The Institute has attempted to obtain the best original sopy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurés et/ou pelliculéeCover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur

\square
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

\square
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

\square
Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible. ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.

Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/ Pages restaurées ct/ou pelliculées

Pages discoloured, stained or foxed/
Pages décolorèes, tachetėes ou piquèesPages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-tête provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

PUBLISHED BY THE DEPARTMENT OF AGRIGULTURE FOR THE PROVINCE OF QUEBEC.

Table of Contents.

\qquadForest-treè planting145
Colonisation and Railroads 145
Ornamental trees by Charles Gibb; with engrawing. 146
First steps in Farming - (Young man's D.tpartment) FarmyaruDung151
Combined Rake and Rol.er (with engraving) 152
The Rust.-Uredo Scgetum (with engravings) 12
Vetrensars Depara yiest, Diseases of the Horse's F'oot. 154
inarculture, Paris letter 155
Jobnston's Harvester (with engraviug) 156
A Successful Silo 150
Dairying; Allender, on 150
The Jontreal Horticultural Society 160

FOREST-T.REE PLANTING.

An article appeared in our December number, from the pen of the Honorable Mr. Joly, on the necessity of planting our uncultivated lands with forest trees, and on the bust plan to be pursucd to that end. The author informs us that he has just finished sorving a piece of land with from 10,000 to 11,000 nuts of Black Walnut. At four feet intervals each way, that is, with 2,500 plants to the acre, this planta. tion would cover about 4 aores of land. It is probable that no such extent of land has been plonted with forest trees in Quebes at one time, since the establishment of the province. Mr. Jo's has promised to kecp us iaformed as to the progress of his work, the results of which will be, if his former attempts of the same sort may serve.as a guide, that the falure next summero will be fund to be not more than five per cent of the nuts somn.
This is progress, indeed I And it may not be out of place to reanmmind that prizes of considerable value should be offered in, if possible, every parish, to those who have succeeded best n making plantations of forest trees. This should be the duty of the Agricultural Societies and of the Agricultural Clubs their funds cannot be appiied to a better purpose.
Would it not bo mell to form a provincial society for the encouragement of the re-planting of the country? Our colamns are open to all those who are desirous of contributing to this ${ }^{6}$ most desirable movement, and it seems to as, that if a hundred well wishers to the project were to suberibe one dollar a piece, the project would not fail to secure the immediate assistance of the provincial legislature. Who knoms but that He might bo able to offer prizes, considerable enough in amount to cnsure the plantation of forest trecs in several counties as yearly, even, as next year. The editors of the Journal of Agriculture, three in number, will do their part Fith all their hearts. We trust nany associates may be found to aid as in our endeavour, and me beg our readers to for Frard us their opinion on the subjeot as soon as possible.

COLONISATYON AND REILROATS.

Tho following reflections, which we place before our readers, arise from the low prico which the government receives from the sale of the crown-lands of the provinco. We are foreibly struck with the idea that, if the method of disposing of these lands were entirely changed, they would bring in coormous sums to our exchequer; and, at the same time, the progress of colonisation would be amazingly developed.

What does the government receive by the sale of a square mile of the public lands at the present prices of from 20 ets. to 30 cts an acre ? In the one case, $\$ 15680$, in the other $\$ 23520$-just about enough, exaggeration apart, to pay for the surveying and road-making! And more, these lands, when sold, are long before they are colonised; for the means of communication are so imperfect, that the exportation of the products is hindered greatly. Upon due consideration of these facts, the following ideas are submitted to our readers:

We have already sroken in our journal of colonisation railroads. Let us take up the subject again. A railroad that traverses a wooded region increases the value of the whole district for at least fifteen miles on each side of it, or, in the whole, a belt of thirty miles in width is increased in value from 30 cents an acre to $\$ 1.00$.

It is admitted, that a first class railroad can be built across our public lands without drawing a cent from the provincial treasury; and that, by means of this line, an almost unlimited amount of colonisation can be developed.

But there is another feature of this question which seemes to be neglected, the federal goverament derives a derect revenue from each new colonist. The federal government then has a direct interest in encouraging the construction of colonisation railroads, since it reccives all the bencfit of the customs and excise duties, and every increase, whether of population or of commerce, tends, directly, to angment its revenue. What expectation, then more reasonable, than that the opening up of the public domain of the provinces by railroads should be encouraged by a liberal subsidy from the federal government? Wo have said that the feder-1 government benctits especially by colonisation. In fuct, for the local goverament it is a source of direct expenditure, the revenue being only very indirectly assisted by it. On the other hand, the federal government reaps the direct profit, which, as far as it is derived from the regions traversed by the railroad, will be largo in proportion to the wealth acquired by the colonists. In these districts, not only will the land be brought into cultivation, but, thanks to the railway, the woods will be utilised, the mines ransacked for their treasures, and trade of every description will stat into life.

Lict us consider, for instance, the application of the idea to ono of the finest districts of our public domains, namely, that which is situated between Lake Nipissingue and Quebec. If Te trace, on the map of the Dominion, an imaginary straight line, starting from Quebec and passing by the river Mataman to the north of Late Nipissingue, we shall see that
its length measuring only to the Matawan, will bo 367 miles. Now, a railroad running over this line will traverse one of tho finest lumber districts of Canada. There, would be the trac stem of the great Canadian Pacific, the one most appropriate to the development of colonisation, of our mines, and of our forests. Add to all this, that it would be the shortest route for the transport of the riches of the west to the seaport of Quebec.
How numerous are the advantages of such a line, when viewed in detail! In the first place, it would be only seventeen miles longer than the presont line (trace) of the Canadian Pacific from Matawan to Montreal, thus offering to the fedoral government by far the nearost route by which to connect the Pacifio and the great International line. 1t would ast as a most fecund feedur to this road, by supplying it with the rich produotions of the vast regions which it will throw open to trade and commerce. A fer leagues, only, separate it from the great centres of industry and colonisation. it would pass within about fifteen miles of the establishment of the Oblatc Fathers, at Desert, on its road to Quebeo ; then, it would leave the district colonised by the Rev. Mr. Labelle, on the Riviere Rouge, 9 miles to the south, and, further on it would traverss the Brassard township, a short distance from Messrs. Brassard's works, on its road to join the Piles railway, thus binding together all these great establishments, and putting them in direct communioation with Quebec.

What a stride in advance would this cause the district to take. It would not be long ere, all along the route, new industries would spring up of their own accord, and the proprietors of the great timber livits of the Ottawa valley would find it their advantage to forward thoir lumber dircot to Quebec, on its road to the wurkshops of the older contivent.

When, in the construction of the new line, we arrive at les Plles, we find ourselves in direct communioation with Quebee, via The Piles branch, and the Q. M. O. and 0. road. And owing to this fact, it will be permissible to put off to a later period the building of the last part of the direot line from The Piles to Qucbec. In addition to this, the railroad in question will put us in commanication with the valley of Lake St. John, by the line now in course of construction in that direction.
Thus, then, a grand trunk line would be opened. passing through a country ovenfowing with riches of every kind, placing in commuuication with each other lines of industry already in opuration, serving to start others intu life, and giving us a road through the very heart of a country, now for the most part an uncultivated desert. The land would at once briag an appreciable amount of revenue into the iederal treasury, our sationanty would benefit by an increase of popalation, and, above all, it would afford a sure asylum for those unfortunate countrymen of ours now in exile and in danger of losing that national and religious fecling which is the distinguishing characteristic of the Canadian race.

The articles from the pens of Mr. Gibb and Mr. Pattison, written for the Montreal Horticultural Society, have been kindly forwarded to us for publication. The advantage gained by their being so carly in the hands of the public will bo evo dent to all our readers.

ORNAMENTAL TREES.

not natives of the province of guebed, by charles gibb, abbotsford.
(Wrutten for the forthcoming reporl of the Montreal Horticullural Sociely.) sozus.-Mulberry.
There seems to be one variety of this tender tree of probable hardiness here. Last winter proved severe for most of
the kinds in the experimental grounds in Washington. Of these, the Alba Moreltiana from China and the Constantino politana appoared tho most hardy.
The Broussonctia or pap r Mulborry is tender some distance to the South of us, and Downing's Evorbearing is not perfectly hardy North of the city of New York.
Russian Mulberry.-It is to this I wish to draw special attention. It is said to have been introduced by the Menno. nites into Nebraska from lat. 49 on the Volga. This would be about 180 miles South of Seratov, a climato, I am told, very nearly as severe as that of Montrcal.

Some think that it is a cross between the M. Nigra or black mulberry of Persia and the M. Tartarica of Russia.
The Fruit Record says that "trees the seed of which was planted five years ago, are twenty fect in height and sis inches in diameter, and have borne full crops of fruit since they wers two years old. Color of fruit red and black, flavor sub acid. In Russia they are used as we use raspberries and blackberries. Large quantities of this fruit are sold annually in the markets of Russia. The trees grow very large, frequently reaching a height of fifty feet. The timber is hard and durable and the fence posts made from it have the lasting qualities of catalpa or red cedar."
"Tho Russians also use it as a hedgo plant, and it stands shearing as well as any tree on the list. It also grows as reatily from outtings as cottonwood or willow. Last year cuttings made trees from three to five feet in height. The tree is perfectly hardy. Meroury thirty degrecs below zero and not even the twigs injurcd."
The above statement is like many others which have been made about it, and, evon if we make some allowance for the enthusiaum which surrounds new things, yet it seems worthy of fair trial. I procured one dozen trees iast spring. Now our Abbottsford I.G. Assoc. is introducing it, I hope others mill do so also.

padlownia.

P. Imperialis.-This is a strikiag tropioal-looking tree, from Japan, with large catalpa-liko leaves. It is a favorite street tree in Brooklyn. In Boston there is a medium-sized tree of it in the Public Gardens, but, I a m told, there is scarcely another in the neighbourhood. At Rochester it is said to stand, though its flower-buds are often hurt. We cannot hope to grow it as a tree, yet if cut to the ground in the Autumn, and heavily mulohed, it nakes a growth of 6 or 8 feet, the following season. Its leaves are often 1 foot or more in diameter, and on that account decidedly ornamental.

paellodendron.

P. Mandshurica.-This tree was introduced a few ycars ago by Prof. Sargent, at Busy institute, Jamaica Plains, Mass. It has large Butternut-like foliage, and grows to a height of 60 ft . in its nalive land. Mandehuria is that province of China which runs northward into Siberia, as Maine does into Lower Canada, and lies between lat. 42 and 53 . It is a country whose climate is much like our own, but with fora very different, a country from which we may expect a great many useful and interesting plants. All trees, however, from the Southern part of this Province may not be quite hardy here, and I regret to say the yearling shoots of the Phellodendron killed back somowhat with mo last winter.
P. Japonica.- More recenily introduced at Busy Institute, is a good grower, and shoots its terminal buds there without hesitation.

platanus.-Plane.

P. Occidentalis. American Plane or Bultonwood.-This is a tree of large size, and of colossal diameter of trunk, common in the milder portions of Ontario and the States. It thrives best in a deep loose moist soil.
Mr. Drummond mentions that trees of it used to grow
about London, Ont., whioh measured $15-20$ foet in girth. And Scott mentions a tree in Cayuga Co. N. Y. with a hollow interior of 15 feet diamoter. It was formerly plantod a good deal as a streot tree.
I only know of ono tree of it in Montroal. It is on tho West sido of St. Lawrence Street, just above Sherbrooke, ${ }^{\text {a }}$ treo some 30 feet in height and apparently hardy. It ehould be tried for the sako of varicty.
p ()rientalis. Eastern Planc.-This is the tree that has been chosen to lino the avonue leading to the Horticultural Hall, on the Centennial grounds at Philadelphia, and the front avenues to the Capitol at Washington. It is intended also to plant it along the boundary ruad, on the four sides of of the district of Culumbia, which would make a drive of 40 miles under the shade of this beautiful tree. It is a native of the Levant, Asia Minor, and Pcrsia, but I am sorry to gay not quite hardy at Rochester.
porulus.-Poplar.

This is a race of rapid growers. Especially useful for retreeing our treeless country. "I never nuet a tender Poplar" said Mr. Brown to nie. I have dono so, and yet I cannot nanie a kind I know to be tender. Kinds from Southorn climates as a rule, do not suffer from our sovere winters.
P Alba. White or Silver Poplar ur Abelc.-This is a very common tree in Europe, where it is found growing to a height of 80 or 90 fect. It is a tree of Northern habitat, being found as high as latitude 57 but it is also found plentifully in Northern Africa, Persia, and the Caucasus. There are also extensive traots of it in France, and its mood is that commonly sold in Paris as the "buts blanc." It is of very rapid growth, and, as a young tree or shrub its silver-lined leaves are very ornamental. It is ". The Poplar that with silver lines its leaf." When older it cannot be suffered in gardens on account of its pernicious babit of suckering. I have seen its suckers growing as thick as oats in an oat field. As a street trec it is said to stand smoke and dust well, but its growth is rather spreadiag except for wide avenues. It soon becomes bowed with age. A tree in the Public Gardens at Boston only 20 years old, appears to have been planted for at least half a century. On very dry soils the leaf is small, and the tree quite looses its ormamental character, but in moist soils, closely grouped with trees of dart foliage, and especially in windy situations, it forms one of the finest contrasts with other trees.
Var. Cancscens is much like the above, but is less white oo the under side of the leaf, and therefore, less ornamental.
Var Nivea.-I ean see no differenco between this and the common Abele, though I have them growing side by side.
P. Angustifolia is a narrow-leaved variety from Utah, where it grows to a large size. Its diminished leaf-surface seems adapted to those dry regions.
P. Balsamifera. Balm of Gilead is a well known nativo tree. I especially wish to call attention to a variety growing in Longueuil with leaves as large as the basswood. One tree is in the main road, half way between the parish church and the road leading to the wharf.
P. Caroliniana. Carolina Poplar.-Whis tree is a favourite in the strects of Washivgton, especially for damp soils, where it is called a sanitary tree, on account of the amount of evaporation from its large leaf-surface. It is one of the best of the Poplars for a street tree. In Washington, 13 miles of street have been planted with Poplar, the larger part of these with this variety. In leaf and growth it is much like our own Cottonwood. There are two fine trees of it in Montreal, introduced from the South, some years ago. They may be seen about 100 yards west of the West-End of Bel. mont Street.
P. Crispa Lindleyii is a rapid grower, with leavas long and very narrow. yet liko those of an clongated Balm of Giload.
P. Fastigiata. Lombardy Poplar.- Scott speaks of this as "A silvan sentinol," its tall, spiral form being cespooially effectivo when grouped with round headed treeg. It is porhaps difficult to say of whero it is a native. It has beon planted in Lombardy and France, and in other placos, as a road sido tree, to a most monotonous ostcnt. There, it is altogether over-planted. But here under-planted. Thoso who have como from old France, and brought their "Lares" with them should plant this trec.
P. Greca pendula. Athenian Weepiny Puplar.-A native of the Archipelago, is, in leaf, like our common trembling Poplar, but of weoping habit of growth.
P. Grandidentuta is a native tree, growing to a height of 30 to 40 fect haviug large massive loaves with indented margins.
P. Grandidentuta pendula. Weeping Tooth-leaved Pop-lar:-This is the finest of tho Weeping Poplars that I have seen. When top-grafted it hangs in graceful parallel lines around the stem. I planted three trees of it. which after the first winter began pushing their buds without any idjury, but, in each case. they were unfortunatoly grafted on some tender stock, whioh winter-killed. Poplars liko moist soil, and the very dry place in which they were planted may account for their failure.
P. Monilifera-The Cotton-syood so common in the West is also a native of our Province. It is a very rapid grower aud one of the best where quick shade is nocded.
P. Nigra pendula is, in leaf, mueb like some others, but more pendulous than any except grandidentata

Parasol de St-Jutien is a varicty from France much like Gracea.
P. Molundifolia-Round leaved Poplar. A species from Japan, with roundish leaf, and rather pretly.
P. Suaveolus, is a narrow-leaved variety from Northern Asta, received through Dr Rigel, of St. Petersburg, by Prof. Sargent. Possibly it is a variety of Balsamifera.
_arna species from Turkestan, also recoived from Dr. Rigel. It has a leaf much like the Abele, but in nursery is as erect as a Lombardy. Tho tree is now too young to predict ies form in middle and old age, but a silver-leaved tree as erect as a Lombardy would bo an aoquisition indeed.

- Another varisty of unknown name I have already desoribed in the Journal. Grand old trees of it may be seen between Longueuil and Varennes, whioh as I was going down by steamer, I mistook for Elms. At a diotance it certainly does rival the White Elm in both size and grandeur. However it is olumsy in twig, and has rough bark, even on branches but 3 inches in diameter, and bas a leaf like a Cotton-wood.

I am told that it is not a native, and suppose it may have beca brought out from Europe, by the early Frenoh settlers along with the Lombardy and Abele.

Pterocarpa.
P. Fraxinifolia is a tree related to the Walnuts and Hickories. It does not seem to have been long known in this country; yet it was introduced into Europe loag ago from the Caucasub, as the Juglans framiniolia. It proved only just hardy at Paris, and, I have been led to believe that those more recently brought to the States are not likely to prove hardy here.

Pyrus Sorbus, Mountain Ash.

This is a highly ornamental speoies of tree. well adaptea ± 0 severe climates. It is pretty in leaf, and fower, and atill more so when bearing a profusion of bright red berrics in the autumn. One fault , however, it has. It is affected with borers,
which, I should think, could be as easily dug out of a Mountain Λ sh as out of an apple or peach trec.
P. Lucupuria-European Muntain Ash.-This is a larger tree than our native species, it has finer foliago, and is, I should say, decidedly more ornamental. It is to bo found in very cold districts in Europe, ceen on the shores of the gulf of Finland, near St. Petersburg. It should be planted freely.

Var. Latifolia. Broad leaced Mountain Ash.-This has broad leaves, downy underneath. I have not seen it in fruit, but its foliage is quite striking. There are several other varicties, of curious foliage, well worthy of a trial.

Var. pendula. Wepping European Mountain Ash.-It is always budded or grafted, 6 feet from the ground, and forms a curious drooping tree, very eficetive if properly shaped. It is just as hardy as other species.
P. Aurea Ilybrida. Golden IIybrid Mountain Ash.Seems a vigorous grower and has large cordate leaves, very dovny aud whitish beneath, well worthy of trial.
P. Domestica. True sort, or Service trce.-Is a native of parts of Middle and Southern Europe. I have not seen it, but it is said to have foliage like our native, and to bear larger berries, which are often eaten as are medlars, when partly decayed. Mr. Brown tells me that there are trees of it in good health on the Côte des Neiges Road.
P. IIybrilla Quercifolia. Oak-leaved Mountain Ash.Has foliage lobed like an oak, and bears flowers and fruit like the others. It has proved a good hardy tree in a very exposed situation at Como.

> Quencus. Oak.
"It is a fact" says Scott " that not more than one Ameri. can out of every thousand has ever seen the full expansion of a white oak grown to maturity in the open ground."
Are there any such trees in this Province? T might ask. If not, centuries must pass before they can be seen here. In England there are oaks believed to have been old in the time of Wiliam the Conqueror. The largest specimens mentioned by Loudon are from 48 to 78 feet in circumference of trunk. No wonder it is spoken of as

> "Jove's omn tree (1)

That holds the woods in awful Sovereignty."
The oak is often planted in England as a boundary tree, to mark boundaries between countries or properties. If such were the custom here, how much more beautiful our country would be a century hence, and how easy it is to drop a few acorns here and there.

The oak is a tree of very varied form and foliage. In the group of oaks in the grounds of the Department of Agricul ture at Washington, Q. Daimio is as massive in leaf as a magnolia, another (Q. Pedunculata ptero, hylla dissecta of Britain) has long. thread-like leaves with thread-like laterals, more fringy, and not less acrial or feathery than an Imperial cutleaved alder. The Willow oak (Q. Phellos) has leaves much like a willow, the \mathbf{Q}. IX. Pedunculata fastigiata as erect as a Lombardy Poplar.

Of European oaks Q. Pedunculata and Q. Sessilifolia are found as far north as lat. 60. in Finland, and lat. 50 . in Russia. The Q. Robur known as the Royal oak of Britain, is found from Sweden to Barbary, so that its habitat gives no clue to hardiness. Mr. Brown, nany years ago, grew a number of young trees from Scotland, which proved quite hardy in nursery. Yet I can only hear of two or three trees about Montrcal, and these are in a very sheltered situation.
Q. Cerris or Turkey oak has proved hardy in Montreal, though a very, very slow grower. In Washington it was killed to the ground. The fact is, Q. Cerris is a speoies of
(1) "It may wall be called Jore's tree, since it drops such fruit." As you like il.
great variety found throughout Central and Southern Europe, and parts of Asia, of very varicd beauty, and varied hardiness, some are even over-green. The Q. R. Pendun. taraxicifolia of Britain, has pretty purplo foliage, but was hurt by winter in Washington, while the Q. Siderosylon of Meaico, along side of it, was not injured.
Our first experiment should be made with our American species. Our own White Oak has scarcely a rival, though slow of growth. Our Red Oak grows much more quickly into a large spreading round-headed tree.

The Mossy Cup, or Over Cup, or Oak? (Q. Macrocarpa) is "a beautiful tree, more than 60 feet high," says Mi chaux, with " leaves often 15 in. long, and very much indented." I have not seen it, but it is well known, as it ia a native of Manitoba and the Western States. It is a fast grower and very ornamental. Mr. George Dawson, however, tells me that that found in Manitoba seems to be a different species, a tree not much more than 30 feet in height, and shorter in leaf and acorn. One of the most admired of these varicties seems to be the scarlet oak, (Q. Coccinea) a tree I do not know, though it is a native of our own Province. The white Chestnut Oak (Q. Prinus palustris) does not seem to ho of Northern habitat, but the Rock Chestnut Oak (Prinus monticola) grows in groups in dry rocky places on the shores of lake Champlain. Downing considers it" the finest of our Northern Oaks " though it does not attain large size. The Yin Oak (Q. Palustris) is a tall pyramidal tree of rapid gromth, which makes a fine strect tree. There is a fine ave. re of it at Flushing, Long Island. However, it is not a tree of Northern habitat. The willow leaved oak (Q. Pbellos) is seldom seen North of Nen York. One foreign oak I must speak of,-the Japanese Oak (Q. Daimio). It hasdense massive foliage, and is a good strung grower, and the specimens I saw in Washington and I-ong Island suffered no injury from last winter, a winter there of previously unknown severity.

> nobinia. - Lecust or Acacia.

The airy lightness of foliage, and long clusters of blossom of the Locusts would make them general favourites, if theso advantages were not counter-balanced by weak points.
R. Hispilla. - Dloss or Rose Acacia.-This tree has very attractive foliago, and long olusters of rose-coloured fiowers, in the early summer. It is of rapid, spreading growth, scems hardy for a few years, and then dies suddenly. It however replaces itself in a very short time. It is quite rommon in some parts of the Province.

Far. Grandilora.-Is a pretty dwarf tree with larger leaves, and said to have larger flowers. It has not yet been tried here.
R. Pseud-acacia.-Iellow Locust.-This is quite a pretty tree whon young, but lacks beauty as it becomes old. When old it has, as Scott says, a look of seedy gentility about it. It has too, a most pernicious habit of suckering, so that, as an ornamental tree I do not recommend it, as a rail and fencepost tree it is worthy of our thought. Mr. William Bromn had some of these trees 40 . ft., in height, and 30 years planted which seemed quite hardy, and I see some old trees of it about Montreal. Forty little trees which I planted in the spring of 1880 , have made a growth during the last tro years very nearly equal to the Poplars of different kinds along side of them. The durability of the wood is weil known, and it is of casy and rapid growth, and on that account the fences on all the best furms in Pennsylvania and other Stetes, are made of it. However, it becones badly af fected with borers, and, if this be the same borer that attecks our Apple trees, then let us be on our guard in planting this tree. (1).
(1). It was this Locast that Wm m . Cobbott tried to get plantod on 8 large scale in England, some 70 years ago.

Vur:Umbraculifera.-Globe or Parasol Acacia.-This is a pretty little lawn tree, of dense foliage, and globular outlino, well worthy of trial.
R. Glutinosa or Lescosa.-Tho Gium or Clammy Locust.Is a smaller tree than the yellows Locust and of more Southern habitat. Mr. Brown had some of these trees ten feet in height, and 15 years of age, which were quito hardy.
salisburia. - Ginkqo or Maiden hair tree.
S. Adianlifolia.-Is a botanical curiosity. It is a resinous tree, and yet has a leaf, and it is unlike that of any other tree, and resembliog the maiden hair fern. It is a native of China and Japan where it attains large size. The largest tree I bive seen of it is in the Boston Common, - a tree of about 15 inches in diameter, and 35 ft in height. This has been chosen for the avenue leading up to the Department of Agriculture at Washington. We seem to be upon the estreme Northern limit of its culture, and yet a tree has stood with me in a very exposed place unhurt during the last trio winters. I aun also told by Mir. Bcall, genera! agent in Montreal for Morris, Stone and Washington of Toronto, that there is one in Durocher Strect about 10 ft . in height, and apparently quite hardy, and that many trees of it planted in Montreal stood last winter without injury.
salix.-Willow.
The Willow family embraces an immense number of varie ties of all sizes and forms, from creeping.plants to gigantic tres. Some are not hardy with us, whilo some are of cen Artic habitat. S. herbacca, and S. Artica says Loudon approach nearer to the Pole than any other ligneous plant.
S. Alba.-Whte Whllow.-This is found over the greater part of Europe and Northern Asia. It is well known here, and has also been planted largely in the Western States, as a rind-break and fuel tree. It well cut back, it soon makes a lire fence, especially useful in swamps wherc posts heave with the frost.
S. Babylonica.-Babylonian Weeping Willow.-This is one of the most beantiful of all trees, and a great favourite wherever the climate is not too severe. It is a native of the North of Africa, America, Japan and China. Chinese pictures are always introducing it, showing it to be a favourit r there. It grows well about Niagara. It has been tried here, but will not stand.
S. Caprea Var. Pendula.-Kilmarnock Wecping Wiblow. - Is pretty well known. Grafted 5 or 6 feet from the ground its forms an umbrella-shaped head unlike almost any other tree. Mr. Brown imported it from Scotland, just as it was beginning to be propagated, and it proved quite hardy with him. I have seen it in many places showing no signs of winter injury, yet it sometimes diee suddenly. Mr. Beail tells me it has thus done badly with Colonel Rhodes at Quebec.
Dry soils are not suited to most Willows, though the English Goat Willow is said to be found in their dryest pastures. In the States it is largely planted on a great variety of soils, set is not spoken of there as of uncertain life. A ferr postmortem examinations would explain this.

I recommend that this variety be grown also unoo its own root, and tied to a stake to keep its leading shoot erect. I sam a tree of it grown in this way at Flushing, - a tree of striking cccentric form.
Yar. Tiricolor.-Tri-coloured Goat Willow.-This tree has leaves clouded and shaded with white, and is quite pretty in contrasi with others. It should be top grafted.
S. Laurifola.-Laurel-leaved Willow.-Is probably a native of Britain. It bas large and very dark glossy lenves, and is appropriately named. I have seen largo bushes of it, 30 ft . in height, in Central Park, Where it was very effectice. At Abbotsford it has not been injured at all during
the last three winters in my bleak exposure, and I do strong. ly recommend its trial.
S Longifolia.- I took a fancy to this in the Botanio gardens at Cambridge Mass,, and they kirdly sent me cuttings. It has a long glossy leaf, and reduish stem. It is a faster growere nnd less loafy, and only on that account less ornamental than the Laurel-leaved.
S. Palnzifolia.-Palm.leaved Willow-This has small deep green leaves, and very red trigs. It is a fast grower, and seems quite hardy.
S. Pendandra. Has broad, thick leaves, and is not to say pretty.
S. Purpurea Pendula. American Weeping, or Fountain Willow.-Is probably of Europenn origin. Grafted standard high, its head forms the centre from which radiate innumerable slonder branches with slender little leaves. It is feathery and graceful and very unlike others. It proved hardy with Mr. Brown many years ago, and I have seen trees of it near Montre..l. Li, too, is well worthy of trial.
S. Regalis. Royal Willow.-This I saw for the first time in the grounds of Ellwanger and Barry, at Rochester. It was not green, but looked just like frosted silver. It needs dry weather to make it appear to the best advantage. In Central Park, I was struck by a fine contrast in colour in the dietance.-A tree of whitish foliage was grouped with others that were unusually dark. It was this willow and the Laurel.leaved. It was one of the finest contrast to be seen there. I have never seen plants of it higher than 20 of 25 feet. At Abbotsford it killed back with me, somewhat, the first winter, but less, or hardly at all since, then. Those I have on moist ground seem hardy. It is hardy enough I should think for sheltered places about Montreal.

Oh I how beautiful some parts of our Mount Rayal Park could be made by the planting of trees like these of easy culture.
S. Rosmaritinifolia. Rosemary leavell willow.-Is a grace ful feathery tree, sometimes light in colour of leaf, sometimes dark. In the public gardens in Boston, where it has been planted frecly, and with good effect, the leaf is so much darker than mine that I supposed it to belong to some other varicty. I have the light kind, and it seems pretty hardy. At St. Pie, there are some street trees of the dark sort, which are very effective, It is a native of Sweeden any Finland, norlh Germany and Britaid, and of the States from Pennsylvania to Carolina. Whether one of these is native and the other European, or no, I cannot say. The dark colored is, I think, the hardicr of the two, and I think also, forms the larger trec.
S. Vitellina. Golden Wellow.-This grows to large size, and is planted on account of the bright yellow colour of its young shoots towards spring.
S. Wisconsin Weeping.-We cannot grow the Babylonica, but it scems likely that te can grow this anstead. Wishing to fill up a corner in my garden, I planted some, but they fuiled from dryness of soil. This willow needs more moisture than Regalis or the Laurcl or Rosemary-leaved. One I gave to a friend which he planted near a watering trough is fast growing into a beautiful tree. Mr. Joln M. Fisk has found it hardy in nursery, even on dry soil, as long as that soil is cultivated. It is hardy with me when the soil is moist. It does not push irs terminal buds; however an inch on the end of a Weeping Willow matters little. I do not koow its ultimate size, but I do heartily recommend its trial.
S. Wolseyana.- Is a pendulous varicty with small grey leaf" I have been struck by its delicate beanty, but koorv. nothing of it hardiness.

Taxodivar. -Deciduous Cypress.
There are fine young specimens of this tree in Forest-hill

Cemetery near Boston, and Mr. Beal tells me it is grown in the Ningara peniusula, but that it is not hardy at Toronto. We need ecarcely try it here.

Timia. Bassirood or Linden.
This tree is not planted largely as it deserves. It is not common in Montrenl. In Washington there is an avenue $\mathbf{6}$ miles long with 4 trees nbreast of our native Basssood, an "Unter den Linden" of whioh tiliat eapital may well be proud. In Washington $10 \frac{1}{2}$ miles have been planted with Linden, and that mostly with our native species.
T. Europea. Europeain Linden or Lime.-This is a tree of smaller and smoother leaf than our native species, and is a favourite tree for street planting in the cities to the South of us. Somo prefer it to our native species, others prefer our larger but coarscr-leaved native. It is a tree of high northern latitude, cspecially the variety Parvifolia which is indigenous in Norway up to 62 . It grows in high latitudes in the interior of Russia, and is common in a large part of Siberia. It is this variety which groms about St. Peters. burg. Loudon says that in Sweden tho Limo is met with for miles together with twigs bright red, or yellow, or quite green. The red and yellow twigged varieties are also natives of Britain, so that we must not assume hardiness from their Swedish habitat. Mr. Brown has trees of it 30 feet in height, so have Captain Raynes and others. It secins to be quite hards.
Var. Alba. Whitc-leaved European Linden.-This tree is said to be from Hungary. It has thick leaves, whito and downy on the under side. It is as yet a rare tree. I have never seen one more than 20 feet in height. It stood rather a severe test of hardiness with me last winter. It is a tree of great ornamental value, well worthy of being introduced.

Var. Alba Pendula. Whitc-leaved Weeping Linden.This tree is much like tho above, but is of weeping habit of growth. I have only seen small trecs of it, and cannot tell its ultimate size.

Of other European varioties which I have seen, Laciniata (cut or fern-leaved) seems the least likely to prove hardy. Laciniata Rubra (red fern-leaved) is a slow.grower, and not of the same rugged health as those that follow. Platiphylla (Broad.leaved) which is indigenous from Sweden to Spain, has larger and rougher leaves than the common kind. Vitifolia, (grape-leared) is a vigorous grower with large thick smooth leaves like a grape vinc. It is a very interesting varicty which should be tried. Dasystyla is a vigorous grower with thick smooth glossy foliage also well worthy of being tested.

> UL3IUS.-Tim.

Our native species are so beautiful that we have experimented but little with foreign sorts, yet Europo can boast of fine trees also. Still Michaud gives us the palm and describes the White Elm as the most magnificent vegetablo of the temperate zone.
U. Campestris.-English Elm.-Is also a noble tree. Were the grand old trees of this kind on Boston Common suddenly re-placed by trecs of cqual size of our American species, the Coumon mould lose much of its varied beauty. The Compestris is found from the shores of Finland to the coast of Barbary, but $n s$ to the hardiness of the trees imported from the nurseries of Scotland, or the States, I can say to nothing. North of the McGill College grounds there are tro trees about 25 in height, and their little side shoots suffer from our wioters. They are so very slender in twig that I do not think they are the common variety of the Campestris.

Var. Purpurea.-Purple leaved English Elm.-With me it has proved a failure as a purple-leaved trec. The ferr I have sceu in the States had foliage slightly more tinted, but the name Purple-leaved is quite misleading. Horever three of
these trees have stood porfectly with mo for the last three winters, and promise to be fine trecs some day.

Var. Serratifolia.-Serraled-leaved Eln.-Is curious, but I think quite cut out by the fllowing.

Fur. Urticefulia.-Netlle-lcaved Etm.- Is well worth trying on account of the extreme peculiarity of its orinkled savy edged lenves.
U. Montana.-Scotch or Wych Elm.-Is a nativo of the Northern and middlo parts of Europe. It is large in leaf, and of rapid growth, but docs not attain a height of more than 40, or 50 feet, except when drawn up by other treas. Captain Raynes has some trees of this kind about 30 ft in height which are quite hardy.

Var. Camperdownii Pendula. Campcrdoun Wecping Elm.-This forms one of the most picturesque of drooping trees grafted on a stock of erect growith say six or cight feet $f_{\text {rom }}$ the ground. I have seen young trees of this kind at the Beaconsfield Vine-yards, neur Point Clairc which scemed quite hardy. I am told that it is doing well in Quebec. With me it has proved quite hardy. It is one of the best lawn trees as a shade for a rustio seat, and deserves to be planted widely.

U. Silcrica.-What a lovely little thing this is, one may judge from the annexed cat. I have only seen young trees of it, and cannot state its ultimate size.

The above list of deciduous trees is far from complete, very far from complete even on the points upon which it touches, but correct in what it does say. Of the trees abore mentioned I have or have had 90 , or more, varieties. Wo
need more exprimenters, we need complete lists to guide experimenters. It is intended to re-issue this in another form. Will those who can thruw any light upon any point kindly confer with the writer and thas do their share in this much needed work ?

First stops in Farming-(Young man's Department.)

farm pard duna.

Manures may be defined as added plant-food. They are of carious kinds, but may be simply divided into organic and inorganic, just like the natural plant-food in the land. The most usual form of manure is farm yard dung; whioh, as you all koort, is composed of the liquid and solid dejections of animals mized with the stravp, or other substances, which is used for litter. This mixture is good or bad in proportion to the quality of the food supplied to the animals, and to tho care used in the preparation. If the cattle eat strave alone, the dung will be poor, almost valueless; if roots be added to the food, the manure will be much richer; if grain, linseed, or the refuse of the oil-mills (cake) be given, the dung will be highly valaable; and if the liquid or urine be preserved, added to the solid manure, and tho whole preserved from too much or too little moisture, perfection will be arrived at.
In other countries. Where farming has been long carried out to a very high degree of perfection, and where, in consequence, sheep are made the mainstay of the farmer, certain crops are sorn expressly for the sapply of those animals, and the crops being consumed in the place were they grow, the liquid and solid cecrements are immediately covered by the plough, and all expense of carting, as well as all loss, is avoided.
The management of furm yard manure is a most important point in carrying on a farm. It contaius all things necessury for the growth of every description of plant. It is necessary that care should be taken to mix the excrements of all the different sorts of stock, and for this reason: the dung of the horse is hot; that of the horned animals cool; and that of the pig between the tro. Therefore, they would not heat equally in the heap, unless the distribution were equal, and the temperature and fermentation would be difficult to control.
It is clear enough, that if the manure in its fresh and green state were carried out laily, spread, and immediately ploughed in, as is the case with the sheep, there would be no loss, and the crops would receive the full benefit of the plantfood it contains.
For you must not imagine that the fermentation or rotting of a heap of dung adds anything to its contents; on the coutrary, however carcfully it is managed, some loss must tabe place. Manure is rotted for tryo reasons: first, because the heat of the fermentation destroys the seeds and roots of weeds; secondly, because the dung is thereby prepared, or cooked, for immediate action on the plants. Ploughed in, the same process of cooking would, sooner or later, take place; but months would elapse before the change occurred, and, in the mean time, the crops would be gaping after their food, close to thom, but unavailable.
You may like to know what you are putting on your fields, when you give them a dressing of good mised farm yard manure, well fermented and well preserved :

Water	75.42
Soluble organic matter.	3.71
Soluble inorganic do	1.47
Insoluble organic do	12.82
Insoluble inorganic do	6.58
	100.00

The soluble and insolublo organic matter contain .600 0,0 of nitrogen, equal to 735 of ammonia; and hore, we must pause a little, for this ammonia is the most useful, as it is tho most costly, of all the constituonts of ouf manures.
You saw that tho organic or burnable matter of plants was divided into two groups, one of which was distinguish ed from the other by its containing nitrogen. Whea animal or vegetablo substances containing nitrogen are decomposed, whether by burning or decay, ammonia is formed, which consists of nitrogen and lhydrogen; it is very volatile, and bighly puogent-smelling salts are carbonate of ammonia, and you know how they bite when fresh, and how quickly, if the cork is left out of the bottle, they lose their power.
The fermentation of dung, then, may be describod as a decay, brought on by the decomposing influence of the nitrogenous matters present, whereby the non-nitrogenous matters present also undergo fermentation. Ammonia is formed from the nitrogenous matters of the manure; and carbonic acid, or some of the organic acids, such as the ulmic or humic acids, from the non-nitrogenous matters, and the value of the manure depends vastly on which of these acids is formed. If the heap is allowed to get dry and hot, carbonic acid is produced, and combining with the ammonia walks off with it in the very volatile form of carbonate of ammonia; but if the manure be kept moist and moderately cool, one of the organic acids will be formed, and you will have say, ulmate of ammonia or humate of ammonia, either of which will be easily retained by the mass if it is kept from beiog washed by the rains or melting snows.
To retain the ammonia is simple enough : keep the heap moderately damp, and, if possible, return all tho soakage from it on to the top of the dung. If, on opening any part of the mixen you find a strong pungent smell, you may be sure the heap is too dry and the ammonia is escapingmoisture is wanting. If, howover, the dung is dry and mil. dewed-looking, it is too late to take any precautionary methods; the most valuable part of the dung is gone, and is as likely to benefit your neighbour's land as your orra. If you don't believe that the ammonia is escaping, if you want the proof of your eyes as well as the proof of your nose, take a glass rod, and dipping it into a bottle of muriatic acid, hold it over the place whence the smell proceeds: white fumes will be visible, and these fumes are ammonia.
If you want your manure to be valueless, keep it dry, let it heat violently, and when it has done fermenting get it well washed by the rain, and the job is finishod. Many and many a farmer carries out to his fields a dead body from which the spirit has departed.

How far the fermentation of dang should be carried, depends entirely on two points: the quality of the soil to Which it is to be applied, and the crop it is intended to feed. If the land is heary and the desire is, as it naturally will be, to lighten it, then the manure, if free from the seed and roots of weeds, cannot well be applied in too green a state: all the elements of fertility are there, and the conversion of the insoluble into the soluble, and of nitrogen into ammonia, wiil take place as surcly, and with a better chance of being retained, in the ground as out of it. For experiments by Dr. Way proved, long ago, that, whereas, a solution of ammonia, in water poured into a tube full of sand, open at both ends, passed almost as unchanged as it entered; the same solation traversing the same depth of puiverized clay left almost the Whole of its ammonia behind it. Thus you see sand is a badguardinn and olay a good one.

Even on heary land, if the crop to be solvn is fall-wheat, the dung should be well fermented beiom it is ploughed in, if not, when the loog dung rots the farrsp will be hollow, and the roots of the young wheat having no firm hold will be
casily drawn out by the frost : all wheat, but especially fillwheat, demands a firm bottom.

Light lands should receive their meals of manure in a well rotted condition; for it is useless to make them more open than they naturally are; and, their memories being very short, the food should be given frequently, and in an ad. vanced state of preparation.

Again, if the crop is wanted in a hurry, as in the case of early potatocs, it is advisable to apply the dung in a thoroughly decomposed state, the rootlets will find it easior to attack, and the juces will be more ready for their greedy little mouths. In England, nad in fact wherever advanced agriculture is practised, this is not so necessary a feature ; for artificial manures cooked to a nicely are there alsways presented to the plant on its springing from the seed-in fact, superphosphate, guano, nitrate of suda, \&c., \&., are the soup, and dung is the roast beef of the plants' dianer table. Before the introduction of bone dust into Scotland, it was the custom of the best farmers to keep the manure intended for ssyedes, somn. there in the carly part of May, from the previous year's supply. So necessary was it thought to lo that the young plant sloould find its food ready on demand.
In very heavy soils, autumn manuring for roots is a wise practice. The dung is ploughed down in carly winter, as late as possible, but before frost, and the grabber, harrow, and roller, complete the work of cultivation in the spring. Ifere, the dung if free from weeds, may go on as it comes from the cattle; and it will be found a means of growing roots with success, in places where it was considered hopeless to attempt it.

In laying down a dung-heap, I strongly recommend first placing a couch of earth, say, six to nine inches in thickness, to absorb the oozings. The heap should be of the same height all over, and, as nearly as possible, of the same texture, that is, the foot, on walking over it, should not sink more decply in one place than another. The rotting will then procced equally all through the mass, and, if in turning, the outside and the top be thrown well into the middle, the Whole will be of the same strength, quality, and consistence, when it is finally spread on the land. A fery shovelfulls of carth should be thrown on the top of the mizen after turning, to keep in cheek the fermentation. Recollect, that the value of farm yard dung depends, in the first instance, on the food eaten by the animals whose escrements compose it: the beast that eats straw vouds straw; that the rapidity of rotting depends upon the admission of air to the heap, so that, if you want the dung ready soon you must lay it up lightly; if, on the other hand, it will not be required for some time, drav the loaded carts over it. The quieker the fermentation, the greater the danger of ammonia escaping, and, therefore, the greater the necessity of being ablo to moisten the henp in moderation; a well managed moist fermentation preserves the ammonia, but a rapid, dry fermentation expels it into the air.

Where you have plenty of black bogearth, or much, near your stable, I approve of drafing a sufficient quantity, when dry, to act as an absorbent of the urine of the cattle. But I am convinced that you will neser find it pay to dray about from swamp to stable, and from stable to ficld, several hundred loads a yeear of muck; a plan, I see, recommended by some of the agricultural journals of the United States. To show you how absurd the arguments of these journals are I will merely state. What I saw in one of them last week : "a ton of much laid up and drained of its water contains four times as much nitrogen as an equal amount of farm yard dung." We will sec, now, if this were true, what is the value of a ton (2000 lbs) of muck. Farm yard manure, as we observed at page 151, contains, when properly managed, 606010 of
nitrogen, equal to 235 of ammonia. Ammonia, in the form of sulplate, costs, at the Montreal Gas. Works, 4 cents a pound, tach pound of sulphate contains a quartor of a pound of pure ammonia, which, therefore, costs 16 cents a pound. If, then, ruck contains four times as much nitro. gen as farm yard durg, it must contain $.735 \times 4=2.940$ per cent of ammonia, that is, a ton must contain 58 pounds of ammonia, worth, at our quotations, \$9.28-I need hardly say that this is pure nonsense. The sample of muck sent to the chemist for analysis was probably taken from a place where a cow, or some other animal had been buried, and hence this v rry delusive statement. It is hard upon the chemist, but I cannot help that. Tifty years ngo, both in England and Scotland, much labour was expended in the construction of composts; at present they are ontirely e.. ploded, thanks to a nore perfect insight into the functions of the three great manurial agents, nitrogen, phosphorio aed, and potash. (' Where sard dung has to be applied as a topdressing to gru.... or grain crops, it can be used cither fresh or rotted.

Arthur R. Jenner Fust.

Combined Rake and Roller.
The anucsed engraving, taken from tho Aniericall Agra culturisl, represents an implement which will be found rery uscful in the kitchen-garden. To moke it, tako a rake of wrought iron, and cutting of the last tooth at each end, raise the ends until they are right angles to the baek of the rake. Then, make a roller of hard wood, about three inches in diameter, and of the same length as the space betweed the raised ends of the rake. The arran sement is completed by passing two pins through the holes left by the removal of the teeth of the rake, and fixing them in the roller.

By this cheap and simple operation we obtain two imple. ments of great utility in one.
J. C. Citapais.

THE RUST.-UREDO SEGETUM.

Many people, every farmer unfortunately, know too well What the rust is; that disease which so often causes the crops of wheat, barley, \&c., to fail. But how few know whence it arises, and how to prevent its ravages.

Fig. 1.

Fig. 2.

Having lately met with some engravings which give an excellent representation of the iust, in its different forms, I take the opportunity of giving some information about its origin, the way it sets about its work of destruction, and the means of destroying it.

The rust is a microscopic fungus, of these fungi there (1) See article on "Coprogène."
are many sorts, and many shapes, as for example, mildew (Uredo Carbo, Ustilago) whioh attacks oats, barley, Indian cora, devouring stalk, leaves, and glumes; Uecdo caries. which feeds on the car of the wheat, and tho rust, properly so called (Urclo rubigo vera) which attacks all grain, but more especially devotes itself to tho wheat-plant.
figol, noost abundant on ryo and rye-grass (lolium perennel, is simply the stem (nyycelion) of a fungus (screrratium) which developes itself on the flower of the plant. The cause of the rotting of the putatocs is another, the Botrylis, but I do not intend to cary my excursus further than the rust

proper, for the history of one of these fungi is, with hardly an esception, the history of the whole family; the remedy for one answers against the rest.
Mr. l'abbe Provancher, in his Flora Canadensis, page 754, has given so good a description of the genus that I am tempted to borrow it: "The numerous fungi of this genus," says the learned abbe, "are all developed in the parenchyma (hissuc) of living phanerogamous plants (those in which stamens and pistils are visible), and particularly in the graminacea (gramen, grass, wheat oats, \&o., and the grasses proper). Simpler even, than the truffe, which has neither stem, nor root, fruit nor flower, they want every sort of flament except those which constitute the spores which reproduce then. Thus, each spore is a perfect individual plant, since although they are massed together in great numbers, they have no connection with each other. The following description of tho manner of their reproduction may be trusted, as it is the fruit of long and serious investigation : Each microscopic spore or globule, which composes the dust, so to speak, of these fungi, when, buried in the ground it meets with the necessary condition of heat and moisture, swells to trice its size, and thrusts out a filament or tuberele five or sis times the length of its diameter. The tubercle then divides at its end into six, eight, or even ten branches, sometines sessile, sometimes pedunculate, which soon show articulations, or, rather, infinitely small internal berries, and the

globules ultimately fade and die. If, at the moment when the branches of the spore divide into berries, they happen to come in contact with germinating grains, or even with the estremities (spongioles) of the roots, the berries absorbed by the juices dlow with them through the capillary tubes of the plant, until they find conditions favourable to their developmert, when they oblige the epidermis to give them entrance, and shorr themselves, externally, in the form of yellow, brown, or black patches. In absorbing the nourishment
intended for the support of the grain, or in divorting the saps from its ordinary course, the fungi constitute a real stato of disease for the plant, and frequently cause its de i.."
Rust, then, is a fungus whose - seed, scient ..ly called spores, falls to the ground in the form of dust, an remaining lidden there until it finds its way into li.u plants, is nourished at their expenso, and frequently repays its nurso by bringing it to destruction. The fungus often, carried along by the air, settley on the esterior of the plant itself, and aided by a moist state of the atmosi here, attaches itself irremovably thero.

To make my readers more thoroughly understand tho nature and mode of growth of the rust, let us examine, closely, the-engraving which accompany this article. Fig. 1 showe one nit the epnres which has just deposited itsolf in a wrinkle in a stalk of whest. In fig. 2 , is shown the condition of this spore 48 hours after it deposition. The warmer and moister the air, the more rupid the growth of the fungus. Fig 3, at a, displays a group of fungi bursting through the epidermis (envelope) of a whent-straw. At b and c, the same engraviag shows a capsule containing spores, one of the Wheat-rust, the other of the rust affecting the oat. These capsules are magnified 800 times.

It is these cells which cause the reddish-brown dust which covers wieat attacked in its green state by rust; and the dust is woofully visible when the said wheat is undergoing the process of thresining. In fig. 4, is shown the progress of the rust, after the death of the straw which supports it; and its later appearance, when the straw begins to rot, is depieted in fig 5. Lastly, fig. 6 shows the rust at maturity: the pods of the fungus contain, cach, myriads of spores or secds. In
 all these engravings, the different parts represented aro, of course, greatly magnified.
It takes the rust about six weeks, from the midale of June to the end of July, to pass through all the changes we have described.
In the propagation of the rust fungus, that which artacks wheat differs from that which attacks onte in the form of the spores, in fact, they are never alike on any two sorts of plants; Whence, some botanists conclude that the fungi belong to different species, whilst others think that the form of each is modified by the nourishment it finds. This point is not elear. That the rust can hardly, if at all, attack successfully a strong, healthy plant, because its tiny root cannot pierce the strong, thick epidermis, is a very reasonable conjecture, and leads us to the study of the means of combating the parasite we are discussing.
If we examine the epidermis of wheat, barley, oats, and other plants of the same order, we shall find it to consist of a sort of glassy substance. This glass is composed of silex or sand, with, as a base, potash, soda, lime, \&e., according to the character of the soil on which the plant in question grows, and these akalis form with the silicic acid matters that are eallifd silicates. So we may conclude that the soils must contain a fit propartion of alkalis and silicio acid to form a proper envelope for the plant against the attacks of the rust.

We now begin to see that where land is troubled with the rust, it is not a highly nitrogenous manure that is wanted, so much us a dose of silex or sand, or of alkalis, which may be added by means of a dressing of clay. Experiments have proved that these dressings have banished the rust, or at least minimized its ravages, on land which had been previously readered almost useless by the attacks of the parasite. Salt has frequently been recommended as a manure, but I must say I have little faith in it ("I have none at all" A. R. J. F.). Still, where there are little fer alkalis in the
soil, salt, from the soda it contains, should be beneficial. (1)
The chief remedies against rust are, in the first place, a thorough draining of the land; for it is moisture which favours the development of the spores. In the second place, the soil should be made rich, so that the plants may vigorously repol the attacks of the enemy : a weak plant is more easily subdued than a stout one. Thirdy, the land must receive such elements, in the form of dressings, as may contribute to the formation of a hard epidermis, by way of a buckler against the spores that would otherwise succeed in attaching themselves to it. To these we would add, the wisdom of getting our seed-grain from places untouched by the rust; and, once again, we recommend the liming of suspected seed before sowing. Lastly, if possible, lands that have been free from this plague for some years past should alone be somn with grain.
I hope I have now given each of miy readers a good idea of the rust. I know parts of the province, where, from time immemorial, grain crops. especially oats, have suffered almost every year from this disease. It is in these districts that we should endeavour to use, with the greatest care, the remedies which the experience of others has rendered worthy of trial. Here, as in every other battle with the enemies of agriculture, vigilance and activity should be our watchwords.
J. C. Chapais.

VETERINARY DEPARTMENT.

L'nder the direction of D McEachran, F R. C. V. S., Principal or the Montreal Veterinary College, and Inspector of Sloch for the Canadian Guvernment.

Diseases of the Horse's Foot.
Sand-crack.-This term is applied to a fissure or separation of the fibres of the wali of the foot in a longitudinal direction. The terms, quarter-crack and toe-crack, are used to indicate the part of the foot in which the crack exists. To understand its nature, we must bear in mind that the wall of the hoof consists of a cons' 'omeration of hairs or fibres placed longitudinally, and held together by a matrix. The internal surface presents a number of lamino also running longitudinally, and dovetailing with the sensitive laminæ which cover the os pedis, the external surface being covered by a glatinous covering which prevents evaporation of its moisture and the injurious effects of moisture and of the atmospherc. Whatever therefore will lessen the naisity of the cementing matrix will increase the liability to solution of continuty of the fibres. The principal causes are - uneven shoeing, rasping away the external glutinous covering, concussion on hot dry roads, or on hard frozen surfaces. Both high and low temperatures favour the tendence to splitting of the fibres, and the term frost-crack is as appropriate as sand.crack.

Sxampoms-Usually the first indication is the oozing of a little blood from an almost imperceptible crack in the side of the wall, which, on examination, is found to penetrato the crust through its entire thickness. It is usually accompanied by lamenese, heat of the foot and pain on pressure. The fissure most commonly appears on the quarter, although it is also seen in front of the foot. The fore feet are more liable to it than the hind, but the latter are also affected in the same way.

Some feet are more hiable to sand-crack than others, and
(1) From prosonal experience I can say that, in England, the rucher and more luxuriant the wheat-crop, the greater the savages of the rust. In 1850, 51,52 , on the best farmed lands in the Eastern part of England, the rarages of these hateful parasites trere most destructire. I myself in 1852 , sold 40 acres of wheat, standing, Whel were ralued to the buger at 52 bushels an acre, the gied of which when threghed, a fortnight or at most threc weeks afiermards torned out to be onls 22 bushels an acre. A R J.F.
the quality of horn and form of foot predisposed to it, are hereditary.

Treatsent.- Various mothods are practiced in treatiog these fissures of the hoof, suoh as holding them sogether by clamps, i, e., copper plates attached by sorew nails; binding by wire; nails driven across the fissure and clenched. But the most successful plan of treatment is to soften the foot by a poultice, then with a rosp and sharp drawing knife cut away the horn from the secreting surface as far up as the crack extends, and about half an inch on each side of it, and, afterwards, merely dressing it with tar ointment. The animal must be kept idle for three or four weeks, or till a nem growth of solid hora has been produced an inch frem the coronct:- mhen, if the hoof be supported by a strap, and the shoe applied so that there will be no pressure on the wall immediately under the crack, the animal may return to siom and moderate work. Complete recovery seldom takes place, as adhesions are apt to form between the horay and seasitire lamine which destroy the beautiful elastio attachment of the foot, and render it liable to a recurrence of the separation of the fibres.
The growth of horn will be expedited by blistering the coronet above the crack.
Thross.-The frog is the triangular pad of soft tough horn lodged betrreen the heels of the foot, adding materially to its springy elasticity. The term Thrush is applied to a diseused condition of the sensitive frog from which the hora is sceretcd. It arises from a variety of causes, chief of which are maceration of the foot; in the hind feet, from standing on manure and urine, in tho fore feet, from the too Eree nse of cow dung as a stopping for the fect. It is common in colts running in a soft straw-gard, and is often attributed to the want of pressure on the frog by the use of calkins on the shoes. Doubtless, too, it is frequently the result of some peculiar habit of body; a materies morbi in the system making an cruption here, and is often associated with grease and smollen legs.

Symproms. - It is characterized by a fetid discharge from the cleft of the frog, which is very persistent in its odour; the horn becomes detatched, its secretion interrupted, decp fissures form in the frog, which becomes small and incapable of performing its functions; lameness follons, more or less severe according to the estent and the nature of the ronds on which the horse travele; if rough, uneven, and covered by loose stones, he becomes dead lamo, if the road is soft and smooth he may simply be slightly tender.
'Thrush is usually casily dried up by cotting array all loose horn from the frog, scraping and esposing the secreting surface, and appling calomel ficely to the denuded surface, keeping the feet dry. Onc or tryo dressings will usually soffice to heal it up. The foot should afterwards be dressed mith tar, and a leather sole may be necessary as a protection fur a ferv weeks, till the nora grows sufficiently to cover the discased frog. When it is constitutional, purgatives mith cleanliness and proper attention of the feet are required to prerent it.

Canker is a discased condtion of the sensitive frog, usually described as similar to Thrush, but of a more argravated character; not confined to the frog, but astending to the sole, and often overrunning the whole ground surface of the foot. It is also said to "rescmble much the grease of the leg both in its nature and in the class of animals it attacks, and very frequently both conditions are co-existent". Our expericnce of this disease Jeads us to diffor from thase opinions, and to look apon Canker as a specific diseses, depending on a peculiar cacheria or condition of the constitation, and, if not actually a cancer, it is closely allied to it in many clinical features.

It occurs most commonly in tho heavier breeds of horses; may appear without any distinguishable cause; and may affect only one foot or all four. At other times it occurs from the degeneration, if twe may use the term, of thrush into canker; also, in animals predisposed to it, it may follow nounds of the sole, bars, or frog.
Syspross.-It is attended by the same offensive odour as thrush, the tissues affected are overgrown with a shreddy, spongy fungus.growth-which, mushroom-like. grows and spreads rapidly, underrunning and detaching the sole. Of course, psin, lameness, loss of condition, and inability for rork, are necessary consequences of this condition.
The treatment consists in removing the shoe; frecly cutting amay all loose horn; paring down the fungoid growths as closely as possible; and dusting calomel freely over the surface, applying dry tow which should be bound on with a leather sandal. Yure Carbolic acid, Chromic acid, Sulphuric scid, Nitric acid, and tar; Sulphate of copper and tar-are all useful in these cases, and may be used at the discretion of the practitioner. In no case is regular dressing and constant watelfalness more required than in the treatment of canker.
Eren under the best treatment it will often prove incarable.
Occasional purgatives and dinectics, with soft feed, are nceessary-Keeping the feet dry and giving regular exercise on dry ground, are essential parts of the treatment.- Liquor arsenicalis is recommended as a so called alterative: it is sonetimes useful-Youatt recommends, that for humane reasone, the prolonged suffering of these cases should be prereated by the division of the nerves leading to the foot. The practical utility of such an operation in these cases we very mach doubt.

AGRICULTURE.

Paris, Novembor 5. Among the most prominent events to record, is the Phyllosera Congress at Bordeaux. It did not lead to the revelation of anything new, so much so as to the official ratification of certain remedics. The origin of the disease was left in abeyance : the habits of the insect were relegated to the entomologist, and the latter declared, that were the winter cegs of theinsect discovercd and extirpated, the enemy would be conquered. Three remedies or preventives were discussed in committee, and by the most cor petent authorities. Take the plan of autumnal irrigations known as the Faucon process, so named after that distinguished proprictor of Graveson near Narseilles. After the vintage, he floods his vines for tio months, and in spring, doses the land with farmyard manure liberally. He thus saved his vines, while neighbors Fho declined to follow his example, were rained. In the Nedoc distriols, this process is at present general. It implies horever, the command of a supply of water, either natural or artificial; hence, why the government is doing all in its poricr stend canals and arterial drains, \&c. Insecticides, or chemical preparations follow nest in order: they are limited to two: Sulpho carbonate, and sulphuret of carbon. Both bave drawbacks, and have not given uniform results. The first is rery expensive to prepare, and in addition, nccessitates a large sapply of water to be distributed in the state of solution. Its use is hence limited to vines cither very prolific, or possessing qualities of known reputation; in any case, of a nature calculated to pay the great outlay. The sceond, sulphuret of carbon, is cheap, but it requires much caution in being applicd, or the remedy may be rorse than the disease; its effects rary with the depth and porosity of the soil, to permit of the diffasion of the salt: the temperature also influences the action: excessire cold or excessive moisture oan do more harm than good, if these follow the
use of the sulphuret. As France is estimated to havo lost five milliards by the invasion of the phyllosera, and the ravages still continue, besides preventing the mareh of the enemy, it is a necessity to replant where the dovastation has been effected. Here there is really less room for dispute; tho grafting of French vines on American stocks is the sole plan known. The roots of the American vincs flourish side by side where Freach vines prish: ten years successful graftiog confirms the remedy. The Riparia is the variety of American vines which is in general favor. In Portugal, sulphuret of carbon and irrigation are the measures adopted; in Switz. erland and Italy, extirpating the sick vines finds most advocates. In Sicily, the peasants rose against the decree for cradicating infected vines, and the inspector, fortunately, escaped from being blown up, with his hoase, by dymamite.
At the present moment when the relations between landlord and tenant are the order of the day, the practice of the mètayage system, which is making such rapid strides in France merits to be discussed. In the fewest words, and freed from complications sometimes introduced, métayage farming means, the landlord supplying the capital in live and dead stock, the melayeur and his family, the labor, and the two contracting parties, divide the produce. In the most sucessful working of this plan, no money transactions take place, save what gres to the state to pay taxes. Many farmers who cannot pay a fized rent, adopt métayage, and prosper: many laborers find in the system the road to comfort and independence. There is nothing nerv in the plan ; Pliny the younger adopted it on his cstates and with success, when his tenants were five years in arrears of rent, and became reckless. As a general remark, landed proprictors in the cast of France cultivate their orrn estates; in the north and north-west, there are tenante, in tho centre and south, the metagage exists.

The plan not only ameliorates the tenant, but the soil, and sccures a dividend certain for the orver. One half of the population of France lives by agriculture, and one-third, of both seses. by the actual tillage of the soil : one-fourth of the cultivated land is worked on the metayage principle, and every department of the country has farms so managed. In many cases the partners, for the contract is practically that, divide 72 to 20 per eent net profits in a good year: the mean is $4 \frac{1}{2}$, and proprictors are alrays content, if they only realise $3 \frac{1}{2}$ on their capital, including that locked up in buildings, machinery, and improvements. The metayeur and his family are well fed, they have a like stake with the proprictor in the results, and at the end of a year, a la. borer who would have remained a laborer still, has in addition to comfort, a cash dividend of $2,000 \mathrm{frs}$. The principal item of expense in farm management is wages; under the metlayage plaa, there the whole family labors, it becomes a minimum. It is cvident thercfore, that the more farm wages rise, the more the mefaynge solution imposes itself as a necessity.

Salicylic acid, as a disinfectant and a preseryative, still excites attention. No hygienic reasons exist, according to Pasteur, why in certain quantities, the acid ought not to be tolerated in food and drink : the French government has prohibited its use in becr and wine, as that use ras abused. In the case of cattle disease, foot-and-mouth, lang, and charbon, salicglie acid is employed by veterinarians with great advantage: if it does not prevent the virus producing in the organism of the animal, it undoubtedly stops its march: one-tenth of an ounce dissolsed in a quart of warm water, and sprinkled over the litter, will iminedintely sweeten a stable; balf a quart of the solution mised with the ordinary drink saffices for an animal disensed : the acid too can be dusted oper the sore feet, or the mouth and nostrils washed mith a solation. If
poultry be attacked with cholera, add a little in their drink ing vessels, and mix some up in bread pills and honcy.

A gentlemen, alluding to the prevalence of typhoid fever in horses, says his have completely cecaped, and this exemption he attributes to adding a little salt and chopped garlic-the latter in small quantities at first-to tririr oats: further, above their racks he places movable boards, which receive a fresh coat of tar weekly. In the case of severe bronchitis, French doctors preseribe the spreading of Norwegian tar on a plate in the sick chamber; the balsamic odor effecting good.
Some prizes were awarded to arricultural industrics at the Flectricity Exhibition, the subject howerer is not yet ripe for practical consideration. The problem to solve is, not the application of electricity as a motive power, but of the cheap production of clectricity as that power.

Owing to the destruction of the rines, and the great damage done to orchards by the severe frost of $1879-50$, the production of alcohol has diminished: to remedy this state of things, farmers are being actively urged to embark in the distillation of beet-why not potatoes, as in Germany, by the ordinary alembic ; prizes are offered to encourage the new in dustry. (1)

sielded only 5 per cent of cream. Practical conclusion-dif. ficult to decide when milk is pure.

Johnston's Harvester.
The engraving, on this page, is a rear view of a new controllable self-raker. It is the latest improvement. Its success is due to simplicity, lightacss, an easy draught, and the great control which the driver has over his machino in light, as well as in heavy, crops.
At the Derby sheaf-biuding trials of the English M. A. S., a machine of this sort, which finished the cutting after the trials were over, made oleaner work than any of the other harvesters on trial, and a strong opinion was expressed bs many practical farmers that this machine, with "a gleaner and binder" to follow, was to be the practice of the future. Ag. Gazette, Jog.

A Successful silo.

Mr Mrark Darres, of St. Anne's, showed me to day, January 15 th., part of the contents of his just-opened Silo. The corn is. perfectly sound, fresh, and sweet, with a slightly vinous smell, and the cattle, sheep, and horses, eat it greedily. The corn was about 9 feet ligh, and was not cut up, but well tramped down bp horses.
A. R. J. F.

DAIRYING.

The first Monthly Nceing of this Club, after the recess, took place on Mon. day afternoon, November 7 th , at the Inns of Court Hotel; the Chairman for the year, Mr. T. Duct ham, M. P., presiding. The subject for discussion was "Dairying," the introducer being Mr. G. M. Allender, who read the following paper:-

IN the study of ang subject, no matter what that subject may be, the conclusion almays arrived at, is that the more me learn, the more ready me are to acknowledge hor very little we actually koos
Four years ago I stated, "Diry Farming in Eo. gland has undoubtedly bcea neglected." I think ite shall be more ready to

There mas a milk or dairy show held at Ghent last July, When the milk of corss of the Durham, Dutch, and Flemesh breeds, rere exhaustively examined as to density and quality: it has been demonstrated, that the difference in richness can vary, as 1 to 3, that is, from $4 \frac{1}{2}$ to 15 per cent; the yield of milk per day, can vary as 1 to $^{\circ} 5$ in great majority of cases, the first milkings are superior in densily to the others in a day, aed that density oscillates betreeco 1026 and 1038. Upon 168 samples of milk, 29 were inferior in density to 1029 ; hence, according to the esperts, they ought to be suspected of being dosed with water. In addition to density, as a test for the purity of milk, must be included the per. centare of cream: nors at Ghent, mill unquestionably pare
(I) Alemlic, old English-modern, still.
admit this now than we were then, because, more attention having been given to the subject, we the more clearly reos. nize our shortcomings. Still, r may look back with mach satisfaction, for much has been ceomplished since I read my former paper on the same subject that we have met to consider to day. I was then obliged to state that this branch of Agriculture had becn totally neglected by our national socie ties, and that the importance of the "products of the dairy were unrecogoized."

This cannot be said now, for not only has the Rogal Agnicultual Society of England made dairy vork a special featore at the four last mectings of the Society, but nearly all the other important associations have "gone in for dairyiog;" and eren Lincolnshire has deigned to acknowledge that there is
sucha branch of ngriculture as dairy farming-an admission that would have greatly astonished the late Wm. Torr.
Dairy appliances and machinery of which wo had no iden four jears ago, are now in common use. At that time I possessed the only" butter worker" in the country; now there are many hundreds in daily work.
At Bristol, in 1878, we first heard that efforts were being made in Germany to derise a machine by the aid of which the cream should be rapidly removed from milk by centrifugal force. Now wo have meshanical separators of at least five different forms; and so with other contrivances.
In Cream separators, certainly the most ingenious of all dairy machines, we have already reached the second generation. The orginal Lefeldts, Lavals, or Neilson-Petersens (nono of them more than five years old) have been immensely improved, and several additional patents taken out. We have also the "Petersen-Moltrecht" and the "Fesca" machines; and others are coming into use in the United States.
To such perfection have these machines now been brought, that the separated milk frequently contains as little as 15 per cent. of fat, and the cream can be so perfectly freed from mill, that it will make as much as 18 oz of butter to the quart of cream, whereas cream obtained by other methods seldom yields more than 16 oz . (1 lb.), aud very frequently much less. Now that we understand bow essential it is to obtain our butter perfectly free from cascin, and indeed from milk, the advantage of this highly coocentrated cream is obrious. I have had sauples from the separator which have contained 38 per cent. of pure butter fat, and which have rielded 44 per cent. of butter.
To talk, however, of the appliances by the aid of which we can convert the ram material-milk-into its various produsts, is beginning in the middle of our story. We must remembe: the saying of the worthy Mrs. Glass with regard to her harc-"firet catch it;"' and so it is in dairying. Before considering what we shall do with the milk, let us inquire whether me produce the raw material either in proper quantity, or of proper quality.
I do not think we do either the one or the other. I believe that the milk yielded by the number of cows now kept might be increased by at least one-third if more attention were paid to sclection. I am not aware whether the late Mr. Carrington left any record of the milk yield of his cows; I find, however, that I meationed in my former paper that Mr. Carrington agreed with the late Mr. Harrison, of Gloucester, that $\overline{550}$ gallons night be taken as the average yicld of a good ordinary cor betreen calving and calving ; and that Mrr. Jenkius quoted a gield of 700 gallons per corr, prored by carefully kept records ata farm in Dcamark; and I furtherespressed my orn belief that a well-sclected herd of corvs, dairy shorthorms, well boused and well fed, would average 900 gallons per cow in the milking year (say, forty to forty-five weeks). That the latter figure is wethen the mark is nor proved by the very raluable record kept by Mr. Tisdall. I believe the returns thich Mr. Tisdall has been able to furnish are the most completc hitherto kept in this country, and very many thanks are dac to him for this most valuable information. I find that trent5-Gire cows, in mill ten to eleren months-say, therefore, about forty-three recks-gave an average of SSI gallons each, and that in sereral cases the actual yield of milk from indiridual cors reached 1,000 and 1,100 gallons in the ten months, many of them continuing to yield milk in good quantities for 2 farther period of two months. Mr. Tisdall mencions that ten animals gave an average of $12-88$ quarts per cor per diem, for 12.3 months, or over 1,200 gallons cach. Now our justly colcbrated familics of Shorthorns, the Booths and Bates; our grat flocks, the Leciesters, the Lincolns, the Oxfordshires, and the Hampshires; our pigs, the Berkehires and the York-
shires,-how have these ronowned breeds been brought to their present state of perfection? Simply by the care and attention bestowed by intelligent, observant men to the selection of "the fillest." If these bo admitted facts, why should not similar means be upplied to improve the milk-producing power of our cows? I see no reason why the same law should not apply; and if this be so, imagine the herd that might bolooked for in three or four generations, carefully bred from such dams as these ten cows of Mr. Tisdall's! To quote from a recent article in the Live Stoch Journal: "The main lesson to bo derived from the inquiry is, that there certainly exists in the varied combinations of old famous herd elements a mine of wealth for the ekilled and patient explorer who will devote due study to the subject."
Now, gentlemen, however you may feel inolined to caril at, or criticise anything I may say to-day, no one will, I think, dispute the fact that just noss the very bare possibility of the existence of a mine of wealth anywhere, or connected in any way, with farming, is a thing not to be despised, no matter if the mine be "only a little one."

Before quitting the subject of these valuable animals of Mr. Tisdull's, we may learn another lesson, and that is, how much more profitable, both to the farmer and to the nation, is a good cow than a fitting beast. Take one of these cows, producing in one year 1,200 gallons of milk. The milk in its natural state would weigh $12,000 \mathrm{lbs}$.-5 tons 7 cwt; as such milk would contain at least $12 \frac{1}{2}$ per cent. of total $d r y$ solids, this would give $1,500 \mathrm{lbs}$. Take the dead weight of such cor at $1,000 \mathrm{lbs}$., in the natural state of the carcase, the actual weight of dry solids would not exceed 500 lbs . so that each of these animals would in the course of the year produce three tines her owa weight of dry solid matter, and during her life more than trelve times, besides, the value of her orra carcase at last; or, supposing her 1,200 gallons of milk had been made into cheese, tre should have looked for about $1,200 \mathrm{lbs}$. or 20 per cent. more than her ora dead weight.
Reference to the wooderful milk yield of these cows leads one into a fer more calculations. I am a great believer in figures, whether in the form of statistics or of accounts. I have had it said to me by farmers to whom I have suggested the keeping of careful and efficient records of various results, that such work would necessitate the service of a clerk. Certairly, if a farmer be too indolent or not sufficiently intelligrat to undertake such a comparatively easy task, or if his farm and herd be of sufficient size to rarrant the necessary outlay. Horv was Mr. Tisdall in a position to supply these valuable statistics? Because for years it had been his practice to carefully note the gield of each cor at each milkiog.
I say, a farmer who beeps coms, whether it be two or two hundred, and who does not ascertain, and carefully note, the quantity of milk each of his corrs gives cvery time she is milked, makes a great mistakc. What rould be said, let me ask, of a manuficturer who did not keep a record of the produce of his roorks? I look upon this as the pivot upon which turns success or failure. That which is worth doing at all is worth doing well. Any one who has once experienced tho immense advantage that statistics and carefully kept records are in business, mill never be without them, as he will well know their valac, and the posser the information so obtaioed bestorss upon the possessor. Unce put in practice, the habit is one that grows rapidly. What can be more casy than to note the quantity of milk given by each corr, morning and night? A board, painted black, hung up in the corshouse, or a piece of slate fastened to the wall, and a bit of chalk. Upon such board or slate the quantity to be marked as caoh cor is milked, and the whole copicd at leisure on to a properly ruled elect. Any one who will take the trouble to do this for the
whole of 1882 will, I will guarantee, never give it up agaiu Every one will find ho has a cors that, compared with the others, is a beginning towards that little mine of wealth. I want you to permit me to read an extract from an American paper, the New York Tribune, in whioh the value of good milkers is well pointed out:-
"two cows in one skin.
"There is now manifested over the whole country a very lively interest in the improvement of the milking eapacity of dairy stock. There is a rage for importing the very best milking animals of Europe, with rapidly-increasing ciforts to mul. tiply and oultivate their superior qualities. These efforts are encouraging, and augur good results to our dairy intercst in the near future. They foretell an enlargement of that interest, with more certainty in its operations, and greater profits by way of oheapening the cost of producing milk. Larger yields per animal mean less cost in making them. If we can get 500 lbs of butter from one cow in a year, it will certainly cost lese than it would to get that anount from twe cows in the same time.
"The food from which tho butter is directly derived may be the same in both cases, but while that food is being converted into butter, wo have, in one instance, to support the body of only one cow, and in the other the bodies of lwe cows. Then there is the extra investment and the extra labo:r of milking and caring for two instead of one, all of whioh makes quite a difference in the cost of producing milk. There will be, according to the economy used in produciog and using food, a difference of 20 dols. to 40 dols. [$£ 4$ to $£ 8$] in the cost of the 500 lbs . of butter, whether derived from one cow or troo, in a year-equal to 4 to 8 cents [2d. to 4d.] on each pound of butter, enough to make all the difference between profit and loss, or profit and no profit. If one man can live by getting 250 lbs . of butter per cow in a year, another can grow rich by getting 500 lbs . But when we come to divide again and got but 125 lbs. a.year per cow, which is about the common average, the difference in cost will bo three times as great-at the above rate, 60 dols. to 120 dols. [$£ 12$ to $£ 24]$ on 500 lbs ., or 12 to 14 cents [6d. to 7d.] on each pound. This makes dairying an up-hill business. It is the dairymen who keep these $125 . \mathrm{Jb}$. cowe, who sell the calves of their best cows to the butcher, and raise what they cannot sell; whe complain of hard times, and that dairying does not pay; and who get frightened at the introduction of oleo-margarine [you see, the Yankees have their bugbears as we have here], and, forgetful of the rights of consumers, petition the Legislature to pass larse for keeping the price of butter up, so that they can live by dairyin- with such apologies for cows. But, thanks to the enterprise of the times, their number is growing less."

Now 500 lbs. of butter is what our American cousins would calla " large order: "but I should say that if the milk frow Mr. Tisdall's ten cors bad been made into butter, they would have shorn a yield of 450 lbs . per cow.

This extract from the New York Tribune leads me to another point in my experience with our farmers.
A farmer who keeps a lot of cows that only give him 400 to 450 gallons per cow, stands to lose money, as a matter of course. He tells me be "cannot grow the milk at that price," and I acknowledge that he is correct in Lis statement; but it is not my fault that he keeps a lot of cows which are not only bad milkers, but which he feeds in an injudicious manncr. On the other hand, a farmer who has a lot of 700 or 750 gallon cows gets along well; and if with more care as to selection and feeding, the yield cou!d be got up to 900 or 1,000 gallons, a very handsome profit would be the result.
I have taken out a few figures that will show this in a most striking mauncr. In order to facilitate the explanation of these, I have fised upon a fevs standard or base points. For
nstanoo, I put the price of milk, at the farm, at 8d. per im. perial gallon, all the yoar round; this is near onough for all practical purposes. If a farmor cannot mako that, either he is a bad managor, or he is working under exouprional circumstances. He ought to make more.
Then I take fify cows as an ideal hord.
Cost of feediag and milking I put at from $6 /$ to $9 /$ pes week, according to the views of the farmer as to whether it pays him io be liberal or otherviso. These points understood, let us look at the figures :-

It must be clearly understood that I do not give those figures as hard and fast under all circumstances, but only to shon that the retarn on good corss compared with bad ones is in enormously greater proportion than the increase of cost; or, as will be seen, one man may be making a good profit mbere another makes a loss.
These figures do not, however, nearly represent the difference
in the value of the produce of these various herds of fifty coms each. As a matter of fact, the milk from the fifty cows giving, say, 900 gals., and being fed at a cost of $£ 1,105 \mathrm{jer}$ anuum, may be espected to bo of better quality than the milk obtained from the fifty cows giving 450 galions each, and beiog fed at the cost of $£ 780$. This would tell, especially if the milk were made into checse or butter. Roughly speaking, the milk from the one lot of cows would not contain more than 12 per cent. of solids, if so much, whereas the other rould probably show 135 . Now the difference between 12 per cent. and 13.5 is onc-eighth, or $12 \frac{1}{2}$ per cent.-an additional profit to the oredit of 900 gallon cows of just upon $£ 75$. As I have proviourlv said, I do not for one moment intend these figures to be taken literally, but they will, I hope, convey what I wish to be understood, and point the moral of what I mish to impress-namely, if you keep cows, keep the best you can, curd feed them well. In noting the yield of nows, I recommend weighing the mill, as being more correct and more gaickly done than measuring it.
Now wo come to the question of food.
I do not mean to say that a cow is like a steam boiler-viz, that the more coals (food) you throw into the furnace (within limits), the better results you obtain ; bat I do maintain that the food, both in kind and liberal quantity, has mush to do with the important items of profit and loss.
The cow should be, to all intente, from the dairy farmer's pout of view, a machine ; and a very sensitive and wonderful machine she is. and perfectly constructed for the work she has to perform-riz., the conversion of food into milk-the raw material from which butter and cheese are manufactured. To mork this beautiful machine to its best advantage, is a question of the most vital interest to the owner. What would be said of a man who, requiring a steam-engine, would go out and buy the frot he savi, and solong as there was a boiler, furnace, cglider, piston. cranks, whecls, valves, and certain other appliances and fittings, take not the slightest care to ascertain by whom the machine way made-in fact, how it was bred-and having bought his engine, forthwith proceeds to put it to morb, regardless of the desoription of coal, the sort of oil, or the quality of the water with which be supplied it, or whether it was left out in the fields, exposed to the weather, or housed under some tumble-down old shed, where all its most delicate parts and fittings became elogged with dust and dirt? Well, I expect that man's neighbours would think "it would not last long." This, however, is just what a lot of farmers do with their cors; they heed about as little how they are bred as horp they are fed.
Let us begin with water. I do not think that half the attenuon is paid to the watering of cows that there should be, cither as to the regularity of the supply, or the quality. Cows will rather drink foul water that is near them than go to a distance; when tied up they are, of course, totally dependent upon those in whose care they aro. Depend rmon it that the supply of clean, wholesome water, and in goou quality, is of the greatest importance.
Salt, again, is a positive neoessity to a cow. If salt bo with. held, the quantity of milk will be lessened; and it is a question whether a good erpply of salt does not greatly increase the keeping guality of milk. Every animal ought to have access to a lerge piece of rock-salt. While we are on the subject of mater, let me impress upon all dairy farmers the importance of washing and bathing the cows' uddere and teats; this ought to be donc at least twics a day, before cach milking. Attention to this has much to do with the favour aad keeping qualities of mill, butter, and chonse.
Last winter I put together some notes as to the yield of milk on teenty-three farms. The farmers filled up a form on the first of each month, giving the namber of cows in milk, the
number culved since the provious return, also the food used, description, and quantity. The quantity of milk was, of courso, shown by our books, as oach farmer sent all produced, excopt the requirements for his housc. Almost daily analyses of the milk were made-at all ovents, at least tryenty per monthascertaining the total solids and the "fat." In order to be able to make a fair comparison, we worked out the quantity of milk each farmer would have sent, based upon what ho notually did send per corr, if eaoh had had fifty cows in milk. The results are instructive, and fully bear out the previous figures that I have given you.

The moncy value of the milk of fifty corrs (at 8d. at the farm) ranged from $£_{1} 1011$ per day to $£ 5$; the total solids, from 11.53 to 1398 . I beliove the milk shewing only 11.53 per ocent. of total solids had been slightly watered; at all events, we talked very seriously to the sender, and the quality imoroved. The "fat" ranged from $2 \cdot 52$ to 366 . These figures refer to milk received in the depth of winter. Last month, October, the total solids ranged from 14.85 to 12.68 -mean 13.18; but some of this was from Jersey corms. Avorage of fat, 3.31 , ranging from 4.19 to $2 \cdot 99$. It is most difficult, however, to arrive at roliable conclusions when you are dealing with milk from so many herds, as the proportion of recently calved cows, or of heifers in the herd, or other circunstances, have to be taken into consideration. I therefore selected six farmers who had over 20 ner cent. of newly calved cows per month; and for our present purpose it will suffice to take the lowest and the highest of these six. We will call them 16 and 18, as those numbers represent their position among the twenty-three, as fixed by the quality of the milk-No. 16 having 12.42 total solids, and No. 18 12.40; so that virtually the milk was identical in quality. No. 16 had the advantage in " fat" -2.88 against 2771 .

The difference, however, to tho pookets of these two furmr must have been very considerable; as, supposing each had ha ${ }^{\text {d }}$ the same number of cows (fifty), and the avorage yield per cow had been at the Eame rate as that of the corss actually kept, the one farmer would have received $£ 1176$ per diem, the other $£ 5$, or $£ 56210$ for the year, against $£ 1,500$. The former was then using 1 peck of wheat and bean meal, mized, about 1 lb of linseed cake, half a bushel of roots, and about one truss of hay to two corss; the other was using $5 \frac{1}{3}$ lbs of decorticated cotton cake per corr, and two trusses of hay to three cows. Now the food bill in the case of the former would be heavier than with the latter.

I belicve decorticated cotton oake in conjunction with maize meal-in equal proportions-is, without exception, the food for milking cows; browers' grains (ale), if obtainable, say half a bushel a day, roots in season, and good chaff, with a spriakling of some meal, bean, pea, oat, wheat or barley, and bran, in change, being given, with the cotton sake and maize. The latter together, in equal proportions, form, ohemically, a perfect food, as the one is strong in the component parts in which the other is wanting.

Advocating, as I have done for years, dairy farming on arable land, I am sure that not aoything like the attention is given to the growth of forage plants that the subject deservis. In my former paper I referred to Prick!y Comfrey, then just introduced by Mr. Curisty. This is a most valuable plant. Then again, on warm suitable soils, I am sure some of the varieties of maize would yield a great bulk of admirable food for soiling. Major Dashwood tuld me, the other day, that a small patch grown by him had equalled, I think he said, thrtytro tons per acre. I do hope somo one will give ensilage a trial. I hear wonderful accounts of it from the United States; and I recently read in an American paper that "if the experiments are successful, and 'silos,' as the storage pits are called, come into common use, the capacity of the farms will be nearly
doubled." The drier climate of the Stater, of course, favours the adoption of this system, but the difference between our olimate and theirs cannot reder it impossible, especially if straw chaff were mixed with the green crop. This last summer has been 100 dry in America.
(To be continucel.)
The Montreal Horticultural Sceiety being desirous of
introducing some good Scedling Apples that aro late koepers, offer a First, Second and Third Prizo, of $\$ 400, \$ 3.00$ and $\$ 2.00$ reepectively, for the Best Pcek of Seedling Apple: grown in the Province, and sent to the Scorctary's Office, corner McGill and Foundling Stecets, Montreal, on tho ist of May, 1882. The place of growth to bo stated, also tho probable age of tree, and whether the varioty has been pro. pagated or not.

FOR SAIFF-MAMMOTH BRNNZI: TLR. U. S. Centonnal Exhibition, 1876, $\$ 600$ each. EXS. TAFT, Fillieton, Vt.
TOR SALE-TWO FINE AYRSIIIRE BELL Culves-Prece: $\$ 35.00$ a $\$ 3000$ Apply to E. A. C. CAMP'BI:LL, St-Hilaire

A THE "MANOH HOMF FARM" St HILL.A1RF, ${ }^{\prime}, Q$-The iepmoned thomughired stallion • Rejolinder" by "Killedrum" "ut of <: Heparteo "will sland fir the ceakots wf 1881 , $\$ 25.00$ per mare. Pasturent 25 cti, pur day.
Address: CAP1. CAMPBLLL, St. Hharre.
THOROUGHBRED SHORT-IIORNS, AYRportedstock, and entoredinCanadianandamorican herd booka. For sale, cheap, by Joun Ih. GIBB,

Compton, P.Q.
WTLLANA KVANS,IMPURTER\&GRUWER of Field, Gardenand Fiuwor Soeds. Nurserit and aced Earms, Bruadtands, Cout Di.Paul.--Frunana OrnamentalTrees. Shrubs, Roses, Greenhouse and Beddnar Plants, Vegetable Plants, imall Frute, de Agricultural Ymplements, Fertilisers, \&c. Warehouses, Nos. 89, 91 \& 93 McGill Street (corner) $106 \&$ 103 FoundiugStreet and over Sit. Ann's market, Mintreal.-Catalogues free on anplication.

CARMERS; Soo Fossitt's Mowors Reapors and Horse-rakos. The best and cheapest forsale verywhere. Hean Ufice, 8i McGn St. Alontreal R.J. LATIMER, Mannger.

GANADIAN PRUVISIUN PACKING Co.. UFQueber fice Preserved Aleats, Farh. Vegetalices aid Fsuls. Wholesale only, Awards• First Prizemad Diplona URuebecProvincial E゙xhbilan,1877.THinze First Paizes, Two MEDals and a Diploma, at the Dominion Grand Exhibition, Ottawa, 1879.

THE BEST

FIA A BIETE For tho land.

SUPRRPEIOSPRATE
Of the best quality:
EXCELLENTT
PARISAGREEN
Pare, or mixed with ground plaster.
for saide at
Messrs. LYMAN, sons \& CO., 332 to 3 s © , St. Paul St., Montreal.

TVHEMHLS STUCK EARM,FRELIGHSBLRG
1 P. Q. - Throughbred Ayrehues, Suoth-Down sheep, Berkshire nigs. Catalogues on application N.S.WHITNEY, Montreal, P. Q.

MPLENENTS FOR TIE MANUFACTURE of syrup and sugar from Sorghum.-Crushers with three cylunderx.-Carthonse acid gas engues, Rackug-tubs L, vaporaturs. Thormumeters, Areomelers -FOR SLGAR. Vacanm pans, Crystablh zugg honlers; Mixers; Contrifugalr, \&c.
As we ourielves are makers, on a large scale, of sugarand syrup from Surghum, we aro ata pusition to give every uffurmaturn ont the subject of these nem producta. A chlular hatil boformarded if royuestod. E. S. MANNY Beauharnois.

OMESIN TEXAS, is the ille of a new illust rated pamphtet, descriphive of the country along and tributary to the line at the finermanomat Great Northern R. R. and comains a gond county map of the State. Ha also contulus tie names and nddresces of Farmers and planters in Texas who have Farms tor sale ar rem, and those who will want Farm Hinds for this year. A copy of this book will be mailed free to thove who desire relable information about Texas, upon application by letter or postal card to

ALLEN AICCOY
Gen'l Freight and Pars'r Agt. Palestine Tor. TAWES \& CU., LACHINE, P.Q.-BREEDERS and imporier of Thosotig brad and Carfiage huiges, Ara-uire cuitle, and Benketiaz pge.

BURNELL \triangle four point steel barb wire fencing. - The best and cheapest Farm and Railicay Feace.

Send for circulars and prices to
H. R.IVES \& Co., Manufacturers of HARDWARE, Iron, Railings.
QUEEN STREET Montreal.

TUR SALF, - A FEIT GHURULGH BRE, Jerses Buil Calvos, frum impuriod cows and good milkers. On reasomable terms. Apply in ij. STEFHENS, Jr., St, Lambort, Q.

VINE-GKOVING.-In order to encountige the $\sqrt{ }$ culavation of pures suited to our elume we linvemade arrungements with one of the cel obrated American firme, which enable us to ofer cor stle wo-year old vines, in oxcellent condulon, ind fit tu be planied next spring. On the recemp of on dullar, we will send by mail, post-gand, three vines, of the folluwing soris.at the purchuxer's chotee, sefected expressig for tho climate: whrte oxapasAlteu's Hybrid, Murbn.-pidd Grares-Agawsp Bnghton, Delnware, Petkins, baiom, black orara -Adrondar, Barsy, Crevetilg, Lottege, Conond, Euanel an. He rbent, mhatura, Ixalbela, Janekvile, ThF man or Champtull, Telogroph, Wilder. Address, ies" letter.

To ED. BAllNARD,
10 St . Vincent Street Xontreal

FSTABLISIED 1839 -FROST \& FOON, Smith'sFalls.Om. Manufacturere of Mowerid Reapers, IIorse IIay Rakes, bietl Ploughs, Canio: vators, Field Rollere \&c. \&c.
Fer particulars. Adijress:
LARMONTH \& SONS.
33 College Sircet, Montreal.

F
FOR SALE THROUGIBBED AYRSHIBR Stock, and Berkehire Pigs. Addregs.

Mr. LOURA IBEAUBREN,

ME CONTINLE TO GROW IOLNG APPLS. trees for sale. Wo shall have neatr le 30 vanoties. aid waie an splw, amunget whis aste of uur cuetomers. P. SIMON LACUABE,

Cóle dos Neiges, Montréal.

T^{R}
RENCII ECUNOMCAL RANGES. - THT most convenient ranges or cooking, combsiop great ceonomy in fuel wath perfoct work snd gias durablitity. Thoy are absolutely perfect is etar. respect. We can arrange them to warm, by metaly of hot water, all the rooms of a large house at one as well as performing all the reguirencnts of the wuchen. We have ourfurnaces, Ri Montreal, in we S. Lavrance Fall, Ouswi Hotel, City Clab, ter Conrent of Hochelaga, Good Shepherd, St. Brgiod Colirent of hochel ber Gea sired pinsonneath: and tn the housos llow hundreds of others who allow us to ref
confirmation or the alovo statoments.
confirmation of the above statoments.
Fur muro ampie difurmation, apply to the undiger signed.

BURNS \& GURSiLEY,
675,Cralg St., Konizast:

To Agricnltural societies and ofherg.-Prahng, Buok Binding and Wood Engraving, on the must favorable leres do ne by the Frinter of the $l l$ iustratedJournal of Ajricullure, E. SENELAL, 10 St . Vincent St., Montreal.

