IMAGE EVALUATION

TEST TARGET (MT-3)

Photographic Sciences
(110)

CIHM/ICMH Microfiche Series.

The Institute hes attempted to obtain the best original copy avaliable for filming. Faatures of this copy which may be blbliographically unique, which miay alter any of the images in the reproduction, or which may significantiy change the usual mothod of filming, are checked below.

Coloured covers/
Couverture de coulaur

Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couvarture restaurée et/ou pelliculée
Cover titio missing/
Le titre de couverture manque
Coloured maps/
Cartes geographiques en couleur
Coloured ink (I.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or Illustrations/
Planches ot/ou illustrations an couleur
Bound with other material/
Relic avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La re liure serrée peut causer de l'ombre ou de le diatortion le leng de la marge intórieure

Blank leaves added during restoration may appear within the text. Whenaver possible, these have been omitted from filming/
li se peut que certaines pages blanches ajoutbes lors d'une restauration apparaissent dans ie texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

Additional comments:/
Commentaires supplémenteires:

L'Institut a microfilméle meilieur exempiaire qu'il lul a úté possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliogrephique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la móthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
 Pages de couleur

Pages damaged/
Pages endommageses
Pages restored and/or leminated/
Pages restaurdes ot/ou pelicules
Pages discoloured, stained or foxed/
Pages décolorées, tacheteses ou piquees
Pagas detached/
Pages détachées
Showthrough/
Transparence
Quality of print varies/
Qualit'́ indégale de l'impression
Includes suppiomentary material/
Comprend du matériel supplémentaire
Only edition avallable/
Soule édition disponible

Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillot d'errata, une pelure, etc., ont étó filmées ì nouveau de façon à obtenir la mailieure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est film' au taux de reduction indiqué ci-dessous.

The copy filmed hare has been repraduced thanks to the generosity of:

Library of the Public
 Archives of Canada

The imeges appearing here are the best quality possible considering the condition and legibility of the original copy and In keepling with the filming contract specifications.

Original copies in printed paper covers are filmed beginning with the front cover and ending on the last page with a printed or illustrated impression, or the back cover when appropriate. All other original coples are filmed beginning on the first page with a printed or illustrated Impression, and ending on the last page with a printed or illustreted impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The foliowing diagrams illustrate the method:

L'oxemplalre filmb fut reproduit grace à la gánérosité de:

La blbilothéque des Archives publiques du Canada

Les images suivantes ont étó reproduites avec le plus grand soin, compte tenu de la condition et de la netteté de l'exemplalre filmé, et en conformitt avec les conditions du contrat de filmage.

Les exemplaizes originaux dont le couverture en papier est imprimbe sont filmés on commençant par le premier plat et en terminant solt par la derniàre page qui comporte une empreinte d'Impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmes en commençant par la promidre page qui comporte une empreinte d'Impression ou d'illustration et en terminant par la dernibre page qui comporte une telle ompreints.

Un des symboles suivants apparaitra sur la dernière image de chaque microfiche, selon le ces: le symbole \rightarrow signifie "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un aeul cliché, il est filmé à partir de l'angle supérieur gauche, de gauche à droite, ot de haut en bas, en prenant le nombre d'ímages nócessaire. Les diagrammes suivants illustrent la móthode.

REPORT

 ON THE

 ON THE IITERCOLODILL RALLWAY

 EXPLORATORY SURVEY,

 EXPLORATORY SURVEY,}

MADE UNDER INSTRUCTIONS FROM THE CANADIAN GOVERNMENT IN THE YEAR 1864.

By BANDFORD FLDMING, civil enginerr.

QUEBEC:
PRINTED BY G. E. DESBARATS, 1865.

Montreal, February 9th, 1865.

To the IOonorable William MeDougale, Provincial Secretary, Canada.

Sir,
Have the honor to submit the following report on the exploratory Survey of the Territory through which the contemplated Railway between the Provinces of Camada, New Bronswick and Nova Scotia is intouded to run.

In condncting this Survey, I have considered the routes for the projected Railwiy which have on previous occasions been contemplated, as well as some others whieh seemed worthy of attention.

I have especially directed my attention to the best means of overeoming or avoiding obstacles which were previously considered serions or insuperable.

I have endeavoured to carry on the Survey with a strict regard to economy, at the same time efficiency--and I have completed the whole serviee at as carly a period as it was possible, with the means at my command.

I shall in the following pages describe the quality of the land in the country examined, and its fitness for cultivation and settlement so far as I have been able to acquire information. I shall also make some allusion to the climatic influences which may operate on the several routes.

I shall likewise report, although I fear imperfectly, on the comparative advantages of the various routes, in a commercial poir : of view.

The relative position of the several projected rontes with the Frontier of the United States, will be described.

The estimates of probable cost will be based on calculations made with a view to efficieney, stability and permanency; at the same time having duc regard to economy in the expenditure.

A schedule of the plans and profiles of the several lines surveyed, and explorations made, and which have been laid down to eonvenient scales; together with other papers relating to the survey, will be found subjoined.

I frnst that the information whieh I have now the honor to submit will enable the Government to judge of the practicability, probable cost, and respective merits, of the several projected routes of this proposed Intercolonial commmication.

The Governments of the Sister Provinees have afforded me every facility in the prosecution of the Survey, and I an under no ordinary obligations to many of the leading gentlemen in New Brunswick and Nova Scotia for their ready assistance and the valuable information with which they have furnished me.

I have the honor to be,

> Sir,
> Your Obedient Servant,

SANDFORD FLEMING.

SCHEDULE OF PLANS AND PROFILES SUBMITTED.

1. Plan of Surveyed Line from Trois Pistoles to Snellier River. Length of Line, 38 miles. Scale, 500 feet to one inch.
2. Approximate Profile of Line from Trois Pistoles to River Snellier. Scales, Horizontal 500 feet, Vertical 50 feet to one ineh.
3. Plan of Surveyed Line from Snellier River to Green River Forks. Length of Line 45 miles. Seale, 500 feet to one inch.
4. Approximate Profile of Line from Snellier River to Green River Forks. Scales, Horizontal 500 feet, Vertical 50 feet to one ineh.
5. Plan of Surveyed Line from Green River Forks to Restigouche. Length of Line, 32 miles. Scale, 500 feet to one inch.
6. Approximate Profile of Line from Green River F'orks to Restigouehe. Scales, Horizontal 500 feet, Vertical 50 feet to one ineh.
7. Plan of Surveyed Line from Restigouche to 'Tobique. Length of Line, 45 miles. Seale, 500 leet to one incli.
8. Approximate Profile of Line from Restigouche to Tobique. Scales, Horizontal 500 feet, Vertical 50 feet to one inch.
9. Plan of Surveyed Line from Tohique: to Miramichi Forks Length of Line, 37 miles. Scale, 500 fect to one inch.
10. Approximate Profile of Line from Tobique to Miramichi Forks. Scales, Horizonal 500 feet, Vertical 50 feet to ene inch.
11. Plan of Surveyed Line from Miramichi Forks to Keswick Summit. Length of Line, 5 . miles. Scale, 5 ot fert to one inch.
12. Approximate Profile of Line from Miramichi Forks to Keswick Summit. Scales, Horizontal 500 feet, Vertical 50 fect to one inch.
13. Plan of Surveyed Line from Keswick Summit to Little River. Length of Line, 61 miles. Scale, 500 feet to one inch.
14. Approximate Profile of Line from Keswick Summit to Litule River. Scales, Horizontal 500 feet, Vertical 50 feet to one inch.
15. Plan of Surveyed Line from Litile River to Coal Creek. Length of Line, 26 miles. Scale, 500 feet to one inch.
16. Approximate Profile of Line from Little River to Coal Creek. Scales, Horizontal 500 feet, Vertical 50 feet to one incli.
17. Plan of Surveyed Line from Coal Creek to Apohaqui. Length of Line, 32 miles. Scale, 500 feet to one inch.
18. Approximate Profite of Line from Coal Creek to Apolaqui. Scales, Horizontal 500 leet, Vertical 50 feet to one inch.
19. Plan of Surveyed Line from Parsboro' to 'Truro. Length of Line, 60 miles. Scale, 500 feet to one inch.
20. Approximate Profite of Line from Parshoro to 'I'ruro. Scales, Horizontal 500 feet, Vertical 50 feet to one inch.
21. Phu of Surveyed Line from the River Metis to Pierre Brucho's. Length of Line, 30 miles. Seale, 200 feet to one inch.
22. Approximate Profile of Line from River Metis to Pirrre Brucho's. scales, Horizontal $\mathbf{y} 00$ feet. Verticul 30 fect to one incsl.
23. Plan of Survyed Line from Pierre Brucho's on Lake Matapedia to near the Forks. Length, 30 miles. Scale, 200 feet to one inch.
24. Approsimate Profile of Line from Pierre Brucho's on Lake Matapedia to near the Forks. Scales, Horizontal 200 feet, Vertieal 30 feet to one inch.
25. I'lan of Surveyed Line from third mile below the Forks of the Matapedia to the Restigonche. Length of Line, 32 miles. Seate 200 feel to one inch.
26. Approximate Profile of Line from the third mile brelow the Forks of the Matapedia to the Restigenche Scates, Horizontal 200 leen, Vertical 30 beet to one inch.
27. Profile of Litue Surveyed from near Moncton to Tantramar Marsh near Sack ville, hy Mr. Boyd, distamer 30 miles. Scales, Horizontal 400 feet, Vertical G0 feet to an inch.
28. Plan of Exploration lor altermative line betwern Rivers Restigouche and Tobigue. Scale, one mile to an inch.
29. Plan of Explorations in the Highland District at the Sources of the Rivers Rimonski, Kedgwick, Green River, Snellier, Turadi, and Toledi, with Barometrical elevations. Scale, one mile to an inch.
30. General Map of the Country between Quebee and Halifax, showing the Lines Surveyed and Projected. Scale, 8 miles to an inch.
31. Chart shewing the Relative Geographical Position of the British Islands and British America with the Shortest Great Lines of Communication between the Continents of Europe and America.
32. Plan of the Line Surveyed in 1864, from St. John, N. B., to Fredericton, by Mr. Burpec. Length, 65 miles.
33. Profile of the Line Surveyed in 1864, from St. John to Fredericton and to St. Andrew's Junction, by Mr. Burpee.
34. Approximate Profile of Line from River dn Loup to River Trois Pistoles, from Mr. Rubidge's Survey, 1858. Length, $24 \frac{1}{2}$ miles. Scales, Horizontal 400 feet, Vertical 40 feet to an inch.
35. Plan of Line by Acadia Mines from Truro to Rufins Black's on River Phillip. Langth, 41 miles. Scale, 5 chains to an inch. Mr. Beattie's Survey, 1864.
36. Profile of Line by Acadia Mines. Length, 41 miles. Scales, Horizontal 5 chains, Vertical 50 feet to an inch.

INTERCOLONIAL RAILWAY EXPLORATORY SURVEY, 1864.
\qquad
INSTRUCTIONS

AND
PRELIMINARY CORRESPONDENCE.
's on Beat-
cales;

I NSTRUC'IIONS

To Sandford Fleming, C. E., from the Honorable the Provincial Secretary Canada.

Secretary's Office, Quebec, 11th Mareh, 1864.

Sir,
I now address to you in writing, instruetions by the Govermment of Camadn for the survey intrusted to yom of the route of the proposed hatercolonial Railway, the snhatamee of whieh insmetions has nfready been commmiented to you in a verbal mamper, atch mode of communication having bern aloped at the time in order to aroid delay in your departure from Rueber on the duty in puestion.
I. You ne instracted on the part of the Govemment of Camada, to prowed immediately to a survey and examination of the tervitory throngh which the proposed Ratway betwern this Provine and those of New Brunswiek and Nova Scotia would ran.
2. This sursey and exmmination are intemed for the purpose of enabling the Govermment of Comada to form an combate of the practicability of the proposed modernking, and of itw probable eont, in order that the expedieney of engaging in the work itself anty be judged of in a watisfactory mamar.
:3. The infomation so obtaned will also be at the wervice of the other Govermments interested if desired.
4. On a gemeral examination of the comary yon will consider the routes which have on previons oneasions been eomemplated for the objee in queslion, as well as :my ohnors which may seem to you worthy of attention.
5. Four notioe will be cippecially given to any obstacles which may present themselves as requiring serions expense to surmont and to the best methods of overeoming atch obstates or of atoviding them by deviations from the direct line.
6. You will atso pity attention to the distance of what may in other respects appen the most eligible line from the fromtier of the United States at rarions points.
7. You will makr your ealculations in the matter of the probable: cost of the work with a dhe regad to economy hat at the same time to full ctliciency.
8. Similar eonsiderations will guide you as regards the survey and examination.
9. You will endeavour to act in a cordial and harmonions spirit with any persons who may be appointed, either on the part of the sister colonies or of the Imperial Govermment to co-operate with you.
10. The completion of the nurvey und examination at as carly a period as possible is highly desirable.
11. You will report your progress from time to time to the Provincial Secretary of Canada.

> I have the honor to be,
> Sir, Your obedient servant,
(Signed,
A. J. FERGUSON BLAIR, Secretiry.

S. Fleming, Eaquife, Civil Engineer, Frederieton, N. B.

Letter from Statford Fleming to the Honorable the I'rovincial Secretary, Canuter.
[Copy.]
Halifan, sith Apmil, 1864.
The Honornble
The I'rovincial Seeretary Comada.
Sir,
I had the homor on the 2 last of Mareh hast, to reecive at Boicstown, in New Brunswiek written instrnetions, dated Quebee, 11 th Mareh, respecting the survey of the contemplated Intereolonial Railway, which I had previously been condacting under verbal and gomeral insimetions.

By these instrmetions I was directed on the pant of the Cowernment of Cannda to survey and examine the territory through which har propored line of Railway between the provinees of Canalat, New Branwiek and Nova Scotia wonld ron, in order that an estimate may be formed of the practieability of the proposed undertaking, the probable eost of suld lime or lines as mighe appar mose cligible and their positions in respere to the Frontier of the United States. I was further directed to report progiess fom time to time.

I have now the honor to report that I have made a gencral reconomsance of a great portion of the country befwem this phace and the present termimus of the (irand Trunk Railway at River din Lomp, that I have instituted exploratery surveys across from the st. Lawrente to the heal waters of the River Restigonehe, from the River Tobique to the River Miramichi near Boiestown, and from the last named place to the line of Ratilway now built from St. John to Shedine. Thewe surveys menot yet sufliciently far advanced to enable ne to repor! on the probsible results.

A considerable quantity of provisions for the use of surseying parties during the ensuing summer, has been purchased and forwarded to the interior of the country; these provisions are placed in store on the height of
land between the St . Lawrence and the Restigouche, at a convenient point to farther surveying operations. I have endeavoured to employ the winter season to the best advantage, and I now intend to prosecute the survey with vigor in order that it may be satisfactorily completed agreeably to the desire expressed in my instructions at as early a period as possible ; with that object in view I an organizing a sufficient number of surveying parties to assist me in the important work with which I have been intrusted. These parties will take the field at once and in order to defray the cost of the requisite outfit and eurrent expenses, I will before long make a requisition for finds.

It gives me great pleasure to state that the Governments of New Bromswick and Nova Seotia, have furnished me with every information in their possession and have afforded me every facility in the prosecution of the survey so far. The latter Government has requested me to aet as Railway Eugineer for Nova Scotia, thus evincing a desire to act in harmony with the Canadian Government in completing the great work of Railway commmication between the Provinces.

I retnrn at once to Now Brunswick where I will be engaged for a short period, altor which I shall proceed to Canada for the purpose of completing arrangements for carrying on active operations during the sunmer.

I may take this opportunity of stating that any communication with which you may be pleased to honor me will soonest reach me during the progress of the survey if addressed Quebce.

I have the honor to be,
Sir,
Your obedient servant,
(Sigued) SANDFORD FLEMIAG.

Letter from Suildford Fleming to the Honorable the Provincial Secretary Carada.

Quebec, May 5th., 1864
To the Honorable
The Provincial Secretary Canada.
Sit,
I had the honor to address you from Halifax on the 25th April last, on the subject of the Intercolonial Railway Survey, reporting the progress made and indicating the steps now being taken by me to prosecnte the Survey agreeably to instructions.

I have now the honor to inform yon that I have this morning arrived from New Brunswiek, and that I am losing no time in completing arrangements to have a sufficient number of surveging parties in the field as carly as possible.

- A continuous supply of funde will he required to carry on the survey as at present contemplated, of not less than $\$ 3000$ per month, and it would greatly facilitate the work if I had the authority to draw to that amount through any of the Bank Agencies in the Lower Provinces, where the expenditure will ehiefly take place.

This rate of expenditure during the present year will not, it is true, be sutheient to make perfect surveys and working plans, but it will I leel some what condident be sufficient to enalle the Government to form an estimate of the practicability of the proposed undertaking as well as the comparative cost of some of the routes spoken of.

The expenditure through me up to this time has been $\$ 2,900$, in addition to which a further sum has been paid by the Government for the prrehase of supplies and forwarding them to the interior of the country for future use. I am not aware what amonnt has been so expended, but it is probable that $u p$ to this time the survey has cost not lese than $\$ 6000$, leaving a balanee of the amount appropriated last year of $\$ 4,000$.

It will thas be evident from the rate of expencliture contemplated, that an additional sum of $\$ 00,000$ will be required during the present year. Thave respectfully to request that sufficient funds be placed at my disposal to pay the current expenses of the service which I heve the honor to condnet. I will be happy to furnish at any time statements of expenses with venchers.

I have the honor to be,
Sir,
Your most obt. servant,
(Signed) SANDFORD FLEMING,

Letter from the Honorable the Provincial Secretary of Canada, to Sandford Fleming.

Secritary's Orfice,

 Quebec, 6th May, 1864.Sir,
1 have the honor to acknowledge the receipt of your letter dated Halifax 25th ult., and of your sceond letter dated Queber the 5th inst., upon varions topies comected with the survey of the proposed Intercolonial Railway line.

Being fully aware that the members of the Government are extremely anxions that the survey upon which you are engaged shall be energetically proseented, in order that they may as speedily as possible be placed in possession of the important information expected to result from it, I shall be very glad if you will enable me, when formally submitting these com-
munications for the consideration of my colleagues, to lay before them at. the same time your own opinion of the period at which such survey will be completed.

> I have the honor to be,
> Sir,

Your obedient servant,
(Signed, JOHN SIMPSON, Secretary,
S. Fleming, Esquire.

Civil Engenecr, Quebce.

Letter from Sandford Fleming to the Honorable the Provincial Secretary, Canada.

Quebec, May 6, 1864.
Sir,
I have the honor to acknowledge the receipt of your letter of this date in which you desire me to state when in my opinion the survey of the proposed Intercolonial Railway will be completed. The instructions dated 11th March last which I had the honor to receive and unter which I am now acting, appear to me to mean that what may be termed a "Preliminary Exploratory Survey" is contemplated; that I should be prepared to report as soon as possible on the varions rontes, which have been proposed, so as to give the Govemment a tolerably correct idea of the practicability and the cost of each, the nature of the difliculties requiring serions expense to surmount, the eharacter of the comitry throngh whieh they pass, and their position with respect to the frontier of the United States.

To make this survey, I propose to direct my attention chiefly to the difficult points on cach ronte, and more especially to that portion of thr central route lying between Miramichi and the boumdary of Canada; on that portion and at the points referred to I shall make surveys of such a character as will satisfy myself as to the practicability or otherwise of the line as well as the approximate cost of overcoming obstacles of a serious nature. Where the country is comparatively level and a line casily eonstructed, a general examination will probably sufliece.

A survey of this nature can 1 think be complefed within the present year, at a cost not greatly execeding the estimate I had the honor to submit in my communication of yesterday's date, a more exact and thorough survey should the Government desire it, will of eonse require a mueh larger outlay.

$$
\begin{aligned}
& \text { I have the honor to be, } \\
& \text { Sir, } \\
& \text { Yonr most obedient servant, }
\end{aligned}
$$

(Signed) SANDFORD FLEMING.
The Hon. John Simpson, Provincial Secretary, Canada.

Letter with additional instructions from the Honorable the Provincial Secretary, Canada, to Sandford Fleming.

Secretary's Office,
Quebec, 7th May, 1864.

Sin,
I have the honor to acknowledge the receipt of your letter of yesterday's date which, with your two previous communications on the same subject, namely, the Intercolonial Railway Survey---the Executive Council have had under their consideration.

And I am directed to request that in addition to the subject, mentioned in your letter of yesterday as those to which in making the survey you propose to direet your chicf attention, you will report as aecurately and distinctly as possible upon the following topies.

1. The comparative advantages of the various routes embraced in your survey, in a commercial point of view.
2. The quality of the land on the several routes and fitness for cultivation and settlement.
3. The climatic influences which may operate on the several routes.

Upon your application, the Finance Minister will make all necessary arrangements with regard to the supply of Funds.

1 shall feel obliged by your transmitting information from time to time touching the progress of your survey.

> I have the honor to be,
> Sir,
> Your obedient scrvant,
(Signed) JOHN SIMPSON.
S. Fleming, Esquire, Quebec.

REPORT.

The exploratory Survey of 1864 conducted by me agreeably to the foregoing instructions and eorrespondance has been brought to a close and it now becomes my duty to report the results.

The main objeet of the Survey was to enable the Govermment tojndge of the comparative merits of the various routes which have been proposed ns well as any other routes which seemed worthy of attention and feasible for a Railway to conneet the Provinces of Nova Scotia and New Bronswiek with Canada.

A Railway is alreaty in operation from Hatilax, the capital of Nova Scotia, northerly to Truro, in length 61 miless ; and the Canadian Railway system extends to River du Loup. The portion of the contemplated Intercolonial Railway remaining to be eonstructed lies therefore between Traro and River du Loup.

The distance between Truw and River-du-Lomp by an air line is about 360 miles and the width of country within which various rontes for the Railway have been proposed, averages not less than 100 miles, much of it moreover is covered with a dense mbroken forest ; it is evident therefore that in a field so extensive and so diffient to penetrate that fill jnstiee to ihe importent enquiry could seareely be expected to be done in one short season.

It was however the urgent desire of the Govermment that they should be placed in possession of such information as might result from the survey at the very earliest period; I therefore took measures to prosecute the work energetically and to carry out as much of the instructions as it was possible to do within the very limited time which has elapsed since the exploration commenced.

The winter of 1863-64 had commenced before I was fully authorized to proceed with this important service.

I began by making a reconnoissance of the country within the limits of the survey, at least so far as this could be done by travelling rapidly
over the roads that were opened, and on the rivers that were passable at that season of the year. At the same time, I instituted Barometrical explorations across the Tobique highlands from Boiestown northerly; as well as on the height of land between the Restigouche and the St. Lawrence.

A large quantity of provisions were also forwarded on the snow and s'ored at a convenient point in the interior of the country, for the future use of surveying parties.

These necessary preliminary services were completed by the elose of winter ; immediately thereon four efficient Surveying parties were organized, ready to take the field on the snow leaving the ground, or so soon thereafter as circumstance would admit, and to continue at work simultancously, during the season to the completion of the survey.

THE RNGINEERING STAFF.

To assist me in this survey I selected gentlemen who were previously well known and who have since proved to be eminently qualified for the several duties assigned to them.

An experienced Engineer was placed in immediate eharge of each surveying party whose duty it was to carry out my wishes and direct the assistants and men under him.

Each Surveying party besides the Engineer in charge, consisted of a sufficient number of assistants to carry on the levelling, surveying and barometrical observations together with a full complement of axemen and packmen.

Besides the men immedially conneeted with the surveying parties, Indians and others, were engaged to aid in exploring and also in forwarding supplies to the interior of the wooded Distriets, during the prosecution of the survey.

The first party left Quebec in charge of Walter Lawson, Esq., C. E., on May 25th, and proceeded immediately to the high lands where the Rimouski, the Kedgwick, (a tributary of the Restigouche, the Green River, (a tributary of the St. John,) the Toledi and other rivers, take their rise.

The second party left Quebec in charge of Tom. S. Rubidge, Esquire, C. E., on the 28th of May, and proceeded by the Temiscouata road to Little Falls on the St. John River, thence by the Grand River and Wagan portage to the River Restigouche. This party commenced operations by tracing up the Gounamitz River from its confluence with the Restigouche.

The third party left Quebec with myself on the 31st of May, by the provincial Steamer "Lady Head" for Dalhousie. Samuel Hazlewood, Esquire, C. E., was placed in charge of this party and he began the season's eperations by making an exact survey of the River Matapedia from the Restigouche upwards.

David Stark, Esquire, C. E., took eharge of the fourth party; he left Quebee on the 14 th of June, by the "Lady Head" for Nova Scotia. He commented the snrvey in that Province by traciug a line throngh a gap in the Cobequid range, previonsly diseovered to the north of Parshoro, and thenee he afterwards continued the survey in the direction of Truro.

Soon after these several parties left Quebee, they wre actively engaged in the field, and thronghout the season nearly one hundred persons in all were employed in eonnection with the survey. This foree with little: clange and no intemission continued at work in the woods nutil the elose of field operations late in November.

Various kinds of flies were more than usually tronblesome during the first half of the season. The parties engagel in the northern section of the country suffered very much.

Since the close of operations in the tield, the Engincering Stafl has been actively engaged redncing the survey to paper.

Main mivisiong of the survey.

An air line drawn between Trmo the nearest point of comnection with the Nova Seotia Railway leading to Halifax, and River du Loup, the eastern extremity of the existing Canadian Railway System, is in length about 360 miles ; it crosses Cmmberland Basin and the Petiteodiac Inlet, both navigable extensions of the Bay of Fundy. These waters eannot be (rossed on an air line and therefore to avoid them it becomes neeessary to keep some distance masterly, as far at the very least as a point known as "The Bend of the Petitcodiae," from this point an air line drawn to Truro will clear Cumberland Basin.

Between the lidal waters of the Bay of Funcly at the Bend of the Petitcodiae, and the waters of the Gulph of St. Lawrence at Shediac Harbour, the distance is only abont 13 miles, and within the limits of this narrow isthmus any Railway frot: the mainland to the Peninsmla of Nova Scotia must necessarily pass. The consideration of the whole question of route very naturally therefore is divided into two main Divisions by the conformation of the country here allnded to. A Railway is constructed across the Isthmus from Shediac to Moncton, a small town at "The Bend," thence

18

Abstract

westward to the city of St. John New Brunswick ; and as this Railway in part forms a section of some of the contemplated Intercolonial Railway rontes, it seems convenient to make it the separating line between the two Divisions of the survey, in which at present it is proposed to consider the suljeet South of the New Brunswick Railway will therefore in the following he called the "Nova Scotia Division" and north of this Railway the "New Brunswick and Canada Division" of the survey.

TIIE NOVA SCOTIA DIVISION OF THE SURVEY.

The chicf obstacle to the overcome on this Division of the survey, is a range of highlands known as the Cobequid Hills, lying immediately to the north of Truro. This conspienous range seems to divide the Bay of Fundy into two great Forks, the most northerly one some tifly miles in length, and terminating in Cnmberland Basin, at the head of which is the town of Amberst ; the more sontherly Fork not less than eighty miles in length from Cape Chigneeto to the head of Minas Basin at 'Iruro.

The Cobequid Hills, range in altitnde from 800 to 1,000 feet above the sea, they extend almost due east and west of Trimo, to a total lengh of almost 100 miles, and with a breadth averaging perhaps about ten or twelve miles. Moncton is nearly north-west from Truro, and therefore the general dire tion of the Railway route crosses the Cobequid range obliguely.

North of the Cobequid IIlls the surface of the country is comparatively flat; at one or two points it is irregular and broken, but no diffenties of an momsual character occur.

At diffrent times fomr lines have heen surveyed from Truro towards New Brmswick; begiming with the most casterly they may be briefly descrited in the following onder:

Line No. 1. From 'Truro this line rons caliterly along the valley of the Satmon River, following the ronte of the Railway now under eonstruction to Pieton, to a place known as Wall's Mill, some ten miles ont of 'Trmro; thence it turns northerly and crosses the Cobequid range in the meighbourhood of Earltown, at an elevation above the sea of 500 feet; deseending to the general level, it then runs to the west of 'Tamagonelie, Wallaer and Pugwash, generally parallel to the Gulph coast to the boundary of New Brunswick at Bay Verte; thence, prolonged northerly, this line was intended to interseet the Railway from St. John to Shediae near the latter place. This line was surveyed about the year 1852, by Mr. James Beatty
for an English contracting firm. I belisve it was found generally favorable, with gradients, except on the northern slope, not exceeding 53 feet per mile, and mininum curves of half a mile radius.

Line No. 2. This line runs from Truro in a north-westerly direction up the southern slope of the Cobequid range until it reaches Folly River, following which the summit is attained at Folly Lake, at an elevation of 600 feet above high tide water. Folly Lake is sitnated in a pass through the higlolands, within which Folly and Wallace Rivers take their rise ; the former tlowing southerly, the latter northerly.

The descent of both streams is very rapid, involving heavy work and heavy gradients, the latter ranging from 60 feet \mathfrak{c} : mile for about six miles ascending northerly, to 66 or 70 feet per mile, descending on the opposite side. Some lesser difficulties oceur to the north of the main range, but after the River Philip is crossed the country undulates easily, and the line will then be direet with favorable gradients.

This line was surveyed under the directions of the late Major Robinson, in 1847, and described in the Report of Captain Henderson.

Lines Nos. 1 and 2 are common north of Bay Verte.
Line No. 3. This line follows the same general direction as line No. 2, until the Folly River is reached, but instead of turning to the north and crossing through the Folly Pass, it continues ascending the southern slope of the high ground to a stream known as Great Village River. After crossing a branch of this stream by an expensive viaduct, the line strikes the main valley near the Acadian Mines, and continnes along the eastern bank on an ascending gradient to the summit at Sutherlands Lake, 24 miles out of Truro and 700 feet above the sea. The heaviest gradient between 'Truro and the summit is abont 60 feet per mile for 42 miles, and extends from the Aeadian Mines upwards.

The deseent on the northern slope is comparatively casy, the gradicuts not exceeding 53 feet per mile. After crossing the Cobequid range, the line continues in a direction north-westerly to Amherst, Sackville, Dorchester and thence to a point on the St. Jolin and Shediae Railway, about six miles easterly from Moncton. This line has not been instrumentally surveyed for a distance of over 30 miles, between Saekville and the River Philip, 41 miles from Truro, but the country is favorable and no serions diffienty is apprehended. Between Sackville and Moncton, the only obstacle of any moment is a high ridge near Dorehester. The profile on the line surveyed shows ascending and deseending gradients at this point of about 80 feet per mile, but I am induced to think that farther surveys may prove that these heavy gradients need not be adopted.

The portion of this line extending 41 miles out of Truro was surveyed during the past year by Alexander Beattic, Esquire, C. E., for the proprictors of the Acadian Mines, the section lying between the Provincial Boundary line near Amherst, z id Moneton, about 33 miles in length, was surveyed last year by J. E. Boyd, Esquire, C. E., under instructions from the Government of Nuw Brunswick.

The following is an abstract of the aggregate length of grades shown on the profiles :

From Moncton to Tantramar River.

From Truro to River Phillip.

Line No. 4. Nearly due South of Amherst a break or opening in the Cobequid range occurs, and presents a very favorable opportunity for crossing from the nead of the northerly fork of the Bay of Fundy to the Basin of Minas at the head of which Truro is situated. In this opening a
branch of Macan River which flows into Cumberland Basin near Amherst, and also Partridge River which flows into Minas Basin near Parsboro, take their rise. The summit between these streams is less than a hundred feet above high tide and suggestive of very easy gradients. In every other respect the ground for 30 or 40 miles southerly from Amherst is extremely favorable for a Railway Line. The same may be said of the country for a like distance on the southerly end of this Line, viz: from Truro to a place called Economy, along the coast of the Basin of Minas. From Economy to Parsboro the survey did not prove so satisfactory. Two spurs of the Cobequid range had to be surmounted; the one at a level of 350 feet and the other at 230 feet above hightide water. Several deep ravines had also to be crossed involving heavy work on this section; and the maximum gradients found necessary between Parsboro and Economy, ascending and descending, are $\mathbf{6 0}$ feet per mile.

The approximate profile prepared from the exploratory survey made under my direction during the past season, from Jeflers Lake, a few miles north of Parsboro, to Truro, has the gradients laid down thereon, of which the following is an abstract.

$$
\begin{array}{ll}
\text { Ascending } & \text { Ascending } \\
\text { Southerly. } & \text { Northerly. }
\end{array}
$$

Total length of Grades under 20 feet to the

mile				8.5		5.1	Miles
"	"	20 to 30	"	6.5	"	4.9	"
"	"	30 to 40	"	2.2	"	4.7	"
"	"	40 to 50	"	0.0	"	1.7	"
"	"	52.8	"	2.2	"	5.0	"
"	6	60	"	5.1	"	1.9	"

" Level...................... 12.9 Miles.
Total Length of section. 60.0 "
From Jeffers Lake northerly to Amherst and the New Brunswick" boundary, the country is so simple in its features that a survey was not deemed necessary. From Amherst, northerly, Lines Nos. 3 and 4 are common. The lengths of these four Lines from Truro io a common point east of Moncton, according to the best information in my possession, may be given as follows:

Line No. 1.

> From Truro along Pictou Railway under construction to Wulls Mill 10 miles.
> From Walls Mill to intersection with New Brunswick
> Railway near Shedine
> 106 "
> From intersection, near Shediac, nlong New Branswick
> Railway to point east of Moncton
> 7 :
> Total...... $\overline{123 \text { miles. }}$

Of whieh 17 miles are already constructed or in progress. Line No. 2.

From Truro to intersection with New Branswick Ruilwhy, near Shedine. 103 milos.
From intersection near Shedine along New Brunswiek
Railway to point cast of Moneton
7
Totul.
110 miles.
Line No. 3.
From Truro, by Acadian Mines nud Amberst, to point cast of Moncton

106 miles.

Line No. 4.

From Truro, by Parsboro and Amherst, to point cast of Moncton. 125 miles.

A fifth line may be had by connecting line No. 1, after crossing River Philip, with lines Nos 3 and 4 in the neighbourhood of Amherst, and a sixth line may be had by combining lines Nos. 2 und 3 , by a short connection running from the former near Tulloeks Creck, to the latter near Salt Springs.

The total length of No. 5 would be about......... 124 miles.
Do of No. 6 do do 111 "
And the several lines, so far as distance is concerned, would stand ${ }^{-}$thus :

$$
\begin{aligned}
& \text { No. 1.-123 miles, Truro to point east of Moncton, by Shediac. } \\
& \text { No. 2. }-110 \text { miles, do by Shediac. } \\
& \text { No. 3.-106 miles, do } \\
& \text { No. 4.- } 125 \text { miles, do } \\
& \text { No. 5.-124 miles, do } \\
& \text { No. 6.-111 miles, do }
\end{aligned}
$$

The greatest length of level or easy gradients will be found on line No. 4, whilst on lines Nos. 1 and 5 will be found the lowest muxituum gradients. In this respeet, line No. 3 next appears most favoruble, but in making a compariwon hetween these diflerent routes, it becomes necessury to exclude the heavy aseemling and deseending gradients common to lines Nos. 3, 4, 5 and 6 near Dorehester.

The obstacles in this quater can certainly be overeome with easics grades either by an incrense of cost or of distance for which ample allowunce will be made in the extimate. It appenrs that lines Nos. 2 and 6 crossing the Cobequid ridge by Folly pass luve the least favorable gradients.

Lines Nos. 1 and 2 wonld best sorve the lowal trallie at present ecntering in the vilhges of Thomagonche, Wallace, Phewashand Bay-Verte on the Gulf eonst

Line No. 3 would aceommodate Amherst, Dorehester and Suckville. And Line No. 4, in addition to serving these points, would also aceonmodate Parshoro and the several villages along the norith shore of the Basin of Minas.

Line No. 5 would equally with No. 1 serve Tatmagone he, Wallace and Pugwash, whilst it the same time it would pass through Amherst, Dorchester and Saekville.

Line No. 6, whilst massing through Amherst, Dorehester und Sackville, would, to the same extent as line No. 2, accommodate the population on the Gulf shore around T'aimagouche, Wullace and Pugwash.

The country south of Amherst on the Macan River and some of its tributaries, abounds in coal in thicli beds and of exeellent gnality. Plais valuable coal field would be opened up by lines Nos. 3, 4 and 6 .

The Cobequid range is rich in iron ore, of the best description, it is now manufactured on the southern flank of the range, at the establishment of the Acadian Iron Company. Annually considerable quantities of iron are exported to England and there converted into steel, for which, from its quality, it is admirably adapted. It is considered that Iron manufactures of all kinds would be established and greatly multiplied in this seetion, were proper facilities created for bringing the coal and the ore logether. Line No. 3 aceomplishes this end, and so also does Line No. 6 ; aldhongh the latter does not in the same degree accommodate the existing eatablishment of the Acadian Mining Company, now in operation on Great Village River.

In review of the above, it would seem that, apart from the question of distance and gradients, a central route, whilst opening up the mineral dis-
tricts both of coal and iron, would at the same time, serve generally the population of the country as well as any other line specially located with that object solely in view, and without regard to the development of the rich mineral resources of this district.

Although the surveys which have been made show that the central routes referred to are the shortest, they have not the advantage when gradients are considered;---still, I am convinced that further surveys would result in modifying and greatly improving one or other of these lines, or in finding, in part at least, a new line, which, whilst securing all the advantages claimed for either of the central lines, would lave the additional recommendation of possessing more favorable gradients and eurves throughont, from Truro to Moncton. It wonld not be wise to calculate that an improved central line can be had, without to some extent affecting the cost and the distance. I shall, therefore, in the estimate consider the distance from Truro to the point of iutersection with the New Bronswiek Railway, east of Moncton, as 109 miles,-nearly a mean between the tength of line No. 6 and No. 3 ; thus making ample allowance for the improvement of the gradients at Dorchester, as well as those on the ascent to the Cobequid summit, should the general route of line No. 3 be finally adopted.

Between Moncton and Truro, with the exception of the mineral districtis which are for the most part in a state of wilderness, mueh of the country is settled, and in some sections cultivated farms of the riehest description can be seen.

ESTINATE OF QUANTITIES.

I shall now proceed to give the quantities of the prineipal kinds of work required to complete the bridging and grading on the sections surveyed last summer. These quantities are the data, on which I shall base the estimate of cost when 1 come to that part of the sulject ; they are calculated from the profiles of the lines which have been made from the information derived from the surveys; but as the profiles are, in some cases at least, only approximate, great accuracy cannot be expected. Tables have been prepared, showing the quantities of work on each separate mile, of which the foilowing is a summary:

From the point of connexion with existing Railway, east of Moneton, to Tantramar River, near Sackville. Length of line surveyed, 30 miles.

1. Common Excavation. 1, 083,854 c. yards.
2. Assumed proportion of Rock Excavation..... .. 114,146 "

Total Exeavation........... 1,198,000 " of the
3. Culvert Masonry 10, 771c. yards.
4. Bridge do.
5. Weight of wrought Iron Bridges.

2,132 "
435 Tons.

From Truro to East Branch of River Philip near Rufus Black's by way of the Acadian Mines. Length of this section as surveyed 41 1.3. miles.

1. Common Excavation. 1,945,000 cubic yards.
2. Assumed proportion of Rock Excavation 586,000 ——_2,531,000 c yards.
3. Culvert Masonry 27,023
4. Bridge Masonry 13,272 "
5. Weight of wronght Iron Bridges. 876 tons.
Between Tantramar River, where the first section above referred to ends, and Rufus Blaek's on the River Philip, where the second section begins, an instrumental survey has not been made, and in consequence there is no certain data from whieh the exact quantities of work can be computed. It is believed, however, that the following rongh estimate froma hurried examination of this intermediate section will, when added to the above quantities, give a fill estimate of the work on the whole line between Moncton and Truro.
6. Common Excavation 894,000 cubic yards.
7. Assmed proportion of Rock Excavation 7,000 " 901,000 e. yards.
8. Culvert Masonry 12,000 "
9. Bridge do. 7,650 "
10. Wronght Iron in Bridges. 436 tons.

Adding the quantities above given together, we shall then have the total quantities of the chief kinds of work, required to complete the bridging and grading of the whole line within the Nova Scotia Division of the survey; that is to say from Moncton to Truro, as follows:

1. Common Excavation. $3,022,854$ eubic yards.
2. Assumed proportion of Rock Excavation.............. 707,146
Total Excavation... $\quad 4,630,000$ c. yards.
3. Culvert Masonry 49,794 "
4. Bridge do. 23,054 "
5. Bridge Iron...... 1,747 tons.

The quantities on the line by way of Parsboro (No. 4) have been computed in a manner similar to that above described with the following results :

1. Common Excavation. $4,765,954$ enbie yards.
2. Assumed proportion of Rock Excavation. 388,146

Total Excavation. . - $5,154,100$ c. yards.
3. Culvert Masonry 4 . 4, 634 "
4. Bridge do. 90,702 "
5. Weight of Iron in bridges.................... 1,877 tons.

In calculating the quantities of carthwork, in every ease the cuttings have been estimated 30 feet wide at formation level, side enttings 24 feet and embankments 18 feet wide; the various structures are intended to be of a substantial and permanent character, they are estimated to be either stone Culverts, or Bridges made of wrought iron on stone abntments and piers, and it is believed that the quantities herein given are ample. .

The probable eost of this division of the work will be considered when that of the whole line is taken up.

NEW-RRUNSWICK AND CANADA DIVISION OF THE SURVEY.

Two Railways are already constrncted and in operation within the limits of the Province of New-Brunswick ; one designated the New-Brunswick and Canada Railway commences at the Town of St Andrews on Passamatuoddy Bay, at the 'xtreme sonth-westerly angle of the Province; it extends in a northerly direction, parallel to and not far from the boundary of the State of Maine, a distance of nearly ninety miles to a point known as Richmond Station, some four or five miles to the west of the Town of Woodstock.

The other line in operation is designated "The European and North American Railway" it begins at the eity of St. John on the north shore of the Bay of Fundy, and extends a distance of about 105 miles in a north easterly direction to Shediae on the Gulph of St. Lawrence. In eonsidering the subject of Intercolonial communication two points on this line of Railway are of great importance; one, the City of St. John, although not the political capital, the commercial eentre of New-Brunswick, and the other, Moneton which commands every possible overland route not only from Canada and New-Brunswick, but from the United States to Nova Scotia and its capital Halifax.

St. John although the great commercial centre of New-Brunswick is not however the only place of importance. There are towns such as Fredericton the seat of Government, Woodstock and other places in the western side of the Province; and Chatham, Bathurst, Dalhousie and Campleltown on the Gulf const. These all possess a certain amount of local traffie, the accommodation of which it is desirable to keep in view. It umfortunately happens howevertlat a line constructed from River du Loup by the coast to Moncton, whilst best serving IIalifax and the population on the cast of New-Brunswick would do so at the expense of St. John and other places in the west.

It will be sern too that a direct line to St . John would serve that eity and the towns and setthements in the west, whilst the points relerred to on the Gulf coast would neeessarily he neghected.

This is here alluded to in order to show that the selection of a Railway ronte throngh New Brunswiek, is involved in local sectional difficulties at the very ontset. The settement of the Proviner has naturally enough followed its navigable waters; on the sonth by the Bay of Fundy and its inlets; on the east by the coast and bays of the Gulf of Saint Lawrence ; on the west by the river St. John, which extends, and to some extent is navigable, almost to the extreme north-westerly angle of the Province. In consequence, New Brunswick may be said to be peopled as yet only round its outskirts. There is a vast area in the interior noeecupied, not because the soil is so much more uncultivable than elsewhere, but because it has hitherto been, and is still inaceessible.*

Althongh I have chiefly to deal with the engineering features of the subject, these considerations cannot be overlooked in taling up the whole matter covered by my instructions, as in view of traffic for the contemplated Railway, the question of route is very naturally and very properly influenced by the present and prospective bnsiness of the commry traversed.

An air line drawn from the city of St. John to River-du-Loup, is about 250 miles in length, but such a line falls within the State of Maine, as much as 95 miles. The shortest line that car be drawn on British territory, is some five miles longer, it extends directly from St. Jolm to the north-rasterly angla of Maine near the Grand Falls; hance, along the bomelary some thirty miles, then straight across the country hy Little Falls to River-du-Loup.

[^0]An air line drawn from Moncton to River-du-loup, passes entirely within British soil, although near Little Fails it comes within two or three miles of the American boundary-this line is 260 miles in length.

Practically then the relative position of these thrce points, viz : River-du-Loup, Moncton and St. John, may be viewcd as forming the angles of an isosceles triangle; the base of which is the Railway, in operation from St. John to Moncton, 90 miles, and the sides from 255 to 260 miles in length.

The construction of a Railway on either of these direet lines is quite impracticable, there are many engineering difficulties on each, which render it necessary to depart materially from the struight course ; and, if practicable, for military reasons the building of an Intercolonial Railway on either of these lines, touching as they do the American Fronticr, is pronounced by Military anthoritics objectionable.

In seeking to avoid the great military objection to any line in close proximity to the American boundary, we unfortunately increase the engineering difficulties; as in looking for a line sufficiently distant from the Frontier, unless we at onee go to the other side of the Province, and thas considerably inereasing the length, we are driven into a section of the country eharacterised by great irregularities of surface and diffieult to penctrate.

In dealing with the whole subjeet we cannot however overlook military considerations, and although it is difficult to learn exactly, what minimum distance from the Frontier would satisfy the Military authorities, reference to this question is unavoidable.

I could not presume to express an opinion on the best military position for the Railway, or even enter into the question of route in a purely military aspect at all; but in the absence of any specific instructions or suggestions on this point, I found it necessary to look for some rule by which to be guided, at the beginning and during the progress of the survey. For a number of miles west of River du Loup, the Grand Trunk Railway passes the north-western boundary of the State of Maine at a distance of searcely 30 miles; this at all events in a military aspect is a precedent, and may suffice to establish the minimum distance allowable hetween the contemplated line of Railway and the nortl-eastern angle of the same State. I have accordingly laid off this distance, on the accompanying general Map of the country, from the Frontier to points on the River Trois Pistoles, Green River, the Restigouche and Tobique. Lines connecting these points and prolonged direct to St. John on the one hand, and to Moncton on the
other, may, sinuply to distinguish them from other lines, be termed "Military air Lines."

These "Military air Lines" (so called) are intended not to approach the Ainerican Frontier at any point, nearer than the Grand Trunk Railway does in its course between River du Loup and Quebec.

Such lines connecting River du Loup with St. John measure about 273 miles, and from River du Loup to Moncton, about 265 miles.

While having due regard to routes which for commercial or engineering reasons simply, might upproach or touch either the American Frontier on oue side of New Branswick, or the Gulf coast on the other, I ventured to assume that the military :uthorities would offer no decided objection to the construction of the contemplated Railsay on or near the lines las: referred to.

I had in view therelore from the beginning of the survey, the discovery of at least one practicable route for the Railway, which without increasing the distance unnecessarily would conform as near as possible with the guiding rule above alluded to.

A section of the country on either of these so ealled Military air lines, whilst showing that the construction of a Railway precisely thereon, is entirely beyond the limits of practicability will at the same time indicate and illustrate the bold plysical features which characterise a very large portion of the Territory embraced by the Survey.

Beginning at River du Loup and following the line laid down at the prescribed distance from the Maine Boundary to the City of St. John ; we find that in passing over the monntainous ridge which separates the St . Lawrence from the Restigouehe, not only is a maximun elevation of nearly $\mathbf{2 , 0 0 0}$ feet above sea level reached, but the surface passed over is of a very broken character; minor ridges nearly all crossing the line in a right angled direction, are constantly met with,---these attain elevations ranging from probably 1,000 feat to nearly double that height above the sea, and are separated by low lying water chancls, of which may be mentioned, Lake Temisconata, River Toledi, Squatook Lakes, besides the branches of Green River. Several of these waters will not exceed 500 feet above sea level.

The distance from River du Lonp by the air line to its crossing the Restigonche River is nearly one hundred miles, and the latter river at the crossing is about 450 feet above the sea. The great ridge continues easterly between the St. Lawrence on the north, and the Restigouche and Bay Chaleurs on the south, until it terminates in the Gaspé Peninsula. It
must be crossed at some point by any line of Railway communication, intended to connect the Maritime Provinces with the Canadas, but the section now being described crosses it in perhaps one of the least favorable directions.

Continuing from the Ristigouche southerly to Tobique, a distance of about 35 miles, the line crosses a heavy irregular swell running easterly and westerly and attaining a summit height varying from 1,000 to 1,200 feet above the sea. The line crosses the Tobique at about 500 feet above the same level. From the River Tobique continuing southerly it has a third main ridge to cross; this ridge is known as the Tobique Highlands, it extends easterly from the river St. John to a rugged district in the interior of New Brunswick, where the Tobique, the Upisalquiteh, the Nepisiguit, and some tributaries of the Miramichi take their rise. On the air line to St. John, this ridge separates the Tobique from the main Miramichi, and is in a direct line about 45 miles in width; the height of land passed over will probably not be less than 1,500 or 1,700 feet. The height of the River Miramichiat the crossing is probably a hundred feet greater than at the Tobique erossing.

Sonth of the Miramichi on the same line continued, the ground rijes again to a considerable elevation and is intersected by deep river vallies. The line passes to the east of Fredericton some eight miles and crosses the River St. John about twelve miles below that eity. Continuing onwards it crosses the River a second time, as well as a long, wide and deep extension of the St. John River called Kennebeckasis Bay, besides a good deal of broken ground immediately north of the city of $\mathbf{S t}$. John.

The (so called) Military air line from River dh Loup to Moneton passes over gromet north of the Miramichi, not dissimilar to that of the St. Jolin air line above described. The commry between the Miramichi and Moncton is meh simpler in its charaeter and on this section no insurmonutable difliculties exist.

Aware of the imporiance of a favourable Railway route in the general direction of the military air line above alluded to, I determined to exert every effort to discover one; although it mast be confessed the above sketch of the leading features of the country, and the following extracts from the report and correspondence of Major Robinson, dated 1848 and 1849, made it appear extremely doubtfil that a practicable line could be had.

[^1]"The Tobique River runs through them, forming a deop valley or trough which munt be crosed by the direct line, and increasen greatly the difficulty of passing ly them.
"The lowest point of the ridge overlooking the Tobique River, at which any line of railway must pras, is 1216 feet above the sea. Then follows a descent to the river of $\mathbf{7 9 6}$ feet in 18 miles, and the aummit level on the opposit ridge or crest between the Tobique and Restigouche witers 920 feet above the sea, or n rise of 500 teet above the point of erossing at the 'loliquo water. These great summit levela which must be surmounted, furm a serious objection to this ronte."
"The fith and last obstacle to be overcome, and which cannet be avoided ly any of the routes, is the mountain range running nlong the whole eourse of the river St. Ln wrence in a very irregular line, but at an nverage distance from it of alout twenty miles. It oceupics with its spurs and branches a large portion of the space between the St. Lawrence aud the Restigouche Rivers. The roeks and strata consposing the range are of the same character and kind as the Tubique range. The tops of the mountains are as elevated in the one range as in the other.
"The exploring parties failed in finding a line through this range to join on to the direct line through New Brunswick, but succeeded in carrying on the Eastern or Bay Chaleur route, owing to the Cortuaate intervention of the valley of the Metapediac River.
"The line which was tried and lailed was neross from the Truis Pistoles River, by tho heads of Green River and down the Psendy or some of the streams in that part running into the Restigunche River."
" From Boiestown the general course wns followed, and levelled as far as the Tobique River, but the country was so unfavourable that new eourses had to be constnntly sought out.
"A new line altogether was tried from the Tobique as far as the Wagan portage.
"The results deduced from the ohservations and sections proved this line to le quite inpracticable for a Railway.
"Whilst the line was being tried, other parties explored from Neweastle on the Miramichi River, over to Crystal Brook on the Nipisiquit, the vallics of the Upsalquiteh and its tributaries and as far as the Restigouche River.

The comery at the npper waters of the Nipisiquit, and the whole ol the Upsniquitch vallies, were found to be rough, broken and totally impractieable.
"The result of this season's labours went to show that the best, if not the only ronte that would be likely to be practicnble, would be by the North-west Mirnmichi to Buhurst, nud then along the Bay Chnleurs."
"A ange party was engaged in trying to find a line from Trois Pistoles River on the St. Lawrence through the Hightnals to the Restigouche River, for the purp se of connecting on to the New Brunswiek party. The winter overtork them whilst still embarrassed in the IIghlands at the head waters of the Geen river.
"The doted lines on the General Plan will show their attempts.
"A line was tried up the valtey of the Aloersinuash, but it ended in a cet-de-sac; there was no way out of it.
"A second line was earried from Trois Pisteles over to Lac-des-Isle", Eagle Lake; and by the middle branch of the Tuladi River, the nord west branelh and head waters of the Green liwer, were gained.
" But this point was not reached except by a narrow Valley or ravine of lour miles in leneth.
"A Theodelite section was ande of it, und it was found to involve a grade of at lenst one in fortyme and to attain that, heavy cuttings at one part nod embankments nt nother would be necessary.
"There is no oceasion at present to enter upon the disenssion of whether this should condemn a whole line ; for having attainedthe Forks at the head of the main Green River no way was found out of it and this explored line, like the first mentioned, must be considered to have ended in a cul-de-sac also."

[^2]The exploration undertaken on show shoes, early has yeur from Boiestown on the Miramiehi northerly to the :iver Tobique (together with information from other sourees) resulted so far satisfactory, that no obstacles of an insuperable mature were apprehended in that quarter.

The exploration similarly modertaken between the st. Lawrence and the Restigouclie during the winter 63-64, althongh it added to the infor mation previously gathered, proved msuceessful in the main ohject in view; and in consequence, the probability of finding a practicable passage for the Railway, hetween these waters, was rather diminished than increased by the additional knowledge of the country thas ohtained.

Hence it appeared of the umost importmee, to have this section carefully explored, before commencing the Railway survey on any other portion of a direct central route ; so soon as this vital point bename thoroughly understood, it would then be rasy to decidn whether to proceed with or abandon the survey throngla the interior.

Vigorous measures were required to settle the question of practicability through this district with as little delay as possible. I therefore concentrated the efforts of two thoroughly cellicient and well appointed surreying parties to the solution of the difficulty.

One party entered on the exploration from the Restigouche, following up the valley of the Gounamitz and aiming, at the discovery of a passage into the valley of Green Riser near its somb-easterly souree.

Another party entered from Rimonski, with the view of finding a smitable passage from the valley ol Rimonski River, by its south easterly banches to the valley of the Kedgwiek, and thenere, shonld the first mentioned party fail, the River Restigonche.

Boh attemms proved suceessful.
Having thas a choice of routes across the height of land forming the northerly water shed of the Great Restigonche Basin, and being mable from the shorness of the season, and more particularly from the very limited appropriation at my command, to follow up both, it berame neeessary to make a selection ; I therefore decided reluctantly to abandon the "xploration by the Rimonski and Kedgwick, and determined to continue the -urvey by the Gounamitz and Green River; the latter route appearing the most direct, and at the same time sufficiently remote from the Frontier. On
arriving at this decision, both parties were placed on the Gounamit\% ronte.

Whilst these explorntions were in progress, two other equally etlicient. -urveying parties were engaged, the one in Nova Scotia, between Truro and Monctom, the other in making a re-survey of that portion of the line through the Matipedia valley, considered the most diflieult and expensive of the route recommended by Major Robinson. The eharacter and reonlis of the later examination will hereafter be referred to.
so soon ats the party in Novit Scotia lad completed all that I felt juntfied in doing in that Provinee, 1 immediately transterred it to New Brunswiek, and there engnged it in the eontinuation of the line which commenced in the villey of the Gounamitz.

Anxions to have a continuons instrumental survey, from the St. Lawrence to the line of tailwity rumning from St. John to Moneton, before the season closed and the appropriation became exhausted; I transferred the Matepedia party, carly in October, to the sonth of New Brunswiek 10 a iad in this work. From the begimning of October to the elose of the field operations, the four parties were simultaneously engaged on the same route.

By the beginning of December, a eontinnous line of levels and other measurements were made from Trois Pistoles to Apohaqui Station, about. midway on the railway running from the city of St. John to Moncton. And thus, although the object of the survey was mainly to aseertain beyond a doubt, that there was nothing impracticable in the way; yet the additional information obtained, by the completion of the instrumental measurements on this partientar line, is doubtess of very considerable importance, as it gives pretty satisfactory data on which to base an approximate estimate of the probable cost of the line surveyed; as well as collateral data of some value, in estimating the cost of other possible lines, through analagous sections of the same comntry, but which as yet have not been similarly examined.

'IHE SURVEYED CENTRAL LINE.*

I shall now proced to give an outline of the engineering and other features of the Central Route above referred to, beginning at the point of connexion with the Grand Trunk failway near River du Loup, and terminating at Apohaqui Station, on the New Brunswiek Railway.

I found that an exploratory survey had been made some six years ago,

[^3]in connexion with the works of the Grand Trunk Railway from River du Loup easterly to River Trois Pistoles, a distance of 24 miles. This survey was of a satisfactory nature, and it was therefore deemed unnecessary to go over the same ground a second time.

```
RIVER DU LOUP TO RIVEK TROIB PIBTOLES.
```

On this section three rivers of importance are crossed, viz: River du Loup, River Verte, and River Trois Pistoles, the last will require a bridge of great magnitude, as the river flows in a rocky gorge about 150 feet deep and of considerable widtheven at the most favomrable point. It is proposed to cross this river and ravine on a viadnet of thirteen spans, one of which is intended to be 100 feet in the eiear, nud the remaining twelve with 60 feet openings. The britges over the Rivers du Loup and Verte will each have three 70 fect spins. The former will be about 22 feet above the water, and the latter 30 feet.

The following summary of the grades given on the profile will show that they are on this seetion extremely favorable, very few being over 40 feet to the mile; the lighest ascending south is about half a mile in length at 52.8 fect to the mile, and the maximmm ascending north is 53.5 feet per mile.

River du is survey sessary to

River du a abridge feet deep ${ }^{3}$ proposed of which e with 60 will each the water, will show ag over 40 in length 53.5 feet

IN MILES.

ling North.

> 3rd. Culvert masonry.
> 4,016 c. yards.
> 4th. Bridge Masonry 6,961 do
> Sth. Weight of Bridge Iron.

RIVER TROIS PISTOLES TO GREEN RIVER FORKG,

Beginning above the confluence of the River Abawisquash with the Trois Pistoles, at an elevation of 497 feet above tide water, the line follows the valley of the Abawisquash, with grades not exceeding 50 feet per mile for a distance of eleven and a half miles; here it passes over a suminit only 690 feet above the sea, into the Basin of Island Lake; descending gradually from the water shed between the Abawisquash and Island Lake, for a distance of about eleven miles with remarkably easy grades, seldom over 15 feet per mile, it reaches the head of Eagle Lake, 532 feet above the sea. The line surveyed now turns in an easterly direction and ascends to the Wagan Lake, 30 feet above and four miles distant from Eagle Lake. It then curves on a perfect level to the valley of the Turadi, a tributary of the Rimouski, and following the valley of the former with nearly level, or grades under 20 feet to the mile, it reaches the 37th mile from River Trois Pistoles at an elevation of 545 feet above the sea.

The line now enters the valley of the Snellier River, and changing its former course to a southerly direction, it begins to ascend with grades the heaviest of which are 52 and 53 feet to the mile, and together measuring 2.2 miles in length in a distance of about three miles; between the 44th and 45 th mile from River 'Trois Pistoles the line attains an elevation of 786 feet and passes over a water shed to the valley of the North Branch of the Toledi.

Following this Branch of the Toledi in a general southerly direction with undalating grades to the 47 th mile, three miles of 64 feet grade are required before Echo Lake is reached at the both mile and at an elevation of 985 feet. At Echo Lake the line turns more to the east, and a rapid aseent of 70 feet per mile for three and two tenths miles is unavoidable.

From the 5 th mile to the 63 rd mile the Railway ronte will pass at some distance to the east of the surveyed line. At the 56 th mile it will reach summit lake 1350 feet above the sea, with grades probably not exceeding 53 feet to the mile, and from the 56 th to the 63 rd mile, it is believed the grades will undulate easily.

At the 63 rd mile the line is 1360 feet above the sea, from this point it follows a tributary of the Rimouski, crosses the Boundary between Canada and New Brunswick at about the 65th mile and then ascends with a grade 3*
of 43 feet to Lake Tiarks at the 67th mile, attaining a total elevation of 1515 feet. At this joint the line crosses the water shed between the streans flowing into the St. Lawrence and those discharging into the River St. John by the Green River.

From the Lake 'Tharks summit, the line passes almost on a level for a mile and a lialf to the valley of the Green River, and then descends with a grade of 59 feet per mile for nearly two and a half miles, reaching Green River Lake between the 70th and 71st mile. 'The elevation of this Jake is 1365 feet above tide water.

From Green River Lake the line follows in a south-easterly direction, the valley of the morth-west braneh of Green River, to the Fork's at the 81st mile. On these ten miles it gradually descends with grades generally less than 30 feet per mile. At the Forks the elevation is $\mathbf{1 0 7 5}$ feet.

The line continnes in a southeeasterly direction from the Forks, ascending gradually the south-east branch of (ircen River, to a point 82.7 miles from Trois-Pistoles, where this section terminates. The elevation here is 1130 feet alove the St. Lawrence.

The following is an abstract of the Grades shown on the profile of the line surveyed on the Trois Pistoles and Green River section :

Level.................................. 5. 5 Miles.
Total Length
82.7 "

There are no rivers of great size on the section above described, and
vation of ween the into the evel for a ds with a ng Green this Lake
dircetion, It the 81st crally less
s, nscend2.7 miles on here is
of the line
ules.
pg North.

1. 1
9.5
4.5
1.7
consequently the bridging is comparatively light. The iron bridges required will be of the following general dimensions :

Between the 19hhand 71st inile from Trois-Pistoles, the line above deseribed makes a very great and objectionable detour to the eastward, which I feel contident can be avoided by a more direet route, and thus save about twenty miles in distance.

From Green River Lake, near the 71st mile running north-westerly, an opening leads through the highlands to the valley of the south-east branch of the River Toledi. The water shed between Green River and the Toledi at this place, is probably not more than fifty feet above Green Lake, and here the line can be carried over to the Toiedi valley, with a summit about 100 fect lower than the one referred to at Lake Tiarks. After passing the summit, the 'foledi must be followed, but this stream falls too rapidly to admit of a Railway being made along the botiom of the ravine, with suitable grades. To make this route available therefore, it would be necessary to descend gradually on the side hill, a plan, which, from the charteter of the ground, will be somewhat difficult and expensive, and, under any circumstances, long maximum grades will be required.

It was to avoid these difficolt and objectionable features that the exploration was carried ronnd by Lake Tiarks. From the accomnts of Indians and hunters, there was good reason to expeet that a comparatively easy line might be found to the valley of the Abawisquash, without descending to the Toledi and without inereasing greatly the distance over that by the direct route.

These expectations were however only partially realised, for although the line surveyed has generally very favourable grades, yet its length due to the easterly detour is much too great, and in eonsequence I would be disposed to recommend the direct route by the 'lolediand Sandy Lake. A great deal of eareful surveying will be required on this section, before the best and cheapest location can be found along the Toledi, and across from Sandy Lake to Eagle Lake. The work too will prove heavy and expensive ; bat as twenty miles of Railway will be saved thereby, I ann satisfied that the total quantity of work on the whole seetion, from Trois Pistoles to Green River by the diect route, ean scarcely exceed the quantities required to form the eircuitous ronte. And therefore in estimating the probable cost, 1 shall adopt the quantities computed from the profile of the line surveyed, as those ecessary in the building of this section, and of which the folluwing is an abstract.

> 1st. Common Excavation.... 2,391,664 e. yards.
> 2nd. Assumed proportion of Rock Excavation..... 90,000 ."
> Total excavation. 2,481,664 e. yards.

$$
\begin{aligned}
& \text { 5th. Weight of Iron in Bridges..... } 183 \text { 'Tons. }
\end{aligned}
$$

With the exception of Ballast, which is searce, it is believed that materials for construction can be procured readily on this section. Stonc of different qualities is abundant. Cross-ties will require to be made of the best description of Spruce or Balsam, as other kinds of timber usually employed are rarely met with. With regard to the durability of the Spruce and Balsam found in this district, I am eonvinced it is fully equal to that of Hemlock, the timber largely employed for eross-ties in western Canada. Ta the boundary line between New Brunswiek and Canada, cut out ten gears ago, I saw many trees of the diameter suitable for eross-tien which had lain on the ground during that period, and still to a eertain extent sound.

GREFN RIVER FORKS TO RESTIGOUCIIF:
Commeraing where the last section terminates at an elevation of 1130 feet, the line continues south-easterly about a mile and a half to the mouth of Otter Branch; it then turns to a sontherly direction and aseends a winding valley through a mountainous country to Larry's Lake, the head waters of this branch of Greea River; a few hundred yards south of Larry's

Lake, and near the 7th mile from the beginning of this seetion, the line passes through the most favourable opening in the highlands that could be found; and here attains a total elevation of 1.478 feet, having aseended about 350 feet in seven miles with grades varying from 34 to 70 feet per mile.

The Larry Lake smmait divides the waters of Green River from those flowing into the Restigouehr, and the line now begins to deseend a tributary of the latter river designated the Gounamitz.

The deseent of the Gounamitz is very rapid, involving a continuous grade of 70 feet to the mile for nine and a half miles, certainly one of the most unfavourable on the whole line surveyed, ion 1 fear mavoididle. To secure this grade it will be necessary to locate the line along the side hill, which from the character of the ground can be done without mach difficulty.

At $16 \frac{1}{2}$ miles from the heginning of this section the elevation is 806 feet, the line from this point continues descending the valley of the Gounamita to its eonfluence with the Ristigouche near the 32 nd mile. The grades for the last 15 miles are remarkably easy, they average about 23 feet to the mile and none exceed 40 feet to the mile. At the end of this seetion theelevation of the line is 455 feet above tide water.

The following is an abstract of the Grades shown on the profile :

Level
0.8 Miles.

Total length of Section......... 32.3 " Larry's

Only three Iron Bridges will be required on this Section, two of whieh will be over the Gounamitz River. The first in one span of 100 feet and 17 feet above the water. The second in two spans of 80 feet each 14 feet high. The i'iod Bridge will cross the north branch of the Gomamita, it will consist of two spans each 40 feet and 26 feet above summer water in the river.

The total quantity of the principal items of work on this section as calculated fiom the approximate profile are estimated as follows:

1st. Common excavation	1,752,900
2nd. Assumed proportion of rock excavation...	66,800
Total exearation....	1,819,700 C. yards.
3rd. Culvert masonry.......	12,426 "
4th. Bridge do.	1,281 "
5th. Total weight of iron in Bridges...........	130 tons.

Stone suitable for building purposes may be had in the vieinity of the River Restigonche, on the Gounamitz and also on the Green River. Crosslies may be made of black or grey Spruce of which there is a great abondance, and occasionally Tamarac may be found. Gravel of good quality is everywhere very plentiful on this Section.

RESTIGOLCHE TO TOAIQUE.

After leaving the valley of the Gommamitz, the line runs casterly about a mile and then crosses the River Restigouche at the point where this section hegins. The line then ascends the valley of Boston Brook, with grades varying from 50 fect to 70 feet permile for five and a half miles, when it attains an elevarion of 805 feet. At this elevation it continues southerly on a level for a distance of about a mile and a half, then slightly descends to a branch of Jardine's Brook. From Jardine'; Brook the line has ras! undulating grades along the head waters of Grand River to the 13th mile : it then beg ns to axiend through fine hard wool land with grades of 65 feet per taile to the middle of the 18th mile, where it reaches an elevabien of 107.4 fert. The line now deseends with favorable grades io Salmon River, which it crosses at the 23 rl mile at an elevation of 858 feet. At the 30 h mile after crossing various branches of Cedar Brook on easy undulating grades, it passes at an clevation of 830 feet, over a summit between a tributary of that stream and Two Brooks. It then follows Two Brooks on
descending grades, chiefly under 40 feet to the mile, to the north bank of the River Tobique, which it reaches at the 39 h mile and at an elevation of 445 feet above the sea; continuing in a southerly direction along the north bank of the Tobique, on almost level grades, the line reaches a favourable point for crossing near the mouth of the Little Gulquae, where this section terminates at a total distanee of 45.4 miles from the Restigouche.
The following abstract will show the eharacter of the grades on the Section above described.

The Bridging required on this section consists, firstly, of one across the River Restigouche, about fifteen fect above the water and in five spans of 60 feet each; srrondly, of a Bridge 25 feet high with two sixty feet spans across the Salnon river; thirdly, of one across the River Tobique having three spans 100 fire ench, and about 32 fer: above summer water; Areh and Bean Culverts will suffice for all other waters crossed.

The quantity of Excavation and other work on this section tas been calculated from the approximate profile and the following is presented as an abstract :

1st. Common excavation $2,068,600$ enbic yards.
2d. Assumed proportion of rock excavation. 456,500 "
Total excavation 2,525,100
3rd. Cnlvert masonry . $\quad 13,787$ c. yards.
4th. Bridge masonry
5th. Weight of iron in bridges

Good stone for constrneting the Restigonche and Tohique bridges may be had at no great distance from the bridge sites ; materials, for the construetion of eulserts within ten miles of both rives may also be obtained withont much difliealty, but on the intermediate parts of the line it has not been aseertained that stome can be procured. Sand is plentiful and it is believed that grivel will be found upon or close to the line. Tamarac as well as sproce crossties, can be had in the distriet passed throngh from the Restigoucher to the 'Tobique Rivers.

TOMQUE TO KESWICE SUMMIT.
This section eommences at the River Tobique near the month of the Little Gnlquar; a position which was selected for crossing the Tobique, in the expectation that the surveying party would interseet a line ent out by Capt. Henderson towards the Miramichi, and thus save time and expense in carrying on the examination through part of this section. No advantage was gained by this step, as the old line was so entirely obliterated in many places, that it could only be traced with the greatest difficulty, and in consequence it was found expedient to abandon the old survey and to take an independent course. The line commences at an elevation of 425 feet, and ascends the valley of the little Gulquae, with grades varying from 36 to 63 feet per mile for five miles; it then passes over a ridge to the Little Wapsky River and continues on easy grades to the end of the 1 th mile. The line now crosses the Wapskyegan, where a bridge of great mag.itude will he required, and begins to aseend on a maximum grade of 70 feet per mile to a summit at the head of Oven Rock Brook. The summit is reached at $16 \frac{1}{2}$ miles, and the elevation attaned is 1170 feet above the sea. Betwren the River Wapskyegan and the stmmmit, the, greatest difficulties on this section are found. Besides the Wapskyhegan bridge, which will be nearly a thousand feet long and 140 feet high, the cxeavation on this ascem, five and a half miles long, will be unusually heavy.

The line then enters, by Frank's Brook, the valley of the north branch of the Miramichi, which it follows, crossing the river twice near the 22nd and 23 rd miles. From the 23 rd mile to the $32 n d$, the line winds along the west bank of the river; then strikes across a Cariboo plain to the northwest branch of the Miramichi, which it reaches at the end of the 37th
mile, with an elevation of 783 feet above the sea. The grades are all descending from the summit to the north-west branch, and are remarkably easy, being generally on this distance of 21 miles under twenty feet to the mile, and only in one instance as high as 44 fect to the mile.

Crossing the north-west branch of the River Miramichi, abont a mile westerly from the "Forks," the line ascends by Turtleshell Brook, vithout difficulty to the water shed between the last named river and the Nasiswaak, which it reaches at the beginning of the 40th mile at an clevation of 950 feet. Descending on a favourahle grade for abont a mile, the line then follows the River Nashwak on the westerly side, and on nearly level grades to the 51 s 1 mile, where the Two Sister Brooks fill into the main stream. At this point, the Nashwak leaves the southerly direction whieh it previonsly maintained, and turns nearly at right angles to the east. The line however contimes southerly, and ascending by one of the Two Sisters, reaches the Keswick summit at ahont the 54h mile, and at this point attains a height above the tide of 1005 feet. From the summit the line deseends on a 65 feet grade for a distance of about a mile, to a point a tle easterly from Lake Beccaguimic, where this section of the survey terminates.

The following is a general ahstract of the grades taken from the profile of the line surveyed from the River Tobique to the point last referred to :

					totar len	in miles.
	charac	er			Ascending	Aseending
Grades	muder 20				1.5	13.6
"	20 to 30				1.7	1.1
"	30 to 40	"	"		2.9	5.7
"	40 to 50	"	'6		0.7	3.1
"	52.8	"	"		9.9	0.0
"	56	"	"		1.5	0.0
"	63	"	"		0.9	0.0
"	65	"	"		0.0	1.4
"	66	"	"		0.0	1.0
"	68	"	،		2.7	0.0
"	69	"	"		1.7	0.0
"	70	"	"		5.9	0.0
Level. 8.3 Total Length.					Miles. "	

The Bridging on this section will be heavier than on any of the others. The Little Wapsky will require a viaduct about 55 feet high, and the one across the Wapskyhegan will be 142 feet above the level of the River. The former is proposed to consist of sixteen girder spans cach 60 feet, and the latter of three 100 feet spans over the Wapskyhegan River with 13 sixty feet spans in the approaches. Between the 22nd and 23rd mile, the north west Branch of the Miramichi will be bridged twice with sixty feet single openings, the one will be 25 feet high, and the other 18 feet. A fifth bridge will be required over the south-west branch 20 feet in height, and it is proposed to adopt three spans for this work, the center span one hundred feet, the other two each 60 feet.

The quantities calculated from the profile deduced from the survey of this section of the line are as follows:

1st. Common Excavation 2,266,700 cubic yards.
2nd. Assumed proportion of Rock Excav. 336,400 " "
Total Excavation. .. 2,603,100
3rd. Culvert masonry................... 19,330 " "
4th. Bridge " 13,500 " "
5th. Weight of Iron in Bridges......... 794 Tons.
Good stone for Bridge masonry can be had on and near thr River Tobique, and sandstone suitable for the same purpose can be obtained on the Miramiehi and Nashwaak Rivers ; stone for eulvert masonry may be obtained without much diffienlty throughout the seetion. There is also good sand for building purposes, and abundance of gravel for Ballast.

The timber available for Cross-ties, between the River Tobique and Keswick summit, consists of Spruce, Tamarae, Hemlock, and Cedar.

KESWICK SUMAIIT TO LITTLE KIVER.
The line enters the Keswick valley near the source of the west branch, and contimues within its limits until the River St. John is reached; the deseent of the west branch is very rapid for the first eight or nine miles, and heavy grades for this distance will be mavoidable. The maximum grades shown on the approximate profle of this seetion are 66 feet to the mile, and to obtain this on the line by the west branch, heavy side hill work will be necessary for a considerable distance.

Probably the east branch may offer a more favourable approach to the main valley of the Keswick River. But the season was too far advanced to admit of a proper amination by this route being made.

From the 9 th mile the line winds along the side of the River, occasionally erosses it, and then continues on the flats until it finally reaches the north side of the River St. John, at the 29 th mile. For twenty miles up to this point, the grades are remarkably favourable, in no case being over 40 feet to the mile and generally under 10 feet to the mile.

From the mouth of the Keswiek the line rins along the north bank of the River St. John almost on a dead level, erossing the River Nashwaaksis at the 37th mile. It reaches the Fredericton upper ferry at $38 \frac{1}{2}$ miles, and the lower ferry at the end of the 39 th mile ; about three quarters of a mile farther on the line arrives at the Nashwaak, an important river 500 feet in width where it is crossed.

Soon after crossing the Nashwaak, the line leaves the banks of the St. John, and turning round Barkers hill, follows an easterly direction with very favourable undulating grades to the Little River, where this section of the survey terminates.

The following table is an abstract of the grades shown on the profile :

Level.............................. 16.6 Miles.
Total length of section......... 61.6 "
With the exception of the Nashwaak, the Rivers to be crossed on this section are unimportant. The spans given in the following list will probably be sufficient. Height.

No. of Length of spans. spans.

Over	Nort	swick.. 20	feet.	2		
"	North-East do	do ... 12	"	1	75	'
"	Little Fork's River	. . 18	"	1	50	"
"	Nashwaaksis River	. 18	${ }^{6}$	1	75	"
"	Nashwaak .	. 20	"	7	75	"
"	Noonan's Brook	. 14	"	1	30	"
"	Burpee's Brook 13	"	2	50	${ }^{\prime}$

The approximate profile made from the survey of this section showe that the following quantities of the chief kinds of work are sufficient :

1. Common Excavation \qquad 2. Assumed proportion of Rock Excavation.					$\begin{array}{r} 1,904,100 \\ 170,000 \end{array}$	C. yds . "
			Total	Excavation.......	2,074,100	"
	Culvert	Masonry			14,931	${ }^{\prime}$
	Bridge	do			3,410	"
	Iron in	Bridges.	320	ns.

There will probably be some difficulty in procuring !uilding stone, at least for the Bridge Masonry, within a convenient distanse along the Keswick valley, as none suitable appeared to crop out along the line of survey; fortunately however the bridging in this quarter is comparatively light. From the Keswick to the Little River it is believed that stone for all the Bridges and culverts may be found readily. Material for Ballast although not of the best quality can be had in abundance on this section. The timber for Cross-ties in this locality consists of Spruce, Hemiock and Cedar.

LITTLE RIVER TO COAK CREEK.

From Little River the line continues in an casterly direction to the head of the Grand Lake Navigation, on the Salmon River, which it crosses at the 19 th mile. For this distance the grades are undulating and favourable; near the 9 th mile the line crosses the Neweastle River, and in this locality it passes elose to several coal mines, where coal of fair quality crops ont on the surface; at the 16 th mile the line crosses an arm of "Iron Bound Cove" which will have to be bridged.

After passing Salinon River the line curves southerly, and passes over a ridge with ascending and descending grades of abont 60 feet per mile to Coal Creek, which it reaches near the 25th mile ; about a mile and a balf farther south the line joins on to the next section.

n showo

 nt :C. yds.
"

The profile shows the following grades :

Level.
8.1 Miles.

Total length of Section 26.3 "

The bridging on this section is very heavy when its length is considered. The rivers to be crossed and the structures proposed are as follows ; of course the character and dimensions of the latter may be greatly modified on a proper location survey being made.

At Little River the bridge will be 45 feet in height with nine spans, one of 100 feet and cight of 60 feet openings.

At the Neweastle River the bridge will be 37 feet high and will have eight spans, one of 100 feet and seven of 60 feet openings.

At Iron Bound Cove the bridge will be 23 feet above the level of the water, and it will have three spans each 60 feet.

At Salmon River it is proposed to have a bridge 17 feet in height with nine spans each 60 feet.

At Coal Creck a viaduct of considerable magnitude is at present considered necessary; the height will be about 7 C feet, with one span of 100 feet across the stream and cleven 60 feet spans in the approacher

The calculation of quantities from the profi'e of this section give the following totals :

The most convenient point for obtuining building stone has not been ascertained. But as the proposed bridges are either on or within a short distance of Grand Lake, which is navigated by steamboats running to St. John and Fretericton, it is thought that the supply of building material will not be diflicult, even slould the inmedinte loeality not produce it.

Gravel for Ballast is plentiful. The timber for Ties prodneed in this diotriet is Sprnce, Tamarae, and Prinec's Pine.

COAL CHEFK TO APOHAQUT.

After aseending from Coal Creck with a 65 feel grade, the line follows a sontherly direction over it favourable comary, and reaches Caman River near the eleventh mile.

Canam River is crossed at Long Rapids, ami the line there ascends by Poreupine Brook, on grates gencrally 60 feet per mile to Long's Creek Ridge, which it reaches at the 150 mile. The line then deseends to the North Branch of Long's Creek, which it erosses at about the 17th mite; then continues in a gencral sontherly direetion up the valley of the South Branch, on grades not execeding 59.8 feet per mile; it passes over a Ridge and enters Chowan's Guleh a little beyond the Q1st mile.

Chowan's Guleh leads the line by a rapid deseent, involving grades of 53.8 and 60 feet per mile, for five and a half miles, to the valley of Studholme Mill Stream ; following which on undulating grades to about $31 \frac{1}{2}$ miles, it joins the European and North American Railway at Apohaqui Station.

The following is in abstract of all the grades on this seetion :

ot been a short ning to ; mateluce it. in this
follows a River iscends Creek s to the i mile; South Ridge ades of I Studut $31 \frac{1}{2}$ ohaqui

HILES.

ding

 th.The bridge over the Canaan River will be the most costly structure on this section, its height above the water will be 55 feet, and it is proposed to have six openings, one in the centre of 150 feet span and five others each 60 feet span.

The next bridge will be over the north branch of Long's Brook, it is intended to have three thirty feet spans, its height will be nearly thirty feet.

Sharp's Brook about the middle of the 29th mile will require to have a single span bridge of 40 feet, and 21 feet high.

The last bridge on this seetion will be over the Kenebeceasis River about 400 yurds from Apohaqui Station, it will be 21 feet above smmmer whter, and will have five spans, a centre one 150 feet in lengll and four others each 50 feet long.

It is reported that the locality around Canaan River and Porcupine Brook will afford good stone for heavy masonry. A sandstone crops out at other points along this section, but it is not sufficiently exposed to enable one to judge of its quality. Stone for culvert masonry in all probability can be had withou: much difficulty. There will be no difficulty in obtaining good gravel for builast.

On this section Tamarae is abundant, and most of the othel descriptions of Tie-timber already mentioned can be had.

In concluding these remarks on the character of the line surveyed through the centre of New Brunswick, I may allude briefly to its leading features.

The course taken by the line above described from the River du Loup towards the southern part of New Brunswick is generally direct and at some idistance from the eastern Frontier of Maine. Except at one point this distance is not less than that between the Grand Trunk Railway east of Quebee and the northern boundary of the same state; the point referred to lies to the northiand east of Grand Fails on the River St. John. I may mention however that at this point which lies between the Restigouche and the Tobique, I instituted a supplementary exploration after the survey was finished and the discovery was made that the line approached the Frontier nearer than desired. This exploration resulted in showing, that there is every probability of a favorable location being obtainable, without keeping so close to the Boundary of the Province at this point. The alternative line, which possibly can be had between the Restigouche and Tobique Rivers, is shown on the general map of the country which accompanies this.

The line continues on a course towards the city of St. John, generally direct until Frederieton is reached. From Frederieton it was my object to find the shortest route to St . John on the east side of the River, the crossing of which is in some respects objectionable.

To reach St. John on the easterly side of the river it was found necessary, on account of ditliculties that could not be easily overcome, to pass round by the Head of Grand Lake; and in this direction, though rather eircuitous, a favorable line was found to a point of comexion at A pohaqui with the existing Railway leading to St. Johm. This is probably the most direct line that can be had to the City of St. John from Fredericton without crossing the River.

By erossing the River in the neighbourhood of Fredericton, St. John may be reached much more directly by way of Oromocto and DonglasValley, on a line carefully surveyed last summer by Mr. Burpee for the New Brunswick government, copies of the plans of which have been placed in my possession. This would, withont question, be the most direct Central route from Canada to the Harbour of St. John on the Atlantic seaboard. The distances by the several projected lines will be particularly referred to hercafter.
arveyed leading
lu Loup and at te point fy east referred I may che and vey was Frontier there is keeping ernative Tobique mpanies
enerally object to crossing d necesto pass fo rather pohaqui the most on withthe New laced in Central eaboard. ferred to

The following gencral abstract will give an idea of the graden which may be expected on the whole length of the surveyed line beginaing at River du Loup and ending at Apohaqui Station :

The above are the actual grades on the profile of the line surveyed, but as the direet route from Eagle Lake to Green River, referred to in the foregeing, will eut off a portion of the above line, a certain alteration in the Table of probable Grades will be necessary. The direct ronte between these points has not been instrumentally surveyed, and therefore the precise character of the grades is not known. It is believed, however, that whilst the construction of the Railway on the direct route from Eagle Lake to Green River would shorten the distance 20 miles, and thus reduce the whole length of line to 340 miles, it would, at the same time, involve the adoption
of a long ascending grade of a heavy character, from near Sandy Lake, in the valley of the Toledi, to a summit near the Canada and New-Brunswick Buundary Line.

Without doubt, some oi the grades shown in the Table are severe. But perlaps they are not more so than could reasonably be expeeted, when the peculiar character of the country crossed by this line, is taken into consideration; a maximum grade of 70 feet per mile is not greater than the maximum on the Railway from Truro to Halifax, which must form a portion of the whole line betwien the latter City and Canada. Nor is it greater, as I am informed, than the maximum on the Portland Division of the Grand Trunk Railway. The aseents, however, on the line sur;eyed, if not steeper, are much longer where they do occur than those on either of the two railways named.

It is, perhaps, fortunate that the unfavorablelgrades are confined to particular points, instead of occurring at frequent intervals throughout the whole extent of the line; as, in the event of this line being selected and constructed, it could be worked with greater advantage and economy, by employing extra engine power on heavy trains, only at those points, instcad of being obliged to use it thioaghout. It would be impossible to economise engine power, and thus prevent unneeessary wear and tear, on level sections of the line, were the inaximum grades distributed.

It lappens that there are, in all, four points where Igradients of an unfavorable character occur, two of which are ascending south and two aseending north.

The two where the gradients ascend south, are situated at the head of the Toledi and at the Wapskyhegan. The Toledi gradient is about 70 miles from the River-du-Loup, and the \mathbf{V} Vapskyhegan aseent is about 100 miles still further south.

The two gradients ascending north are about 125 miles apart, one is situated at th: head of the Keswick valley, and the other at the head of the Gounamitz Valley.

If the length of the aseents at these four points be dedueted from the length of the whole line, it will be found that 48 per cent. of the remainder is level, or uicter 20 feet to the mile; thirteen per cent., from 20 to 30 feet per mile; eleven per cent., from 30 to 40 feet per mile ; eight per cent., from 40 to 50 feet per mile; nine per cent., 52.8 per mile ; seven per cent from 52.8 to 60 feet per mile, and four per cent., from 60 to 66 feet per mile.

In concluding the description of the main features of the line surveyed

Lake, in answick re. But then the o consihe maxortion of ter, as I
Grand steeper, wo rail-
d to parne whole structed, nploying of being e engine ns of the
ts of an and two
head of about 70 bout 100 t, one is ad of the
through the centre of New Brunswick, I desire to add that the survey can scarcely be considered much more than a mere exploration. The impenetrable character of the forest, more particularly to the north of the river Restigouche, the difficulties experienced in getting supplies forwarded through the woods, together with the limited time and means allowed for the service, rendered it impossible to accomplish more than a rough and rapid instrumental survey of a line, in all probability not the best that can be found through the country. However, sufficient information, it is hoped, has been procured to show, not only that a practicable line can be obtained, but also (although no great accuracy is professed) what it may possibly cost.

Plans of this survey have bien made on a scale of 500 feet to an inch horizontal. On these plans the line chained and levelled over is distinct from the railway line, the latter is shown in red, with regular eurves and tangents, and it runs in the direction which it is thought a trial might take. Deviations frren this line would no doubt be found necessary at many points, on more exact surveys being proceeded with; but it is believed that although the alignment may frequently be changed, yet neither the gradients nor the work need necessarily be increased.

The approximate profile is intended to represent the probable surface of the ground, the gradients, the cuttings, embankments, and other work on the "Railway line;" it is compiled from the measurements and levels taken on the Survey line, that is, the line cut out through the woods, and also from such cross seetions or lateial explorations as were made or deemed necessary. Where the "Railway line" is on, or near the line levelled over, the profile may be eonsidered correct; where these lines are some distance apart the former must be received as approximate only.

The quantities of work ierein submitted are calculated from the approximate profile above referred to and, as far as known, are correct and ample.

All the through cuttings are estimated to be 30 feet in width at ©ormation level. Side cuttings 24 feet wide, and emtionkments 18 feet wide.

Openings over 20 feet in width are estimated to be wrought Iron Tubes or Cirders resting on substantial masonry. All openings under twenty feet are estimated to be Arch or open Beam Culverts.

The following are the total quantities of the chief classes of work, calculated as above described, and considered sufficient to complete the

Bridging and Grading of the line, in a permanent and substantial manner, from the River lu Lo.tp to Apohaqui, a distance of 340 miles.

Total Excavation	13,828,923	cubic yards.
Assumed proportion of common Excavation.	12,453,238	"
Assumed proportion of Rock Excavation..	1,375,695	" "
Culvert Masonry	107,725	."
Bridge do	49,039	" "
Bridge Iron.....	3,337	Tons.

THE MATAPEDIA SURVEY.

Lest the explorations through the centre of New Brunswick should prove unsuccessful, and the route by Bay Chaleurs recommended by Major Robinson in 1848 , should urder any circumstances appear entitled to the preference, I deemed it expedient to have a careful examination made of the section which that Gentleman as well as Captain Henderson considered the most difficult and expensive between Halifax and Quebec.
"The most formidable point of the liae is next to be mentioned-this is the passage up the Matapedia valley.
" The hills on both sides are high and steep aud come down either on one side or the other pretty close to the river's bank and involves the necessity (in order to avoid curves of very amall radius) of ehanging frequently from one side to the other. The rock 100 is slaty and hard ; from this cause 20 miles of this valley will prove expensive but the grades will be very casy.
" About fourteen bridges of aa average length of 120 to 150 yards will be required up this vallyy. There is also a bridge of 2,000 feet long meationed in the detailed report as necessary to cross the Miramichi River.
" Report of Major Robinson, 31 st August, 1848."
"The section of country lying between the Restigouche and St. Lawrence rivers is a vast track of high land, intersected in every dirention by deep valleys and vast ravines through which the rivans flowing to the Bt . Lawrence snd Restigouche wind their course.
"' 'ihe height of land from which" those rivers flow respectively north and south is full of lakes and aiong them the mountain ranzes rise to a great elevation.
"The average distance between these two Rivers is about 100 miles.
"The only available valley which my knowledge of the country, or the explorations we have carried on enable me to report upon, by which a line of Railway can be carried through this mass of high lauds is that of the Matnpediac River.
"This valley extends from the Restigouche to the Grent Matapediac Lake, a distance of between 60 and 70 niles, and as the summit level to be attained in this distance is unly 763 feet above.tide water the gradients generally speaking are extremely favourable.
"From the broken and rocky charncter of this section of country some portions of this part of the line will be expensive, especially the inst 20 miles of the ascent, in which the liils in many piaces come out boldy to the ri:er, and will reader it necessary to croas it in several places.
"The rock 'ormation is nearly all slate ; there are settements on the Matapediac River, as fur as the mill streaw.

Abstract

" Generally speaking however the greater portion of this seetion of country is unfit for cultivation, consisting of a gravelly rocky soil eovered with an endless foreat of spruce, bireh, pine, cedar, dee, "From the mouth of the river as far as the 365 th mile the line continues upon the cast ban': above this at the mouth of Clark's Brook the rocky bank of the river is very unfavorable, and to obtain proper curves it crosses to the point opposite and then recrosses in! I sdiately above to the more favorable ground on the east bank, between this and the mouth of the Anatuetsspungan River the line to cbtain goods curves and nvoid those places where the hills come out bold and rocky, erosses the river four times. "The position of the line tor ihreo miles above and below Ammetssquagan River, where the hills are steep and rocky elose to the River, will be the most gxpensive part of the ine. "Above this. the line follows the castern bank to the $\mathbf{3 7 7}$ th mile. The hills cn e'ther side are very high but the eastern bank is preity favoralie; between the 378 th and 380 th mile the river turns twice almost at right angles. Shut in on the south by a roeky preeipies 150 feet high. "It will be necessary to eross the river three times here. The center bridge will be a heavy one ; hut there is an Island in the elbow which will serve as a natural pier. A hove this trom the 380 h inile to the Forks (the month of the Cast: is ent River, at the 395 th mile, the valiey lreomes more favorable. The hills on either side are nct so lony and recede tarther from the river, the line crosses the river twiec between the 3 sith and 390 th inile to avoid a rocky precipice on the lefl bnok: and again about one mile helow the Forks, making in the first 38 th miles, up the valley of the Matepediac, twelve bridges in all. These bridges will average from 120 to 150 yards long.

" lieport of Captain Itemererson, 1s48."
The object of the examination was to ascertain the exact nature of the difficulties alluded to, if they could be more cheaply overcome or avoided, and also with a view to form an estimate of the whole expenditure required to construct this section. With this data the cost of the whole line it was supposed could be ascertained with sufficient accuracy, by adopting an ordinary average eharge per mile for the remainder of the line, which the Gentlemen referred to reported as extremely favourable and easy of constructio'.

With this view I instituted a thorough survey of the Matapedia river and valley, beginning att its junction with the Restigouche and running northerly. The Transit, Chain, and Level were used throughout. A longitudinal section was made from the Restigouche to the waters of the St. Lawrence, and cross sections were also made, vherever it appeared necessary, to ascertain the character of the slopes of the adjacent ground. The survey was continued northerly until the waters leading to the St. Lawrence were reached. The field work is laid down to a seale of 200 feet to one inch, on the plans which accompany this; and should the Matapedia route ever be selected, the carefully prepared plans and other information derived from this survey, will be found of such a character, as will enable the location of the line to be proceeded with, for a distance of about 70 miles, without additional preliminaiy exnminuiions of any consequence.

I shall now proceed to describe briefly the Engineering features of the line surveyed.

The River Matapedia flows in a direction from north-west to southeast, it takes its rise within twenty miles of the banks of the St. Lawrence, at Grand Metis, and discharges into the River Resigouche some 16 miles west of the Port of Cambeltown. From the point where the River Causapscal joins the Matapedia, known as "The Forks," to the Restigouche, a distance of 35 miles, the river flows through a rocky gorge with many twists and windirgs, between banks on both sides, varying from 500 to 800 feet in height. These banks are in many places "cry precipitous, and rise immediately from the river's edge, but frequently there is a narrow flat margin, favourably situated for a Road or Railway. Above the Forks the character of the country is different, the high banks begin to recede from the river, and although frequently rough ground is encountered, there are no obstacles of much consequence.

The best point tur bridging the River Restigouche, is still a question for future consideration. The line surveyed follows the casterly side of the Matapedia, and therefore in the event of this location being adopted, the brillge over the Restigouche would necessarily be placed below the junction of the two rivers; for a certain distance at least, the line would have an equally good location to the west of the Matapedia, and there would be some advantage, in crossing the main river, above the point where the Matapedia discharges into it. Although this is an important question of detail, it need not now be further alluded to.

The section to be described, of which an approximate profile is prepared, and quantities calcuiated, is 70 miles in length, and the miles are numbered on the plan from the north to the south. It will be more convenient however to describe the features of the line, beginning at the Restigouelie, and running northerly. The 70th mile ends immediately opposite the farm house of Mr. Daniel Fraser, on the flats where the Matape 'ia joins the Restigouche.

At seven miles from the mouth of the Matapedia, Clark's Brook is crossed, up to this point the general course of the river is straight, and a direet line can be had without much curvature, and with remarkably easy grades. The sharpest curve on this distance is a short 4° curve (1432 feet radins) below Noonan's Gulch, and the heaviest grade is 38 feet to the mile.

At Clati's Brook the River takes a great bend to the west, necessitating a long curve of 1763 feet radius. At the 62nd mile the river again bends to the north, involving a compound curve with radii varying from 1430 feet to 3830 feet. From this point up to "Hells Gate," about the 58th
mile, the curvature is easy although frequent. Immediately north of Hells Gate a sharp point of rock has to be cut through, and the Asmaguagan River, a tri' ${ }^{\text {h }}$ tary of the Matapedia, is then crossed.

From the Asmaguagan, the line winds along the easterly bank of the Matapedia, with almost level grades to Connor's Brook, between the 53rd and 56th mile; where ascending and descending grades of 52.8 and 50 feet per mile, for about half a mile, are required to avoid a sharp curve.

About two miles farther up at a place called "the Lewis Rocks" the river takes several sudden t wists, and it will be necessary either to form a. tunnel through the Lewis Rocks 1300 feet long, or divert the river; the latter would prove the cheapest and is recommended. Above this point for about the third of a mile, the channel of the river will require again to be changed. The works of excavation for about a mile in length in the neighbourhood of the Lewis Rocks will be unusually heavy.

From the 51st to the 40th mile, the general course of the river is straight, and the line continues along its easterly side with favourable grades and easy curves.

At the 40th mile the line leaves the edge of the river for about two miles, and striking across a point of low land avoids a short bend at the outlet of Metallies Brook.

The next difficulty occurs near the 36 tl mile where the river takes two exceedingly sharp turns, first easterly, then northerly, at points about three quarters of a mile apart. Fortunately at the first turn designated the "Devils Elbow" a piece of low ground at the base of the hills admits of a curve of 1910 feet radius. At the second turn, known as "Alicks Elbow" it will be necessary to throw the line into the river and across an Island on a curve of 1430 feet radius. The channel for the river, to the west of the Island, being at the same time increased in width.

The Forks of the Matapedia are near the 35th mile; at this point the river is crossed, and the line afterwards follows its westerly bank to the Little Lake, which it reaches at the 30th mile.

Proceeding northward with favourable grades and curves, the line crosses the river Amque at the 22nd mile, and arrives at the Matapedia Lake a mile farther on.

Continuing northerly along the westerly side of the Lake, with the exception of one long curve of 1763 feet radius, near the 17 th mile, rendered necessary, in order to avoid a high ridge, the line is extremely favourable up to Pierre Brucho's, at the 8th mile ; the curves on this distance being in general 5730 feet radius.

At Pierre Brucho's the line leaves the Lake, crosses the Sayebec River at the 7 th mile, and ascends by a long grade, part of which is 60 feet to the mile, to the sumnit Lake, abont the middle of the 3rd mile. This is the only instance of a 60 feet gradient, up to this point, from the mouth of the Matapedia.

At the 2nd mile, the water shed between the Restigouche and St. Lawrence is reached, and the clevation at this point above the sea is 794 feet. The line now begins to deseend towards the St. Lawrence by the River Blanche, a branch of the Tartigan, and in two miles it reaches the beginning of the northerly end of the seventy mile section, which has just been described.

From the point last mentioned, the survey is carried on by the valley of the River Tartigau, and a line can be had along this river with only an occasional difficulty. The Tartigan flows in a narrow and rather crooked valley, necessitating frequent crossings or deviations of the river, and sometimes a heavy excavation through a projecting point of land; it continites westerly for about six miles, and then turns to the north; up to this point a favorable line can be had. From this point a line was cut and levelled to the Metis River, by Paquett's Brook, but the result was not satisfactory.

Between the Piver Tartigau and the Metis, a distance of about 14 miles, the country is very broken and irregular in its features, high ridges with deep gulches between are constantly met with. The Metis itself lies in a low wide valley, and it must either be crossed at a high level, on a viaduct of formidable dimensions, or a line must be found by which a favorable descent to the valley can be had. The latter has not been discovered, although from personal explorations I am led to believe that there is a reasonable chance of one being found. A great deal of time will yet require to be spent in this locality, in thoroughly surveying the country, before the best line from the Tartigan, to the Neigette River, across the Metis Valley, can be determined.

Although the chaining and levels were carried throngh to St. Flavia, on the shore of the St. Lawrence, a total distance of nearly 100 miles, the line surveyed may be said to terminate at $\mathbf{7 0}$ miles norti: from the Restigouche ; from thence northerly the country is only imperfertly explored.

The difficuities met with in crossing the Metis Valley, were not anticipated, as they are scarceiy alluded to in the reports on the survey made in 1848. Yet my present impression is that they are perhap the
ebec Ri s 60 feet

This is mouth of
and St. fea is 794 ce by the aches the 1 has just
he valley with only rd rather the river, land; it th ; up to s cut and was not about 14 igh ridges itself lies vel, on a r which a been disthat there e will yet country, across the b to St. early 100 rtti: from uperfectly
were not e survey haps the
most serious on the Bay Chaleurs route. Further surveys may however modify this view.

I regret exeeedingly, that circumstances would not justify me in incurring the expense of continuing the survey to a more satisfactory issue in this quarter.

I may now, to illustrate more particularly the character of the line surveyed, from the Restigouche, to the point where the water shed between that river and the St. Lawrence is crossed, and the valley of the Tartigau reached, present an abstract of the curves and grades on this section 70 miles in length

Level.. 12.3 miles.
Total length of Section
70 "

The wrought iron bridging on this section will be as follows, all the other openings are intended to have either areh or beam eulverts.

1st Over River Blanche on 1st mile one span of 50 feet,

2nd	Sayabec River on 7th	"	3	spans	50	"
3rd	"	River St. Pierre on 9th "	1	span	60	"
4th	"	" Tobigote on 19th "	1	"	50	"
5th	"	" Amqui on 23rd	"	3	spans	60
"						
6th	Indian Brook on 25th	"	3	"	40	"
7th	River Matapedia 36th	"	1	span	150	"
8th	" Assmaguagan 58th	"	1	"	80	"
9th	Clarks Brook 64th	"	3	spans	30	"

Whilst the grades are favourable, and the bridging light, it might naturally be expected that the curvature would be excessive, when the
tortuous character of the River Matapedia, more particularly below the Forks is taken into consideration. The following abstract will show, hcwever, that sharp curves have been avoided. The minimum radius adopted on the Grand Trunk Railway (Portland Division), namely, 1,146 feet, not being reached.
curvature.

Total length of section......... 70.0 "
In submitting an estimate of the quantities of the chief classes of work, required to complete ihe Bridging and Grading on this section, it may be remarked that although the survey and the calculations have been made with great care, I have deemed it prudent to add ten rece cent to all the quantiti.s, to cover any possible oversight, or contingency, connected with the works of construction on this section.

Approximate quantities.

1st. Common Excavation................. . . 1,408,936 Cubic yards. 2nd. Rock Excavation assumed proportion... 190,905 "

Total excavation...... 1,599,841
3rd. Culvert masonry......................... 29,317
4th. Bridge do. 4, 435
5th. Iron in bridges...... 350 Tons.
6 th. Slope walling to protect embankments on rivers, $63,030 \mathrm{C}$. yds.
With regard to building materials ; the rock exposed along the river is
chief it wo Fork Bridg Amq rock Lake secu but t
stone
emb
take
reco
dists
" Le
part
vey,
best
in \mathbf{e}

Res
and
Abs
carı
to F
mil
pas
to

Sta
below the ow, hcwm radius namely,
classes of on, it may een made the quanwith the bic yards.
chiefly slate, and although some of it may suit for calverts and slope walling, it would not answer for heavy Masonry. About three miles below " The Forks" I am informed that extensive beds of Sandstone, suitable for Bridge Masonry, can be found. From "The Forks" northerly to the river Amqui, a distance of about 12 or 13 miles, there are few exposures, and the rock where seen is dark shale. From the Amqui, northerly, along the side of Lake Matapedia, a few exposures of Limestone and white Sandstone are seen; the former is not considered of good quality for Bridge Masoary, but the latter is suitable for all kinds of work.

From Lake Matapedia to Metis Valley, the rocks met with are Limestones, Conglomerates, Red and Grey Shales, and Red and Blue Slatcs.

Abundance of Material for Ballast can be had, indeed many of the embankments will consist of nothing else.

Tamarac, Spruce and Cedar will be available for Cross-lies.

DATUM LEVELS.

It may facilitate further surveying operations, should any be undertaken, to place the following information with regard to Datum Levels on record:

The Survey was commenced by different survering parties at great distances apart, in consequence of which it was impossible to begin the "Levels" with a uniform Datum. Distinct Datums were assumed by each party, and as "Bench Marks" were left in the woods, on each line of survey, with the heights marked thereon for future reference, it was thought best in preparing the Plans and Profiles to adhere to the Datum assumed in each case.

The relative position of each Datum may thus be e.-plained:
First Datum.-On this Datum, levels were carried forward from the Restigouehe up the Gounamitz to Green River; here they were taken up and carried forward to the Toledi and Rimouski waters; thence by the Abawisquash to River Trois Pistoles. On this Datum also levels were carried from the Restigouche to the Tobique, thence to the Nashwaak and to Keswick Summit.

Sec:rad Datum.-On this Datun, levels were carried from a point five miles up Keswick valley to Keswick Summit ; also from the same point past Fredericton to Little River.

Third Datum.-On this Datuin, levels were carried from Little Rivef to Coal Creek.

Fourth Datum.-On this Datum, levels were carried foom Apohaqu? Sta:ion, on the St. John and Shediac Railway, northerly to Coal Creek.
On the close of the Survey these various levels were found to be rela. tively as follows:
High water, River St. Lawrence at Trois-Pistoles 70.00 fee:
First Datum, said to be high water at Chatham, on the Miramichi, 84.81 "
Second Datum. 101.81 "
Third Datum. 58.00 "
Fourth Datum, said to be 100 feet under high water on Bayof Fundy, at St. John City0.00 "

Any discrepancy which exists in the above levels may be due to various circumstances, partly perhaps to the accumulation of small errors. There is nothing however which can possibly affect the general results of the Survey.

The Datum for the Nova Scotia survey is low water at Parsboro, on the Basin of Minas.

The Datuns for the Matapedia survey is high water above Campbelton, on Bay Chaleur, and on the River St. Lawrence at St. Flavia.

FITNESS FOR SETTLEMENT.

AND AGRICULTURAL CAPABILITIES OF THE COUNTRY.

A person who has been accustomed to the fine open hard wood forests of Upper Canada, would at first be unfavorably impressed with the quality of the land in the maritime provinees generally, as well as that portion of Canada east of Quebee, if he judged solely from the appearance of the growingtimber. Spruce, of several varieties, grows almost universally, intermixed with other kinds of timber ; it frequently attains eonsiderable dimensions, and next to the white Pine, is considered of the greatest commercial value. Immense quantitics of Spruce deals are annually exported from New Brunswiek.

Blach and yellow Birch, woods little known in Canada, but largely used in, ald exporied from the Lower Provinces, to a large extent take the place of m iple and other hard woods. When birch grows with the spruce and other forest trees, the soil is generally considered of good quality. In some sections of the country a proportion of maple is sometimes found, with birch, spruce and other varieties of timber.

The occurrence of spruce with balsam, so common in the forests of Lower Canada and New Brunswick, presents serious obstructions to
exploring and surveying operations, as a view of any part of the country beyond a few yards from the position of the observer, is only obtained -with great difficulty.

Perhaps the least favorable portion of the country for settlement, along the general route of the surveyed central line, lies between the waters of the St. Lawrence and the Restigonche. I have traversed this district in various directions, and alhough I must confess that its agricultural capabilities did not impress me favorably, yet Mr. Walter Lawson, who spent six consecutive months, in eharge of one of the surveying parties in this locality, and who is well qualified to judge, thus reports :
" In answer to your questions, as to the quality of the country I have been exploring during the last summer, I beg to state that when we left Rimouski at the end of last May, the spring was fairly commenced, and we found no snow in the woods. That on reaching the boundary line between Canada and New Brunswick, we found vegetation as far advanced as anywhere between that and the St. Lawrence.
"The country we passed through was hilly, with rock cropping out on the sides in a few places, but no bare hills, the highest ground being generally rolling, and well timbered with large Birch, Spruce and Balsam:
"I have explored in Canada from Rimonski Village to the Boundary Line, Store Camp No. 1 at Monument No. 47, near the head waters of the Rimouski River; thence, eastward, seven miles, and round, southerly, to the Forks of Green River in New Brunswiek; thence, northerly, along Green River and the head waters of the Toledi to Monument No. 39 ; also, I have traversed in several directions, the country bounded by Sandy Lake, Eagle Lake and Island Lake on the west, the Abawbisquash on the north, the Rimouski on the east, and the twelve mile streteh of the boundary line, from Monument No. 39 to No. 47 on the south. This country generally has been lumbered over, consequently very little pine or heavy spruce was met with. The whole is well watered, and most of it eligible for settlement; in no part did I meet with bad land, and in many places I consider the soil of superior quality.
"The lower section of the valley of the Abawbisquash, near the River Trois-Pistoles, is partly settled, and the lands 1 h - been exploring are fully equal, if not superior, to the best land I saw in that settlement."

The district above referred to embraces an area of probably 400,000 acres; and the whole of the country south of it to the River Restigouche, as far as my knowledge goes, is similarly timbered.

From the River Restigouche southerly to the Tobique, and from the

River St. Jolin easterly to the Sisson Branch, about 40 miles in length by about 30 miles in breadtl, the country is generally fit for settlement. In many sections it has a fine intermixture of hard wood timber-and viewing. it as a whole, generally it may be considered good second class land, in some places it may be called first rate. I neversaw better crops than those which were growing in the settements on the outskirts of this distriet. For several miles along the bunks of the River Tobique, beds of gypsum erop out, of immense thickness and of excellent quality ; it is already drawn away in large gumbities and extensively used in the settlements in the state of Maine.

On the lines of survey nad exploration between the Rivers 'Tobique and Miramichi, a growth of Birch, Beech and Muple, with other descriptions of timber, indicate a soil suituble for agricultural purposes. These lines of exploration were about twenty miles apart, and as the intervening and adjoining ground would appear to be in very respeet similar, there is no doubt that a great deal of this extensive area is fit for settement.

From the River Miramiehi, on the line surveyed, to the River St. John and Fredericton, there is for the most part a finc growth of hard wood timber, and judging from the portion already cleared along the lower part of the Keswick valley, the soil must be of a superior quality. For a distance of 25 miles northward of Fredericton, the country is already cleared and cultivated.

Between the line surveyed from Frederieton, to the head of Grand Lake and the St. John River, the land is low but of excellent quality. From the Grand Lake, southerly, and over the coal fields, the soil is rather indifferent. Before reaching Apolmqui the line passes throngh the valley of Studholme Mill Stream; here the soil is very good, producing anuually excellent erops of Potatoes, Oats, Buck wheat and Hay.

It is said there is still a great deal of land fit for settlement, and yet unoceupied, between the Grand Lake and the Gulph shore, but its extent I have no means of knowing at the present time. Between Fredericton and the River Restigouche, the land referred to above, adjoining the lines of explorations of last year and considered generally suitable for settiement, embraces an area of, possibly, not much less than $2,000,000$ acres. Comparing this extensive tract of land with the soil of Upper Canada, I am inelined to think that it is generally better than any of the unsettled districts in that part of the country.

With regard to the agricultural capabilities of other sections of New Brunswick, I find a great deal of valuable information on the subject in a
ongth by ent. In viewing. in soine se which Cor severop ollt, vil away 2 state of criptions se lines ing and re is no

St. John rd wood wer part r a discleared quality. is rather ce valley annually
and yet is extent cton and lines of tiliement,

Comda, I am districts of New ject in a
report by Professor Johnston, the celebrated Chemist and Agriculturist, made to the Governor of that Province in $\mathbf{1 8 5 0}$. The information is so important, and the authority so good, that I have given copious extrnets from three out of eighteen chapters in an appendix hereto." These extracts refer to the Agricultural enpabilities of the Provinee, as indicated by its Geologienl structure, by a practical survey and examination of tits soils, and by the notual yield where settlements are formed.

There remains oinly to be described the character of the land, and its fimess for settlement in that part of Canada, between the St. Lawrence and the Restigouche, utong the line of the Matnpedia survey.

1 find that this subject was specially inguired into some years ago, and a report submitted to the IIonorable the Commissioner of Crown Lands of Canali, by Mr. A. W. Sins, the Gentleman to whom the enquiry was intrusted. The report embraces all the intormation desired, and indeed much more than I could give from my own knowledge of the country. I have therefore made some extracts mad appended them bereto."."

V.ARIOUS PROJECTED ROUTES.

new hit'sivick and Canada division of the survey.

Having described the Engineering features of the lines recently surveyed and submitted estimates of the quantities of work considered neeessary to complete the bridging and grading on each, I shall now refer to all the projected rontes which seem worthy of attention, and which possibly may be found practicable on thorongla surveys being made.

I do not desire it to be understood that I now report all the lines abont to be deseribed as practicable. Some of them I believe to be practicable, but my personal knowledge of others is not suflicient to warrant me in expressing a positive opinion as to their feasibility. The lines and combinations of lines about to be referred to, are those which, from partial examinations and information aequired, I think, offer a reasonable chance of being found practicable; and they are here described and classified in order that a judgment may be formed as to which route or routes may be most eligible for farther surveys.

These lines may conveniently be divided into three classes.

[^4]Wirst.-Frontier Rontes.-Comprising those projected lines which, at one or more points, touch or pass close to the Frontier of the United States.

Second.-Central Koutes.-Those lines which are projected to run through the interior and keep at some distance from the Frontier as well as from the Gulf shore.

Third-Bay Chaleur Routes.-Comprising those lines which toach the waters of the Gulf of St. Lawrence on the Bay Chaleur. .

The several lines herein referred to may be traced on the accompanying General Map; they are numbered consecutively from the west to the east. It may be explained that the length of each is ascertained by measuring the distance on the map and adding a certain percentage for curvature. This percentage is based on the difference between the actual chaining of the surveyed lines on the ground and the length thereof measured on the map. A method of computing the distances, whieh, although perhaps not strictly correet, appears, under the circumstances, the most accurate that can be adopted; and it will probably give a sufficiently close approximation.

frontier roctes.

Line No. 1. This line was projected some years ago to connect the Grand Trunk Railway at River du Loup, with the Railway now in operation, from near Woodstock to St. Aidrews; an examination of the country was made by Mr. T. S. Rubidge in 1859 or ' 60 , and his report, with whieh I have been favored, contains a great deal of valuable information, much of which is applicable to all the Frontier rontes (see appendix C). This line, after leaving River-du-Loup, is proposed to follow the valley of River Verte, to the water shed between the St. Lawrence and the river St. John, at an elevation of 880 feet above the sea ; thenee in a direetion generally parallel to the Temisconata Road to the Falls of the Cabmeau River, from thence to the head waters of River aux Perches, and by the valley of that stream to the Degele settement at the sontherly extremity of Lake Temisconata. From Degelé the line is proposed to foilow the river Madawaska to the river St . John at the village of Little Falls.

From Little Falls this line continues along the easterly bank of the river St. John, which it crosses at Grand Falls, and thence keeps on the westerly bank to Woodstock, conneeting with St. An lrews F. Lway at some convenient point, probably by way of the Eel River valley. This line has not been surveyed instrumentally, but it is thought to be practieable;

the

but
which, at ed States. d to run r as well ch totich aecompaest to the b by meafor curvale actual eof meaalthough the most afficiently

nnect the

 y now in on of the is report, valuable er rontes oposed to the St . bove the Road to of River thement te line is n at the k of the ; on the y at some his line ticuble ;the only donbtful section is that between River du Loup and the Degelé ; but should a direct line not be had here, a detour either to the west by the valley of the river St. Francis, or to the east by River Trois Pistoles, the Ishberish waters and Lake Temiscouata, will, without doubt, be found quite practicable, although the length of the line will be considerably increased thereby.

The entimated distances from River-du-Loup by this line are as follows :

To St. Andreen-	railway.		Total.
	Constructed.	Not constructed.	
From River du Loup to junction with St. Andrews Railway............... Along St. Andrews Railway...........	67	210	210 67
Total.	67	210	277
To St. John-			
From River du Loup to junction with St. Andrews Railway.		210	210
Along St. Andrews Railway.	27	\ldots.	27
Surveyed line from St. Andrews Railway by Oromocto to St. John.	82	82
Total.	27	292	319
To Halifax-			
From River du Loup to St. John as above. \qquad	27	292	319
Railway from St. John to Moncton...	90		90
Moncton to Truro..	6	109	115
Truro to Halifax.	61	61
Total.	184	401	585

Line No. 2.-This line is laid down on the Map from River du Loup to a point on the Trois Pistoles River, above the confluence of the Abawisquash, wheie a bridge of an expensive character will be necessary.

The section between River du Loup and this point is common to all the lines about to be described. From Trois Pistoles the line passes over to Lake Temiseonata, by the Ashberish Lake and River; following the westerly slore of Lake Temiseouata to the Degele settlement, it thence continues along the valley of the River Madawaska to Little Falls and the 5*

River St. John, to St. Basil. From this point, instead of following the immediate banks of the St. John to Woodstock, as line No. 1 does, it joins on to the exploration line made some three years ngo by the St. Andrews Railway Company, when they seemed to have seriously entertained the idea of extending to Canada. This line leaves the St. John River, near St. Bazil, and crosses the Grand River abont 10 miles from its outlet; it passes about five miles to the east of Grand Falls and crosses the Tobique about fifteen miles from its mouth; thence it is shown on the Map to cross over by the Otelloeh and Munquart Rivers to the St. John at Hardwood Creek. At Hardwood Creek the line erosses the St. John on a bridge proposed to be 100 feet high and fully 800 feet long, and continuing onwards, it conneets with the existing Railway to St. Andrews, at its present Terminus, four miles west of Woodstock.

The reports on tae exploration of this line northerly to Little Falls were furnished by the Gentlemen representing the New Brunswick and Canada Railway Company, to whom I am much indebted. The detailed information thus obtained will be found on reference to Appendix D. Abont twenty-seven miles of this line north of Woodstock has been instrumentally surveyed, the remainder to Trois Pistoles has only been partially explored. It is antieipated that serious, although perhaps not insuperable, difficulties will be met with between the high-level crossing of the St . John and the erossing of the River Tobique, as well as near the Degeló on Lake Temiscouata. The estimate of the cost per mile, given by the Engineer of the St. Andrews Railway Company, in his Report appended hereto, is, I presume, for the grading only.

The estimated distances by this line aro as follows:

To St. Andrews-	railway.		Total.
	Coustructed.	Not Construeted.	
From River-du-Loup to junction with			
present terminus of Canada and			
stock		223	223
Along Railway to St. Andrews.......	87		87
Total............	87	223	310

lowing the es, it joins . Andrews tained the iver, near outlet ; it e Tobique ap to cross Hardwood I a bridge continuing cws, at its

Little Falls swick and he detailed pendix \mathbf{D}. been instruon partially asuperable, of the $\mathbf{S t}$. he Degeló iven by the appended

Total.
ed. \qquad

To St. John-	railway.		Total.
	Constructed.	Not constructed.	
Fiom River-du-Loup to near Wcodstock, as above.		223	223
Aloug Railway to proposed Western extension from St. John.	45		45
Along Surveyed Line by Douglas Valley to St. John.		82	82
Total.	45	305	350
To Malifax-			
From River-du-Loup to Si. John, as above.	45	305	350
Railway from St. John to Moncton...	90	10	90
" " Moncton to Truro.....	${ }_{6}^{6}$	109	115
Total.	202	414	616

Line No. 3.-From River du Loup : Grand Falls, this line is precisely the same as No. 1. From Grand Falls it crosses over to Salmon River, and there joins the proposed extension of the Canada and New Irunswick Railway, as explored by 'Ir. Buek, the engineer of that com-pany-(See Appendix D) ; it then follows Mr. Buck's exploratory line across the Tobique River to the head waters of the Munquart River, thence it crosses over and joins the line surveyed last summer near the Forks of the Miramichi. From this point it follows the surveycd line by the River Keswick to Fredericton. Here it crosses the I iver St. John, and joins a line recently surveyed by Mr. Burpee for the New Brunswick Government, from Fredericton to the City of Saint John.

This is the most direet line between River dn Loup and the City of St. John whieh is likely to be found practicable. It crosses and recrosses the 'air line,' drawn from the extreme points to the north-casterly angle of Maine, no less than twelve times, and does not diverge from it at any point more than ten miles. 'There is, it must be confessed, some little uncertainty with regard to the feasibility of this line, between the Forks of the Miramichi and the River Tobique--as well as between the Degelé and River du Loup, these sections having been imperfeetly explored; but there is good reason to expect that a careful survey would result in showing that a line not
unfavorable might be had through these sections as well as elsewhere. This line would require a very costly bridge over the River St. John near Fredericton, and another over the same River at the City of St. John.

The distances wo St. John and Halifax are estimated as follows:

	railway.		
	Constructed.	Not constructed.	Total.
To St. John-			
From Rivière-du-Loup to Fsedericton.	235	235
From Fredericton to St. John by Oromocto and Douglas valley	66	66
Total.	301	301
To Halifax-			
From Rivière-du-Loup to St. John as above.....		301	301
From St. John to Moncton..........	90		90
" Moncton to Truro..	6	109	115
" Truro to Halifax. .	61	61
Total..	157	410	567

Central routes.
Line No. 4.-.-This line is identical with the line surveyed last summer, from the River du Loup as far as Eagle Lake.

From Eagle Lake it follows Eagle stream to the forks of the River Toledi; thence aleng the general direction of the Squatook Lakes, and across by the head-quarters of the Iroquois River to Green River Lake; thence along the most favorable route that can be had to the most westerly branch of the River Restigouche, continuing along which, and probably by Hunter's Brook, it may rejoin the line surveyed last summer near the source of Grand River; thence following the surveyed line by Two Brooks, River Tobique, North Branch of the Miramichi and the Keswiek valley, to opposite Fredericton. After crossing the River St. Johm, at Fredericton, it continues along the line of Mr. Burpee's survey from Fredericton to St. John, by Oromoeto and Douglas vallies. The only potion of this line not instrumentally surveyed is that between Eagle Lake and Grand River, a distance of perhaps 80 miles. About half this
distanee, viz: from the Squatook Lakes to the River Restigouche has only been partially explored, but no insurmountable difficulty is supposed to exist. The survey and examinations have shown the whole of the remainder of the line to be entirely practicable.

It must be aduitted, however, that the Bridges required auross the River St. John, at iwo points, are formidable works.

The distances by this line are estimated as follows:

Line No. 5.-This follows the line surveyed, and already described. From Fredericton to St. John it follows the Ocomocto and Donglas Valley route like Nos. 3 and 4, and equally with therr: it requires the bridging of the River St. John at two places. With the exception of the portion between Eagle Lake and the sources of the Green River referred to in the description, this line has been instrumentally evamined from end to end, and without doubt is quite practicable. The distances to St. John and Halifax are estimated as under.

To St. John-	railmay.		Total.
	Constructed.	Not Constructed.	
From River du Loup by Island and			
Eagle Lake, South East Branch of			
Toledi, North West Branch of Green			
River, Moose Valley, Gour ${ }^{\text {mitz }}$			
Valley, Boston Brook, Two Brooks,			
North Branch of Miramichi and			
Keswick River ti Fredericton.....		262	262
From Fredericton to S. .Iolnn by Orinocto and Douglas Valley	.	66	66
Total.		328	328
To Halifax-			
From River du Loup to Fredericton as above.		262	262
From Fredericton to St. John........		66	66
St. John to Moncton.	90		90
Moncton to Truro....................		109	115
Truro to Halifax	61		61
Total............	157	437	594

Line No. 6.-This is identical throughout the whole exent with the line surveyed last summer to Apohaqui Station on the railway running from St. John to Shediac, and need not again be described. The distances by this line are:

To St. John-	railway.		Total.
	Constructed.	Not constructed.	
From River dn Lonp by Fredericton and head of Giand Lake to Apohaqui.	343	343
From Apohayui by Railway in operation to St. John.	37	37
Total..........	37	343	380
From River du Loup by Frederieton and head of Grand Lake to Apohaqui.		343	
From Apohaqui to Moncton.	53		53
" Moncton to Truro..............	,	109	115
" Truro to Halifax......	61	61
Total..........	120	452	572

Line No. 7.-This line follows precisely the same route as line No. 6 from River du Loup as far as the head of Grand Lake, touching on its way the River St. John opposite Fredericton.

From the head of Grand Lake, instead of running southerly to Apohaqui, it continues in a direction nearly easterly, over ground known to be favorable, until it intersects the existing Railway from St. John to Shediac at such point as may be found most suitable, probably about 12 or 13 miles west of Moneton.

The following are the estimated distances to St. John and Halifax by this line :

To St. John-	railway.		Total.
	Constructed.	Not constructed.	
From River du Loup by surveyed line to head of Grand Lake..	304	304
From hend of Grand Lake to Junction with Railway, west of Moncton....	7	45	45
Along Railway to St. John.	77	77
Total.	77	349	426
To Halifaz-			
From River du Loup to head of Grand Lake as above.	304	304
From head of Grand Lake to Railway Junction west of Moncton.		45	45
Along Railway to Moncton.........	13		13
From Moncton to Truro.............	6	109	115
From Truro to Halifix..............	61	61
Total......	80	458	538

Line No. 8...-This line, from River du Loup to the River Restigouche, coineides with the surveyed line (No. 6) between these points. From the Restigouche it follows Boston Brook to Jardines Brook, and eontinues by an expiored passage from the latter stream to the valley of the Sisson Branch of the River Tobicue ; following whieh it is smposed that, with some difieulty, a practicable route may be had by the Forks and right hand Branch or the Tobique to Long Lake or 'Tobique Lake; thence the line is drawn on the map to the sourees of C 'ar Water Brook, and, by a route explored under my directions, by Mr. Tremaine, C. E., in March, last year,
to Rocky Brook, and :hence by the main Miranichito Boiestown; from Boiestown this line is laid down to the head of Navigation on Grand Lake, where it intersects the surveyed line (No. 6) and follows it to Apohaqui Station.

A long extent of this line, viz:-from the River Restigouche to (irand Lake, has not been instrmmentally surveyed, and it has only been partially explored; enongh, however, is known of the comntry to give good ground for the smposition that a line may be found, within the linnits of practicability, along the general direction of the ronte indicated.

It is not, hower r, believed that a lipe ean bar lat pithont severe gradients as well as heavy works of consmetion termaine's report on the aneroid exploration made by him, from lioic $n=0$ uross the Tobique Hlighlands, will be found in the Appendix (\mathbf{E}).

The distances to St. John and Halifax by this line are approximately intimated as follows:

To St. Johns-	Rallway.		'Total.
	Constructed.	Not construeted.	
From River du Loup, by Survey line, to Restigouche. \qquad	. . \cdot	120	120
From Restigouche, by Forks of Tobique and Boiestown, to Head of Grand			
Lake .	. .	148	148
From llead of Grand Lake, by surveyed			
line, to Apohaqui.		39	39
From Apohaqui to St. John..	37	37
Total.	'	307	344
To Malifax-			
From River du Lomp to Head of Grand Lake as above			
From Grand Lake to Apohagui......	.	268	268 39
From Apohaqui, along Railway, to Moncton.	53	.	53
From Moneton to Truro.	6	109	115
From Truro to IIalifax.	61	...	61
Total.	120	416	536

Line No. 9.-This line follows the same course as the last (No. 8), from River du Loup to the head of Grand Lake. From Grand Lake, instead of
running to Apohaqui on the surveyed line, it isdrawn easterly across a country without engineering diflieulties, to a point of intersection with the existing Railway, about 13 miles west of Moneton.

The dintances by 11 is line are estimated to be:

Line No. 10.-This line corresponds with the two last, Nos. 8 and 9 , from River du Loup to the Tobique lakes, it is then drawn across to the village of Indiantown, on a course between the north branch of the Renons River and the Little sontl-west Miramichi. This route, from the Tobique Lakes to Indiantown, is strongly recommended as favorable, by the Hon. P. Mitchell, of New Brunswick. From Indiantown it follows Major Robinson's line, to Buetouche River, and then continnes southerly to Moncton. This is unquestionably one of the most direct lines between Halifix and River du Loup, and possibly it may be cound practicable throughout ; but it is impossible to speak with certainty without more information than is at present possessed.

Between the Tobique Lakes, the sourees of the Renons and the Miramichi, is the part of the country least known. Mr. Mitchell says that the waters of the Tobique, here interlock with the sources of the Little South-west Miramichi, and that the character of the country is level. This being the
case, there is reason to suppose that a railway line may be located through the country on the line indicated.

The distances by this line are estimated as follows :

'To St. John-	ratlway.		Total.
	Constructed.	$\underset{\text { constructed. }}{\text { Not }}$	
From Riviere-du-Loup to the Tobique Lakes.	180	180
From the Tobique Lakes to Indiantown	64	54
" Indiantown to E. \& N. A. Railway " Along Railway to St. John.	$\cdots 9{ }_{9}$	82	82 96
'Total.................	96	326	422
To Halifax-			
From Riviere-du-Loup tc E. \boldsymbol{x} N. A. Railway, as above.	326	320
From E. © N. A. Railway to Truro..		109	109
" Truro to Halitix	61	61
Total.................	61	435	496

Line No. 11.
This line corresponds with the surveyed line (No. 6), from Riviere-du-Loup to Island Lake, and perhaps as far as Eagle Lake ; it passes over from these waters on a level to the Turadi, and continues along that river and up the Rimouski to the boundary line between Canada and New Branswiek; it passes over throngh a favorable opening in the Highlands to the valley of the south branch of the Kedgwick, and thenee it is assumed that the line may gradually descend by the sonth Branch and main Kedgwiek to the Restigonehe. Difficulties are said to exist in the lower part of the South Branch; shonld these prove too expensive to overcome, they can, I have reason to believe, be entirely avoided by following the general direction of the line shown on the map, from the Restigonehe to Kedgwick Lake, and thence down the Main Valley. From the Restigonelie the line is drawn by Five Fingered Brook across to the Sisson Branelt of the Tobique; here it joins Line No. 8, with which it corresponds thenee to Apolaqui. On this line difficulties may be encountered in passing over from Five Fingered Brook to the Sisson Branch, as well as at points on Line No. 8 already mentioned, but it is not supposed they will prove insuperable.

To St. Join-
From lliver da Loup by the Rimonski and Kedgwick, the Forks of 'Tobique and Boiestown to the head of Grand Lake.

railway.		'Total.
Constructed.	Not Constructed.	
....	284	284
"97\%	39 ...	39 37
37	323	360
	223	323
59		59
....	109	109
61	61
120	432	552

Line No. 12.-This line i, the same as the last from River du Loup as far as the head of Grand Lake, but here it turns off to the east and interseets the existing Raihway a few miles west of Moneton. The distances are estimate to be:

BAY CHALEUR ROUTES.
There lies, south of the River Restigonche, north of the Miramichi, east of the most easterly central line above described, a traet of country over sixty miles in width and extremely unfavorable for Railway construction. - Owing to the rugged and mountainous character of this District, it is hopeless to look for a line suitable for a Railway throngh it, and in consequence of these features, the lines already referred to all pass to the west, white those about to be described are led round the other side of this Highland region, as far to the east as the shores of the Bay Chaleurs ; hence the name by which the latter lines are designated, to distinguish them from the Central and Fronticr Routes.

Line No. 13.-This line continnes on the same course as the line No. 11, from River duLoup, by Island Lake, River Toledi and Rimouski, to Kedgwiek Lake. From Kedgwick Lake it is thought the line can be carried into the valley of the Patapedia and thence to the Restigeruche. It must be confessed that his is only a conjecture, based not on a knowledge of the immediate Joeality, as the explomtions did not extend to this quarter, but on a knowledge of the general character of the conntry. Should, however, this view prove incorrect, it is probable that a line may be had a little further north, as shown on the Map, to the valley of the Matapedia and thence to the Restigouche. *

[^5]Total.
ichi, cast ntry over struction. ict, it is in consethe west, e of this s; hence tein from
line No. ouski, to e carried must be of the innr , but on ever, this e further thence to

Both routes measure about the same length, to a common point on the Restigonehe River, at the mouth of the Matapedia. With regard to their respective merits or demerits, a safe opinion cannot be formed withont a survey.

At present, ull that can be said is, that a favorable communication by one or other of these routes is not improbable. From the mouth of the Matapedin the line follows the route recommended by Major Robinson, to Indiantown on the Miramichi River. - From Indiantown it continnes nearly due sotith to the head of Grand Lake, and thenee by the surveyed line to Apohagui.

No serions difliculty is anticipated between Indiuntown and Grand Lake.

The distances by this line, from River du Loup to St. Jolin and Halifax, are estimated to be as follows:

Line No. 14.-This line coincides with line No. 13 from River du Loup to Indiantown, but from Indiantown instead of running southerly to Apohaqui, it follows a south easterly course along Major Robinson's
line nearly the whole distance to Moncton. The distances by this line are estimated to be:

Line No. 15-This is the route known as Major Robinson's line. It runs from River du Loup to the Trois-Pistoles crossing, already referred to, and continues from thence at a distance oif 8 to 12 miles from the sonth shore of the S. Lawrence to the River Métis. From the Métis the line passes over to the valley of the Matapedia, which it deseends to the River Restigonche. The Restigouche leads it to Bay-Chaleur, the shores of whieh it follows to the Town of Bathurst, passing on the way the villages of Camphehown and Dalhousie. From Bathurst the line rans by the Rivers Nepisiguit and the North West Miramichi to Indiantown on the Main or South West Miramiehi. From Indiantown it strikes across a coratry reported to be flat and favorabie, to the Isthmus between the Bend of Petitcodiae and Shediae, and thence to Nova Scotia by a route already described.

The recent survey has proved that the Matapedia section will be mueh less difficult and expensive than was previonsly sitpposed.

Instead of twelve or fourteen bridges across the Main River, averaging from 360 to $45^{\text {. ' }}$ 'long, on the first 38 miles north of the Restigouche, colly one bridge u. 40 feet span is required. Besides which, excavation
and other work will be very materially reduced, by adopting curves and gradients, equally as fuvorable as on other lines of Railway both in Europe and America.

The unlooked for clifficulties in the neighbourhood of the Metis River have already been referred to; between this point and Trois Pistoles the country seems to have only been partially surveyed in 1848, as there are other points at which very thorough explorations will require to be made before a location survey can be attempted. The bridging of the Trois Pistoles, common to all lines exeept No. 1, is a very formidable affair; that of the Rimouski, where the line crosses at the month of "Roussean Bois Brûlé," seemed to me to be not mueh less so. I think the latter can be avoided, or at least very materially diminished, by a route a little further to the south.

Between the mouth of the Matapedia and Moneton this line will be generally on favorable ground ; and with the exception of the Bridges over some of the large rivers, the work, it is expected, will not be heavy.

The distances to St. John and Halifax by this line are estimated to be as follows :

To St. John-	railway.		Total.
	Constructed.	Not construeted.	
From River du Loup, by Metis and Matapedia, to Dalhousic.	196	196
From Dalhousie to Bathurst.........	53	53
" Bathurst to E. \& N. A. Railway	\cdots	14.1	141
Along E. \& N. A. Railway to St. John	96	96
Total............	96	390	486
To Inalifax-			
From River du Loup by Metis, Matapodia; Dalhousie and Bathurst to Moneten..............................	390	390
From Moneton to Truro.............		109	109
" Truro by Railway to Halifax...	61	61
Total............	61	499	560

The distances by the various routes may now be presented in a Tabular form, and it may be mentioned that the distances here submitted considerably exceed those given by Major Robinson and others; the allowances which I have made in every case for curvature, and which I deem absolutely necessary in order to insure a safe estimate, may aceount for this exeess. Major Robinson estimated the distance from Halifax to Quebec at 635 miles. By adding the length of the Quebee and River du Loup Railway to the figures now given, the distance by the same route would appear to be fifty miles longer-equal to about cight per cent. on the whole. Should the allowance for curvature (which I am convinced is ample) ultimotely prove greater than neecssary, the estimates will at least possess the merit of erring on the safe side, and any possible crror of this kind will not afect a comparison of the different routes, as, in this respect, all are relatively treated alike.

Table of Comparatice Distances from River-du-Loup to St. John and Halifax.

Routrs. $\quad \begin{aligned} & \text { No. of } \\ & \text { Line. }\end{aligned}$	to st. John.			to halifax.		
	$\begin{array}{\|l} \text { Railway } \\ \text { Built. } \end{array}$	Not Built.	Total.	Rnilway Built.	Not Built.	Tota.'
Frontier Routes...... $\{$	27	292	319	184	401	585
	45	305	350	202	414	567
	00	801	301	157	410	561
Central Routes....... $\{$	00	326	326	157	435	592
	00	328	328	157	437	594
	37	343	380	120	452	572
	77	349	426	80	458	538
	37	307	344	120	416	536
	77	313	390	80	422	502
	96	326	422	61	435	496
	37	323	360	120	432	552
	77	329	406	80	438	518
Bay Chaleur Routes.. $\left\{\begin{array}{l}13 \\ 14 \\ 15\end{array}\right.$	37	387	424	120	496	616
	96	377	473	61	486	547
	96	390	486	61	499	560

With regard to the Total distance from River-clu-Loup to St. join, including the length of Railway already constructed, the several Lines stand in the following order, beginning with the shortest.
nted in a ubmitted ers ; the which I account ralifax to River du me route nt . on the vinced is 11 at least ror of this is respect,
l Halifax.
ifax.

o St. Jomn, eral Lines

FROM RIVER-DU-LOUP TO BT. JOHN.

In respect to the length of Railway yet to be constructed, to connect River-du-Loup with St. John, the several lines may be placed in the following order.

Line No. 1, Frontier Route, to be constructed 292 Miles.

Comparing the distances from River du Loup to Halifax, and including (${ }^{\circ}$
the length of Railway already constructed, the table shows that the several lines stand in the following order.
Line No. 10, Central Route. Tote! length 496 Miles.

" 7, " ". 538 "
" 14, Bay Chaleurs Route, ".......... 547 "
" 11, Central Route. ".......... 55i "
" 15, " ".......... 560 "
" 3, Frontier Route, ".......... 567 "
" 6, Central Route, ".......... 572 "
" 1, Frontier Ronte, ".......... 585 "
" 4, Central Route, "........... 592 "
" 5, "..... "........... 594 "
" 2, Fronticr Route, " 616 "
" 13, Bay Chaleurs Route, "......... . 616 "

Comparing again the distance to Halifax, having in view stimply the length of Raiheay yet to be built, the several lines would stand as follows.

Line No. 1, Frontier Route, to be constructed 401 Miles.
" 3, " ".......... 410 " "
" 2, " "........... 414 "
" 8, Central Route, "........... 416
" 9,..... "....." 422 "
" 11, " ".......... 432 "
" $10, \ldots .$. ".....".......... 435 "
" 4, "..... "....... . . 435 "
" 12, " ".......... . 438 "
" 6, " ".......... 452 "
" 7," "........... 458 "
" 14, Bay Chaleurs Route, ".......... . 486 "
" 13," "........... 496 "
" 15, " "........... 499 "
From the foregeing the following deductions may be drawn:
Line No. 3 is the zliortest Frontice Route to St. John; its total length is 301 miles, the whole of whica is yat to be built. By this line the total distance to Halifax is 567 mises, of which 157 miles are constructed, leaving 410 miles yet to te made.

Line No. 4 is the shortest Central Route to St. John; its total length is 326 miles, the whole of which has to be made. By this line the distanes to Halifax is 592 rites, of which 157 miles are built, leaving 435 miles to be constructed.

Line No. 13 is the shortest Bay Cnaleurs Route to St. John; its total length is 424 miles, of which 37 miles are constructed, leaving 387 miles to ie made. By this line the total distance to Halifa. is 616 miles, of whish 120 miles are already made, leaving 496 miles to be bnilt.

Line No. 3 is the shortest Frontier Route to Halifax as well as to st. John, the distances are already given.

Line No. 10 is the shortest Central Route to Halifax ; the total distance by it is $\mathbf{4 9 6}$ miles, of which 61 miles are built, leaving to be built 435 miles.

The total distance to St. John by Line No. 10 is 422 miles, of which 96 miles are built, leaving to be constructed 326 miles.

Line No. 14 is the shortest Bay Chaleurs Route to Malifax; ite total length is 547 miles, of which 61 miles are sonstructed, leaving 486 miles to be made. By this line the total distance to St. John is $\mathbf{4 7 3}$ miles, of which 96 miles are built, leaving 377 miles yet to be constructed.

The shortest of all the Lines to St. John is No. 3, Frontier route.
The shoriest of all the Lines to Halifax is No. 10, Ccis nai Route.
Line No. 3 requires the constraction of 25 miles less than No. 10 , to connect River du Loup with both St. John and Halifax ; but the total distance to Halifax by line No. 3, is 71 miles greater than by line No. 10, whilst the total distance to St. John by line No. 10 is 121 miles grea er than by line No. 3.

The shortest route from River-du-Loup to the Atlansic Sea Board, on British Territory is by line No. 1 tc St. Andrews.

The total distance to St. Andrews hy this line is estinated at 277 miles, of which 67 miles are constrncted, leaving only 210 miles to be built.

The total distance to \mathbf{N}. John by line No. $\mathbf{1}$, is 319 miles, of which 292 miles require to be made.

The total distance to Halifax by line No. 1 is 585 miles, of which 401 miles ref ${ }_{1}$ uire to be built.

DISTANCE FROM THE FRONTIER.

I shall 10 w , in aceordance with my instructions, proceed to give the distances of the several lines from the Frontier of the United States.

Line No. 1 runs immediately along the boundary line, for a distance of about 40 miles; and for a further distance of about 80 miles it ranges from three to twelve miles from the Frontier.

Line No. 2 almost touches the boundary of Maine at two points ; one about ten miles northerly from Woodstock, the other between St. Basil and Little Falls. For a distance of 120 miles this line will average not more than eight miles from the boundary.

Line No. 3 runs along the boundarv of Maine for abont 40 miles, and then gradually diverges from it.

Line No. 4, for a distance of twenty or thirty miles, is within 18 miles of the boundary line.

Lines Nos. 5, 6 and 7 are generally not nearer to the boundary line than the minimum distance between the Grand Trank Railway and the northern Frontier of Maine; this distance, in a direet line, is from 27 to 28 miles. At one point, lines Nos. 5, 6 and 7 are within this distance, but it is believed that at this point the distance may be increased in making a location st cyey. Line No. 5 runs from Frederieton to the City of St. John, on the westerly side of the St. John River. Lines Nos. 6 and 7 do not cross the river.

Lines Nos. 8, 9 and 10 are each, only at one point, within 27 miles of the boundary line; throughnit the remainder of their course they are at a greater distance from it.

Lines Nos. 11 and 12 are each about 30 miles from the boundary line, at the nearest point, for the rest of the way they are at a much greater distance from it.

Lines Nos. 13, 14 and 15 are each nearer the boundary line at River du Loup than at any other point, and as they run iy the Bay Chaleur, they are generally at an extreme distance from the Frontier of Maine.

COMMERCIAL ADVANTAGES OF DIFFERENT ROU'TES.

The next topic upon which I am required under my Instructions to report, is the comparative advantages of the various routes embraced in the survey, in a commercial point of view. In approaching this subject I must confess my entire inability to diseuss it satisfactorily. My time has been so wholly taken up with matters purely connected with the survey, during the short period which has elapsed since it eommenced, that 1 have not been able to give this most important question the attention which it justly demands. In my desire, therefore, to carry out the instructions of the Government, I ean only submit the imperfect impressions which I have formed on this branch of the enquiry.

It would be needless to attempt a comparison of the commercial merits of each of the fifteen separate lines and combinations of lines herein alluded to ; it will probably be sufficient to deal with them generally, as Frontier, Central, and Bay Chaleurs Routes. The Nova Scotia Division of the survey, being common to all routes through New Branswick, will not be embraced in the comparison ; and the Military objections to the Frontier lines, or to any of the lines, will, for the present, be disregarded. The question of "Local" and "Through traflic" will be considered separately.

IOCAL TRAFFIC.

The valley of the River St. John is generally well setled from the Bay of Fundy to Little Falls, where the Temisconata Portage to River du Loup (about 75 miles in length) begins.

The lumbering operations of New Brunswick are now earried on, chiefly on the upper waters of the RiverSt. John ; and the supplies for the lumbermen, which are not produced in the locality, are now in a great measmre brought from the United States, by water to the eity of St. John, and thence up the river. A railway from River du Loup, through this section, would enable provisions for consumption in the lambering distriets, not only of New lBronswick but also of Maine, to be brought in direct from Canarla, and thas greatly tend to develope the industry and resourees of these regions. At the present time, Canadian flour may be seen within sixty miles of the St. Lawrence, after having been transported, in the first place, io New York or Portland, then shipped to St. John and floated up the river in steamers and flat boats. This trade wonld manifestly be changed
by the construction of the Intercolonial Railway, on a Frontier route, to the advantage of the lumbering interests; and the traffic resulting therefrom, would form an item in the revenue of the contemplated work. It is said that es much as 80,000 barrels of flour, pork and other merchandise are annual'y imported to the valley of the River St. John, north of Woodstock; and that 'he population of this district, ineluding the Aroostook lumbering country in the State of Maine, is estimated at 40,000 .

A Central Ronte will have the least population to accommodate immediately along the line; indeed between the Miramichi and St. Lawrence there is only one settlement, which consists of a few families on the Tobique River. By opening roads, however, to the east and west, the county of Restigouche and the valley of the St. John would be easily reached, and a considerable portion of the trade of these sections brought within the influence of the railway. A line through the centre of New Brunswick, would take the supplies for the lumbering trade, and would rapidly sette up the large traeks of cultivable land in this district. A railway so situated would, as a line of communication, have similar effeets on the trade and progress of New Branswick as the River St. John has hati, wit this additional advantage, it would be open all the year, instead of half of it.

In much less time, it is believed, thas has been oceupied in settling and improving the lands which nature made accessible by the River, would the artificial means of communication result in popmlating the interior of the country through the greater part of its length; and thes develope and foster a traflic which does not now exist.

A Railway constructed by the Bay Chaleurs would pass through a country already in part settled; and it would be of the greatest importance to Campbelton, Dalhousie, Bathurst, Chatham, and other towns and villages on the Gulf shore. Compared with the Central and Frontier routes it would not perhaps to the same extent serve the hmbering interests of New Brunswiek; nor would it reclaim as much wild land, alhough there are large sections even on this route said to be eapable of cultivation, yet lying wild,

A proper judgment of the local traffic at present existing may, perhaps, best be formed by comparing the population along cach ronte.

The population in the section of country throngh which a Frontier line would pass, embracing the whole of the counties of Vietoria, Carleton, York and one half of Sunbury and Rueens, is, according to the last census, 57,175 ; to which may be added 20,000 for the northern and castern parts of Maine which adjoin New Brunswick, and which would be accomodated by a
, to the refrom, is said lise are dstock; abering modate and St . ilics on est, the easily brought f New 1 would district. similar 8. John he year, settling ; would terior of ope and
rough a rortance villages t wonld - Brunse large g wild. erhaps, ier line arleton, census, parts of ed by a

Railway running along its border. If to the above we add the population on the Temiscouata Portage, and a pereentage for natural increase since the last census was taken, we shall have a yopulation of over 30,000 in the distriet, which would be served by a Frontier route.

The population in the district affected by the Central rontes is chiefly confined to the section south of the Miramichi, and may be estimated at one half of the counties of Queens, Sunbury and York, amounting to 21,404; to this may be added the whole of the counties of Victoria and Restigouche, 12,575, and a portion of the north-easterly part of Maine ; making in all a population of perhaps 40,000, not all direetly, but ill in some degree accommodated by the construction of a Central line.

A line by the Bay des Chateurs would pass through the counties of Kent, Northumberland, Gloucester and Restigonche, in New Brunswiek, as well as Bonaventure and Rimouski, in Canada. The population of these six counties amounted to 88,541 when the last census was taken; a limited portion of the county of Gaspé and he natural inerease may make the whole population over 90,000 .

From the above data, the average number of inhabitants for caeh mile of Railway by the different routes would be nearly as follows:
$\begin{array}{lll}\text { A Frontier } & \text { line } & 260 \\ \text { A per mile of Railway. } \\ \text { A Central } & \text { " } & 122 \\ \text { A Bay Chaleurs " } & 235 & \text { " } \\ \text { " } & \end{array}$
With regard to local traffic, therefore, it would appear from the above, that the Railway would receive the largest proportion if constructed on a Frontier route, and least if construeted on a Central route.

Taking population as the basis of computation of local traffin, the average per mile in the country between the River du Loup and the northerly boundary of Nova Scotia, on the completion of the Intercolunial Railway, would, compared with that of Canada and the United States, be in the following ratio, nearly :-Whe whole of New Brunswick and that part of Canadia east of River du Lomp, 534 per mile of Railway (proposed).

The whole of Canada......... 1330 " (eonstructed).
The whole United States, about 1000
This may give some idea, although perhaps an imperfect one, of the comparative value of the local traffic which may reasonably be expected on the opening of a line of Railway through the Country.

THROUGII FREIGIIT TRAFFIC.
A distinetion must necessarily be drawn between "through freight" and "throngh passenger" traffic ; as the former will naturally seek the nearest channel to an open Atlantic Port, while passengers for Europe will generally take the route by whieh they ean reach their destination soonest, and that may not be by the line which leads to the nearest Harbour.

The Ports of Montreal and Quebee, when open to sea going vessels, are undoubtedly the most eonvenient for the shipment of heavy freight from Canada to Europe, but these are periodically closed during the winter season, and are therefore unavailable for over five months in the year.

By the projected lines for the Intercolonial Railway, St. Andrews and St. John, on the Bay of Fundy, are the nearest open winter ports to Canada within British territory, and they would, therefore, be the most available ontlets for Canadian produce while other neater Ports remain closed.

At the present time Canadian produce may be shipped during winter, withont restrictions, at United States Ports; and in the event of the existing treaty arrangement being eontinued, it would become a question whether United States Ports on the Atlantic sea board, or British Ports on the Bay of Fundy, were the easiest reached during the winter months.

The nearest United States Port to Toronto is New York, thenearest to Montreal is Portland, and the shortest distances between the several Ports referred to are as follows:

$$
\begin{aligned}
& \text { From Toronto to New York direct.................. } 540 \text { miles. } \\
& \text { " to St. Andrews by R. du Loup........ } 889 \text { " } \\
& \text { " to St. John by R. du Loup.......... . . . } 913 \text { " } \\
& \text { From Montreal to Portland direct................... . } 297 \text { " } \\
& \text { " to St. Andrews by River du Loup... } 559 \text { " } \\
& \text { " to St. John by River da Loup....... } 583 \text { " }
\end{aligned}
$$

It is evident, therefore, from the favorable position of New York and Portland, that they will continue to be the most convenient winter outlets for Canadian freight, so long as the Government of the United States abstains from placing restrictions on Canadian commeree.

In the event, however, of Canadian traffie being prevented from passing through the United States, the Intereolonial Railway would carry, during winter, all the freight to and from the sea board which would bear the cost of transportation; and as the cost would, to a great extent, depend on the length of railway to be passed over, it would be of considerable importance to
have the shortest and most finvourable line selected, to the best and nearest Port on the Bay of Fundy; and therefore, with respeet to the "Through freight" traffic, the Frontier lines are entitled to the preferenec, and next to them some of the Central lines.

Asthe probable "Through freight tratie" depends on so many contingencies, it is impossible to form any proper estimate of its value: but of this we may rest satisfied, if the construction of the Intercolonial Railway, by opening out an independent outlet to the ocean, prove instrmuental in keeping down the barriers to Canadime trade which onr neighbours have the power to erect, it might, in this respeet ulono be considered of the highest commercial advantage to Canada. It is scareely likely that the people of the "nited States, would permanently allow themselves to place restrictions on Canadian traffie, when they discovered that by so doing they were simply driving away trade from themselves; and in this view the contemplated Railway may fairly be considered, especially by the people of that part of Canada, west of Montreal, of the greatest value to them when least employed in the transportation of produce to the sea board.

througll passenger trafric.

The spacious harbour of Halifax, open at all seasons of the year, is universally admitted to be in every respect suitable for the Terminus of the Intercolonial Railway. And here it is supposed that passengers for Europe would embark, in preference to other points from which Ocean Steamers at present take their departure.

Halifax is 550 miles nearer Liverpool than New York; 357 miles nearer than Boston ; 373 neare: than Qnebee, and 316 miles nearer than Portland. And doubtless the shortening of the ocean passage by these distances would, to many travellers, be a great objeet, if proper facilities for reaching Halifax were provided.

The construction of the Intercolonial Railway would enable Canadian passengers to reach Halitax easily. And on its completion the mail steamers would no doubt rmn from Halifax in place of Quebee or Portland. New York passengers, on the other hand, could scareely be tempted to go round by Montreal and River du Loup to Halifiax, a distance of nearly 1200 miles, in order to save 500 miles by water. The advantages of a shorter Ocean passage are, however, considered so great by the people of the United States, that a Railway to reach Halifax, by the shortest line, would soon be established; more especially when the construction of the Intercolonial Railway would comeet St. Joln with Halifax, by way of Monc-

IMAGE EVALUATION
 TEST TARGET (MT-3)

Photographic Sciences
Corporation
ton and Truro, and leave only the link between St. John and Bangor to be built. Bangor is the extreme easterly extension, as yet, of the American system of Railways. The distance thence to St . John by the route contemplated, and in part surveyed, is estimated at 200 miles. The construction of this link, is most warmly advocated in the State of Maine and in the Province of New Brunswick ; already, public aid from both countries has been offered to secure its construction, and the influences and agencies at work will, I am convinced, be instrumental in finishing this line of communication at no distant day-perhaps simultaneously with, or possibly before, the completion of the Intereolonial Railway.

It would obvionsly be unwise, therefore, to overlook this projected route in forming estimates of probable traffic on the Intercolonial line.

The United States route by Bangor would intersect the Grand Trunk Railway at Danville Station, 28 miles out of Portland, and thas form an unbroken railway connection, having the same width of track from Halifax to Montreal and all other parts of Canada. The distance from Halifax to Montreal by this route is estimated at 846 miles, while the distance by the Frontier and Central lines, which form the shortest connection between Canada and the Bay of Fundy, embracing lines Nos. 1 to 6, averages 871 miles in length. Thus, it is evident that the passenger traffic of the Intercolonial may, on any of these lines being constructed, be tapped near its root, and much of it drawn away.

Under these circomstances, it is too apparent that the Intercolonial Railway may find in the United States ronte, a formidable rival for Canadian passenger traffic, to and from Europe, by way of Halifax.

Fortunately, with a view to counteract this difficulty, a line by the Bay Chaleurs would offer special advantages, which may here be noticed.

The Chart which aecompanies this will show that the entrance to the Bay Chaleurs is so situated, geographically, that while it is about as near Europe as the entrance to Halifax harbour, it is, at the same time, several hundred miles nearer Montreal and all points west of that city.

Some of the projected lines of Railway touch the Bay Chaleurs at Dalhousie and at Bathurst ; the latter place is not admitted to be snitable for the purposes of steam navigation, and the former, although in possession of a fine sheet of water, well sheltered and accessible at all conditions of the tide, is, nevertheless, from its position at the extreme weaterly end of the Bay, farther inland ian might be wished. In order to reduce the steamship passage to a minimmo, it is desirable to have the point of embarkation as far easterly
as possible, and therefore the existence of a commodions harbour near the entrance of the Bay is of no little importance. A place named Shippigan, on the southerly side of the entrance of the Bay Chatenrs, appears to have many of the requisites of a good Harbour. It is thms spoken of in the reports on the Sea and River Fisheries of New Brunswiek,* published under the authority of the Legislature of that Provinee.

${ }^{6}$ GREA'L SHIPPIGAN HARBOULL.

"This spacions harbonr is formed between Shippigan and Pooksoudic Islands and the main land. It comprises three large and commodions harbours : first, the great inlet of Amaqué, in Shippigan Island, the depth of water into which is from four to six fathoms; seeond, the extensive and well-sheltered sheet of water, called St. Simon's Inlet, the chamel leading to which, hetween Pooksoudic Island and the main, is one mile in width, with seven fathoms water from side to side.
"The prineipal entrance from the Bay Chalenrs has not less than five fathoms on the bar, inside which, within the harbour, there are six and seven fathoms, up to the usual loading place, in front of Messrs. Moore and Harding's steam saw mill at the village ; from thenee to the gully there is about three fathoms water only. Vessels within the harhour of Shippigan have good anchorage, are quite safe with every wind, and can load in the strongest gale. The rise and fall of the tide is about seven feet.
" The noble haven called St. Simon's Inlet, the shores of which are almost wholly unsettled and in a wilderness state, runs several miles into the land, maintaining a good depth of water almost to its western extremity."

Duncan McNiel, an old pilot, frequently employed on the Government steamers, when calling at New Brunswick ports, describes Shippigan as a good harbour, with plenty of water, regular soundings and tough blue clayholding ground, indeed where vessels would be perfectly secure in any storm. He says that he could take a ship of heavy draught into it in any weather, by night or by day; that in dirty or dark weather he would go entirely by the lead.

Others deseribe Shippigan harbour as unobjectionable. The Admiralty ehart seems to agree in the main with the descriptions above given; it shows that the area of the basin, embracing only the water over the three fathom line at low tide, is about two and a half square miles; a sheet about double the size of Halifax harbour between St. George Island

[^6]and the narrows to Bedford Basin. The only objectionable feature seems to be the channel at the entrance, which is about three miles long to the basin, a little crooked, and at present without leading marks; it is, however, about half a mile in width, free from all obstructions, the depth varying from five to nine fathoms at low water. There is good warning by the lead in the channel and the approaches to it.

It would appear from the above, therefore, that Shippigan Sound presents a favorable opportunity for forming a traffic connexion between the Intercolonial Railway and Ocean Steamers.

A comparison of distances, will now show the importance of Shippigan, in connexion with the contemplated Railway :

DISTANCE TO LIVERPOOL.
Miles.
From Halifax, (by Cape Race)....................................... 2466
From Shippigan, (by Cape Race)...................................... 2493
From Shippigan, (by Belleisle)........ 318
Difference against Shippigan by Cape Race........... 27
Difference in favour of Shippigan by Belleisle........ 148

DISTANCE TO QUEBEC.
From Halifax, by Bangor and Danville.............................. . . 865
From Halifax, by Bay Chaleurs route.............................. 685
From Shippigan, by Bay Chaleurs route.......................... . 419
Difference against Halifax by Intercolonial line....... 266
Difference against Halifax by United States line...... 446

DISTANCE TO MONTREAL.
From Halifax by Bangor and Danville. 846
From Shippigan by Intercolonial route............................... 575
Difference against United States route.................... 271
DISTANCE TO TORONTO.
From Halifax by Bangor and Portland, Boston, Albany and Niagara
Falls.. . . 1300
From Shippigan by Intercolonial line and Canadian Railways.... 906
Difference against United States routes 394 s, how1 varyvarning

Sound ctween

distance to buffalo.

From Halifax by Bangor, Portland, Boston and Albany 1210
From Shippigan by Intercolonial and Grand Trunk to Toronto, and by Great Western to Niagara Falls and Buffalo. 1012
Difference in favor of Intercolonial and Canadian Routes. 198
distance to detroit.
From Halifax by Bangor, Portland, Boston, Albany, Buffalo and Cleveland. 1572
From Halifax by Bangor, Portland, Boston, Albany, Niagara Falls and Great Western Railway. 1446
From Shippigan by Intercolonial and Grand Trunk Railways 1137
Difference in favor of Shippigan and against United States Route 435
Difference against United States and Great Western 309
distance to chicago.
From Halifax by Bangor, Portland, Boston, Albany, Buffalo, Cle- veland and Toledo 1748
From Shippigan by Intercolonial line, Montreal, Toronto and De- troit. 1418
Difference in favor of Shippigan and against United States Route. 330
distance to albany.
From Halifnx by Bangor, Portland and Boston. 912
From Shippigan by Intercolonial, River du Loup and Montreal. 817
From Shippigan by Intercolonial (line No. 13) to Apohaqui, then by St. John, Bangor, Portland and Boston. 879
Difference in favor of Shippigan and Intercolonial by River du Loup. 95
Difference in favor of Shippigan and Intercolonial Route by Apohaqui. 33

DISTANCE TO NEW YORK.

From Halifax, by Bangor, Portland and Boston 943
From Shippigan, by Intercolonial line to River du Loup, thence by Grand Trunk to Sherbrooke and by Conncetient River Railway* 927
From Shippigan, by Intercolonial (line No. 13) to Apohaqui, thenee by St. John, Bangor, Portland, Boston 910
Difference in favor of Shippigan and Intercolonial route by River du Loup 16
Difference in favor of Shippigan and Intercolonial route by Apohaqui and St. Jolin 33
DISTANCE TO ST. JOHN, N. S.
From Halifax, by Monckion 266
From Shippigan, by Apohaqui 233
Difference in favor of Shippigan 33
The above comparisons show that while Shippigan is practically notfarther from Liverpool than Halifax, Halifax is farther from the variousplaces referred to as follows:
Miles.
From Qucbec, (by Intercolonial routc) 266
From Qucbec, (by United States route) 446
From Montreal, (and all parts west on the Grand Trunk, by the Intercolonial) 266
From Montreal, (by the United States Route) 271
From Toronto, " " 394
From Buffalo, 198
From Detroit, 435
From Detroit, (by the United States and the Great Western Rail- way) 309
From Chicago, by the United States 330
From Albany, " " 95
From New York, " " 16 and 33

The above distances also show that Shippigan is 33 miles nearer St.

[^7]John, N. B., Portland, Boston, New York and every point west, by the Intercolonial line to Apohaqui, than Halifax is by the shortest possible route now contemplated.

It is obvions, therefore, that the adoption of Shippigan as the point of conns xion with Ocuan Steamers, would not only nentralise the danger to be feured from the rivalry of the Bangor extension, but it would constitute this line, as far as it could bring traffie, a feeder to the Intercolonial Railway from the somblh. It is clear too, that the extremely favourable position of Shippigan, in relation to the whote of New Bronswick and Canada, as well as to all points in the Western States, bordering on, and west of the Great Lakes, would prove most beneficial to the Intercolonial Railway, in securiug to it a very large share of "Throngh Passenger Tratic."

I: is true that this Post on the Bay Chaleurs cotald only be used probably during seven or eiglit months in the year, as the Gulf of St. Lawrence: cannot be eonsidered navigable during the winter season. But as the great majority of passengers, including emigrants, travel during the summer, the Intercolonial R:ilway would be situated in a most favourable position for carrying them. It would also, withon doubt, have a reaconable chance of seeuring the transportation of the great bulk of European Mail matter, as well as all deseriptions of light Express fieifht, which usually secks a rapid means of transit. During a great part of winter Halifax would be the point of connexion between the Steamers and the proposed Railway; then the latter woukd maroidably enter into competition with the United States lines.

There is this objection to the selection of Shippigan as the port of call for Ocean steamers, it would involve the construction of 45 miles additional of Railway. This is not, however, at present indisjensable, as Dalhousie could be advantageously used, until cireumstances jastified tho building of a Branch from the Main line to Slippigan.

The tonehing at this Port on the Gulf, would probably result eventually, in other special advantages, national as well as commercial, the nature of which are more particularly referred to in the Appendix (\mathbf{F}.)

In summing up the foregoing, it is obvious that, as far as I am capable of judging, the comparative advantages of the various routes may thus be stated :

A Frontier Route would accommodate the largest amount of "Local" traffie, and in the highest degree would serve the purpose of Canada in winter as an outlet for heavy "Through Fi sight."

A Central Route would, next to a Frontier line, be the best for the 7
transportation of "Through Freioht;" and, as a means of colonizing the Country and developing its natural resources, would stand in the first position.

A Bay Chaleurs Route would best secure the largest European "Passenger Traffic," the carriage of Mail matter and Express Freight, and, next to a Frontier Line, would accommolate the greatest amount of "Local" traffic.

Before it can be decided which of these advantages preponderate and which route is entitled to the preferenee, the whole subjeet ought to be carefully and deliberately weighed in all its bearings. I am not however called upon to decide this point, and therefore I refrain from expressing an opinion. Indeed I may add, thai the foregoing observations are submitted, with no little hesitation and relactance, in consequence of the sectional difficulties, which, without doubt, surround this branch of the subject. I could not, however, avoid reference to the commercial merits of the several routes, without disregarding iny instructions; and in cndeavouring to comply with the wishes of the Government,* it was impossible for me to overlook the muin points, which above are imperfectly presented.

CLIMATIC DIFFICULTIES.

Experience hat shown that the elimate of British North America has a peculiar eflect on the works of construction of Railways, as well as on the degree of facility with which they may be maintained and operated after completion,--And as the remodies whielt may be applied to guard against and commeract the mufivorable influences of climate, to a considerable extent affect the expenditure on construction. I shall before entering on the consideration of the probable cost of the proposed modertaking allude brielly to this subject.

The frost in these Provinces is in winter very severe, it peluetrates the ground where dennded of snow to a depth of several feet, sometimes it is said in extreme cases to as much as three and four feet. On exposed points such as the slopes of cuttings and embankments the snow is sonetimes drifted away by the wind, and on the rail track it has always to be removed by artificial means to allow the passage of trains. At snch points where the surface is unprotected by a covering of snow, the frost has a free opportunity to penctrate ; and if, owing to the springy or spongy nature of

[^8]the are
zing the he first nount of
rate and ht to be however ssing an binitted, sectional ubject. I e several to comto overcrica las cll as on operated to guard a a consichtering ay allude
rates the mes it is cll points onctimes to be rech points has a free nature of
the soil, water is retained in such places, the effects of freezing and thawing are frequently very damaging.

Embankments mude of certain kinds of carth whilst fresh and loose naturally take up and hold a good deal of the rain fall of autumn, which is frozen solid during the ensuing winters; they are in consequence exposed to trials when the thaws of spring set in, and frequently considerable outhy is required to restore them to their origital and proper shape. It is desirable therefore that these sourees of outlay should be anticipated and sufficient provision made for them in the first instance. Unless this be done, disappointment at the excessive cost of maintenance of works will inevitably arise ; and however faithfully the parties engaged in construction may have endea:ored to execute their daties, they will be exposed to reflection of an unsatisfactory nature, whilst the causes for such dissatisfaction instead of being due to negligence or unskilfulness may be solely due to climatic influences. It is essential therefore that provision should be made for expenses of this character until the earth works attain that solidity and sufficient degree of imperviousness, which time alone can give them.

The first and second winters with the thaws of the following springs are the most trying on new embankments, but after the third year there is ordinarily little or no difficulty or expense.

Cuttings through wet springy soils are not so soon rendered firm and stable, year after year on the breaking up of winter the fresh thawed soil will frequently be in a semifluid state, and in this condition will flow into the ditches, sometimes across the bottom of the "cut" covering in "slurry" the ballast, ties and rails. This is a yearly occurrence in many of the cuttings on the existing Railways in Nova Scotia, and it is no dunbt due to the peciliarity of soil and elimate here alluded to.

The roid bed itself, even when moderately well ballasted is often greatly disturbed by the effects of freczing and thawing, and the track is thrown therely out of its uniform level, producing an irregularity of surface alike damaging to the rails, rail-fastenings and rolling stock. It is impossible noreover with the track in this condition to maintain the speed of trains with a due regard to siffety. These effects on the road bed and track are not confined to cuttings, for they are sometimes wimessed on level seetions of country; but they are invariably attributable to the undue presence of water in the soil, within the frost limit. Ditching to sone extent obviates this diflieulty, but as usually practised in this country, it is not a complete remedy for these evils; true it has the effeet of taking off the water from 7^{*}
the surface, but it does not remove that which lies under the surface, and which when aeted upon by frost is equally damaging. I am satisfied that in this lutitude not only inust the surfuce witer be removed, but that, for the permanent benefit of the Railway, the subsoil must be kept dry by a system of thorough under-draining. By such n system it is proposed to remove all springs or standing water as well as all soaknge from the surface for a depth which execeds the extreme frost limit; and thus it is believed an effeetual remedy will be provided for this particular elimatie diffienty and render the slopes of euttings and the road bed permanently dry and solid.

In all works of masonry in contact with the earth, care must necessarily be taken to guard against the expansive power of frost ; and in the constrnetion of Bridges, over rivers subjeet to heavy freshets and flows of ice, more than ordinary precautions must be taken to insure the stability of the structures.

The elimate of this comntry requires that to operate the line effieiently, the utmost care must be taken to insure an abundunt supply of water for the engines, not liable to be frozen up daring the winter months; without whieh it will be impossible to opernte the line of Reilway satisfactorily. The provision of an efficient frost proof Water-service may therefore be considered indispensable.

But the chief elimatic diffieulty to contend with on the route of the proposed railway is snow; to obviate this diffieulty is a question of the very utmost importance, as upon it mainly depends the value of the Intercolonial Railway as a winter means of commonication. The snow-fall along the route of the Intercolonial Railway, according to information received, is very variable. In Nova Seotia and the southern part of New Brunswick, as a general rule it would appear that the snow does not remain on the ground to a greater depth than it ordinarily does in Upper Canada. Probably however the snow-fall, although in the aggregate fully greater than in Upper Canada, is more variable than in that Provinec. Heavy falls of snow are frequently followed by sudden thaws in Nova Scotia, so that the ground is left in certain districts comparatively bare; at other times and places the snow will remain to a considerable depth,

In the central and northern parts of New Brunswick, and northerly to the St. Lawrence, the snow invariably remains on the ground, from the beginning to the end of winter. The average depth in the woods where it is not affected by drifting, will range from three to four feet ; occasionally, I am told it will reach as much as five feet, sometimes even a greater depth

but

 exc> rage
it is

moor

grea
tim

> Rail
to t
face, and sfied that that, for dry by a posed to 1 the surluss it is relimatic manently
t necessaand in the d flows of tability of
efficiently, water for ; withont isfactorily. crefore be ute of the ion of the the Inter-snow-fall formation rt of New not remain r Cinnada. ly greater Heavy Scotia, so ; at other
ortherly to from the ds where asionally, ater depth
but as these latter cases are not so well authenticated I must treat them as exceptional.

In the winter of 1863-1864, so far as my own observations go, the average depth was a little over three feet. During the present winter I believe it is about 4 feet,-- that is to say in the woods. In the settlements the dry snow is constuntly exposed to drifts and it frequently accumulates to very great depths; on mecting with obstructions it will be found deposited sometimes to twelve and fifteen feet in deptl.

Snow drifts where they happen to oecur are serions obstacles to Railway oprations; they are found to be the cause of frequent interruptions to the regular running of mains, besides often the necessity of a heavy outlay. Every winter in Lower Comada the trains are delayed for days at a time on accomut of these drifts, the mails are in conseguence stopped and traffie is serionsly interfered with.

Experience goes to prove that these snow drifis only occur where the country is settled, and the surface denuded of its timber; in such places, what are termed " snow-fences" have been erected along the railway lines, but these besides being only temporury expedients do not always prevent the line of communieation from being blocked \quad pj with snow. I am convinced that the only cffectual method to prevent snow drifts is to follow the plan which nature herself suggests. There are no drifts in the woods, the standing timber prevents the snow from being moved by the wind after it falls. It seems therefore only necessary to leave a belt of wood land along the line of railway, where it passes through the forest, and to coltivate through cleared districts, a second growth of Spruce or Balsam trees, to a width along the railway route sufficient to arrest the drifting snow on the outer side, at a safe distance beyond the limits of the line of tratic. With such provision I believe there would be nothing to fear from drifts even in this high latitude, and it only remains to be considered how the eren snowfalls ranging from three to five feet on the level may be dealt with.

Althongh five feet of snow is perhaps an extreme average depth, and not frequently occurring where drifts are not common, I consider it highly important, in order that communication may be kept up with satisfactory regularity at all seasons, to provide, if it be possible, for operating the road even when unusual snow-falls ocenr.

A depth of five feet of snow would on railways as they are ordinarily made in this country, render it extremely diffienlt and expensive to operarate them; long and narrow cuttings would become so completely blocked
up that they could only be opened by a slow process of manuml Inbor, and frequent delays and serions interruptions would be the eonsequences.

The true way to meet these difficulties, in my opinion, is to adopt n form of constraction which will afford the readiest opportunity for the removal of the snow as it fulls by the help of stemm power. A fall of snow on an embankment is ensily removed, snow ploughs of a suitable construction attuched to the engine readily cist it to the right mud left; wiod as there rarely fulls a sufficient quantity in a single diny to impede seriously the running of trains, there could be no great practical didficulty in keeping a line open for traflic if the railwny track was placed on an embankment throughont its whole extent.

It is not possible in a country like that between Riviere-du-loup and Truro, to find a line for a railway which would be free from entings; the surveys indeed indieate that some very heavy ones most be formed. It is however quite practical with an incrensed ontlay, to widen the eultings and deepen the sides of them, so as to leave the rails elevated in the centre in the manner shown by the accompanying sketel, and thus provide space sufficient within the slopes for the snow which the locomotives would throw off the rail track;--to form as it were a smill embankment through the centre of each cutting. Thus by contriving to have the rails sulticiently elevated above the ground along each side, in cuttings as well as elsewhere, it is believed that it would be quite practicable to keep open the proposed railway in winter at a moderate cost.

By adopting a plan of construction such as suggested, and the drifts prevented in the manner already referred to, I can see no reason why trains should not be run between Rivière-du-Loup and Hulifax, with a higher degree of regularity than on the Grand Trunk Railway east of Montreal.

The sketch is intencled to show a cutting with the rail track raised in the centre to aflord an opportunity for throwing the snow casily into the space provided for it at each side.

ibor, and ces. adopt n for the of snow construc; and as seriously keeping bunkment onp and ngs; the d. It is cultings the centre ide space es would at through ails sulliis well as :eep open the drifts rhy trains a higher ontreal. raised in into the

The snow is supposed to be five feet in perpendicular depth, the dotted line shows where its eurface would be, supposing the Railway to have been cloved all winter, und the full line shows where the snow would be depowited along the sille, on being east to the right and left from the rail track.

I see no other way of providing efliciently for the removal of the deep accumblation of snow which may be looked for in winter, particularly in the norlhern parts of the eomary, and therefore I eonsider it essential that a system of construetion be adhpted similar to that above described.

The increased width of cattings reguired, will of conrse have the effect of swelling ont the expenditure on the undertaking in the first instance; but this I eonsider unavoidable, as upon the menns which may be furnished for facilitating the removal of snow, the regularity and eonsequent value of the Intereolonial Railway as a winter communication will manly depend.

THE ESTIMA'TE OF PROBABLE COS'T.

In submitting estimntes of the prohable cost of the contenplated undertaking, it is necessary to allade brietly to the nature of the various. services on which expenditure will be required. I shall therefore proceed to consider them in the order in which they properly come, viz:

1. Engineering, comprising all Exploratory, Preliminary and Locating Su. veys. Designing, Inspecting and Superintending works;
2. Right of Way and Fencing;
3. Clearing ;
4. Permanent cottages for Workinen ;
5. Telegraph;
6. Grading anl Bridging, comprising all the main works of construction in forming the Road-bed;
7. Superstructure, embracing Ballast, Ties, Rails and Rail-fistenings, for Main track and Sidings ;
8. Station Accommodation, comprising all buildings and erections required for general traffic, for protection and repair of Rolling Stock, for wood and water services.
9. Rolling Stock ;
10. Contingencies including every possible expenditure direetly connected with construction.

ENGIN ERERING.

The Exploring, Surveying and Locating operations indispensable to the establishment of an undertaking sinch as that proposed, precede all other services and therefore the consideration of this branch of expenditure naturally eomes first.

The surveys already made are not without their value, but a great deal has yet to be done before the location of any one line can be proceeded with. When it is considered that in a commtry so densely wooded as the one in question, where in much of it, a person under ordinary circumstances can scarcely see over fifty yards around him, in any direction except uprards, it will not be wondered at that the aperation of detemining in detail, the best position for a Line of Railway, is considered an exceedingly tedious and expensive matter.

In a level wooded country, or one with gently undulating slopes, it sometimes makes little difference in the eost of the work, or in the character of the gradients of a projected Railway, where the line is talien; and in such cases the firṣt trial or random line through the woods, is not infrequently adopted for the Railway route with but slight modifications. In a country however whose features are eharacterized by great irregularities, and whose surface is covered with a dense vegetation, the information necessary to secure the best and least expensive location, ean only be acquired by a series of laborious measurements.

A great deal of exploratory work will yet be necessary before the Intercolonial Railway can be proceeded with. It is in the highest degree important that the country should be thoroughly known and the best engineering route for the Railway fully and finally established before works of construction are commenced. It is always true economy to expend money on efficient surveys, and in this particular case vast sums may be wasted by an opposite course. The country is of such a character, more particularly in the Central and Northern Districts, that almost any amonnt of money may be expended on a eareless loeation ; whilst sufficient time and attention bestowed on these preparatory services, would eventually prevent waste, disappointment and discredit. I consider it essential that ample provision be made in the estimate, for all the Exploratory and Surveying services referred to, as well as for the employment of an efficient professional staff in designing and superintending the proper execution of the miscellaneous works ineidental to Railway construction.

RIGHT OF WAY AND PENCING.

The Province of Nova Scotia has in the construction of her Railways, institutel a system worthy of imitation, so far at least as the mode of providing the land on which to build them is concerned. Whilst the Railways are admitted to be for the general public good, it is justly assumed that the immediate locality through which they pass derives greater benefits from their construction than remote districts of the Province.

On the principle therefore that those who get the bencfits should bear the burdens, the Legislature of Nova Scotia has enacted, that the se veral Countics intersected by the Railway, shall provide the "Right of Way" and bear the expense oi separating it from the adjoining lands.

Of course the land is not taken from the owners without compensition, but the settlement of this question is left with the local authorities, and the amount of compensation, logether with the cost of erecting fences, added thereto, is paid out of Connty funds and met by assessment in the usual way. ${ }^{*}$

This system is I believe readily acquiesced in by the people, those who do not happen to live in the counties through which the Railway passes, have no special "Right of Way" tax to pay; and those who have the tax to pay on account of their proximity to the line of Railway, consider themselves the most fortunate, as the trifling county charge is much more than counterbalanced by the great advantages seeured.

In other respects the system adopted in Nova Scotia promises to result satisfactorily, the total expenditure on the Railway out of Provincial Funds, will be reduced by the cost of Land Damages and Fencing ; and the parties connected with its construction will not be required to resist exhorbitant claims too frequently made for alleged Land damages and which the local authorities can best adjnst ; and thus antagonism between the people of the Country and the Railway authorities will be avoided.

In the construction of the Intercolonial Railway there appears to be every reason why this system should be imitated, and I shall therefore in the estimate make no provision for the purchase of Right of Way, for Land Damages of any kind or for Fencing. Of course neither the one nor the other will be required in those sections where the line may be built through unsettled Government lands. In eultivated districss only will the proposed

[^9]arrangement be requisite and there it will have to be sanctioned by Legislative enactment.

CleARING.

So soon as the ${ }^{\text {w }}$, reliminary and location surveys are completed, the elearing of the "right of way" may be proceeded with, on the line selected for the construction of the Railway.

The survey: will probably oceupy the whole of the first year, but during this period it would he possible to eomplete the location of some sections earlier thin others; in such sections the clearing might be proceeded with, and this work may in part also be continued during the following winter, and thas allow the works of exeavation to be commenced on the opening of spring.

The elearing onght to be made to a width of not less than three chains or about 200 feet for a three fold object : 1st. To remove all danger from trees falling across the rail-traek; 2nd. To rednce the ehances of injury to the track or to passing trains, by reason of fires raging in the woods, a contingency not uneommon and frequently very troublesome in dry summers ; 3rd. To allow space for the springing up of a second growth of spruce and other trees along each side of the Railway, which in a few years would attain a sufficient size to aet as a natural and permanent snow-fence, should the adjoining lands become cleared of their timber.

HUIIDINGS FOR WORKMEN

On the completion of the Railway a large number of men will permanently be required upon its future maintenance. These men with their families will require a considerable number of cottage dwellings and tool houses. Such buildings should be regarded as necessary appendages to the Railway, and when so considered it wonld greatly facilitate the works of construction to have them erected in the first instance, of a permanent and suitable character ; by permanent I do not mean expensive, comfortable \log houses, warmly built, like the farm. houses in Lower Canada and elsewhere, would serve every purpose.

These buildings should be provided along the line at about every five miles distance and at points convenient to good water. They ought to be proceeded with so soon as the exact position of the line is determined; they would during construction be serviceable as Engineers and Contractors offices and also as storehouses and dwellings. The outlay on them need not be great and I am satisfied it would be a profitable one.

A TELIEGRAPH.

A Telegraph is now eonsidered an indispensable adjunct to a Railway, it is essential to the proper and safe working of the Line when completed, and therefore provision should be made in the estimate, for a fully appointed Telegraph, throughont the whole distance.

Only those who have been engaged in Railway construction through distriets remote from easy means of communication, will be able fully to appreciate the great advantages which would result, from the possession of a line of telegraph during the progress of works, through the roadless districts. A Telegraph, in all situations is a convenience and a requisite of no little moment ; but where ordinary means of communication do not exist, or exist only in the most primitive form, this modern and comparatively inexpensive means of conveying intelligence and directions would be doubly valuable. The importanee of a Telegraph along the line of works, during their progress would be so great, that I am convinced its early erection would very favorably effect the expenditure on eonstruction; and, as it must ultimately be provided, I would strongly recommend that it be furnished at the carliest practicable period, so soon in fact as it is possible to have the route cleared of its standing timber.
bridging and Grading.
The various services above referred to may be considered as preparatory operations to the commencement of the main works of construction. Surveying the country and laying out the Line are of course indispensable preliminaries. The right of way must necessarily be secured. The clearing of the land must precede the erection of the Telegraph, and to some extent, also the building of the Cottages for workmen herein proposed, it would also open up a way for the taking in of men and supplies. Each service in its proper order would facilitate that which follows, and all that have been mentioned, would either necessarily precede the works of excavotion, grading and bridging, or render them less difficult of execution and consequently in proportion less expensive.

All Bridges are intended to be built of durable materials and in the most substantial manner. Wherever it is practicable to cross a stream on an earthen embankment with an Arch Culvert for the water way, this system is preferred; but in cases where the height of the roadway above the stream, is not sufficient for the introduction of arches, open Beam Culverts having walls of good masonry must be substituted.

All openings of more than twenty feet span, are intended to have wrought iron beams placed on substantial bridge masonry.

In establishing the Intercolonial Railway 1 think it would be mistaken and dangerous economy to introduce the construction of any bridge structures except those of a permanent and substantial character; and in determining the size of culverts and water courses, it will be important not only to make full provision for the passage of freshet water at the present day, but also to have in view an increased occasional discharge in the future, on account of the facilities for rapid drainage which the destruction of the forest and cultivation of the land will afford.

With regard to the works of excavation and grading-for reasons already given, and mainly to facilitate the removal of snow from the track in winter, it is in contemplation to have the rails raised to a height, not usually adopted, above the adjoining surface of the ground. This will be more especially advisable thronghout the northern portions of the country, where in order to effeet the object desired it is proposed to avoid cuttings as much as possible; and when this cannot be accomplished, it is intended that the cuttings should be formed of sulficient width, to afford space along each side of the track, for the snow to be cast by snow ploughs.

Without some such provision as that above referred to, it is feared the cuttings would freqnently be choked up with snow, during the winter season.

The quantities of excavation already submitted, have been computed on the assumption, that the euttings will be made to an average width of 30 feet at formation level, and with side slopes of one and a half horizontal to one perpendicular. It is however proposed to vary this width in actual construction, inereasing it to 34 or even to 36 feet at points where on a better knowledge of the country and climate it is found the greatest amount of snow generally falls; at the same time making a corresponding decrease in the width, where the snow-fall is known to be on the average light.

Embankments are intended to be 18 feet in width at formation level with side slope of $1 \frac{1}{2}$ horizontal to 1 perpendicular; wherever embankments are exposed to the current of a stream, provision will be made for their proper protection by slope-walling.

In order to make the road-bed dry, firm and perfect, and also to reduce the difficulty and expense experienced in maintaining wet cuttings, it is proposed to adopt a system of thorough under-drainage, wherever the soil or sub-soil is at all wet.

THE SUPERSTRUCTURE.

Under this heading I shall embrace the Ballast, the Ties, the Rails, and the Rail-fastenings.

The Ballast is a most important element in the construction of a Railway and upon it greatly depends the durability of the Iron and the Rolling Stock. The best Railways, those which do the most business with the least outlay, are invariably found the best ballasted.

In many sections of the country between 'Truro and River du Loup, there are indications of abundance of material for Ballast, but as quality is more important than quantity, although a sufficiency ol' the latter is essential, care should be taken to have the very best, scleeted in the first instance, whatever it may cost. The estimate, which will shortly le submitted, provides for a quantity of 5,000 cubic yards per mile, this quantity if of good material, laid on a road bed throughly drained, will without doubt make a good track, but less would scarcely be suffieient to accomplish the purposes of Ballast, in a satisfactory manner.

The Cross-ties will be of the usual dimensions, made flat on two sides, six inches thick and nine feet long. The different kinds of timber available in various sections of the country for the making of Ties has already been referred to, the best which each locality can afford is intended to be employed.

With regard to the Rails and their fastenings, I would recommend a rather heavier pattern than has commonly been employed in this country, with the " fish" or some equally good splice joint.

In the estimate, I have allowed for a rail weighing with the joint fastenings 70 lbs. per lineal yard; on a Railway such as the one proposed with heavy grades and as a consequence heavy Engines, I think this weight of rail, although costing more in the first place than a lighter one, will ultimately give greater satisfaction.

The joint fastenings are intended to be the most effective and reliable made, on account of the severity of the climate of this country.

The quality of the iron is of the utmost importance, and every care should be taken to secure the best manufactured. There is no economy in purchasing bad iron at a low price, as shipping, handling, transporting, laying and all other charges, are quite as much on infcrior iron as on material of the best quality; besides which the durability of the one is so much greater than the other, that even if the best should cost considerably more originally, it will be found the cheapest in the end.

In the estimate an allowance of ten per cent on the whole mileage of
the Railway is made for sidings. It is believed that this proportion will be sufficient for operating the line until the traffic greatly increases.

Station accommodation.
With regard to the Station accommodation and general Depot services, I would, in submitting an estimate of this kind, prefer defining the number of stations and character of buildings which in my opinion would be required. But as the route itself is quite an open question it is impossible to judge what may be necessary, and therefore I can only include in the estimate a uniform mileage charge for these services.

I may remark however that I consider an efficient water service with commodious woodsheds indispensable, and this should be the first thing looked to along the line.

With the exception of a few points where Towns are touched and where proper accommodation must be provided, I can see no necessity for much expenditure on Station Buildings. Whilst I would strongly recommend that the Railway proper, and every thing immediately appertaining thereto, such as Bridges, Culverts, Embankments, Ballast, Rails, \&c., be made of the best materials and in the most substantial manner, so as to insure speed, safety and economy, in transit and maintenance ; I think it would be unwise to expend money through the wilderness districts, in costly buildings, which for many years cannot be required.

If necessary let a fund be reserved for the purpose of being expended from time to time as required, and as traffic through the country gradually developes itself, but in the mean time, only a limited number of Station Buildings and these of the simplest character need be erected.

Permanent establishments for the accommodation and repair of Rolling stock are indispensable, they will consist of engine stables, and work shops with machinery for repairs; they should be situated at such central and convenient points as may on a full consideration of the advantages of each locality be determined.

ROLLING STOCK.
It is difficult to form an estimate cither of the kind or quantity of Rolling Stock likely to be required, as so much depends on the character of the traffic, and this again is in a great measure governed by the route which may ultimately be selected

I think that the best course is to provide a moderate quantity of Rolling Stock, comprising cars suitable for the different kinds of tratfic;

rvices,

 number uld be ossible in the ce with st thing ed and ssity for reeom taining \&c., be so as to think it ricts, intogether with a reserve fund to be expended as the nature of the traffic developes itself and as an increased equipment becomes neeessary.

The Rolling Slock which I eousider may with proprifty be furnished in the first place, is in the following proportions:

15 Locomotives for every 100 miles of Railway.
4 Sleeping Cars " "
\pm First Class Passenger Cars " "
8 Mail, Baggage 2nd Class Cars " "
40 Box Freight Cars " "
80 Platform Cars " "
20 Hand Cars " "
These of the best description, together with a sufficient number of snow plows, either fitted to, or separate from the engine, can be furnished for $\$ 300,000$, or at an average mileage cost of $\$ 3,000$.

CONTINGENCIES.

In order to provide fully for every expenditure, it will be necessary to embrace in the estimate an allowance for contingencies, for miscellaneous expenses, and also a reserve fund for increasing the Rolling Stock as well as the Station accommodation.

There are various miscellaneous services which will be made a charge on the fund for contingencies, of which may be mentioned a telegraph, workmen's dwellings, road crossings in settlements, printing, advertizing, \&ec. The estimate, would not be complete without einbracing a fund for all these and other expenses incidental to construction. The allowance in the estimate, does not however provide for interest, discomm, commission or other charges on capital.

THE ESTIMATES.

Having deseribed in general terms the nature of the services for which expenditure of capital will be required, in the construction of the contemplated Intercolonial Railway, I shall now proceed to submit estimates of its probable cost. In doing so I may observe, that considering the character of the survey, no great pretentions to accuracy can reasonably be expected. At the same time I may add, that the knowledge I have aequired of the country by the recent examinations, induces me to belicve that although the estimates are only approximations yet they need not under proper management be excceded.

There are certain services which do not altogether depend on the measurements made on the lines of survey ; on estimating the cost of these I deem it best to consider them uniform mileage charges. They are as follows:

UNIFORM MILEAGE CHARGFE.

1. Clearing, Grubbing, Draining, \&c. $\$ 1,00000$
2. Superstructure, embracing Ballast, 5,000 cubic yards, Rails and joints, 70 lbs. per yard, Spike, Cross-ties, Tricklaying, and an allowance of 10 per eent additional for Sidings.

10,500 00
3. Station accommodation. 1,00000
4. Engincering . 1,50000
5. Rolling stock... 3, 000 . 00
6. Contingencies including miscellaneons services, and reserve fund for extra rolling stock...... 6,000 00

Total. . . \$23,000 00
Producing a total mileage charge of $\$ 23,000$, which will be considered uniform throughout, and common to all lines.

In another place I have given the approximate quantities of excavation, masonry, iron, \&e., required to complete the Grading and Bridging on various lines surveyed last summer.

I have computed these quantities at prices which I consider liberal and sufficient ; the result is now embraced in the following Estimates :

> 1. trubo to moneton, nova scotia division of the survey.
> Uniform Mileage charges above referred to, estimated 109 miles at $\$ 23,000$ per mile $\$ 2,507,000$
> Bridging and Grading, estimated from quantities deduced from exploratory Survey.. $\$ 2,693,000$
> Total estimate Truro and Moncton Division $\$ 5,200,000$
2. river du locp to apohaqui, new brunswick and canada
division of the survey.

Uniform mileage charges 340 miles at $\$ 23,000$ per mile
$\$ 7,820,000$
Bridging and Grading estimated from quantities
deduced from exploratory survey $\$ 7,615,500$
Total estimate River du Loup to Apohaqui $\$ \mathbf{1 5 , 4 3 5 , 5 0 0}$
Grand Total
$\$ 20,635,500$
sur Gre
the
and
Lal
sec
ave
uni
con
ave
be
of t
sep
Mo

Che
tap
Un
Bri

le mea-

 these I arc asThis sum $\$ 20,635,500$ is the estimate for the whole line by the route surveyed last summer, from River du Loup by way of the River Toledi, Green River and Gounamitz Valley, thence by Two Brooks, Wapskehegan, the upper waters of the Miramiehi and Nashwaak, by the Keswiek Valley and St. John River to opposite Fredericton, thence by the head of Grand Lake and Chowans Guleh to Apohaqui Station. It embraces also the section from the New Brunswick Railway to Truro in Nova Scotia.

This total sum divided by the length of line to be constructed, gives an average of very nearly $\$ 46,000$ per mile.

I have already mentioned that the cuttings have been estimated to a uniform width of 30 feet at formation level, and explained that in actual construction it will be advisable to vary is width, in proportion to the average snow-fall at diflerent points; towards the north the width should be increased while towards the south it may be decreased.

These contemplated changes althongh they need not affeet the total cost of the whole line, will, of course, alter the proportion ehargeable to each separate division, and thus the estimate for that part between Truro and Moncton, viz., $\$ \dot{\psi}, 200,000$ may hereafter be found in excess.

the matapedia division.

An estinate may similarly be formed of that portion of the Bay Chaieur line, which was re-surveyed last summer, up the valley of the Matapedia, and in length 70 miles.
Uniform mileage charges as already estimated, 70 miles at
$\$ 23,000$ per mile . $\$ 1,610,000$
Bridging and Grading estimated from quantities ascertained
from survey. 1,175,000
Total...... $\$ 2,785,000$
The estimated cost of this 70 mile section is $\$ 2,785,000$ including a mileage proportion of all the charges necessary to complete the line and put it in operation. The average cost per mile of this section is therefore $\$ 39, \% 66$, and as Major Robinson and Captain Henderson considered it the most formidable portion of the whole route, between Halifax and Quebec; it would probably give a maximum and safe estimate of the cost of the route to which they refer, by applying this rate per mile to the distance yet to be constructed. Taking this course we have $\$ 19,853,214$ as the total cost of the line between River du Loup, and Truro. Less than this total sum may suffice, but until the surveys are extended to all points where difficulties
may probably exist, I do not think it would be at all safe to estimate the cost of the Bay, Chaleur route (line No. 15) at a less sum than $\$ 20,000,000$.

With regard to the cost of the other lines mentioned in this Report, it is quite itnpossible for me withont further surveys to judge, except by,.the simple rule $\mathrm{i}^{\text {? }}$ comparison. It has been shown that the average estimated cost per mile of the surveyed Central line, ineluding all services and sufficient equipment, is very close on $\$ 46,000$; and it has also been inferred, from a careful survey 70 miles in length, in the Matapedia Distriet, that a line by the Bay Chaleur would cost $\$ 39,786$, or in round numbers, $\$ 40,00{ }^{\prime}$ per mile. We can only assume, therefore, until better data is furnished that the other lines may cost an average rate per mile ranging from $\$ 40,000$ to $\$ 46,000$; it is even possible, judging from the knowledge I have acquired of the country, that some of the lines referred to, may cost a higher rate per mile than the latter sum.

In coneluding this Report, I desire to express my obligations to those gentlemen whom I selectacl to assist me in carrying on the Surveys, but for the zeal and untiring energy which they at all times displayed, it would have ${ }^{\text {r }}$ een impossible for me to have completed so carly and so easily the impurtant service which the Government was pleased to place in my hands.

ate the

 00,000 . eport, it except average services been inDistrict, umbers, a is furng from ledge I y cost a to those , but for t would asily the in my
APPENDIX A.

THE AGRICULTURAL CAPABILITIES OF NEW BRUNSWICK.

From a Report by Professor James F. W. Johnston, F. R. S., \&c.

"Two very diffierent impresslons in regard to the Provinee of New Brunswiek will be produced on the mind of the aranger, accurding as he eontents hluself with vianing the tuwna and inspecting the fands whin lie along the denamard, ar axcends its rivers or penetrates by its nunierous roads into the interior of its mure central and northorn Counties.
"In the former case, he will foel like the traveller who entera Sweden by the harhours of Storkholm or Gottenburg, or who sails annong the roeks on the western eoast of Norway. The naked rittis or ahelving shores of granite or other hardened rockn, and the unverying pine fireste, nwaken in his inind fleas of hopelems diavolation, and poverty and laurrenness appear nerevsarily to dwell within the ironbound shores. I have myself a vivid recollection of the disheartening inspression regarlang the agriculturul rapabilities of Nova Scotin, whieh the tirst two days I spent in that l'rovince around the neighbourhood of Halifax conveged to my mind. Jad I returned to Eurupe wilhut aeeing uther parte of that Provinre, I could have eompared it only with the more unproduetive and inhospitable purtions of Scandinavia.
"A large proportion of the Europeans who visit New Brunswick see only the rocky regions which encirile the more frepuented harlsurs of the Province. Thiy most thereforo enrry away nad convey to othera very unfavourable ideas expecially of its adaptation to ugricultural purposea.
"r But on the olher hand, if the stranger penetrate beyond the Atlantios shores of tho Provinee, and Iravel through the interior, he will the struelk by the number and benuty of its liverd, by the lertility of its River tsiands nud Intervales, and by the areat extent had excellent condition of its roads, and (upon the whole) of it- numerous britges. Ho will aee boundless forests atill unreclanned, but will remark at the same time an amount of general prugress and propperous nivancement, which eonsidering the recent aetlement had small Revenne of the Province, is really surprising. If he jossers an ayrientural eye, ho
 sone time the healihy louss ot their large families, and the apparently easy and independent condition Iu which they live."

The Agricultural capabilities of the Province as indicated by its Geological Struclure.

"The Apricultural rapabilities of a comntry depend essentinlly upon its (ieolagical strurture. That of ndjuning cauntries also, expectially of surh as lee in certain kinwn directions, may moulify in a great degife the iharideter ot its molns. In retrenere to this vital interest of a State therefore, the punsession of
 fis own surtaie of whit it sapable, mith how its rapabilities are to be developped, but in throwing light also on the proluble rapntilities of uiljuming districte. ****
"An inspretion of this Map (No 1,) shews that arcording to our present knowledge, the Province of New Brunswict consists mininly ot five difierent rlasees of rocks, represented by as many ilifferent rolours. The grav, whith is by far the most extensive, represents the region of the conl measires, the criason that of the gramises athel mon slatev, the browninh red that of the red sandstane, the pale blue thint of the elay slater, the green that of the trapos and porphyries, and the light purple that of the upper Silurian. The durk purple in the upper part ol ile map represents the lower Silurinn rocks, whicb oceupy the nurthern region toward ble shorex ut the Saint Lawrence.
" I do not here enter into nay detuils in regard to the urder of superposition of these rocks, becruse that general order is tinlly detaind in booky of Geshogy. beturse in this Province there are certsin distriete in whilh the lowal order if superposition is tar trom being determined, and becanse an kowledge of the oriler is by no mesns essential to a clear understanding of the relations of these rocks to the ogrieultural character of the soil which covers thein.
"It is of more importance to underatand-
"1. That rorks of all kinds are suliject to be worn away, degraded, or made to crumble down, by variuts meteorolugivol and mechaoieal agencies;
" 2. That the fragmentm of the rioks when thas erumbled, furm the sandn, gravela and claya that unually cover the surfice of a country, and upon which lim nols arv lorned and reat; and
" 3. That for the most part the muterialy of wheli the ermubled sanda, gravila and moilm conmist, are derived from the rock on which they reat, or from other roeks at no grent disanee. How iney cutma to be derived oecasionally from rocks at somo diatanee, will be explainel it the following chapter.
"These facts mhew that a clone relation most generally exiate between the pocks of a eouniry and the kinit of soils whish cover it. It in this relation which givea Geology ite main intereat und minure tunce in relation to Agrienlure.
"A. Tha Coal Measures which cover so lufgo a breadth of New Itrunswick, connist for the mont part of gray sund atonem, monetimes dirk mind greenish, nul sometimes uf a pulo yellow coloup. The nili. cenus manter of which they cumsist, is cimented together or mixed with only a simsil proportion of elay, (decayed felspar principnily, no that when those roclin crinilile, whieh they do rendily, they form light
 and fate in Autumin, but hungry, greedy of manure, linble to be burut up in droughty sumaters, and leva feveurable for the prodiction of nitecessive crops of hay,
"Of conrse among the vast number of beile of varied thiekness which come to the surfinet lin different parts of this large nrea, there ato many to which the nbose generul elescription will not apply,-some which eonatatimoro clay and form atifler noils-some which tho'green or gray linternally, weather of a red colour, and form redelishasuils, lint lightness in texture and in colour forme the disfingnishuge charnceterintic of the seils of this formation. 'This single generalization therefore gives is alrenily n elear idea of the prevniling phayical finarneters of the noils over a large portion of the frovince, inid iflustrntes the anture of the lrond views which makes the possession of Geological Maps av valuable to the student of general Agriculture.
"This roal measure district is firther diatinguished by the genernl fistness of ita surface, undulating here nind there indeel, and intersected by rivers, and occonsiomnl lakea, but consisting for the moat part of table lanels more or less elayated, over which foresth, chiobly of soft wood, extend in every direction. These flat trncta nre not unfreguently stony, wovered with blocks of gray sandstone of various sizes, among which the trees grow luxurianlly, and from among wheln the setter may reap n first erop of corny but which alanost defy the lahour of man to bring the lind into a fit condition for the plough. Such land abounds, for example, leehind Fredericton on the way to thu Hanwell Setlement, nod is scattered at intervals over the whole of this gray sandstone country,
"Anoller feature which resulis from this fintness is the occurrence of frequent bogn, swamps, earriboo plains anil barrens. The waters which fall in rain, or ncenthulate from the melted anow, rest on the tlat lauds, fill the hollows, and from want of an outlet, stagnate, und eause thes growth of mosete a ad plauts of various other kinda, to the growth of which such places are prupitions. Thus bogs and barrena, moro or less extensive, ire produced. A compnrisen of the Creologion Map (No. 1), with the Agricultural Map, No. 3, appended to this Meport, will shew that the greater number of the extenaive barrens of this kind yet known in the Province, is situnted upon thia formation,
"The Mirnmichi, the Saint John, the Richibucto, and mmerona other Rlvers, run in part or in whole through this district. Along their banks n trinze of soil is oflen found letter than the uplands preeent; and hence flong the llivers tho first settlers found comparatively fertile tracts of country tin which to fix their fanilies and commence their earliest Inrming operations. The Intervals and Islands of the River Saint John lorm some of the richent laat in the Province; but thia richness nriser in n eonsiderable degree from the circumstanco that this River tlows in the upper part of its conrse through geological formations of others kinds, nad brings down from the rocks of whieh they consist, the tinely divided materials of which alluvial soile of the Counties of Sunbury and York for the inost part eonsist.
"In other countries, as in England and Scotand, the coal mensures contain a grenter variety of roeks than is found over the earboniferous aren of New Brunswiek. They are distinguished from the Intter by frequent beds of dark-coloured shale of great thickness, which form cold, stitt; dark-coloured poor clay, hard to work, and until thorongh deained, scareely remunerating the farmer's labour. Numerous saudstones whieh oceur anong them produre poor, sandy and rocky soils, so that large portions of the Counties of Durham and Northumberlatid, in the itorth of England, long celebrated for their ricliness in coal, still remain among the least ndvanced, and least ngriculturally productive of the lese elevated parto of the Island.
"B. The Upuer Silurian Rorks, coloured light purple, cover an extent of surface in New Brunswick only inferior to that formed by the coal measures. They form the northern portions of the Provinee, from the mouth of the Elmtree River on the east, and Jneksontown on the weat, as fir as the Canndian border. In other Counties these upper Silurinos strata consist of varions series of beds lying over ench other, each of which gives rise to soils possessed of different agricultural values. This is partieiflarly observable in the western part of the Stale of New York; where some of the richeat soils are formed from, and rest upon, rocks of this turmation. It is a matter of regret that in this Province the large extent of northern country over which these rocks extend, has not been aufficiently explored to allow of auch sub. divisiona being traced and indicated on the Map. That they exist, I liave seen renson to believe, in my tour through the country ; bit the time at our disposal did not allow Dr. Rubb and myself to go out of our way to explore their character or limits,
"On thia formation a large part of the richest upland soils of the Province are formed. The fortile, cultivated sad equally promising wild laads of the Reatigouche-and those on either side of the Upper

Snint John, from Juckmontown to the Grand Faila, reat upon, and are chiefly firmed from the debris of these recha, and were it not hor the granite, Irap, and reel snudstone whelt intervene, simitar gnod land
 Hentigonche bliver to the region of the Tolague Lakes.
"From his publinheel repiorta, Dr. Geener hat obviously collected murh infurmation regarding this repion, whill han hitherto been very dillenit to explure it would have clearel the why very much to an aceurnte estiminte of tha agriculturn eapshbitites, had be been able hy menna of fossils of wherwise to eatablinh lhe sublivisions among tas several members whish we believe to exist.
"The solla of lhis formation are for the momp part of a heavier or atronger character than thone of the conl firmmion. The roris lrom which they are formed are genernlly slaty elaya, mort or less hard, buit

 and, no fur ni 1 nan at present intormed, chietly from the lleports of Dr. (hesture, the presence of tine in
 portance---liantinguishes the lededs anil noils of these npper Silurinat rocks.
"A compmrison of the Geologideal with the eoloured Agrieultural Anp, will shew that the pale red and hhe collures which in the hater mark he pusition of the tirst nud serembl chase uphanis soild, are spread

 cide. Whit the sane comprison will rhow that thes comeordaneo iv ly mo menne unifirm, but thut soils
 logienal Map. 'This arises fiom one or other of several ciremantanees.
"1. From the infertive nate of one knowledge of the real geologieal strueture of the interior part of
 there is a nuthicient exane for such knowladere teing still ineomplete. that the alwence of such knowledge expluins ntao why we cannot neenentely deserime and re prenent upon cur Map tha true relations of

"2. To the faet that thin formation, like that of the gray eonal meavires sandatone, has it level tathe

 has treen oechsiomuliy suljected, has remberal nppurently worthless; or
" 3. To the proximity of trap and granite distriets..- (colonred green and carmine)...from which numerom blochs of stome und drifted gravol bave been tranyported and epread over the Silurian surfice so as to remer the soils that rest upon it interior in quality to what, aceording to the geolugieal indications, they ought naturally to te.
"How mideh of the differences observable between the two Maps is the to each of these ennses, enn only te detrimined by finture caremo whervations.
"C. The Lower Silurian Rocks oceur nbundantly in Canada East, forming the northern part of Gaspé, and skirtuge the right shorea of the Saint ha wrences lor a great distanee. Like the upper Silurian atrain they consist fo a great extent of slaty rocke, more or less hard. nul thengh not inenpublo of yielding rich soily, as is seen in the occasional profluctive valleys of Lower Canada, yet as they exist in New Brunswiek they are covered for the most part with interior soils.

The Agricultural copabilities of the Province, as inticated by a practical Survey and examination of its Soils.

"D. The Cambrian or Clay Slate Rorks, coloured pale Ulue in the Creological Map, form iwo banda of which the limity are not well defined, running in a north-easterly direction acruss the middle of tha Province, the more southerly of whirh bunds donbles ronnd the south-western extremity of the coal meagures, or coal basin as it has treen colled, nad furms part of Charlotte, Saint John, and King's Connties. In nenrly nil coumtries these clay slate rocks are harder, less easily decomposed, nud firm more rocky and inhospitable regions than those of the Sllurinn formations generally. In this Province they do notehange their general elinracter, but they, nevertheiess, as the Agrieultural Map shews, are sometimes covered with sonls of medum cuality.
"The clay slates nre fir the most part formed like the Silurian strata, of heds of iny which have been grnelually consolidated, but they are distinguished from the Silurian generally by two characters.
"First, hy their gremer hardness, whirh prevents their crumbling down and forming the elose and often deep clny soils whith the Slurian rocks ocenvionally yield. The clay slate soils, when freed from stones, are more of the character of what are called hurnip and barley, than of wheat, oat and cluver suits.
"Second, ly their contniuing less line than the Silurian rocks do. This is n charneter of great ngrieultural importance. In nearly every part of the worlit these Cambrian roeks nre poor in lime. In elimatex suited to the produrtion of pent they are also, trom their impervous character, favourable to the formation of bogs. Hence in those parts of Europe where these slate rocks vecupy arens of considerable
breadth, draining and the usc of lime are the first two measures of improvement by which the naturally unprodnctive agricultural qualitice of these suils can the ninended. The same meana would probably prove profitable also on the clay slate soils of New Brunswick.
"E. The Red Sandstomes. In Westmorland, King's, Charlonte nnd Carleton Counties, a eonsiderable lrendth is coloured of reddish brown, designed to indicate the oreurrenre of these spots of red randstone and red conglomernte more or less extensive. In regard to the exu-t position of these berls, whether they are all above ar all below the gray coal measures, or partly the one or partly the other, n question of great economiral inportance to this Province has been raised. As it chefly reters however to the grenter or less probability of obtaining coal, a point to whirh. I shall refer partiovilarly hervafter, and has comparatively litule agricultural importance, 1 do not enter into the question here. A knowledge of ike geographical position and extent of these beds is nevertbeless of num importunce, and it would be very desirable to have these both more exacily ascertained and more correctly tetincated on the Map.
"The reason of this is, that the beds of which these red roeks consist, frequently crumble dawn into solls of great fertility. The richest lunds and the best cultivated in Seotand rest on such red roeks. It will be sern by a comparison of the Agricultural with the Geolugieal Maps, that soils of first rate quality are known in this l'rovince also, in Sussex Vale, in Sackwille, on the Sheprody River, and elsewhere, to occur in the neighbourhood of rocks of a similar character.
a The beds of these red sandstone formations consist--.
" 1st. Of red conglomerates which ollen erumble down into hungry grnvels, proxiucing good crops of oats and of grai,s when well treated, but having a dirposition to "eat up all the dhang, and drink up all the water."
" 2nd. Of fine grained red sandstones, which erumble into red and sandy soils, light and easy to work, often tertile, and when well managed, eapable of yielding good crops. They are surlt somls as the Frencli inhalitants of this Province delight to possess, and of a large extent of such soils they are actual possessors.
"3rd. Of their heds of red clay, often called red marl, interstratified with beds of red sandstone, and crombling down into soils wheh may vary from a fine red loam to a rich red cluy. These are some of the most generally useful, and when thorough-drained, most valualie soils whicli oceur among ull our geological formations. In this Province these marls are usually assoviated with gypsum, as may be seen by the ilots of brighter red which are here and there to be secil over the resldish brown partions of the Map. The soils may generally be caleulated upon as likely to prove valuable fer agricultural purposes wherever these beds of gypsum oceur.
"Some of the sandstones of this formntion, especially in the neighbourhood of beds of limestone, are themselves rich in lime. Thus a red sandatone collected in such a locality, itiree iniles from Steves', in the direction of the Butternut Ridge, gave me upon analysis 17.31 per cent. of carbollate of lime, and 0.49 per cent. of gypsum. 'The crumbling of such rocks as this could hardly fail in aiding to fertilize the oil.
"The impertect Geological Map of Dr. Gesner, which is lolged nonong thi Records of the Land Office, and a more detailed copy of wheh is in the possession of the Saint Johu Merhanies' Instutute, represents the red rocks as much more extensive thra they appear in the Map appended to this Report. One reason for this is, that he colonrs red the Parish of Bcatfort, and portions of the adjoining I'arishea, Where the red rocks do not appear, thongh the noils that cover the surface are red, and have evidenty been derived from red rocks. 'lhis we ohserved in our recent tour through that countiy. On the Grand Lake also, Dr, Gesuer eoluirs red a considerable extent of country, upon which aecording to Dr. Robb, no true red rocks oceur.
"Still these indientions of Dr. Gesner, though not geologieally eorrect in a certain sense, are so in another sense, in which they are scarcely less useful to the ngriculuralist. They indiante the general character of the foose materials that overly the living rocks of the rountry and form its soik, and they tell more regarding those spots which is useful lowards an estimate of its ugricultural cupubilities than a correct map of the rucks themselves would do. But the diseordancies ofien observable between maps which exhibit ouly the characters of the rocks of a country, and those which exhibit its actual and experimetat agricultural value, and the causes of such discordancies, will appear in the subsequent chapter.
"1. The Granite, Gneiss, and Mica Nate, colourcd carmine, from a broad ,iband extending across the Provine laiwerell the two bands of clay slate rorks. To the noth of the slates also, nnd, in the eentre of the ungranted country, it forms a lurge patch of generally hiph land, the outlines and extent of. which are thy no means detined, and in the mup are pul down very much by gruess.
"These regions are gencrally stony, often rocky and inpossible to clenr. When less stony, they sometimes give excellent soils after the less tregueat rocky masses are removed, und in muny places comparatively stoneless tracts of land occur on which clearances with less cost ean readily be made.
"This description shews that the carmine regions are by no means azriculturally eneouraging, on the whole, julging ly their geolorical character; but that they possess capabilaties superior to those of the gray sandstone soils, is shewn by the experience of the farmers of these latter seils, that those fields generally turn out to the the best on which the granme boulders stiew themselves most abundantly. The debris of the granite mixing with that of the sandstone rocks, iuproves its quality, gives it olten more tenacity, and renders it more productive.

aturally ly prove

conside-
ed sanded Nand-
whether question r to lie and has cre of the would be Mnp.

wn info

 orlis. It - quality Fliere, toI crops of nk up all

I easy to bils as the are actual
tone, and - soine of ig all our s may be ourtions of tural pur-
stone, are
3teves', in lime, and rtilize the
the Land Insistute, is Report. l'nrishes, evalently the Grand Dr. Robb,
nre so in 10 general , and they ties than a cen mins and expechapter. nndin the lextent of
tony, they ny places nade.
raging on hose of the clds geneThe denore tena
"The Agricultural Map will shew that the soils along the carmine bands, and in the centre of the wild region between the Sumt John River nad the Restigunche, though oflen yery inferior, are not uniformy so. Were we better acquainted sith the limits of the peological formations comprehended under this cutomr, we should be alle, by means of them alone, both to form more accurate opinions in regard to the narrumburn value of the several beenlities, and to represent them more correctly on geologieal maps, and to preareribe hy mere inspection, the kind ot amelierations, mechanical or chemical, by which their antural qualities were likely to te improved.
"(8. The Trap.Rocks, coloured green, which oceur so abundantly among the southern clay slate and tower Silurian rucks, ard in the wild countiy which torms the monthern part of the Province, are the only remaining rocky masers which cover an extensive portion of the surtace of New Brunswick. They form in this Province a wild and generally a poor, rugged, rocky, inhospitable conntry. Lakes, swamps, and nolt wool ridges, nbound where they oecur, and numerous blocks of stone try the patience and industry of the setiler.
"Trap Rorks do not necessnrily indicate the presenco of untertite soils. On the contrary, some of the most fertile spots in Srotiand and lingland, are stuate upon, und possess soils formed from these rocks. But surb souls are formed only where die rocks are ot a less hard nad thinty nature, or at least are more subject to the degrnding influence of ammosplerie canses, and crumble to a soil more readily. In such enaes they generndy form reddish soils ot preat richuess, and when the i. its are deep, it is found profitable to convey to some distunee, and apply them as a covermg to less valuable fields.
"One cause of this fertility of trap soils is the large per centage of lime which these trap rocky frequently contain. This chemiral ennracter, for the most part, cjumently distimginhes then frort the granitic rucks, nad indicate a very diderent mode of treatment for the soils formed from those two classes of rocks respectively.
"In New Brunswick, so far as my own observation goes, the trap rocks do not readily crumble, but remain hard und impenerrable by the weather to a great extent. They do rot usually, therefore, give rise to the rich soils whith in many other places nre formed from them. Hence Saint John and Charlotte, partly owing to the less finvorrable clay slate and lower Silurian rocks which abound in them, party to the oblingate trap, and partly to the numberless rocky musses whith cover their surtace, are justly considered among the lenst ngriculturally promising Counties of the Province. I have witnessed, however, in both these counties, that energy and determination can do much to overcome nature in New Brinswick, ns well as in other parts of the world. Pleasing torms, nud good crops, and comfortable circumstances, reward diligence and industry here in as wonderful a manner as in any other County of the Province.
"I do not dwell longer on this part of my suljuct. The general conclusions as to the agrieultural capabilities of this Province which are to be drawn fiom the imperfect information as to its geological atructure, which our Geological Map presents, are, on the whole, some whit discouragmg.
"The coal mensures, the clay slates, the luwer Silurian rocks, the grunites, and the traps, are not generally speaking, of a kimd to give rime to soils of a fertile character, and these formations cover a large portion of the Province. The upper Silurian and red sundatone formations, on the other hand, promise much agretultural eapabiliy, and soila prolific in eom ; and they also extend over a very comsiderable area. Were the geological exploration more complete, onr deductions frum this source of information woull be more precise, more to be depended on, and possibly also inore favourable, for reasuns which will in some measure appear from what has beeen already stated. It is to lee hoped that Yunr Excellency, and the Houses of the Legislature, wall see the propriety, at an early period, of resuming this important exploration.
"More detailed and nositive conclusions ns to the nhsolute and comparative values of the soils in the difierent parts of the Province, on the diflerent geologionl formations, nul on the diffierent parts of the aame formation, the sublivisions of which, as I have snid. linve not heen mude out, will be arrived at by means of the practieal survey which forms the subject of the next Chapter.
"Although the geological structure of a country throws much general light on the geographical position, on the physienl and chemiend charactere, and on the agricultural crapmbilites of the soil ot a country, it does not indicate---
" lst. The absotute worth or productiveness of the suils in terms of any given erop-ena that the red sandstone sonl would produce so many bushels of wheat, or the clay slate soil so matay of vals; nor..-
" 2 2. Their relative productwe powers when compared with cach other-a-as that ithe mad measure soils produce twenty bushels of any grain, the opper Silurian soil would produce thirty bushels.
"Such nhsolute nud relative valors can only be ascertnined by an actual trial and expericnce of absolute fertility of the soils in some spots nt least, and by a persoral inspection wad compmasum of the apparent qualities, with what is known of the origin, the composition, and the absoluto productivenese of each.
"Again, the geographical limits of the several formations, as represented in the Geolorical Map, do not precinely indurate the limita of the several qualities of the soll which are naturally proluced from them. The débris uf one clans of rocks frequenily overlap the edges, and somotimes cover a considerable portion ot the surface of another class of rocks adjoining them, in a particular direction, sad thus cause
the soils which rest upon the latter to be very diterent t om what the culors of the Geological Map would lead us to expect.
"In this country it is observed that the fragments of the different formations have very generally been drifled from the noth or nurth-east to the south or sontl-west, probably by some ancient eurrent similar to that which now brings icebergs from the polar regions, nud which took its dirccimon across this part of North Ameriea when it was still bementh the level of the sea. Henest the surface of one roek, or the debris ferived from it, is very apt to be covered by a layer of a difterent kind, derived from rucks whieh lay at a greater or lese distanee towards the nor:li or northeeast.
" This is most easily seen in the ease of the red snndstone rocks, the debris of which, when drifted over the adjoining formations, impart a different coloor to the soils which rest upon them. Thus on aseendag the Tobigue two or three miles above the Nnerows, on the right bank of the River, a layer ot red drill, a few feet in thickness, derived most probally trem the red rocks above the rapids, is seen to rest on a thet led of slate drit, and to form the nvalable surface. Similar refl drift extends itself in a similar direction from the red ruchv of Sissex Vale ; and Dr. Gesner, in his interesting reports, deseribes similar dritt as viathe along the shores of Grand Lake, and in many wher luenhties.
"Sometimes, also, the upper rocks, which formerly oversprend the surface of"n country, have been Worn town, washed nway, nad entirely dritted off, ieaving as only the power of inferring that they once existed ly the layers of time mul, sand or gravel derived from them, whieh we observed upou the lower rocks which still remain.

* This is seen in New Bandon Parish, where the red soils appear to he chiefly derived from red rorks, which formerly existed in the dinertion of the Bay de Chalenr; and in the l'arish of Bolsford, in Westmorland Comity, the tine red soi's of whieh have been drifted fion Jrince Edward Isiand, or trom rucks in that direction, which have now disappeared.
"Further, it not unfrequently hnppens that the drifted materials which eover the surface of a country, nid which form its soils, consint of the debris of two or more entirely dulerent kinds of rock mixed logether, as we rendily undersand that such diflerent materials might be mixed togelher, if the the same current were to pass, as the River Saint Juhn does, in succession over a series of dillerent geologival tormatious, and to mingle together in the same sea bottom, and in different proportions, the fragments of all. The nature of the soif thas formed would not be indicated either by that of the rock on which it rests, or by that of min one of the tea or more rocks from which it had been partially derived, Thus while no intimute relation undonbtedy does exist bet ween the soils and rocks of a eountry in general, and a very sperial relation between uny given soil andihe rock from which it has leeen derived, so that the inspection of a Geulogical Nep will convey to the instrinled eyen true general notion of the agricultural character and capabilities of the country it represents, still it does not exhibit to the eye, as I have said, the absolute and comparative ferthity of its diflerent soils in terms of any yiven crop, nor can it, in a country like this, precisely define the limits which separate soils of one quality from those of another.
" These points nre only to be ascertained by special inquiry, and by a spectal survey and personal inspection. To make such inquirles and such in personal inspeetion, was among the main objects of my tour through the Province. The results of what I saw and learned myself, together with much other inturmation obtained from the documents contained in the Land Otfiee, from Doctor Gesner's Reports, and from other sourees, I have been able, chiefly through the indefatigable and most willing assissanec leat to me by Mr. Brown, to embody in the Maps No. II. and No. III. attached to the presebt Report.
"In these maps I in ve represented by different colours and figures, the different qualities of soil in the Province, and the ge aphical position and approximate extent of each quality. Fur this purpose [have divided the soils into uve different qualities, represented by u series of numbers, of wheh No. 1 indicates the lest and No. 6 the worst gunlity.
"The special varieties of soil denoted by the figures and numbers, are as follows : -
"No 1 on the uncolonred, and the bright red on the eolonred map, denote the soil of the best quality in the Province. This consists chiefly ol river intervales, islands, und marsh lands. It is only of limited extent, and is confined, for the must part, to the course of the River Saint John, that of the Petitcodiac, and to the neighbourhvod of Srekville.
"No. II. and the pale red colour. denote the best quality of upland, and such portions of good intervale and marsh land as are not imelnded under No. 1. It is to be understood, however, that there is much marsh lund, hali dyked and undyked, which does rot deserve a place even under this second head. This first class upland exists chicily in the Counties of Carleton and Restigouche.
"Nu. III. coloured blue, is the second rate upland, inferior to No. II., but still very good in quality. It represents the medum soils of the Province, and stretehes over a muth larger surtate thinn any of the other colenis.
"No. IV. coloured hright yellow, is inferior in quality to nny of the others. It is deeidedly inferior or poor iand, resemblang the least produetive of that which is now under asultivation. It consists for the most part of lifht shady or sravelly soils, hungry, tut easily worked. or of stony and rocky gruund, which is diffeculan expensive to clear, but as in some parts of Charlote County, productive when cleared.
"This class also includes lancls covered with heavy hemluck, and other soft wood, which though hard to clear, and unfavourable for first crops, may hereafter prove productive when it has been submitted
rical Map
generally it current across this e rock, or om rocks
ien drifted Thins on n lajer of is seen to itself in a describes
inve been they once the lower

1 trom red otsford, in 1, or trom
irface of a Is of rock lier, if the t' different rtions, the he rock on y derived, country in lerived, so of the agri, ns I have can it, in of another.
d personal of my tour rintorma. , and from eat to me
of soil in purpose I vo. 1 indi-
rest quality of limited etiteudiac,
sood iaterat there is ond head.
in quality. in any of
y inferior sta for the nd, whieh eared.
h though submitted
fairly to the plough. It will be seen that a grent extent of this bright yellow land exists in the northern half of the Province.
"No. V. colonred-pale yellow, includes all which in its $\underset{\downarrow}{ }$ resent condition appears incapable of cultivation.
"The naked flats distinguished ns bogs, henths, barrens, carriboo plains, \&ze, are all comprehended under this colour, and tracts of swampy country, which at present are not only useless in themselves, but a aource of injury to the adjoining districts. All this pale yellow is not to be considered absolutely irreclaimable, but to be untit for present enture or for settlement, till much larger progress has been made is the general improvement of the Province. The dark spots, colonred witl lodian tnk, represent the localities of some of the naked and barren plains which are included under this No. Y.
"It is not to be supposed that I or my travelling companions have been able to inspect, even cursorily, the whole of the country we have thus ventured to colour and to dislinguish by munters. The country we have actually seen nad explored during our late ton may be judged of from the green lines traced on loth maps, which represent the routes we took, and the country we actually went over. Our knowledge of the rest has been gathered liom numerone persons whom we met with in dilierent parts of the Province, from the reports und surveys deposited in the Land Cflice, and from ohservations of Dr. (ieaner. Though tiar from being correct, these maps are valuable, both as an npproximation to the truth, and as embodying nenrly nll that is at present known as to the soils of the Province. Your Extellency will, I ain sure, both be inclined to value them more, and to make larger allowances for their want of correctness, when I mention they are the only maps of tho kind of nny eountry which, so far as I know, have yet been attempted, and that they have been of necessity executed in a very short period ol'time for so extensive a work.
ri The reintive areas, or extent of surface eovered !hy these several soits, as they are represented in the colonred nap, are very nearly as follows :-

> No. I. coloured bright red,
> No. II. coloured light red,
> No. II. colonred blue,
> No. IV. coloured bright yellow,
> No. V. coloured phle yellow,

Total area of the Province,
" The aren of the Province has been ealenlated so as to inclule the territory within the boundary, as It may possibly be determined, between New Rrunswiek and Canada.
"Such are the relntive geographical limits of the soils of different qualities in the Provinee, and the areas covered by each respectively, necording to the best information 1 have been able to collect.
"The absolute values of each variety of soils in terme of the staple crops of the Provinec, I have estimated as follows :-
"It is usual to talk and judge of the absolute or comparative value of land in New Brunswick by the quantity of hay it is capable of producing. I have taken this crop therefore n s one standard by which to fix the absolute nad relative value of the cifferent qualitios of the soil in the Province. Then of the grain crops-oats, taking the whole Province logether, is the most certain, and probably the best ia quality. The culture of the ont is extending also, and the consumption of oatmeal as a common food of the people, is greatly on the increase. I take this crop therefore as a second standard. I assume also, but this is an anbitrary assumption, that as an index of the value of land at this time in this Province, with its present modes of culture, 20 bushels of oata are equal to a ton of hay. In other words, I assume that where a ton of hay can be produced, twenty bushela of oats may be produced, or its equivalent of some other variety of hamun fiverl.
" Thus I have the means of giving a value to the different varieties of soil, in terms either of food for stock or food for man.
"I have classified the soils of the Province therefore in terms of these crops at the following absolute and relative value per itnperial nere.

"The only reasonable objertion which so far as I know can be made against this cestimate is, to the value in oata assigned to the quality of the soils called No. 1.
" It may be correct to olject that this first class soil does not in practice produce 50 lusliels of oats, but the real eflect of this objection is very small: First, hecause nearly all this land is yearly cut for hay: Second, because grain crops (except in Sunbury, the Indian Corn,) do not surceed upon it ith conse. quence of their rankness, which makes them lodge and refuse to ripen : and, Thirdly, because under proper culture in this climate, land that produces $2 \frac{1}{2}$ to 4 tons of hay, as the first class intervale and dyked marsh does, ought also to bear easily and to ripen upwards of 60 or 60 bushels of oats.
"The whole production of food for man or beast which the Province would yield, aupposing nll the available land to be eultivate I uceording to the present methots, and that hay aad oats bear to each othar the relation of one ton to twenty bushels, woald theretore be-a

1st Class,	Tuns of Hay. 12: ${ }^{\circ}, 0^{\prime \prime} 0$	or	Bushels of Onts. 2,510, 00
2nd Class,	2,000,100	or	40,000,000
3 rl Class,	10,425,010	or	20x,500,000
4th Class,	500,000	or	100,000,000
'Total produce,	17,555,000		351,060,000

Being an average prodnce per acre over the thiteen millions of acres of available land, of 1$\}$ tons of hay or 27 bushels of oin's.
"What amount of population will this quantity of food sustain?
6. i'here are various ways by which we may arrive at an npproximation to the number of people which a country will contortably maintain upon its own nyrieultural resources. The simplest and ihe most commonly ndopted in regard to a new country like this, is to say, if so many neres now in cultivation support the present poputation, then, ns many times ns this nubiber of nores is rontamed in the Whole available area of the conntry, so many times may the population be increased without exceeding the ability of the evuntry to sustain it.
"Thus in New Brunswick, there are said to be at present about 600,000 acres under culture, and the produce of these acres sustains, of--

Men, w'mmen and ehildren,	210.000
Horsea nnd centtle,	$\mathbf{1 5 0 , 0 0 0}$
Sheep and pigs.	$\mathbf{2 5 0 , 0 0 0}$

" But 600,000 are contained in $\mathbf{1 3 , 0 0 0 , 0 0 0 , ~ t h e ~ n u m b e r ~ o f ~ n v a i l a b l e ~ a c r e s ~ i n ~ t h e ~ I ' r o v i n c e , ~ n e a r l y ~} 22$ times, so that supposing every 600,000 acres to support an equal population, the Province ought to be capable of feeding about :-.-

Men, women and children,	$\mathbf{4 , 6 2 0 , 0 0 0}$
Horses and cattle,	$\mathbf{3 , 3 0 0 , 0 0 0}$
Shrep and pigg,	$\mathbf{5 , 5 0 0 , 0 0 0}$

The human population and the atock maintaining the same relative proportions as they do at present.
"But this estimate is obviously only a mere guess, and by aceident only can be near the truth, because aupposing the quantity of land actually in culture to be correctly stated, (which eannot with any degree of confidence be aflirmed, the important considerntion is entirely neglected, that the land now in enluvation may be mueh superior in quatity to those which are in n witderness state. This indeed is very likely to be the case, as the history of agriculture shows that the least productive lanis by nature, unless they are much nore easy to work, are always the last to be brought into cultivation. It leaves out of view also the question of fuel, which we shall by and by see has a most important relation to the agricultural capabilities of a country and its power of supporting a given amount of population.
"But from the date ahove given we can approximate to the truth in nother way, answering directly the question, what amomint of population will the produce we suppusu the Province able to yield, maintain ?
"If we suppose a fill grown man to live entirely upon oats withont other food, he will require to support him for twelve montlis, about 1000 lb . of oatmeal, equal to about 20001 b . of oats, whith at the low average of $351 b$. per linshel, amounts to 57 bushels. If we nilow that each of the population, big and little, consumes 40 bushels, an apparently hich average, then the consumption of eheli individual, according to our eatimate of the comporntive productive powers of the land, in regard to hay and oate, would be equivalent to two tons of hay, in other words, the breadth of land which would grow two tons of hay would on an average support one individunl if fed upon oatureal.
"The usual allowance for the winter feet of a horse in this Province is four tons of hay, and for a cow two tons, sheep and pigs may be extimated at a quarter of a ton each.
"The cattle and horses together are estimated at 150,000 . If the relative propoitions of the two kind of stock be as in Cannda West, about four to one, then the entire popmiation and live stock, (poultry, doga, de., de., texcluded,) would require for their support the following amount of produce, calculated in tons of hay :

> 210,000 at 2 tons each,
> 30,000 horses, 4 tons each,
> 120,000 cattle, 2 tons,

420,000 tona.
120,000 "
200,000 wheep and pigs, $\&$ ton,
240,000 "
62,600 "
"But we have aeen that the average prolnce in hay of the whole $13,000,000$ of avainable land may he eatimated at one nula a third tons jer acre, \ldots the above 842,500 tons of hay therefore repreaent 631,875 acres of land of average quality.
"It will be observed that this sum comes very near the extent of land supposed to be at present actually enltiynted in the Province. It is also alont one-twentieth part of the whole available nren ($13,000,000$) in aeres and in hay ; so that tho Provinee, urrording to this mode of colleulation, be supposed capable of aupporting twenty times its present numbers ot inhabitants and of live stork, that is...-

Men, women and children,	$4,2 \sim 0,000$
Horses,	600,000
Cattle,	$2,+00,100$
Sheep and plys,	$5,000,000$

"If the propertion of animals materially diminish, of conrse the number of human beings which the country is able to support would proportionably insense.
"Those who art familiar with the feeding of stock will have shoerved that in the preereding enaleulation 1 have allowed for the support or the live stock only duing the seventh montis of winter, and that no laud has been assigned for pasture during the remuinder of the year while the hay is growing.
"It will lee also ohserved, however, that I have supposed all the stoek to be full growr, nud have assigned a full allowance of hay to every animal, whatever its age. A considernble surplas therefure will remain unconsumed when the winter ends, which will go some lengiln in feeding the stork in aummer, or, which would he preferred, in allowing land to be set aside for pasture or tor soiling the animals with green food in the stables.
"Again, by referring to the relative proportions of land employed in raising food for the human and the animul population, as the relative numbers in which they exist in New Brunswicle, as they are given in a preceding page, it will be seen that abont equal quantities are devoted to earh. Thut is iu say, that nearly half the land will always be under a grain eulture, and will consequently be producing a large quantity of atraw of various kinds, upon which all the stock will be more or less lied.
"I do not atay here to remark on the unthrilt which I in many parts of the Province observed, in the use of straw from different grains, nor upon the greater good whieh might be derived from this part of the crops, under a more skilfil inole of feeding. I only observe that the two indifinite allowances above made will in my opinion amply make up in the whole for the additional quantity of food neressary to maintain the stork during the aummer months over and above the quantity of liay adopted in my calculation.
"Before quitting the general question as to the food which the land will raise, and the population it will support, there are two additional observations which it is necessary to introduce.
"Firat...-That I have made no allowance for the human fool produced in the firm of beef, mution, pork, inilk, cheese and butte:. The hay grown on the one half of the surface ol the emmiry is, for the most part, consumed in the manufncture of these arti-les. When a ealeulation is made of the quantity of human lool raised in this way, the numerieal rate of the sheep and pigs to the human population being taken as it is in thas Province at present, and the dead weight of the stock at the average whirla the common breeds usually attain by the present syatem ot feeding, it appears that the beef, muton, pork, and milk, ought alone to support a population, equat to about one third of that which the corn land sustains.
"Thus the whole eapabilities of the soil in respect to the support of a population, may be represeated by-..

Men, women and children,	5,600000
Horses,	600,10
Cattle,	$2,400.00$
Sheep and pigs,	500,000

"Serond-..That I have made no reference to the Fisheries which are alrendy so large a source of wealth to the Provinee, and of tood to ilie preople. The value of this supply of food may be nllowed to stand ngainst and to pay for the West ludia protuee, nud other necessuries of life whi lo ilsey cannot raise thenselves, but whith in uddition to their lecef, milk and meal, the inhabitants wall require.
"That we appear to fix at upwarls of five and a half millions the amonnt of pupulation which New Brunswick, aceording to the data we have before ns, would in ordinnry seasons easily snsiain. But here the question of fuel cones in to nodify in a more or less remarkable bunner our cabledations and opiaions upon thas important subject. This question is deserving of a separate consideration.

Actual and comparative productiveness of the Province, as shcwn by the average quantities of Wheat and other Crops now raised from an lmperial acre of Land, in the different Counties.

"In the preceding I have given a sketch of the general agrieultural capabilities of New Brunawick, at they may be inferred from its geolugical structure, and of the absolute and comparative productive
qualities of its soils, as deduced from practical observation and inquiry. But the natural qualities of the toil may be neglected, overlooked, or abused. The actual yield of the land may be very disproportionate to ita possible yield. The crope may be less than they ought to be, for one or other or many reasoas, to which I shall advert in the subseguent part of this Report.
"It is in fact the actual condition of practical agriculture in the Province whirh will determino the aetual productiveness of its soils; while on the other hand, the possible productiveness of its so being known, the ainount of produce aetually raised will serve as an index or measure of the actual condition of the agrieultural practice.
"Looking at the matter in this peint of view, it appeared to me of mnch consequence to colleet as widely ns conld be done with the time and menns at my disposal, numerical stntements as to the actual number of bushels of the dafferent kinds of grain and root crops usually enltivated within the Province, which were now raised from an impertal acre of land in its several Connties. Fitsding it inpossible to collect all these data myself, I addressed a Cirenlar to the farming proprietors and Agriculturn Societien in the several parts of the Province, and from the answers I have received, the Tables (Nos, IV. nudV.) have been compiled. They are not to be considered as rigoronsly accurate ; they nre liable to certain suspicions, to which I shali presently advert; but they are the first of the kind that have ever been compiled in reterence to this Province; the numbers they contain have been given, I believe, necording to the most enrefil judgment of the persons by whose naines they nre guarameed, and in the alsence of letter information, they are deserving of a considerable amount of eredit.
" These Tables exhibit several faets of an interesting and some of a very striking kind: thus...
" 1. The produce actually raised differs much in different purts of the same County. Thus, in Westmorland, one person retirits 15 and another 20 bushels as the nverage produce of wheat; in King's, one gives 15, another 25 ; in Sunbury, one gives $12 \frac{1}{2}$ and nnother 20 ; in fork one gives 15 and another 32, and so oln. Similar ditterences exist in regard to other kinds of grain.
"Such differences aro natural enough, and do not neeessary imply any incorrectness in the several returns. They may arise from natural and original differences in the nature of the soil ; from its being more or less exhansted by previous treatment ; or from the actual farming being in one ease better and more generous than in another.
"2. In regard to Wheat, the lowest mininum is in Queen's, where 8 hushels ore given as sometımes reaped. In Saint John, Charlotte, and King's, the minimum is 10 bashels ; from Carleton no return is given, and altogether the auswers from that Comnty are few nnd therefore defective. The largest maxima are fromi Kient, Clarlutte, and York, where 40,36 and 32 busliels respectively are sometimes reaped.
"3. In regard to Oats, only one Cunnty, (Queen's) ever renps less than 25 bushels an acro, according to these returns. In that Connty, as little as 13 bushels is oecasionally reaped.
"In four Counties the crop sometımes reaches 60 bushels; in two ethers, 50 ; in one, 45 ; and in four, to 40 bushels an acre. These numbers indieate what is indeed confirmed by numerous other circumstances, that not ouly do oats aucceed admirably, but that they are well adapted to, and are one of the surest or least uncertain crops now grown in the Provinee.
" 4. As to Maize or Indian Corn, it will be seen that only in two Connties, (King's and Queen's,) is the minimum stated at less than 35 tuslels an acre, while in four Counties, the smallest yield of this crop is represented at 40 and 45 bushels. In Sunbury, the large return of 80 bushels an acre is soinetimes obtained, and in Charlotte and Northumberland, as much as 60 bushels.
"This crop is liable to injury from early frosts, and is therefore somewhat uneertain in this elimate, which by the great heat of its summers is otherwise well adapted to its growth. The four Counties of Sunbury, Queen's, Charlotie, and Northumberland, would seem by the returns to be apecially favourable to this crop. If so its larger cultivation should be eneouraged.
"5. As to Buckwheat, 15 bushels an acre are the smallest return, while crops of 70 bushels are sometimes reaped. The experience of the last twe years has shown not only that this crop in one or other of its varieties is tolerably certain, but that it is well adapted to the exhausted condition of many of the soils, and aflords also a very palatable food.
"6. Of lotatoes, the smallest return is 100 bushels, or about 3 tons an acre; but in reen's County, a thousand bushels, about fomrtcen tons, are sometines obtained. This latter amount is rarely surpnssed even in the west of Scotland, the north weatern parts ot Enyland, and in Ireland, where the soil and climate are most propitious to this root.
" 7. But the most striking fact brought out by these Tables is the comparative high number by which the average produce of each crop in the entire Province is repreaented. These averages appear in the last line of tho second Table, and are as follow :-..

V1. Wheat,
Barley,
Oats,
Buckwheat,

19 11-12, say 20 bushels.
29 bushels.
34 do
$33 \frac{3}{4}$ do

Rye,	$20 \frac{1}{3}$ bushels.
Indian Corn,	417 do
Potatoes,	${ }_{456}^{2261}$ do. or or 131 tons.

"No very correct or trustworthy aversges of the produce of the different crops in England, Scotland,
 imperial uere, is a full svernge yeld of all the land in Great Britain on which this crop is grown : some places, it is true, yield from 40 to 50 , but others yield only 10 or 12 bushels per acre.
" It is of less importance, however, to eompare the above averages with any similnr avernges from Europe. It will be more interesting to Your Excelleney and the Legislature, to compare them with similar averages collected in other parts of the Contineat of America.
"In the yearly volume of the transactions of the New Yerk Stnte Agricultural Society, for 1845, an estimate is given of the prodnce per imperial aere of each kind of erop in the severnl Counties, and a series of general averages tor the whole state. The State avernges, comparel with those for New Brunswick above given, are as follow :---
VII.

Avorage produce per Imperial Acre.

Average produce per Imperial Acre.				
Wheat,		shels.		bushels.
Barley,	16	${ }^{6}$	29	${ }^{6}$
Oats,	26	6	34	${ }_{6}$
Rye,	91	6	203	"
Buckwheat,	14	*	33	"
Indian Corn,	25	*	417	$1{ }^{6}$
Potatoes,	90	6	226	"
Turnips,	88	6	460	6
Hay,	-	6		tons.

"The superior productiveness of the soils of New Brunswick, as it is represented in the second of the above columns, is very striking. The irresistible conclusion to be drawn from it, appears to be, tha! looking only to what the soils under existing cirenmstances and methods of eulture are saul to produce, the Province of New Brunswick is greatly superior ns a farming country to the State of New York.

^PPENDIX B.

Agricultural Capabilities of the Matapedia District.*

" The Township of Restigouche is situated at the head of the tideway on the Restigonehe, which forms its southern boundary ; it is divided from the township of Matapedia by the river of that name, up which they extend; its general character is an elevated table land, from two to cight hundred feet above the sea; the surface is much broken with ravines and narrow valleys, the sides of which often form angles with the horizon of from twenty to forty degrees; the summits of the hills are of considerable extent, presenting in some cases an even surface of several miles in length, by upwards of half a mile in width. The ground is a brownish or yellow loam, of a good quality, free from stones, the substrata being generally trap roek, which when decomposed forms an extremely fertile soil. It is well timbered with yellow and brown birch, maple, white birch, balsam, fir, spruce, beech and rowan tree or mountain ash; the latter named woods, intermixed with white pine and cedar, also prevail on the sides of the hills, which, from their excessive steepness, do not occupy as much room as might be expected from the broken appearance of the ground ; the extent of the flats in the ravines and valleys is limited; the timber on these places is chiefly soft wood, with some ash and elm.
"The description above will apply to the township of Matapedia, which is also bounded on the south by the Restigouche. Limestone exists in both these townships, suffieient for building purposes and manure whenever it may be required; the ground is well supplied with springs and small brooks, the water of which is of a good quality.

It might be supposed, that from its elevation, the tract of country just described, would, in a great measure, be unfit for cultivation; the crops raised, however, in this distriet, at the height of a thousand feet above the sea, ripen as early, return as much, and are of as good quality as those grown in the valleys.
"A few years ago the country around the Baie des Chaleurs was considered unfit for raising wheat ; experience has proved this unfounded, and it now produces all the kinds of grain raised in Eastern Canada. The climate does not appear colder than in the district of Quebec. Fogs are little known. Showers of snow fall about the end of October; winter generally sets in, in the middle of November, but fine weather ofien continues to the end of the month ; the average height of snow is four to five

[^10]feet when deepest ; it disappears about the beginning of May, and the ground is fit for sowing a few days afterwards.
"Owing to the direction of the Baie des Chaleurs and River Restigouche, the winds are either westerly or from the east; strong gales are of rare occurrence.
"The well cultivated grounds in the neighbourhood of Dalhousie, yield, of wheat, thirty to thirty-two bushels per acre; peas, about the same ; oats, forty to forty-eight ; barley, forty-five to sixty ; potatoes, three to four hundred; carrots, two hundred and seventy to three hundred bushels per nere; hay, two to four tons per acre. The weight of grain exhibited at the Agrieultural Shows in the distriet, has been as follows: spring wheat per Winchester bushel, sixty-four to sixty-seven pounds; fall ditto, sixty-six ; Siberian wheat, sixty-four to sixty-five ; oats, fortytwo to forty-eight and a half; barley, fifty-four to fifty-six; field peas, sixty-six to sixty-seven pounds.
"On new land, not eleared of stmmps, the yield of wheat has been thirty to one ; fifteen to twenty to one is not unusual, ** *
"Two thirds of the surface of these townships, (Restigouche and Matapedia,) is of the quality already described, and comprise an area of nearly one hundred thousand acres of excellent land, that is from the Restigouche to Clark's Brook on the east side, and Mill Stream on the west side of the Matapedia.
" On the east side of the Matapedia from Clark's Brook the appearanec of the country is extremely unfavourable; steep hills rising from the river edge, in many places denuded of wood by fire, and in others covered with a close growth of soft wood; the soil in general shallow and full of small stones. Of this section eleven miles in length by five broad, not more than an eleventh or five thousand acres is fit for cultivation."
"The aspect on the west from the river is not much different from that of the other side; the ground, however, though much broken by ravines is of a better description, the fires have done less damage to the timber whieh is a mixture of hard and soft wood. About half of the ground between Mill Stream and McKennon's Brook, embracing an extent of twenty-eight square miles, may be considered capable of advantageous cultivation; this would give nine thousand acres; it is well watered by the brook just mentioned and by that known as Connor's Gulch. Continuing on the west side of the river above MeKennon's Brook, the surface in general is of less clevation than in the conntry already described; moist ground is more frequent, the timber consists of balsam fir, spruce, yellow, white and black bireh, maple, cedar and white pine ; in swampy places cedar and black and grey spruce predominate. The soil though much inferior to that at the mouth of the Matapedia, may be considered as of a fair quality ; this will anoly generally to the foot of the lesscr Lake Matapedia, embracing an extent of eighty miles. About two fifihs or twenty thousand acres may be considered good."
"On the east side from Pitt's Brook, and across the Casapscul to near Fraser's Brook, the soil and timber is of the same description as on
the other side, the ground is drier, and but few maple trees are found, fires have destroyed in great portion of the wood near the Matapedin, raspberry und other bushes, small white bireh and poplar are now found in these places."
"Twenty thousind acres or about half of this section muy be considered good land."
"Between Fraser's Brook and Fifty-six mile Brook near the southern boundary of the Seiguiory of Matipedia, the soil, timber and chameter of the soil is diversified ; from Fraser's Brook to the head of Little Lake the ground is in general very strong, rough and broken; a portion, however, is fit for cultivation near the shore, and after reaching the summit of the ridge which does not extend more than from three quarters to a mile buck, the soil improves and is covered with a good growth of fir, white, yellow and black bireh, maple, eedar und white pine, and the generat elevation of the ground is not much over two hundred feet, excepting one or two hills. From Little Lake to Fifty-sis. mile Brook there are tlats bordering on the river, well timbered and sonetimes of considerable extent."
"The available ground on this aection which exceeds forty-five square miles, will amount to about half of its extent, lifteen thousand acres."
"On the west side of Little Lake and to the Seigniory of Matapedia, the general character of the soil and timber does not differ essentially from that of the section just described. At the base and partly up the sides of a hill near the foot of the Lake, (rising six or seven hundred feet above it) the timber is chiefly maple and other hard woods, the flat bordering the river is wider than in other places, the interval formed by alluvial deposits also extends up the Umqui, the mouth of which is near the Seigniorial line; ash, elin and the timber already mentioned as predominating in this distriet cover these places."
"The ground fit for cultivation in this seetion, forty-cight square miles in extent, is about seventeen thousand acres.
"The Seigniory Matapedia extends a league round the lake, and contains about ninety thousand acres in superficies; near the southern end of the lake chere is a chain of hills bearing south ten degrees west nearly a thousand feet high, with a base from three to four miles broad; around the foot, and for some distance up the sides, maple, black birch, and other hard woods are the prevailing timber."

From the Umqui up to this chain of liils, and on the east side of the Matapedia from Fifty-Six Mile brook to the foot of the lake the timber is mixed wood and the soil generally good.
"Along the shore of the lake, and extending inwards as you approach the upper end, fir, cedar, poplar, spruce, small juniper or tamarac, white birch, ash, and white pine are found; the ground is swampy, with low ridges of dry ground in places covered with mixed and hard wood; from the northern slope of the hills mentioned to the lake, and across the Nemtaye to the line divicing the Seigniory from the Crown Lands, the same character prevails, rendering the ground in this part of the seigniory of little value; at its upper or northern end very good land is found. My in-
structions not authorizing It, I did not examine the ground on the eastern side of the lake; its general appearance is rugged.

Abstract

"In this section, a surface of mor: than one hundred square miles, (sixty-three of which are seignorial,) three-fifths are fit for cultivation: that is, twenty-four thousand in the seigniory, and fourteen thousand acres in

 Crown Lands."From the Seigniory of Matupedia to that of Metis, the country is undnlating, the hills seldom attrin an elevation over two hundred and fifty feet above their base, with flats generally of considerable extent on top. Near and on the summits white, black, and yellow birch, maple, and rowan trees prevail; on the sides the same kinds of wood with a greater mixture of fir, spruce, pine, and cedar; in the hollows and swamps, cedar and other soft woods, elm, nsh, and tamaruc are found but not in abundanee.
"In valleys and hollows through which the streams flow, there are a number of small lakes. It is difficult to convey a general idea of their form and the appearance of the hills without inspecting a plan of the ground.
"In many places the soil is full of small angular pieces of rock, and deficient of depth, in others it is sandy: in the hollows and swamps there is a deposit of black mould from six inches to three feet in depth with clay or a hard subsoil underneath : on the higher grounds the soil is generally a yellow loam; it may be considered fully equal in quality to the greater part of the country south of the St. Lawrence, East of Quebec.
"A bout thirty-eight thousand acres, or rather more than three-sevenths of one thundred and thirty square miles, the extent of this section, may be considered good arable land.
"The line passes through a portion of the seigniory of Lepage Thibierge, before reaching the River Metis; the ground in the seigniory extending ten miles back from the St. Lawrence, and in that of Metis, and the Fief of Pachot six miles in depth, is quite as good as in the section first described.
"The extent of available ground within a width of ten miles between the Rivers Restigonche and St. Lawrence, without ineluding that on the east side of Lake Matapedia or in the Seigniory of Metis, Lepage Thibierge, or Fief of Pachot, may be underrated at two hundred and thirty-eight thousand acres in Crown Lands, and twenty-four thousand in Seignorial; as it is not necessary that every portion should be fit for the plough, reserves for fuel, fencing, and also building timber being required even if this were the case.
"It may be here mentioned that a deposit of marl exists at one of the small lakes on the Nemtaye, and will in all probability be found in other places. Peat, another valuable manure, is found in different parts of the districts. Limestone is abundant at the head of Lake Matapedia and on jts south-west side, and for some distance down the riyer
"The climate of this portion of Canada does not differ materially from that of Qucbec, though rather cooler in summer; intense cold is not so frequent ; rniny weather or thaws of long duration do not occur, however, in winter. Snow is expeeted about the 22nd of October, this does not remain longer than a day or two at furthest, and is followed by fine weather with one or two falls of snow, to abont the 21 st November, when the winter may be said to begin. The depth of snow in ordinary winters, is four feet; it has been known to rench six feet.
"Cultivated land is clear of snow about the 20th of April ; plonghing commenees from the 1st to 8 th May. Rye wheat and peas are sown from that time to the 28 th Mny ; oats to the end of the month; burley and potatoes to near the end of June; reaping generally commences ahout the 25th August, and lasts to the end of September, when the potato erop is fit to house.

APPENDIX C.

(Fhontien Route, Line No. 1.)

From a Report by Mr. T'. S. Rubidge, on an examination of the Country between Rivière (lu Loup) and lloodstock, 1860.

I lave the honor to report on the character of the country and facilities for constructing a Railway from River du Loup to connect with the New Branswick and Cmada Rnilway, at or near Woodstock. ... wish to state that the examination was of a general elanacter. And I beg 10 refer you to the accompanying map, whereon I have marked in red the route in my opinion, most eligible lor preliminary survey. Although I have not personally explored the whole of the country traversed by the proposed line, more particularly the section south of Grand Falls, --yet I have reason to believe a practicable line, nearly approximating to that indicated on the map will be discovered, and I was sutliciently near it to enable me to speak with a degree of aceurney as to distances.

DIRECTION OF TIE ROUTE RECOMMENDED FOR SURVEY.

River du Loup to Province Line 63 miles.

Commencing at the Station, the line crosses to the east side of the Temiscouata Portage, and running towards St. Modeste, enters the Valley of River Verte ; thenee following this Valley it ascends continuously to the 12th mile, the summit of the dividing ridge between the waters of the $\mathbf{S t}$. Lawrence and the Bay of Fundy.

Again crossing the Portage the line runs nearly parallel with it to Blue River, thence assuming a dircetion to cross the Calanean River near the Falls, and afterwards strikes the head waters of the River aux Perehes, it descends in the valley of that stream to the Dégelé settlement on the west bank of the River Madawaska. From this point to the Province Line the route lies along the level margin of the river.

Province Line to Giand Falls 50 miles.

Continuing down the valley of the Madawaska and crossing the river above the rapids at Little Falls, the line enters the valley of the St . John through a depression in the high ground in rear of the village of Edmundston, and it thence follows the east bank of the River St. John, crossing it a short distance above Grand Falls.

Grand Falls to Woodstock, 70 miles.

The Engineer of the New Branswiek and Canada Railway has furnished me with the following information :--" Having lately made an inspection of the country from the south bend of the Meduxnikeag River to the crossing of the Presqu'isle River, I am enabled to state that the character of the country is much the same as that portion which has been already surveyed, and I am inclined to the opinion that the road can be constructed at nearly as moderate a rate as that at which it has been already exceuted. There are two routes open to the line in crossing the Presqu'isle, viz: the upper route keeping to the westward of the Williamson Lake, and crossing the river near the Tracy Mills, and thence onwards to the bend of the main river,--and again the lower route taking to the eastward of the Lake, and crossing the river about one mile below the present bridge, and thence towards the main river bank."..." From this. point to the Gran? Falls along the margin of the main river the country prevent a most favorable contour, the works of chief magnitude on the entire route consisting merely in bridging the Presqu'isle and Aroostook Rivers."

Woodstock to St. Andrews, 87 miles.

The line has been located to Canterbury, 22 miles, thence to St. Andrews, the Railway is open for traffic.
general, description of the route-character of the country, \&c.
Abstract of Distances.
$\begin{array}{lllll}\text { River du Loup to Province Line, } & 63 & \text { miles, } & \text { not surveyed. } \\ \text { Province Line } & \text { "Grand Falls, } & 50 & \text { " } & \text { " } \\ \text { Grand Falls } & \text { "Woodstoek, } & 70 & \text { " } & \text { " } \\ \text { Woodstock } & \text { "Canterbury, } & 22 & \text { "" } & \text { located and in progress. } \\ \text { Canterbury } & \text { "St. Andrews, } & 65 & \text { " } & \text { opened for traffic. }\end{array}$

River dn Loup " St. Andrews, 270 miles.
From River du Loup to Degelé at the font of Lake Temiseouata is perhaps the most difficult and expensive portion of the route, requiring very eareful exploration and survey.

A whole season would be necessary to perform this service satisfactoriiy, as in the event of the line recommended, proving unfavorable, it would then become necessary to examine the country in the direction of the dotted line on the map.

The chief difficulty to be surmounted, is the dividing ridge or water shed between the St. Lawrence and the Bay of Fundy.

This summit eievation 880 feet above the sea is unavoidanle, but the
route by the Lakes des Roches and the St. Francis is favourable inasmuch as it only exceeds by 100 feet, the Trois Pistoles summit the lowest yet ascertained.---From the River du Loup Station 320 feet above the sea, the ground rises in terraces, separated by short steep slopes or rocky ridges.

These terraces are traversed by streams flowing parallel with the $\mathbf{S t}$. Lawrence, and are necessarily crossed nearly at right angles. It is therefore supposed that the works on this section will be of an expensive character. South of the smmmit to the Degelé the country is crossed and intersected in every direetion by roeky ridges or bold rugged hills which in some instances attain an elevation of 1800 feet above the sea.

The general elevation of the ground at the base of these hills varies from 670 to 900 feet above the sea.

- Oving to the broken character of the country it is supposed that a large proportion of the line will be eurved, and that in extreme cases curves of half a mile radius will be required.

And long maximum gradients estimated at fify feet per mile will be of frequent occurrence.

River du Loup is the only important stream erossed, all other streams with the exception of the Cabancau and River Verte are crossed near their sourees. The bridging will therefore be unimportant, but as a general rule the approaches will be heavy.

The total length of bridging will probably not exceed 750 feet lineal. Timber of good quality is abundant, but stone suitable for building will not be readily obtained.

The rock formation is chiefly Gneiss, Clay Slate or oher similar rocks.

The soil is gravelly and frequently very rocky, but there is mueh excellent land on the route still ungranted.

The timber is generally Spruce, Pine, Birch, Cedar and oceasionally Maple.

Settements extend about 6 miles back of River du Loup, thenee to the Degelé the line runs through an unbroken forest.

The proposed route is generally within 3 miles of the new "Temiscouata Portage," therefore materials for construction or supplies for labourers will be obtained without much difficulty.

And the west shore of Lake Temiscouata from the Cabanean to the Degelé is partially settled; there is also a Grist and Saw Mill in this neighborhood.

Lumbering operations are carried on to some extent on the tributaries of the $\mathbf{S t}$. John and Lake Temiscouata, and water power is abundant in this section of the country. From the Degelé to Grand Falls th: country is remarkably favorable for railway purposes.

The valley of the Madawaska is generally flat or slightly undulating and its average elevation above the sea 500 feet ; it is skirted on either hand by a continuous range of high steep hills which near the Province Line End in the vicinity of Edmundston approach the river.

These hills may however be avoided without difficulty, but the present hishway may possibly be interfered with.--This portion of the line will be found very direct, the Grades light and the eurves of large radius. Settlements oecur at frequent intervals all along the west bank of the river, and towards Edmandston on the cast bank also.

Thus far the settlers are chiefly French Canadians.
The village of Edmundston is situated at the junction of the Madawaska with the river St. John, and promises to become a place of some importance as a Lambering Depot. The river St. John is here the boundary between New Brunswick and the United States.---Both sides of the river are settled as high up as the river St . Francis, and several first class Saw Mills have recently been erected which nanufacture lumber for the St. John and American markets.

From Edmundston the line will continue down the valley of the St . John, at very favorable grades, passing through a comparatively well settled, fertile, and level part of the country.

And long stright lines and eurves of targe radius may also be obtained here.

The banks of the St. John are allavial, rising successively in steps towards ranges of highlands lying parallel with the river.

The rocks throughout this section of the country belong to the primitive formation. Roofing slate has been discovered near Green river.

Limestone suitable for lime has also been found.
The soil generally is a stiff clay.
The streams to be crossed are unimportant, but their valleys are sometimes very broad, necessitating heavy embankments. A great part of the route will be through cleared land. The vacant lands are usually 2 or 3 concessions back from the river.

The settlers in the Madawaska territory, which includes both sides of the river between Edmundston and Grand Falls, are Acadian French.

Near Grand Falls the country becomes broken and rocky, and is thinly settled.

A favorable site for crossing the River St. John oceurs about a mile above the Falls, the banks are high and steep, and the stream narrows to a width of less than 500 feet. But much eareful examination will be necessary before selecting this crossing. The bridging on this section will not, it is supposed, exceed 1000 feet lineal, including the St. John and Madawaska, the only important streams crossed. The elevation of the river in the upper basin or reach is about 420 feet above the sea.
ulating rr hand e Line will be radius. re river,

Madaof some lere the sides of ral first mber for
the St . ely well obtained
in steps
primitive
dleys are at part of ually 2 or
h sides of ench.
y , and is ut a mile rrows to a be neceswill not, John and ion of the

Collbrooke, the shire town of the County of Victoria, is located on the west bank of the river, opposite the Falls; and immediately below them a suspension bridge of 190 feet span is now being constructed by the Government, the stone for the work is quarried on the spot.

Grand Falls is a formidable obstacle to lumbering operation, the river falls 74 feet over a perpendicular ledge of slate rock into a narrow gorge, nearly a mile long descending in that distance 45 feet or 119 feet in all.

Square timber and saw logs are rmo over the falls, entailing a loss of 10 or 12 per cent thereby, but all sawed lumber has to be hauled across the portage, between the upper and lower basins, as also all supplies going up the river.

In New Brunswiek lumbering eperations have gradually receded, and now lie chiefly on the waters of the upper St. John. The proposed Railway would eertainly promote the settlement of this most valuable timber region. It would also develop the manufactured lumber trade by afforling facilities for obtaining supplies and for transportation to market, either at St. Andrews, Quebec or River dn Lonp. It would create in the interior of \mathbf{N}, brunswick and the State of Maine a market for Canadian provisions, and thus open up a new trade with Montreal and the cities farther west. Saw Mills for manufacturing timber wouid be erected on the tributaries of the St. John, and eventually almost all the timber on the rive would be converted into Deals, Clapboards, Shingles and similar short lumber. The lumbering establishments on the upper St. John and Lake Temiscouata require very large supplies of Flour and Pork which (with the exception of a small quantity obtained direct from Quebec, by the Colonization road and Temiscouata Portage) are usually sent by Steamboat or Railway to Woodstock, and are thence forwarded up the river in tlat bottomed boats towed by horses. At present the supplies and merchandise forwarded up the river is stated to be equal in bulk to 80,000 Bbls. (Flour.)

$$
\text { Distributed as follows : }\left\{\begin{array}{lll}
30,000 & \text { Barrels } & \text { to Woodstock and vicinity. } \\
30,000 & \text { " } & \text { "Tobigue and A roostook. } \\
20,000 & \text { " } & \text { " Grand Falls and upwards. }
\end{array}\right.
$$

From Grand Falls to Woodstock is said to be one of the most productive agricultural districts in New Brunswick, but the country appears rough and unfavorable for Railway construction, being intersected by viry deep vallies and ravines, through which flow streams leading into the river St. John. The surveys of hew Brunswick and Canada Railway extend only to the Little Presqu'isle River, 10 miles north of Woodstock, and it is reported "from this peint forward the surface of the county is comparatively level.".-.The vacant lands in this section of the country lie beyond the settlements on the eastern bank of the St. John.---The population of the River St. John above Woodstock, including the Aroostook country is estimated at 40,000 ..-The inhabitants of the country of Aroostook, in the State of Maine, are much interested in the proposed Railway.---Their most important lumber streams flow into the St. John, and many of the roads leading from the interior of the country conneet with the "Great Roads" of New Brunswick.---This portion of the state is rapidly becoming settled
by a large farming population, it is also a most valuable timber region abounding in water power.---From the great quantity of lumber manufactured for the American Market, as well as the supplies required for lumbering operations, the Aroostook country mist eventually prove a most important feeder for the Railway. ---The amount of lomber, \&e., produced and annually sent down the river is staied to be nearly as follows, viz:

> Square timber from above Grand Falls. 4, 4,000,000 fect.
> " " " below " 3,000,000 "
> Sawed lumber from Aroostook, $\{$ Shingles...... . . $20,000,000$ No.
Claphourds.....
1,500,000
Boards...... . .
750,000 Oats..... 10,000 bushel.
> Potatoes......... 5,000 " Buckwheat Meal. 60 tons.
> Oat.
> 30 "

Woodstock, the shire town of the country of Carlton, is sitnated on the west bank of the St. John, at the mouth of the Meduxnikeag River, and at the extremity of a "Great Road" to Houlton Maine, on which there is much traffie. Both towns are of considerable importance as being the centre of a large agricultural population. Extensive Ironworks were formerly in operation near Woodstock, copper has also been discovered in the neighborhood. From Woodstoek to Canterbury, the present terminus of the New Brnnswick and Canada Railway, the distance will be either 2% or 25 miles, dependent on the route adopted, relative to this section, I extract the following information from the report of the Engineer and Manager. The location from Eel River to Woodstock is not yet decided upon, consequently no work has been commenced north of the former place. Two lines have been surveyed, one running direct to Woodstock, the other to the Houlton road, which it crosses nearly midway between Woodstock and Houlton. From Eel River direct to Woodstock, involving at the commencement grades of 50 feet for 2 miles from Eel River, at which point the summit is attained, and from which there is a descent all the way to Woodstock ; some heavy work has to be encountered in crossing the wide creeks, which cannot possibly be avoided or materially reduced by any diversion of the line; nevertheless the quantities of excavation are comparatively light, and the general direction good; through 16 miles of Forest, and 6 miles cleared land, there is no eurvation of less radius than 1910 feet, and only three of these to Woodstock. The grades may also be considered as favourable, the maximum being 62 feet to the mile for one mile, and in the direction of the down traffic. This is, without exception, the most practicable route from Eel River to Woodstock. The comparative estimates however exhibit the cost of construction as £37,527 in excess of those of the upper rontes by the Houlton Road. We may also mention in connection with this route, that its extension beyond Woodstock by way of the eastern branch of Lanis Creek, is also the most favourable and practicable egress that can be found over such a very rough country as presents itself in that vicintity; for 10 miles northward, 65 feet grades are absolutely necessary to reach the summit level, the only redeeming qualification, being that the declivity is to the south towards St. Andrews, and is therefore favourable to the down traffic.
region anufacred for a most ced and , and at there is eing the ks were vered in terminus will be lative to rt of the dstock is ed north direct to midway odstoek, from Eel here is a ountered or matentities of through on of less sk. The g 62 feet This is, oodstock. cetion as ad. We 1 beyond the most ery rough d, 65 feet the only towards

The work on the first 10 miles section from Canterbury is of the heaviest character.

From Canterbury to St. Andrews is 65 miles.
The road is said to be completed and in good running order.
The number of way stations ineluding Canterbnry is 12 .
The Guage is 5 ft .6 in ., uniform with the Enropean and North American Railway (St. Jolin and Shediac).---l was unable to obtain reliable information as to grades, eurves or permanent way.

Embankments are 15 ft . wide at formation level, slopes $1 \frac{1}{2}$ to 1 .
$\begin{array}{lrllll}\text { Earth Cuttings " } & 30 & \text { " } \\ \text { Rock " } & \text { " } & 24 & \text { " } & \text { " } & \text { vertical. }\end{array}$
Bridge abutments of Ashlar Coursed, or in coursed Rubble.
" Superstruction of Timber.
Culverts are of Cedar timber or dry rubble masonry coursed.
The Company has a Grant from the Government of all vacant lands within a distance of 5 miles on either side of the Railway. A large proportion of these lands are represented as being very valuable as well for agricultural as for lumbering purposes. It is stated that the harbour of St. Andrews is oceasionally frozen, also that the depth of water at the entrance is insufficient. The first statement is incorrect. But with reference to the depth of water it is stated in the Report of the Board of Works for 1858 , that $40,000 \mathrm{e}$. yds of dredging might perhaps be sufficient to make the entrance of the Harbour available for a depth of 8 feet at lowest spring tides, this would enable a vessel drawing 20 feet to come into the Harbour at half tide. Spring tides rise from 24 to 26 feet, and neaps from 20 to 22. Chamcook Harbour about 4 miles N. E. of St. Andrews, appears well adapted for Ocean Steamers. The Railway is said to skirt the shore of this Harbour.

APPENDIX D.

(Frontier Route, Linf. No. 2.)
Correspondence in reference to the extension of the St. Andrews and Weodstock (the New Brunswick and Canada) Railway to River da Loup.

St. Andrews, 5th September, 1864.
Dear Sir,
On my arrival in Town on Saturday evening last, Mr: Osburn placed in my hands your letter to him of the 20th ulto., in which you express a desire to be furnished with a copy of my Report of a Survey conducted by me during the Winter of $\mathbf{1 8 6 1}$, for the extension of the St. Andrews Railroad to the Canadian Frontier.

I have now great pleasure in presenting you with copies of Reports I then made, and gladly avail myself of a brief sojourn at home, to put you in immediate possession of any useful information they may contain.

Your very truly,
WALTER M. BUCK.
Sandford Fleming, Esq.,
Civil Engineer, \&c., \&c., Tobique.

St. Andrews, N. B., 3rd February, 186:
Henky Osburn, Esq., Manager.
Dear Sir,
I beg to submit the following Report upon the Preliminary Survey recently made in two sections, viz: from the south branch of the Meduxnikeag river (at which place the former Rielmond-Corner and HillmanValley locations terminated) to the St. John River at Wilson's, and from the Grand Falls southward to the Tobique river at Hutchinson's.

This survey was commenced on October 15, 1861, and was continued to the 7th of January, 1862, but was not completed at this period: the section of country between the river St. John, at the proposed crossing
place at Wilson's, by the IIardwood Creek, and thence by the Valley of the Munguart river, and over the sammit ridge, which divides the head waier of the latter from that of the Trout brook and Otellock river, to the Tobique river being left untonched; as also the seetion of country north of the Grand Falls to the Canadian Frontier.

The greater portion of this proposed route from the river St. John, has been traced on foot through the Woods, in company with a sinall party necessarily organized for such an expedition, amongst whom were men whose knowledge of the localities, obtained from lumbering operations, justified their engagement; whilst otbers were employed for the purpose of saeking or carrying the camp equipage and provisions. The time ocenpied in making this exploration to within a few miles of the Canadian Frontier, from leaving St. Andrews, was forty days, and you will observe from the copions notes taken during this period, that the examination was carefully made, althongh under many difficulties, arising from the continued inelemency of the weather. The surveying party on the seetion from Riehmond forward, under the direction of Mr. Chas. Haslett, received instruct ans to pursue a route that was considered to be the most eligible and practicabie in the direction of the river St. Join, this portion of the country having been better known from previons travelling.

The other party, nuder the direction of Mr. John Ot'y, were sent forward to the Grand Falls, and received instructions to commence the survey at that place, and on the west side of the river, working s.nathward, until it should become known from a reconnaissance on the east side of the river, through the interior of the country, whether a line of road was practicable or not from the Tobique river to the Grand Falls; the examination having established the affirmative, the surveying party were ordered to abandon their work on the west side of the river, with which they were progressing most favorably, and to commence fresh operations on the east side, near the head of the Mooney brook, a tributary to the big Salmon river.

The Munguart river and Trout brook district was also examined : the Valleys of these waters are intercepted by a summit ridge, which will require more precise instrumental exploration, than could otherwise be made, to ascertain the maximum grades that will have to be adopted; on the other two sections the maximum grade is but 53 feet per mile. It was intended to have contour levels taken over this portion of the route, and also all other levels properly connected and reduced from one Datum, but unfortunately the surveying parties had to abandon all further operations on account of severe snow storms and other causes. It would however take but a short time to connect the whole work by these levels at an early and more favorable period, the expense incured would be but trifling in comparison with the great importance of having continuous levels and known relative elevations.

The section of country between the Grand Falls and the Canadian Boundary was next explored, and proved the most favorable for Railway constrnetion. The general proposed direction will be by the Valley of the Dead-brook, and second Beaver-brook, crossing the Grand river on its marginal flats, thence by the Sigas-lake and branch across the Sigas-river,
and stretching almost directly across to the forks of the Quisibis river; thence across the Green river to the front of the Green mountuin, and approaching the main river at St. Bazil, which will be the nearest touching point; and then along a table-land at the foot of the Green river ridges to the Iropuois river, and up the Valley of this river to the Canadian boundary, where Alr. Rubidge, the Engincer in eharge of the Cmadian Survey, terminated his explorations, having pronomeed the former proposed ronte to the westward of the Temiseonata lake, on instrumental examination, to be entirely impracticable.

Your attention is partienlarly requested io the aceompanying map, shewing the line of the Halifiax and Quebee Ratway and its connections, \&e. ; it has been taken from a published pamplitet "On the politieal and economieal importance of completing the line of railway from Hulifax to Quebee," by Joseph Nelson. You will observe that the yellow :inted line, being the proposed eentral line for the Intecolonial railway, ; traced to the westward of the Temisconata lake, evidently shewing the: at the time the map was prepared, and the proposed route marked thereon, nothing was then known of its aetnal practicability; the same may be said of that portion also which is 1 sed between the Tohique river and the Dege:é, at the foot of the Temisconata lake. During the recent exploration, (ireen Mountain, which is said to be upwards of one thousand feet abuve the St. John river, was ascended to its snow-claa top, and the view of the country to the eastward and northward was sufficient to impress me with the impracticability of extending a road on that side of the mourtain, through such a riountainous region; when I say impracticable, I mean by it a most unjustifiable expenditure in construction.

Herewith is also furnished a profile of $\mathbf{1 7}$ miles of the survey between Grand Falls and Tobique river, likewise an estimate of the cost of construction of-

$$
\begin{aligned}
& 50 \text { miles of the proposed route amounting to } \\
& \text { That of the first } 30 \mathrm{miles}, \text { averaging per mile } \\
& \text { And that of the other } 20 \text { miles }
\end{aligned}
$$

These cstimates may be received as full and ample for the respective sections only, and I trust that so far as this winter survey has been extended, the result will be considered satisfactory.

> WALTER M. BUCK, Engineer in charge of Survey.

St. Andrews, N. B., 8th March, 1868.
Hendy Matdstay, Esqr., of London, Board Director N. B. and C. R. R.

Dear Sir,
In accordance with your request I beg to submit the following Report as supplementary to that of 3rd February last.
ibis river ; 1tuin, and le nearest ireen river Cumadian Canadian rmer pro-- trumental
ying map, mnections, litical and Halifax to :inted line, fraced to at the time n, nothing said of that Dege'é, at ion, (ireen t above the jew of the ss me with mourtain, 1 mean by he cost of n extended,

K, Survey.
:h, 1862.

The site intended for the Station buildings at the Richinond terminus (so called) is at McGeorge's, on the Hillman Valley; the grounds will be level for 1800 feet und can he graded on embankment to any extent in width that may hereafter be required; this position whs selected, as at first proposed, in consequence of a heavy asecnding grade of 56 feet per mile being required to reach the sumnit at the Houlton and Woodstock road in a deep cutting and would not be suitable for the approach to the station.

The descent from the summit to the Valley of the Mrduxnikeag river is made by adopting stecp gratients, one of 60 feet per mile being employed for a short distance.

From the point of intersection with the high road the distance to Woodstock is reekoned as 7 miles, and to Houlton 5 miles; Houlton is situated about 3 miles within the boundary line.

The preliminary survey recently made for the extension of the line northward, was carried to within 3 miles of the St. John river, at Wilson's, opposite the Hardwood Creek, at which place, the crossing will necessarily be on a high level of about 100 feet above water surface, the width of the river being fully 800 feet. The partial location made was twenty-seven and a half mile through a thickly wooded country, and in order to obtain correctly the positions and elevations of points through which it was desirable to pass, the public and bye roads were traversed, and levels taken; forty-three miles of this work has been accomplished in addition to the other work, and from which a topographical plan of this portion of the country can be made whenever required.

At the south branch of the Meduxnikeag river, which has its rise in the State of Maine, and joins the St. Joha water at Woodstock, the line crosses above the Falls, and at a level of 55 feet above water surface. The fall of the river to Woodstock is about 215 feet in a distance of 8 miles, or thereabouts, so that a braneli line into Woodstock along the Valley of this river would be perfectly practicable; the total distance to this point from St. Andrews is 96 miles.

The north branch of the Meduxnikeng river is next crossed at the 98th mile, with an ascending grade, about 35 feet above water level; the crossing is alnost on the square and a little below the third falls, and over solid rock; both sides may be considered as natural formed abutments for bridging.

The location from Fulcan's on the 92nd mile and for about three miles forward, must of necessity approach and run parallel to the boundary line within a mile distance, and at the crossing of the Meduxnikeag soutin branch within one and three quarter mile. From the north branch the line takes an easterly course and crosses the little Presqu'isle river at the 106th mile, in the Williamstown village, this stream flows from the Williamstown lake to the St . John river, about 6 miles apart. The lake is a fine sheet of water two miles in length, and one mile in width. The village of Williamstown is about 14 iniles from Wordstork, and within 5 miles of the houndaty tine, the river at this place atlords excelient water power for

Saw mills, and the village would, no doubt, become a thriving place when accessible by railway.

From this point forward the location takes a northerly course with uniform grades, to within 2 miles of the big Presqu'isle river on the 112 th mile; this river which has its somree in the State of Maine is crossed on the level 75 feet ubove water surface; it is approached from the south with a 49 feet grade, and from the north with a 53 feet gride; the point of crossing is within 2 miles of the St. John river, and six miles of the boundary line, and pursnes a northerly eourse to the St. John river, ut Wilson's, in Upper Wieklow, opposite the I Iardwood Creek.

The location was not completed to this point, but as the public ronds were raversed, and an exploration made through the woods, it was concladed that the character of the country did not vary much, and the estimates were framed npon the same verage quantities per mile.

From Fulcan's on the 92nd mile to the St. John river on the 120 Ch mile, the quickest eurvature necessarily employed is 3° or 1910 feet radius, and this between the branches of the Meduxnikeag river, and io within a mile of the Florenceville road (14 miles beyond the Meduxniseag) the location chiefly consists of tangents, no quicker curvature being required than one mile radins; and from Florenceville to the St. John river, the location is also prineipally on tangents, the sharpest curvature being half a mile radius.

Three fourths of this section has been partially located and presents 20 miles of straight line, 5 miles of 1° curvature or 5730 feet radius, and 5 miles of $2^{\circ}, 2^{\circ} 30^{\prime}$ and 3° curves, the radii being 2865 ft ., 2292 ft ., and 1910 ft ; the maximum gradient is 53 feet per mile.

The quantitics estimated on this section are for Earthwork 20,000 cubic yards, and for cock 1666 cubic yards per mile. The total estimated cost of construction including masonry, bridging, ballasting, superstructure and station buildings, \&c., will average $£ 5,500$ Sig. per mile.

The banks and bed of the St. Jolin river, at the proposed crossing consisting of rock formation, and the narrowest place as well, it is admirably adapted for bridging, more especially as there is a fine granite quarry in the immediate vicinity. The approaches on either side of the river will involve heavy embankments, but the grades will be favorable.

The next portion of eountry between the St. John and Tobique rivers, through which the line would traverse, has not been surveyed, and but partially explored; this length of line will be about 26 miles. After leaving the Hardwood creek which heads in the Moose Mountain range, it follows in a northerly direction the valley of the Munguart river, and crosses northerly the dividing ridge between the head waters of the tributaries to the St. John and Tobique rivers; it then continues by the head of Trout brook and takes the Valley of the Otelloch river for some distance, then diverges across to the Tobique river below the mouth of the Otella river. No levels have been run over this district, consequently no profile has been furnished, and the summit level has not been ascertained.

On reference to the Map it appears that the proposed route for the
central line is laid down to cross the Tobique river, seven miles upstream near to the Wapskehegan river, and the Major Robinson central route crosses as far up as the Gulguac river; both these lines pass through a more diffienlt country than that in the neighborhood of the Munguart, as the eminences in the range of the Tobique monntains inerease in altitude as you ascend the river up to the Blue Mountain, nbout 50 miles from the mouth. The country between St. John and Tobique rivers is thickly wooded; spruce and birch being the predominant growth; the hand is not settled upon within the banks of the river, but it is pronomsced to be of good quality.

The survev of the section hetween Grand Falls and the 'Tobique river, the party worling sonthwards, commenced on the 2sth October last, the distance being abont 20 miles through an unbroken wilderness. A line was first started two miles to the castward of the Grand Falls, and run along a valley to the Salmon river, in the direetion of the Little Sulmon; this was taken as the shortest line, but as the first stream could not be crossed to advantage without adopting a 70 feet grade to descend from the summit within two miles, which was considered objectionable, although not strietly so upon a trial-survey, the line was abandoned, and a position taken up three miles still further to the eastward of the Falls near the head of the Mooney-brook, being a much lower level than at first chosen. The descent of the brook is made with a 53 feet grade for two and a half miles to its mouth, the Salmon river being crossed at a level of 22 feet above water, with the same grade continued to the end of the third mile.

A succession of uniform grades with light work is then continued to the erossing of the Little Salinon at the forks on the 6th mile, and from this point an ascent is made up the Valley of the streum to its head, and that of Little river, (a small stream flowing to the St. John) and to the summit level on the 16 th mile; the total rise being 354 feet in nine miles, or an average grade of 39 feet per mile, but on aecrunt of a level interval oecurring, a grade of 53 feet per mile has to be introduced for nearly half the distanee.

Little Salmon river is a very tortuous stream, and it will be necessary for the line to cross it frequenily, unless bridging ean be dispensed with by making diversions; it can be spanned by a 30 feet girder bridge at any place.

Some rather abrupt land occurs near to the summit, but it is the only heavy work ('iy comparison) on the whole of this length, viz: an embankment containing 50,000 eubic yards, and a cutting 2000 feet in length, with a maximum depth of 25 feet.

After passing over this summit the line falls into the Valley of the Bear-brook on the 17th mile, and within about three miles of the Tobique river at Hutchinson's, at which place the river is probably 400 feet wide.

The quantities estimated are, for earthwork, 18,350 cubic yards, and for rock 1,150 cubic yards per mile; the estimated cost per mile for all materials as on the Richmond section is about $\mathbf{£ 3 , 6 5 0 ~ S t g . ~}$

It is to be regretted that this survey was commenced at such a late season of the year, the snow being at the deepest, and the days at their shorlest; had it been taken in hand ducing the summer or the fall of the year, double the nmount of work could have been performed to much better advantage, and provisions would have been at lower prices; however as it was a neecessity at the time instructions were first received, it can only be said that all that homan effort could accomplish in the Woods at such a period, was done.

In addition to the foregoing I beg to refer you to my Report, dated Srd February last, addressed to the Manager, and forwarded by him to your Board of Directors.

WALTER M. BUCK, Engineer in charge of Survey.

APPENDIX E.

(CEnteal. Routh line no. 8.)
Report on Exploration from the Village of Boiestown across the Tubique Highlouds.
Sandford Fifeming, Einq.,
Chief Engineer, Intereolonind Ruilway.

Drar Sir,

In accordanee with instructions, verbal and writen, received from you in March lasi, 1 proceeded to make an exploration of the country from the village of Boicstown, northward to the sources of the Dhmgarvon, Rocky Brook mad Gulquate rivers, and now beg lease to ham you the following remurks.

Having placed in Ancroid Barometer in the hands of a carelnt party at Boiestown, with instructions to note its changes at certhin periods of the day, and to record stime on a table previonsly prepared by mysell; I started for the point previously arranged, (vi\%.) the boundary line between the counties of York and Northumbertand, and immediately west of the upper Falls of the main Dungarvon, commenced operations by running a series of lines diverging from this point in order to nseertain the main features of the country; I found however that these lines so frequently carried me over the tops of high mountains, that it wonld be necessary io adopt a different system of working, and confine my explorations to the several streums, which in this part of the country cannot be said to run through valleys, but merely Gorges varying' in their breadth from the simple width of the river to perhaps a quarter of a mile and bounded on both sides with high land broken only by the defiles of the few mountain streams that feed the main rivers.

Having decided on the above line of operations I first traced the main Dungarvon from a point about three miles below the "Upper Falls" to its sources, the most northerly of which I found to be at an elevation of 1215 feet above Boiestown; I then followed a branch of this stream running in a northwest course from the vicinity of the "Upper Falls," and found it to head in still water to the west of the county line before mentioned, and continuing on passed over the dividing ridge between the Dungarvon river and the Rocky Brook, at an elevation of about 930 fcet; from this point I followed two valleys or gorges running in different directions to the Rocky Brook around a high hill as you take notice at Obs. No. 33; the Rocky Brook on the west side of this hill passes between very precipitous rocky banks, which would render the building of a railway at this point an expensive matter, this can however be avoided by following the two
valleys mentioned; continuing on up the Rocky Brook I first explored the right hand branch which, after passing between very precipitous rocky banks, and over these Falts, takes its rise in a large lake at an elevation of 1118 feet, quite surrounded by high hills, through which I could not see any depression, at least in the direction that I wished; returning to the Forks, followed up the left hand branch and found it to head in a Lake at an elevation of about 950 leet, passed on over a dividing ridge of about a quarter of a mile in length, and at a height of 965 feet, and entered upon the head waters of a branch of the Clearwater Brook, followed it for several miles through Lakes, Streams and Beaver Dams, \&c., till it reached the Main Stream, thence up this stream to its source which I found to be in a Swamp or Barren at a height of 1513 feet, this being the summit level betveen the Clearwater Brook and the Fulquac River.

On the annexed sketch I have put a number of heights with the number of the observation above it for the guidance of any party that may be sent out to carry on the detail survey; all my observations are marked on Trees with red chalk and numbered consecutively, as also all the lines run are numbered as shewn in the sketch.

Owing to tise winter being so far advanced before I started out on this survey, I was obliged to move with great rapidity from one part to another, as I found the rivers breaking up very fast and the danger of freshets setting in was every day increasing, this of course prevented me exploring the country as far or as minutely as I had at first intended; and added to this rapid breaking up of the streams, I was still further impeded by the continuance for a whole week of a snow storm just at the time that I was in the region of the head waters of the Gulquac and Clearwater; this rendered any attempt at a toporraphical delineation of the country impossible. I have, however, laid down some of the features of the country thereabouts as far as was pussible from lines run under the circumstances, and have also sketched on in blue ink the most probable route for a Railway Line through this section of country, which, so far as my explorations extended, sliew it to be quite practicable from the Miramichi side, but owing to the sudden braking up of the streams, I did not deem it prodent to venture further into the country, consequently Imotarned by the shortest route (viz.) the Wapskehegan river, down which wo were obliged to travel on rafis or catamarans; this of course prevents me giving you any correct report of the country along the Gulquac but from what little I saw of it and the height of its head above its junction with the Tobique which cannot be more than 550 feet in a distance of about fifteen miles, places this route quite within the range of practicability.

Owing to the depth of snow on the ground, I had not an opportunity of judging of the soil for agricultural purposes, but from the timber found on the high lands (Birch and Maple), I should deem it to be of a character suitable for such uses; but the lower levels and barrens were generally corered with Cedar, Sr ruce and Hacmatack; the most of the country travelled over by me will yield good building material for the ordinary structures used on a Railway.
plored the ous rocky levation of ld not see ing to the a Lake at of about a tered upon for several cached the Ito be in a mmit level
s with the y that may ure marked all the lines
ried out on one part to e danger of evented me ended ; and er impeded te time that rwater ; this intry imposthe country cumstances, route for a ts my exploamichi side, not deem it arned by the were obliged giving you m what little the Tobique ifteen miles,
pportunity of ber fuund on a character generally the country the ordinary

In conclusion I may add that the general features. of the country are favourable for the construction of a Railway, as the banis3 of the streams in most cases recede from the water at a uniform rate of inclination.

> I am,
> Yours truly,
W. H. TREMAINE.

Halifax, May, 1864.

APPENDIX F.

REMARKS on the shortest lines of Communication, between America and Europe, in connection with the contemplated Intercolonial Railway.

In the Northern United States many leading men who take a prominent part in directing the great works of intereommunication of the country, have long aimed at an extention of their Railway System to some extreme eastern Port on the Continent ; their object being to shorten the Ocean passage and the time of transit, between the great commercial centres of the Old and New Worlds.

A plan was propounded in 1850 by which it was proposed to connect the cities of New York and Boston with Halifax, by a Railway stretehing across the State of Maine, the Provinces of New Brunswick and Nova Scotia.

The originators and promoters of this plan correctly assumed, that the necessities of trade, would sooner or later require the adoption of the shortest possible sea voyage between the two Continents.

This scheme appears to have found no little favour in New Brunswick and Nova Scotia.

The line of Railway then projected was designated "The European and North American Railway," hence the name of that important section of it, constructed and in operation, between St. John, New Brunswick, and the Isthmus which connects that Province with Nova Scetia.

The whole scheme as originally proposed has, ever since its projection, been kept prominently in view; and there only now remains to complete it, the link between Moncton and Truro (common to the Intercolonial Railway) and that other link between St John and Eangor, so warmly advocated at the present time in the States of Maine and Massachusetts. The whole project has still many advocates in both the Provinces referred to.

These Railway links completed, the city of Halifax would be connecied with the whole of the United States, and the Ocean passage between the Railway systems of Europe and America would be reduced to the distance between Halifax on the one side, and Galway, or some other Port on the west coast of Ireland, on the other.

It is a question, however, if Halifax would permanently remain the Entrepot for Ocean Steamers The same considerations which so strongly influenced the originators of "The European and North American Railway,"
and which still so powerfully weigh with its promoters, would induce them or their successors to look for a point of embarkation still nearer Europe than Halifax.

Halifax might then have *, give way to the most easterly Harbour in Nova Scotia; and should the bridging of the Gut of Canso not defy engineering skill and financial ability, the great European Terminus of all the Railways on this Continent might yet be situated in the Island of Cape Breton.

There are two good Harbours on the easterly coast of Cape Breton, the one at Sydney where the best of coal abounds, and the other, the Old French Harbour of Louisburg where similar advantages may obtain. Sydney and ronisburg are respectively about 160 and 180 miles nearer Europe than Hal:fax, and although it is said they are not open ports all the year round, yet they are undoubtedly open during the great travelling season; and whilst open, being so much nearer Europe than Ilalifax, they would then without question be preferred.

These considerations very naturally lead to reflections on the whole subjeet of Transatlantie communications, and the important question presents itself: what ronte may nltimately be fornd the very speediest between the Old world and the New?

Newfoundland, a large lsland off the main land of North America, and Ireland an Island off the European coast, resemble each other in being similar outlying portions of the Continents to which they respectively belong; Possibly tley may have a more important similarity and relationship, through the remarkable geographical position whieh they hold, the one to the other, and to the great centres of population and commeree in Europe and America.

A glanee at the chart of the Atlantic will shew that between Ireland and Newfoundiand the Ocean can be spanned by the shortest line.

Ireland is separated from England and Scotland by the Irish Channel ; Newfoundland is separated from this continent by the Gulph of St. Lawrence. Already railways have reach the western coast of Ireland and brought it within sixteen hours of the British capitai. Were it possible to introduce the Locomotive into Newfoundland, and establish steam communications between it and the cities of America, a route would be created from Continent to Continent having the Ocean passage reduce to a minimum.

This route would not be open for traffic thronghout the whole year ; during certain m.nths, the direct course of steamers would be so impeded by floating iee, that it could not with certainty or safety be traversed. It therefore remains to be seen whether the route has sulfieient advantages whilst open, to recommend its establishment and use, during probably not more than seven mouths of the year.

In this respect the Newfoundland ronte must be viewed precisely in the same light as many other lines of traffic on this Continent, and possibly it may be found of equal importance. Of these works may be mentioned the Canals of Canade and the United States, which, although
closed to traffic during winter, have justified the expenditure of enormous sums of money in their original construction, and in repeated enlargements and extentions.

Having alluded to the great objection to a route across Newfoundland, we may now proceed to enquire into its merits.

The track of Steamers from the British coast to New York, and to all poincs north of New York, passes Ireland and Newfoundland, either to the north or to the south; the most usual course, however, is to the south of both Islands. Vessels bound westerly, make for Cape Race on the southeasterly coast of Newfoundland; whilst those bound easterly, make Cape Clear on the south-westerly angle of Ireamd. Not far from Cape Race is the Harbour of St. Johus, and near Cape Clear is the Harbour of Valentia; the one is the most easterly Port of America, the other is the most westerly Port of Europe. They are dialant from each other about 1640 miles.
'- he Irish Railways are not yet extended to Valentia, but they have reached Killarney, within about 30 miles of it.

From St. Johns across Newfoundland to the Gulph of St. Lawrence the disiance is about 250 miles. On the St. Lawrence coast of the Island, the Chart shews two Harbours, either of which may be found available as points of transhipment; the one St. Georges Bay, the other, Port au Port; they are situated near each other, and both are equally in a direct line from St. Johns westerly to the main land.

On the westerly shore of the Gulph we find at the entrance to the Baie des Chaleurs, the Harbour of Shippigan, mentioned in the body of the report on the surveys of the Intercolonial Railway.

From St. George's Bay to Shippigan, the distance is from 240 to 250 miles. Shippigan may be connected by means of the contemplated Intercolonial Railway with Canada and the United States.

Although a very little only is known of the physical features of Newfoundland, from that little we are justified in assuming that the construction: of a Railway across it from east to west is not impracticable.

Perhaps the only white man who has travelled entirely through the interior in the general direction of the projected Railway route is Mr. W. E. Cormack.

This gentleman travelled across the country many years ago, from Trinity Bay on the east, to St. George's Bay on the west. He left the eastern coast about the beginning of September, and reached Sit. George's Harbour on the 2nd of November.

From Mr. Cormuck's account of his journey, it would appear that although a belt along the coast is hilly and broken, much of the interior is comparatively level, cousisting of a series of vast savannas."

[^11]enormous
rgements
pundland, and to all her to the e south of he southake Cape Race is Valentia; host west$\$ 40$ miles.
they have

Lawrence

 he Island, vailable as Port; they e from St.o the Baie f the report ted Inter-

3 of Newinstruction rough the ate is Mr.
ago, from e left the . George's
ppear that interior is

It is more than probable that the interior may be reached by some of the Rivers or numerous Inlets, which on the map seem to pierce the mountainous be't extending along the margin of the Island.

The line of Steam communication from Great Britain across Ireland and Newfoundland, and by the contemplated Intereolonial Railway to the interior of North America, possesses some important recommendations as will presently be seen. It will however first be necessary to allude to the question of speed.

At the present time Ocean Steamers generally carry both freight and passengers, and in this respeet they are like what are termed "mixed trains" on Railways. These mixed trains are employed to serve localities where there is not sufficient passenger and freight traffic to justify the running of separate trains.

On Railways doing a large business, the traffic is properly classified; fast trains are run to carry passengers and mails only, whilst slow trains are used to convey heavy freight. A similar classification of Oeean traffic may be suggested. Freight will naturally go by the eheapest mode of conveyance, while Passengers and Mails will seek the speediest.

It is well known that the shape of a Steamship, other things being equal, governs her speed. The shape again depends on the load she may be constructed to carry; if the Ship is required only for Mails and Passengers and such voyages as need but a small quantity of fuei, she may be
cover of the forest, we had been unif-rmly ascending ever since we left the sult water at Random Bar, and then soon arrlved at the summit t what we saw to be a great mountain ridge, that seems to serve as a barrier between the sea and the interior. The black dense forest through which we had pilgrimaged prewented a novel picture, appearing apotted with bright yellow marshea, and a tew glansy lakes in its bosom, some of whirb we had passed close by without seeing them.

In thes west ward. to our inexpressible delight, the enterior broke ia subiimity before us. What a contrast did this present to the conjectures emtertmined of Newfoundlanil! The hitherto mysterious interior lay unfolded before u*-a boundless scenc-emerald aurface-a vast basin. The eye strides again and mgain over a suucession of aortherly and southerly ranges of green plains marbled with woods and lakea of every form and extent.

The great external features of the eastern portion of the main body of the idand are seen from these commanding heights. Overland communication between the bays of the east, norih, and south coasts, it appeara, might be easily establiwhed. The chiel obotnilea to ov reonie, as far as rogarde the mere way, reent to lie in crossing the mountain bett of twenty or forty milea wide on whirh we stood, in order to reach the open low interior. The nucleun of thas helt is exhihited in the torm of a semi sircular chain of insulated passes and round backed granitie: hills, geserally lying N. E. and S. W. of each other in the rear of Bonavista, 1 rinity, Placeatia and Fortune Bays. To the southward of us in the direction of Piper's Hule in Placentia Bay, one of theae conical hilld, very conspicuous, I named Mount "Clarence" in honour of His Royal Highness, who, when m the navy, had been in Placentia Bay. Our view extended more than forly mules in all directions. No high land, it has been already observed, bounded the low interior in the west.

September 11 .-We descended into the bosom of the interior. The plains whirh shone so brilliantly are steppes or savannses, composed of fiue black compact peat mould, formed by the prowth and decay of mosses. They are in the form of extensive, gently undainting beds, stietching, north wand and southward, with running waters and lakes skirted with woods lying betwpen the th. Thucir yelluw green surfa'es are sometimes uninterrupted by cither tree, shrob, rock or any irregularity, for more than ten miles. They are chequered every where upon the xurface by derep beaten deer pathes, and are in reality mangnificent natural deer paiks, adurned with wood and water.

Our pugress over the gavannah country was attended with great labour and ronsequently slow, being at the rate of from five to seven miles a day to the westward, while the distance walked was equivalent to three or tour times aa murb.

Alwaya inclining o.ir cuurse to the westward, wa traversed in every direction, partly from choice in order to view and examine the country, and partly frouthe necessity to get round ihe extremitiea of lakes and woods, and to luok for game for subsintence. We weie nearly a minh in pussing over one eavanna efter another. la the interval there are several low granitic beds, stretohing us the aavaniang northrily and noutherly."

Narrative of a journey across the Island of Newfoundland by W. L. Cormach.'
constructed on a model both sharp and light, and thus be capable of running more rapidly than if built to carry heavy and bulky loads. A Steamship for hecavy loads may be compared to a dray horse, whilst one made specially for passengers and rapid transit may resemble a race horse, and like the latter the less weight carried the more speed will be made.

If these views are correct, it is clear that the speed of Ocean Steamships might be considerably increased when construeted for a special purpose. The distance between St. Johns, (Newfoundland) and Valentia is not much more than hall the distanee between Liverpool and New York; and hence about half the quantity of Coal and Supplies would be required for the Passinge, between the former points.

It is quite obvions therefore that a Steamship construeted specially to run between St. Johns and Valentia, and for the purpose of carrying only Passengers and Mails, with such light Express matter as usually goes by passenger trains, would attain a mach higher rate of speed than existing Ocean steamers.

A rate of $16 \frac{1}{2}$ iniles per hour is thonght to be quite possible : the distance between Valentia and St. Johns is 1640 miles. At this assumed rate therefore the Ocem passage might be accomplished in 100 homrs.

With regard to the speed on land, it appears from Bradshaw's Railway . Guide, that the Irish mails are regularly carried between London and Holyhead at the rate of 40 miles an hour including stoppages, that the Irish Channel is crossed at the rate of 16 miles an hour, ineluding the time required for transhipment at Holyhead and Kingstown, and that the mails reach Queenstown some 16 hours after they leave London. Valentia is very little farther from Dublin than Queenstown, and on the completion of a Railway to Valentia, there is nothing to prevent it being reached from London in the same time now occupied in carrying the mails to Queenstown.

Galway has been mentioned as a proper point to connect with Ocean Steamers, it is fully an hour nearer London than Valentia, but propably three hours (in time) farther from America.

Althongh 40 miles an hour is a common rate of speed on the Railways in England, it is not usual to run so rapidly on this side of the Atlantic.

On the leading passenger Routes in the United States, $\mathbf{3 0}$ miles an hour including stoppages is attained, although a rate of 25 miles an hour is more commonly adopted.

On lines frequently obstructed by snow drifts, it is not easy to maintain in Winter a rapid rate of transit, but in Sumnser with the rail track and rolling stock in a fair condition of repair, there is no difficulty in running at the rate of 30 miles an hour with passenger trains; and therefore this rate of speed, may reasonably be assumed as that at which the mails might be carried overland, to various points hereafter referred to on this Continent.

Having fixed upon a practicable rate of speed by land and water, the time necessary for the eonveyance of the Mails from London to New York, by the projected rotite, may now be ascertained :

[^12]It is thes apparent，that without assuming a rate of speed at all exira－ ordinary，it would be possible to carry the Mails from London to New York in 171 hours，or $7 \frac{1}{y}$ days，by the ronte passing over Ireland，New－ foundland，and by the proposed Intercolonial Railway from Shippigan．

In order to compare the ronte referred to with existing lines，the results of the past year may now be presented．

PASSAGES BFTWEEN LIVERPOOL AND NEW YORK．

Name of Steamship Line．	West＇n．Pas．	East＇n Pas．	Mear．．
Inman Line．－Average of 52 Eastern and 52 Western passages．．．．．．．．	d．h．in． 131911	d．h．m． 121854	$\begin{array}{ll}\text { d．} & \text { h．} \\ 13 & 7\end{array}$
Shortest passages．．．．．．．．．．．．．．	$\begin{array}{llll}11 & 5 & 0\end{array}$	$10 \quad 50$	1017
Cunard Line．－Average of 27 Eastern and 25 Western passages：．．．．．．．．	111246	101142	110
Shortest passages．．．．．．．．．．．．．．．	9170	93	© 10

Passagks between southampton and new york．

Name of Steamship Line．	West＇n Pas．	East＇ı．Pas．	Mean．
Hamburg Line．－Average of 23 Wes－	d．h．m．	d．h．in．	d． h ．
tern and 25－Eastern passages	131146	12 1553	131
Shortest passiges．．．．	109	10170	1013
Bremen Line．－Average of 20 Eastern and 22 Western passages．．．．．．．．	$\begin{array}{lll}14 & 8 & 27\end{array}$	$\begin{array}{lll}12 & 9 & 42 \\ 10 & 19\end{array}$	13 13
Shortest passages．．．．．．．．．．．．．．．	10.17	10190	1018

From the above it will be seen，that while the mean average of all the passages，made between Liverpool or Southampton and New York，ranges from 11 days up to 13 days 9 hours；it is estimated that by Ireland，New－ foundland，and Shippigan the passage could be made in 7 days 3 hours， nearly four days less time than the lowest mean average，and two days
less than the shortest of $\mathbf{2 4 6}$ passages, if not the very shortest passage on record. These advantages alone are sufficient to attract the attention of business men, but the great recommendation of the Newfoundland route to most travellers, would be the shortening of the Ocean passage proper, from 264 hours (the average by the Cunard line) to 100 hours.

The above comparison has been made because the greatest number, and perhaps the best, Ocean Steamship Lines run to New York. A similar comparison with the Boston, Portland, and Quebee lines would show a result still more in favour of the Newfoundland route.

The following table, giving the time required between London and various points in North America, will show at a glance the great advantage which would acerue to the people of both hemispheres by the establishment of the shorl Ocean passage Foute. By this table it will be seen that the Mails from London, could not cinly be carried to all parts of the British Provinces, and to all points in the .Northern States, in a marvelously short space of time by the route herein projected, but that it is quite possible to deliver them on the shores of the Gulph of Mexico in nine days,-less time, in fact, than the shortest passages of the Cunard or of any other Steamers between Liverpool and New York.

Time required to carry the Mails by the Pronosed Short Ocean Passage, and by the Intersolonial Railway from Shippigan.

From	London to	St. Johns, N. F.	4 days		ours.
*	6 6	Shinpigau	5 "	20	6
*	6 6	Halifax. .	6 "	5	6
6	6 ،	St. John, N. B .	6 6	4	6
c	6	Quebec.	6 6	10	66
*	16	Montreal	6 "	16	*
*	6 6	Toronto.	$7{ }^{6}$	2	${ }^{6}$
"	6	Buffalo.	76	6	6
6	6	Detroit	7 "	8	${ }^{6}$
${ }^{6}$	6 c	Chicago	7 "	20	${ }_{6}$
"	6 "	Albany	7 "	0	${ }^{6}$
*	4 a	New York................	7 "	3	6
${ }^{6}$	6 6	Boston.	6 "	19	${ }_{6}$
i6	6	Portland.	6 "	15	*
${ }^{6}$	* ${ }^{\prime}$	New Orleans.............	9 ،	0	*

Having shown that by shortening the ocean passage across the Atlantic to a minimum, the time of transit between the great centres of business in Europe and Ainerica can be very greatly reduced ; so much so indeed that a reasonable hope may be entertained that the entire Mail matter passing betwcen the two Continents, may eveniaally be attracted to the new route, it may be well now to enquire what proportion of Passengers may be expected to travel over it.

Before 1838 the only mode of crossing the Atlantic was by sailing ships: the passage commonly occupied from sis: to ten weeks, until the
ge on tion of oute to r, from
introduction of a superior class of vessels known as th: American Liners; these fine ships made an average homeward passagc f 24 days, and an average outward passage of 36 days.

The year 1838 saw the beginning of a New Era in transatlantic communications. Two Steam vessels crossed from shore to shore; one, "The Sirius" left Cork on April 4th, another "The Great Western" left Bristol on April 8th, and they both arrived at New York on the same day, the 23rd of April; the average speed of the former was 161 miles per day, that of the latter 208 miles per day. *
"The Great Western" continued to run from 1838 to 1844, making in all 84 passages; she ran the outward trip in an average time of $15 \frac{1}{2}$ days, and the home ward trip in an average time of 134 days.

The Cunard Line commenced running in July 1840, with three stcamers, "The Britannia," "The Acadia," and "The Caledonia," under a contract with the British Government to make monthly passages.

In 1846, under a new contract, the Cunard Company undertook to despafch a Mail Steamer once a fortnight from Liverpool to Halifax and Boston, and another Mail Steamer once a fortnight from Liverpool to New York. This service has been maintained with amazing regularity and increasing efficiency to the present day.

These were the pioncers ot a system of Ocean Steam Navigation which has already done so much to increase the intercourse between the two Continents. By reducing the length and uncertainly of the voyage as well as the inconveniences, in many cases the miseries, which passengers had previously to endure, a vast deal of good has been accomplished.

The number and tonnage of Steamships engaged in carrying passengers and goods between the British Islands and North America has of late years increased with wonderful rapidity. In 1864 no less than ten regular lines of Ocean Steamers we, employed in running either to New York or to Ports north of that City in the United States or in Canada. Of these ten lines, two were weekly and eight fortnightly, equivalent in all to six weekly lines; so that there were on an average six Steamships leaving each side weekly, or nearly one every day.

The total number of Passengers carried by these various Steam lines during the past year was 135,317, and by far the largest number travelled during the Summer months.

It would not take a very large proportion of Passengers crossing in any one year to give employment to a daily line of Steamers on the short Ocean Passage route from St. John to Valentia or to Galway. A total number of 40,000 each way would give 200 passengers each trip, for seven months in the year.

[^13]It is obvious then that there is already abundance of Passenger traffic, if the purely passenger route under discussion, possesses sufficient attractions. To settle this point the advantages and disadvantages of the route must be fairly weighed.

The obstructions offered by floa ag iee during several months in the year, are insuperable while they last; during this period Halifax or some equally good port, open in winter, will be available.

The frequent transhipments from Railway to Steamship, and vice versd, may be considered by some an objection to the route; for the conveyance of Freight they certainly would be objectionable, but most passengers would probably consider the transhipments, agrecable changes, as they would relieve the tedium of the journey.

With regard to the comparative safety of this ronte, it would seem as if the advantages were greatly in its favour. The portion of a voyage between New York and Liverpool, which seamen least fear, is that from Ireland to Newfoundland. It is well knewn that the most dangerous part of the whole voyage is along the American coast between New York and Cape Raee, where thick fogs so frequentiy prevail ; this coast line is about 1,000 miles in length and it has been the scene of the larger number of the disasters which have occurred. No less than fouttern or fifteen Ocean Steamships have been lost on this portion of the Atlantic Seaboard:*

The route which favours increased security from sea-risks, and which is the shortest in point of time, must eventually become the cheapest and in consequence the most frequented. If then the route proposed across Newfoundland and Ireland avoids many of tiee dangers of existing routes and reduces the Occan passage proper to 100 hours, would not the eurrent of travel naturally seck this route in preference to others, especially when time would be saved thereby?

If, as it has been shewn, this route would reduce the time between London and New York some three or four days, and bring Toronto. one third nearer Liverpool (in time) than New York is now; if it would give the merchant in Chicago his English letters four or five days earlier than he has ever yet received them; if it be possible by this proposed route to lift the Mails in London and lay them down in New Orleans in less time. than they have ever yet reached New York, then it surely possesses

[^14]$=0$
affic, tracroute In the some versa, ance ngers they
in as oyage from crous York ine is amber fifteen oard:*
which st and across routes urrent when s time sesses
advantages which must eventually establish it, not simply as an InterColonial, but rather as an Inter-Continental line of communication.

These are parely commercial considerations, and however important they may be as such, the Statesman will readily perceive, in the project, advantages of another kind. It may be of some consequence to extend to Newfoundland, as well as to the other Provinces of British America, the benefits of rapid inter-communication. It will probably accord with Imperial policy to foster the Shipping of the Gulf and to encourage the building up of such a Fleet of swift Stcamers as a Daily Line across the Ocean would require. It must surely be important to the Eimpire, to secure in perpetuity the control of the great Highway between the two Continents. It must be equally her policy to develope the resources and promote the prosperity of these Colonies--and to bind more closely. b_{j} ues of mutual benefit, the friendly relationship which happily exists between the people on both sides of the Atlantic.

The Chart which accompanies this will show, the imporlant geographical position, which the British Islands and the British Provinces oecupy, in relation to the shortest line of communication across the Occan, between Europe and Amcrica.

CONTENTS.

pact
Letter presenting Report $3 \& 4$
Schedule of Plans and Profiles sub.nitted 586
Instructions and Preliminary Correspondence 8 to 15
Report 15
The Engineering staff. 16
Main Divisions of the survey 17
The Nova Scotia Division of the survey 18
Line No. 1 "
Line No. 2. 19
Line No. 3 "
Line No. 20
Tables of Gradients 20 \& 21
Distances by the several Lines 22
Lines Nos. 5 \& 6 23
Estimate of quantities 24, 25, 26
New Brunswick and Canada Division of the Survey 26
Air Lines 27, 28, 29
The Surveyed Central Line 33
River du Loup to River Trois Pistoles 34
River Trois Pistoles to Green River Forks 35
Green River Forks to R. Restigouche 38
R. Restigouche to R. Tobique 40
River Tobique to Keswick Summit 42
Keswick Summit to Little River 44
Little River to Coal Creek 46
Coal Creek to Apohaqui Station 48
Character of Grades on whole Line 51
Approximate quantities, ditto. 53
The Matapedia Survey (70 mile section) 54
Character of grades. 59
Curvature 60
Approximate quantities 6
Datum Levels 61
Fitness for settlement 62
Central District 63
Matapedia District 65
Various proposed Routes "
Frontier Routes 66
Line No. "
Line No. 2. 67
Line No. 3 69

Page.
384 58.6 8 to 13
Central Routes.
PAOE 70
Line No. 4.
Line No. 5 71
Line No. 6. 72
Line No. 7 73
Line No. 8. "
Line No. 0. 74
Line No. 10. 75
Line No. 11 76
Line No. 12. 77
Bay Chaleur Routes 78
Line No. 13 "
Line No. 14. 79
Line No. 15 80
Comparative Distance from River du Loup to St. John and Halifax 82
Distance of the several lines from the U. S. Frontier. 86
Commercial advantages of different Routes. 87
Local Traffic "
Through Freight Traffic 90
Through Passenger Traffic 91
Great Shippigan Harbour 93
Distance to Liverpool, England 94
do to Quebec "
do to Montreal "
do to Toronto "
do to Buffalo 95
do to Detroit. "
do to Chicago "
do to Albany. "
do to New York 96
do to St. John, N. B
98
98
Climatic Difficulties 9
Effects of Frost "
Heavy snow-falls 100
The Estimate of probable cost 103
Remarks on Engineering, (Expenditure on) 104
do Right of way and fencing, do 105
do Clearing, do 106
do Dwellings for workmen, do "
do A Telegraph, 107
do Bridging and Grading, do "
do Superstructure, 109
do Station Accommodation, 110
do Rolling Stock,
111
111
do Conting ncies.
112
112
do Uniform mileage charges
"
"
Estimate-Nova Scotia Division of Survey
do Surveyed Line River du Loup to Apohaqui
114
do Bay Chaleur Line

APPENDICES

(A)-The Agricultural eapabilities of New Brunswick-As indicated by its Gcological structure115by a practical survey and examination of itssoils117
by actual and comparative productiveness,-
Professor Johnston 123
(B)-Agriculural capabilities of the Matapedia district,—A. W. Sims. 126
(C)-Frontier Route, Line No. 1. Report on an examination of the country between Rivière du Loup and Woodstock,-T. S. Rubidge, C. E.131
(D)-Frontier Rouie, Line No. 2. Correspondence in reference to the extension of the St. Andrews and Woodstock Rail-way,-Wilter M. Buck, C. E138
(E)-Central Route, Line No. 8. Report on Exploration from Boiestown across the Tobique Highlands,-W. H. Tremaine, C. E.145
(F)-Remarks on the shortest lines of communication betwees America and Europe in connection with the contemplated Intercolonial Railway 148
Maps printed to accompany Report-General Map of the country between Quebec and Halifax,showing the various projected routes.
Chart showing the relative geographical position of the British Islands and British America with the shortest lines across the Atlantic, to accompany Appendix F.

Nititu•

Roberts \& Reintiold, Chromo-Litho Montreal.

[^0]: * "A parallelogram bounded on the soum-east by a line drawn trom Frederition to Chatham, on the north-east by a line drawn from Chatham to Metis, on the south-west by a lime drawn from Fredericton to River-lla-Lomp, and on the north-west by the settlements along the River St. Lawrence ;, about 90 miles in widh, by about 200 miles in length, and embracing nearly $18,000=$ quare miles, is both unseltlet and roulless,"

[^1]: "The fourth obstacle is the broad and extensive range of highlands which occupies nearly the whole space in the centre of New Branswirk, Irom the Miramichi Liver north to the Restigouche, Some of these mountnins rise to an altitude exceeding 2000 feet.

[^2]: " Large partics were thus emp. , ets at great expense for two seabone on this central and disect line through New lrunswick.

 Judging from the resulta of our lain'ras, from those of oftera, and the matural tillicutien of the country ns described, I do not think any furi, er explorations would be nttenderl with any marked difference of success,"

[^3]: * (New Brunswick and Canada Division of the survey.)

[^4]: * See Appendix A.
 *** See Appendix B.
 5

[^5]: * "A party was sent to explore for a line from the Mutapedin River, west ward, following the valley of one of its tributaries, nad thenee across to the Rimonki River, and from the reports I received from them it apperrs probable that a practicable line may be obtatined by following the valley of Metaii: Brook 5 miles below the forks of the Matapedia ami along a succession of Lakes to the Rimouski and by. the valley of the Torcadia to the Alerrsquash."

[^6]: * By Mr. H. Perley, lale Her Majesty's Emigration, and latterly Fishery Commissioner.

[^7]: * Tais route will be complete on the construction of a Railwny now in progress, and some 30 miles in length, by the Masoiwippi Valley. This shert Railway will connect the Grand Trunk, south of Sherbrooke, with the Connecticut River Line and form a direct route to New York.

[^8]: * Leller of the Honorable the Provincial Secretary, Quebec, 7h May, 1884.

[^9]: * The money payable for such lands and fencing shall forin a rounty charge, bit in the apportionment of the assessment the sessions shall have respert to the relative henefits derived from the railway by the several sections of the country, and shnll apportion the assessment accordingly. Chap. 70, Sec. 24, Revised Statutes of Nova Scotia, 1864.

[^10]: * Report to Honorablo the Cummistioner of Crown Landy, by A. W. Sims, November, 1648.

[^11]: * The features of the country assume an nir of expanse and importance different from heretofore. The trees become larger, and atand mpart; and wo entered upon spacious tuacta of rocky ground entirely clear of wood Every thing indicated our approaching to the verge of eountry different from that wo had passed over.

 On looking back towarde the sea coast, the scenu was magnificen!. We diecovered that, under the

[^12]: From London to Valentia at present rate of speed in England．． 16 hours．
 ＂Valentia to St．Johns， 1640 miles at $16 \frac{1}{2}$ miles per hour． 100 ＂
 ＂St．Johns to St．Georges， 250 miles at 30 miles per hour． $8 \frac{1}{2}$＂
 ＂St．Georges to Shippigan， 250 miles at $16 \frac{1}{2}$ miles per
 hour．．．15⿺⿸⿻𠃋丿又丶＂
 ＂Shippigan to New York， 906 miles at 30 miles per hoar． 31 ＂
 Total．．．．．．．．．．．．．．．．．．．．．．．． 171 hours．

[^13]: - These are not claimed to be the very firat Steamships that crossed the Atlantic, as, in 1833, Ave years earlier, Canadian vesel "The hoyal William" of 180 horse power and 100 tons burthen, atiled from Quebe. to Pictou, N. S., and thence to Loadon.

[^14]: * The following is a List of Ocean Stoamships lost on the Amorican Const between New York and Cope Race. It mav not lee strictly correct, as it ia compiled munly from recollection :

 The Columbia on Seal Island, Nova Scotia.
 The Humkelt mouth ot Halifax Harbour.
 he City of Philadelphia Cape Race.
 I he Franklin1 Long Island, New York.
 The Indian near Canso, Nova Scotia.
 The Argo. near Cape Race.
 The Hungarian Cape Sable, Nova Seotia.
 The Connaught Bay of Fundy.
 The Caledonia Cape Cod.
 The Anglo Saxon Cape Race.
 The Norwegian St. Paul's Island, Atlantic side.
 The Buhemian Cape Elizabeth, Portland Harhour.
 The Georgia Sable Ishand.
 The Pactolua Bay of Fundy.
 And another on Ragged Island, Nova Scotin, the name of which is not at precont remembered by the writer.

