## CIHM <br> Microfiche Series (Monographs)

ICMH
Collection de microfiches (monographies)

## Technical and Bibliographic Notes / Notes technique et bibliographiques

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming are checked below.


Coloured covers /
Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated /
Couverture restaurée et/ou pelliculéeCover title missing / Le titre de couverture manque
Coloured maps / Cartes géographiques en couleur


Coloured ink (i.e. other than blue or black) /
Encre de couleur (i.e. autre que bleue ou noire)


Coloured plates and/or illustrations /
Plenches et/ou illustrations en couleur


Bound with other material /
Relié avec d'autres documentsOnly edition available /
Seule édition disponible


Tight binding may cause shadows or distortion along interior margin / Le reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure.


Blank leaves edded during restorations may appear within the text. Whenever possible, these have been omitted from filming / Il se peut que certaines peges blenches ejoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.


Addifional comments/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

L'Institut a microfilmé le meilleur examplaire qu'ii lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modifications dans la méthode normale de filmage sont indiqués ci-dessous.

## Coloured pages / Pages de couleur

Pages damaged / Pages endommegées
Pages restored and/or laminated/
Pages restaurées ev/ou pelliculées
Pages discoloured, stained or foxed /
Pages décolorèes, tachetées ou piquėes
Peges detached / Pages détachées
Showthrough / Transparence
Quality of print varies/
Qualité inégale de limpression
Includes supplementary material /
Comprend du matériel supplémentaire
Pages wholly or pertielly obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image / Les pages totalement ou pertiellement obscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la mellleure image possible.

Opposing peges with varying colouration or discolourations ere filmed twice to ensure the best possible imege / Les pages s'opposant ayant des colorations vanables ou des décolorations sont filmées deux fois afin d'obtenir la meilleur image possible.


The copy filmed here hss been reproduced thenks to the generosity of:

National Library of Canada

The imeges eppeering here ore the best quellty possible considering the condition end legibility of the original copy end in keeping with the fllming contrect specifleetions.

Original copies in printed peper covers ere fllmed baginning with the front cover and ending on the last pege with e printed or illuatrated impres. sion, or the beck cover when appropriate. All other original copies ere filmed beginning on the flrst pege with e printed or lliustrated impression, end ending on the lest pege with e printed or lllustreted impression.

The lest recorded freme on eech microtiche shell contain the symbol $\rightarrow$ Imeening "CONTINUED"I, or the symbol $\nabla$ imeening "END"). whichever epplies.

Mops, piotes, cherts, otc., moy be filmed ot different reduction retios. Those soo lerge to be entirely included in one exposure are fllmed beginning in the upper left hend corner, left to right and top to bottom. es meny fremes es required. The following diegrems illustrete the mothod:

L'oxempleire fllmd fut reproduit grace ${ }^{\mathbf{d}}$ ie gêndrositd da:

Bibliothèque nationale du Canada

Les imeges sulventes ont dth reproduites evec it plus grend soin. compte tenu de le condition ot de lo nottot' de l'exempleire filmb, ot en conformith avec les conditions du contret de flimege.

Les exempleires originoux dont le couvarture on papler ast Imprimde sont filmbs an commancant per lo premier plot at en torminent soit per lo dernidre pege qul comporte une empreinte d'impression ou d'lliustretion. soit per it second plot, selon io ces. Tous les eutres exemplaires origineux sont fllmés en commencent per te premibre pege qul comporte une empreinte d'Impression ou d'llustretion ot en terminant per le dernibre pege qui comporte une telle emprainte.

Un des symboles suivents spperaltre sur to dernitre imege de cheque microfiche. selon te cas: io symbole slgnifie "A SUIVRE". it symbole $\nabla$ signifle "FiN".

Les centes, plenches, rebleoux, etc., peuvent étre filmbs des taus de reduction differents. Lorsque be document est trop grend pour dtre reproduit on un soul ellchd, il est filmt a pertir de l'engle supdrieur geuche. de yeuche droits. ot de heut en bes, on prenent le nombre d'imeges ndcessaire. Les diegremmes suivents illustrent le methode.


## MICROCOPY RESOLUTION TEST CHART

(ANSI and ISO PEST CHART No. 2)


## APPLIED IMAGE Ine

1653 East Main Streat Rocheter. New Yoek 1460

U5
(716) $482-0500$ - Phons
(718) 280 - 5989 - Fak

## A Geometrical Problem

## The Trisection of any

 Rectilinear AngleBy
Geo. Goodwin

## Contractor,

Ottawa, Canada.


OTTAWA

$$
\begin{aligned}
& 2446 i \\
& G 6 \\
& f_{x+*} l
\end{aligned}
$$

## INDEX.

Patie
Adienduin (Several methorls of Construction) ..... 40
Analysis (Observations preceding) ..... 4
Analysis (Sertion No. 1) ..... 4
Analysis and Construction (Section No. 8) ..... i)
Construction (Seetion No. 3) ..... 6
Demonstration (Section No. 4) ineluding convergent and diver- gent va'ues (meaning of defined) ..... 7
Introduction ..... 3
Similar Triangies (Section No. 5) ..... 10)
Sketehes Illustrated (Section No. 6) ..... 15" $\quad$ (Section No. 7), Lines and Points foundwithout recourse to Iypothesis orAnalysis18
" $\quad$ (Seetion No. 8), Anotler method of Con- siruetion. (This method may be found more directly conclusive than those ceeding) ..... 18

## -7troduction

Prior to the publication of any Literary or Scientific Work, it is customary for the author to give an outline of lis subject in the form of a preface.

In the present instance, the Trisection of uny rectilineal augle was first observed ly the author several years ago, when reading the following (see page 105 of the Elements if Geonetry, in reference to the subdivision of the circumference of a circle, mud which work is hereinafter more amply identified in the opening page hereof), viz: "It is ohvious that any regular polygon whatever might be inscribed "in a eirele, provided that its circumferenec could be divided into "any proposed number of er: I parts; but such division of the cir"cumference like the trisection of an angle, which indeed depends on "it, is a prohlem which has not yet been effected."

A possible solution of the prohlem was suggested by the reading of the following : "If the side of any triangie be produced, the ex"terior angle is equal to the two interior a'd opposite angles. (Sce Euclid 38-1).

It did not require much reflection $t$. discover that, if a line eould be drawn so that the interior and oppr site angles would be to each other in the ratio of two to one, the problem could be solved, hut a method by v hich a line could be so placed did nr: seem possible. Further consideration soon revealed the condit: ;s that the same result could be attained if a construction could I made by which, as in the following Analysis, the straight line is $\mathbf{P}$ would intersect the eircumference of the semi-circle in the point $V$ so that VP $=\mathbf{A} B$ the problem could be solved. However, a construction to comply with that condition, did not seem feasible. During the interval, much time has been periodically devoted by the author to the study of this problem, and with the final result as disclosed by the demonstration expounded in this treatise.

Subsequently to or ahout the year 1882, Mr. Andrew Doyle published several solutions of the Trisection problem. Some time in or about the ycar 1895, he published and proved that, if a straight line be drawn (which as before mentioned, is described in the following treatise), so that the portion of it situate between a perpendicular such as B $F^{\prime}$ and the circumference of the semi-circle would be equal to the radius, and that to place a line in such position would be equivalent to the solution. Mr. Doyle did not make such a construction to give effect to his theory, and consequently failed to solve the problem.

In justice to Mr. Doyle, it is considered proper for this note of recognition to appear in this publication.

## Trisection of Any Rectilineal Angle.

## SECTION NO. 1.

Clause No. 1.-As an explanatory note, tbe qualifying words not greater tban a rigbt angle may be used, but do not mean a limitation of the problem, because, if the given angle should be greater than a right angle the angle, could be bisected, and the half of the angle, so divided, could be trisected, and the two-thirds of the half would be equal to the one-tbird of the wbole.

In order to facilitate the solution of the several parts of this problem, it will be found convenient to divide it into sections and clauses, wbich can be referred to according to the numbers under whicb tbey appear.

Tbe geometrical authority, herein quoted, is "The Six Books of "Euclid, by John Playfair, F.R.S., Lond. and Edin. Professor of "Natural Pbilosophy, formerly of Mathematics, in the University of "Edinburgb. From the last London Edition, Enlarged. Philadelphia, "1860."

Clause No. 2.-Beiore proceeding to the consideration of this problem it may be observed, that Geometrical writers directly after tbe Enunciation of a Problem, proceed to show how the construction can be accomplished, the demonstration, as to its accuracy, following in general order.

In this case that which is designated as the first diagram is intended to show the mode of construction with the least number of lines to be drawn and the least number of Points necessary to establish tbe position and magnitude of these lines. Then afterwards will follow the main diagram, on which will appear a greater number of lines required for the purposes of demonstration, and which will herein be subsequently identified as Construction No. I.

## First Diagram.

Let the angle A B C be the given angle. Produce the line C B indefinitely to say $Z$ ( 2 post). From the point $B$, in tbe straight line $C Z$ (or C B Z) draw the perpendicular B $F^{\prime}(11-1)$, let $A B=B C$. Then place the point $\mathbf{E}$, in the line $\mathbf{C} \mathbf{Z}$, so that the line $\mathbf{B E}=\boldsymbol{z} \mathbf{A B}$, then draw the line $\mathbf{E}$ A produced indefinitely to say $\mathbf{A}^{\prime \prime \prime}$. Then from the point $H$ at the intersection of the line $\mathbf{E} A$ with the perpendicular B F ${ }^{\prime}$ and witli a radius equal to B E (or 2 A B) describe the arc intersecting the line $\mathbf{C} \mathbf{Z}$ in tbe point $\mathbf{R}$. Then draw the line $\mathbf{R} \mathbf{A}$ intersecting the perpendicular $\mathbf{B} \mathbf{F}^{\prime}$ in the point $\mathbf{T}$. Then draw the line

Clause No. 2-Continued-Section Mo. 1.
T L' parallel to $\mathbf{C} \mathbf{Z}$ intersecting $\mathbf{E A}$ (or $\mathbf{E ~ I} \mathbf{I}^{\prime} \mathbf{H A}$ ). Then from the point II with a radius equal to $I^{\prime} \mathbf{A}$ describe the are $\mathrm{A}^{\prime}$ (or make II $\mathrm{H}^{\prime}=\mathbf{A ~}^{\prime}$ ). Then the line drawn from $\mathrm{A}^{\prime}$ to R will form an angle with the line $C Z$ that will be equal to one-third ( $\frac{1}{3}$ ) of the given angle (or $\mathrm{A}^{\prime} \mathrm{R} \mathrm{C}=\frac{\mathrm{ABC} \text { ) }}{3}$.

## Analysis.

Clause No. 3.-In order to ascertain the conditions that prevail so that the interior and opposite angles may be divided in the proportion of one to two, which if aceomplished would be equivalent to the solution of the trisection problem (32-1).

## By Hypothesis.

It may be assumed that an angle, as, for example, the angle A B C, is already divided into three equal parts by the two lines, viz., BX and IB Y. Let AB=BC. Produce the straight line CB indefinitely (2 Post.) to say $Z$. From the point $\mathbf{B}$ draw $\mathbf{B} \mathbf{F}^{\prime}$ perpendicular to $C Z($ or $C B)$ produced (11-1) make B E $=2 C B$ (or 2 A B). From the point A draw AP parallel to $\mathbf{B} X$ intersecting the line $C Z$ in the point $P(31-1)$. Then $A P R=X B C(28-1)$ and $\mathbf{A B C}=\mathbf{A P C}+\mathbf{B A P ( 3 2 - 1 )}$.

From the point $B$ as a centre and with $A B$ as a radius, describe the semicircle CAD (on C B produced) intersecting AP in the point V. Then $B V=A B$ (being radius of the same scmicircle), and the angle $B A V=B V A(5-1)$ and $A B C=B A P+A P B(32-1)$ and $B V A=V B P+A P B$ and by the IIypothesis $X B C=A P B$ and $X B C=\frac{A B C}{3}$. The angle APB $=\frac{B A P}{2}$ and BAP $=B V A$ $(5-1)$ and $B V A=A P B+V B P(3 q-1)$, and as APB=$\frac{B A P}{q}$ $B V A=A P B$. Then from the point $V$ where the straight line A P intersects the semicirele draw the line VW parallel to $\mathbf{B C}$ (or $\mathrm{C} Z$ ) (31-1). Then $B V=B A$ and then $B A V=B V A(5-1)$ and VBP $=\mathrm{BVW}(27-1)$ and $B V A=2 A P B$. The angle BVA is bisected by the line $V W$ and as $C B F^{\prime}$ is a right angle, the angle V W B is also a right angle because V W is parallel to C Z (or C E) (13-1) or the angle BAP is equal to two of the parts of which the angle $A B C$ contains three.

The alternate VBP=BVW and BVA=qAPB andAVW $=A P B$ and $B V A=A P B+V B P$ and $B V A-A P B=B V A$ $-V B P$. Therefore APB=VBP and VB=VP. It will be seen that the poiut $U$ is at the intersection of the straight line A UVP (or AP) with the perpendicular $B F^{\prime}$. The two triangles $B V W$ and

Clause No. 3-Continued-Section No. 1.
UV W have two angles in the one equal to two angles in the other each to cach, and the line V W common to both, V W B ind U W V are both right angles (13-1), ind B V W $=\mathrm{UV} \mathrm{W}$ (or AV W).

Then there are two triangles having two migles in the one equal to two angles in the other and one side of the one equal to one side of the other (or common to both), then the remnining ingle of the one ( $V \mathbf{U} W=V B W$ ) is equal to the remaining angle of the other and the remaining sides of the one are equal to the remaining sides of the other (26-1). Therefore VB $=\mathcal{V} \mathbf{U}$ and $B W=U W$.

It has heen shown that $V B=V P$ and $U V=V P$. The three lines, viz., $B V, V P$ and $U V$ are equal, therefore $P V=V U$ and $\mathbf{P V}+V \mathrm{U}=2 \mathrm{~A} \mathrm{I}$. Note, it will be observed that, if a line be drawn from any other point than from the point $P$ (in the line $B E$ ) to the point $A$, the angle would be less or greater than $\begin{gathered}\mathrm{ABC} \\ 3\end{gathered}$, according as that point should be situate any place between $\mathbf{B}$ and $\mathbf{P}$, or, any
phee between $\mathbf{P}$ and $\mathbf{E}$.

## SFCCTION NO. 2.

From the foregoing Analysis the following Theorem is derived, viz.:

If one of the sides of any given rectilineal mugle (not greater than a right angle) be produced, indefinitely, and from the point where the two sides forming the given angle intersect each other a line be drawn perpendicular to the side produced, and from that point as a centre a semicircle be described, on the side produced, and if the straight line drawn from the point where the other side of the given angle intersects the cireumference (of the semicircle) to a point in the side, so produced, so that the straight line so drawn will be divided by the perpendicular, so that the portion of it that lies, or is situate, between its intersection with the perpendicular and the point where it intersects the side produced will he equal to the diameter (or twice the radius), the angle formed by that linc so drawn and the side so produced will be equal to one-third of the given angle and the line so drawn is constant with regard to any ringle. The demonstration, in relation thereto, given in the following sections will show that the straight line A P and lines parallel to $\mathbf{A} P$ can be so placed independently and without the assumption as set forth by the Hypothesis in Section No. 1.

SECTION NO. 3.
Construction No. 1.
Clause No. 1.-The same diagram may be used as in Section No. 1. From the point $E$ with a radius equal to the diameter (or 2 A B) describe the are B G (indefinitely). From the point H at the

Clause No. 1 -Continued-Section No. 3.
intersection of the line $\mathbf{A} \mathbf{E}$ with the perpendicular $\mathbf{I S}^{\prime \prime}$ draw the line II L parallel to $\mathbf{B E} \mathbf{E}$ or $\mathbf{C} \mathbf{Z}(31-1)$ intersecting the are $\mathbf{B}$ ( $\mathbf{( x}$ in the point L. From the point II and with a radias equal to the diameter of the semicircle (or 2,13 ) deseribe, the (smatl) are at R (in the line C Z) then draw the line I R intersecting the perpendicular IS $\mathbf{F}^{\prime \prime}$ in the point ' $I$. Throngh the point $A$ draw $A$. $M$ parallel to $C Z$ (or
 line I. J paralled to $\boldsymbol{A} \mathrm{E}$ intersectugy the line $\boldsymbol{I}$ M in I (and prodnced borilo ways towards $A$ and $E$ ) and intersecting the line ' $I$ ' $\mathrm{l}_{1}$ in the point $L^{\prime \prime}$, Produce $L$. I to $K$. so that d $K$ will be equal to $L, L^{\prime \prime}$. und the line drawn from $K$ to $E$ will form an angle with the line $\bar{B} E$. (or C Z) that will be equal to one-third ( t ) of the given angle or $A 13 \mathrm{C}$

## SECTION NO. 4.

## Dfmonstrition.

Clause No. I.- By Hypothesis the straight line I U P forms with $C Z$ (or C B E ) an angle $=\begin{gathered}\mathrm{A} \\ 3\end{gathered}$, and, for the sake of convenience, in reference to the reasoning, the line $I P$ or any line parallel to it or $3 \mathbf{X}$ may be referred to or called a trisecting line.

Clause No. 2.--The portion of the line A U P that is situate between the perpendicular $B F^{\prime}$ and the point $P$ hy Ilypothesis is UP $P^{\prime}=13 E(012 A B)$. The angle II BE $=U B P$ (hoth heing right angles) the side $\mathrm{U} P$ is greater than the side $B \mathrm{P}(19-1)$ and $\mathrm{U} P=$ B E. Therefore IS E is greater than B P and II E is greater than B E (18-1). IJ E is inchuded in and is a portion of the line $\mathbf{A}$ II E and UP is inchuded in and is a portion of the straght line $A \mathrm{UP}$. The angle: $A R I 3$ is greater than the angle $A I^{\prime}[3$ and the angle $B A P$ is greater than the angle $B A R$ and the angle $I^{\prime}$; $A \mathrm{E}$ is greaier than the angle $B A P$ and $A E$ intersects $B F^{\prime}$ ini the point II at a greater distance from $B$ than A Pintersects $B F^{\prime}$ in the point $U$. Therefore B H is greater than I U and B U is greater than B ' I and the angle APB is greater than the angle $\mathbf{A} \mathrm{E} \mathbf{B}$.

The following is submitted as explanatory of the undermentioned terms used herein, vi\%:-divergent value, eonvergent value, horizontal convergent value, and vertical value. Wheu certain lines of unegual length are drawn from a point, not situate in the line called the trisecting line. so as to intersect the trisecting line and from that same point if another line be drawn at a different angle so as to intersect the trisecting line in some other point , such lines, while diflerent in length, arr snid to be of çual value, as, for eximple, viz:-The line $E A$ converges towards the trisecting line and interseets $P^{\prime} \boldsymbol{A}$ in the point $\boldsymbol{A}$

Clause No. 2-Continued-Section No. 4.
and the line $\mathbf{E} \mathbf{P}$ converges from $\mathbf{E}$ to $\mathbf{P}$, so that those two lines while different in length are said to be of equal value. That is to say, the convergent value of $\mathbf{E} \mathbf{A}$ is said to be equal to the eonvergent horizontal value of $E P$. Then the divergent value of $A \mathrm{I}$ is said to be equal to convergent horizontal value of $\mathbf{R} \mathbf{P}$.

The meaning of the terms may le further explained, viz:-The term divergent means a line drawn from any point sitnate in the trisecting line to any point that is not situate in that line.

The term convergent means a line drawn from any point not situate in the triseeting line to any point that is situate in that line.

The term horizontal means the linc $\mathbf{C Z}$ or the distance betwsen any two points situate in $C Z$ or any line parallel to it.

The term vertieal means the line $13 F^{\prime}$ or the distance jetween any two points situate in $B F^{\prime \prime}$ or any line parallel $t_{1}$ it, or any line drawn at right angles to $\mathbf{C} \mathbf{Z}$, or drawn at right angles to any line parallel to C Z.
nhe following may be used as illustrative of the foregoing explanations. The line $E$ A converges towards the trisecting line $A P$ and the same line $A E$ diverges from $A P$ and $E P$ converges from $E$ to $P$, so that the use of the term convergent or divergent is determined by whether the line is supposed to be drawn from $E$ to $A$ or from $A$ to $E$. The same may be said as to whether the line is supposed to be drawn from $R$ to $A$ or from $A$ to $R$. The divergent value of $\mathbf{A} \mathbf{R}$ is equal to the convergent horizontal value of $R \mathbf{P}$ or the divergent horizontal value of $\mathbf{P} \mathbf{R}$ is equal to convergent value $R A$. Also the convergent value of II $A$ is equal to the horizontal convergent value of $H \mathrm{U}^{\prime}$, and the horizontal value of $H \mathrm{U}^{\prime}$ is equal to the vertical convergent value of II $\mathbf{U}$, and the divergent value of $\mathbf{A}$ II is equal to the divergent vertical value of $\mathbf{U}$ II.

Clause No. 3.-The eonvergent value between the line A II and the trisecting line AUP measured on the perpendicular $B F^{\prime}$ is H U and when measured on the horizontal L H produeed to $\mathrm{U}^{\prime}$ is equivalent to the eonvergent horizontal value acerued between the intersection of $A P^{\prime}$ with the horizontal straight line $L / H U^{\prime}$ and having a horizontal convergent value of $\mathrm{HI}^{\prime}$, so that the horizontal value of $\mathrm{H}^{\prime}$ is equal to the convergent value of $\mathrm{H} \mathbf{A}$ and the triangle H U U' may be considered as a right angle triangle composed of a portion of the different lines as per sketch No. 1. The lines forming this triangle are viz., If $\mathrm{U}^{\prime}$, included in and forming a part of the horizontal straight line LIH U', the line II II. incluted in and forming a part of the perpenticular $\mathbf{B} F^{\prime}$, and the line $U^{\prime} U$, ineluded in and forining a part of the trisecting line $A P\left(o r A U^{\prime} U P\right)$.

Chues No. 8-Continued-section Mo. 4.
Observe II T is greater than II U, therefore the portion of AP situate between II $L$ and $T L^{\prime}$ ' is greater than $U^{\prime} U$. It may be mentioned the line A II converges towards or diverges from the triseeting line $\mathbf{A} \mathbf{P}$ according as that line is drawn from $\mathbf{A}$ to $I I$ or from II to A .

Clause No. 4.-There is, so fat considered, no method (exelusive of the Ilypothesis) by which the length of the lines II (" ${ }^{\prime}$ R P can le measured or shown horizontally or how either of them can be ineasured separately. However, it has been shown that a line drawn from $L$ to $J$ is cyual and parallel to II $A$, and that, as $A M=L J$, the convergent value of II $\mathbf{A}$ is equal to the convergent horizontal value of II $\mathrm{U}^{\prime}$. Sec Clause No. 3. Therefore the convergent value of $\mathrm{L} J$ is equal to the horizontal value of $\mathrm{HI}^{\prime} \mathrm{U}^{\prime}$ and by the drawing of the line L J the distance or line equivalent to II $\mathbf{U}^{\prime}$ has beell eliminated and the line L . $\mathbf{J}$ has converged from L to $\mathbf{J}$. so that the distance from $\mathbf{J}$ to the point where the trisecting line drawn from $\mathbf{E}$ would intersect L J produced would be equivalent to the horizontal value of line $R P$. The (small) arc at $R$ has been drawn from the point II with a radius equal to the diameter (or 2 AB ). The are BG has been drawn from the point $\mathbf{E}$ with a radius equal to the diameter, and R $H$ is parallel to $E L$ and $R I I=E L$ and $A J=R E$ and $R E=\mathbf{E} H$. It will be seen that if the line $J \mathbf{I}$, be produced it will intersect $\mathbf{B} \mathbf{E}$ produced in the point $Z$ because $J \mathbf{L}$ being parallel to A E the three lines, viz., A J and II $L$ and $E Z$, are equal to each other, also 'jecause $H R$ is parallel to $E L$ (and are between the parallel lines $H L$ and CZ), the line RE $=11 \mathrm{~L}(33-1)$. Thercfore the four lines, viz., $\mathbf{R E}=\mathbf{H L}=\mathbf{E} 7$. $=\mathbf{A J}$ are equal to each other (sec "Axiom No. 1, Book 1),"things which are equal to the same thing are "equal to one another," $A R$ is parallel to $\mathbf{E} J$ and $\mathbf{A R}=\mathbf{E} \mathbf{J}\left(33^{-1}\right)$.

It has been shown that $L \mathbf{J}$ has converged towards the line drawn from $\mathbf{E}$ parallel to $\mathbf{A P}$ so as to eliminate $\mathbf{H} \mathbf{U}^{\prime}$ or the equivalent of II A, so that the convergent value of HA is equal to the horizontal value of II U '. The horizontal difference measured along $\mathrm{L} H$ from $\mathbf{L}$ towards $\mathbf{H}$, or, in other words, the difference between the line $\mathbf{E} \mathbf{L}$ and the line drawn from $\mathbf{E}$ parallel to $\mathbf{P A}$ and intersecting the line L II, would be equal to $\mathbf{U}^{\prime} \mathbf{H}+\mathbf{R} \mathbf{P}$ but $\mathbf{R} \mathbf{P}=\mathbf{J} \mathbf{J}^{\prime}$. Therefore the line $\mathbf{L} \mathbf{J}$ (or $Z^{L} \mathbf{L} \mathbf{J}$ ) requires to be produced from $\mathbf{J}$ to sueh a distance so that it will intersect $\mathbf{E} \mathbf{J}^{\prime}$ produced so as to be the horizontal equivalent of $\mathbf{J} \mathbf{J}^{\prime}$ (or $\mathbf{R P}$ ), and the line drawn from $\mathbf{E}$ parallel to $P$ A will intersect the line $L \mathbf{H}$ at a horizontal distance from the point $\mathbf{L}=\mathbf{U}^{\prime} \mathbf{H}+\mathbf{J} \mathbf{J}^{\prime}$.

## SECTION NO. 8.

Clause No. 1.-It is nnw to le determuned to what distanes the straight line Z L J shall be prorluced so that it will interseet the straight line drawn from the proint $E$ parallel to the line $\mathbf{P} \mathbf{A}$. It may le mentioned the line L . J is included in and is a portion of the line Z I. J and coincides therewith.

The lines II $I$, nnd ' $I L^{\prime}$ 'also the lines $A M$ and $X^{\prime} \mathbf{I}^{\prime}$ are by construction parallel to $B E$ (or $C Z$ ) and are therefore parallel to eachother ( $30-1$ ). The lines $\mathbf{A} \mathbf{M}$ and $\mathbf{N}^{\prime} \mathrm{II}^{\prime}$ are (by enustructioni the same distance from each other ns are the lines II L, and 'I I!'.

Clause No. 2.-The, so called, intervening line marked U U" is situate between the lines II La and 'I' L', and the other, so culled, intervening line mnrked $O \mathrm{~N}$ is situate letween the lines A M nnd $\mathrm{A}^{\prime} \mathrm{M}^{\prime}$. Both of these, so called, intervening lines are parallel to the lines between which they are situnte, and by Ilypothesis the said intervening line $\mathrm{U}^{\mathbf{U}} \mathrm{U}^{\text {n }}$ is situate at a greater distance from II I, than it is from ' 1 I' and intervening line 0 N is situate at a grenter distance from $A$ M than it is from $\Lambda^{\prime} \mathbf{N}^{\prime}$. The intervening line $U U^{\prime \prime}$ sn near'y coineides with 'T I'́and the intervening line () N so nearly coineides with the line $\mathbf{A}^{\prime} \mathbf{N}^{\prime}$ that it would le difficuic (partienlarly if $n$ sinnller angle had lreen given) to observe any differenee in posstion between these, so called, intervening lines and the lines with whieh they so nearly coincide. The two sketehes inarked Sketcu No. 1 and Skıтси! No. 2 are marked on the mnin diagran and nre necessarily drawn in nn exaggernted fnrm and are not uceording to any seale. but are for purposes of illustration th enable the reader to follow without diffienlty.

Clause No. 3.-Prodnce the straight line ZL.I indetinitely intersecting the line $A^{\prime} \mathbf{M}^{\prime}$ in the point $K_{\text {, draw }}$ the straight line $\mathrm{K} \mathrm{J}^{n} \mathrm{~B}^{\prime}$ parallel to AB(31-1) intersecting BZ (0: C'B Z $)$ in the point $B^{\prime}$ '. Then the angle $K B^{\prime} Z=A B E$ and the angle $B^{\prime} Z K=$ IBEA and $Z K B^{\prime}=E A B, K B^{\prime}$ is parallel to $A B$ nnd $A E$ is parallel to KZ and the line $\mathrm{B} Z$ (or the struight line $\mathrm{C} B \mathrm{Z}$ ) being conmon to bnth triangles. therefore the triangle $\mathrm{K}^{\prime} \mathrm{B}^{\prime} \mathrm{Z}$ is similar to the triangle A B E (Dif. i-6) (ser Section No. 1, Clause No. 2), ly construetion $2 A B=B E$ then $Z B^{\prime}=2 K B^{\prime}$, the line $A$ iR is parallel to $J E$ and $E I R=A J$ and $R E=E P+P R$, and if a line parallel to $A P$ lse drawn from the point $E$ it will interseet $A J$ (or A M) in the point $J^{\prime}$, so that $\mathbf{R} P=J J^{\prime}$ and the line $\mathbf{R} \mathbf{E}=\mathbf{E} \mathbf{P}+\mathbf{P} \mathbf{R}$ and the line $\mathbf{A} \mathbf{J}=\mathbf{A} \mathbf{J}^{\prime}+\mathbf{J} \mathbf{J}^{\prime}$ or $R \mathbf{E}-\mathbf{R} \mathbf{P}=\mathbf{P} \mathbf{E}$ and $\mathbf{A} \mathbf{J}-\mathbf{A} \mathbf{J}^{\prime}=\mathbf{J}^{\prime} \mathbf{J}$. It will lee observed that at the point where the line $K B^{\prime}$ intersects the line $J A$ (or $A M$ ) in the point $J^{\prime \prime}$ the angle $K J^{\prime \prime} A$ is equal to the angle A B C and the angle $K \mathbf{J}^{\prime \prime} \mathbf{J}=\mathbf{A B E}$ and $\mathbf{J}^{\prime \prime} \mathbf{J K}=\mathrm{B} E \mathbf{A}$ (or $\mathrm{B}^{\prime} \mathrm{Z} K$ ). Therefore the triangle $\mathrm{K} \mathrm{J}^{\prime \prime} \mathrm{J}$ is similar to the triangle $A B E$ (or the triangle $K B^{\prime} Z$ ), the triangle $K B^{\prime} Z$ is similar to the triangle $K \mathrm{~J}^{\prime \prime} \mathrm{J}$, the latter being included in the former with tlie point K being eommon to both triangles.

Clause Fo. 3-Continued-Section No. 5.
The triangle A P B is situate within the triangle A B E with the point $A$ common to both triangles, the line $A B$ being common to both triangles and the line $\mathrm{B} P$ coinciding with and forming a part of $\mathbf{B E}$. Furthermore in the triangle $K \mathrm{~J}^{\prime \prime} \mathrm{J}$ the line $\mathbf{J}^{\prime \prime} \mathbf{J}=2 \mathbf{K} \mathbf{J}^{\prime \prime}$ (according to Section No. 2), $\mathbf{J}^{\prime \prime} \mathbf{J}$ is equal to that portion of the line drawn from $K$ (parallel to $A P$ ) that is situate between the line A M and the perpendicular $J^{\prime \prime} \mathbf{K}^{\prime}$, but it will be seen that $2 \mathrm{~K} \mathrm{~J}^{\prime \prime}$ or $\mathbf{J}^{\prime \prime} \mathbf{J}$ is less than the portion of A P that is situate between the lines H L and $\mathrm{T}^{\prime} \mathrm{L}^{\prime}$.

Again, the portion of the linc $\mathbf{E} \mathbf{J}^{\prime}$ produced (and parallel to A P) that is situate between the lines $\mathbf{A} \mathbf{M}$ and $\mathbf{A}^{\prime} \mathbf{M}^{\prime}$ which (see Section No. 2) is equal to $\mathrm{J}^{\prime \prime} \mathbf{J}$ together with the remaining portion of $\mathbf{E} \mathbf{J}^{\prime}$ produced situate between the perpendicular $\mathbf{J}^{\prime \prime} \mathbf{K}^{\prime}$ raised from $\mathbf{J}^{\prime \prime}$ and the line $A^{\prime} M^{\prime}$, so that $J^{\prime \prime} J$ is equal to that portion of $\mathbf{E} \mathbf{J}^{\prime}$ produced from $J^{\prime}$ to intersect the line $O N$, and $J^{\prime \prime} J$ is also equal to that portion of AP situatc between the lines $H L$ and $U^{\prime \prime} \mathbf{U}^{\prime \prime}$. Then the distance between the lines $\mathbf{A} \mathbf{M}$ and $\mathbf{A}^{\prime} \mathbf{M}^{\prime}$ is equal to that between $H L$ and $T L$ ', because if equals be taken from equals the remainders are equal (see Axiom 3, Book 1).

According to construction (see Section No. 1), in the triangle $A B E$ the line $B E=2 \Lambda B$ and in the triangle $K B^{\prime} Z$ (similarly constructed) the line $Z B^{\prime}=2 \mathrm{~KB}^{\prime}$. The line ZK is parallel to A E. According to Clause No. I hereof, the distance between II L and 'T $L$ ' is equal to that between the lines $A M$ and $A^{\prime} M^{\prime}$. The portion of the line $Z \mathbf{K}$ situate between $A M$ and $A^{\prime} \mathbf{M}^{\prime}$ is equal to that situate between II L and T L', and that portion of $\mathbf{E}$ A situate between $H L$ and ' $T L$ ' is also equal to that portion of $Z \mathbf{K}$ situate between $H L$ and $T L_{\text {. }}^{\prime}$. If a line be drawn from the point $\mathbf{E}$ (as ly the Hypothesis) parallel to $\mathbf{P} \mathbf{A}$ it will intersect the line $A M^{\prime}$ in the point $J^{\prime}$ and that portion of $E J^{\prime}$ produced will intersect $A^{\prime} M^{\prime}$ so that the portion of $E J^{\prime}$ produced to $A^{\prime} \mathbf{I}^{\prime}$ will be equal to that portion of PA situate between the lines II $L$ and $T L^{\prime}$ and will also be equal to that portion of $E J^{\prime}$ situate between $H \mathrm{~L}$ and T L' (see first Axionı). Furthermore, it would be impossible for the portion of $E J^{\prime}$ produced to $A^{\prime} M^{\prime}$ to be equal to that portion of AP situate between equal parallel lines equally distant from each other, if it was not parallel to A P.

Clause No. 4.-According to Section No. 2, in the triangle $K B^{\prime} Z$, if a line be drawn from the point $B^{\prime}$ at right angles to the line B Z (or C B Z ), and if a line be drawn from the point $K$ parallel to A $\mathbf{P}$ and prodnced to intersect the line 13 Z (or C B Z ), the portion of that line situate between the perpendicular raised from $B^{\prime}$ to its intersection with the line BZ (or C 13 Z ) will be equal to $\& \mathrm{~K} \mathrm{~B}^{\prime}$ $B^{\prime} Z=2 K B^{\prime}$ (see Section No. ${ }^{\text {q }}$ ). Then, if the line EA $J^{\prime}$ parallel to

## Clase No. 4-Continued-Section No. 6.

P A be produced to intersect the line $\mathbf{A}^{\prime} \mathbf{M}^{\prime}$, and from that point of intersection a line be drawn parallel to $\mathbf{A} \mathbf{B}$, it will also be parallel and equal to $K B^{\prime}$, and presumably will coincide with $K B^{\prime}$.

Clause No. 5.-Assume that the line E J $\mathbf{J}^{\prime}$ produced to intersect $\mathbf{A}^{\prime} \mathbf{M}^{\prime}$ and drawn from that point of intersection parallel to $\mathrm{KB}^{\prime}$ (or A B) intersecting the line $\mathrm{C} Z$ and at a greater distance from $Z$ than $B^{\prime}$ is from $Z$ or at a less distance from $Z$ than $B^{\prime}$ is from Z. Then by construction $\mathbf{Z} B^{\prime}=2 \mathbf{K} B^{\prime}$ and the line drawn from said point of $E J^{\prime}$ produced to $\mathrm{A}^{\prime} \mathbf{M}^{\prime}$ and drawn from such point parallel to $K B^{\prime}$ intersecting $C Z$ would be equal to $K B^{\prime}$.

Then if the line drawn from said point of interscetion of $\mathbf{E} \mathbf{J}^{\prime}$ produced to $A^{\prime} X^{\prime}$ and drawn parallel to $K B^{\prime}$ from that said point should be found to intersect $\mathbf{C} Z$ at a greater distance from $Z$ than $B^{\prime}$ is from Z , in which case a triangle so formed with the side $\mathrm{Z}^{\prime} \mathrm{B}^{\prime}$ being produced so as to be greater than $\mathbf{Z} \mathbf{B}^{\prime}$, a condition ineonsistent with th onstruction, viz., that the line $\mathrm{B}^{\prime} \mathrm{Z}=2 \mathrm{~KB}^{\prime}$, and therefore could not be similar to the triangle $K^{\prime} B^{\prime} Z$, in which ease its corresponding sides $2 \mathrm{~KB}^{\prime}=\mathbf{Z} B^{\prime}$. Neither could it be sinilar to the triangle $\AA$ BE (because $2 A B=B E$ ) whieh is similar to $K B^{\prime} Z$. Next, should the line parallel to and equal to $\mathrm{K}^{\prime}$ intersect the line $\mathbf{C Z}$ in a point at a less distance from $Z$ than $B^{\prime}$ is from $Z$, then the triangle so formed could not be similar to the triangle K B' ${ }^{\prime}$, neither could it he similar to the triangle A B E.

Clause No. 6.-If a line be drawn through the point $\mathbf{J}^{\prime}$ (in the line $\mathbf{A} \mathbf{M}$ ) parallel to $\mathbf{K} \mathbf{Z}$ it will intersect the line $\mathbf{B}^{\prime} Z$ in the pint $Z^{\prime}$, so that $\mathbf{E} \mathbf{Z}^{\prime}=\mathbf{E} \mathbf{P}$ and $Z^{\prime} \mathbf{Z}=\mathbf{J}^{\prime} \mathbf{J}$ (or $\mathbf{R} \mathbf{P}$ ). Then the line drawn from $Z^{\prime}$ parallel to $\mathbf{Z} \mathbf{K}$ intersecting $\mathbf{A} \mathbf{M}$ in the point $J^{\prime}$ will if produced intersect the line $A^{\prime} \mathbf{M}^{\prime}$ in the point indicated by $K^{\prime \prime \prime}$. Then the line $K K^{\prime \prime \prime}$ will be equal to $Z^{\prime} \mathbf{Z}$ or $\mathbf{J}^{\prime} J$.

Observe sketch No. 2 when reading clause No. 6, section No. 5. Therefore $\mathbf{J}^{\prime} \mathbf{J}=\mathbf{K} \mathbf{K}^{\prime \prime \prime}$, and the line drawn from the point $\mathbf{K}^{\prime \prime \prime}$ (in the line $A^{\prime} M^{\prime}$ ) parallel to $K B^{\prime}$ will intersect $\mathrm{C} Z$ in the point indicated by $\mathbf{B}^{\prime \prime}$, but $B^{\prime \prime}$ is a greater distance from $Z$ than $B^{\prime}$ is from $\mathbf{Z}$, but, as will be seen, $\mathbf{B}^{\prime \prime} \mathbf{Z}^{\prime}=\mathbf{B}^{\prime} \mathbf{Z}$, and the line drawn from $\mathbf{K}^{\prime \prime \prime}$ parallel to $\mathbf{A} P$ will intersect $\mathbf{C} Z$ in the point $\mathbf{E}^{\prime}$, so that $\mathbf{E}^{\prime} \mathbf{Z}^{\prime}=\mathbf{E} \mathbf{Z}$ and $E^{\prime} E=Z^{\prime} Z$. Again, if the line be drawn from the point $J$ (in the line AM) parallel to $A P$, it will intersect the line $A^{\prime} M^{\prime}$ in the point indicated by $\mathrm{K}^{\prime \prime \prime \prime}$. If a line be drawn from the point $\mathrm{K}^{\prime \prime \prime \prime}$ (in the line $A^{\prime} \mathbf{M}^{\prime}$ ) parallel to $\mathbf{P} A$ it will intersect $\mathbb{C} Z$ at the same distance from $\mathbf{E}$ that $\mathbf{P}$ is from $R$. As will be seen, it does not matter whether the line be drawn from $J$ or from $K^{\prime \prime \prime \prime}$ when drawn parallel to PA it will intersect $\mathbf{C} \mathbf{Z}$ in the same point, viz., $\mathbf{E}^{\prime \prime}$, and therefore $\mathbf{K} \mathbf{K}^{\prime \prime \prime}=\mathbf{K} \mathbf{K}^{\prime \prime \prime \prime}$ and $\mathbf{K} \mathbf{K}^{\prime \prime \prime}=\mathbf{J} \mathbf{J}^{\prime}$ and $\mathbf{J} \mathbf{J}^{\prime \prime}=\mathbf{K} \mathbf{K}^{\prime \prime \prime \prime}$, and $\mathrm{K}^{\prime \prime \prime} \mathbf{K}^{\prime \prime \prime \prime}=2 \mathrm{~J} \mathrm{~J}^{\prime}$, and if a line be drawn fromı $\mathrm{K}^{\prime \prime \prime}$ parallel to A $\mathbf{P}$ it will intersect $\mathbf{C} Z$ in the point indicated by $\mathbf{E}^{\prime}$ and $\mathbf{E}^{\prime \prime} \mathbf{E}^{\prime \prime}=2 \mathbf{E} \mathbf{E}^{\prime}$.
$1$

Clause Mo. 6-Continued-Section No. 5.
If a line be drawn from the point $K^{\prime \prime \prime \prime}$ parallel to $K Z$ it will intersect $\mathbf{C} \mathbf{Z}$ produced in the point indicated by $\mathbf{Z}^{\prime \prime}$ then $\mathbf{K}^{\prime \prime \prime \prime \prime}=$ $\mathbf{Z} Z^{\prime \prime}$ and $\mathbf{E}^{\prime} \mathbf{Z}=E \mathbf{Z}+\mathbf{J} \mathbf{J}^{\prime}$ and $\mathbf{E}^{\prime} \mathbf{E}=\mathbf{K}^{\prime \prime} \mathbf{K}$, and the line drawn from $K$ parallel to $\mathbf{A} \mathbf{P}$ intersects the line $\mathbf{C} \mathbf{Z}$ in the point $\mathbf{E}$, therefore the line $\mathbf{E} \mathbf{J}^{\prime}$ produced intersects $\mathbf{A}^{\prime} \mathbf{M}^{\prime}$ in the point $\mathbf{K}$. Consequently there is only one point where $\mathbf{Z}$ J produced can intersect the line $\mathbf{E} \mathbf{J}^{\prime}$ produced and that is the point $K$ in the line $\mathbf{A}^{\prime} \mathbf{M}^{\prime}$. Thic same theory holds good as to any point on either side of the point $\mathbf{K}$ in the line $\mathbf{A}^{\prime} \mathrm{M}^{\prime}$.

Clause No. 7.-In the casc of the triangles A B P and A BE, if the line $P A$ be produced it will intersect $A^{\prime} I^{\prime}$ in the point $A^{\prime \prime}$. the same theory holds good, viz., $A^{\prime} A^{\prime \prime}=R r$, and if a line be drawn from $R$ to $A^{\prime}$ it will be parallel to $P A$, so that the angle formed by $A^{\prime} R$ with the line $C Z$ will be equal to tiee angle $\frac{A B C}{3}$.

Clause No. 8.-Continuing, in reference to similar triangles, the first two, viz., the triangle ABE and the triangle ABP, the latter triangle heing included in the former and having a common angle in A with A B comeron to both of these iwo triangles and the line B P included in and forming a part of the line BE.

Then there are the other triangles, viz., $\mathbf{K ~ B}^{\prime} \mathbf{Z}$ and $\mathbf{K} \mathbf{B}^{\prime} \mathbf{E}$, the latter being included in the former and having a common angle in $K$ with $K B^{\prime}$ commion to both of these two triangles and the line $B^{\prime} \mathbf{E}$ included in and forming a part of the line $\mathbf{B}^{\prime} \mathbf{Z}$. The triangle $A B E$ is similar to the triangle $K B^{\prime} Z$ and the triangle $K B^{\prime} E$ is similar to the triangle A B P. By the Hypothesis the angle A P B = A B C ${ }_{3}$. The line drawn from the point $K$ parallel to $A P$ to intersect CZ will also form an angle with the line CZ equal to $\frac{\mathrm{ABC}}{3}$ or $\frac{\mathrm{K} \mathrm{B}^{\prime} \mathrm{C}}{3}$.

Then again the triangle $\mathbf{K B}^{\prime} \mathbf{Z}$ is similar to the triangle $\mathbf{K} \mathrm{J}^{\prime \prime} \mathbf{J}$, the latter heing included in the former, with the point K common to both of these triangles, the line $K J^{\prime \prime}$ being included in and forming a part of the straight line $\mathbf{K} \cdot \mathbf{J}^{\prime \prime} \mathbf{B}^{\prime}$, the line $\mathbf{K} \mathbf{J}$ bcing included in and forming a part of the straight line $K \mathbf{J} \mathbf{Z}$, and the line $\mathbf{J} \mathbf{J}^{\prime \prime}$ being parallel to $\mathbf{B}^{\prime} \mathbf{Z}$.

The line $\mathbf{Z} \mathbf{J}=\mathbf{E} \mathbf{A}$ and the line $\mathbf{Z} \mathbf{K}=\mathbf{Z} \mathbf{J}+\mathbf{J} \mathbf{K}$ and $\mathbf{J}^{\prime \prime} \mathbf{B}^{\prime}=$ AB and the whole $K \Gamma^{\prime} \quad J^{\prime \prime} \mathbf{B}^{\prime}+J^{\prime \prime} \mathbf{K}$. The line drawn from $\mathbf{K}$ parallel to A P will int. scen, in the tiangles $K$ the line $\ldots$ M in the point $J^{\prime}$. It will he and $\mathrm{K}^{\prime \prime} \mathrm{J}^{\prime \prime} \mathrm{J}^{\prime}$, the latier heing included in the foime, with the point $K$ common to both triangles and the line $\mathbf{K ~ J}^{\prime \prime}$ common to hoth of these triangles as, also is the line

Clause Fo. 8-Contiaued-Section No. 5.
$\mathbf{J}^{\prime \prime} \mathbf{J}$ which ineludes both lines, viz., $\mathbf{J}^{\prime \prime} \mathbf{J}=\mathbf{J}^{\prime \prime} \mathbf{J}^{\prime}+\mathbf{J}^{\prime} \mathbf{J}$, then the line $\mathbf{J ~ J}^{\prime \prime}=2 \mathbf{K} \mathbf{J}^{\prime \prime}$

The portion of the line $E J^{\prime}$ produeed to $\mathbf{A}^{\prime} \mathbf{I}^{\prime}$ is equal to $\mathrm{J} \mathrm{J}^{\prime \prime}$ together with the remaining portion of $\mathbf{E}^{\prime} \mathbf{J}^{\prime}$ produced to $\mathrm{I}^{\prime} \mathbf{M}^{\prime}$ that is situate between the perpendieular $J^{\prime \prime} \mathbf{K}^{\prime}$ and $t$ :. : line $\Lambda^{\prime} \mathbf{I}^{\prime}$ (sece Section No. 2).

Clause No. 9.-In order to eomply with eonditions (ol Clunse No. 1, Seetion No. 5), the line Z J requires to be produeed so us to intersect the line $E J^{\prime}$ produced, and therefore that intersection minst necessarily be at a common altitude or at an equal vertical distance from the (base) $C Z$ as is the ease in the triangles $E A B$ and $P^{P} A B$, whieh have the point A eommon to both triangles und at the common altitude or at an equal vertieal distance as the point $A$ is from the line C Z. It has been shown the line $R P$ is equal to the scvernl lines, viz... $\mathbf{J} \mathbf{J}^{\prime}-\mathbf{E} \mathbf{E}^{\prime}-\mathbf{E} \mathbf{E}^{\prime \prime}-Z^{\prime} Z-Z Z^{\prime \prime}-\mathbf{K} \mathbf{K}^{\prime \prime \prime}-\mathbf{K} \mathbf{K}^{\prime \prime \prime \prime}-\mathbf{B}^{\prime \prime} \mathbf{B}^{\prime}-\mathbf{N}^{\prime} \mathbf{\Lambda}^{\prime \prime}$ 。 It has also been shown (see Clause No. 4, Seetion No. 4) the following lines are equal to eaeh other, viz., $R E=E Z=H L=J$. It is well to observe that the position of the different points, in conneetion with the magnitude of the different lines, just mentioned as being equal to eaeh other, can be found independently of and without having reeourse to the Hypothesis (see Seetion No. 6 hereinafter). The line $A E$ is parallel to $K Z$, the line $E I=E Z$ and $E R=E P+$ $\mathbf{P R}$, the line $\mathbf{Z} \mathbf{J}=\mathbf{E} \mathbf{A}$, and the whole line $\boldsymbol{Z} \mathbf{K}=\mathbf{E} \mathbf{A}+\mathbf{J} \mathbf{K}$ as shown (in Clause No. 8 hereof eontinued), the line K J diverges from the line drawn from $K$ parallel to $\Lambda P$, so that at the intersection of these lines with the line $A M$ (or $J^{\prime \prime} J$ ) shows a distance equal to the horizontal value of $\mathbf{J} \mathbf{J}^{\prime}$ and $\mathbf{J}^{\prime \prime} \mathbf{J}=\mathbf{J}^{\prime \prime} \mathbf{J}^{\prime}+\mathbf{J}^{\prime} \mathbf{J}$. It has been shown $E A$ converges from $E$ to $A$ equal to the horizontal valne of $E$ $P$ as measured on the line $C Z$ and $E P+P R=E R$ and $E R=E$ $\mathbf{Z}$. Then the whole line $\mathbf{Z} \mathbf{K}=\mathbf{Z} \mathbf{J}+\mathbf{J} \mathbf{K}$, therefore the whole line $Z \mathrm{~K}$ will converge towards the line drawn from the point E parallel to the line $P$ A which interseets the line $Z K$ in the point $K$. That is a eondition of the proportions whieh the sides of similar triangles bear to eaeh other viz. Then as the line $\mathbf{E A}: \mathbf{E P}:: \mathbf{Z ~ K}: Z \mathrm{E}(4-6)$.

Clause No. 10.-These proportions, in eonjunction with the foregoing demonstration, show that a line drawn from the point $\mathbf{E}$ to the point $K$ forms an angle with the line $C Z$ equal to one-thirl of the given angle. However, before reaehing a final conclusion of the solution of this important problem, it is well to amplify what has gone before by expounding the prineiples involved by the eonsideration of the two sketehes already mentioned (see Seetion No. 5, Clanse No. 2). The consideration of these sketehes will form the subjeet of another seetion identified as Seetion No. 6.


## SKETCH No. 2.



The two sketches marked on this page, as aloove, are also marked on the main diagram, viz., "Sketch No. 1 and Sketch No. 2" as already mentioned (in Section No. 5, Clause No. 2). These therefore cannot be comparily in an exaggerated form and main diagram, but are merely iutended any measurements on the the difference or space between certain as a guide to distinguish could not easily be seen on account of their on the diagram which nearly coinciding with each other. are for the purposes of illustration to The sketches just mentioned without difficulty.

The lines in thesc sketches are lettered in the same manner as the lines in the main diagram which they represent.

The line situate between the lines $A^{\prime} \mathbf{M}^{\prime}$ and $\mathbf{A} \mathbf{M}$ is called the intervening line ON , and the other line situate between the lines II L and $\mathbf{T} \mathrm{L}^{\prime}$ is called the intervening line $\mathbf{U} \mathbf{U}^{\text {r }}$. Both of these intervening parallel to each other the lines between which they are situate and Clause No. the portion of $K \mathbf{Z}$, viz., $K \mathbf{J}$, that is (or J Z ) is parallel to $A \mathbf{E}$, and and $A M$ is equal to that part lines II L and 'T L', and each of that same line situate hetween the A E that is situate between the lines $H$ is also equal to the portion of $\mathbf{E} \mathrm{J}^{\prime}$ produced to $\mathbf{A}^{\prime} \mathbf{M}^{\prime}$ (parallel to $\mathbf{P} \mathbf{A}$ ) and $\mathbf{T} \mathrm{L}^{\prime}$. The portion of same line situale between the lines $H \mathrm{~L}$ and is also equal to that portion of PA situate betw, and each of them and TL. The portion of RA situate between the the lines H L

Clatee Ho. 3-Contlaued-Section Ho. C.
$\mathbf{T} \mathbf{L}^{\prime}$ is also equal to the portion $\mathbf{E} \mathbf{J}$ sittate between the lines II L and 'TL', which is also equal to the portion of $\mathbf{E} J$ produced to $\mathrm{A}^{\prime} \cdot \mathrm{It}^{\prime}$. The different pairs of lines that are parallel to each other, such as $R I I$ and $E L, R A$ and $E \mathbf{J}, A P$ and $E J^{\prime}, Z K$ and $E A, K B^{\prime}$ and A B. The whole of the five pairs of lines just mentioned are intersected iny the other two pairs of lines viz:- $\mathbf{N}^{\prime} \mathbf{M}^{\prime}$ and $\mathbf{A} \mathbf{M}$, II $^{2} \mathrm{~L}$ and T' L' that are also parallel to each other and at equal distance apart (see Section No. 5, last part of Clause No. 3). The following axion may be used, viz., "Things which are equal to the same thing are equal to one another" (Axion No. 1, 1-1).

Clause No. 3-According to the Hypothesis, the line A $P$ forms with the line $\mathbf{C Z}$ an angle equal to one-third of the given angle or $A P C=A B C$. In the stright line $A U P$ the line $U P=$ 2A B. The line $U U^{\prime \prime}$ is parallel to II $L$ and $T L^{\prime}$. It is clear that the arc described from the point E with a radius equal to 2 AB will intersect the line $\mathrm{U}^{\prime \prime}$ (called an intervening line) so that the line drawn from the point $E$ to the intersection of the are $B G$ with the line $\mathrm{U}^{\prime \prime}$ " will be parallel, and equal, to $\mathrm{A} P$ and will form an angle with C Z, equal to $\mathrm{A}_{\mathbf{3}} \mathrm{B}$ -

Clause No. 4-It will be observed that the vertical distance from the intersection of the line $\mathbf{A} \mathbf{P}$ with $\mathbf{B} \mathrm{F}^{\prime}$ in the point $\mathbf{U}$ to the point $B$ in the line $C Z$ is equal to the perpendicular or vertical distance from the intersection of the are $\mathrm{B}_{\mathrm{B}} \mathrm{G}$ with the line $\mathrm{U} \mathrm{U}^{\prime \prime}$ to the line $\mathbf{C Z}$, because $\mathbf{U} \mathrm{U}^{\prime \prime}$ is parallel to $\mathbf{C Z}$. Therefore the line $\mathrm{P}^{\prime} \mathrm{U}=\boldsymbol{z}$ A B (or UP), and the intersection of the arc B G drawn from the point $\mathbf{E}$ with a radias equal to 2 A $\mathbf{B}$ (or $\mathbf{P} \mathbf{U}$ ) shows that the intersection of the line drawn from $E$ to the intersection of the are $\mathbf{B G}$ with the line $U^{\prime \prime} \mathbf{U}^{\prime \prime}$ is parallel to $\mathbf{P} \mathbf{U}$ and which if prodaeed will intersect the line AM in the point $\mathbf{J}^{\prime}$, that is to say, at the same distance from $\mathbf{J}$ that $\mathbf{R}$ is from $\mathbf{P}$ or $\mathbf{J}^{\prime} \mathbf{J}^{\prime}=\mathbf{R} \mathbf{P}$.

The whole of the distance between $A^{\prime} M^{\prime}$ and $A M$ is equal to the whole of the distance between the lines $\mathbf{H} L$ and $T L^{\prime}$. Furthermore, the whole of that portion of the line A P that is situate between the lines $H L$ and $T L^{\prime}$ is also equal to the whole of that portion of $\mathbf{E} \mathbf{J}^{\prime}$ prodaced that is situate between the lines $A^{\prime} \mathbf{M}^{\prime}$ and $\mathbf{A M}$ (see Claase No. 3, Section No. 5). (Observe the sketches in order to assist in following the diagram.)

It will be observed $\mathrm{J}^{\prime}$ is parallel to $\mathrm{A} P$ and the portion of $\mathrm{E} . \mathrm{J}^{\prime}$ produced to interseet the line $\Lambda^{\prime} \mathbf{M}^{\prime}$ is equal to that portion of that same line situate between the lines $H L$ and $T L^{\prime}$ and each of

## Clause No. -Conlinued-Section No. 6.

them nre equal to that portion of $A P$ that is situate between the lines
 lines II I, mad U'U" nre ergail to eoth other (see section No. s. Clause No. 3). The vertical distance betwern the intersection of $\mathbf{A} \mathrm{F}$ mad A 1 with the perpendicular $\mathrm{B}^{\prime} \mathrm{F}^{\prime}$ is the vertica! value II U , and the whole of the divergence betwen hines. iF and illl at their intersection with the perpendienlar 3 F is the vertionl divergent value of II U $+\mathbf{U} \mathbf{T}$ ind II $\mathbf{U}+\mathbf{U} \mathbf{I}=\mathbf{I I} \mathbf{I}$.

The portion of $\mathbf{A P}$ situate between the lines II L. and $\mathrm{UV}^{\prime \prime}$ is less than that situate between the lines ( $\mathrm{U}^{\prime}$ II I or) II L and 'I I'. As will be scen, the difference between II ' T and II U is U ' Tand comes off the lower part of II 'I mad is indicated by the differcnee between
 produced from $\mathbf{A} \mathbf{M}$ to $\mathrm{A}^{\prime} \mathrm{I}^{\prime}$. the difference is taken from the upper part of $\mathrm{E}, \mathrm{I}^{\prime}$ when produced to $\mathrm{N}^{\prime} \mathbf{N I}^{\prime}$, and which differonce is that portion of $\mathbf{E} \mathrm{J}^{\prime}$ prodneed to the point K that is sitante between the intervening line $\left(\mathrm{N}^{\prime}\right.$ and $\mathrm{I}^{\prime} \mathrm{II}^{\prime}$ and which is also equal to the difference or space betwern the intervening hine $U U^{\prime \prime}$ and 'T $I^{\prime}$, The difference in each of these cuses is eqmal to the divergence of the line A IR from A I that acernes between the point A to the intersection of $\mathbf{A} \mathrm{R}$ with the perpendicular $\mathbf{B} \mathrm{F}^{\prime}$.

The right angle triangle (marked on Sketeh No. 1) described (in Scetion No. 4, Chase No, 3), as wili be seen, is sitmate between the lines II I and $U \mathbf{U}^{\prime \prime}$, and another right angle triangle, but in an inverted form, may be olsserved (by reference to Sketeh No. \&) is situnte between the lines $\mathbf{A} \mathbf{M}$ and $O N$.

The line $\mathbf{E}, \mathbf{I}^{\prime}$ prorluced to intersect ()N is equal to $\mathbf{2 K} \mathbf{J}^{\prime \prime}$ (or $\mathbf{J}^{\prime \prime} \mathrm{J}$ ) and interserets the perpendicular $\mathbf{~}^{\prime \prime} \mathbf{K}^{\prime}$, and the portion of $\mathbf{E} \mathbf{J}^{\prime}$ prohnced that is sitnate between its intersection with the perpendicular $\mathrm{J}^{\prime \prime} \mathrm{K}^{\prime}$ is also equal to that portion of $I P^{\prime}$ that is situate between its intersection with the perpendicular IS $\mathrm{F}^{\prime}$ and the line L II $\mathrm{U}^{\prime}$ (or I . II prodnced to $\mathrm{U}^{\prime}$ ); that is to say $\boldsymbol{2} \mathrm{I}^{\prime \prime} \mathrm{K}$ (or $\mathrm{J}^{\prime \prime} \mathrm{J}$ ) = U U' (see Sketch No. 1).

Clause No. 5.-It has been shown (see Section No. 5. Clause No. 3) that the portion of $A$ P sitnate between II L and $\mathrm{U} \mathrm{U}^{\prime \prime}$ is equal to $\mathbf{J}^{\prime \prime}$ I and $\mathbf{J}^{\prime \prime} \mathbf{J}=2 \mathbf{K} \mathbf{I}^{\prime \prime}$ and $2 \mathbf{I} \mathbf{B}+2 \mathbf{K} \mathbf{I}^{\prime \prime}$ is equal to $\mathbf{E} \mathbf{I}+\mathbf{J}^{\prime \prime} \mathbf{J}$. Therefore, if from the point $\mathbf{E}$, with a radius equal to $\mathrm{E} \mathbf{L}+\mathrm{J}^{\prime \prime} \mathrm{J}$, an are be deseribed intersecting the line II La anda line drawa from the point $\underset{\mathbf{P}}{\mathbf{E}}$ to that point of intersection (in the line II L ), it will be parallel to A P, and wifl alos form an angle with the line C Z (or C B E Z ) that will be equal to one-third of the given angle, viz., A BC or $\frac{\Delta B C}{3}$

Furthermore that line so drawn, as lescribed, eonimeides with and is inchuded in aud is a portion of the straight line $\mathbf{E}$. I' produced to $\mathbf{K}$. Other reasoning conhl be subnitted to amplify and support the foregoing, but wonld involve a prolonged and unnecessary dissertation.

## SECTION NO. 7.

Clause No. I.-Aecording to tha foregoing, some of the lines and points have been obtained 'e having rearse to the Iypothesis, which, aceording to geometrica i reasoning, is a valuable method of investigation. It is, however, al rimbely essen ial that the drawiug of
 problem, shall be aecomplished entirely and independently of the Hypothesis, viz., by the inethod of eonstruetion adopited in the present instance. The points viz., $\mathbf{R}-\mathbf{E}-Z-\mathbf{K}-\boldsymbol{\Lambda}^{\prime}-\boldsymbol{A}$ ind the lines, viz., $\mathbf{A} \mathbf{E}-\mathbf{A B}-\mathbf{E} \mathbf{A}-\boldsymbol{Z} \mathbf{K}-\mathrm{IR} \mathbf{A}^{\prime}-\mathrm{I}$ A have been found independently of the IIypothesis (see Section 5 , Clanse 9 ).

Clause No. 2.-It is therefore concluded that the line drawn from the point K to the point E will form an angle with the line $\mathbb{C} \boldsymbol{Z}$ equal to one-third ( $\frac{1}{3}$ ) of the given angle, that is to say $\mathrm{KEC}=$ ABC
3 or $\frac{\mathrm{KB}^{\prime} \mathrm{C}}{3}$ and $\mathrm{KB}^{\prime} \mathrm{C}:=A B \mathrm{C}$.

It is therefore concluded that a line drawn throngh the point 13 parallel to the line $\mathbf{E} \mathbf{K}$ will eoincide with the line $\mathbf{B X}$ (in the triangle A B C), and it is likewise conclunded that a line drawn throngh the point $\mathbf{B}^{\prime}$ parallel to the line $\mathbf{E} \mathbf{K}$ will form an angle with the line $\mathbf{C} \mathbf{Z}$ (or C B B' $B^{\prime}$ ) that will be equal to the one-third ( $\left(\frac{1}{3}\right)$ of the angle $K B^{\prime} \mathrm{C}$ or $\frac{\mathrm{K}^{\prime} \mathbf{3}^{\prime} \mathrm{C}}{3}$ then, by bisecting the remaining portion of $\mathrm{K} 13^{\prime} \mathrm{C}$ (the angle A I3 C being equal $\mathbf{K}^{\prime} B^{\prime} \mathbf{C}$ ), the solution of the 'Trisection Problen has been aecomplished.

## SECTION NO. 8.

Clause No. I.-Although the foregoing fully establishes the solution of the Trisection Problem, this Section No. 8 is submitted as an amplification, and a somewhat diflerent construction from that hereinbefore adopted to determine the point where the trisecting line drawn from the point $E$ interseets $L \mathbf{H}$.

Produce the line E L to intersect $\boldsymbol{A} \mathbf{M}$ in the point $\mathbf{X}^{\prime}$, and from the point $J$ (in the line $A M$ ) draw the line fronn J parallel to EL , intersecting the line $\mathbf{E} \boldsymbol{A}$ (in the point $\mathrm{F}^{\prime \prime \prime}$ ) and prodnce to intersect $C Z$ in the point $Y^{\prime}$. The straight line $J E^{\prime \prime \prime} \mathbf{Y}^{\prime}$ will intersect the line $L$ II (or II L), so that the line drawn from $E$ to that point of intersection with the line $L$ II in the point $X^{\prime \prime \prime}$ will be parallel to $A P$, and will form an angle with the line $C Z$ that will be equal to one-third of the given angle A B C.

It has been shown (see last part of Seetion No. 4) that the horizontal divergent value of $\mathbf{E}$ I, from the trisecting line drawn from $\mathbf{E}$ to its interseetion with II $L$, ineasured from $L$ along the line $L / I$, is equivalent to $\mathbf{H} \mathbf{U}^{\prime}+\mathbf{J}^{\prime} \mathbf{J}$, Then $\mathbf{E} \mathbf{L}$ being produced to intersect i M M in the point $\mathrm{X}^{\prime}$, and the line $\mathrm{J} \mathrm{E}^{\prime \prime}$ produced to intersect $\mathbb{C} Z \mathrm{Z}$ in the

Clause No. 1-Continued-Section No. 8.
point $\mathbf{I}^{\prime}$ and the straight line $J^{\prime} \mathbf{E}^{\prime \prime \prime} Y^{\prime}$ being drawn parallel to the straight line $\mathbf{E} \mathbf{L} \mathbf{X}^{\prime}, \mathbf{E} \mathbf{X}^{\prime}=\mathbf{J} \mathbf{Y}^{\prime}$

From the point $\mathbf{X}^{\prime}$ (in the line $\mathbf{X}^{\prime} \mathbf{E}$ ) make $\mathbf{X}^{\prime} \mathbf{X}^{\prime \prime}=\mathbf{E} \mathbf{L}$. 'Then $\mathbf{E} \mathbf{X}^{\prime \prime}=I, \mathbf{X}^{\prime}, \| \quad \Lambda=E E^{\prime \prime \prime}, I I \quad I=1, I$ (see seetion No. 4 ,
 divergence of $\mathrm{E} L$ from the trisecting line drawa from the point E to its intersection with the line 11 L. Rass been shown to be cepmal to $\mathbf{X}^{\prime \prime} \mathbf{X}^{\prime}$ thental value of $\mathbf{U}^{\prime} \mathbf{I}+\mathbf{I}^{\prime} \mathbf{I}$. Then $\mathbf{E} \mathbf{L}=\mathbf{X}^{\prime \prime} \mathbf{X}^{\prime}$ and $\mathbf{E} \mathrm{L}+$


It will be observed that $\mathbf{E} L+L X^{\prime}$ is equal to the whole of the line $\mathbf{E} \mathbf{X}^{\prime}$, but $2 \mathbf{E} \mathrm{~J}_{4}$ is greater tian the line $\mathbf{E}^{\prime} \mathbf{X}^{\prime}, 2 \mathbf{E} \mathbf{L}=\mathbf{E} \mathbf{X}^{\prime}$ $+\mathrm{L} \mathbf{X}^{\prime \prime}$ and $9 \mathrm{E} \mathbf{L}-\mathrm{L} \mathbf{X}^{\prime \prime}$ is equal to the horizontal value of $\mathbf{U}^{\prime} I I+9 J^{\prime} \mathbf{J}$, which show $\mathbf{L} \mathbf{X}^{\prime \prime}$ is equivalent to the horizontal value of $\mathrm{U}^{\prime} \mathrm{II}$, and $\mathrm{L} \mathrm{X}^{\prime \prime}$ is equal to that portion of E J , situate botween the points $\mathbf{X}^{\prime \prime}$ and $L$, and the line drawn from $E^{\prime \prime \prime}$ to the intersection of the trisecting line with JI L will be equal and paralled to the line $\mathbf{X}^{\prime \prime} \mathrm{L}$ or $\mathbf{X}^{\prime \prime} \mathbf{L}=\mathbf{E}^{\prime \prime \prime} \mathbf{X}^{\prime \prime \prime}$.

As already shown, $\mathbf{E} \mathbf{X}^{\prime \prime}=\mathbf{J} \mathbf{Y}^{\prime \prime}$ and $\boldsymbol{J} \mathbf{Y}^{\prime \prime}=\mathbf{Y}^{\prime} \mathbf{E}^{\prime \prime \prime}+\mathbf{E}^{\prime \prime \prime} \mathbf{X}^{\prime \prime \prime}+$
$\mathbf{X}^{\prime \prime \prime} \mathbf{J}$. Then $\mathbf{Y}^{\prime} \mathbf{E}^{\prime \prime \prime}=\mathbf{E} \mathbf{X}^{\prime \prime}, \mathbf{X}^{\prime \prime} \mathbf{L}=\mathbf{E}^{\prime \prime \prime} \mathbf{X}^{\prime \prime \prime}$ and $\mathbf{X}^{\prime \prime \prime} \mathbf{J}=\mathbf{L} \mathbf{X}^{\prime}$. Therefore the divergent value of E L is equal to the convergent valme of $\mathbf{Y}^{\prime} \mathbf{X}^{\prime \prime \prime}$ and $\mathbf{E}^{\prime \prime \prime} \mathbf{X}^{\prime \prime \prime}=\mathbf{V}^{\prime \prime}$ ! Then the hori\%ontal line $\mathbf{J}$. $\mathbf{X}^{\prime \prime \prime}$ is
 value of $U^{\prime} I J$ and $X^{\prime \prime} L=E \quad \mathbf{X}^{\prime \prime \prime}$. of $\mathbf{X}^{\prime \prime} L$ is equal to the horizontal

Furthermore, if a line parallet to $\mathbf{E} L$ be dawn from the point $J^{\prime}$ (in the line $\boldsymbol{I} \mathbf{M}$ ) instead of from the point $J$, it will interseret the line IJ IL at a horizontal distance measured from the point L that will be equal to $U^{\prime} I 1+2 \mathrm{~J}^{\prime} \mathrm{I}$ instead of $\mathrm{U}^{\prime} \mathrm{IJ}+\mathrm{J}^{\prime} \mathrm{J}$. Therefore it is clear that the line $E \mathrm{~J}_{\text {a }}$ produced to $\mathrm{X}^{\prime}$ (in the line I M) diverges from the trisecting line drawn from $E$ to $J^{\prime}$, and $X^{\prime} J^{\prime}=U^{\prime} 1 J+9 J^{\prime} J$. This reasoning establishes that the divergence of $L X^{\prime}$ is equal to the horizontal $\mathrm{J}^{\prime} \mathbf{J}$ or $\mathbf{I}_{\mathbf{A}} \mathbf{X}^{\prime}=$ the horizontal $\mathrm{J}^{\prime} \mathbf{J}$.

Clause No. 2.-The principle inrolved in this seetion, as already shown, is that the divergence of $E I$, from the triseeting tine drawn from the point $E$ to its intersection with the line $L I I$ is the horizontal equivalent of $\mathrm{U}^{\prime} \mathrm{H}+\mathbf{J}^{\prime}$ I (see Clanse No. I), and that the line $E L$ is divided in the point $X^{\prime \prime}$, so that $L X^{\prime \prime \prime}$ is the horizontal equivalent of $\mathrm{U}^{\prime} \mathrm{H}$ and $\mathrm{E} \mathbf{X}^{\prime \prime}$ is tire horizontal equivalent of $\mathrm{J}^{\prime} \mathrm{J}$.

Therefore. if a line equal to $L X^{\prime \prime}$ be measured from the point $E$ along the line $\mathbf{E} L$ and from that point of section (not marked) a line be drawn parallel to $L$. J, it will intersect $I$, II in the same point that the trisecting line, drawn fron the point $E$, intersects $J$. $I J$, and the line drawn from the point I parallel to $E L$, will also interseet $L / H$ in the same point that the triseeting line drawn from the point $E$ interseets

Clause Mo. 2-Continued-Section No. 8.
the line L H. As already stated, the straight line $J Y^{\prime}$ has been drawn from the point $J$ parallel to the line $E L$, and it is concluded that a line drawn from the intersection of that line with $L I I$ to the point $E$ will form an angle with the line $C Z$ that will be equal to one-third of the given angle A BC.

## ADDENDUM.

There are other constructions by which the Trisection I'ronlem can be solved and explained by refcrenee to the main diagram, which constructions will be consistent with the principles involved in the solution of the problem as already presented, viz.:

1. From the point $H$ (at the intersection of the line $A E$ with the perpendicular $B F^{\prime}$ ) and with a radius equal to $2 \mathbf{A} B+2 K \mathbf{J}^{\prime \prime}$ (see Sertion 6,Clause 5) describe an are interseeting the line $\mathbb{C} Z$, and the line drawn from that point of intersection to the point II will form an angle with the line $\mathbf{C Z}$ that will be equal to one-third of the given angle A B C.
2. The line $\mathbf{R} I 1$ is equal and parallel to the line E L. From the point $\mathbf{R}$ in the line $\boldsymbol{R}$ It make $\mathbf{R} \mathbf{R}^{\prime}=\mathbf{E} \mathbf{X}^{\prime \prime}$ (see Section No. 8) and from the point $A$ draw $A R^{\prime}$ produced to intersect the line $C Z$ and that line will form an angle witl $C Z$ that will be cqual to onethird of the given angle A B C that is to say it will intersect $C Z$ in the point $P$.
3. From the point where the arc $B G$ intersects the line $T L^{\prime}$ draw a line parallel to $\mathbf{E} \mathbf{J}$ and produce it to intersect the line $\mathbf{A}^{\prime} \mathbf{M}^{\prime}$, and from that point of intersection draw a line to the point $E$, and that line will form an angle with $\mathbb{C} Z$ that will also be equal to one-third of the given angle $\AA \mathrm{BC}$.
4. From the point where the arc $B \mathbf{G}$ intersects the line ' $T$ ' erect a perpendicular ( $11-1$ ) to intersect the line $L H$.

Then take the lii.e situate between the point $H$ and the point where the line AR interscets the line $L H$ produced. The sum of these two lines, as described, the former, from $L$ to the intersection of the perpendicular (erected from the intersection of the are B G with $\mathrm{T}^{\prime} \mathbf{L}^{\prime}$ ) being greater than $\mathbf{R} \mathbf{P}$ and the latter being greater than $H \mathbf{U}^{\prime}$, their sum is greater than $H^{\prime} \mathbf{U}^{\prime}+\mathbf{R} \mathbf{P}$, and $\mathbf{R} \mathbf{P}^{\circ}+\mathbf{U}^{\prime} \mathbf{H}$ measured from $L$ along the line $L H$, is equal to the horizontal distance from $L$ that the trisecting line if drawn from the point I would intersect the line $\mathrm{L} H$. Then the line dicwn from the point $J$ to that point where the trisecting line would intersect $L \mathbf{H}$ is equal or eqnivalent to the divergent or convergent horizontal value of $J^{\prime} J$ (or R ${ }^{\prime}$ ).

Therefore, if a line equal to the sum of these two lines, described, be measured from the point $L$ along the line $L H$, it will intersect $L H$ at a greater distance from $L$ than the trisecting line, drawn from $\mathbf{E}$, intersects LH. Then if a line be drawn from J to this latter greater distance in $L \mathbf{H}$, as described, is from $L$, that line will have a greater convergent or divergent horizuntal value than $\mathrm{J}^{\prime} \mathrm{J}$ (or $\mathbf{R ~ P}$ ). Then draw from the point $E$ a line parallel and equal to the one just described as having a greater divergent or convergent horizontal value than $R P$, and frosa the extremity of that line draw a line parallel to $E L$ intersecting the line $H L$ produced, and from that point of intersection with $H \mathbf{L}$ (produced) take a distancc equal to the sum of the two said lines (which is greater than $\mathbf{R} P+H \mathbf{U}^{\prime}$ ), and that will give the point where the trisecting line drawn from the point $\mathbf{E}$ intersects the line LH (or HL ).

The End.




## SKETCH No. I



## SKETCH NO. 2.





