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PEEFAOE.

Is the present work is developed what is commonly known m the
ancient or EucUdian Geometry, the ground covered being neariy the
same as in the standard treatises of Euclid, Legendre, and Chauve-
net. The question of the best form of development is one of such
interest at the present time, among both teachers and thinkerw, as to
justify a statement of the plan which has been adopted.

It being still held in influential quarters that no real improvement
upon Euclid has been made by the modems, a comparison with the
ancient model will naturally be the first subject of consideration
The author has followed this model in its one most distinctive fea-
ture, that of founding the whole subject upon clearly enunciated defi-
mtions and axioms, and stating the steps of each course of reasoning
in their completeness. By the common consent of a large majority of
educators the discipline of Euclid is the best for developing the powers
of deductive reasoning. If the work had no other object than that
of teaching geometry, a more rapid and cursory system might hftve
been followed; but where the general training of the powers of
thought and expression is, as it should be, the main object, it be-
comes important to guard the pupil against those habits of loose
thought and incomplete expression to which he is prone. This can
be best done by teaching geometry on the time-honored plan.

Notwithstanding this excellence of method, there are several
points in which the system of Euclid fails to meet modem require-
ments, and should therefore bo remodeled. The most decided failure
18 in the treatment of angular magnitude. We find neither in Euclid
""' " "'^ "'^ modem foiiowers any recognition of angles equal to

98847



iv PREFACE,

or exceeding 180°, or any explicit definition of what Ib meant by
the Bum of two or more angles. The additions to the old systeir of

angular measurement are the following two

:

v

Firstly. An explicit definition of the angle which is equal to the

sum of two angles.

Secondly. The recognition of the sum of two right angles as itself

an angle. The term ''straight angle" has been adopted from the

Syllalus of the English Association for the Improvement of Geotnetrieal

Teaching. Although not unobjectionable, it seems to be as good a

term as our language affords. The term geatrecUe Winkely used by
the Germans, is more expressive.

One of the most perplexing questions which the author has met in

the preparation of the work is that of distinguishing the definitions of

plane figures as lines and surfaces. In our recent text-books it is be-

coming more and more common to define triangles, circles, etc., as por-

tions of a plane surface. But, as soon as analytic geometry is reached,

the circle is considered as a curve line and the triangle as three straight

lines, while, even in elementary geometry, these terms, in a large ma-

jority of cases, refer only to the bounding lines. It has seemed to the

author that the confusion thus arising can best be avoided by defining

plane figures neither as mere lines nor mere surfaces, but as things/orm^d

by lines; to use the specific term area when extent of surface alone is

referred to; and to use the words cireun\ference, perimeter, etc, , only in

the sense in which they are used in higher geometry.

Other leading features of the work, which may be briefly pointed out,

are the following:

I. The addition of an introductory book designed not only to pre-

sent the usual fundamental axioms and definitions, but to practice the

student in the aiialysis of geometric relations by means of the eye

before instructing him in formal demonstrations. The exercises in

sections 34 to 84 are first attempts in this direction, to which the

teacher may add at pleasure until he finds that the pupil has

thoroughly mastered the conceptions necessary for subsequent use.

n. The application of the symmetric properties of figures in

demonstrating the fundamental theorem of parallels. This system

has been adopted from the Germans.

III. After the second book, the analysis if the problems of con>
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struction, whereby the pupil is led to discover the construction by
reasoning.

IV. The division of each demonstration into separate numbered
steps, and the statement of each conclusion, where practicable, as a
relation between magnitudes. It is believed that this system will
make it much easier to carry the steps of the demonstration in mind.

Each step is, when deemed necessary, accompanied by a reference
to the previous proposition on which the conclusion is founded, not,
however, to encourage the too frequent habit of requiring the pupil
to memorize the numbers, but simply to enable him to refer to the
proposition. He should always be ready, if required, to cite the
proposition, but its number in the book is not of such importance
that his memory need be burdened with it. A reference has not
been considered necessary after a few repetitions.

V. The theorems for exercise have been selected from native and
foreign works with a view to present those best adapted, either by
their elegance or their applications in the higher geometry, to inter-

est the student. An attempt has been made to arrange those of each
book in the order of their difficulty.

VI. Some of the first principles of conic sections have been devel-
oped for the purpose of enabling pupils who do not intend to study
analytic geometry to have some knowledge of these curves. It is

believed that a previous study of these principles will be a valuable
preparation for the advanced treatment of conic sections.

Vn. The most difficult subject to treat has been that of Propor-
tion. The ancient treatment as found in Euclid is perfectly rigorous,
but has the great disadvantages of intolerable prolixity, unfamiliar
conceptions, and the non-use of numbers. The system common in
our American works, of treating the subject merely as the algebra of
fractions, has the advantage of ease and simplicity. But, assuming,
as it does, that geometric magnitudes can be used as multipliers and
divisors on a system which is not demonstrated, even for algebraic
quantities, it is not only devoid of geometric rigor, but is not prop-
erly geometry at all. The author has essayed a middle course between
these extremes which he submits to the judgment of teachers with
some reserve.

On the annienf. nvflfnm mnrrni^ii'lpq <}.rp r>/%Tnv.««a^ -srSfH -^ ^^
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their ratios by means of their multiples. For mstance, the magnitude

A is considered to have to the magnitude B the ratio of 2 to 8 when

8A = 2B. This system has the undeniable advantage of admitting

commensurable and incommensurable quantities to be treated on a

uniform plan. But it has the disadvantage of not according with the

natural and customary way of thini'.ing of the subject. When we say

that the magnitude A is to B as 2 to 8, we mean that if A is repre-

sented by the number 2, or is divided into 2 parts, B will be repre*

sented by 8 of those parts. The author has considered it more im-

portant to base the subject on natural and customary modes of

thought than to adopt a system simple and rigorous, but not so based.

The mode in which he has endeavored to avoid the difficulty, and

to render the natural system as rigorous and nearly as simple as

the other, will be s&m by an examination of the chapter on Pro-

portion.

Ym. Another difficult subject is the fundamental relations of

lines and planes in space. In presenting it the author has been led

to follow more closely the line of thought in Euclid than that in

modem works. At the same time he is not fully satisfied with his

treatment, and conceives that improvements are yet to be made.

A collection of notes on the fundamental principles of geometry

upon which the work has been based will be found in the Appendix.

The author believes, from some trials, that the study of geometry

as here presented can be advantageously commenced at the age of

twelve or thirteen years. No especial knowledge of algebra is

required for the first three books, but a previous familiarity with

symbolic notation will facilitate the study of the second and follow-

ing books, and may be found necessary to their advantageous use.

From the fourth book onward a knowledge of simple equations is

sometimes presupposed.
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SYMBOLS AOT) ABBBEVIATIONS USED IN

DEMONSTRATIONS.

When a step of a demonBtration leads to a relatioii of

two lines or other magnitudes, tha relation is expressed by

symbols.

= equals : states that two magnitudes are equal.

il parallel to : states that two lines are parallel.

^, perpendicular : states that two lines are perpendiculai'

to each other.

= coincides with, or falls \ipon : states that two points,

lines, surfaces, or figures coincide with each other.

In recitation, the teacher may find it advantageous to

have the student recit*? the reasoninp^ orally, but write th©

conclusion of each step on the blackboard. In this case

symbols or abbreviations of the more common words will

shorteu the work. The following are recommended, though

others are frequently used:

Z , angh, /. line, • , point,

Ar, area, R, or 90°, rigJit angle,

0, or 360°, circumferencG, S, or 180°, slraigkt angle.

These abbreviations are not generally used in the printed

booi^ the author believing that the full word, in its usual

form, will make a stronger impression on the mind of the

beginner than any symbolic representation of it.



BOOK I.

GENERAL NOTIONS.

CHAPTER I.

THE PRIMARY 'CONCEPTS OF GEOMETRY.

!• BefmitiGn, Gteometry is the science which
treats of magnitude, position, and fonn.

Def, A geometiio magaitude is that which has
extension in space, or what is familiarly called size,

Geometiic magnitudes are of three orders : solids,
surfaces, and lines. Besides these, there is a fourth
concept—that of a point.

/da

Solids.

Dtf, A solid is that which has length, breadth,
and thickness. Iiength, breadth, and thioknesd are
called the thr^e dimensions of the solid.

All material bodies are solids because they have these
three dimensions and no more. The solids of geometry are
bodies supposed to have the size, form, and mobility of
material solids, but no other properties.

Surfaces.
5t. TlarP A mmmmmC^^^ •_ Xl- _ A I'll 1 .«,^, ±.^j

. j^ Biiiiav© ia mac whicn nas lengtn and
breadth, but is not supposed to have thickness.

Example 1. Let us conceive the solid AB to be divided
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I

into two parts through CDEF without removing any part
of it, so that the two parts touch
each other. The diyision CDEF
is then a surface. If the surface
had any thickness it would be a
part either of the one solid or of the
other. But it is only the bound-
ary between them, and therefore

no part of either, and therefore has no thickness.
Ex. 2. A sheet of paper is really a solid, because it must

have some thickness. But the surface on which we write
does not extend into the paper at all, and so has no thickness.

it

Lines.

4. Def. A line is that which has length, but is
not supposed to have either breadth or thickness.

If we suppose a surface cut into two parts, touching each
other that which divides them is a line. It forms no part
of either surface, and therefore can have no breadth.

Def. A straight line is one which
has the same direction throughout its
whole length.

Def. A curve line is one no part
of which is straight.

A straight line.

Acurve line.

The Point.

^n.f« ^'C" ^ ^"i"* ** ^^^^ '^'^"'^ ^ supposed to have
position, but neither length, breadth, nor thickness.

nthi; Ti! r^^T.* ?'°^ ™* '"'» *^» parts touching each

part of either line, and therefore has no length.

h^^ii, '"T!*.*"
"«'««' ha^ ae three dimensions, length,

breadth, and thickness. But we may make a dot a^d tWnk

r„r "w ^°""''
,

'''^ ""' P°'"* ''""^d ^ tJ'e centre of the
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Generation of Magnitudes by Motion.
6. A line may be generated by the motion of a point, as

when we press the point of a pencil on paper and move it.

A surface may be generated by the motion of a line as a
line is generated by the motion of a point.

A solid may be considered as generated by the motion of a
surface. The surface, as it moves, must be supposed to leave
a mark in every point through which it passes.

The Plane.

7. Def, A plane is a surface such that a straight
line between any two of its points lies wholly on the
surface.

A plane is perfectly flat and even, like the surface of still

water, or of a smooth floor.

Geometric Figures.

8. Bef. A figure is any definite combination of
points, lines, surfaces, or solids.

Def, A plane figure is one which lies wholly in a
plane. It is formed by points and lines.

Plane geometry treats of plane figures.

Parallel Lines.

9. Def. Parallel straight lines are such as lie in
the same plane, and never meet,
how far soever they may be ex-
tended m both directions. ParaUelUnes.

The Circle.

10. Def, A circle is a figure form-
ed by a plane curve line, every point
of which is equally distant from a point
within it called the centre.

The circumference of a circle is the
line which forms it,

Def. An arc of a circle is a part of the circumfer-
ence.

A circle.
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The Angle.
11. Dtf. An angle is a figure formed by two

straight lines extending out from
one point in different directions.

Bef, The sides of an angle are
the two lines which form it.

c Dtf, The vertex of an angle
An angle. is the point where the sides meet.

Geometrical Symbols.
1». Any geometric concept, whether apoiTU, line,

surface, solid, or angle, may be represented by one or
more letters of the alphabet.
A point is represented by a single letter near it.A line is repifesented by one letter, or by two or

more letters showing its course.
Other magnitudes or figures are represented by let-

ters showing their outlines.
Designation of angles. A particular angle in a figure is

designated by three letters, as ABG, of which the middle one
^18 at the vertex, and one of the other two on each side.
The angle is then read ABG.

When there is only one angle formed at a yertex, it may
be designated by a single letter at the yertex.

,

. » >

CHAPTER II.

COMPARISON OF GEOMETRIC MAGNITUDES.

Mode of Comparison.

^\-^^£' Two magnitudes which can be so applied
to each other that each shall coincide with the other
throughout its whole extent are said to be IdenUoally
equal.
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™r2 rtot^ *r°
"'?«^*^de8 can be SO divided intoparts that each part of the one is identically equal toa «e^te part of the other, they a^ said to be equa^

e^n^™J^ "'^"^ ^^^"* * magnitude into two

B
The point B bisects the line A C.

To trisect a magnitude means to divide it into
three equal parts.

a.."'^^'*u**
^^^^'- '''^^ ^°Sl^« ^^^ and DJEJIP

axe said to be equal if the angle ^5(7 can be taken up

Bqnal angles.

tWprf^'^
p *? 1^ ?^^^^ ^^^ ^^ ^'^^^ "tanner that

|a with the side £JIP, and the side 5^ with the side

15. Unequal Angles. If, on thus applying the
angles to each other, the side BA
r ills between the sides UJD and EF,
a» in the dotted Hue, then the angle
C5^ (which is tlie same as FJEJA)
— ^.„ ^^j A^oB buiiii uie angle
FED, and the angle FEB is said
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6 OBNEBAL MOTIONS.

16. RE3fABK. The magDitude of an angle does not
depend upon the length of
its sides, but onlyupon their
direction. ^

When we make the sides / / /^^and ^C coincide, it is only
' ' ^

necessary that they shall coin-
cide through the length of the ««. -

dhorfpr fiirlp in n^,!^,. +« +« ^ xi!
J"»ese four angles are an equal, not-snorter sme, m order to test the withstandinsr the difference in the

equality or inequality of the
^®°8'^ <>' their sides.

angles.

Symbols of Comparison.
Xt. The statement that any two magnitudes are

equal is expressfed by writing the sign = between the
letters or words which indicate them.

The statement expressed by the sign =, that two
magnitudes are equal, is called an equation.

The statement that one magnitude is greater or less
than another is expressed by writing the sign > or <between them, the opening of the angle being toward
the greater magnitude.

Examples. The expression

A=z B
means that the magnitude A is ectual to the magnitude B,

The expression

A> B
means that the magnitudeA is greater than the magnitude B,

The expression

A < B
means that the magnitude A is lesis than the magnitude B,

Sum and Difference of Magnitudes.
18. Def. The magnitude formed by joining two

or more magnitudes together is called their sum.
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BUM A2W DIFFERENCE. ^
The flum of two or more straight lines is the line obteined

by putting them end to end in the same straight line.
The sum of two angles ABC and PQR is the angle ABR

Sum of anglea

vZfn\Tl^n^ ^\''^^ ^^ *^ *^^ «id« ^^^ «o that thevertex (2 shall fall on the vertex B, and the sid^ QR on theopposite side of BC from BA,
Bef, If the angles ABQ and OBR are equal, ea<5h

me line 5C is said to bisect the angle ABUWhen from one magnitude a part equal to an-

Notation of Sum and Difference.

the!Si I^?;r w*""' T,^^i*^^^« i« expressed by writingme sign +, ;7^«*5, between them. ^

Examples. -^^^ ^- o

Angle ^^C+ angle CBR = angle ^5i?.
Line AB + line ^C= line A C.

wrifTi?!
5^^'*^''''! ^®*'^^^'' ^"^^ magnitudes is expressed byTmtmg their symbols with the sign -, minus, between the^^the magnitude taken away being on the riffht.'

'

l^XAMPLES. Angle ABR - angle ABC= angle CBR.
Line AC- line AB = line ^C.
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ELlnds of Angles.

30. Dqf. When a straight line AB standing on
another straight line CD
makes the angles ABC and
ABD equal, each of these

angles is called a right

angle, and the Une AB is

said to be pexpendioiilar

Right angles. to the line CD.

21. Def, When the two sides OA and OB of an
angle go out in opposite direc-

tions, so as to be in the same ^^ ^
straight line, the angle is called a <5

straight angle. straight angle.

We may conceive a straight angle to have its vertex at any
point of a straight line.

A straight angle is by definition the sum of two right

angles, because the sum of the two right angles ABC and
ABD is (1,8) the angle CBDy which is a straight angle.

23. Def. An acute angle is one which is less

than a right angle.

Acute angle. Obtuse angle.

23. Def. An obtuse angle is one which is greater
than a right angle.

Example of forming: Angles by Addition.
24:c Let us take a surface with a circular boundary

ABCDEFGH, and cut it into eight equal parts by four lines
all passing through its centre 0.

A circular disk of paper or pasteboard may be used to represent this
surface.

*



ADDITION OF ANGLES.

Then let us put the pieces to-
gether again, one by one, beginning
at A and going round in alpha-
betical order, and let us study the
angles thus formed.

On adding the angle once we
shall have a right angle AOC,

On adding it again we shall
have the obtuse angle A OD, greater
than a right angle, but less than a
straight angle.

On adding it again we shall
have a straight angle A OB, be-
cause we cut the figure so that
A OB should be in a straight line.

On adding it again we shall
ihave the convex angle A OF. This
angle will be greater than a straight
angle if we count it round in the
direction we have added its parts,
but it will be less if we count it in
the shortest direction from A
through II and G to F. The
relation of these two ways of con-
sidering an angle will be shown
presently.

By one more addition the angle
formed will be the sum of a right
angle and a straight angle, or of
three right angles, when measured
the one way, but equal to a right
angle when measured the other
way.

If we add the angle twice more -o
the whole space around O will be
filled up, and the sum of the eight—£,xvij TTiii yu inQ anp*' ^ AOA
counted all the wayrounu, »fhich is
called a perigon.
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Dtf. A perigon is equal to the sum of four right
angles or of two straight angles.

Angular Measure.
The following summary includes a recapitulation of results

from the preceding sections:

35. An angle is measured by how much one of the
sides must be turned to make it coincide with the other
side.

Since one side can be brought into coincidence with
the other by turning it in either direction, there are
two measures to every angle.

Example. In the figures the side OA can be brought into
coincidence with OD by turning it either in the opposite
direction to that in whtch the hands of a watch move, or in
the same direction.

The lesser measure of the
angle AOD.

The greater measure of the
angle AOD.

These two directions can be distinguished and the amount
of motion be measured by describing an arc of a circle from
one side to the other around the vertex of the angle as a
centre. This arc must pass through the space over which the
one arm must turn in order to coincide with the other.

36. In practice, angles are measured by degrees and sub-
divisions of a degree, in the following way:

Let a complete circle be drawn with its centre on the
vertex of the angle. Let this circle be divided into 360 equal
parts. Then each of these parts is called a degree.

The sides of the angle will cut the circle in two points.
Thft Tmrnhfir nf HAorrppa Tip+xirooTi +1^000 •K»i>i«+r. ;« +1,^ ,

of the angle, and the angle is said to be of that number of
degrees.
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luuuSuru

The two sides of the angle divide the circle into two arcs
corresponding to the two measures of the angle just de-
scribed.

Example. In the figure the side OA of the angle A OB
cuts the circle at 20°, and the side OB at 360° Counting
the degrees in both directions we see that the angle measures
240 m one direction, and 120° in the other.

oaf^^""^^^'. P® i"^ ^* *^® *^« measures wiU always be
obO , which IS therefore a perigon.

27. Def. The two measures of an angle are said
to be conjugate to each other, or to represent conJu-
gate angles.

^

.1, ^^l^o
*^® ^'^njiigate measures will always be less

than 180 and the other greater, except when each is
equal to 180°.

The greater measure is called a reflex angle. Hence,

.iJ^t: ^ r^^""
^""^^^ ^® """^^ ^^i^^ is greater than a

straight angle, or greater than 180°.

beenL?" ^"^^"'"'''^ ''^^*'°^' ^^ ^^«^'« ^^^ ^^"^ ^l^^t has

1 perigon
1 straight angle

• 2 straight angles

1 right angle
2 right angles
4 right angles

: 90°

180°

360°
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BXBRGISBS.
Note. The following exercises are intended to familiarize the pupil

with the idea of the magnitudes and measures of angles by causing him
to make an eye-estimate of the magnitude of each angle, and, where
applicable, a computation of their relations. It will be well for him to

make a small paper protractor in order that he may check his estimates

by some kind of measures, though rude.

Whore he is asked to draw angles, it is Intended that he shall prac-

tice the drawing without instruments, repeating hi8 first attempts until

he obtains a drawing as accurate as he can make it>by the unaided eye.

1. What kind of an angle is each of the following, arsJ

how many degrees do you judge it measures, the magnitude

a

-AO

B- o -A "Oi

of each angle heing measured from OA to OB in a direction

the opposite of that of the motion of the hands of a watch ?

2. What is the magnitude of each of th^* ^
''
n^'ag angles,

^0(7and(70J??

A B- -A

B-
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3 Draw an acute angle ^OA Bisect it. Draw another,
and trisect it. '

,

—

A

trisect u'^*''

*"" ''^^'''^ ''''^'''" ^'^''''^ ''^' ^'^"^ *''^*'^«^ "^^

6. Draw an angle of 176° and bisect it.

trisect u''*''
^ '^'^'^^^ ''''^^' ^"""^ ^''"'^ '^' ^'^^ ^"^"^^^ »»d

7. Draw a reflex angle and
bisect it on the convex side. Then
bisect the conjugate angle on the
other side. Estimate the number
of degrees in each of the angles
thus formed.

8. Here are seven straight
lines going out from the same
point and making equal angles
with each other. Now draw five
other figures formed respectively
of 6, 5, 4, 3, and 2 straight lines
going out from the same point
and making equal angles with
each other. How many degreesm each angle thus formed ?

9. Draw, by the eye, angles of
60°, 90°, 120°, 160°, 210°, 240°,
270°, 300°, 330°.

Comparison of Geometric Figures.

89. The only way in which we can decide whethertwo magnitudes are equal or unequal is by applying
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14 GENERAL NOTIONS.

one to the other, or applying some third magnitude

to both.

We are to think of the geometric figures as mBdo of per-

fectly stiff lines which can be picked up from the paper and

moved about without bo:iding or undergoing any change of

lorm or magnitude.

If two straight lines are to be compared we ^ay one upon

the other, and find whether the two c ds can be made to

coincide. If so they are equal ; if not, unequal. "We may
also take some measure (a scale of equal parts, for example)

and apply it first to one line and then to the other.

If two planes are to be compared, they may be applied

without change to each other. If they are of different shapes,

one may be cut to pieces and the parts laid upon the other.

If the latter can thus be exactly covered, the two surfaces are

equal ; if more than covered, the first is the larger ; if not

covered, the second is the larger.

Solids are compared by finding whether they will fill the

same space, one or both of them being cut to pieces if necessary.

But the geometer does not actually apply his figures to

each other, but only imagines them so applied. He is thus

able to learn things which are true of all figures of a certain

kind, whereas by actual measurement one can only learn what

is true of the particular figure which he measures. This will

be better understood when it is seen how theorems are demon-

strated.

Trace of a Fig^ure.

30. When we imagine a figure moved away, we may also

imagine that it leaves its outline fixed upon the paper. Such

an outline is called a trace. The trace will occupy exactly the

position which the figure itself occupied before being moved,

will be equal to the figure in every respect, and will be repre-

sented by the drawing of the figure. If another figure is

found to coincide with the trace, it will be identically equal

to the first figure.

Since figures are supposed to be movable, the beginner

may grasp the relation between a figure and its trace by

imagining that he marks around the figure with a pencil.

Then when the figure is taken away the marks will remain.
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CHAPTER III.

OF SYMMETRY.

Symmetry with Respect to an Axis.
31. Let us take the figure in the murgin, turn it over,

and put It back so that the line PQ
shall fall in its original position, but
the figure shall bo turned right side
left. It will then fall into the position

^ represented by the dotted lines "J'o
make this change of jiosition we may
suppose the ends of the line PQ io be
pivots, so that the figure can turn on
this line as on an axis. In turning
one side of the figure must be sup'

An unsymraetricai figure. P^^^^^ ^^ sink below the paT)er and the

^Gremair.unmove.l.""""'
'" "^ "'"''" '*' ^^"« '''^ "^

If we take this figure and turn it
over on the axis PQ, the right side will
tall on the trace of the left side, and
"«« versa, so that the figure will oo
cupy the same lines on the paper as be-
fore It was moved. Such a flgare is
said to be symmetrical with respect to

nWon-"
^'"""' ""^ ^"^^""^'k defi-

»«f
^'

J^f- .^ *»"'* '» said to be Q

tw ' ^^S turned over on ""^ *" «"<' "^'^ ^•

I'lT,*^?"'
every part of the fiimre i« ,> ti-g ..«-^«-

symmetry
"-evolution is called an axis of
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16 GENERAL NOTIONS.

BXBRCISBS.
1. Copy the following figures. Then imagine each one

turned over so that the line ^i^ shall be changed end for end,
and draw dotted lines showing where the rest of the figure

would fall.

E- —^r E' —F E- -FE /
E^

—

^' J E- -F E- -F E -F

2. Let each of the following figures be turned over on the
line PQ us an axis. Then draw dotted lines showing where
the figure will fall.

3. Draw the axis of symmetry of each of the following
figures. If there is more than one such axis, draw them all.

4. How many axes of symmetry can be drawn to a circle ?
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Symmetry with Respect to a Point.
,33. We may next suppose that the figure, instead ofbeing turned over IS turned half way round on a fixed pointwithout leaving the paper. For instance, suppose the an

A flgupe unsymmetrloal with respect (o the potat 11.

neied figure to have a pin stuck through it at the point Mand to be umed half round on that jln. It will then tal«up the position shown by the dotted outline.
'

„,i T!™n '''' ''«"'* •"*" ^"y "^""""J in *e same way, evervpart of It wiU occupy the position
^' ^

which the opposite part occupied
before the motion, and the position
of the figure will be represented by
the same drawing. Such a figure is
said to be symmetrical with respect
to the point M.

Hence the following definition:

34. D^. A figure is said to .<~-^». «. ««> point

«

h?rn!?r u'**''^
"^^ ""P*"* *» » point when, beingS is SL'°r'' "\^j^ p°^"*' «-ry P-' of th«

A figure symmetrical with
respect to the point M.

to a circle ?
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In the latter the figure does not leave the paper, but
simply turns on it without turning oyer. Every part of the
figure changes places with the part which is at an equal dis-

tance on the other side of the pivot point.

EXERCISES.
Copy the following figures. Then suppose them turned

half way round on the point M, and draw dotted lines show-
ing where the figure will fall.

M

M M M

^/ZA
> »

>

CHAPTER IV,

LOGICAL ELEMENTS OF GEOMETRY.

Definitions.

35- Def. A proposition is either a statement that

something is true, or a requirement that somethiug
shall be done.

A proposition affirming something to be true may
be either an axiom or a theorem.

36. Def. An axiom is a statement which we as-

sume to he true without proof.

For the axioms of geometry we try tc ^ake propositions

which are self-evident and so need no proof.
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37. Def. A theorem is a statement which requires
to be proved.

A proposition requii^ng something to be d(Jne may
be a postulate or a problem.

38. Def. A postulate is something which we sup-
pose capable of being done without showing how.

39. Bef, A problem is something which we must
show how to do.

40. Def. A demonstration is the course of rea-
soning by which we prove a theorem to be true.

41. Def. A corollary is a theorem which follows
from some other theorem.

43. Def. A lemma is an auxiliary theorem, to be
used in demonstrating some other theorem.

43. Def. A soholium consists of remarks upon
the application of theorems.

Axioms of Geometry.
44. Axioms of magnitude in general.
Axiom 1. Magnitudes which are each equal to the

same magnitude are equal to each other.

Symbolic expression of this axiom. From
Magnitude X = magnitude A,
Magnitude Y = that same magnitude A,

we conclude

Magnitude X= magnitude Y.

Ax. 2. If equals bemadded to equals, the sum will
be equal.

Symbolic expression. From

we conclude

and

X= Y,

A = B,

T -
V̂ . r>

jj
XT

r J-

A-\-Y=B^X.
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20 OBNBRAL NOTIONS.

Ax* 3. If equals be subtracted from equals, the
remainders will be equal.

Symbolic expression. From ^ ^

we conclude
A z= B,

X-A==r-B.
Ax. 4. Similar multiphjs of equals are equal to

each other.

Symbolic expression. If n be any number, then from

X==A
we conclude

n times JT == /i times A,

This may be regarded as a corollary from Axiom 2.

Ax. 5. Similar fractions of equal magnitudes are
equal.

Ax. 6. If equals be added to unequals, that sum
will be the greater which bias been obtained from the
greater magnitude.

Symbolic expression. From

we conclude

A > B,

A-{-x> B^ r.

Ax. 7. If equals be subtracted from unequals, that
remainder will be the greater which is obtained from
tne greater minuend.

Symbolic expression. From

we conclude

A > B,

X=Y,

A- X> B- r.

Ax. 8. The whole is greater than its part.
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45. Axioms of geometric relation.Ax 9. A straight line is the shortest distance bfitween any two of its points.
^isrance be-

Ax.10. If two straight lines coincide in two ormoymts, they will coincide throughout their whole

asiSS. ^^^^^^^^^----tersectinonly

Ax. 11. Through a given point one straight lin«can be dmwn and only one, which shall beMel toa given straight line.
P^^ranei to

The Demonstration of Theorems.

[encJto a'C^" " ^^^'""^ *» demonstration by refer-

the'hj^S*'on^hrot^ 'r". "f'
"»' eo^espondto

fnlfiUingthecondiS
' *™'^ P°^'"« ««"«>

designate ttom, mZv a«,™^^ ,^1"' ^°' '""'^ ""'y "^ «««« to
(reader.

• "™y ««« supposed to be conceiyed in tlie mind of tlio

thaf'ti./vil^^? *^° propositions are so relatfi,?
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Theorem I.*

48, A straight line can he bisected in only a
single point.

Here the hypothesis supposes that we take any straight

line whatever and bisect it. p

To enunciate the hypothesis we call a o b

one end of the line A and the other end B, and the point of

bisection 0.

Then the hypothesis means that the point is equally

distant from A and B.

The conclusion asserts that there is no other point than

on the line which is equally distant from A and B.

The proof is ^fEected by showing that to suppose any

other point having this property is impossible.

If there is such a point, call it Py and suppose it between

A and (because we may call either end of the line A),

Let us then suppose that PA is equal to PB.
Because P is between A and 0, AP will be less than A 0,

Because OB is by hypothesis equal to OA, PB, which is

greater than OB, will be greater than OA.
Therefore, if we suppose PA and PB equal, PA will

be greater than OA and less than OA at the same time,

which is absurd. Therefore there is no point on the line

except which is equally distant from the ends of the line.

Theorem II.

49. ^ straight line is symmetrical with respect

to the perpendicular passing through its middle

point

Hypothesis. AB,a straight line; 0, its middle point; PQ,

a perpendicular passing through 0.

* These simple theorems are presented partly as exercises and explana-

tions for the beginner, and partly as the- basis of subsequent theorems.

The demonstrations are not necessarily to be recited in full as given,

but the student should be encouraged and assisted in stating the sub-

stance of the reasoning in his own language.
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appose any

-B

Conclusion, The line AB is symmetrical with respect to
the axis PQ.

By reference to the definition of symmetry, § 83, the conclusion
is found to mean that if the

P line AB be turned over on the
line P^ as an axis, it will fall

on its own trace; that is, into its

original position; being merely
changed end for end.

Demonstration. Sup-
pose the line turned over
on the axis PQ, By hy-
pothesis and definition the
angles FOB and POA are

^ equal. Therefore, after the

nA -n * 11 • . X.
^*"® ^^ turned over, the sideOAmW fall into the position OB, and vice versa. (8 14)

Because the lengths OA and OB are equal (by hypothesis
]the point ^ will fall on 5, and vtce versa.

So the conclusion is proved.
Exercise for the pupil Prove in the same way that the

line AB is symmetrical with respect to the point as a centre
of symmetry (§ 34).

Theorem III.

50. All straight angles arid all right angles are
equal to each other, y ^/c

To prove the first part of this proposition it is sufficient'
to show that any two
straight angles we choose A— Q g
to take are equal.

The hypothesis will ^be that we have any two M ^
__j^

straight angles which we may call AOB and MQN.
By the definition of a straight angle the hypothesis willmean that 04 and OB go out from in opposite directions

nM /^?. '' * '*^^^^^* ^^^®' »^<i *^at thi© same is true of^^and OJV^.

mu^XavJ^ ?^*?'°^ ""^ ^^'^ hypothesis apart from its enunciationmust always be clearly apprehended by the student.
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m

The conclusion is that the angles A OB and MQN are

equal.

By the definition of equality in angles, (§ 14), this will

mean that if we apply A OB to MQN so that the side A shall

coincide with MQy then the side OB will coincide with QN,

^ This must be the case,
^—— —^B because two straight lines

coincide throughoutwhen

Q any two of their points

—N coincide. (§ 46, Ax. 10).M
Therefore the conclusion is proved, because, from the fact
that any two straight angles are equal, it follows that all are
equal.

Because a right angle ia, by definition, the half of a
straight angle, and because all straight angles are equal, it

follows from § 44, Axiom 6, that all right angles are equal.

Theoeem IV.

51. The sum of all the anglesformed on one side
of a straight line by lines

emanating from a point mi
it is a straight angle.

Proof. If be the point from
which the lines emanate and OB,
OC, etc., the lines emanating ^
from it, then, by definition (§ 18), the sum of all the angles,
AOB, BOO, etc., to DOE, will be the angle ^(9J?; that is,

a straight angle; because ^O^is a straight line.

62. Corollary. The sum of all the angles around a point
is equal to two straight angles, or a circumference.

ill!

Itlll!



BOOK 11.

FUNDAMENTAL PROPERTIES OF
RECTILINEAL FIGURES,

CHAPTER I.

REUTIONS OF ANGLES.

Definitions.

53. Def. A rectilineal figure is one which is

fonned by straight lines.

54. Def. A triangle is a figure formed by three
straight lines joined end to end.

55. Def. The three lines

which form a triangle are called

its sides.

56. The sides of a triangle

may be produced indefinitely. a triangle.

It is then called a general triangle.

Remark. Any three indefinite straight lines which inter-
sect each other in three different points form a general tri-

angle. See figure on following page,

57. An interior
angle of a triangle is

one between two sides,

measured inside the
triangle.

58. An exterior,
angle of a triangle is

Bbrterior angle.

nrio wlllrt"K Jo fr\^im\r\A 1~..^4-'..r.^^.. ^_.^ _J J J xT xJxa xviiiicu. MCl/WCCli a-uy JSIUfJciliU. Liie coiiiinu*
ation of another side.
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NoTB. The general triangle has six exterior angles in all.

Remark. When no adjective is applied to the angle of a
triangle an interior angle is meant. ^

The six exterior angles, e c e e e «, of the general triangle.

69. Def. When the sum of two angles is a right
angle, each is said to be the oomplement of the
other, and the two are called oomplementary angles.

Complementary angles. ABC and CBD are supplementary angles.

60. Def. When the sum of two angles is a
straight angle, each is said to be the supplement of the
other, and the two are called supplementary angles.

By definition, the sum of two angles ABG and CBD will

be a straight angle when the two
sides AB and BD lie in the same
straight line. Therefore: 0<j?

Corollary. If two supplemen-
tary angles he added, their extreme
sides will form a straight line. « »«<» ». * and c, c and d, d and

<*»" adjacent angles ; o and c are
bl. When two straight lines **PP<*^**»n«les,and8oare6andd.

cross each other four angles are formed, which we mav call
a, o. Cy and d.
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Any two of those angles which adjoin each other, as a and
h, are called adjaoent anglei.

By § 60 two such adjacent angles are supplementary.

62. Drf. A pair of angles contained between the
same two lines on opposite sides of the vertex are
called opposite angles.

63. Def. A transversal is a straight line cross-
ing several other lines.

64. Angles formed by a transversal When a transversal
crosses two parallel lines it

forms with them eight angles,

four on each line. Pairs of

these angles are designated

thus

:

The angles a, ft, g, and h are

called eiEterior angles. The
angles c, d, e, and /are called

interior angles. The pair c

and e and the pair d and/, on opposite sides of the transversal
and between the parallels, are called alternate angles.
The pairs a and e, b and /, c, and g, d and A, on correspond-
ing sides of the parallels and transversal, are called corre-
sponding angles.

Remarks on Straigrht Lines.

Q5. Every straight line may extend without end
in both directions. It is then called an
indefinite straight Une.

Sometimes we have to consider a line extend-—g ing out only in one direction, and terminating
at a point in the other direction.

Example. In considering an angle, the two
sides are suppose to terminate at the vertex.

Sometimes we have to consider a straight line con-
tained between two definite points which are its ends.
Such a piece is called a finite straight line.
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66. JOf. The perpendicular bisector of a finite
straight me IS an indefinite stmightUne passing a^
right angles through its middle point.

Theorem I.

67. If two straight lines intersect each other, the
opposite angles will be
equal.

Hypothesis. AB and
CD, two straight lines; 0,
their point of intersec-
tion; a, the angle DOB;

, ^^ ,
«'» tlie angle AOC; h, the

angle DOA; h', the angle BOG.
. Conclusions. Angle a = opp. angle a\

Angle b = opp. angle b\
Proof. 1. Because the sum of the angles BOD and DOA

IS the angle BOA, and OA and 0^ are in' a straight line.
Angle a -f angle b = straight angle. (§§ 18,' 61)

2. In the same way it is shown that
Angle a' -f angle b = straight angle.

3. Comparing (1) and (2),

.Angle a -\- angle b = angle a' + angle b. (§ 44, Ax. 1)
4. Take away from these equal sums the common angle b

and we have
'

Angle a = angle a' {§ 44, Ax. 3). Q.E.D.
In the same way we may prove that

Angle J = angle J'. Q.E.D.

Theorem II.

68. If a transversal crossing two straight lines
makes the alternate angles equal, the two straight
lines are parallel.

Hypothesis. XY, a transversal crossing the lines AB end
CD^t the pointsM and N^ and making the angle ^JfA^equal
to its alternate angle MlSD.

Conclusion. AB\\ CD.
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Proof. Bisect the length MN ski the point P.
Let the figure be turned

half way round, forming
a new figure with the ac-
cented letters.

Apply the new figure to
the old one so that the
transversal shall be turned
end for end, and the point
JSf shall fall upon M,
Then—

1. Because JVM'=M]V,
Point M' = position JV.

2. Because, byhypoth.,

Ang.A'M'J!i'= &iig.M^I),

and

Ang. iriV2>'=ang.^JfJV,
therefore Line M'A'~ trace iVZ>;

)

Line JV'B' = trace MaI\ (§ ^*)

3 Therefore the whole line A'B' will fall upon CD, andCD' upon AB (§45, Ax. 10).

4. Suppose, if possible, that the lines AB and CD, when
produced, meet in the direction B .and D. Then, when the
figure IS inverted the liies A'B' and C'D' will meet in the
direction B' and D\ Because the new and old figures coin-
cide when applied,^^ and i>Cmust also,when produced, meetm the direction ^ and Cas well as in the direction B and D

5. But the two straight lines AB and CD cannot meet
each other m two points (§45, Ax. 10, Cor.).

Therefore they do not meet on either side.
Therefore they are parallel, by definition (§ 9). Q.E D
^oroUary 1. If any two corresponding angles, as C^Y andAMJV, are equal, then, because J/JVZ) is opposite to CNV it

IS equal to It (Th. L), and the alternate angles MND and
^^jYare also equal. Hence—

...^*^'
^^^"^ i^'^^^^^^^rsal crossing two straight lines makesany two corresponding angles equal, those lines will be parallel
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70. Corollary 2. Any two perpendiculars to the same

straight line are parallel.

For such straight hne is a transversal crossing the two

perpendiculars, and making the angles all right angles.

Theorem III.

^1, If a transversal cross two parallel straight

lines, the four alternate and corresponding angles

are equal to each other, and the other four are each

equal to the common supplement of thefirstfour.

Hypothesis. XF, a transversal crossing the parallel lines

AB and CD in the points and Q^ and forming with them

the four alternate and corresponding angles

a, a', a"f a'",

and the other four alternate and corresponding angles

h, V, b
tt \nt

.ttt

\ttt

Conclusions.

1. Angle a = angle a' = angle «" = angle a'

II. Angle b = angle b' = angle A" = angle b'

III. Any angle a -f- any angle b — straight angle.

Proof. If the alternate angles a' and a" are not equal,

draw through the line A'B', making the angle ^'0^ equal

to its alternate angle OQD. Then

—

I. Because the alternate angles are equal.

Line yl'^' II Hne CD. '
(§68)

. But AB II CD, by hypothesis.



(§67)

Q.E.D.

Q.E.D.

(§51)
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Therefore we should have passing through two straight
hues AB and A'B' each parallel to CD, which is impossible
(§ 45, Ax. 11). Therefore

Angle a' = angle a".
Also, Angle a = angle a'.

\

Angle a'" = angle a", f
Therefore

Angle a = angle a' = angle «" = angle a'".
II. In the same way we may prove that
Angle b = angle b' — angle b" = angle *'".

III. Because ^ 0^ is a straight line.

Angle a + angle b = straight angle.
(

But all of the four angles a and b are equal. Therefore
Any angle a + any angle b = straight angle. Q.E.D.

72. Corollary. If a line be perpendicular to one of two
parallels, it will be perpendicular to the other also.

Theoeem IV.

73. The sum of the three interior angles of a tri-
angle is equal to a straight angle.

Hypothesis. ABC, any triangle.

Conclusion. Angle A + angle B -f angle C = straight
angle.

Proof. Through C draw a straight line MJV parallel to
the opposite side AB. Then

—

1. Because CA is a m _^
transversal between the

/s: - - W

parallels AB and MN,
Angle J= alt. angle MCA

(§ 72).

2. Because CB is a
transversal between the same parallels,

Angle B = alternate angle BCJV.
3. Angle C = angle A CB (identically).

4. Adding these three equations,

Auffle^ 4- anorlo /? 4- nno-lp C— Mf^ a _]_ Arin \ T>n\r

~ angle MCN,
= straight angle.
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Therefore

Angle A-\- angle B + angle C = straight angle. Q,E.D.

74, Corollary 1. If two angles of a triangle are given,

the third angle mag be found by subtracting their sumfrom
180°.

"75. Corollary 2. If two triangles have two angles of the

one equal respectively to two angles of the other, the third

angles will also be equal.

EXERCISES.
1. If a triangle has two angles each equal to 60°, what

will be the third angle?

2. If one angle of a triangle is a right angle, and one of

the remaining angles is double the other, what will be the

value of these two angles?

3. Prove that a triangle cannot have more than one right

angle.

Theorem V.

76. Each exterior angle of a triangle is equal to

the sum of the two interior and opposite angles.

Hypothesis. ABC, any triangle. /), any point on AB
produced.

Conclusion. Exterior angle CBD = angle A + angle C.

Proof. 1. Because ABB are in one straight line,

Angle B + exterior angle

CBD = straight angle.

2. Angle B + angle A -f an-

gle C= straight angle. (§ 73)

3. Cc':aparing (1) and (2),

Angle A + angle B + angle C= angle B + ext. angle CBD.
4. Taking away the common angle B,

Angle A + angle C = exterior angle CBD. Q.E.D.

77. Corollary. Any exterior angle of a triangle is greater

than either of the interior and opposite angles.

78. T)ef. Two •nnrnllpl linpa. pa,r»h DTiinoc c\y\t ^rc\xn a

point, are said to be similarly directed or oppositely

lli
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directed according as they go out in the same direc-
tion or in opposite directions fioni their startine-
points. °

Theoeem VI.

79. If the two sides 0/ one angle are respectwelv
parallel to the two sides of another, and similarly
directed, these angles are equal.

AS «'^1 ^r? """"f''
^^^ ^'^^ ^^^ h^^i^g the sides

aJ«n f
^ParaUel and similarly directed, and the sides^Pand^g also parallel and similarly directed.

Condmion. Angle JVBQ = angle MAP.
rroof. Produce the side JVB, if necessary, in either

dn^ction nntil it shall intersect the side AP o the her
angle, also produced if necessary.

Produce NB past B to any point 8.
Let C be the point of intersection of JSTB and AP. Then—

crosslnftrm!
""^ " '"''''' '' ""^^ '"' ^ "^ " ^ '''''''''''''

Angle Jf^P = alternate angle ^C^. (§ 7i>

Angle iV5^ = angle A OJS,
3. Comparing (1) and (2),

Angle iV:^^ = angle Jf^P. Q.E.D.

the other BiiMh^^ '' *^' °°' ^°^^" ^« ^^ ^^^ "<^t <^o^tamed withinotner. But the same reasoning can be applied to both.

n.f^'
^'?^^^^^^y 1- Jf t^e sides of ttoo anqhs are varalMand oppositely directed, the angles will l>e equT ^ '^
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81. Corollary 2. If the sides are parallel and the one
pair are similarly directed but the other pair oppositely
directed, the angles will he supplementary, ^

Theorem VII.

S2. TJie Usectors of two adjacent angles on thesame straight line are perp^
dicular to each other. \

Hypothesis. BOO smd COA,
adjacent angles on the straight line
^i?; A, OX, the bisectors of these

^
angles.

^

Conclusion. OL J. lO, that is, ZOK= right angle.
Proof. 1. By hypothesis,

^

Angle COir= | angle BOO.
Angle COL = ^ angle COA.

2. Therefore

Angle A^OL = COR + COL,
= i{BOC-i-COA),
= i straight angle BOA,
= right angle. Q E D

Corollary. Since an angle can have but one bisector, we
conclude: '

tn ifh ^/^'^V.^^^7^^,
^^' ^^^^^^ Of an angle, perpendicular

to the bisector, bisects the adjacent angle.

Theorem VIII.

sa^fltrXMl^'
'^'"'' <^i'-.V.««^fe. arc intke

Hypothesis. AOL, BOC, two ^
opposite angles formed by the > /

straight lines AB and CD; OJ,
^

the bisector of BOC; OK, the Msec- *

tor of A OB. y^ B

Conclusion. OJ and OK are in ^.
the same straight line.

Proof. 1. Because the angles
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BOJ and AOK mq halves of the equal opposite angles BOGy
AODy they are equal (§67).

2. Angle AOJ = angle AOB - angle BOJ.

Angle KOJ = angle AOJ -\- angle yi Oif,

= straight angle AOB - BOJ-^AOK,
Or, 30J and ^OA" being equal,

Angle KOJ = straight angle,

and the lines O^and- OJ are in one straight line. Q.E.D.

86. Corollary. The four bisectors of the four angles

formed by two interseating straight lines form a pair of
straight lines perpendicular to each other.

EXERCISES.
1. If, in the diagram of Th. II., angle BMX = ^b°, what

will be the values of the other seven angles of the figure?

2. If, in the diagram of Th. VIII., angle BOJ = 20°, com-
pute the values of the angles COAy AOD, and DOB.

3. Draw a triangle ABCy and suppose angle A = 60°, angle
B = 40°. What angle will the bisectors of these anglesA and
B form with each other?

Note. Apply Th. IV. to the triangle formed by the bisectors and
the side AB.

4. What will be the values of the three exterior angles of
the preceding triangle 4BC?

5. If, in the preceuing triangle ABO, the bisector of the
angle A be continued until it cuts the side BC, what angles
will it form with that side?

6. Compute the same angles algebraically in terms of the
angles AyBy and (7, and show that the difference between the
two adjacent angles formed by the bisector with the side BO
is equal to the difference between the angles B and C.

7. If, in a triangle ABO, exterior angle A = 85° and ex-
terior angle B = 150°, what will be the three interior angles?
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CHAPTER II

REUTIONS OF TRIANGLES.

Equilateral
triangle.

Isosceles
triangle.

Definitions.

86. Definition. An equilateral triangle is one in
which the three sides are equal.

Def. An isosceles triangle

is one which has two equal
sides.

Def. An acute-angled tri-

angle is one which has three

acute angles.

Def. A right-angled triangle is one which has a
right angle.

Def. An obtuse-angled triangle is one which
has an obtuse angle.

87. Def In a right-

angled triangle the side

opposite the right angle

is called the hypotlie-
nuse.

Blght-angled

triangle.

Obtuse-angled
triangle.88. Def When one

side of a triangle has to be distinguished from the

other two it is called a base, and the angle opposite

the lase is called the vertex.

Either side of a triangle may be taken as the base, but we
commonly take as the base a side which has some distinctiTe

property.

In an isosceles triangle the base is generally the side which
is not equal to another.

In other triangles the base is the side on which it is sup-

posed to rest.
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89. i>(?/. An obUque line is one which is neither
perpendicular nor paraUel to some other Hne.

90. JD^ Segments of a straight line are the
parts into which it is divided.

Theorem IX.

91. In an isosceles triangle the angles opposite the
equal sides are equal to each other.

Hypothesis. ABC a, triangle in which
CA = CB.

Conclusion. Angle A = angle B.
Proof. Bisect the angle C by the line

OD, meeting AB in B. Turn the tri-
angle oyer on CD as an axis. Then—

1. Because, by construction,

Angle BCD = A CD,
Side CA = trace CB, and vice versa.

3. Because, by hypothesis, CA = CB,
Point B = position A,

^^^ Point ^E position^.
3. Therefore line AB = traxie BA, being turned end for

end.

4. Therefore angle CU^e trace CBA.
5. Therefore angle CAB = angle CBA (§ 14). Q.E.D.
Corollary 1. Since, after being turned over, the triangle

lalls upon its own trace, the triangle is symmetrical with
respect to the bisecting line. Hence—

93. The bisector of the vertical angle of an isosceles tri-
angle Is an axis of symmetry, and bisects the base at right
angles. ^

93. Cor. 2. Every equilateral triangle is also equiangular.

Theorem X.

94. Conversely, if two angles of a trianale are
mal,^ the sides opposite these angles are equaL and
trie tnanale i.t iananplfis^the triangle is isosceles.
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Hypothesis. ABC, a triangle in which angle A = angle -ff.

Conclusion. Side CA = side CB.
Proof. Through the middle point />

of the side AB pass a perpendicular, and
turn the figure over upon this perpen-
dicular as an axis. Then

—

1. Because the axis bisects AB per-

pendicularly,

Point A = position B. ) ,„ .q.

Point B = position A. )
^» ^^

Therefore AB = trace BA.
2. Because angle A = angle B,

Side AC- trace BC
Side BC=tTace AC.

3. Therefore the point of intersection C7will fall into its

original position.

4. Therefore ^C=jrC. Q.E.D.

95. Corollary 1. A line Usecting the hose of an isosceles

triangle perpendicularly

Passes through its vertex,

Is an axis of symmetry, and
Bisects the angle opposite the base.

96. Cor. 2. Bvery equiangular triangle is also equilateral

Theorem XI.

97. If in any triangle one side be greater than
another, the angle opposite that side will he greater
than the angle opposite the other.

Hypothesis. ABC, Vk triangle

in which
AB> BC> CA.

Conclusion.

Angle C > angle A > angle B.

Proof. On a greater side, CB,
take CD equal to a lesser side, ^^

CA, and join AD. Then

—

1. Because the line AD falls within the triangle,

Angle CAB > angle CAD.
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2. Because CA = CDy
Angle CAD = angle CDA.

89

(§03)3. Because CDA is an exterior angle of 'the triangleAlS
A 1?

^^^^^/^ODA> angle ABD, (iii\

from Ir ^^
^'^

"' '"' "^'^ '^^^ > ^^^'-S
Angle GAB > angle ^^Z>.m tne same way may be shown.
Angle C> angle ^. Q.E.D.

Theorem XII.

98. CouTiersely, if one angU o^ a triavaJp h.

Hypothesis. ABC, a triangle in which
-^^gleO angle ^ > angle ^. '

^^Proof. Prom(7draw CD, making angleACD = angle (7^A
1. Because angle ACD z= angle CAD,

AD = CZ>.
'

/£> q;.x

or, from (1),

AB^CD + DB,
3. Because CB is a straight J

hne, ^ ^
1^ -^B

4. Therefore, from (2),

0. in the same way may be shown
BC>AC. Q.E.D.

(Ax. 9)

the order ofmagmtude of their opposite angles.

the
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That Is, if

Angle A > angle B > angle C, then
Side BC> side AG> side AB,

and vice versa.

Theorem XIII.

100. Iffrom any point within a triangle lines he
drawn to the ends of the hase^ the sum of these lines
will he less titan the sum of the other two sides of the
triangle, hut they will contain a greater angle.

Hypothesis. ABC, any triangle; P, any point within it.

Conclusions. I. AF -{ FB < AC -^ CB.
II. Angle AFB> angle ACB.

Froof. Continue the line AF until it meets the side CB
in Q. Then—
(1)1. AQ<AC-{-CQ.{Ax.9)

2. Adding QB to both sides

of this inequality, we have

AQ -{ QB < AC -\- CQ -}- QB;
(Ax. 6)

that is, A."

AQ-\-QiJ<AC-^CB.
3. Abo, in the same way,

FB<FQ-^QB. (Ax. 9)

4. Adding ^P to both sides,

AF + FB<AF + FQ-\- QB,
or AF + FB < AQ -\- QB.
Comi)aring (4) and (2),

AF + FB <AC+CB. Q.E.D.
(II) 5. Because FQB is an exterior angle of the triangle

ACQ,
Angle FQB > angle A CB.

6. BecauseAFB is an exterior angle of the triangle FQB,
Angle AFB > angle FQB,

7. Comparing (5) and (6),

Angle AFB > angle A CB. Q.E.D.

:iih::ii
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Theorem XIV.

101. HVom a point outside a straight line only
one perpendicular can be drawn to such straiqht
Line, and this perpendicular is the shortest distance
from the point to the line.

Hypothesis. AB, any line; P, any
point without it; PO, u perpendicu-
liir from P on AB] PQ, my other line
from P to A B.

Conclusions.

I. PQ is not perpendicular to AB.
II. PO < PQ.

Proof. Turn tlie figure over on
AB m [in axis, so that the jmint P
shall fall into the position P'. Then—

1. Because AOP is a right angle,
AOP' is also a right angle, and
POP' lie in a straight line (§ 60, Cor.).

2. If PQA were also a right angle, it could be shown in
the same way that PijP' is a straight line, and there would
be two straight Imes POP' and PQP' having the points Pand P common, which is impossible (§ 45, Ax. 10, Cor.).
Iherefore PQA is not a right angle. Q.E.D

3. Because PO = OP', and PQ = QP% we havePO = iPP';PQ = ^^PQ.^Qp.^^
But pp' <PQ-{- QP'. (8 45 Ax 9^
Therefore, taking the half of these unenual quantities,' we
have PO < PQ. Q.E.D.

'

Theoeem XV.
103. Two oblique lines from a point, cutting a

straight line at equal distances from the f of the
perpendicular, are equal in length, and man., \qual
angles with the line.

^

Hypothesis. AB, any straight line; P, any point outside
It; PO, the perpendicular from P to AB, meetincr ABinG
M, iV; two points on the line AB, such that 0M^= 0N\

^
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Conclusions, I. PN=PM.
II. Angle PMO = angle PNO,

Proof. Turn the figure over on PO as an axis. Then—
1. Because angle POM = p

angle POiV^ (hypothesis),

O^E trace OB.
2. Because OM =z ON,

Point M= JSr.

3. Therefore PM = PJV,

and angle PMO = angle PiVO.
Q.E.D.

Theorem XYI.

103. (y two oblique lines drawn from a point to

a straight line, that which meets the line at the greater
distance from the foot of the perpendicular is the
longer, and makes the lesser angle with the line.

Hypothesis. AB, any
straight line ; P, any point

without it ; PO perpendicular

to AB
\ Q, R, any two points

on AB, such that 0R> OQ.
Conclusions. I. PR > PQ.

II. Angle PRO < angle PQO.
Proof. Turn the figure over

on ^P as an axis. Let P' be

the point on which P shall

fall. Then—
1. Because P'Q = PQ, and P'P = PR,

PQ = UPQ + QP').

PR = \{PR-\-RP').
2. If Q is on the same side of with R, the point Q will

be within the triangle PRP'. Therefore
ppj-ppf'-^pnj-np'

and, taking the halves of these unequal quantities.

PR > PQ. Q.E.D.
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3. If ^ is on the opposite side of from R, take another
point Q on the same side.

The two lines PQ wiP then be equal to each other (§ 102).
The second point Q will fall between and i2 (hypoth.).
4. Therefore we shall still have

PR > PQ. Q.E.D.
5. Because PQO is an exterior angle of the triangle PQR,

Angle PRQ < angle PQO (§ 77). Q.E.D.

I

9

Theoeem XVIL
104. I. Mery point on the perpendicular bisector

of a straight line is equally distantfrom the extremi-
ties of the line.

II. Every point not on theperpendicular bisector
is nearer that extremity t(mard which it lies.

Hypothesis. AB, a straight

line; 0, its middle point; OP, a
perpendicular from 0; P, any
point on this perpendicular; Q,
a point on the same side of the
perpendicular with B.

Conclusions. I. PA = PB.
II. QB < QA. /

Proof. 1. BecausePO 1. AB, A^
and ^ = OBf we have

PA = PB. (§ 102)
2. From Q drop a perpendicular QO' upon AB. Then

QO' II PO. (§ 70)
Therefore 0' falls on the side of toward B, and

O'B < 0A\
Therefore QB < QA (§ 103). Q.E.D.

105, Corollary. Every point equally distant from the
extren. :Hes of a line lies upon the perpendicular bisector of
the line.

For, if it did not lie on this hisenf.nr if. nnniA r./xf r^«

equally distant from the extremities without violating conclu-
sion II. of the theorem.

1

•..

O'

\ \

:iB

I'

I

m

1
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Theorem XVIII.

106. EGery point in the bisector of an angle is
equally distantfrom the sides of the angle; and every
point within the angle, hut not on the Usector is
nearer that side toward which it lies.

'

Hypotlitsis, MON, any angle; and OQ, its bisector, so
that angle MOQ = NOQ ; P, any
point on OQ-, T, a point within the
angle, but not on OQ-, PR, FS, per-
pendiculars to OM and ON; TU,
TV, perpendiculars from T to OM
and OJV^.

Conclusions. I. PR = PS.
11. TU> TV.

Proof I. Turn the figure over on the axis OP. Then—
1. Because angle PON= POM,

Line 0M= trace ON, and vice versa.
2. Because PR is a perpendicular dropped from P on R,

PR = trace PS. (Th 101)
3. Therefore Point R = S,md. \ •

J

PR = PS. Q.E.D.
Proof II. Let Q be the point in which TU crosses the

bisector OQ. From Q drop the perpendicular QW nvon ON
Join TW. Then—

4. Because TV is a perpendicular and TWm oblique line
to ON,

TW>TV. (§101)
5. Also, TQ^QW>TW. (Ax. 9)

Or, because QU=QW (I.),
^ ^

TQ^QU=TU>TW.
6. Comparing with (4),

TU> TV. Q.E.D.

107. Corollary. Every point equally distant from two
non-parallel lines in the same plane lies on the Usector of the
angle formed hy those lines.
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Theorem XIX.

.7. i^^* ^ two triangles have two sides and the in-eluded angle of the one equal
to two sides and the included
angle of the other, they are
identically equal.

Hypothesis, -4.5 (7and MNP,
two triangles in which

PM^ CA.
PJ^= CB.

Angle P = angle O.

Conclusion. The two tri-

angles are identically equal.

H SZ'-^' .^^^^J
*.^' ^""^^^^^^ ^^^ *«^^O in such mannertha the vertex P shall fall on C, and PM on CA. Thr~

1. Because PM= CA,
Point if= points.

3. Because angle P = angle C,

Side PN~CB. /g 1,^
3. Because PN= CB, ^^ '

Point JV^= point 5.
4. Because M=A and N= B,

Line MN~ line AB. (§ 45, Ax. 10, Cor.

)

Therefore every part of the one triangle will coincidewith the corresponding part of the other, and the two trT
angles are identically equal by definition (§13). Q. E. D.

Theorem: XX.

.^/^^; ^ ^T ^l^'^^'Oles haw a side and the two
adjacent angles of the one equal to a side and the

tual ' ^^' ''^^'^' ^^''^ ""^^ ^^e7^^^ca%

Hypothesis. ABCmd. MNP, two triangles in which
AB = MJV.

a »% /v I r\ A —— —1 _ H .T"

Conclusion.

Angle B = angle N.
The two triangles are identically equal.
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Proof. Apply the triangle ABO to the triangle MNP in

such manner that A shall coin-

cide with Mf and AB with MN,
Then—

1. Because AB = MNj
Point B = point iV^.

2. Because angle ^= angle M,
SideAC= aide MP. ^^

3. Because angleB = angle JV",

Side J?(7= side iVP.

4. Because the sides A and
^C fall upon MP and iVP respectively, the vertex C will fall

upon the vertex P.

Therefore the two triangles coincide in all their parts and
are identically equal.

. Q.E.D.

Theorem XXI.

110. If two triangles have the three sides of the
one respectively equal to the three sides of the other,
they are identically equal, and have the angles op-
posite the equal sides equal.

Hypothesis. Two tri-

angles, ABCm.dDEF,
in which

AB = DK
BG = EF,
CA = FD.

Conclusion. The two
triangles are identically

equal.

Proof. Take up the triangle ABC and
apply the side ^i5 to the equal side DE oi

the other triangle, letting the vertex C fall

on the opposite side of DE from that on
which the triangle DEF lies.

Let C" be the point in which the vertex C falls.

Join FC. Then—
1. Because FD == AC, wid DC — AC, it follows that

!/

%'
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FD = DC, and the triangle FBC is isosceles. Therefore
Angle DFC = angle DC'F, (§ 91)

2. For the same reason the triangle FFG' is isosceles, and
Angle BFC = angle FC'F.

3. Adding the equations (2) and (1), we find
Angle BFC + angle HFC = angle I)C'F-\- angle BC'F.
But Angle DFO'+ angle BFO' = angle i9i^^.

Angle DC'F-{- angle EC'F= angle />C"^.
Therefore

Angle DC'iS' = angle DFE.
4. Butangle^CJ5 = angle Z)C"^, by construction. There-

fore

Angle ACB = angle i)i?!£'.

5. The two giyen triangles, having the angle C= angle F
and the sides which contain these angles equal, are identically
equal (§108). Q.E.D.

^

Theoeem XXII.

111. If two triangles agree in the lengths of two
sides and also in the angle opposite one of these sides,
the angles opposite the other of the equal sides will be
either equal or supplementary, and if they are equal
the triangles are identically equal.

BD E DE P

Hypothesis, Two triangles ABC and DBF, in which
CA = FD.
CB = FK

Angle A = angle D,
Conclusion. Either angle E= angle B or

Angle E = straight angle — angle B,
and in thfl formfir ostap. t.liA twn frianorlfifl aro irlAyifi/Jollir AiNnol

Proof. Apply the triangle DEF to the triangle ^^C in
such manner thatDF shall fall on the equal side A C. Then

i|;

'h
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Kl

\

B D E D

1. Because i>i^= ^C,
PointDE^; point i^E a

2. Because angle D = angle A,
Base I)E= base AB.

3. Because F.E = CB, the point B will fall on a point of

the base AB which is at a distance from C equal to CB,
4. There will be two such points equally distant from the

foot P of the perpendicular from C on AB (§ 103).

Because FF! = CB, one of these points will be B. Let B'
be the other.

5. If iSf falls on 5,
Triangle ABC= triangle DBF, identically.

6. If B falls on B', then, because CB' = CB, the triangle

CB'B will be isosceles, and
Angle CB'P = angle CBP, (§91)

7. Because AB'P is a straight line.

Angle CB'A = supplement of angle CB'B,
= supplement of angle CBP. (6)

8. But in this case angle CB'A = angle B. Therefore

Angle B — supplement of angle CB'P,
= supplement of angle B (7). Q.E.D.

113. Corollary. If the triangle ^5C should be right-

angled at B, we shall have

Angle B = straight angle — angle B,
and the two possible angles B would have the same value.

Hence the two triangles would then be identically equal.

Scholium.

113. The nrecedinsr theorems of the idftutitv of triaticyl«g

are also expressed by saying that when certain parts of a
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A hinged triangle.

triangle are given, the other parts are determined. T>he
parts of a piano triangle are the three sides and the three
angles.

The three angles ai'e not all independent, because whenever
two of them arc given the third ftiay be found by subtracting
their sum from a straight angle (§ 74).

Whenever three independent parts of a triangle are given
the remaining parts may be found. In other words, when
three independent parts are given there is only one triangle
(or, in the case of § 111, two triangles) having those parts.
When the three sides of a triangle are given, we may imagine

ourselves to have three stiff thin rods which we can fasten
end to end in the form of a tri-

angle. When the angles are not
given, we may suppose the rods to
be fastened together by hinges at
the angles.

Theorem XXI. shows that al-
though the hinges may be quite

free the rods cannot turn upon them when linked together.
If they could turn, we could make the rods into several
triangles by turning the rods on the hinges, and these tri-
angles would not be identically equal.

When two sides and the included angle, as AC, BO, and
the angle (7 are given, which is the case corresponding to
rheoi;em XIX we must suppose the side AB removed and
the hinge at C tightened, so that the two rods cannot turn,
and we are required to find a third rod of such length as
to fi into the space AB. Theorem XIX. shows that this rodmust have a definite length.

Suppose next, as in Theorem XXIL, that AC, BC, md
the a^gle A are given, while the base AB and the angles Band C are not given. We
may then suppose a long
rod extending out from A.
The side AC of given
length must be fastened at
A, and the hinge tight-

^
„

ened so that AG cannot turn, becaule the angle'^ is given.

Bf'--^ --

f' !
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The rod CB of given length is hinged at C, and this hinge is

left loose because the angle C is not given. We are then to
swing the side CB around on until the end B touches the
base, when it is to be fastened and the angle well fixed.

There will be two points, B' and B', where the junction may
be made, and only two. We may choose which point we will,

and the triangle will then be fixed. The two angles at B will,

by the last theorem, be supplemen-
tary.

If CB should be shorter than
the perpendicular from C upon /- \

AB, there would be no triangle

which could be formed from the
given parts. A

SuppoF;e, lastly, thaj; one side AB and the two adjacent
angles A and B are given, the other two sides being of in-
definite length. We must then turn the two sides on the
hinges and tighten the latter at the required angles, when the
sides will cross each other at a definite point, and will make
a definite angle with each other. This corresponds to the
case of Theorem XX.

^

B

i'l
Theoeem XXIII.

114. If two triangles agree in the length of two
sides, that triangle in which these two sides include
the greater angle will have the greater base.

Hypothesis. ABC&nd. DBF, two triangles in which
AB = DE,
BC = BF,

Angle B < angle B.

Conclusion. Ba.8e DF> hase AC.
Proof. Apply the side ^^ of the one triangle to the

equal side DF of the other in such manner that B shall fall

upon F, and A upon D. Let C be the position in which G
falls.

Bisect the angle C'FF, and let iVbe the point in which
the bisector meets the base DF. Join C'iV. Then—
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1. In the two triangles C'^JVand FEN,
Angle NEC = angle NEF, by constrnction.

Side EC = side EF, by hypothesis.
Side E2i = side EN, identicaUy.

01

Therefore triangleENC = triangle ENF, identically, (S 110)
and NG' = NF.

2. Therefore DF= DN-\- NF= DN-\- NG\
3. Because ^ 67 is a straight line,

I)N+NO'>DO\ (Ax 9)
Comparing (2) and (3),

* '

DF>Da%
®r DF>AO. Q.E.D.

115. Corollary. Conversely, if two triangles have two
sid^softhe one equal respectively to two sides of the other, hut
the third sides unequal, the angle opposite the greater of the
unequal sides will he the greater.

For these angles could not be equal without violating
IheoremXIX., nor could the angle opposite the lesser side
De greater without violating Theorem XXIII.

Theorem XXIV.
IX^. If three or more lines, maJcing equal anglesmm each other, he drawn from a point to a straight

tine, tji'^tmir^ of lines will intercept the greater length
which ISfartherfTorn the perpendicular.

Hypothesis. PC, a straight line; 0, any point outside of
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\

it; OAy OB, OGy three lines from to PC, making angle
A OB = angle BOC\ OP, the perpen-

dicular from upon P,

Conclusion. The intercept BG, on
the side of OB away from the perpen-

dicular, will be greater than the inter-

cept AB, on the side toward the per-

pendicular.

Proof, From B draw the line BSy
making angle OBS — angle OBA, and
meeting OG'in S. Then

—

1. Because, in the triangles OBA and OBS,
Angle BOA = angle BOS (hypothesis),

Angle OBA = ajigle OBS (construction),

Side OB = side OB identically,

these triangles are identically equal (§ 109), and
Angle OSB (opp. OB) = angle OAB (opp. OB).

Side BA = side BS.
2. Therefore angle GSB (supplement of OSB) = angle

OAP (supplement of OAB).
3. Because G is farther from P than A is.

Angle SGB < angle OAP.
Therefore Angle SGB < angle GSB,
and side BG (opposite greater angle GSB) > side BS (oppo-
site lesser angle SGB). (§ 98)

4. Comparing with (1),

BG>AB. Q.E.D.

(§ 103)
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CHAPTER III.

PARALLELS AND PARALLELOGRAMS.

Definitions.

117. Def. A quadrilateral is a figure formed
by four straight lines joined end to end.

The sides of a quadrilateral are the lines which
form iii.

118. Def. A parallelogram is a quadrilateral in
which the opposite sides
are parallel.

Whenever two parallels

cross two other parallels, the
intercepted portions of the
parallels form a parallelogram.

119. Def. ThediagO- a parallelogram.

nals of a quadrilateral are two lines joining its oppo-
site angles.

Theorem XXV.
120. Straight lines which are parallel to the same

straight line are parallel to each other.
Hypothesis. The line i par-

allel to the line a. The line c
also parallel to the line a. a—

Conclusion. The lines i and
c are parallel to each other. 5

Proof. Draw any transver- /
sal as ifiV^across the three lines,

"

"

"

—70
intersecting them in the points /
A, B, a N

1. Because h is parallel to a,

Angle 5 = corresponding angle ^. (871)

Angle O = corresponding angle A,

M
/

/

/

IT
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3. Comparing (1) and (2),

Anglo B = corresponding angle C
4. Therefore line b || lino c (§ 69). Q.E.D.

Theorem XXVI.

121. The opposite angles of a parallelogram are
equal to each other.

Hypothesis. ABCD, any parallelogram.

Conclusion,

Anglo A = opposite angle D.
Angle B = opposite angle G.

Proof. Continue CD to any point Jf, and BD to any
point N. js

Then— \

1. Because DN is parallel to

AC and similarly directed, and

DM parallel toAB and similarly

directed,

Angle BAC= angle MDN. (§ 79)

2. Angle MDN= opp. angle BBC, (§ 67)

3. Comparing (1) and (2),

Angle BDC= angle BA O.

In the same way it may bo proved that

Angle ^CZ> = angle ^^/). Q.E.D.

-M

Theorem XXVII.

123. Anp two adjoining angles of a parallelo-

gram are supplementary.

Proof. AiLj such pair of angles as A and B are interior

angles between the parallels A C and BD, and are therefore

supplementary (§ 71).

123. Corollary 1. All the angles of a parallelogram may
he determined when one is given, the angle opposite to the

given one being equal to it, and the other two angles each

equal to its supplement.



PARALLELS AND PARALLELOGUAm. 55
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124. Corollary %, 1/ ttvo parallelograms have one angle
of the one equal }n one angle of the other, all the remaining
angles of the one will be equal to the corresponding angles of
the other.

125. Corollary Z. If one angle of a parallelogram is a
right angle, all the other angles are right angles.

Theorem XXVIII.

126. A pair of parallel straight lines intercept
equal lengths ofparallel transversals.

Hypothesis. AB and CD, any pair of parallel straight
lines

;
MN, MS, parallel transverfjals crossing them at the

points M, iV, E, and S.

Conclusion. MN= R8. a \M
ME = NS.

Proof. Join the two oppo-
site points E and JV by a third C— ^ \o j^

transversal EJV^, and compare
the two triangles MJVE and ^ES.

1. MENS is a parallelogram, by definition. Therefore
Angle EMN= angle ESJV^.

(§ ng)
2. Because EJ^ ia a transversal crossing the parallels AB

and CD,
Angle MEN= alternate angle ENS. (8 71)
Angle MNE = alternate angle NES.

3. Because the two triangles have the side EN common
and the adjacent angles equal, they are identically equal
(§109). Therefore

Side ES (opp. angle N) = side MN (opp. equal angle E).
Side ME = corresponding side NS. Q.E.D.

127. Corollary 1. The opposite sides of a parallelogram
are equal.

^

128. Corollary 2. The diagonal of a parallelogram
divides it into two identically equal triangles.

If the two transversals are perpendicular to the parallels

— -j-.'va xv,xxQt.ixo mil uiuiiiiuru me aisiance of the
parallels. Hence
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i!

/

1!S9. Corollary^. Two parallels are everywhere equaUy
distant

! Theorem XXIX.

130. If three or more parallels intercept equal
lengths upon a transversal crossing them, they are
equidistant.

Hypothesis. A transversal crossing the parallel lines a,

h, c, d, etc., at the respective points AjB, 0, />, etc., in such
wise that

AB== BO= CD, etc.

Conclusion. The distance between any two neighboring

parallels, as «, b, is equal to the

distance between any other two,

as c, d.

Proof. From two or more of

the points of intersection A, B, 6',

etc., drop perpendiculars upon the

neighboring parallels and consider

the triangles thus formed.

1. Because the angles A, B,C, __

etc., i.re corresponding angles be-

tween parallels.

Angle A — angle B = angle G, etc. (§ 71)

2. The angles X, Y, S, etc., are equal by construction,

because they are all right angles.

3. AB = BG=^ CD, etc., by hypothesis.

4. Therefore any two triangles,.as ABX, CDS, have the

angles and one side of the one equal to the angles and one
corresponding side of another, and are identically equal.

5. Therefore AX=BY= CS, and the parallels are equi-

distant. Q.E.D.

Theorem XXX.

131. Conversely, Equidistant parallels intercept
equal lengths upon any transversal.
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Hypothesis. The lines a, by c, d, etc., parallel and equi-
distant; MNy a transversal inter-

secting them at the points^.
By Cy Dy etc.

Conclusion. Any one inter-

cepted length on the transversal,

as ABy equal to any other inter-

cepted length, as CD.

Proof. Take up the figure

and lay it down again in such
manner that the point A shall

fall into the position C, and the
line a coincide with the trace c. Tuen

1. Because angle A = angle C,

Transversal M^= its own trace.

2. Because the parallels a, b are equidistant with the
parallels c, d.

Point B = position D.
4. Therefore AB = CD. Q.E.D.
Scholium. This proposition may also be proved by drop-

ping perpendiculars, as in Theorem XXIX.

i

•M

Theorem XXXI.

133. If three or more parallels are crossed hy
two transversals and intercept equal lengths on one,
then—

I. The parallels will

intercept equal lengths on
the other transversal.

II, The intercepted

part of eachparallel will

he longer or shorter than
the neighboring intercept ^
hy the same amount.

Hypothesis. GP, 0^, any e

two transversals; A, By Cy

equidistant points on OP; P

"
'P
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a, b, c, d, Cj etc., parallels through these points, meeting OQ
in the points A^, B', C", etc.

Conclusions. I. A'B' = B'0'= CD' = D'E\ etc.

II. BB' -AA'= CQ'~ BB'= DD'- CC\ etc.

Proof I. 1. Because the parallels a, h, c, etc., intercept
equal intervals on OP, they are equidistant (§ 130).

2. Because the parallels are equidistant they intercept
equal intervals on the transversal OQ. Therefore the inter-
cepted intervals A'B', B'C, etc., are equal (§ 131).

II. Through A' draw a line parallel to AB, meeting BB'
in K, and through B' draw another line parallel to BC, meet-
ing C,C in L; then

—

3. Because, by construction, ^^'J^iTand BB'GL are paral-

lelograms,

BK=AA',)
CL = BB', S

^§ 134:)

4. Because 5'^'X and C"J5'Z are corresponding angles be-
tween the parallels ^'JTand B'L^ they are equal.

6. Because A'B'K and B'C'L are corresponding angles
between the parallels BB' and CC", they are equal.

6. Comparing with (3) the triangles A'KB' and B'LC,
have one side and the adjacent angles of the one equal to a
corresponding side and two adjacent angles of the other.

Therefore they are identically equal, and

B'K^C'L.
7. By construction,

BB' -BK= B'K.
^

CC - CL = CL.
Comparing with 3 and 6,

BB'-AA' = B'X=CC-BB', etc. Q.E.D.

133. Corollary 1. The amount by which each length

exceeds the preceding one may be found by laying off from
the point of intersection 0, on the line OP, a length equal

to AB, and drawing a parallel to the lines a, b, etc. The
length of this parallel between the sides OP and OQ will be
equal to the difference between the lengths of any two con-

secutive parallels.
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134. Corollary 2. If the points A, B, (7, etc., are found

by measuring off equal distances from tlie point 0, so that

OA = AB = BC, etc.,
q^

we shall have

BB'= %AA',

CO' = 3AA',

DD' = 4:AA%

etc. etc.

135. Corollary 3. If through the middle point of one
side of a triangle a parallel be drawn to a second side, it will

bisect the third side and will be half as long as the second side.

For, let OCD be the triangle; A, the middle point of OC,
and ABj'd, line parallel to CD, meeting OD in B. Let a third

parallel pass through 0. Then 0, AB, and CD are three

parallels intercepting equal lengths upon the transversal OC.
Therefore they also intercept equal lengths on OD.

Moreover, CD exceeds AB 2ib much as ^^ exceeds the

intercepted length of 0. But this length is nothing. There-
fore CD = "HAB.

Corollary 4. Because through A only one parallel to CD
can be drawn, it follows that if B be the middle point of 02>,

AB will be that parallel. Therefore:

136. Tlie line joining the middle points of any two sides

of a triangle is parallel to the third side.

Theorem XXXII.

137. 7)^ the opposite sides of a quadrilateral are
equal to each other^ it is a parallelogram.

Hypothesis. ABCD, a

quadrilateral, in which

AB = CD.
AC = BD.

Conclusion. The figure

AB(^T) \a a. TiJi.rallolrtorpQTTi

Proof. Draw the diagonal BC. Then

—

1. The three sides of the triangle ABC are by construe-

li
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tion and hypothesis respectively equal to those of the triangle
DBC.

2. Because the angles BCD and GBA are opposite the
equal sides CA and BD,

Angle BCD = angle CBA. (§ HO)
3. But these angles are alternatb angles between the lines

CD and ^^ on each side of the transversal CB. Therefore
CD II AB,

4. In the same way may be shown AC \\ BD.
Therefore ABCDisa. parallelogram, by definition. Q.E.D.

.Theorem XXXIII.

138. If any two opposite sides of a quadrilateral
are equal and parallel^ it is a parallelogram.

Hypothesis. ABCDj a c_ ——.D
quadrilateral in which

CD = and || AB.
Conclusion. AC= and /

II BD, and therefore /

ABCD is a parallelogram. -^

Prof. Draw the diagonal BC. Then—
1. Because AB and CD are parallels,and5C is a transversal,

Angle ABC=: alternate angle BCD,
2. In the triangles ABC and BCD,

AB = CD, by hypothesis;

^C is common;
and (1) the angles between these equal sides are equal. There-
fore these triangles are identically equal, and

AC= BD. Q.E.D.
Angle ACB= angle CBD.

3. T'i 30 angles ACB and CBD being alternate angles
between j± C and BD,

ACWBD. Q.E.D.

Theorem XXXIV.

139. If two parallelograms agree in the lengths
of their sides and in one angle^ they are identically
equal.
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Hypothesis, ABCD and HKMN, paraUelograms in which
A.I3 — UK.
AC = HM,

Angled = angled.
Conclusion. ABCD

is identically equal to

HKMN,
Proof, ApyljABCD

to HKMNy turning it
^

over, if necessary, in such manner that the angle A shall coin-
cide with the equal angle H, and the side AB with the equal
side HK. Then

—

^

1. Because these sides are equal,

Point ^ E point JT.

2. Because angle A = angle If,

AC=HM.
3. Because ^C=^J!/;

Point C= point Jf.

4. Because the parallelograms have the ande G = an^lfiM (§ 121),
^ ^

Side CD = MN.
5. In the same way it may be shown that every side and

angle of the one will coincide with a corresponding side and
angle of the other. Therefore

The two parallelograms are identically equal. Q.E.D.
Scholium 1. A more simple but less general demonstration

may be given by drawing diagonals between any equal angles.

140. Scholium 2. We have shown that a triangle ip com-
pletely determined when its three sides are given. From the
preceding propositions it follows that a quadrilateral k not
completely determined when its four sides are given, but chat
the angles may change to any extent without changing the
lengths of the sides.

Thus the parallelogram in the
margin may be made to assume the
SnnP.PHHIVO -(nvrna ahrwirn Vjtt i-\\n Ar^i-

ted lines. This is the geometrical

expression of the well-known fact It

iU/

g-ff'iiiji,[(n n "jinnBaj
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thafc a frame of four pieces is not rigid unless fastened by a

diagonal brace.

Theorem XXXV.
141. The diagonals of a parallelogram bisect

each other.

Hypothesis. ABGDy a

parallelogram of which the

diagonals intersect at 0.

Conclusions. CO = OB.
AO^OD.

Proof. In ttf triangles A OB and CODy
Angle AOB = opposite angle COD.

7^
"^

X

Angle BAO = alternate angle ODC,

)

Angle ABO = alternate angle DCO.
)

(§67)

(§ 71)

(§124)Side ^5 = side CD.
Therefore the two triangles are identically equal, and the

sides opposite the equal angles equal; namely,
BO = OC.
AO=OD. Q.E.D.
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CHAPTER IV.

MISCELUNEOUS PROPERTIES OF POLYGONS.

Befinitions.

.1.
?^*^; -P'S^-

A polygon is a figure formed by a
chain of straight hnes returning into itself and inclos-
ing a part of the plane on which it Hes.

The lines are called sides of the polygon

Polygons of elementarj geometry.

..l"" !^' ^'tT j^^^°^^<^^y *^« «ide8 of a polygon may cross
each other but elementary geometry treats only of polygons
the sides of which dc not cross.

^^

143. The angles of the polygon measured on
the side containing the in-
closed space are called inte-
rior angles.

Example. One interior angle
of the polygon ABODE is the
angle EAB, measured by turning
the side AB through the interior
of the polygon until it coincides
with AE. In the first polygon
the ontAaa—o 01«A

txi.z xcso Polygon the sides of which cross.,
u .wx.^ ^M^wm^^ - •"J evu vuv otucB ML WIUCU CFOSS.

Straight angles. But in the polygon ABODE the interior
angle AED is greater than a straight angle



64 BOOK II. RECTILINEAL FIGURES.

144. An exterior angle of a polygon is an angle
between one side and the continuation of the adjacent
side.

''

Eemark 1. To form all the different exterior angles of a
polygon It 18 sufficient to produce each side, taken in regular
order, in one direction. The number of exterior angles will
then be the same as that of the interior angles.

The angles BAL, GBO, etc., are exterior angles Also
Angle ABC-{- angle CBQ = straight angle.

'

The angle PQR is an exterior angle which falls inside the polygon
because the interior angle PQS is greater than a straight angle.

Remark 2. It is evident that a polygon has as many
angles as sides.

Remark 3. If the interior angle of a polygon is greater
than a straight angle, the continuation of one of the sides will
fall within the polygon.

The corresponding exterior angle is then regarded alge-
braically as having the negative sign.

Remark 4. It is evident that the sum of any interior
angle and of the corresponding exterior angle is a straight
angle; that is.

Int. angle + ext. angle = 180°.

By transposing the second term of the first members, we have
Ext. angle = 180° - int. angle.

If the interior angle is greater than 180°, the members of
this eo^jiiition will be negative.
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Classification of Polygons.

146. Polygons are classified according to the num-
' ber of their sides.

The least number of sides which a polygon can have
is three, and it is then a triangle.

146. Def. A quadrilateral is a polygon of four
sides.

147. Def. A pentagon is a polygon of five sides.

148. Def, A hexagon is a polygon of six sides.

149. Def An octagon is a polygon of eight sides.

150. Polygons of any number of sides may be
designated hj the Greek numerals expressing the
number of sides.

^

151. Def A diagonal of a polygon is a Kne join-
ing any two non-adjacent angles.

Question for the student. How many diagonals can be
drawn from one angle of a polygon having n sides ?

152. A regular polygon is one of which the sides
and angles are all equal.

Classification of Quadrilaterals.
16 . Def A trapezoid is a quadrilateral of which

two opposite sides are parallel.

154. If both pairs of opposite sides are parallel,
the quadrilateral is a parallelogram.

155. i>e/. A rectangle is a parallelogram in which
the four angles are equal.

XT.
\^^' Py- ^ ^^ombus is a parallelogram of which

the lour sides are equal.

* -I

sides are equal
Def A square is a rectangle of which the
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—f»

Theorem XXXVI.

158. JJ^ each side of a polygon he produced in
one direction^ the sa.r o/ all the exterior angles is
equal to a circuiiifereiuie.

Hypothesis. ABCDE, a
polygon.

Conclusion. Sum of n ex-

terior angles ABC, etc. = two
straight angles.

Proof. From any point

draw n straight lines, each
parallel to one of the sides of

the polygon. There will then
be n angles around the point 0.

1. Because OP is parallel to BK and similarly directed,
and OQ io BC and similarly directed,

Angle POQ = exterior angle KBO. (§ 79)

2. In the same way it may be proved that each of the
exterior angles of the polygon is equal to one of the angles
around 0.

3. Because the number of exterior angles and of angles
around is equal, the sum of all the exterior angles will be
equal to the sum of all the angles around 0; that is, to a
circumference. Q.E. D.

159. Scholium. If any of the interior angles of the
polygon should be reflex, so that exterior angles fall within
the polygon, such exterior angles must be regarded as alge-

braically negative in forming the sum (§ 144).

Theorem XXXVIL
160. The sum of the interior angles of a polygon

is equal to a number of straight angles two less than
the number of sides of the polygon.

Hypothesis. ABCDEF, a polygon having n sides and n
angles.
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-P

K

Conclusion, Sum of the n interior angles equal to n — 2
straight angles, or

ABC+ BCD -f CDE+ etc. =
(w-2)180°.

Proof. 1. The sum of each in-

terior angle and it's adjacent exterior

angles, as ABO-\-CBOy is a straight

angle (§ 61).

3. Because the polygon has n
such pairs of angles, the sum of all

the interior and exterior angles is n
straight angles. Xi

3. But the sum of the exterior angles alone is a circnm-

ference; that is, two straight angles (§ 155).

4. Taking these two straight angles from the sum (2), we
have left the sum of the interior angles aloue^ equal to n — 2
straight angles. Q.E.D.

161. Corollary 1. The sum of all the interior angles

of a quadrilateral is equal to two straight angles; that is, to

four right angles.

163. Corollary 2. Since in a rectangle all the four
angles are equal, and their sum is four right angles, each of
the angles is a right angle.

Theorem XXXVIII.
163. If through each angle of a triangle a line

he drawn parallel to the opposite side., the three lines
willform a triangle the sides of which will he hisected
hy the ertices of the original triangle.

Hypothesis. ABC, any tri- B^

angle; DEF, another triangle

formed by drawing,

through Cy J^Z)parallelto^5;

through Ay -fi^i^parallel to CB\
through By FD parallel to A C,

Conclusion, EC— CD.
EA = AF-.

FB = BD.

im



es BOOK IL RECTILINEAL FIGUUES.

Proof. The quadrilaterals ABCD and ABEC are paral-
lelograms, by construction.

Therefore

CD = ABi

)

EC=:AB.\ (§127)
Whence

EC=CD. Q.E.D.
In the same way the other conclusionfl may be preyed.

Theorem XXXIX.

164. The bisectors of the three interior angles of
a triangle meet in a point equally distant frmi the
sides of the triangle.

Hypothesis. ABC, any triangle;
AO, BO, COy the bisectors of its in-
terior angles, A, B, and C.

Conclusions. I. These three bisect-

ors meet in a single point 0.

II. This point is equally distant
from the three sides of the triangle.

Proof. Let be the point in which
the bisectors of^ and 5 meet. Then—

1. Because is on the bisector of the angle A, O'ls equally
distant from the sides AB and .4Cof the angle A (§ 106).

2. Because is on the bisector of the angle B, is
equally distant from the sides BA and ^6' of the angle'5.

3. Therefore is equally distant from ^(7 and BC.
4. Therefore it is upon the bisector of the angle formed

by ^Cand BC] namely, of the angle C (§ 107).
5. Therefore the point is equally distant from the three

sides, and the bisectors all pass through it. Q.E.D.

Theoeem XL.

165. The bisectors of any two exterior angles of
a general triangle meet the bisector of the opposite
interior angle in a point which is equally distant
from the three sides of the triangle.
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Hypothesis. ABC, any triangle, of whicli the sides AB
and AC are produced indefinitely in the directions P and
Q'y BO, CO, the bisectors of
the exterior angles CBP and
BCQ; 0, the point of meeting
of these bisectors.

Conclusions. I. The bisector
of the angle BAC passes
through 0.

II. The point is equally
distant from the lines BC, BP,
and CQ.

Proof, 1. Because is on >

the bisector of the angle CBP,
'^

it is equally distant from the
sides -5(7 and BP.

2. Because is on the bisector of the angle BCQ, it
is equally distant from the sides ^Cand CQ.

3. Therefore is equally distant from the three lines AP,
BC,&TidAQ. Q.E.D.

4. Because is equally distant from AP and AQ, it is on
the bisector of the angle made by those lines (§ 107).

Therefore this bisector passes through 0. Q.E.D.

Theorem XLI.

166. The perpendicular bisectors of the three
sides of a triangle meet in a point, which point is
equally distantfrom the three vertices of the triangle.

Hypothesis. ABC, any triangle; R,
B, Q, the middle points of the respective
sides; PO, BO, lines passing through P
and R perpendicular to BC and AB
respectively.

Conclusions. I. The point is equally
distant from A, B, and C.

il. The perpendicular bisector ot AC A
passes through 0.

\m^\m
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Proof. 1. Because is on the perpendicular bisector of
the line BCy it is equally distant from the ends, 5 and C of
this line (§ 104).

2. Because is on the perpendicular bisector of the line
ABy it is equally distant from the points A and B.

3. Therefore it is equally distant from the three points A
By and G. Q.E.D.

^

4. Because it is equally distant from A and C, it lies on
the perpendicular bisector of the line JC(§ 105).

Therefore this bisector also passes through 0. Q.E.D.

Theorem XLIL
16*7. The perpendiculars dropped from the three

angles of a triangle upon the opposite sides pass
through a point.

Hypothesis. A BCy any triangle; AQ, BR, CP, perpen-
diculars from A, By C, upon BCy CA, AB, respectively.

Conclusion. These perpendiculars pass through a point.
Proof. Through Ay B, and (7, respectively, draw parallels

to the opposite sides of the trian-

gle, forming the triangle LMJ^. \,
Then— •

^

1. Ay B, and (7 will be the mid-
dle point of the sides of the trian-

gle LMN (§ 163).

2. Because LM is parallel to

ABy and CP perpendicular to AB,
CP is also perpendicular to LM.

(§72)
3. Therefore CP is the perpen-

dicular bisector of LM. In the

same way BR and A Q are perpen-

dicular bisectors of LN and MN
respectively.

4. Because the three lines A Qy
BRy and CP are the perpendicular bisectors of the sides of
the triangle LMJVy thoy pass through a point (§ 166). Q. E. D.
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168. Def. The line drawn from any angle of a tri-

angle to the middle point of the opposite side is called

a medial line of the triangle.

Corollary. Since a triangle has three angles it may have
three medial lines.

>'

Theorem XLIII.

169. The three medial lines of a triangle meet in
a point which is two thirds of the way from each
angle to the middle of the opposite side.

Hypothesis. ABC, sl triangle; F, Q, R, the middle points

of its respective sides;

BE, AQ, two medial

lines of the triangle; 0,

their point of intersec-

tion.

Conclusions. I. The
third medial line CF
also passes through the

point 0.

II.
\ QO =. ^OA.
( RO = iOB.

Froof. Bisect AO in M, and OB in JV. Join RQ, RM.
QN,MN. Then—

1. Because MN is a line joining the middle points of the
sides OA and OB of the triangle OAB,

MN=^AB. (§135)MN II AB. (§ 136)

2. Because i?^ is a line joining the middle pomts of the
sides CA and CB of the triangle ABC,

RQ = {AB,
RQ II AB,

3. Therefore RQh parallel and equal to MN, whence the
quadrilateral RQMN is a parallelogram (§ 138).

^
?MmmmM.mmmmi^jmmmm
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RQMn''^''^^
^^^^ ^^"^^ diagonals of the paraUelogram

;

'

OQ=OM.l
OH =OJV.\ (§ 1^1)

But, by construction, M and TiT are the bisectors of OA and
Olf, Therefore

OM=iOA.

Whence
^^=^^^-

QO=:iOA,
JiO = iOB. Q.E.D.

^1,,-i
^1 *^® same way it may be shown that th« point inwhich the medial line CP cuts the medial line ^^ is two

The three medial lines pass through the point 0, Q.E.D.

Bjl'tllr^
''''' ^^ '^' same way as withi^Q and

PO = iOa Q.E.D.

Theorem XLIV.
170. '^^e line drawn from the middle of one of

Z.^^^;^ ^ /.a?/ ^;^.^r sum, and bisects the opposite side

theSlfrsidelTt^^^^^^^^^ '' ^^^^^ -^ '^-
middle point of A C\ EF,
a parallel to AB and CD,
meeting BD in F.

• Conclusions.

I. EF is equidistant
from AB and Ci>.

11. BF=zFD.
lll-EF=^AB-^CD).

cJrth ?ZT A^. f^t -^ ^^ are parallels inter-

they a^^disS^C^^r^^r^ ''' *""""^^ ^^
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2. Because they are equidistant, they intercept equal
lengths upon the transversal BD (§ 131). Hence

BF^FD. Q.E.D.
3. Therefore EF- CD = AB - EF {% 132, II.), and by

transposition

%EF=AB-ir CD,
c» EF=i(AB+CD). Q.E.D.

Def. The line ^i^'is called the middle parallel of
the trapezoid.

Theorem XLV.
1^:11. If the two non-parallel sides of a trapezoid

are equal, the angles they make with the parallel sides
are equal.

Hypothesis. ABCD, a trapezoid in which AB and 67) are
parallel, and CA = DB.

Conclusion.

Angle CAB = angle DBA.
Angle ACD = angle BDC.

Proof. From C draw CE
parallel to DB, meeting AB
in E. Then—

i. Because CE is parallel to DB, and CD to EB,
DBCE is a parallelogram.

2. Because D^C^ is a parallelogram,

CE=DB.
3. Because by hypothesis DB = CA,

Therefore CE = CA.
4. Therefore A CE is ar* isosceles triangle, and

Angle CAE= angle CEA.
6. Because CE and /)j5 are parallel.

Angle DBE = corresponding angle CEA,
6. Comparing with (4),

Angle CAE = angle DBE. Q.E.D.
In a similar way, by drawing through A a parallel to BD, is

it

H

oh it Twi

Angle ^ Ci> = angle i?i)C Q. E. D.

fflglWaB'^l^RaawaBiiM
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B

Theorem XLVI.
17:3. Conversely, if the angles at the base of a

trapezoid are equal, the non-parallel sides and the
other angles are equal.

Hypothesis. ABCD, a trapezoid in which the sides AB
and CD are parallel and
Angle CAB = angle DBA.

Conclusion.

I. CA = DB.
II. Angle ^C7)=angle5Z)a

Proof. Make the same
construction as in the last

theorem. Then

—

1. Because BA is a transversal crossing the parallels CE
and DB, Angl6 CEA = angle DBE.

2. By hypothesis,

Angle DBE = angle CAE.
Whence Angle CAE = angle CEA.

3. Therefore A CE, having the angles at the base equal, is

an isosceles triangle, and
CA=^CE=zDB. Q.E.D.

Therefore angle ACD = angle BDG (§ 171). Q.E.D.
Eemark. This form of trapezoid is sometimes called an

antiparallelogram.

Theorem XLVII.
173.^ quadrilateral ofwhich two adjoiningpairs

of sides are equal is symmetrical
with respect to the diagonalJoin-
ing the angles formed by the

equal sides, and the diagonals
cut each otJver at right angles.

Hypothesis. ABCD, a quadrilateral

in which AB = AD.
CB = CD.

Conclusion. ACis &n axis of sym-
metrv. A (^ cuts BD at riffht ancrles.

Proof, Because, in the triangles

ABCm^ ADC,
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ACi& common,
these triangles are identically equal, and

Angle BA G (opp. BC) = angle DA (opp. A C).
Angle ^(7^ (opp. AB) = angle DGA (opp. AD),

Therefore, if the figure be turned over on the line ^f—
The lines AB and CB will fall upon ADwidiCD respectively.
The point J5 « « the point i).

And^i) « « its own trace.

Therefore the figure is symmetrical and the line BD at
right angles to A G. Q. E. D.

Lemma RESPECTijjq^G Identical Figures.

174. In identically equal figures, corresponding lines are
equal.

Note. Corresponding lines are those which coincide when the
figures are applied to each other. From this definition the conclusion
follows without demonstration.

Corollary, In identical figures, any lines so defined that
there can be but one line in each figure answering to the
definition are corresponding lines.

For if such lines did not coincide when the figures were
brought into coincidence, the two lines would equally cor-
respond to the definition.

175. SpecialappUcaiions. In identically equal triangles—
The perpendicularsfrom equal angles upon the opposite sides

are equal.

The Usec*ors are of equal length.

In ^ c JA>.ally equal quadrilaterals the diagonals are equal.

its
t.
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CHAPTER V.

PROBLEMS.

Postulates.

176. It is assumed

—

inflpfi* .Tf'i^*-''
^.'?'*^

f*'""^^^*
^^^^ "^^y be produced

indetL^ite]y m eitlier direction.
III. That a circle may be drawn around any point

a n?ipv
''^;^""^^^^*«f *^««^ P^st^l'^tes may be fulfilled witha ruler and a pair of compasses, which are the only instru-ments recognized m pure geometry.

But it is not necessary to confine one»s self to these instru-ments m solying all problems. When it is once well under-
stood how a given probJem is to be solved by them, other
instruments may be used for the actual drawing, such as the
protractor, the square, and the parallel ruler.

Peoblem I.

177. Onagirm straight line to marJc offa lenath
equal to a gimnflnite straight line.

Given AB, an indefinite straight line; «, a given finite
straight line.

,

*

Required. To mark off ;

on J^ a length equal to a. ^' ^] ~ B
Construction. From any \

point as a centre, on AB «
describe the arc of a circle with a radius equal to «. K p bethe point m which the circle intersects a\ OP will be therequired length.

wm oe me

Proof AH the radii of the circle around are bv construetion equal to .. OP is one of these radii; therefore itlqual L ^^
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g

Problem II.

178. To construct a triangle of wMcTi the sides
shall he equal to three given straight lines.

Given. The three lines

a, d, c.

Required. To draw a
triangle with sides equal to

these lines.

Construction. On an in-

definite line take a length
CB equal to any one of the '

.

three given lines (Problem
I.),

From B as a centre, with a radius equal to one of the
remaining lines, c, describe the arc of a circle.

From the point C as a centre, with a radius equal to the
third given line describe another arc of a circle intersecting
the former one in a point A. Join CA and BA.
ABC will then be the triangle required.

Proof. From the mode of construction, the three lines

AB, AC, and BC will be equal to the three given lines.

Kemark. The two circles may intersect on either side of
the line AB. Therefore tv;o triangles may be drawn which
shall fulfill the given conditions. But these triangles will, by

§ 110, be identically equal.

Problem III.

179. To bisect a given finite straight line.

Given. The line AB.
Required. To bisect it.

Construction. From the

end ^ as a centre, with a

radius greater than the half of . ,

-''

AB, draw the arc of a circle

CND.
From J5 as a centre, with

r\\ r\ actmrt r\ -»«rt /l i ii o r\-nr%-%tT 4-T% ^ ^-^-h^

CMD, intersecting the first

circle in the points Cand D. Join CD.

/'^^^.

mT 'N
^B

/y/

^
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The point in which the line CD intersects AB will then
bisect AB.

Proof. Join AC, BC, AD, BD. ^

Because AC, AD, BC, BD, are radii of the same or equal
circles, they are equal, and the figure ADBC is a paral-

lelogram (§134).

Therefore the diagonals AB and CD bisect each other.

(§ 138)
Therefore ^J5 is bisected at 0. Q.E.F.
180. Corollary. Because the parallelogrom ABCD has

all its sides equal, it is a rhombus, and its diagonals intersect

at right angles. Therefore the abovo construction also solves

the problem:

To draw the perpendicular bisector of a given line.

Problem IY.

181. To bisect a given angle.

Let A CB be the given angle.

Construction. From C as a centre, with any radius CA
describe the arc of a circle, cutting the sides of the angles in

the points A and B.

From ^ as a centre, with the radius AB draw an arc of a
circle.

From 5 as a centre, with an equal radius draw another arc

intersecting the other in 0.

Join CO.

The line CO will bisect the given angle A CB,
Proof. In the triangles

C^Oand C^Owehave

„ .

~
^. „' ! by construction.

OA = OB, )
^ c

CO = CO, identically.

Therefore these two trian-

gles are identically equal, and
the angle OCA, opposite the side AO, is equal to OCB, oppo-
site the equal side in the other triangle. Therefore the line

CO bisects the angle A CB. Q. E. F.
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Problem V.

79

k B'

182. Through a given point on a straight line to
draw a perpendicular to this line.

Let MN be the given line;

Of the given point upon it.

Construction. From as a
centre, with any radius OA de-

scribe arcs of a circle cutting

the given line at A and B.
From ^ as a centre, with

the radius AB draw the arc of .. /
a circle.

SI4A.

From 5 as a centre, with the equal radius BA describe
another arc intersecting the former one at O. Join OG.

OG will be the required perpendicular.

Proof. In the triangles CUO and GBO the three sides of
the one are, by construction, equal to the three sides of the
other.

Therefore the angle GAG ib equal to the angle GOB, and
both these angles are right angles, by definition.

Therefore the line OGi& perpendicular to MN. Q.E.F.

Problem VI.

183. From a given point without a given line to
drop a perpendicular upon the line.

Let P be the given point;
MNj the given line.

Gonstruction. Take any
point K on the opposite side of
the line. From P as a centre,

with the radius PK describe

an arc cutting the given line at
A and B.

Bisect AB in the point 0. Join PO,
Tl\e line PO will be the perpendicular required.
^ r vxrj E xxo

student.

in viiO xaa\j problem, und to be supplied by the

II
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PltOBLEM VII.

184. At a given point in a straight line to make
an angle equal to a given angle.

Given. Anmg\Q,EFG'y a straight line, J^; a point on
that line.

Required. At to make an angle equal to EFG.
Construction. 1. Join any two points in the sides FE and

FG, thus forming a triangle.

2. FromO take on OB a distance 0K=- FE.
3. On 0^ describe a triangle OJOf whose sides KM, OM

shall be equal to the sides EG, FG.
4. The angle MOK will be the required angle.
Proof. Because the triangles OiOf and ^jE'G^ have all the

sides of the one equal to corresponding sides of the other, they
are identically equal.

Therefore the angle MOK, opposite MK, is equal to the
angle EFG, opposite the equal side EG of the other triangle.
Q.E.F.

Problem VIII.

185. To construct a triangle, having given two
ndes and the included angle.

Given. Two sides, «, J; the angle ^.
Required. To construct

a triangle having the sides Q^
equal to a, b, and their

included angle equal to g.

Construction. Draw an
indefinite line AB.

At A make the angle
BA C equal to g.

On AB take a length
Q-nH r\tr\ A n f oi-.-uii ^-xi> i/iiKu a length A Q equal to a.
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Join PQ.
APQ will then be the required triangle.

The result is evident, but should be shown by the pupil.

Problem IX.

186. Two angles of a triangle being given, to ccm-
strw ' the third angle.

Given. Two angles, c and e, of a triangle.

Required. To find the
third angle of the triangle.

Constructmi. 1. At any
point in an indefinite line

AB make the angle BOG
equal to the given angle c. \ ^ ^C

2. At the same point make
the angle COD = given an-
gle e. -a. ^ B

Then the angle DOA will be the angle required.
Proof. From Theorem IV., to be supplied by the student.

Problem X.

187. To construct a triangle, having given one
side and the two adjacent angles.

Given. A finite straight ^
line, AB; two angles, c ^
and e.

Required. To construct

a triangle having its base
equal to ABf and the an-
gles at its base equal to c

and e respectively.

Construction. 1. On an
indefinite straight line

mark off the length AB.
2. At A make the angle BAM = angle c,

3. At B make the angle ABN=z angle e.

4. Continue the lines AM and Bly until they meet, and
let C be their point of meeting.

li

I i:
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h-

ABOmH then be the required triangle.
The proof should be supplied by the student.
OoroUary. Since the third angle of a triangle can always

be found when two angles are giyen, this problem, combined
with tne precedmg one, will suffice for the construction of the
triangle when one side and any two angles are giyen.

Pboblem XI.

188. Two sides of a triangle and the angle appo-
site one of them being given, to construct the triangle.

Given, The two sides, «—
«, h; the angle B opposite
the side h.

Required, To con-
struct the triangle.

Construction. 1. Ai!

the point B on the indefi-

nite line BM make an
angle MBR equal to the
given angle B.

2. From ^ on the line B U"^^^—

—

'-jf
BR cut off a length ^C equal to the giyen line «, which is
not opposite the given angle B,

3. From C as a centre, with a radius equal to the line h
describe a circle cutting BM B.t the points D and D\

Either of the triangles BCD or BCD' will then be the
required triangle.

The proof follows at once from the construction.

189. Scholium. The fact that there may be two tri-
angles formed from the given data has been explained in the
echolium § 113.

Problem XII.

190. Through a given point to draw a straight
line which shall he parallel to a given straight line.

Oiven. A straight line, AB) 2k point, P.
Required. To draw a straight line throughP parallel to AB,
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Construction. 1. Take any point D in AB, and join PD
2. At P in the line

'^

p

-B

P2>
. make angle DPM j^

equal to the angle PDB,
3. Produce JE'P in the

direction F,

EPF will then be the ._
required straight line pass-

ing through P parallel to AB.
Proof. By Theorem III., because the angles PED and

PDB are alternate angles.

Problem XIII.

191. To divide a finite straight line into any
given numher of equalparts.

Given. A finite straight

line, AB'y a number, n.

Required. To divide

AB into n equal parts.

Construction. 1. IVom
one end of AB draw an
indefinite straight line,

making an angle with AB
different from a straight

angle.

2. Upon the indefinite line lay off any equal lengths, A 1,
1 2, 2 3, etc., until n lengths are laid off.

3. Join B to the end n of the last length.
4. Through each of the points 1, 2, 3, .... w, draw a

parallel to nB intersecting AB.
The line AB will then be divided into n equal parts by

the points of intersection.

Proof. The parallels intercept equal lengths on the trans-
versal An, by construction.

Therefore they also intercept equal lengths on AB, and
the number of intercepted lengths is n (§ 132).

Therefore AB is divided iuto n equal parts. Q.E.F.

I
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Pkoblem XIV.

19J8. T^o adjacent sides of a parallelogra/nh and
the angle which they contain being given, to describe

the parallelogram.

Given. Two lines, ^Cand Gil; an angle, 0,

Required. To form a paral-

lelogram having GH and AC for

two adjacent sides, and for the

angle between these sides.

Construction. 1. At one end ^ 'B

A of the line A C make an angle q.

equal to 0.

2. On the side of this angle take AB = the giren line

GH. <

3. Through B draw a line BD parallel Ui AC.

4. Through C draw CD parallel to AB, intersecting BD
in D.

ABCD will be the required parallelogram.

Proof. May be supplied by the student.

193. Corollary. To construct a square upon a given

straighi line.

This problem is a special case of the preceding one. in

which the given sides are equal and the given angle is a xi^ht

angle. To solve it:

DrswACrndBDlAB.
Join CD.

And the square will be complete.
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CHAPTER VI.

EXERCISES IN DEMONSTRATING THEOREMS.

The following theorems should be demonstrated by the

student in his own way, so far as he is able.

Analysis of a given Theorem,

The first* step in the process of finding a demonstration

is to state the hypothesis, referring to a diagram, which it is

generally best the pupil should draw for himself. The state-

ment should include not simply what the theorem says, but

what it implies. Beference must be made to definitions until

the hypothesis is resolved into its first elements.

Next, the conclusion must be analyzed in the same way,

in order to see not only what it says, but also what it implies.

By the analyses of these two statements they must as it

were be brought together, in order to see in what way they

are related. The process of discovering this relation is one

which the student must find for himself in each case, and for

which no rule can be given. " Frequently, however, it will be

necessary to draw additional lines in the figure, and to call to

mind the various theorems which apply to the figures thus

formed. To facilitate this, references to previous theorems

which come into play are added.

The relation being found, the demonstration must next

be constructed in the simplest manner, but without the omis-

sion of any logical step. This, also, is a matter of practice in

which no general rule can be given.

It is recommended that the teacher require the pupil to express each

step of the demonstration with entire completeness and fullness. Some
of the first theorems are so simple that the only serious exercise is that of

constructing an artistic demonstration. The work thus becomes a valu-

able exercise in language and expression as well as in geometry.

The most common fault is that of passing over steps in the demon-

stration because the conclusion seems to be obvious. One of the great

objects of practice in geometry is to cultivate the habit of examining

the logical fouadations of those conclusions which are accepted without
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critical examination. The feeling of security that a conclusion is right
before its foundation has been examined is a most fruitful source of
erroneous opinions; and the person who neglects the habit of inquiring
into what appears obvious is liable to pass over things which, had they
been carefully examined, would have changed the conclusion.'

Remabk. The theorems are arranged nearly in the order of their
supposed difficulty. The references give the theorems on which the
demonstration n>ay be founded, or of which the method of proof has
some analogy. It is not to be expected that the beginner will prove
more than the first fifteen or twenty.

Theorem 1. If a line be divided into any two parts and
each of these parts be bisected, the distance of the points of
bisection will be one half the length of the original line.

Theorem 2. If any angle be divided into two angles and
each of these angles be bi-

sected, the angle between the J)

bisectors will be half the

original angle.

Hypothesis. BOD, the original

angle divided into the two angles
JBOCand COD by the line OC.

OP, OQ, the bisectors of BOO
and COD.

Otmdusion. Angle POQ = i angle BOD.

Theorem 3. The perpendicu-
lars dropped from two opposite
angles of a parallelogram upon the
diagonal joining the other angles
are equal (§§ 128, 175).

Theorem 4. If perpendiculars be
drawn from the angles at the base of an
isosceles triangle to the opposite sides,

the line from the vertex to their point
of crossing bisects both the angle at the
vertex and the angle between the perpen-
diculars.

Theorem 5. If from any point of the base of an isosceles
triangle perpendiculars be dropped upon the two equal sides,
they will make equal angles with the base.



DEM0N8TBATI0N OF THEOREMS. 87

Thboeem 6. If, on the three sides of an equUateral tri-
angle, points equally distant from the
thi-ee angles be taken in regular order and
joined bj straight lines, these lines will
form another equilateral triangle (§ 108).

Theobem 7. If the perpendicular from
any angle of a triangle upon the oppo-
site side bisects this side, the triangle is

isosceles.

Theobem 8. If the diagonals of any quadrilateral bisect
each other, it is a parallelogram (§§67, 68, 108).

Theorem 9. If, on each
pair of opposite sides of a
parallelogram, we take two
points equally distant from the
opposite angles and join them
by straight lines, these lines ^ ^
^1 form another parallels ^^. ^^^«^^^*

DT=.RB,

v^rifr'"''^''
^?* ^ *^' ^*'™"*« ^"^'«« ^^^^^ by a trans,

versa crossmg two paraUels be bisected, the bisectors will be
parallel to each other (§§ 68, 71).

•

Theorem 11. If either bisector of
an interior angle between two paral-
lels be continued until it meets the
opposite parallel, it forms the base
of an isosceles triangle of which the
equal sides are the transyersal and
the intercepted part of that parallel.

Corollary, The two bisectors of the angles which a trans-
versal makes with one parallel cut ofE equal segments of the
other parallel on the two sides of the transversal.

Theorem 12. If the four interior angles formed by a trans-v^al crossing two paraUels be bisected, and the bisectors
produced until they meet, what figure will be formed ? (8 82^

his theorem is to be enunciated by the student

wmmm
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Theoeem 13. If the bisectors of the four interior angles
of a parallelogram be continued until each one meetstwo
others, they will form a rectangle.

Theorem 14. A line drawn from
any point of the bisector of an angle
parallel to one side, and meeting the
other side, will form an isosceles tri-

angle.

Eypothem. Angle AOG = angle COB.
CP

II BO.
Conclusion. PO = PC.

Theorem 16. If any two interior
angles of a triangle be bisected and
a line parallel to the included side be
drawn through the point of meeting
of the bisectors, the length of this
parallel between the sides will be
equal to the sum of the segments
which it cuts off from the sides.

Eypothem. Angle BAG = angle BAB.
Angle BBC= angle BBA.

MBN
II AB.

Conclusion. MIf=: MA + NB.

Theorem 16. In an antiparallelogram—
I. The angles at the ends of the upper side are equal.

II. The sum of each pair of opposite angles is equal to a
straight angle.

III. The diagonals are equal to each other (§ 172, Rem.).

Theorem 17. That portion of the middle parallel of a
trapezoid which is intercepted between the diagonals is equal
to half the difference of the parallel sides (§ 170, Del).

Theorem 18. If the diagonals of a trapezoid are equal, it
is an antiparallelogram.

Theorem 19. The sum of the diagonals of any quadri-
lateral is less than i^,he sum of the four sides, but greater thaix
tlio half Sum.
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Theorem 20. If from any point in the base of an isosceles
tnangle a parallel to each side be drawn until it meets the

,

other side, the sum of these parallels will be equal to either of
j
the equal sides (§ 121).

Theorem 21. If the middle points of the sides of any
quadrilateral be joined by straight

lines, these lines will form a paral-
lelogram (§ 136).

If the given quadrilateral has
its pairs of adjacent sides equal (cf.

§ 173), the parallelogram formed
from it will be a rectangle; and if

it is a rectangle, the parallelogram formed from it will be a
rhomboid.

Theorem 22. If one of the equal sides of an isosceles
triangle be produced beyond the vertex, and the exterior angle
thus formed be bisected, the bisector will be parallel to the
base of the triangle.

Theorem 23. If the middle points of
any two opposite sides of a quadrilateral be
joined to each of the middle points of the
diagonals, the four joining lines will form a
parallelogram (§ 136).

Theorem 24. If one diagonal of a
quadrilateral bisects both of the angles
between which it is drawn, the other diagonal will cross it at
right angles.

Theorem 25. If from the right angle of a right-angled
triangle a perpendicular be dropped upon the hypothenuse,
the two triangles thus formed will be equiangular to the
original one.

Theorem 26. If one of the acute angles of a right-angled
triangle be double the other, the hypothenuse will be double
the shortest side.
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Theorem 27. Each side of any triangle is less than half
the sum of the throe sides.

Theorem 28. If one side of an isosceles

triangle be produced below the base to a cer-

tain length, and an equal length be cut oft

above the base from the other equal side and
the two ends be joined together by a straight

line, this line will be bisected by the base.

Hypoth ma. AG = BC; AB = BF,
Conclusion. EN= NF.

Theorem 29. The sum of the three

straight lines drawn from any point

within a triangle to the three yertices is

less than the sum of the sides, but
greater than half their sum.

Theorem 30. If from the yertex

of any triangle two lines be drawn, one
of which bisects the angle at the ver-

tex, and the other is perpendicular to
the base, the angle between these lines

will be half the difference of the angles

at the base of the triangle.

Theorem 31. If from any point inside of an equilateral
triangle perpendiculars be dropped upon the three sides, their
sum will be equal to the perpendicular from the vertex upon
the base.

What corollary may be deduced from this theorem?

Theorem 32. If from two
opposite angles of a parallelo-

gram lines be drawn to the
middle points of two opposite

sides, these lines will divide the

diagonal joining the other angles into three equal parts (§137).

Theorem 33. If from either angle at the base of an
isosceles triangle a perpendicular be dropped upon the opposite
side, the angle between this perpendicular and the base will be
one half the angle at the vertex of the triangle.
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, BOOK III.

THE CIRCLE.

CHAPTER 1.

GENERAL PROPERTIES OF THE CIRCLE.

Major conjugate are.

Definitions.

1^4. Bef, The oiroumference Minor conjugatemo.

of a circle is the total length of the

curve-line which forms it.

195. Def, An aro of a circle is

a part of the curve which forms it.

196. Def. When two arcs to-

gether make an entire circle, they

are called coi^iigate arcs, and the

one is said to be the coAJiigate of the other.

197. Def. When two conjugate arcs are equal,

each of them is called a semicirole.

198. Def. When two conjugate arcs are unequal,

the lesser is called the minor arc, and the greater the

major aro.

199. Def A chord is a
straight line between two points —
of a circle.

200. Def A secant is a
straight line which intersects a
circle.
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Remark. A secant may be considered as a chord with one
or both of its ends produced, and a chord as that part of a
secant contained within the circle.

circle is a chord201. Def, The diameter of a
which passes through its centre.

20%. Def. A segment of a
circle is composed of a chord and
either of the arcs between its ex-
tremities.

303. Def. A sector is formed
of two radii and the arc included
between them.

To a pair of radii may belong either
of the two conjugate arcs into which
their ends divide the circle.

304. Def. Concentric olroles
are those which have the same
centre.

305. Def A tangent to a
circle is any straight line which
touches the circle without intersecting it.

306. Special Axioms relating to the Circle.
I. A circle has only one centre.

II. Every point at a distance from the centre less
than the radius is within the circle.

III. Every point at a distance from the centre
equal to the radius is on the circle.

IV. Every point at a distance from the centre
greater than the radius is without the circle.

Theorem I.

307. Circles of equal radii are identically equal.
Hypothesis. Two circles of which andP are centres, and.

Eadius OQ = radius PR.
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Conclusion, The circles are identically equal.

Proof. Apply the one circle to the other in such manner
that the centre shall

coincide with P, and OQ
with PR. Then—

1. Because0^= Pi?,

Point Q = point R.

2. Because each point

of the one circle is at the

distance OQ from the centre, it will fall on the other circle.

(§ 206, Ax. III.)

Therefore the circles are identically equal. Q.E.D.

Theorem II.

208. Equal arcs of equal circles are identically

equals subtend equal angles at centre^ and contain

equal chords.

Hypothesis. AB, CD,
equal arcs around the

centres and P.

0A = OB = PC=PD.
Conclusion. The an-

gles AOB and CPD and
the chords AB and CD are equal.

Proof. Apply the sector OAB to the sector PCD so that

the centre shall fall on P, and the radius OA on the radius

PC. Then—
1. Because OA = PC,

Point A = point C.

2. Because the radii are all equal, every part of the arc AB
will fall on some part of the circle to which the arc CD
belongs (§ 206, III.).

3. Because arc AB = a.vc CD, the point B will fall on D,
and chord AB = chord CD. Therefore

Chord AB = chord CD.

Angle AOB = angle CFD, Q.E.D.
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Theorem III.

209, Equal angles between radii irmlude equal
arcs on the circle and eqvAil cJiords,

Hypothesis. OA, OB, OP, OQ,
four radii of a circle such that

Angle AOB — angle FOQ.
Conclusions.

Arc AB = arc PQ.
Chord AB - chord PQ.

Proof. Apply the sector A OB to
the sector PO^ in such manner that

OA shall coincide with OP, Then

—

1. Because OA = OP,
Point A = point P.

2. Because angle AOB = angle POQ,
OB = OQ.

3. Because OB = OQ,
Point B = point Q,

Therefor3 AB = PQ. Q.7il.D.

4. Because all the radii are equal, the arcs will coincide
between P and Q.

Therefore the arcs are identically equal. Q.E.D.

210, Corollary. Sectors of equal angles %n equal circles

are identically equal, and every line in the one sector is iden-
tically equal to the corresponding line in the other (§ 174).

Lemma:

211, A sum of two arcs at the cmtre subtends an angle
equal to the sum of the angles which
each arc subtends separately.

Proof. The arc ^P subtends
tH f.agle A OB, the arc BC sub-

tends the angle BOC, and the arc

ABC subtends the angle A OC. But
A DC IB by definition the sum of the
angles, and ABO iu the sum of the arcs*

^omma.
^h•nrhi/* vuO
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GJSNERAL PROPERTIES, d5

The Measurement ol Angles by means ofArcs.
312. From the preceding theorems it follows that to

every arc of given length in a given circle corresponds a
definite angle, and to every angle corresponds a definite length
of arc. To express corresponding arcs and angles in the
shortest way, we call the arc corresponding to the angle ^0-B
the arc angle A OB, and we call the angle corresponding to
an arc the angle arc.

Thus, in the following figure.

Angle AOB=z angle arc AB,
Angle A00 = angle arc ABO,
Arc ABO=: arc angle A 00,
Atg AB =z aro angleA OB.

Combining Theorem III. with
the above lemma, it follows that
arcs can be taken as the measure
of the corresponding angles, and
vice versa.

In the figure the circle is divided
into eight sectors, and since ^^° =
45°, each v^f these sectors subtends
an angle of 45°. Therefore

Angle AOB= 45°; arc AB
arc ABO
arc ABOD
arc ABODE
arc ABODEF
arc ABODEFG

Angle ^6>C=: 90°

Angle AOD =z 135°

Aj\glQAOE= 180°

Angle ^Oi^= 225°

Angle ^06'= 270°

Angle J0^= 315°

Angle ^0-4 = 360°

O
= 46°.

= 90°.

= 135°.

= 180°.

= 226°.

= 270°.

arc ABCDEFOH = 315°.

arc ABODEFQHA = 360°.

913. The following are the principles to which we are
thus led:

I. In the same circle or in equal circles, the greater arc
measures the greater angle.

II. A minor arc, or an arc less than a semicircle, measures
an angle less than a straight angle.

\.:mij i.m<jJMJu iii i

i ,mi
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III. A major arc measures a reflex angle <yr one greater
than a straight angle,

IV. When an arc measures an angle, the conjugate arc
tneasures the conjugate angle,

V. The sum of an arc and its conjugate measures the
sum of an angle and its conjugate, and each sum is a circum-
ference, or 360^.

The use of arcs to express angles has a great advantage of making
plain to the eye the difference between an angle and its conjugate,
because we can always draw either of two conjugate arcs between the
sides of the angle.

When we say " the angle AOF," we should not, without some means
of distinction, know which of the two conjugate angles is meant.

But when we say the angle arc ABCDBF, we do know which of the
two conjugate angles is meant, because the arc measiu-es only one
of them, not both.

When we do not use arcs, the angle expressed without any adjective
will mean the lesser of the conjugate angles.

When we mean the greater conjugate angle and do not use an arc,
we shall call it a reflex angle.

Theorem IV.

214. In a circle equal chords sv^teTid equal arcs
and equal angles at the centre.

Hypothesis, CD, MN, two equal ^

chords of a circle having its centre

at 0.

Conclusion,

Angle COD = angle MON,
Arc CD = arc MJST.

Proof In the triangles COD and
MON we have

CD = MN, by hypothesis.

OC = ON,)
,

OD = OM \
"®^*^s® *^®y ^^® '^^ii of the circle.

2. Therefore these two triangles are identically equal.

3. Therefore

Angle COD, opp. CD = angle MON, opp. equal side MN,
4. Therefore arc CD = arc MN(§ 209). Q.E.D.
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GENERAL PROPERTIES. q„
i

^
Theorem V.

major arc,

hypothesis, AB, CD, two chorda
of a circle such that

CD > AB,
Conclusion.

Minor arc CD > minor arc AB.
Major arc CBAD< major arc BCDA

Proof. From the centre of the tT^
circle draw the radii OA OB, OC, OD. TheL

1. In the triangles AOB and COD we have0A = OC; OB = OD' AB <: m
Therefore angle AOB < angle COD. ,.

Therefore minor axeAB < minor arc CD (§ 213, 1.).

3. Because the major and minni. o^« *« j.i.

Q*"^*-^'

Theore.aV. Th'e^^mllt'bT^i "*'*'"' ^"'"^^^

Theorem VI.

. ,
^}j^'^^^ery diameter divides the circle Mn t..^Identically equal semicircles. ^ ^^^

hypothesis. AMBN, a circle* -^ ~"^
AB.a, diameter; 0, the centre '

Conclusion.

Arc AMB = arc AI^B. x\
Proof. Draw any two radii OM ^

^^i
^^ making equal angles with

-^/3. Turn the semicircle AMB
over on ^^ as an axis. Then—
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1. Because angle ^OJf= angle ^OJV,

^
Radius 0M= radius ok.

2. Because OJf = ON,

o Q. ..
Point Jf= point JVT.

3. Since M may be any point whatever on the circleevery point of the arc AMB will fall on a point of ANB '

Therefore the two arcs coincide and arridentically equal.

Q.E.D.

Theorem VII.

cJtrp\frf "^^^^^^^^ equally distant from the
centre^ and of unequal chords
the greater is nearer the centre.

Hypothesis. AB, CD, and MN,
chords of a circle such thatAB =CD>MN; 0, the centre
of the circle; OP, OQ, OR, perpen-
diculars from on AB, CD, and
MN, respectively.

Conclusions. I. OP = OQ.
II. OP < OR.

Proof. I Draw the radii OA, OB, OC, OD. Then-
1. In the tnangles ^ 05 and COD we have
^dius Oc=^ OB; OD^ OA', CD^AB (hyp.).

2. Therefore these triangles are identically equal, and the

II. Turn the figure ORMN, composed of the chord and itspeipendjou »r, around the centre in such manner that oS
'^r^fr'^t-^' '''^ '^ the point in Which S^

3. Because the radii are equal, M~ A
4 Because MN < AB, it subtends a less minor arc f8215^and the point J^T will fall within the minor arc AB ^^ ^'

6. Therefore JfJVr will fall inside the minor segment ^5aad 00 < OR.
^ '

6. But because OP is a perpendicular on AB,
Ot^ < 00.

f
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Comparing 6 and 6,

OP < OR. Q.E.D.
'

Theorem VIII.

Hypothesis. CD, a chord meet-
ing a circle in the points C and /),
and not passing through the centre.

Conclusion. CD is less than a di-
ameter. jDf

Proof. Let be the centre of
the circle. Join OC and OD, and
continue />C? across the centre to B,
Then—

1. Because CD is a straight line,

CD<OC+OD.
2. Because OCand OB are radii,

0C7+ 00 = BO-^OD = a, diameter.
3. Comparing (1) and (2),

Diameter > CD. Q.E.D.

Theorem IX.

231. T'^e perpendicular from the centre of a
circle upon a chord bisects the chord and the arc
which contains it.

Hypothesis. CD, a chord of a circle;
Oy its centre; OPQ, a perpendicular
from on CD, cutting the circle in v\

Conclusion. PC= PD.
Arc CQ = arc QD.

Proof. Join OC and Oi>. Then—
1. Because OC and OD are radii,

they are equal.

2. Because the triangles COP and
i>OP have 0(7 = OD, OP common.
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and OPG and OPD right angles, they are identically equal.

Therefore PO=PD. Q.E.D.
And Angle COP - angle DOP.

3. Because the arcs CQ and QD are subtended by the
equal angles GOQ and DOQ, ^

Arc CQ = arc QD, Q.E.D.

Theoeem X,

232. Comersely, a line bisecting a chord at right
angles passes through the centre.

Hypothesis. CD, a chord of a circle;
PM, its perpendicular bisector.

Conclusion. The centre of the circle
lies on the line PM.

Proof. 1. Because C and B are each
upon the circle, the centre is, by defini-
tion, equally distant from C and D.

2. Because PM is the perpendicular
bisector of CD, every point equally
distant from C and D lies upon this
line (§105).

p J* TJ'S'^1^'''*®
*^® ""^^"^^^ ""^ *^® ^'''^^® ^ies upon the line

JrM. Q.E.D,

Theorem XL
223. Parallel chords or secants intercept eaual

arcs between them.
i' ^^^

Hypothesis. AB, CD, parallel
straight lines, of which the first

meets the circle in the points A
and B, and the second in the points
CsLiidD.

Conclusion. Arc AC =a.rc DB.
Proof. Let be the centre of

the circle. From drop the radius
OF perpendicular to one of the parallels. Then—

IM
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1. Because OF is perpendicular to one of the paraUels, it
will be perpendicular to the other also (§ 72).

2. Because OF is perpendicular to AB,
AToAF=aTGBF.

3. Because O^is perpendicular to CD,
Arc CF=a,rcDF,

4. Subtracting (2) from (3),

AiG AC= arc DB, Q.E.D.

am)

Theoeem XII.

234. Of lines passing through the md of any
radius the perpendicular is a tangent to the circle
and every other line is a secant

*

Hypothesis. 0, the centre of a
circle ; OP, a radius ; MN, a line
through P perpendicular to OP;
MS, any other line through P.

Conclusion. I. JfiV is a tangent
|

to the circle at P.
II. MS is a secant.

Proof I. 1. Because OP is a
perpendicular from upon JfiV, it

is less than any other line from to JfJV (§ 101).
2. Therefore every other point of MJVia farther from the

centre than P is.

3. Therefore every point of ifiV except Pis outside the
circle, while P is on the circle (§206, Ax. III.).

4. Therefore M]^ is a tangent (§ 205, def.). Q. E. D.
Proof II. From drop a perpendicular upon MS, and

let Q be the point of meeting. Then—
6. Because the line PM is, by hypothesis, different from

PM, and 0PM is a right angle, the angle 0PM cannot be a
right angle.

6. Therefore OP is not a perpendicular upon MP.
7. Therefore OQ, the perpendicular, will be a different

line from OP.
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8. Because OQ is a perpendicular, it will be less than OP
an oblique line (§ 101).

'

9. Therefore the point Q is inside the circle (§206, Ax. II. ).

10. Therefore i^iS* is a secant of the circle. Q.E.D.

225. Corollary 1. The radius to the point of contact of
any tangent is perpendicular to the tangent.

336. Corollary 2. The perpendicular from the point of
tangency passes through the centre of the circle.

Theorem XIII.

227. Thco tangents drawn to a circle from the
same externalpoint are equal, and make equal angles
with the linejoining thatpoint to the centre.

Hypothesis, P, a point out-

side a circle; PM, PN, two
tangents from P touching the

circle at M and N-, 0, the cen-

tre of the circle.

Conclusion, PM= PN,
Angle OPJf= angle OPN,
Proof, 1. In the triangles

OMP and ONP we have

Side OJf=side ON,
Side OP = side OP,

Angle OMP = angle ONP = right angle.

2. Therefore these two triangles are identically equal;
namely, the side PM is equal to its corresponding side PN,
and the angle 0PM to OPN. Q.E.D.
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INaOBIBBD AND CIRCUMSORIBED FIGURES.

CHAPTER II.

INSCRIBED AND CIRCUMSCRIBED FIGUR'£S

103

Befinitions.

^S^\'' ^^A ^ rectilineal figure is said to be in-acnbed in a circle when all its ver-
tices lie on the circle. The circle is
then said to be circumscribed about
the figure.

^
239. Def. A figure is said to be

circumscribed about a circle when x \ / /
aJU Its sides are tangents to the circle.

^<^^^^^^^
The circle is then said to be in- ^^Sf^'^^^i polygon and
-,^_.^^ - . ,, ^ ^^ ^ "^ "* * circumscribed circle.scribed in the figure.

330. Def. An inscribed angle
is one of which the sides are two
chords going out from the same
point on a circle.

231. Def. An inscribed angle is \x
said to stand upon the arc included a circumscribed polygon
Detween the ends of its sides. *"** *" iMcribed ciicie.

If the sides of the inscribed angle arePA and PC, and the circle is divided
into two segments by the third chord A,
A G, the angle APC'ib said to be inscribedm the segment ACBPA and to stand
upon the arc AMO,

232. Def. A line is said to sub- ^-.„.^^
tend a certain angle from a certain ««

point when the lines dmwn from^.'S\nd"2^ a^lS!
tne point to the ends of the line ^ ^ *^« segment

form that angle. t^^Auc.
'*~~ "^"^ *^^

The line ^C subtends the angle ^PCfrom the point P.
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Theorem XIV.

333. Iffrom any point on a circle lines he drawn
to the end of a diameter and to the centre, the angle at
the end of the diameter will be half that at the centre.

Hypothesis. AB, & diameter of a

circle; 0, the centre; P, any point on
the circle.

Conclusion.

Angle PBO = i angle POA.
Proof. 1. Because OP and OB are

radii, they are equal. Therefore the

triangle POB is isosceles; whence
Angle OPB = angle PBO.

2. POA is an exterior angle of the triangle POB. There-
fore

Angle OPB + angle PBO = angle POA. (§ 76)
3. Comparing (1) and (2),

Angle P^O = i angle PO^. Q.E.D.

Theorem XV.
334. JEach angle between a chord and the tangent

at its end is measured by half the arc cut off by the
chord on the corresponding side.

Hypothesis. AB,& tangent touch-

ing the circle at T; TO, a chord from
TtoC.

Conclusions. 1. Angle A TC — \
angle of arc TA'C ora the side A.

2. Angle BTC = ^ angle of arc

TB'DC on the Bide B. ^ T
Proof. Let be the centre of the circle. From T draw

the diameter TOD, and join OC. Suppose the chord from
Tto fall between TO and TA. Then—

1. Because TA is a tangent and TO a radius, ATD ia a
right angle. Therefore

Angle BTC— right angle -f- angle OTO.
Angle ATC= right angle — angle OTG.
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2. Angle TOC = straight angle TOD - angle COD,
= 2 right angles - angle COD.

Reflex angle TOG= straight angle TOD -f- angle COD,

g g
=2 right angles + angle COD,

Angle COD = 2 angle OTC, (8 233)
4. Comparing (2) and (3),

Angle TOC = 2 right angles - 2 angle Ora
Keflex angle TOC = 2 right angles + 2 angle C?ra

6. Comparing with (1),

Angle TOC = 2 angle A TO.
Reflex angle TOC =2 angle -5^(7.

Angle ATC=zi angle TOC,
= i angle arc TM'C.

Angle BTC = i reflex angle TOC,
= i angle arc TB'C. Q.E.D.

Theoeem XVI.

335. An inscribed angle is one half the angle of
the arc on which it stands.

Hypothesis. TC, TD, two
chords meeting at a point Ton
a circle.

Conclusion. Angle CTD =
i angle of arc CD (that arc be-
ing taken on which Tdoes not
lie).

^~
r^

fi, ^T^^i'^t.?^^*^^ ''®''*^® ^^ *^® circle. From draw

1. Angle C7!5 = | angle of arc CDB'T; )

2. Angle Z>rj5 = ^ angle of arc DB'T. '

)

__„ _^. ,
(§234)

3. Subtracting the second equation from the first, andremarking that

Angle CTB - angle DTB = angle CTD,
Arc CDB'T- arc i?5'r= arc C2>

we have angle CTD = i angle of arc CD whioh rine^ «^t '-
dude ^. Q.E.D.

' "*'
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Corollary 1. The angle of the arc CD is, by definition, the
angle COD between the radii OC and OD, Therefore the
preceding theorem may be expressed thus: \

236. 7/*, from two points on a circle^ lines be drawn to

the centre and to any third point on the

circumference, the angle at the centre will

be double the angle at the circumference.

But, in applying the theorem, the an-

gle at the centre, COD, must be counted
round in such a direction as not to include

the radius 07* to the angle at the cir-

cumference. This angle will therefore be
greater than 180° whenever the are CTD isJ'^S^"'^-^
a mmor arc. segment, are equal

237. Corollary'^, All angles in-

scribed in the same segment are equal, be-

cause they are all halves of the same angle

at the centre,

238. Corollary Z. All angles inscribed

in a semicircle are right angles.

For they are all measured by half a semi-
circle.

239. Corollary 4. If a triangle be in-

scribed in a circle, its angles will divide

the circle into three arcs.

The angle of each of these arcs will be

double the opposite angle of the triangle,

240. Corollary 5. Every pair of an-

gles inscribed in conjugate segments are

supplementary.

For if ACB and AFB dio jwa such
angles, each of them is mer ';iiirf''> br one ^
half the opposite arc, and th^j-cfore their

sum is half a circumference, or a straight

angle; whence they are supplementary, by definition (§ 60).

'%

I

a

a
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Theorem XVII.

4 ^^ J:
7!^^^^0h three given points not in the sarne

stratyht line, one circle, and only one, may be dravm^
Hypothesis. Ay B, C, three

given points.

Conclusion. There is only one
point, 0, so siti'iiicd that it may
be the rontre oi: a circle passing
through tliean points.

Frnnf. The centre of the circle

must be equally distant from A, B,
and C.

JoinAB and BC, and let the lines m and n be the per-
pendicular bisectors of AB and BC. Then—

1. Every point which is equally distant from A and B lies
on the Ime m (§ 105).

2. Every point which is equally distant from B and C lies
on the line n.

3. Therefore every point which is equally distant from
all three points, A, B, and C7, lies on both the lines m and ni
that 18, on their point of intersection 0.

4. But there is only one point of intersection. Therefore
there is one point, and only one, equally distant from A B
and C; namely, the point 0.

*
'

6. Because OA = OB = OC, if with the centre and the
radius OA we describe a circle, it will pass through A B
and a Q.E.D.

e
^ »

iJvliolium. If the three points A, B, and C are in a
straight line, the perpendiculars to the lines AB and BG
are parallel (§ 70). Therefore in this case no point can be
found which shall be equally distant from A, B, and O.

Theorem XVIII.

242. m-om any point within a circle every diam-
eter subtends an angle greater than a right angle,
andfrom anypoint without the circle it subtends an
angle less than a right angle.
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Hypothesis. AB, any diameter of a circle; P, any point
within the circle; Q, any point without

the circle.

Conclusions.

I. Angle APE > right angle.

II. Angle AQB < Hght angle. -^f

Proof. I. Continue either side of

the angle APE, say AP, until it meets

the circle. Let R be the point of meet-

ing. Join BR. ^^

Then—
T. Because the angle APE is an exterior angle of the tri-

angle ERPj it is greater than the interior angle PRB (§ 77).

2. Because the angle PRB — ARE is inscribed in a semi-

circle, it is a right angle (§ 238).

3. Therefore APE is greater than a right angle. Q.E.D.
II. The proof of this case is so near like that of case I.

that it is left as an exercise for the student.

Theorem XIX.

243. If a quadrilateral he inscribed in a circle^

the sum of each pair of opposite

angles is two right angles.

Hypothesis. AECD, a quadrilateral

of which the four angles lie on a circle.

Conclusions.

Angle A -}- opposite angle (7=2 right

angles.

Angle E + opposite angle D = ^ right

angles.

Proof. Draw the diagonal ED. This diagonal will be a

chord dividing the circle into two segments. Then

—

1. Angle BCD = i angle arc BAD. (§ 235)
Angle EAD = l angle arc BCD.

2. Adding those two equations,
j

= 2 right angles.
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In the same way, by drawing the diagonal A G, may be shown
Angle B -\- angle C=% right angles. Q. E. D.

Theorem XX.
244. Comersely, if the sum oftwo opposite angles

of a quadrilateral is equal to two right angles, thefour angles lie on a circle. —-^ '

Jiypothesis. ABGD, a quadrilateral D/1 9AC
in which

Angle A -\- angle 0= two right angles. '

Conclusion. The points J, ^, C7and a'B lie on the same circle.

Proof. Describe a circle through
the three points B, A, B. ^

nr^nn'' T^^^^'f
^^^* pass through C, it must intersect BC,or i>C7 produced, at some other point than C.

Let Q be this point. Join BQ. Then—
1. Because the quadrilateraU5^Z>i8 inscribed in a circle.

Angle BAB
-f- angle BQB = two right angles.

2. Angle 5^i> + angle BOB = two right angles (hyp.).
Therefore Angle ^^Z) = angle I(7A
Which IS impossible, because BQB is an exterior angle of the
triangle BQC (§ 77).

^

3. In the same way it may be shown that the circle cannot
intersect BO produced at any point beyond 0. Therefore
the circle must pass through (7, and ABCB lie on one circle.

Q.E.D.
345. Corollary. Bach exterior angle of an inscribed

quadrilateral is equal to the opposite interior angle.

Theorem XXI.
S46. When two chords of a circle intersect each

other, each angle is measured by a —
halfthe sum of the arcs interested
by its sides and the sides of its ver- / X p ^d
tically opposite angle.

Hypothesis. AB, CB, two chords Ca /n
intersecting at the point F,
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I
!

Conclusions.

Angle DPB z= APC = ^ angle arc BD -\- ^ angle arc AO.
Angle APD = CPE = \ angle arc DA -\- ^ angle arc CB.

Proof, JomBC. Then—
1. Because APC is an exterior angle of the triangle BCP,

Angle APC = angle PBC + angle PCB. (§ 76)
2. Because PBC is an inscribed angle standing on the

arc A C,

Angle PBC= i angle arc A C, (§ 235)
3. Because PCB is an inscribed angle standing on the

arc BDy
Angle PCB = ^ angle arc BD.

4. Comparing (2) and (3) with (1),

Angle APC=^ angle arc AC + ^ angle arc BD. Q.E.D.
5. In the same way may be shown

Angle APD = i angle arc DA + ^ angle arc CB. Q.E.D.
Corollary. Since vertically opposite angles are equal, we

conclude

—

24:1i. The sum of each pair of vertically opposite angles is

measured by the sum of the corresponding intercepted arcs on
any circle which includes the vertex of the angle,

Theoeem XXII.

248. If two secants he drawn from a point out-

side a circle^ the angle between them is measured
by half the difference of the intercepted arcs.

Hypothesis. PAB, PCD, two secants emanating from
the point P without a circle, and intersecting the latter at

the respective points A, B and (7, D.

Conclusion.

Angle APC —\ angle arc BD
— ^ angle arc CA.

Proof. Through A draw a par- **!

allel to PD, intersecting the circle ..^

in the points A. and P.

Then—
1. Because BP is a transversal of the parallels FA and DP,

Angle APC = corresponding angle BAF,

c
i

n

I

B
to

The



J- Because BA^ i. ^ ,^^ ^^,^ ^^^^.^^ ^^ ^^
Angle 5^/-= ^ angle arc Bi;

3. Because fti "nV^ln? ^^ " * '"^'^ "«= ^-O-

parallels ^^and GO,
intercepted between the

/•Co^parinrSr^alar"--- « -3,
Angle AFC= l ansle aro nn it angle arc £D ^ ^ angle arc CA, Q.E.D.

Theorem XXIII

"PP^^^e sides is eoualLf^! -^
of the otherpair

*^ '"^ ^-

^. ^, i?, >y.
*^® P°^^*s s

-4^ = A8,

3- B«t.eha;e,ai2i;^''+^«+^« + ^^.

' '
-fUt* AU,u.

(§337)
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CHAPTER III.

PROPERTIES OF TWO CIRCLES.

250. Def, Two circles are said to touch each other,

or to be tangent to each other, when they meet in a

single point but do not intersect.

Theorem XXIV.

251. Two circles cannot intersect in more than

two points.
Hypothesis. 0, P, the centres of two circles ; Jf, N, Q,

three of their points of intersection.

Conclusion. The hypothesis is impossible.

Proof. If and P were the centres of two circles pass-

ing through Mf iV, and Q, then the two points and P
would be equally distant from all three points M, iV, and Q,

which is impossible (§ 241).

Axiom V.

252. If the distance between

the centres of two circles is greater

than the sum of their radii, they will

not meet each other.

Theorem XXV.
253. i)^ the distance of the centres of two circles is

equal to the sum of their radii, they will he tangent

to each other.

Hypothesis. and P, the centres

of two circles, the sum of whose radii

is equal to the line OP.

Conclusion. The two circles have

one point in common, and no more.

Proof 1. On OP take a point M, such that OM shall

be equal to the radius of the circle whose centre is at 0. The

point ilf will be on that circle (§ 306, Ax. III.).
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tone;M?Z ^eiTol"' *^^ '"" "' '"^^ ™^". ^e d,V

. both circles.
i" "' ^ will be at the same time on

have ~/+^/>1^7],^~S'^* ^-. - shall

5. But because PJf and PiJ are radii ;f the same circlePH = PM. '

6. Taking (5) from (4),

„ _ OJi> OM.
7. Therefore the point R lies without the circle around O

BelSr^efintist?*! T.*
« -^Po^- h^ul"^^.

are tangent ^rhZetJIIsT St ""'^""*"^' '"^^

Theorem XXVI.

t^eir raau, tUey .illSZt IZZSt'""'' ""^

Hypothesis. 0, P, the centres
of two circles; OA, a radius of the
greater one, on the line OP- PB
fine!^'"''

«^ *^e lesser, on the same

OA-BP<:OP<OA^BP ^ _/
S:?i"J'r"''" -t-«ect in^^o points.

f^-;Tp. ^h?co^r.itir ^^^^^^^^^ P-s
the same as

^^ <^ ujl -\. bp is therefore

2 T«V
^^"^BPKOA^BP,

^. J^akmg away the common part PP,
rn, , OB<OA.
-i-nereforfi On io 7«„„ ^i,„-. ji ,.

point 5 on thed^re pt wlv^ ^^ °* *?' '"'^'> «' ""d t^enil. circle 1- IS withm the circle (§ 306, Ax. II.).
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;i! I

Continue OP until it intersects the circle P in Q. Then

—

3. Because BP and PQ are radii of the same circle, the

condition OA - BP < OP gives

OA -BP^BP< OP-^PQ,
or, which is the same thing,

OQ > OA.
Therefore the point Q is without

the circle 0.

4. Because the point B is within the circle and the

point Q without it, if we move a point along the circle P
from B to Q, this point must cross the circle 0.

5. But there are two ways in which we can go from B to

Q; namely, around either semicircle. Therefore there must

be at least two points of intersection of the circles.

6. There cannot be more than two such points, because

two circles would ihen pass through the same three points,

which is impossible (§ 341).

Therefore there are two. Q.E.D.

Theorem XXVII.

' 255, If the distance of centres of two circles is

equal to the difference of their radiiy they will touch

each other in a single point.

Hypothesis. 0, P, the centres of

two circles such that the line OP is

equal to the difference of their radii.

Conclusion. These circles touch in

a single point, and no more.

Proof. 1. Produce the line OPy
and on it take a point M, such that

PM shall be equal to the radius of the circle P. M will then

be on that circle.

2. Because OP is equal to the difference of the radii, the

point M will also be on the circle 0.

3. Therefore the point M will be common to both circles.

Now, take any other point R on the greater circle, and

join OR and PR. Then—
4. Because OR is a straight line,

OP-^PR> OR.
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6. Because OR and OM &ve radii of fTi« oorv, • ,

OM=OF-^ PM, ^^ ^^^^^®' a^d

fi n .
' OR=.OP^PM.

part 0p7""^
with (4) and taking away the common

7. Because PJf is a radius of the circle P an^ pp •

greater than this radius, the pointi. falls iuhecird^^^
8. Therefore eyery Doint nf i\.. • i ^^z?^^'

^^- ^^'^

Without the Cele TKllX^iLr^Lr^^

Axiom VI.
^•^•^*

the distance of the centrett^sfb: 'elthr^'
^"^"^''^ "^

greater than the sum of the radii
or equal to the sum of the radii

'

"
of ttetd^

'"" -"^ S™^*^^ '"- ">« ^iff-nce

or equal to the difference,
or less than the difference

the^eltef
'' ""'^'^'"'=^ *^ ^"""^"g ^'oUaries from

tern^ll/^HnLlX- ^nT'fi^'f
""^ *°"'"' each other ex-

lies wholly ruSS» i? • '^^
"'"" <^ ^^^> ^^'^ °°« "''«'«

whoUy iSe le tttr '
"^ '''' '"""'^ "^ <§«««) " "
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258. Corollary 2. When ttvo circles touch each other, the

two centres and the point of contact are in the same sk^aight

line.

259. Corollary 3. Two circles cannot touch each other in

more than one point, unless they coincide so as to form but

one circle.

Axiom VII.

260. When two circles inter-

sect, the straight line which joins the

two points of intersection is a chord

of each circle.

I

' Theorem XXVIII.

261. When two circles intersect each other^
the

straight line Joining their centres bisects their

common chord at right angles.

Hypothesis. 0, P, the centres

of two circles which intersect

each other; M, N, their points

of intersection.

Conclusion, The line OP bi-

sects the line ilfiV at right angles.

Proof. Let R be the middle

point of the chord MN. Through R draw a perpendicular to

the chord. Then

—

1. Because MN is a chord of the circle P, its perpen-

dicular bisector will pass through the centre P (§ 222).

2. Because MN is a chord of the circle 0, its perpen-

dicular bisector will pass through the centre 0.

3. Therefore the perpendicular bisector passes through the

centres of both circles.

4. But there can be only one straight line between these

centres. Therefore the straight line OP bisects JfiV perpen-

dicularly in the point R. Q.E.D.

2G2. Corollary. Conversely, the perpendicular bisector of

a common chord passes through the centres of both circles.
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CHAPTER IV.

PROBLEMS REUTING TO THE CIRCLE.

Hereafter we shall generally present with ea^h problem an
analysis; that is, a course of reasoning by which the solution
may be arnved at. In an analysis we generally begin by sup-
posing the problem solved, and reasoning out the conditions
which must thus be fulfilled.

It is expected that the analysis will generally enable the
student to supply the proof himself, since the latter will com-
prise the same reasoning as the analysis, but generally in the
reverse order.

o j i^o

Problem I.

263. Tofind the centre of a gwen circle
Given. A circle, ABOD.
Required. To find its centre. --^^^

~^
Analysts. The perpendicu-

lar bisector of every chord of
the circle passes through the ^f
centre (§232). Therefore if
we draw two such chords and
bisect each of them at right
angles, the centre will lie on each bisector; that is, it will betheir point of intersection. Hence the following
^J'^^^iructio^ Draw any two chords of the circle, as AB

Bisect each of these chords at right angles (8 179, Cor )

the c'rdr'
"" " "'"' *'^^ '''''''''' "^^ blVe centre of

chor^d?*'Thff'''!• V' ""^^ "'""''"^y ^^*^^"y *° ^raw thecnords. The construction mav be found as follnwo. i^.^^

thirnf^
""^

f' T^' "' ^ ''^*^^^ ^^^^ ^^y radius"describ^the arc of a circle. From any other point B, with the same

^, f

/\
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radius doscribe another arc intersecting the first at the points
P and Q.

^ t

The straight line PQ, produced if necessary, will pass
through the centre of the circle.

In the same way another line passing through the centre
can be found, and the centre itself will then be their point of
intersection.

Corollary. Since we need not use any definite portion of
the circle in this construction, we may in the same way find
the centre when only an arc of the circle is given. Then from
this centre we may describe the whole circle. Hence this
construction also enables us to complete a circle of which an
arc is given.

Problem II.

265. From a given point without a circle to draw
a tangent to the circle.

Given. A circle, TCT'\ a
point P outside of it.

Required. To draw through
P a tangent to the circle.

Analysis. Any tangent to
the circle is at right angles to
the radius drawn to the point
of tangency(§325). Therefore

the centre of the given circle,

the point P, and
the point of tangency

will be at the vertices of a right-angled triangle.

But a right-angled triangle is that inscribed in a semi-
circle (§ 238). Therefore the point of tangency will be on the
circle of which OP is a diameter.

Construction. From the centre of the given circle draw
the line OP, and bisect it at the point C.

From C as a centre, with the radius GO = GP describe a
circle OTPT, intersecting the given circle in Tand T\

JoinPrandPJ".
The lines PTand PT' will each be a tangent to the given

circle and will pass through P as required.
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Pkoblem III.

Given. A circle and a point P ^
upon it.

ii?e^i«>e^. Through P to draw ai
tangent to the circle.

(

^w«/j^5w. The tangent will be at
right angles to the radius from the V 7^1
centre to P (§ 224). Hence we have ^-^^
tTlgh p' *'^^ ^^^"^ -^ ^-- « perpendicular to it

tiJrdTatiroS rtr^^' r ^-^^- ^-
Join AB. '

"""^ ""^ *^^ ^q"^^ ai'cs i'^, PP.
Bisect AB at right angles by a line 00

fore^aShr^r^ '"^ Pe^endicular to OQ and there-

^^S^^^^^ i^= fhLS t^ ^S ortht" i' 'Ibisects the arc AB (§§ 221, 222)
® ^"^

^ ^-
.because the arcs Pj' and PP are eoual Pic fi, v.- .mg point of the arc AB. TlhevetaJnn' 1 *^^ ^''^^*-

3. Because PTi.rZ -^^f^^foi'e 0^ passes through P.

gent required
P^^P^^^^^-^^r to this line, it is the tan-

Scholium. The radina nn ,•« ^ x

conseruction,since^"i^for;Vr7S'° *'^ """^

Problem IV

oil. \t^llTc^ - « ^-- ^-•-.^.

Required. To inscribe a cir-
cle within it.

Analysis. The bisectors of
the ^three angles ^, P, and (7
mee. in a point equally distant
from the three sides of the tri- A- ^ 1im

a r Mil
Hlf
J'l

t.

1

, "

j

iii
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angle (§ 164). Thoroforo this point is the centre of the

required circle.

Construction. 1. Bisect any two angles of the triangle as

A and D by the lines AO and Z?0, and let bo their point

of meeting.

3. From drop a perpendicular OD upon any side, as AB.
3. From as a centre, with the radius OD describe a

circle. This circle will be the required inscribed circle.

Proof. The perpendiculars from upon each of the three

sides of the circle are equal (§ 1G4).

Therefore each of these sides is a tangent to the circle.

if

268. Scholium. In the general triangle (§ 58) there are

four circles, each fulfilling the condition of touching the three

sides of the triangle. One of these is within the triangle as

just described, and the other three are without it, each of

them touching one of the sides from without. The latter are

called escribed circles.



rrprt!xr'iicrr
°' ''- '''' '^'^

J^T^LI^S' •-' '"' *•« ^'^ -'- ot the .^cHbod

^ 0' bisector of exterior angle SAB
^^^' " " " " ^i9P.

BCR.
QOA.

7iO"

CO"
CO"'
AO'"

n
it

((

((

tt

ti
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Problem V.

269. To describe a circle which ^hnii ^
through three given points,

^"^^ ^""'^

Given. Three points, A, B, C.
Required. To describe a circle

which shall pass through each of
them.

Analysis. The centre of the ..
circle must be equally distant from

This circle will be thaf. r^f„,i.«^ ^.__-. .,

points ^, B, and a
'-a«J—

,
i^uBbing througii the

Proof. As in §§ 166, 241.
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370. Corollary. Since, in the construction of this prob-

lem, we describe a triangle having its angles at the given

points, this problem is the same as that of circumscribing a

circle about a given triangle.

Problem VI.

271. To bisect a given arc of a circle, .

Given. An arc AB. p
Required. To bisect it.

Analysis. 1. The radius which

is perpendicular to the chord of

the arc bisects both the chord

and the arc.

2. The line which bisects the
~

Q
chord at right angles passes through the centre of the circle,

so that that part of it which is contained between this centre

and the circle itself is a radius.

3. Therefore this line will bisect the arc of the chord.

Construction. 1. Draw the chord AB between the two

ends of the given arc.

2. Bisect this chord at right angles by the line PQ.
3. Let D be the point in which this bisector intersects

the given arc AB.
The point D will bisect the arc.

Problem VII.

272. Upon a gimn line as chord, to describe an
arc of a circle of wMcTi the in-

scribed angle shall be equal to

a given angle.

Given. A line, ^-B; an angle, X, ^^

Required. On ^5 as a chc rd, to

draw an arc of a circle such that

any angle inscribed in it shall be

equal to X.
Analysi'^. 1. Suppose the whole

circle of { ch an arc is required to
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oho'nr^uppi: *r^"' ^^^' "^ "-^^ «' 0- end of the

dicular bisector of the chord AB will both „.T, t^ ^"T""
centre of the circle (§§ 223, 226). Hence ^ "^"^ **>'

Construction. 1. At one extremity as J of rt« r . „make an angle BAD ennni tn ti><, • .
' '"e ''"« ^^

a. At yl erect a perpendicular ^0 to the line ia
The ::tt oVn^^ 1 "^'* '-S'- b/the Le W.

^..e^^^oSrr^i; 7:r^'
-^-'-^«' -^^^ «„

eide'Vith Tb, X: "li^fi r'^,r '- ^ ^^ -» eoin.

circle, and Oik Ztvt '''" ''' " ^'^'^'' "f the

Pboblem VIII

<y*vm. A circle; a
^

triangle, ^^a
Required. To in-

scribe in the circle a tri-
angle which shall have
Its angles equal to the
respective angles A, B,
^, of the triangle ABC,

Analysis. 1. jSupl
pose the triangle in-
scribed, and let it be ^ ' ^'r^' Ai- j^ a
the circle.

"^ ^^ c
. At A' draw a tangent BG to

^- We shall then hn^a
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3. Therefore the three angles of the triangle will be the
same as the three angles DA'O'y C'A'B', B'A'C. Hence

Construction. 1. Draw a tangent to the circle at any
point A'.

3. At the point of tangency A make the angle DA'C
equal to the angle B of the given triangle; the angle G'A'Bl
equal to A'y when the angle B'A'G will be equal to G (§ 73).

3. Produce the sides until they intersect the circle in B'
and C", and join B'G'

A'B'G' will be the required inscribed triangle.

Peoblem IX.

274. Ahout a given circle to circumscribe a tri-

angle which shall he equiangular to a given triangle.

Given. A tri-

angle, ABG; a

circle, PQE.
Required. To

circumscribe about

PQR a triangle

which shall have

angles equal to A,
Bf Gj respectively.

Analysis.

1. Suppose the problem solved. Let P, Q, R, be the points
in which the sides of the required triangle touch the circle,
and let be the centre of the circle.

2. Join OP, OQ, OR.
3. In the quadrilateral OPC'Q we have

Angle OqC' = right angle;

)

;« „^..
Angle OPG' = right angle. S

^^ '^'^^^

And because the sum of all four angles is equal to four right
angles, if we take away these two angles from all four angles
we have left

Angle QOP + angle QG'P ~ two right angles.

4. Therefore QOP is the supplement of (7', or of its equal,
G; and in the same way POR is the supplement of B, and
ROQ of A.
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4^ro^^z^iiKrrfc/'"^equ^ to the respective angles around thec& HenorConstruetvon. 1. Produce each side of the riven tri»2>
so as to form its three exterior angles

^ ^^^

3. At the end of each radius draw i tnnffnT,* +« +1,

a.d produce these tangents untilX S^ril'^'/
^^^^^^'

This triangle will be that required.
^

Peoblem X.

ciS: ^"^ ^^"""^ "" ^"^"^^t^ngmt to two given

Given. Two circles P^^^T^v—-—-^ o
i'^ and Q8, of which

"^ ^ ^ ~ ^

QS is the lesser.

Required, To draw a
straight line which shall
be tangent to both circles. ^

8. Let ^ and be the centres of the circles.

c paidiieis /^cy and PQ, they are equal (8 126^

^p':^X ^i^:r' *- '•'^ ^'«—'"'^H; radu

'Mn
f

1

J
'

I

fl
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i I

il

.pnf *Jf>. ^ ' T*'' ^ ^^ *^^ «^^"^^ ^ir^^^e draw a tan-gent to the inner circle, and let B be the point of tangencr
3. Join AB, and produce the joining line to P
4. From the centre draw the line OQ parallel to APand meeting the circle in ^.

v i^ c* i^i to ^^
6. Join Pg. The line PQ will then be one of the tan-gents required.

^"

Proo/. To be supplied by the student from the analysis.

EXERCISES.
Theorem 1. If two chords be drawn in a circle intersect-ing each other at right angles, their ends will divide the circleinto four pros. Show that the sum of each pair of opposite

ares is a semicircle.
x- ri- » ^^

How will the theorem be modified if the chords do not
intersect within the circle?

Theorem 2. If, from the two ends of a chord, chords per-
pendicular to It be drawn, they will be equal in length.

Theorem 3. The shortest line between two concentric
circles IS part of the radius of the outer one.

Theorem 4. If the angles at the base
of a circumscribed trapezoid are equal,
each non-parallel side is equal to half the
sum of the parallel sides (§ 227).

Theorem 5. If from the centre of a
circle a perpendicular be dropped upon either side of an
inscribed triangle, and a radius be drawn to one end of this
side, the angle between the radius and perpendicular will be
equal to the opposite angle of the triangle.

Theorem 6. If two equnl chords intersect, the segments
of the one are respectively equal to the segments of the
otner.

Theorem 7. The only parallelogram which can be in-
scribed in a circle is a rectangle.

Theorem 8. From any point outside a circle a chord sub-
tends an angle less than half its arc; from any point inside
the circle an angle greater than half its arc.
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which
which

^
Explain the relation of the two c(

the chord divides the circle to the sid
the subtended angle lies.

Theoeem 9. If an angle between
a diagonal and one side of a quadri- C
lateral IS equal to the angle between
the other diagonal and the opposite
side, the same will be true of the
three other pairs of angles corre^' ^
spondmg to the same description, and ^^P' -^OB^adb.
the four vertices of the quadrilateral

^''^'

%ba-'c?jPahe on a circle (§237). DAbZb%.
TTTTTrtPTj-xr in A • , ,

^^CZ) on a Circle.

Theorem 12. If a circle pass
"

through the centre of another circle
Py and from the centre ofP a di-

^
ameter to the circle be drawn
every chord of P passing (when
produced) through the other end Qof this diameter is bisected by the
circle (§§ 221, 238).

Theorem 13. If two circles be
drawn each touching a pair of parallel
mes and a transversal crossing them,
the distance between the centres of
the circles is equal to the length of
the transversal intercepted between
the parallels (§ 227.)

Theorem 14. If any number of tri-ang es have the same base and equal
angles at the vertices, the bisectors of
thes_e angles pass through a noinf. (^ 9si<y\

iJ-ow is this point defined?"
'"''"'^*

Condtision. WN'=: Ify,
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Theorem 15 Of all chords passing through a given point
within a circle, the least is that which is bisected by the point.

I Theorem 16. The centres of the
four circles circumscribed about the
four triangles formed by the sides and
diagonals of a quadrilateral lie on the
vertices of a parallelogram (§ 166).

Define the lengths of the sides of
this parallelogram and its angles. Af

The four circles circumscribed about the triangles ^05, BOG, GODDOA, have their centres on the vertices of a parallelogram.

Theorem 17. The tangents at the four vertices of an in-
scribed rectangle form a rhombus.

Theorem 18. The quadrilateral

formed by the bisectors of the four
angles of another quadrilateral has
its four vertices on a circle.

Theorem 19. If each pair of
opposite sides of an inscribed quad-
rilateral be produced until they
meet, the bisectors of the angles
formed at the point of meeting will

be perpendicular to each other.

Theorem 20. If the arc cut off

by the base of an inscribed triangle

be bisected, and from the point of
bisection be drawn a radius and a
line to the opposite vertex, the
angle between these lines will*be
half the difference of the angles at
the base of the triangle.

Theorem 31. If perpendiculars be dropped from the ends
of a diameter upon any secant, their feet will be equallv distant
n-om the points in which the secant intersects the circle



129
THEOREMS FOB EXERCISE.

Theorem 33. The middle points
of all chords passing through a fixed
point lie on a circle (§§ 136, 338).

Theorem 33. If a chord be ex-
tended by a length equal to the radius,
and from the end a secant be drawn «
througli the centre of the circle, the
greater included arc will be three
times the lesser.

Hyp. PB = radius.

Cone. AxcAN=^qxqBM.

Theorem 34. If a chord be pro-
duced equally each way, and from its

ends tangents be drawn to the circle
on opposite sides, the line joining
the point of t?ngency will bisect the
chord.

^.J^f^^''^^'' ^\ .?
a right-angled triangle the sum of the

hypothenuse and the diameter of the inscribed circle is equal
to the sum of the two sides.

^

Theorem 36 If lines be drawn from the centre of a circle
to the vertices of any circumscribed quadrilateral, each pair
of opposite angles at ^ he centre will be supplementary.

nirlTT.^^' ^^ r ^^^^l^^^^al triangle be inscribed in a
circle the distence of any point on the circle from the farther
side of the triangle is equal to the sum of its distances fromthe two nearer sides.

Theorem 38. If in any triangle
the feet of the perpendiculars from
the angles upon the opposite sides be
joined, the thi^e angles of the new . :s

triangle thus formed wiU be bisected by the perpendiculars.

r

S
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OF AREAS.

Definitions.

376. Base md Altitude. Def. The base of a fig-
ure is tliat one of its sides on which we conceive it to
rest.

Any side of a figure may be taken as its base.

377. Def. The altitude of a figure is the perpen-
dicular distance of its highest point above its base.

The altitude of a paral-

lelogram is the length of the
perpendicular dropped from
any point of one side to the
opposite side, produced if .

necessary. The latter side is then considered as the base.
The altitude of a triangle is the

length of the perpendicular dropped
from either angle to the opposite
side, produced if necessary The
latter side is then considered as the
base.

The terms hase and altitude are therefoi^T^^ativralti-tude meaning a perpendicular distance from the base.

278. Def. The perimeter of a iiolvo-nn \. +i.

combined length of aU its sides
-"^o-- - ««vxiss
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AUlia OF RECTANGLES.
^^^

279. Def A rectangle contained by two lines
IS a rectangle of which two adja- g
cent sides are equal to these lines.

Tho rectangle contained by tlio lines
a and h is that in which one j)air of
opposite sides are each equal to a, and
the other pair to b.

380. Def. The projection of a
finite line upon an indefinite line is
the distance between the per-
pendiculars dropped from the
ends of the finite line upon the
indefinite line.

Example. ^'^' is the projec-
tion of the line AB upon the in-
definite fine X,

381. Def. The area of a ,,__ _
plane figure is the extent of A ~Y
surface of which it forms the boundaryA plane figure cannot have an area unless it completelv
incloses a portion of the plane in which it lies.

''^"'P^^^^y

Example 1. An angle has no area.
Ex. 2. Two parallel lines do not inclose an area.
Jix. 3. But polygons and circles have areas.

283. In elementary geometry we regard the area is +hA

^2-^1^ " '""" "*" *"" °^ ""-« P-'«— to
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CHAPTER I.

AREAS OF RECTANGLES.

Square Inch.

Square
centimetre.

S83. Areas are measured by supposing them divided

up into units.

To form a unit of area, we take

any unit of length and erect a

square upon it. The area of this

square is the corresponding unit

of area.

We may thus form a square

millimetre, a square centimetre,

a square inch, etc.

Lemma.

284. The number of units of area in a rectangle

is equal to the 'product of the numhers of units of
length in its containing sides.

Prooffor whole numbers. In the figure let the base be m
units in length, and the vertical

sides each n units. Then if we
divide the sides into units of

length and join all the correspond-

ing division points by straight

lines, the whole rectangle will be divided up into units of

area. It is evident that there will '»e in the whole rectangle

n rows, each containing m units. Therefore the whole num-
ber of units wiU be mn.

285. Corollary. The area of a square of which each side

contains m units is m^ units.

Note. The above demonstration presupposes that each side of the

rectangle contains a whole number of units. The general case in which

the sides contain fractions of a unit must be deferred until after the

subject of proportion is taught.

*!i
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1

or

286. Scholium. The preceding result is sometimes ex-
pressed by saying that the area of a rectangle is equal to the
product of two of its containing sides. But when we speak of
the product of two lines, what we really mean is the product
of the number of units which the lines contain. This product
IS always equal to the number of square units in the rectan-
gular area. Hence we may consider such an area as a kind of
product of lines,and for shortness use a form of algebraic pro-
duct to represent it, as follows. Instead of saying

The rectangle contained hy the lines AB and AD,
we may say

Rectangle AB . AD,
Area AB . AD,

or simply AB . AD.
If the lines are represented by single letters, as a, b, wo

may write simply ab
to express the area of the rectangle.

To these expressions of algebraic products we may assign
either a geometric or an algebraic signification.

Geometrically, the expression

AB . CD
memsthe area of the rectangle contained by the lines AB
and CD, This meaning may be considered independently of
any idea of a product.

^

Algebraically, the same expression means the product of
the number of units in CD by the number of units in AB.

Since this product is equal to the number of units of aream the rectangle, the two meanings are entirely consistent.
Again, geometrically, the expression

AB^
means j?Ae area of the square erected upon the line AB
^rrJ I Tz?""'"^

""^y ^® ^''^'^^^ Without any idea of the

geometncal application, we should write or understand the word "area »
before the STmbola of nrodnnfo ,. „v^^ *v„x ., _ ,

^"^^ ^^^
totiiinkof themgeometricalIy7

^ "" "' ""''^'''' "" '^P'"*"^

10
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I :i.

^i! in :

i ^l

Theorem I.

28?. T7ie area of the rectangle formed hy tioo
lines, one of which is divided into several parts, is
equal to the sum of the areas of all the rectangles
formed hytJieundivid'

(f jf r'
ed line and the several ^\ ^ ' ' ^

D
4L_£. -%

parts of the divided
line,

Ilyiwthesis. A lino, ® ^0"

BM=A; another line, BF = P, divided into the parts a,
0, Cy d, etc., ut the points (7, />, E^ etc.

Conclusion. Area ^.P = area (.!.<% + ^.^) + j.^ + yl.,n.
Proof On BP erect the rectangle BPNM, of which the

sides BM, PN, shall each be equal to the lino A, and MJV
""ni YJ'^r.^: ^^ ^' ^^ ^' ^^^- «^^«^ *he perpendiculars
GO

, DD'y EE'y etc., meeting MNm C", />', W, etc. Then—
1. Because the angles at C, D, E, etc., are all right

angles, each of the quadrilaterals MBCC, C'CDD\ etc. is a
rectangle.

'

2. The sum of all these rectangles is equal to the rectandeBM. BP, by construction.

3. Therefore area BM. BPz= sum of areas A.a^A .1,
etc., or, because BM = A, and BP = P,

Area A.P = area {A.a + A.h + A*c + ^.^). Q.E.D.
Schohum. When we give the symbols A, a, h, c, d, which

we have supposed to represent lines, their algebraic significa-
tion, we have

P = a-^l + c^d,
which gives the well-known formula

^{fi^-h + c-\-d)=:Aa-{-Al-\-AG-{-Ad,
and expresses the distributive law in multiplication.

Theorem II.

288. If a straight line he made up of two parts,
the square of the whole line is equal to the sum of the
squares of the two parts plus twice the rectangle con-
tained mt flip /M/y/r/o

^

n
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ITypothesis. AB, a straight lino dividnd nf p •
* ..

parta A J* and PB,
aiviaed at P into the

Condmion. Square on AB
oquuls sum of squares on AP G
and Pi^ plus twice the rectan-
gle ^P./'/?. Or, in symbols,

^B'=AP'-\.PB'-\.2AP,PB. W
Proof. On AB erect the

square ABCD.
On AC take ^/" = ^7:>.

Through P draw PP"
parallel to ^C7, and through P'
draw P'P'" parallel to AB,
Then— A^

^
1. Taking away from the equallines^;? AP ^\.^ .. i

parts ^P, AP\ we have ' ^ ^' *^® ^'^''^^

^^ = ^'^.

CQ. DQ, and ^^ are'pi^^rl^f'
*'' quadnlaterak ^ft

ngM angle. Therefore they are all rectangles (8 125)
4. Because of the parallelism of the lines JcPP" .„^BB, and also of the lines ^BP'J'^^ l^lcuXZ^ '

P"'D = QP" = ptQ
6. Therefore Aiea APQP' = j^p\

Area QP"'DP" = pp»
Area P'QP^'C = AP '. pp.
Area PBP"'Q = AP pp

aJ: Thtrf°"' """^ ""^« "P ^''o' -«» of the sqnare on

uence: — ~^ '^^-' • "^'^»

(1)

' ^ -f^v
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289* Iffrwu the square of the sum of two tinea we take

away the sum of their squares, we shall have left twice their

rectangle.

290. Scholium. By hypothesis we have

AB = AP-i- PB.
Substituting this in the conclusion, wo have

(AP + PBY = AP^ + 'HAP . PB + PB\
a well-known algebraic expression. ^

The geometric construction serves to exhibit to the eye

the different parts of which this algebraic expression is

made up.

iii

ill

B

K

B-

n

Theorem III.

291. T7i& square upon the difference of two lines

is equal to the sum of the squares upon the lines^

diminished by twice the rectangle contained by them.

Hypothesis. AB, AG, two lines of which AC ia the

longer; BC, their difference.

Conclust07i.

BC = AB' + AG' - 2AB . AG.

Proof. On AG erect the square

AGOH.
On ^C erect the square BGEF, D
On AB erect the square ABKL.
Produce FE till it meetsAOm

D. Then— A
1. The whole area AKLBGHG

= AB' + AG\
2. Because EB — BG, and BL

:= AB,yfQ have

EL = AB -{- BG = AG.
Therefore

Area KLDE = area AB . AG.
3. Because CH = AG, and GF = BG, we have

FH = AG -== BG =z AB.
Hence

Area DFQH = area -4-5 . -4 0.
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4. If from the whole area (1) we take away the areas '2)
and (3), we have loft the square BVEF; that is. BO*
Therefore > -w^^ .

292, Scholium. Since BO =z AO ^ AB, vro have
(AO-^ ABy = A0'- 2AB.A0+AB\

the algebraic formula for the square of the difference of two
numbers.

TlIEOKEM IV.

293. T7ie difference of the squares described on
two lines IS equal to the rectangle contained by thesum and difference of the lines.

Hypothesis. -4 i?, vlC, two straight lines of which ulC is
tiio greater, and each of which is to
have a square described upon it. % ~ '

iD

Conclusion.

AC'-~AB^=:(AC-{.AB){AO-AB). p
I'roof. On AO describe the

square A ODE. On AE takeAF=
AB. From F draw FH parallel to
AO, meeting OD in H, and from B
draw ^(7 parallel to AE and meet-
ing FH in Q. Then—

iV^^'vl^\^Tr''^ ^' '^ *^' '^'^ *^«°^^^ i* °iay"be shownthat EH and 6^(7 are rectangles, and ^ 6^ a square.
2 Because AE= AO {h^ construction), and AF = AB,

to /a Thirllf ~
^^^ ^"^ ^^ ^«' ^^ --^-^-^ equal

Rectangle EH = AO {AO- AB).
3. Because /'^ and ^C are parallel, OH = AF = ABWhile 5C ,s, by construction, equal to AO^ AB. Therefore

Rectangl GO = AB (AO- AB)
4. The sum of the rectangles AO(AO~^AB) and ^5

\ / A n
yi/j).

(^C — AB\ = reotana-lo ( AH^ a p

^r i^ ^n^
^^ffe^f

f«
between the squares on the linesi^ andAC IS made up of the sum of these rectangles.

- I

U

m
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Therefore

AC -- AB" = (AG -{• AB) (AG -- AB), Q.E.D.

294. Scholium. Expressing the areas of the squares and
rectangles in algebraic language, this theorem gives

a» - 5» = (a + b) (a - b).

• >

CHAPTER II.

AREAS OF PUNE FIGURES.

Theorem V.

395. The area of a parallelogram is equal to that
of the rectangle contained by its base and its altitude.

Hypothesis. ABGD, any parallelogram of which the side

ABiB taken as the base; AE, the altitude of the parallelo-

gram.

Gonclusion. Area ABCD — rectangle AB . AE.
Proof. From A and B draw perpendiculars to the base

AB, meeting CD produced in E and F. Then

—

1. Because ABCD and ABEF&re both parallelograms,

EF = AB, and CD = AB. (§ 127)
Therefore EF = CD.

BF = AE.
BD = AG.

2. If from the line ED we take away EF, FD remains;
and if we take away CD, EC remains. Because the parts

taken away are equal (1),

FD = EC.
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3. Comparing with the last two equations of (1) it is
seen that the triangles BFD and AEC have the three sides of
the one equal to the three sides of the other.

Therefore

Triangle AEC = triangle BFD,
4 Prom the trapezoid ABED take away the triandeAEC, and there is left the parallelogram ABCB, From the

same trapezoid take away the equal triangle BED and there
18 left the rectangle ABEE, Because the triangles are equal

Rectangle ABEE = parallelogram ABCD,
*

Therefore

Area ABCD = rectangle AB . AE. Q.E.D.

296. Corollary 1. All parallelograms upon the same base
and between the same parallels are equal in area, because thev
are all equal to the same rectangle.

297. Cor. 2. Parallelograms having equal bases and
equal altitudes are equal in area.

4T.
??^'

7
^^^' ^' ^^ ^^^ parallelograms having equal bases,

that has the greater area which has the greater altitude
Of parallelograms having equal altitudes, that has the

greater area which has the greater base.

Theorem VI.

399. ^Ae area of a triangle is equal to half the
area of theparallelogramformedfrom any two of its
sides, having an angle equal 4o that betwem those

Hypothesis. ABC, any triangle; PQRS, a parallelogram

im

m which

J if

11
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PQ^ R8 = AB,
PR= QS=AG.

Angle PQ8 = angle CAB.
Conclusion. Area ABC = ^ area PQR8,
Proof. Draw the diagonal P8. Then—
1. Because of the equations supposed in the hypothesis,

the triangles PQ8 and ABC have two sides and the included
angle of the one efqual to two sides and the included angle of
he other. Therefore the triangles are identically equal, and

Area ABC = area PQ8. (§ 108)
2. In the same way is shown

Area ABC = area PR8.
3. The sum of the areas PQ8 and PR8 makes up the

whole area of the parallelogram PQR8. Therefore, com-
paring (1) and (2),

Area ABC^^ area PQR8. Q.E.D.

300. Corollary. A diagonal of a parallelogram divides
it into two triangles of equal area.

Theorem VTI.

301. The area of a triangle is one half the area
ofthe rectangle contained by its base and its altitude.

Hypothesis. ABC, a triangle having the base AB and
the altitude CD.

Conclusion. Area
ABC^^VQctAB.CD.

Proof. Through B
draw BG parallel to

AC, and through G
draw CG parallel to

AB, meeting BGinG.
Then-

1. ABCG is a parallelogram having the base AB and the
altitude CD. Therefore

Area ABCG = rect. AB . CD. (§ 295)
2. Because AB and CD are each sides of this parallelo=

gram.
Area ABC = ^ area ABGG. (§ 299)

I
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3. Comparing (1) and (2),

Area ABC = i rect. AB . CD. Q.E.D.

302. Corollary 1. All triangles on the same base, having
their vertices in the same straight line parallel to the base, are
equal to each other in area.

303. Cor. 2. If several triangles have
their vertices in the same point, and their

bases equal segments of the same straight

line, they are equal in area.

304. Cor. 3. If a triangle and a —^ ^

parallelogram stand upon the same base and between the same
parallels, the area of the parallelogram will be double that of
the triangle.

Theorem VIII.

305. The area of a trapezoid is equal to that of
the rectangle con- o
tained by its altitude

and half the sum of
its parallel sides.

Hypothesis. ABCD,
a trapezoid of which the
sides AB and CD are -* 1
parallel; CE, the altitude of the trapezoid.

Conclusion. Area ABCD = ^{AB + CD) . CE.
Proof. Draw either diagonal of the trapezoid, say BC.
Then

—

1. Because ABG is a triangle having AB as its base and
(7^ as its altitude.

Area ABC = ^AB . CE. (§ 301)
3. Because BCD is & triangle having CD as a base and an

altitude equal to the distance of the vertex B from CZ>—that
is (because AB and CD are parallel), to CE—

Area BCD = i CD . CE.
3. The sum of these areas makes up the whole area of the

i'i»i;cauiQ. inereiore

Area of trapezoid = ^AB . CE -f ^CD . CE
= UAB + CD) CE{% 187). Q.E.D.
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Theoeem IX.

306. If through any point on the diagonal of a
parallelogram two lines be drawn parallel to the
sides, the two parallelograms on each side of the
diagonal will be equal.

Hypothesis. ABGD, a paraUelogram; P, any point on the
diagonal AD ; RS,
MN, lines passing

through P, parallel

to AB and AG re-

spectively, and meet-
ing the four sides in

the points P,/^, J/, JV. A'

H
T

y-...^..,._^r....A

X
N

Conclusion. Area RPMO = area NB8P.
Proof. 1. Because the lines AD, AP, and PD are the

diagonals of the respective parallelograms ABGD ANRP
and PSMDy we have

'

Area ACD — area ABD.
Area ARP - area JiVP;

)

,„
Area PMD = area PSD. S

^» ^^"^

3. From the area A GD take away the areas ARP and
PMD, and we have left the area RPMG.

3. From the equal area ABD take away the equal areasANP and PSD, and we have left the area NB8P. There-
fore

Area RPMG = area NBSP. Q.E.D.

307. Definition. In the foregoing constructions the
parallelograms ANRP and PSMD are called paraUelo-
grams about the diagonal AD.
RPGM and NBP8 are called the complements of

parallelograms about the diagonal AD,

Theoeem X.

308. In a right-angled triangle the sauare of
the hypothenuse is equal to the sum of the squares of
the other two sides.
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Hypothesis. ABO, a triangle, right-angled at A: BAGF,
AGKH, ECED, squares on
its respective sides.

Conclusion,

Area BAGF -f area ACKH F
= area BCED,

Proof, Through A draw
AL parallel to BD and CE,
meeting DE in L. , Join FG
and AD.

The proof will now be
an'anged as follows:

We shall show (1) that

the triangles FBG and ABD
are identically equal; (2) that

the area BAGF is double that of the triangle FBG; (3) that
the area BL is double that of the equal triangle ^5Z). From
this will follow area ABGF= area BL. It may be shown in
the same way that the area of the square on AG is equal
to that of the rectangle GL, from which the theorem will
follow.

1. In the triangles ABD and FBG we have

BA = BF,), . ,, .

BD = BO \ ^ Wothesis.

Angle DBA = right angle DBG+ angle ABO,
Angle FBG = right angle FBA + angle ABO.

Therefore the two triangles haying two sides and the in-
cluded angle of the one equal to two sides and the included
angle of the other are identically equal, so that

Area ABD = area FBG.
2. Because BA G and BAG are both right angles (hypoth-

esis), GA and A are in the same straight line.

Therefore the triangle FBG is on the same base FB, and
between the same parallels FB and GO, as the square BA GF.
Therefore

18 ^"*;

- ^t '•%
' Wm

•

] m.
SI^̂

' "Sr
i fii

\r^r »iti
•! wi lifcaHi

3. Because ^Z- is (by construction) parallel to BD, the
triangle ABD is upon the same base BD, and between the
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same jarallels BD and ^A as the rectangle BL, Therefore
Area BL = % area ABB.

\ 4. Comparing (?) and (3) with (1),

I

Area BAQF = area BL,
' 5. In the same way, by joining B£: and AK it may be
shown that

"^

Area AQKH= area CL,
6. Adding (4) and (5),

Area {,BA OF-\-AOKH) = area (JBL + CL)
= square BCED, Q.E.D.

309. Scholium. This proposition is called the Pythago-
rean proposition, because it is said to have been discovered by
Pythagoras, who sacrificed a hecatomb of oxen in gratitude
for so great a discovery. It is one of the most important
propositions in geometry, as upon it is founded a great part
of the science of measurement. It also furnishes the basis of
trigonometry.

Corollary. An important special case of this problem
occurs when the two sides of
the triangle are equal, or when
AB =z AC. Since the squares on
AB and AC are then equal, we
have

BC = AB' + AC' = 2AB\
If we complete the square by

drawing BD parallel to AC and
CD parallel to AB, ABCD will
be a square, and BC its diagonal. Hence:

310. The square on the diagonal of a square is double the
square itself.

Theorem XL
311. Iffrom the right angle of a right-angled

triangle a perpendicular he dropped upon the hy-
pothenuse the square of this perpendicular will be
e^r^^^v vu v,ov icvvwivyiG oj me iwo parts of the hv-
pothenuse, ^

.

\
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Hypothesis. ABC, a triangle, right^gled at A; AD, a
perpendicular from A on BC,

Conclusion. AD" = BD.DG.
Proof. 1. Because BAD and

CAD are both right-angled at i),

AB^ - BD^ = AD\
X

.g_._.

AC^ - DC' = AD\\ ^»^^^^

2. Adding these two equations,
AB' -i-AC- BD' JDC = 2AD'

3. Because BA C is right-angled at A
AB' -i- AC = BC\

'

4. Comparing (2) and (3),BC - BD' - DC = 2AD'
6. Because the line BCis the sum of the linesBD and DCBC-BD^-DC^=2BD.Da (8 289)
6. Comparing (4) and (5),

^® ^
2AD' = 2BD . DC,

(§ 308)

or

AD' = BD.DC. Q.E.D.

Theorem XII.

313. The square on a side opposite any acute
angle of a triangle is less than the sum of the squares
on the other two sides hy twicetJie rectangle contained
by either of those sides and theprojection of the other
side upon it.

Hypothesis. ABC, any triangle having the angle at A
acute; CD, the perpendicular ^
dropped from C on D, and there-
fore

AD the projection oiACon AB.
Conclusion.

BC^ = AC + AB^-2AB.AD.
Proof. 1. Because CDB is

right-angled at D,
j__

2. Because A CD is right-angled at D,
CD' = AC-AD\

"i" '11 i

^ y-'M
1
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3. Putting this value of CD* in (1),

BC :=z BD' - AD' -{. AG\
4. BD' - AD' = (BD + AD) (BD - AD),

= AB (BD - AD),
= AB (BD +AD- 2AD),
= AB {AB - 2AD),
= AB'-^2AB,AD.

6. Substituting this last value in (3),BC = AO'-\-AB'- 2AB . AD,

Theorem XIII.

(§ 293)

(§ 287)

(§ 287)

Q.E.D.

313. In an obtuse-angled triangle the square on
the side opposite the obtuse angle is greater than the
sum of the squares on the other two sides by twice the
rectangle contained by either of those sides and the
projection of the other side upon it.

Hypothesis. ABC, a triangle, obtuse-angled at ^; CD, the
perpendicular from C upon AB q
produced, so that DA is the pro-

jection of CA on AB.
Conclusion.

BC = AC -{- AB'+ 2AB.AD.
Proof. 1. Because CDB is

right-anglp'l at D,
BC = BD' 4- CD'. JD A ^B

2. Because CDA is right-angled at D,
CD' = AC - AD'.

3. Putting this value of CD' in (1),

BC = AC -\- BD' - AD'.
4. BD' - AD' = (BD - AD) {BD -f AD), (8 293)

= AB {BD + AD),
= AB{AB-\-2AD),
= AB' + 2AB . AD. (§ 287)

5. Substituting this last value in (3),

BC = AC' + AB'-i-2AB.AD. Q.E.D.

314. Scholium. The method of demoiistration is the
same in the last two problems, except that in Th. XII. the
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line AB is the stim of the lines AD and BD, and in Th XIII
It is equal to their difference. But if we regard the projecl
tion AD as algebraically negative when it falls outside the
triangle, as in Th. .XIII., then Th. XII. will express both
theorems, because the subtraction of the negative rectangleAB

. AD would mean that it was to be added arithmetically.

Theorem XIV.
315. The projections of a straigJU line upon

parallel straight lines are equal.

Proof. Let AB be the line projected, and MN, PQ, its
projections upon two parallel ^b
lines. *- ^^

1. Because these lines are
parallel, the perpendiculars AM At
and AP, BQ and QN, form two I j

straight lines. ~jL 1

2. Because the lines PJfand gjV^are perpendicular to the
same straight line MN,

MP
II NQ.

3. Therefore MNPQ is a parallelogram, and
MN=:PQ{^m), Q.E.D.

Theorem XV.
316. The sum of the squares upon the two diag-

onals of a parallelogram is equal to the sum of the
squares upon thefour sides. ^

Proof. Let ^5CZ) be the paral- /^
lelogram, having an acute angle at / "^^^
A, Then— ^ ^

1. In the triangle ^^(7, A^ ^B
BC^ = AB^+ AC^-2ABx proj. of ^C on ^^. (8 312)AD'== AO^ + CD^J^^OD X proj. of AC on CD. (1 313
^. Because AB and CD are parallel,

Proj. of AC on CD = proj. of ^ O' on AB. (8 315)
Also, becansfi 4 nCIT) {a p T.o,«,n^i^—„_, ^° '

AB = CD,
Therefore the laat two terms of the equations (1) are equal.

\

in

r'i
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3. Adding the equations (1), tlie last terms of the equa-
tions (1) cancel each other, and wo have

BC -{AD' = AB'-\-AC + A 6"-f CD\
= AB""+ BD" + CD' + A C"(because A C^BD),

That is, the sum of the squares on the diagonals AD and BC
is equal to the sum of the squares upon the four sides. Q.E.D.

« » •

CHAPTER 111.

PROBLEMS IN AREAS

Problem I.

317. To construct a triangle which shall he equal
in area to a gimn polygon.

Given. A polygon, ABCDEF.
Required. To construct a triangle equal to it in area.

Construction. 1. Join the ends of any pair of adjacent
sides, say BC and Ci>, by the line

DB.
% Through the intermediate

angle C draw a line parallel to BD,
meeting AB produced in B'. F<

3. The polygon AB'DEF will

have the number of its sides one

less than ABCDEF, because the

two sides BC, CD are replaced by
the one side B'D, and it will be equal in area.

4. By performing the same operation upon AB'DEF, the
number of sides will be still further diminished by one, and
the operation may be repeated until the number of sides is

reduced to three.

Proof. 1. Because the triangles DCB and DB'B are on
the same base, DB, and have their vertices on the line CB^
parallel to that base, they are equal in area (§ 302).
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2. The original polygon is made up of the parte
Area ABDEF -f area DCB,

and the new one, AB'DEF, is made up of
Area ABDEF+ area BB'D.

8. Because the area DCB = BB'Dy
Area AB'DEF= area ABCDEF.

4. In the same way it may be shown that each transformed
polygon IS equal to the one from which it is formed, so that
the last one of aU, which is a triangle, is equal in area to the
original polygon.

Problem II.

318. To describe a parallelogram which ^hall he
equal in area to a given triangle, and ham one of its
angles equal to a given angle.

Given. A triangle, ABC] an angle, X.
Required. To construct a parallelogram having one of its

angles equal to X, and its

area equal to the area
ABO.

Construction. 1. Bisect

the base AB ot the tri-

angle at the point D.
2. Through C draw a

line Ci^ parallel to AB. ^i
3. At D make the an-

gle BDE = X, and continue the side until it meets OF in E
4. Through B draw BF parallel to DE. DBFE will then

be the parallelogram required.

The proof is left as an exercise for the student.

319. Corollary. If it be required to construct a rect-
angle which shall be equal to the triangle, we have only to
make the Ime DE perpendicular to AB.

Problem III.

330. To describe a smm.rp. onMnJi 0*^77 7.., ^ 7 .•„

area to a given rectangle.

^-V'
TS

t

\ - ^
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f



160 BOOK IV. OF AJiEAS.

I
!

!
I

m

1

D

Given. A rectangle, ABCD.
Required. To construct a square of the same area.

Analysis. Theorem X. teaches that in the right-angled
triangle ABGy the square upon AD is equal to the rectangle

BD . DC.
Therefore, if we can construct a right-angled triangle in

which the perpendicular from the right angle upon the hy-
pothenuse shall divide the latter into two parts equal respect-

ively to two adjacent sides of the given rectangle, this perpen-
dicular will be the side of the square required.

This result will be reached by describing a semicircle upon
a diameter equal to the sum of two adjacent sides of the rect-

angle, because all the angles in the semicircle are right angles.

Construction. 1. Produce AB to the point P, making
BP = BG.

2. On AP as a di- -^- JL
ameter describe a semi-

circle.

3. Produce BC until

it cuts the semicircle

in Q.

The square on BQ
will be the square ..'equired.

Proof. 1. If we join AQ, PQ, the triangle AQP will be
right-angled, because it is inscribed in a semicircle.

3. Because BQiaa. perpendicular from the right angle Q
upon the base AP, we have

BQ' = AB.BP = AB.BC. Q.E.D.

331. Corollary. By the three preceding constructions a
square may be constructed equal in area to any given polygon.
The polygon is first transformed into a triangle by Problem I.

;

this triangle into a rectangle by Problem II., Cor.; this rect-

angle into a square by Problem III.

Peoblem IV.

322, To describe a rectangle wMcTi shall he equal
in area to a gicen pctrallelogTam.

Given. A parallelogram, ABCD.

N

\
\

/
/

/

/

/

1

1

L' \ P

I
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Required. To describe a rectangle having the same area.
Construction. Produce

the side CD to F, and at A '

and B erect perpendiculars
to AjB, meeting £!F in B
and F.

ABFF will be the rect-
angle required.

Proof. The proof is given by Theorem V.

333. Corollary. If, instead of a rectangle, we wish to
describe a parallelogram having a given angle, we have only
to make the angle BAF equal to the given angle.

Peoblem v.

324. On a gwen line as a base to describe a
paraUelogram equal to a givenparallelogram in area
ana tn angles.

Given. A parallelo-

gram, ABCD; a line,

BM.
Required. To de-

scribe on BM9, parallel-

ogram having the same
area as ABCB and equi- /
angular to it. *

b-.o^Tvf'!f'
V^'* 5Jf be drawn in the same straight

Ime with AB. Then— ^

duced ki^iT^^
^^''^'^ ^-^^ parallel to BC, meeting Z^C'pro-

2. Draw the diagonal NB, and produce it until it meetsBA produced in P.
3. Through P draw PQR parallel to AM, and meetingCB produced m Q and WM produced in R.

pij- ., \ "^"'- xcvjuixcii piiiuhuiogram, having Oii; =
i^il/ as Its base, and equal to ABCD in area and in its andes.

Proof. From Theorem IX.
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Problem VI.

. 325. On the base of a given triangle to describe
another triangle equal in area and hamng a gitm
angce, q t\

Given. A triangle,^J5C;
an angle, 0.

Required. On the base
AB to describe a triangle

equal to ABC m area, and
having an angle equal to 0.

Construction. a*
1. Through C draw CD parallel to AB.
3. At A make the angle BAD = 0, and produce the side

until it meets CD in D.
' f

3. Join BD.
ABD will be the triangle required.
Proof. From Theorem VII., Cor. 1.

Problem VII.

326. To form a triangle equal in area to a given
triangle, and having its base on the same straight
line and its vertex in a
given point.

Given. A triangle, ABC\
a points P'

Required. To describe a
triangle equal toABC in area,
having its base on AB and its

vertex in P.

Construction, 1. Join^P
and PB.

3. Through C draw CD^
parallel to AB, meeting AP in D.

3. Draw DQ parallel to PB, meeting AB in 0.
4. Join Pq.

6 V

AQr will be the required triangle on the base AB\ equalm area to ABC, and having its vertex in P,

I

H--^M
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Proof. Join BD. Then—
1. Because AB and CD are parallel,

'

Area ABC— area ABD.
3. Becaust) D(^ and P5 are parallel,

Area BPB = area ^P^.
3. Area ABD+ BPD - BPQ = area A QP,
4. Comparing with (2),

Area ABD = area AQF.
5. Comparing this with (1),

Area Jl^C7 = area ^^P. Q.E.D.

The construction and demonstration of the following
problems are left as exercises for the student.

Problem VIII.

327. To construct a square which shall be equal
to the sum of two given squares.

Eemark. If we form a right-angled triangle of which
the sides about the right angle are equal to the sides of the
given squares, the square upon the hypothenuse will be that
required (§ 308).

Peoblem IX.

328. To construct a square which shall be equal
to the difference of two given squares.

Peoblem X.

329. To construct a square which shall be equal
to one half ^ gi'aen square.

Peoblem XI.

330. To divide a triangle into
any given number of equal tri-
annlfis

i7 if
Ilinn a o

vertex to the base.
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CHAPTER IV.

THE COMPUTATION OF AREAS.

331. Geometrical problems may be divided into two gen-
eral classes, depending on the kind of solution which is to be
obtained.

^

I. Problems of pure geometry. In problems of construe-
tion the solution consists in drawing a figure which is to con-
form to the conditions of the problem. The answer to such
a problem is given, not in numbers or algebraic expressions
but as a geometrical figure simply. The problems we have
hitherto considered belong to this class, and they are the only
kind recognized as belonging to pure geometry.

II. Problems of numerical geometry. In problems of the
second class the solution appears not merely as a line or
figure drawn upon a plane, but as a calculated length or a
calcula^ 3d extent of area. For example, the result may be
expressed by saying that a line the length of which is re-
quired is seven centimeters or other units in length, or that
a surface contains a certain number of square units The
number of units in either case may be expressed " either
by algebraic symbols or by the numbers of arithmetic. Such
problems may be considered as belonging to numerical or
algebraic geometry.

Relatims of the ttvo methods. In pure geometry the
division of magnitude into definite units is not recognized.
If an angle is given, it is supposed to be given by drawing it
not by stating the number of degrees. The angle itself may
not be drawn at all except in imagination. So, also, a given
length is a length of a given line, and not a number of units
of any kind.

Pure geometry was almost the only kind cultivated by the
ancients, because the methods of algebra were not known to
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them. Hence it is sometimes called the ancient geometry.
But it does not suffice for modern wants, where numbers of
miles, feet, acres, etc., are required.

One great advantage of the modern method arises from
the application of algebraic signs to lines. In the ancient
geometry, whenever the position of a point is changed to the
opposite side of a line, we have to suppose a different theorem
or a different case of the same proposition. But in the modern
geometry the difference is expressed by changing the algebraic
sign of the distance of the point from the line, and the general
statement of the proposition remains the same.

The general investigation of lines and areas by algebraic
methods requires an application of trigonometry, and, in the
cases of curve lines, of the integral calculus; but there is a
general method applicable to the computation of areas bothm the surveying of land and in the integral calculus, the
principles of which can now be explained.

Problem XII.

332. To find hy measurement and calculation the
area ofa given polygon. n

Let ABODE be the polygon. C
Draw any straight line MN.

From each angle of the polygon
drop a perpendicular upon the ^
line MN. Let A', B', C\ etc., B'

be the points at which these

perpendiculars meet the line.

The area ^M^CC" includes E'

the whole polygon plus an area
AEDCC'A' between the poly-
gon and the line. Therefore,
if from the first of these areas
we take away the second, the
remainder will be the area of
the polvffon.

Each of these two areas is made up of several trapezoids
namely: ^ '
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First area = trapezoid A'ABB'
+ trapezoid B'BCC,

Second area = trapezoid A'ABE'
+ trapezoid E'EDD*
+ trapezoid D'DCC,

The first area includes the quantities to be added, the
second those to be subtracted.

The area of each trapezoid is the rectangle of its altitude

into half the sum of its parallel sides (Th. VIII.). In par-

ticular.

Area A'ABB' = J (A'A + B'B) A'B\
Area B'BCC = ^ (B'B + CO) B'C.
Area O'CDD' = ^ (C'C + D'D) G*D\

etc. etc. etc.

To express these areas in algebraic form let us put j3i, p%y
pz, etc., for th6 lengths of the several perpendiculars; that is,

p\ = A'A,
P'i = B'B,
pz= CO,
p* = D'D.
ps = E'E.

Let us also take an arbitrary point on the line, to
measure distances from, and put

yi = 0A\
y^ = 0B\
yz = 0C\
^4 = OD'.

yr> - OW.
Then A'B' = yi- yu

B'C = y3- yu
CD' = 2^3 - yu
D'E' = yi- y5.

E'A' = ys - yu
The expressions for the areas vvIU then be:

Area A'ABB' = | {r-,... f p^) {^^ _ y^y
B'BCC =z}^{p,^p,)(y,-y,y
OG'Djy = ^ (j04 + jt73) {yz - y,).

n'JJEE' = i (
j05 +^4) («/4 - y,).

E'EAA' =^{p,J^p,)(y,^^y{),

!
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Ihe required area of the polygon we have found to be
given by subtracting the last three areas from the first two
Now this subtraction may be indicated by simply changing
the algebraic signs of the quantities to be subtracted—

a

change which will be effected by changing the factor

^8 — jji into ^4 — yz.

y^ — yi into yt, — yu
yi — y\ into y\ — y^.

The expression for the area will then be:
Area ABODE = i {p^ + jp.) {y^ - y,)

+ Hp3-\-]h) (yi-yi)
+ i(^4+i»3) (y* -yz)

-{-^{pi +j06) {yi ~y,).
It will be seen that the formula is uniform with respect

to the different values of p and y taken in order, each value
of p being added to that next following in order, and each
value of y subtracted from that next following in order.

If we execute the multiplications indicated, one half
the partial products will cancel each other, and the area will
reduce to

ilpiy^ — p^yx

•j-piya — piyi

-\- pzyi — p4yz

-{-piys — p'\y4

-{-p^yx —pxys]
In principle this method is that used by surveyors in

computing the area of irregular pieces of land. It also in-
volves the best system of measuring areas in more advanced
mathematical investigations.

The student may be supposed to find the values of pi, p^,
etc., yx, yi, etc., by measurement on the actual figure. Their
calculation, when all the sides and angles are given, is a prob-
lem of trigonometry.

The criterion whether a trapezoid is to be put into the
additive or the subtractive column is this:

If, in crossing over anvsiflpnf flio T^nlTTn•/^« ^»^/^r« +v,<^ ^„4-r,:Ar.

to the inside, we pass to the inside of the trapezoid bounded by
that side, the area of that trapezoid is additive, or aig( orai-
cally positive.

}

r
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If, in passing inside of the polygon, we pass out of the

trapezoid, the area of that trapezoid is subtractive, or alge-

braically negative.

Examples. If we pass into the polygon over the side AB,
We pass into the trapezoid A'ABB*. Therefore the area ol

this trapezoid is additive. (See diagram on p. 155.)

The same applies to B'BCC.
If we pass into the polygon over the side CD, we pass out

of the trapezoid C'CDD\ Therefore the area of this trape-

zoid is negative.

The same remark applies to the trapezoid bounded by DE
and by EA.

EXERCISES.

Measure off and compute the area of each of the following

polygons in square centimetres, inches, or other scale measure.

It will be noticed that owing to the re-entrant angles of the second

figure there is a double overlapping of some of the trapezoids. But

this makes no change in the application of the formula, which always

gives correct results when the algebraic signs of the quantities arc

properly interpreted.

333. Algebraic expression for the Area of a Triangle.

Because a triangle is completely determined when three ol

its sides are given (§ 110), its area must admit of being ex-

pressed algebraical^ in terms of its sides. The required ex-

pression is found as follows:
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Let ABC be the triangle, and CD the perpendicular from
C upon D. Put

;

a, the side BC;
by " " AC',

(t t( AB;
JO, the perpendicular CD,

Then
Area ABC X 2 = cp. (§ 301)
To find p we have, from the / ,

right-angled triangles CDA andjj- -J-
CDB, »

p^ = AC'- AD' = BC - BD' = BC' - (AB - ADY
or

\ / >

f = h'- AD' = a'-{c- ADy = a'-c' + 2c.AD-AD\
We must use these equations to eliminate the quantity iD
from the expression for^. Equating the second and fourth
members of the last line of equations, we find

*' = a' - c" + 2c.AD:
whence

2c
Substituting the square of this in the expression for p\ we

4c» —435 -.

Squaring the above pxpression for the area,
4(Area^^c ' = cy.
16(Area ABCy = 4c>' = 43V» - (5» + c' - ««)»

This expression, being the difference of two squares, may be
transformed into the product » j

"«

(2bc -\-b'-i~c'- a') (2bc - b'-c'-{- an
The first three terms in the first factor are a perfect square-

namely, the square of b + c; and the first three of the second
factor are the negative of the same square. Therefore each
lactor can again be factored, making the product

{b-^^c + a){b + c~a){a-i-b-c)(a~b + c),

s = U^ -\- b -{- c) or 28 = a -\-b + e,

i ;

m
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b -\- c -\- a = 'Zs.

b-^c — a = 2(v - a).

a-\-i — c ~ ;^o — v),

a — b -\-c = 2{s — b).

Substituting these values and dividing by 16, wo have
(Area ABOy = s{s- a) {s - b) (a - c)

and

Area ABC = Vs{s - a) (s - b) (s'^c),

the required expression.

TlIEORKMS FOR EXERCISE.

Theorem 1. The dififerencc of the squares upon any two
sides of a triangle is equal to the difference of the squares of

the projections of these sides upon the third side.

Theokem 2. The sum of the squares upon the diagonals

of a quadrilateral is equal to twice the sum of the squares

upon the four lines joming the middle points of its sides,

taken consecutively. (See Th. 21, p. 89.)

Theorem 3. If we join the

middle points of two opposite

sides of a quadrilateral to two
opposite angles, the two triangles

thus formed will have half the area

of the quadrilateral.

HypotJmis. FG=FD, AE= EB.
Conclusion. Area AFB + EBG= area AECF

= i area ABGB.

Theorem 4. The four triangles into which a parallelo-

gram is divided by its diagonals are of equal area.

Theorem 5. If from any point on the diagonal of a
parallelogram lines be drawn
to the opposite angles, the

parallelogram will be divided

into two pairs of equal tri-

angles.

Area OAD = area OAB.
Area OCB = area OGB.

K-i^ B
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Theorem 6. Tin- parallelogram formed by joining the
middle points of the consecutive sides of a quadrilateral has
halt the area of the quadrilateral (§ 13G).

;
Theorem 7. If through the middle point of one of the

non-parallel sides of a trapezoid we draw a line parallel to the
opposite side, and complete the parallelogram, tlie area of the
parallelogram will be equal to that of the trapezoid.

Theorem 8. If we join the middle of one of the non-
parallel sides of a trapezoid to the ends of the opposite side
the middle triangle will lave half the area of the trapezoid.

'

Theorem 9. If two triangles have two sides of the one
equal to two sides

of the other re- q
spectively, and
the included an-

gles supplemen-
tary, they are

equal in area.

Hypothesis. GA = MK. GB = ML.
Angle AGB-\- angle KML = 180°.

Condumn. Area ABG = area KLM.

Theorem 10. The sum of the squares upon the diagonals
of a trapezoid are equal to
the sum of the squares upon
the non-parallel sides plus
twice the rectangle of the
parallel sides.

Gonclumn. AG^ -\- BBP - AD"^ -f 5C« + 2AB. GD.

Theorem 11. If from any
point within a polygon perpen-
diculars be dropped upon the
sides, the sum of the squares of
one set of alternate segments is

equal to the sum of the squares
of the other set.

Aa?
-I- Bb^ + Gc^ -f Bd^ + Ee^ = aB^ + hG^ + cL'^ + ~aE^i ^ ,^..

''I
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Numerical Exercises.

1. In a right-unglod triangle the lengths of the sides oon-

tttiniug the riglit angle are 9 and 12 feet. What is the length

of the hyiwtheniiso? What is the area of the triangle?

2. If the length of the hypothenuse is 10 feet, and that of

one side 8 feet, wliat is the length of the remaining side?

What is the area of tlio triangle?

3. In a riglit-angled triangle the perpendicular from the

right angle upon the hypothenuse divides the latter into

segments wliich are respectively 9 and 10 feet. Find the

lengths of the perpendicular and of the two sides, and the

area of the triangle.

4. What three different expressions for the area of a

triangle may we obtain from § 301 by taking different sides

as the base? What theorem hence follows?

5. What is the area of the triangle of which the respective

sides are 15, 41, and 52 metres?

6. If the diagonal of a rectangle is 13 feet, and one of the

sides 12 feet, what is the area?

7. Show how the altitude and area of a trapezoid may be

computed when its four sides are known.

Refer to the computation of the altitude p of a triangle in § 833.

8. If each side of an equilateral triangle is unity, find its

altitude.

9. Draw an equilateral triangle, ABO.
Show that the bisectors of each interior

angle will bisect the opposite side perpen-

dicularly. Show that if the bisector of

be produced beyond the point in which

it meets the other bisectors and intersect

the opposite side in D, and if wo take

DF=DO and join AF, BF, then—

I. 0^1 i^^ and O^jP will be equilateral triangles.

II. The points A, C, B, F lie on a circle.

III. The lines OA, OB, and 0(7 will all be equal.

Also, supnosinff the lenerth of each side of the trianjylp.

ABO io be unity, compute the lengths of OCand OD.



BOOK V.

THE PROPORTION OF MAGNITUDES,

CHAPTER I.

RATIO AND PROPORTION OF MAGNITUDES IN

GENERAL

334. Definition. When a greater magnitude con-

tains a lesser one an exact number of times, the greater

one is said to be a multiple of the lesser, and the
lesser is said to measure the greater, and to be an
aliquot part of the greater.

335. Def. When a lesser magnitude can be found
which is a measure of each of two greater ones, the
latter are said to be commensurablei and the former
is said to be a common measure of them.

336. Def. When two magnitudes have no com-
mon measure they are said to be incommensurable.

337. Def. When one of two commensurable
magnitudes contains the common measure m times,
and the other contains it n times, they are said to be
to each other as m to n.

Example. If the magni-
tude A contains the measure
a 5 times, and B the same
measure 3 times, then ^ is to ' ' ' '

^ as 5 to 3, and « is a common measure of A and B.
Exercises. Draw, by the eye, pairs of lines which shall

be to each other as 3 to 4; as 2 to 5; as 4 to 7; as 5 to 6; as
7 to %.

A
a

B
a a

"1

) 1

1

i
'

n

/ \

\

nejl^

'[(

s/r:MA
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338, Corollary, If ^ is to -6 as m to n, then, by defini-
tion (§ 337), the With part of A will be equal to the nth. part
of B', or, in symbohc language,

A B

A
5

A
5

A
5

A
5

A
5

m n
Note. The mth. part of a mag-

nitude is indicated by a fraction of L
which the symbol of the magnitude Whole magnitude A.

is the numerator and m the denominator.

Notation.. The statement that two magnitudes A and
B are to eae>i other as the numbers m and n is written
symbolically

A : B :: m . n,

or A : B = m : n.

Note. The second form, or that of an equation, is preferable, and is
most used by mathematicians; but the first form is more common in
elementary books.

339. Def. If a pair of magnitudes A and B are
to each other as two numbers m and n, and another
pair P and Q are also to each other as m:n, then we
say that A is to 5 as P to Q, and the four magnitudes
A, B, P, and Q are said to be proportional or to
form a proportion.

Notation. The statement that the four magnitudes A, B,
P, and Q are proportional is expressed in the symbolic form

'

A : B :: F : Q,
or A : B = P : Q;
which is read: ^ is to ^ as P is to Q.

340. Def. The symbolic statement that four
magnitudes are proportional
is called a proportion.

Example. If A contains a
twice, and B contains it three

times; if also P contains jo twice, p _ p p
and Q contains it three times, ' ' '

then _ Q -—P-P p

A : B :: P : Q.
'

'

' '

341. I)ef. The four quantities which form a pro-
portion are called terms of the proportion.

B

a

a

a

a

^1%,^
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343. Def. The first and fourth terms of a pro-
portion are called the eictremes; the second and
third, the means.

Example. In the last proportion A and Q are the ex-

tremes, B and P the means.

343. Def. The first and third terms, which pre-
cede the symbol : , are called antecedents; the second
and fourth, which follow the symbol : , are called
consequents.

Example. In the last proportion A and P arc the ante-
cedents, B and Q the consequents.

344. Def. If the means are equal, each of them
is said to be a mean proportional between the ex-
tremes, and the three quantities are said to be in pro-
portion.

Axioms,
345. Ax. 1. If there be a greater and a lesser

magnitude of the same kind, the greater may be
divided into so many equal parts that each part shall
be less than the lesser magnitude.

Note. By magnitudes of the same kind are meant those which are
both numbers, both lines, both surfaces, or both solids.

Ax. 2. If a greater magnitude be a certain number
of times a lesser one, then any multiple of that greater
one will be the same number of times the correspond-
ing multiple of the lesser.

Symbolic expression of this axiom. If mag. G = ix mag.Z,
nG=:i X nL.then

Ax. 3. If a lesser magnitude be a certain aliquot
part of a greater one, then any multiple of the lesser
one will be the same aliquot part of the correspond-
ing multiple of the greater.

ic exnrp-sisi'.nn n-F ihi'o /»..m*/^*v, t* , r mag^. (?
-. .—j_. ,„., ,,j vfi-vv ltAH///t. XX. UlUlHtX/ ^^^ T

Symbol

then

11
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(

^l
.

u
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346. Theorem. Equimultiples of commensurable
magnitudes are 'proportional to the nri/agnitudes them-

selves.

Hypothesis. A and B, two a w
commensurable magnitudes;

P, a magnitude i times as '
'

great as A; Q, a magnitude i
^' ''

times as great as B, i being Qj

any number whatever.

Conclusion. P : Q :: A : B.

Proof. 1. Let the Ty^r-gnitude A he to B asm to n.

This will mean that if we divide A into m parts and B
into n parts, these parts will be equal, or

A_B
m~ n*

2. Because P ~ iA, if we divide P into m parts, we shall

have for each part

P I'A A '

'Z;
= ~ = '^X-' (§345, Ax. 3)mm m \o ^ /

3. In the same way, if we divide Q into n parts,

n n
4. Comparing these results with (1),

m n
Therefore P '. Q \\ m \ n. (§ 339)
Comparing with iX), P '. Q w A \ B.

347. Corollary 1. In a similar way it may be shown that

similar aliquot parts of magnitudes are to each other as the

magnitudes themselves.

That is, whatever be the whole number it,

k ' h " ^ '^•

348. Cor. 2. Similar fractions of magnitudes are pro-
portional to the magnitudes themselves.

} "J y^xrt wvvx'f
:/ ^> V iiiC T V

-cP:i:Q::iP:iQ,
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and, by the original theorem,

iP : iQ :: P : Q, ;

from which follows
• •

-]^P''-^Q'-''P'' Q-

Ratio of Two Magnitudes.
349. Consider any two numbers, which we may call m

and n. If we divide each of them into n parts, each part of

m will be -, and each part of n will be - = 1. By Corollary 1

of the last theorem these parts will be to each other as the
original numbers; that is,

,.f'

m : n - -1
n

Therefore, if two magnitudes A and B are to each other as m
to n, they will also be to each other as- to 1, or

n

A : B m
n

1.

350. Def. When two magnitudes are to each
/rrt

Other as m to n, the fraction ~ is called the ratio of
lb

the magnitude A to the magnitude B.
Corollary. When wo say

A : B :-. m : n,

we mean that A contains m parts, and B contains n equal
parts (§ 338). Hence:

351. The ratio of a magnitude A to another magnitude
B is the quotient formed by dvnding the number of parts in
A by the numher of equal parts in B.

352. Scholium. There are three ways of conceiving of
the ratio of two magnitudes, which all lead to the same result.

I. If we have two magni-
tudes A and B, the ratio of A a
to B is the numerical factor
by which we must multiply ®

the consequent, B, in order to produce the antecedent, A.
There may then be three cases:

An\
in

5i1

.11
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I. If ^ is a multiple of B, the ratio is a whole number.

The multiplication is then effected by adding B to itself the

proper number of times.

I 2. If ^ and B are commensurable, the ratio is a vulgar

fraction. If A contains the common measure m times, and

' B contains it n times, the ratio is —. We may conceive the

multiplication to be effected by dividing B into n parts, and

taking m of these parts to make A.

3. If ^ and B are incommensurable, the ratio will neither

be a whole number nor a vulgar fraction. If we attempt to

express it as a decimal, the figures will go on without end.

II. The ratio ot A to B may also be conceived of as a

number expressing the magnitude of A when we take B as the

unit of measure. This amounts to the same thing as I., be-

cause when we multiply unity by any factor we produce the

factor itself.

III. If A and B are numbers, instead of geometric magni-

tudes, the ratio of ^ to 5 is the quotient -g.

The consistency of these ways of conceiving a ratio is es-

tablished by the following definition:

353. JDef. To multiply a magnitude 5 by a nu-

merical factor r means to find a magnitude wMcli shall

have the same ratio to B that r has to unity.

Hence the expressions

A : B :: r : 1

and
A=rB

are equivalent.

The preceding definition of a ratio gives us another defini-

tion of .« proportion, namely:

3W. Four magnitudes are proportional when the

ratio of the §rst to the second is equal to the ratio of

the third to the fourth.

355. Bef. If the terms of a ratio are interchanged,

the new ratio is called the inverse of the original one.

|-i.~»t i\
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Thus the ratio B : A\b the inverse oi A : B,

It A : B :: m : 71, then A : B = ~ and B : A = -:the
mn ^^ ^

product of these ratios is — = 1. Therefore:nm

356. Theorem. The product of Uoo inverse
ratios is unity.

Ratios of Incommensurable Magnitudes.

357. If two magnitudes are incommensurable (§ 336),
they may still be considered as having a ratio, but this ratio

cannot be exactly expressed by a fraction. Let us suppose
that in dividing the magnitude B into n parts, A is found to
contain m of these parts and a fraction of another part.

Then the ratio of ^ to J5 will be greater than -, and less

Wl -f- 1 W2 1
^

than ; that is, less than —\- -. The number n mayn n n *'

here be as great as we please.

358. Theorem. Iffour incommensurable magni-
tudes A, B, P, and Q are so related that, on dividing
the antecedents A and P each into n equal parts, Q
shall contain the same whole number of parts ifP
that B contains of A^ fractions being neglected, and
this however great the number n,—then the ratio of
Qto P is equal to the ratio of B to A^ and A, B^ P,
and Qform a proportion.

Hypothesis, ^B <A < (- +1] B,
n \n n)

-Q<P f+a«'
how great soever the numbers m and n.

Conclusion. A : B :: P : Q.

Proof. If the ratios ^ : J5 and P : ^ be unequal, let a
be their difference. Since we can make the number n sib

gro-.t as ,fo please, let us make it so great that - shall I;>e lees

than a (§ 345, Ax. 1).
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170 BOOK V. PROPORTION OP MA0NITUDB8.

If m be the whole number of times which A contains the
»th part of B,

A:B>- andA : B <- 4--.
n n n

By hypothesis P contains the wth part of Q this same
number m of times, plus a fraction. Therefore

P ' Q> - and P : Q <—h -

.

n n n

Since both ratios are greater than ^- and less than -4--,
n n ^

)i'

their difference ra:ijt be lesb than - and therefore less than
n

a, because ~ <ot. Therefore the ililTerence of the ratios would

be at the same time equal to a and less than a, which is

absurd. Therefore the ratios do not differ at all.

359. Corollary. If any theorem respecting the equality

of ratios be provedfor the ratios of all comme?isurable magni-
tudes, however small the common measure, it will hold true

for the ratios of all incommensurable magnitudes.

360. Bef. The ratio of two incommensurable
magnitudes is called an irrational number.

Although an irrational number cannot be expressed as the

quotient of two entire numbers, yet by taking such numbers
sufficiently great we can find quotients which shall come as

near as we please to the irrational number. Thus;

1
To come within

To come within

1000

1

we take a divisor > 1000.

- we take a divisor > 100000,
100000

etc. etc. etc.

Transformation of Proportions.

361. Def. Inversion is when the terms of each
ratio in a proportion are interchanged to form a new
proportion.



TRANSFORMATION OF PROPORTIONS. Ill

^1

B :

Theorem of Inversion. From the proportion

A : B .'. P :Q
we may conclude by inversion

B '.Av.Q'.P,
Proof. From § 355.

363. Def. Alternation is when the means of a
proportion are interchanged to form a new proportion.
The new proportion is then said to be the alternate
of the original proportion.

Theorem op Alternation". In any proportion the
antecedents Moe the same ratio to each other as the
consequents.

Hypothesis. If

A : B :: P : Q—
Conclusion. Then ^

j

^ ;

A: P :: B: Q. q
Proof. 1. Let the '

' '

ratios A : B and P : Q each be -, so that

mth. part of ^ = nth part of B, which call a.

mth. part of P = ^ith part of Q, which callj?.

2. Then A = ma. B = na.

P = mp. Q = npo

3. Hence A : P :: ma : mp :: a : p; )

B : Q :: na : np :: a :p. )

4. Therefore A : P :: B : Q. Q.KD.

363. Qorollary. If the extremes he interchanged, the pro-
portion will still be true.

Fcr by alternation we have

A '. P '.: B '.Q,

and then by inversion, and putting the second ratio first,

Q:B::P:A.

(§346)

fj;

\l

I

'

!

I

364 B^f
antecedents and consequents are compared with either
antecedents or consequents to form a new proportion.

^_LJ

LI ;|1i'm
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Theorem op Composition. If we have the proportion
A : B :: F : Q, (1)

we may conclude

A : A + B :: P : P+Q;)
A-{-B: B:: P^Q: Q.\

(2)

Proof. Let the equal ratios in (1) be m : n. Using the
same notation as in the preceding theorem, we find

A=ma\ B = na. A-\- B = {m-{- n)a,

P = mp', Q =np. p -f. Q = (m _|_ n)p,

A : A-\- B = m '. m-\-n.
P : P-\- Q = m : m-^-n
A-\- B : B = m -\- n : n,

P -{ Q ' Q = m -{- n : n.

Whence the conclusions (3) follow by comparing the equal
ratios.

365. Bef. Division is when the difference of
antecedents and consequents is compared with either
antecedents or consequents to form a new proportion.

Theorem of Division. If we have the proportion

A:B::P:Q, (1)
we may conclude

A:A-B::P:P-Q;l Y9\A-B :B ::P- Q :Q.\
^'^>

Proof. By the same process as in the last theorem.

366. Theorem. If we have the several proportions

A : B :: P ; Q,
A' : B :: P' : Q,

etc. etc.,

we may conclude

A + A'-i- etc. : 5 :: P + P' 4- etc. : Q.

Proof. The proportions show that if

A
n

m
A* = —iB. etc.

n'
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then

whence

P' = %Q, etc.,

^ + ^' + etc. = (^ + ^' + etc.)i?,

P + P' + el.. = (^+-' + ctc.)c.

The conclusion now follows from the equality of the co-
efficients.

Multiple Proportions.

367. When three or more ratios are equal, a proportion
may be formed between any two of them. Thus, if

A:B = M:N=P'.Q=.XiY, etc., (1)
we may form the proportions

A:B::M:W,
A'.B'.'.XiY,
M:N'.:X'.Y,

etc. etc.

The equality of such ratios is generally expressed by writ-
ing all the antecedents with the sign : between them, fol-
lowed by the consequents in the same order.

Thus (1) would le expressed in the form
A :M:P'.X=B:N:Q: Y,) ,.,

or A'.M:P:X',:B:NiQ:Y.) ^^
Here the first consequent {B) corresponds to the first

antecedent {A)-, the second {N) to the second (if), etc.

368. Bef. A proportion of six or more terms
expressed in tlie form (2) is called a multiple propor-
tion.

Simple proportions may be formed as follows from a
multiple proportion.

369. Theoeem. Ill a multiple proportion any
antecedent is to its consequent as any other ante-
cedent to its consequent.
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Example. In the proportion (2), us the first antecedent, A,

is to the first consequent, B, so is the third antecedent, P> to

the third consequent, Q\ or, in symbolic language,

A'.BwP'.Q,
Proof, This theorem follows at once from the form of

expression in (1) and (2).

370. Theorem. In a multiple proportion any
two antecedents are to each other as the correspond-

ing consequents.

Example. In (2), as A is to P, so is B (the consequent of

^) to ^ (the consequent of P); or

A'.P'.'.B'.Q.

Proof. Any such proportion is the alternate of one of the

original proportions expressed by the continued proportion.

Thus one of the original proportions expressed in (1) is

A : B :: P : Q, and the above proportion is its alternate.

371. Theorem. In any proportion the sum of

any number of antecedents is to the sum of the

corresponding consequents as any one antecedent is

to its consequent.

Proof. Let the proportion be that in (2), and let the ratio

of each antecedent to its consequent be —, so that
n

A : B :: m : n,

M '. N :: m :n,

P : Q :: m :n,

etc. etc.

Then
BA

m

m n
N

m n

etc. etc.
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By adding these equations wo have

A^M-^r -\- etc. __ yy -f jyr 4- g 4- etc.

m n >

that is, the wth part of ^ + Jf + P + etc. is oqu.ii to the
wth part oiB -\- N -\- Q -{- etc., so that

A + Jf+ P + etc. : /y + jv+ g + etc. :: m : n,

which is by hypothesis t..u ^ume as the ratio of each ante-
cedent to its consequent.

Because this reasoning is correct how great soever wo sup-
pose the numbers m and 7i, the theorem is true whether the
magnitudes are commensurable or incommensurable (§ 359).

372. Theorem. In any proportion the difference
of any two antecedents is to the difference of the cor-
responding consequents as any antecedent is to its
consequent.

Proof. By taking the difference of the first two equations
of §371, we have

A -

M

_ B-

N

m ~ n '

which shows that

A — M : B — ]^ :: 7n : n,

the same ratio which each antecedent has, by hypothesis, to
its consequent.

In the same way it may be shown that any other difference
of the corresponding magnitude has this ratio.

373. Theorem. If in a series of ratios the conse-
quent of each is the antecedent of the next, the ratio
of the first antecedent to the last consequent is equal
to the product of the separate ratios.

Hypothesis. We have the separate ratios

A:B.
B : C.

GiD.
Oonchtsion. The ratio of A to D is the product of the

ratios A : B, B : C, C : D.

J

ij-

i t I

i :
'
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176 BOOK V. PROPORTION OF MAGNITUDES.

Proof, Let the values of the respective ratios A : B,

B:G,0:Dhe-, i,A so that
w J q

A: B ::7n:n,0T ratioA : B = ^,
n

B : 0:: p:q,0T ratio B : C=^,

Then

G iB ::i : ;, or ratio C : i> = 4-.

J

A
m
B
P

i

B ^

q'

• •

.7

(1)

Divide the first equation by p and the second by n,

mp~' np* np ^ nq'

A__G_
mp~ nq'

Divide this equation by i and the last of (1) by nq,

Therefore

G

Therefore

that is.

mpt nqi

A

nqi

D

D
nqj

mpt nqi
'

nqj n q ^
i

374. Def. When the ratio of the first antecedent
to the last consequent is formed by multiplying a
series of intermediate ratios, the ratio thus obtained is

said to be compounded of these intermediate ratios.
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CHAPTER II.

LINEAR PROPORTIONS.

Definitions.

375. Def. Similar figures are those of which the
angles taken in the same order ^
are equal, and of which the
sides between the equal angles
are proportional.

Example. The figure ABCD
is similar to A'B'C'D' when

Angle A = angle A'y

Angle B = angle B% etc.,

and

AB : BO : CD : DA :: A'B' : B'C : CD' : D'A\
376. Def. In two or more similar figures any-

side of the one is said to be homologous to the corre-
sponding side of the other.

Example. In the above figr re,

the sides AB and A'B' are homologous,
the sides BG and B'O' are homologous,

etc. etc. etc.

377. Bef. When a finite straight Kne, as AB, is
cut at a point P be-
tween A and B it is ! f i ?
said to be divided^ B

intenially at P, and the two parts AB and BB are
called segments.

378. Bef. If the straight line AB is producedand cut at a point Q outside of A and P, it is said to
06 divided eztemallv at a an^ f>»^ Hr.
-oV are called segments.

mU
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Corollary 1. A line cut internally is equal to the sum of

its segments.

Cor. 2. A line cut externally is equal to the difference of

its segments.

379. Bef. Two straight lines are said to be

similarly divided when the diiferent segments of the

one have the same ratios as c n d
the corresponding segments " ~ "•

of the other. -J
M b

Example 1. If the line AB m divided at M and the line

cd at N in such manner that

AM: MB :: CN : ND,
the lines AB and CD are similar-

ly divided at M and N. C N Q ly

Example 3. If the lines AB
and CD are divided at M, P, N, A M Y 3
and Q in such wise that

AM : MP : PB :: CN : NQ : QD,
they are similarly divided.

380. Def. If three straight lines, a, 5, c, are so

related that

a \h '.',h : c,

the line h is said to be a r^'^an pro-
portional between a and c.

01-

Theorem I.

381. If two straight lines are similarly divided^
each part of the first has the same ratio to the corre-

sponding part of the second that the whole of thefirst
has to the whole of the second.

Hypothesis. Two straight ^
lines, AB and A'B\ divided

'~

at P, Q, P', and Q', so A^ p' tf g
that

i. B
I I

AP : PQ'. QB :: A'P' : P'Q' : Q'B\
Conclusion. AP : A'P' :: AB : A'B',

\
PQ: P'q :: AB : A'B'-A
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0, are so

or, expressed as a multiple proportion,
AF : FQ: QB : AB :: A'F' : F'Q' : Q'B' : A'B\
Froof. In the proportion of the hypothesis the sum of

the antecedents is AB, and the sum of the consequents A'B'
Therefore (§371)
AB : A'B' :: AP : A'F' :: FQ : F'Q\ etc. Q.E.D.

Theoeem II.

383. A line cannot be divided at two different
points, both internal or both external, into segments
having the same ratio to each other.

Hypothesis I. A line, AB,
divided internally at the points ^
P and Q,

Conclusion. The ratio AF : FB will be different from
the ratio A Q : QB.

Fro^f. Let the ratio AF : FB be ^. Then JP will con-

tain m parts, and FB n equal parts.

Because AQi^ greater than AF, it will contain more than
m parts; and because QB is less than FB, it will contain less
than n parts.

Therefore the numerator of the ratio AQ .QB will be
greater than w, and its denominator less than n, whence it

must be greater than - and cannot be equal to it.

Therefore there is no other point of division than F for
which the ratio of the segments will be the same as ^P : FB.

Hypothesis II. A line, AB, divided externally at the
pomts F and Q.

Conclusion. The ratio ^^- ^ ^ ^
AF

: BF will be different from the ratio AQ : BQ.
Froof. Let m be the number of equal parts in AF: n, the

number in BF-, and s, the number in FQ. Then
mAF :BF =

^Q

n

n~{-8
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If we reduce these fractions to a common denominator and

take their difference, we find it to be

{m — n) 8

n {n-\-s)*

Because m and n are necessarily different, this fraction

cannot be zero, and the ratio AP : BP is different from

AQiBQ. Q.E.D.

383. Corollary 1. When the point of division P is nearer

to B than to A, AP is greater than BP, and the ratio

AP : BP is greater than unity.

When it is nearer to A than to B, AP is less than BP,

the ratio is less than unity.

384. Cor. 2. If we suppose the point P to move from

A toward B, the ratio AP : PB will be equal to zero as P
starts from Al will be unity when P is half wa} between A
and B, and will increase without limit as P approaches B.

385. Cor. 3. A line cannot be divided externally into

segments having the ratio unity.

386. Cor. 4. Two different points may be found, the

one internal and the other external, which shall divide a line

into segments having the same given ratio.

EXERCISES.
1. Draw a line, AB, and cut it internally in several points

so that the ratios of the segments shall be

1 : 6, 2 : 5, 3 : 4, 4 : 3, 5 : 2, 6 : 1.

2. Cut the same line externally in the ratios

2 : 9, 1 : 8, 8 : 1, 9 : 2, 11 : 4.

3. A line 7 inches long is to be divided into segments hav-

ing the ratio 4 : 5. How lo'ng are the segments?

4. A line 6 inches long is to be divided externally into

segments having the ratio 5 : 8. How far is the point of

division from each end of the line.

5. If the line ^5 (§ 377) is 3 centimetres in length, and

the points P and Q divide it both internally and externally

into segments having the same ratio 1 : 2 (§ 386), find the

lengths AP, AB, and AQ.
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Theorem III.

387. fftwo straight lines are cut by three ormore
parallel straight lines, any two intercepts on the one
are as the corresponding intercepts on the other.

Hypothesis, a, by c, three parallels intersecting the line
p in the points A, B, G, and the «
line q in A\ B', G\ y V

Conclusion. « "^^

AB : BG :: A'B' : B'C\
Proof. Diyide AB into any

^ b/"
—

1l̂

number m of equal parts, and
through the points of separation
draw lines parallel to AA^ and *: /n /r'

BB\ /
i

Cut off from BC parts equal to those of AB. Let the
number of parts in BC be n plus a fraction. Through the
pomts of separation draw lines parallel to BB\ Then—

Because the lines;? and q are cut by parallels intercepting
equal lengths on p, the intercepts on q are also equal (§132, 1. ).

Therefore A'B' is divided into m equal parts, and B'C is
divided into n equal parts plus a fraction.

Because this is true however great the numbers m and n,
we conclude

AB : BC :: A'B' : B'C (§ 358). Q.E.D.
Corollary. If the points A and A' coincide so that » and

q cross each other at A, the figure 4AGC will form a triangle; and
the conclusion will, by the same
demonstration, be b/ X^b >

AB : BG :: AB' : B'G*. ^^_ >^q,
But55' is parallel totheside CC'ot the triangle. Therefore:

388. A straight line parallel to one side of a triangle
divides the other two sides similarly.

Theoeem IV.

^- ^^^' I( ^^^ **^^* ^-^ ^ i'Tiangle he similarly
aimaed,the line joining the points of division will
uoparauec to the rmaining sids of the triangle.
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Hypothesis. ABCy a triangle of which the sides CA
and CB are cut (internally or

externally) in the points D
and E in such manner that

CD : AD :: CE : BE.

Conclusion. DE\\AB,
Proof. If DE is not

parallel to AB, draw DE'

^

parallel to ^^ and meeting

CB in E". Then

CD: AD:: CE' : BE', (§ 388)

and the line CB is divided at two points, E and E'l into parts

haying the same ratio CD : AD, which is impossible (§ 382).

Therefore the points E and E' coincide, and the line DE
is the same as the parallel i>ii^'. Q.E.D.

Theokem V.

390. Equiangular triangles are similar, and the

sides between the equal

angles are homologous
to each other.

Hypothesis. ABC and
DEF, equiangular triangles

such that

Angle C = angle F.

Angle A — angle D.

Angle B = angle E.

Conclusion. AB :

AB :

AB: BC:or

BC :: DE : EF,

AC:: DE: DF,

CA :: DE: EF : FD.

Proof. Apply the triangle EDF to ABC so that -P shall

coincide with C and FD shall fall on CA, Let D' be the

point of CA on which D falls. Then

—

1. Because angle F= angle C,

UneFE=CB.
ijui; Jii ue ine poiux, on wniun ^ laus.
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4. Therefore
'''^"^^-

(8 69)

CZ)' : AD' :: C^' ; BE';
and, by composition (§ 364),

GD' : CA :: GE' : GB;
or, because GD' = FD and Cj^' = FE,

T .1,

I>F
'.
AG ',x EF '/bG, Q.E.D.m the same way it may be shown that the other nronnr

tions of the conclusion are true. ^ ^''

391. CW/ary. ijT/rom owe ^n«w^/e anotJier he cuf nffby a hue parallel to one of its sides, thetna^ttUuslutSwill be similar to the original triangle.
^

Theoeem VI.

392. If the sides of one triangU have to eachother the same ratios as the sides of another thesetriangles are equiangular and similar
'^''''^' ^^'''

Hypothesis. Two triangles, ABG and DEF, such thatAB : BG : GA :: BE : EF : FD.
Conclusions,

Angle 6^ (opposite AB) = angle i^ (opposite DE),Angle A
{

« BG) = angle D( <^ fF)Angle B( « <7^) = angle ^( « fD)
Proof. On the sides FD and FEot the triangle />;?;?»

t^ke the pointsM andN such that
^ ^^

FM=:GA,
EJ^ = GB,

and join MJV. Then—
1. Because FM= GA

and JYF = BG,
and because

SGiGA y.EF.FD (hyp.),
we have -

ly'F
:
FM II EF : FD. ^L
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%. Therefore the sides FD and FE are divided similarly

at M and N, whence
MN II DE, ^§389)

3. Because these lines are parallel, the triangles FDE and
FMN are similar (§ 391). Therefore

MN : NF'. FM :: DE : EF : FD, (§ 390)

4. Because NF= ^Cand FM - GA,

MN :BC :CA :: DE : EF : FD,

6. Comparing with the hypothesis,

MN = AB.
Therefore the triangle FMN is identically equal to CAB^

and, comparing the angles opposite the equal sides,

Angle G = angle F.

Ang\e A = angle FMN = angle D;

)

/„v

7. )
^ ^

Q.B.D.
Angle B = angle FMN = angle ^.

Theorem VII.

393. Two triangles having one angle of the one

equal to one angle

of the other^ and
the sides containing

these angles propor-

tional^ are similar.

Hypothesis. ABG
and A'B'G'y two tri-

angles in which
Angle G — angle C".

aA' : G'B' :: GA : GB.

Conclusion. The triangles are similar; that is.

Angle A — angle A\
Angle B = angle B',

AB'.BG: GA :: A'B' : B'G' : C'A',

Proof. In GA take GP = G'A'^ and draw PQ parallel to

AB, Then—
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I. The triangle CAB is similar to CPQ. (9, 391 \

11. CPiOQy.CA :GB. (ggsg)
2. By hypothesis, CM' : O'B' :: CA : CB, and CP =

G'A'y by construction. Therefore

GP : G'B' :: GA : GB.
3. Comparing with (i), II.,

G'B' = 6'(>.

Therefore the triangles G'A'B' and CPg have two sides
and the included angle equal, and are identically equal.

4. Comparing«with (1), I.,

Triangle G'A'B' similar to triangle GAB. Q.E.D.

Theorem VIII.

394. Mectilinealfigures similar to the samefigure
are similar to each other.

Hypothesis. Two ^.
figures, P and Q, each r^\
similar to the figure A.\ \

Gonclusion. P and i
^ /

Q are similar to each \^ /
other. \ /

Proof. 1. Let any ^
side of P, a' for in-

stance, be to the ho-

mologous side aotA asmm, and the side a be to the
homologous side a' of ^ as jt> : ^, so that

a'
m

« = -,
n

a: a'' = ^.

Then, because the antecedent of one of these ratios is the
consequent of the next,

«-:a" = ^.
nq (§ 373)

In the same way it may be shown that every side of P has to
tiie nomoloorniia airlQ nf /y +>.« ««,», j.z- ...o ^''^ ^^ a "iv o»iuc luiiu mp : no.

J u

\\
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2. Because the angles of P and Q are severally equal to

the corresponding angles of A, they are equal to each other.

3. The figures P and Q having their homologous sides in

the same ratio mp : nqj and their angles equal, are similar

by definition (§ 376). Q.E.D.

Theorem IX.

395. Similar polygons may he divided into the

same nv/mber of similar triangles.

Hypothesis. Two simi-

lar polygons, ABCDE and

A'B'C'D'E', divided into

triangles by lines drawn

from the corresponding

angles G and \C to all the

non-adjacent angles.

Conclusion.

Triangle CDE similar to CD'E',
Triangle CEA similar to G'E'A',

etc. etc.

Proof. 1. In the triangles CDE and CD'E', angle

D — D* (hyp. and def.), and

CD : C'Z)' :: DE : D'E\
Therefore these triangles are similar and equiangular, and

CE : G'E' :: CD: G'D' :: DE : D'E*. (§ 393)

2. From the equal angles DEA and D'E'A' take the equal

angles DEC and D'E'G', and we have left

Angle CEA = angle G'E'A'.

Also, from (1) and the hypothesis of similarity of the two

figures,

CE : CE' :: EA : E'A\

Therefore the triangles CAE smd G*A'E* are also similar.

3. In the same way it may be shown that all the other

triangles into which the polygons are divided are similar.

Q.E.D.

396. Def. Similar figures are said to be similar-

ly placed when so placed that each side of the one

shall be T>arallel to the homologous side of the other.
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Theorem X.
t

307. fftwo similar figures are similarly placed,
then—

I. All straight lines joining a vertex of one to

the corresponding vertex of the other meet in a point
when produced,

II. The point of meeting divides the lines exter-
nally into segments having the same ratio as the
ho7nologous sides of thefigures.

••^>

Hypothesis. ABCD and A'B'C'D\ two eimilar figures

in which

AB '. BC : CD : DA :: A'B' : B'C : CD' : D'A%
and of which each side is parallel to its homologous side in
the other.

Conclusion. I. The lines AA', BB', etc. (which we shall

call junction lines), being produced, meet in a point P.

II. AP : A'P :: BP : B'P, etc. :: AB : A'B\
Proof. 1. If the junction lines AA' and BB' are not

parallel, they must meet in some one point. Let P be this

point.

2. Because AB and A'B' are parallel, the triangles PAB
and PA'B' are similar, so that

AP : A'P :: BP : B'P :: AB : A'B\ (§391)
3. It may be shown in the same way that if we call the

U'
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m

1

1

ii

A'B' (hyp.),

AB : A'B\

point in which the junction lines BB' and CO' meet, we
shall have

BQx B'Q'.i BG: B'C'x ^

or, because BG : B^G' :: AB
BQ : B'Q :

4. Comparing with (2),

BQ : B'Q :: BP : B'P,

C\ Therefore the line BB' is cut externally at P and at

Q into segments having the same ratio; namely, the ratio of

the homologous sides of the figures.

But a line can be cut only at a single point into segments

having a given ratio (§ 382). Therefore the points P and Q
are the same; that is, the lines A A' and C(7' cross BB' at the

same point.

6. In itie same way it is shown that all the other junction

lines intersect dt the point P, and that the segments termi-

nating at P have the same ratio as the homologous sides of

the figures. Q.E.D.

398. Corollary. If the similar figures are equal, the

junction lines will all be parallel and the point of meeting

will not exist.

399^ Def. The point in wliich the lines joining

the equal angles of two similar and similarly placed

figures meet each other is called the centre of simili-

tude of the two figures.

Theoeem XI.

400. A perpeniiczUarfrom the right angle to the

hypothenuse of a right-angled

triangle divides it into two

triangles, each similar to the

whole triangle.

Hypothesis. ABG. a triangle,

right-angled at G; GD, a perpen-

dicular from (7 on AB.
KyUfiVtaCSlUfi. J-iiC l/X iUiIlgilJB JlJJX^, -<Ul>X/, UUU \JJJU iiiO aii

similar to each other, so that

GB'.GA'. AB ::. DC : DA : AG :: DB : DG : BG.
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Proof 1. In the triangles ABC and ACD the angle A is

common, and the angle G = angle D because each of them is

a right angle.

Therefore the third angles are also equal, and the tri-

angles are equiangular. Comparing the sides opposite equal
angles,

CBiCAiAB ::DC:DA:Aa Q.E.D.
3. In the same way is shown

CBiCA: AB :: DB -. DC : BG. Q.E.D.
Corollary 1. Comparing the equiangular triangles ADC

and GDB, we have

AD : DC :: DC : DB.
Therefore DC is a mean proportional between AD and

DB, or:

401. The perpendicular from the right angle upon the
hypothenuse is a mean proportional between the segments into
tohich it divides the hypothenuse.

Corollary 2. It has been shown that
lines from any point of a circle to the
ends of a diameter form a right angle
with each other. Therefore:

408. If from any point of a circle a perpendicular he
dropped upon a diameter, it will be a mean proportional
between the segments of the diameter.

Theorem XII.

403. If between two sides of a triangle a parallel
to the hase he drawn, any line

from the 'oertex will divide the base
and its parallel similarly.

Hypothesis. ABC, & triangle; DE,
a parallel to AB, intersecting ^ C in D
nnd BG in E-, GN, a line from G, inter-

bocting DE in M and A B in N.

Conclusion. DM : ME .: AN i NB.
Proof. 1. Because in the triangles GDM

I
n
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sides i>if and AN are parallel, these two triangles are equi-

angular and similar (§ 391).

2. Comparing the homologous sides opposite the equal

angles,

DM: AN:: CM: ON. (§390)

3. In the same way it may be shown that the triangles

CEM and CBN are similar, so that

ME : NB :: CM : GN.

4. Comparing with (2),

DM : AN :: ME : NBy
or, by alternation,

DM : ME :: AN : NB (§ 362). Q.E.D.

Corollary. ltAN= NB, the ratio will be one of cqutJity

and we shall hajire DM— ME. Therefore:

404. The line drawn from any vertex of a triangle so as

to bisect the opposite side will also bisect any line in the tri-

angle parallel to that opposite side.

Theoeem XIII.

406. The bisector of an interior angle of a tri-

angle divides the opposite side into segments having

the same ratio as the two adjacent sides.

Hypothesis. ABC, any triangle;

CDf the bisector of the angle C, yt

meeting the side AB in D, so that

Angle AGD = angle DGB.

Conclusion.

AD :DB ::AG: CB.

Proof. Through B draw BG
parallel to DC, meeting AG pro-

duced in G. Then

—

1. Because DG and. BG are narallelj

Angle CGB — corresponding angle ACD.
Angle CBG = alternate angle DGB.

.lO
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3. Comparing with the hypothesis,

Angle OQB .- angle CBG.
Therefore the triangle BQCis isosceles, and

CB = CO,
3. Because DC and BG are parallel,

AD'.DB V.AC'. CG,
:; AC : CB (hy 2). Q.E.D.

M

Theobem XIV.

406. The bisector qf an exterior angle of a tri-

angle dimdes the opposite side exterimlly into seg-

ments having the same ratio as the two adjacmt
sides.

Hypothesis. ABC, 9, triangle; CM, the continuation of

AG-y CD, the bisector of the

exterior angle at C, meeting

AB produced in D, so that

angle BCD = angle MCD.
Conclusion.

AD.BD ::AC:BC. A-

Prooof. Through B draw
BG parallel to DC, meeting ^C in G. The proof will then
be so much like that of Theorem V. that it is left as an exer»

else for the student.

Corollary. Since the bisectors of the interior and ex-

terior angles of a triangle ^
each divide the opposite

side into segments having
the ratio of the other

two sides, the ratios of the

two divisions are the same.

That is. A-

^'

N

P B
AP :BP iiAQ'.BQ.

Q

4.A7 VV horn Q lino la rlliri<1/irl lT>+rt-t»*»on-rr n-nA'» ii'-^-J* X.V j-XXiT_- i!j ^J-i T X-vA^^XJ. J.XXI/T7X J^CtiJ_Ljr CXiXXVL

externally into segments having the same ratio, it is

said to be divided harmonically.
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The preceding corollary may therefore be expressed thus:

408. The bisectors of an interior and exterior angle at

the vertex of a triangle divide the base harmonically

»

Theorem XV.

409. If a line AB he dimded harmonically at the

points P and Q, the line PQ will he divided harmom-
cally at the points A and B, x P b Q

t 1—f H

Hypothesis. A line AB divided internally at P and ex-

ternally at Q, so that

AP : BP :: AQ : BQ,
Conclusion. PB : QB :: PA : QA,
Proof. From the ratio of the hypothesis we have, by in-

version, 4

BP : AP :: BQ : AQ.
Then, by alternation,

BP: BQ :: AP : AQ. Q.E.D.

HarnK^nic Points.

410. Def. The four points A, B and P, ft of

which each pair divide harmonically the line termina-
ted by the other pair, are called four harmonic points.

Scholium. The relation of four harmonic points may be
made clear to the beginner by supposing the line terminating
in one pair to partly „
overlap the line termi- r-

—
^

i i

nating in the other;
^ ^

thus, when the points are harmonically aranged, the line AB
is divided harmonically at the points P and Qy and the line

P^ at the points A and B.

Theorem XVI.

411. The hypothenuse of a right-angled triangle
in difiidp.d harmn.nnio.nll'H h'ii n/n/ii nnn.ir nf l/ivifis tTivnoinh

the right angle, making equal angles with one of the

sides.
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Hypothesis. ABC, a triangle, right-angled at Ci CM,
CN, two lines from G, mak-
ing angle MCA = ACN, ^d
and meeting the base inM .,-'''

and JV.

Conclusion. The base
AB is divided harmoni-
cally at M and N.

Proof. Produce MC to
**'

A ^
any point B. Then—

1. Because angle MCA = ACN, CA is the bisector of
MCN. Therefore CB, perpendicular to CA by construction,
IS the bisector of the exterior angle NCD (§ 83).

3. Because CA and CB are the bisectors of an interior
and exterior angle of the triangle MCN, the base MN of this
triangle is divided harmonically at the points A and B (§408),

3. Therefore the line AB \^ divided harmonically at the
points M and JST (§ 409). Q. E. D.

Theorem XVII.
413. The diameter of a circle is dimded har-

monically hy any tangent and a perpendicular
passing through thepoint oftangency.

Hypothesis. AB, a diameter of a circle; CT, a tangent
at T, cutting the diameter (pro-
duced) in C; 77), a perpendicu-
lar from Tupon AB.

Conclusion. The diameter
AB \^ cut harmonically at C^*
andZ).

Proof. Join TA and TB,
and produce TD until it cuts
the circle in C7". T5 ->—

1. Because AB is a diameter perpendicular to the chord
TU, it bisects the arc TU (§231). Therefore

Arc TA=z\ arc TU= arc^ £/:

3. Also, Angle ClA = ^ arc TA. (§334)
Angle ^ 77) =:i archer. (§235)

Therefore Angle CTA = angle ^77).
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3. Because the angle ATB is inscribed in a semicircle, it

is a right angle. And because the angles CTA and ATD on

each side of TA are equal, the line AB is divided harmoni-

cally at C and i) (§ 411). Q.E.D.

»»i

CHAPTER ML

PROPORTION OF AREAS.

B

Theorem XVIII.

413. If two rectangles have equal altitudes, their

areas are to each other as their bases.

Hypothesis. ABGD and PQB8, two rectangles in which

the altitude PR is equal to the c D
altitude A G.

Conclusion,

Area P8 : area ADi.PQ: AB,
Proof. 1. Let PQ and AB

be to each other asm : n. Then,

if P^ be divided into m parts

and AB into n parts, the mth
part ot PQ will be equal to the

nth. part of AB.
Through the points of division m parte,

draw lines parallel to the sides of each rectangle.

Then the area PS- will be divided into m equal parts and

AD into n parts, each equal to the parts of PS, Therefore

Area PS : area AD :: ^Q : AB,
2. Because this proportion is true how great soever may

be the numbers m and n, it remains true when the sides AB
and PQ are incommensurable. Therefore the proportion

Area PS : area AD :: PQ : AB
is true in all cases (§ 359). Q.E.D.

Corollary 1. Because the area of a triangle is one half the

area of a rectangle having the same base and altitude (§ 301),

•
i

n parts.

B srl I

T
t !

L 1 Q
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and because aliquot parts of magnitudes have the same ratio
as the magnitudes themselves (§ 347), therefore:

414. The areas of triangles having equal altitudes are to
each other as their bases.

415. Cor. 2. The areas of all triangles having their ver-
tices in the same point and their bases in the same straight line
are to each other as their bases.

For all such triangles have the same altitude.

Theorem XIX.
416. The area of a rectangle is expressed hy the

product of its base and altitude.

Hypothesis. ABGD, a rectangle; X, the unit of area.

D, ^ P Q

BiT N
Conclusion. When AB and CD are exprtssed in numbers

of which the side of X is the unit, then the area ABCD is

expressed in units by the product

AB X AD.
Proof. Let us put

a, the number of units in AB;
bf the number of units in AD^

that is (§ 352, II.), a = ratio AB : side X,
b = ratio AD : side X.

The numbers a and b may be either entire, fractional, or in-
commensurable.

Construct a rectangle MNPQ, having MN = side X andMP = b. Consider MP as a base of this rectangle. Then—
1. Because MN= side X,

Area MNPQ : X .. MP -. side X;
that is. Area MNPQ : X = b.

linrw TLtD A r»iUOC JSLJ. -_i uXL/f

ABCD : area MJSTPQ :: AB : MN :: AB : side X;
, Area ABCD : area MJSTPQ = a.

9. R
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Compounding the ratios (2) and (1),

Area ABCD \ X— ah. (§ 373)
That is, the area ABCD is expressed by ab when X is taken
as the unit (§ 352). Q.E.D.

Corollary 1. Because a triangle has one half the area of a
rectangle, with the same base and altitude, we conclude:

417. Th6 area of a triangle is represented by one half the

product of its base and altitude.

Cor. 2. ItAB = AD, then a = b and ab = a\ Hence:

418. The area of the square on a line is expressed alge-

braically by the square of the number of units in the line.

We thus prove, for all cases, the theorems proved for whole num-
bers only in Book IV., §§ 284, 285,

419. Cor. d. The areas of rectangles or triangles having
equal bases are th each other as their altitudes.

Theorem XX.

420. Iffour straigM lines are proportional^ the
rectangle contained hy the extremes is- equal to the
rectangle contained hy the means.

Hypothesis. Four straight lines o, b, c, d, such that

a '. b '.: c : d.

Conclusion. Rect. a.d = rect. b.c.

Proof. Form the

rectangles ad and be, , ^
, ^q

and place them so

that the sides d and

c shall be in one

straight line and the

sides a and b in an-

other straight line,

crossing the first at

P. Complete rect-

angle P^. Then—
1. Because the rectangles PQ and a.d have the same alti-

tude a, and the bases c and d.

a •

e I

A !

d P

%If—'
ill—.

Aw

Kect. PQ : rect. a.d :: c : d. (§413)
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2. Bacause, taking a and b as bases, the rectangles PQ and
b.c have the same altitude c, and the bases a and b,

Eect. FQ : rect. b.c ::a :b;
'

or, because a : J :: c : <?,

Rect. PQ : rect. J.c :: c : rf.

3. Comparing with the proportion (1); three terms are
found equal. Therefore the fourth are also equal, and

Rect. a.rf= rect. 5.C. Q.E.D.
Scholium. This theorem corresponds to the theorem of

algebra that, if four numbers are proportional, the proc'^jt
of the extremes is equal to the product of the means.

Corollary. If ABGand PQR be two similar polygons in
which the sides ABy BC,
and (JA are respectively

homologous to PQ^ QR, and
RPy we shall have

AB : BO :: PQ : QR,
and therefore

Rect.^^. QR=rG(ii.BapQ.
Hence:

421. In two similarpo-
lygons the rectangle formed
by any side of the one and any side of the other is equal in
area to thatformed by the homologous sides.

Theorem XXI.

432. Converself/, if two rectangles are eqtml in
area, the sides of the one
will form the extremes,

*""

and the sides of the other
the means, of a propor-
tion.

Hypothesis.

Rect. ABCD^xQGi. PQRB,
Conclusion.

AB • BR :: PB : BG,
Proof. Place the . t-

angles so that the sides AB and BR shall be in one straight

B

I

I

I

I

I

R

a
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line and the sides PB and BC in another straight line, and

complete the rectangle BR8C. Then

—

1. Because the rectangles ^(7 and PR are equal,

Rect. AC : rect. ^*S^ :: rect. PR : rect. B8.

2. Because the rectangles AO and BS have the same

altitudes BC, and stand on the bases AB and BR,
Rect. AC : rect. BS :: AB : BR.

3. In the same way,

Rect. PR : rect. BS :: PB : BG,
4. Comparing with (1) and (2),

AB : BR :: PB : BC. Q.E.D.

Theorem XXII.

423. The areas of similar triangles are to each

other as the squares of their homologous sides.

Hypothesis. ABC and PQR, two triangles in which

AB '.BC: CA :: PQ : QR : RP.

Conclusion. Area ABC : PQR :: AB' : PQ\
Proof. Construct a third triangle if, of which the base

shall be equal to PQ, and the altitude to CD, the altitude of

the triangle ABC. Then

—

1. Because the triangles M and ABC have the same alti-

tude CD, they are to each other as their bases (§ 414). There-

fore Area ABC : area M :: AB : PQ.

2. Because the triangles M and PQR have equal bases,

they are to each other as their altitudes. Therefore

Area M : area PQR ..CD: RS. {§ 419)

3. In the triangles CAD and RP8 we have

Angle A = angle P (by hypothesis).

Angle D = angle S (right angles).
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le same

Therefore angle ACD ^ angle PRS, and the two trianriea
are similar, so that

CD : ES :: CA : RP :: AB : PQ,
Therefore, from (2),

Area M : area PQR :: AB : PQ.
4. Compounding the ratios (1) and (3), we haye

Area ABC : area PQR :: AB* : PQ\ Q.E.D.
Corollary. The preceding theorem may be expressed in

the following form:

434. The ratio of the areas of two similar triangles is
the square of the common ratio of each side of the one to the
homologous side of the other.

Theorem XXIII.
425. The areas of similar polygons are to each

other as the squares v/pon their homologous sides.
Hypothesis. ABCD and A'B'G'D', two similar polygons,

in which ^^ and ^'^' are

homologous sides.

Conclusion.

A.vQdLABCD'.si,YeiiA'B'C'D' D ^
:iAB^'.A'B'\

Proof Let the poly-

gons be divided into simi- ^

lar triangles by lines drawn ^
from^ (Th. IX.). Then—

1. Because the triangles^i5(7and^'i?'(7'are similar, and
the sides AB and A'B' are homologous.

Area ABC : area A'B'C :: AB^ : A^B'\
3. In the same way we have

Area ABC : area A'D'C' :: AD* : A'D'*-
or, because AD and AD', as well as ^i5 and A'B\ are homol-
ogous.

Area ADC : area A'D'C :: AB^ :A 'B'\
3. Continuing these proportions through the whole poly-

gon, and then adding all the antecedent* and conseauents
we have (§371)

Area ABCD : area A'B'G'D' :: AB' : A'B'\ Q.E.D.

1
1

;
f

^^^H **
-

^^B

.

1^
f

'

W[ J ii
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Corollary 1. The result of this theorem may bo expressed

in the following form:

426. The ratio of the areas of similar polygons is the

square of the ratio of each side of the one to the homologous

side of the other.

427. Cor. 2. If three linesform a proportion, the area of

a polygon upon the first is to the area of the similar polygon

upon the second as the first is to the third.

Also, the areas of the similar polygons upon the second and

third lines are in the same ratio.

Theorem XXIV.

428. ff two chords in a circle cut each other^ the

rectangle of the segments of the one is equal in area

to the rectangle of the segments of the other.

Hypothesis. AB and CD, two chords intersecting at P.

Conclusion.

Kect. AP.PB = rect. CP.PD.
Proof. Join AD and BC. Then—
1. Because the angles ADO and ^/

ABC stand on the same arc AC,
Angle ADC = angle ABC. (§ 237)

Therefore, in the triangles APD and

BPC, we have

Angle APD = opp. angle BPC.
Angle ADP = angle PBC (on same nrc /I C),

Angle PAD = angle PCB (on samo aio BD).
Therefore these triangles are similar (§ 390), and the sides

opposite the equal angles are proportional, so that

AP : PD :: CP : PB.
% r>eeat,use of this proportion,

B' t. AP.PB = rect. CP.PD (§ 420). Q.E.D.

Scholium. This theorem and the corollary of the following

atxj iwciinvjai micii ttu v>OiiDi«.ci. liiic v;iiuiui3 us Cutting c»uii

other externally when they do not meet within the circle.
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Theorem XXV.
429. I/from a point witJiout a circle a secant

and tangent be drawn, the rectangle of the whole
secant and tJie part outside the circle is equal to the
square of the tangent.

Hypothesis, P, a point with-
out a circle; PT, a tangent touch-
ing the circle at T; PB, a secant
cutting the circle at A and B.

Conclusion. PA.PB = PT\
Proof. Join TA and TB.

Then—
1. Because the angle ^^T stands upon the arc TA,

Angle ABT=i angle arc A T. (§ 235)
2. Because PT'i^ a tangent, and ^T a chord.

Angle PTA = \ angle arc A T. (§ 234)
3. Therefore angle ABT^ angle PTA, and the triangles

P^Tand PTB have the angles at P identical and two other
angles equal. Therefore the third angles PTB and PAT are
also equal, and the triangles are similar (§ 390).

4. Comparing homologous sides, we have

PA : PT:: PT : PB,
5. Therefore

Rect. PA.PB = PT' (§ 420). Q.E.D.

430. Corollary. Because
the rectangles formed by all

secants from P are equal to the
square of the same tangent
PT, they are all equal to each
other.

Theorem XXVI.

431, When the bisector of an angle of a triangle
meets the base, the rectangle of the two sides is equal
10 the rectangle of the segments of the base plus the
square of the bisector.
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Hypothesis. ABC, any triangle; CD, the bisector of the
onglo at (7, cutting the base at i>.

Conclusion, \

Reot. CA, CB = rect. AD,DB + CD\ -''""x^X
Proof, Circumscribe a circle /^ y^'^x \N

A OBE «.roui?d the given triangie, and ;[y^ \ \
continue the bisector till it meets ^\ fe yl*
the circle in E, Join BE. Then— \

1. In the triangles CaD and GEB \
we have '"-... _

Angle AGD" angle BCE (hyp. ).

"^

Angle CAD = angle BEC (on same ore BC),
Therefore these triangles are equiangular and similar.

2, Comparing the sides opposite equal angles,

,
CA : CD i: CE : CB.

Whence

Kect. CA.CB = rect. CE.CD,
= Teot{CD-\-DE)CD,
= CD' + rect CD.DE, (§ 287)
= CD* + rect. AD.DB (§ 428). Q.E.D.

Theorem XXVII.

432. M a riglit-angled triangle the area of any
polygon upon the hypothenme is equal to the sum of
the areas of the similar and similarly described
polygons upon the two other sides.

Hypothesis. ABC, a triangle, right-angled at A. We also

put

a, a', a",

the areas of any three similar

and similai-ly described poly-

gons, upon the sides BC, CA,
and ABy respectively.

a = a -j- ai^OflCiUSlOil.

Proof. From A drop AD ± BC. Then-
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1. Because ABC is right-angled at A, and AD is a per-
pendicular upon the hypothenuse,

DC : CA :: CA : BC. '

DB : BA :: BA '. BG,
2. Because a\ a", and a are the areas of similar poly-

gons described upon CA, BA, and 46",

a' :a:: DO : BC.
a":a::BD:BC. (§427)

3. Therefore, taking the sum of the ratios (§ 366),
a' + a" : a :: BD-{ DC : BC.

4. Because BD-\-DC=BC, ibhe second ratio is unity;
therefore the first also is unity, and

«' + «" = «. Q.E.D.
Scholium. This result includes the Pythagorean proposi-

tion (§308), as a special case in which the polygons are
squares.

» » >

CHAPTER IV.

PROBLEMS IN PROPORTION.

A—

Problem I.

433. To divide a straight line similarly to a
given divided straight line.

Given. Aline, AB-, another line,C7/>, divided at the pointsM und N.
Required. To divide AB t

similarly to CD.
Analysis. By §388 two

sides of a triangle are similarly
divided by any lines parallel to
the base. Therefore, if we put
together the lines AB and CD
m such a way as to form two
siflofl /-if o +«;«».^i^ «n i: ,

parallel to the third side will

divide these two sides similarly.

r M
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Construction. 1. Form a triangle ABD, such that

AB = given line AB,
AD = given line CD, \

BD = any convenient length.

2. Through the points M and N draw MM' and NN'

parallel to BDy meeting AB in M' and N'. Then

AM' '.M'N' :N'B',:AM:MN',ND. (§388)

Therefore the line ^5 is divided at the points M' m^N'

similarly to CD, Q.B.F.

Problem II.

434. To divide a straight line internally into

segments which shall be to each other as two given

straight lines. p
Given. Two straight lines, y

p and q ; a third straight

line, AB,
Required. To divide AB

into segments having the A'^ ^ ^B

same ratio 2ii& p to q.

Construction. 1. From one end of the line AB draw an

indefinite straight line AD.
2. From this line cut off ^ C = ^ and CD = q.

3. 3om DB.
4. From C draw a line parallel to DB, and let E be the

point in which it cuts AB.
The line AB will be cut internally at E into the segments

AE and EB^ having to each other the same ratio as the lines

p and q.

Proof. As in Problem I.

Problem III.

435. To divide a straight line externally so that

the segments shall he to each other as two given

straight lines.

/3V^./.*. A a4-T.oir»lif lirjo A Ti' fwo nfliP.r linfis. «, «,

Required. To cut AB externally so that the segments

shall have to each other the ratio p : q.



PROBLEMS IN PROPORTION. 206

Construction. 1. From either end of the line AB as A
draw an indefinite straight line ^C. '

'

2. On this line cut oft AC= ;

the greater line p, and from C, ^—~~
toward A, cut off CD = the * ^<^
lesser line q. ^<^^'^^^^^^^

3. Join DB. ^^^^^ \
4. From C draw a line par- .

^^^^ \ _^\
allel to DB, and let B be the B " E
point in which it cuts AB produced.

The line AB will be divided externally at B, so that
AH : BU ::p : q.

Proof. As in Problem I.

436. Corollary 1. If ^ = g, the point D would fall upon
A, and the line DB would coincide with ^^. The line drawn
through C parallel to DB would then be parallel to AB, so
there would be no point of intersection B. Therefore there
would .be no external point for which the ratio of the see-
ments would be unity.

^

43 Y. Cor. 2. If we combine Problems 11. and III on
the same straight line, using the same ratio, we shall divide
the line harmonically, and the ends of the line, together
with the points of division, will form four harmonic points.

Problem IV.

438. To find afourth proportional to three given
straight lines.

Given. Three straight lines,

a, h, c.

Required. To find a fourth
line, X, such that

a : b :: c : X.

Analysis. To solve the prob-
lem it is only necessary to form
two similar triangles, one of which / ^\
shall have a and n for f.wn r.f i+« ^ " —^^
sides, while the other shall have b as the side homologous
to a, The side bomologovis to c win then be x.

3

\ !f
n

, 4 ^H
<t m
i ma

'

m
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Construction. 1. Draw two straight lines from the same

point A,

3. From one of them cut off

AB =^a and AD = b, and from

the other cut oft AG = c.

3. Join BO,

4. Through!) draw 2)^11 i5a

AE will be the required line x.

Proof, The similar triangles

^J?(7 and ^/>j^ give

AB '.AD ::AG:AE,

which is the required proportion.

Problem V.

439. To find a rnean proportional between two

given straight lines.

Given. Two straight lines, AD and DB,

Required. To find a third line which shall be a mean

proportional between them. a D
Analysis, The perpendicular from

any point of a circle upon the diam-

eter is a mean proportional between

the segments into which it divides

the diameter (§ 402). Hence

Construction. 1. On an indefinite

line take the segments AD and DB^
equal to the given lines.

2. On ^5 as a diameter describe a semicircle.

3*. At D erect the perpendicular DC, meeting this circle in

C. DC will then be the required mean proportional between

ADmdDB.
^ , . ^. ceonQ

Proof, This may be supplied by the student from §§^0S

and 401.

440. Def A straight line is said to be divided in

extreme and mean ratio when it is divided into two

+« aiinh fhnt thft crreater sesrment is a mean

proportional between the lesser one and the whole

line.

-B

-.0
-— r^x-^

a

\

s

\

D b B
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Problem VI
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441. To divide a straight line in extreme and
mean ratio.

Construction. Let AB be the given straight line. Then—
1. At one end B of the given

straight line erect a perpendicular
BOy and take BO = ^AB,

2. Around Cas a centre, with a
radius CB describe a circle.

3. Join AC, produce the line
A Cy and let ^ and i> be the points a-
in which it intersects the circle.

4. From ^ as a centre draw an arc cutting off from AB
the length ^^ = ^^. ^ "um ^zj

The Une AB will then be cut at i^in such manner thatFB : AF :: AF '. AB;
that IS, it wiU be cut at i^in extreme and mean ratio

Proof, 1. Bemuse AB is perpendicular to the radius CB
at Its extremity, B, it is a tangent to the circle. Therefore

2.Bydivision,^^^^^--^^^^^^- (§^^9^ 4)

AE:AB-AEi:AB:AD-^AB,
(§365)

An r^ ^"^ ^"^ ^^^ diameter ED, so that AB - AB =An^ED= AE = AF. Making these substitutions in (2)
.

AF:FB::AB:AF; ^ ^'

or, by inversion,
'

FB :AF::AF:AB.
4. Therefore the segment AF is a mean proportional

between the segment FB and the whole line AB ^ "^""^

443. Scholium. This division of the straight line has

take i^(7 = FB. the linfi /4 P win v>« iT o A d ^
cut m extreme and mean ratio

FB : AF :: ^j^ ; J^
6^. For, by hypothesis.
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whence, by inversion and diyision,

AF- FB : FB :: AB -AF: AF,

Because OF= FB, this proportion is the same as

AG : GF:: GF : AF.

In the same way, by taking on GF a line Gh equal to -4 G^

we shall divide GF in extreme and mean ratio at h, and

so on indefinitely.

443. Corollary. The two segments formed ly the ** golden

section" are incommensurable with each other.

For suppose ^i^were composed of m parts, and FB of n

equal parts. Then when we cut off FG, we should have

AG = m — n parts.

Cutting this off from GF, we should have in hF a still smaller

number of parts. But no part would ever be divided by cut-

ting, because when we subtract one whole number from an-

other, the remainder is a whole number.

Therefore, because every time we cut off we reduce the

number of parts by one or more, our last section would take

away all the line that was left, and so would not cut it in

extreme and mean ratio.
|
'

}

'
(

>
|

i
|

lUmtraUon. If AF had eight ^ O A F B

parts, and FB five parts, then by successively cutting off we should

have left

AQ = Z parts = Qh.

hF = 2 parts.

Cutting off these two parts from Oh, we should have one part left, and

after two more cuttings nothing would be left.

The Phyllotaxis.

444. Let us bend the line AB around into a circle,

the two ends, A and B, coming together. Let us then

take the distance BF in our dividers,

and, starting from the point AB, keep

measuring off equal steps round and

round the circle. The end of each step

is numbered from through 1, 2, 3, etc.

Then—
1. At every step we shall find the

circle divided into arcs of two or three

different lengths.
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2. At every step the dividers will fall upon one of the
longer arcs, and will divide it in extreme and mean ratio.

3. The division-marks will be scattered around the circle
more evenly than by any other system of division.

It has been considered by botanists that the leaves of
plants are arranged around the stem on such a plan as this.
This arrangement is then called the phyllotaxis.

Problem VII.

445. Upon a gimn straight line to construct a
polygon similar to a gimn polygon.

Given. A polygon,

ABODE) a straight

line, PQ.
Required. To con-

struct upon PQ a poly-

gon similar to ABODE.
Oonstruction. Let

AB be the side of the given polygon to which PQ is to be
homologous. Divide the given polygon into triangles by diaff-
onals from the point A.
UponP^ describe the triangle PQR equiangular to ^J?

a

Upon PR describe the triangle PRS equiangular to A OD,
and continue the process through all the triangles into which
^5Ci)^ is divided.

The polygon PQRSTmW be the one required.
Proof. By §395.

Problem VIII.

446. To describe a polygon wMch shall he equal
to one and similar to the other oftwo givenpolygons.

Given. Two polygons, P and Q.
Required. To construct a third polygon, equal in area

to P and similar to Q.

Analysis. Because the required figure is similar to Q, the
square of any one of its sides will have the same ratio to thfi
square of the homologous side of Q that its area has to the
area of Q.
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Because the area is that of P, this ratio of the squares

of homologous sides is

the ratio of the area of

P to the area of Q.

Therefore if we con- / p
struct two squares, the

one equal in area to P
and the other to Q, the

sides of these squares will have the same ratio which each

side of the required figure has to the homologous side of Q.

Construction. Construct the side rf of a square equal in

area to P, and the side g of another square d

equal in area to Q (§ 321).

Take any side MN of Q and find a fourth

proportional h to g, d, and MN (§ 438).
h

Upon h describe a polygon X similar to ^, and having l

as the side homologous to MN.
This polygon X will be equal in area to P, as well as

similar to Q.

Proof. Because h and MN are homologous sides of the

similar polygons X and Q,

Area X : area Q :: h^ : MN*;
or, because by construction h : MN :: d : g,

Area X : area Q :: d* : g\

But, by construction, d" = area P and g* = area Q,

Therefore Area X : area Q :: area P : area Q.

Whence Area X= area P. Q.E.F.

Theorems for Exercise.

Theobem 1. If the ends of two intersecting chords be

joined by straight lines, the two triangles thus formed will J)e

similar to each other.

Theorem 2. If two chords of circles subtend arcs which

together make up a semicircle, the sum of their squares is

equal to the square of the diameter.

Theorem 3. If from any point within a parallelogram

lines be drawn to the four vertices, the sum of the areas of
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each pair of opposite triangles is half the area of the paral-
lelogram. ^ "

Theorem 4. If two equal tri-

angles on the same base be cut by . a/..\b...Bk
a line parallel to the base, equal areas
will be cut off from them.

Area ABC = DEF.

Theorem 6. Lines drawn through the point of contact of
two circles, and terminated by
the circles, form four chords
which are proportional, and the \
lines through the ends of which ^|

are parallel.

CoTidusions,

I. AP : PC :: BP : PD.
II. ACWDB.

Theorem 6. If a circle be described touching two paral-
lels, and from the points of tan- ^

gency secants be drawn intersect-

ing the circle in the same point,

and terminated by the opposite

parallel, the diameter of the circle

will be a mean proportional be-

tween the segments of the paral-

lels.

HypotTism. The linesPB and QA intersect at B, a point of the circle
Condusion. BQ : PQ :: PQ : AP.

Corollary. The same thing being supposed, prove
Kect. RA.RB = rect. RP.RQ,

Theorem 7. If through any ver-Gr-
^

tex of a parallelogram a line be \
drawn meeting the two opposite
sides produced without the paral-

lelogram, the rectangle of the pro-
duced portion of such sides is equal
to the rectangle of the sides of the \
'ixl tliiciugi aiii. \ ^'

Eypothem. OD. BF= AB. BC. '

I
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Theorem 8. If two triangles have one angle of the one

equal to one angle of the other,

and the perpendiculars from the

other two angles upon the oppo-

site sides proportional, they are

similar.

Jlypothem. Angle = angle C
AP.BQr.A'P :BQ'.

Condumn. The triangles are similar.

Theorem 9. If the four sides

of an inscribed quadrilateral taken consecutively form a pro-

portion, the diagonal having the means on one side and the

extremes on the other side divides it into two triangles of

equal area. (Book IV., Ex. Th. 9.)

Theorem 10. The rectangle of two sides

of a triangle is equal to the rectangle of its

altitude above the third side and the diam-

eter of the circumscribed circle.

Theorem 11. The area of a triangle is

equal to the product of the three sides divided by twioo the

diameter of the circumscribed circle.

Theorem 12. If two parallel tangents to a circle are inter-

cepted by a third tangent, the rectangle of the segments of

the latter is equal to the square of the radius of the circle.

Theorem 13. If a chord be drawn parallel to the tangent

at the vertex of an inscribed triangle, the portion of the tri-

angle cut off by the chord is similar to the original triangle.

Theorem 14. If from the middle point A of the arc sub-

tended by a fixed chord a second chord be drawn inter-

secting the fixed one, the rectangle contained by the whole

of that second chord and the part of it intercepted between

the fixed chord and the point it is a constant whatever be the

direction of the second chord.

Show to what square or area the constant area is equal.

Theorem 15. If in two triangles any angle of the one is

equal to some angle of the other, their areas are to each other

as the rectangles of the sides which contain the equal angles.
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Theorem 16. If two chords of a circle intersect each
other at right angles, the sum of the squares of the four
segments is equal to the square of the diameter.

Theorem 17. If on each of the sides

of an angle having its vertex at two
points A and B on the one side and P
and Q on the other be taken such that

OP : OA :: OB : OQ,
the four points A, B, P, and Q will lie

on a circle (§§ 244, 392).

Theorem 18. If at any point outside

of two circles a point be chosen from which the tangents to
the two circles shall be equal in length, and from this point
secants to each circle be drawn, the four points of intersection
will lie on a third circle.

Apply § 429, 4, to the case of
each circle.

Theorem 19. Conversely,

if two circles be intersected

by a third, and secants be
drawn through each pair of

points of intersection, the

tangents to the circles from
the point of intersection of

the secants will be equal in length.

Theorem 20. If the common secant of two intersecting

circles be drawn, the tangents to the two circles from each
point of this secant will be equal in length.

NuMEEicAL Exercises.

1. If one of two similar triangles has its sides 50 per cent
longer than the homologous sides of the other, what is the
ratio of their areas ?

2. The owner of a rectangular farm containing 10,000
square yards finds that it measures 5 inches X 20 inches on a

map. What are its length and breadth ?

II1
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BOOK VI.

REGULAR POLYGONS AND THE
CIRCLE.

CHAPTER I,

PROPERTIES OF INSCRIBED AND CIRCUMSCRIBED
REGUUR POLYGONS.

Theorem I,

447. If a circle he dimded into any numher of

equal arcs^ and a chord he drawn in each arc, these

chords willform a regular polygon.

Hypothesis. A, B, 0, D, E, equidistant points around a

circle, separating it into equal arcs; AB, ^
BGf etc., the chords of those arcs.

Conclusion. The polygon -4-BC/)^ is

regular (§ 152).

Proof. I. Because the sides are by ^\

hypothesis all chords of equal arcs, they

are all equal to each other.

II. Take any two angles of the poly- D
gon, say ^^Cand CDE. Join ^Cand GE. Then—

2. Because the arcs A C and GE are equal, being sums of

equal arcs,

Chord AG^ chord GE. (§ 208)

3. Hence in the triangles ABG and GDE we have

AB = GD,
BG = DE,
AG^GE.

Therefore these triangles are identically equal, and

Angle ABG= angle GDE.
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4. In tho sumo way it may bo shown that any other two
angles of tho inscribed polygon wo choose to take are equal.

6. Comparing (1) and (4), tho polygon is shown to be

regular (§ 152). Q.E.D.

Scholium. Tho equality of the angles of the polygon may
be proved with yet greater elegance by showing that they are

all inscribed in equal segments.

Theorem II.

448. If a circumscribed polygon touch a circle

at equidistant points around it, it is regular.

Hypothesis. A circumscribed polygon

whose sides touch tho circle at tho equi-

distant points ABODE.
Conclusion. This polygon has all its

sides and angles equal.

Proof. Let be the centre of the

circle. Join OA, OB, etc. Then

—

1. Because tho intercepted arcs AB,
BO, etc., are equal, we shall have

Angle AOB= B00= ODD, etc.

Turn the figure around on the point until the radius

OA coincides with the trace OB. Then

—

2. Because of the equality of the angles A OB, BOO, etc.,

OB will fall upon the trace 00; 00= trace OD, etc.

3. Because the radii are equal, the point A will fall on B,
B on (7, etc.

4. Because each radius is perpendicular to the tangent at

its extremity, each side will fall upon the trace of the side

next following.

5. Therefore each point of intersection will fall on the

trace of the point next following.

6. Therefore each side and angle is equal to the side and
angle next following, and the polygon has all its sides and
angles equal. Q.E.I).

Remark. Another demonstration may be found by draw-
in or liTiPa frnm f) +.n f.Vio ancrloo t\f +lia nrtWrrATi onrl rkT»rk-«rJr»rf flio

equality of all the triangles thus formed.

Ill'

lit' I

i\
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Theoeem III.

449. A circle may be inscribed in any regular

polygon^ or circumscribed about it

Proof. I. Let ABODE be the regular polygon. Bisect

any two adjacent angles of the polygon,

as A and B, and let be the point of

meeting of the bisecting lines. Then

—

1. In the triangle AOB the angles

OAB and OBA are by construction the

halves of the equal angles EAB and

^^C(hyp.).
Therefore ihe angles are equal and

the triangle is isosceles.

2. Join 00. In the triangles AOB and BOO we haye

BO= AB {hjg.).

OB = OB (common sidie).

Angle OAB = angle OBC (halves of equal angles).

Therefore these two triangles are identically equal, and

0(7r= OB.
Angle 00B = angle OBA = I angle B = ^ angle 0.

3. In the same way it may be shown that if we join to

the other angles of the polygon, the triangles thus formed

will all be identically equal. Therefore

OA = 0B=00= 0D=: OB.

Hence if a circle be drawn around as a centre with a

radius equal to either of these lines, it will pass through

all the points A, B, O, D, B, and will be circumscribed

around the polygon. Q.E.D.

II. Let Oa be the perpendicular from upon AB.
4. Because the triangles OAB, OBG, etc., are identically

equal (2), the perpendiculars from upon AB, BO, etc., are

equal (§ 175).

Therefore if a circle be drawn around as a centre, with

a radius Oa, this circle will also pass through the feet of the

perpendiculars dropped from upon BO, upon CD, etc.

6. Because each of the sides AB, BO, etc., is perpen*
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dicular to a radius at its extremity, it is a tangent to the
cipcie*

Therefore the circle is inscribed in the polygon. Q.E.D.
450. Corollary 1. The inscribed and circumscribed

circles of a regular polygon are concentric.

4:51. Cor, 2. The bisectors of the angles of a regular
polygon all meet in a point, which point is the centre of both
the inscribed and circumscribed circles, and is equally distant
from all the angles and all the sides of the polygon,

4:52. Def. The common centre of the inscribed
and circumscribed circles is caUed the centre of the
regular polygon.

463. Cor. 3. The perpendicular bisectors of the sides of
a regular polygon allpass through its centre.

454. Cbr. 4. If lines be dra^vnfrom the centre of a regu-
lar polygon to each of its vertices, the polygon will be divided
into as many identically equal isosceles triangles as it has
sides.

Theorem IV.
455. All regular polygons having the same num-

oer of sides are similar to each other.
Proof 1. If the polygons have each n sides, the sum of all

the n angles of each is equal ton -2 straight angles (§ 160).
2. Because the angles of each polygon are equal, each

angle of each polygon is the nth part otn-2 straight angles;
that IS, the angles of one polygon are each equal to the angles
of the other.

^

3. Because the sides of each polygon are equal to each
other (hypothesis), the ratio of any side of the one to any side
of the other is the same whatever side be chosen.

Therefore the polygons are similar (§ 375). Q.E.D.

Theorem V.
456. Regular inscribed and circumscribed poly-

gons of the same number of sides may be so placed
that their sides shall be parallel, and each vertex of
the one on the same radius with a vertex of the other.

Ill I
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Hypothesis. ABCDE, an inscribed regular polygon;

A'B'C'D'E'f a circumscribed poly-

gon of the same number of sides, hav-

ing the side^'-B' tangent to the circle

at jT, the middle point of the arc AB-
Conclusions. I. A'B' \\ AB

;

B'C II BG, etc.

II. The vertex ^' is on the radius

OA produced, and all the other ver-

tices, B'y C", etc., are on the radii

OBy 00f etc., produced.

Proof 1. 1. Because A'B' is tangent at the middle point

of the 2ixc ABi it is parallel to the chord of that arc.

2. Because the two polygons are equiangular (Th. IV.)

and have a pair of homologous sides parallel, all the other

homologous sides are parallel. Q.E.D.

Proof II. Because the line B'O is drawn from the inter-

section of the two tangents, B'U and B'T, to the centre of

the circle, it bisects the arc TU.

Therefore it passes through the middle point B of this

arc, and OBB' are in the same straight line from the centre

of the circle.

457. Oorollary. The polygons may also

be so placed that the circumscribed polygon

shall touch the circle at the angles of the

inscribed polygon.

Theorem VI.

458. The greater the number of sides of a regular

circumscribedpolygon theless will «^ . . f,,^,

be its perimeter.

Hypothesis. BB', one side of a reg-

ular circumscribed polygon having n
sides; 00', one side of another such

polygon having n-\-l sides; OA, a per-

nendicular from tlie centre UT»on BB\
Oonclusion. The perimeter of the

polygon having n sides is greater than that having w -{- 1 sides.
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Proof, 1. Because the one polygon has n equal sides, and
the other w -f 1 equal sides, we have

Anglo 0" 0(7 = -^.

Angle B'OB= ^^^\

Therefore

Angle O'OG : angle B'OB ::n:n-{-l, (§337)And because AOO andAOB are respectively the halves of
C'OCand B^OB,

Angle AOO : angle AOB ::n :n-{-l.
That is, if we divide the angle A 00 into n equal parts, A OB
will be %+ 1 of these parts. Hence GOB will be one'of the
parts.

2. Divide the angle AOC into n parts by straight lines
meeting AB in the points «, b, etc.

Because OA is a perpendicular upon BB', each of the seg-
ments J«, ah, 10, etc., will be longer than the segment next
preceding (§116). Therefore n times segment OB will be
greater than the sum of the n segments which make up AG,

3. The perimeter of the polygon of n sides is

nAB = nAG-{-nGB,
and that of the polygon of w + 1 sides is

{n-\-l)AG = nAG-\-AG,
4. Because n6'^ is greater than ^C,

nAB>{n + l)AO;
that is, the perimeter of the polygon of n sides is the greater.

Q.E.D.
• >

CHAPTER II.

CONSTRUCTION OF REGUUR POLYGONS.

^^^'
J^]^^^^^^ i- of this book shows that a regular poly-

gon of anj, uumber of sides may be inscribed in a circle by
dividing the latter into as many equal parts as the polygon
has sides, and joining the points of division by chords. Hence
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the problem of constructing such polygons is reduced to that

of dividing a circle into any required number of equal parts.

The following theorem may be seen almost without demon-
stration.

•

If we can divide a circle into any number of equal parts,

we can also divide it into twice that number.

For if we divide it into n parts, we have only to bisect each

of these parts, which we do by § 271, and it will be divided

into 2n parts.

460. It is also easily seen that the problem of dividing

an arc into any number of parts may be

reduced to that of dividing the angle cor-

responding to the arc into the same number
of parts.

For let ABhk the arc, and its centre.

If we divide the arc into any number of

equal parts, and join to the points of

division, the angle AOB will be divided into that same

number of equal parts.

Hence, by dividing the arc we divide the angle,

461. Conversely, if, having an angle A OB, we draw the

arc AB of a circle around the vertex .

as a centre, and divide the angle ^,-\'' "?"^^^

AOB into any number of equal parts

by the lines Oa and Ob, meeting the Av,

arc in a and b, the points a and b

will divide the arc into that same

number of equal parts.

Hence, by dividing the angle we divide the arc.

The problem of bisecting the angle (or arc) is so simple that it

offered no difficulty to the ancient geometers. By bisecting the halves

of each arc it might be divided into fourths, and so on ; therefore

there was no difficulty in dividmg any angle or arc into 3, 4, 8, 16, etc.,

equal parts.

This being so easy, it was naturally sought to trisect the angle, or

divide it into three equal parts.

This problem of the trisection of the angle was long celebrated.

But geometers never succeeded in sol" "ng it, and it is now considered

impossible by the constructions of elementary geometry.
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Problem I.

462. To dimde a given circle into 2, 4, 8, 16, etc.,

equal parts.

Any diameter, as AB, will divide the circle into two equal
parts at the points A and B.

Drawing through the centre an-

other diameter perpendicular to this, the

circle will be divided into four equal ^ I

parts by four radii, at right angles to

each other.

By joining the ends of these radii a
square will be described in the circle.

Bisecting each of the right angles at the centre by radii

like ON, the circle will be divided into eight equal parts.

By joining the points of division, a regular octagon will be
inscribed in the circle.

The process of bisection may be continued indefinitely, so
as to divide the circle into 3"» equal parts, where m may be
any positive integer.

null
id

Problem II.

463. To divide the circle into 3, 6, 12, 24, etc.,

equalparts.

Analysis. 1. Suppose the division into six parts effected,

and the points of division to be A, B,
C, 2>, E, F.

3. Draw the radii OA, OB, etc., and
join AB, BG, CD, etc., forming Q,Ji

regular hexagon.

3. Because each of the three equal
angles AOB, BOO, GOD, is one third
the straight angle A OD, they are each
angles of 60°. And because the sides OA, OB, are equal, the
nnrrloa f) J Ti n^j/l /ITf 4 <,r

v----t-i-- i.cii\j. \^SJJ1. tlic £
«1 1

4. But the sum of the three angles is 180°. Therefore the
three angles are each equal to 00°; that is, the triangle OAB
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is equiangular and therefore equilateral, and the other five

triangles, being identically equal to it, are also equilateral.

6. Therefore each of the sides, AB, BG, CD, DE, EF,
Fa, is equal to the radius OA of the circle. Hence

Construction. 1. Starting from any point A on the circle,

cut off the distances AB, BG, GD, etc., each equal to the

radius.

2. Six equal measures will T to the point A, and the

circle will be divided into six ei^i parts M. the points A, B,

(7, etc.

3. The alternate points A, G, E, or B, D, F, divide the

circle into three equal parts.

4. By bisecting the arcs AB, BG, etc., the circle will be
divided into 12 parts; by bisecting these arcs, the number of

parts will be 24, etc.

Corollary. The perimeter AB -\- BG-\- GD-\- BE -\- EF
+ FA of the hexagon ABGDEF is six times the radius of

the circle, and therefore three times its diameter.

Because each of the six sides is a straight line, it is less

than the corresponding arc; that is, side AB < arc AB, etc.

Therefore

The sum of the six arcs, or the whole circumference of the

circle, is more than three tirnes the diameter.

Problem III.

464. To divide a circle into 5, 10, 20, etc., equal
parts.

Analysis. Let be the centre of the circle, and the arc

AB one tenth part of the circumference,

or 36°.

Join OA, OB, and AB. Then—
1. Because the sum of the three

angles of the isosceles triangle A OB is ^
180°, the sum of the angles A and B 7
is 180° - 36° = 144°, and each of these

{

angles is 72°. Therefore each of the \
angles OAB and OBA is double the
angle at 0.

OL'—

•
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2. If we bisect the angle OBA by the line BPy meeting
OA in P, the angles OBP and PBA will each be 3G°, and
we shall have

Angle APB = 180° - angle PAB - angle PBA (8 74)
= 180° - 72° - 36° = 72°.

3. Therefore the triangle BAP is isosceles and equiangu-
lar, and therefore similar, to the triangle OAB. Also, because
angle POB = angle PBO, the triangle OPB is isosceles.
Hence

PO = PB = AB.
4. Because of the similarity of the triangles BAP and

OAB,
AP : AB :: AB : AO,

or '

AP : PO :: PO : AO,
5. Therefore the radius OA is divided in extreme and

mean ratio at the point P (§ 440). Hence we conclude:

465. If the radius of a circle be divided in extreme and
mean ratio, the greater segment will be the chord of one tenth
of the circle.

Construction. Divide the radius OA of the circle in ex-
treme and mean ratio at the point P (§ 441).

Around ^ as a centre, with a radius equal to the greater
segment, OP, describe a circle, and let B and Che the points
in which it intersects the first circle.

The arc AB will be one tenth of the circle and i^C will be
one fifth of the circle. By measuring BCoE five times around
the circle, the latter will be divided into five equal parts.

By successive bisection the circle will be divided into 10,
20, 40, etc., equal parts. Q.E.F.

!!l

l!ii

1

III tin III!

U

Problem IV.

466. To divide a circle into fifteen equalparts.
Construction. 1. From any point A cut oft AB equal to

one third the circle (^ 463V
2. From the same point A cut off AD, equal to one fifth

the circle (§ 466).
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3. Arc BD will then be (^ — \) of the circle; that is, ^
of it.

4. Therefore, if we bisect the arc

BD, we shall have an arc equal to ^
of the circle. By measuring this arc

off 16 times, the circle will be divided

into 15 equal parts. Q.E.F.

Scholium. The foregoing divi-

sions of the circle are all that were

known to the ancient geometers. But, a
about the beginning of the present century. Gauss, the great

mathematician of Germany, showed that whenever any power
of 3, increased by 1, made a prime number, the circle could

be divided into that number of parts by the rule and com-
pass. Thus:

2^'-|- 1 = 3, a prime number.
2» + 1 = 5

2* + l= 17
2" + 1 = 257

Therefore, besides the old solutions, the circle can be

divided into 17 or into 257 equal parts.

The division into 17 parts by construction is, however, too

complicated for«the present work, and that into 257 parts is

so long that no one has ever attempted to really execute the

construction.

it

<t

i(
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CHAPTER III.

AREAS AND PERIMETERS OF REGULAR POLYGONS
AND THE CIRCLE.

46*7. Def. The apothegm of a regular polygon is

the perpendicular ironi its centre upon any one of its

sides.
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B

Theobem VII.

468. The area of a regular polygon is equal to
half the rectangle contained by Us p&rirmter and
its apothegm, b u

Hypothesis. ABCDEF, a regular
polygon; OP, its apothegm.

Conclusion.

Area ABCDEF= ^OP x perimeter.
^^ ^' '^^

Proof. Join OA, OB, etc. Then—
1. Because OP is the altitude of

the triangle A OB, ^ P

ATesiAOB = ^OP.AB.
2. In the same way it may be shown that the area of each

of the other triangles into which the polygon is divided is
equal to one half of the side into the apothegm. But the
apothegms are all equal. Therefore
Area ABCDEF=iOP. AB + ^OP. BC-\-^OP. Ci>+ etc.

= iOP X perimeter. Q.E.D.

469. Corollary 1. Because the perimeter of each cir-
cumscribed regular polygon is less the greater the number of
its sides (§458), it follows that the area of the
circumscribed regular polygon is 1p«?s the greater
the number of its sides.

Cor. 2. It is easily shown that the area of
the circumscribed square is equal to the square
upon the diameter of the circle. Therefore:

470, The area of any circumscribed regular polygon of
more than four sides is less than the square upon the diameter
of the circle.

4*71. Scholium. If a regular polygon be inscribed in a
circle, and another regular polygon of the same number of
sides be circipiscribed about it, the area of the outer poly-
gon will be greater than that of the inner one by the surface
contained between the perimeters of the two polygons.

This surface will be called the included area."

°

When the two polygons are so pla<5ed that their respectivo

j
il

III I li;f
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sides are parallel (§ 466), the included area will be formed of
as many identically equal trapezoids, AA'B'By BB'G*Cy etc.,

as the polygons each have sides; and each apothegm, as OT,
will again divide each of these trapezoids into two iden-
tically equal trapezoids.

When rhe polygons are so placed that

the sides of the circumscribed polygon
shall touch the circle at the vertices of the
inscribed polygon (§457), the included area

is made up of as many identically equal

triangles as the polygons have sides.

Theorem VIII.

473. WTieT^ the inscribed and circumscribed regu-
lar polygons ham more thanfour sides, the included
area is less than the square upon one side of the
inscribed polygon.

Hypothesis. 0, the centre of the circle; BG, a side of the
inscribed polygon; FG, a side of xhe

circumscribed polygon, placed paral-

lel to BC.
Conclusion. If the polygons be

completed, the included area will be ^i
less than the square upon CB.

Proof. Join OBF. Drop the

perpendicular OQ from upon FG;
draw the diameter COE and join

BR. Let n be the number of sides of each polygon. Then

—

1. Because tl 3 area of the inscribed polygon is made up
of 2n triangles identically equal to OBF, and the circum-
scribed polygon of 2n triangles equal to OFQ, the inscribed

polygon will be to the circumscribed one as the area OBP
is to the area OFQ. That is, if we put

A, the area of the circumscribed polygon,

a, the area of the inscribed polygon,

we shall have

A :a :: area OFQ : arcE OBP,
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Hence, by

(§365)

2. Because the linos BO and FO are parallel, the tri-
angles OJJP and OFQ are similar. Because of this similarity.

Area OFQ : area OBF :: OQ' : 0P\ (§423)
3. Comparing with (1), and because OQ = OB, both being

radii of the same circle,

Aia I'.OB^ : 0P\
4. The included area is equal to A — a.

division,

A-a:A:'.0B^- OP^ : OB*,
6. Because OFB is a right-angled triangle,

OB' - OP' = PB\
Making this substitution in (4), and putting

A the diameter of the circle (whence OB = ^D),
s, the length of the side CB of the inscribed polygon (whencaPB = ^8),

we shall have

A-a:A::is':iD'::s':D\ (346)
Therefore

8* X A _ A^A — a =
B' ~ Z)

6. But A < D\ or ^ -. i)» < 1 (§ 470). Therefore
A-a<8\ Q.E.D.

Corollary, % sufficiently increasing the number of sides
of the polygons, we can make each side as short as we please
and therefore its square as small as we please. Hence:

'

473. If the number of sides of the inscribed and cir-
cumscribed polygons be indefinitely increased, the included
area will become less than any assignable quantity.

Problem V.

474. From the areas of the inscribed and circum-
scribedpolygons of n sides to find the areas of thosehamng 2n sides.

Given. 0, the centre of the circle; AB. one of t.h« «i^os
Of the inscribed polygon of n sides; OD, one of the sides of
tHe circumscribed polygon of n sides, placed paraUel to AB

Hill

fl

Jill

t\
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and tangent to the circle at F\ OEF, the perpendicular from

the centre upon the tungeut; AF^ FJJ, two sides of the in-

scribed polygon of 2n sides; A 0,

BH, tangents to the circle at A
and B; wherefore OH is one side

of the circumscribed polygon of

2n sides (though not parallel to

any side of the inscribed polygon

of 2n sides). Also, the areas of

the triangles OAB and OCB are

supposed given, and from them

those of the inscribed and circumscribed polygons are found

by multiplying by n.

Required. I. To find the area OAF (from which the

area of the second inscribed polygon is obtained by multiply-

ing by 3n). '

II. To find the area OOH (from which the area of the

second circumscribed polygon is found by multiplying by 2w).

Solution. Let us put

ty the area of the triangle OEA, which is one half that of the

given area OAB;
T, the area of the triangle OFC, which is one hdf that of

the given area OCB;
t\ the required area OAF;
T', the required area OGH. Then

—

1. 1. Because the triangles OAF skud O^i^have the same
vertex A, and their bases on the same straight line OF, their

areas are as OF to OF, or

t:t' :: OF: OF. (§416)

2. Because the triangles OAF and OF have the common
vertex F, and their bases on the same straight line OC,

t' : T '.: OA : OG.

3. Because ^^and GF are parallel,

OF : OF :: OA : OG.

4. Comparing with (1) and (2),

t:t' ::f : T;

that is, the area t' is a mean proportion between t and T. or

V= VIT,
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GFII. 6. Because the triangloa FOO and A GOhcLYi
OA = OF, and 00 coinnion, thoy arc identically o<iual. Also
because OGA and OGC have the same vertex G, thoy are to
each other as OA to 00. Hence

Area FOG : area GOG :: OJ : 00 :: /' : T. (2)
0. But ^ ^

Area FOG = | area GOir= \T'.
Area GOO— area FOO - FOG = T—yr\

7. Comparing with (5),

iT':T~iy"::/':r;
and by composition,

whence 7" =

8. If wo put yl, ^', the areas of the circumscribed poly-
gons; a, a', the areas of the inscribed polygons, wo shall have

A = 2nT, a = 2wj?,

A' = 2nT', a' = 2nt',
and the relations between A, A', a, and a' will bo the same as
those between T, T\ t, and t' in (4) and (7).

We therefore conclude:

If we have given the areas A and a of the circumscribed
and inscribed polygons of n sides, those of the corresponding
polygons of 2n sides will be given by the equations

fl'= Vol,

., _ 2a'

A

a' + A'

4*76. Application of the preceditig solution to the compu-
tation of the area of inscribed and cir-

cumscribed polygons of a continually
increasing number of sides.

Let us put

r, the radius of the circle.

I. Let us begin with the inscribed
and circumscribed regular hexagons.

Each of these hexagons can be
uiyided into six equal equilateral tri- -
angles by lines drawn from the centre (§ 463). Each side of

111'

»Hi

r

\\-
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the triangles in the inscribed hexagon will be equal to r.

The area of each equilateral triangle, found by the method of

§333, will be

and the area of the whole inscribed hexagon will be

6 4^ . SV'S
r = r\

4 2

To find the area of the circumscribed hexagon we have
OM : OB' ',: ON '. OB,

or OM ir y.r : OB,
whence for the side of the circumscribed hexagon

0B = r' 2r

Because OAB is an equilateral triangle.

Area OAB = Vs
0B'=:

Vd 4_ f
4 3

V3"

whence for the area of the whole circumscribed hexagon

-4rr r" = 2 V3r\

Then, using the previous notation, we have

a =
2

r .

A =2 4^r'.

II. Polygon of 12 sides. Next we pass to the polygons of

12 sides by the formulaB

a'= V^; A' = ^..
a' -{-A

Making these substitutions, and reducing by algebraic

methods, we have

A' = 12

2-\- V3
^ r' = 3.2153910r'
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This value of o' gives the remai-kable result that the area

S™™^'""'^ '*^''^ P^^ye"" °* 12 sides is exact ytCe

12 »m!; fif?/ ^* '"''^- To P»^ from the polygon of

If we put «- and ^or the areas required, we have
.A-7-7-- __ V3 X 3.21539ir',

fl" =

^" = 2a'M'

or, reducing to numbers,
^ ^

«" = 3.105829r',
^" = 3.159661r».

96 sides, and so on indefinitely. '

Subtracting the area of each inscribed one from fyi«+ .fthe coiTesponding circumscribed one we have th^n^il farea in each case. The results fn iqo / ,

included

following table.
^^^ ''^'' ^ '^^^^ ^^ *lie

Area of
circumscribed

polygon.

3.215391r»

3.159661r»

3.146087r'

3.142715r'

3.141873r«

No. of
Bides.

a.
Area of

inscribed
polygon.

13 3.000000r''

24.... 3.105829/-'

48.... 3.132630r»
96.... 3.139350r'

192.... 3.141032r»

A — a.
Included
area.

0.215391/-'

0.053832P

0.013457r*

0.003365r»

0.000841r»

(§473Vthough we can never redlltto"^.'" ""' *^*^"*

Area of the Circle.

fixe?a;a^l '^^,„^* °f ^ -^f-g magnitude is a

approach "so'^s" to a^XrZHSir:*^^'.^^^ "^^
please, but to which it c.n „e"e?£r;„T" "^

sil

u

HI

i
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477. Theorems of Limits. The theorems relating to the
subject of limits are proved in algebra. The following propo-
sitions are applied in geometry:

Axiom I. Any quantity may he multiplied ly a factor so

great as to inake the product exceed any quantity we may assign.
Ax. II. Any quantity may le multiplied by a factor so

small as to make the product less than aiiy quantity we may
assign.

Theorem. If two varying quantities each ap-
pToacli a limit, the limit of their product will be the
product of their limits.

Hypothesis. A quantityX approaching the limit L,
A quantity X' approaching the limit L',

Conclusion. The product XX' will approach the product
LL' as its limiti

Proof. Let a and a' be the respective amounts by which
-Tand X' differ from their limits L and L\ We then have

X •= L —ay
X= L' -a\

Multiplying,

XX = LU - aU - a'L -f aa\
Let /? be a quantity as small as we please. How small

soever it may be, we may take the quantities a and «' so small
that the products aU, a'L, and aa' shall each be less than
one third of /?. (Ax. II.)

The quantity XX' will then differ from LU by less than /?.

Because the difference /? may be as small as we please, the
product LL' is the limit of XX. Q.E.D.

Gor. Because the area of a rectangle is represented by
the product of the lengths of its containing sides we conclude:

If the containing sides of a rectangle approach two lines L
and L' as their limits, the area of the rectangle will approach
the area LL' as its limit.

Lemma.
478. When the number of sides of the inscribed

each of their areas approaches the area of the circle

as its limit.
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Proof. In order to prove this lemma we have to show:
I. That the area of the inscribed polygon must always

be less than that of the circle, how great soever the number of
its sides.

II. That the area of the circumscribed polygon must
always be greater than that of the circle.

III. That if we assume an area a, we can by increasing
the number of sides of the polygons make each of their areas
differ from that of the circle by less than a, how small soever
a may be.

1. Because the apothegmOJf (§ 475) of the inscribed regu-
lar polygon is a perpendicular from upon A'B', it is less
than the line OA', which is the radius of the circle.

Therefore some part of the area of the circle will always
be outside the polygon, and the area of the polygon must
always be less than that of the circle.

2. In a similar way we may show that the area of the cir-
cumscribed polygon is always greater than that of the circle.

3. How small soever the area a, we may increase the num-
ber of sides of the polygons until the included area shall be
less than a (§ 473).

Then, because the area of the circle is greater than that of
the inscribed polygon, but less than that of the circumscribed
polygon, it will differ from each of them by less than a.

Therefore the area of the circle is a quantity which the
area of each polygon may approach, so as to differ from it by
less than any assignable quantity, but to which it can never
become equal.

Therefore the area of the circle is the limit of the area of
each polygon when the number of its sides is indefinitely in-
creased. Q.E.D.

4*79. By continuing the table of § 475 we may approxi-
mate as nearly as we please to the area of the circle. But there
is a theorem of approximation which we give without proof
and which will enable us to make a more rapid approximation!

i' We oUain an approximate area of the circle hy adding
to the inscribed polyf/G,I two thirds of the included area.

II. Tliis approximation is nearer the truth the greater the
number of sides.



iHli:i

234 BOOK VI. REGULAR POLYGONS AND THE CIRCLE.

Applying this rule to the preceding table, we have-
No of Bides. K^ -a). o+ «4 - a).

12 •143694r* 3 •143594r'
34 •035888r" 3 •1417l7r«
48 -OOSQTlr' 3-141601r'
96 •002243r' 3'141693r'

193 -OOOSGlr' 3-141593r«

We see that we get the same result from 96 sides and 192
sides, so that they both may be regarded as correct to the sixth
place of decimals.

480. The coefficient of r\ which we have found to six
places of decimals, is represented by the symbol n. That is
we put

'

n = 3.141593 ....
nr" = area of circle of radius r.

481. Corollary TJie areas of any two circles are pro-
portional to the squares of their diameters.

Circumference of the Circle.

483. Axiom. When we increase indefinitely the
number of sides of the inscribed and circumscribed
polygons, the perimeter of each of these polygons
approaches the circumference of the circle as its limit.

Theorem IX.

483. The area of a circle is equal to one half «^«
radius into its circumference.

Proof 1. Let a regular polygon of n sides be circum-
scribed about the circle.

The area oi this polygon is equal to half its apothegm into
its perimeter, and its apothegm is equal to the radius of the
circle.

Let the number of sides of the polygon be increased
indefinitely. Then

—

2. The area of the polygon will approach the area of the
circle as its limit.

3. The perimeter of the polygon will approach the circum-
ference of the circle as its hmit (§ 482).
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7t',

4. Therefore the limit of area (area of the circle) will be
equal to half the radius into the limit of the perimeter (cir-

cumference of the circle) (§ 478). Q.E.D.

Problem VII.

484. To find the ratio of the circumference of the
circle to its diameter.

Put C\ the circumference; Z>, the diameter, or 2r; A^ the
area of the circle.

By § 480 we have

A^nr" = \7tD\
But we have just proved that

A=^rC=\DG,
Therefore \DG = InD^;
or 0=ytD,

D
that is, the number it = 3.14159
the circumference of the circle to its diameter.

This number ic is of such fundamental importance in geometry that
mathematicians have devoted great attention to its calculation. The
preceding method, by which we have found it to six decimals, is the
easiest afforded by elementary geometry, but more rapid methods are
afforded by the higher mathematics. Dasb, a German omputer, car-
ried the calculation to 200 places of decimals. The followmg are the
first 36 figures of his result:*

3.141 692 653 689 793 238 462 643 383 279 602 884.
The result is here carried far beyond all the wants of mathematics.

Ten decimals are sufficient to give the circumference of the earth to the
fraction of an inch, and thirty decimals would give the circumference
of the whole visible imiverse to a quantity imperceptible with the most
powerful microscope.

EXERCISES.
1. Assuming the radius of a circle to be 5 metres, com-

pute, by the process of § 475, the area of the inscribed and
circumscribed regular hexagon, dodecagon, and polygon of
24 sides.

. is itself the ratio of

Crelle's Journal, Vol. 27, p. 198.
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Note. In computations like this, the student should not be satisfied
by working blindly with the formula), but should reason the results out
by the same process employed to reason out the formula}. In the present
case the computation of the area of the hexagon is easy; and that of the
figures of 12 and 24 sides can then be executed as in § 476.

2. If an equilateral triangle bo inscribed in a circle, show
that the perpendicular from any vertex upon the opposite
side is three fourths the diameter of the circle.

3. Using the preceding theorem, compute the length of
sides and the area of the equilateral triangle inscribed in the
circle whose radius is unity.

4. Show that tiie altitude of a circumscribed equilateral
triangle is three times the radius of the circle.

5. Without using any of the preceding theorems, show
that the radius pf the circle circumscribed about an equilateral
triangle is double the radius of the inscribed circle.

6. What conclusion thence follows respecting the relation
of the areas of the two circles? (§ 481.)

7. If the radius of a circle is r, what is the length of each
side of the circumscribed equilateral triangle ?

8. In a circle of radius r, find the sides of the inscribed
and circumscribed squares and their areas.

9. From the results of the preceding example find the
areas of the inscribed and circumscribed regular polygons of

8, 16, 33, and 64 sides, and thence the area of the circle, as
in §§ 475, 479.

10. A bought a piece of pasturage 30 yards X 40 yards in
B's field, and then tied his cow in the centre with a rope just
long enough to reach to the corners of his piece. Over how
much of B's part of the field could A's cow feed?

11. Four equal circles of radius a have their centres on
the corners of a square, and touch each other. What is the
radius of the circle in the centre touching each of them?

12. What must be the diameter of a circle in order that its

area may be 100 square feet? (Apply § 480.

)

13. In a regular polygon of n sides, what angle (in degrees)
floes a xine froni any vertex to the ccntro make with the sides

meeting at that vertex? (§ 160.)



MAXIMUM FIOUUES. 237

14. If from one vertex of a regular polygon of n sides
lines be drawn to all the other vertices, what angles will they
form with each other? (Apply § 235.)

16. What is the area of a circle circumscribed about a
square whose side is a?

16. If the apothegm of a regular hexagon is h, what is the
area of the ring included between its inscribed and circum-
scribed circles?

• » »

CHAPTER IV.

MAXIMUM AND MINIMUM FIGURES.

485. Def. A maximum
figure of a given class.

figure is the greatest

^
486. Def. A minimum figure is the least of a

given class.

Eemark. If a figure is entirely unrestricted, there can be
no such thing as a maximum or a minimum, because a figure,
if not restricted, can be made as great or as small as we please!

Hence a maximum or minimum figure means one subject
to certain conditions; for example, required to have a certain
perimeter, or to be included between certain limits, or to have
some relations among its parts which prevent it from becom-
ing indefinitely great or indefinitely small.

Having defined the conditions of the figure, we may
imagine ourselves to construct all possible figures fulfilling
these conditions. This collection of possible figures will con-
stitute a class. The greatest among them will be the maxi-
mum; the least, the minimum. *

48T. Def. Isoperimetrical figures are those which
have the same perimeter.

!„
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Theobem X.

488. If two sides of a triangle he given, its area
will he a maximum when these sides are at right
angles.

Proof. Let AB and AP be the two given sides of the
triangle.

At whatever angle we fix these |t^ p»
sides the area will be equal to y
AB X altitude, and so will be the rv;--,,
greatest when the altitude is j

^'\ /

greatest (§ 301). -^
-'-J-

If JP is perpendicular to ^i5,
AP will itself be the altitude. In any other position, as
AP' or AP", thp altitude A'P' or A"P" will be less than
^P(§101).

Therefore the triangle of greatest area is BAP, in whichAP L AB. Q.E.D.

489. Problem VIII. Having given
A straight line M,
Two points E and F on the same side of the line:
It is required to find the point P on the line M for which

the sum of the distances PE -^ PF shall le a minimum.
Solution. From one of the given points, as F, drop a

perpendicular upon the line M, and
produce it to the point F' at an
equal distance on the other side.

Because the line M is the per-
pendicular bisector of FF', every
point upon it will be equally dis-

tant from F and F* (§ 104).
Therefore, if P' be any point upon the line, we shall have

EP' -f P'P= EP' + P'i^.
The distance EP' + P'P' will be a minimum when P' is

in the straight line from E to F'. Therefore the required
point P is the point in which the straight line from Eio F'
intersects the given line.

Draw PF.
"
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Because the line M is the perpendicular bisector of the
line FF*, we haye

Angle MPF' = angle MPF;
also. Angle MPF' = opp. angle £PP;
whence Anglo BPP' = angle MPF.

The solution of the problem is therefore expressed in the
following lemma:

490. Lemma. The sum of the distancesfrom a movable
point on a straight line to two fixed points on the same side
of the line is a minimum when those distances make equal
angles with the straight line.

Scholium. If the line JIf is a section of a mirror, the
lines BP + PF are those which would be followed by a ray
of light emanating from a candle at F and reflected to F,
because it is a law of optics that the angles of incidence and
reflection, namely FPP' and FPM, are equal. Hence:

The course taken ly a ray of light emanating from one
point and reflected hy a plane surface to another point is the
shortest path from the one point to the reflector, and thence to
the other point.

Theorem XL
491. If the hase of a triangle and the sum of the

other two sides he given, the area will he a maximum
when these sides are equal.

Hypothesis. APB, an isosceles tri-

angle on the base AB; AP'B, another
triangle on the same base AB, in which

AP'-\-P'B = AP + PB.
Conclusion.

Area.AP'B < area^P^.
Proof. Through P draw PJ^IMJ?. ^

Because the areas of the triangles are
^

proportional to their altitudes, it is sufficient to show that the
vertex P' must fall below the parallel PF,

1. Because angle PAB =^angle PBA (§ 91), and PF ||

AB, the sides AP and PB make equal angles with PF.

i A
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P' cannot lie on FF, because then wo2. The vertex

should have
AF' H- F'B >AF-\. FB. (§ 490)

3. If possible, suppose the vertex F' to fall at any point
R above FE. The sides RA and RB will then include a
segment of the line FP between them.
From any point Q of this segment
draw QA and QB. Then
AR+RB>AQ + BQ. (§100)
AQ -{- QB > AF -{. FB, (§490)

Therefore

AR+RB> AF-\-FB.
Because R may be any point above ^

FF, the vertex F' cannot fall above the line FF.
4. Since it can fall neither above nor upon this lino, it

must fall below it, and we must have
Alt. of P' < alt. of F;

Area AF'B < area AFB. Q.E.D.whence

Theorem XII.

492. Among all isoperimetrical polygons of a
given number of sides, that ofmaximum area has all
its sides equal.

Froof, If possible, let ABODEFhe
the maximum polygon of given perimeter
and number of sides in which some two ^
adjacent sides, as AB and BC, are un-
equal. Join AOy and describe on ^Can
isosceles triangle AB'Oy such that *.

AB'-\.B'0=AB + Ba Then—
^

1. Because ABO is isosceles and
AB''i-B'C=AB-{-BO,

Area AB'C > area ABC.
2. Because the area ACBBFremamB unchanged.

Area AB'CDEF> area ABCDEF.
3. But the polygon AB'GDEF has the same perimeter

and number of sides as the polygon ABCDEF. Because the
xoi-iner has a gTeater area, ^q latter cannot be the polygon of
maximum area.

(§491)

II
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4. Therefore no polygon having two adjacent sides unequal
can be a polygon of maximum area; and because any polygon
with unequal sides must have some two adjacent sides imequal,

rid^S'TEtE^'''""
"' "'"'"""" ^'^^ "--^ ^»- ^ '^

Theorem XIII.

•493. 7)r a line of gimn length, which may hemrved at pleasure, is required to 7tave its extremities
upon an indefinite straight line, it will inclose amaximum area when hmt into a semicircle.

Hypothesis. MN, an indefinite straight line: ADB a
curve line wliieh may bo bent at

'

pleasure and have its extremities,
A and B, rest upon MN,

Conclusion. The inclosed area
ADBA cannot be a maximum
unless ^i)5 is a semicircle. -M" ^ —

g

Proof. If the line is not a semicircle, there must be some
point £ upon It such that the angle ADB shall not be a right
angle (§§ 238, 241). Join DA, DB.

^
The ^reaADBA between the curve and the straight line

IS then divided into three parts, which we may call AD DB
and the triangle ADB. ' '

Bend the curve at the point D, leaving the two branchesAD and BD unchanged, and
sliding the ends A and B along I^

the line MN, so that the curve
shall take up the form AD'B,
in which AD'B is a right angle. y^__jc .^

Because the triangles ADB ^ B
and AD'B have their sides AD and DB = AD' and D'B
and AD'B is a right angle,

'

Area AD'B > area ADB, (§ 488)
while the other two areas, AD and DB, remain unchanged.

Therefore the inclosed area ADBA can be increased with-
out ciianging the length of the curve, whence this area ia not
a maximum.

m

ff.M
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Honco tho curve cannot inclose a maximum area unless
AB subtends a right angle from every one of its points, and
it is then a semicircle. Q.E.D.

Theorem XIV.

494. Of all areas inclosed by equal perirrieters^
the circle is a maximum.

Hypothesis. ABCD, a closed line of given length.
Conclusion. ABCD cannot inclose

the maximum urea unless it is a circle.

Proof. Take any two points, A
and G, on the curve so as to divide it

into two equal parts. Join A G.

Now if ABQ and ADC are not a]

both semicircles, suppose the curve-
line 7l7?C bent into a semicircle with-
out changing its length, the foot A
remaining unchanged in position, and
let this semicircle be AB'C\ We shall then have

Area AB'C'A > area ABGA, (§ 493)
If ADC is not a semicircle, we may bend it into the semi-

circle AD'C such that

Area AD'C'A > area ADCA.
Because the two semicircles are equal in length, they are

halves of equal circles and the diameters are equal, so that the
two points C coincide.

Adding the two areas, we shall have

Area of circle AB'G'D'A > area ABGDA. •

Therefore the area ABCD wiU not be a maximum when it

is not a circle. Q.E.D.

Theorem XV.

495. A polygon of wMcTi all the sides are given
incloses a maximum area when it can he inscribed in
a circle.
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Hypothesis, if, a polygon inscribed in acirclo; N anv
other polygon, having its

> » J

sides equal in length, num-
ber, and arrangement with
those of the polygon if. E

Conclusion.
f

Area if> area JV. \

Proof. 1. Upon the
sides of N describe arcs of
circles equal to the arcs upon the sides of M. Then

Area M= area of circle - area of segments.
Area N = urea of distorted circle -^ area of segments.

2. Jiecausc each segment around a side of A^ is identically
equal to the segment around tlie corresponding side of M
the areas of the two sets of segments are equal.

'

3. Because the circumferences of the true circle aroundM and the distorted circle around A^are equal.
Area of circle > area of distorted circle. (8 494^

4. Compai-ing with (1),
^

Area if > area a: Q.E.D.
Corollary. It has been shown that the maximum polygon

of given perimeter and number of sides has equal sides.
if a polygon with all its sides equal be inscribed in a circle.

It must have its angles equal and bo regular (§ 447). Hence:

496. A polygon of wMcli the perimeter and number of
sides are given incloses the maximum area when it is regular.

Theorems for Exercise.

1. The inclosed area between two concentric circles is
equal to the area of a circle whose diameter is that chord of
the outer circle which is tangent to the inner one.

r^nlv;J^' T""'
^^ \'^''^' '' *^ *^^* ^* ^^y Circumscribed

polygon as its circumference to the perimeter of the polygon.
3. The area of the regular inscribed hexagon is a mean

proportiona between the areas of the inscribed and circum-
scribed equilateral triangles.

.f ft' "^r' ^ffP"^?^
1'^'^"'^^^ octagon is equal to the rectangle

of the sides of the inscribed and circumscribed squares.
11



BOOK VII.

OF LOCI AND CONIC SECTIONS,

CHAPTER I.

LINES AND CIRCLES AS LOCI.

497. To fix the position of a point on a plane, two inde-
pendent conditions are required.

Example. If a point is subject to the condition that it

must be two inches below one line and one inch to the right
of another perpendicular line, its position is completely
fixed.

But if the only condition is that it must be two inches
below a given horizontal line, its position is not fixed, but it

may move along a line two inches below the given one. This
last line is then called the locus of the point.

498. Def, The locus of a point is a line or group
of lines to which the point must be confined when
subject to some one condition.

Problem I.*

499. To find the locus of a point which must he
at a giten distancefrom a given straight line.

Let AB be the given

straight line, and call a the *'*"r ~ ^

given distance. :*

DrawMN and PQ parallel ^*""i—

;

^

to ABj at the distance a on ;*
^

either side of it.
p—*.-- Q

* It is recommended to the student that, before beginning to draw
the iocus in these problems, he mark a number of points each fulfilling

the required condition, and continue marking until he sees what the
locus will be.
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Every point on either of the lines MN and PQ is at the
given distance a from the given line AB (§ 129).

It is evident that no other point in the plane can be at
that distance a.

Therefore the two lines MN and PQ form the required
locus of the point at the distance a from AB.

600. Corollary. If the condition were th^t the point
must be at the distance a above the line AB, the locus would
be the line JfiV^ alone.

If the point must be at the distance a Mow th'^ line AB
the locus would be P^ alone.

'

Problem II.

501. Tofind the locus of thepoint which is equi-
distantfrom two given straight lines.

Let AB and CD be the two lines, and their point of
intersection.

Let each of the four angles at ^

0—namely, BOD, DOA, AOG,
COB—be bisected by the respective M
lines OJV, OQ, OM, OP.

Every point on the bisecting ^
lines will be equally distant from
the two given lines (§ 106), and every other point will be un-
equally distant.

Therefore these bisectors form the required locus. By
§ 85 they form a pair of straight lines at right angles to each
other.

Therefore the locus of the point which is equidistant from
two given straight lines is a pair of lines at right angles to
each other, bisecting the angles formed by the given lines.

Scholium. There are two ways of thinking of the rela-
tion of a point to its locus which both amount to the same
thing.

1. That a row of points, as numerous and close as we
choose, lie on the locus. Every one of these points will then
fulfill the given condition.

i. rfi

''i bl'
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2. That the point slides along the locus. The point wiU
then fulfill the condition so long as it does not leave the locus.

Examples. 1. If we make any number of points on the

lines MN and PQ, every one of these points will be equally

distant from the lines AB and CD.

2. If we slide a point along the lines MN and PQy it will

always be as far from the line AB as from the line CD,

Pjjoblem III.

502. Tofind the locus of the point subject to the

condition that it shall he equally distant from two
given points. tp

Let A and B be the given
j

points. Join them by a straight
j

lino, and bisect this line at OA, jO

by another line PO^ at right
j

angles to it. \

Then every point on PQ • !

will be equally distant from the

two points A and B, and every other point will be unequally

distant (§ 104).

Therefore P^ is the locus of the point which is equally

distant from A and B.

Therefore the locus of a point equally distant from two
fixed points is the perpendicular bisector of the straight line

joining the points.

Peoblem IV

503. To find the locus of the point which is at a
given distancefrom a given point.

Let be the given point, and a the given distance.

Around as a centre describe a circle -^^^'"---^

with the radius a. / v

Every point on this circle will be at the /

distance a from 0, and every point either
(

inside or outside the circle will be at a less ^
or greater distance from (§ 206).

Therefore every point on the circle ful-

/
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fills the required condition of being at the distance a from
and no other point does.

'

Therefore the locus of the point at the distance a from the
point IS a circle of which is the centre and a the radius.

Problem V.
504. To find the locus of the point from which a

given line suhtmds a right angle.

Let ^ J5 be the given line.

On ^i? as a diameter describe the circle APB.
If P be any point on this circle, the angle APB will be a

right angle (§ 238). Prom any point
inside or outside of the circle the angle
will be greater or less than a right
angle (§2*2).

Therefore every point on the circle ^
fulfills the required condition, and no \ /
other point does. \^ /

Therefore the locus of the point '*'*
*'''

from which the line AB subtends a right angle is the circle
described around ^i? as a diameter.

We may also say : If the point P slides around the circle
APBy the angle APB will always
be a right angle.

Corollary 1. This result teaches
us a curious method by which a
circle maybe described. Drive two
pins A and B into the surface rep-
resenting the plane. Take a common square, and fasten a
pencil-pomt into its interior angle P. Then slide the square
around on the two pins, and the pencil-point
will describe a circle. The pins will be at
the extremities of a diameter of the circle.

505. Cor. 2. It may be shown in the
same way ^that the locus of all the points
from which a given line subtends a given
angle different from a right angle is formed
of two arcs of circles. (Compare §230.)
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Problem VI.

506. To find the locus of the point svbject to the
condition that its distances from two given points
shall have a given ratio to each other.

Let A and B be the two given points, and let the given
ratio be that of m : w.

Let P be any position of p
the required point. Join AB,
PA, and PB. .^ , , ^

Bisect the angle ^P^ in- Q B ^

ternally by the line PQ, cutting AB internally at Q, and
bisect the adjacent exterior angle by PR, cutting AB ex-

ternally in R.

Then, by the given condition,

PA : PB ::m :n.
Therefore

AQ :BQ ::m : n. (§405)
AR : BR '.'.mm. (§ 406)

Because of the equality of these ratios, the line ABi& cut
hai monically in the points Q and R (§ 407).

Because the condition requires that the lines PA and PB
constantly have this same ratio m : n, it follows that the

bisectors in question constantly pass through the same points

Q and R, wherever the point P may move.
But these bisectors are at right angles to each other (§ 82).

Therefore the angle QPR is a right angle, and the locus

of P is the same as the locus of the point from which the line

QR subtends a right angle.

Therefore the required locus is the circle described around
QR as a diameter, the points Q and R being fixed by the
c nditions

AQ : BQ ::m : n.

AR : BR :: m : n.

Problem VII.

507. To find the locus of the point from which
two adjacent segments of the same straight line sub-

tend equal angles.
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Let AB and BO be the two adjacent segments, and P any
position of the point.

By the condition we must
have

Angle APB = angle BFG.
Therefore PB is the bisector

of the angle APC, and in con-
sequence the lines PA and PC fulfill the condition

BA:PC::AB:Ba
Because the points A, B, and C are fixed, the ratio ABiBC

is a constant. Therefore the ratio PA : PC is also a con-
stant, and the locus is that of the point whose distances from
A and O have a given ratio, AB : BO, to each other. This
locus is a circle

( § 50G).

Note. The locus may be found independently of Prob. VI. by
drawing PD at right angles to PB, and then reasoning as in Prob. VI.

• »

CHAPTER II.

LIMITS OF CERTAIN FIGURES.

Theorem I.

508. If the vertex of an isosceles triangle be
carried away from the base indefinitely, each angle
at the base will approach a right angle as its limit.

Hypothesis, ABO, an isosceles triangle in which CA= OB;
OD, the perpendicular from the vertex O
upon the base, bisecting the latter. f

Oonclusion. If the vertex O be carried
out indefinitely along the line DO, produced
past /, each of the angles DBO and DAO
will approach a right angle as their limit.

Proof, Through B draw a line BI
parallel to DO, and therefore perpendicular
4.^ 13 71tU JJU.

1. If BI is not the limit of BO, let j^
some other line, BI', be that limit.

.««
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2. Because BI' is not parallel to DG, it will meet it if suf-
ficiently produced (§ 45, Ax. 11). Call the point of meeting y.

3. By carrying the vertex G beyond y,the angle DBG
will become greater than DBI\

4. Because this is true howeyer small the angle I'BI^ the
angle DBG has no limit less than the right angle DBL

6. DBG can never become equal to a right angle, because
then the triangle GDB would have the angles D and B both
right angles.

6. Therefore the right angle DBI is the limit of the angle
DBGy as the vertex Cgoes out indefinitely along the lineZ>»/.

In the same way it may be shown that the limit DAG is

a right angle. Q.E.D.

509. Gorollaryl. As the vertex C goes out indefinitely,
each of the sidep BG and -4 C' will approach the position of par-
allelism to the perpendicular GD as their limit, and will there-
fore approach indefinitely near to parallelism with each other.

Gor, 2. The same thing being supposed, because the
angle DGB and DGA are each supplements of GAD and
GBDy and these angles approach indefinitely near to right
angles, we conclude:

510. The angle at the vertex approaches zero as its limit.

Theorem II.

511. IftJie vertex of a right-angled triangle he
lengthened out indefinitely, the adjacent side will
approach the length of the hypothenuse as its limit.

Hypothesis. ABG, Vi right-angled triangle of .

which the base AB is fixed, but of which the (]

vertex G may be carried out indefinitely along the
line A G produced.

Gonclusion. However great the distance AB,
the vertex G m&j be carried out to such a dii^tance
that the difference GB - GA shall be le^s than
any length we can assign.

Remabk. We mav fixnrpsH thn pnni-»liiqi/ip tr. fv,?«

form: How many miles soever may be the base A7i, we
can cany the vertex C so far out that the exco:. J CB
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over OA shall be less than a foot, less than an inch, less than the
hundredth of an inch, and so on indefinitely.

Proof, From A draw AD ± BC. Then—
1. Because CDA and CAB are right angles, CA is greater

than CD but less than CB.
2. The triangles BDA and ^^Care similar (§ 400).
3. As the vertex C moves out indefinitely, the ratio

BA: BC will approach zero as its limit. Therefore the ratio
BD : BA will also approach zero as its limit; that is, AB
being constant, the point D will approach B as its limit.

4. Then CA, being between CD and CB, will approach
CB as its limit. Q.E.D.

[
-

Theorem III.

512, If the radius of a circle increase indefinite-
ly., an arc of the circle of gjiisen lengtJi will approach
a straight line as its limit.

Proof, 1. Let RT be the

length of the given arc.

2. At R erect the line RO
perpendicular to RT, and join x
OT.

3. From as a centre describe an arc equal to 72r and
passing through R.

4. Let the centre move out indefinitely along the line
RO produced, the circle still passing through R, so that OR
is its radius.

5. If K be the point in which the circle intersects the
hue OT, we sliall have OK= OR. Therefore, as moves out
mdefinitely, the point K m\\ approach T^as its limit (§ 511),
and the arc of the circle will approach the straight line RT
as its limit. Q.E.D.

Theorem IV.

£^13. Tf P.n.n7}. n-f hnn 1/inne>o nnJinAh /JA-4P^^ J.-. «

slant quantUy, are extended indefinitely, their ratio
will approach unity as its limit.

m

if f

III
¥

\ m\
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Proof. Call A the lesser line; />, the constant difference

of the two lines; A -\-D, the greater line; r, the ratio of

-4 + /> to A ; a, the quantity by which r exceeds unity.

Then A + D-rA - (I -^ a)A = A-^ aA,
Therefore D = aA,
or D : A :: a : 1,

Now, we can increase A so that the ratio D : A shall be
less than any quantity we may assign. Therefore a may be
made less than any assignable quantity, whence r may differ

from unity by less than any such quantity; that is, the limit

ofrisl. Q.E.D.

> > «

CHAPTER III.

THE €LUPSE.

614. Def. An ellipse is the locus of the point,

the sum of whose distances from two fixed points is a
constant. Each of the two fixed points is called a
focus of the ellipse.

515, To describe an ellipse. Let B and Fhe the foci.

Take a thread of which the

length shall be equal to the sum of

the distances of each point ">f the

curve from the foci, which sum is

supposed to be given, and fasten

one end in each focus.

Stretch the thread tight by
pressing a pencil-point against it, and move the latter round,

keeping it pressed against the thread. The pencil-point will

describe an ellipse.

Proof. Let P be any point of the curve described by the

pencil-point. The sum of the distances of this point from

6UU ioui IB x-jd -j- s-jr, Dui x'ji, -f-
I'^f makes up the whole

length of the thread which remains constant. Therefore the



THE ELLIP8EL 263
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sum of the distances of P from the foci is equal to this
constant, whence P is by definition a point of the ellipse.

616. Axes of the ellipse. In drawing the ellipse there
will be two points, A and /?, where the two parts of the thread
will overlap each other. The line AB is called the major
azifl of the ellipse.

Let us put I = the length of the thread. Then
AB-{-AF=l;l /^
£!B-\-FB = l\ ^^^

Adding these equations, and noting thaiAF= AB 4-EF
and EB-EF-\- FB, we have

%AE-\-'iEF-^%FB = 'U,

Dividing this equation by 3,

AE-^EF'\-FB=il,
^"^ AB = l Hence:

61 7. The major axis of the ellipse is equal to the sum of
the distances of each point of the ellipse from the foci.

The same equations (a) also give

AE-\-AF=EB + FB,
or 2AE-{-EF=:EF-i-.2FB;
whence AE=FB,

Hence the foci are equally distant from the ends of the
major axis.

If be the middle point of the major axis, the distance
OA is called the semi-major axis, and is represented by the
letter a. Then 2a is the major axis; whence

2a = I, the length of the string.

618. Minor axis. In drawing the ellipse there will be
two points, G and J9, equidistant

from the two foci. Join these
points by the line CD, intersecting

the major axis in 0. Af
Because, in the quadrilateral

ECFD, CE = ED = DF=: FC, this

quadrilateral is a rhombus, and the
diagonals J^and CD bisect each other at right angles (§173).

Hence CD is the perpendicular bisector of the major axis
AB, CD is called the minor axis of the ellipse.
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519. Dtf. The minor axis of the ellipse is that

segment of the perpendicular bisector of the major
axis which is terminated by the curve. , v

Also:

The point is called the centre of ^he ellipse.

The major and minor axes aro callea the principal

axes of the ellipse.

The distance of the centra ^ r^om each of the foci

is called the linear eccentricity of the ellipse.

The ratio of the linear eccentricity to the semi-

major axis is called the eccentricity of the ellipse.

That is,

Eccentricity = OE : OA =—

.

520, It is common to use the notation:

by the semi-minor axis of the

ellipse = 00.

c, its linear eccentricity.

e, the eccentricity of the elhpse. A
The relation between the two

eccentricities is then expressed by
the equations

e = — (because c = OJS).

c = ae.

, 621. To find the length of the minor axis of an ellipse.

Because BOO is a right-angled triangle, and BO = a,

b' = a'~ c' =a' (1 - e').

Whence, by extracting the square root,

b=a Vr^^,
which enables us to determine the length of the minor axis

when the major axis and the eccentricity are known.
Note. In the older geometry the length OB, which we have called

the linear eccentricity, was called the "eccentricity" simply. But the
i^-r^iCi ii3 use lliC 'orvi eeeestiieitj tu uumguuic mc ratio oi tiuo lengta
OE to tlie major axis, according to the above definition.
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an ellipse is any straight
Tangent

522. D^, A chord of
line terminated by two
points of the ellipse.

523. Def, A diameter
of an ellipse is any chord
passing through the cen-
tre.

R9>± A *«_ . i
Diameter. Chord.

Theoeem v.

.^^^'9^^^!/ point without the ellipse the svrn

ellipse.

Conclusions. I. PE -\- PF > 2a.
11. QE+QF< 2a.

Proof. I. Let T be the point in
which the line BP intersects the
ellipse. Join TF. Then—

^P + PF= FT 4- TP 4- PF
TP-^PF>TF

EP -\-PF> FT-^TF.
ET+TF^U.

(Def. of ellipse.)

1.

^erefore

2.

Therefore

TT I, .
^P + PP>2a. Q.E.D.

J^72 T^ ' ^^ ^^*^^ '^ ^«^*« *^e ellipse in P. Join^•ff. Then we prove, as in (I.),
^ *^°^^

EQ + QF<FR-\.RF,
ER 4- ;?;?»— o«

Whence "
'

"'^' ~ '^"•

EQ+QF<2a. Q.E.D.

E(. r t

H,
•!l.

ffl
f'fl

<-!

11
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Theorem VI.

526. If through any point of an ellipse we d/raw

a line making equal angles with the lines froui that

point to thefoci^ that line will he a tangent^ and the

only tangent^ to the ellipse at that point.

Hypothesis, E, Fj foci of an ellipse; P, any point of the

ellipse; TPF, a straight line

through P such that

Angle TPE = angle VPF,
Conclusion. TP V will be a

tangent to the ellipse, and every

other line passing through P will

intersect the ellipse.

Proof, 1. Because P is a point of the ellipse,

BP-{-PF=2a,
2. Because angle TPB = angle VPF, the sum of the

distances from P to the foci, that is, FP -{- PF, or 2a, is

less than the sum of the distances from any other point of

TFto the foci (§490).

3. Because the sum of the distances of every other point

of TFfrom the foci is greater than 2a, every such other point

is without the ellipse (§ 625).

4. Therefore the line TV touches the ellipse at P without

intersecting it, and is therefore a tangent. Q.E.D.

6. If any other line than TP V passes through P, it can-

not make equal angles at P with the lines PF and PF.
Therefore there will be some point of the line for which the

sum of the distances from F and F will be less than FP +
PF{^ 490); that is, the line will pass inside of the ellipse and
cannot be a tangent. Q.E.D.

537. Bef. Two points so situated that an in-

definite line is the perpendicular bisector of the line

joining them are said to be opposite points with
respect to that indefinite line.

of the line joining two opposite points with respect to it.
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(§ 104)

(§ 102)

(§67)

Theorem VII.
528. Tlie line from any focus to the opposite

point of the other focus, with respect to a tangent
passes through the point of tangency,

'

Hypothesis. VT, a tangent to an ellipse having E and F
as foci ; F", the opposite point
of F with respect to the tangent; ^-

P, the point in which the lino

iS'iF* intersects VT.
Conclusion. P is the point of

tangency.

Proof, 1. Because Fr is the
perpendicular bisector of FF'y

PF = PF.
Angle TPF = angle TPF'

« t> .

= angle ^Pr. ,^ „.,
2. Because the angles FPT and FPVaro equal, P is the

point at which the tangent touches the ellipse (§526). Q.E.D.
Corollary. Because P is a point of the ellipse, we have

^P + PP=2a,
and because PP' = PF, we have also

FF' = 2a.
Therefore the opposite point of any one focus is at the dis-
tance 2a from the other focus, and we conclude:

529. The locus of the opposite point of one focus, with
respect to a moving tangent, is a circle around the other focus
with the radius 2a.

In other words, if a tangent roll round on an eHipse, the
opposite point of either focus will describe a circle round the
other focus as a centre with the radius 2a.

530. This theorem and corollary afford an elegant
method of drawing any number of tangents to an ellipse with-
out drawing the ellipse itself. We need only to know the
positions of the foci and the length of the major axis.

Construction. Let F and F be the given foci.

Around either focus, as F, with a radius equal to the

11
iffl

1 ^IH*l£^HUHH
T' 1 ^^^1

: il
' WM

1 i SBKBU
1

^^^H
?

*

. !
j||^B

WM

/d^J^
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major axis we describe a circle. This circle will then be the

locus of all the opposite points of F
with respect to the tangents.

We draw any line from F to the

circle, and bisect this line at right

angles by another line.

The bisecting line will be a tan-

gent to the ellipse.

By drawing a number of such
lines any number of tangents may be
drawn.

Theorems for Exercise.

I. Each principal axis of an ellipse is an axis of symmetry.
II. The ellipse is symmetrical with respect to its centre as

a centre of symmetry.

III. Every diameter is bisected at the centre.

rV. The tangents at the two ends of a diameter are parallel.

•

CHAPTER IV.

THE HYPERBOLA.

631. Def, An hyperbola is the locus of the point
the difference of whose distances from two fbced
points is a constant.

Each of the two fixed points is called a focus of the
hyperbola.

63S. Any number of

points of an hyperbola may be
found by the intersection of

two circular arcs, thus:

Let 2a be the constant dif-

ference between the distances

of a point of the curye from
the foci. From either focus as

^

a centre, with an arbitrary radius r describe an arc of a circle.
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From the other focus, with the radius r + 2a, describe an
arc intersecting the other arc.

The point of intersection will be at the distance r from
one focus and r + 2a from the other; the difference of those
distances is 2a, whence the point lies on the hyperbola.

633. Corollary. Since there is no limit to the radius r,
the hyperbola extends out to infinity.

534. Major axis of the hyperbola. If the constant 2a
were greater than the distance between the foci F and F',
there would be no point the difference of whose distances
from i^and F' could be as great as 2a, and so there would be
no hyperbola. Therefore 2a must be less than FF'.

Again, if we pass along the line FF' from F to F\ the
difference of the distances will be FF' when we start, it Will
diminish to zero at the middle point of the line, and will then
increase to FF' at the end F'. Hence there must be two
points on the line for which this difference is 2rt; that is, two
points of the hyperbola. Let A and B be these points. We
must then have, by the conditions of the locus,

BF- BF' = 2a; that is, FA + AB - BF' = 2a.
AF' -AF= 2a; that is, ^ FA + AB -\^ BF' = 2a.
The sum of these equations divided by 2 gives

m, .
AB = 2a.

Their difference gives

FA = BF'.
From these two equations we readily see that the curve

cuts the line FF' at the distance a on each side of the middle
point of that hue.

535. Def. The distance between the points at
which the hyperbola cuts the line joining its foci is
called the major axis of the hyperbola.

From what has been said we see that the major axis is
equal to the common difference of the di&lances from each
point of the curve to the foci.

Since a point of the hyperbola may be either nearer to F
than to F' by 2a, or nearer to F' than to F, the hyperbola
consists of two branches.

Also, if we draw the perpendicular bisector of FF' through S tl
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0, every point of this bisector being equally distant from F
and F'y no point of it can be a point of the hyperbola: Hcljo

536. The two branches of the hyperlola are completely
separated.

Remark 1. Most of the properties of the ellipse and
hyperbola correspond to each other in that where one has
sums of lines, the other has differences; where an angle is

formed in one, the adjacent angle will be formed in the other,
etc. The student should compare the corresponding theorems.

Remark 2. Since each branch of the hyperbola extends
out tc infinity, it may be considered as dividing the plane into
three distinct parts, one within each branch and one between
the branches. The two first portions may be considered as
belonging to one class, and as lying within the hyperbola—
i.e,y within one of its branches—and the last as lying without
the hyperbola.

Theorem VIII.

olH. From every point without the hyperbola the
difference of the distancesfrom the foci is less than
the major axis.

From every point within the hyperbola that differ-
ence is g, eater than the major axis.

Hypothesis. E, F, foci of an
hyperbola; P, any point without
the hyperbola; Q, any point
within the hyperbola.

Conclusions.

I. PF-PF<2a.
II. QE-QF> 2a.

Proof. I. Let N be the point
in which the line PF intersects

tlie curve, and call ^ the amount by which PF exceeds PF
Then A = PE-PF=PE- PN- NF,
Because N is on the curve,

9,/» —• JP.W— ATJST

Because PE is a straight line,

EN 4- PN > PE', whence PE - PN< EN.

'
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Therefore

PE-^PN-NF< MN- NF, or J < "Ja. Q.E.D.

II. Let M be the point in which QE first intersects the
curve, and call A the excess of QE over QF Then

A = QE~QF,
Because if is on the curve,

U=zME-MF
=:QE- {MQ+ MF),

Because ^i^is a straight line,

MQ-\-MF>QF.
Therefore to form A we take from QE a less line than we do
to form 2a, whence

A > 2a. Q.E.D.

538. Corollary. Since every point on the plane must be
either within the hyperbola, without it, or upon it, we con-
clude that, conversely:

Every point the difference of wliose distancesfrom the foci
is less than %a lies without the hyperbola.

Every point the difference of whose distancesfrom thefoci
is greater than 2a lies within the hyperbola,

539. Problem. Having a
straight o^ne passing between the

foci, it is required to find that

point upon it at which the differ-

ence of the distances from thefoci
shall be the greatest.

Solution. Let E and F be the
foci; MN, the line; F, the focus
nearest the line.

Let F' be the opposite point
of F relatively to the line, and
let EF' produced intersect the line MN on P.

Let Q be any point at pleasure on tne line,

difference of the distances. Then-
Call A the

whence

QF= QF\
A= QE- QF=QE- QF'

i I

1 lit
1 1 !
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2. So long as g is at any point of the line except P, QEF
will form a triangle, and we shall have

A^qE^qF' <EF\
But when q coincides with P, we have

A-PE- PF' = EF\
Because A is equal to EF' at P, ard less than EF* at every
other point of the Hne, we conclude that P is the point of
maximum difference of distance.

Because Pand F' are opposite points, we have *

Angle EPq = angle FPq.
Therefore the point of maximum difference of distances is

thatfrom which lines to the foci make equal angles with the
line.

At this point the line will be the bisector of the angle EPF.

Theorem IX.

540. Iffrmn any point of an hyperhoU lines he
drawn to the foci, the bisector of the angle between
those lines will be a tangent to the hyperbola.

Hypothesis. E, F, foci of an hyperbola; P, any point of
the curve; PT, the bisector of
the angle EPF.

Conclusion. PT" is a tangent
to the hyperbola at the point P.

Proof. 1. Pecause Pr bisects

the angle EPT, the difference of
distances from the foci is less at
every other point of PTthan it is

at P (§ 539).

2. Because P is on the curve, the difference is there equal
to 2a. Hence it is less than 2« at every other point of the line.

3. Therefore every other point of PT except P is without
the eurve, so that PT touches the curve a,t P (§ 538). Q.E.D.

^ Scholium. Comparing this theorem with § 526, we see
t-u»t Willie m the hyperbola the tangent bisects ^he interior
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angle of the triangle £JFF, in the ellipse it bisects the ex-
terior adjacent angle. Therefore if through the poi>^t P
both an ellipse and an hyperbola be passed, having L and
/"as the foci, the tangents to the two curves at P will be per-
pendicular to each other (§ 82)."

541. Def. The ellipse and hyperbola are called
the conio sections, or simply oonics.

543. Def. Confooal conies are those which have
the same foci.

543. Def. A family of confocal conies means an
indefinite number of conies having the same foci.

544. Scholium. Two curves which intersect are said to
cut each other at an angle equal to the angle between their
tangents at the point of intersection.

The reason of this appellation is that a curve at any point
is considered to have the same direction as its tangent at that
point.

; If

I '

Theoeem X.

545. In a family of confocal ellipses and hyper-
holas, all the ellipses cut all the hyperbolas at right
angles.

Proof. Let P be any point of intersection of an ellipse

with a confocal hyperbola, and
PK PF the lines from P to

tiic foci.

Because P is a point of the

ellipise, the tangent to the ellipse

at P bisects the exterior angle

at P.

Because P is a point of the

ie laiijgpnii co ine

hyprrbola at P bisects the interior angle EPF,

1 1
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Therefore these tangents are perpendicular to each other

(§83), and the curves inter-

sect at right angles (§ 644).

546. Asymptotes of the

hyperlola. Because the tan-

gent to the hyperbola at the

point P bisects the angle

FPE, it divides the line

EF between the foci at the

point Q into two such seg-

ments that

Now suppose the point P to move out upon the hyperbola
to infinity, j'he ratio EP : FP will then approach unity as
its limit, because the difference between its terms is the finite

quantity 2«, while each term may increase to infinity (§ 613).
Therefore the point of intersection Q approaches the

centre as its limit; and, using the convenient language of
infinity, we may say:

547. A tangent to the hyperbola at infinity passes
through the centre of the hyperbola.

548. Be/. The tangents at infinity are called
asymptotes of the hyperbola.

549. 2h construct the asymptotes. From E and F let
the lines ER and FS, parallel to the asymptotes, be drawn.

As the point P moves along the hyperbola to infinity,
EP and FP will approach EP and FS as their limits (§ 508).

On the lines EE and EP take segments EM and EM^
each equal to 2a; then, since PE-PF- 2a, we have PM'=
PF, so that the triangle M'PF'is, isosceles and angle M' =
angle F. Therefore, as P recedes to infinity, the point M'
approaches iJf as its limit, the angles M' and i^both approach
right angles as their limit (§ 508). The triangle EMF is

therefore right-angled at M. Hence the direction of the
asymptote is found thus:

On the line EF as a base erect a right-angled triangle
EMF, of which the side ^Jf shall be equal to 2a.
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The asymptote will be the line through the centre of the
hyperbola parallel to the side EM.

To consfruct the required triangle we notice that, since
EMFis a right angle, the vertex M lies on the circle of which
-fi^^is the diameter. Hence the construe-, , »,

tion: ^ ^^

On EF as a diameter describe a circle. .

From either ^ or ^as a centre, with a g^
radius 2a describe arcs of a circle cutting
the first circle in the points if and M\

3om EMfm^ EM\ ^ "IT^M' \
Through the middle point of the circle drawlines paral-

lel to ^Jf and J^if'.
^

These lines will be asymptotes of the hyperbola of which E
and i^are the foci, and 2a the major axis.

550. It is easy to prove that if we draw the arcs of
circles around the centre F,
the chords then found will be
parallel to EM and EM', and
will therefore lead to the same
pair of asymptotes.

We therefore conclude that
the asymptotes of the i%y;pp,rhola

consist of a pair of straight

lines, intersecting each other in
the centre of thefigure*
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CHAPTER V.

THE PARABOLA.

661. Definition. A parabola is the locus of a
point equidistant from a fixed
point and a straight line. r

553. Def. The fixed point is

called the focus of the parabola.

553. Def. The straight line
^

is called the directrix of the
parabola.

554. Def. A straight line
through the focus, and perpen- ,^, distances PE and PF ar.
dicular to the directrix, is called ®^"*^ ^^ whatever point of the

thp a«^i9 of fho -noTKiKnlQ
curve P may be placed. AF iutiie axis 01 me paraOOla. the axis of the parabola.

Remark. Since there is no limit to the possible distance
of a point from both the focus and directrix, every parabola
extends out to infinity.

Theoeem XI.

555. I. Mery point without the parabola is
nearer to the directrix than to the
focus.

11. Every point within the para-
hola is nearer to the focus than to
the directrix.

Proof I. Let P be a point without the
parabola. The line from this point to the
focus must then intersect the curve. Let S'

Q be the point of intersection. Drop the
perpendiculai's QS upon the directrix and
^2^ upon Pi?. Then—

R

S
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Because Q is on the parabola,

Adding PQ to these equal lines

267

also.

Because QTP

==m^PQ;
PR=:TRJ^TP,

is right-angled at T,
PQ > TP,

Therefore pp> pj^ Q E D
Proof II. Let P' be a point within'the parabola. FromP drop a perpendicular P'S' upon the directrix. Let oZthe point in which it intersects the parabola Jofn FO'Then we prove, as in the case of the ellipse and hypeZlJ^

'

8'Q' = Q'F,

S'P'=:Q'P^Q'P\
Q'P+Q'P^>P'Fr

whence s'P' -> p'p Q E D
Corollary Since every point in the piane must be either

c^4tr '
''' " "^*'^^* ^' ^^ concludVtl'a::

Theorem XII.

focus and the perpendicular
\upon the directrix is a tangent p

^0 theparabola, ^

hypothesis. P, any point of a^
anT^K^l^^^.^^^^^^^^ focusand HW the directrix; PP thA
perpendicular upon th^ dirttri.

^P;i=t.S!""2l\/'-'^"^-Sle

the

Oonclusi

parabola

i-s-v -I.- J.

'on. PViaa
at P.

tangent to

j;

!

f\

m
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Proof, Let V be any point of the line MP V. Join VF,
VR, and from Fdrop the perpendicular VW on the direc-

trix. Then

—

1. In the triangles RP V and FP F,

Angle RPV= angle FP V (hyp.).

PR = PF {P being on the curve).

P V common.

Therefore the triangles are identically equal, and

VR = VF.

2. Because FW is a perpendicular upon the directrix,

VW < VR;
whence VW < VF,
and the point F is therefore without the parabola (§ 556, II.).

3. Because F may be any point of the line MP V except

P, every point of this line except P is without the parabola,

and the line touches the parabola at P without intersecting

it. Q.E.D.

558. Scholium. The property of the ellipse and parab-

ola expressed in this theorem and in

Theorem VI., relating to the ellipse, ^^^
leads to the use of these curves in reflec-

tors designed to bring rays of light to

a focus. Since the curve and the tan- t':^''"
—

gent have the same direction at the \'?\f?t

point of tangency, rays of light are re- Vf^X""''"

—

fleeted by the curve as they would be by \:V\
the tangent at the point of reflection. ^\„.^\

Because the angles of incidence and ^v?v
reflection are equal, it follows that if

parallel rays of light, perpendicular to the directrix and
therefore parallel to the axis, fall upon a parabolic reflector,

they will all be reflected toward the focus.

Conversely, if a light be placed in the focus of a parabolic

reflector, all the rays from the focus _
will be parallel after reflection. yf^^^^Z-^'' '^

In the case of the ellipse, thecorre- / /^'-/J'-—'"^""--/.M
spending property leads to all the rays ri%rvy-"-~^J»V*rJ55'/«

which emanate from one focus being ^« "^

reflected to the other focus.

I

i

a

f

a

Si

s:

u

t]
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oin VF,
le direc-

ve).

brix,

»56, II.).

V except

>arabola,

irsecting

1 parab-

rix and

eflector,

•arabolic

"SI

\

Relations of the Ellipse, Parabola, and
Hyperbola.

Theorem XIII.
559. The parabola may be regarded as an ellipse

of which the major axis is infinite, '

Proof, Let E and F be the foci of an ellipse, and A one
eud of its major axis.

On the line FA produced take «,AM=EA. -PJf will then be equal
to the major axis (§§ 616, 617).

From the farther focus -Pas a
centre, with a radius FM describe
an arc of a circle.

Let P be any point of the
ellipse. Join EP, FP, and pro-
duce FP until it meets the circle in R. Then-

1. Because FP -}- EP = major axis = FJi, we have
PE = PR.

Therefore each point of the ellipse is equally distant from the
focus E and from the arc MR,

2. Now let the focus F recede to infinity along thA line^^ produced.

3. If MT be the perpendicular to MA at M, the arc MR
will approach MTaa its limit (§ 613); and PR will approach
parallelism to MF, and therefore perpendicularity to MT as
its limit (§ 509). HencQ each point P of the " ellipse will
approach a position in which it is equally distant from the
focus E and the line MT That is, it will approach a parab-
ola having E as its focus and MT as its directrix. Eence:

560. If one focus of an ellipse recedes to infinity, the
ellipse will become a parabola about the other focus, Q.E.D.

561. Passagefrom the ellipse to the hyperbola. Starting
as m the last section, let us place the
second focus, F, on the opposite F"--

side of the point Jf from E; and let
us, as before, draw an arc around
the centre i^with a radius FM,

Let FR be any radius of this arc;

M A
-.B

Bi I
:

Hi
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and produce FR to a point P, such that PR = PE, We
shall then haye PF— PE= FR.

Therefore P will lie upon an hyperbola of which E and F
are the foci, and FM= FR, the major axis (§ 635).

Then, supposing F to recede to infinity in the direction

MF, we show, as before, that P will approach a parabola of

which E is the focus, and a perpendicular to FM through M
the directrix.

Scholium. The ellipse, parabola, and hyperbola therefore all

belong to one class of curves. It is shown in solid geometry
that they may all be formed by the intersection of a cone with
a plane, from which property is derived the term conic section.

Tangents as Limits of Secants.

562. Becafise one straight line, and no more, may be

drawn between two points, two points determine a straight

line passing through them.

If the two points lie on a curve, the straight line passing

through them is a secant of the curve.

663. Def. The tangent to a cnrve is the line

which the secant approaches, as its limit, when the
two points which determine the secant come indefi-

nitely near together.

This is a more general definition of a tangent than that heretofore
given for the circle, and applied to the ellipse. By means of it the
fundamental properties of tangents to the circle and conic sections may
be established, as follows:

564. The Circle. Let be the

centre of a circle, and OA, OB, two b|
of its radii.

Through A and B draw a secant. a1
Then in the isosceles triangle OAB
we have

Angle A -f angle B -\- angle = ISO"*,

or 2 angle A -\- angle = 180°;

whence Angle A = angle P =: 90° ~ ^ angle 0.

Now let the T>oint B a'o'nrQaGh indefiniti^l'*'' ji^**"** ^/^ -4-
-rx' --v ««V'lVfl. VT^ .£XB
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P Q

The angle will then approach zero as its limit.
Therefore the angle A will approach 90° as its limit, and,

the tangent being the limit toward which the line^5 ap'-
proaches, must be perpendiculai- to OA.

We thus arrive at the property of the tangent demonstrated
in § 226.

565. llie Ellipse. Let E and F be the foci of an ellipse
and P and ^ two points .upon it.

'

Through P and Q pass a secant.
Join PE, PF, QE, QF.

Now let the point Q approach
indefinitely near to P, and, as the E
approach becomes nearer, let us
look at P and Q through a microscope of which the magnify-
ing power may increase indefinitely.

Then at the limit, because the angles at E and F become
zero, EP and EQ, as also FP
and FQ, will seem parallel in
the microscope.

From P drop the perpen-
dicular PR upon EQ, and from
Q the perpendicular QS upon
FP, Then—

1. EQ-EP=zRQ.
FP-FQ = 8P,

From the fundamental condition of the ellipse,

EQ-\-FQ^EP-\-FP,
we haye EQ-EP=zFP-^ FQ,
whence RQ = SP.

2. Because the right-angled trianglesPRQ and P8Q have
Hypothenuse PQ common.
Side QR = side P8,

they are identically equal, and
Angle PQR = angle QPS,

But PQR is the angle which the tangent makes with the lineEQ to the focus at E, and QP8\s the angle with PP. Be-
cause at the limit EP \\ EQ and PP|| QF, the tangent PQ
iuakes equal angles with the lines to the foci.

(§511)
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566. The Hyperbola. The same reasoning will apply to

the hyperbola, except that the

foci E and F will be on opposite

sides of the tangent, and in con-

sequence the tangent will bisect

the angles to the foci.

In the case of the parabola the

same reasoning will always apply,

the lines UP and BQ being re-

placed by perpendiculars to the

directrix.

•

CHAPTER VI.

represe'ntation of varying magnitudes by
CURVES.

567. The changes of a varying magnitude may be repre-

sented to the eye by a curve on a system which we shall

illustrate by showing the changes of the National Debt of the

United States between 1860 and 1880.

In the following figure the horizontal line WJT is divided

up to represent the different years. On tl Tiiddle of each

5/i
/

/

wi=^

r--'r

00

s

year we erect a perpendicular proportional to the magnitude
of the debt at that time, as given in millions of dollars on
each perpendicular. Then by noting the length of these per-
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>ply to

/

BY

repre-

I shall

of the

ivided

I each

nitade

ars on

le per-

pendiculars we have the different magnitudes of the debt
presented to the eye.

These perpendiculars are called ordinals. f

The ordinates only show what the debt was on July 1st of
each year, and we may wish to know what it was at other
times, supposing it to have varied in a regular way. This we
do by drawing a curve through the tops of all the ordinates.
Then the height of the curve above the base WJT will show the
length of the ordinate, and therefore the amount of the debt.

Having drawn the curve, we may erase the ordinates
entirely, and get the amount of the debt at any time by
measuring the height of the curve above the base line at the
point corresponding to that time.

668. Def. A curve showing the magnitude of a
varying quantity at any time is caUed a graphic
representation of that quantity.

669. The preceding method may be used to show to the
eye the relation between two varying quantities connected by
an algebraic equation. The following is an example of the
process. Let us have the equation

y =X + ^•

We suppose x to hcve in succession a number of different
values, say -4,-3,-2,-1, 0, 1, 2, 3, and 4, and for
each of these values we calculate the corresponding value of y.We arrange these values together, thus:

l^^^^^ofx -4,-3,-2,-1, 0,1, 2,3, 4.
CoiTesp.valuesof2^.. 6, 3i, 2, li, 1, Ji, 2, 3i, 5.
We next draw a hori- \

zontal base WX, and lay \
the values of x off on it,

the positive values being
laid off toward the right,

the negative ones toward
the left. Then from each
point on the line we meas-
ure upwards a length equal
to the corresponding value of y, and there make a point.

TO", N. - ., .." -4 -J -I -I
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Let the points be a, J, c, etc. The heights of these
points show the several values of y. Should any values of y
be negative, they extend below the line. Then we draw a
curve through all the points. The height of this curve above
the base-line will then represent the value of y corresponding
to any value of x between the limits, -f 4 and — 4, so that
the eye can see at a glance how y varies.

670. Dtf. AbsoisBas are the values of a?, laid off

upon the base-line.

571. Def. The base-line is called the azlf of
abfloissas, or the axis of X

672. Drf. The equation which gives rise to a
particular curve is called the equation of that curve.

Exercises. Plot in the above way the curves correspond-
ing to the following equations between the limits a; = — 4
and a; = 4.

y = a; -f- 4.

2
y = ~ _ 3a; - 1.

3.y = — - 3a:
2
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GEOMETBY OF THEEE DIMENSIONS.

BOOK VIII.

OF LINES AND PLANES.

573. Def Geometry of three dimensloM treats

HT^^ ^ ^^^^ ^""^ ''''* ''''''^''^^ to a single

.^f''''"'*7''f.i^'''
dimensions is also called the ^.om^/ry

of space and solid geotnetry. ^ ^"Hn^ry

^7^ ^/- ^a>^el Plaaeg are those which never
meet, how far soever they may be produced.

6 T5. Def. A straight line is said to be paraUel toa plane when it never meets the plane, how far soever
It may be produced.

676. The different parts of a figure are said to lie in oneplane when a plane can be passed through them alL
Remark. Whenever a plane can be passed

through a system of lines or points in space,
the theorems of plane geometry apply to the
figure formed by such lines and points.
Otherwise they do not so apply,

677. Axiom I. If two or more points
of a straight line lie in a plane, the whole Ime
lies m that same plane.

Ax. II. Any number of planes mav be
passed through the same straight line, and a
plane may be turned round on any hne lying

Ax. III. Only one plane can pass through a,™,a line and a point without that line paS^^w^^l??^
samestiilghtli,;!^
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EXERCISES.

The following exercises arc inserted here in order that the student

may. by working upon them, acquire a clea\^«"««P\^°^
«'J?^"^f

^''

^nJe between the relations of lines in space and in a plane before pro-

ceeding to the study of the theorems of the geometry of space If four

stTfl rods be Jointed together, or merely held together so as to form a

auadrUateral it may assist in Exercises 8 and 4. A beginner in the

subS^^ it useful to construct the diagrams in space with wires,

strines. and rods attached to a flat board.

Tpolygon in space may be formed by joimng end to end

any number of finite straight lines, as defined in Book II.,

8142 The only change is that in Book II. the hnes are all

supposed to be confined to one plane, whereas there is no such

restriction upon polygons in space. Now:

1 Explain that all the propositions of Book I. whic)

reto to triangles are true of triangles in spaxie, however

''^'^Thifmaybe done by Theorem I., which follows, by showing that the

three sides must be all in one plane.
j. . t «^i„„«„«

a. Explain that these proportions are not true of polygons

of four or more sides situated anyhow in space.

Show that a polygon of four or more sides (which may be formed of

stifl^traTgM may be so joined that its sides shall not all be m one

^^^""t How many different planes may the sides of a quadri-

lateral in space contain when taken two and two ?

4. Show that the two diagonals of a quadrilateral in space

do not necessarily intersect.
^ , a «^„«^ «« thA

Show that each pair of adjacent sides may be turned round on the

vertices joining tnem to the opposite pair.

5 But if we draw three lines in a triangle, one from each

angle to any point of the opposite side, each of these lines

will intersect the two others.

6 Any pair of parallel lines must lie in the same plane.

But there may be three lines each parallel to the other ^o,

and yet they may not all three lie in any one plane. How

many planes will they lie in when taken two and two?

7. If four lines are parallel, how many planes may they

lie in when taken two at a time?
.

8. A transversal intersecting a pair of parallel lines lies in

the same plane with them.
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th«til ^r
^'"""^

,"°.* ''' *^' '^"^^ P^*^« «^« intersected by

tlZ! ?^"Tr^'^^ °^«"y planes may be determined byme three hnes taken two and two? ^

-» •

CHAPTER I.

REUTION OF LINES TO A PUNE

Theorem L
578. prot^^^ two intersecting straight lines mepcane, and one only, may pass.

in ^F'ointo
^""'^ '^'*'^^^ ^'''®'' "^^ ^^ ^^* ^'nMeeting

Conclusion. One plane, and A.
only one, can pass through
them.

Proof. 1. Let any plane
pass through the line AB. ^

2. Turn this plane around on AB as an a-ria «*,+,•! •*
any point C of the line CD (§ 577 II

)

* '"^*'

conditions (§ 577 ifl) Q E D ^ ^ "'' *""^*' *''*

580. Cor. a. TAroM^fA anv three, nninu «/.' .V «. ,*««y« «„. onefhm, andonlione, n^pasT' "" """^
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Theorem II.

681. Tkoo planes intersect each other in a straight

line.

Hypothesis. MN, PQ, two planes intersecting each other

along the line AB.
Conclusion. The line , . „

AB 18 a, straight line.

Proof. Let A and B
be anytwo points common
to both planes.

Draw a straight line M
from A to B. Then

—

1. Because the points

A and B are both in the plane MN, the straight line AB lies

wholly in the plane MN (§ 677, I.).

2. Because the points A and B are both in the plane PQ,

the straight line AB lies wholly in the plane PQ.

3. Hence this straight line lies in bo+h planes, and there-

fore forms their line of intersection.

4. The planes cannot intersect in any point not in this

line, because then two planes would each contain a line and a

point without it, which is impossible (§ 577, III.).

Therefore ^^ is the only line of intersection. Q.E.D.

683. Corollary. The line of intersection of two planes

is a line lying wholly in both planes.

Theorem III.

583. If a straight line he perpendicular to two

straight lines in a plane, it will be perpendicular to

every other straight line lying in the plane and pass-

ing through itsfoot.

Hypothesis. MN, any plane; AB, CD, two lines in this

plane; OP, a common perpendicular to these lines at their

point of intersection 0; BS, any other line lying in the plane,
__J wwi XT 1- •^

a

w

th

Tl

wl
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Conclusion, The linA np ;« „i

Proof. In the lines
' Perpendicular tom

^B and CZ> take the
points ^, j5, C and D,
80 that

AO^BO, CO =D0,
Join ^i) and A C, and

let i? and S be the pointsm which the joining lines
intersect the third line
R8, (These lines must interserf J?Si i.«« L^.-me plane with it and notScfto it

T"'* ''^^ *" "' "'«

Jom PC, PR, pj, p^ p
-^

Oc'^^nn '^r^'"'
<'^^-<' ^S?.

tH.et.an«leat?laer,^:^^-f'-^^:
BD = Aa

Angle (>^i? = angle 0^^.
f^gJe OC^ = angle OZ)^.

toiLpSi^Tor;^''''' *^« equality Of ^O.i

3. Because OP is perp^n,Uc„,ar to ^^.^ and OA = OB.
and, in the same way, PC= pn

4. Beoanse of these equalities, and otBD=AO

5. Because, m the triangles PAR and PBS
PA = P^,
^i? = B8,

fhooo + • .
^^^® P^^ = angle P^^ •

these tnangles are identically equalfand '

pT> -pa
Therefore ^gle POsZ^x^gh pqs-whence POifa^dPO^are right ai:,e?^', OP . ^c

"• "^"'"'" ^'^' ""•? •« »-y '^e-whateveriyin^gf-the

(3)

(2)

W
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plane and passing through 0, the line OP is perpendicular

to every such line. Q.E.D.

584. Def. A line meeting a plane so as to be per-

pendicular to every line lying in the plane and pass-

ing through the point of intersection is said to be

perpendicular to the plane.

586. Corollary, From a given point in a plane only one

perpendicular to the plane can be erected, and from a point

without a plane only one perpendicular can be dropped upon

the plane.
Theorem IV.

586. Conversely, all lines perpendicular to an-

other line at the same point lie in the same plane.

Hypothesis. OP, any straight line ; 0-4, OC, two lines

perpendicular to OP at 0;

OB, any third line per-

pendicular to OP at 0.

Conclusion. OB lies

in the same plane with

OA and OC.

Proof. 1. If OB is

not in the plane A 00,

pass a plane through PO and OB, and let OB' be the line in

which it intersects the plane AOC.
2. Because OP is perpendicular both to OA and OC, it is

also perpendicular to OB', which lies in this plane (§ 583).

3. Because OB' is in the plane POB, we have in this

plane two straight lines, OB and OB', both perpendicular to

OP, which is impossible.

4. Therefore OB and OB' are the same straight line, and

OB lies in the plane A OC. Q.E.D.

587. Corollary. If a right angle be turned round one of

its sides as an axis, the other side will describe a plane.

Theorem V.

> 688. ^ a plane bisect a line perpendicularly,

everypoint ofihe plane is equally distant from the

ends of the line.



BBLATlOif OF Lims TO A PIANB.
281

intonett afl"
"" '""'^'""'"'" '^ ""> »"- ^^.

middle point of the |P

line ; i?, any point in
the plane.

Conclusion, R ig

equally distant from P
and Q.

Proof. Join OR,
Then—

1. Because P^ is

perpendicular to the '0

plane, it is perpendicular to OR in that plane (§ 684).
2 Because OR is perpendicular to PQ at its middle point0, It 18 equally distent from P and Q (§ 104). ^i D
589. Cbro//«ry. Conversely, mr^^ ;>om^ ^A,-^;, •,

,'„
distantfrom twofixed points is in the plane bisecting TriZangles the linejoining the points, ^ ^

Theorem VI.

ir/^rtUrP^^' *'" I«!^"^-'- to a plane

and Q.

Conclusion. These
perpendiculars are par-
allel.

Proof. In order to
proye the parallelism «
of the lines, we must
show

—

I. That they can never meet;

T Tf+i, ? T?"**
*^®y ^^e in the same plane.
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II. From the point P draw in the plane JlfiV the line PAy

perpendicular both to PQ and to PR. In the line Q8 take

QB ^ PA. Join BP, BA, QA. Then—
1. Because, in the right-angled triangles QPA anl PQB,

AP = BQy PQ common,

these triangles are identically equal, and

BP = AQ.

2. Because, in the triangles BQA and BPA^
AQ = BP, BQ = AP, AB common,

these triangles are idexitically equal. But BQA is a right

angle (§ 584). Therefore tue corresponding angle APB is

also a right angle.

3. Therefore from the point P of the line AP there pro-

ceed tLiree straight lines PQ, PB, and PR, all at right angles

to AP. Hence these tlnee lines are in one plane; that is,

PR is in the' plane fixed by the two lines PQ, PB,

4. But QS is also In this plane, because it intersects these

lines (§ 579). Therefore QS and PR are in the same plane.

5. Kence the lines PR and QS are in the same plane and

never meet, and are therefore parallel. Q.E.D.

Theorem VII.

591. Conversely, if one of several parallels is

porpendicv^ar to a plane, each of the others is also

perpendicular to tftat plane.

Hypothesis. A plaiie, MN', two parallel lines, PR and

QS, intersecting the plane at P
and Q in such manner that QS
is perpendicular to the plane.

Conclusion. Pi2 is also per-

pendicular to the plane. Jf^

Proof. 1. n PR is not

perpendicular to the plane, let

PR' be perpendicular to it. /'

2. Then PR' is parallel to
^

QS (§ 590).

3. Therefore' through the point P we hare two straight

lines, PR and PR', both parallel to QS, which is impossible.

BT. B

7"

h

I
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4. Therefore the perpendicular to the plane at Pis the
line Pi?. Q.E.D

Corollary. It two or more lines are each parallel to the
same straight line, and a plane be drawn perpendicular to
this straight line, it will also be perpendicular to the other
lines, and they wiU be parallel to each other. Hence:

593, Lines parallel to the same straight line are paral-
lel to each other.

V

Theoeem VIII.

693. Frora anypoint above a plane lines Tneeting
theplane at equal distancesfrom thefoot of the per-
pendicular are equal, and the line meeting the plane
at the greater distancefrom thisfoot is the greater.

Hypothesis. MN, a plane; P, any point outside of it;
Oy the foot of the per-

pendicular from P;
A OG, any straight line

in the plane through
O'j Ay B, two points in

the plane equally dis-

tant from 0; G, a point
more distant from
than A is.

Conclusions. I. PB = PA.
II. PC > PA.

Proof. 1. In the triangles POA and POB,
PO is common.
OA = OB (hyp.).

Angle POA = angle POB (both right angles).
Therefore hypothenuse PB = hypothenuse PA. Q.E.D.

2 Because is the foot of the perpendicular from P on
AC, and 0C> OA,

BC>PA{^10B). Q.E.D.

„„^. .-^,^,,^,y ^. ^j i,nrougn ihe centre of a circle a
line he passed perpendicular to its plane, each point of this
Aue IS equally distantfrom allpoints of the circle.
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' 595. Cor. 2. Equal lines meet the plane at equal dis-

tancesfrom the foot of the perpendicular, and greater lines at

greater distances.
^

This corollary may be expressed as follows:

596. The locus of the point in a plane at a given dis-

tancefrom a fixed point without the plane is a circle drawn

around the foot of the perpendicular as a centre.

597. Def. The pr<\jection of a point upon a plane

is the foot of the perpendicular dropped from the

point upon the plane.

Example. If MN be a plane, and P a point outside of

it, and if the perpendicular from P upon the plane meet the

latter in P', then P' is the projection of P upon the plane

Mm
598. Def. Tlie projection of a line upon a plane

is the locus of the feet of the perpendiculars dropped

from every point of the line upon the plane.

Example. The line P'R' is the projection of the line

PR upon the plane ifiV".

Theorem IX.

599. The projection of a straight line upon a

plane is itself a straight line, and the straight line

and its projection are in one plane.

Hypothesis. ifJV,aplane; P^i?, a straight line; P'Q'R',

the projection of PQR
upon JOT.

Conclusion. P'Q'R*
is a straight line, and lies

in one plane with PQ.

Proof. 1. Because the

lines PP' and RR' are

perpendiculars to the ^N

plane MN^ they are parallel to each other, and therefore in

one plane (§ 690).
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2. Pass a plane through these lines. Because this planecontams the points P and R, it will contain the point
which lies on the Kne PR. ^ ^'

3. Because the line QQ' is perpendicular to MN, it is also
parallel to PP^(%m); and because it contains 'the pott
Q, the plane PP'QQ' is the same as the plane PP'Rr'
Therefore the foot Q' lies in this same plane. '

^^ ^^ '

T ^;fi^o?wl *^® intersection of two planes is a straightme (§ 681), the foot Q', which lies on the intersection of thetwo planes, is m a straight line with P' and R'
5. Because ^ may be any point on PR, the* projection ofevery point of PR is in the straight line P'R\ Q.E.D

/,w^^^' ^,V^\y ^' Va line intersect a plane, its projec^tion passes through the point of intersection.
^^

601. Cor. 2. If aline le perpendicular to a plane itspro^ectnn upon the plane is a point; namely, thepTnt nwhich %t intersects the plane.

Theoeem X.

ar,nJ^^.nJ{^,
^m^ mjJ^^^ciJ a plane, it makes a lessangle with its projection than with any other line intheplanepassing through thepoint ofintersecZi

vi.S'aroAS;^^^^^^^ "^' ^ ^^^^ ^^^--^^^^ *^^«

jection of OD upon the
plane; 0^ any other line
m the plane passing
through 0.

Conclusion. The angle
^OA is less than BOB.

Proof. Take OB =
OA, and join AB
and DB. Then—

of ij,
^'""^'^ ^^^ '' ^ ^^'' '^^gl« (^ being the projection

DB > DA.
(§593)
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2. Because the triangles DOA and DOB have the side DO
common, and OB = OA, while the third side DB is greater

than the third side DA,

Angle DOB > DOA (§ 116). Q.E.D.

603. Def. The angle between a line and its pro-

jection on a plane is called the inollnation of the line

to the plane.

l:

1!

Theorem XI.

604. ^ a line intersect a plane—
I. The angle which it makes with a line in the

plane passing through its point of intersection is

greater, the greater the angle this last line makes
with its pfojection.

II. The line makes equal angles with lines at equal

angles on both sides of its projection.

Hypothesis. MN, a plane; OD, a line intersecting it in

O'y OA, the projec-

tion of OD on the

plane; OB, OB',

two lines from

making equal angles

with OA; 00, a

line making a still

greater angle with

OA.
Conclusions. I. Angle DOC > angle DOB.

II. AngleDOB = angle DOB\
Proof I. Take OB, OB', and 0C7aU equal to OA. Join

DB', DA, DB, DC, AB, AB', BC. Then—
1. Because the points B, A, B', C are all in the same

plane and equally distant from 0, they lie on a circle having

as its centre.

3. Because angle AOC> A OB, the distance ACia greater
XI it- - -i J J r»-
iiuan lui) uuoiu ^x>; XT *—

~

DC>DB. (§ 693)
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3. In the ti-ianglos ODB and ODC we have

0/? common; 0C= OBy DC> DB,
Therefore ?

Angle DOG (opp. DC) > angle DOB (opp. DB), (§ 115)

Q.E.D.
Proof II. 4. In the triangles AOB and u4 OB' we have

0^ common;
OB = 0-ff' (construction);

Angle AOB = angle ^ 05' (hyp. ).

Therefore these triangles are identically equal, and
AB = AB\

6. Because DAB and DAB' are both right-angled at A
and because /?^ is common and AB = ^i5', these trianriesDAB and jD^jB' are identically equal, and

DB = DB'.
6. Therefore the triangles DOB and J905', having their

sides equal, are also identically equal, and
Angle Z>05 = angle Z?(?5'. Q.E.D.

Join

Theorem XII.

606. At the point of intersection, a line in the
plane perpendicular to the projection of a line is
perpendicular to the line itself.

Hypothesis. OD, a line intersecting the plane in 0- OA
the projection ot OD

or
, ^,

upon the plane; POQy a
line in the plane perpen-
dicular to OA.

Conclusion.

Line POQ ± OD.
Proof. Take the

points P and Q at equal distanc as from 0, and join AP, AQ,

1. Because the points P and Q are at equal distances from
biiv xv^uu {y ui mc purpuudicujar ^ c/ on PQ, we have
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2. In the trianglea DAP and DAQ,
DA is common;
AP=^AQ', s (1)

Angle DAP = angle DAQ (hyp.).

Therefore DP = PQ.

3. In the triangles /)0i^ and i>Og,

i>0 is common;
DP = DQ; (2)

OP = 0^ (construction).

Therefore Angle DOP = angle DOQ;
and because PO^ is a straight line, both these angles are

right angles. Q.E.D.

Corollary. If the line OD is not perpendicular to the

plane MN, there can be only one line in this plane perpen-

dicular to OD. For if there were two such lines, OD would

be perpendicular to the plane (§ 583). Hence, because POQ
is the only perpendicular to OD in the plane

:

606. Conversely, a line in a plane perpendicular to an

intersecting line is perpendicular to the projection ofthe inter-

secting line.

Sdwlium. An astronomical illustration of these theorems is afforded

by conceiving one's self to be looking at the sun in the south. The

plane is that of the horizon, in which the observer must suppose himself

situated at the point 0. Let the line OD be that toward the sun. (It is

not necessary to suppose it cut off at D or any other point, because our

theorems do not refer to its length.)

Then the horizontal line OA from the observer to that point of the

horizon under the sun will be the projection of the line to the sun.

By Theorem X. the angular distance of the sun from this point will

be less than from any other point of the horizon. This angle is called

the sun's altitude.

If we suppose a horizontal east and west line, Theorem XII. shows

that this line will always be at right angles both to the direction of the

sun and to the south line which passes directly below the sun.

If we take a series of points along the horizon, starting from the

point directly below the sun, Theorem XI. shows that the angular dis-

tance of these points from the sun will increase up to the opposite

point of the horizon from that below the sun.
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(1)

(8)

are

the

Theorem XIII.

607. When two straight lines are parallel, each
of them is parallel to e&erp plane passing through
the other and not containing both lines.

Hypothesis, AB, CD, two paraUel straight lines; MI^,
any plane passing through CD,

Conclusion. AB ia a.-

parallel to the plane
JfiV.

Proof. Let us call

P* the common plane
of the parallels AB and
CD. Then—

~B

1. Because AB lies wholly in the plane P, if AB meets
the plane Mli at any point, that point will be common to
the plane P and the plane MN.

2. But the only points common to these two planes are
on their line of intersection; namely, the line CD (§ 682)
Therefore if AB eyer meets the plane JfJV, it must meet this
line CD.

3. But, by hypothesis, it is parallel to CD, and so cannot
meet it.

4. Therefore it cannot meet the plane JO^, and therefore
IS parallel to it (§ 575). Q.E.D.

5. But should the plane JfiV^ coincide with the plane P,
the line AB will then lie in JfiV^as it does in P.

Theorem XIV.
608. Angles of which the sides are parallel and

similarly directed are equal.

Hypothesis. BOC and P'O'C", two angles in which
OPilO'P'and 0C\\ O'C,

Conclusion. Angle BOC— angle B* 0'C\
* The letter Pis here employed not as a mark on the diagram, but

as a short and convenient appellation of the plane referred to. Such a
use of letters is of constant occurrence in the higher geometrv and
should be well understood.

^ ^'
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Proof. On the sides B and B' take OB = 0'B\ and

on the sides C and C take

OC = 0'C\ Join BB',
CC\ 00', Then—

1. Because 05 and0'^'

are equal and parallel, the q^
figure OO'BB' is a parallel-

ogram (§ 138), and

BB' = and || 00\
2. In the same way,

CC: = and || 00\
3. Therefore BB'CQ' is a parallelogram, and BC
4. Therefore the triangles i^OC'and B'O'C, having the

three sides of the one equal to the sides of the other, are iden-

tically equal, and

Angle BOC = angle B'0'C\ Q.E.D.

609. Corollary. It may be shown, as in Book II., Th.

VI., that if the sides of the angles are parallel and oppositely

directed, the angles will still be equal, and that if one pair of

sides is similarly directed and the other oppositely directed,

the angles will be supplementary.

Theorem XV.

610. Parallel lines intersecting the same plane
make equal angles with it.

Hypothesis. OA, PB, two parallel lines intersecting the

plane MN in and P;
OA', PB'y the projections

of certain portions of these

lines on the plane.

Conclusion.

AngleA 0^'=:angle5P5'.

Proof. At the points

and P erect the per-

pendiculars OR and P8.

Then—
1. Because OR and PS are perpendicular to the same

plane, they are parallel (§ 590), while OA \\ PB^ by hypothesis.

Hence Angle AOR = angle BPS. (§ 608)
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an/'^^T'" ^^i'
* traneversal crossing the parallels A'

A

and OR It IS m the same plane with them. Also becau^OR ± plane if^; OR 1 OA' m that plane (§584^ The^m^ehmgs are true of Pi?', PB, and PS.
3. Because A'OR and B'PS are right angles. ^ 0^' is thficomplement of the angle A OR, and BPB^ it t^e compleme^of the equal angle BPS. Comparing with (1),

'''''^^^^'^'"'^

Angle A OA' = angle BPB\ Q.E.D.

Theoeem XVI.

n^^^\'
^^^^^^ ^^^ ^^'^^^ ^ot in the sameplanemeand only one, comTnon perpendicular can hed^raZ

Hypothesis. AB, CD, two lines not in the same planeand therefore passing each other without intersecting

to bi"^rn/^r '' ^" ^"^^'"^ ^^ -°^^' p-p-^-^-

Ipf ,> r"-^'
^'

T^'"''''^^
'^''' ^^^^' «^y ^A pass a plane, andlet t turn round on OD until it is parallel to AB. Let ^^be this plane Let A'B' be the projection of AB on the

1. Every point of A 'B' is fixed by dropping a pernendionar from some point of AB. Let p\, the^ofn' ofThicr^
IS the projection. Then PO 1 plane MN (§ 597)

lar t; bofbT f^ ^^P;^r^li«"I^r to JfiV, it is perpendicu-lar to both the lines A'B' and CD, which lie in MN.
o. Hecanae PO is nArnGnri]V.«]o^ f^ .«/n/ .^ •

pendicular to AB, which is parall 3 ^'5' (8 72
Therefore OP is perpendicular to both t

OD. Q.E.D.
lines AB and
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II. If there is any other common perpendicular, let it be
P'Q, Through ^ draw, in the plane JfiV,^i?lMi?. Then—

4. Because P'Q is perpendicular to AB, it is also perpen-
dicular to QR, which is parallel to AB.

6. Because P'Q is perpendicular to both the lines QE and
CD, it is perpendicular to their plane JfiVi

6. Put, because A'B' is the projection of AB, the foot of
the perpendicular from P' on the plane must fall on some
point of A'B'. Let 0' be this point.

Therefore from the point P' are dropped two perpendiculars
P'O' and P'Q upon plane ifiV", which is impossible (§585).

Therefore P'Q is not a common perpendicular to the
lines AB and CD, and PO is the only common perpendicular.

Q.E.D.
Theorem XYII.

613. The least distance between two indefinite
lines which do not intersect each other is their corn-
mon perpendicular.

Hypothesis, a, h, two lines in space, the one being sup-
posed to lie behind the other,

so that they do not intersect.

Conclusion. No line which
is not perpendicular to both
lines can be the shortest line

between them. "-^ P b

Proof. If possible, suppose that some line PQ which does
not make a right angle with a is the shortest line.

From P drop a perpendicular PR upon a. Then
PR < PQ,

Therefore PQ is not the shortest line.
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Shortest
"""^ *' """^ ^° ""^ ^^'^^^ '»'"« Ji"" »"»' be the

Mn^XZy^ "°' " "'"' ""*'"« " "«•" '»«'« »'"» both

i>>»

®

CHAPTER II.

REUTIONS OF TWO OR MORE PUNES.

Theorem XVIII.

inauLw*^^"'''* <^re parallel ^any two intersect-tng lines on the one are bothparallel to the otherplane

parallel to the plane PQ.
Conclusion, The planes

i/"i\randP^ are parallel.

J'roof, 1. If the planes
are not parallel, they must
intersect in a straight line
lying in both planes, and
therefore in the plane MM
Let us call this lineX *

^

^Aan'rwtr'c:t?he5::7o' "^^ "^f' r.
^"^ '>"'-

are paraUel. Q.E.D
'^ ^" ^''««*°"^ *hese planes

intVstt ImliV '"^ '''^'^^ ^^-o P<^ranel pUnestraersect a thirdplane areparallel.
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Let ns call A and B the parallel planes,* and Xthe third

or intersecting plane. Then

—

1. The lines of intersection are in one plane, because they

both lie in the plane X.

2. Because one of the lines of intersection lies in the

plane A, and the other in the plane By parallel to it, and

because these planes never meet, the lines can never meet.

Therefore the lines are in one plane and can never meet,

and so are parallel, by definition. Q.E.D. ,

Theorem XX.

616. Parallel planes intercept equal segments of

parallel lines. ' •

Hypothesis. MN, PQ, two parallel planes; AB, CD, two

parallel lines intersecting the planes in the points A, B,

C,D.

Conclusion. AB = CD.

Proof. 1. Join ^ C and

BD. Consider the plane

containing the parallels

AB and CD. Because the

four points A, B, C, and

D all lie in this plane, the

joining lines A C and BD
lie in it.

2. But because the lines AC and BD also lie in the

respective planes MNand PQ, they are the lines of intersec-

tion of these planes with the plane A BCD.
3. Because the planes ifiVand PQ sre parallel (hyp.). ILo

lines of intersection A C and BD are parallel (§ 614).

4. Because AB || CD (hyp.) and AC || BD, as just

shown, ABCD is t* parallelogram. Therefore

Ali- (7i>(§127). Q.E.D.

* This theorem iti so iiimple that the student can imagine the figure

which is to embody the hjrpothesis and conclusion better than it can be

j'ork'ppaonto/i in a dlaTam. We therefore ffive- the demonstration with-

out a diagram.

2

i

1
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Theorem XXI,

616. Planes perpendicular to the same straight
line are parallel or coincident.

^

Hypothesis. Two planes, MN and PQi OH, a line ner-
pendicular to each of these planes.

> ^« per

Conclusion. The planes are
parallel

Proof. If they are not parallel,
tKey must intersect. If they in-
tersect, call Xany point on the
line of intersection and join OX,
RX, Then-

1. Because OX is in the plane

S.''
" P^^P^"^^^"!^^ *« OR, a perpendicular line to the

to 0k^'°'"''
^^'' '"^ *^' ^^'"' ^^' '^ '' ^^«« perpendicular

3. Therefore from the same point, X. we have two r.«r

rrs^/' ""' ^'''
'" ''^ ^' «t-4hTiSrwS

4. Therefore the planes never meet, and so are parallel.

hJi^J'i
^'"""''7- Conversely, a straight line perpendictlUr to aplam ts also perpendioular to every paralhlplane.

Theokem XXII.

*«*; f ^*™^S^ ^««« m<ikes equal angles
parallelplanes.

Hypothesis. MN, PQ,
two parallel planes; AB,
a straight line intersect-
ing these planes at the
points B and F; EA\
FA*', the projections of
this lino upon the re-

/'

spective planes.

with

m
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Conclusion. Angle AEA'—that is (§ d03), the inclination

of AE to the plane MN-Ab equal to angle AFA", the incli-

nation of the line to the plane PQ.

Proof. 1. Because the points A' and A" are the projec-

tions of the point ^-upon parallel pbnes, the point A* ^3 in

the straight line AA" (§§ 597, «17).

2. Because the plane of the two linos AA'' and 'AE con-

tains the four points A', E, A", anc' F, the lines A*E and

A''Fare in this same plane, and are its line of intersecMon

with the parallel planes M^F and PQ, Therefore

A'E II A"F (§ 614)

and Angle ^-E^^' = cor. angle ^i^^". Q.E.D.

Theorem XXIII.

619. Iffrom any points of the line of intersec-

tion of tw6 planes two perpendiculars to that line he

drawn^ one in each plane., they willform equal angles.

Hypothesis. M and iV, two planes intersecting along the

line AB ; OQ, 08, two

lines, one in each plane,

perpendicular to AB',

PR, PT, two other lines,

one m each plane, per- ^

pendicular to AB.
Conclusion.

Angle QOS= angle RPT,
Proof. 1. Because the

sides OQ, PR lie in the same plane M, and are perpendicular

to the same straight line AB,
OQ II PR, (§ 70)

2. In the same way,
OS II PT.

3. Therefore

Angle Q08 = angle RPT (§ 608). Q.E.D.

630. Def. Two planes which intersect are said to

^nrm a Hihftilral anerle flloner their line of meetinsr.

An angle formed by two lines is called a plane

angle to distinguish it from a dihedral angle.

i

^!i

a'.
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t

i^^^V^' ^"-C- .

"^^ '*•»"' o' a dihedral angle are fhntwo planes which fonn it.
^ '"®

linfff ^f "^f f^^ "' ^ ^liedral angle is theIme of meeting of the planes which fonn it
633. A dihedral angle is measured by the anrfn

a^^^t^iredr^^''^-' "''^ ^ eachVc:,S

by eitherXa^ go'/o:fc^^ "^/^
"^'^"'^''^

diculars.
V^o or i,;i-/ between the perpen-

which side« will be trLte?sf^tlw^f/i*^'"S^««*'
^ (§ 584). Heuee a dihedral^SV^ltti'-TA^^^angk between the intersections of itrfaceS a'„i

^''""

pendicniar to its edge. ™ * P'^* Per-

dihetla^gL*™
todefinirintersecting

planes form fonr

angL^thonW JtronftS""'""', ^^^""^ ^^^^'^^
from the oorrespontogS^^ll ^'^^ ^r *>« student

angles. ^ Propositions respecting ordinaryplane

TT /7T1 T , -^
^niersemon as a commnft firing

---. ^^^v,o«.- ,«,-«am ««^fes are equal.
"

I
If
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Corollary. When two planes intersect, we may take either

of the two adjacent dihedral angles as measuring their incli-

nation.

Y.Ifa plane intersect two parallel planes, the alternate

and corresponding dihedral angles are equal.

Note. When speaking of the angle between two planes, the

adjective dihedral may be omitted when no ambiguity will arise from

the omission.

Theoeem XXIV. \

635. Iffrmt anypoint perpendiculars he dropped

upon two intersecting planes, the angle between these

perpendiculars will he equal to the dihedral angle

hetween the planes, adjacent to the angle in which

the point is situated. p.

Hypothesis. MN, RS,

two planes (of which the

parts in the diagram are

supposed to be rectangu- ^
lar) intersecting along the "^

line AB; P, any point in ^

the obtuse dihedral angle

TBS; PO, PQ, perpen-

diculars upon the planes from P.

Conclusion. Angle OPQ = dihedral angle SBJV.

Proof. From P drop the perpendicular PC upon AB.
Join Cd, CQ. Then—

1. Because PO is perpendicular to the one plane and PQ
. to the other, CO is the projection of CP on the plane RS,

and CQis the projection of CP on the plane ifJV(§§ 598, 600).

Therefore, J5 being perpendicular to CP, the angles -4CO
and ACQ are right angles (§ 606).

Therefore CP, CO, and CQ are in one plane, (§ 586) which

plane must also contain PO and PQ.

2. Let D be the point in which PQ and OC intersect.

Because, in the triangle POD, is a right angle,—^1^ nr>n — nun — «'^T«^i«»»^'ir»+ />-P /IDD

= complement of CDQ,
= DCQ.
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Therefore

Angle OPQ = angle OCQ,
4. Because CO and CQ are each perpendicular to A£

TZZe TnToP^^'^hl r'^
b^etweentlVplanel:anereiore Angle OPQ = dihedral angle SBJV, Q E D

situated the point from which they areXppfd we J^^fi
'.'

hem to be supplementary. Thi/follow ZmCcSr^'.on^that the angle. SB^ ( = OOQ) and -.^rTs^X
fart^:TAu, rt&' ^^'^'^ '"^ •'"'"* ^ ^^-'^^

perpendicular upon the plane
MJV shall fall to the left of
AB, and therefore not inter-
sect the plane RS. Then, if
we imagine ourselves to look M
directly along the line AB so
as to see both planes edgewise,
the figure will present this
appearance.

whilh^olTteSr t^ a.-'^^^ralin
angle. OPO and O^fwilTf IwoS'tr.le?
two angles will be supplementary. K. th ' i« ^
dihedral angle between the planes.

' °''*™*

to
0^^."^'° '"^"'^ "'"^° *'"'" *« ""gl* ^-^^ is still equal

63'?. Coroffiary 1." Iffrom any point C of the K«, „fxnters^tun of two plane, two perpmdiculars:00 CO Lerected, one tneach plane, andfror^O and Q perpe'ndiXt

;liii
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Theoeem XXV.

639. ^fa line he perpendicular to aplane^ etery

plane containing this line is jlIso perpendicular to

the plane.

Hypothesis, MN, a plane ; PO, any line perpendicular

to it, intersecting it in

0; ^(7, any plane con-

taining the line PO.
Conclusion. The

plane AG i& perpen-

dicular to the plane

MN.
Proof. From

draw OD in the plane

JfiV^ perpendicular to ^j5. Then

—

1. Because PO L plane MN, it is perpendicular to AB
and OD in that plane, and

Angle POD= right angle. (§ 584)

2. Because OP and OD are both perpendicular to AB,
their angle POD measures the dihedral angle between the

planes which intersect along AB (§ 623).

3. Therefore, from (1), this dihedral angle is a right

angle, and the planes are therefore perpendicular. Q.E.D.

Theorem XXVI.
630. If two planes he perpendicular to each other

^

every line in the one, perpendicular to their common
intersection^ is perpendicular to the other.

Hypothesis. AG,
MN, two plant's inter-

secting at a right angle

along the line AB; OD,

a line in the planeMN
perpendicular to AB,

Conclusion. OD is

CI pCllU.lU UXOii V\Jcipciiu.iC

plane AG,

.Oil v\j v1l\

Proof. In the plane ^(7 draw OP 1 AB. Tbon-
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g^j

rtp/i^^""*
^^ " perpendicular to ^5 (hyp) ^a *„

Theoeem XXVII.
631. Iftwoplanes be perpendicular to each othpr

the line .4 J9; OP, a line
perpendicular to the plane
ABCD.

Conclusion.

OP
II plane M'JT,

Proof. From anypoint
R of the plane MN
drop a perpendicular i?0
upon AB. Then—

It (§607). Q.ED ' ^^' ^^ contains

fioo „ "^* °* '"*^'"««''«<>° -4A Hence:

ott.r.
'''''"''*">'' PorpenatcnUr to tU one mil lU in the

»„- „ Theoeem xxvni.
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Hypothesis. PQ,m two planes, each perpendicxaar to

plane MN; AB, their ° -^

line of intersection.

Conclusion.

AB L pla^io ^^'
Proof. 1. Because

the plane PQ is per-

pendicular to MN, il

^rt^^^^^o. a perpendicular to MN, it will

lie in the P^^ne P(2 (§ 632).
^^^

I- srorffh^i^i^^^^
two'plLes, or AB-. whence^^ is the perpendicular to the

nXrB-'- 5-%!;Sndicular to two planes

is n^Sicular to their line of intersection, and because ^1

plLTiendicular to the same line are parallel or com-

cident (§ 616), we conclude:

634. All planes perpendicular to the same two planes are

either parallel or coincident.

Theorem XXIX.

636. Iftwoplanes are respectivelyperpendicular

to two intersecting Ivnes, their Une of intersect^on ^s

perpendiealar to the plane of the lines.

Hypothesis. OH, Oh two lines intersecting at 0;

PlaneUN 1 line OJI\

Plane KL 1 line 0/;

TJV, the line of inter-

section of these planes.

Conclusion.

VY L plane EOI.

Proof. 1. Because the

plane MN is perpendicular

to OH, it is perpendicular

to every plane passing

through OH. That is,

Plane MN
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2. In the same way^

Plane KL ± plane HOI,
3. Because ea<5h of the planes is perpendicular to HOL

and UViB their line of intersection,

?7r X plane ^0/ (§ 633). Q.E.D.

Belatlons of Three or more Planes.
636. Remark. When three planes, which we may call

^, r, and Z, mutuaUy intersect, there will be three lines of
intersection:

One line formed by the planes X and F;
One line formed by Fand Z;
One line formed by Z and X.

Theoeem XXX.
637. The three lines of intersection of three

planes are either parallel or meet in a point.

also'^Ilf'
^* ""^ ^^ *^^ ^^""^^ ^^^""^^ '^^ ^' ^""^ ^* ^^'^ ^®

a, the line of intersection of Xand Y'
h, the line of intersection of Fand zl
c, the line of intersection of Z and X

Then—
1. Because the lines a and 5 both lie in the plane T

they are either parallel or intersect each other. The samemay be shown for i and c, and for c and a.

3. Suppose a and b to intersect. Because a lies in both
the planes Xand F, and h lies in both Fand Z, the point
where they intersect must lie in all three planes X, f; andZ Therefore it must lie on both the planes Xand Z, and
therefore on their line of intersection c. The three lines a,
b, and c will then all meet at this point.

3. If a and b are parallel, c cannot meet either of them,
because, by (2), where it meets the one it must meet the
otuer aiBo. xnerefore, in this case, none of the lines will

V^ZI^T^ ^x?
""^ *^® ''^^®^'' *^^ ^6ca«se each pair lies in thesame plane they must be all parallel.

i
"
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«Qft Cnrollar'U 1. // the three lines of intersection of

J^ne'^:^^^^^^ ^/- ^^ree planes all pass through

thatpmnt,
^^^ ^^^^^ ^^^ ^^^^^^^^ ^^ ^^^^ ^^^^

ofmm is also pa/allel to the intersection of any two planes,

one of which passes through each of the lines.

Theorem XXXI. v

640. If the Ivnes of intersection of three planes

are parallel, anyfourth plane Verpendi^^^^^

of the three planes is also perpendicular to the mra
^

HypothesL The parallel lines a, h o are the lines of

intersection of three planes,
«

which wo ckW the planes a&,

Ic, and cff; MN, a plane

perpendicular to the two

planes al and Ic.

Conclusion. ifiV is also

perpendicular to the plane

ac.

Proof 1. Because the .

plane uk is perpendicular to both the planes a& and &., it is

T^prnendicular to their line of intersection I (§ 633).

^ TBecau^ MNi. perpendicular to 5, it is perpendicular

to the lines a and c, parallel to 5 (§ 591).

3. Therefore it is perpendicular to the plane ac, wnicn

passes through those lines (§ 629). Q.E.D.

Scholium. The most

remarkable position of

three planes is that in

which each plane is per-

pendicular to the other

two. By the preceding

theorems each line of

:^4^,v^n/>o+irkTi will he per-

pendicular to the other

two lines of intersec-

tion and to the third plane.

i!
.

^,„,,„...
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CHAPTER III.

OF POLYHEDRAL ANGLES.

A polyhedral angle.
O, the vertex; OA, OB. 00,

etc., the edges ; AOB, BOO,
etc., the faces.

641. Def, When three or more planes pass
through the same point, they are said to form a poly-
hedral angle at that point.

A polyhedral angle is also called a
solid angle.

Each plane which forms a poly-
hedral angle is supposed to be cut off

along its lines of intersection with the
planes adjoining it on each side. "| / \ "'>C

642. Def, Edges of a poly-
hedral angle are the straight Jines
along which the planes intersect.

643. Def. Faces of a poly-
hedral angle are the planes which form it.

644. Def. The vertex of a polyhedral angle is
the point where the faces and edges all meet.

645. The edges of a polyhedral angle may be produced
indefinitely. But to make the study of the angle easy, the
faces and edges may be supposed cut off by a plane. The
intersection of the faces with this plane will then form a poly-
gon, as ^^(72)^.

This polygon is the base of the polyhedral angle.

646. Each pair of faces which meet an edge form a
dihedral angle along that edge. There are as many edges as
faces, and therefore as many dihedral angles as faces.

Hence two classes of angles enter into any polyhedral
angle, namely:

I. The plane angles AOB, BOO, COD, etc., called also
face angles, which the edges form with each other. The
planes on which these angles are measured are the faces.
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i

Example. The plane of the angle A OB is the face bounded

by OA and OB. „ a ,

II. The dihedral angles between the faces, called awo

edge angUs. By § 623 each of these angles is measured by

the plane angle between two lines, one in each face perpen-

dicular to the edge of the dihedral angle.

If the cutting plane ABODE vfQXQ perpendicular to one of

the edges, say OB, then the dihedral angle along OB would

be measured by the plane angle ABG.

But this plane cannot be perpendicular to more than one

edge, so that to measure the dihedral angles in this way we

must have as many cutting planes as edges.

647. Def. Two polyhedral angles are identioally

equal when they can be so applied to each other that

al the faces and edges of the one shaU coincide with

the corresponding faces and edges of the other.

In order that such coincidence may be possible, the face

and dihedral angles of the one must all be equal to the face

and dihedral angles of the other, taken in the same order, each

to each.

Positive and Negative Rotations.

648. When a person looking down upon a point sees

a. motion around that point in a direction

the opposite of that of the hands of a

watch, the motion is said to be positive

relative to his standpoint.

If the motion is in the other direction, I

it is said to be negative.

A motion which is positive when seen

from one side will appear negative when

the observer views it from the other side Positive rotation,

of the plane, or when the figure is turned over so as to be

seen from the other side.

For illustration, imagine one's self seeing the hands of a watch by

looking through it from behind.

To avoid ambiguity one side of the plane of motion may

be taken as positive and the other side as negative. Then a
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positive rotation is that which appears positive when seen
from the positive side, or negative as seen from the negative
side.

Astronomical illustration. If one could look down upon
the earth from above the north pole, the earth would appear
rotating in the positive direction. If he should look down
upon it from above the south pole, it would appear rotating
in the negative direction.

Remark. The habit of regarding the motion opposite that of the
hands of a watch as positive arose from the direction of the north pole
being taken as positive, because astronomy was developed among the
people of the northern hemisphere; these people regarded as positive
the direction in which tlie earth would appear to rotate when seen from
the north.

649. As there are positive and negative rotations, so
letters, angles, and lines

may succeed each other in

a positive or negative di-^
rection.

650. NoTATioia". A
polyhedral angle is desig-

nated by a letter at its ver- letters succeed each

tex followed by a hyphen S."" "^^ "^"'^

and the letters at the vertices of its base.

Letters succeed each
other in the negative
ordor.

661. Def. Symmetrical polyhedral angles are
those which have
their plane and di-

"^

hedral angles equal,

each to each but
arranged in reverse

order, the one posi-

tive and the other

negative when seen

from the vertex.
B BT-

Example. The tri-
^'

hedral angles 0-ABG and O'-A'B'C* are symmetrical when

\

't
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Angle ^Oi? = angle A'0'B\
" BOC=z " B'0'C\
" 00A = " CO'A',

Dihedral angle along edge OA= dihedral angle along edgeO'A ',

" " ,
** ** 0B= " " " *< O'B'

" " '< " 00= " " " " O'c'

The two symmetrical polyhedral angles may be so cut that
the base ABO shall be
identically equal to the ^^
base ^'i?'C". But, in

order to bring these

bases into coincidence,

one of the figures must
be turned over and the

bases brought together

with the vertices in opposite directions, as in the figure.

Hence two symmetrical polyhedral angles cannot in gen-
eral bo brought into coincidence.

653. Be/. Opposite polyhedral an-
gles are those each of which is formed
by the continuation of the edges and
faces of the other beyond the common
vertex.

Example. If the lines AO, BO, 00, and
DO are produced through to the respective

points A', B', C, D', then the polyhedral ^<

angle 0-A'B'C'D' is the opposite of the
angle O-ABOD,

Theorem XXXII.

663. Opposite polyhedral angles are symmet-
rical.

Hypothesis. 0-^5 Ci), any polyhedral angle: O-A'B'O'D'
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Conclusion.

Angle 0-A'B'C'D' is symmetrical to O-ABCD,
Proof. 1. Because ^0^1'

and BOB' are in the same
straight line,

Pace angle A' OB' = opp.

angle A OB.
In the same way it may bo
shown that every other face
angle of the one is equal to
the opposite face angle of the
other. ^

2. Because the linos ^0^' and BOB' ^kbb through the
same point, they are in the same plane. Therefore the faceA OB' IS in the same plane with the face AOB. In the
same way, every other pair of corresponding faces are in the
same plane.

3. Because the dihedral angle between two planes is every-
where the same (§ 619), each of the edge angles OA', OB',
etc., IS equal to the corresponding one of the edge angles
OA, OB, etc., of the other angle.

4. If one should look down upon the figure from above,
the letters ABCD and A'B'O'D' would each succeed each
other in the positive order. Hence if the opposite angle is
turned over into the position 0-A"B"C"D", the order of the
letters wiU appear negative, and therefore the opposite of
those in the original polyhedral angle.

5. Therefore the two polyhedral
angles, being equal in all their face and
edge angles, but having them arranged
in reverse order, are symmetrical.

Q.E.D.
654. Def. A trihedral angle is

a polyhedral angle which has three
edges, and therefore three faces.

Remark. In a trihedral angle each ^^^v^^,^.

tsxie has an opposite edge, and each ed^e K^^^gj! °PP!t*~^^-
an opposite face.

^ ^'ace obc is opp. ^gi oZ

A trihedral angle.
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^--C

Theorem XXXIII.

655. jj/ two face angles of a trihedral angle are
equal, the edge angles opposite them are also equal.

Hypothesis. 0-ABO, a trihedral angle in which face
angle BOA =1 face angle

BOG.
Conclusion. Edge angle

OA — edge angle OC.

Proof. From any point

P of OB drop the perpen-

diculars PM _L OAi
PN L 00;
PD 1 plane ^Oa

Join DM, DN. Then—
1. Because PM intersects the plane A OC in Jf, and PD

is perpendicular to this plane, MD is the projection of PM
upon this plane (§ 600). Therefore, because OA 1 PM,

OA 1 MD. (§606)
2. Because MD and MP are pependicular to OA in the

planes forming the dihedral angle OA,

Dihedral angle OA = plane angle PMD. (§ 623)

3. In the same way, we show

Dihedral angle OC = plane angle PJVD.

4. In the right-angled triangles POM and, PON,
The side OP is common,
Angle PON = angle POM (hyp.);

therefore these triangles are identically equal, and

PN= PM.

6. In the right-angled triangles PDN&nd PDM,
Side PD is common,
PN = PM; (4)

therefore these trianglen are identically equal, and

Angle PND = angle PMD.
6.. Comparing this result with (2) and (3),

Dihedral angle OA = dihedral angle OC. Q.E.D.
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(4)

Theorem XXXIV.
656. In a trihedral angle the greaterface angle

and the greater edge angle are opposite each other.
Hypothesis. 0-ABC, a trihedral angle in which foce

angle BOA > face angle
BOO.

Conclusion. Edge angle
OC > edge angle OA.

Proof. Make the same
constructions as in the last

theorem. Then

—

1. In the same way as
in the last theorem fol-

lows:

Edge angle OA = plane angle PMD.
Edge angle 00 = plane angle PND.

2. In the right-angled triangles POJfandPOiV the lineOP IS the common hypotheuuse; and because angle POM is
greater than angle PON,

Line PM > PN.
3. In the right-angled triangles PDNm^ PBM, because

the side PB is common and the hypothenuse PM greater
than the hypothenuse PJV,

Angle PJ^B > angle PMB.
4. Comparing this result with (1),

Edge angle 00 > edge angle OA. Q.E.D.
Corollary 1. From these two theorems it follows, as in

Bk. II., §115:

657. If one edge angle is greater than another, the face
angle opposite it is greater than that opposite the other.

For the face angles could not be equal without violating
Theorem XXXIIL; nor could that opposite the lesser edge
angle be the greater without violating Theorem XXXIV.

658. Cor. 2. If the edge angles be arranged in the
order of magnitude, the face angles opposite them will be in
the same order of magnitude, so that the smallest, mean, and
greatest angle of the one class will be opposite the smallest,
mean, and greatest angle of the other, respectively.

im

i
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Theorem XXXV.

659. In a trihedral angle in which each of the

face angles is less than a straight angle, the sum of

any twoface angles is greater than the third.

Hypothesis. 0-ABG, a trihedral angle in which AOG la

the greatest face angle.

Conclusion. The sum of the face

angles A OB and BOO is greater than

AOC.

Proof. Through draw in the

plane A 00 a, line OD, making angle

AOD = angle A OB. Let the base

ABC he so cut off that we shall have

OB = OD^ Then—

1. Because the triangles OAB and OAD have

Side OA common,
Side OD = OB, ) ^^, „i.^,«+:«„

Angle ^ 05 = ^OAr"'^'*^"*'^^'
they are identically equal, and

AB = AD.

2. Because ^5C is a plane triangle.

Sides AB + BC> third side A G.

3. Taking away from this inequality the equal lengthsAB
and AD,

BC>DC.

4. Because, in the two triangles OCB and OCD,

Side OCia common,
OD = OB (const.),

and

CB > OD,

we haye

Angle BOC > angle OOD.

5. Adding the equal angif^s A OB and A OD,

(§115)

Angle AOB + angle £00 > angle A 00. Q.E.D.
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Theorem XXXVI.
660. Two trihedral angles are either equal or

symmetrical when the three face angles of the one
are respecUvely equal to theface angles of the other.

Hypothesis. 0-ABC,0''A'B'G', 0"-A"B"C'', three tri-
hedral angles in which

Face angle AOB = angle A'O'B' = angle A"0"B"-
" " BOG= " B'Q'Q'- « B''0"G"''
" " COA = « G'O'A' = " C"0"^"-

orders of angles ABG and A'B'G' positive when viewed
from the vertex, and of A"B"G'' negative.

Jfelusion The edge angles of the trihedral angles are
also equal, and the trihedral angles O-ABC and 0' A'B'C'
are equal, and 0".A"B-G- is symmetrical with them.

fakP r-^* ^^*^.'f'' ^^^ ^'^'' ^""^ ^"^"^ respectively,
take the equal distances OP, O'P' and r)"P" o«^

1. In the triangles OPQ, 0'P'Q\ 0"P''Q"

A 1 „^^ =
^'^' = ^"-^" (const.).'

Angle P(9^ = P'0'^' = P"0"0"(hvp)OPQ = O'P'^' = 0"i>"r (all being rigKngles).
Therefore these triangles are identicaUy equal, so that

OQ = O'Q' = 0''Q",

PQ=P'Q'=.P''Q'\

siiy
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2. In the same way, OPR, O'P'R', and 0"P"R" being

right angles by construction,

OR = O'R' = 0"R'\
PR = P'R' = P"R'\ V

Imagine QR^ Q'R't and Q"R" to be joined, then

—

3. In the triangles OQR, 0'Q'R\ 0"Q"R", etc..

Face angle QOR= Q'O'P' = Q"0"R" (hyp.),

and the sides which include these angles are equal by (1) and

(2). Therefore these triangles are identically equal, and

QR = Q'R' = q"R'vt

4. Comparing with (1) and (2), the three triangles PQR,
P'Q'R'j P'*Q*'R*' have their corresponding sides equal, and

are therefore identically equal to each other. Hence

Angle qPR = angle Q'P'R' = angle Q"P**R'',

5. Because QP, QR, etc., are each perpendicular to their

edges, and lie in their respective faces, their angles measure

the dihedral angle between those faces. Therefore

• Edge angle OA = edge angle O'A^ = edge angle O'M".

6. In the same way may be shown

Edge angle OB = edge angle O'B^ = edge angle 0"J5".

Edge angle 00 = edge angle O'O' = edge angle 0"(7".

Therefore the three trihedral angles have their edge angles

all respectively equal.

7. Because in the first two trihedral angles the arrange-

ment of the equal angles is the same, while in the third this

arrangement is reversed, the first two angles are equal, and

the third symmetrical with them. Q.E.D.

1
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Theorem XXXVII.

fnl^^' 1^ ? ^^'^'^^^ P^^^y^edral angle the sum ofthe/ace angles ts less than a perigon (360°).

thef^lftfi.
O.^^C/>^, a polyhedral angle of which aUthe angles of the base are convex.

Conclusion. Angles AOB -\- BOG+ etc. + EOA < 360°.

Proof. Let n be the number of faces

A^nr. f"^"^
polyhedral angle. The baseABLDEmW then be a polygon. of n sides,

l^t us also put 2, the sum of the face A
angles A OB, BOO, etc. Then—

1. Because ABODE is a convex poly-
gon of n sides,

^

Angle ABO+ angle BCD + etc. = („- 3) straight angles.

anie« ^fT"" t""*^T *°™ " *™°SH the sum ofalMheangles of these triangles is n straight angles. That is,2 + angles {OAB+ 05^ + OBG->t 00B+ etc.)

= « straight angles.

ande a^Tof wr tTf'^^' f^^' ^^^form a trihedralangle at B, of which the face angles are OBA OBO ABC
Angle OBA + OBO > J^a
Angle OC^ + OCD > ^CZ). (§ 659)

etc. etc. etc.

4. Taking the sum of these inequalities, we findSum of the %n base angles of triangles OAB, OBO etc^eater than the sum of the angles of the polygon ABODE-
that 18, greater than n-^ straight angles.

resi"(.7an'dVi:'
*^ ^"" "' '^'^ "^ -^les, the

-^ + -^ = w straight angles.

^ > (/i — 2) straight angles.
The difference of these shows that

or
2 <1 2 Strftiorlif, anncl

Sxv,o,

^<360° Q.E.D.

I'*

' . 1 4 I

Jf

n ;Fi«i Fiffi



BOOK IX.

OF POLYHEDRONS.

CHAPTER I. . ,

OF PRISMS AND PYRAMIDS.

:ll'IIlll{

662. Definition. A solid is that which has length,

breadth, and thickness.

A solid is bounded by a surface.

Eemark. The form, magnitude, and position of a solid

are completely determined by the form, magnitude, and
position of its bounding surface. Hence we may consider

the surface as defining the solid. «

663. Def. A polyhedron is

a solid bounded by planes.

664. Def. The faces of a
polyhedron are its bounding A<

planes.

665. Def. The edges of a
polyhedron are the lines in

which its faces meet. ^
A polyhedron.

666. Def. The vertices of The planes hab, hbc, akb,
t , t ,-, . . . 6tc., are the faces. The lines

a polyhedron are the points m^^.^^, etc., bounding the faces,

i~. T_ . , , ,
-^ are the edges. The points A, B,

which its edges meet. C, D, H, K&re the vertices.

667. Def. Diagonals of a polyhedron are straight

lines joining any two vertices not in the same face.

668. Def A plane section of a polyhedron is

the polygon in which its faces cut a plane passing
through it
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669. I)ef. Two polygons are said to be paraUel
to each other when each side of the one is paraUel to
a corresponding side of the other.

Prisms.

670. Def. A prism is a polyhedron of which theend faces are equal and parallel polygons, and the
side faces parallelograms.

^o
>

em. De/: The bases of a prism are its end faces.

673. Def. The lateral faces are aU except its
pases.

673. Be/, The lateral edges
of a prism are the intersections of
its lateral faces.

674. Def. A right section of
a prism is a section by a plane
perpendicular to its lateral edges.

675. Def. A prism is said to
be triangular. Quadrangular h«» . „f°

hexagonal prism.»5»ufu,«iuaurailgUiar,neZ- ABCDEF and A'B'C'iyE'S^
agonal, etc. , according as its bases *^ ***« '^^^ ^^'^^

are triangles, quadrilaterals, hexagons, etc.

;,. ^J^^'P^f' The altitude of a prism is the perpen-
dicular distance between its faces.

1 ^^Vl -^^^' ^ ^^"^ P^^"^ i» one in which the
lateral faces are perpendicular to its bases.

1 ^^"^h
^^^' ^^ oblique prism is one in which the

lateral faces are not perpendicular to the bases.

679. Def. A regular prism is a right prism whose
bases are regular polygons.

;i.i-;;ii

M

mk.jk.«Bl
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!

Ill

TlIEORSM I.

680. The lateral edges of a prism are equal an4

parallel, and make equal angles with the bases.

Hypothesis. ABC, A'B'C, two edges of the bases of a

prism; ABA'B', BCB'C, the lateral

faces joining those edges.

Conclusion. AA', BB', CC are

equal and parallel and make equal

angles with the bases.

Proof. 1. Because ABA'B' is a

parallelogram (§ 670),

Line BB' - and || AA',

2. Because BB'CC is a parallelo-

gram,
!

Line BB' = and || CC\

3. Because AA' and CC are equal and parallel to the

same line, they are equal and parallel to each other (§ 592).

4. In the same way it may be shown that all the other

lateral edges are equal and parallel. Q.E.D.

5. Because the lateral edges are parallel lines, they make

equal angles with either base (§ 610). Q.E.D.

6. Because the bases are parallel planes, the edges make

equal angles with the two bases (§ 618). Q.E.D.

Theoeem II.

681. The sections of the lateral faces of a prism
by parallel planes are equal and parallel polygons.

Hypothesis. ABCD-A'B'C'D\ a prism; EFOH and

E'F'G'H, sections of the lateral faces by parallel planes.

Conclusion. EFGH = and || WFG'W.
Proof. 1. Because AA' and BB' are parallel lines inter-

secting parallel planes,

EE' = and \\_HF', _ _ _ (§ 615)

Therefore the four lines EF, FF% F'E% and E'E form a

parallelogram and

Line ^ii^= and \\E'F'.
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a prism
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'OH and

lanes.

nes inter-
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'E form a

3. In the ame way we find

819

Line FG = and || ro'.
Line OH— and

|| 0'H\
etc. etc.

A ^1%^}^ '^^®' ^^ *^® respective angles are paraUelAngle BFO = angle E'F'O',
parauei.

Angle FOH = angle F'0'h\

, (§ 608)
^^

etc. etc.
^

Therefore the polygons EFOH
and ^'^'(?'^', having their sides t\and angles, taken in order, all equal
are identically equal. Q.E.D.

'

683. Corollary, Any section of */
a prism hy a plane parallel to the d
bases is identically equal to the
oases.

Theorem III

1.7 T^T.' ff'^^/'f^'^
of a prism hy a plane paral-lel to the lateral edges is a parallelogram.

Hypothesis. ABCA'B'G^ any prism: PORS a sec

*Z,'^
*^^' P"sn^ by a plane parallel to ^ ^ ' '"

AA'y BB'. *X zpiTi

Conclusion. PQRS is a parallelo-
gram.

Proof. 1. Because the line AA' is
parallel to the intersecting plane PQRS,
it cannot meet either of the lines PR or
Q8 which lie m that plane. Therefore

.

the lines AA', PR, and QS are parallel.
^

(§ 637)
3. Because the opposite sides AP jl

^''^^f^^:.
^^' ^""^ ^^ ^^ *be quadrilateral APA'R areparallel, the quadrilateral is a parallelogram, and

„ , ,,
^^ = and

II AA\
o. m the same way we may prove

.. rpu . ^^""^ QS = B.n^\\ A A'.

PO^^t ii^'^"^"^ " ^^' ^^^^ *be quadrilaterali^^//^6 IS a parallelo^rnni. Q.E.D.
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Parallelepipeds.

684. Def. A parallelopiped is a solid contained

by three pairs of parallel planes.

A parallelopiped is therefore a prism of which the

lateral faces are two pairs of

parallel planes.

685. Def. A rectangular

parallelopiped is one whose

faces intersect at right angles.

686. D^. A cube is a par-

allelopiped whose faces are all

squares. ^ paraUeloplped.

Theorem IV.

687.^ The opposite faces of a parallelopiped are

identically equal parallelograms.

Hypothesis. ABCD-BFGH, any parallelopiped.

Conclusion. The opposite faces ABCD and BFOH are

identically equal parallelo-

grams.

Proof. 1. Because 5(7 and

AD are the lines in which the

parallel planes BCFG and

ADEH intersect the third

plane ADBO,
BG II

AD. (§ 614)

2. In the same way it may
be shown that the lines AB and DC are parallel. Therefore

ABGDiBVi, parallelogram. Q.E.D.

3. It may be shown in the same way that all the other

faces are parallelograms. Therefore, by comparing opposite

sides of successive parallelograms,

AB = and || EF,

and 5C= and II
i^(?.

4. Because the sides BA and BG ot the angle ABG bxq

parallel to the sides FE and FG of the angle EFGy
Angle ABG = angle EFG. (§ 608)
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(§ 608)

5. Therefore the parallelograms ABCD and EFQII
having their respective sides and one angle equal, are identi-
cally equal. In the same way it may be shown that every
other pair of opposite faces are equal. Q.E.D.

Corollary 1. The edges of a parallelopiped are twelve in
number

y and may be divided into three eets, each set compris-
ing/our equal and parallel lines.

Cor. 2. The vertices of a parallelopiped are eight in number.
Cor. 3. The diagonals of aparallelopiped are four in num-

ber, and may be drawn from any angle of each face to the
opposite angle of the opposite face.

Theorem V.

688. Thefour diagonals of a parallelopiped all
intersect in a point which bisects them all.

Hypothesis. ABCD-EFGH, any parallelopiped.
Conclusion. The four diagonals ^^

AGy BH, CE, and i>i?^ all inter- ^[
sect in a point (9, and are bisected

by this point.

Proof. Through the opposite

parallel edges AB and HG pass a
plane. Join AH, BG. Then

—

1. Because the sides AB and -^

HG of the quadrilateral ABHG are

equal and parallel, ABHG is a par-

allelogram. Therefore AG and BH, the diagonals of this
parallelogram, intersect and bisect each other.

Let be the point of intersection.

2. In the same way it may be shown that BH and CE
bisect each other. Therefore CE passes through the point of
bisection 0, and bisects CE.

3. In the same way it may be shown that DF passes
through and is bisected by 0. Therefore all the diagonals
pass through and aie bisected by that point. Q.E.D.

v<j«^. j^cf. iiit3 \){jiii.i O iiirougn wnicn all tiie

diagonals pass is called the centre of the parallelo-
piped.

I

i
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Theorem VI.

690. The sum of the squares upon the four
diagonals of a parallelopiped ^
is equal to the sum of the ^

squares upon its twelve edges.

Hypothesis. ABGD - BFOII,
any parallelopiped.

Conclusion. AH'-\-BQ*-^CF'
4- DE' = ^(AC + AB' 4- AE').

Proof. Draw the diagonals of (j

any pair of opposite faces, as ^Z>
and BO, EH and FO. Then—

1. AH and DE are diagonals of the parallelogram ADHE
(§ 688, 1). Therefore

AH' -^ DE' = 2AD' -{- 2AE\ (§316)
2. In the same way,

BG' + CF' = 2BC* + 2BF*
= 2BC' -f 2AE\

3. Adding (1) and (2),

AH' + BO' + OF' + DE' = 2(AD' + BC^) + 4^JSr«.

4. Because AD and ^C are dis'.gonals of the parallelo-

gram ABGD,
AD' + BC = 2AB' + 2A0\ (§316)

6. Substituting this result in (3), we have
Sum of squares of diagonals = 4AB' -j-4:AC* -\- 4:AE*.
6. Since there are four edges equal to AB, four equal to

AC, and four equal to AE, this sum is equal to the sum of
the squares of all the edges, and
Sum of squares of diagonals = sum of squares of edges.

Q.E.D.

Theorem VII.

691. The four diagonals of a rectangular paral-
lelopiped are equal to each other.

Hypothesis. ABCD-EFGH, a rectangular parallelopiped.

Conclusion. The diagonals AH, BG, CF, and DE Skre all

equal.



PjiRALLELOPIPEDS. 823

\e four

-"-^

B

iADHE

(§316)

\AE\
>arallelo-

(§316)

AE\
equal to

I sum of

dges.
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Proof. 1. Because the faces AFvLnd AG are each at right
angles to the fade AD (§ G85), their lino of intersection
AE 18 also perpendicular to that „
face (§ 633), and to the line ^Z> in

that face (§ 584).

2. Therefore ADEH is a rect-

angle, and its diagonals AH and
DE are equal.

3. It may be shown in the same
way that any other two diagonals
are equal. Therefore these diago-

nals are all equal to each other.

Q.E.D.

Theorem VIII.

693. The square of each diagonal of a reetangu^
lar parallelopiped is equal to the sum of the squares
of the three edges which meet at any vertex.

Hypothesis. Same as in Theorem VII.
Conclusion. AH'' = AB^ -{ AC^ •{- AE\
Proof. 1. Because AEH is a right angle (Th. VII., 1),

AH' = AE' + EH*
= AE' + AI)\

2. Because ABD is a right angle,

AD' = AB' + BD'
= AB'-\-AC\

3. Comparing with (1),

AH' = AE' ^AB'-\-A G\ Q.E.D.

693. Scholium. This theorem might have been regarded
as a corollary from the two preceding ones. But we have
preferred an indejjendent demonstration, owing to its impor-
tance. It may be considered as an extension of the Pytha-
gorean proposition from a plane to space.

Pyramids.

694. Def. A Dvramid is a Dolvhedron of whicli

all the faces except one meet in a point.

The point of meeting is called the vertex.

*

( » I

^^^^Wp
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Remark, The face which does not pass through the

vertex is taken as the base.

696. Def. The faces and edges

which meet at the vertex are called

lateral faces and edges.

696. JDef. The altitude of a

pyramid is the perpendicular dis-

tance from its vertex to the plane

of its base.

6911. Def. A pyramid is said to a pyramid,

be triangular, quadrangular, pentagonal, etc., ac-

cording as its base is a triangle, a quadrilateral, a

pentagon, etc.

698. 'Def. If the vertex of a pyramid is cut off by

a plane parallel to the base, that part v^hich remains

is called a frustum of a pyramid.

Theorem IX.

699. If a pyramid be cut hy a plane parallel to

the base, then—
I. The edges and the altitude are similarly di-

vided.

II . The section is similar to the base.

Hypothesis. 0-ABCDE, a pyramid; OP, its altitude;

dbcde, a section of the pyramid by a

plane parallel to the base ABODE,
cutting the altitude line at g.

Conclusions.

I. OF :Og::OB: Ob ::OC:Oc, etc.

II. The polygon abcde is similar to

the polygon ABODE. ^

Proof. 1. Because AB and ah are

the intersections of parallel planes [/

with the plane OAB,
ah II AB. (§614)
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2. Therefore the triangles OAB and Odb ar^ simUar, and
OA : Oa :: OB : Ob

bB.whence Oa -. aA :-. Ob
3. In the same way it may be shown that 00, OP, etc

are all divided similarly at c, g, etc. Q.E.D.
*'

4. It may also be shown, as in (1), that ea^h side of the
polygon abcde is parallel to the corresponding side ofABODE
Therefore the angles of the two polygons are respectively
equal (§ 608), and the polygons are equiangular to each other.

6. Because the bases ab and AB of the triangles Oab andOAB axe parallel,

_ AB :ab = OA :0a.
In the same way,

BO: be:: OB: Ob :: OA : Oa,
CD:cd:: 00 : Oc :: OA : Oa,

etc. etc.

6. Therefore the polygons ABCDE and abcde, having
their angles equal and the sides containing the equal angles
proportional, are similar to each other. Q.E.D.

Corollary 1. Because abcde and ABCDE ^ve similar poly-
gons, their areas are as the squares of ab and AB: that is, as
Oa' : 0A\ or Og' : OP' (§435). Hence:

700. ITie areas ofparallel sections of a pyramid are pro-
portional to the squares of the distances of the cutting planes
from the vertex.

Cor. 2. The base of a pyramid may be regarded as one of
the plane sections, so that if two pyramids have equal bases
and altitudes, the plane sections made by the bases are equal,
and the distances of these sections from the vertices are also
equal. Hence:

701. In pyramids of equal bases and altitudes, parallel
plane sections at equal distancesfrom the vertices are equal in
area, ^

m\\

'i I

lit

'4
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CHAPTER II.

THE FIVE REGULAR SOLIDS.

703. Def. A regular polyhedron is one of which

all the faces are identically equal regular polygons

and all the polyhedral angles are identically equal.

Remaek. a regular polyhedron is familiarly called a

regular solid.

703. Problem. Tofind> Jiow many regular solids

are possible.

1. Let us consider any vertex of a regular polyhedron.

Since at least three faces must meet to form the polyhedral

angle at each vertex, and since the sum of all the plane angles

which make up the polyhedral angle must be less than 360°

(§ 661), we conclude:

Each angle of the faces of a regular solid must be less

than 120°.

2. Since the angles of a regular hexagon are each 120°,

and the angles of every polygon of more than six sides yet

greater, we conclude:

Bach face of a regular solid must have less than six sides.

Such faces must therefore he either triangles, squares, or

pentagons.

3. If we choose equilateral triangles, each polyhedral angle

may have either 3, 4, or 5 faces, because 3 X 60°, 4 x 60°,

and 5 X 60° are all less than 360°. It cannot have 6 faces,

because each angle of the triangle being 60°, six angles would

make 360°, reaching the limit. Therefore no more than

three regular solids may be constructed with triangles.

4. Because each angle of a square is

Therefore only one regular

6. Because each angle

90°, three is the only

nnlvViAflral an or] ft.

have square faces.

alar pentagon is 108°, a
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^^l

polyhedral angle cannot be formed of more than +}ir«n >. .

..J'
"^^ *^«^?;f?^« conclude that not more than five re^kr

eJSt^: ''^^^TTsJ'z "^ ^-^^ *^"^ «^"*'^'-

CO^, and join them at the common
vertex, 0, ABO win be an identi-
cally equal equilateral triangle.
Therefore a polyhedron will be
formed having as faces four identi-
cal equilateral triangles.

This solid is a regular tetra-
hedron.

lelop'Jedof'l;^^^^^^^^^^^

is clear from §§ 685-693 ^ '''* ^*' construction

T06. The Octahedron. Let
-45CZ> be a square; 0, its centre;
^{f, a Ime passing through perpen-
dicular to the plane of the square.

On this line take the points P and
A«=££---'-/-Or'-±i::^-^D

Q, such that PA, PB, PO, and Pi>
also QA, QB, QO, and QB, are each
equal to a side of the square. The
^f^^f'^BOD^Q will be a regular

PrlTT 1'' ^'' '^^'^ ''^^^ ^^"''J^teral trianglesPm/. 1. Because all the lines from Por to
7* P n aD are equal, all the eight triangles which form fh.^'

'

equal and equilateral.
°^ *^® ^*^^s are

3. Let a diagonal be drawn from A to D
Because is the centre of the square jpnn +t.- ^•

onal will y>oc,« fi, 1 ^ , .
«4"'*re ^//6x', this diair-

^, ^, ^, and D are in one plane.
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3. In the triangles APDy ABD, AQD we have

Side AD common,

All the other sides equal.

Therefore the triangles are identically equal; and because

ABD is a right angle, APD and AQD are also right angles,

and the quadrilateral APDQ is a square equal to the square

ABCD.
. ^ ^

4. Because the polyhedral angle at B has its four faces

and its base APDQ equal to the four faces and the base

ABCD of the polyhedral angle at P,

Polyhedral angle B = polyhedral angle P.

5. In the same way it may be shown that any other two

polyhedral angles are equal. Therefore the figure P-ABGD-Q

is a regular solid having eight equilateral triangles for its faces.

This solid is called the regular octahedron.

707. The Dodecahedron. Taking the regular pentagon

ABODE as a base, join to its sides

those of five other equal pentagons,

so as to form five trihedral angles

at A, B, 0, D, and E, respectively.

Because the face angles of these

trihedral angles are equal, the angles

themselves are identically equal.

(§ 660)

Therefore the dihedral angles

formed along the edges AK, BL,

CM, etc., are equal to the dihedral angles AB, BO, etc.

Therefore the face angles EAK, LBC, etc., are identi-

cally equal to the angles of the original regular pentagons.

Pass planes through JT^Pand OKF, etc., and let FP be

their line of intersection. Then, continuing the same course

of reasoning, it may be shown that the face angles GKF,
FLJ, etc., are all angles of 108°, or those of a regular penta-

gon. Completing this second series of five pentagons, we shall

have left a pentagonal opening, which being closed, the surface

Ol LU6 UUi Y UUtliAJli will J7C tJUiiipicluu. tto DiiUTTii 111 tuo Uxaijji tiixii.

The solid thus formed has \% pentagons for its sides, and

is called a regular dodecahedron.
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deS; and

o J^^\ ^^^ IcosaTiedron. Let five equilateral tnauffiee forma polyhedral angle at P, such that
^laugies form

the dihedral angles along FA, FB
etc., shall all bo equal.

The base ABCDB will then form
a regular pentagon.

Complete the polyhedral angles
at A, B, O, D, and B by adding to
each three other equilateral triangles,
and making the dihedral angles
around^, ^,C; etc., all equal.

It can be then shown, as in the
case of the dodecahedron, that the lines F G H T 1 ^mform a second regular pentagon. ' ' ' ^' "^ ^^^

This solid is called the icosahedron.

709. The five regular solids are therefore-
The tetrahedron, formed of 3 triangles.
Ihe cube, or hexahedron, formed of 6 squares.
The octahedron, formed of 8 triangles.
The dodecahedron, formed of 13 pentagons.
The icosahedron, formed of 20 triangles.

Theoeem X
TIO. The perpendiculars through the centres ofthe faces of a regular solid meet in a point which

lyj^^^^fstantfr^ all the faces, f%o:i aUhe
edges, andfrom all the vertices.

lar fj.fr'- ^f^^f. ^^? ^^^^^^ *^« ^^««« 0^ a regu-
lar polyhedron, intersecting along the edge ^5- thP
centres of these faces; OR. OR. ^.rr..^^^^^.t,: .yl 1\

*^'

Conclusion, These perpendiculars meet all the perpen-
diculars through the centres of the other faces in a pointR equally distant from all the faces, edges, and vertices

J
i 1
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Proof, From and Q drop perpendiculars upon the edge

AB, Then—
1. Because these perpendic-

ulars are dropped from the cen-

tres of regular polygons, they

will fall upon the middle point

P of the common side AB,
2. Because PO and PQ are

perpendicular io AB oi the same

point Py and OR and QR arc

perpendiculars to the intersecting

planes, they will meet in a point (§ 6?.7).

Let R be their point of meeting. Join PR. Then

—

3. In the right-angled triangles POR and PQR we have

Side PR common,

pd = PQ (being apothegms of equal polygons).

Therefore these triangles are identically equal, and

OR = QR.

Angle PRO = angle PRQ.

4. If S be the centre of any other face adjacent to

ABODE, it can be shown in the same way that the perpen-

dicular from S will meet QR in a point.

5. Because the angles between the faces Q and 8 are the

same as between and Q, it may be shown that the perpen-

dicular from 8 will meet QR in the point R.

6. Continuing the reasoning, it will appear that all the

perpendiculars from the centres of the faces meet in the same

point R.

7. If from R perpendiculars be dropped upon all the edges

and all the vortices, these perpendiculars, together with those

upon the corresponding faces and the lines like ^P and QB

from the centres of the faces to the edges and vertices, will

form identically equal triangles. Hence will follow the con-

clusion to be demonstrated.

Note. We have given but a brief outline of the demonstration,

which the student may complete as an exercise. The conclusions may

also be considered as following immediately from the symmetry of the

polyhedron.
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Theorem XI.

711. ^ regular solid is symmetrical with respect
to all its/aces, edges, and vertices.

Proof, Let ABO be a face of any regular polyhedron-
A, B, and G will then be yer-

'

tices.

Let AD, BE, BF, etc.,be

the edges going out from these
yertices.

Now moye the polyhedron so
as to bring any other face into
the position ABC. This can be
done, because the faces are all

identically equal.

Because the polyhedral angles
are all identically equal, whatever polyhedral angles take the
positions A, B, 0, their faces and edges will coincide with the
positions of the faces and edges already marked in the figure.

Because the edges are all of equal length, the yertices at
the ends of D, E, F, will fall into the same positions where
the former yertices were.

Continuing the reasoning, the whole polyhedron will be
found to occupy the same space as before, eyery face, edge,
and yertex falling where some other face, edge, or yertex was
at first.

Because this is true in whatever way the positions of the
faces may be interchanged, the polyhedron is symmetrical.

Q.E.I).
713. Corollary. Conyersely, if a polyhedron le such

that, when any one face is brought into coincidence with the
position of any other, every otherface shall coincide with the
former position of some face, the polyhedron is regular.

Theorem XII.

If a plane oepassed tlirougTi each vertex of
- solid, at right angles to the radius, these

planes will he thefaces of another regular solid

a regular

n\

5-!|
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Proof, 1. Let A, B, and (7 be any vertices of a regular

solid, and its centre. Imagine

planes passed through 4> B, and G,

perpendicular to OA, OB, and 00
respectively, and cut off along their A.-^

lines of intersection, so as to form \, / y:^B

the faces of another solid. We call

this the new solid, and the original '^^"'
^

one the inner solid,

2. Because the inner solid is regular, if we bring any other

of its faces into the position ABC, the whole solid will occupy

the same position a? before (§ 711).

3. Because each face of the new solid is at right angles

to the end of a radius to some vertex of the inner solid,

f.nd these radii all coincide with the former positions, the

plane of each face of the new solid will, when the change of

position is made, take the position of the plane of some other

face.

4. Therefore the edges in which these planes intersect

will take the positions of other edges.

5. Therefore the vertices where these edges meet will take

the positions of other vertices.

6. Therefore the new solid occupies the same space as

before the change, and is consequently symmetrical with

respect to all its faces, edges, and vertices.

Therefore it is a regular solid (§ 712). Q.E.D.

714. Def. A pair of polyhedrons such that each

face of the one corresponds to a vertex of the other

are called sympolar polyhedrons.

Theobem XIII.

716. Every regular solid has as many faces as

its sympolar has wrtices, and as many edges as its

sympolar has edges.

Proof, 1. Continuing the reasoning of the last theorem,

it is evident that the centres of the faces of the new solid

coincide with the vertices of its sympolar.
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2. Because each edge of a regular solid is equally distant
from the centres of two adjoining faces, each edge of the new
solid will be equally distant from two adjoining vertices of the
sympolar.

3. Since every two such vertices are connected by an edge
of the sympolar, the new soHd will have as many edges as the
sympolar, each edge of the one being
at right angles and above the edge of
the sympolar. Q.E.D.

Let Ay B, and C be three vertices ^- ^ "^ -'*

of the sympolar, and therefore the
centres of three faces of the new solid.

4. By what has just been shown, P«,
Ph, and Pc will be three edges of the
new solid, meeting in a vertex at P,
Therefore

—

5. The new solid will have a vertex over the centre of each
side of the sympolar, and so will have as many vertices as the
sympolar has faces. Q.E.D.
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Theorem XIV.

716. The sympolar of a polyhedron whose faces
have 8 sides will have S-hedral angles.

Proof. The vertex of one polyhedron being at P over the
centre of the face of its sympolar, the edges meeting at this
vertex are each perpendicular to an edge of the face of the
sympolar.

Therefore if the face has S sides, the polyhedral angle
above it will have S edges, and therefore 8 faces. Q,E.D.

•717. Corollary. Conversely, the sympolar of a poly-
hedron, whose vertices are S-hedral will have S-sided faces.

718. Corollary. What pairs of regular solids are sympolar
to each other can be readily determined from the preceding
theorems.

The tetrahedron has four vertices. Therefore its sym-
polar has four faces, and is therefore another tetrahedron.
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The cube has 8 trihedral vertices and 6 four-sided faces.

Therefore its polar has 8 triangular faces and 6 four-hedral

vortices. This is the octahedron.

Conversely, the sympolar of the octahedron is the cube.

They each have 8 edges.

The dodecahedron has 12 pentagonal faces and 20 tri-

hedral vertices. Therefore its sympolar has 12 five-hedral

vertices and 20 triangular faces. This is the icosahedron.

Each of these polyhedrons has 30 edges.

These results are shown in the following table, where the

headings at the top of each column refer to the solid on the

left, and those at the bottom to its sympolar on the right.

SoUd.
i

Number
of sides
to each
face.

Number
of faces.

Number
of edges.

Number
of

vertices.

Number
of edges
at each
vertex

Tetrahedron.
Cube.
Octahedron.
Dodecahedron.
Icosahedron.

8
4
8
6
8

4
6
8
n
20

6
13
n
80
80

4
8
6
ao
12

8
8
4
8
6

Tetrahedron.
Octahedron.
Cube.
Icosahedron.
Dodecahedron.

Number
of edges
at each
vertex.

Number
of

vertices.

Number
of edges.

Number
of faces.

Number
of sides
to each
face.

Sjrmpolar

Note that each column applies to two solids. For instance, the left-

hand column shows the number of sides to each face of the solid named

at the leit, and the number of edges at each vertex of the £olid named at

the right.
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BOOK X.

OF CURVED SURFACES.

CHAPTER I.

THE SPHERE.

Definitions.

719. Def. A curved surface is a surface no part
of which is plane.

720. Def. A spherical surface is a surface which
is everywhere equally distant from a point within it
called the centre.

•731. Bef. A sphere is a solid bounded by a
spherical surface.

Note 1. A spherical surface may also be described as the
locus of the point at a given distance from a fixed point
called the centre.

Note 2. In the higher geometry a spherical surface is

called a sphere. We shall use this appellation when no con-
fusion will thus arise.

732. Def. The radius of a sphere is the distance
of each point of the surface from the centre.

733. Def. A diameter of a sphere is a straight
line passing through its centre, and terminated at both
ends by the surface.

Corollary. Every diameter is twice the radius; therefore
all diameters of the same sphere are equal.

•^QA. V -a- -'- -.- w-rw m wf K_5.i.«iiiff^ I;t t n. >-l ;

v% ; — 1.iSjut? lA^ a, D^^iici c its u, pia-ue
which has one point, and one only, in common with
the sphere.
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726. Def. A line is tangent to a sphere when it

touches the spherical surface at a single point.

i 726. Def. Two spheres are tangent to each other

when they have a single point in common.

727. Def. A section of a sphere is the curve

line in which any other surface intersects the spherical

surface.

728. Def Opposite points of a sphere are points

at the ends of a diameter.

Theorem I.

729. Etiery section of a sphere hy a plane is a

circle of which the centre is the foot of the perpen-

dicularfrem the centre of the sphere upon the plane.

Hypothesis. AB, any sphere; 0, its centre; QRS, the

curve in which a plane intersects the

spherical surface; OC, the perpen-

dicular from upon the cutting

plane.

Conclusion. QRS is a cirde^l

having G as its centre.

Proof. 1. Because the lines

OQ, OR, OS&ve radii of the sphere,

they are equal.

2. Because they are equal, they meet the plane QRS at

equal distances from the foot G of the perpendicular (§ 595).

Therefore the curve QRS is a circle around (7 as a centre.

Q.E.D.

730. Corollary. The line through the centre of a circle

of the sphere, perpendicular to its plane, passes through the

centre of the sphere.

731. Def. The circular section of a sphere by a

plane is called a circle of the sphere.

732. Def. If the cutting plane passes through the

centre of the sphere, the circle of intersection is called
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733. Corollary. All great circles of the sphere are equal

to each other.
^ x^

i^
«•!*»

xt, "^^l* ^y- "^^ ^"^^ P^^'^*^ ^^ w^ich a perpendicular
through the centre of a circle of the sphere intersects
the surface of the sphere are called poles of the circle.

Cor. 2. Because the perpendicular passes through the
centre of the sphere:

736. The two poles of every circle of the sphere are at the
extremities of a diameter, and so are opposite points (§ 728).

Theorem II.

736. Every great circle divides the sphere into two
taentically equal hemispheres.

Hypothesis. AB, a circle of the sphere, having the centre
of the sphere in its plane and

dividing the sphere into the partsM and iV;

Conclusion. The parts Jfand JV
are identically equal.

Proof. Turn the part M, on 0>|
as a pivot so that the plane^^ shall

return to its own position but be
inverted. Then—

1. Because the centre remains
fixed, the great circle AB will fall

upon its own trace.

2. Because the surfaces if and JV are everywhere equally
distant from the centre, they will coincide throughout.

Therefore the parts are equal. Q.E.D.

Theorem III.

737. Any two great circles Used each other.
Proof. Let AB and CD be the two great circles. Because

the planes of these circles both pass through the centre of

"-ii

r I
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the sphere, their line of intersection is a diameter of the

sphere, and therefore a diameter of each circle.

Hence it divides each circle into two equal parts. Q.E.D.

738. Corollary. If any number of great circles pass

through a point, they will also pass through the opposite

point.

Theorem IV.

739. Through three points on a sphere one circle,

and only one, can be passed.

Proof. 1. Three points determine the position of a plane

passing through them (§ 580).

2. This plane cuts the sphere in a circle of the sphere.

(§ 'J'29)

3. Because the three points lie both upon the sphere and

in this plane, they lie in thi^ circle.

4. Only one circle can pass through these points (§ 241).

6. Therefore this circle, and no other, passes through the

three points. Q.E.D.

Theorem V.

740. 77:rough two points upon a sphere, not at

the extremities of a diameter, one great circle, and
only one, can pass.

Proof. 1. Because the plane of the great circle must pass

through the centre of the sphere, the centre and the two

points on the surface determine its position (§ 580).

2. But if the points are at the extremities of a diameter,

the centre is in the same straight line with them, and an

infinite number of planes may pass through them (§ 577, II.).

741. Def. The arc between two points on a sphere

means the arc of the great circle passing through

these points.

743. Equal arcs upon the same sphere subtend

equal angles at the centre.
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Proof, Because all great circles are equal, their arcs are
arcs of equal circles (§ 733).

Because their centres are in the centre of the spheres, and
because equal arcs subtend equal angles at the centre (§ 308)
their equal arcs subtend equal angles at the centre of the
sphere. Q.E.D.

743. Corollary, Equal chords in the sphere suMend
equal angles at the centre.

744. Corollary. The angular distance letween two points
on the sphere may le measured either by the great circle join-
ing them, or by the angle between the radii drawn to them.

Note. By the distance of two such points is c< imonly meant their
angular distance

Theorem VII.

745. All points of a circle of the sphere are
equally distantfrom a pole.

Hypothesis. QR, a circle of the sphere AB-, P, P', the
poles of the circle.

Conclusion. Every point of the
circle QR is equally distant from
P and equally distant from P'. q^

Proof. 1. Because PP' is a
line through the centre of the a I

circle perpendicular to its plane,

every point of this line is equally
distant from all points of the
circle (§ 594).

3. ThereforeP and P', being on ^
the line, are each equally distant from all points of the circle.

Q.E.D.

746. Corollary. Every point of a circle of the sphere is
at an equal angular distancefrom the pole.

747. Bef. The polar distance of a circle of the
sphere is the common angular distance of all its
points from either pole.

'sU

^ffii

'W\
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Cor, 2. The angular distance of two poles is a semicircle,

because they are at the extremities of a diameter. Hence:

748. The sum of the distances of a circle from its two

poles is a semicircle.

749. Cor. 3. Every point of a great circle of the sphere

is half a semicircle or a right angle distantfrom each pole.

750. Def. A quadrant is an arc of one fourth a
great circle, or half a semicircle.

Corollary. A quadrant subtends a right angle from the

centre of the sphere.

Illustration. If AB is a great

circle of the sphere, and P and P'
its poles, then

ArcP^P' = arcPBP' = semicircle.

Arc PB =' arc PP' = quadrant. ^
Angle POB = angle BOP' = right

angle.

751. Corollary. On a sphere

the locus of a moving point one quad-

rant distant from a fixed point is a great circle having the

fixed point as its pole.

Theorem VIII.

753. The poles of any two great circles lie on a
third great circle, having their points of intersection

as its poles.

Hypothesis. AB, CD, two great

circles intersecting in the points B and

P'; P, P', the poles of AB; Q, Q', the

poles of CD.

Conclusion. The poles P, Q, P', Q' A
lie on the great circle having E and P'
as its poles.

Proof. 1. Because P and P' are

no^^+fl '^^ ^lio orroof. nirnlo A Ti of

which P and P' are the poles.

Arc PR = arc PB'= arc P'B = arc P'P'= quadrant (§ 749).
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2. Because R and R' are points on the circle CD of
which Q and Q' are the poles,

'

Arc QR = arc QR' = arc Q'R = Q'R' = quadrant.
3. Because P, ^, P', and Q' are points each one quadrant

distant from R and R', they lie on the great circle having R
and R* for its poles (§ 761). Q.E.D.

B

B

Theorem IX.

•763. Conversely, if the poles of two great circles
lie on a third great circle, the two great circles will
intersect in the poles of that third circle.

Proof, 1. Because all points one quadrant distant fromP
lie on the great circle AB, the poles of
every great circle through P must lie

somewhere on the circle AB,
2. In the same way, the poles of

eyery great circle through Q lie on
the great circle CD. ^j

3. Therefore the poles of the great
circle through P and Q lie in both of
the great circles AB and CD) that
is, in the points R and R', in which
AB and CD intersect. Q.E.D.

•754. Def A great circle having a point B as its
pole IS caUed the polar circle of the point R.

The great circle containing the poles of other great
circles IS called the polar circle of these other circles.

^ ^5^, Corollary 1. If any number of great circles have
tfieir poles upon another great circle, they will all intersect
tn the pole of that other circle.

756. Cor. 2. If any numher of great circles pass through
a common point, their poles will all lie on the polar circle of
that -w^'****' '^
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Theorem X.

757. The angular distance between two poles of

circles is equal to the dihedral angle between the

planes of the circles.

Proof. 1. If P and Q are two poles of circles, then the

perpendiculars from P and Q upon p

the planes of the circles pass through

the centre of the sphere (§§ 730, 734). c.

2. Because these perpendiculars

pass through the centre of the sphere, a[

the arc P^ is equal to the plane angle

between them (§ 744).

3. Because they are perpendicular

to the planes of the circles, the angle

they form is equal to the dihedral angle between those

planes (§ 625).

4. Comparing (2) and (3), the arc P^ is shown to be equal

to the dihedral angle between the planes. Q.E.D.

Theoeem XI.

758. 7/" one great circle passes through the pole of

another, their planes are perpendicular to each other.

Proof. 1. Because one pole lies on the polar great circle

of the other pole, the angular dis-

tance of the poles is a quadrant.

2. Therefore the dihedral angle

between the planes of the circles is a

right angle (§ 757). Q.E.D.

759. Corollary. If any number

of great circles vass through a com-

mon point, the., planes will all be

perpendicular to the plane of their

"
-r-k 1 -1 rt •!• /o iv(-j\ i^i • If three great circles Intersect

For, by definition (§ 764), their at Q, their planes intersect

polar circle passes through all their ^^ng oq, and their poles, p,
~ , -I "i" 1 • •i~ » -^> -^"'"5 lis on another great
poles, and its plane is tneref'^re per- circle of which q is the poie,

pendicular to all of their planes by *'^<* ^f which the plane opf''
*", .

X ./ jg perpendicular to each of thf

the theorem. given planes.

Illtistration of $$ 758, 769.
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•760. Two spherical surfaces intersect each other
in a circle whose plane is perpendimlar to the line
joining the centres of the spheres, and whose centre
is in that line.

Hypothesis. 0, 0', the centres of two spheres; ADB,
the curve line in which
their surfaces intersect.

Conclusion. ADB is a
circle having its centre on
the line 00' and its plane

perpendicular to that line.

Proof. Let A and D
be any two points on the

curve of intersection.

Join OA, O'A, OD, and O'D.
From A and D drop perpendiculars upon 00\ Then—
1. In the triangles OAO' and OBO' the side 00' is

common; OA = OB and O'A = O'B, because these lines are
radii of the same sphere. Therefore

Triangle OA 0' = triangle OBO' identically.
a. Because these triangles are identically equal, perpen-

diculars from A and B upon the base 00' are equal (8 175)
and the feet of these perpendiculars meet 00' at equal
distances from 0; that is, at the same point. Let C7be this
point.

+ L?^T'^ *^^ .^'"^' ^^ ^^^ ^^ ^^« ^«*^ perpendicular

/Lo.x .1 ""^^ '"^ ''''^ P^^"® perpendicular to this line
(^586); and because they are equal, their ends are in a circle
having its centre at C. Q.E.D.

Theorem XIII.

761. A plane perpendicular to a radius of the
svhere at ita ficrf.rfm'iUi -/o ^ ^

tyi^fui/c/oo vu c/ic dpfiere.

Proof. Let OP be the radius to which the plane is per-
pendicular. Then—

I

'"
f-
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1. Because OP is a radius, the point P is common to the

sphere and the plane.

2. Because OP is perpen-

dicular to the plane, it is the

shortest line from to the

plane. Therefore every other

point of the plane is without

the sphere.

3. Therefore the plane is a

tangent to the sphere at the point P. Q.E.D,

763. Corollary 1. Every line perpendicular to a radius

at its extremity is tangent to the sphere (§ 725).

763. Cor. 2. Conversely, every plane or line tangent to

the sphere is perpendicular to the radius drawn to the point of

contact. \

Theorem XIV.

764. All lines tangent to a sphere from the same
externalpoint are equal, and touch the sphere in a
circle of the sphere.

Proof. Let be the centre of the sphere; P, the point

from which the tangents are drawn;

P8, PT, any two tangents touching

the sphere at 8 and T. Then

—

1. In the triangles PSO and P20
the side PO is common ; OS = OT
(because they are radii), and angle

OTP = angle OSP (both being right

angles) (§ 763).

Therefore these triangles are iden-

tically equal, whence

PS = PT. Q.E.D.

2. Because the triangles PSO and

PTO are identically equ2, tlif perpendiculars from 8 xind T
upon PO are equal, and meet FO at the same dist8t{»30 from

P\ that is, at the same point Q. Since 8 and T may bo any

two points in which tangents through P touch the sphere, all

these points are in one plane, and in a circle having its coiifj-e

at Q. Q.E.D
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765. Throughfour points not in the same planeone spherical surface, and no more, may pass.
Proof, Let ^^(7Z) be the four points.

Join ABy BC, CD, and bisect each of these
hnes by a plane perpendicular to them.
Let us call these respective planes the
planes (ah), {he), {cd). Then—

1. If the sphere passing through A,
B, C, and D exist, then, because its centre
IS equally distant from A and B, it lies
in the plane {ah) bisecting AB perpendicularly (§ 589).

2. In the same way, it lies in the other two bisecting
planes, and therefore in their point of intersection if they
nave one. •'

3. If they have no point of intersection, their three lines
of intersection are parallel (§ 637).

4. Suppose these lines to be parallel. Because the plane
^jBC contains the line AB 1. plane {ah),

Plane ABC L plane {ah), (8 639)
For the same reason.

Plane ABC ± plane {he).

Because plane ABC 1 to both the planes (ah) and (he),
and (cd) is a third plane having parallel lines of intersection
with (ah) and (he).

Plane ABC 1 plane (cd). (§ 640)
Because plane ABCL plane (cd), and line CDJL plane (cd),

by construction, therefore CD lies in the plane ABC( § 631),
and A, B, C, D lie in one plane, which is contrary to the hy-
pothesis; whence the lines of intersection are not parallel.

5. Therefore the three planes intersect in a point (§ 637),
which point is equally distant from A, B, C, and D, and
which may therefore be the centre of a sphere passing through
A,B, (7, andi>. Q.E.D.

^ i'
6 s

Corollarv. The fournoints Ann ot,/i n^— v« a^v^-
as the vertices of a tetrahedron. The edges will then be the
six Unes formed by joining every pair of vertices, and we may

'N:

I

iij
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take any three of those edges to determine the positions ol

the planes whose point of intersection is the centre of the

sphere. Hence:

766. The six planes which bisect at right angles the six

edges of a tetrahedron all pass through a point*

SIX

Theorem XVI.

767. ^ spJiere may be tangent to anyfour planes

wMcTi do not intersect in a point, and of which tJie

lines of intersection are not all parallel.

Proof. Let AB, AC, AD, BG, BD, and CD be the

lines of intersection of the four planes,

taken two and two.

Bisect any three of the dihedral

angles which lie in one plane, as ABy
BC, and AC, by other planes.

Let be the point in which these

planes meet. Then

—

1. Because is on the bisector of

the dihedral angle BA, it is equally

distant from the faces ABC and

ABD (§ 638).

2. In the same way is equally distant from the faces

BCA and BCD, and from CAB and CAD.

3. Therefore the point is equally distant from the four

planes; and if a sphere be described having its centre at

and its radius equal to the common distant:, it will be tan-

gent to ail four planes. Q.E.D.

Corollary. Since we may take any three dihedral angles

not meeting in a point to determine the centre of the sphere,

we conclude:

768. The six planes which bisect the six edge angles of a

tetrahedron intersect in a point.

Scholium. It may be shown, as in the case of the tri-

angle, that besides the sphere inscribed in the tetrahedron

there are four escribed spheres, each touching one face

externally and the other three faces produced.
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CHAPTER II.

OF SPHERICAL TRIANGLES AND POLYGONS.

769. Def. If two great circles of the sphere inter-
sect, they are said to make an angle with each other
equal to the angle between their tangents at the point
of intersection.

Illustration. If the great circles a and I intersect at 0,
and if H and K are their respective tan-
gents at Oy then their angle is measured
by the angle HOK between the tangents.

770. JDef. A spherical triangle
is the figure fonned by joining any
three points on the sphere by arcs of
great circles.

771. Def. The points which are
joined are called vertices of the tri-

angle.

772. Def. The arcs of which a spherical triangle
is formed are called sides of the tri-

angle.

773. Def The angles which the
sides make with each other are
called angles of the triangle. a spherical tnangie.

Remark 1. Between any two points two arcs of a gi-eat
circle may be drawn, the one greater and the other less than
a semicircle. In forming a spherical triangle the arcs less
than a semicircle are supposed to be taken, unless otherwise
expressed.

Remark 3. In a spherical triangle, as in a plane tri-
angle, each side has an opposite angle and two adianfiTi+.
angles, and each angle has an opposite side and two adjacent
Bides.

''

y." aa}\
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Theobem XVII.

774. The angle between two great circles is equal

to the dihedral angle betwa i.ovoi plants.

Hypothesis. AB, CD, iwo g cat circles of the sphere;

PQ, the line of intersection of their

planes; QB, QF, their respective

tangents at Q.

Conclusion. The angle between

the circles is equal to the dihedralAl

angles along PQ.
Proof. 1. By definition the

angle between thQ circles is meas-

ured by the angle EQF (§ 769).

2. Because QF and QE are tangents to the circlesAB and

CD, they are perpendicular to the diameter PQ; and because

they lie in the planes AB and DC, their angle measures the

dihedral angle between those planes (§ 623).

3. Therefore the angle between the great circles AB and

CD is equal to the dihedral angle along PQ. Q.E.D.

TheoremXVIII.

775. J^ on two great circles points he taken a

quadrant distant from their points of intersection,

the arc between the points measures the angle be-

tween the circles.

Hypothesis. AB, CD, two great circles of the sphere

intersecting along the line PQ', B, D,

two points each a quadrant distant

from P and Q.

Conclusion. The arc BD is equal

to the angle BQD between the circles. A( '
>i^---l---^^

Proof. From the centre erect

in each plane a perpendicular to PQ.

Then—
1. Because these perpendiculars

are erected from the centre, they will meet the great circle in

the points B and D.
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2. Because OB and OD are radii of the sphere,
Arc BD = angle BOD.

3. Because OB and OD are perpendicular to PQ^
Angle BOD = dihedral angle of planes.

4. Because angle BQD = dihedral angle of planes (§623),
Angle BOD = angle BQD = angular distance BD. Q.E.d!

TnEOREM XIX.
•776. ^^e angular distance between the poles of

two great circles is equal to the angle between the
circles.

Proof. Let P aiid ^ bo the poles
of the great circles AB and OD, and

the centre. Join OP, OQ. Then—
1. Because P and Q are poles, by A

definition.

OP 1 plane ^P;

)

(§ 734)Oq 1 plane CD.
Therefore

Angle PO^ = dihedral angle between planes,

= angle between circles. Q.E.D.
Corollary 1. From this and the preceding theorem, with

Theorem XI., follows:

7*77. If through the poles P and Q of two great circles a
third circle be passed intersecting the other circles at A, 0, P,
and D, we shall have—

I. Angle PQ = angle AC = angle BD,
= angle between circles AB and CD,
= dihedral angle BOD.

II. The third ci. jle will intersect both the other circles at
right angles.

778. Cor. 2. If two sides of a spherical triangle are
quadrants, the angles opposite these sides will be right angles.

Belatioii of a Spherical Triangle to a Trilie-
dral Angrle at the Centre of the Sphere.
Because the three sides of a spherical triangle are arcs of

51^0.0 unCiuo, Luuir pianea ail intersect at tne eeniiu of the
sphere, where they form a solid trihedral angle.

wm
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By § 744 tho throo sidoa of tho triangle are measured by

the three plane angles of tho solid angle, and by § 774 the

three angles of the triangle are measured by the three dihe-

dral angles of tho solid angle. Hence:

779. To every spherical triangle corresponds a trihedral

angle at the centre of the sphere, having its six parts equal to

the parts of the spherical triangle.

Conversely, if 0-AliC be any trihedral angle, we may

imagine a sphere with its centre at

and an arbitrary radius OP, Then

—

The surface of tho sphere will in-

intersect the edges OJ, OB, 00 at

the points P, Q, and E.

The same surface will intersect

the planes OAB, OIW, OCA in tho

arcs of great circles PQ, QU, HP,

which arcs will form a spherical tri- ^^

angle. Hence:

780. Bvery trihedral angle may

be represented by a triangle on a

sphere having its ce?Ure at the vertex.

From this it follows that the relations proved in §§ 655-660

between the faces and angles of a trihedral angle are true of

spherical triangles, when for the face angles of the trihedral

angle we substitute the sides of the spherical triangle, and for

the dihedral angles tho angles of the triangle. We thus con-

clude:

'7 SI, If two sides of a spherical triangle are equal, the

opposite angles are equal (§ 655).

782. In a spherical triangle the greater side and the

greater angle are opposite each other (§ 656).

783. The sum of any two sides of a spherical triangle is

greater than the third side (§ 659).

784. Two spherical triangles are equal when their sides

are equal and similarly arranged (§ 660).

WOR WT^ .^./v^. «/• 47>a iTiifoo et'rfpa r\fn snlrp.r'Ir.nl, f.rin.nnln

is less than a circumference (§ 661).
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Symmetrical Spherical Triangles.
786. Def. Two spherical triangles are said to beoppoaite when the vertices of the one are at the ends

of the diameters from the vertices of the other.
Corollary 1 Since tho radii AO, BO, CO from* the ver-

tices of a spherical triangle are tho
edges of the trihedral angle correspond-
ing to it, we conclude:

787. To two oppoaite spherical
triangles correspond two opposite and
symmetrical trihedral angles (§ 653).

Corollary 2. Since tho lines AA\
BB\ and CC all intersect in the same
point 0, each pair of them is in one
plane, passing the centre of the sphere ^"^^^ ^^'' ^^'' ^^' »»«

and containing the corresponding arcs Xtl^Lti'a^ S„Z"'AB and A'B', 5(7 and B'C, CA and CA\ Hence: •

788. The corresponding sides of two opposite triangles
areformed of arcs of the same great circle.

^ 789. Symmetrical spherical triangles are those in which
the sides and angles of the one are respectively equal to those
of the other, but arranged in the reverse order.

Theorem XX.
790. Opposite spherical triangles are symmetric

cat.

Proof. Let ABC and A'B'C be
the triangles, and the centre of the
sphere. Then—

1. Because the angles AOB and •*

A'OB' are in one plane, we have

Angle ^07? = opp. angle A' OB'-,
and for the same reason,

Angle BOC = opp. angle B'OC;
Anglo GOA = opp. angle C"OA'.
3. For th« same reason.
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Dihedral angle 0^ = dihedral angle 0A\
Dihedral angle OB = dihedral angle OB',

Dihedral angle 0(7 = dihedral angle 0C\

Whence the corresponding angles of the two triangles are

respectively equal (§ 774).

3. To an eye looking from the yertices A, B, C and

the sides AB, BC, CA succeed each other in the negative

order (§ 648); while A', B', C and the fides A'B', B'C,

CA' succeed each other in the positive order. Therefore

the triangles are symmetrical. Q.E.D.

Note. This theorem should be compared with § 653, which is the

equivalent L'leorem in the case of' a trihedral angle.

791. Corollary. Two symmetrical triangles cannot in

general be made to coincide identically.

For if we slide the triangle A'B'G' over to the other side

of the sphere so that A' ~ A and C = C, the vertices B' and

B will fall on opposite sides of A C.

If we turn one triangle round so that B and B' shall fall

on the same side of AC, the vertex A' = C and C = A.

Theorem XXI.

793. If two symmetrical spherical triangles are

isosceles^ tJiey are identically equal.

Proof. In the preceding case suppose

Side BA = side BO;
we shall then have

Angle A = angle 0. (§ 781)

Therefore, in the symmetrical triangle,

Side B'A' = side B'C = side BO = side BA.

Angle A' = angle 0' = angle = angle A.

Then if we slide A'B'O' over so that ^'e Cand O'^A, we

shall have
Side ^M'= side ^a
^'ideB'G' = sideBA.

Vertox /?' = vertex B.

Therefore the two triangles are identically equal. Q.E.D.

Polar Triangles.

793. Bef. If the sides of one spherical triangle

have their poles at the vertices of a second triangle,
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the first triangle is called the polar triangle of the
second.

Theokem XXII.
794. ThepoUr triangle of a polar triangle is the

original triangle.

Hypothesis. ABC, a spherical triangle; A'B'C\ its polar
triangle.

,

Conclusion. The polar tri- yK
angle of A'B'O' is the original /' ^'^^

triangle ABC.
Proof. 1. Because the great

circles A'B' and A'C have their
poles at G and B (hyp. and def.),

, , , .

their point of intersection A' is / a'
^ \

the pole of the circle BC (§ 753).
•^''

—

---"'" ^
2. In the same way it is shown that C" is the pole of the

circle AB, and B' ot AC.
3. Because the three great circles AB, BC, and CA have

their poles at C, A', and i?', ABCk, by definition, the polar
triangle of ^'^'(7'. Q.E.D.

^

795. Corollary. The relation between two polar tri-
angles may he expressed hy saying thai the vertices of each
triangle are the poles of the sides of the other.

Theorem XXIII.
796. In two polar triangles each side of the one

is the supplement of the opposite angle of the other.
Hypothesis. ABC, A'B'C, a pair of polar triangles in

which A'B' is the pole of the c'
vertex C, etc. /^>kN

Conclusions,

Arc AB -\- angle C" = 180°. ^ X \ Xfi*
Arc BC -f angle /I' = 180°.

Arc A'B' -j- angle O = 180°.

Arc B'C -f angle A = 180°. /
etc. etc. ttc. jS[^> -A^

Proof. Produce the sides «

AB and A C until they meet B'C in M and N. Then—

11 1.

'it|

1
11'

!»}«=:
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1. Because A is the pole of MN, AM and AN are quad-

rants and
, ^

._ ^^^.
Arc MN= angle A. (§ 775)

2. Because ^' is the pole of ACN and C" is the pole of

ABM,
Arc B'N= arc C*M— quadrant, or 90''.

3. Arc B'C - arcs i?'JV'4- G'M~ JfiV (identically);

or comparing with (2),

Arc B'C*- 180° - arc MN\
and comparing with (1),

Arc B'O' - 180° - angle A,

4. Therefore arc B'G' + angle A = 180°. Q.E.D.

In the same way all the other relations may be proved.

?

Theorem XXIV.

797. The sum of the three angles of a spherical

triangle is greater than a straight angle and less

than three straight angles.

Proof. Let A, B, and G be the three angles of the

spherical triangle, and a', b', and c^ the opposite sides of the

polar triangle. Then

—

I. A-\-a'

B-\-h'

G + c'

= 130

= 180

= 180
(§ 796)

Sum
Whence

A^B^G+a' + l'^-c'= 3.180°

A + B^G= 3.180° - (a' + J' + c').

But because a', J', and c' are sides of a spherical triangle,

«' _|_ J' 4- c' < 2.180°. (§ 785)

Therefore A + B \- G > 180°. Q.E.D.

II. Because each angle of the triangle is less than a

straight angle, the sum of the three angles is less than three

straight angles. Q.E.D.

798. Def. The spherical excess of a spherical tri-

angle is the excess of tlie sum of its three angles over

a straight angle.

Gorollary. The spherical excess may de equal to any

positive angle less than a circumference.

f
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799. Def. A cylindrical surface is the surface

which is generated by the motion of a straight line

constantly touching a given curve, and remaining

parallel to its original position.

Illustration. If the straight line AB move around the

curve AM, remaining parallel to the posi-

tionAB during the motion, it will generate ^
a cylindrical surface.

800. Def. The generatrix is the

line which generates the surface.

801. Def. The directrix is the

curve which the generatrix touches. ^
802. Def. A cylinder is a solid

bounded by a cylindrical surface and two parallel

planes,

803. Def. Elements of the cylinder are the differ-

ent positions of the generatrix.

Remaek 1. In elementary geometry the directrix is a

circle whose plane is perpendicular to the generatrix.

Kemark 3. Since the generatrix may extend out indefi-

nitely in two directions, a cylindrical surface may extend out

indefinitely in two directions.

804 . Def. The axis of a cylinder is a line through
the centre of the directrix parallel to the elements.

805. Def. A tangent plane to a cjdinder is one
which touches the cylindrical surface without inter-

secting it.

806. Def. xV right section of a cylinder is the sec-

tion by a plane perpendicular to the elements.

807. Def. A sphere is said to be inscribed in a
cylinder when all the elements of the cylinder are

tangents to the sphere.

I'
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Theoeem XXV.

808. A plane tangent to a cylinder is parallel to

all the positions of the generatrix, and touches the

cylindrical surface along an element.

Hypothesis. KLMN^ a cylindrical surface; P,0', two
points in which a plane may touch the

surface without intersecting it.

Conclusion. The line P^' is an ele-

ment and lies in the plane, and all other

elements are parallel to the plane.

Proof. 1. Let KM be any element. If

KM were not parallel to the trngent

plane, it could be produced so far as to Mt^

intersect the plane, and then the cylindri-

cal surface would also intersect the plane, which is contrary

to the definition of a tangent plane. Therefore

KM II tangent plane. Q.E.D.
2. Let P^ bo the element which passes through P. Be-

cause P is in the tangent plane, and PQ cannot intersect the

plane (1), Q is in the plane. But Q' is also in the plane, by
hypothesis. Then the plane would intersect the curve MN
at the points Q and Q', and therefore would intersect the

surface also, which is contrary to the definition of a tangent

plane.

3. Therefore the points Q and Q' are the same, and PQ'
is an element.

4. Because P and Q are both in the plane, the line P^ is

in this plane, and is the line of contact between the cylinder

and plane. Q.E.D.

Theoeem XXVI.

809. If a sphere he inscribed in a cylinder, the

^irfaces will touch on a great circle the plane of
whichforms a right section of the cylinder.

Proof. Let be the centre of ttne sphere, and A3 any

element of the cylinder. Through pass a plane perpen-

f t
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1. Because the sphere is inscribed in the
cylinder, the line AB is tangent to the sphere
(§ 807).

^

2. Let P be the point of tanffencv. Join
OP, Then

^

OP L AB. (§ 763)
Therefore AB being X plane 0, OP lies in
the plane 0; whence P also lies in this plane,
and is the only point in which AB meets the
surface of the sphere.

+n \ .^""^T
^^ T^ ^' ^""^ ^^'^^^*' a" tlie elements

touch the sphere m the plane perpendicular to them
4. Because the plane passes through the centre of the

sphere and the points of tangency are all on its intersection
with the surface, these points are on a great circle of the
spnere. Q.lli.D.

o.V^7fZ^' It *? 'P^''"' ^'' ms^nh^^di in the same
cylmder, then the planes of contact, being perpendicular to

spheres are m the axis perpendicular to the planes, their dis-
tance IS also equal to the distance between those centres
Hence:

lenffl^n'f fr'^^^'f '""''f'^
*^ i^^^ ^^rne cylinder intercept

lengths of the elements equal to the distance letioecn the centres
of the spheres.

^'"i^/vd

Theorem XXVII.

i. n^l)'^'"''^
^^""''^ ''^^'"^ ^^^ <^y^^'dTical surface

i^J!^^'^^''''''
^^^'' '"'^ ^^^''' '''*^^'' ""^ * cylindrical sur-

Conclusion. APB is an ellipse.

Proof. In the cylinder inscribe two spheres of which
^
and Q are the centres, in such a position that each of them

snail touch the piano A .«

Let ^-and F be the points of contact with the plane.
LBt P oe any point oi. the section APB, HI the element

'M
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passing through P, and H and I the points at which this

element touches the spheres and Q.

Join PF and PB. Then—
1. Because the plane ^^ is tangent to

the sphere at B, and P is a point in this

plane, PB is a line tangent to the sphere

at^.
2. Because P/f is another tangent from

P to the same sphere,

PB r=. PH. (§ 764)

3. We find in the same way, for the A

sphere Q, PF-PL
Whence

PE-\-PFr:z PII^ PI= HI,

or PF + PF=OQ, (§810)

4. Since P may be any point of the section, the sum of

the distances of every point of the section from F and F is

equal to the same constant length OQ. Therefore the sec-

tion is, by definition, an ellipse around ^and Pas foci (§ 614).
^

Q.E.D.

813. Corollary 1. The distance of the centres of the in-

scribed tangent spheres is equal to the major axis of the ellipse.

813. Cor. 2. The tangent spheres touch the plane of the

ellipse at its respective foci.

814. Cor. 3. Parallel plane sections of a cylindrical

surface are identically equal.

» »

CHAPTER IV.

THE CONE.

815. Bef. A conical surface is the surface gener-

ated by the motion of a straight line which constantly

passes through a fixed point and touches a curve.
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816. A cone is the solid formed by cutting off a
portion of a conical surface by a plane.
A cone is completely bounded by the conical surface and

the plane.

817. The base of a cone is its plane surface.
Remark. In the higher geometry a conical surface is

called a cone, and we shall use this abbreviation when con-
venient.

818. Def. The generatrix is the generating line
of a cone.

819. JDef. The directrix of a cone
is the curve along which the generatrix
moves.

830. The vertex of a cone is the
fixed point through which the genera-
trix passes.

831. Bef. Elements of the cone a cone,

are the straight lines occupying the different positions
of the generatrix.

Remark 1. In elementary geometry the directrix is sup-
posed to be a circle.

Rema iK 2. Since the generating line may extend on both
sides of tne vertex, a complete conical surface consists of two
surfaces meeting in a point at the vertex and extending out
indefinitely in both directions.

833. Def. The two parts of a complete conical
Suixace are called nappes of the cone.

833. Def. A tangent plane to a cone is a plane
touching the conical surface without intersecting it.

834. Def A sphere is said to be inscribed in a
cone when ail the elements of the cone are tangents to
the sphere*

iLviii

m

^'m

'iVi
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if

I i

11

825. D^. The axis of a cone is the straight line

from the vertex through the centre

of the directrix.

836. Def. A right cone is one

in which the vertex is in the line

passing through the centre of the

directrix perpendicular to its plane.

Note. In the following propositions the

word cone means a right cone, though eome of

the theorems are true of other cones.

Theorem XXVIII.

827. A plane tangent to a cone touches it along
an element, andpasses through the vertex.

Hypothesis. 0-AB, a conical surface; M, a point at which
a plane touches the surface.

Conclusions.

I. The plane passes through 0,

II. OMj and no otlier element, lies in it.

Proof. I. If the plane did not pass

through 0, then, because it does pass

through M, OM would intersect the plane at

My and the plane could not be a tangent.

Therefore the plane passes through 0.

Q.E.D.

II. Because the points and M both lie in the plane, the

element OM lies wholly in it.

If any other element than OM may lie in the plane, let

OA be that element. The plane would meet the directrix

AB vX two points A and K, and therefore would intersect it

and would not be a tangent plane.

Therefore the plane touches the cone only along the

element OK, Q.E.D.

Scholium, In II. of this demonstration it is assumed that

no part of the directrix is a straight line. If such were the

case, a portion of the conical surface would be a plane, and
the tangent plane might coincide with this plane surffice.

'
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Theorem XXIX.
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828. If a sphere he inscribed in a cone, the sur^
faces touch on a circle allpoints of which are equally
distantfrom tJie vertex.

^
Proof. When a sphere is inscribed in a cone, each element

IS, by definition, a tangent to the sphere.
Hence all the elements are tangents
to the sphere from the vertex, and are
equal by Theorem XV. (§ 764).

From the same theorem it follows
+hat the points of contact lie upon a
circle. Q.E.D.

839. Corollary. If hoo spheres be
inscribed in the same cone, the segments
of the elements intercepted between the
points of tangency are all equal.

Theorem XXX.

830. Bmry complete plane section of one
of a cone is an ellipse.

Hypothesis. APB, a plane section of one nappe of
passing through all the elements.

Conclusion. APB is an ellipse.

Proof Let and Q be the centres
of two spheres mseribed in the cone,
and tangents to the cutting plane at
the respective points E and F.

Let P be any point of the section,
and a and H the points in which the
element VP touches the respective
spheres.

Join PE, PF. Then-.
1. Because PE and PG are tan-

gents to the aume sphere,

PE = PG,

nappe
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2. In the same way,

whencfc
PF\-PF=OH.

3. Because and H are the points in which an element

touches two inscribed spheres, the line OH has the same

length for all the elements (§ 829).

Therefore the sum of the distances PB -f PF is the same

for every point of the section, and this section is an ellipse, ])y

definition. Q.E.D.

831. Corollary. The points in which the inscribed

spheres touch the cutting plane are the foci of the ellipse.

Theokem XXXI.

832. E:i}ery section of hotli nappes of a cone by a

plane is an hyperbola.

Hifpothesis. AB, a section of two nappes of a cone by the

same plane; F,the vertex of the cone.

Conclusion. AB is an hyper-

bola.

Proof. Let and Q be the cen-

tres of two spheres inscribed in the

cone, and tangents to the cutting

plane at the points F and F.

Let P be any point of the sec-

tion; PVG, the element through

P; and G and H, the points in which

this element touches the spheres.

Join PF, PF Then—
1. Because the plane AB is tan-

gent to both spheres at the points

F and F, and P is in this plane,

PF and PF are tangents to the

respective spheres.

2. Because PF and PG are tangents to the sphere from

the same point P, PF = PG.
rt in and r> TT -« i-^. »j%»»-4-rt 4-^^ i'T% «^ nif\ V% ^\*ty\ n

o. Decause 1''jc' Hud. I'ti arc langenis lo me spnero \^y

PF = PH.
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4. Subtracting this equation from (2),

PE--PF=^ PG-PH= 0H= 0V-{- VH,
6. But the lengths VQ and VH are each constant for all

the elements of the cone. Therefore since every point of the
section must bo on some element of the cone, the difference
of the distances of all such points from i^and Fib the same.

fj. Therefore the section is an hyperbola Laving its foci at
^andi^(§531). ^ E.D.

833. Corollary. TJie major axis of the hyperMa is
equal to the common length of the segments of the elements
contained between the points in which they touch the inscribed
spheres.

Scholium. Let MNR8 be a portion
of a conical surface, of which AB'iq the
axis, extending out indefinitely; andM<
let an indefinite plane pass through a
point X Then—

1. If the plane makes with the axis
an angle greater than A VH, it will in-

tersect one nappe of the cone com-
pletely, and will not touch the other
nappe. The section is then an ellipse.

2, If the plane makes with the axis
an angle less than that of the cone, it

will partly intersect both nappes but
will cut through neither of them.
The section is then an hyperbola.

?• ?i^® ?^T ""^^^^ ^'^^ ^^® ^^^s an angle equal to the
angle AVM of the cone, it will cut into one nappe of the cone
indefinitely, but will not cut the other. If we imagine the
plane ^Xto turn upon X until it assumes the position PX,
the lower of the two tangent inscribed spheres will be moved
off indefinitely. Hence the focus of the elliptic section of
the cone will move off indefinitely, and the ellipse will become
a parabola (§ 560). Hence:

834. Corollary. The section of a cone bv a vlane mralM
io an element is a parabola, " "

m
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BOOK XL
THE MEASUREMENT OF SOLIDS.

CHAPTER I.

SUPERFICIAL MEASUREMENT.

835. Def. A right parallelepiped is a parallelo-
piped in which the lateral faces are at right angles to
the base. \

Remark 1. Since any face may be taken as the base, any
parallelopiped in which one face is at right angles to the
four adjoining faces is a right parallelopiped.

Kemark 2. A right parallelopiped differs from a rect-

angular one (§ 685) in that its base need not be a rectangle.

836. Bef. The lateral area of a prism or pyramid
is the combined area of its lateral faces (§§ 672, 695).

837. Def, A prism is said to be inscribed in a
cylinder when its bases coincide with the bases of the
cylinder, and its lateral edges are elements of the
cylinder.

838. Def. A pyramid is said to be inscribed in a
cone when its base is a polygon inscribed in the base
of the cone, and its lateral edges are elements of the
cone.

839. Def. A regular pyramid is a pyramid of
which the base is a regular polygon, the perpendicu-
lar through whose centre passes through the vertex
of the Dvramid.
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Theorem I.

841. The lateral area of a prism t<i Pm,ni /^ *%

Proof, Let ABUS he any lat.
eral face of a prism, and KLMNP
a right section (§ 674). Then—

1. Because the lines LM, MNNP, etc., which maJce up the peri'
meter of the section are all in one
plane perpendicular to the parallel
edges AR, B8, etc., they are per-
pendicular to these edges.

2. Because ABR8 is a paral-
lelogram of which XJf may be taken a^ an altitude,

^Tea,ABES=LM.BS. ^8 295^

takin^^hr'' ^t.!"'''''^
'^^'' ^^^ ^" '^^^^' ^e find, bytaking the sum of those areas formed in the same way.

Lateral surface = (KL + XJf+ MJV-\- NP + pi^^'.
E D

^"^o^ry Because the base of a right prism is a right
section, and Its altitude a lateral edge:

^

muu^'iJ^tj,
^'"""^

r"" "^'' "^''' ^"^ «« «?««^ '0 itsmitms into tJie perimeter of its base.

Theoeem n.

fo^^fL5f!.f«
"^'^ oyUndrical miface is equal

section of this prism. Then-'
""" '^" ^^^"^^^ "« ^ "g^^t

;1
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1. Because the prism is inscribed in the cylinder, each

lateral edge will be equal in length to an

element of the cylinder, and will lie in

the cylindrical surface (§ 837).

2. Therefore the lateral surface of

the prism will be equal to the perimeter

of the cross-section AD into the length

of each element.

Now suppose the number of sides of

the prism to be increased without limit.

Then—
3. The x^rhneter of the cross-section

AD (which call P) will approach the circumference of the

cross-section of the cylinder (which call 0) as its limit (§482).

4. The lateral surface of the prism (which call S) will

approach the surface of the cylinder (which call 6") as its

limit.

6. Because we continually have S = P X length of ele-

ment, however great the number n of sidas, and because P
approaches C as its limit and S approaches /S" as its limit, we

have S' = G X length of element. Q.E.I>.

Theoeem III.

844. The lateral area of a regular pyramid is

equal to half its slant height into the perimeter of its

base.

Proof. Let V-ABCDE be a regular pyramid, and VN
its slant height. Then—

1. Considering ^J5 as the base of

the triangle VAB, FJVwill be its alti-

tude. Therefore

Area VAB =^ ^VK , AB.

2. Because the slant heights are all

equal to FJV",

Area VBC = iFJV^. BC,

Area VCD = iFiV^. CD,

etc. etc.
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3. Taking the sum of all these areas,
Lateral area = i VN{AB + ^C+ CD + etc.),

- iFiV. perimeter ABODE. Q.E.D.

Theoeem IV.
846. The lateral area of a frustvm ni' n ^^....i

pyramid is equal to its slant heigkt
^^ ^''^''

trUo half the sum of theperimeters F^-i^i
of its bases.

Proof, Let ABCDH-FOmj he the
frustum. Then—

1. Because the lateral faces are trape-
^

zoids, having FG || AB, OH \\ BO, etc., b C

8. Taking the sum of'all these 1^^, ^^ '**^>

Lateral area = * (AB + BC+ etc. ^ FG+ GH+ etc.)
X slant height.

'

:^« t f211 1"- = ?«"'»«'«• of lower base;

Therefore
"' "" perimeter of upper base.

Lateral area = i sum of perimeters x slant height. Q.B.D.

Theobem V. *

n- „ ^ -^ .,, .

^J^^ifJ^J^ be the right cone. Inscribfi inIt a pyramid having a regular base of any
number of sides. Then—

1. Because the edges of the pyramid
coincide with the elements of the cone
they are all equal and the pyramid is
regular. Therefore
Lateral area of pyramid = ^ slant height

^
X perimeter of base.

,

-^et the number of sides be indefinitely
increased. Then— ^
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2. The perimeter of the base of the pyramid will approach

the circumference of the base of the cone as its limit.

3. Therefore th') slant height of the pyramid will approach

the slant height of the cone as its limit.

4. The surface of the pyramid will approach the surface

of the cone au its limit. Therefore

Lateral area of cone = i slant height X circumf. of base.

Q.E.D.

847. Corollary 1. The lateral area of the frustum of a

right cone is equal to the product of its slant height into half

the sum of the circumference of its bases.

Cor. 2. If the frustrum of the pyramid be cut midway

by a plane parallel to the base, the section of each face will

be half the sum of the bottom and top edges (§ 170). Hence

the perimeter of the section will be half the sum of the perime-

ter of its bases'. The same will be true of the cone. Hence:

848. The lateral area of a frustum of a cone is equal

to its slant height into the circumference of its mid-section.

Spherical Areas.

Theorem VI.

849. Two symmetrical spherical triangles are

equal in area. *

Proof. Let ABC and A'B'C be the two symmetrical

triangles placed opposite each

other (§786); P, the pole of the

circle of the sphere passing

through A, B, and C. From P
draw the diameter POP'.

Then—
1. Because P is the pole of

the circle through A, B, and G,

Arc PA - arcPB = arc PC.

(§ ^45)

2. Because A', P', C\ and

P' are opposite points to^, B,C, and P, respectively,

P'^' JPA, P'B' = PB,^ P*C' = PC',

whence P'A' = P'B' = r'C\
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3. Therefore ^PCand A'P'C' BPA and B'P'A '
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Ta -a ?\T ^^^P^c^ively isosceles symmetrical trianglesand identically equal (§§ 784, 792).
^

4. Because the sum of the three triangles APO etc
makes up^^C; and the sum of the three equal trianglj^
^ P'5', etc., makes up ^'^'C, therefore

Area A'B'C = area ABC. Q.E.D.

850. Def A lune is a portion of the surface of a
sphere bounded by two great semi-
circles.

^
861. Be/. The angle of the lune

IS the angle between the great semi-
circles which bound it.

Corollary. The angle of a lune is equal
to the dihedral angles between the planes
of its bounding semicircles (§ 774). Ahae,

Theorem VII.

852. On the same sphere, or on equal sphereslunes of equal angles are identically equal.
Proof. Let the two spheres be applied so that their centres

Turn one sphere ronnd on its centre so that the vertexand one semicircle ol itelune shall coincide with thelo^spending vertex and semicircle of the other
Because the angles are identically equal, the planes of thetwo semicirc es will then coincide, and therefore the bound!mg semicircles will also coincide. The lunes 4 thereforeidenticaUy equal, by definition. Q.E.D.

werelore

Theorem VIII.

n^^^' '^^J^^'f^ O^^t '^^eiee mutually intersect
the areas of the two triangles on opposite sides ofrniy vertex are together eq,ml to the area of a lune
•i..,..^vy u,v^ ^ivyvvjvi iiita ai me vertex.
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Hypothesis. AB, Gil, MN, any throo great circles; P,

any vortex where two of them crosa.

Conclusion.

Areas FGM+FIIN= ImioFHQNP.

Proof. 1. Because PMG and QNN
are opposite triangles formed between gI

the same great circles, they are sym-

metrical triangles (§ 790).

Therefore

Area PMG = area QNH.
2. Therefore

Area Pmi + area PMG = area PNH-\- HNQ,
= area of lune Pi/(?iVP. Q.E.D.

Theorem IX.

854. The area of a lune is to the whole surface

of the sphere as the angle of the lune to a circumfer-

ence.

Proof. 1. Let PAQB be a lune of which P and Q are the

vertices.

From the vertex P to ^ pass n semi-

circles making equal angles with each

other. Th'^ whole surface of the sphere

will then be divided into n equal lunes.

(§ 853)

2. Let m be the number of those

equal lunes contained in the given lune

PAQB. The ratio of this lune to the

surface of the sphere will then be w : ».

3. The angle APB is made up of m angles, of which n are

required to make up the whole circumference around P.

Therefore the ratio of the angle APB to a circumference

is m : n.

4. Because these ratios are equal however great the num-

bers m and w, they remain equal when the angle of the lune

and the circumference are incommensurable. Therefore

Area of lune : surface of sphere :: angle of lune : circumf.

Q.E.D.
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855. Corollary. I. U there ai-e lunes of andcs A B
etc., we have ' '

Area (lune A + luuo J5-f etc.) = area lune (^ + i? + etc.).

of \^\
^''''' ^' ^'^'^ ''"''* ""^ ** liomiBphcre is that of a lune

Theorem X.

/• ^^yV P^ ^r^ ^-^ "" spherical triajigle is prcmor-
tional to its spherical excess.

Proof. Let .li?(7 be the triangle. Contmue any one side,
as Bty so as to form the great circle
BGEF. Continue the other two sides b
till they meet this circle in E and F /(
Then—

1. Area ABC -} area ACF = lune ' .

BABC= lune of angle B. \/
Area ^^C+ area^J5i?^= luneC^i^^ fV"'"^'^*^

= lune of angle C. ^^"-.,

Area ^^C7+area AFB= lune ACA^B = Inne It Inglo A.

2. BeomseBCBFiB a great circle, the sum of thi^ffur
areas ABC, A CE, ABF, and ^^^ is a hemisphere. Sfore, if we add the three equations (1), we have
2 area^5C+ hemisphere = lune angle (^+^+(7). (8855)

/QoL ""'^ *^® hemisphere is the same as a lune of 180°
(§ 856), we may write the last equation

3 area ABC -\- lune 180° = lune angle (^ + J5 4- (7V
whence, by transposition, ^ t" />

2 area ABC= lune {A-\-B-\-C- 180°)
and Area ABC = \ lune (^ + 5+ c- 180°) •

nv
^' ^*t^.+ ^r ^^^° ^'' ^y definition, the spherical

excess of the triangle ABC Because the area of the lune is
proportional to its angle, the area ABCi% proportional to the

'

same angle or to ^ + j5+ C - 180°. Q.E.D
Corollary. If the three vertices of a triangle are on one

great circle its three sides will coincide with that circle
and each of its angles wiU be 180°. Its area will then be a
nemispnere, and its spherical excess 3.180° — 180° = 36"°



372 BOOK XI. MEASUREMENT OF aOLWa.

I

Doubling these quantities, wo have the area of the whole

sphere corresponding to a spherical excess of 720°. Henco

868. The area of a spherical triangle is to that of the

whole sphere as its spherical excess is to 720°.

Scholium, Every spherical triangle divides the surface of

the sphere into two parts, of which one may be considered

within the triangle, and the other without it. We may con-

sider either of these parts as the area of the triangle, if, in

applying the preceding proposition, we measure the angles

through that part of the spherical surface whose areas we are

considering. If the inner angles are A, B, and C, the^anglcs

measured on the outer surface will be 360° — A, 360° — B,

and 360° - G (cf. §§ 25-27). Subtracting 180° from the sum

of these three angles gives 900° - (A -^ B -\- C) as the outer

spherical excess. If the inner area becomes indefinitely small,

AJ^B-\-C will approach to 180°, and the outer spherical

excess will approach to 900° - 180° = 720°, which is there-

fore the spherical excess for the outer angles of the triangle

whose outer area is that of the whole sphere.

869. Def. A zone is that portion of the surface of

a sphere contained between two parallel circles of the

sphere.

860. Def. The altitude of a zone is the perpen-

dicular distance between the planes of its bounding

circles.

Theorem XL

861. The area of a zone is equal to the product

of Us altitude hy the circumference of a great circle.

Proof. Let HKRSLI be a zone of a sphere whose centre

is at 0, and let the plane of the paper be a section of the sphere

through the centre, perpendicular to the base HI of the zone.

The zone is then generated by the motion of the arc HKR
around the axis OT, perpendicular to its base.

In the arc HKR inscribe the chords HK, KR. Let M be

the middle point of HK. Join OM, and from M drop the

perpendicular MD upon OT, Then—
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1. By the revolution around the axis OT, the chord UK
will describe the lateral surface of '.he frustrum of a cone of

"^^^l Sn *'"®? ""'" ^^ ^^ X circumference of a circle ofwhich MD IS the radius (§ 848). That is,

Area of frustrum = ^nMD.HK. (8 484)
2. Because OMK is a right angle,

also
^^^^ ^^^ ^ ^°°^P* ^^^ = ^°°^P- ^^^y

Angle Q = angle D = right angle.
Therefore the triangles OMD and HKO are similar, and

HE : KQ :: MO : MDi
whence

MD.KH=MO.EG,
3. Hence, from (1),

Area of frustrum = 2;r. OM.KO,
4. In the same way,
Area of frustrum KR8L = ^nOP x alt. of frustrum.
Inscribe in the arc IfKM an indefinite number of equal

chords and consider the frustra they describe. Then—
6. The perpendiculars OM, OF, etc., will approach the

radius of the sphere as their limit.

6. The sum of the lateral surfaces of all the frustra will
approach the surface of the zone as their limit.

7. Because the area of each frustrum approaches the limit
27r X radius of sphere X alt. of frustrum,

the sum of all the areas will approach the limit
27e radius of sphere x sum of altitudes of frustra

= 27r radius of sphere x alt. of zone,
which limit is the area of the zone.
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II

II

8. But ^n radius of sphere = circumf. of great circle.

Hence:

Area of zone = alt. of zone X circ. of groat circle. Q.E.D.

Corollary 1. Let AB and CD bo two parallel tangent

planes to a sphere. Since the preceding a—;p^—^;^: b
theorem is true of zones of all altitudes,

it will remain true how near soever we

suppose the bases of the zones to the

tangent planes. If, then, we suppose

the bases of the zones to approach the

tangent planes as their limit, the alti- ^

tude of the zone will approach to the diameter of the sphere,

and its surface to the surface of the sphere. Hence:

862. The entire surface of a sphere is equal to the pro-

duct of its diameter into its circumference.

Cor, 2. If we put r for the radius of the sphere, we have

Diameter = 2r,

Circumference = 2;rr;

whence . ^ .

Surface = 47rr".

Now we have found the area of a circle of radius r to be

Trr* (§480). Hence:

863. The area of the surface of a sphere is equal to the

area offour great circles.

The area of a hemisphere is equal to twice that of a great

circle.

• » .

CHAPTER II.

VOLUMES OF SOLIDS.

864. Bef. The volume of a solid is tlie measure

of its magnitude.

865. Def, The base of a solid is that one of its

faces which we select for distinction.

866. Def, The altitude of a solid is the perpen-
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ont'bJ^^^ '""^ *^ '^^^^^* P--^ «P- the plaae

ofS ^ "^^^ ParaUelopiped is a pamllelopiped

any angle with each other, whereas the rectangur.7pard
lelopiped has all its faces perpendicular to each other

««if^?* ?.^* '^^^ '^^^^ ®^ volume is the volume of acube of which each edge is the unit of length.

Tolumes of Polyhedrons.

Theorem XII.

4H^^\?^^^^ ?^***^* ^^^^'^^ ^Q.'^l altitudes andidentically equal bases are identically equal

IJ yiyfo right prisms in which
^ J^ J^ i^ U

and
^"^ ^^^^^ = ^*«« A'B'G'D'E' (identically)

Alt. AF = alt. A'F\
Conclusion, The two j

prisms are identically ^/^ _. ^^.^
eqnal. v< •'

>r ..-''7^"^^^!'

Proof, Apply the
bases to each other so
that they shall wholly

,

coincide. Let A' ~ A,
^

B' = B, etc. Then— - ^ jy
—

"c^

2. Because ^^= ^'jp'

q T +1,
Point /^= point i?*.

with-a^rJX„"rn::rtr2 r^^**?."*
'^ °- -U coincae

£-——Q T.^xtv-i vx uiiv utiier.

'i" ,
/I/
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4. Therefore every edge of the one will coincide with a

corresponding edge of the other.

5. Therefore every face of the one will coincide with the

jone8pon«ling face of the other, whence the figures will be

identically ec^ual. Q.E.D.

Theoeem XIII.

870. Bight prisms having equal bases and alti-

tudes are equal in volume.

Hypothesis, JfiVand PQ, two equal bases of right prisms

having equal altitudes.

A
B

C /
/a

in

Conclusion. These prisms are equal in volume.

Proof. By the definition of equal magnitudes (§13)

the hypothesis implies that the bases can be divided into parts

such that each part of the one base shall be identically equal

to a corresponding part of the other base.

Let A, B, and C be the parts of MN, and A*, B\ and

0' the corresponding identically equal parts of PQ.

Let each prism be divided into smaller prisms by planes

perpendicular to the base, and intersecting it along the

bounding lines which divide the bases into the parts A, B,

C, A', etc. Then, because the bases A. and A' are identically

equal and have equal altitudes,

Prism on base A = prism on base A^ identically. ( §869)

In the same way, each part of the one prism is identically

equal to a corresponding part of the other.

Therefore the two prisms, being made up of these equal

part(3, are identically equal. Q.E.D.

871. The volumes of right prisms having equal

bases are proportional to their altitudes.



VOLUMES.
377

e^'S'- if\ir''r "'''' ^™- - -^-^ f^e
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£
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,^--
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a
-1

—

w

H

,^1

.^'•^ D

base ^5CZ> is equal to
MNOF, and the altitude AJS
is to the altitude MQ as m : n.

Conclusion.

Vol. Jjy : vol. MT ::m : n.
Proof, Divide the prism

^iTinto m parts of equal alti-
tude by planes parallel to the
base. Let prism MT be di-
vided into n parts in the same way. Then—

Tall Stis^,;"
'^''^ ^^ ^^ -*^ ^ P-^«^ these parts

l^laL^mn^r^^''' P"'"^^ ^"™^ identically equalDases and altitudes, they are equal in volume (8 869)
3. Because the volume Jfr is composed of « mrts ofwhich m parts make up the volume ^^, therefore

'

Volume Aff : volume MT :: m : n. Q.E D
4. Because this is true how great soever the numbers mand n, it remains true for all cases (§ 359).

Theorem XV.

^./f^^'
^^ /^^^\ P""^^^^ of equal altitudes themlumes are to each other as the areas of their bases

+. +f
'*'''''^'

u^®*
*^® ^^^^^ ^® *^ ^^^1^ «ther as the number mto the number

^. This means that if the one base be divTdedintom equal par s, n of these parts will make up the other base

tuae to the given prisms.
These prisms will all be equal (§ 870).
One given prism will be made up of m of these eaualprisms, and the other of n of them.

^
Therefore the volumes will be to fiar^h othov as m to -z-that is, tne volumes will be as the areas of the baseJ. Q.E d'^orollary. Because a parallelepiped is a prism, we con^
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873. If a right prism and a right parallelopiped have

equal altitudes, their volumes are as the areas of their bases.

Theorem XVI.

874. The volumes of rectangular parallelopipeds

are proporticmal to the products of their three dimen-

sions.

Proof Let ^ be a par-

allelopiped of which the

dimensions are a, b, and h;

W, one of which the dimen-

sions are c, d, and k. *

Cut off from K a paral-

lelepiped L of altitude k.

Then—
1. Because L and W have equal altitudes,

Vol. L : vol. W :: area a.b : area c,d,

:: ab : cd.

2. Because K and L have equal bases,

Vol. K : vol. L :: &\t h : alt. Is.

3. Multiplying these ratios.

Vol. K : vol. W :: abh : cdk. Q.E.D.

Corollary 1. If the dimensions c, d, and h of the

volume W are each unity, the product cdJe will be unity, and

W will be the unit of volume (§ 868). The above conclusion

will then become Vol. K : 1 :: abh : 1,

which gives Vol. K = abh;

that is:

875. The volume of a rectangular parallelopiped is

measured by the continued product

of its three dimensions.

Scholium. If the dimensions

rt, J, and g are all whole numbers,

this result may be shown in the

following simple way:

Being g units in height, it

may be divided up into g layers each a unit in height.

(§872)

(§416)

(§871)
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(§878)

(§416)

(§871)
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onclasion
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b.

Bemg h units in breadth, each of these g layers may be
divided into b rows, each containing a units of Yolume.

Thus the total numb.er of units of volume will be abg.
Cor, 2. Because the base of a rectangular parallelepiped

IS a rectangle, its area is equal to the product of its two
dimensions. The third dimension is then the altitude of the
parallelepiped. The preceding result may therefore be ex-
pressed in the form:

876. The volume of a rectangular parallelopiped is ex-
pressed by the product of its base into its altitude.

Cor. 3. Since a rectangular parallelopiped is a kind of
right prism, every right prism is, by § 870, equal in volume to
a rectangular parallelopiped having an equal base and alti-
tude. Therefore we conclude

:

877. The volume of every right prism is expressed by the
product of its base and altitude.

Theorem XVII.

878. All parallelopipeds hamng the same base
and equal altitudes are equal in xolume.

Case I. Hypothesis. ABCD-EFQH ssl^ ABCD-MNOP,
two parallelopipeds hav-
ing the same base ABCD P q_ h o
and equal altitudes.

In this case the edges ^
FE and NM, also GH and
OP, are supposed to lie in

straight lines.

Proof. 1. Because EF
and MN are each equal
and parallel to AB^ we have

MN = EF
and

ME = NF.
2. Considering the two triangular ^xismsAEM-DHP and

BFN-COO, it is proved, from the equality and parallelism of
all their parts, that they are identically equal.
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3. From the solid ABFM-DCQP take away the solid

AEM-DHP, and we have left the parallelopiped ABOD-
FFQH,

4. From the same solid ABFM-DGOP take away the

equal solid BFN-CQOy and we have left the parallelopiped

ABGD-MNOP,
5. Therefore

VolumeABCD-EFGH= volume ABCD-MNOP. Q.E.D.

Case II. Let the upper base be in any position, as IJKL,
Produce the parallel

edges FE and OH to the

points M and P, and pro-

duce KJ and LI to N and

Mf forming the parallelo-

gram MNOP. Join AM,
BN, CO, DPi forming

the parallelopipedABCD-
MNOP. Then—

6. Because the parallelopiped ABCD-IJKL has the same

base and altitude as ABCD-MNOP, and has the bounding

edges JK and IL of its upper face in the same straight line

with the edges PJf and ON, we have, by Case I.,

Vol. ABCD-MNOP = vol. ABCD-IJKL,
7. We have, for the same reason,

Vol. ABCD-EFOH = vol. ABCD-MNOP,
8. Comparing with (6),

Vol. ABCD-EFOH = vol. ABCD-IJKL. Q.E.D.

Corollary. Whatever be the oblique parallelopiped ABCD-
IJKL, we may construct upon the same base a right paral-

lelopiped ABCD-EFOH to which the above demonstration

will apply. Therefore, from (§877):

879. The volume of any parallelopiped is equal to the

product of its base and altitude.

Theorem XVIII.

880. A diagonalplane divides any parallelopiped
into two triangular prisons of equal volume. *



tie solid

ABCD-

way the

alopiped

Q.E.D.

I IJKL,

VOLUMES.
881

ihe same
ounding

ight line

Q.E.D.

ABGD-
it paral-

istration

il to the

lopiped

^ ^^T b ^^P^^^''^^- ABCD-EFOH, a right parallelovi-
ped, of which BDBF is a diagonal

I'^rmmopi

plane.

Conclusion.

Vol. ABD-EFH=z vol. DBG-HFQ.
Proof. 1. Because ABCD is a

parallelogram, the diagonal BD di-
vides its area into two equal parts.

2. Therefore the two right -

^riiMtuS^-"' "^^-^^^ "- ^^--^ "- -^ t-'^

3. Therefore these prisms are equal (§ 870). Q E D

of wwT ^I'raF'^^'l'''
^"^^^^-^FGH, any parallelepiped

of which ACQE is a diagonal plane.
Conclusion. Vol. .4CD-EHG = vol. J CB-EGF.
Pro(/.^ Through the vertices ^ and ^ pass th; planesAUK and ^ZifA^ perpendicular to

the parallel edges AE, BF, CG, and

Let 7, ^, JT and Z, if, iV^ be the
points in which the cutting planes meet
these edges, produced when necessarv.
Then— ^

1. Because the cutting planes are
perpendicular to the same edges AE^ ^k
etc., they are parallel. Therefore the

^^"^

solid AUK-ELMN is a right paral-
lelepiped, and

Vol. AJKEMN = vol. AJI-EML.
3. Because the edges of both parallelepipeds paraUel to

AE&ie also equal to it (§ 687, cor. 1),

HN= ED; GM = CJ; FL = BI-,

also, by comparing the sides of the parallelograms,

EH = AD', EN = AE; EG = AC, etc.;
and because EMG and AJO are both right angles, by con-
struction,

"^

Angle EMG = angle AJC,

(Case I.)
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3. Therefore if the solid E-MQHNhe applied to the solid

A'JCDK&o that the line Jg^if shall fall on AJ, then

Triangle EMN= AJK,
MO = JG,

EO=AG,
NH=KD,
QH=CD,

Therefore these two solids are identically equal.

4. If from the prism ACD-EOH\fQ take away the solid

E-MGHN and add the equal solid A-JGDK, we shall have
the right prism AJK-EMN. Therefore

Vol. ACD-EGH = vol. AJK-EMN.
6. In the same way may be shown,

Vol. ABG'EFQ = vol. AIJ-ELM.
6. Oomparing with Case I.,

Yol AGD'EGH =i yol, ABG'EFG. Q.E.D.

Theokem XIX.

881, The volume of any prism is eqzcaZ to the
prodtcct of its base by its altitude.

Case I. A triangular prism.

Proof. Let ABG-DEF be any tri-

angular prism. Draw
BP

II AG; GP II AB;
EQ

II DF; FQ \\ DE
Then—

1. Because ABPG and DEQF are,

by construction, equal parallelograms
with the sides of the one parallel to the
coiTesponding sides of the other, the
solid ABPG'DEQF ia a parallelopiped.

Therefore

Vol. ABPG'DEFQ = base ABPG X altitude.

Area ABG = i base ABPG,
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8. Because BCFE is a diagonal plane of the parallelepiped.
Vol. ABC'DEF = i vol. ABPC-DEQFy

(§ 880)
= i base ABPG X altitude, (1)= area ABC X altitude.

(g)

Case II. Any prism.
Q.^.^.

Let ABCDE-FQHIJ be any
prism. Divide the prism into tri-

angular prisms by passing planes
through ACHF, ADIF, etc. These
planes will divide the bases into
triangles. Then

—

1. Because ABC-FGH is a tri-

angular prism.

Vol. ABG-FGH = base ABG
X alt. of prism.

2. In the same way.

Vol. AGD-FHI = base AGD x alt. of prism.
Vol. ADE-FIJ = base ABE x alt. of prism.

etc. etc.

3. Adding these volumes, we have
Sum of volumes = sum of bases x alt. of prism.

4. The sum of these volumes makes up the whole volume
of the prism, and the sum of the triangular bases makes up
the whole base of,the prism.

Therefore volume of prism = base x altitude. Q.E.D.

Theorem XX.
882. Allpyramids having equal bases and equal

altitudes g,re equal in
liolume.

Hypothesis. 0-ABCD
andP-TUVWZ, two pyra-
mids in which area ABCD
= area r?7FPrZ, and alti-

tude of = altitude of P.
Gonclusiofi. The vol-

umes of the two pyramids
are equal.
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Proof. Divide each pyramid into the same number n of

slices by equidistant planes parallel to the base. Let us put
s, the thickness of each slice;

«, the common altitude of each pyramid;

b, the area of the base of each pyramid.
Then—

1. Because the altitude is divided into n parts, the thick-

ness of each slice will be

n
2. Because the number of slices is the same in each pyra-

mid, the distances of corresponding slices from the vertex will

be the same in the two pyramids. If we put

I, the distance of any section from the vertex,

r, the area of the section,

we shall have in each pyramid

r : h :: r : a\ (§ 700)

Also, the areas of corresponding sections are the same in the

two pyramids (§ 701).

3. Let and P be two
corresponding slices from the

same pyramid. Put

r', the area of each upper base;

r, the area of each lower base.

Because the lower base of each is greater than the upper base,

each slice is greater than the prism of altitude s and base r',

but less than the prism of altitude s and base r. Hence
s X r' < volume of each slice < s X r. .

4. Hence the difference between the volumes of corre-

sponding slices of the two pyramids must be less than sr — «r';

that is, less than s{r — r').

5. Let us call the areas of the several sections from the

vertex to the base n, rg, rs, etc. We then have

Difference of top slices < sri.

Difference of second slices < s(r2 — rj.

Difference of third slices < .?(r. — r-).

etc. etc.

Difference of bottom slices < s(r„— r»_i).

Adding up all these differences, and noticing that r»= J, we
find

Difference of volumes of pyramids < sb.
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That is:

The difference of the yolumes of the pyramids is less than
the Yolume of a prism of equal base, and having for its alti-
tude the thickness of a slice.

6. But we may take the slices so thin that this volume sh
shall be less than any assignable quantity. Therefore the
volumes of the pyramids differ by less than any assignable
quantity; that is, they do not differ at all. Q.E.D.

Theorem XXI.
883. The wlwme of a pyramid is one third the

wlume ofaprism hamng the same base and altitude.
Case I. Let P-ABC be a triangular pyramid.
Through AC pass a plane AGFD ^

parallel to the opposite edge BP, ^^ '^'

Complete the triangular prism
ABC-DPF by drawing the edges PD,
PF, DF, AD and Ci^paraUel to BA,
BC.ACyBP.

Divide the quadrangular pyramid
P-A GFD into two triangular prisms
by the plane PAF, Then—

1. Because AGFD is a parallelo-

gram, the areas ADF and AGF are
equal. Therefore

Vol. P-ADF= vol. P-AGF{% 882).
2. In the same way, consideringPBG and PFGbs the equal

bases of two triangular pyramids having their vertices at A
Vol. A-PBG = vol. A-PFG.

'

3. Comparing (1) and (2), and noting
P-^C^and A-PFG 9,TQ the same pyra-
mid, we see that the prism ABG-DEF is

divided into three equal pyramids, of

which one is the original pyramid. Hence
Vol. P'ABG = \ vol. ABG-DEF,

Case II. P-ABGDE, any pyramid.

Through P pass the planes PAG,
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FAD, etc., dividing the pyramid into the triangular pyramida

F'ABO, P-ACD, etc.

Let a be the altitude of the pyramid. Then, by Oase L,

Vol. P-ABG = i prism ^^C-alt. a.

Vol. P'ACD = i prism ACD-a\t a.

Vol. P-ADE = i prism ^i>^-alt. o.

The sum of these pyramids makes up the given pyramid,

and the sum of the prisms is a prism having the base

ABCDB a,nd the altitude a. Therefore, adding,

Vol. P-ABGDE = i prism ABCDE-iXi, a.

Q.E.D.

Corollary. Because the volume of a prism is equal to the

product of its base by its altitude, we conclude:

884. The volume of a pyramid is one third the product

of its base by its altitude.

Volumes of Bound Bodies.

Theorem XXII.

886. The voltime of a cone is eqiml to one third

theproduct of its base hy its altitude.

Proof. In the base of the cone inscribe a regular poly-

gon of any number of sides, and upon it

erect a pyramid of which the vertex shall

be in the vertex of the cone. Then

—

1. Because the angles of the base of the

pyramid are on the surface of the cone,

and its vertex in the vertex of the cone, the

lateral edges of the pyramid will lie on the

conical surface, and its altitude will be

equal to the altitude of the cone.

Let us call a the common altitude of cone and ppamid.

Then—
2. Volume of pyramid = ^ « X base of pyramid.

3. Let the number of sides of the base of the pyramid be

indefinitely increased. Then the base of the pyramid will

approach the base of the cone as its limit, and its volume will

approach the volume of the cone as its limit. Therefore

Volume of cone = ^ a x base of cone. Q.E.D.
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Theorem XXIII. '^

886. The wlvme of a cylinder is eqvM to the
product qf its base by its altitude.

Proof, Inscribe in the cylinder a prism of which the
number of sides may be increased without limit. Then the
base of the prism will approach the base of the cylinder as its
limit, and the volume of the prism will approach the volume
of the cylinder as its limit.

Because the volume of the prism is continually equal to
the product of its base by its altitude, the volume of the
cylinder must also be equal to the product of its base bv its
altitude. Q.E.D.

Theorem XXIV.
887. The volume of a sphere is equal to one third

tts radius into the area of its surface.

Proof. Make a great number of points on the surface of
the sphere, and join them by arcs of great
circles so as to divide the whole surface
into spherical triangles.

The planes of these arcs will form the
lateral faces of triangular pyramids hav-
ing their vertices in the centre of the
sphere, and the angles of their bases
resting upon the surface.

Because the volume of each pyramid is ^ base x altitude,
the combined volume of all is

i sum of bases x altitude.
Let the number of spherical triangles be indefinitely in-

creased. Then the sum of the bases of all the pyramids will
approach the surface of the sphere as its limit, and the alti-
tudes will all approach the radius of the sphere as their limit.
Therefore

Volume of sphere = i radius X surface of sphere. Q.E.D.
Corollary. We have found (§ 862) for a sphere of radius r,

Surface of sphere = 4n'r".
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Multiplying this by ^r, we have

Volume of sphere = f^rr*.

This result admits of being memorized in the following

way. Suppose a cube circumscribed about the sphere. Be-

cause each of its edges is 2r, its volume will be 8r'. Oom-
paring with the expression for the volume of the sphere, we
find

Vol. sphere : vol. cube .: ^w : 2.

Now if TT were exactly 3, this rutio would bo 1 : 2; that is,

the volume of the sphere \M>ald be one half that of the cube.

And in reality the sphere is greater than half the cube in the

same ratio that n is greater than 3, which is nearly ^ part

(§ 484).

Therefore if we fit a sphere into a cubical box, it will

occupy a little more than half the volume of the box.



PEOBLEMS OF OOMPUTATIOK

1. The altitude of a right cone is 4 metres, and the diam-
eter of its base 6 metres. Compute its slant height, lateral
surface, area of base and volume.

Ans. Slant height, 6 m. ; lateral surface, —-; area of base,

9;r; volume, IStt.

2. The lateral aroa ^ of a right cone being given, what
relation must subsist between its altitude a and the diameter D
of its base?

Ans. irrD V{n' j- iZ)») = A.
3. The lateral surface of a right cone is double the area of

its base. What is the ratio of its altitude to (he radius of its

base? What must be the ratio in order that the lateral sur-
face may be n times the area of the base?

Ans. V'd and VnH^,
4. Find the ratio of the volume of a sphere to that of its

right circumscribed cylinder.

Ans. Vol. of sphere = f vol. of cylinder.
Note. The circumscribed cylinder is that whose bases and ele-

ments are all tangents to the sphere.

6. The slant height of a right cone = diameter of its

base = 2a. Express its altitude, lateral area, and volume,
and the radius, surface, and volume of its inscribed and cir-

cumscribed spheres.

Ans. Alt. of cone, i^3a; lateral area, 2;ra': volume, — :

Rad. of insc. sphere, ~; surface, —-; volume,
—

';

Rad. of circ. sphere, ~; surface, i^; volume, ??^
V3 ^ 9 4^

*

6. The radius of a sphere is bisected at right angles by a
plane. What is the ratio of the two parts into which the
plane divides the spherical surface?

Ans. 3 : 1.

7. If a plane cut a cylinder at an angle of 45" with the
elements, what will be the ratio of the axes of the ellipse of
intersection?

Ans. i^ : 1.



THEOEEMS FOE EXEEOISE
IN

GEOMETRY OF THREE DIMENSIONS.

BOOK vm.
1. A line parallel to each of two intersecting planes is

parallel to their line of intersection.

2. Two lines, one perpendicular to one plane and one to

another plane, form equal angles with the planes to which
they are not perpendicular.

3. If a straight line be perpendicular to a plane, every line

perpendicular to that line is parallel to the plane.

4. The supplement of any face angle of a trihedral angle

is less than the sum, but greater than the difference of the

supplements of the two other face angles.

5. If, on a line intersecting a plane perpendicularly, two
points, A and B, equally distant from the plane be taken, and
these points be joined to three or more points of the plane,

the joining lines will form the edges of two symmetric poly-

hedral angles having their vertices at A and 3,

6. If a plane be passed through one of the diagonals of a

parallelogram, the perpendiculars upon it from the extremi-

ties of the other diagonal are equal.

7. If the intersections of several planes are parallel, all

perpendiculars upon these planes from the same point in

space lie in one plane.

8. If any number of planes are respectively perpendicular

to as many lines, and these lines all lie in one plane, or in

parallel planes, the lines of intersection of the planes are all

parallel to each other.

9. All points whose projections upon a plane lie in a

straight line are themselves in one plane. How is this plane

defined?

10. If two straight lines are on opposite sides of a plane,

parallel to it, and equally distant from it (but not parallel to
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each other), the plane will bisect every line from any point of
the one line to any point of the other.

11. If any two straight lines ^ and 5 are parallel to a
plane P, aU lines joining a point of ^ to a point of B are cut
by the plane P, internally or externally, into segments having
the same ratio.

12. Corollary, If through the ends of a harmonically
divided line two planes be passed perpendicular to the line,
and through the harmonic points of division two lines A andB be drawn, each parallel to the planes, but not in one plane,
then every line joining a point of ^ to a point of B is cut
harmonically by the two planes.

13. A plane parallel to two sides of a quadrilateral in
space divides the other two sides similarly.

BOOK IX.

1. If any two non-parallel diagonal planes of a prism are
perpendicular to the base, the prism is a right prism.

2. If the four diagonals of a quadrangular prism pass
through a point, the prism is a parallelopiped.

3. A plane passing through a triangular pyramid, paral-
lel to one side of the base and to the opposite lateral edge,
mtersects its faces in a parallelogram.

4. The four middle points of two pairs of opposite edges
of a tnangular pyramid are in one plane, and at the vertices
of a parallelogram.

Note. The six edges of a triangular pyramid may be divided into
three pairs, sach that the two edges of a pair do not meet each other.
Since each edge meets two other edges at one vertex, and two yet other
edges at the adjoining vertex, there is but one edge left to pair with it.
Ihe pair is called a pair of opposite edges.

5. The three lines joining the middle points of the three
pairs of opposite edges of a triangular pyramid intersect in a
point which bisects them all.

6. The four lines joining the vertices of a triangular pyra-
mid to the centres of the opposite faces intersect in a point
n....^.. -i.Tiviva ^teuix ux iiiiciii Hi Liie raiio i : 3.

Note The centre of a triangle is the point of intersection of its
three medial lines (§§ 168, 169).
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7. The middle points of the edges of a regular tetrahedron

are at the vertices of a regular octahedron.

8. The eight vertices of a cube are cut ofE by eight planes,

each passing through the middle points of the three edges

which diverge from each vertex. Explain the structure of

the polyhedron thus formed, giving the number, form, and
relation of its faces, edges, and vertices.

Describe its sympolar polyhedron, showing that each face

is a rhombus, and explain the number and form of its edges

and vertices.

Note. The sympolar of any polyhedron may be formed by draw-
ing an edge across each edge of the given polyhedron, and uniting all

the edges crossing the sides of each face into a single vertex.

BOOK X.

1. If lines be drawn from any point of a spherical surface

to the ends of a diameter, they will form a right angle.

2. Conversely, the locus of the point from which a finite

straight line subtends a right angle is a spherical surface hav-

ing the line for a diameter.

3. If any number of lines in space pass through a point,

the feet of the perpendiculars from another point upon these

lines lie upon a spherical surface.

4. If any number of lines in a plane pass through a point,

the feet of the perpendiculars upon these lines from any point
not in the plane lie on a circle.

6. If the axis of an oblique circular cone is equal to the
radius of the base, every plane passing through the axis of the

cone intersects the conical surface in lines forming a right
angle at the vertex. When the axis of the cone is less than
the radius of the base, all the angles thus formed are obtuse,
and when greater they are acute.

6. All parallel lines tangent to the same sphere intersect

any plane in an ellipse.

t
JL. XJ"'

BOOK XI.

?he surface of a sphere is equal to the lateral surface of

its circumscribed cylinder.

Note. See Problem 4, p. 889.
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3. If the slant height of a right cone is equal to the diame-
ter of its base, its lateral area is double the area of its base

3. The lateral area of a pyramid is greater than the area of
its base.

4. The volume of a triangular prism is equal to the area
of any lateral face into half the perpendicular from the opno-
site edge upon that face.

^^
5. Any plane passing through the middle points of a pair

of opposite edges of a triangular pyramid bisects its volume.
6. If the three face angles of a triangular pyramid around

the vertex are all right angles, the square of the area of the
ba^e IS equal to the sum of the squares of the areas of the
tnree lateral faces.

7. The bisecting plane of any edge angle of ft triangular
pyramid divides the opposite edge into segments propor-
tional to the areas of the adjacent faces.

8. Equidistant parallel planes intercept equal areas of a
spherical surface.

LOCI.

1. Find the locn of the point in space whose distances
from two fixed points are in a given ratio.

3. Find the locus of the point equally distant from two
parallel lines.

3. Find the locus of the point equally distant from two
intersecting straight lines.

4. Find the locus of the point equally distant from three
given points.

6. Find the locus of the point equally distant from the
sides of a triangle.

6. Find the locus of the point equally distant from the
three edges of a trihedral angle.

7. Two given lines being on opposite sides of a plane
parallel to it, and equidistant from it, find the locus of the
point in the plane which is equally distant from the two lines.

8. Find the locus of the point from whinh fwn q/iiQ/»o«+

segments of the same straight line subtend equal angles.



N

ti(

re

in

to

rei

th

CO

th

fO]

of

po

an

im

all

sai

ref

obi

del

CO]

to

sol

as

imi

ext

bil:

anc

eqi

as4

ext

be



APPEE^DIX.

NOTES ON THE FUNDAMENTAL CONCEPTS OP GEOMETRY.

The true basis and fonii of the fundamental axioms and defini-
tions of Geometry have been the subject of extended discussion in
recent times, especially among German mathematicians. The follow-
ing summary of conclusions is given partly to show the direction
towards which these discussions tend, and partly to explain the
reasons for the particular forms of definitions and axioms adopted in
the present work. Although the writer conceives that these views
concur with the general conclusions of those who have investigated
the subject, no one but himself is to be considered responsible for the
form in which they are stated.

I. Geometry has its foundation in observation. Clear conceptions
of lines, as straight or curved; and, in general, the idea of relative
positions in space, could never be acquired except through the eye
and touch. The ancient axioms of Geometry proper, such as the
impossibility of two straight lines inclosing a space, the equality of
all right angles, and the necessity of two non-parallel lines in the
same plane ultimately meeting if sufficiently produced, are not to be
regarded, as they once were, as necessary conclusions apart from all
observation, but only as necessary results of certain conceptions
derived from observation. It has in fact been shown that a perfectly
consistent Geometry can be constructed in which the axioms relatinff
to straight lines are not fulfilled.

n. The general concepts of Geometry—points, lines, surfaces, and
sohds—are to be regarded as attaching to material bodies rather than
as formed of mere space. A geometric solid, for instance, is an
imaginary material body from which all qualities except those of
extension and mobiUty are abstracted. The quality of impenetra-
bility being abstracted, any two bodies may occupy the same space
and may be brought into absolute coincidence if they are identically
equal in their outlines. Surfaces, again, should rather be considered
as extensions from which the idea of thickness is abstracted than as
extensions absolutely without thickness. Similarly, a line need not
be regarded as having no thickness, but may simply be considered as
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having the idea of thickness abstracted. A point is an object the
magnitude of which we take no account of.

This slight change of conception may perhaps be regarded as

having little more than metaphysical interest. But it has a certain

amount of practical value in releasing the young mind from a seem-
ing necessity of conceiving portions of pure space as bodies and
magnitudes with only one or two dimensions. In fact, it may be
doubted whether any definitions of lines, points, and surfaces, in

general, are of value to a young beginner. He naturally falls into

the habit of applying the terms the right way.

III. The following considerations have led to certain of the

primary definitions adopted in the present work.

1. It may be doubted whether a straight line admits of any
definition in the proper sense of the term. A student who does not

know what a straight line is before it is defined will net know in

consequence of the definition. The author therefore lays no stress

upon the definition he has adopted, which is perhaps objectionable,

but which has been chosen because most readily understood by a
beginner.

2. A great majority of our writers upon Elementary Geometry
make the mistake of trying to include the mode in which the angle

is measured in the definition of it. The system of enunciating

separate definitions of the angle and the method of measuring it

has been adopted from Chauvenet, and its advantages are so obvious

that they need not be pointed out.

3. That identically equal magnitudes are those which coincide is

properly not an axiom, as used in the older geometry, but a defini-

tion of the word " equal " and its derivatives. This will be obvious

upon reflecting that the word must have some definition, and that all

we can mean by it is that the two objects to which the term is

applied coincide when brought together, or are made up of coin-

cident parts. Had all bodies been immovable we should never have
had the idea of equality.

4. A statement of what shall be meant by the sum of two magni-
tudes, and especially of two angles, is absolutely necessary. The
want of such a statement is one of the most serious defects in the
Geometry of Euclid. Had Euclid enunciated a general definition of

the sum of two angles, and adhered to it, his thirteenth proposition,

that the angles which one straight line makes with another upon one
side of it are together equal to two right angles, would have been
unnecessary.

5. That a straight line is the shortest distance between i

of its points is here considered au axiom rather than a definition.

two
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The r^on of placing it in thia category is simply that the idea of a
straight line may be derived independently of any compariaoa of
general measures of distance between the same two points.

6. Plane figures are defined after the modern instead of the
ancient conceptions. As this will at first sight strike the teacher of
the Euclidean Geometry as one of the most radical changes in the
work, a comparison of the ideas on which the two systems of defini-
tions are founded may be of interest.

The ancient geometry was primarily a science of mere magnitude.
Solids were bodies, and plane figures were pieces of a phine Of
course other conceptions had to be brought in, but they were
regarded as subsidiary.

In modern geometry form and position are of equal importance
with magnitude, and in order that all the conceptions associated
with a figure may come in on terms of equality as it were it is
necessary to confine the definition of a figure to what is 'really
necessary to its formation. A flexibility and generaUty is thus given
to the definitions which they cannot have under the older form It
18 not, indeed, claimed that, for the purpose of elementary instnic
tion, one of these systems of definitions has any great advantage overthe other. But it is important that the definitions should accordwith the conceptions naturally formed ; with the language of every-day life, and with that of the higher modern geometry ; and theLconsiderations all point to the new system of definition. Let us iil^circles and polygons as examples.

In the older geometry a circle is a round piece of a plane or what,in ordinary language, is called a circular disk. In our laTlangu^^a circle IS a curved line which the pupil can draw with a pS
HneZT ^T^'^y^r^'^ '' "«^"« '""'^ '^'^^ -«"« this curv d

lZ^LZ77{r'^ "' '"' '^:''' "^^'^^^"^^ *^« ^^'^ circumference
18 applied to far wider uses. But this nomenclature is changed as

where he finds the circle and ellipse treated as curves When the
eccentric ty vanishes the ellipse is said to become'Tt^hrc'rcum!
ference of a circle, but the circle itself. The equation of the bound-ing curve of the circular disk is also called the equation of thecircle. In a word, the old definition entirely vanishes,Z a newconception is attached to the word.
A polygon, again, is completely determined by its bounding lines

IndTed t thfvT '^"'/^^ '"^^^^^ *°y*^-^ ^-t these iLesIndeed m the higher modern geometry a Dolvcron i. nop«^.,«^

XrVn/r"'''"^'' ""^^ ^'"^"^"^ ^'^ ceWn^elations to'ethother, and the more strongly a definition inconsistent with this ia
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impressed on the mind of the beginner, the more difficult he findB It

to make the necessary change in the conceptions attached to the word.

It may seem that the ancient form has some advantages, especially in

conaldcriug areas, and it will also be remarked that the word circum-

ference is used in the present work in its ordinary acceptation. A
glauce at the true relations between geometric figures and words will

make the state of the case quite clear, and will show a perfect

analogy between the system of notation here adopted and the lan-

guage of ordinary life.

A geometric figure is to be regarded as combining a great number

of associated conceptions, of which a certain number necessarily

involve the others, and may therefore be regarded as essential. The

essential conceptions are those which suffice to determine the figure.

Since the figure may be determined in various ways, the only rule

that can be followed is to choose for a definition the most simple

and easily understood set of conceptions. Let us consider a polygon,

for example. We have in the polygon a collection of associated con-

ceptions: a certain number of sides, a certain number of interior

angles, an equal number of exterior angles, a form, an area, and a

perimeter—the latter being the sum of all the sides. No one of these

has any special claim over the others to be considered as the measure

of the figure. Two different polygons equal in area have no more

right to be considered equal than two other polygons of different

areas but equal perimeters. Nor have the concepts by which the

figure is defined, however they may be chosen, any right to be con-

sidered as the whole of the polygon because the associated concepts

equally belong to it. Hence the proper course is to take the

simplest defining conception; namely, the lines which the pupil

draws when he constructs the figure, as being, not necessarily the

polygon itself, but the things which determine or form it. Then its

area, its angles, its perimeter, its centre (if it has one), its form, and

any other concepts associated with it may be separately considered

at pleasure. Again, with the circle we associate a circumference, an

area, a centre, any number of radii, and any number of tangents we

choose to draw. The word ''circle" is properly applied only to the

whole assemblage of concepts; but since the circumscribing line is

the fundamental determining thing, the word can be more properly

applied to it than to any other of the associated concepts. When,

however, the length of this line comes into consideration, or when

the line is to be considered in antithesis to some other conception,

the centre for instance, then the word circumference is used.

The accordance of this mode of language with that of ordinary life

will be seen by comparing it with the ideas which we attach to the
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word ''house." We may equally define a house as a space sur-rounded by walls or as walls enclosing a space. We habitually usethe word in both senses without any ambiguity or confusion. %^speak of building a house when we really mean building the wallsand of living in the house when we mean living in the inirior '

V. The greatest improvement in the modern over the ancientgeometry IS made in the extension of the idea of angularmagS^In Euclid ouJy angles less than ISQo are considerc^asS anvactual existence. Angular measures equal to or exceed nrthisHm^tare considered merely as sums of angles to which no viable gTometric meaning is attached, and which are in fact treated as L?!wsymbolic entities, like the imaginary quantities of moTe^n "atCm^^tics. Some moderns have followed in his footsteps so slavishly L toacually apprise the pupil that an angle of 180° i not an angle Me„tthe pupi might be led into the mistake of considering the sum o1two right angles as having some conceivable meaning?^We have already mentioned the failure of Euclid to give any defi-nition ofthe sum of two angles. Without such a definition we do not

^rZ^ V Tu ^ ^^"^ '*°^^'' "• ^'^^ «"^'^ * definition the sum

eLln^,-^ / *"^.r
^''^°''' ^^^ ^"^'^ ^^'•'"^d by t^« straight linesextending from the same vertex in opposite directions.

In modern geometry angular measure is unlimited, and a civenangle may have any number of measures diflFering from each other bvany entire number of circumferences. It is not, however, advisable
to burden the beginner by attempting to impress this idea upon hismind but he should be led up to it gradually. Hence in commenc-mg to write the present work, the author started out by confining
angular measures to the limit of 180°. He soon found, however
that confusion would result from attempting to keep within thi^
limit, especially m considering the relation of angles inscribed in acircle He therefore adopted the plan of extending angular meas-
ures to one circumference, and explaining in the beginning the two
measures of the angle. He finds by expc rience that there is no diffi-
culty in making this double measure clear to a very young beginner




