IMAGE EVALUATION TEST TARGET (MT-3)

Photographic
Sciences
Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

Canadian Institute for Historical Microreproductions / Institut canadien de microrapreductions historiques

(C)

The Institute has attempted to obtain the beat original copy available for filming. Features of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
 Couverture de couleur

Covers damaged/

Couverture endommagde
Covers restored and/or laminated/
Couverture restaurde at/ou pelliculde

Cover title missing/
Le titre de couverture manque

Coloured mapa/

Cartes geographiques en couleurColoured ink (i.e. other then blue or bleck)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relic avec d'autres documents
Tight binding may cause ahadows or diatortion along interior margin/
La re liure serrte peut causer de l'ombre ou de ia distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whanever possible, these have bean omitted from filming/
II se peut que certaines pages blanches ajoutdes lors d'une restauration apparaiasent dans ie texte. mais, lorsque cele utait possible. ces pages n'ont f is út filmes.

L'Institut a microfilme le meilleur exemplaire qu'ill lui a dté possible de se procurer. Les ddtails de cet exemplaire qui sont peut-dtre uniques du point de vue bibliographique, qui peuvent modifiar une image reproduite, ou qui peuvent exiger une modification dens la méthode normale de filmage sont indiquts cl-dessous.

Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagea
Pages restored and/or laminated/
Pages restaureses et/ou pelliculdes
Pages discoloured. stained or foxed/
Pages decolordes, tachetdes ou piquees
Pages dotached/
Pages ddtachés

Showthrough/
Transparance
\square Quality of print varies/
Qualité inégale de l'impression
Includes supplementary material/
Comprend du matériel supplémentaire
Oniv edition available/
Seule édition disponible
Pages wholly or partially obscured by errata slips, tissues, etc.. have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement obscurcies par un feuillet d'errata, une pelure. otc., ont éte filmeses à nouveau de façon à obtenir la meilleure image possible.

This item is filmed at the reduction ratio checked below/
Ce document est filmó au taux de reduction indiqué ci-dessous.

The copy filmed here hes been reproduced thanka to the generosity of:

Library of Parliament and the National Library of Canada.

The Imagee appearing here are the beat quality poseible considering the condition and legilbillty of the original copy and in keeping with the filming contract specifications.

Original copice in printed paper covers are filmed beginning with the fromt cover and ending on the last page with a printed or Illustrated impreasion, or the back cover when appropriate. All other original copice are filmed beginning on the first page with a printed or lllustrated impreesion, and ending on the last page with a printed or illustrated Impression.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CON. TINUED"), or the symbel ∇ (meaning "END"). whichover applice.

Mapa, platex, charts, etc., may be filmed at different reduction ratios. Thoee too large to be entirely Included in one expoeure are filmed beginning in the upper laft hand corner. left to right and top to bottom. es many framee te required. The following diegrams illustrate the method:

L'oxemplaire film fut reproduit grace ito gendérosite do:

La Bibliothique du Porlernent ot la Bibliothique nationale du Canada.

Les imagee sulvantes ont ted reproduitee avec le plus grand sein, compte teny de le condition ot de le netiete de l'axemplaire filmb, ot en conformite avec lee conditions du contrat de Thrnage.

Lee exemplaires eriginaux dont la couverture en papler cot imprimds somt filmits en commencant per le premier plat et en terminant soit par la dernive pege qul comporte une empreinte dimpreacion ou d'illustration, soit per io second plat, selon lo cas. Tous lee autree exemplaires origineux sont filmde en commençant par le promidre page quil comporte une empreinte d'Impreasion ou d'illustration et an terminant par le dernidre page quil comporte une telle emprointe.

Un dee symboies sulvants apparattre sur lo dernikre image de chaque mierofiche, selon is cas: le symbole \rightarrow signifie "A SUIVRE". le symbole ∇ signifie "FIN".

Lee cartes, planches, tableaux, ese., peuvent itre filmie a dee taux de réduction diffórente. Loreque le document eas trop grand pour àtre reproduit on un soul clichd. il ceat filmd a partir de l'angle supdieur gauche. de gauche à droite. et de hout en bee, en pronant le nombre d'Images niceseaire. Lees diagrammes suivants illustrent la méthode.

REPORT OF PROGRESS

or

EXPLORATION IN THECOLSTRY

HETWEEN

LAKE ST. JOHN AND JAMES BAY

MADE UNDER INSTRUCTIONS FROM THE DEPARTMENT OF COLONIZATION

AND MINES, QUEBEC

BI'

HENRY O'SULLIVAN, D. L.S. \& C. E.

Mem, Can. Soc. Civif Engineer \& Innifector of Sunvivs; I. !.

QUEBEC

REPORT OF PROGRESS

0 F

EXPLORATION INTHECOLYTRY

BETWEEN

LAKE ST. JOHN AND JAMES BAY

MADE UNDER INSTRUCTIONS FROM THE DEPARTMENT OF COLONIZATION AND MINES, QUEBEC;

BY

HENRY O'SULLIVAN, D. LIS. \& C. E.

QUEBEC

RHPORT
 or

PROGRESS OF EXPLORATION IN THE COUNTRY

BETWEEN

LAKE ST. JOHN AND JAMES BAY.

To the Honorable A. Turgeon, Minister of Colonization and Mines, Quebec.

Sir,
In accordance with instructions from your Department, authorizing me to make an exploration of the country between Lake St. John and James Bay and to examine the shore line and take the necessary measurments and soundings to find the most suitable harbour there, to take notes of the general topography and geology of the country : soil, timber, climata, \&c., and to fimmish your said Department with a plan, protile, and report of the same stowing the obtainable grades and alignment, in view of future railway construction, for the development of that vast region, I have the honour to submit you the following report :

In 1872, my hrother, Jolm H. Sullivan and myself, under instructions from the Department of Crown Lands, took the levels from Lake St. John to tide water at Chicoutimi, and found the elevation of said Lake to be 300 feet above mem tide.

Starting with this elevation, 300 feet above datan, sen level, an easy grabe of one per cent takes us from Roberval Station, on the Quebec and Lake St. Joln Railway, over a gently rising swell, that attains an elevation of $\mathbf{Q} 50$ feet nbove the Lake, a little south of the division line between the parishes of N.-I). de Roberval and St. Prime, about five miles north of Roberval Village.

-4 -

Thence northword the land falls to less than a hundred feet above the level of the rake, hefore reaching St. Prime, but by keeping a little farther west, a lower summit and more uniform grades can be had.

Continuing northward io St. Felicien, and onward along the west or right bank of the River Chamouchaouan to beyond the north western outline of the 'lownship of Dufferin, any desirable grades and alignment may be had with comparatively light earthwork.

Following the river, there are several chutes mod rapids, the most important of which is Great Bear chute, shown by photo No. 3.

The total difference of tevel here, including the rapids and cascades, is $\mathbf{8 0}$ feet.

Next comes Little Bear chute, giving a total fall of $\mathbf{4 2}$ feet, but there does not appear to be any corresponding depression in the land on either aide, in fact, the country scems to be a gradual slope, gently ascending towards the northwest.

The lower strati, in the river bunks, are generally a good rich greyish blue clay; but are often covered with layers of poor sand from 5 to 10 feet in depth, particularly along the Pemoka or level stretch above the chutes.

Immediately above the north western ontline of the Township of Dufferin, begin the long rapids on the Chamouchouan.

For about six miles here, the river is nearly a continuous rapid, varying from ten to thirty feet per mile fall, and, strange, it keeps its general width of tive or six hundred feet right along, and spiends evenly over its well paved bowlder botiom

The only smooth water in Ω distunce of six miles, that is, from the foot of the long rapids to the mouth of the Big Stony Creek, or "Rivière du Cran," is a short stretch of about a thousind feet at the mouth of the Little Stony, or Otter brook.

This part of the line would be rather expensive, for the road bed would have to be cut out of the solid rocky side hills, that rise, in some places, from the water's edge at an angle of 40°.

Although there is no unsurmountable obstacle here, and easy grades and good alignment can be had, still perhaps an easier line may be had, by following the valley of either the Salmon and Doré, or the Poplar river, which run nenrly parallel to the main river, on the west side. This will be referred to again further on.

From the Big Stony River, up to the Chandière falls, a distance of about 13 miles, the river Chamouchuouan runs in a neaily straight line, between bold side hills on either side, but there is generally room for a good road bed all along.

Upper Sturgeon Falls
(Nottoway Waters)

Falls on Rupert River

Lower Sturgeon Falls

(Nottoway Waters)

Falls on the Rupert

The Hat Rapids, White Spruce Rupids and Hawk Rapids, with some other sinall rapids nul currents, in this stretch, give 100 feet difference of level, or nbont 8 feet to the mile.

Hawk momitain, on the north east side, nhout three miles helow the Chaudiere falls, hown by Photo No. 5, rises soof feet ahove the level of the river. Opposite there, on the somth-west side, we must begin to rise on the easy side-hills, to overcome the sudden clevation of the Chamdiere falls, which give a total rise of 110 feet to the level stretch, at the mouth of the River Chigobehe, where the elantion is 810 feet ahove sea level, as shown by the accompanging phan and pootile.

We examined the main river Chamouchouan, from there up to the Nikaubau, lint found its course so tortuons, and the country, on either side so uninviting, that we abandoned at, in favor of the valley of the River Chigohiche, which offers a much easier und shorter route to the same point, viz: the Junction of the Nikanban and Ćhamouchoum Rivers, as shown on the plan.

I took photos of all the chutes and cascades, \&e, and fished in all the waters.
We caught some splentid ounmoniche at the foot of the Chaudière falls, hut above that point they do not ascend.

There are some splendid fishing pools on the Chigobiche River, swarming with pike and doré, pickerel, \&c, but no speckled trout or onnmuiche are found there.

Lake Chigoliche is a magnificent sheet of water, about twenty miles in length, and varying from one to two miles in width. Its elevation is 1106 feet above sea level.

We followed its west shore for nbont thirteen miles and thence crossed over hy an casy portage nbont a mile in lenght to a sinnll river, that winds through a low valley, and empties into the south end of Lake Chamouchounn, as shown on plan.

Looking sonthwaril from Lake Chigoliche, a chain of mominins seems to inn in a sunth casterly direction, and the Indians say that a level route can be had along their base, rinht down to Roberval ; at all events, I think that the valley of the Sahmon and Dore Rivers might be reached in that direction, which would sho:ten the ronte, and avoid the rock cuttings on the Chmouchounn River.

Lnke Chamonchounn is another fine sheet of water, about ten miles in length and from half a mile to a mile and a half in width. Its elevation is nbont the same ns that of Like Chigobiche, 1106 feet above sea level.

From here, we explored two different rontes towards the height of land; one by a fair sized river nul chain of lakes bearing west from Lake Chamouchouan, and the other by the Nikaubau, and crossed the watershed at three
different points. The elevation of the summit, on the most sonthern route, is 1240 feet, the central summit, 1230 feet, and the most northerly summit 1200 feet above sen level.

The distince in a direet line from Lake Chigobiche to the most northerly summit is about 45 miles, and the difference in level is less than a hundred feet, and beyond the watershed, there is very little difference of level for several miles in the direction of James Bay.

The distance along the height of land between our mont northern and southern summits is about 15 miles.

Therefore, the Height of Land or sommit between the St. Lowrence and James Bay waters, in this region, may be more properly called a vast elevated gently rolling plain : there are no high momatains or deep valleys, the different waters interlock, and I venture to say that some of the lakes may discharge both ways during spring freshets.

The country between Lake Chamouchouan and the height of tr id is a sandy loam, well wooded with black and grey spruce, trmarac, bouleau, \&c, from 8 to 16 inches in diameter, a vast improvement on the country between there and the surveyed townships of the Lake St. John basin, which is mostly all second growth, since the conflagration of 1870.

Unless that the climate of that elevated region should prove unfavorable, there is a great extent of land fit for settlement in the environs of Lake Chamouchouan, and between there and the height of land.

I never snw such an abundance of goosebervies and currants as along the rivers here; the currants were remarkably large, clear skimed, ard most delicious in flavor, superior to any garden currants I ever tasted ; they were fully ripe about the beginning of August.

The moment we begin to descend the opposite slope, both soil, timber and climatic indications visibly improve.

The geological formation along the Chamouchouan river, and over the height of land, is gneiss and granite, but about ten miles beyond the watershed, we strike the Huronian rocks, and thence onward, we generally find rich clay soil with alternate outcroppings of sedimentary rock gneiss, granite and syenite.

We passed through seve:al large and beautiful lakes unknown to geography on the nameless river we followed from the height of land down to its junction with the discharge of Lake Chibougamou. These will be more fully described in a subsequent report as soon as my plans and profiles of that section are completed.

One of these lakes is about thirty-two miles in length, with many wiming bays and beautiful islands.

Its shore line mensmes wer 200 miles, and is genernily well timbered wit'. large white and black spruce, tamatac, poplar and bouleau, \&c.

Some of the sproce here is over two feet in diameter, and from seventyfive to ninety feet in heireht.

Near its north eastern end, a large liver comes in from the south east. The Indians go ly this river to the Hudson Bry Company's posts, on the River St. Manriee, and they say that there are more rapids and falls on it than on the river re descenderl, which would show that the land is higher in that direction

My Indian guides say that spring opens far earlier here than in the region of Lakes Ascatscie and Chamonchounn, that the ice is generally off early in Msy, and that they are often delayed by ice a week or a fortnight later on the lattor lakes on their way out with their furs to Lake St. John.

I took astronomical observations at different points on this lake, nud find that it lies between Intitudes $49^{\prime \prime} 12^{\prime}$ nud $49^{\prime \prime} 32^{\prime}$ North, and longitudes $75^{\prime \prime} 04^{\prime}$ and $75^{\circ} ? ?^{\prime}$ West. Its eleration is 974 feet above sea level.

Tb re are no speckled tront in these waters, but they are well stocked with s'rgeon, pike, pickerel, whitefish, grey trout, \&c. I saw a large sturgeon ${ }^{\prime}$ rise n or onf canoe, that would certainly have weighed over a hmolred pour s.

From the confluence of these waters with those of the Chibongamou, a i sad majestic river flows with swift current and a few slight rapids down to Vaswanipi, falling 66 feet in about 30 miles.

The distance from the height of land to Wuswanipi by our canoe route is abont 150 miles, and the difference of elevation from the lowest summit above mentioned is 325 feet : the country is level or gently undulating, very few mountains can be seen in any direction, and the fall is pretty evenly divided over the entire distance; therefore any desirable grades and alignment can be had for railway eonstruction throughout this section.

Arriving at Waswanipi, I was informed, by Mr. David Baxter, the gentleman in clarge of the Hudson Bay Company's post there, that no harbour conld be had at the mouth of the Nottaway River : that, possibly, one might be found at the mouth of the Rupert River, or in Hannah Bay, but that the month of the Nottaway was choked up with islands and sand bars.

This made me alter my course, for certainly if no port could be found at the mouth of the Nottaway, and that one could be had in Hannah Bay, the line should crosis the river at Waswanipi, und strike directly for the mouth of Hannah river.

All the Indians who knew the ronte by the Nottaway had gone to their winter hunting grounds, and the few that remained there only knew the way by a chain of lakes northward to the Rupert.

The main object of the expedition, as far as the practicalility of eomstructing a railway from Lake St. John, over the height of land to Waswanipi, was successfully aseertained, and before may line from there to the sealoard could he chosen, some point on James Bay where, aceorling to my instructions "ressels of sufficient dranght for the navigation of Hulson's Bay cond enter" should be decided m.

Any way, the season was too late for me to attempt reaching James Bay with men who did not know the route by the Nottawny, in time to take any soundings or measurements there, and reach home before winter set in, and the information I had obtained from the Geological Deportment, regarding the country from Waswanipi to James Bay, via the Nottaway River, satisfied me that no serions obstruction was likely to be met with in in that direction.

I therefore sent back some of my Lake St. John men, in charge of one of my assistants, to complete the topography of the routs we hal followed, mil I engaged new hands at Waswanipi, who knew the route from there to Rupert House.

Mr: and Mrs. Baxter were exceedingly kind to us and rendered us every sorvice they possibly could.

I was pleased to see the interest that gentleman has taken in farming: it is not often that you find a Hudson Bay Company's man doing much in that line. Certainly, the man who chosed the site of the post had not that object in view.

I told Mr. Baxter that if the Railway passed there, he would likely find his honse taken away by a steam shovel some fine morning, for it is built on the finest gravel-pit I ever saw, and the whole knoll shown in photos Nos 41 and 46 is of the same material.

Still it is surprising to see the fine vegetables and grains he has grown there. I never saw better cabbage, carrots and turnips, and he gave me samples of whent which he had grown from seed raisel there the your before, and other wheat which he had grown from seed obtnined from the agricultural form at Ottawa. They are equally good, and can compare favorably with wheat grown in any other part of the province.

The surrounding conntry is all level, rich chy had and Mr. Baster is clearing up a piece of ground, not far off that will cortninly give still better resulte.

I left him a thermometer and he kindly agreed to keep a daily record of the temperature, and rain and snow fall and send me the reant ly the winter packet.

Myself and assistants had n swim in Lake Wiswanipi, on the !th September, and fome the water warmer than we fomal that of Lake Chigobiche, in the middle of August

WASWANIPY POST, FROM HAY I,ANDING, IIUDSON BAY CO.

WASWANIPY POST AND MO('ND. HTDSON BAY CO.

OUINANICHE FISHING ON NORTH OF LAKE ST' JOHN

CHETE: GRAS, RIVER CHIGOHICHE.

SCALE
HORIZ. 10 FEET TO 1 VEAT.

PRDFILE OF OROSS SEOTION
RUPERT RIVE AtHBC Comparrs.'Post rpam. mitual survery

EXTREAK HISN TIOE
MGN WATEA NEAP TIDC

8

$\dot{P} R \square F \mid L E$
OF CROSS SECTION OF TH NOTTOWAY RIVEF immediately above high tide

SCALE HORIZ. SO FEET TO 1 VERT:

CORETHE
29 Nov. 18.9

HJJH. water mapk

$P R D F I L E$

ROSS SECTION OF JFERT RIVER
AthB Compatars.'Post
spom, mitual survey br

DIS:HARGE 3,000,000 :UB.FT. PER MINUTE AT OROINARY

Low watea

$$
\begin{aligned}
& \text { Dikllivian } \\
& \text { D. Z. . K G. G. }
\end{aligned}
$$

```
RDF|LE
```

S SECTION OF THE.
OWAY RIVER
ely above high tide.
ACTUAL SURVEY BY
4.000.000. CUB. FT. PEA
MINUTE AT OADINAFF
LOW WATEA
-E
SOf'FROM BANK to Brink

MR. O'SUR,IGVAN SWIMMING IN HUDSON BAY, OCTOBER 3RID, IK97.

MR. \& MRS. GORDON IN THEIR GARDEN AT RIPPERT HOUSE.

MAI,F-WOLFF, HAI,F-ESQITMAULTT DOGS AT RUPERT HOUSF.

HUDSON BAY CO'S HETABI,ISHMENT' RUPHR' HOUSE.

HUDSON BAY CO'S SCHOONER "MINK" IN WINTER QUARTERS AT MOOSE FACTORY.

The
a subseq pleted.

I tr the rout region.

The
rising g of the g portion

Thi
interior tide wot the " M 'Taylor's of the t Ph will giv showing will ṣho sented t

Ib pany's as show

Th
velocity flow of I f is 51°

Th
assistar
wild ge and oth well, w

M
were w on the line fre

The country from Wisv mipi to Rupert House will be fully described in a subsequent report as soon as my plans and protiles of that section are courpleted.

I transmit you, in the mena-time, some photographic views I took along the route, which will show that there is no searcity of water power in that region.

JAMES BAY:

The Hudson Bay Compnny's post, enlled Rupert Honse, sitanted on a. rising ground, on the left or south bank of the Rupert River, about a mile enst of the general shore line of the Bay, commands an excellent view of a grent portion of the broad bny und surrounding eomutry.

This is the principal depot, from which the enstern and south eastern interior posts are supplied. It is situated about midway between the head of tide water, and the open hay, and the Hudson Bay Company's schooner, called the " Mink", shown by Photo No. 77, which to use the Commandant, Captain Taylor's own words " She can go mound the world" emn enter here at all stages of the tide.

Photo No. 69, which I took from the top of a haystack enst of the post, will give you an idea of the extent of the establisment : and Photo No. 70, showing Mr. and Mrs. Gordon in their girden, taken on the 29th of September, will show that the climate there is not so inhospitable as it is sometimes represented to be.

I began by mensuring the eross-section of the river bed, opposite the Compuny's store, and took the levels from extreme high water to low water mark, as shown by the accompanying profile.

The sectional area of Howing water at low tide, was 15600 feet, and the velocity, 200 feet per minute, which, with due allowance for friction, gives a How of at least $3,000,000$ eubic feet per minute.

I found, by a mean of two observations, one of the sun at his meridian passage, and one of polaris at upper transit, that the latitude of Rupert House is $51^{\circ} 29^{\prime} 25^{\prime \prime}$ North.

The manager of the est bblishment, Mr. J. Me'Tavish, was absent, but his assistant, Mr. Gordon and his ig ool wife, reeived us most kindly. Goud roasted wild geese, stock-ducks, whics, snipe and plover, with mealy potatocs, eabbage, and other vegetables, washed down by a grood pitcher of Bass's brown ale, go well, when one comes out of the woods.

Mr. Gordon provided us with a lirge four fathom canoe, and men who were well acquainted with the Bay from Rupert House to Moose Factory, and on the 29th September, we beym taking sonndings and sketching in the shore line from the Rupert to the mouth of the Nottaway River.

As we proceced with the work, it hecmene evident that a better phan than muy that lons yet been male of the shore line, should be constructed to ndmit uf pheing the somndings in their proper position.

This requirel more time than I comld posisilly devote, without running the risk of lwing frozen in there for the winter ; for although the environs of the bny never freeze until well on in Nosemher, the chains of lakes that must be crossed, near the height of land on every canoe ronte between there and the outskirts of civilization on the St. Lawrence waters, are never sufe to rely on crossing with canoes after the 15 th of October.

I therefore confined myself to making a rapid sketch of the coast to the mouth of the Nottaway, to the taking of certnin sounding there, and fixing astronomicnl points to control the work, nnd left my nssistants to complete the measurements and soundings necessary to constract a correct mul reliable plan of the same.

While at the mouth of the Nottaway, I mensured the cross-section of the river nhove high tide, as shown hy the ncemipmying protile, and found that the discharge of that immense river is about fome million ($4,000,000$) enbic feet per minute at ordinary low water.

I fomed the latitme at the head of tide, in the Nottaway, to be $51^{\prime} 10^{\prime} 00^{\prime \prime}$ North; and abont a mile below, or north west of this point, I foum $2 s$ feet of water within ten chains of the right or easterly shore.

There is no donbt that a grool harbone can be had here for any sized vessels ever likely to mavigate the Hadson Bay waters, bat the channel from there to deep water in the Bay, may repuire a certain smomnt of dredging, the extent of which, owing to the lateness of the season, I conld not take time to ascertain, but it can be given in a subsequent report, as soon as the necessury measurements amol somolings are taken.

On my way to Moose Factory, I examinel the const line all along, and touk astronomien olservations, and some odd somalings at different points on the way.

At Point Comfort, the most northern point of the tongue that separntes Rupert Bay from Hammah Bay, I found the latitnle $51^{\prime} 39^{\prime}: 32^{\prime \prime}$ North.

We were delaye 1 here lay the wind, on the 3 rol of October, and I enjoyed a refreshing lath in the salt water, which, I mast say, was not colder than I have often felt it at Talonssac, Rimomski, and Site. Amne des Monts, in midsammer:

We entered Hamah Bay at high tile: lat before we cond cross it, the tide was gome, and we could see nothing lat same bars fior miles all around : and at the moutl of the Monse River, we were stack on sand lars abont seven miles out from shore.

1 believe that the Provinee of Quelne holds the key tor the mavation of

- 11 -

those vast northern waters, fin from what I have seen, I mum emationt that no port can be fomme at Hammah Bay or Moose Factory, and the most experienced movigators say that no sale purt can he found on the westarn side, south of the mouth of the Chmehill River.

The exedlent level elay land that horders the southern pmet of Janes Bay, from beyond the Rupert River, wownar I to Moose Factory, and for 200 miles still westwaril, along the Moose amil Miss monabie River: the countloss numbers of will fowl, grees ', dueks, suip: phover, \&e., seen on the way, with many other interesting notes on the bay and it surommings would be too lengthy to describe with justice, in this report.

The levels were earefally an I continuonsly workel ont from Lake St. John to James Bay. mul they ngroul sumpining well with those I had taken via the Ottawn Vialey, and wer the luight of land to Waswanipi, in 1894: see Commissioner's Report, 1s95.

Barometrical and thermometrical rendings were daily taken, and I gave my assistants, whom I left at Rupert Buy, prrticular instruetions to continue those observations, and to take note of every thing that might be of interest to the Department the nmount of rain, hail or snow fall, winds, tides, tish, game, \&c.

The lowest thermoneter remling we had on the whole expedition was $31 \frac{t^{\circ}}{}{ }^{\circ}$ above zero Fahrenheit up to the 9 th of October, when the thermometor fell to 27° alove zero at Monse Factory.

When this cold dip set in, I left there in a hurry, for I had still nbout 340 miles of rivers, lakes and po:tages to cover hefore reaching Missanabie Station, the nearest point on the Canadian Preitic Railway to Moose Fnetory but the weather soon heenme mild agnin, and we reached the maiwny in fourteen days.

About 40 miles above Moose Factury, we passed through splen lid beds of gypsum.

I regretted lieing unnble to remain longer at Mosse, ns much for the kind treatment l received there, as for the interesting information they were ready to impart on every sid.". The Right Reverent Dr. Newnham, resident Bishop, Mr. Broughton, the Hulson Bay Compnny's heat factor, and Cuptain Taylor, who has been navignting Hulson and Junes Bay for the list thirty yenrs, gave me every information they conld, and did every thing in their power to make my sojourn there as phasment and agreeable as pussible. I was pleased to see the intereat the Lorll Bishop has taken in farming and gardening.

Here is a list of some of his garlen stuff, which the Right Reverend gentleman give me in his own hand writing, with full liberty to use it as I pleased:
"Splendid celery, tomatues, vegrotale marrows 15 to 40 lls . each, salsify,
kohl mai, curmots, parsuips, turnips, heets, peas, hems, all kinds of eahlage, cauliffower, rhabarb, red and black eurrunts, lattuces, radishes, herbs : all a good size, some not to be beat anywhere."

In the foregoing pares, I spoke of the spruce, and other indigenons trees met with after erossing the height of land ; in a sulsequent report, more details will he givell of the general iopography, fish, game, Sce, as soon as my returns are completen.

In the virgin forest, spruce, fir, tamarac, and cypres, or Banksian pine are the clief conifers, while the deciduous trees are limited to poplar of different varieties ; white hirch, willow, alder, hazel, pembma am similar undergrowth, with occasionlly hack ash nlong the river null hke shores.

1 saw no white pine, and although the cyprès or Banksian pine is decidedly a native of that region, it is only in the dry burnt districts, and on the poorer heights in the neighbourhood of Lake Nemiskan, on the Rupert river, that it was seen in abmodnce, in fact, pine of any kind seldom flourishes on such rich elay soil as is found in the basin of the Nottaway.

There is an abundance of spruce and tamarac, wherever the country has not been burnt, but the larch tly is rapidly destroying the latter timber, and more so towards the height of laml than in the vicinity of James Bay.

Here and there, areas, more or less extensive, have been swept by fire, from 25 to 50 years ago, and are now well grown up with poplar, white birch, sprnce, thmarace and cypres of fair size accordiag to age, insuring an abondance of pulp wood for ages to come Pulp is the intustry of the coming age, black spruce is the king of woods for pulp making, and this country is the home of the black spruce.

We have a lig country to develop, and our knowledge of it is very limited.

Up to 1894 the resomres of all that region bomed on the north by the Rupert River, on the sonth by the height of Land dividing the St. Lawrence from the James Bay waters, and on the west ly the province of Ontario embracing an area of some 50,000 squate miles was practically unknown.

Mr. John Bignell on the part of the Quebec govermment and Messrs. Richardson, Cochrane and VeOant on the part of the geolugical society penetrateal a certnin distance here and there beyoml the watershed, but not fiar conough to thoow any light on what the eomatry was like.

In 1894 , mulde instructions from the department of Crown Lamds, I crossell the watershed from Grand Lake on the Ottnwa and penetrated the opposite slope to heyoud Waswanipi, and made known the existance of the mighty rivers that hrain the comatry there mul how by the Nottoway into Rupert Bay. See map of said exploration with necompanying outline map from Commissioners report of 1895 , transmitted herewith.

The year after (1s9:5) Dr Bell of the Géological Department, following the same ronte, empleted the survey of the Nottoway down to its mouth, and with Mr. Brock as assistant explored some of its branches and connecting canoe routes in 1596 ; lont of the $(67,000,000$ acres additional aren recognized as belonging to the provinee 1 am snfe in saying that more than half of it has never been seen hy white man, if I except perhaps some Hudson Bay Company's, coureurs de heis, in scareh of furs.

Messis Calbraith, Law and Enton, have done considerable work on the Rupert and East main rivers, and in other parts between there and Hanilton Inlet, but the mexplored area is yet far in excess of what has been explored-

Mr. A. P. Low says, on page 5 : L of his very interesting report on the Lalmodor peninsula, dated Ottawn, 1896 : "Very little is known officially or otherwise concerning the fisheries of that great inhand sea, Hudson's Bay, and a great amoment of wealth may be lying dormant in its waters for lack of knowledge concerning its fishories."

Mr. G. F. Builhargé, late Assistant-Commissioner of Publie Worka, at Ottawa, and his brother, Mr. Charles Baillargé, our indefatigable Quebec City Engineer, have given a grod deal of attention to this subject, and have each put in pamphlet form atout all the information available concerning the bay and its environs. We find therein, among other things, that accorling to the United States Commissioners of Fisheries for 1875-76, their whalers made at least 50 trips to Hudson Biay, bringing home cargoes worth $\$ 1,371,000.00$, or of an avernge value of $\$ 27,240.00$ per trip per vessel, during the oleven years prior to 1874. As many as 200 white whates have been killel at one tide at Port Nelson, which, if valuel at moly $\$ 100$ ench, give $\$ 20,000,00$, a nice figure for one day's catch.

It takes these whalers two yenrs for one cargo, for they are unable to pass in and out of the Hudsem straits amb make their catch in the same year. While if we hal : milway cummmiation, with whalers at Rupert Bay we could have two cargos the spring and fall entch for ench vessel every gear.

Lignite exists in the valloy of the Moose River, and anthracite has been foum on :un istand, on the mast coast of Hudson Bay, and geologists say that conl may be found on the istamls of James Bay.

From the sreat manher of mworn limestone flags and bowlders, containing very distinct fowils, I believe that sonse of the shonls or low islands in the Iny mist he limestone hods, mat that portions of the same are yearly detached hy frost and are dropped here and there along shore by the melting ice

Nearly all the metals are fombl in the Haronian formation bordering on the Lamrentian, and athongh [dif not tind any thing of sufficiently remarknble importance to attract pinhie attention in this home of Klomlyke fever, I have no donht that a more themong examination of the conatry I passed throngh, between the height of hand and James Bay, will result in the discovery of minerals of economic value. In some places mugnetic iron is sufficiently
abondant to turn the compass needle nearly end for ead. See Report of Commissioner of Crown Lands for 1895, pare 104.

The shore line of James mad Hudson Bay following the enst coast from the mouth of the Nottaway, the mest southem point of the bay, to Cape Westenholme, the southern entrance to Hulson Straits, measures, in a nearly due north line, 800 miles, about the smme distance as the former point is north of the city of Washington, and the western shore line measured in the sime way, exclusive of bays and inlets, from the month of the Nottaway to Rowe's Welcome is about 1609 miles, and the area embated hetweon these limits amounts to upwards of 350,000 siquare miles.

It must he remembered that although the Hulson Straits are parked with ice, and are impracticable to mavigate during nine months of the year, and I may say commercially, impracticable at any season, the hay itself, within the limits above deseribed, is always open for mavigation from June until November.

James Bay is generally open early in May.
Notwithstanding the different reports to the contrury, there is no great irregularity in the tides in Rupert Bay.

The difference between high and low water mark at neap tide is 7 feet, and at spring tides about 15 feet.

At Moose Factory, the wind has a wonderful effect on the tide. The day I arrived there, it was blowing n strong south west gale, and we did not perceive any rise at all during the time of high tide, lut the following day the wind changed to north, and during high tide the water rose some ten or twelvo feet.

This must be owing to the inmense sand bars that extend for several miles seaward at the mouth of the Moose river and all along the western shore of the bay.

I believe that the wind must have the same effect in Hannah Bay, for the mouth of the river is divided into two separate channels by a large islami, and these chamels wind crookedly through the sand bars and muddy flats that extend seaward as far as the eye can reach.

I do not think, however, that the wind has much effect on the tide where the water is sufficiently deep: for the days I spent in Rupert Bay, it hew pretty hard from different points of the compass, and I did not perceive any difference in the tides worth mentioning.

Herewith, you will please find n map which is a photographic reluction of one I made on a large scale to nccompany my lecture on Northern Canada, and though roughly made, every point of any importance is shown thereon in its true geographical position. (See the " Bulletin of the Geographical Society of Quebee, for 1897 "). It shows the doubly alvantngeons position of the month of the Nottaway, to control the future trade of that immense region.

All the large rivers, the Albany, Moose, Hannah, Nottaway, Rupert, Eust- oint is north in the same ay to Rowe's these limits are parked the year, and If, within the e until No-
is 10 great is 7 feet, and
e. The day tifl not perwing day the some ten or
for several restern shore

Bay, for the e island, and ly flats that
e tille where Bay, it !lew perceive any
iic reluction ern Camada, thereon in hical Sueiety of the month on.

Rupert, Eust-

$$
\square
$$

$Z=$
Catching White Fish at Lower Falls on Rupert River

Main and Big liver eonverge hore, and the foreat wealth of the thousands of mikes, drained ly there mighty streams, and others of lesser note, can be coneentrated at either the month of the Nottaway or Rupert Rivers.
'Ihis alone, with the groat aren of good clay land, fit for settlement on either side of the line shomid has suflicient inducement to secure the construction of the railway.

I know that the comatry is worthy of development, and that it can be more adiantageonsly developed by the continuntion of the Quebec and Lake St. John Ruilway, which line would puss through the centre of the most valuble part of the newly acquired territory, while the others would, at most, only touch its western extremity.

Until adequate railway communication is had there, the vast ressources of all the territory north of the height of land will remain dornisnt and of little or no practical utility to the Province : and any well directed expenditure made liy the Province for its development would incalculably enhance its credit.

Nodoult ii a Rnilway were built along the route I followed, the numerous water powers that are found at convenient intervals, some of which are shown by the nccompraying Photos, would soon become sites of industry, and at the sume time, centres of colonizntion.

I am afraid, however, that the Quehee and Lake St. John Railway Company is at present unable to carry out so huge an undertaking, as the construction of some 380 miles of railway throngh an unbroken forest without very substantial aid from both the Provincial and Dominion Governments, and the enlistment of foreign capital.

To enlist this foreign capital, it must be shown that it is a safe and solid investment; and for that reason, I ask liberty to whl a few remarks, which, I trust, will show that the project in question is not merely one of local or provincial interest, but that it is insepurally connected with other interests of the highest national importance.

Many projects have been on foot to reach James and Hudson Bay by rail, to secure the traftic of that vast inland sea, even to the amphibious idea of reaching the Klondyke via Missunabi, Moose Factory and Chesterfield Inlet; but the projectell line from Lake St. John to the mouth of the Nottaway has beyond all this the mmistakable prospect of becoming at some, perhaps, not too far distant date, part of the shortest, safest and most economical, all year round, transeontinental route letween Europe and the Oriental empires.

This projected transcontinental line, as shown on the plan, would cross the - Nottaway at the head of tide water, where the whole river is contracted to a width of 1450 feet fom lank to hank, and the central or longest span need not exceed 500 feet, as shown by the accompanying profile.

Thenee, a direct line to Norway Honse, at the foot of Lake Wimipeg, would pass through the gypum beds on Moose River and give aceess to a vast area of rich agrienltural land in the northern part of the Province of Ontario.

Hanmah Bay does not exteme so far sonth east as is shown on our phans of that region.

This straight line continued would strike about the forks of the Peace and Smoky rivers, which point is considered to be abont the e-ntre of the fertile northwest what growing region, and thence follow the salleys of the Peace and Skeena rivers to the Pacitic Ocean, crossing the Rocky Mountains, where the summit is two thonsmad feet lower than that, of the Canalian Paeitic Rnilway.

The resources of the Peace and McKenzic River hasins were examined by a solect committee of the Senate of Camula, mul a report, of the sme was published by the authority of the Dminion Parliment, in 1888.

According to said report, there is a possible aren of $656 ; 000$ square miles along the McKenzie river, suitable for the growth of potatoce, $407,0: 0$ square miles suitable for the growth of barley, and 316,000 square miles suitable for the growth of wheat; that there is a pastoma area of s 860,000 squire milus, 26,000 miles of which is open prairie with occasional growes, the remainder being more or less wooded, and that 274,000 square miles inching the prairie may be considered as arable land; that the difference of latitude makes no corresponding difference in the climate : flowers bloom as early in spring amm as late in antumm, at Great Slave Lake as at Wimipeg, or St. Paul and Minnenpolis: the prevailing southwest, or Chinook winds render the climate along the Peace and Lind Rivers ans mild and salubrious as that of Western Ontario.

Wheat ripens along the McKenzie river under the Arctic circle, a thousan 1 miles farther north than Rupert Honse.

With this vast area open for settlement, it is needless to say that the shortest and best route thence to the Emopean markets must prevail.

The Husdon Straits, as already stated, are commercially impraticable. The defective working of the compras, owing to its proximity to the mugnetic pole, which, according to Gauss, is in latitude $73^{\prime \prime} 3.5^{\prime}$ North, and longitade 95, 39^{\prime} West, the frequent fogrs and mists that leave the marines with only the sounding line to depend on, to battle with the flowing ice and ice-lergs of Davis Stmits that block the entrance between Cape Chatleigh and R -sohtion Island, in July, and sometimes, in Augnst, mul the fiells of sheer back sheet ice, ten or more feet in thickness, that sweep down through Fox Chamel and bock the other entrance to the Straits at Digges Island in soptember, remder the maigation here masufe and minsmable.

Wimniper, is to a vast of Ontario. sul phans

Peacs and 'the fertile f the Peace ains, where ian Pacific
amined by e same was pare miles ,00 sípure sllitable for ta re milas, remainder the prairie makes no ring ant ns ad Minnene nlong the intirio.
a thousan l
y that the
il.
1 maticable. e magnetic 1 longitule honly the ce-hergs of R solution anck sheet hannel and erer, render

See Lieutenant Gordon's reports published by the Dominion Government, in 1884-85-86.

For similar reasons, no all, year-round available port can be had on the Labrador coast, and therefore, the shortest available route is via Quebec.

Via $\mathrm{Ha}!\mathrm{Ha}!$ Bay and the Saguenay, would be shorter, but the ice remnins too long there in spring, and owing to the difficulty of getting return cargoes there, trading vessels might often have to go one way empty.

These arguments have been very unjustly used against Quebec, but every spring, the Ocean steamers can load at the Quebec wharves, and cross over to Liverpool before the ice is off the Saguenay river, or off the St. Lawrence River, between Quebec and Montreal, and in the autumn, these rivers are always closed in November, while there is seldom anything to hinder the largest ships in the world to ply between Quebec and the open ocean until Christmas. It is well known that when the ice takes early at the Chaudière, our port is always clear the rest of the winter, and a bridge with good atutments at the narrowest part there would, I believe, secure this result every year.

It is not unusual for ships to be detained a week, or a fortnight at the Quebec wharves, waiting for the ice to move off' of Lake St. Peter. They might be here a month earlier, if they wanted to come.

As regards return traffic, when cars have to be freighted to or from any place west of Montreal, the difference of 170 or 180 miles on such level lines as the North Shore or Grand Trunk Railways, cannot be considered a serious obstacle to reach a port where the fleets of the world can ride in safety.

Nature destined Quebec to be the emporinm of trade between Europe and North America; even from San Francisco, the distance is shorter to any European port via Quebec, than by any port on the United States coast.

It is useless to work against nature. The more we denude the forests and the more we dredge and sweep the channel the more the water will evaporate, and the sooner will it How off; and the diversion of a good portion of our waters at Chicago will certainly not improve the shipping facilities on the St. Lawrence above tidal water.

We have had examples enough, last summer to open the eyes of the general public.

Nature has provided every thing for Quebec: A deep water shore line, with very little interruption on either side of the river from the Louise Basin to Cap Rouge, a distance of nine miles : and if more rocm is required, a canal may be made along the St. Charles valley, giving wharfage room on both sides, right up to Cap Rouge, at moderate cost. This canal might be fed by
the Des-Meres, St. Charles, Ancienne-Lorette and Cap Rouge rivers, making Quebec, once more, an island, as it certainly must have been in ages gone by;

The Jacques-Cartier, the St. Charles and Montmorency, on the north, ard the Etchemin and Chaudière rivers, on the south, can furnish unlimited electric power, \&c., which, in this age of lightning and steam, is a necessary adjunct to a growing city.

Frontenac, on arriving in Canada wrote home as follows :
" Rien ne m'a paru si beau et si magnifique que la situation de la ville de "Québec, qui ne pourrait pas être mieux postée, quand elle devrait devenir un " jour la Capitale d'un grand empire."

Which translated reads thus :
" I have never seen anything so fair or so grand as the site of Quebec. " That city could not have been better placed, had it been purposily intended " to become the Cupital of a great empire."

The more we study the geography of our country, the more strikingly true do we find the above prophetic words.

The question may however be asked that since Quebec has such natural advantages, why is her trade languishing, why are her wharves idle, in a word why is she at a stand still?

To this I would answer, that had our own representatives been true to their trust, had our capitalists been endowed with the same spirit of enterprise as those of our sister city, and had our people possessed a better knowledge of the geography of our country, Quebec the cradle of the Dominion would still. be the Commercial Metropoles.

It is the only port on the Atlantic slope that can rival New-York.
It is as close as the latter city is to St. Paul and Minneapolis, $\mathbf{3 0 0}$ milesnearer to Winnipeg the centre of North Ainerica, and 469 miles nearer to Liverpool.

With a bridge at Quebec, the winter traffic could continue on to the Canadian seaports, via the Intercolonial, or still better by the proposed route that would leave the Intercolonial at St. Charles, and run directly by the valleys of the Rivers du Sud, Noire and St. John to Edmunston, and, thence, via the Ristigouche, to any point on Baie-des-Chaleurs, that may be chosen in connection with the now strongly advocated Galway route.

The line from Edmunston to Moncton has been already surveyed, which together, with the direct line from Quebec and the North Shore Railway, would make the distance from Montreal to Moncton 150 miles shorter than via

Quebec. ntended
rikingly
natural a word
true to terprise ledge of uld still.

0 tailes
sarer to
the Ca . 1 route by the thence, osen in

the Intercolonial, nad some 40 or 50 milles shorter than by the so called short line vin Sherbrooke and Mattawamkeag.

The accompaning profile shows the grades of the said so called short line' compared "with those of the projected line to James Bay.-See Sessional Papers of the Province of Quebec. No. 29, vol. 19-3 of 1886.

Of course, if the much talked of blocking of the straits of Bellisle were ever carried out, the St. Lawrence would be, no doubt, navigable to Quebec all the year round.

This is no idle dream: it is only a question of money.
The building of a dike or dam nine or ten miles in length, with an average depth of 200 feet, where the most suitable material for the same can be had on the spot, is not a very stupendous undertaking where three nations are concerned.

If the combined interests of Great Britain, the United States and Canada were fully weighed, the money would soon be available, for the cost would be trifing, compared with the material benefits to be derived therefrom.

As water must come to its level, so must the main current of through transcontinental traffic, sooner or later, follow this proposed lin: from Quebec to James Bay, and thence, to the month of the Skeena via the Peace River Valley.

This northern crossing of the Rockies was strongly recommended by Marcus Smith and other engineers of high standing at the time of the construction of the C. P. R'y.

The whole line will lie from three to four hundred miles north of the C. P. Railway, assuring a more uniform temperature for the transport of the cereals and other products of the West : it has 2,000 feet lower summit, easier grades, and hetter alignment, ic will develop a world of territory now inaccessible, and besides being so far from the frontier, it will form a safe Military line, in a word, a back-bone so the country, in case of hostilities; and with all this, it will bring the distance from Great Britain to China and Japan, to be about 600 miles shorter than by any other practicable route.

I know I will be criticised for this apparent digression, and some may think my ideas rnther extravagent ; but it must be remembered that modern engineering has rendered quite practicable now many projects that would have been considered absurdities some years ago.

I was young, but I remember the time when the promoter of the Union Pacific Railway, in the American Congress, was asked by another very important member if he was in his sober senses, and if so, why should he try to impose
on the Government the extravagant and impracticable iden of building a railway neross the Rocky Mountains?

The Uuion Pacific Railway has been built, and five other railways besides it, in the United States, across the Rocky Mountains, and we have built one in Canada : therefore, I have every reason to believe that before long, we will build another one.

The whole humbly submitted.
I have the honor to be,
Sir,
Your most obedient servant,
(Signed)
HENRY O'SULLIVAN, D. L. S. \& C. E.
Member Can. Society, Civil Enaineprs, Inspector of Surveys, P. Q.
Lorette, 99 th November 1897.

