. The quatity of teea secreted in the mimal orgmism during a given fetioh, may he viewed ne: mos ure of the change of matter in the organim, 4. ., of the chemeal thanfonation of it \times tisstes. An exact knowledge of
 medical man: and chemists lave long combaverd to tind a simple and acctrate methed of amiviny at this result.
Sereral methol- af teteminizg the ghantity of urea in mine have been propued. The ohdest phan convited in osaporating the urine to a certan deree of consisteace, and then foming the difientily soluble precipitate of thitrate of urea, which I have hal r. poated opportunities of exhibiting to Wh. This precipitate was edlected uyn a fitter, washed with the smallest pantity of water, drich, and weighed. Un account of the solubility of this compound, it is ohvious that this methed coald yiehl scarcely approximate resuls. imammehas the qumtity of urea retained upon the filter entirely depented upen the gatatity of water uved in washing.
Another methorl consisted in leterninias the amome of nitrogen in the chanatol urine, from which the uric acid had heen previously sepatated by the sola-hime process which 1 have explaned to you in one of the eartier lectures. Thi mothod is bwed upon the asumption, that urine, freed from uric acid, contains nu other nitrogtou* principle except men, an as-muption wheh, athough true in most cones, is known to k e incorect in some. Mrreover, the nccevity of performing a comptete nitrogen-determimation which, although suthichenty casy in the hands of the chemest, is scareely simple sut expeolition songh for the physiological nom metical observer, by prevent this methad from being generally adoped.
Two other surgestions tur the determination of urea are fomuled upon sme of the chages of area to which l have almary alladed. ? have pointed ont to you, that, under ecrtain circumstaces, urea behaves like cyanatn of amonia. This is the case, for instance, when urea is treatel with water under pressume; it thes assimilates water, and splits into carbonic acid and ammonia. Of this reaction Bunsen has orited himeelf. He exposes urine nised with an ammoniacal solution of chloride of barim, in an hermetically sealed ghass tube, to a temperature of from 450° to 600° Fahr. (250° to 200° C.), when the urea is decompned, and furnishes a qumity of carbonate of bafta wheh is equivalent to the amount of urea.
Millon, lastly, makes use of the change which uret undergoes when acted upon by nitrous acid, and winich I have illustrated to you experimentaly. The carbonie acid evolved in this reaction is collected in an ordimary potash stpmatus; from the increase in weight the amome of urea is calculated Fithout diliculty.
Both these methods which, in the hands of shilfal experimenters, yield terfectly accurate results, have, nevertheless, been almost exciusively emPhyed by their inventors; the succestul performance of these analyes repuiting no small amont of experimental dexterity, and inyolying, moreorer, a considcaible expenditure of time and labour.
Pressed by his physiological friends, lrofessor liebig las devoted much the and work to the clabomtion of an accumte, and, at the same time, casy ond expeditious process. His habours have boen perfectly successful.
The new method is founded uyon the fact of nitrate of urea forming, with protoxide of mereury, a white compound which is perfectly insoluble in neutral solutions. This compound is not afiected by carbonate of soda, white salts of mercury yield with this re-agent a precipitate of yellow protoxile of mercury. The process, therefore, ecrists in adding to the urea solution which is to be analyzed a standard soluts . 1 or nitrate of mercury, untila drop of the liquid in which the white precipitate is suspended, when
mixed upon a watch-glass with carbomate of soda, canibits a yellow colour, which shows that an excess of meecury-solutiva has been adidel. The performance of the experiment inseives several pecantions, wheh will become
 and the properties of the ners urea-compotad $\mathrm{C}_{2} H_{2} \mathrm{X}_{2} \mathrm{O}_{2}$ being seprescated by Ur, this compoumi conatins-
$\mathrm{Uir}, \mathrm{NOS}+\underset{\mathrm{MgO}}{\mathrm{M}}$,
and is formed according to the followitg equation:-

In the formation of one equivalent of the cungonat, nut leos than three equivalents of nitric acid are set free, retainits an sulution a considende quantity of the precipitate, which is rather treely suluble in nitric acid. This nitric acid ins to be neutalized. Gemenally; this is done ly barytawater, which is adied in the commencment ut the upeation, and thus seatrates, moreover, the phosphates and the sulphurie acid presem in the urine.

Another difficulty presents itself in tie solubility of the urea-componad in liquids containing common salt. Thas solubility depends upon the conversion of the oxide of mercusy into the chlonde which yroduces 1:0 insuluble compound with urea. You ubserve, convoive sublinate has nut the slightest effect upon a solution of urea. Now, since nitrate of mercury is conperted into chloride by the action of common salt, which is itself cunverted into nitrate of soda,
$-\mathrm{HgO} \mathrm{NO}_{\mathrm{J}}+\mathrm{NaCl}=\mathrm{HgCl}+\mathrm{NaO}, \mathrm{NO}$
it is cuident, that this re-agent rill proance a precipitate in a subtivn of urea containing common salt, only after the whole of the common sait is converted into nituate of soda. Low, since urine contains almost alwas small quantitics of common salt, from i to $1 \frac{1}{2}$ per cent) it is aceesary to make an allowance for this deporment; fur, unless we did so, the anout of urea found would be too high. In accurate experimentis, liebig obviates this error by determining the ansomt of chloride of souitan by means of a second standard sointion of ancoury which is mhal to the urin, until a permanent precipitaio, wheates that all the chande is comerted into nitrate of soda. The quansty of chlonne in the urine being thus letermined, the chlorine is now remuved fom at fresh portiun by means of a solution of nitrate of silver hikewise gembated. The urme thas fred fomi chitine may now be directly tested with the standard selation of meremy.

I refrain rom entering nato farther details regardimg this beatiful pucess, Which farnithes the amount buth of common salt and of urea in urme with great accuracy aud surprising luphlity : my object being to delincate to you the principle of the methed, nut fo teach you the actual perfomance of the experiment, for which the practice of the hathatory is indispensable. Tha manipulations and the preparations of the shandand sohtions of mercusy are minutely described by Liebig in his papur on this sadiject, which has been communicated to the Cltenical Society of Lendon*.-Medecal Tines and Gazclle.

> * Quartenly Journal or the Chemical Socecty, Voi. V'r.
 and Spinal Cord of Jhen. liy Mubolir Vinchow. (Scpt. i, 1S.3.) Virchow's Archir. IB. VI., II. 1, p. 193.
It is well known that Carl Schmilt * was the first to diseover in the Ascidians the presence of a principie previously known to exist only in plants, viz. cellulose, and to show that it was at ennctitueat of the amimal
 have estahished this important fact. The uceurence of thas substance, howerer, was limited to a comparatively very luff class of the Invertebrata,

[^1]and the further discovery mate by Gottieb, in Buglene rirdis, viz. that this infusoriura contains paramylon, is body izonerous with starch, also had referene obiy to a creature in the lowest class of the nnimal kingdom.* Nothing of the him, on the other-hand, has been known as eaisting in the verthbite, and it is only sinee the discovery by C. Bemard-that the liver probuce surcu-that we have had reason to suppose that substances belongiar io tie amphan serics may also have a representative.

From hintolgical considerations, it had strtek me that the umbilicel cord of man peesented a great resemblane in structure to the cellulose tissue of the iscilians (Wurath. Verh. 1851. BL. H., p. 161, note), and 1 was only the nove confumet in this notion ly Scacht's observations, so that I have since directed my revarches with care to the subject. But in many instances this was in vain. ats, for inetmes. in the out of amphioia and fishes, the remaskeln vitelline phes of which I deseribed (Zeitsch. f. wiss. Zoologie. 1s53. Ba. IV., p. $\because \mathrm{I} 0$).

I was more fortunate when, a short time since, I directed my attention to the so-termed corpura amplacea of the brain, upon the precise nature of which, contrasted with tie other kind of amytod hodies in man, I had not previously arrived at any accumte notion. (Wurzb. Verh. 185̄, Bl. II., p. 51.) It was now apment that these bodies assumed a pale-blue tinge upon the apphication of istine, sud upon the subsequent aldition of sulphuric acid. presented tae beantiful viotet colour which is koma as belonging to cellu! se; and which in the present instance appears the bore intense from the contrast with the surrouading yellow or brown nitrogenous substance.

1 have repeated this experimeat so often, and with so many precautions, that I regas the reash os quite certain. Not only have I institutal comparative researcies in tifferent hman bodies, and in the most rarions becalities, hut 1 have also noticed the action of the reagentsunder all possible conditions The experimet is best mate in the mode adopted by Mulder asm innting. uith regard to veqetable cellulose (ride Moleschott "Physiologie tine Stofined cels," p. 103), viz., hy causing the action of dinted sulphurie acid to fohow that of a watery solution of iodine the joline solution sionld not he too strong, for the obervation may then be impeded by its precipitation, and, on the other hawl, care must be taken that the iodine exerts due action upon the subatance. Owing to the volatility of the iolime, amb its greaw aninity for anmal substances, its action is nstally very une"pa!, sy that the border of the object and wot the centre may be penetrated by it, or perhaps, of spots in clase contiguity, one with contain iodine and the other not. It is consequently always mivisaibe to rencat the application of the iodme several times, hat to avoil the abdition of too much. "You the subsequent addition of sulphuric seid, ir the setion have been too powerfal, the result is a perfectly npaque, red-brown colour. The most certain vesults are ohtained if the sutphuric ncid be allowed ta act very slomly. In fact, Thave procured tie mont beatiful objects mallowing epreparation covered with the ghass to renain undisturbed with a drop of sulpharie acill in contact with the edge of the covering-glass for 1% to 24 honrs. linder flese circumstances, the most bemtiful hight volet-hne was oceasionally presentel. Lastly, I would just intinate that accidental inixtures of starch ox cellulese my readily happen. seming that very light fibres or minute particles from the cloths with which the object and coveringgasees have becn ciemed, may very easily be left upon them, which would attervards cxhibit the same reaction as the above.

Sivery precaution having heen taket, the following resuits will be vitained:-

1. The corpora amylace (Purkinge) are chmacally dificent from the cou-
 which they lave hitherto usually been confommed. The organic matrix of the braim-sand gresules is obvionsly nitrogenous: it is coloured of at aleep

[^2]yellor, by iodine and sulphuric acid. This is true not only of the sabulous matter in the pincal gland and chorod plesuses, but also of that of the Patchionian gramulations and of the dura mater, as well as of the dentate plates in the spinal arachoid. In all these parts I have, in general, nowhere obtained the biue reaction, except in a fer spots in the phenel gland. It woud therefore for the future, he comenient to restict the name of - corpora amylacea' to the bodies containing cellulose.
2. These bodies exish, so fir as I have at present found, only in the substance of the ependyma ventriculoren and its proloarations In this I inclade especinlly the lining of the cerebral venteicles and the trampareat substance in the spinal cord desc:ibed by Köliker as the sabstomtat grista centratis (Mikrosk. Anat. MU. II.1, p. 116). With respect to the cerchat ventricles, I have already repeatedy stated that I hind the:n to be lined throughout with a membrane belonging to the comnective tissue class, upon which rests an epithelium. This membrane contains very fine cellahar elements, and a matrix, sometimes of more dense, sometimes of softer consistence, and is continued on the internal aspeet vethont cuy speciad boundur:! betecen the nervous clements. In the deeper layers of this membrane, and in immediate contiguity with the nerve fibres, the cellulose corpuseles are found most abundantly, and they are also especially mumerous where the opendyma is very thick. They are conserquently very abundant on the foraix, septum luciluma, and in the stria cornea in the fourth ventricle. In the spinal cord, the substance corresponding to the ependyma lies in the midule, in the grey substance, in the situation where the spinal canal exists in the fuetns. It there forms evidently a rudiment of the obliterated camal, such as it presented in the obliteration of the posterior comu of the hateral ventricle, which is so frequently met with. In a transresse section of the corl, it is easily recognised as a gèatinous, somewhat resistant substanee, which may be readily isolnted. Ifseells are mach larger and more periect than those of the cerebral ependyma. This cyendymat spinale forms a continuous gelatinous filament, wheds extends to the fitum terminole, and might therefore, perhaps, le most suitably descrived as the central chendemal fitarmeni. In it the cellulose gramiles are also foum, though, is it would seem, more abundantly in the upper than in the lower portion. In other situations I have songht for these bodies in vain, and in particular I have been unable to fud them in the external cortical layer of the cerchrum, or anywhere in the interior of the cerebsal substance.
F. Shee, from the experiment of Cl. Bernard, who proluced saccharine usiae ly wounding the fioor of the fourth ventricle in the mblit, there apparedio be reason to conclude that the existence of cellulose was connected with tint phenomenon. I sought for it also in mblits, but in win. I foumd in' hat situation both in the fourth, and the thind, and in the laterat ventricles; a very beauiful tessellated epitholuma with very long vibratile cilts. but ho cellulase.

1. The cellulose granules, thercfore, appear to be everywhere connected with the existenee of the quemelpha-subtanec of a certain thichness, aml
 sirely minate size, so that the nuelei of the ependyma searedy comespond with them. Can they be formed out of the later*" The hager they are the more distinctly laminated do they appes: Hut thece is never ony indi: cation in them of a nitrogenous admixture, recognizabie by a yellow colour. Fhe centre only is usually of a darker bhe, and consequenty perhaps mone dense than the cortical lamina.
2. As to an imiroduction of these iodics from without, stect a supposition io the less probable became a simiko sulistance is sowitere else known. We are arquthatel with a series of wricties of vegetable cellulose, bat the substace thow inquestion appears a he distinguished above all ly its slight power of yesistance to reageate, secine that concentritwh acidz ated alkalics attack it more powerfuly than is usually the ease will the celhuose of plants.
3. In the child I have na yet sought for it in vain; so that, like the "Lomin-sand," it appears to arise in a later stage of develomment, and probably may have a certain gathological import.

Since writing the above, l'rofessor Virchow has repeated and confirmed his observations, and ascertained in addition that similar bodies also ocerer in the higher nerves of sense. He found them most abunduntly in the soft gray interstitial substance oi the olfactory nerve, less frequently in the acoustic, although the observations or Meissner (Zeitsch. f. rat. Med., N. F., Bd. III., pp. $3 \overline{5} 5,868$), wouk indicate a proportionately great disposition to their formation in hat situation. Hokitansky appears to have seen them in the optic nerve, and from an oral commmication the author has learned that heltiker has found them in the retina.

Mavies already stated that the ependimat is continued without special limitation among the nerrous elements, the auther goes on to observe that it is now apparcnt that there is a continnous extension of the same substance in the interior of the higher nerves of sense. From a series of pathological observations, he conclutes that a soft matrix refurible mainly to connectivetissue substance, everywhere pervades and comects the nervons clements in the centres, and that the ependyma is only a free superficial expansion of it over the nerreus elements. The opinion, that the epithelimm of the cercbral ventricles rests immediately upon the nervons elements, appears to have arisen from a coufusion of this interstital substance with the trac nervesubstance.
The isolation of the corpora cmylacea in lasger quantity, in order that they shoukd be subjected to chemical analysis, the author has not yet succeeded in effecting. Nevertheless it seems impossible to entertain any doubt as to their cellulose mature. No other sabstance is known which afforls the same reaction; and although the ather has examined the most various animal tisues, and has aecmately investigated, particelang, the concentric corpuscles occurring elsewhere, as in the thymus in tumours, $\delta \mathrm{de}$., nothing of the same kinh has presented itself.-($S_{p h 2} 2.0,1853$).

An alstract of the above observations also appears in the 'Comptes Rendus,' for the 26 th Squt., 185:, p. 192, but containing nothing additional.
lieng desirous of verifying the ahove observations, I have examined the brains of one or two indivihuils; and, as my results differ in some respects from those or Professor Virchow, 1 will lere briedy state them, leaving a more detailed account of the matter to a future opportunity, my observafions at present haring been ton sematy to justify the expression of any settled opinion. The first caso I examined was that of a young man who diel of the consecutive fever of cholera, after an iliress of five or six days, dering the whole of nhich period the renal secretion was completely suppressed. What I noticed in this case was:-

1. The enormous abundance or the corpora amylacere in certain situations, as the rpendyma ventroculorem, paticularly on the septum luciduan, and more epecially also on the choroid plexuses, upon rently semping the surface of which a thid wasobtained containing these hodies in a most surprising quantity.
2. That they existed in immense abmulanee in the olfactory bulbs and in the supericial parts of the brain, both cortical and medulary, contiguous to the tract of the olfactory nerves. lint scarcely any part of the rerebrum and cerdelhnm conh be examined, at all creats towards the surface, without meeting with some or mores aul they occured abundantly in the very midde of the ccredelhan. Their distribation, however, was very irreguhar, inasmuch as they abounded in some spots nud were nearly, if not altogether. wanting in others. I costh lind none in the corpora striata, where they sienel to be replaced by 'brain-sand,' of which more will be said afterwards.
3. The cerebral substance in imandinte contigniay with the corpora cmylacia appeared quite natural.
4. Whe corpascles trere starch and not cellulose, when possesed all the structural, chemical and optical moperties of starch, as it oscurs in phants, ts the folloming for details will show:-
Ther were of all sizes, fyom less than it blood-dise up to 1 -ib0th inch or more-penerally more or less ovale, but many irtegular in outline, and spparently tattened, as all the larger kinds of starch I beheve are. Many of the larger ones showed the appearance which, in starch, has been erromously descrived as indicative of a laminated structure; whilst in others
this appearance under any mode of illumination certainly did not exist. The point that wonld correspond with the so-called nuclens of a starchgrain was, unlike that of most kinds of starch, centan, and consequently the hminated marking was concentric to the grain, which is rarely the case in the starch of phants. This apparent lamimation depends, as I believe, upon the same cincumstances as in other starch (vide Trans. Micr. Soc., Quart. Journ, vol. i., \mathfrak{y}. 68), that is to say, upon the corrugation of a thin sacculus. Ihat this was the case I satisfied myself by the use of sulphuric acid and of Sclultz' solution (chloride of zine and iodine), in the mode described in my paper abore quoted. Iby these means, but more readily and conveniently by far by the latter, the corpora amylacea could be seen to unfold into cmpty, flaceid, thin-wolled, bhe saceuli, six to eight times larger than the originalgrain. Their structure thus appearing to be identical vith that of starch, the identity of their chemical composition was rendered evident with equal facility. Simple watery solution of iodine coloared them deep bluc. which u'timately became perfectly black and opaque. They were soluble after swelling and expanding in strong suhphuric acid, and by heat; and, morcover, they acted upon phiarised light in the same way as starch does. Some of the smaller grains exhibited a distinct and sharplydefined black cross, of whin the lines crossed at angles of 45° in the middie of the grain, but in the majority there was only it single dark line in the long diameter of the grain, and which seemed always to correspond rith an irregular fissure or hilus, as it night be termed, in the same direction, which was presented in a great many of the grains, and semed to be the indication of a partial inolling of them, as in the starch of the horsechestnut. This lougitudinal fissure was not unfrequently crossed by a shorter one at riyht ingles. When the covering-glass was closely pressed, the grains were easily crushed, breaking-up in radiating cracks aronud the margin; and sometimes, when thus compressed, a concentric annulation would become evident, which was before inapparent.

In the corpore striata, as I have mentioned niove, I could find few or no starch-grains, but here an appearance presented itsul! which seems to be comnected with their formation. Many particles of sabulous matter or crystalline coppuscles of the ordinary "brain-sand," were met with, all of which, instead of lying like the starch-grains, in the midst of unaltered nerve-substance, were lodged in irregular masses of what appeared a fibrinons or immature comnctive tissue-substance ; and, in this instance, upon the addition of iodine, each mase of erystals was fomd to be immediately surrounded by an irregular thickness of a transparent matter, which was turned not ibuc, but a light purpish pind by that reagent-a substance, in fact, closely resemibling in that respect the very carly condition of the cellulose wall ; for instance, in Itydrodicyyon,-an immature form, as it may be termed, of cellulose.

In a second case, that of an old man-dead of chronic dysentery, and who died comatose-I found the ventricles distended with about three ounces of ciear fluid. The surface of the genayme throughout all the contimous cavities wos studded like shagreen with minute trimsparent gramulations, which, on microscopic examiuation, apheared finely gramular and homogeneous, or sometimes faintly fibrillited. In this case there were, I thinh, no corpora amylacea in the ependyna (at least I fonmd none), nor in the cer tral substance of the brain: n fer were met with in the peripheral portions, especially on the summits of the hemispheres, and still more in the mutdeveloped lacehionian granulations, and there commingled with other con. centrically-laninated bodies, which formed botryoidal thasses imbedded in a stroma of immature connective tissue: these bodies, which might, to distinguish them, be terand the 'chalecdonic corpuscles,' were renderd yellow by iodine. In this case also I did not notice the guasi cellulost deposit around the particles of 'brain-sand,' but in several instauces I sax minate amylaceous particles (coloured blue by iodine) containel in cells which they only partinly occupied.-Geo. Busk.

[^3]THE CHOLERA.
[Some months since ve cudervourcd to call the attention of the Govermment to the probable adivent of the Asiatic Cholera, vhich may be reasonably expected to shew itself among the inhabitants of this Continent during the ensuing stamer; and we endeavoured to impress upon all paxties the necessity of being prepared before hand for the terrible visitation. We particularly urged the necessity for the establishment of local dispensaries and proper medical officers along cach section of the public work; and more recently we have endeavoured to slow the adrantage of the introduction of a live compelling the municipalities to open public dispensarics fur the gratuitous attendance upon the poor, in their several districts. It is clearly desirable to be prepared hefore hamd in this case; so that we sincerely hope that the Government will not let the matter go unheeded.

Besides which, we find an excellent paper in the Lover Camada Michical Chronicle from the pen of Dr. Marsden, which agrees so perfectly with our oma views of the hygienic mangement and treatment that should take effect during a cholera period, that we camot forbear inserting it among our selected matter. The suggestions are lighly prectical and excellent of their kind, and should bo followed out in all cases where it is possible; they should have effeet not only in the cities but in the ruma districts, as far as may be found practic:ble.]
Practical Romarks and Suggestions on Aviatic Cholera. By Whinhm Marsmes M.D.. Governor of the College of Plysicians and Surgoons, Lower Canada.

The possibility of this country boing again visited, during the coming geason by the democmatic seonge of the human family-asiatic cholera, has imduced me to throw together the following practical suggestions.
I shan, in the obscruations I am atout to make, avoid noy illusion to the tebateable point, the contagionsness or non-contagiousness of choleze aphysit, which is still a vexuta questio among many of the most eminent menbers of the medical profession, both in this country and abroad, to the Fary scrious detriment of pablic hygiene; but I vilh, in the recommendations Imay make, cast all the doubts inte the human bahnce of prblic safety.
My suggestions will be of an individal or private chatacter, as well as of a public and general mature. They are the results of my own observation ant expericuce, durng five distinet invasions, of active professional occupation, in the midst of sickness and death, and hare impressed me with the onviction that no case is entirely hopeless. The vulgar maxim, that "prevention is better than cure," is hardly so applicable to any other form of dizcase "that flesh is heir to," as in choleri.
There are many persons, however, and among them medical men, who, fom superficial observations, eatertain the fallacions illea that cholerit sonetines pounces upon its prey without any premonition of ay sort, and burrics away its victim in a few short hours. I teny this position, and fearlessly call for proof to the contrary. I maintain that no individual in Noust heath has ever been suddeniy attacked with the worst forms of cholera, and carried off without some prenonitory symptom. We may all of us have seen persons walking abroad one day, apparently in perfect health, whear of their having been consigned to the silent tomb on the next. 1 hare, myself, frequently heard of such cascs, but I never knew one. Ihave. on the contrary, immably foum, on diligent inquiry, that the self-tiched fictun had not been quite as well as usual, or had indulged in some unacmastomed habit, aud had been suffertng under some species of functional fruugement (most commonly "bowel complaint"), for some hours, and not mifequently for some days, previous to the invasion of the fatal disease, and this, genemily, under a false or assumed courage, the effects of fear. which Bry wished to bide from themselves, as well as from their friends. A more 4tal delusion than this camot possibly exist. I am firmly of Dr. Kirk's ginion, "that dianhwa in this conntry ohvays precedes cholera asphynxia; int this diarthona is always a curable complaint: and consequently, that this bimidable disense, -tho ways of which were mrapped in mystery, and apired ns with no feclings but gloom and despair,-may be calnly vicred The cye of philosophy ond common sense, as a malady, the secrets of
which onen to us, and the controul of which we have in our hands." Amoug the best prophylactic means in individual cases, I would suggest: regular and active bodily and mental comployment; ;ood air andexercise out of doors, daily (if possible) ; cleandiness, sobriety amd iemperance in atl things; good and wholesome food, and of the same description that the person is in the labit of using: even in the continuance of old habits, that may in themselves be evil, when the disease has ouce made its appearance amongst us; avoiding such things oniy as experience has tught to be hurtful in each individual case; warm and comfortable clothing and hedding, and regular rest; tho rigid avoidance of all quakery and quack medienes; and, carly application to some honest and diserect physician, in the event of indisposition.
Among the public or general means of action that 1 would recommend, the first is, the orginization of a board of heath, which shatl be fumished with absolute powers and ample means to cary out any phan of hygiene that may, by the exigencies of circumstances, he demanded. The board not too numerous, and to be composed of gentlenem of education, experience, and decision of character, without regard to their polities, and to consist of haymen, clergymen and physicians in about equal proportions.

Reports to be made daily to the 13oand of Ifealth. from which all orders shal! emanate, but no reports to be published until the season is closed, or cholera has disappeared, if it should come. The reports and proceedings of the Boand, however, to bo open to all perions for inspection, that may desire to see then.

The city to be divided into wards of convenient size, and cach ward to be placed under the control of a visiting physician, appointed for the purpose, who shal make a daily domiciliary visit to every house in his ward.

All patients to be prescribed forand attemded at their own residences if possible: and if not, at an hespital, of which there shall be a small one (with a dispensary attached) in each ward, or one in the centicof wo wards, if practicable.

The risiting physicion shan, in his daily domiciliary visits, enquire personally into the state of health of every member of each household in his warl; and, if there be any one sick, shall insist upon the inmediate attendance of the family physician, or my other that they may choose; or if they have no choice at all, to prescribe for them, or remove them forthwith to the hospital.
The hospital wards shall be semall, and contain from two to four beds in each, and in no case more than six, and then only for the use of convaleseents.

The influence of mental impressions upon the health, as especinaly far, is too well known to require more than a passing remark, in order to justify the vithinolding of pablished reports.

Whe object in having as small hospital in each ward is, firstly, that the patient may be at once placed under medical treatment, without the loss of valuaide time, which has frequently occasioned death; and secondly, that the public gaze may not be shocked, sad terror spread by seeing an unfortunate fellow-creature transported from one extremity of the city to another, often writhing in the agonies of death.

The advantages of attending the sick and aflicted at their owa houses are manifold, as, besides the saving of time, the patient's mind will be at ease by being surrounded by the kindly attentions of sympathising fiemds.

The plan of having small hospital wards, in cases of cholera, is not nerr, but was first introduced (I think) at Guy's Mospital, London, and was found to answer the purpose intendeáradminably; the congregating of harge numbers of patients togetlier having been found to increase infection, as well as the vizulence of the disease. The beneficial effects upon the rainds of the patients in not secing thenaselves surrounded by multitudes of their fellow-creatures writhing in agony in various stages of discase were also most apparent.

These remarks have been thrown together hastily, and 1 have to apologise for their imperfections and want of details; yet, if their effect, either directly or indirectly, be to snateh one single valuable life from the fangs of the fel destroyer, I shall consider myself armply repaid.

Quebec, $18 \overline{3} 4$.
T.S.-The suggestions of a local nature contained in the foregoing hasty remarks were designed for Quebec, but they may, with the general principles be applied to any other locality.
W. M.

[^0]: * Yide page 289 , for the reduction of the gramme into Bnglish grains

[^1]:
 t Ann. diSci. Nat.' $1 \mathrm{SNO}_{3}$ p. 198.
 t'Mull. Archive']SSI, p. $1 / 6$.

[^2]: Eo muat oonfex, is vipy surprising to us, rho nre equelly ealafiel that it is as mucha
 1/ytralictyon, 2 ratanocus, ke.

[^3]: tho" "Animal Substance amalerous to Verctable Collulose;" by h. Virchow, in whichte announces the discorery of corpuscies precenting the same reaction as the corpina ant tacea of the brain, in the MTalpighlan corpuscles of discased human splecns-in the cont tion termed "waxy spleen" (Wachsmiliz).

