FIFTEENTH ANNUAL REPORT OF TH月 0NTARI0 AGRICULTURAL COLLEGE AND
 EXPERIMENTAL FARM, 1889.
 PRINTRD BY ORDER OF THE LEGISLATIVE ASSBMHLY.

TORONTO
PRINTED BY WARWIOK \& §ONS, 68 AND 70 FRONT gTREET WEST. 1890.

CONTENTS.

LETTER OF TRANSMISSION PAGE
Report of the President 1
Report of the Professor of Geology and Natural History 3
Report of the Professor of Chemistry 61
Rifort of the Professor of Veterinary Scienoe 83
Report of the Foreman of 97
Report of the Physician 97
Report of the Professor of Agriculture 99
Report of the Professor of Dairy Husbandry 101151

ADVISORY BOARD

A. Buvs, Deputy Minister of Agriculture, ex ficicio, Toronto.

Joins I. Hobson, Mosborough, County of Wellington.
John McMillax, M.P., Constance, County of Huron.
J. S. Smith, Ailsa Craig, County of Middlesex.

Edward Jrpfs, Bond Head, County of Simcoe.
G. B. Borcs, Norham, County of Northumberland.
D. A. Dowling, Appleton, Oounty of Lanark.

Willeam Domaldson, Woodstock, County of Oxford.
Chairman-Joun I. Hobson.
Secretary-A. Blub.
Wrecutive Committee-John I. Hobson, Joun MoMillan, M.P., and Edward Jepps.
college staff.

1. James Mills, M.A., President. English Literature and Political Economy.
2. Thomas Shaw.

Agriculture, Live Stock and Arborioultera.
3. C. C. James, B. A.

Inorganie, Organic, Agricultural and Analytieal Chemistry.
4. J. H. Panton, M.A., F.G.S.

Geology, Botany, Zoology, Meteorology and Hortioulture.
5. F. O. Grenside, V.S.

Veterinary Anatomy, Pathology, Materia Medica and Obstetrios; Practical Handlin
and Judging of Horsea.
6. J. W. Robertson.

Dairy Husbandry.
7. E. L. Hunt, B.A.

Binglish Literatare, Arithmetio, Mensuration, Mechanics, Levelling, Elementary
Surveying and Book-keeping.
8. Captain Waltbr Clares.

Instructor in Drill and Gymnastios.

ulture.

Practical Handlin
relling, Elementary

FIFTEENTH ANNUAL REPORT

OP THE
0NTARI0 AGRICULTURAL C0LLEGE

AND EXPERIMENTAL FARM.

Guelph, January 2nd, 1890.
To the Honorable Charles Drury,
Minister of Agriculture :
Drar Sir,-I have the honor to submit herewith the Fifteenth Annual Report of the Ontario Agricultural College and Experimental Tarm.

In this Report we have reviewed briefly the work of the year 1889 under the following heads :-

PaRT I.-Report of the President.
PART II.-Report of the Profegsor of Geology and Natural History.
P:RT III.-Rzport of the Professor of Chemistry,
Part IV.--Report of the Professor of Veterinary Solence,
Part V.-Report of the Foreman of the Horticultural Department.
PaRT VI-Report of the Physician.
Part VII--Report of the Professor of Agricuture,
PART VIII,-Report of the Professor of Dairy Husbandry.

I have the honor to be, sir,
Your obedient Servant,
JAMES MILLS,
President.

A year a were dostroye had to sell mo circumstances winter. It w serious interte in attendance feeding; no e the usual nu room. Notwi we could in departments.

During th and satisfactor

Our new was completed barley, import management of Assistant Supe from these test conditions of 8 of this Provine -breed agains being made, an winter and spri

A special noxious weeds, tion in the past deal of time ha between our far road will be a c value of the lan think we may s now have are in a year ago. Th

PART I.

REPORT OF THE PRESIDENT.

A year ago on the 26th of last November our farm builidings, with their contents, were dostroyed by fire. This calamity caused us much trouble and inconvenience. We circumstances, and were oblige such prices as we could get under very unfavorable winter. It was not only the loss and inve temporary stabling for our horses during the serious interterence with the educstionconvenience that were to be regretted, but the in attendance last winter had little or nork of the institution. The students who were feeding ; ne experiments were conducted in the livity for \mathfrak{r} stical instruction in cattle the usual number and variety of animals for practiestock department; and we had not room. Notwithstanding these disadivantages, we kepal illustration in the live-stock classwe could in various ways to make up for the lost the students together and did what departments.

During the latter half of the year things have been in much better shape for efficient and satisfactory work in all the outside departments,

Thi Experimental Department.

Our new experimental barn, with the necessary conveniences for experimental work, was completed early in the summer. A large number of varieties of wheat, oats, and barley, imported from Europe, were sown on our experimental plots ; and under the management of Professor Shaw, with the efficient assistance of Mr. O. A. Zavitz, our Assistant Superintendent of Experiments, it is hoped that valuable results will be obtained from these tests-that some good varieties of cereals which are adapted to our changed conditions of soi! and climate will be found and gradually distributed among the farmers of this Province. A number of experiments in cattle feeding have also been undertaken -breed against breed, food against food, and method against method. Careful tests are being made, and bulletins giving the results will be issued from time to time during the winter and spring.

The Farm Proper.

A special and determined effort has been made during the year to clean the ferm of noxious weeds, which have given some trouble and have not added much to our reputation in the past ; nearly a mile of substantial wire fence aas been constructed ; and a good deal of time has been spent in making a first-class (1 might almost say a model) road between our farm proper and an additional fifty acres in the township of Puslinch. This road will be a convenience to ourselves and the public, and will add considerably to the value of the land on both sides. Our new farm buildings have been completed; and I nowk we may sa that the barn, silo, horse stable, sheep house and bull shed which we a year ago. They look better and marked improvement upon those which were destroyed

Live Stock.

We have not imported either sheep or cattle to take the place of those which were sold after the fire, but have endeavored to buy suitable animals at reasonable prices from Canadian breeders. Professor Shaw and John I. Hobson, Esq, were commissioned to purchase cattle of the beef breeds-Shorthorns, Herefords, Aberdeen-Angus Polls, Galloways, and Devons. They completed their work some time since, and the animals selected are now in our stables for experimental and educational work. In addition to these, Professor Shaw bought four Jerseys and two Ayrshires some months ago ; and J. W. Robertson, our Professor of Dairy Husbandry, has recently selected two or three more Ayrshires and suitable samples of the Holstein breed.

The Dairy Department.

In the Dairy Department also, valuable work has been done during the past year. By direction of the Professor of Dairying, 70 samples of Indian corn were sown under different conditions. The intention was to make a number of experiments simultaneously ; and the plot of ground chosen for the purpose was a large, low-lying field which was rather dirty, but otherwise in fair condition. Part of this ield Artificial fertilizers were part in the spring, and the remainder in both fall and manure to another, and a third part applied to one part of the field, a good coat of cas sown broadcast, some in drills, and some in was left unmanured. Some of the seed some at the ordinary time. Drills were made at hills. Some was sown early, so different quantities of seed were put in different drills, different distances apart, and -actical points were involved, and Professor Robertson's Thus, it will be seen, many part VIII. of this volume will be an unusually interesting report giving the results in piry literature in this Province. and valuable addition to dairy The corn spoken of above, a large silo has been constructed

For the preservation of the corn spokereamery; and the remainder of the same barn in one corner of the a cow stable for winter-dairying.

The Horticultural Department.

There has been the usual amount of work in this department, but nothing specially noteworthy, except the grading and gravelling of some roads on the lawn. Owing to the size of the lawn and the number of other things to be looked after-the vegetable garden, the orchard, the raspberry grounds, the vinery, and the forest tree-clumps-the work in this department has become very heavy ; and this year it has been work without auch return, because the frost which came early in June was so severe that it left neither blossoms, fruit, nor fruit buds. Consequently we have grown no fruit this year. We are now buying all we use, and shall have to do so till next autumn.

Chemical and Botanical Laboratoribs.

The work in these two laboratories has been carried on with energy and earnestness throughout the year. It is however fully described by the Professors of Chemistry and Natural History in Parts III, and IV. of this report, and all I need say is that our students generally are taking greater interest than formerly in scientific and literary work. They are not neglecting the practical or bread-and-butter branches; but they seem more anxious to learn the scientific principles which underlie the hest practice, and to acquire such a knowledge of their mother tongue as will enable them to express their thoughts correctly, clearly, and forcibly on such subjects as it may be their duty or in then spheres in which they may mollege dayi privilege to discuss in the different spheres in which . are past.

A College Paper Started.

For several years past our students have thought and talked about starting a college paper, but the shortness of our course of study has always been a serious obstacle in the way. During the first fourteen years of our history, our course was limited to two years; and as a consequence we had regularly a complete change of students every biennium. Under such a system it would of course be very difficult to conduct a college paper with any degree of efficiency. With editors and business managers constantly changing, there would not be much chance of success. In the session 1887-88, however, a third year was added to our course, and since that time the prospects for a college journal have been somewhat brighter. At length, in October'last, the matter was taken up by our Literary Society, and in the month of November the first number of the "O. A. C. Review" appeared. The second number has since come to hand, and, all considered, I think it is a creditable production-one which exhibits good taste and a very fair share of journal-

A Very Sad Event.

In this report it is our painful duty to record the first death in our list of graduates -that of R. M. Soule, B. S. A., South End, Welland, Ontario. Having spent three years with us, Mr. Soule passed his final examinations in May last, and on the 8th of June received the degree of B. S. A from the University of Toronto. Twenty-four years of age, full of hope, and anxious to make some return for the advantages of a college education, he went back to his father's farm and had got nicely to work, when his life. came suddenly to an end, and his parents were left to mourn the death of a dutiful and promising son. Mr. Soule was a general favorite at college, a good student, and a hard worker. His conduct and record were very satisfactory to the college staff, and his sorrowing parents have our sincere sympathy.

Students in Attendance.

The attendance during the past year has been quite satisfactory-a little larger than the year before. The total number on the roll is 134, more than 70 per cent. of whom are from this Province. Thirty-one counties of Ontario are represented, and the largest. representation is from the counties of Grey, Leeds, Prince Edward, York, and Middlesex.

COLLEGE ROLL FOR 1889.

Thimd Year Students.

*Obtained the degree of B.S. A. in June.
Assoctates Ihorng Sproial Work.

Name.	P. O. Address.	County, Ete.
Horrocks. T. J ... Willans, N . Witlans, T. B ...	Toronto Leeds Leeds	York, Ont. England. England.
Second Yrar Students.		
Name.	P. O. Address.	County, Etc.
Asbury, E Bayne, P. R. C Brown, H. H Buchanan, D Oampbell, C, S Cowar, J, H Cowan, R. E *Derbyahire, J. A Dolsen, W, H Elliott, R Fairbairn. O. G Field, H Hadwen, G. H Harcourt, J Hewgill, R. A Holliday, W. B Hutt, H. L ${ }^{*}$ Linfiald, F. B Macfarlane, T. W. Makinson, T. C.... *Marsank, F *Marsaak, H	Delaware Calcutta Chatham Hensall Brantford Galt Galt Brockville Chatham Seaforth Brockville Cobourg Mons en Bareul, near Lille St. Ann's Heathcote North Shields South End Dınlop Ottawa Harbor Grace Turnbridge Wells Turnbridge Wells	Middlesex, Ont. India. Kent, Ont, Huron, Ont. Brant, Ont. Waterloo, Ont. Waterloo, Ont. Leeds, Ont. Kent, Ont. Huron, Ont. Leeds, Ont. Northumberland, Ont. France. Lineoln, Ont. - Grey, Ont. . England. Welland, Ont. . Huron, Ont. ? Carleton, Ont. . Newfoundland. .. England. .. England.

Mattice, W
MeDonald,
MoKergow
"Moclaron,
Monk, W.
Mulholland
Noxon, ${ }^{H}$
"Rendail, w

"Remnie,
Shaw, P, G,

shaw, P. G
Sleightholn
Thomson,
${ }^{\circ}$ Tinney. T,
Watson, G.
Webster,
Wells, E.
Whitley, C.
Wilson, F.
Wood, W. I
\qquad

Alloway, \mathbf{E}.
Bate, E. H.
Bealey, H. Benyon, E, Bertram, H Buscarlet, F. Burns, J. A. Cathcart, W. Carlyle, W. I
Coohrane, J .
Conn, W
Duke, $\mathbf{E} . \ddot{W}^{\prime}$
Dunne, H, R
Eaterbrook, F
Faithfull, L.
Farlinger, \mathbf{F},
Gibson, D. Z
Golden, J. H
Graham, M. 1
Grange, G.J .
Grant, R, S
Hall, E
Hall, W. P. B
Harris, J. C
Harrison, F.
Hunter, G. N.
Haight, ${ }_{\text {W. }}^{\mathbf{W}} . \stackrel{\mathrm{L}}{ }$
Jacob, N. F.
Johnston, P, I
Kitehen, B, E
Iandsdowne, F
Lewis, W, W
McOres^{2}, H. E
MoFaul, D...

County, Etc.

Ont
Scotia
In, Ont. and, Ont oe, Ont.
lesex, Ont.
lesex, Ont
1, Ont.
llesex, Ont
rk, Ont.
e ldward, Ont
arloo, Ont.
rd, Ont. and, Ont.

County, Etc.
k, Ont.
land
land

County, Etc.
ddlesex, Ont.
dia.
$\mathrm{nt}, \mathrm{Ont}$,
iron, Ont
ant, Ont.
aterloo, Ont.
aterloo, Ont.
eds, Ont.
ent, Ont.
uron, Ont. eeds, Ont. orthumberland, Ont. rance.
ineoln, Ont.
rey, Ont ngland. Velland, Ont. Iuron, Ont. iarleton, Ont. Tewfoundland. ngland. Ingland.

Collgar Roll.-Second Year Students.-Continued.

First Year Students,

Name,	P. O. Address.	County, Etc.
Alloway, E. L. U	Toronto	
Bate, E. H.	Brighton	York, Ont.
Benyon, E, A, G	Ratcliffe Ċlose.	Northumberland, Out,
Bertram, H	Bracknell, Surrey Toronto	England.
Buscarlet, F. W Burns, J, A, \&	Lausanne	York, Ont.
Catheart, ${ }_{\text {W }}$ W	Halifax.	Switzerland
Carlyle, W, L	Liverpool	Nova Scotia.
Coehrane, J	Chesterville	Dundas, Ont,
Conn, W	Heathcote	Grey, Ont.
Duke, E. W	Rose Hall	Prey, Ont.
Dunne, H, R	Ctelsaa, London	Prince Edward, Ont.
Eaterbrook, F	Ottawa	Carleton, Ont.
Faithfull, L. E	Marseilles...	New York, U. S.
Gibson, D. ${ }^{\text {Z }}$:	Morrisburg	France. ${ }^{\text {Dundas, Ont }}$
Golden, J, H	Willow Grove	Haldimand, Ont.
Graham, M, H	London, S. W	Easer, Ont,
Grant, R. S	Guelph ...	England. Wellington, Ont
Hall, E	Byng	Haldimand, Ont.
Hall, W, P, B, H	Darlington, Durha	Haldimand, Ont.
Harris, J. ©	Kingston Calne Wilts	Frontenae, Ont
Harrison, F.	Calne, Wilts London	England.
Hunter, G. N $\mathrm{H}_{\text {aight }} \mathrm{W}$	St. Genrge	England.
Jacob, N, W, ${ }^{\text {F }}$	Wellington	Prant, Ont.
Johnston, P.	Norwich .	Prinee Edward, Ont,
Kitehen, B, E	Somenos	British Columbia
$\mathrm{I}_{\text {andsdowne, }}$ F. R. ${ }_{\text {B }}$	Clifton, Brat	Norfolk, Unt.
${ }_{\text {Lewis, }} \mathrm{M}_{\text {cores }}$ H W	Brockville....	England.
MoFaul, D.	Brock ville.	Leeds, Ont.
	Wellington	Peeds, Ont.

College Roll.-First Year Students.-Continued.

Counties, stc.

Brant.3British Columbia4
Carleton 1
Cape Breton 2
Durdas 22
England 1
Essex 2
France 1
Frontenac 1
Germany 8
Grey 2
Haldimand 2
Hamilton 3

Analysis of Roll.

Counties, atc.

India

No. of Student

Kent.
Lanark
Lincoln

Oountien, ete Ontario (Coun Ottawa
Oxford
Peel.
Perth
Prince Edwar Quebee
Simcoe
Stormont

Episcopalians .
Presbyterians .
Methodists
Baptists
Oongregationali
Roman Oatholi Friends

Of those in and as a conseq represented wer

Addington, Haldimand, Hur koka, Norfolk, Victoria, Water?

Our class-ro degrees were all and second year still much larger some idea of the ndicate the stan
ty, Eto.

Ont.
Ont.
dward, Ont.
nit.
Ont.
x, Ont.
Ont.
y.
nt.
nt .
ox, Ont.
1, Ont.
E, Ont.
nt.
ont Territories.
oo, Ont,
Ont.
Ont.
Edward, Ont.

No. of Student

Analybis or Roll-Continued.

Religious Denominations.

Episcopalians	38	Ch
Presbyterians	33	Evancelical Reform
Methodists	30	Mennonites . . .
Baptists \ldots..... Congregationalists	9	Plymouth Brethren.
Roman Oatholies	6	
Friends	5	134

Age of Students,

Oounty Students.

Of those in attendance during the year, thirty were nominated by county councils and as a consequence were exempted from the payment of tuition fees. The counties represented were the following :-

Addington, Brant, Cerleton, Cornwall, Dundas, Elgin, Essex, Grenville, Grey, Haldimand, Huron, Kent, Lambton, Lanark, Leeds, Lennox, Lincoln, Middlesex, Muskoka, Norfolk, Northumberland, Ontario, Peel, Prince Edward, Simcoe, Stormont, Victoria, Waterloo, Welland, York.

Class-room Work.

Our class-room work has gone on as usual during the past year. The candidates for degrees were all successful in passing their examinations, and a fair proportion of first and second year students gained a respectable standing; but the number of failures is still much larger than it should be. The syllabus of lectures given in Appendix 1 conveys some idea of the class-room work done during the year, and the class lists in Appendix 4 ndicate the standing of each student more clearly than anything I could say.

Examiners.

The third year examinations were conducted by the University of Toronto, and those of the first and second years by the professors of the College and three other gentlemen, to whom we are much indebted, viz., S. C. Smoke, B.A., and E. C. Jeffrey, B. A., of Toronto, Examiners in English Literature, and W. A. Douglas, B.A., of the same place, Examiner in Political Economy.

Bachelors of the Science of Agriculture.

Six candidates for the degree of B.S.A, were examined in the month of May. These candidates were all successful, and received their degrees at the regular Convocation of

Harcourt, G.
Hutton, J. R

Soule, R. M

$$
\begin{aligned}
& \text { the University of Toronto on the 8th of June. The list is as follows :- } \\
& \text {. County of Lincoln, Ont. } \\
& \text { Lehmann, A....................... County of Welland, Ont. } \\
& \text { Miorgan, J. H. A. County of Middlesex, Ont. } \\
& \text { Raynor, T........................... County of Prince Edward, Ont. } \\
& \text { on the sth }
\end{aligned}
$$

Recipients of Associate Diplomas.

Thirteen young men, having completed the course of two years, received diplomas admitting them to the status of Associates of the College. The diplomas were presented by the Hon. Charles Drury, Minister of Agriculture, at our closing exercises on the 28th of June, and the names of the recipients are as follows :-

	Bethesda, York, Ont.
*rodie,	Brockville, Ont.
*Derbyshire, Gelling, J. A	Bridgewater, N. S.
Linfield, F. B	Dunlop, Huron, Ont. Tunbridge Wells, England.
Marsack, F	" " "
Marsack, H.	Ailsa Craig, Middlesex, Ont.
McOallum, W	London, Middlesex, Ont.
\dagger Mcevoy,	McGarry, Lanark, Ont.
McLaren,	Fairview, Perth, Ont.
*Monteith, S	Camperdown, Grey, Ont.
Rendain, \ddagger Rennie, E. A	Hamilton, Wentworth, Ont.
Tinney, T. H	Oakwood, Victoria, Ont.

First-class Men.

The work in the college is divided into five departments, and all candidates who get an aggregate of 75 per cent. of the marks allotted to the subjects in any department are ranked as first-class men in that department. We would like to have a larger number of such men, but we are determined that none shall be so ranked unless they really deserve it. The following list contains the names of those who gained a first-class rank in the different departments at the examinations in 1889 :-

First Year.

1. Bayne, S. R., Calcutta, India.-In one department: Natural Science.
2. Buchanan, D., Hensall (Huron), Ont.-In one department : Veterinary Science.

[^0]3. Cowar Mathematics
4. Dolse

Book-keeping.
5. Hadw
6. Harco Natural Scien
7. Hutt, Natural Scienc
8. Sleight Natural Scienc
9. Thomp Mathematics a
10. Whit] and Compositi

1. Brodie, Science, Veteri
2. Linfield Science, Veteri
3. Monteit
4. Rendall
5. Tiuney,

Natural Science

Medals wer in the theory an and keen, as usu

Gold Medal
First Silver
Second Silv

Agriculture H. L, Hutt, Sou

Natural Sci
Veterinary
English Lit England ; 2nd, I Mathematics loo, Ont.

General Prof

Agriculture,
Natural Scie
onto, and those her gentlemen, effrey, B. A., of he same place,
of May. These Convocation of

Ont.
ceived diplomas s were presented ises on the 28 th
3. Cowan, R. E., Galt (Waterloo), Ont.-In two departments : Agriculture, and Mathematics and Book-keeping.
4. Dolsen, W. J., Chatham (Kent), Ont.-In one department: Mathematics and Book-keeping.
5. Hadwen, G. H., Lille, France.-In one department : Agriculture.
6. Harcourt, J., St. Ann's (Lincoln), Ont.-In four departments: Agriculture, Natural Science, Veterinary Science, and Mathematics, and Book-keeping
7. Hutt, H. L., South End (Welland), Ont.-In three departments : Agriculture, Natural Science, and Veterinary Science.
8. Sleightholm, J. A. B., Humber (Peel), Ont.-In three departments : Agriculture, Natural Science and Mathematics, and Book-keeping.
9. Thompson, J. P., Uptergrove (Ontario county), Ont.-In one department: Mathematics and Book-keeping.
10. Whitley, C. F., Middlesex, England.-In one department : English Literature

Second Year.

1. Brodie, G. A., Bethesda (York), Ont.-In four departments : Agriculture, Natural Science, Veterinary Science, English Literature and Political Economy,
2. Linfield, F. B., Dunlop (Huron), Ont.-In five departments : Agriculture, Natural Science, Veterinary Science, English Literature and Political Economy, and Mathematics.
3. Monteith, S. N., Fairview (Perth), Ont.-In one department: Agriculture.
4. Rendall, W., Camperdown (Grey), Ont.-In one department : Agriculture.
5. Tiuney, T. H., Oakwood (Victoria), Ont.-In four departments: Agriculture, Natural Science, Veterinary Science, and English Literature, and Political Economy.

Medallists.

Medals were given to the three students who ranked highest in general proficiency in the theory and practice of the second year taken together. The competition was close and keen, as usual, with the following results :-

Gold Medallist.-G. A. Brodie, Bethesda, York, Ont.
First Silver Medallist.-F. B. Linfield, Dunlop, Huron, Ont.
Second Silver Medallist.-T. H. Tinney, Oakwood, Victoria, Ont,

Prize Men of First Year.

Agriculture and Dairying.--1st, J. A. B. Sleightholm, Humber, Peel, Ont. ; 2nd, H. L. Hutt, South End, Welland, Ont.

Natural Science.-1st, J. Harcourt, St. Ann's, Lincoln, Ont. ; 2nd, H. L. Hutt.
Veterinary Science.-1st, J. Harcourt ; 2nd, D. Buchanan, Hensall, Huron, Ont,
English Literature and Composition. - 1st, C. F. Whitley, Enfield, Middlesex, England; 2nd, H. L. Hutt.

Mathematics and Book-Keeping.-1st, J. Harcourt ; 2nd, R. E. Oowan, Galt, Waterloo, Ont.

General Proficiency.-1st, J. Harcourt ; 2nd, Hutt ; 3rd, Sleightholm.

Prize Men of Segcond Year

Agriculture, Live Stock, Dairying.-1st, G. A. Brodie ; 2nd, F. B. Linfield.
Natural Science.-1st, T. H. Tinney ; 2nd, G. A. Brodie.

Veterinary Science.-1st, G. A. Brodie ; 2nd, T. H. Tinney.
English Literature.-1st, F. B. Linfield ; 2nd, G. A. Brodie.
Mathematics.-1st, F. B. Linfield ; 2nd, T. H. Tinney.
General Proficiency.-1st, Brodie ; 2nd, Linfield; 3rd, Tinney ; 4th, W. Rendall, Camperdown, Grey, Ont.

Valedictory Addresses.

The second year men chosen by their fellow students to deliver the valedictory addresses at the closing exercises on the 28 th June were S. N. Monteith and F. B. Linfield.

Farmers' Institutes.

The work of the Farmers' Institutes is still increasing in magnitude and importance. The professors of our college took part in about sixty institute meetings in January, 1889, and J. W. Robertson, our professor of dairy husbandry, was helping at institute and dairying meetings during the greater part of the year.

The gentlemen who composed the deputations in January, 1889, were: Professors Panton, James, Robertson, Grenside, Shaw, Mills ; Messrs. Jobn I. Hobson, John McMillan, M.P., Edward Jeffs, John Dryden, M.P.P., Simpson Rennie, A. H. Pettit, John Kernighan, and D. Nicol.

In addition to these, there were several representatives of the Fruit Growers' Association.

Professor Shaw, representative of the Central Farmers' Institute, and L. Woolverton, M. A., Secretary of the Fruit Growers' Asssociation, have consulted with me this year in regard to the programme and speakers for the meetings to be held in January, 1890. The list is as follows :-

II.-Western Division.

Lucan (North Middlesex) 7 7th	Prof. Shaw, John Hannah, Esq., and
	A. M. Smith, Esq.
Dorchester Station (East Midul.....10th \& 11th	
Alvinston (East Lambes)13th \& 14th	
Botany (East Kent) 16th	Prof. Shaw, F. Green, Esq., and y
	Pettit, Esq.
Windsor (North Essex Essex)......... 20th	
Amhurstburg (South Essex).21st	
Tilbury Oentre (West Kent) 22nd	

Freelton (N
Drumbo (No
Innerkip
Mount Elgin
Shedden (We
Waterford (Aylmer (Eas Situcoe (Sout Selkirk (Hal Marshville (

St. George (
Brantford (So Welland (We Thorold
St. Davids (Li
Hamilton (So Oakville (Halt Georgetown (1 Brampton (Pe Weston (Wes Preston (Sout)

Shelburne (D Dundalk (Sou
Flesherton (E
Meaford (Nor Creemore (We

Tottenham (S Elmvale (Cent
Aurora (North
Markham (Eas

Uxbridge (Nor Brechin (Nort Lindsay (South Bobcaygeon (N Peterborough (Norwood (East Keene (East P
Warkworth (Ea
Baltimore and umberland)
v manville (W
kstock (We
I a wa (South
h, W. Rendall,
the valedictory teith and F. B.
and importance. n Jenuary, 1889, at institute and
were: Professors I. Hobson, John nie, A. H. Pettit,
e Fruit Growers'
nd L. Woolverton, h me this year in in January, 1890.

Gibson, Esq., and Esq.
V. Cowan, V.S., and Esq.
hn Hannah, Esq., and h, Esq.

. Green, Esq., and

III.-South-Western Division.

Freelton (North Wentworth)	
Drumbo (North Oxford) ...	3rd
Innerkip "	
Mount Elgin (South Oxford)	7th \& 8
Shedden (West Elgin).	
Waterford (North Norfolk)	th
Aylmer (East Elgin),	13 th \& 14th
Selkirk (Haldimand)	101h
Marshville (Monck).	(he \& 18th

Prof. Grenside, A. Lehmann, B.S.A and A. H. Pettit, Esq.
IV.-South Central Division.

St. George (North Br	3rd \& 4th	
Welland (Welland)	7th	$\} \begin{aligned} & \text { Proi, Robertson, Edward Jeffs, Esq., } \\ & \text { and P. C. Dempsey, Esq }\end{aligned}$
Thorold ${ }^{\text {a }}$		\} John Dryden, M.P.P.,
St. Davids (Lincoln)		Esq., and P. O. Dempsey, Esq.
Hamilton (South Wentw		Prof. Robertson, Edward Jeffs, Esq.,
Oakville (Halton)	14th \&	sey, Esq.
Brampton (Peel)		Esq Dryden, M.P.P., Edward Jeffs,
Weston (West York)	¢ \&	sq., and E. Morden, Esq.
Preston (South Waterl	22	Prof. Robertson, Edward Jeffs, Esq., and E. Morden, Esq.

> V.-North Central Division.

Shelburne (Dufferin) 3rd
Dundalk (South Grey)4th
Flesherton (East Grey) 7th
Meaford (North Grey) 8th \& 9 th
Creemore (West Simcoe) 10th \& 11 th
Tottenham (South Simcoe)......... 13th
Elmvale (Centre Simcoe).15th \& 16th $\} \begin{gathered}\text { Professor Mills, Thomas McMillan, } \\ \text { Esq., and T. }\end{gathered}$ Aurora (North York) 17th 18 th
Markham (East York)20th \& 18th $\} \begin{gathered}\text { Professor Mills, Thomas McMillan, } \\ \text { Esg. and }\end{gathered}$ 20th $\} \begin{aligned} & \text { Esq., and A. M. Smith, Esq. }\end{aligned}$ VI.-EAst Central Division.

Uxbridge (North Ontario) 3rd
Brechin (North Ontario) 4th
Lindsay (South Victoria).... 7th
Bobcaygeon (North Victoria).......8th \& 9th
Peterborough (West Peterborough).. 10th \& 11th
Norwood (East Peterborough).... . . 13th
Keene (East Peterborough)......... 14th
Professor Mills, John McMillan, M. P., and T. ${ }_{4}^{\prime}$ H. Race, Esq. Esq., and T. H. Race, Esq.

John I. Hobson, Esq.; Chairman of the College Board, T. Raynor, B. S. A., and L. W. Croil, Esq.

Warkworth (East Northumberland) . . 15th \& 16th
Baltimore and Cobourg (West North-
umberland)
17th \& 18th
\checkmark manville (West Durham)20th
kstock (West Durham).......... 21st
I awa (South Ontario)........... 22nd

John I. Hobson, Esq., T. Raynor, B.S.A., and L. Woolverton, M.A.

VII.-Eastern Division.

Inverary (Frontenac)10th \& 11th $\}$ Thomas Beall, Esq
Lansdowne (Leeds)13th \& 14th
Algonquin (South Grenville)
.15th
Iroquois (Dundas).....................16th
Lancaster (Glengarry) 17 th \& 18 th
South Finch (Stormont) 20th
Lanark (South Lanark)................21st
Carleton Place (South Lanark)........22nd \& 23rd
Renfrew (Renfrew)
Galetta (Carleton) 24th \& 25th)
In the lists given above the speakers are so arranged that each deputation consists of a professor, a practical farmer and a representative Mr. Dryden, who take the place The only exceptions are in the case of they are announced. By this arrangement"it was of professors at the meetings thought that the meetings mignt
and sections of the farming community.

FINANOIAL STATEMENT.

I.-College Expenditure.

Maintenance.

1. Salaries and wage	3,062 52
2. Food-	-582 64
Meat, fish, and Bread and biscuit	3,184 29
Groceries, butter, and fr	
3. Household Expenses-	16325 41616
Laundry, soap, and cle	1,416 16
Women servants wage	59617
4. Business DepartmentAdvertising, pristing, postage, and stationery	59617
5. Miscellaneous-	22646 7115
Ohemicles, apparatus, etc .	24325
Medals (books, papers, and periodicals)..	44548
Library and reading room (bors,	
Unenumerat	\$24,168 55

Ficol, Esq., and Nicol, Esq., and
putation consists vers' Association. ho take the place rangement ${ }^{*}$ it was ble to all classes
$\$ 14,17718$
3,06252 58264
3,184 29
16325
$1,416 \quad 16$
$596 \quad 17$
22646
7115
24325
44548
$\$ 24,168 \quad 55$
$\$ 29,95296$

College Revenug.

1. Tuition fees
2. Balances paid for board, after deducting allow. \$2,767 40
ances for work
3. Gas and chemicals used by third year students.................. 32
4. Fines, breakage, etc......... 6600
5. Supplemental examinations.................................. 6313
6. Old iron, bones, etc.......................... 4750
7. Sheets and pillows... | | 75 |
| ---: | :--- |

685
$\$ 6,570 \quad 45$
Net cash expenditure of college
\$23,382 51
The net sum voted by the Legislature for the maintenance of the College was $\$ 26,935$. Consequently, the unexpended balance for the year is $\$ 3,552.49$

[^1]2. Experimental Dairy :

Salaries and wages-	824750
Assistant	50835
Labor	

75585
40103
Live stock for experimental work 23598
Feed 52980
Furniture, furnishings, repairs, etc...... 7668
Printing, postage, and stationery 8411
Contingencies

> (c) Garden, Lawn, Etc.

2,03345
(d) Instruction.

Salaries and wages-
are over-ex Experimen 81,867.11; Instruction ture for th

In ad buildings,

The tot unexpended

In conc us in a posit Those which
(1)
(2) N
(3) A
(4) A

Hoping close of the y

By comparing these figures with the estimates for 1889 , it will be seen that there are over-expenditures as follows : Farm Proper, \$373.64; Experimeñtal Plots, \$518.18; $81,867.11$; bairy, $\$ 583.45$; Garden, Lawn, etc., 8391.84 ;-amounting in all to Instruction, $\$ 259.27$. Hence, when balances-in the College, $\$ 3,552.49$, and under ture for the year is less than the sum is added together, the total maintenance expendi-

Expenditure on Capital Account

In addition to the direct expenditure of the Department of Public Works for farm buildings, disposal of sewage, etc., the following sums were expended on capital account :

$$
\begin{align*}
& \text { (a) Farm Proper. } \\
& \text { Implements } \\
& \text { Piggery.... .. . } \$ 51100 \\
& 28923 \\
& \$ 80023 \\
& \text { (b) Experiments. } \\
& \text { Constructing silo and fitting up stables in connection } \\
& \text { with the Dairy Department. } \\
& \text { Implements } \\
& \text { (c) Garden, Lawn, etc. } \\
& \text { Completing and grading roads } \tag{34873}\\
& \$ 2,23693
\end{align*}
$$

The total sum voted under these heads was $\$ 2,580$. Consequently, there is here an unexpended balance of $\$ 343.07$.

Buildings Needed,

In conclusion, I may say that we still require four or five additional buildings to put us in a position to do satisfactorily and efficiently the work which we have undertaken. Those which are most urgently needed are :-
(1) A building to be used as a Convocation Hall and Gymnasium.
(2) New green and propagating houses.
(3) A house for the Professor of Chemistry.
(4) A house for the Professor of Natural History. ${ }^{4}$

Hoping that you may find it possible to erect some of these buildings before the close of the year 1890,

I have the honor to be, sir,
Your obedient servant,
JAMES MILLS, President.

APPENDIX I.

GRADUATES AND ASSOCIATES.

1. Bachelors of Science in Agriculture, Degree of B. S. A.

University of Toronto.

```
Date 0.
1888-Craig, J. A.
1888-Creelman, G. C.
```

F.

1888-Fee, J. J.

ㅍ.
1889-Harcourt, G.
I.
1889-Lehmann, A.

Date.
M.

1889-Morgan, J. H. A.
8.

1888-Paterson, B. E.

R.

1889-Raynor.
1889-Soule, R. (ob.)
\mathbf{z}.
1888-Zavitz, C. A.
2. Associates.

The total number of Associates up to the present time is 177 and the list is as follows :

Date.

A.

1888-Austin, A. M. 1880-Anderson, J. 1880-Ash, W. E.

B.

1881-Ballantyne, W. W.
1879-Bannard, E. L.
1888-Bayne, S. R. S,
1888-Birdsall, W. G.
1888-Bishop, W. R.
1889-*Brodie, G. A.
1888-Budd, W.
1885- \ddagger Butler, G. C.
1884-Black, P. C.
1882-Blanchard, E. L.
1886-Broome, A. H.
1886- \ddagger Brown, C. R.
1888-Brown, S. P.

Date.

0.

1886-Calvert, S.
1877-Campbell, J. A.
1880-Campbell, D. P. L.
1884-*Carpenter, P. A.
1888-Carpenter, W. S.
1886-Cobb, \mathbf{O}.
1880-Chapman, R. K.
1882-Charlton, G. H.
1882-Chase, 0 .
1879-Clark, J.
1879-Clinton, N. J.
1880-Clutton, A. H.
1887-Craig, J. A.
1887 -Creelman, G. C.
1878-Crompton, E.

D.

1878-Davis, C. J.
1880-Dawes, M. A.

Date.

1882
1888
1882
1889
1881
1887
1887
1877-
1877

1888
1888 -
1882
1887 -

1878
1886
1881 -
1882-
1883-
1879

1883-
1889——
1887-
1879—
1878-
1879——
1881-

1882-
1888-*
1887-
1888-
1887-
1887-H
1888-H
1886-H
1880-H
1882-
1888
1887-H
1882-H
1888-H

1886-Id

[^2]Date. D.
1882-Dawson, J. J.
1888 - \dagger Dean, H. H.
1882 -Dennis, J.
1889-Derbyshire, J. A.
1881-Dickenson, O. S.
1887-Donald, G. C.
1887-Donaldson, F. N.
1877-Douglas, J. D.
1877 -Dunlop, S.
E.

1888-Elton, C. W.
1888-Elton, R. F.
1882-Elworthy, R. H.
1887-Ewing, W.

F.

1878-Farlinger, W. K.
1886-Fee, J. J.
1881-File J.
1882-Fotheringham, J.
1883- \ddagger Fotheringham, \mathbf{W}. 1879-Fyfe, A.

G.

1883-Garland, C. S, 1889-Gelling, J. A. 1887-Gilbert, 'W. J. 1879-Gillespie, G. H. 1878-Graham, D. 1879-Greig, G. H. 1881-Grindley, A. W.

ت.

1882-Hallesy, F.
1888-*Harcourt, G.
1887-Harkness, A. D.
1888-Harrison, R. E.
1887-Hart, J. A.
1887-Hart, J. W.
1888-Heacock, F. W.
1886-Holtby, R. M.
1880-Holterman, R. F.
1882 -Horne, W. H.
1888-Horrocks, T. J.
1887-Howes, J. S.
1882-Howitt, W.
1888-Hutton, J. R.

I.

1886-Idington, P. S.

Date. J.

1886-Jeffrey, J. S.
1883-Jeffs, H. B.
1879-Jopling, W.

E.

1888-Knowlton, S. M.

I.

1882-Lansborough, J.
1887 -Leavens, D. H.
1884- \ddagger Lehmann, A.
1887- \ddagger Lick, E.
1877-Lindsay, A. J.
1889- \dagger Linfield, F. B.
1887-Livesey, E. M.
1880 -Lomas, J. W.
1878-Logan, T.

\mathbf{M}.

1880-Macaulay, H.
1885-Macpherson, A.
1886-*Madge, P. W.
1882-Mahoney, E. C.
1884-Major, C. H.
1889-Marsack, F.
1889-Marsack, H. A.
1877-Mason, T. H.
1877-Meyer, G. W.
1887-Morgan, J. H. A.
1881-Motherwell, W. R.
1885-†Muir, J. B.
1887-McOallum, E. G.
1889-McCallum, W.
1889-McEvoy, T. A.
1885-McIntyre, D. N.
1885-McKay, J. B.
1886-McKay, J. G.
1889-McLaren, P. S.
1883-McPherson, D.
1889-Monteith, S. N.

N.

1878-Naismith, D. M.
1879-Nicol, A. (ob.)
1882-Nicol, G.
1886-Notman, C. R.

0.

1877-O'Beirne, A. C.
1887-Orsman, C. P.
1886-Owen, W. H.

[^3]Date. P.
1888-Palmer, W. J.
1887 -Paterson, B. E.
1883 -Perry, D. E.
1881 -Shin, R. J.
1881-Phin, W. E.
1881 -Pope, H.
1886-Power, R. M.
1884 -Powys, P. C.

R.

1882- \ddagger Ramsay, R. A.
1879-Randall, J. R.
1885-*Raynor, T.
1885-Reid P.
1889-Rendall, W.
1889 -Rennie, E. A.
1883-*Robertson, W.
1879 -Robertson, J.
1881-Robins, W, P.
1879-Bobinson, C. B. 1881-Ross, J. G.

S.

1884-Saxton, E. A.
1888-Serson, W. E.
1888-Sinclair, J. J.
1882-Silverthorne, N.
1888-Soule, R. M.
1877-Sykes, W. J.
1883-Schwartz, J. A.
1887-+Scrugham, J. G.
1888-Shantz, A.
1887-Sharman, H. B.
1877-Shaw, G. H.
1882-+Shuttleworth, A.
1884-+Slater, H. (ob.)
1887-*Sleightholm, F. J.
1885-Smith, E. P.

Date.
S.

1884 -Steers, 0 .
1888-Stevenson, C. R.
1878-Stewart, W.
1882-Stover, W. J.
1886-†Sturge, \mathbf{E}.
1888-Sweet, H. R.

T.

1889-㨁 Tinney, T. H.
1879-Toole, L.
1883-Torrance, W. J.
1884 -Tucker, H. V.
1885 -Thompson, W. D.

∇.

1888-Valance, R.

W.

1879-Warnica, A. W.
1884 -Wark, A. E.
1878-W arren, J. B.
1880-\$W ebster, J. L.
1879-Wells, C.
1882-Wettlaufer, F.
1879-Wilkinson, J. P.
1888-Willans, T. B.
1888-Willans, N.
1879-Willis, J.
1883-Willis, W. B., (ob.)
1888-Wilmot, A. B.
1882-White, O. D.
1879-White, G. P.
1884-W roughton, T. A.
z.

1886-Zavitz, C. A.
${ }^{*}$ Gold Medallist.

+ First Silver Medallist.
\ddagger Second Silver Medallist.
§ Winner of the Governor-General's Medal-the only medal given that year.

APPENDIX 2.

SYLLABUS OF LECTURES.

Lectures began as usual on the 1st October, 1888, and continued till the 28th June, 1889, which latter date was the end of the scholastic year 1888-9.

The following syllabus of lectures will convey some idea of the class-room work done by the several Professors in the nine months just mentioned:

First Year.-Fall Term-1st October to 22nd December.

> Department 1.-Agriculture.

Introductory.-Ancient and modern agriculture ; agricultural literature; different
of farming.
Soils.-Natural conditions of soil and plant ; examination and classification of soils ; physical properties of each kind.

Rotations in Cropping.-Importance and necessity of rotation ; principles underlying

Builängs.-Location of house, barn, and stables ; stables for horses, sheep, and cattle ; arrangement of farm buildings.

Miscellansous.-Roads, lanes, fences.

Department 2.-Natural Science.

Chemical Physics.-Matter ; accessory and essential properties of matter; attraction; various kinds of attraction-cohesion, adhesion, capillary, electrical and chemical ; specific gravity; weights and measures ; heat, measurement of heat, thermometers, specific and latent heat ; sources, nature, and laws of light.

Inorganic Chemistry.-Scope of subject; elementary and compound substances ; chemical affinity ; symbols; nomenclature ; combining proportions by weight and by volume ; atomic theory ; atomicity and basicity; oxygen and hydrogen; water-its nature, functions, decomposition, and impurities ; nitrogen ; the atmosphere-its composition, uses and impurities ; ammonia-its sources and uses ; nitric acid and its connec. tion with plants.

Human Physiology and Hygiene.-Description of the different tissues of the body alimentary system ; circulatory system ; nervous system; importance of ventilation and the influence of food on the body; remarks on the proper care of the body and attention to its surroundings in order to keep it in a continual state of health.

Zoology.-Distinctions between animate and inanimate objects ; distinction between plants and animals : basis and classification among animals; leading character of each sub-kingdom, with special reference to classes or animals connected with agriculture.

Department 3.-Veterinary Science.

Anatomy and Physiology of the horse, ox, sheep, and pig ; osseous system, muscularsystem, syndesmology, plantar system, and odontology.

Department 4.-English.

Composition.-The sentence, paragraph, and period; capitals and punctuation. Exercises in composition.

English Classics.-Critical study of Scott's "Lady of the Lake."

Department 5.-Mathematics.

Arithmetic-Review of subject, with special reference to farm accounts. Interest, discount, stocks, and partnership.

Mental Arithmetic.-Calculations in simple rules.
Book-keeping.-Subject commenced.

First Year.-Winter Term-22nd January to 16th April.

Department 1.-Agriculture.

Breeding, rearing, and feeding of animals. Points to be considered in deciding what kind of animal to keep.

Cattle.-History and characteristics of Shorthorns, Herefords, Aberdeen-Angus Polls, Ayrshires, Jerseys, Guernseys, Holsteins, Devons, Galloways, etc.; grade cattle ; milch cows-points of a good milch cow ; breeding generally ; pedigree.

Sheep.-Breeds of sheep generally considered; crosses between different breeds compared ; quality, quantity, and uses of different kinds of wool.

Department 2.-Natural Science.

Inorganic Chemistry (Continued).-Carbon ; combustion ; carbonic acid and its relation to the animal and vegetable kingdom ; sulphur and its compounds; manufacture and uses of sulphuric acid ; phosphorus ; phosphoric acid and its importance in agricuture ; chlorine-its bleaching properties ; bromine ; iodine ; silicon ; potassium ; calcium ; magnesium ; iron, etc.

Organic Chemistry.-Constitution of organic compounds ; alcohols, aldehydes, acids and their derivtives ; formic, acetic, oxalic, tartaric, citric, lactic, malic, uric, and tannic acids. Oonstitution of oils and fats-saponification ; sugars, starch, cellulose ; albuminoids, or flesh formers, and their allies ; essential oils; alkaloids-morphine and quinine; classification of organic compounds.

Zoology (Continued). -Sub-kingdoms further described ; detailed account of some injurious parasites, such as "liver fluke," "tape-worm," "trichina," etc.; insects-their influence on plant life ; corals and mollusks as agents in the formation of soil ; verte brates, with special reference to those of importance in the economy of the farm.

Lectures illustrated by specimens and diagrams.

Department 3.-Veterinary Science.

Veterinary Anatomy.-Anatomy and physiology of the horse, ox, sheep, and pigdigestive system, circulatory system, respiratory system, urinary system, nervous system, sensitive system, generative system, tegumental system.

Department 4.-English.

Geology. origin and mo fossils-their

Geology rock deposits ;

Lectures i
Botany. into the lectur with the differ

Composition.-Exercises continued ; abstracts of speeches and essays ; letter writing English Classics.-Critical study of "Cowper's Task," Books 3 and 4.
unts. Interest,

RIL.

in deciding what
Aberdeen-Angus c. ; grade cattle ; different breeds
cacid and its relainds ; manufacture portance in agricuDtassium ; calcium ;
ls, aldehydes, acids lic, uric, and tannie cellulose ; albumiphine and quinine;
d account of some etc. ; inseets-their ation of soil ; verte of the farm.
ox, sheep, and pigem, nervous system,
sssays ; letter writing and 4.

Department 5.-Mathematics and Book-keeping.

Arithmetic.-Equation of payments ; percentage ; profit and loss ; stocks ; partnership; exchange.

Book-keeping.-Business forms and correspondence ; general farm accounts ; dairy, field, and garden accounts.

First Year.-Spring Term-17th April to 30th June. Department 1.-Agriculture.

Preparation of Soil.-Modes of preparation for different crops, and various kinds of soil.

Seeds and Sowing.-Testing the quality of seed ; changing seed ; quantity per acre ; methods of sowing.

Improvement of Lands.-Drainage ; ordinary cultivation ; sub-soiling ; fallowing ; manuring. Farm-yard manure and management of the same ; the properties, application and uses of special fertilizers-lime, plaster, salt, bone dust, superphosphates, etc.

Roots.-Cultivation of roots and tubers-effects of each kind on soil.
Green Fodders.-The cultivation and management most appropriate for each.
Management of pastures ; harvesting and preparing crops for market or one's own use ; crops for current year examined.

Department 2.-Natural Science.

Geology.-Connection between geology and agriculture ; classification of rocks-their origin and mode of formation, changes which they have undergone after decomposition; fossils-their origin and importance'; geological periods and characteristics of each.

Geology of Canada, with special reference to the nature and economic value of the rock deposits ; glacial period and its influence on the formation of soil,

Lectures illustrated by numerous specimens and designs.
Botany.-Full description of seed, roots, stem, leaves, and flower. Plants brought into the lecture-room and analyzed before the class, so as to render students familiar with the different organs and their use in the plant economy.

Lectures illustrated by excellent diagrams.

Department 3.-Veterinary Science.

Materia Medica.-The preparation, doses, action and use of about one hundred of the principal medicines used in veterinary practice.

Department 4.-English.

English Grammar and Composition.-Authorized Grammar and Williams' Practical

Department 5.-Mathematics.

Mensuration.-Mensuration of surfaces--the square, rectangle, triangle, trapezoid, regular polygon, circle. Special application to the measurement of lumber. Mensuration of solids ; special application to the measurement of timber, earth, etc.

Sgcond Year.-Fall Term-1st October to 22nd Degember.

Department 1.-Agriculture.

Experimental Plots.-The results of last season's experiments with crops and animals ; liability to disease ; effects of various manures on different crops, etc.

Farm Management.-Detailed account of the treatment of each field; results from different kinds of seed and soil ; effects of manure ; harvesting, storing, and threshing of crops ; fall ploughing, sub-soiling, etc.

Stock Feeding.-Value of feeding materials ; estimate for winter keep of live stock ; housing, feeding, and fattening ; points to be observed in selecting animals for fattening; feeding experiments ; common diseases of animals ; management of animals on pasture ; value of green fodder. Dairy management and cheese making.

Departmenl 2.-Natural Science.

Agricultural Chemistry.-Connection between chemistry and agriculture ; the various compounds which enter into the composition of the bodies of animals: the chemical changes which food undergoes during digestion ; chemical changes which occur during the decomposition of the bodies of animals at death; the functions of animals and plants contrasted ; food of plants, and whence derived ; origin and nature of soils ; classification of soils ; causes of unproductiveness in soil and how detected ; preservation, development, and renovation of soils ; manures classified ; the chemical action of manures on different soils ; commercial valuation of fertilizers.

Horticulture--Ontario as a fruit-growing country ; the natural divisions into which it may be divided for growing fruit ; detailed account of the operations, layering, grafting, budding, pruning, etc. ; laying out and cultivation of an orchard ; list of fruits best suited for general purposes, with best methods for their cultivation ; remarks on gardening as a source of profit ; plants best adapted to bedding and potting.

Lectures illustrated by practical work in the garden, and specimens in the class-room.

Department 3.-Veterinary Science.

Pathology.-Osseous System.-Nature, causes, symptoms, and treatment of diseases of bone, as splint, spavin, ringbone, etc.

Muscular System.-Nature, causes, and treatment of flesh wounds, etc.
Syndesmology.-Nature, causes, symptoms, and treatment of curb, bog-spavin, and other diseases of the joints.

Plantar System.-Nature, causes, symptoms, and treatment of corns, sand-crack founder, and other diseases of the feet.

Odontology.-Diseases of the teeth and treatment of the same.

Department 4.-English.

English Classics.-Critical study of prose selections from DeQuincey, Lamb, and Ruskin.

Department 5.-Mathematics.

Dynamics.-Motion, forces producing motion, momentum ; work ; the simple machines, etc.

Drainage.-General principles ; how to lay out a system of drains ; how, where, and when to commence draining ; depth of drains and distances apart; grades ; cost of draining.

Second Year.-Winter Term-22nd January to 16th April. Department 1.-Agriculture.

and animals ; results from d threshing of of live stock; for fattening ; s on pasture;
re ; the various the chemical cur during the nals and plants ; classification n, development, res on different
ions into which yering, grafting, ruits best suited gardening as a
n the class-room.
ment of diseases
te.
bog-spavin, and
orns, sand-crack
incey, Lamb, and
ork ; the simple
; how, where, and grades ; cost of

Capital required in farming ; laying out of farms ; general management and economy cost of production ; buying, selling, and marketing,

Management of cattle, sheep and other animals in winter ; breeding generally considered ; special management of ewes before, during, and after the season of lambing ; treatment of other animals in parturition ; rearing of lambs, calves, and pigs ; washing

Aboriculture-Importance of the subject and its special application to North America; what is being done in the conservation and replanting of forests in other countries ; the objects of conserving and replanting-shelter for crops, animals and dwellings, regulation of temperature and rain-fall, ornament and profit ; requisite proportion of tree surface to that under agricultural crops ; existing condition of forests in North America ; adaptability of soils and climate to rapid results; what parts of the country should be conserved and what parts replanted; conservation of indigenous forests generally considered; special attention to the care of young natural forest trees.

Department 2.-Natural Science.

Agricultural Chemistry.-Oontinuation of the subject from preceding term, as follows Composition of plants in relation to the soils upon which they grow ; rotation of crops ; the classification of fodders according to their chemical composition and a general treatment of the science of cattle feeding; relation of feeding to manure ; chemistry of the dairy.

Entomology.-Importance of the subject to agriculturists ; beneficial and injurious insects-their habits and the best means of checking the ravages of the latter.

Lectures illustrated by specimens.
Meteorology.-Relation of meteorology to agriculture ; composition and movements of the atmosphere ; description of the barometer, different kinds of thermometers, pluviameter, anemometer and how to read them ; temperature, its influence on agriculture ; the elements which are to be considered in the discussion of climate ; the principles considered in forecasting the weather.

Lectures illustrated by instruments referred to.

Department 3.-Veterinary Science.

Digestive System.-Nature, causes, symptoms, and treatment of spasmodic and flatulent colic, inflammation of the bowels, acute indigestion, tympanitis in cattle, impaction of the rumen, and many other common diseases.

Circulatory System.-Description of the diseases of the heart and blood.
Respiratory System.--Nature, causes, symptoms, and treatment of catarrh, nasal-gleet, roaring, bronchitis, pleurisy, and inflammation of the lungs, etc.

Urinary System.-Nature, causes, symptoms, and treatment of inflammation of the kidneys, etc.

Nervous System.-Nature, causes, symptoms, and treatment of lock-jaw, string halt,
Sensitive System.-Nature, causes, symptons, and treatment of the diseases of the eye and ear.

Generative System.-Nature, causes, symptoms, and treatment of abortion, milk fever, etc.

Tegumental System.-Nature, causes, symptoms, and treatment of scratches, sallenders, nailenders, parasites, and other diseases of the skin.

Department 4.-English Literature and Political Economy.

English Classics.-The critical study of Shakespeare's "Julius Cæsar."
Political Economy.-Utility ; production of wealth-land, labour, capital ; division of labour ; distribution of wealth ; wages ; trades unions ; co-operation ; money ; credit, credit cycles ; functions of government ; taxation, etc.

Department 5.-Mathematics.

Statics.-Theory of equilibrium ; composition and resolution of forces ; parallelogram of forces ; moments ; centre of gravity, etc.

Hydrostatics.-Transmission of pressure ; the hydraulic press; specific gravity density ; pumps, siphons, etc.

Book-keeping.-Review of previous work.

Second Year.-Spring Term-17th April to 30th June.

Department 1.-Agriculture.

Review of past lectures, with special drill on outside work. Reasons for management, etc.

Department 2.-Natural Science.

Determination of soils and fertilizers by physical properties.
Analytical Chemistry.-Ohemical manipulation, preparation of common gases and reagents ; operations and analysis-solution, filtration, precipitation, evaporation, distillation, sublimation, ignition and the use of the blow-pipe ; testing of substances by reagents ; impurities in water ; ndulterations in foods and artificial manures ; injurious substances in soils.

Systematic and Economic Botany.-Classification of plants and characters of the most important orders.

This course is illustated by a large collection of plants in the college herbarium, and also by analysls of several plants collected in the fields and woods of the farm.

Green-house Plants.-Special study of all plants grown in our green-houses, and the shrubs, etc., on the lawn.

Department 3.-Veterinary Science.

Materia Medica.-The preparation, actions, uses, and doses of medicines-continued from the spring term of the first year. Lectures on special subjects, such as pleuropneumonia, the rinderpest, tuberculosis, etc.

Veterinary Obstetrics.-Description of foetal coverings. Pneumonia in connection with puberty, œstrum, gestation, sterility, abortion, normal and abnormal parturition. Diseases incidental to pregnant and parturient animals.

Department 4.-English.

English Classics.-The critical study of Milton's "L'Allegro" and "Il Penseroso."

Department 5.-Mathematics.

Surveying and Levelling.-Fields surveyed with chain and cross-staff ; measurements of heights.

Road-making.-Determination of proper slopes; shape of road bed; drainage of roads; friction n n different roads ; various road coverings; the maintenance of roads: cost, etc.
pital ; division money ; credit,
; parallelogram pecific gravity

E.

ons for manage-
mmon gases and aporation, distilla inces by reagents ; urious substances
acters of the most
ollege herbarium, of the farm.
n-houses, and the
dicines-continued ts, such as pleuro-
onia in connection normal parturition.
d " Il Penseroso."
staff ; measurements
d bed ; drainage of intenance of roads;

APPENDIX 3.

TIME TABLE FOR FALL TERM.

The following Time Table indicates our class-room work from the 1st October to the
December. TIME TABLE

First Year.

Second Year.

Hours.	Monday	Tuesday.	Wednesday.	Thursday.	Friday.
8.45	Literature.	Agricultvre.	Mechanics.	Agriculture.	Mechanics,
9.45	Agriculture.	Literature.	Drawing.	Hort'ure (8 weeks) Entomology (3wks)	Agricultural Chemistry.
10.45	Agricultural Chemistry.	Hort'ure (8 weeks) Entymology (3wks)	Agricultural Chemistry.	Veterinary Pathology.	Veterinary Pathology.

Third Year,

Hours.	Monday.	Tuesday.	Wednesday.	Thursday.	Friday.
8.45	Dairying.	Shakespeare's Richard II,	Natural History and Microscopy.	Bacon's Essays.	$\begin{aligned} & \text { Natural History } \\ & \text { and } \\ & \text { Microscopy. } \end{aligned}$
9.45	Chemistry.	Chemistry.	Drawing.	Agriculture,	Agriculture.
10.45	Addison's Spectator.	Pope's Essay on Criticism.		Themes.	Tennyson's In Mentoriam, ete.

APPENDIX 4.

EXAMINATION PAPERS.

I. Papers Set Easter Examinations, 1889.

FIRST YEAR.

Agriculture.

Examiner:-Thomas Shaw.

1. What are the principal points of merit in good ploughing?
2. Why is it not a safe rule to apply manures on the basis of the amount of ingredients required by certain crops ?
3. What effect have the age and condition of the animals upon the value of the manure?
4. What influence does lime exert as a fertilizer ?
5. Enumerate the advantages of a rotation of crops, and give a suitable rotation for sandy or gravelly soils.
6. To which localities is soiling best adapted. Give the chief objections urged against it and answer these.
7. Give the best method for the eradication of wild mustard.
8. Why is it often hazardous for beginn ars to choose prize-winning animals as the foundation of their herds and flocks ?

FIRST YEAR.

Inorganic Cemmistry.

Examiner :-C. C. James, M.A.

1. Give a brief statement of the properties of hydrogen, nitrogen, and chlorine.
2. Give the names and formulas of the principal compounds of ammonia.
3. Explain the chemical changes taking place in the burning of limestone, and the application of gypsum to manure.
4. Give an account of the allotropic forms of carbon, and of sulphur.
5. Give names and formulas of the compounds of oxygen with carbon, sulphur, iron, nitrogen, hydrogen.
6. Sketch the apparatus in use for making chlorine gas. State the chemical equation representing the action.
7. Whe be easily det
8. Whe
9. How
10. How gas to explo sium? Wh
11. Defin of its compou
12. Give sugar, distear
13. Expla
14. State
15. Distin
16. Descri
17. Explai
18. Explai
19. Show in
20. Explain and give examp
21. Give the
22. Describe
23. Explain from two sub-kir
24. Mimicry and explain the
25. Oompare distribution of th
26. Identify each belongs.
27. What are the impurities (name and formulas) of comer be easily detected ?
28. Wherein does the bleaching action of sulphur di-oxide differ from that of chlorine?
29. How is the density of water affected by heat and by pressure?
30. How many pounds of chlorate of potash will be necessary to produce sufficient gas to explode exactly the gas obtained from five pounds of water by the use of potas potas
sium What is the compound resulting, and bow much? much ?

FIRST YEAR. Organic Ohemistry. Examiner :-C. C. James, M.A. of its compounds. 2. Give formulas of butyl alcohol, glycogen, lactose, butyrin, dextrin, cellulose, cane sugar, distearin, dextrose, carbamide.
3. Explain malting, brewing, vinegar making, and soap making.
4. State the exact constituents of milk.
5. Distinguish amides, albuminoids, and alkaloids,
6. Describe four fermentations.
7. Explain : radical, isomeric, levulose.
8. Explain: "under proof," methylated spirits, wood spirits, formic acid, theine.
itable rotation jections urged
nimals as the
nd chlorine.
onia.
nestone, and the
n, sulphur, iron, hemical equation

FIRST YEAR.
Zoology.
Examiner :-J. Hoyes Panton, M.A., F.G.S.

1. Show in what way mollusks and worms have aided in the formation of soil,
2. Explain what is meant by "alternation of generations" and alternation of and give examples.
3. Give the theories regarding the origin and formation of coral reefs.
4. Describe fully the life history of the so-called liver fluke (Fasciola hepatica.)
5. Explain the term metamorphosis as applied in Z opatica.) from two sub-kingdoms.
6. Mimicry.-Give examples showing it, and state its use in the animal kingdom and explain the terms hybernation and migration as applied to animals.
7. Oompare the characters of a ganoid fish with distribution of those fishes in time and space.
8. Identify the speci each belongs.

FIRST YEAR

Vetreinary Anatomy.

Examiner :-F. O. Grenside, V.S.

1. State how to distinguish the temporary from the permanent incisors of the horse, and explain the appearance of a four, five, and six-year-old mouth respectively.
2. Explain the differerences between the incisors of the horse, and ox.
3. Describe the mucous membrane of the horse's stomach.
4. Describe the rectum, and explain how Defecation is accomplished.
5. Name the secretions that take part in Chylification, and state the particular function of each secretion.
6. Draw a diagram of the Trachea, Bronchia, and bronchial tubes, and explain each.
7. Mention the organs that occupy the space between the right and left lung.
8. Describe the bladder, and process of urination.
9. Draw a diagram of a Malpigian body of the kidney, and explain it.

FIRST YEAR.

Grammar.

Examiner :-E Lawrence Hunt, B.A.

1. Analyse and parse the following :-
(a) He sprang hastily from his grassy couch.
(b) The superhuman energy which their German leader there displayed saved them from the dreaded calamity.
2. Substitute equivalent phrases or clauses for the adjectives and adverbs a and b.
3. Classify the pronouns.
4. Distinguish the active from the passive voice. What are the advantages of using the passive voice? Illustrate by examples.
5. Form sentences illustrating the rule that the verb must agree with its subject in number and person.
6. Oriticise the following :-
(a) He paid the workmen who has just went home.
(b) The children who you gave them oranges to looks dreadful sick.
(c) I intended to have wrote last week.

FIRST YEAR.

English Literature.

Examiner :-J. Hoyes Panton, M.A., F.G.S.

1. "The swain responsive, as the milk-maid sung,

The sober herd, that lowed to meet their young,
The noisy geese, that gabbled o'er the pool,
The playful children just let loose from school,
(a) Spec
(b) Note
(c) Give
2. Give transitory, im
3. Quote wretched was
4. Explai
"stern to view
5. "For

Left
(a) $\mathrm{Re}-\mathrm{wr}$
(b) Indica
(c) Give
6. Explai
" narrow cell,"
7. What a
referred to its
8. Paraph

1. What is and reputation ; which each is pro
2. Explain tate the advant piece, on the H eries of contrasts
3. Compose tudy"; then chan
4. What mu lustrate by exam
rs of the horse, ively.
particular funcnd explain each. left lung.

it.

e displayed saved adverbs a and b.
the advantages of
with its subject in
ul sick.

The watch-dog's voice, that bayed the whispering wind,
And the loud laugh, that spoke the vacant mind,
Those all in sweet confusion sought the shade,
But now the sounds of population fail,
No cheerful murmurs fluctuate the gale."
(a) Specify the words not of English origin.
(b) Note the figures of speech in the extract.
(c) Give the chief characteristics of this poet
2. Give meaning and derivation of as a writer, and name his chief works. transitory, impotence, and mole.
3. Quote the description of the village preacher beginning, "Thus to relieve the wretched was his pride."
4. Explain the following extracts :-"coming day," "hollow-sounding bittern," "stern to view," " mantling bliss," "sickly trade" and "western main."

This dumb forgetfulness a prey, Left the pleasing anxious being e'er resigned,

Nor precincts of the cheerful day
(a) Re-write this ons longing lingering look behind."
(b) Indicate figures of speese so as to show the meaning.
(c) Give meaning of words underlined
6. Explain the phrases: "
" narrow cell," "storied urn," "some village Hampde"," with dirges due, in sad array,"
7. What are the leading thoughts ing Hampden," "fretted vault." referred to its excellence
8. Paraphrase :-
" Let not ambition mock their useful toil,
Their homely joys, and destiny obscure,
Nor grandeur hear with a disdainful smile
The short and simple annals of the poor."

FIRST YEAR.

Composition.

Examiner :-E. Lawrence Hunt, B.A.

1. What is meant by purity, and precision of diction? Distinguish:-character and reputation ; womanly and womanish ; childish and childlike. Write a sentence in
2. Explain the torms:
tate the advantage of each. Compose a sentiodic sentence, balanced sentence; and piece, on the Holstein and the Jersey. a sentence of each kind, of two or three lines eries of contrasts about two of the authors whose workence and industry. Draw up a
3. Compose ons simple, one compound,
tudy"; then change each into the other two, and one complex sentence on "How to
4. What must be attended to in the formation of sentences to

5. Make the following sentences more forcible by changing the construction ; and briefly state in each case why the one form is more forcible than the other:-(a) Diana of the Ephesians is great. (b) The scenes of my childhood are dear to my heart, (use exclamatory form). (c) You cannot put your hand into the fire and not be burned, (use interrogative form).
6. State concisely the advantages of figurative language. Define and give examples of :-simile, apostrophe, motonymy, euphemism. Re-write each sentence in plain language and note the loss.
7. Punctuate the following :-2 chron XII 10 Jas R Black Esq MP Surely said Rip I have not slept here all night He recalled the occurrences before I fell asleep the strange man with the keg of liquor the mountain ravine the wild retreat among the rocks the woe begone party at ninepins the flagon Oh that flagon that wicked flagon said Rip what excuse shall I make to Dame Van Winkle.
8. Express, in your own words, the thoughts, in the following passage from Ruskin, p. 33,-Sesame and Lilies :-
"But, granting that we had both the will and the sense to choose our friends well, how few of us have the power ! or, at least, how limited, for most, is the sphere of choice! Nearly all our associations are determined by chance or necessity, and restricted within a narrow circle. We cannot know whom we would ; and those whom we know, we cannot have at our side when we most need them. All the higher circles of human intelligence are, to those beneath, only momentarily and partially open....... Meantime, there is a society continually open to us, of people who will talk to us as long as we like, whatever our rank or occupation ; talk to us in the best words they can choose, and with thanks if we listen to them. Kings and statesmen are lingering patiently in those plainly furnished and narrow ante-rooms, our book-case shelves."

FIRST YEAR.

Arithmetic.

Examiner :-E. Lawrence Hunt, B.A.

1. Calculate the profits from a flock of 30 sheep, stating the details of cost and returns.
2. Calculate the profits from 20 acres of barley, supplying the necessary data.
3. Oats are 30 cents a bush. ; peas, 55 cents ; barley, 60 cents; rye, 40 cents Indian corn 95 cents. (a) Find the cost of 20 pounds of the mixture. (b) How many bushels of each will make a mixture worth 50 cents a bush?
4. A drains 12 acres at a cost of $\$ 35$ an acre. Take any rotation of crops and find approximately what the resulting increase in each crop per acre must be, to give A $8 /$, interest on the cost of drainage.
5. A plants 10 acres with orchard at a cost of $\$ 24$ an acre, and gets no returnsfu 4 years. If the land itself was worth $\$ 65$ an acre, find the value of the orchard at the end of 4 years ; compound interest at 6%.
6. On Jan. 1, 1889, A sells B 650 bushels of wheat at $\$ 1.05$ a bush., and takes Bi note for the amount, due 6 months hence, bearing interest at 5%. On April 22, A gea this discounted at the bank at 8%. Find the amount he received for the note. Wrim the form of the promissory note if it is negotiable by endorsement.
7. A sends B $\$ 1,481.90$ to invest in cattle. If B charges one and a-half per ceat commission, find the amount invested in cattle.
8. A owns $\$ 9,650$ of the 8% stocks at $110 \frac{1}{2}$. He sells out (brokerage a-half pe cent.) and invests the proceeds in a farm. He rents the farm to \mathbf{B} for one-third of ${ }^{4}$ annual proceeds. B's income from the farm is $\$ 900$. Find the rate per cent. of inters A receives on his money, and the differcnce in his income.
onstruction ; and ther :-(a) Diana o my heart, (use ad not be burned,
and give examples ontence in plain

MP Surely said I fell asleep the retreat among the that wicked flagon
sage from Ruskin,
e our friends well, e sphere of choice restricted within a e know, we cannot human intelligence eantime, there is a we like, whatever e, and with thanks tly in those plainly
details of cost and
cessary data.
ats ; rye, 40 cents re. (b) How many
on of crops and fini ust be, to give A 8\%,
gets no returns for f the orchard at the
bush., and takes Bi On April 22, A gea for the note. Wrik
and a-half per cant brokerage a-half pe for one-third of per cent. of inters

FIRST YEAR.

Book-keeping.

Examiner : - E. Lawrence Hunt, B. A.

1. "A farmer's work is of such a nature that a thorough system of book-keeping is practically impossible. The results cannot be satisfactory, nor will they justify the labor of the undertaking." Discuss fully these statements, mentioning the chief difficulties of keeping accurate accounts on the farm ; and indicating the system whereby the necessary knowledge may be obtained.
2. Make out and close an account with cows.
3. Briefly explain the method of closing the books
4. Mention the accounts affected by the following:-(a) Sold 0 lambs to 81.25 a bamieson at $\$ 5$ each. (b) Paid $\$ 12$ insurance on burns. (c) Sold 200 bbls. apples at eggs at 10 cents a dozen fall wheat worth $\$ 1.10$ per bush. grocer, entered in pass-book. (f) Sowed 20 bushels Black, taking his note due 6 moll ield No. 2. (g) Sold INolstein bull $\$ 225$ to D. D. Black pays his note with interest, hence and bearing interest at 8%. (h) Oct. 18, legally due Dec. 30, I got it discount. (i) Holding P. Grey's promissory note of $\$ 800$ legally due Dec. 30, I got it discounted at the Bank of Commerce, Sep. 15, at 7%.

SECOND YEAR.

Agriculture,

Examiner:-Thomas Shaw.

1. Give reasons based on the disposition, habits, and physical conformation of Ayrshires for a belief in their mixed ancestry.
2. Give the leading characteristics of the Sussex and Kerry breeds of cattle,
3. How do the Devon, Ayrshire, Guernsey, Holstein, and Norfolk Polled breeds compare for dairy purposes?
4. Describe the color, head, and udder of the Jersey.
5. Enumerate some of the principal properties of fine wools.
6. In selecting breeding stock what are the principal considerations?
7. Give the principal methods to be adopted in the complete eradication of the Canada thistle.

SECOND YEAR.

Praotioal Live Stock.
Examiner :-Thomas Shaw.

1. Do you consider the Hereford bull (Conqueror) a good representation of the beefing breeds ? If so, give the reasons in detail.
2. Point out the principal deficiencies of conformation in the Devon bull "Rose's Duke" (929].
3. Point out the most prominent deficiencies in the Grade cow "Lady Norton."
1) As to symmetry. (2) As to milking indications.
4. Give the strong and weak points in the Oxford Down Ram "Duke of Gloucester." 3 (A. C.)

SECOND YEAR.

Agricultural Ohemistty.

Examiner :-C. C. James, M.A.

1. State the relationship of the following substances to plant development :ammonia, silica, iron, chlorine.
2. Give the conditions of germination and the chemical changes accompanying it.
3. What is meant by "the retentive power of soils ?" What changes or actions underlie it ?
4. Discuss the composition, value and application of wood and of coal ashes.
5. What is meant by N-free extract? How is it determined and what is its use in the animal?
6. Distinguish albumoids and amides as to (a) composition ; (b) occurrence ; (c) uses.
7. What circumstances affict the composition and feeding value of timothy hay 1 Explain how.
8. Explain the sources of the food of the following :-muse wool, butter, fat.
9. "The fig is undoubtedly the most economical meat producing machine at the farmer's disposal." Give reqasons for this statement.
10. "Milk is not simply a secretion, it is the liquified organ" (Armsby). Explain what is meant and how proven.

SECOND YEAR.

Meteorology.

Examiner :-J. Hoyes Panton, M.A., F.G.S.

1. Show in what way a knowledge of the principles of meteorology is of practical importance to agriculture, horticulture, and commerce.
2. Explain how the physical features of a country may modify its climate, and give illustrations from districts in Canada.
3. Thermometer-name the different kinls, and state how read and how the readings may be of use. Describe Rutherford's, and reduce 16 F . to C . and 28 O . to F .
4. Upon what does the amount of moisture in the atmosphere depend? Describe the instrument used to ascertain it.
5. Where are the following winds found :-mistral, dust win Account for their presence.
6. Oompare the rainfall of North and South America and account for the difference
7. Define latent heat, isobars, isothermals, and area of low pressure.
8. Account for the heavy rains in India and the absence of rain in some parts d Africa.
9. Show h ravages.
10. Give the beetles are foun
11. Name th larva of any, an
12. Name th
13. Give the crane-fly, May-b
14. What in do the saw-flies
15. Some ins some in both.
16. Explain when to use it.
17. Describe depending upon
18. Give the
19. Describe t
20. Give the
21. Explain tl
22. Give the
23. Give the
24. Give the s
25. Explain tl
26. Describe t
27. Describe t
28. Explain th wided in the choic

SECOND YEAR.

Estomoloy.

Examiner:--J. Hoyes Panton, M.A., F.G.S.

development :companying it. anges or actions oal ashes. what is its use in urrence ; (c) uses. of timothy hay mechanical force, g machine at the rmsby). Explain
ogy is of practica s climate, and give
nd how the reading 8 O. to F . depend? Descrily
chinook \} Account nt for the differenoe sure.
in in some parts

1. Show how a knowledge of insect life becomes of service in preventing their ravages.
2. Give the life-history of the root-louse, and name the families in which beneficial beetles are found
3. Name the genera in which the most injurious cutworms are found. Describe the larva of any, and give remedies to prevent their attacks,
4. Name the different insects that are destroyed by the application of Paris green.
5. Give the remedies for the wire-worm, and contrast its larva with that of the crane-fly, May-beetle and cutworm. do the saw-flies belong?
6. Some insects are injurious in the larval condition only, some in the perfect, and some in both. Give examples of each,
7. Explain what is meant by an emulsion. Give one of the best, and state how and when to use it.
8. Describe the larva and imago of the canker worm, and give two remedies-one depending upon a habit of the larva and the other upon the nature of the mature insect.

SECOND YEAR.

Veterinary Pathology.

Examiner :-F. C. Grenside, v.s.

1. Give the causes of corns, and explain means of relieving them.
2. Describe the symptoms and treatment of punctures and bruises in horses' feet,
3. Give the symptoms of lock jaw.
4. Explain the causes of digestive troubles in the horse.
5. Give the causes, symptoms, and treatment of hoven in the ox.
6. Give the differential symptoms of impaction of the rumen and fardel round.
7. Give the symptoms and treatment of spasmodic colic in the horse.
8. Explain the differential symptoms of acute indigestion and flatulent colic.
9. Describe the symptoms of pneumonia.
10. Describe the symptoms and treatment of Lymphangitis.

SECOND YEAR.
practioal Horse.
Eaxaminer:-F. C. Grenside, V.S.

1. Explain the different modes of giving medicines to horses and how we should be
2. Give the normal temperature of horses, cattle, and sheep. Explain how to take the temperature, and the theories with regard to the production of heat in the animal economy
3. Explain the measures to be adopt d in physicing a horse.
4. Describe how to treat a case of choking in the ox.
5. Explain the diseases and irregularities of the teeth of horses.

SECOND YEAR.

Grammar.
Examiner :-E Lawrence Hunt, B.A.

1. Define inflection and briefly indicate its extent in modern English. Give, in detail, the inflections of pronouns.
2. What are the advantages of giving different grammatical values to the same word ? Illustrate with the words, iron, house, but.
3. Define conjugation. Distinguish the conjugation of English verbs. Conjugat the following : keep, deal, fly, flee, flow, lose, loose, lie, rid, abide, grow, sink, hide.
4. Analyze the following and parse each word :-
" Passion, I see, is catching; for mine eyes, Seeing those beads of sorrow stand in thine, Began to water."
5. Oriticise the following :-
(a) Neither the employer nor his workmen were to blame.
(b) He likes you better than me.
(c) He likes me better than you,
(d) He insisted on the rule's being observed.
(e) The soldiers, after ten hours' fighting, laid down to sleep.
(f) Whom do men say I am?
(g) Next to the governor comes the mayor and council.
(h) I intended to have done that last month.

SECOND YEAR.

Juliug Oasar.

Examiner :-S. O. Smoke, B.A.

1. Sketch briefly the political situation in Rome at the time of the events descrix

in this play.

2.

"There was a Brutus once that would have brook'd Th' eternal devil to keep his state in Rome, As easily as a king."
(a) To what Brutus is reference here made ?
(b) Quote any other reference to him in this play of the Romans of this time
(c) Give some account of the relig "the eternal devil." How long aftet account for the reference here to "oduced into Rome? was it that Christianity was introduced into Rome?
3.

Remark up 4. "Till th

What is the now used in this
5. "He hea is it intended to
6. Say by w
(a) " T
(b) " It
(c) " O
(d)"
(e)
(f)
7. Quote fro why you have tho
8. What is a

1. Name the
2. Tell to w achinery ; (4) is
3. Wealthon of wealth in t s's head became 200 per ton are क्blars per acre.
4. State the
5. Production
(1) Give
best manner.
(2) How
(3) Wha
(4) Nam
(5) Nam
6. Distributio
(1) Whic
(2) Whic
(3) Whic
(4) Whic
lain how to take eat in the animal

English. Give, in values to the same h verbs. Conjugata ow, sink, hide.

èp.

of the events descrit
ok'd

Romans of this time
il." How long after
3.
"And that same eye, whose bend doth awe the world, Did lose his lustre."
"Hoping it was but an effect of humor, Which sometime hath his hour with every man."
Remark upon and explain the use of his in these extracts.
4. "Till then, my noble friend, chew upon this."

What is the meaning of shew here? What other word of the same root-meaning is now used in this sense?
5. "He hears no music." Of whom is this said and what feature of his character is it intended to describe ? Quote any similar passage from another of Shakespeare's plays.
6. Say by whom the following passages were spoken, and explain fully their meaning:-
(a) "Those that with haste will make a mighty fire Begin it with weak straws."
(b) "It is the bright day that brings forth the adder."
(c) "Oowards die many times before their deaths."
(d) "O world ? thou wast the forest to this hart, And this, indeed, 0 world, the heart of thee."
(e) "What villain touched his body, that did stab, And not for justice?"
(f) "You know that I hold Epicurus strong, And his opinion : now I change my mind, And partly credit things that do presage-"
7. Quote from this play any five passages of not less than four lines each, and say why you have thought them worthy of being committed to memory.
8. What is a drama?

SECOND YEAR.

Political Economy.

 Examiner :-W. A. Douglas, B.A.1. Name the four classes of the subject.
2. Tell to which class the following facts belong: (1) Strikes; (2) wages ; (3) achinery ; (4) increase or diminution of value ; (5) ships ; (6) division of labor.
3. Wealth-state which of the following indicates an increase aud which a diminuon of wealth in the commodity named: (1) Water became worth $\$ 3$ per gallon ; (2) an 's head became worth four score pieces of silver ; (3) steel rails that formerly cost 00 per ton are now sold at $\$ 25$; (4) Some lots in Toronto are worth nearly one million
Hlars per acre.
4. State the circumstances under which water may be classed as wealth.
5. Production :
(1) Give examples of how people try to work at the best time, best place, and in
best manner.
(2) How much law do we require to make people observe these rules?
(3) What law aims to make people work at the best place?
(4) Name three methods adopted to increase production.
(5) Name three advantages of division of labor.
6. Distribution : Of the three following items : rent, interest, wages-
(1) Which increases with population?
(2) Which declines in the course of years?
(3) Which depends on the toil of the recipient?
(4) Which continues independently of the toil of the recipient?

7. Exchange :

(1) Show how an exchange may enrich both partie
(2) Show the relation of exchange to the division of labor
(3) Name three plans adopted to facilitate exchange.
(4) Name a law adopted to stop exchange.
(5) Name some impediments to exchange.
8. Value-give examples of the following :-
(1) Increased value caused by labor.
(2) Increased value not caused by labor.
(3) Increased value coincident with increased poverty.
(4) Increased value coincident with increased wealth.
(5) Distinguish value in use and value in exchange.
9. Money :
(1) Name two of its uses,
(2) Name one essential condition that money must possess.
(3) Distinguish between money and bank or government notes.
II.-Papers Set at Midsummer Examinations.

FIRST YEAR.

Agriculture.

Examiner :-Thomas Shaw.

1. Give the modes of preparing soil for wheat best adapted to Ontario conditions.
2. Mention the best time to sow winter wheat, rye, oats, barley and pease in this Province, and the respective amounts of sped required per acre.
3. State the place in the rotation that should ordinarily be occupied by wheat, barley, oats, pease, root crops, rape, meadow, ordinary pasture.
4. State the advantages of growing rape, and when should it be sown ?
5. What beneficial effects followed the introduction of turnip culture into Great Britain ? and what is the probable effect the general introduction of the silo will have upon tbeir cultivation in Canada ?
6. Give the soils best adapted to the growth of the carrot?
7. Give the leading principles that should govern the pruning of apple orchards,
8. Mention some of the most important essentials to be borne in mind in the cosstruction of a cattle barn.

FIRST YEAR.

Geology.

Examiner :-J. Hoyes Panton, M. A., F. G. S.

1. Draw diagiams illustrating the different kinds of valleys, and state how the have been formed.
2. How do you account for the absence of strata in some parts of the world? Num the systems represented in Ontario.
3. Give the economic products of the Silurian system, and give brief notes regardir the condition of animal and plant life at that time.
4. Show eading as app
5. Comp the rock syste
6. Give r condition, and
7. State in Ontario, wi
8. Compa and the materi
9. Name t Purse and the 1
10. Classify
11. Explain
terms applied.
12. Give the

Bed, and descril
5. Give ex perpetuation of
6. Compare
7. Give exa
8. Analyze
9. What is
figures illustrati

1. Explain
2. Name the
3. Define th
4. Define th
belladona and aco
5. Give actic
6. Give two
7. State how
8. Explain h ome diseases in w
9. Give the s
10. Give the n
11. Show in what respects the terms saliferous, cretaceous, and carboniferous are miseading as applied to the rock systems in geology.
12. Compare the following minerals : apatite, gypsum, graphite, and chalk; and name the rock systems in which they are found.
13. Give reasons for believing that the interior of the earth is in a highly heated condition, and the most popular view regarding the distribution of the heated material.
14. State the chief characters of the metamorphic rocks, and give their distribution in Ontario, with some of the most valuable economic minerals in them.
15. Compare the coal of Pennsylvania with that of the North-west, as regards its age and the materials from which it was formed.

FIRST YEAR.

Botany,

Examiner :-J. Hoyes Panton, M. A., F. G. S.

1. Name the parts of a flower, and describe them as represented in the Shepherd's Purse and the Dandelion.
2. Classify roots with reference to shape and duration, giving examples of each.
3. Explain the terms cohesion and adhesion as applied to the stamens, and give the terms applied.
4. Give the characters of the order you have attended in the Botanical Instructive Bed, and describe the fifth plant.
5. Give examples of monoecious and dioecious flowers, and state how this affects the perpetuation of the species of such plants.
6. Compare the chief characters of the lily with those of the apple.
7. Give examples illustrating how parts of a plant may become developed into food.
8. Analyze and identify the plant before you.
9. What is meant by tissue in plants, and what are the different kinds? Draw figures illustrating each.

FIRST YEAR.

> Veterinary Materia Medica. Examiner :-F. C. Grenside, V.

1. Explain the theory of the allopathic mode of cure.
2. Name the circumstances which modify the actions of medicines.
3. Define the following terms : antiseptic, emollient, cathartic, and diuretic,
4. Define the meaning of the term alkoloid, and name the active principles of belladona and aconite.
5. Give actions and dose of aloes for the horse.
6. Give two prescriptions of purgative drenches for the ox.
7. State how linseed oil is obtained, the dose for horse and ox, and its uses.
s, and state how the of the world? Nam e brief notes regardin
8. Explain how arsenic is supposed to establish its action as an alterative fome diseases in which it is particularly beneficial.
9. Give the source and properties of Iodine.
10. Give the names of any of the drugs that we have sjudied that act as stomachics.

FIRST YEAR.

English Literature-Selections from Wordsworth.
Examiner :-E. Lawrence Hunt, B. A.

1. State, either in your own words or in the poet's, what you consider four of the most desirable and essential traits of character in the ideal "Happy Warrior."
2. In the poem of "The Fountain," shew clearly why the same scene produced such different feelings in the two friends.
3. (a) Give in your own words the outline of the thoughts in the "Ode to Duty."
(b) Quote what you consider the choicest stanza.
4. (a) Quote from "Peele Castle" the lines referring to the poet's imagination. Quote any lines which illustrate this power, and show how they do so.
(b) Describe, after Wordsworth, the picture of Peele Castle, by George Beaumont; and, in contrast, the representation which Wordsworth would have made.
"A smilling sea, and be what I have been." Why 1 Explain the illusion.
"'Tis her privilege,
5. (a) "Through all the years of chis our life, to lead
"From joy to joy :" Explain.
(b) How did Wordsworth look on nature in boyhood? in youth? and in manhood?
6. Explain the following :-
(a) "We are laid asleep in body, and become a living soul."
(b) "We see into the life of things."
(c) "I have owed to them
"In hours of weariness, sensations sweet."
(d) "When thy mind
"Shall be a mansion for all lovely forms,
"Thy memory be as a dwelling-place
"For all sweet sounds and harmonies."
Write a note on the person addressed in (d).
(e) "On whose head must fall,

FIRST YEAR.

English Composition.

Examiner :-James Mills, M. A.

1. State the principal differences between prose and poetry.
2. (a)
" Art is long, and time is fleeting,
"And our hearts though tough and brave,
"Still, like muffled drums, are beating
"Funeral marches to the grave."
(b) "The power of music all our hearts allow,

Change (a) into prose, and transpose (b) by removing the measure and the poetic arangement.
3. Quot
4. Pun
5. Writ tion to spelli

1. A bar much more fl
2. The f much water a
3. A silo of silage, find
4. The w form of a frus height 7.2 fee
(a)
(b)
5. A \log feet. Find th the \log.
6. Give th the modificatio
7. Give t gestation.
8. Descril
9. Mentio following wean
10. What sought? How
11. Quote the rules for the use of the Colon and the Semicolon.
12. Punctuate the following passages, giving the rule for each mark inserted :-
(1) Greece fell but how did she fall did she fall like[Babylon did she fall like Lucifer never to rise again.
(2) It will I am sure it will more and more as time goes on be found for his good.
(3) Charity on whatever side we contemplate it is one of the highest Christian graces.
13. Write a short composition on "Farming as an Occupation," paying special attention to spelling, capital letters, and punctuation.

FIRST YEAR.

Mexsuration.

Examiner :-E. Lawrence Hunt, B.A.

1. A barn is 110 yards long and 66 wide. With the same amount of wall, how much more floor would there be, if the barn were square? if it were round?
2. The fall, etc., being the same, how many 2 -inch tile are required to discharge as much water as one 6 -inch tile in the same time ?
3. A silo is 30 by 18 feet and 18 feet high. If there are 45 pounds in a cubic foot of silage, find the number of tons in the silo, when the silage is 15 feet deep.
4. The water from the roof of a barn 80 feet square is drained into a tank in the form of a frustrum of a cone, the diameters of the ends 9.6 feet and 13.8 feet and the height 7.2 feet.
(a) Find the depth of rainfall required to fill the tank.
(b) Find the amount of zine required to line the tank.
5. A $\log 40$ feet long and of uniform thickness, has a circumference of 16 and a half feet. Find the largest prism, having its ends equilateral triangles, that can be cut from
the \log.

SECOND YEAR.

Agrictlture and Arboriculture.

Examiner :-Thomas Shaw.

1. Give the style of finished hog adapted to the markets of the present, and mention the modification that has taken place in this respect during recent years.
2. Give the care and food best adapted to breeding sows during the period of gestation.
3. Describe the process of curing pork for farm use.
4. Mention various rations suitabie to be fed to pigs during the period immediately followíng weaning.
5. What do you understand by the term "early maturity?" Why should it be sought ? How may it be attained ?
6. ${ }^{\text {D }}$ Describe the feeding and management during the first year best adapted to calves intended ultimately for shipping for beef purposes, when the whole milk is wanted for dairy uses.
7. What remedy would you use for young foals affected with constipation?
8. Give the food and management adapted to spring foals the first winter.
9. Mention the varieties of trees best adapted to Ontario conditions to plant as wind-breaks, and give the reasons.
10. In planting trees in arable land for purposes of ornament, how would you proceed ? for purposes of shade? which varieties would you choose?

SECOND YEAR.

Practical Examination.-Judging Sheep.

Examiner :-Thomas Shaw.

1. Point out what you consider the defects of conformation in the Oxford Down ewe No. 375.
2. Mention the good points of conformation in the Shropshire Down lamb of ewe No. 143, and in what particular or particulars does the lamb excel its dam? What do you consider its chief deficiency ?
3. Which of the three ewes, having regard to individuality only ; the Shropshire Down No. 143, the Oxford Down No. 375, and the Dorset No. do you consider most suitable for producing mutton-lambs with the least expenditure of feed, and state the reasons ?

SECOND YEAR.

Dairying.

Examiner :-James W. Robertson.

1. What are the advantages of underdrainage?
2. Describe the way to grow and treat a corn crop in order to secure the largest feeding val e per acre in the form of silage.
3. N ie, in the order of their merit, the points of a dairy cow, indicating large milking power.
4. State the composition of milk and describe how it is elaborated.
5. Give a scale of points for use in judging butter.
6. Describe a centrifugal cream separator.
7. Briefly describe the process of Cheddar cheese-making.
8. Describe the necessary buildings and equipment for a cheese factory of 500 cow eapacity.

SECOND YEAR.

Practical Horticulture.

Examiner :-J. Hoyes Panton, M.A., F.G.S.

1. State how you would proceed to prune a tree
2. Describe some different forms and methods of bedding plants.
3. Ar

Ricinus, A
4. A practical p
5. Na
you would
6. Giv and time w
7. Nar
8. Ide

1. Upo to the Rose,
2. Des undergoes a
3. Give destroy it.
4. Nam
5. Wha
6. Com as applied to
7. Nam would identi
8. Ident
9. Descr
10. Expla
11. Expla
12. Give mare and the
13. Give t
14. Explai

Utero. Give
7. Expla presented, and
8. Descri
9. Give
10. Give th
adapted to ilk is wanted
on?
er.
to plant as would you

Oxford Down
lamb of ewe m? What do he Shropshire consider most and state the
cure the largest indicating large
tory of 500 cow
3. Arrange the following plants in a circular bed: Alleranthera,-Alyssum, Canna Ricinus, Ageratum, Geranium, Dahlia.
4. A vegetable garden contains three acres.
practical purposes, and give a diagram illustrating. Arrange it as you think best for
5. Name trees or shrubs best suited for hating our arrangement.
you would use one in preference to another hedges, and state under what circumstances 6. Give ten shr 1 ar
and time when they are in bloom. well suited for ornamental purposes, mentioning size
7. Name some plants well adapted for hanging baskets.
8. Identify the specimens before you.

SECOND YEAR.

Systematic and Economic Botany. Examiner :-J. Hoyes Panton, M.A., F.G.S.

1. Upon what characters does classification largely depend ? Illustrate by referring to the Rose, Lobelia, Indian turnip, and the beet.
2. Describe the cell and its contents, and name some of the modifications which it undergoes as growth proceeds.
3. Give the life history of the so-called smut, and the remedies recommended to destroy it.
4. Name orders of plants of economic value in supplying dyes, oils, sugar and cloth.
5. What are the chief characters of the orders :-Leguminosæ, Araceæ and Gramine?
6. Compare a seed with a spore, and distinguish between saprophyte and parasite as applied to plants-give examples.
7. Name fifteen weeds and give the orders to which they belong and how you would identify at least five of them.
8. Identify the specimen before you.

SECOND YEAR.

Vetrrinary Obstetrics.
Examiner :-F. O. Grenside, V. S.

1. Describe the ovaries and Fallopian tubes.
2. Explain the sources, properties, and functions of the liquor Amnii.
3. Explain the constitution of the umbilical cord.
4. Give the causes of difficult parturition, and state its relative frequency in the mare and the cow. Explain why it is more difficult to afford relief in the mare.
5. Give the average periods of gestation in the mare, cow, ewe, sow, and bitch.
6. Explain the proper mode of removing the foreleg at the shoulder of the foetus in Utero. Give the cases in which this operation would be an advantage.
7. Explain how to afford relief in the following cases of mal-position: Fore legs presented, and head deviated towards the sternum ; knees presented ; hocks presented.
8. Describe the symptoms of the sequels of retained after-birth.
9. Give the treatment of inverted womb.
10. Give the symptoms of paturient apoplexy.

SECOND YEAR.

5. D mental \mathbf{F}
6. W ments are
7. Compare the poems L'Allegro and Il Penseroso, (1) as to subject, (2) as to method of treatment, and (3) as to the effect produced on yourself.
8. Explain the force of the following italicised epithets: Low-browed rocks, heart easing mirth, ivy-crowned Bacchus, frolic wind, eating cares, immortal verse, half-regained Eurydice, twilight groves, monumental oak.
9. Quote the passages beginning respectively with the following lines :
"Straight mine eye hath caught new pleasures,"
" Oft on a plot of rising ground,"
"There in close covert by some brook."
" Hard by, a cottage chimney smokes,
" From betwixt two aged oaks ;
" Where Corydon and Thyrsis met,
" Are at their savou y dinner set
" Of herbs, and other country messes,
"Which the neat-handed Phillis dressess."
" Thee, chantress, oft, the woods among,
" I woo to hear thy even-song;
"And, missing thee, I walk unseen
"On the dry smooth-shaven green,
" To behold the wandering moon,
" Riding near her nighest noon,
" Like one that had been led astray,
"Through the Heaven's wide pathless way ;
" And oft, as if her head she bowed,
"Stooping through a fleecy cloud."
(a) Which of these two extracts impresses you ar being the more truly poetic.
(b) What test do you apply to reach your conclusion?
(c) What is the primary meaning of the word poet ?
(d) Show how the recollection of this meaning assists in the proper criticism of a poem.

SECOND YEAR.

Road-Making, Levelling and Surveyino.

Examiner :-E. Lawrence Hunt, B. A.

1. Write an essay on the advantages of good country roads.
2. State concisely what you consider the four most important general principles to be kept in view in making or improving country roads.
3. Olassify roads as to the road coverings, and give detailed directions for the construction of any one.
4. What are the objections to putting large stones on a road?

To 03400
5. Describe the process of making the road which is now being made in the Experimental Farm lane.
6. With a scale of 1 inch to the chain, draw a sketch of the field whose measurements are given in the following field book:

Left Offsets.

Chain-Line.
500 to 0.
375
$225-280$
$\begin{array}{ll}225 & 160 \\ 125 & 50\end{array}$
From 0_{2} turn to the left
1125 to 0 a
825
450
From 0 ,

Right Offsets.

50
7. Explain the process of taking levels to (here be sufficient fall
8. With a scale of 1 inch to the 100 ft . for length, and of 1 in . for 2 ft , for heigt, determine the height of A above B and the grade eng, and of 1 in . for 2 ft . for height, your measurements in the field book. (A sketch of an undulating line accompanied this
question.)

1. Papers Sbt at the Matriculation Examinations, October, 1889.

Abiz hmetic.

Examiner :-E. L. Hunt, B. A.

1. A farmer feeds 2 tons, 13 cwt ., 65 lbs . of hay to each of 7 horses. Find the cost at 811 a ton.
2. Simplify $\frac{3}{4}+\frac{5}{12} \times \frac{2}{3}-\frac{7}{2}$ of $\frac{4}{2}$.
3. Multiply 4.025 by .0036 , and divide the product by 1.8 .
4. Estimate the profits from a 10 -acre crop of wheat, supplying the detail of cost and returns.
5. A can do a piece of work in 15 days. After he is working at it for 2 days, B joins him. A and B work together for 3 days, and are then joined by C . The three together finish the work in 5 days. If B and C do an equal amount of the work, find how long it would take each by himself to do the whole work.

Composition

Examiner:-C. C. James, M. A.
I. Point out any errors in the following sentences, re-writing the sentence correctly :
(1) Whom do men say that I am ?
(2) Neither you nor he are going to occupy that room.
(3) As neither of them is here, let us start.
(4) Every one will answer their own questions.
(5) There is not as many in this room as there might be.
II. Write a short essay on one of the following subjects :
(1) The Importance of the Study of Forestry.
(2) Any trip taken by yourself.
(3) Perseverance.

English Grammar.

Examiner :-C. C. James, M. A.
I. State and illustrate the various methods of forming the plural of English nouns, giving examples.
II. Compare the adjectives pleasant, gentle, nigh, ill, happy, first, old, beautiful, little, golden.
III. Distinguish between possessive, relative, and interrogative pronouns, giving IV. What is meant by mood and voice,
V. Analyze the following sentence:

In every country, then, and at every period, the investigation of the principles
on which the rational practice of agriculture is founded, ought to have
commanded the principal attention of the greatest minds.
VI. Parse the words in italics.
VII. Distinguish principal and principle ; practice and practise.
VIII. Express the ideas contained in V. in other words.
il of cost
s, B joins e together how long
correctly :
lish nouns, , beautiful,

Reading and Dictation.
Examiner :-J. Hoyes Panton, M.A., F.G.S.

APPENDIX 5

CLASS LISTS
I.-EASTER EXAMINATIONS, 1889.
II.-MIDSUMMER EXAMINATIONS, 1889
I.-EASTER EXAMINATIONS, 1889.

FIRST YEAR

Names unnumbe

The minimum for

 33 per cent.Class Lists (Easter Examinations)-Continued.
FIRST YEAR.

Names unnumbered are those of students who failed to pass in the subject.
The minimum for first-class honours is 75 per cent. ; for second-class honours, 60 per ceut. ; for pass,

Olass Lists (Easter Examinatons)-Continued.
FIRST YEAR.

Names unnumbered are those of students who failed ; for second-class honours, 60 per cent. ; for pass, 33 per cent.

Class Lists (Easter Examinations)-Continued.
FIRST YEAR

Nebster. Field. omps: tagg.
homson, H. C. ladwen. Vilkinson. Aulholland.
sate.
Vhite.
hite.
lewgill.
haw
Noxon.
McCrae.
Watson.
MeDonald
Urquhart.
Seymour
Campbell.
alliot
Grant.
Smith.
Catheart.
Dunne
Macfarlane,
Farlinger.
Woolverton.
Bertram.
Benyon.
Wilson (III.)
er cent. ; for pass,

Class Lists（Eastre Examinations）．－Continued．
SECOND YEAR．

念	Agricultire．	Live Stook．	Agricultural Chemistey．	Meteorology．
H	1 Brodie，G．A． 2 Linfield，F．B， 3 Montieth，S．N． 4 Rendall，W． 5 McLaren，P．S．	1 Brodie． 2 McLaren． $3\left\{\begin{array}{l}\text { Monteith．} \\ \text { Linfield．}\end{array}\right.$ 5 Tinney． 6 Rendall．	1 Linfield． 2 Brodie． \qquad	1 Brodie． 2 Tinney． 3 Linfield．
式 ${ }^{\text {島 }}$	$\begin{aligned} & 1 \text { Tinney, T. H. } \\ & 2 \text { MeCailum, W. } \\ & 3 \text { Asbury, E. } \\ & 4 \text { \{佁, Dersack, F. A. } \\ & 6 \text { Makinson, T. . . A. } \end{aligned}$	1 Monk． 2 Asbury． 3 Derbyshire． 4 Gelling． 5 McCallum ． 6 McEvoy ．	1 Tinney． 2 Rendall． ．．．．．．．．．．．．．．	1 Rendall． 2 Monteith．
	1 Monk，N． 2 McEvoy，T．A． 3 Gelling，J．A． 4 Marsack，H． 5 McKergow，J．G．	1 Marsack，F． 2 McKergow． 3 Marsack，H． 4 Makinson．	1 Monteith． 2 MoEvoy ． 3 Galling． 4 McCall m ． 5 Marsack，H． 6 McLaren． 7 Derbyshire． 8 Makinson． 9 Marsack，F． 10 McKergow． Asbury． Monk．	1 McCallum ． 2 Marsack， \mathbf{F} ． 3 McKergow． 4 McLaren． 5 Makinson． 6 McEvoy ． 7 Gelling． 8 Monk． 9 Derbyshire． 10 Asbury． 11 Marsack，H．

Names unnumbered are those of students who failed to pass in the pubject．
The minimum for first class honours is 75 per cent．；for second class honours， 60 per cent．；for pass， 33 per cent．

Names unnumbe The minimum fo 33 per cent．

Class Lists (Easter Examinations).-Continued.
SECOND YEAR.

Rendall.
Monteith.

MeCallum.
Marsack, \mathbf{F}.
McKergow.
McLaren.
Makinson.
per cent.; for pass,
Names unnumbered are those of students who failed to pass in the subject.
33 per cent.

1 Rencall. 2 McCallum . 3 Marsack, F. $4\left\{\begin{array}{l}\text { McEvoy } \\ \text { Monk. }\end{array}\right.$ 6 Gelling. 7 McLaren, 8 Makinson. $\left\{\begin{array}{l}\text { McKergow. } \\ \text { Monteith. }\end{array}\right.$ 11 Derbyshire.	
Asbury .	

1 Gelling.
${ }_{2}^{2}$ Monteith.
3 Marsack
4 Derbyshire.
5 McEvoy.
6 McLaren.
7 \{Rendali.
McKergow.
9 Monk.
10 Marsack, H.
Asbury.
Makinson.
per cent.; for second class honours 60 per cent.; for pass,

Class Lists (Easter Examinations).-Continued.
SEOOND YEAR.

Names unnumbered are these of students who failed to pass in the subject.
The minimum for first-class honours is 75 per cent.; for second-class honours, 60 per cent.; for pass, 33 per cent.

Class Lists.
 II. MIDSUMMER EXAMINATION, 1889 ,

FIRST YEAR.

Class Lists (Midsummar Examinations.)-Continued. FIRST YEAR.

Names unnumbered are those of Students who failed to pass in the subject.
The minimum for first-class honors is 75 per eent. ; for second-class honors 60 per cent. ; for pass 38 per cent.

Class Lists.

MIDSUMMER EXAMINATIONS.- 1889 .

SECOND YEAR.

1 Harcourt, J,
 2 Hutt. 3 Whitley

1 Sleightholm

 2 Cowan, R. E ${ }_{3}$ Mulholland 4 Buchanan.5 Bayne. 6 Holliday

1 Bate.
2 Thomson, P.C 3 Hewgill. 4 Brown. 5 Cowan, J. H. 6 Dolsen.
7 Rowen. 8 Webster.
8 Websten
10 Newcomea
11 Field.
12 Campbell. 19 Elliott.
14 Shaw
14 Shaw.

\qquad
\qquad

Class Lists (Midsummer Examinations.-Continued.
SECOOND YEAR.

Names unnumbered are those of students who failed to pass in the subject.
The minimum for first-clsas honors is 75 per cent. ; for second-class honors 60 per cent. ; for pass, 33 per cent.

Class Lists (Midsummer Examinatons)-Continued.
SEOOND YEAR

Practical
Plovghing

1 Rendall.
2 McLaren
3 Brodie.
4 Lini'eld.
5 Tinnty. 6 Monteith. 7 McCallum .

1 Asbury.
2 Gelling.

PASS. || HONOURS.

Drpartment of Agriculture-Class Lists, 1889-Continued.
THIRD YEAR

	Entomology.	Latin.	Dairying.	Agrioulturk.
	Hutton.			Harcourt. Morgan. Soule.
$\begin{array}{l\|l} \hline 0 \\ \hline \\ \hline \end{array}$	Harcourt. Lehmann. Soule,		Harcourt. Hutton. Lehmann.	
	Morgan. Raynor.	Raynor.	…	Lehmann. :..........

Profes

Fo the Presider
${ }^{7}{ }^{3}$ Sir,-In 8 be convenient t

While we and hope in tim much needed ch as to aid materi and geology. dollars, should birds, etc., so as that this year specimens of th matter for visit in localities whe

We have express thanks ready to receive

The tollowi from Niagara; double head ; M iron pyrites ; \mathbf{P}_{1} minerals; Rev. Warkworth, cut

This attracti arranged and equ at least two hu

PART II.

REPORT OF THE

Professor of Natural History and Geology.

arcourt. organ. pule.
\qquad
\qquad
ehmann.

> Ontario Agricultural College, Guelph, December 31st, 1889.

To the President of the Ontario Agricultural College :
Sir,-In submitting to you a report of the Department of Natural History, it will be convenient to consider it under the following topics :-

1. Musenm.
2. Library.
3. Reading-room.
4. Practical work.

1. College Museum.

While we cannot boast of a very large museum, still we are yearly improving it and hope in time to see one of a pre-eminently practical nature. Last year some very much needed changes were made, and in many respects the specimens were arranged so as to aid materially students in the prosecution of studies connected with natural history and geology. I think the time has come when a small annual grant, say of one hundred dollars, should be made so as to enable us to buy a few specimens, such as insectivorous birds, etc., so as to add to our list when an opportunity is afforded. I would suggest that this year cases for plants be put up along the walls of the museum, in which specimens of the weeds common to Ontario will be placed so as to reuder it an easy matter for visitors to identify obnoxious plants that have come ander their observation in localities where they reside.

We have received a few donations to our collection during 1889, for which I express thanks to the donors, and hope they and others will remember we are always ready to receive any specimens that will aid us in instruction.

The tollowing is a list of the contributors :-W. F. Newcamen, student, fossil shells from Niagara ; James Edmonstone, Johnson, Ont., four plants; O. Frith, Durham, calf's double head; Miss Robertson, Guelph, ant eggs from Africa; A. Wiggins, Fairmont, iron pyrites ; Prof. James, O.A.O., eight minerals; John Ramsay, Eden Mills, two minerals; Rev. John Wilkie, Indore, collection of Himalaya ferns; George Carlaw, Warkworth, cutworms ; F. H. Worthington, student, seeds from West Indies,

2. Library.

This attractive room is at present very convenient, and is each year becoming better arranged and equipped for educational purposes. We should have an annual grant of at least two hundred dollars for the purche se of new books. The college is largely
eferred to for information upon subjects connected with agricultural science, to furnish such we should be equipped with the very best books on science. Such books are expensive, and consequently, without funds, we are unable to have the books at our command we need from time to time for reference.

We certainly are in much need of some two to three hundred dollars worth of books at present for the various departments.

The present grant is largely spent in the purchase of papers, journals, etc., for the reading-room. Although we appear to have a large collection of books, yet many of them are of little service in our work, hundreds of them being bound up volumes of Blackwood, etc., sent to us when the Depository of the Educational Department at Toronto was abolished.

Our Library now contains 5,480 volumes, of which 114 have been added this year, The books added may be grouped as follows :-
Reports, chiefly agricultural. 52
Botany 2
Geology 8
Agriculture 2
Chemistry 20
Literature 4
Encyclopedias 1
Entomology
18
General Science
Parliamentary reports
Examination papers, bound114

3. Reading-boom.

This is one of the most commodious and pleasant rooms in the College, and is becoming yearly more used for the purpose it was intended. It is well furnished for reading and study ; excellent tables and chairs, and convenient reading desks, upon which are found the best agricultural journals published, a list of which is given below.

Rules regarding the proper use of the reading-room are posted in conspicuous places.
The following is a list of papers, journals and magazines which come to the College,
and are for the use of the students in attendance :-

Papers and Magazines.

(a) Sent free by the Publishers.

Where published.
Name

1. Journal of Commerce
2. Oanadian Baptist . Montreal Toronto.
3. Ohristian Guardian "
4. Canada Presbyterian "
5. Monthly Weather Review
6. Presbyterian Review

Chicago.
7. Sheep Breeder and Wool Grower

Winnipeg.
8. Manitoba Weekly Free Press
9. Oanadian Horticulturist t. Oatharines.
10. Canadian Entomologist London, Ont.
11. Bee Journal

Beeton.
Newmarket.
12. North York Reformer

Acton.
13. Acton Free Press

Erin, Ont.
14. Ontario Evangelist
ience, to furnish Such books are te books at our
dollars worth of
nals, etc., for the ks , yet many of nd up volumes of
Department at
n added this year,

52
5
2
8
20
4
1
1
18

114
the College, and is well furnished for g desks, upon which given below.
conspicuous places. come to the College,

(b) Furnished by the College.

Name.

1. Daily Globe
 Brantford.

4. Practical Work.

In the department of Natural History much has been done to make the study of ence popular and practical. A trip to Niagara Falls with students, at their own agnificent exposure of rocks in the the varied flora of the park and the rough which they passed on the way, Thion, besides the general face of the country ustrations in geology. For use in the thire quarries of Guelph are convenient for gs illustrating microscopic plants injurious to year we have now some ninety-five draw-
These are also drawn upon slides for the garden, orchard and field crops.
instructive purposes.
On the canvas rust, blight, mildews, etc., appear like plants $4-7$ feet in height diagrams and slides are arranged in the same order as the subjects are treated in the
This affords wonderful aid to students and impresses lessons which might soon be gotten. We are constantly preparing slides for this purpose so that science will be strated on board, paper and canvas, and so presented as to be attractive, popular and tructive. In all we have upwards of 300 slides for the magic lantern, illustrating s in Zoology, Botany and Geology.
In the spring of this year much time was occupied in preparing a bed of plants to ssed in connection with lectures in botany. We commenced it the previous year and pleted it this, so that the botanical instructive bed has become an important adjunct

It is 224 feet in length and 15 feet in width. The rows containing the plants are eet long, and a certain number of rows are set apart to illustrate typical plants in
each order according as the order is large or small. Some orders have six rows, others only one, consequently a student knows at once whether the order is a common one or not by the number of plants set apart to illustrate it. In the Compositz he sees 30 , Ranunculaceæ 20, Papaveracees 1.

In the whole bed we have 40 orders, 275 genera and 550 species, which are arranged as follows:-

1. A systematic arrangement embracing 40 orders, 225 genera, 325 species.
2. A promiscuous arrangement embracing 225 species not grouped in orders.
is to test the student's knowledge of the orders to which the various plants belong. \qquad
\qquad
3. An arrangement to illustrate the various methods of arranging plants in beds, such as carpet, moss, ribbon, and m:scellaneous bedding,

Every plant is lahelled so that students and visitors can readily identify them. In front of the first plant in each order the name of the order is indicated uy on a large label, and the divisions, polypetalous, gamopetalous and apetalous are also shown by larger labels. The following is a list of the plants found in the finating the systematic arrangement of the flowers into orders as discoursed in the class-room :-

ORDER I.
Polypetalous Exogens.
Ranunculacere (Crowfoot Family).
Row 1-

	Liver leaf.
1 Hepatica acutitoba	.Lobed "
2 H . triloba	Pasque flower.
3 Anemone pulsatilla	Wood anemomy
4 A. nemorosa	Buttercup.
5 Ranunculus a	

Row 2-
Spring adonis.
1 Adonis vernalis
Goldthread.
2 Coptis trifolii
Monkshood.
3 Aconitum Napellus ..
4 Pæonia tenuifolia. Pæony.
5. P. officinalis

Row 3-

Row 4.Clematis.
1 Clematis viorna
"
2 C. corymbosa.
Hellebore
3 Helleboras viridis. Winter aconite.
4 Eranthes hyernalis . Love-in-the-mist.
5 Nigella damascena.

Row 8-
six rows, others a common one or positre he sees 30 ,
vhich are arranged

5 species.
d in orders. This ants belong. \qquad ing plants in beds, dentify them. In upon a large label, shown by larger d, illustrating the class-room :-
iver leaf. obed " asque flower. Vood anemomy. uttercup.
pring adonis. toldthread. honkshood. Jut-leaved pasony. Pieony.

Columbine. Meadow rue.

Oærulean Columbine. Larkspur.

Clematis.

Hellebore Winter aconite. Love-in the-mist.

ORDER II.

Row 5- Berberidacea (Barberry F.)

ORDER III.

Row 6-
Papaveracea (Poppy Family).
${ }_{2}^{1}$ Sanguinaria Canadensis.
2 Papaver rhoeas
3 Papaver rhoeas . Englood root
4 Chelidonium majus poppy
4 Glaucum luteum . 1 .
4 Glaucum luteum.
Celandine.
Horn poppy.
Bocconia.

ORDER IV.

Row 7-
Fumariaceae (Fumitory F.)
Dicentra Canadensis

ORDER V.
Row 8Crucyera (Cress F.),
1 Iberis umbellata

3 Lepidium Virginicum Turnip.
4 Arabis
Pepperwort. Rock-cress.

Row 9-

Wild mustard.
1 Sisymbrium officinale

3 Lunaria biennis . Toothwort.
4 Camelina sativa . Honesty
5 Sinapis alba False flax.
10-
White mustard.
1 Alyssum maritinum
2 Brassica oleracea
. Sweet alyssum.
3 Capsella bursa pastoris.. .
4 Rhaphanus sativus . Shepherd's purse.
5 Matthiola annua . Radish.
5 (A.C.)

ORDER VI.

Violaceec (Violet F.)

Row 11- 1 Viola pubescens		Yellow violet.
		White violet.
2	" blanda	.Canadian violet.
3	" Canadensis	Common blue violet.
4	" cucullata	Pansy.
	" tricolor	
	ORDER VII.	
Caryophyllacee (Pink F.).		
Row 12- ${ }_{1}$ Cerastium arvense $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. ${ }^{\text {a }}$. mouse ear chic		
	Tunica saxifraga	Tunica. ${ }_{\text {Deltoid pink. }}$
$\begin{aligned} & 2 \\ & 3 \end{aligned}$	Tunica saxirraga ${ }^{\text {Dianthus deltoides }}$	White cookle.
	Dianthus desportina	Sweet William.
	Dianthus barbatus	
Row 13- 1 ,		
	Saponaria Caucasia.	Mouse ear chickweed.
	Cerastium vulgatum	. Bladder Oampion.
	Silene inflata Oockle
	4 Lychnis githago	. China pink.
	5 Dianthus Chinensis	
Row 14-		Thyme-lea'd sandwort
	1 Arenaria serpyllifolia	Bouncing Bet.
	2 Saponaria officinalis	Cow-herb,
	3 Vaccaria vulgaris.	Chickweed.
	4 Stellaria media.	Day-blooming lychnis
	5 Lychnis diurua	

ORDER VIII.
 Portulacacees (Purslane F.).

Row 15		. Spring beauty
	Olaytonia Virginica	Portulaca.
	Portulaca grandiflora	Purslane.
	". oleracea $\begin{gathered}\text { gtandiflora }\end{gathered}$	Portulaca. Calandrina.
	Oalandrinia discol	

ORDER IX.

Malvacece (Mallow F.).

Row 16-

Mallow.

1 Malva rotundifolia
Indian mallow.
2 Abutilon striatum Musk mallow.
3 Malva moschata Malope.
4 Malope trifida Hollyhock.
5 Althaea rosea

ORDER X.

Row 17-

Linacece (Flax F.).

> Linum flavum
> usitatissimum
> Yellow flax.
> Red flax.
> Oommon flax.
> Perennial flax.
> Flax.

ORDER XI.
Geraniacea.

Row 18-

ouse ear chickca.
pid pink. te cockle. et William.
wort. ise ear chickweed. Ider Oampion. kle na pink.
yme-lea'd sand wort uncing Bet. w-herb. ickweed. y-blooming lychnis
ring beauty. rtulaca. urslane. ortulaca. alandrina.

Iallow. ndian mallow. Iusk mallow. Kalope. Hollyhock.
Row 24-

4 Spiraea
5 Rubus strigosus
ORDER XIV.Saxitragacea (Saxitrage F.).
Row $25-$ 1 Saxifraga
Saxifrage
2 Mitella diphylla
3 Tiarella cordifolia Fulse mitrewort.
Hydrangea hortensia Red currant
5 Ribes rubrum
ORDER XV.Crassulacee (Orpine F.)
Row 26- 1 Sedum acre
1
2
3
Sedum ternatum
Sempervivum tectorum
4
Sedum sieboldii..... Stone-crop
4 Sedum sieboldii
House-leek.
5 Sedum telephinum Live-forever.
ORDER XVI.Onagracea (Evening primrose F.).

Row 27-

I	Circaea lutetiana	shade.
1		Evening primrose.
2	Oenothera biennis	Clarkia.
3	Clarkia pulchella	Fuchsia.
4	Fuchsia.	Willow-her
	Epilobium angu	

ORDER XVII.
Umbelliferce (Parsley F.)
Row 28

ORDER XVIII.
Cucurbtacece (Gowad F.).
1 Oucurbita verrucosa
egetable marrow.

Bow 29-

2 Cucumis melo
Mush melon.
3 Oucumis sativus
4 Citrullus vulgaris
Watermelon
5 Oucurbita pepo

Row 30-

Row 31-

Row 32-
1 Cen
Ant
Rud
Tan
5 Soli
Row 33-
Bell
Leuc
Taph
Erig
Helis
Row 34-
1 Cirsi
2 Hier
3 Echi
4 Cirsi
5 Ohico
Row 35-
1 Sonch
2 Gazar
3 Gnap
4 Inula
5 Dahli

36
Lobeli

uefoil.

n cinquefoil. ow einquefoil.
sea berry.
ifrage оо's cap. se mitrewort.
drangea.
currant.
ne-crop.
use-leek.
ve-forever.
nchanter's nightshade. vening primrose. larkia. achsia. Zillow-herb.
arsley. elery. arsnip. Darrot. Eryngo.

Vegetable marrow. Mush melon.. Cucumber. Watermelon. Pumpkin.

ORDER XIX.

Gamoprtalous Exoorng.
Compositce (Composite F.).
Row 30 -

3 Cereopsis
Golden yarrow.
Row 31-
Ragweed.
1 Taraxacum dens-leonis
2 Senecio vulgaris . Dandelion.
3 Pyrethrum roseum . Groundsel.
4 Maruta cotula . Pink feverfew,
5 Cineraria maritima . Mayweed
Row 32Cineraria.

1 Oentaurea cyanus
2 Anthemus tinctoria . Bluebottle.
3 Rudbeckia hirta . Yellow camomile.
4 Tanacetum vulgare. Cone-flower.
5 Solidago Canadensis . Tansy.
Row 33-
1 Bellis perenius
2 Leucanthemum vulgare. Daisy.

4 Erigeron Philadelphicum. Burdock.
5 Helianthus annuus Fleabane,
Row 34-

1 Cirsium arvense	
2 Hieraciun auranticum	Thistle.
3 Echinops sphaerocephalus	Hawkweed.
4 Cirsium lanceolatum....	Bee-plant.
5 Ohicorium Intybus	Bull thistle. Chicory

Row 35-
1 Sonchus oleraceus
2 Gazania splendns . Sow-thistle.
3 Gnaphalium polycephalum Gazania.
4 Inula helenium Everlasting.
5 Dahlia variabilis
Elecampane.
Dahlia.

ORDER XX.
Lobeliacea (Lobelia F.).
Lobelia speciosa
" inflata
" syphilitica
Lobelia.
Indian tobacco.
Cardinalis . Great blue lobelia
Cardinal flower.

ORDER XXI.

Campanulacece (Campanula F.).
Row 37-
Low harebell.
Tall wild bell.
Canterbury bell.
Americana
medium
latifolis
rotundifolia
ORDER XXII.
Plantaginacece (Plantain F.).
Row 38-

ORDER XXIII
Primulacee (Primrose F.)
Row 39-

ORDER XXIV
Scrophulariacee (Figwort F.)
Row 40-

Veronica officinalis	peedwell.
Linaria purpur a	r.
3 Minrulas ringens	Penstemon.
4 Penstemon pubescens	Turtle-head.
5 Chelone glabra	
	Wood betony.
Pedicularis Canad	Toadflax.
2 Linaria vulgaris ...	Snapdragon.
3 Antirrchinum majus	Fox glove.
4 Digitalis purpurea	Mullein.
Verbascum Thapsu	

ORDER XXV

Verbenacees (Vervian F.).
Row 42-

1	Verbena venosa	Verbena.
2	" "	
3	Lantana camara	Lopseed.
4	Phryma leptostac	Vervian.
	Verbena hastata	

harebell. wild bell. terbury bell.
ebell.
ntain. grass. .grass.
"
"
wslip.
ooting star. ose-strife.
veedwell. urple toadflax. Ionkey flower. enstemon. urtle-head.

Vood betony. oadflax. napdragon. ox glove. Mullein.

Verbena. Lantana. Lopseed. Vervian.

ORDER XXVI.

Row 43-

Labiata (Mint F.)
1 Marrubum vulgare
2 Perilla nankinensis Horehound.
3 Oolens veitchii .. Perilla.
4 Salvia officininalis .. plant.
5 Lavandula vera. Sage.

Row 44-

Lavander.
1 Thymus variegata.
2 Mentha viridis...
3 Leonurus cardiaca Spearmint.
4 Nepeta cataria. Motherwort.
5 Monarda fistulosa.
Catnip.
Wild bergamot.
ORDER XXVII.
Row 45-
Borraginaceat (Borage F.)

ORDER XXVIII.

Row 47-
Polemoniacea (Phlox F.)

ORDER XXIX.

Row 48Convolvlacea (Convolvulus F.)

1 Convolvulus arvensis
Ipomaea purpurea . Bindweed.
I. purpurea

Morning glory.
5 "

ORDER XXX.

Solanacece (Nightshade F.)
Row 49-
I Petunia nyctaginifolia............................... Petunia.
I Petunia nyctaginifolia. Datura.
${ }_{2}$ Datura fastuoss . Potato.

${ }_{5}^{4}$ Lycopersicum esculentum . Tomato Tobacco
ORDER XXXI.
Asclepiadacee (Milkweed F.)
Row 50-

ORDER XXXII.
Apetalous exogens
Chenopodiacere (Goosefoot F.)
Row 51-
.Strawberry blite.
1 Blitum capitatum
Spinage.
2 Spinosa oleracea
Atriplex.
3 Atriplex rubra
Beet.
5 Chenopodium album
Lamb's quarters.
ORDER XXXIII.
Amarantacea (Amaranth F.)

Row 52-

Polygonacee (Buckwheat F.).
Row 53-

ORDER XXXIV

1 Polygonam aviculare	Doorweed.
2 Rumex acetosella.	Buckwheat.
3 Fagoyprrum escu	Dock.
4 Rumex crispus	Rhubarb.
Rheum rhapontic	

Row 54-

Row 55-
4.

Row 56-

1. Oro
2. Gla

3a
4. Sisy
5. Iris

Row 57-

1. Iris
2. "
3. "
4. "

Row 54-

Euphorbiacece (Spurge F.)

> 1 Euphorbia maculata
> 3 " Oypraissias

$$
\begin{aligned}
& \text { Castor oil plant. }
\end{aligned}
$$

ORDER XXXVI.
Emboorns,

Row 55
Araceae (Arum F.)

1. Arisaema triphyllum....................Indian turnip.
2. Symphoricarpus foetidus.................... Skunk cabbage.
3. Acorua Calamus............................alamus.
4.
5. CallaEthiopica.................................alla lily.

ORDER XXXVII.

Row 56-
Iridaceae (Iris F.)

1. Orocus vernus
2. Gladiolus cardinalis. ...
3. Pardanthus chinensis...................................adiolus.
4. Sisyrinchium Bermudiana...................................ackberry lily.
5. Iris versicolor

Blue-eyed grass.
Row 57Oommon flag.

1. Iris arenaria
2. " Sibirica.. Flag.
3. " Germanica...................................." "
4. " Persica.. .

ORDER XXXVIII.
Liliaceae (Lily F.)

1. Convallaria majalis

2. Tulipa gesneriana... Lily-of-the-Valley.
3. Scilla rosea

Tulip.
4. Uvularia grandiflora Scilla.
5. Yucea filamentosa........................ Bellwort

Row 59-
Yuca.

1. Erythronium Americanum
2. Allium stellatum

Dog.tooth violet.
3. Funkia variegata..................................Star onion.
4. Lilium tigrinum..
5. Polygonatum ...iger lily.

Solomon's seal.

Row 60-

1. Allium tricoccum
. Leek.

2. Trillium grandiflorum Trillium.
3. Fritillaria Fritillaria.
4. Lilium. Orange lily.

ORDER XXXIX.

A maryllidaceae (Amaryllis F.)

Row 61-

1. Galanthus nivalis	Snowdrop.
2. Narcissus pseudo-na	Daffodil.
3. Narcissus poeticus.	Narcissus.
4. Polianthes tuberosa	Tuberose.
5. Agave Americana	American aloe.

ORDER XL.
Gramineae (Grass F.)
Row 62-

The foll during ' 89 .

Having until the vine experience in

Few ber successfully e seldom eaten.

It is hope an important will be seen t found at hom taste and com who desire the

Location Ontario 858 f

Exposure
Soil : Cla
Meteorolo rature, 57.1°, average numbe vailing winds,

The plants row. Arrange They were allo another place. made the secon them.

First year
Second yea
Third year
Thorough
Row 65-

1. Phalaris arundinacea	Ribbon grasss.
2. Hordeum vulgare	Barley.
3. Triticum vulgare	Wheat.
4. Avena sativa	Oat.
5. Zea May	Indian corn.

40 orders. 225 genera. 325 species.

The following bulletins have been issued from the Natural History Department STRAWBERRIES,

Having had strawberries planted among some of our grape vines for three years, until the vines became thoroughly established, I have thought it expedient to give our experience in the form of a bulletin, which may be of service to those who read it.

Few berries are more luscious than the strawberry, and few plants can be more successfully cultivated, and yet how many farm homes there are in which this fruit is

It is hoped the time is not far distant when the fruit and vegetable garden will form an important feature in the vicinity of the farmhouse, and that on the farmer's table will be seen the fruits of each summer month, when strawberries, raspberries, etc., will be found at home and not require to be sought after in distant "berry patches." A little who desiremparatively little time and care will supply these attractive treats to those

Conditions Surrounding the Plants.

Location: Latitude north 43.38°, height above sea level 1,100 feet, above Lake Ontario 858 feet,

Exposure : South-west.
Soil : Clay loam.
Meteorological : Mean annual temperature, 42.2°, 1880-1886 ; mean summer temperature, 57.1°, winter, 27.3°; highest temperature (1881), 98°, lowest (1884), 35°; average number of days rain fell per year, 72 ; rainfall, including snow, 24.7 inches ; prevailing winds, south-west 43 per cent., north-west 31 per cent.

Management.

The plants are placed in rows three feet apart, and the plants one foot apart in the row. Arranged in this way the cultivation can be largely done with the horse hoe, They were allowed to occupy the ground for three years, when they were removed to another place. The ground was well manured before planting, and another application made the second year. In winter they were protected by scattering some pea-straw over them.

First year-The runners were kept well back, so as to get strong single plants.
Second year-The same course was followed as far as possible.
Third year-The plants were allowed to grow freely and the runners untouched.
Thorough cultivation and keeping the ground free from weeds were observed.

$V_{\text {arieties. }}$

Wilson's Albany, 10 rows ; Crescent Seedling, 20 rows; Early Canada, 4 rows; Arnold's Pride, 1 row; Captain Jack, 10 rows; Alpha, 2 rows; Nicanor, 2 rows; Maggie's, 2 rows ; Cumberland Triumph, 4 rows ; Monarch of the West, 4 rows.

Results.

Wilson's Albany has done excellently, and may be ranked first. It yields well, and is a very suitable variety for shipping

Crescent Seedling ripened sooner than Wilson, and has been quite productive, but there is a tendency among these berries to be imperfect, owing to incomplete fertilization of the flowers, but this is overcome by baving a variety rich in pollen planted near or
among the rows. We overcame the difficulry by planting the Wilson side by side. Crescent Seedling seems to bear more pistillate flowers than staminate. The foliage of the Orescent, being somewhat sparse, does not assist in keeping the berry so clean as the varieties that grow more leaves.

Early Canada ripens soon, but is liable to be caught by frost, and on the whole has done poorly with us.

Arnold's Pride is a clean, good-sized nice berry, but has not been very prolific.
Monarch of the Wesi proved to be a large berry, but only gave a fair yield.
Captain Jack was somewhat late, but very prolific and a good berry.
Alpha has been a slim bearer, but it has a delightful flavor.
Nicanor gave only a fair crop and ordinary berry.
Maggie's was rather small in berry and as comparatively poor a bearer.
Cumberland Triumph is a large and irregularly shaped berry, with only a fair yield. It is a variety more for the amateur than one desiring to raise berries for market.

Conclusions,

1. Strawberries will do well in a locality such as ours, if the soil is rich, friable and well drained.
2. Ground for strawberries 'should have a good supply of plant food, be easily worked, and should certainly be well drained, kept clean of weeds and well cultivated.
3. We are inclined to favor growing in rows where large quantities are to be grown, and to renew the plants every two years.
4. In well drained, sheltered and good soil, planting out in September is advisable, so as to enable the plant to get thoroughly established. A fair crop next saason may be expected; but if such conditions are absent, then plant in spring, and only a medium crop may be looked for.
5. Strawberries may be grown in almost any climate if care be taken. Where the climate is severe protect the plants by scattering over them pea-straw or some other light covering. Avoid heavy substances such as manure ; some place boughs with good results.
6. The following is a list which embraces varieties that are likely to succeed well :Wilpon, Orescent Seedling, Daniel Boone, Manchester, Sharpless, Alpha, Prince of Berries, Bidwell and Jewell. Crescent Seedling and Manchester, being poor in pollen, require such as Wilson among them. Sharpless is large, delicious, but somewhat late, Bidwell is a good family berry, sweeter and larger than the popular yarieties, Wilson and Orescent.

CHESS.

Bromus Secalinus-Order Gramine.

Questions are repeatedly sent to the college asking for information concerning chess. The answers to these sometimes entail a good deal of work. Consequently I have thought it expedient to prepare a bulletin upon the subject, and thus put the information in a form that will be of service to those interested. It may appear strange that it is worth while to say so much about this plant, but when it is remembered that there are persons
in various pa brought abot I should dee the grass fan as any other wheat plants

Much di perpetuated killed it seem there are not its presence Institute will chess.

It seems grow it from chess. Those who are very

The follo plant is no ex matures :

1. The pl place it in the (Triticum repe than chess doe degenerated co plant from whi
2. The mo of a few montl habit to that fr modifications in viewed as a ne change that th species.
3. If chess favorable surrou and plant life t are suitable for but this is a mis
4. Chess w three inches high seed is matured. be seeding the injured by frost ready to take th
5. The cone that chess is a ty character ; (b) th chess cannot prod
6. In instan were so mixed a separate plants, examination has
side by side. The foliage of o clean as the the whole has prolific.
yield.
ly a fair yield. market.
ch, friable and
lood, be easily 11 cultivated.
re to be grown,
er is advisable, ext ssason may only a medium
n. Where the or some other ughs with good
succeed well :pha, Prince of poor in pollen, somewhat late. arieties, Wilson
concerning chess. y I have thought information in a that it is worth there are persons
in various parts of the province who maintain that it is a modification of the wheat plant, I shought about by winter-killing of the wheat, it will not be such a matter of surprise that, the grass family, endeavoring write something about this apparently doubtful member of as any other plant is, and that it that it is a species (Bromus secalinus) just as much wheat plants growing in adverse conditions, dend for its existence upon a'modification of

Much discussion

 perpetuated by its seed. As it place regarding its origin in some other way than a plant killed it seems quite natural to suppose it is among fall wheat that has been winterthere are not a few farmers who insist upon this egenerated condition of the wheat, and its presence under such circumstances. Thus it being the only correct explanation of Institute will lead up fo a more lively discussion than that few questions at a Farmers' chess. grow it from wheat, while there is is the true origin of the plant, one cannot readily chess. Those who sow wheat containing chess ty whatever in raising it from seeds of who are very careful to sow clean seed seldom are troubled to get a good crop, while thoseThe following are some reasons why a peed. plant is no exception to others and depends forson should be ready to conclude that this matures :

> which it

1. The plant is widely place it in the genus Bromus, while from wheat in appearance, so much so that botanists (Triticum repens) being in the same genus as wologs to the genus Triticum. Couch grass than chess does, and yet no one ever hints that it, comes much nearer in its characters degenerated condition of wheat we might reasonably derived from wheat. If chess is a plant from which it was derived.
2. The most devoted evolutionist would not expect to see develop in the short ap of a few months, owing to the effect of frost, a plant so unlikelop in the short apace habit to that from which it is derived. It is only through unlike in structure, form and modifications in a plant can take place as to change its chargcteriods of time that such viewed as a new species. But in this case one season character so much that it may be change that the plant is ranked in another genus-a more comprehensive remarkable
species. species. favorable surroundings, it should soon return were degenerated wheat, and sown under and plant life that a deteriorated form will return to it for we observe both in animal are suitable for growth. Some have gone so far as to say proper nature when conditions but this is a mistake that can easily be seen by sowing some of the seed grow from seed,
3. Chess will mature seed use of the seed, three inches high, while if surroundings are faveritions, though the plant be only two or seed is matured. This may account for its never beitgrows three or four feet high before be seeding the ground for a more suitable time, when theen in good crops, while it may injured by frost ; then this hardy annual (the seeds of crop in which it is seeded is ready to take the vacant soil and yield a crop no longer hid fromsess great vitality) is
4. The conclusions arrived at by all men that chess is a typical plant, producing seed yearly, which plant life a special study are (a) character; (b) that a seed of wheat cannot be sown which gives rise to plants of the same chess cannot produce wheat under the most favorable conditi produce chess, and (c) that
5. In instances where parts a were so mixed as to seem but on a plant, apparently a combination of chess and wheat, separate plants, and that the apparent union was not real. proved them to be parts of examination has been required to prove it.
6. Wheat has been grown in some places and often winter-killed and no chess has appeared. There are places where chess is unknown, and wheat in these passes through all the vicissitudes which seem favorable to the development of this weed in other parts where the plant is common. Farmors careful in using clean seed often have winterkilled wheat unaccompanied by chess.
7. Liberal rewards have been offered by agricultural papers to any one who could prove conclusively that chess is derived from wheat, and as yet no successful competitor has appeared, though as high as $\$ 500$ was the prize.

A summa during the mol

Normal h Lake Ontario,

With these facts before us, it does seem difficult for a person to accept a theory which demands greater concessions than the most sweeping form of evolution. Though this plant may appear under circumstances difficult to explain, we are forced to be lieve that if its origin is carefully considered it will not require one to pin his faith to views so antagonistic to the teachings of science as those required to be accepted by persons claiming wheat as its source.

Remedy.

The great remedy for chess is to be exceedingly particular about the seed you sow. A few scattered seeds among wheat do not seem to amount to much in the heap, but if they were taken out we would be surprised at the quantity mixed among the grain.

METEOROLOGY.

Report of Observations taken at the Ontario Agricultural College during 1888
Observations are regularly taken at the hours of $7 \mathrm{a} . \mathrm{m} ., 1 \mathrm{p} . \mathrm{m}$., and $9 \mathrm{p} . \mathrm{m}$. daily, and recorded in a book printed for the purpose. The instruments in use are as follows :-

Anemometer-Recording the direction of the wind and indicating the number of miles travelled. During the greater part of ' 89 this has been out of order.

Barometer-Showing the atmospheric pressure at the time of observation.
Maximum thermometer-Indicating the highest temperature between times of observation.

Minimum thermometer-Indicating the lowest temperature between times of observation.

Hygrometer-With $d r y$ and wet bulb thermometer, for the purpose of showing the condition of the atmosphere with reference to moisture.

Pluviameter-Used in measuring the rainfall.

Thermometer-For observing ordinary temperature.
Besides taking observations from these instruments, the cloudiness of the sky is observed, and general remarks on the weather for the day are recorded in the daily register. At the close of each month a summary of the month's observations is made out. From these monthly summaries the condensed statement of the year's meteorology is made up.
nd no chess has passes through d in other parts on have winter-
y one who could ssful competitor
t a theory which n. Though this d to believe that faith to views so pted by persons
the seed you sow. n the heap, but if g the grain.
hege during 1888
and 9 p.m. daily, e are as follows :ting the number of rder.
rvation.
between times of
between times of pose of showing the diness of the sky is corded in the daily observations is made e year's meteorology

Form of Monthly Summary.
Meteorology.
A summary of the meteorological observations taken at Ontario Agricultural Oollege
Normal height of barometer at Guelph (1.100 feet above aea Lake Ontario, 28.86 inches. Latitude north $43^{\circ}-38^{\prime}$ above sea level and 858 feet above

Barometer-

Highest barometer.
Lowest "
Highest mean barometer.
Lowest " "
Monthly " "
Monthly range.
Thermometer-
Highest thermometer.
Lowest "
Highest mean thermometer.
Lowest " "
Monthly " "
Monthly range.

Pluviameter-

Days rain fell.
Greatest rainfall.
Days snow fell.
Greatest snowfall.
Total precipitation.
Anemometer-
Direction of wind.
Greatest number of miles travelled in twenty-four hours.
Greatest velocity per hour.
Mean velocity per month.

Diagram Illustrating the Mean Meteorological Results for 1889,

OR 1889.

6 (A.c.) Lowest mean barometer .
Monthly mean barometer.
Monthly range Thermometer.
Highest temperature.... Lowest temperatnre
Highest mean temperature. Lowest mean temperature.. Pluviameter.
Number days rain fell.
Number days snow fell......
Treatest rainfall, inches...
Rainfall for month, inches..
Greatest snowfall, inches...
Snowfall for month, inches.
Total precipitation......... Anemometer.
Predominating winds.. Predominating winds Mean velocity for the month.... Clouds. Cloudy days ..
Clear days.......
Mean cloudiness for the month.

Mean Meteorological Results for the Year 1889.

-	$\begin{gathered} 1889 \\ \text { GrELPH. } \end{gathered}$	Average of 40 years. Toronto
Barometrr.		
Month of highest mean pressure.		
Highest mean monthly.	29.463	
Lowest " "	28.189	29.572
Month of the lowest mean.	March.	June.
Highest pressure.	29.992	30.358
Lowest "	27.804	28.692
Thermometer.	$43.4{ }^{\circ}$	44.17
Mean temperature of the year..........		
Warmest month	July.	July.
Mean temperature of the warmest month	$67.9{ }^{\circ}$	$67.64{ }^{\circ}$
Coldest month	February.	February.
Mean temperature of the coldest month	$14.8{ }^{\circ}$	22.73°
Highest temperature	$99.4{ }^{\circ}$	91°
Lowest temperature	-18.5°	$11.9{ }^{\circ}$
Range of the year	117.9°	10.2°
Pluviameter.		
Total depth of rain in inches.	25.3	28.3
Number of days on which rain fell.	83	110
Month in which the greatest depth of rain fell	March.	September.
Greatest depth of rain in one month in inches.	4.5	3.55
Month with most rainy days.	May.	October.
Greatest number of rainy days in one month	14	13
Total depth of snow in inches.	73.8	
Number of days on which snow fell	38	
Month in which the greatest depth of snow fell	February.	
Greatest depth of snow in one month in inches.	33.6	
Month with most snowy days.	Jan. and Feb.	
Greatest number of snowy days in one month	14	
Total precipitation in inches.	32.6	

Your obedient servant,
J. HOYES PANTON.

THE

To the Presiden

$\mathrm{S}_{\mathrm{IR},-\mathrm{I}}$ ha done during th make it as con giving instruct nothing of speci we can dispose in all cases as tl upon to assist in

Outside of etc., and reporti through correspo merely to the pe done I shall sele

In my repor analysis. I have

The enormot household are qui position, especiall season. The facts where we have h lating work on mi interested.

The constitue sugar, and ash or

Water.hence the total so we have found the per cent., the high 87.19 per cent.

Fat.-When liquid in which are

Average of 40 years.

Toronto.

September.
29.664
29.572

June.
30.358
28.692
44.17

July.
67.64°
February
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

S PANTON.

PART III.

REPORT OF

THE PR0FESSOR 0F

 CHEMIS'TRY.

 CHEMIS'TRY.}Ontario Agricultural College, Guelph, December, 1889.
\section*{To the President of the Agricultural College :}

SIR,-I have the honor to present herewith done during the year 1889, in the Derewith through you, my report upon the work make it as concise as possible consistent giving instruction to the students of the with its results. The college work, that of nothing of special importance that need be first, second and third years, has developed we can dispose of simply with the remark theported upon here-that part of our work in all cases as the time would permit, and as far full a course of lectures has been given upon to assist in the work.

- Outside of the lecture work etc., and reporting upon the same to has been done in the way of analyzing fertilisers, through correspondence, cannot of cirmers specially interested. Much that is done merely to the person to whom answer hee, find its way into this report, being of interest done I shall select merely that which 1 think is of been communicated. From the work In my report of 1888 , I promised public interest. analysis. I have done so, and in May to gather together our laboratory results on milk

THE COMPOSITION OF MILK.

The enormous production of milk on the farms of Ontario and its daily use in every household are quite sufficient reasons for the issuing of a bulletin upon its nature or com-
position, especially at this time of the season. The facts are based on the work year, the commencement of the milk producing where we have had special opportunities for at this institution during the past five years, lating work on milk analysis, which, once publishying the subject, as well as upon accumuinterested.

The constituents of normal cow's milk are the following :-Water, fat, albuminoids, sugar, and ash or mineral matter. We shall briefly refer to them, Water, fat, albuminoids,

WATER.-This constitutes from 80 per cent to 90 per
hence the total solids constitute from 10 per cent. to 90 per cent. of the whole milk, and we have found the water of normal milk to vary from per cent. In eur experience here per cent., the highest, and the average from all anim 83.9 per cent., the lowest to 90.5 87.19 per cent. liquid in which are floating clusters ofsed under the microscope, it is found to be a clear
less than one ten-thousandth of an inch in diameter to about one two-thousandth of an inch in diameter. The large globules are observed in Jersey milk, and the small in Holstein. The fat, being lighter than the liquid or serum in which it is floating, gradually comes to the surface in the form of cream, and among the many circumstances affecting the rising of the cream the size of the fat globule is very important. The larger the globules the more quickly and thoroughly they will separate in a layer at the surface. There is a variation in different animals, and in the same animals under different treatment, in the amount of total solids, and there is also a variation in the respectivo amounts of the constituents that make up the the total solids ; the variation, however, is principally due to the quantitity of the fat, i.e., the fat in the milk of different animals and of the same animal varies far more than the albuminoids, sugar and ash; hence it is that in making or stating an analysis of milk, the water, fat and ash alone are generally considered. The fat may vary from 2 per cent. to 8 per cent. of the total milk. We have found it to vary from 2.4 per cent. to 7.5 per cent., and the average of all classes of milk to be 4.03 per cent. The fat, however, is far more comphicated than at first is apparent. It is, in reality, a mixture of fats or oils, of which the four leading kinds are : stearin, palmitin, olein and butyrin. The two former are hard fats, the two latter soft or liquid fats. The texture or consistency of the butter depends upon the relative amounts of hard and soft fats found in the milk, and this is influenced greatly by the foods of which the animal partakes. Butyrin is peculiar to butter; when the butter becomes rancid, the cause is in the fact that the butyrin has, by fermentation, been changed into butyric acid. Oleomargarine contains a considerable quantity of hard fats and less liquid fats, with no butyrin, unless it has been added in milk or butter.

Albuminoids.-These are the nitrogenous compounds of milk, the flesh and muscle formers, the basis of the curd or cheese. In normal conditions they are dissolved in the serum or liquid. There are two forms, viz., casein and albumen. Some lately published investigations of Dr. Babcock, of Wisconsin, (Bulletin No. 18), tend to the conclusion that minute quantities of fibrin also are found in normal milk. Casein, which passes into the cheese, is thrown out of solution, or coagulated by acids and by rennet; albumen is coagulated by heat. In the first milk or colostrum, the albumen is in excess, but in the after milk as we use it the casein is in excess ; the casein forms about 3.6 per cent., the albumen about 0.7 per cent.

Sugar.-Milk sugar or lactose has the same composition as ordinary cane sugar, but is less soluble, less sweetening in its effect, gritty to the taste. It forms about 4.5 per cent. of milk, and is liable to speedy change. During lactic fermentation, by exposure to the air, the milk sngar changes to lactic acid, i.e., the milk sours As a result of the formation of the acid, the casein is thrown out of solution, i.e., the milk coagulates or curdles.

Ash.-There is but little variation in the quantity of salts or mineral matter above or below 0.7 per cent. From thirty samples we got an an average of 0.695 per cent. The addition of such substances as borax, soda, salt, give a large increase in the ash. In 100 lb . of milk, there are about 0.20 lb . of phosphoric acid, 0.17 lb . of potash, and 0.16 lb . of lime, all of which are intended for the building of bones and the ash material of the animal body.

The milk produced at the Ontario Experimental Farm may be taken as an average of pure milk, produced from fairly good animals of all the various breeds and grades, with varied but good feeding and with good care. Our average of 92 samples, taken from five years' results, will therefore be a little above what is produced on many farms and supplied in many towns and cities.

Water	87.19	
Fat .	$4.03)$	Total solids . 1281
Albuminoids and sugar	8.08	Total solids.... 12.81
Ash	0.70	

In contra

In detern simplest instru two about thes

Lactom milk, is someti We find the sp. be between 1.0 specific gravity fore, lighter the increased, if it and watered, th abnormal readi

CREAM of the fat. influence upon

Lactosc the quantity of The size of the the seeing powe many cases have

The above understand theit prove very usefu conditions, but t beyond doubt its

Milk Sta sample offered ar a standard fixed strongly the wisd come to be recog. and analysis, ens weed out the pi vented.

In addition

Inland Re
Minnesota
Boston M
New Jerse
Martin an
Br. Dairy
housandth of an he small in Holating, gradually stances affecting The larger the r at the surface. r different treatpectivo amounts wever, is princit animals and of ence it is that in e are generally total milk. We e of all classes of than at first is sading kinds are : he two latter soft upon the relative ed greatly by the when the butter rmentation, been ntity of hard fats r butter.
flesh and muscle e dissolved in the lately published to the conclusion which passes into net ; albumen is excess, but in the 3.6 per cent., the
linary cane sugar, forms about 4.5 tation, by exposure As a result of the milk coagulates or
or mineral matter erage of 0.695 per rge increase in the 0.17 lb . of potash, bones and the ash
ken as an average ds and grades, with les, taken from five any farms and sup-

In contrast with this average let us place the duplicate analysis of a sample of milk taken from a city milk seller, and sent to us for analysis.

Fat	88.023	88.019
Albuminoids and	3.148	3.147
Ash	8.239	8.249
	0.590	0.585

Cur conclusion in regard to this sample of milk is, that either it is produced from poor fool, i.e., adulterated through the animal, or that it has been adulterated after being produced. Milk sellers should be compelled to produce a better class of milk than this, or should be prohibited from selling it. Milk as poor as the above should be classed ass watered or adulterated.

In determining the value of milk, too great stress is frequently put upon our simplest instruments for detrrmining the amount of fat present. Let me say a word or two about these instruments and their use.

Lactometer.-This instrument, giving the specific gravity or weight of the milk, is sometimes relied upon as a true test of the quantity of fat in a sample of milk. We find the specific gravity of milk to vary from 1.028 to 1.040 , though generally it will be between 1.029 and 1.036 . The latest ten readings given here averaged 1.0299 . The fore, lighter than the fat is 0.911 ; both pure water and the fat of the milk are, thereincreased, if it be watered it will If the milk be skimmed the specific gravity will be and watered, the specific gravity may be alted ; but if the milk should be both skimmed abnormal reading, and by it alone we can aitered so little that the lactometer will give no

CREAM GAUGE. This alone is a of the fat. The size of the globules aso not always a safe indicator of the quantity influence upon the rise of the cream.

Lactoscope.-This instrument indicates for us the opacity of the milk and thus the quantity of fat, as the globules prevent the passage of light rays through the milk. The size of the globules, the brightness of the day, the way in which the light strikes, the seeing power of the eye, the freshness of the milk, all exert a marked influence, and many cases have been observed when the results were erroneous.

The above three instruments, in the hands of experienced persons who thoroughly understand their use, and who are familiar with the nature and peculiarities of milk, will prove very useful for the comparison of samples of milk, and as indicators of extreme conditions, but to determine accurately the composition of any sample of milk and to put beyond doubt its value, one of the several chemical methods must be adopted.

Milk Standards.-At present, to determine whether a milk is adulterated, the sample offered and a sample freshly drawn from the cow have to be analyzed. If we had a standard fixed by law, the matter would be much simplified, and we cannot urge too strongly the wisdom of having a fair milk standard, up to which all samples of milk must come to be recognized as normal and unadulterated. It would simplify the inspection and analysis, ensure a better quality of about the same average, and have a tendency to weed out the poor contributors. Adulteration through the animal could then be pre-
vented. vented.

In addition to our own average let us note a few others :

$$
\begin{aligned}
& \text { Inland Revenue Department, Ottawa, } 162 \text { samples. Water. Fat. } \\
& \text { Minnesota Dairy Report, } 125 \text { cows... samples. } 87.52 \quad 3.86 \\
& \text { Boston Milkmen. (Babcock.) } 130 \text { samples. } 85.64 \text { 4.47 } \\
& \text { New Jersey. (Newton.) 85 dairies samples. } 86.89 \\
& \text { Martin and Moller's Report, New York } 296 \text {............... } 86.20 \\
& \text { Br. Dairy } \\
& \text { Br. Dairy Farmer's Ass., } 8 \text { years, } 173 \text { cows } \\
& 86.08
\end{aligned}
$$

After careful consideration of many reports and tables of analyses, the standard used by some other countries commends itself as being fair for our condition, workable and conducive of good results. It has also the recommendation of the Department of Inland Revenue, Ottawa.

Water .	88.00	per cent.
Total solids	12.00	
Fat	3.50	
Solids other than fat.	8.50	

If we have a milk standard established by law, the question of adulteration is easily settled. At present, in many cases it is absolutely impossible to determine whether a certain sample of milk was produced poor by the animal, cow, or made poor by the animal, man. Having a standard, every sample chat did not come up to it, would be rated as watered or adulterated; and it should be as great a crime to water the milk by watery food, as to water the milk by the addition of water to the milk. The offect of a fair standard, I believe, would be stimulating, whoresome, and quite justifiabie in the case.

ONTARIO OATS.

Having been requested to contribute to the proceedings of the 1889 meeting of the American Association for the Advancement of Science held at Toronto, I undertook an investigation into the chemical composition of Ontario oats. The following is an elaboration of some results sulmitted to that meeting.

These conclusions are submitted to the farmers of Ontario with the hope of adding somewhat to their information and of contributing to agricultural sience. The composition of oats has been quite extensively investigated in some countries, but as yet we have had little or nothing contributed from our own province.

Importance of the Crop.

The great importance or value of the oat crop is due to the following causes :

1. A great variety of soils can be used for the production of this crop.

2 . Land of good fertility properly handled can be made to yield enormous crops.
3. The grain is an almost universal food for man and beast, being well balanced, building up muscle, fat and bone, and supplying heat, force, and even a nerve stimulant,
4. In addition to the grain the straw is a very valuable article of farm produce.

Composition of Ontario Oats.

From the Ontario oats used at the Ontario Experimental Farm during the present year I took ten fair samples which may be considered as representing the best of our home-grown oats. The following table gives the chemical composition of these ten samples as determined in our chemical laboratory at the College :-

Egyptian White.. White Australinn, Rennie's Prize W Acclimatized Blac Bavarian .
Black Champion.. Improved Scotch Oluster or Triump
Welcome
Early Calder
Average.

Let us now

Average above give
Koenig.
Brewer,
Jenkins
Richardson, U.S.
Average...

The averag average of the \mathbf{G}

The grain slways to produ soils and cultive in the oat grain
linimum
Iaximum
Average.......

The greates rude fibre, due
he standard on, workable partment of
nt.
ation is easily ine whether a by the animal, d be rated as ilk by watery fect of a fair in the case.
meeting of the undertook an g is an elabora-
aope of adding
The composias yet we have
causes :
mous crops.
well balanced, nerve stimulant, rm produce.
ring the present the best of our ion of these ten

Chemical Analysis.

Variety.	Water.	d \& 2 \# U	Fat.			Ash.
Egyptian White.	12.95	9.28	4.83			
White Australign....	13.69	10.94	4.01	56.75	11.65	3.30 3.15
Rennie's Prize White....... Acolimatized Black Tartarian	13.60	9.75	4.13	57.47	12.23	${ }_{2.81}$
Aoclimatized Black Tartarian	12.40	10.45	5.37	57.50	11.22	3.06
Black Champion	13.75	11.19	5.95	55.57	10.30	3.69
Improved Scotch Potato	13.54	10.88	4.35	59.61	9.59	2.82
Oluster or Triumph.	11.53	${ }_{11} 1.81$	7.49	${ }_{5}^{57.71}$	9.11	2.96
Welcome	12.99	${ }_{8.53}^{11.81}$	6.41 4.23	51.97 61	${ }^{15.41}$	2.87
Early Calder	12.93	6.19	5.64	61.89 55.74	9.23 16.33	
Average.	12.96	9.82	5.24	56.97	11. 91	3.10

Let us now compare our average with that given by others :-

-		Water.		Fat.		容	Ash.
Average above given. Koenig. Brewer. Jenkins Richardson, U. S Average. \qquad	10	12.96	9.82	5.24			
	153	12.37	9.82 10.41	5.23	${ }_{57.78}^{56.97}$	11.19	3.10 3.02
	20	10.56	11.41	4.97	61.10	${ }_{9.01}$	3.02 2.95
	25	10.94	11.38	4.81	60.05	9.85	${ }_{2.97}$
	179	6.42	10.76	6.64	66.67	6.33	3.18
	387	9.45	10.67	5.84	62.18	8.78	3.08

The average of the Ontario samples will thus be seen to be closely identical with the average of the German samples analysed by Koenig.

The grain of the cereals varies less than the straw, the endeavor of the plant being elways to produce a perfect grain at the expense of the straw. Nevertheless seasons, soils and cultivation all have their effect in causing variations. The variations possible in the oat grain are thus given by Armsby, collected from many German analyses.

	Water,	Protein.	Fat.	Soluble Carbohydrates.	Fibre.	Ash.
	7.6 16.4	$\begin{array}{r} 6.3 \\ 18.5 \end{array}$	4.4 7.3	$\begin{aligned} & 48.0 \\ & 71.8 \end{aligned}$	$\begin{array}{r} 4.1 \\ 16.1 \end{array}$	
Average............	13.7	12.0	6.0	56.6	9.0	2.7

The geatest variation is thus, as also shown in the previous table, in the amount of rude fibre, due to the husk of the grain.

Oats are a remarkably well balanced food, containing a large quantity of the most valuable constituents. viz., protein and fat ; they approach what may be called a perfect food. They, however, contain a larger proportion of husk or fibre than do other grains, such as wheat and barley. The quantity of husk or fibre can be approximately determined by examination, and we have thus an easy mode of determining the comparative values of two samples of oats as to their food values-the more husk, in most cases, the less valuable. Witl sut going further into examples I cannot do better than quote here one sentence from Bulletin 9, Department of Agriculture, Washington, D.O., 1886, as follows: "The proportion of husk to kernel and the compactness of the grain prove to be the all-imnortant factors, and the weighc per bushel the best means of judging of the value of the grain." (Clifford Richardson.)

Physical Characteristics.

Variety.	Color.			
		lb .	grams.	
1	yellow to dark.	39.94	2.829 2	640,391 599,365
Egyptian White	yeark yellow	38.24 39.61	2.894 3.716	483,503
White Australian.	yellow	${ }_{3}^{39.80}$	2.583	646,351
Rennie's Prize ${ }_{\text {Acelimatized }}$ Black Tartarian	black dark yellow	35.83	3.023	537,625
Acclimatan	dark yellow dark brown.	33.15	2.380	-631,790
Black Champion.	\|yellow	40.43	${ }_{3.253}$	514,669
Imported Scotch Potat	light yellow	36.91 35.19	3.160	505,132
Cluster or Triumph	yellow	${ }_{37.78}$	2.154	795,586
Early Calder		37.39	2.910	594,542
Average				

The average weight per bushel of the United States oats (see bulletin quoted above) was 37.2 lb ., the average weight of 100 kernels 2,507 grams. The individual samplea giving the heaviest and lightest weights came from the following States: Colorado, 48.8 lb.; Dakota, 48.6 lb .; Alabama, 24.7 lb .; Florida, 26.9 lb . Taking the average of the States in the great divisions we have the following interesting table :-

> Northern States, 38.0 lb . per bushel.
> Southern States, 34.5 lb . "
> We tern States, 37.8 lb . "
> Atlantic Slope, 37.0 lb . Pacific Slope, 43.2 lb .
> All States, 37.2 lb .

The best samples of oats came from the rich soils of the northern and western Stata

A Suggestion in Conclusion.

In studying the samples of Ontario oats I was much impressed with the great varice in each sample as regards the size, shape and plumpness of the grains. What we apparently choice samples contained a large proportion of inferior kernels. It occum to me that there is a possibility of great improvement by, in some way, culling ea sample of seed grain. It may at present be impossible for the farmer to select and inspa minutely every individual grain he sows ; but I believe that the farmer who can find
time and m animals wi neighbor.

In the
about 5,000 beet sugar. question ho at Washing and from th many comp Laboratorie upon the me State by the hand in han bulletins to says :--
" In 18 Orleans, a battery, used exhibition.
" Durin plantation, I
"The p of Agricultur problem of st duction of re yield of sugar is now over 2
"Perhap its efforts hav but just to th the above fac

The aid thus clearly d

Early in laboratory. I that unless be as to whether

During t sections by $\mathbf{M r}$ grown from th analysis are co

In connec A. Sc., of Mon done.

In each ca a small 'tand solution and po
time and mesns or devise a method of selecting his grains individually as he does his animals will have taken one ctep, one very important step, in advance of his less careful neighbor. "Trifles make perfection, and perfection is no trifle."

Sugar Beets and Beet Sugar.

In the year 1889 the available sugar output of the world, we are told, amounted to about $5,000,000$ ton:, of which $2,248,000$ tons were cane sugar and $2,735,000$ tons were beet sugar. The almost universal consumption of sugar by civilized man brings this question home to us as one of importance here in Ontario. The Agricultural Department at Washington has taken up the sugar production question as one of great vital interest, and from the chemical department at Washington we have from year to year received many comprehensive and interesting bulletins on the subject of sugar production. Laboratories in charge of chemists have been established in various States to experiment upon the methods of sugar extraction. To show the great work accomplished in one State by the union of science and art, by carrying on field work and laboratory work hand in hand, I shall take the liberty of quoting a sentence or two from one of the latest bulletins to hand. Dr. Wiley, in p esenting a report to the Secretary of Agriculture, says :-

Analysis of Sugar Beets.

Namr of Grower and Location.

Mr. Martin, Whitby Town.
"Reid, Whitby Township.
". Pindar,
(4 Lick,
" Lick,
". Sinclair,
" Walker,
4 Leng, Pickering Township..
" Trebell, Reach Township.
" Forman,
" Forman,
" Whitefield,
. Steele, W. \& G., Reach Township.
". Grat 4 m , Scugog Island
" Earls, Peterborough
" Graham, Smith Township
4 Bowman, Hamilton Tow nship
" Russel
" Wright, Hope Township. .
" McKenzie, E. Whitby
Sir W. P. Howland, Toronto.
John Hume, Port Hope.
Ontario Experimental Farm, Guelph...
Unknown
Unknown
Average of 26 samples

Nature of Land.					
	lb. oz.			12.83	68.0
rich garden soil	1 1312	19.70 16.60	13.50 13.00	12.35	78.3
stiff clay	$\begin{array}{ll}3 & 4 \\ 2 & 5\end{array}$	16.60 19.55	14.50	13.78	74.2
heavy clay		${ }_{20.15}$	16.00	15.20 7.63	79.4 63.3
rich clay	1 2 2 $12{ }_{2}$	12.65	8.00	7.63 16.63	63.3 81.0
stiff clay	15	21.60 20	17.50 15.50	16.63 14.73	81.3 77.3
"	115	20.05	15.50	14.78	77.9
clay loam	212	18.60	12.5,	11.88	72.9
clay	110	17.15 15.10	11.00	10.93	76.2
sandy loar	${ }_{2} 3$	15.10 18.80	14.00	13.30	74.5
clay, not stif	3 1 1	${ }_{21.30}$	15.50	14.73	72.8 80.6
	$\begin{array}{lc}1 \\ 0 & 11 \\ \\ \\ \end{array}$	18.60	15.00	14.25	80.6 67.3
strong clay	${ }_{2}{ }_{2} 14$	16.35	11.00	10.45	67.3 71.6
sandy loam	${ }_{2}^{2} 17$	15.35	11.00	10.45 16.63	71.6 76.9
	20	22.75	17.50 14.00	16.63 13.30	69.1
	211	20.25	14.00 14.50	13.78	714
clay sandy loain	$\begin{array}{ll}3 & 2 \\ 2 & \\ \\ & \end{array}$	20.30	14.50 16.50	15.68	76.9
sandy loam	23	21.45	16.50 17.00	16.15	76.7
	010	22.15	${ }_{17} 17.00$	11.88	78.8
	2 121	15.85	12.50 17.50	16.63	79.7
gard n soil	07	21.95	17.50 12.50	11.88	75.5
gar	312	${ }_{21}^{16.55}$	18.00	17.10	83.7
	211	21.00 18.10	14.00	13.30	77.3
	$\begin{array}{lll}0 & 11 \\ 2 & 5\end{array}$	21.50	16.00	15.20	74.4
		18.95	14.35	13.63	75.7

Weight of beets.-This refers to beets after being washed and topped.
Degrees Brix.-This gives the percentage of total solids in juice.
Polariscope reading.-This gives percentage of sugar in juice.
Coefficient of purity.-This gives the percentage of sugar in total solids of juice and is a guide to determine the possibility of extracting sugar thoroughly. In some of the beets above given the low coefficient of purity would seriously interfcre with the economical extraction of sugar. High percentage of sugar and high coefficient of purity are found, however, in several instances and prove that good beets can be grown for sugar extrac tion in some instances.

As the whole question is to be taken up in bulletin by the Agricultural Department at Toronto I would refer any wishing further information upon the experiments of the past year along this line to the office at Toronto.

Phosphates.-A block of phosphate of lime from Loughboro' Township, County of Frontenac, was sent to Cincinnati in 1888 to the Centennial Exposition. The weight was 870 lb. It came from a vein ranging in width from six to sixteen feet and being seventy feet in lenyth. As this represents fairly a great deal of the supply of Canadian phosphate of
lime I give an analysis of it made here.
Insoluble matter

$$
\begin{aligned}
& 0.608 \% \\
& 38.370 \% \text {, or }
\end{aligned}
$$

Phosphoric acid.
Phosphate of lime

$$
83.790 \%
$$

Four sat matters gave

Wool waste of vari being for cr wool wasts reasons :-

18t. Wo 15 to 20 per

2nd. The such as guano

3rd. The

Pea Mea sample of pe give the analy

The main the pea meal nitrogen and nit"ogen, than

Corn Ana analyses is bein work of the d samples have and Harcourt. by him in som

REPORT O Sir,-I hav hat part of my On June 30 as removed, an f May.

The soil in ad a fertiliser rtiliser was pu hosphoric acid as continued as

Four samples of commercial phosphates made by mixtures of bones and other animal matters gave of total phosphoric acid the following :-

$$
9.01 \% ; \quad 5.84 \% ; \quad 8.71 \% ; \quad 10.95 \%
$$

Wool Refuse,-A sample of wool refuse gave 3.70 per cent. of nitrogen. Woollen waste of various kinds has hed at various times a prominent place in agriculture, its use being for crops requiring nitrogen and for soils in need of organic matter. The use of wool wasts at the present day shou'd be very carefully considered for the following
lst. Woollen goods are very much adulterated ; formerly the refuse contained from 15 to 20 per cent. of nitrogen.

2nd. They are slow in action, much slower than many other nitrogenous manures, such as guano and dried blood.

3rd. They are now quite variable in composition, 2 to 7 per cent. of nitrogen.

Pea Meal.-Early in the spring Mr.W sample of pea meal obtained from a mill Wonaldson, of South Zorra, sent me a give the analysis side by side with the average ofe split peas are produced :-Below we

Water Water \qquad	Whole Peas.	Sample of Pea Meal.	
Fat.......in		8.47	
Soluble	22.40 3.00	25.93	${ }^{\prime}$
Crude Fibre.	52.60	2.51	"
Ash.	6.40	9.85	"
	2.40	${ }_{2} 9.90$	"

The main and only appreciable difference according to the chenical analysis is that the pea meal sent was much drier than ordinary peas, and correspondingly higher in nitrogen and fibre, so that on the whole the pea meal was a little stronger, had more nitogen, than the ordinary peas.

Corn Analysis.- At the time of completing this report an extensive series of corn analyses is being carried forward in the laboratory in connection with the experimental work of the dairy department. From the corn raised by Prof. Robertson, forty-two samples have been selected of which duplicate analysis are being made by Messrs Zavitz and Harcourt. The resuits will be handed to Prof. Robertson, and given to the public by him in some form of his reports.

REPORT ON THE METEOROLOGICAL OBSER Y'ATIONS, LYSIMETERS, DRAINAGE WATERS, ETC.

By Mr. C. A. Zavitz, B.S.A.

rot. C. C. James :
Sir,-I have the honor of herewith submitting for your consideration, the report of hat part of my work which comes under your supervision On June 30th, the thermometers were placed in the soil the roof of the rain gauge as removed, and everything prepared to commence reading the instruments by the first f May.

The soil in each lysimeter excepting the one with sod was cultivated on May 1st, d a fertiliser was applied to each at the rate of six hundred pounds per acre. The rtiliser was purchased at Hamilton, cost about $\$ 40$ per ton, and contained, nitrogen, osphoric acid and potash. No. 2 lysimeter was sown with barley on May 1st. No. 1 as continued as sod, and the rest were summer fallowed.

The drainage water from each lysimeter was colliected during the summer, measured and a sample taken for chemical analysis, but owing to the pressure of other work none of the samples have yet been analysed.

The accompanying tables show the amounts of rain fall and drainage waters during five summer months, and a summary of readings of the air and ground thermometers, barometer, etc.

Rain Gauge. - The rain which fell during the summer, as compared with that of the two previous years was as follows :-

,revious years was as follows :-			1889.
	$1887 .$	$\begin{gathered} 1888 . \\ \text { ins. } \end{gathered}$	ins.
	1.58	1.08	3.59
May	2.36	2.92	4.25
June	. 61	2.21	2.67
July	2.71	2.16	1.92
August	1.52	1.55	1.04
September....	8.78	9.92	12.47

Lysimeters. - The amounts of drainage water received from the different lysimeters at the times when collected, are as follows :-

Air thermometer
Thermometer 1 ir

$$
\begin{array}{r}
3 \\
\text { in } \\
9 \\
24 \\
36 \\
48
\end{array}
$$

Greatest Var
situatio MOM

Thermometer in ai
Ther. in soil at dep
"
her. in sand at de
" clay
" loam
" sand
clay
loam

Pable of Highe

SITUATION
ermometer in air
ermomete. in soil
ner, measured aer work none waters during thermometers,
d with that of
1889.
ins.
3.59
4.25
2.67
1.92
1.04

12.47

ont lysimeters at
jar broken.
c.c.
.
c.c.
g jar l,roken
c.c.
c.c.
c.c.
c.c.
c.c.
c.c.
fhole Period.

Thr Increase and the Decreare of the Average of each Thermometrer for each Month.
(+ represents increase, and - represents decrease.)

Greatest Variation in Temperature of each Thermometer between two readings
(a) Increase. (b) Decrease

Table of Highest Single Readings of Thermometers at different depths with date 0 same (for air also).

SITUATION OF THERMOMETER.

Datr of Maximum Temprrature,			Maximun Temprature.
Munth.	Day.	Hour.	
September			
August	28	1 p.m. 1	
May	18	1 p.m.	96.8 88.2
September	17 2	1 l p.m.	85.7
July	7 and 14	${ }_{1}^{9}{ }_{1}^{\text {p.m.m. }}$	73.0
August	${ }^{7}$ 25	${ }_{1}^{1 p . m . m .}$	69.7
August	27	${ }_{1}^{1} \mathrm{p}$ p.m.m.	${ }^{62.6}$
July	8 and 18	${ }_{1}^{1} \mathrm{p} . \mathrm{m} . \mathrm{m}$.	85.2 \%
July	${ }_{\text {8 }}^{8}$ and 18	${ }_{1} \mathrm{p}$ p.m.	307 80.8
July	10	${ }_{1}^{1} \mathrm{p}, \mathrm{m}$ m.	72.7
July	10	${ }_{1}^{1}{ }_{1}^{1} \mathrm{p} . \mathrm{m} . \mathrm{m}$.	76.8
		1 p.m.	77.4

I would again like to bring to the notice of the Minister of Agri alture the advisa bility of appointing a permanent assistant in the chemical laboratory, one to whom could be given the carrying on of valuable analytical wesents to us important chemical work, work in connection with both farm and dairy prese carrying on both of the lecturing more than we can at present manage. The thoroug department demand, I think, the serdepartment and of the analytic

During the early months of the year Mr. Zavitz assisted in the laboratory, Hef. Robertson's dairy assistalso engaged there now, and assisted by Mr. Harcourt Pepartment. During the early ant, he is carrying out analytical work for by Mr. S. C. Calvert, one of our assosummer weeks valuable assistanue was renemistry course at McGill College, Montreal. ciates, who is at present completing to the valuable work of Mr . Zavitz anc to call

I wish to refer here especially to the attention to the fact that his work in the
department should be given
To the Minister of Agriculture and chemical department, and trust that increased thanks for the encouragement given to will enable us to add to our appliances library liberality on the part of the Governm be enabled speedily to bring the laboratory and and conveniences so that exree of excellence to which it is my desire.
analytical department to that degree of excelloce
I remain, sir, your obedient servant,
C. C. JAMES,

Prof. of Chemistry.

PR0F

The Veter Stock after the

FOREM

To the Preside

SIR,-In year, I deem it Panton has ir horticulture, w is noteworiny very severe lat in common wit plums, cherries our usual sup ourrants, a sma oollege. All quality and a sufficient quant added to reven

Vegetable
Sold for

PART IV.

REPORT OF THE

PROFESSOR 0F VETERINARY SOIENCE

The Veterinary Surgeon has nothing to report this year owing to the sale of all Stock after the destruction of the farm buildings a year ago.

JAMES MILLS, President.

PART V.

REPORT OF THE

FOREMAN OF HORTICULTURAL DEPARTMENT.

To the President of the Agricultural College :
December 31st, 1889.
Sir,-In submitting to you the garden produce supplied to the college during the year, I deem it unnecessary for me to make anything in the shape of a report. Prof.
Panton has in Panticulture, which, as in the last two or three years, issued various bulletins on
hor is noteworiay in this department his report of this year will, I presume, cover all that very severe late spring frost which we experienced ther, remind you that on account of the in common with that in a larger portion of the ed at the end of May, the fruit crop here, plums, cherries and grapes, wore with us a comp province, was very small. Apples, pears, our usual supply. Of the smaller fruits, strawbervies, reducing to a considerable extent currants, a small crop was produced, nearly sufficient t, raspberries, gooseberries and oollege. All other vegetable crops were sufficient to meet the requirements of the quality and abundant in quantity, and such as average, and in their season good in sufficient quantity for winter use; and also small could be kept are as usual stored in added to revenue.

Vegetables and fruit supplied to College at currert rates
Sold for cash
$\$ 64154$
8037
$\$ 72191$
Your obedient servant,
7 (A. e.)
JAS. FORSYTH,

RE

To the Hon.

Sir,-I h
year just close
that was an
servants, the serious nature

The Colle
The flush might be incre

I have no year will ultim

PART VI.

REPORT OF THE PHYSICIAN.

To the Hon. Charles Drury, Minister of Agriculture :

Sir,-I have the honor to present to you my fifteenth Annual Report. During the year just closed we have had about the usual run of ailments, with one exception, and that was an outbreak of Tonsillitis, attacking many of the students and several of the servants, the disease in most cases showing well marked ulceration, but nothing of a

The College is in a good sanitary condition.
The flushing power of the students' water closet and used by them in case of sickness,
I have no doubt that the system of sewerage introduced by you at the College this year will ultimately be of great service from a sanitary point of view.

I have the honour to be, Sir,
Your most obedient servant,
E. W. McGUIRE, Physician Ontario School of Agriculture.

PART VII.

REPORT OF
 THE PR0FESSOR 0F AGRICULTURE.

Ontario Agricultural College and Experimental farm,

To the President :

31st December, 1889.
Sir,-I have the honor of herewith submitting my report for the respective Departments of this Institution under my more immediate supervision for the year 1889. These include, in addition to my own report, those of Mr. J. E. Story, the Farm Foreman, and of Mr. C. A. Zavitz, Assistant in the Experimental Department,

In view of the constant assistance given by these gentlemen in the most ungrudging spirit, without which much less would have been accomplished, I feel it my duty to refer to this fact here, and also to bear testimony to the fidelity and diligence of the work-hands generally, and of the students during the past year. In consequence of this many improvements were completed which would otherwise have been impossible in a season so prolific in weed-production, and which produced o harvest so difficult to reap.

The year 1889 has been one of abundant labors at the Experimental Farm. As mentioned in the last report, the fine set of outbuildings, including the barn, horsestable, sheep-house, bull-house and silo, all went up in smoke on the evening of November 26th, 1888. This calamity disconcerted all the plans, virtually, that had been made prior to that time for conducting the work of 1889 , and very much enhanced the difficulty of executing new ones that were formed subsequently.

The inconvenience arising from having to keep the horses in the stables at the Creamery when the stabling and accommodation were imperfect was very great, and it entailed the loss of a large amount of valuable time. The additional oversight in consequence of the renewal of the buildings was also a great tax in the same direction, and the amount of time required for the careful selection of the animals wanted in the re-stocking of the farm, added to the three weeks spent in delivering lectures at the farmers' institutes, left too little to be given to the improvement of the farm and its surroundings.

The improvements undertaken during the year were confined chiefly to the renewal of old fences, the erection of new onto, the destruction of weeds within the farm and along the public roads bordering upon it, and the improvement of the roads around and within the farm.

New Fences Erected.
New fences were put up on both sides of the town line, extending from the Brock Road to the Edinburgh road. This road forms a portion of the town line between the townships of Guelph and Puslinch. The length of the fence thus erected was in all one and one-fourth miles, with the exception of a few rods that had been put up in 1888. This work was commenced in the autumn of 1888 , and was all done by farm and student labor with the exception of sinking the post-holes. The old rail snake-fences
were first taken away, and the heaps of stones, rubbish and brush-wood that lined their borders were removed. These stones which lay in heaps in the fence corners and in confused masses nearly all along both sides of the road were removed, the large ones in the winter on stone boats, and the small ones in the summer on wagons. The former were collected for building into a fence in another part of the farm, and the latter were deposited to form the road-bed of the private road that was graded later on in the season. I think it no exaggeration to say that from four hundred to five hundred stone-boat, cart or waggon loads of stones were removed from this road. And here I would like to enter a strong, yet friendly protest against the mischievous practice adopted by so large a number of farmers of gathering stones in promiscuous heaps all along the fence bottoms. They are sure to produce trouble in time, and when a new fence is to be built give rise to a very large amount of labor in their removal. It may be necessary to pile them in heaps for a time, but they should never be allowed to remain there during a whole year.

A ridge eight feet wide was then formed with the plow, upon the centre of which the fence was built. This ridge was gently rounded-not violently so, lest the rains should lower the crown, and so form too large an opening below the bottom board of the fence. The advantages of such a ridge are two-first, the comparative height of the fence is increased, and second, the water is borne away from the posts. This ridge was made smooth by running over it from end to end a plank leveller.

The fence consisted of round cedar posts eight feet apart, sunk three feet in the ground, and pointed in the low parts. The bottom board, following close upon the line of the ground, is pine, and eight inches wide. The top board, of the same material, is six inches broad and comes up even with the top of the post. Between these boards there are stretched along four strands of ordinary barbed wire, the lower one of which is five inches from the bottom board. Ascending the post the other spaces are $6,6 \frac{1}{2}, 7 \frac{1}{2}$ and 9 inches apart respectively. The height of the fence is four feet.

The portion built in 1888 consisted of but three strands of barbed wire, but this was not found sufficient to keep out the lambs that fed upon the adjoining highway. The spaces in this portion were $7,8 \frac{1}{2}, 9$ and $9 \frac{1}{2}$ inches respectively.

The Destruction of Weeds on the Farm.

A good deal of attention was given to this branch of the work. In several of the fields the Canada thistles were growing more numerously than they should be on a model farm. We allowed none of them to go to seed. In some instances they were cut with the spud, especially in fields where they were not very numerous. The principal mode, however, adopted for their destruction was the growing of hoed crops.

Of this, in field number 3 , twelve acres of roots were grown; in field number 9 , twenty acres of corn, rape and millet were grown, but chiefly corn, and in field number 17 seven and one-half acres of potatoes. (See Farm Foreman's report, pp. 120.) In each of these fields most thorough work was made of the thistles, so that we do not anticipate much trouble on the score of thistles from these fields in the near future. Particular attention was also given to the spudding of the few surviving thistles that were found in fields devoted last year to the growth of corn and roots, as it is the intention to hold the for if possible in any of the fields in which weeds are virtually subdued.

This cannot probably be successfully done in any case unless such fields are gone over at least twice a year, say June and September, with spud in hand, and every form of weed life detected and destroyed that may be found lingering there, or that may recently have got a hold. This process will require one hand to go over about every ten acres per day, and will certainly prove a wise outlay. Indeed I am convinced that tha farmer who will not do this cannot have a farm that is absolutely clean.

It is the intention next year to try and make a thorough cleaning of eighty-five acreal and without the introduction of the bare fallow.

Dpetruction of Weeds along the Highways.

The highways around the farm are foul with thistles, blue-weed and other mischievor forms of weed life. It is our purpose to have these made absolutely clean. The thisth were cut many times with the spud in 1889.
that lined their ers and in conrge ones in the The former were were deposited eason. I think , cart or waggon enter a strong, fge a number of oms. They are ve rise to a very m in heaps for a year.
centre of which 0 , lest the rains tom board of the eight of the fence ridge was made hree feet in the ose upon the line me material, is six hese boards there of which is five re $6,6 \frac{1}{2}, 7 \frac{1}{2}$ and 9
wire, but this was ng highway. The

In several of the ould be on a model hey were cut with Che principal mode,
in field number 9, nd in field number pp. 120.) In each of not anticipate much Particular attention were found in fields tion to hold the for
such fields are gone and, and every form there, or that mas over about every ten 1 convinced that the g of eighty-five acres
and other mischievor y clean. The thist

Blueweed is very abundant along all the roadsides in this part of the country. It is a biennial, branching in its habit of growth, attains to the height of one to two feet, and blossoms from June to September. The flowers are a beantiful blue colour, and each plant produces an enormous number of seeds. Many of these remain in the pods until winter, when they are driven by the fierce winds for miles over frozen surfaces. This plant does not well withstand vigorous cultivation, but becomes very troublesome in pastures and along highways. The only effectual mode of destroying it in such places seems to be to cut it below the crown with the spud. This requires to be done several times each season for two years as younger plants follow from time to time, producing tresh blossoms. When thus treated for two seasons the plants will all be destroyed, unless ting with the scythe only seems the interval from seeds lodged in the ground. Cutthe number of the branches.

Ox-Eye Daisy was found troublesome in one of the newly sown meadows. Because the meadows were new the plants were found growing singly, but in some they were very numerous. When in blossom they were cut say an inch below the surface with the spud, It is believ with the hand. They were gathered in piles and drawn away with the carts.

Wild that thorough work was done.
by hand. The same was done with flaces in the meadows, and this was carefully pulled Burdocks received no quarter, nor did wild mustard and the different species of cockle. heads of the wild oats were found, and these were of corever it was found. Only a few found in the winter crop shared the same fate

Improvement of Roads Bordering on the Farm.

The road already referred to as having had new fences put up along its borders was taken in hand in the spring. The tens of thousands of stones were first removed from its borders. The heaviest of these had been drawn away in the winter. The unsightly, ridges which form then dug out by the roots, when the borders of the road as far as the blank leveller. These were ame way. Seven or eight furrows were nade. Great pains were taken to have then plowed where the ditches were to be he road-bed was the next operation. These made perfectly straight. The grading of lthough shovels were used when n. This was done chiefly by the aid of the scraper, rading. The road-bed is 34 feet wide betw, in order to perfect the uniformity of the ounded, but only gently so, and is quite wideen the outer rims of the ditches, is fairly ithout any difficulty. This cannot be saide enough for two loaded hay wagons to past also about the proper width for harmony of many of the graded roads of Ontario, It ordering upon it. With the aid of a small appearance when compared with the sides e neighboring townships this rof a small grant from the Legislature and from each of ggth at the rate of three loads of gravel to thed throughout three-fourths of its entire ot in width of the road; no coarse stones werod. The gravel was made to cover ten tre taken by Mr. Wm. Squirrel whe he succeed in this that a divergence of six in charge of the spreading. So completely road-bed could not be seen from end to end. Thes in the borders of the gravel part of do everything neatly that they turn their hand to, slovenly, uncouth manner although they do no to, and others who do all their work The borders of this road have been levelled as more in quantity than the former. , and the whole road except the part gravelled smoothly as the surface of a cultivated the intention to keep down weeds by acter that will admit of this. If a herd law is passed in, as the grading is of a hibiting sheep from running at large, shades will passed in the adjoining townships aterfere very little with the use of the mower. Why is it not easily possible to grade a major has been graded ; that is, to have the grade even the roads in the Province as this that no more will be required to put the same in uniform and so thoroughly
gravel occasionally, or the repairing of a sluiceway? And why may not each farmer level the sides of the highway bordering on his farm and plant trees along the same, thus adding to the value of the farm in ce se of selling, more, it may be, than twice the outlay ?

The most laborious piece of work undertaken during the year was the improvement of the private road running from the Brock road past the outreds of loads of stones of all rear of the farm. In our portion of this road many promiscuously into the road-bed to the sizes had been buried. They had been dumpth of about thirty feet. Deep, wide ditches depth of from one to three feet, and to the wid orer these, with the result that the roadhad then been made at the sides to get earth too low to correspond with the other portions bed was quite too high, and the ditches quite of the road. These were taken out at an enor road was then ploughed and levelled twice they are to be made into a fence. The whole to the width of ten feet and to the depth during the season. The road-bed was scraped of from nine to twelve inches, and the excava, great pains being taken to have the grade was then graded with the plough and scraper, The width of the road between the outer uniform and the edge of the borders straight. therefore of the road is less in this case than edge of the ditches is thirty feet. The as the road-bed is a little narrower. Gravel will in that of the town-line above described, as and spread evenly upon it in the spring. be drawn upon this road during the wincely smoothed by means of horse and hand labour,

The borders of this road are being nicely and will be planted with forest trees of differished in the form of a fence on the sides of protection for a few years, which will be f year the private road on the opposite side of the the borders next the drive. The presen.
farm will be dealt with in the same way.
farm will be dealt with in the same way.
Four bull-paddocks were long and 76 feet broad, and are surrounded by a board fence exercise. They are 170 feet long andar, are sunk 4 feet in the ground and are 7 feet 6 feet high. The posts, whing 2×4 inches were stretched along these and sunk one inch into the posts on both sides of the post and directly opposite to each other. The distance of these from the ground (top side) is 13,34 and 56 inches respectively. Half way between the posts a block was inserted between the scantlings opposite to each other and spiked there to give strength to the fence. The boards are inch hemlock, and of course nailei on both sides of the posts, and will yet be covered with a cap.

All these improvements, and many others not enumerated here, were done with farn and student labour, the only exception being the drawing of the gravel on the town-line which was done by the neighbouring municipalities ; nor was any special grant used in the accomplishment of these improvements unless in the material used in building the feno

The Experimental Work.

Owing to the loss of the buildings and the sale of the live stock, very little was dos in the line of live stock experiments. The experiments in the field naturally diviif themselves into experiments with cereals, root crops, fodder crops and fertilisen Experiments with cereals are again sub-divided into those conducted in large plots in ti field and small plots in the experimental grounds, proper.

The experiments of the past year in grains were undertaken on a large scale compar with those of former years. And although some valuable lessons are to be learned fry them, they are in some respects to myself at least disappointing. This arises from two call that in common phrase may be termed accidental. I refer to the action of rust on 80 of the grains, especially the wheat, and the ravages of the cutworm on the principal 6 devoted to the large plot experiments.

The former of these causes acted with unusual virulence. To so great an extent rust prey upon the crop of the farm that no one field of grain grown on the place altoget escaped, although the early sown barley was affected but little. Nearly every kind of gh sown grew with unusual luxuriance and gave promise, in most instances, of an abund yield till within a few days of harvesting, when on several of the varieties rust appeas

Something of this is to be attributed to the season, rust being present in an unus Something of this is to be attributed to the season, rust in part by the natur
degree in most parts of the province. It was perhaps caused in
the soil, mu taken togeth was afflicted sowing, for farm. I cal that the gen fogs in the which they further conf hood. In tl land is a litt grain in the prevailed not adopted for consider if sc on duplicate prepare field The grain ex

The visi occurrence in previous year does not, pro withstanding amongst the to relish peas hoed crops ac be allowed t time of sowin the top dres. mentioned he cutworm wer season to the pasture or m following spri

For expe $81,720.00$ wa the Minister ment alone. farmer in the ments connect

The amo year is fully \& been establish agriculture of ment, which

The Min whose whole t department wl overtake a ver

The vario much larger sc of 1889 one of continent, that was arranged f
ach farmer level the same, thus wice the outlay ? he improvement d on toward the of stones of all road-bed to the eep, wide ditches alt that the roadhe other portions e and piled where nd levelled twice and to the depth stones. The road o have the grade between the outer 3 in this case than wer. Gravel will the spring. e and hand labour, 1 of course require ice on the sides of ppposite side of the
e animals may gef ed by a board fence und and are 7 feet d sunk one inch into

The distance of Half way betweea ch other and spikel nd of course naile
were done with farn vel on the town-ling cial grant used in the building the fenoa
very little was dos ield naturally divis rops and fertilisen in large plots in

a large scale compars

 re to be learned fro arises from two call action of rust on 80 on the principal 6so great an extent on the place altoget rly every kind of 8 tances, of an abund varieties rust appees g present in an ung part by the natur
the soil, much of it being loam with an abundant supply of humus. But these reasons taken together do not furnish a sufficient explanation, as the grain in this neighborhood was afflicted with rust in an unusual degree. It cannot be attributed to lateness of sowing, for the spring crop had scarcely ever been sown so early in the history of the farm. I cannot but conclude that locality has much to do with the scourge. It may be that the gentle current of air coming from the low lying valleys of the Speed, move the fogs in the direction of the wide valley that angles across this and other farms, over which they brood long enough to accomplish the mischief referred to. This view finds further confirmation in observations made in the various sections of the outlying neighbor-
hood. In the vicinity of Puels land is a little lighter, there was bake, but a few miles to the southward where the grain in the opposite direction at an equal injury from rust, and the same may be said of prevailed not only the past season but in prostance. To so great an extent has the evil adopted for obviating the rust difficulty in the near furs that unless some means can be consider if some plot of ground in another locality near future it will be well perhaps to on duplicate experiments with field grain. Meantime it is the be chosen for carrying prepare field No. 18, the highest lying field on the farm for the exp next season to The grain experiments will be removed to this when the soil is the experimental work.

The visitation of the cutworm was quite unlooked for, although it is. occurrence in many sections. No traces of its ravages had been observel is of periodical previous year. Reference to the means that should be adopted to does not, properly speaking, belong to this department, but I desire tostroy the cutworm withstanding that the bare follow, the growing of peas and the cultire to mention here notamongst the most effective methods of banishing the intruder. Cation of hoed crops are to relish peas. The bare fallow destroys them by starving them. Cutworms do not seem hoed crops acts on the same principle. Fields liable to be them; and the cultivation of be allowed to lie long in grass. Some have argued that a heavy with them should not time of sowing the grain where their presence is suspected will check their ravages. If the the top dressing is quite heavy this remedy may prove of some efficacy. It may be mentioned here, however, that in the field above referred to, where the ravages of the cutworm were so disastrous, salt had been sown on the pasture grown there the previous season to the extent of 400 lbs . per acre. This makes it evident that salt sown on a pasture or meadow that is plonghed in the fall and sown with some kind of crop the following spring, will not provo efficatious in preventing the ravages of the cutworm.

For experimenntal purposes in the farm and live stock departments the sum of $\$ 1,720.00$ was set aside, and in the dairy department $\$ 1,750.00$. For the present year the Minister of Agriculture has set aside more than $\$ 3,000.00$ in the experimental departfarmer in the land, as it ments connected with the production of live stock.

The amount devoted to experimental purposes year is fully $\$ 725,000$, or about $\$ 15,000$ for been established there. This fact presses hach of the experimental stations that have agriculture of Ontario in the front rank, we me the thought that if we are to keep the ment, which i_ always of necessity conducted with no little ourselves in the line of experi-

The Minister has also kindly acceded to my request outlay. whose whole time subject to the supervision of myself and to have a person employed, department when the same may be found necessary. This arsistant will be given to this overtake a very large amount of work in this important department.

Experiments with Cereals in Plots.

The various experiments carried on in growing cereals in plots were conducted on a much larger scale than ever before in the history of this institution. During the winter of 1889 one of the most extensive importations of seed grain that was ever made to this continent, that is, if we consider the number of the varieties included in the importation was arranged for. Messrs. Oakshott \& Millard, seedsmen, of Reading, England, collected
the grains, which embraced 54 samples of barley, 10 of peas, 77 of spring wheats, 71 of oats, and 25 of winter wheats. To these grains, were added a large number of varieties picked up in Canada, and were grown side by side with the former, the full details of which are given in the report of the assistant in this department.

The whole number of grain and grass plots was no less than 464, which does not include the experiments with field roots and potatoes. The work undertaken in this line was almost double that undertaken during any previous year. Experimental work is of no value without it gives results that are either positive or negative, and but few experiments should be regarded as final or conclusive that are not repeated under the same conditions. Some of them require repeating many times owing to the variableness of the seasons and other attendent conditions. When so repeated and the results point generally in the one direction, it may be that even then it is the general trend of the experiments that becomes of value rather than the exact results obtained. This is true both in experiments with grains and animals. With the former important variations may result from climate as affected by locality. This, so far, impairs the worth of all field experiments, hence the great value of having them repeated simultaneously in several sections of the one province. In regard t, experiments with animals, individuality plays so important a part that the general trend of the results forms the valuable feature rather than the exact results, as in the case of prains.

Viewed in this light, time is necessary before reliable conclusions can be published which shall serve as guides to the farmer in his practice. We feel, therefore, that this year we have but laid the foundation of a series of experiments which it is believed will be of great value to the farmer.

These experiments will all be repeated the coming season, not only from the same samples as were grown last year, but also from the product of these, when if we have a favorable season we will undoubtedly get some results of much value.

A summary is given below of the various kinds of grains grown in the plots with their general behavior as regards germination, length of straw, yield of grain and straw per plot, and yield of grain per acre.

From t ing, as the \mathbf{p}

The Ba point of ger and straw th and we hope of the 18 v about 13 per

In hand them all und exposed than a comparison

It is wo (page 126) of per acre, whi bushels per a the common remaining ele

Of the d the best resu these varied f

The two Improved Sco cases was at th and the qualit greater weight Italian Rice fr strong and stif medium. This

The other matured July from France, o

Pea Plots were procured bushels per act English variety pea is pale b Canadian varic lighest average to this variety rate of 43.9 bu probable that h

These plot was not the slig

Spring W furing recent y wheat cannot f varieties is avages of rust. lots were struc nused by late so an the barley, rum since it can me of the plots
ats, 71 of oats, of varieties full details of
vhich does not en in this line 1 work is of no w experiments me conditions. he seasons and ally in the one ts that becomes periments with rom climate as ents, hence the ns of the one aportant a part than the exact
an be published refore, that this is believed will
from the same en if we have a
a the plots with grain and straw

Grain per
 traw pe
 plot lb.
 acre
 bush.

34.5

68.3	$\begin{array}{l}34.5 \\ 63.0\end{array}$
60.6	

81.0	42.7
8.230	

50.0	
	$\begin{array}{c}53.0 \\ 65.2\end{array}$
27.7	

66.2 33.3

55.3	37.2
63.8	30.3

From the preceding table it is apparant that the seed was in good condition for growing, as the percentage of seeds which germinated is high.

The Barley Plots.-In all, there were 61 plots of barley, including 56 varieties. In point of germination, the Scotch varieties stood the highest, but in yield of both grain and straw they were the lowest. The varieties from Germany behaved well on the whole, and we hope to get from them some kinds that will be useful to grow here. The yield of the 18 varieties from that country was at the rate of 34.5 bushels per acre, being

In handling so many average of all varieties.
them all under like conditions, as theturing at different dates, it is impossible to harvest exposed than others to adverse conditions of ripening varies so much that some are more a comparison between the different varieties weather. It is therefore not easy to make

It is worthy of notice, that of the thirty-sevard to color that would be accurate. (page 126) of which the yields are given, they averaged awed varieties in the table on per acre, while the seventeen samples of six-rowed aved at the rate of 31.7 bushels bushels per acre, but it must be borne in mind thow averaged at the rate of 36.3 the common Ontario variety, which all gave a high return, the six-rowed samples were of remaining eleven varieties gave an average of 30.5 bushels, excluding these six lots, the

Of the different varieties of barley the acre. the best results. Every tenth plot was sown with these varied from 41.7 to 52.1 bushels per acre, the avera variety, and the returns from

The two varieties first in point of gield, Improved Scotch, the latter grown of yield, are the Cheyne from Germany, and the cases was at the rate of 47.9 per acre. The two years in this country. The yield in both and the quality of grain in both medium. Ther was two-rowed, and the latter six-rowed, greater weight than that of any other variety, bustraw of the Oheyne was taller and gave a Italian Rice from Germany behaved very well. It but was weak and loops pretty badly. The strong and stiff straw, and ripens early. It is two a beautiful somewhat fan-shaped head ; medium. This variety will likely give satisfaction o-rowed, and in quality and size of grain is

The other early ripening varieties an on soils where the grain is inclined to lodge. matured July 19th, then Oderbrucker from Skinless, originally from Australia, which from France, on July 30th.

Pea Plots.-Of the sixteen varieties of
were procured in Ontario. The varieties peas tested, ten came from England and six bushels per acre, while those from England English variety was the Glory, rather short in theraged 28.3 bushels. The best yielding pea is pale blue in color and large in size. The straw and but a medium grower. The Canadian varieties, yielding at the rate of 45 bushels prussian Blue took the lead of the bighest average of peas per pod, viz., 5.1, and also the per acre. This kind gave the to this variety in point of yield came the whitso the largest quantity of straw. Next rate of 43.9 bushels per acre. As this variety was sown marrowfat, which produced at the probable that had it been sown more thickly it was sown at the same rate per acre, it is

These plots were sown on April 17thy it would have come out first in yield.
was not the slightest indication of the th and therefore ripened in good season. There
Spring Wheat-Plots - There were ninty in any of the plots. luring recent years has demonstrated that in plots of spring wheat. Past experience veat cannot usually be grown successfully. Our parts of Western Ontario spring f varieties is to ascertain if some kinds cannr object in testing so large a number avages of rust, and at the same time cinds cannot be secured that will withstand the lots were struck with rust some time be a profitable return. A large proportion of the aused by late sowing, as nearly all thefore they were ripe. This could not have been han the barley, which I believe is the plots were sown April 18th, but three days later frm since it came into the hands of the earliest grain sowing that has been done on the me of the plots were almost entirely free from rust, since, as encouraging to note that fithstood the rust this year, we can reasonably expect that they will do so ines successfully

Of the foreign varieties, those from Germany gave the best average returns, those from Russia came second, and from France third. The best yielding variety was the Wild Goose, (page 131) which gaves a return at the rate of 26.7 bushels per acre. This will be recognised by readers as an old variety, noted for uniformily large returns, but not in favor with the millers even at the reduced rate at which it sells, it will probably pay batter to grow it than many other kinds now grown throughout Ontario.

The best yielding variety of foreign wheats was the Herison bearded, which came from France. It yielded at the rate of 18.3 bushels per acre. It is a red wheat with club head, supported by strong straw, and virtually free from rust. The berry is small but plump. The straw stands well and is of medium height, viz., 42 inches.

The ordinary Bearded March, also from France, gave a return at the rate of 13.3 bushels per acre. The straw was medium, and almost free from rust and the grain above the average in quality. The March Bearded is from the same country, gave a similar yield. There is a rather close resemblence between these two varieties, but yet the year apparently distinet.

The Red Fern variety, now pretty generally known, gave a yield at the rate of 13.3 bushels per acre. It was but slightly rusted.

The Oat Plot.-Of the 92 oat plots grown, the German and Swedish varieties gave the longest straw, but it will be observed that the straw of the latter outweighed that of the former, and the difference in the average yields of grain was even more apparent but in favor of Germany. The straw of the French varieties was below the average in the table. This a greater weight notwithstanding, than chabits of growth and the large amount of leaves was owing doubtless, to their branching hame thickly than those of any other country, borne by the plants. They also gre grains sown, as the same quantity by weight caused in part by the smate plots. The straw from the French oats is certainly most was sown in each of the plots. fairness, as, when fed direct and uncut, it will be eaten valuable for fodder owing to its plots were, many of them, badly lodged by a storm which with a relish by stock. The oat plots swept over them about
more or less with rust

The two leading varieties in point of yield came from France Those were the Goanette and Chenailles (see p. 134) both black and both spreading in the head. The strong and that of the second weak, the rust on the first was slight and on the second medium in quantity. Both varieties also ripen early and the grain in each instance is larger and has a thin hull.

Next in point of yield are two German varieties the Oderboucker and the Danebrog both of which are white and both have spreading heads. The yield in both instances was at the rate of 75 bushels per acre. The straw of the Oderboucker was stronge than that of the Danebrog and stood up well. Both had sone rust but the Oderboucker less than the Danebrog. The grain of the former when assembled in was highly recommended by the Oatmeal Miller's Association when assembled in conven tion in Toronto last autumn. No less than eighty-two was to ascertain which of thoy were submitted to them at their request. Their object was to ascertain which of thos would be most suitable for making roller meal.

The three varieties from Russia behaved very well on the whole but of thex at the rate of $73 \frac{1}{2}$ bushels per acre and was also recommended by the Oatmeal Mileri Association, as indeed were all three of the Russian varieties. This variety, howeve was considerably rusted.

The Bavarian headed the list in the yield from the Canadian varieties. Thi oat was imported some years since to the state of New York. From there it wi
brought into during the fi grower, but in color and

The thr Siberian from 6th of Augu yielded at th the grain is t

The Fly ripened on th 63.2 bushels with but sligh had some rust

It is bu fairly represe the fields. Tl lots. This is when keeping a larger amou definitely of tl than one-sixth

Exhibit o an exhibit of London and period. The ing of the exh

In referen the notices giv
"The tas present year (Guelph, is not new life is b Advertiser.
"The man and prolificacy from 18 differe collection consi threshed state. the collection a The specimens London Free P
"One of t Ontario Agricu mental departm importance of t answering ques
"Upon ent to a magnificen exhibit as a who creditably upon

In referenc "The Exhi
returns, those ariety was the e. This will be rns, but not in probably pay
earded, which red wheat with rry is small but
the rate of 13.3 the grain above gave a similar put yet the year
the rate of 13.3
arieties gave the hed that of the arent but in favor height but gave the table. This amount of leaves iy other country, intity by weight s certainly most ,it will be eaten by a storm which lots were affected

Those were the in the head. The irst, however, ws and on the second n each instance is
and the Danebrog 1 in both instanes ceker was stronge me rust but the ong and plump and ssembled in convers own upon this farn tain which of thow
hole but of thee g head. It yielab the Oatmeal Miller is variety, howere
ian varieties. Thi From there it
brought into Canada by Mr. Daniel Zavitz, of Coldstream, Ont. Its record has been good during the five or six years which it has been tried in this country. It is a vigorous grower, but was somewhat affected with rust. The straw stands up well. It is white in color and yielded at the rate of 71.2 bushels to the acre.

The three earliest ripening varieties were the early blossom from England, the Siberian from France, and the White from Australia, all of which were harvested on the 6th of August. All three had but little rust. The Siberian had strong straw and
yielded at the rate of 66.2 bushels the grain is thick.

The Flying Scotchman, Rennie's Prize White, Cluster or Triumph and Welcome ripened on the 7th of August, and yielded respectively at the rate of $63.2,57.4,60.3$ and 63.2 bushels per acre. The former was imported from England and was medium in straw
with but slight rust, while had some rust.

It is but fair to mention that the yields obtained from these small plots do not fairly represent the yields likely to be obtained from the same varieties when grown in the fields. They give larger proportionate yields than will be reaped when sown in large lots. This is caused, in part at least, by cultivation around the borders of the plots when keeping these borders clean, by a freer circulation of air through the plots and by a larger amount of sunlight reaching the grain. It would not be safe to fix the amount definitely of the increased proportionate return, but probably it should not be put at less than one-sixth or even one-fifth of the whole yield.

Exhibit of Experimental Grains-With the approval of the Minister of Agriculture an exhibit of the experimental grains was made at the Provincial Exhibition held at
London and at period. The press of Ontario paid some hish were also shown at Embro at a later ing of the exhibit.

In reference to the uotices given at the same as
"The tastefully arranged and carefully present year (1889) on experimental plots at the exhibit of grains grown during the Guelph, is not only one of the most interesting the Ontario Agricultural Oollege Farm, new life is being infusad into that institution fair, but affords good evidence that .
"The managers of the Experimental Station at Guelph, in order to test the vitality and prolificacy of the several species of grain and small seeds, have obtained specimens from 18 different places in Europe, Africa, North America and Australia. The total collection consists of 300 varieties of the different cereals, both in the straw and also in the threshed state. The whole makes a most attractive appearance, while at the same time the collection and experiments should be of practical benefit to the farmers of Ontario, The specimens of all the cereals were of first-class quality and were the growth of 1889 ."
London Free Press,
"One of the most pleasing features of the Exhibition is the display made by the Ontario Agricultural College of grains grown on the experimental plots. The experimental department has been made a feature of late. The farmers seem to be alive to the importance of the work carried on and all day Mr. Zavitz was kept hard at work answering questions."-Toronto Globe.
"Upon entering the main door of the Dairy Building our attention is first attracted to a magnificent grain exhibit from the Ontario Agricultural College. Taking this exhibit as a whole, it is the finest we have ever seen in Canada and certainly reflects creditably upon those in authority at the college."-Farmer's Advocate. certainly reflects In referene to the Exhibit
In reference to the Exhibit at the Toronto Industrial, the Toronto Mail says :-
"The Exhibit of grains grown by the Experim at Guelph is very creditable to that institution."

Salt on four different kinds of soils. -This experiment as stated in the report (p. 136) has been conducted two years in succession. From this we glean that the application of salt has increased the yield of grain both years on four differentest proportionate increase marl, clay and muck. In the experiment of salt increased the yield at the rate of 60.7 was in the grain grown in the muck muck soil proved a failure, owing to the excessive per cent. This year the test in the summer. The increase in the barley in 1888 on amount of wet in the early part of the se rate of 36.7 per cent, and in the oats, in 4889 , the salted portion of the clay, was at The proportionate increase in the clay loam and marl soils at the rate of 17.1 per cent. was much less.

From this it is apparent that salt applied at the rate of 400 pounds per acre, materially increases the yield of grain (barley and oats) in a clay soil, in a wet or in a dry year, Is it not a matter very much to be regretted, that the combine in salt has so raised the price, that it is put to a large extent beyond the reach of the farmers to apply to soils ?

The increase was caused, apparently, by the action of the salt on the soil, by way of rendering the dormant plant food in the latter more available. No very marked differserved in the color or strength of the straw, and the difference as stated above in the yield was very considerable.

Comparative yields from barley sown at different dates. -The particulars relating to this experiment will be found on p. 137 of the report. I wish leave to call attention to the vast in portance of early sowing as demonstrated in the table referred to. It will be observed that the common six rowed Untario barley, sown April 15th, yielded at the rate of 44.3 bushels per acre, that sown May 5th, 20.3 bushels and that sown June 7th, 4.2 bushels, the sample of the first being also very much superior to that of the second, and the second to that of the third. The importance of sowing barley early cannot well be over-estimated, even though it may render the crop liable to injury from frost, as in the above instance the first sown plot was browned on the tops by severe frost when about two inches high, and yet the yield was more than twice that of the plot sown twenty days later. To enable the farmers to sow spring grains at the earliest moment, it is absolutely necessary to have the ground ploughed the previous autumn, a practice which is attended with other important advantages.

A seven years' rotation of crops. -The idea in the conception of this experiment is an excellent one, (see p. 138) as it would enable us to ascertain whether in the succeeding crops, enough more could be obtained to repay the farmer for the loss of a crop during the year of the bare fallow. It is to be regretted that the date regarding the first and third years of this experiment are entirely wanting. This, to a great extent, neutralizes the value of the experiment, which is also further weakened by the lack of simiarity in some of the conditions during those years. I mean the sowing of fall weeding to grass on and of spring wheat on the other, which probably also necessitated seed the difference different dates and under different conditions, which year of the rotation. in the amounts of hay obtained in 1886, the fourth year of the rotation.

Experiments with Cereals in Agre Plots.

I have already stated that grains grown in small plots give a larger proportionate yield than when grown in ordinary fields, and have also given my reasons for this belief. In view of this fact a number of grains, including spring wheat, barley, oats and peas, were grown in acre plots. The varieties chosen were those that had already attained some notoriety in this country. We were, however, unfortunate in our choic of location for these tests, as the cutworm, excessive wet and other causes so interferel with the yirlds as to render them unsafe guides in the farm practice of the future. Some of these will be repeated the present year.
report (p. 136) application of oils, viz., loam, ionate increase the rate of 60.7 to the excessive rley in 1888 on e oats, in .889, and marl soils
per acre, materior in a dry year. has so raised the apply to soils ? e soil, by way of y marked differas stated above
ulars relating to call attention to rred to. It will h , yielded at the t sown June 7th, nat of the second, early cannot well from frost, as in severe frost when of the plot sown arliest moment, it atumn, a practice
s experiment is an in the succeeding of a crop during rding the first and extent, neutralizes ck of similarity in wheat on one plot seeding to grass on ains the difference
arger proportionate y reasons for this wheat, barley, oata e that had already anate in our choice eauses so interfered
of the the future. Some

Experiments with Root Crops,

Potatoes.-By reference to p. 139 of the report, it will be noticed that an experiment was carried on with eleven varieties of potatoes. One row of each was pianted across similar conditions. Several of they were all planted the same day and under precisely The three leading kinds we will be noticed were new.
Ohio and the Halton Seedling, and yiearly. They are named the Early Sunrise, the Early 306 bushels per asre. The Early Sunrise prospectively at the rate of $348.8,314.4$ and of bloom, and was one of the first to ripen. The stery thrifty grower, carried a profusion it was a very promising variety. The Early The stems were short and strong. Altogether and an excellent yielder ; and the same may be is a strong grower, medium in earliness, duces short, stout and low-lying vines. The best of of the Halton Seedling, which prowhich gave at the rate of 304.1 bus. per acre. The the late sorts was the Rural Blush, tall. The two well-known varieties, Beauty of He variety produces vines strong and at the rate of 278.8 and 257 bus. respectively per Hebron and White Elephant, produced a return 25 per cent. greater than the Beauty of Here. The Early Sunrise therefore gave White Elephant. Some of these newer varieties are ond and 35 per cent. more than the

Mangolds.-Eight varieties of Mangold are certainly very promising. across the field and under similar conditions. Were sown. One row of each was sown

Comparing the largest yielding varieties ith of sowing was May 17th. has been the standard mangold of the country, the Ge Mammoth Red, which in the past cent. more, the Carter's Ward Orange Globe 34.3 per Yellow Globe yielded 49.2 per mediate 28.4 per cent. more. The Giant Yellow per cent. more. and the Red Interground and were smooth and easily handled, but dide mangolds grew largely above varieties. The Mammoth Red also did not, but did not keep so well as some other something to do with this.

The Central German Sugar Beet did uncommonly well with us, as stated in the report of the farm foreman (p. 118), where also the reasons are assigned for the moderate
yield

Carrots.-Six varieties of carrots were sown on on May 6th (see p. 140).
The White Belgian has long been the standard carrot of the country, b
certainly give place to the White Vosges, a carrot possessing country, but it must grows well underground, is large and curves abruptly to possessing many excellences. It handled, nor is it easily broken as the White Belgiant and the It, which renders it easily Iso yielded 73.5 per cent. more than the White Beand the Long Red Altringham. It he Scarlet Intermediate is a heavy cropper, easy to belgian, and is an excellent keeper. ualities. The White Belgian grows largely above ground, is crooked also good keeping then being handled. The Long Red Altringham ground, is crooked and easily broken號
It is to be regretted that we cannot furnish a chemical analysis of the mangolds and rrots, which would have been done had not so much time been required in analysing

Exprriments with Fodder Orops.

Cultivation of Rape.-The experiments in rape culture was of peculiar interest ing to its bearing upon flat and ridged culture, thick and thin seeding in ridges on the level, the distances between the ridges, and on culture broadcast and in drills. There were nine drills in each instance except in plot four (where there were ven drills owing to the less distance between them), and plots five and six which e sown broadcast, but which covered an equal area of gronnd. The plots were also of
same shape and width.

The yield from the plots 1 and 2, cultivated on the level, was at the rate of 18.08 tons per acre as compared with 13.1 tons per acre from that grown on ridges. The drills sown on the level were more vigorous from the first, and this I apprehend is likely to be the case with future tests.

Plots 2 and 3 ridged alike were sown, the first at the rate of four pounds of seed per acre, and the second at the rate of half a pound. The former gave 13.1 tons and the latter 14.2 , and the quality of the rape in plot No. 3 was evidently the best, as it was more succulent. From this it is evident that thin seeding in drills is preferable when the season is moist.

Plot No. 2, in which the drills were twenty-two inches apart, was pitted against plot No. 4 with drills 18 inches apart, the amount of seed in both cases being at the rate of four pounds per acre. The yield from plot No. 2 as stated above was a. This return 13.1 tons per acre, and from plot No. 4 at the rate of 16.68 tons perted for rape, as it is points rather in the direction of closer culture from twenty-four to twenty-six inches, usual to make the distance between the bo borne in mind, viz., that the seeding in plot Another element in this experimen as in plot No. 2, as the same quantity of seed was No. 4 was of necessity distributed over a greater number of drills.

The yield of plot No. 3, sown in drills at the rate of one-half pound per acre, as pitted against that of plot No. 5, sown broadcast and of course on the level, was as 14.2 to 14.68 tons per acre. It must not be inferred from this, however, that broad cleaning the is superior to that in drills, as rape is generally so field wanting cleaning it would in no land. If, therefore, it were sown broadcast, however, tends to show that in clean fields way effect this purpose. This experiment, more rape can be obtained when sown broadfects of the two modes of culture on the suc when sown in ridges. The element of which case that grown in drills would undoubt ceeding crop must also be considered, in wis edly have a decided advantage.

Plot No. 5, described above, gave a less return than plot No. 6. The cultivation in each was broadcast, but the rate of seed per acre sown on the latter was eight pounds The comparative yields were at the rate of 14.68 and 17.3 tons per acre. The quality the latter, however, was inferior to that of the former owing to its woody condition.

It is to be regretted that two other plots sown broadcast at the rate of two and four pounds of seed per acre were injured accidentally, so that a comparison from these coul not be made.

It should also be borne in mind that the weights given above are for the whole plant including the root, for which probably twenty-five per cent. should be deducted in com puting the yield.

Different Systems of Raising Fodder Corn.-For details of this experiment see 148. The value of the experiment is much impaired because of the fact that only abo one-half of the seed germinated, owing probably to the cold damp weather at the time sowing. The real test, therefore was about as follows, viz.. No the rate of one peck per act in the drill ; No. 2 plot, six grains per foot; No 3. plo a-half bus. per acre. sown broadcast, and No. 4 plot at the rate were at the following rates per acre :-

This experiment tends to prove that corn grown broad orb, sown in drills forty of seed are sown per acre, will give a greater woh or twelve inches apart, and at a inches apart, the plants being eithis may yet show that the corn in plot No. 1 contai expenditure of labor. But analysis may yet show that the corn phe
the greatest The same o offered again give entirely

There w This was ow arrangement

Action the crops cor one-fortieth phosphate, gı details see p. of value can in the charac ence was easi been determi secured for

Action o in the spring an acre each. 400 lbs . per a chemically tre acre to plot N poric acid and tons per acre, plot No. 4. were harrowe the time of th No. 2, August

The follo

Plot N

Putting t
Farative retur
Plot N

Two cerea land during th ail probability

The compa
Plot No

Farmyard
8 (A.C.)
rate of 18.08 as. The drills is likely to be
ounds of seed 1 tons and the best, as it was rable when the
pitted against eing at the rate at the rate of e. This return for rape, as it is enty-six inches. seeding in plot ity of seed was
and per acre, as vel, was as 14.2 broadcast culture 1 in cleaning the it would in no hat in clean fields st for labor than ulture on the sucis would undoubt.

The cultivation in was eight pounds. e. The quality of dy condition. te of two and fow a from these coul
for the whole plant e deducted in com is experiment see fact that only abou ather at the time t , one grain per fo of one peck per acy acre.
11.7 tons.
12.1 "
$11 .{ }^{\prime \prime}$
13.4 "
en one and a half own in drills forty n plot No .
the greatest feeding value, as it produced ears, while in plot No. 4 there were none The same objection may also be urged against broadcast corn culture that has been offered against broadcast rape culture. The repetitions of this experiment in future may give entirely different results, as the past was a peculiar season for corn production.

Experiments with Fertilisers.

There were not many experiments with fertilizers conducted during the past season.
This was owing in part to the large number of grain plots grown, and in part to the disarrangement of our plans generally in consequence of the fire.

Action of different Fertilisers on successive crops.-No. 1. In 1887, 1888 and 1889, the crops consisting of spring wheat, bar'ey and oats, were grown successively on plots of one-fortieth of an acre each, which had been manured in the spring of 1887 with salt, superphosphate, ground apatite and farmyard manure, one being left without manure (for details see p. 146). The behavior of these plots has been so eccentric that no conclusions of value can be drawn from the experiment. This is caused in part by a difference in the character of the soil, even in these small plots, which lie side by side. This difference was easily apparent to an attentive observer while the grain was growing. It has been determined, therefore, to discontinue the experiment until a suitable location can be secured for commencing it again, when the experimental field is ready.

Action of different fertilisers on successive crops.-No. 2. The experiment commenced in the spring of 1889 (see p. 147). Four plots were set apart containing one-fortieth of an acre each. Mineral superphosphate costing $\$ 26.00$ per ton was applied ot the rate of 400 lbs . per acre to plot No. 1. Sure Growth composed of refuse from pork factories, chemically treated, and costing $\$ 40.00$ per ton, was applied at the rate of 400 lbs . per acre to plot No. 2. This is considered a complete fertiliser, as it contains nitrogen, phosporic acid and potash. Barnyard manure was applied to plot No. 3 at the rate of 14 tons per acre, and was valued at the rate of $\$ 7.00$ per load. No fertiliser was put upon plot No. 4. The fertilisers were all applied as a top-dressing just before sowing, and were harrowed in. They were sown with oats April 22nd. There was a difference in the time of the maturing of the grain. That on plot No. 1 matured August 11 th ; plot No. 2, August 12th; plot No. 4, August 13th, and plot No. 3, August 15 th.
'The following were the yields per acre :-
Plot No. 1, at the rate of.

Putting the oats at 30 cents per bushel and not taking labor into account. the com Farative returns were for the past year, after deducting the value of the fertilizers :Plot No. 1

Two cereal crops following, summer-fallow and manure, had been taken from the land during the years immediately preceding the experiment. This experiment will in ail probability be continued five years, the crop being changed every year.

The comparative yields of straw differ considerably :-
Plot No. 3 gave at the rate of

4,910	lb	per acre.
4,650	"	"
4,030	"	"
3,810	"	"

Farmyard manure therefore added 29 per cent. more straw as compared with no manure

Live Stock Experiments.

Fseding Pigs Cold versus Warm Food.-This experiment was conducted for about three months in the winter of 1889. For particulars see page 140. The results showed but little difference. The experiment however will be repeated.

Pasturing Sheep on Permanent Grasses.-On May 15th two plots of $1 \frac{1}{2}$ acres each, sown with permanent grasses in the spring of 1884, were set aside for the purpose of ascertaining what amount of pasture they would afford for sheep during the season. The number of sheep put upon the pasture at each successive period was gauged by the luxuriance of the grass. They were furnished with water and shelter in the plots. It was found that from May 15th to August 25th one acre carried an average of 5.5 sheep and 3.8 lambs, equivalent to 7.4 sheep, allowing that one lamb ate one-half as much as a sheep. At the latter date the experiment was closed, although, had not other arrangements required it, the same might have been continued for two months longer, but with a somewhat reduced number of sheep. They were kept one week at a time on each plot, alternating from the one to the other. Farmers who can adopt an alternation of a longer or a shorter period in pasturing will find it an excellent practice, owing to the stimulus that lack of molestation gives to the grass in the field from which the stock has been removed.

A very large amount of pasture was thus aflorded by these plots and the sheep did fairly well upon it, but the soil is peuliarly adapted to the production of grass.

It may be mentioned here that on these plots Meadow Fescue has proved one of the best of the foreign grasses. It is medium in growth, comes on late and continues to grow during dry weather. It holds well in the ground and grows with a good deal of vigor.

Orchard Grass retains its footing well, but no better than the Meadow Fescue. It grows vigorously during the first half of the summer, and if kept pastured off does not become rank, and produces a large amount of pasture.

Meadow Foxtail, the earliest of all grasses, has held its own well on these plots. It was in blossom about the 1st of May in 1889, and has come out in head on this farm as early as A pril 27 th. It is however only a moderate producer.

Hard Fescue has also retained its footing well but it cannot be praised for furnishing a large amount of food. Unless kept closely eaten off it is apt to become wiry.

The Oat Grasses, although they furnish a fair amount of food while they last, hold out only moderately well.

The Rye Grasses for the first year give a larger proportionate yield than any other foreign grass, but are scarcely seen at all after the second year.

The Kentucky Blue Grass while taking a prominent place occupies much the same position in the pastures as at the commencement.

Most of the Red Clover disappeared by the end of the second year. There is a goodly sprinkling of the Alsike upon the ground yet. There has been almost none of the White Dutch and Yellow Clover found on the plots during the past two years. The Lucerne has diminished a little but is holding well in the ground, and it gives a good bite during the latter part of the season.

Feeding Lambs on Rape.-Some twelve acres of rape were grown on the farm, eight of which were in drills. The balance was sown broadcast. Owing to the great amount of rain that fell in June this rape was unduly late in being sowed. It grew, however, fairly well. On that sown in drills 48 lambs were pastured from October 10th to December 3rd, when they had to be housed because of the snow, but the rape would hare sustained a much larger number had they been in our possession. These lambs were purchased in the latter part of September, were brought home and weighed October 9th. atid were put upon the rape the following day. They weighed at that time $96 \frac{1}{2}$ lhs each, and cost for the lot $\$ 184.70$, or an average of $\$ 3.84 \frac{3}{4}$. The price thus paid per pound was 4.04 cts . They were removed from the rape December 3rd and were again weigh

115

December 10th, or two months from the time when they were brought home. At the weighing of December 10 th they averaged $114 \frac{1}{4} \mathrm{lbs}$, a gain of 872 lbs in the aggregate, or $18 \frac{1}{6}$ lbs. each, for the two months. When on they were fed about one pint of oats each per day, which was all they would take. They ate more grain proportionately as the
season advanced.

These lambs were sold to a local buyer about the middle of December for $5 \frac{3}{4}$ ets. per lb. live weight, with the proviso that we would keep them until an experiment relating to the relative cost of winter feeding and the gains accraing therefrom would be completed, which experiment, however, was not to be prolonged beyond the end of March. farmers that it should undertaken because of the wish expressed by many prominent indicated above.

Full particulars relating to the whole experiment will be given in a bulletin soon to be published on the subject and also in the next annual report.

Had those lambs been sold at the date of the second weighing for $5 \frac{1}{2}$ cents per pound, to be shipped at once or soon after, and I am satisfied they for $5 \frac{1}{2}$ cents per sold for that price, they would then have been worth to us $\$ 6.98$ they could have been have been a gain of $\$ 2.44 \frac{3}{8}$ on each lamb for the worth to us $\$ 6.28 \frac{3}{8}$ each, which would bered. however, that the selling price was unusually minths' keep. It should be rememam satisfied that good value is to be obtained frolly high last autumn, but in any case I it, where the soil is suitable. I believe furth from growing rape, and feeding lambs upon fattening lambs for the British market, further that good results may be obtained from victions expressed, that are required f, but, as it is results obtained, rather than consubject until we can allude to it bye-and-bye institution, I forbear saying more on that

Live Stock Experiments for 1889-90.

The following experiments in live stock were commenced in the autumn of 1889 , as early in the season as they could be taken up properly in the new buildings of 1889 ,

1. Experiment in Fattening Steers,-Ten steers wew ouildings :and, after having been pastured on rape for a time were purchased in the early autumn poses of experiment. The first lot consisting of six bead divided into two lots for purThe first pair, Nos. 1 and 2, are each so ensilage they can take. The second pair, Nos 3 lbs , of meal per day and all the meal, 45 lbs . of esilage, and all the cut hay they and 4, are each to receive 12 lbs . of 6 , are to be fed 12 lbs . of meal, 45 lbs , of pay they can take. The third pair, Nos. 5 and take. The object here is to test the compulped roots, and all the pulped hay they can meal ; ensilage, hay and meal ; and of roots, hay and matues for fattening of ensilage and quantity and quality in each instance.

The second lot consisting of pair, Nos. 7 and 8, are to be fed our animals was divided into two pairs. The first second pair, Nos. 9 and 10, are to receivots and meal, and a food condiment ; and the
2. Experiment in Rearing Grad of this experiment is to ascertain the Calves of the Different Beefing Breeds.-The design steers of the different beefing breeds up to say quality but varying in quantity to suit the requirements fed on a ration the same in animals in the contest, and also to ascertain the requirements of the different individual this end in view it was determined to purchase comparative cost of rearing them. With deen Poll, Galloway, Devon, Holstein, and scrub grades of the Shorthorn, Hereford, Aberpure, except in that of the scrub, and the dam to sorts. The sire in each case was to be ment is now well under way.
3. Experiment in Feeding Young Pigs.-This experiment comprises three lots of our young pigs in each lot, weighing about 50 pounds apiece. Each lot comprises one pure Berkshire and three Berkshire grades, four distinct litters of our own breeding being
equally represented in each lot. The first lot are to be fed equal parts of whole peas and barley; the second lot the same nixture but ground ; and the third lot a mixed meal ration consisting of oats, barley, wheat middlings and peas, in the proportion of 1, 1, 1 and 2 respectively. Each lot is to be fed all that will be eaten clean.
4. Experiment in Feeding Store Pigs.-This experiment comprises three lots of store pigs, three in each lot, Berkshire grades, which were about seven months old when they entered the experiment. They also are home-bred. The first lot are to receive a certain amount of meal consisting of barley, oats, wheat middlings and peas, in the proportion of $1,1,1$ and 2 respectively, and in addition all the corn ensilage that they will take, The second lot are to be fed meal similar in quantity and quality to that fed to the first lot, and all the roots they will take. The third lot are to be fed meal of a similar quality to that given the first and second lots, but they are to get three times the quantity with no additional ration.

A number of other experiments will be taken up in the live stock department as the season advances, and in selecting these experiments it will be our aim to take up those first which it is hoped will be of direct practical value to the farmer.

I have the honor to be, Sir,
Your obedient servant,
THOS. SHAW.

REPORT OF FARM FOREMAN.
Dec. 29, 1889.

Tu Professor Thomas Shaw:

Sir,-I have the honor to submit to you my third annual report in connection with the respective departments.

The past year has been a very trying one owing to the loss by fire of the farm build. ings and crop in the fall of 1888, which upset many of our plans for the year's work and hindered us not a little in the material progress of the farm.

The principal employment of the students last winter was the removing of the debris from the scene of the fire; first, in carting away the roots that had escaped dam. age and then clearing out the place preparatory to the erection of new buildings. Fixing up buildings for the accommodation of stock and hauling food and bedding for the same also occupied no small amount of time.

Another thing that is to be deeply regretted, was the lack of instruction to the students occasioned by the burning of the buildings and crop. Much of the stock had to be sold after the fireowing to the restricted accommodation. Nor could any instruction be given in the use of the wachinery in connection with the barn, such as running farm engine, cutting boxes, cleaners, thresher, chopper, pulper, etc., or in reference to our usual way of preparing and handling the food. The loss of the silo was also keenly felly especially by the second year students who could not again have an oppor It came brond ing familiar while at this institution with the feeding properties of silage. the fire but little the worse and we were able to use the greater part of it, but with ouf facilities at that time, testing it experimentally was out of the question.

Since the re-opening of the college in October last, we have been able to give the und instruction in plowing, but I feel that the one team and man set apart for that purpour is quite insufficient to do justice to a class of eighty or more students when we conside the limited time in which instruction can be given.

During the year a great amount of labor has been spent on the making of rond fences and other permanent improvements outside the regular farm work, which will aff materially to the appearance and to the convenience of the farm. Although this waf
has been done
farm proper. asked from th the farm prope that the farm improvements,

Owing to the Advisory threw on me those students were placed ow little from the do as well last by some of the But I am pleas summer they h dition.

I would lik corner of the fa practical benefit Nos. 19 and 20 , the field would condition.

We have ju find it in splend

Before subn that owing to t to accomplish by students during stand until the instances the exa

In previous the barn so that - But last spri bonsequently first hreshed out. H he case. The ro tas fast as the r arley test of No.

Field No. 1 was mown and tervals when oth was sown with
Field No. 2 e tons per acre. threshed) and perrenial rye, erne, and one 1 ill and the light
Field No. 3 co partment, four a anee was under crop was a goo vere sown wi
whole peas and a mixed meal ortion of 1, 1,1
s three lots of onths old when are to receive a peas, in the proat they will take, fed to the first a similar quality e quantity with
epartment as the to take up those
ant,
OS. SHAW.
c. $29,1889$.
connection with
of the farm buildis for the year's
removing of the had escaped dam. puildings. Fixing ling for the same
instruction to the of the stock had to l any instruction be as running faru n reference to our as also keenly felt portunity of becom

It came througd of it, but with our II.
ble to give the und art for that purpory when we conside
e making of road ork, which will aif Although this wot
has been done by our ordinary farm help, I think it a mistake to charge it against the farm proper. I would suggest for your earnest consideration that a special grant be the farm proper Government for such labor, as under the present method the work of that the farm teams and teamstang more than it really does. For instance, I find improvements, and the labor of the stuave done work to the value of $\$ 389$ on such

the Advisory Board to dispense with the stock after the fire, it was deemed expedient by threw on me the responsibility of looking after help, including the herdsman, which those students who aided me in this work under the stock. Very much credit is due to were placed owing chiefly to the poor under the very trying circumstances in which we little from the well-doing of the stock, accommodation provided. This detracted not a do as well last winter as in past seasons, and were it not forses and sheep, which did not by some of the students my report of them could not for the deep interest taken in them But I am pleased to say that notwithstanding not have been so favorable as it is. summer they have recruited so that they have the hardships of the winter, during the dition.

I would like to call your attention to a part of field No. 20 (situated in the north corner of the farm and containing about fifteen acres) which, as it is at present, is of no practical benefit to the farm. I would suggest that a division fence be made between Nos. 19 and 20 , a well sunk and a windmill procured to pump water for stock, as then condition.

We have just opened the silo, which contains about one hundred tons of silage, and find it in splendid condition. The cattle seem very fond of it and eat it with great avidity. Before submitting to you my report of the crops, I must call attention to the fact, that owing to the vast amount of work which requires attention and which we expect to accomplish by means of student labor, and also in order to have suitable work for the students during the winter months, we are obliged to let the greater part of the threshing stand until the college re-opens, which of course prevents me from reporting in many instances the exact yield of the grain crops,

In previous years I have been able to place the most important part of the crop in the barn so that it was threshed before the fall term closed and to submit my report of But last spring according to your directions all grains to be tested were first sown, consequently first cut, and had to be placed in that part of the barn where they will be, hreshed out. Had the barn been finished sufficiently early this would not have been the case. The roofers commenced roofing from the west end of the building and we filled fas fast as the roof was put on. This accounts for my not being able to report on the arley test of No. 13 and the spring wheat test of No. 4.

Field No. 1 contains twenty acres, and was used as pasture up to August 1st, when "as mown and about five tons of hay gathered from it. It was then ploughed at tervals when other work was not so pressing, and on the 17 th and 18 th of September was sown with rye, at the rate of two bushels per acre,

Field No, 2 contains seventeen acres, ten of which was meadow yielding a crop of 0 tons per acre. The balance was sown with Rennie's improved six-rowed barley (not t threshed) and seeded down with a mixture of four lbs. timothy. one lb. red top, one perrenial rye, one lb. tall oat, 3 lbs . red clover, one lb , mammoth clover, two lbs. cerne, and one lb, alsike per acre. The clovers and timothy were sown from the grain ill and the light grasses scattered by hand afterwards.
Field No. 3 contains twenty acres, four acres of which are used by the experimenta partment, four acres were planted with trees by the horticultural department, and the anee was under root crop as follows :-One and one-half acres carrots of six varieties. ecrop was a good one, the White Vosges giving considerably the largest yield. Three es vere sown with mangels, which were not as good a crop as the carrots. They con-
sisted of six varieties, viz., giant'yellow globe, Carter's ward orange globe, long yellow red globe, yellow Tankard and mammoth red intermediate. The exact weight of one row of each kind both of carrots and mangels is in the hands of Mr. Zavitz, who will report on them in connection with other experiments in his department. On the 23 rd of May I received a packet of central German sugar beet seed from Hon. Oharles Drury, which was not sown for some days, owing to the fact that the ground prepared for such crop was then planted, so that we were obliged to use a piece which required some preparation. I sowed along with them twenty lb. of super-phosphate per acre. At the same time, and under precisely the same treatment, I planted one-fourth of an acre of mammoth red mangels to get an idea of the difference per acre. The weights will be reported as above.

In the fall, during your absence, I received a letter from Mr R. Lawder, of Toronto, asking the weight of the sugar beets per acre, and also requesting me to sead a sample to Mr. Scaife, of Montreal, who has been so kind as to furnish me with a report of the analysis of sample, and also to say that they were the best sample he had received this year, although tests had been made in several counties in the Province. The balance of this field was sown with Swede turnips of six varieties, which, owing to the very unfavorable season, was a poor crop.

Field No. 4 contains twenty acres, five of which were used by the dairy department as pasture, four acres, known as "the hill side," were sown with spring wheat of three varieties, viz., red fern, defiance and magyar, one acre each, and one acre of oats and peas, mixed, two and one lb. per acre. The latter grew very heavy and lay down before filling. The wheat is not yet threshed. The defiance and magyar filled poorly, but the red fern was a fine crop. The balance of the field is worked with No. 5, and had on it a very fine crop of oats and peas, so far as the yield of straw is concerned-not yet threshed.

Field No. 5 contains twenty acres, ten of which is wood land, and has on it a lot of very valuable timber. The remaining ten acres is worked in with the ten acres on the west side of No. 4, and had on it a crop of oats and peas, of a heavy growth of straw. Six acres of this were cut green and cured for fodder, the balance were allowed to ripen and grew so heavy that it lay down and will not yield well.

Field No. 6. This field contains twenty acres, and was meadow, yielding two and one-half tons per acre. We tried an experiment with wood ashes of different quantities on this field, also of leached ashes versus unleached.

Field No. 7. This field contains twenty acres and has been under meadow for the past four years. The crop this year was of splendid quality, being pure timothy, and yielded about one ton per acre. Two acres of it were allowed to ripen, and were cut with the binder, and will be used for seeding next spring. The greater part of this field is now plowed.

Field No. 8. This field contains twenty acres, and was sown with common six-rowed barley and seeded down with a similar mixture of grasses and clovers to that of No. 2 The barley is yet unthreshed, but the yield will be good.

Field No. 9. This field contains twenty acres. In the fall of 1288, it had twi plowings, and six acres of it were manured in the spring; four acres of it were manum with well rotted manure hauled from the city during winter. At that time No. 9 mm calculated for the root crop of 1889 , but afterwards it was given to the experimenti dairy department for corn. After the corn was removed, it was plowed by the fura help.

Field No. 10. This field contains twenty acres, ten of which are used by the hortiay tural department for an orchard ; the balance was sown with oats and peas, two to or and grew a fine clean crop of straw, yielding 48 bushels of grain per acre.

Field No. 11. This field contains twenty-three acres, was broken from sod lus spring and sown with peas of two varieties-seven acres of Prussian blue peas and sixter spring and sown with peas of two varieties-seven acres of and none of the Prussian
acres of golden vine. As only a part of the golden vine and
variety is t will yield al a portion of harrow, and September: bushels Den remarkably
 oats. Durit worms and One-half the In October t

Field N the east end about the 2 destroyed it. one acre Du common six-1 acres at the mixture to th ing the grass seen in the fa

Field No by the experi ment. The b

Field No ture by Prof. grass was mo

Field No November, 18 with six differ different quan of the cut-wor

Field No. planted with p north-west side was planted wi per acre. The portable fence, the Corbin disc while receiving

Field No. natural pasture bushels of each ingly. It was

Field No. New Zealand a paration, yet th a bright stiff str field was plough

Field No. 2 division fence be

Field No. opportunity oceu
e, long yellow weight of one avitz, who will On the 23rd of Oharles Drury, epared for such ired some preacre. At the th of an acre of weights will be
rder, of Toronto, d a sample to Mr. t of the analysis ceived this year, balance of this very unfavorable
dairy department g wheat of three of oats and peas, own before filling. , but the red fern had on it a very t yet threshed. ad has on it a lot h the ten acres on a heavy growth of ce were allowed to
, yielding two and lifferent quantities
ler meadow for the pure timothy, and , and were cut with part of this field
common six-romed ors to that of $\mathrm{N}_{0} .2$
f 1288 , it had twr of it were manur that time No. 9 wm to the experimenty plowed by the furt
used by the hortion ind peas, two to or acre.
roken from sod 14 blue peas and sixte of the Prussian
variety is threshed, we cannot give the yield, but wonld judge from handling that they will yield about twenty bushels per acre. After the pea crop was removed we prepared a portion of No. 11 for winter wheat by cultivating it thoroughly with the Corbin dise September: $5 \frac{1}{2}$ bushels Garwing samples of wheat between the 6th and 9 th days of bushels Democrat, $5 \frac{1}{2}$ bushels Hybrid M of $1 \frac{1}{2}$ bushels per acre, $5 \frac{1}{2}$ bushels Bonnell, $5 \frac{1}{2}$ remarkably well.

Field No. 12. This field contains oats. During the latter part of May and arres and was sown with white Egyptian worms and about one-half of it destroyed, which week of June it was attacked by cut One-half the crop was stacked and threshed which reduced the yield at least one-third, In October the field was ploughed again. in the field, the balance is yet unthreshed,

Field No. 13. This field contains ni
the east end were sown with Manchester when acres. In the fall of 1888 eight acres of about the 25 th of June, when it was suddenly which promised to be a heavy crop till destroyed it. The remainder of the field was $\begin{aligned} & \text { struck with rust, which completely }\end{aligned}$ one acre Duckbill, one acre Chevalier, one acre imn with barley of four varieties, viz., common six-rowed, not yet threshed. With the imported six-rowed, and eight acres of acres at the east end put down for orchand, the exception of about four and one-half mixture to that of No. 2 and No. 8. We also tri field was seeded to grass with a similar ing the grass and clover seeds before rersus tried an experiment while seeding, of scatterseen in the fall no difference was visible, both after the drill hoes, but as far as could be

Field No. 14. This field contains
by the experimental department, aud one four acres, seventeen acres of which are used ment. The balance was meadow, principally acre as a nursery by the horticultural depart-

Field No. 15. This field, containing twentyer, and yielded a wonderfully heavy crop. ture by Prof. Brown some years ago and still retains, was laid down to permanent pas ${ }^{-}$ grass was mown off it this year besides giving pasins a luxuriant growth. Eight tons of

Field No. 16. This field contains twenty pasture to a large herd. November, 1888. Ten acres were sown with tix acres, and was broken from sod in with six different kinds of pease, and ten acres witherent kinds of oats, and six acres different quanties, which would have been a very valuable different mixtures of grain and of the cut-worm, which so destroyed it as to prevent us reporteriment but for the ravages

Field No. 17. This field contains seventeen acres reporting on any of them. planted with potatoes of eleven varieties. north-west side of the field, the crop of which Mr. Zav of each kind was planted on the was planted with two common varieties, and yielded one hill report to you. The balance per acre. The balance was used as a pasture for sixd one hundred and sixty-four bushels portable fence, and in August was lightly ploughed and being divided from potatoes by a the Corbin disc harrow. About one-half of it was plough afterwards harrowed across with while receiving instruction.

Field No. 18. This field contains twenty acres, seven acres of which is woodland and natural pasture. The balance was this year sown with oats and pease, one and one-half bushels of each per acre. It grew a heavy crop of straw, but did not yield grain accordingly. It was ploughed this fall by the experimental department.

Field No. 19 contains thirty acres, and was sown with oats of two varieties, viz., New Zealand and early Calder. They were sown the same time and on the same preparation, yet the early Calder rusted considerably, while the New Zealand stood up with a bright stiff straw, but did not ripen for about nine days later than the other. The field was ploughed in October.

Field No. 20 is woodland and natural pasture, but as there is no water on it nor a division fence between it and No. 19, it is not at present of much value to the farm.

Field No. 21 contains twelve acres and is naturally a poor gravelly soil. opportunity occurred through the winter, manure was procured in theity soil. As. opportunity occurred through the winter, manure was procured in the city and piled on
this field, but the supply was insufficient. In the early part of July we carted and pread the manure, plowing it in as quickly as possible, after which it was well harrowed and rolled. We next drilled it into very light drills 23 inches apart and sowed with rape one pound per acre on part of it and two pounds per acre cn the other and part. The part sown with one pound per acre was the best crop, I purchased forty-eight not having so many dry leaves. According to your directambs were weighed separately, spring lambs, Cotswold and Oxford Down grades. Tenth day of October. Some rough ear-numbered, and turned into the rape on each evening. For the first three weeks troughs were made and a little oats put and as the nights grew cold they gradually they scarcely ate one-half pint each per day, buber, owing to stormy weather, they were grew more fond of them. On the 1 st of Decerots and a little oats. On the 10th of taken into the sheep shed and fed hay and exactly two months frota date of first weighDecember they were again weighed, being exac 864 pounds, or an average gain of 18 ing, when we found an increase in weight a very small fraction, over $\$ 4$ per cwt., or an pounds per lamb. They were purchased sold at $\$ 5.75$ per cwt . live weight, but may not average of $\$ 3.84 \frac{3}{4}$ per head, and are be taken away till March.

The implements purchased this year for farm ening :
lost in the fire of 1888, and consisted of the following. 828000

One threshing mach	
One cutting box	2400
One grain chopper	2500 40
One Panmin harrow	3000
One mowing machin	2300
One mowing 1	

The value of implements at present on hand is $\$ 1,71900$. pure bred cattle, two
The live stock at present on hand consists orses, and some grade cattle, grade sheep pigs, five breeds of sheep, working horses, and sol and grade pigs.

Horses :

9 working horses
1 general purpose horse.,
Total value of horses.
Herefords
1 bull, 7 years old
1 heifer, 2 years calf

Galloways:
1 heifer, 2 years old
1 cow, 1 bull
825000
Aberdeen Angus:
17500
1 bull, 1 year old
5000
1 cow, 8 years old
1 bull calf.
1 heifer, 2 years old
3 sows, 2 yea
3 sows, 10 m
11 young pig 6 young pigs 14 young pig
1 boar, 1 ye
1 sow, $1 \frac{1}{2}$ y
1 sow, 9 me
1 sow, 2 yer
1 sow, 14 m
1 sow, 14 m
4 sows, 3 m
uroved Yorkshire
1 boar, 5 mo
1 sow, 5 mo
10 steers, f
Shorthor
1 Shorthor
1 Gallow
1 do
1 Angus gr
11 grade m
1 Gallow gI
crkshire hogs
1 bull
cow, 3 y
1 heifer, 2
heifer, 1
heifer, 1
1 cow and
rade Cattle
1 bull, 3 y
1 cow, 5 y
1 heifer, 2
1 heifer ea

Shorthorns
1 cow, 8 y
1 bull, 1 y

Jerseys

T

e carted and it was well es apart and on the other stronger and ed forty-eight ned separately,
Some rough t three weeks they gradually ther, they were n the 10th of of first weighage gain of 18 per cwt., or an ht, but may not to replace those

828000
5600
3000
2400
2500
4000
3000
2300
$\$ 50800$

bred cattle, two attle, grade sheep

J. E. STORI

EXPERIMENTAL DEPARTMENT.

To Prof. Thomas Shaw :

SIR,-I have the honor of herewith submitting, for your consideration, the repor of the work conducted in the Experimental Departruent during the year 1889. All con clusions to be drawn from the experiments I shall leave for you to report upon as ma! seem best to your judgment.

The work at which I am directly engaged at this Institution, and upon which report to the different departments, may be represented under the following heads :
(1) Field plot and live stock experiments, Prof. Shaw's department.
(2) Chemical analyses, soil temperatures, and drainage waters, Prof. James department.
(3) Meteorological observations, Prof. Panton's department.

The past season has, on the whole, been a fairly favorable one for experimental worn upon the field plots, as there was about 44 per cent. more rain during five months of th season than for the five corresponding months of the previous two years, as may observed from the following statement :

Depths of Rain Fall.

	1887.	1888.	1889.
	Inches.	Inches.	Inches.
	1.58	1.08	3.59
May	2.36	2.92	4.25
June	. 61	2.21	2.67
July .	2.71	2.16	1.92
August	1.52	1.55	1.04
September		9.92	13.47
tal	8.78	9,:3	

plots during this fall. T England and Africa, Japı No less with a num nevertheless of which wil

Owing with live sto

I wish, the rise and Bulletin No. endeavour to
" Farmi cattle and ca with an almo most out of t their labormost intellige best agricultu by long conti recent times of using the r agricultural e
"The ob ness of discov and experime practice and e
" Establi most of them is most succes practice is ask ture of crops ; milk, butter a the agriculturi
"Nearly little village of Leipsic, called the first agricu
" The seed 1861, fiftren ; stations and ki from one to te lie the practice
"The first Conn., in the c speedily follow
and upon which! lowing heads :

ont.

ters, Prof. Jamed
experimental woid g five months of thi wo years, as may

1889.

 Inches.3.59
4.25
2.67
1.92
1.04
13.47

The seed grains imported by yourself last spring have all been tested upon the field plots during the past summer, with the exception of the fall wheats, which were sown this fall. The greater part of the grains were from Germany, Russia, France, Scotland, England and Sweden, while a few varieties came from Greece, Italy, Sicily, Hungary, Africa, Japan, Switzerland, and the United States.

No less than 237 varieties of cereals were imported, and the testing of these, along with a number of Canadian varieties, has required much very careful work. We have, nevertheless, conducted in addition to these a number of other experiments, the particulars of which will be given in the following pages.

Owing to the loss of the barns by fire in the autumn of 1888 , only one experiment with live stock was conducted. There are six in progress during the present winter.

I wish, just here, to ask permission to give a very concise account of the objects, and the rise and development of experimental stations outside of Canada, as gleaned from Bulletin No. 1 of the United States Department of Agriculture, after which I shall endeavour to give an outline of the progress of experimental work in Canada.

Object of Experimental Stations.

" Farming is a perpetual trying of experiments with soils, manures and crops ; with cattle and cattle food ; with milk, butter and cheese ; with plows, harrows and harvesters ; with an almost endless list of things. The most successful farmers-those who get the most out of their land, their cattle, their crops, their fertilisers, their implements, and their labor-are those who experiment themselves most industriously, most skilfully, and most intelligently, and who take the fullest advantage of the experiments of others. The best agriculture is that which, in old countries, on worn and intractable soils, has learned by long continued and varied experiment to make the gain of farming sure. Within recent times farmers and men of science interested in farming have seen the advantages of using the resources of science to improve the practice of agriculture, and have established agricultural experiment stations.
"The ohject of these stations is to experiment and to teach, to make a regular business of discovery for the use of farming, to promote agriculture by scientific investigation and experiment, and to diffuse as well as increase the knowledge, which improves farm practice and elevates farm life.
"Established for the benefit of agriculture, and hence of the community at large, the most of them connected with educational institutions, where experience shows their work is most successfully done, these stations seek answers to the questions which agricultural practice is asking as to the tillage of the soil ; the nature and action of manures; the culture of crops ; the food and nutrition of domestic animals, and of man ; the production of milk, butter and cheese ; the diseases of plants and animals; and, in general, whatever the agriculturist needs to know and experimental science can discover."

Rise and Development of the Stations,

" Nearly forty years ago, a company of farmers joined themselves together in the little village of Moechern, near the city, and under the influence of the University of Leipsic, called a chemist to their aid, and with later help from the government, organised the first agricultural experiment station,
"The seed thus sown has brought forth many fold. In 1856 there were five ; in 1861, fiften ; in 1866, thirty ; and to-day there are more than one hundred experimental stations and kindred institutions in the aifferent countries of Europe. In each of these, from one to ten or more investigators are engaged in the discovery of the laws that underlie the practice of farming, and in finding how they are best applied.
" The first agricultural experiment station in America was established at Middletown, Conn., in the chemical laboratory of Wesleyan University of 1875 . The example was speedily followed elsewhere. In 1880 four were in operation, and in 1887 there were
some seventeen of these institutions in fourteen States. In that year Congress made the enterprise national by an appropriation of $\$ 15,000$ per annum to each of the states and territories which have established agricultural colleges or agricultural departments of colleges. This has led to the establishment of new stations or the increased development of stations previously established under state authority, so that there are to-day forty-six, or, counting branch stations, fifty-seven agricultural experiment stations in the United States. Every state has at least one station, several have two, and one has three.
"These forty-six stations now employ over three hundred and seventy trained men in the prosecution of experimental enquiry. The appropriation by the United States Government for the fiscal year just closing, for them and for the office of experiment stations in the U. S. Department is 8595,000 ; for the coming year it is 8600,000 . The several states appropriate about $\$ 125,000$ in addition, making the sum total of about $\$ 720,000$ given from public funds the present year for the support of agricultural experiment stations in the United States."

Agricultural Experiments in Canada

One year provious to the first agricultural experiment station in the United States, was established the Ontario Agricultural College at Guelph. It was not, however, until two years after the commencement of the College that actual work was performed in the Experimental Department, this being the year 1876. When the fifth year's work was being conducted at the above, institution there were still but four other agricultural stations upon the American continent.

In the year 1886 an Act of Parliament was passed by the Dominion Government, making provision for the establishment of five experimental farms throughout Canada, the principal one to be established at Ottawa, and to serve for both Ontario and Quebec ; the other four being located as follows : one in the Maritime Provinces, one in Manitoba, one in the North-west Territories, and one in British Columbia.

The farms have been purchased, and a superintendent engaged for each. Experimental work was commenced on the Central Farm in 1886, and upon the others about two years later. No pains are being spared in making these experimental centres an honour to Canada. There is truly a great work before these institutions, and we wish them every success in their laudable undertakings.

The fourteenth year of work in the Experimental Department of the Ontario Agricultural College has just closed. Did space allow, a review of the many scientific and practical experiments and investigations both in the field plots and with live stock would be interesting and no doubt highly instructive. It must suffice, however, to give herein a very brief review of the development of the work from its commencement.

In 1876 there were 40 field plots ; in 1885, 170 ; and in 1889, 464. In 1885 23 acres were devoted to experiments, and during the present year about 58 acres have been used for similar work. The live-stosk tests which have been conducted since 1886 have much increased in both number and complexity, there being five distinct experiments going on at the present time.

Chemical analyses were commenced during the year 1883, and since that date the new laboratory has been erected, and the conveniences greatly increased for this very important branch of the station's work. All the waters, milks, soils, fertilisers, roots, grains and plants bave been analysed so far as time could be secured for this.

When the Professor of Dairying was appointed, the dairy experiments were put under his direct supervision ; the creamery was continued, a silo erected, and numerous experiments with corn and dairy stock conducted.

Not only has there been a direct line of experimental work carried on at the College for the past fourtsen years, but we are proud to say that there is a noble work being performed over this Province by members of the Ontario Agricultural and Experimental Union-an association of O. A. C. ex-students, students, and professors. Grains and fertilisers, with full instructions as to conducting the experiments, have been sent out
from the Col in the work ; conducting e> now being re and bee keep held at the C have taken h stations of th Experimental been work ac

The impo the following

There is this nature th mation regardi comparative m

The size o around ezch same person. past four years the spring whe of 1886 .

Besides ha planted careful two hundred s uniform soil, an find the germin

The followi cereals.
ress made the he states and partments of development day forty-six, a the United three.
ned men in the s Government tations in the several states 720,000 given nt stations in

United States, however, until formed in the ar's work was er agricultural
vernment, maknada, the prind Quebec ; the in Manitoba,
each. Experie others about ntal centres an , and we wish

Ontario Agriscientific and ive stock would to give herein a
464. In 1885 at 58 acres have cted since 1886 net experiments
ce that date the ed for this very ertilisers, roots, this.
ments were put , and numerous
on at the College work being perd Experimental rs. Grains and e been sent out
from the College for the past four years. In 1886 there were twelve members engaged in the work; in 1887, sixty ; and in 1888, about one hundred, besides others, who are now being received ats in horticulture and in bee-keeping. Results of the tests for 1889 are and bee keeping experiments will be reports on field plots, live-stock, horticulture, dairy held at the College. From the increased at the next meeting of the Union, to be have taken hold of the work, and by the enthusiasm by which members of the Union stations of the United States on the repercouraging remarks received from experiment Experimental Department of the College for the feel that the active part taken by the been work accomplished in the right direction.

Testing of Cereals.

The imported and Canadian cereals tested during the past year may be divider under the following heads :-Barley, 56 varieties ; Pease, 16 ; Spring Wheats, be divider under

There is we consider no better way to present the details of experimental work of this nature than by tables. Our aim has been to so tabulate the experimental work of mation regarding each cergal can be obtained at a glance at the results that full inforcomparative merits obtained eavily by examination of the at the horizontal lines, and the

The size of the plot used in all the perpendicular columns. around eich plot. The seed was sown tests was ${ }_{1}{ }^{\frac{1}{0}} \mathbf{0}$ of an acre, a clean path was left same person. The soil on which the grains werest, and the crop all cradled by the past four years. All the barleys and pease were grown has received no manure for the the spring wheats and oats in the field which grown in the old experimental field, and號
Besides having a plot of each variety, two hundred grains of each were counted out and planted carefully in a row two rods long, thus making about three hundred rows with two hundred seeds planted in each. This plan allowed us to uniform soil, and hence under better control The plants to get the grain all on find the germination of the seeds from a practical standpoint were afterwards counted, to

The following tables give in detail the results of cereals.

옫

			.		1778	${ }_{47}$	Medium	Very littie.	Bald	Red					
5		Australia										8	35	13.3	Did very well
136	Purple Tuec		"	"	18877^{2}	37	Strong		B	White	B				for
13	White Tuscan	"				37	Weak		"	،	Very uneven	12	$11 \frac{1}{2}$	${ }_{2.5}^{2.5}$	Poor
140	African Beard	*	.	July	2285	38			"	"					
141	Ro		\cdots	June	$19 / 76$	$\begin{aligned} & 40 \\ & 28 \end{aligned}$	Stron		Bearded	"			$19 \frac{1}{2}$	2.5	

Strong	Almost none	4	4	Plump and good
4	Medium．	Bald	＊＊	Badly shrunken
${ }^{6}$	Bed	＊	${ }^{4}$	Shrunken
${ }^{4}$		＊	White	Badly shrunken
Medium	Bad	＊	4	

2！ 8 8 8
ニッ ส ন゙ ：

126	Bearded Red
127	Herison Bearded

123 Ohne Bart．． March de Brie
Rounselin
Nefinnce

\qquad

131

$$
\begin{aligned}
& \text { Fairly good grain, but } \\
& \text { small yield. } \\
& \text { Failure. }
\end{aligned}
$$

$$
\frac{2}{3}
$$

Medium．．．．．．．
Fair sample ．．

$$
\begin{aligned}
& \text { Large and plump.... } \\
& \text { Medium.............................. }
\end{aligned}
$$

名:

$$
\begin{aligned}
& \text { air for this season. }
\end{aligned}
$$

\square

\square

苞

White．Medium｜Thin hull and well 22.5 49．50 65，2｜Very early variety．

\qquad

Application of Salt with Oats on Four Kinds of Soil.
About six years ago a plot was formed in the central part of the experimental field for the purpose of testing four kinds of soil under as near the same conditions as could be obtained. The whole plot is eight rods long by two rods wide, and is divided into four portions, each being two rods square. The soil is well supplied with tile drains. One end of the plot is a natural muck. The surface soil of the two central plots was removed to a depth of two feet and then one was filled with clay of a rather heavy nature and the other with marl intermixed with loam, while the remaining portion, being naturally a good clay loam, was left untouched.

In the spring of 1888 , each portion was divided into two equal parts, and boards placed edgeways in the ground at the division and extended from one end of the plot to the other.

The accompanying diagram will illustrate the position of the soils and the divisions:

The treatment of the plot throughout was similar until the spring of 1888 , when salt was applied at the rate of 400 lb . per acre on the soils of one side of the division through the centre, while the remaining half of each soil was left without salt. Barley was sown upon the whole plot and results presented in the Oollege Report of 1888. In the spring of the present year salt was again applied at the rate of 400 lb . per acre upon the same portions as last year and oats sown over the whole plot.

The following table shows the yields of the present year and those of 1888 :
Yields of Barley and of Oats upon Four Kinds of Soil with and without Salf.

rimental field itions as could 3 divided into th tile drains. tral plots was a rather heavy portion, being
ts, and boards of the plot to

1 the divisions:

LT.
of 1888 , when of the division it salt. Barley rt of 1888. In b. per acre upon

of 1888 :

D without Salf.
Yield or Grais Peh Açe.

Barley. 1888.	Oats. 1889.
Bush.	Bush,
351	55 g
35	52 f
184	384
171	361
28	484
202	41t
183	
$11 \frac{1}{8}$	

Barley Yields from Difperent Dates of Serding.
For this experiment three varieties of barley were sown, at three different periods
plots one-fiftieth of any manure for the past four acre in size. The soil was a clay loam and had not reecived latter part of May and the commencemping to the exceedingly wet weather during the date than was intended. The seed of the of June the last seeding took place at a later while that of the other two was imported fommon six-rowed variety was from Ontario,

Barley Yields at Different Dates of Seeding.

Varieties,	Grain Per Plot.			Yield Per Acrg		
	Seeded April 15.	Seeded May 5.	Seeded June 7.	Seeded April 15,	Seeded May 5.	Seeded June 7.
Common 6-rowed	tb.	tb	tb.	Bush.	Bush	
Peerless White	42.5	19.5	4.0	44.3		
Golden Drop	18.0	5.0	3.5		20.3	4.2
	27.5	6.0	5.5	18.8	5.2	3.6
			5.0	28.6	6.3	5.2

Varieties of Potatoes.

Small quantities of nine varieties of potatoes were received by us from Steele Bros., Toronto. It was late when the seed reached us, and could wed by us from steele Bros, the yield would no doubt have been considerably greater we have planted them earlier valuable as a comparison of the different varieties. greater, but the test is nevertheless a potato containing a single eye, and there were for in each hill was planted a section of which the potatoes were planted was quite aniform through of each variety. The soil in tion similar for all the varieties. The Late Rose and Whout, and the care and cultivavarieties, were used as a basis for comparison.

Varieties.	Crop of Potatoes.		Remarks.
	Number.	Weight.	
Rough Diamond.	97	$\begin{array}{rrr}\text { lb. } & \text { oz. } \\ 5 & 141 \\ 5\end{array}$	
Lad's Finger ...	50		Small, round, rough skinned,
Prs, Foraker.....	95 81	${ }_{6}^{6} 11$	with deep eycs,
l, No. 2.	56	$\begin{array}{cc}16 & 13 \\ 8 & 13\end{array}$	Some large size, eyes medium depth, fairly
ummit	${ }_{96}$	$\begin{array}{rr}8 & 11 \\ 13 \\ 13 & 41 \\ 12\end{array}$	Uniforn, roundish, and smooth.
tst. Vernal. .	84	13 11 21 12	Mostly fair size, medium length and good shape.
uck	108	812	Fair size, long, smooth, shallow eyes, and good shape.
blite Elephant..	81	${ }^{9}$ 61	Medium size
thite Elephant..	91	13111	Part large, somewhat scenbb, deep eyes and roundish shape.
	86	12 112	Some large, rather uneven, fairly smape.

Rotation of Crops.

In the year 1883 Prof. Brown commenced an experiment to compare the relative advantages of two rotations of crops, each extending over a period of seven years. The main feature of comparison in the rotations was roots followed by spring grain versus bare fallow followed by fall wheat.

There were two plots, each one-tenth of an acre in size and consisting of clay loam. The plots were situated near the centre of Experiment Field No. 1. In commencing the test the root plot received farm-yard manure at the rate of twenty loads per acre, which was plowed under on May 15th, and the fallow plot received the same quantity of manure on the 24th of July.

With the present year the rotation has closed, and I herewith present a concise statement of the resnlts. I am responsible for the correct retarns of the last four years of the rotations, previous to which time I did not have charge of the experiments, but have given the results as fully as research could unfold.

Experiments on the Farm.
Not only were there experiments conducted on the small experimental plots, but number of larger tests were made in the fields of the farm. Part of the work of thes farm experiments, such as harvesting the grain and grass plots, and the seeding, cultivs tion and harvesting of the mangolds and carrots, was done by Mr. Story, the farm for man, while the measuring of the land, sowing of the grain, cultivation of the paths, as oversight in weighing came in my department. Cont departments, but we think it ver secure extra help both for the farm and expernt line of work to be done. These numero wise on your part for requesting this importas thought on the part of Mr. Story, but tests have caused no small amount of aneat carefulness used by him in that part of t wish to make mention just here of the gertainly taken much interest in the work, and work under his supervision. He has cermoniously together that the greatest good can is as these departments work mo
re the relative n years. The g grain versus
of clay loam. In commencing loads per acre, me quantity of
resent a concise last four years xperiments, but

narks.

records except the t yield."
k notes to show the for 1885.
weighed immediately cut.
ee around plots and sheep ; no difference e pasture on the plots.
n were the common
could be observed it f maturing.
nental plots, but of the work of thes he seeding, cultiv tory, the farm for on of the paths, al has compelled us out we think it ver e. These numero f Mr. Story, but in that part of in the work, and greatest good can

We have had some failures this year, and there are I cannot yet report owing to the crops not yet being the are some experiments on which ing different varieties of Canadian oats, and nineing threshed. Ten acre plots containdestroyed by the cut-worm as far as the experime plots with mixtures of grains, were crop taken from the land. Four acre plotseriment goes, although there was a medium acre plots with different kinds of spring wheat bith different varieties of barley, and three plained no doubt by Mr. Story. An experiment wat yet been threshed as will be exof ashes to the acre upon clover, but the season was someducted with different quantities applied and the amount of rainfall made a tremendous. the ashes could not be seen this year, but may have an growth of clover. The effects of

The experiments with potatoes, mangels ane an influence upon next year's yield.

Variety.	Weight per row.	Yield per acre.
nt Yellow Globe. ter's Ward Orange Gil.		Bush.
	904 814	644.3 560.1
ral German Sugar Beet	754	537.4
Mangolds	714 411	508.8
Tankard,	411 854	294.1 431.9
moth Red Intermediate.	422 778	431.9 301.4
	778	305.4 8.5

Varieties of Carrots.

	Variety.	Weight per row.	Yield per acre.

Of the cultivation of rape for pasturing off by lambs is becoming a feature of no mean importance in Ontario farming. To obtain, if possible, some accurate information regarding the cultivation of this crop, an experiment was conducted during the past season. The results are given in the following table :-

ts.	Manner of seeding.	Condition of soil.	Distance apart of rows.	Rate of seed per acre.	Weight of crop per plot.	Weight of crop per acre.
					tb.	Tons.
					1,808	$\begin{aligned} & 18.08 \\ & 13.10 \end{aligned}$
No. 1.	Drills	Level. .	22 inches.*	4 lbs....	1,310 1,420	13.10 14.20
No. II.	Drills	Ridges...	22 inches..	$\frac{1}{2} \mathrm{lb}$.	1,668	16.68
No. III,	Drills	Ridges,...	18 inches..	4 lbs	1,668	14.68
No. IV	Drills ...	Ridges.	Not in row	$\frac{1}{2} \mathrm{lb}$	1,468	17.30
No. V.	Broadcast	Level	Not in rows	8 lb	1,730	17.30
No. VI.	Broadcast					

Period. middlings. $\quad \mathbf{P}$ and part was end of each pe would have th

The follow 403.6 450.3 434.1 308.7 700.7

Large White Vosges.

Cultivation of Rape.

Numbers I and II plots were under as near the same conditions as was possible to have them, except that No. II was ridged up to a medium height with a plow, No. 1 being left entirely level. Of the rape on the two plots, that on No. I was taller. larger, and a more thrifty growth throughout. The plants on No. III plot were thinly scattered over the ground but grew to a very large size, the leaves, over nearly the whole plot touching their edges. On No. IV plot, the ridges were smaller and closer together. There was a very great difference between the size and nature of the plant on Nos. and VI plots; those on the former being large and very succulent and tender, and consequently well adapted for pasturing by lambs, while those on the other plot were smal. and of woody nature.

The cultivation of the drilled plots was precisely the same throughout. Much car was taken at the time of sowing to have the seed evenly distributed over each plot, an no thinning of plants took place. The crop was all pulled by hand, and weighe immediately afterwards.

Exprriment in Pig-feeding.

During the earlier part of the present year an experiment in pig-feeding wa conducted to determine whether or not, there was any advantage in beating food fo pigs during the cold winter weather. The test extended over the time from Januar 14th to April 14th. There were two sets of pigs in the same experiment, and each s wis divided into two lots. There were two animals in the first set, and the test last for three periods of thirty days each. In number two set there were six animals-thin in each lot-and these were fed for two periods of thirty days each. The pigs of a one were Berkshire grades, about five months old at commencement of experimen those of set two were from a Berkshire sow and Suffolk boar, and had reached the s of about six months.

The feed consisted of swill (apple peelin. middlings. Part of the feed at each peelings, potato peelings, etc., from College) and wheat and part was given the animals when was warmed to a temperature of about $80^{\circ} \mathrm{F}$., end of each period the feed was changed, at a temperature of about $40^{\circ} \mathrm{F}$. At the would have the warm during the following period pigs receiving cold feed for one period

The following shows the derile and vice versa.

Bush.
403.6
450.3
434.1
490.0
308.7
700.7
a feature of no rate information during the past

Weight of crop per plot.	Weight of crop per acre.
lb.	Tons.
1,808	18.08
1,310	13.10
1,420	14.20
1,668	16.68
1,468	14.68
1,730	17.30

as was possible to th a plow, No. 1 No. I was taller. I plot were thinly r nearly the whole nd closer together. plant on Nos. d tender, and con er plot were small
ghout. Much car over each plot, an
in pig-feeding w n heating food fo time from Januar riment, and each s , and the test laste e six animals-thd h. The pigs of ent of experimen had reached the a

Pia-prbding Expriment-Skt I.

Period.	Date.	$\begin{gathered} \text { Name } \\ \text { of } \\ \text { animal. } \end{gathered}$	Conditon of feed.	$\begin{aligned} & \text { Quantity } \\ & \text { swill fed. } \end{aligned}$	Quantity of wheat middlings fed.	Weight Pig on entering each period.	$W_{\text {eight }}$ Pig on closing each period.	Increase in live weight.
I.	$\begin{gathered} \text { January } 14 \\ \text { February } 13 . \end{gathered}$	Spot Black	Waru Cold	150 150	73	t. 181	th. 220	tb. 39
				150	73	183	212	29
II.	February 13 to	Spot	Cold .	126				
	Marcb 15.	Black ..	Warm ...	150	90 90	220	271	51
III.					90	212	243	31
	$\begin{aligned} & \text { March } 15 \\ & \text { to } \\ & \text { April } 14 . \end{aligned}$	Spot \qquad Black \qquad	Warm Cold	$\begin{aligned} & 150 \\ & 150 \end{aligned}$				
						271	299	28
					90	243	264	21

Pig-feeding Experiment-Set II.

The pig experiment may be thus summarised:
Set I.-Warm feed gave live weight increase of 98 pounds ; cold feed gave live weight increase of 101 pounds.

Set II.-Warm feed gave live weight increase of 235 pounds ; cold feed gave live weight icerease of 217 pounds.

From both of these taken together we find that there was an increase of 15 pounds in favor of the warm feed.

The animals had a sleeker coat and looked more thrifty when fed upon warm d It is expected that the experiment will be condncted again during the winter of 1889-90.

Ontario Agricultural and Experimental Union.

The experimental work here at the College is most intimately connected with the work carried on over the province by members of the Ontario Agricultural and Experimental Union. The formation and work of this association was spoken of experiments in the earlier part of my report. The instructions and mater, are again returned to the are all sent from here, and the reports, after being complelle Report has been completed College ; but some do not reach here until after the Collo for the year.

The full number of the Union experiments with grains and fertilisers have been con ducted at this institution, and I shall now give, first, the instructions sent out to exper menters, and a summary of those grain tests as reported at the Union meeting of 1889 , and which are wear enough alike in characier to allow an average to be taken, and second, the results of the Union tests of 1889, as conducted at this institution.

Summary of the Experimental Union Tests for 1888.

Instructions for Experiments wth Fertilisers.
1st. Select a piece of ground of same nature throughout, under same conditions and representative, as far as possible, of the land of the neighborhood. Avoid naturall wet spots, and keep, clear of trees, fences and buildings. Give cultivation to exper mental plots similar to that of your larger fields. If you can choose your plots in sua a position as to allow them to remain for experiment another year, so much the better. 2ud. Mark off six plots of one-fortieth of an acre each, having clean path of two fea wide between the plots. Two rods square is a convenient shape.

3rd. Submit all plots to same treatment, and sow one-sixth of grain sent on eac Aim at seeding one inch deep.

4:h. Apply the salt sent to plot No. I, the superphosphate to No. II, the grou apatite to No. III, wood ashes to No. IV, farmyard manure to No. V, and no mans to No. VI. The fertilisers to be sown at time of seeding.

5th. Keep plots at all times clear from trespassing by poultry, etc.
6th. Each experimenter is allowed to use his own judgment in reference to quantity of barnyard manure applied.

7 th. It is requested that No. V. plot be sown with 10 D . fresh wood ashes, same as the other fertilisers, as no Kainit can be obtained in Canada.

We have sent by express to those experimenting, expressage prepaid, one of following lots of grain for six plots : -18 d . White Russian wheat ; 18 H . Red wheat ; $11 \frac{1}{4} \mathrm{D}$. Egyptian oats ; $11 \frac{1}{4} \frac{\mathbb{D}}{}$ D. White Cluster oats, or $12 \frac{3}{4} \mathrm{tb}$. common rowed barley. Also 10 db , salt for plot No. I., 10 db . superphosp plots becomes the pros and 10 db , apatite for plot No. III. The produce from the plots becomo of the experimenter.

Make ou careful as yo 1st Novembe Note.plots, and two plots. The o Report in the

If you car others in your for your own w fulness, accura

In additio looking for som statement in re
(1) Testin
(2) Testin
(3) Testin the best
(4) Testing
(5) Any ex
in the above.
The price o or phrsphate $\$ 1$ fertilisers was us

Water
Soluble pho Keverted Insoluble

The analysis
Sodium chlo
Oalcium sul
Oalcium chl
Magnesium
Insoluble ma
Water......

An analysis
Water
Insoluble ma Potash
Phosphoric a
Lime ...
Magnesia
Iron and alum

From the retu ined. Owing ous kinds, a nu reports. The o retained whic
feed gave live feed gave live se of 15 pounds apon warm d ing the winter of
nnected with the tural and Experi. of at some length plot experiments a returned to the as been completed
sers have been consent out to experimeeting of 1889 taken, and second
38.
er same condition Avoid naturally Itivation to expen your plots in sug much the better. ean path of two fe
grain sent on ead
No. II, the grous o. V, and no mana

etc.

in reference to
esh wood ashes, la.
te prepaid, one of eat; 18 Ib. Red $12 \frac{3}{4}$ 形. common phate for plot N 0 becomes the prop

Make out reports of experimental plots and meteorological observations as full and careful as you can, and forward to Mr. C. A. Zavitz, O. A. C., Guelph, not later than Notg.-To those who carried on somewhat similar plots, and two years ago on four plots, we send adilar experiments last season, on five plots. The object is to test the influence of additional grain to be sown on the same Report in the same manner as for the new plots. fertilisers over two and three seasons.

Optional Experiments.

If you can furnish us any accurate information as to the results obtained by any others in your neighborhood with the same fertilisers, we shall results obtained by any for your own work, the success of the experiment and your own reputation demand carefulness, accuracy, and a little sacrifice.

In addition to, or entirely independent of the above general experiments wase looking for some individual work. We wish every expere general experiments, we are statement in regard to some one or more of the following expenter to send in an accurate
(1) Testing some imported cereals.
(2) Testing if chess sown will mature to seed.
(3) Testing whether plowing under barnyard the best
or leaving as top-dressing is
(5) Any experiment yon grass seeds for use as a permanent pasture. in the above. or phrisphate $\$ 12$ per ton Buphate used was $\$ 26$ per ton, and that of the ground apatite fertilisers was used in 1888 as during 1887, the from Smith's Falls. The same class of

Water Soluble phosphoric acid Reverted Insoluble		I. Apatite. 6 per cent. i ${ }^{8}$	II. Superphosphate. 5.885 per cent.	
			5.808	"
The analysis of salt showed the follo wing :				
			17.615	per cent

The analysis of salt showed the follo wing :
17.615 per cent.

Sodium chloride, pure salt.
Oalcium sulphate-gypsum
Oalcium chlıride Magnesium chloride... 89.42 per cent.
Magnesium chloride
1.45 "

Watuble matter
Water... 2.01
An analysis of an average sample of fresh wool ans $\quad \frac{6.75}{99.92}$ per cent.
Water following:

From the returns received by the committee for 1888 , ained. Owing to various circumstances, for 1888 , forty-five valuable reports are ous kinds, a number of those who undertool as the dry season and misfortunes of reports. The reports forwarded to the con the work were unable to send satisfacretained which were considered to be reliable andee were carefully read, and only
average Results of "Union" Experiments with Grains and Fertilisers during 1888.

| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Horticultural Experiments.

A synopsis is presented below of the reports upon experiments in potato cultury showing in a concise way the results obtained by the different persons who undertook the work. These experiments will be continued for a series of years, until sufficient data obtained from which a fair conclusion may be deducted. The following circular was sel to experimenters; together with a blank form for report:

Drar Sir, - It has been decided by the Horticultural Committee of the Ontario Agricultural Experimental Union to carry on the following experiments with potatoes. We shall be pleased it you conduct these experiments and report results.

No. 1. Planting large whole potatoes.

No.				
4	2.	4	small uncut potatoes.	
4	3.	4	small potatoes, all eyes cut out except one.	
4	4.	4	medium potatoes cut in two.	
4	5.	4	4	4
4	6.	4	4	fresh cut two eyes.
4	7.	4	4	4
4	old cut (five days) twe eyes.			
4	4	6	cut, with one eye.	
s.	4	seed ends.		

Nos. 1 and 2 to be planted 12 inches apa t in rows. Nos, $3,4,5,6,7,8$, planted eight adjoining n . Now. Plant that variety which does best. ith cultivation as rest of field. Fach row to be seven rodsis Where land is uniform, give same manure and cultivation results to N. J. Clinton, Windsor, Ont. rows. Plant is uniform, give same manure aud cuitivatio results to N. J. Clinton, Windsor, Ont.
Where land
In digging, be careful to weigh accurately and forward

Result of Experiments in Potato Culture.

$\left.\begin{array}{c|c}\text { lb. } & \\ \text { Weight of } \\ \text { grain } \\ \text { per bush. }\end{array}\right\}$
in potato cultur who undertook th il sufficient data ng circular was sen
tario Agricultural a all be pleased if you :

Union Experiments of 1889.

I. A continuation of the experiments of 1888 (salt, superphosphate, ground apatite esh wood ashes, farmyard manure and no manure), with grain on the same plots ithout further application of fertilisers.
II. A test of superphosphate, dried blood and scrap, farmyard manure and no snure, with oats.
III. A oomparison of different systems of raising fodder corn.
IV. A trial of Kaffir
IV. A trial of Kaffir corn growing in Ontario.

Experiment No. I.

Instructions same as those given for 1888, the fertilisers belng applied in the spring of 1887.

Note.-Size of plot in each place was one-fortieth of an acre. The date of seedin for spring wheat, April 22, 1887, for barley, April 26, 1888, and for oats, April 22, 1889.

EXPERIMENT No. II.

Instructions.

(1) Select a piece of ground of same nature throughout, under same conditions and representative as far as possible of the land of the neighborhood. Avoid naturally wet spots, and keep clear of trees, fences and buildings. Give cutivation gained if the plots plots similar to that of your larger fields. An advantage for experiments another year. could be chosen in such a position that they could
(2) Mark off four plots of one-fortieth of an acre each, shape.
between the plots. Two rods square is a convenient shat
and sow one fourth of grain sent on each
(3) Submit all plots to same treatment, and sow one fou sent on each Aim at seeding one inch deep.
(4) Apply the superphosphate sent to plot No. I; the dried blood and scrap sent to No. II ; farmyard manure to No. JII, and leave No. IV without any manure. Th fertilizers to be sown at the time of seeding.
(5) Keep plots at all times clear from trespassing by poultry, etc.
(6) Aim at applying 700 lb . farmyard manure on No. 3 plot (14 tons per acre).
(7) If it is your wish to carry on this experiment, please inform the Secretary naming your nearest express office, and there will be sent to you, expresse prepaid, $\mathrm{lb} . \ldots \ldots \ldots$ oats ; 10 lb . superphosphate for plot No. I, and scrap for plot No. II.

Note.-The superphosphate was obtained at Smith's Falls and cost $\$ 26$ per ton, a the dried blood and scrap (manufactured from pork factory refuse) was procured fry Hamilton and sells for $\$ 40$ per ton.
lean path two feet
rain sent on each ood and scrap sen any manure. Th
tons per acre). form the Secretar pressage prepaid, 0 lb , of dried blo
cost $\$ 26$ per ton,) was procured fro

EXPERIMENT No. III.
 Instructions.

(1) Select a piece of ground of

presentative as far as possible of the land nature throughout, under same conditions, and ots, and keep clear of trees, fences and buildings neighborhood. Avoid naturally wet ings. Prepare the ground as you would a (2) Mark out four plots of one-tenth of an acre each, allowing a clean path between plots. Four rods square is a convenient shape for each ploting a clean path between
(3) Sow the same kind of corn (M. S. S. Corn) on each plot as follows :-

No. I plot-Drills of equal distance apart (as near $3 \frac{1}{2}$ feet as with seed averaging two grains to the foot.
No. II plot-Drills of same distance the foot twelve grains to the foot.
No. III plot-Broadcast or close drills with seed averaging one-half bushel per acre (2.8 lb . per plot). No. IV plot-Same as (16.8 lb . per plot). 111 with seed averaging three bushels per acre
(4) Aim at having the seeding all done in one day, and not later than 15 th Note-Shallow planting for early seeding, and deeper planting if late enough of (5) Give plots I and II the sal for need it, but avoid mounding the rows; shaf after cultivation, as ofien as you think (6) Purchase 40 lbs of M.S.S. Corn from shallow cultivation is preferred. tary, C. A. Zavitz, as early as possible, and our seedsman and send the account to d funds of the Committee as possible, and the money will be the account to the ressage. If you cannee are exhausted. This will save much sent you until the s office, and it will () Out each crop at therwarded to you. at the time when its condition field corn, or when in the glazed state.) Weigh produce from the plotste.
-If you can observe the comparative ren under as equal conditions as possible,
send information under the head of "Remark" the feeding of the different lote,
Fill out the accompanying blank form and return blank form.
TABLE OF RESULTS No. 3.
 ar acre, which was plowed under

 ths. I and III were yet

GRAIN EXHIbIT.

At your request an exhibit of the grains grown upon the experimental plots during "the present year, was shown at both the "Provincial" exhibition at London and the "Industrial" exhibition at Toronto. The samples of grain for this exhibit were taken frocord of the plot, yut in for that purpose, so as not to destroy in any way the exact samples, it being the period of the much pushed for time when collecting and preparing the periments ; but we firmly believe that much in we were cutting and threshing our plot exwould further suggest that an exhibit much good resulted from making this exhibit and we exhibitions in Ontario

At the " feet along one side of the building, and reached fromit extended for a distance of forty-five of six rows of glass jars along the and reached from the floor to the ceiling. It consisted and upon the wall was arranged the Department during the present year from the the head as grown by the Experimental number of varieties of onsilage corn from the imported seed. At one end was arranged a at the wish of many others, a photogra the dairy department. At your request and
. of the display was taken. materials, the glass jars all being on we had not as good a place in which to arrange the sixty feet in length. We were unable tos at one end, and the whole exhibit extending but on the whole, the exhibit looked fairly well. the grains upon the limited wall space,

At both the "Provincial" and "Induatrial tsining the following: "Information given here exhibitions we had large notices up conthe Ontario Agricultural College, Guelph." In hare regarding the course of study given at bout the different varieties of grains, and giving infoally kept busy answering questions of the college course for a farmer's son. and giving information regarding the advantages
\qquad

OONCLUSION

The experimental work is rapidly increasing, there being at present eight times as pany plots as there were when I took charge in 1886; and my duties during the past ear have cortainly been heavy. It is only as a person becomes actively engaged in the atails of experimental work that he realises the immense amount of care and watchful ss needed in the seeding, labelling, note-taking, harvesting, threshing, weighing, ete, ops as potatoes, fodder grain ; in the planting, cultivation, and harvesting of such g of some 250 varieties of grain in the head fore the collecting, preparing, and arrangany requirements of experimental work.
I think we can look upon the
uable information for the Ontario farmer forly as a faccessful one in bringing forth.
Respectfully submitted,

C. A. ZAVITZ,

EXPERIMENT NO. IV.

Instructions and also Description of the Kaffir Corn.

From the Southern States, where this corn is extensively grown, we obtain the following information :

It stands dry weather well. Where corn will suffer from drouth this plant wil simply stop and wait for rain, and then go on and make its full yield. In the way of dry fodder it makes enormous returns. It will grow on any land suitable for corn and even on land too poor for that crop. Its seed weighs 50 lb . to the bushel.

This one (Kaffir corn) is the earliest of the five varieties of non-saccharine sorghums. It grows from four to five feet high, making a straight upright growth, having a stocky stem with numerous wide leaves. The stalks keep green and are brittle and juicy, not hardening like other samples of the sorghum, making excellent fodder either green or dried, which is highly relished by cattle and horses. The seed heads orm the the of each stalk and as soon as these show the grain well the joints next below the top send up shoots which yield the second seed heads. If the crop is wanted mainly for fodder it is recommended to cut down the whole stock when the first seed heads come into bloom, at which stage it cures admirably and makes most excellent forage.

The pound of seed sent to you is sufficient to plant one-quarter of an acre of ground. The first week in June is recommended as the best time for planting. The land need The rows should be three feet apart with from three to four seeds per foot. The culti vatings or hoeings between the rows should be the same as for common corn. The proper time to

Area planted, one-fifth acre.
Remarks.-The ground had not received manure for three years. The early pa summer was apparently too cold and wet for the rapid growth of the Kaffir corn. few stalks which headed out stood about four feet in height. Thally with a little better another season than it has during to be unprofitable to grow in Ontario. seeding, but at present it certainly appears to be unproitable to grow in Ontario.

SIR,-I fur 1889. Fo into chapters s has been glean clearness, as w it is written ur

1. Dairy 1
2. Farmer
3. Creame
4. Extensi
5. Buttern
6. Experin
7. The che
8. The hog
9. Fodder

A common hat Dairy Farn products. The 1 ts economical F reeding of the a ossible to obtain cattle and 1 hey), and the br ese come the bu ion for the pro eese. Wben th comparatively
While Dairy vince, it has or n given to the te recently ther the improveme se practices tha when the valu means for the true aim of all threefold objec ly of wholesom

PART VIII

a , we obtain the
this plant will
In the way of le for corn and el.
tharine sorghums. , having a stocky le and juicy, not reither green or form at the top of w the top send up ly for fodder it is me into bloom, at
an acre of ground
The land need ordinary corn crop. r foot. The culti corn. The prope
tes or cultivating: or Hoeinges.
rse cultivatings July 23, August 15 .
and hoeings July 9 , n

Pravious cropping.

1886, Bare fallow. 1887, Oats.
1888, Fall wheat.

ars. The early pa

 the Kaffir corn. This corn may do lly with a little ea row in Ontario.
REPORT OF THE PROFESSOR 0F DAIRY HUSBANDRY.

To the President of the Ontario Agricultural Co Sir,-I have the honor tollege:

for 1889. Following the style adopted upon the work of the department under my charge into chapters some information bearing on the reports of previous years, I have gathered has been gleaned from experience during the past and branches of dairy practice which clearness, as well as for the better service of those and previous years. For the sake of it is written under the following heads:

1. Dairy husbandry in Ontario.
2. Farmers' Institute work.
3. Creamery management.
4. Extension of the creamery system into the winter season.
5. Buttermaking.
6. Experimental cheese-making.
7. The cheese factory business of Ontario.
8. The hog as an adjunct to the dairy.
9. Fodder corn and the silo.

1.-DAIRY HUSBANDRY IN ONTARIO.

A common opinion, among even those who usually think clearly and correctly, is products. The handling only to do with milk and its sale or its manutacture into dairy ts economical production involves really a minor part of the dairy farmer's business. reeding of the animals best adapted for the cultivation of the soil, the selection and cossible to obtain the largest net value in dairy dairy, the growth of crops that make it cattle and hogs upon the by-products products per acre, the rearing and feeding hey), and the breeding of horses to do the wach as skim milk, buttermilk and lese come the business and work connected with of the farm as well as to sell. After tion for the production of such nourishing and the handling of milk and its manipueese. Wben the principles are well understood, the appeting articles of diet as butter and comparatively easy of acquirement and application the thnical details of practice will While Dairy F'armang is perhaps thapplication by the farmers. ovince, it has only lately received the same profitable branch of agriculture in our en given to the other departments of animal relative notice ar i recognition that have te recently there has been no general, syetemusbandry and soil cultivation. Until the improvement of the methods or the invetematic or comprehensive effort put forth se practices that invariably lead to success and when the value of Dairy Farming, as a sourc profit. This is all the more remarkmeans for the conservation of the fertility of of the nation's supply of food, as well true aim of all farm operations that are w of the land, is thoughtfully considered. threefold object: (1) the production from the planned is directed to the attainment ly of wholesome, appetising, nutritious food the resources of nature of an abundant (on such a way as to leave a satisfactory
profit to the owners and tillers of the land ; (2) the preservation, and where practicable, the augmentation of the available fertility of the soil ; and (3) the providing of remunerative occupation for a large population upon the area that is cultivated. In the following up of that aim the intelligent farmer will cable for his use those parts of most cated animals that are able to change into food sor his table. During the early crops which in their natural state are unsuited tribes subsisted mainly upon roots stages of human experience upon this continent mapely supplemented in some cases by the and the fruits of the forest. These were meag. But as man emerged into a higher game from the hunter's traps, arrows and speard body naturally turned to the production state of civilisation the powers of both entablishment of a more controllable and dependable of a more varied diet, as well as the estabishmen front rank of civilisation and influence source of supply. Nowadays the nations subsist upon the most varied and sub of some sort accompanies the dinner vegetabies, and butter does not satisfv. Flesh-meat of sof fare, in even the plainest homes of Oknadian throughout the whole of the extensive spread upon the table with the purely vegetable and European people, animal produrocts in the most economical way is the purpose and foods. To provide those animal prod particular and direct products of the dairy, such as place of Dairy Farming. The the only foods that are provided for human consumption milk, cheese and butter, are Since experience has demonstrated that animals of the cow by this kind of husbandry. Since experio crops of the farm and elaborate them into such kind must be kept to consume butter, cheese and beef, it follows that all these are the substantial delicacies as milk, only kinds of food from the production of which profits special, but not necessarily the only kinds
should arise from this branch of agriculture

Milk is universally recognised as the perfect food, containing all the elements of nutrition required for maintaining life and supplying energy requisite for the demands upon human strength, and all in proportions best suited for assimilation by the organs of the system. As an article of diet for furnishing life-sustaining energy one gallon of ordinary milk may be reckoned as equal to three pounds of flesh meat from well-fed steers. The gallon of milk can be prodused at less cost to the farmer, and therefore during the coming years will prevail in thu keen competition for popular favor betweet the different articles obtainable as food by the great masses of wage-earners. One pound of cheese and half a pound of bread will furnish more strength to the than latter, pounds of flesh meat. The cost of the former to the producer it should be the aim of the dair also the price at present required from the consumer of fancy butter and fine cheese the farmer to so cheapen or lessen the cost of promillions of so-called poor people to whom they will be within the pursessible. As an evidence of the trend of popular preferens luxuries, while such, are inaccited that the city and town consumption of milk in bot for foods, the fact Bat in is now almost five-fold as great per head of the population as was twenty years ago. The consumption of cheese on this continent has increased alma five-fold per head of the population within the same period. There will be no danger a lack of market or a lack of consumers for fine articles of dairy products for all time come. Then the by-products of the dairy, such as buttermilk, skim milk and whey, a be elaborated by pigs into another article of diet highly relished by most people. The by-products may be cheaply supplemented by parts of the same forage crops as are gro for the feeding of cows, and by the cheaper coarse grains that can al supply of barny raised upon a dairy farm whose land is enriched by the plentiful supply of barnyy manure.

As farmers produce an increased quantity of superior food per acre they make possible to support a larger population. Population is the element which gives valut property. Hence successful Dairy Farming means an increase of value in all the propa in a country or section where it is followed. Many parts of plantion by man. By mad in a rotation of crops are entirely unsuitable for direct consumption by the human fas animals consume such plants or parts of them and nourishing products quite there may be obtained from the animals appetising and
able for his table. That is the true place of dairy animals in farm economy,

In orde farmer's skill sun is the wo plants-the of the world. value and us whereby and comfort. He the sustenanc fails to exert in the supply alone he can cannot afford toils outside. the farmer's d plants ; and t fact harness th brain, a judgm dominion over per cent. of th able to transpi store his stren whereby this c farmers of Ont object' of skilf the augmentat discussed unde

In order t the husbandma the most in pro animals which dens upon the for him, he son and horses. T She should be n for the boarding vice which she her hide into le nate man. A c paid up, throug kind of cow I re

In the furt ertility of the s emove from hi liscussing the su arming to cons xported from ar alue of $\$ 240,00$ the wheat, if entioned sum. way from the quired in the $1,000,000$ worth roduction of a mounts, which s e payment of t cupied in remu
ere practicable, viding of remuivated. In the vice of domestise parts of most uring the early ainly upon roots ne cases by the d into a higher o the production and dependable ion and influence
Bread without r vegetabies, and mes of Onnadian purely vegetable the purpose and he dairy, such as man consumption imals of the cow te them into such all these are the n of which profits

11 the elements of - for the demands n by the organs of ergy one gallon of meat from well-fed mer, and therefore ular favor betweea rners. One pound the eater than twr r than the latter, he aim of the dair and fine cheese tha por people to who f popular preferens on of milk in bou the population as has increased alma will be no danger ducts for all time milk and whey, of most people. The ge crops as are groo liways be successfu 1 supply of barny
er acre they mak which gives value lue in all the prop cultivated by fara by man. By mal by the human fas gg products quite economy.

In order that animals may be kept with advantage and consequent profit, the farmer's skill aud judgment should provide plants suitable for their maintenance. The plants-the fit fod power that elaborates soil-food, commonly spoken of as manure, into of the world. It is the veritable The sun is the source of the energy that does the work value and usefulness are unknown and power on all the farms, though too often its whereby and wherein the sun stores up his strength Plants are contrivances of nature comfort. He should be kept at work all day long. Wharmth for man's service and the sustenance and increase of plants by their grow. When enough suitable material for fails to exert his energy for the service of man. When present in the soil the sun never in the supply of these substances, simply for the when the soil is devoid of or deficient alone he can work, the sun is kept "loafing" want of the raw material, upon which cannot afford to have the hired man "loaf" over the fields day after day. A farmer toils outside. Much less can he afford to keep the sun idte kitchen stove, while he himself the farmer's duty to see that the soil contap the sun idle upon his fields. Hence it is plants ; and then by proper management of the soil that is needed for the upbuilding of fact harness the sun every morning and make it do his willection of the seed he may in brain, a judgment, a will to rule, in order that he may will. His occupation demands a dominion over the earth and its plant and anima may justify his birthright in being given per cent. of the substances that go to form the structure The air is the source of a large able to transpropriate to the plant the very elements whe plants. From it the sun is store his strength for man's benefit. The corn plant wherein he can best accumulate and whereby this can be done. By the growth of fodder one of the best aids and means farmers of Ontario will find it comparatively easy object' of skilful agricultural effort, viz., (2) "The and profitable to attain the second the augmentation of the available fertility of the soil"" preservation and, where practicable, discussed under its proper head in the report.

In order that the plants grown may
the husbandman's skill should be exercised to the best return of which they are capable, the most in products or service for ercised to provide animals which can return to him animals which yield so much less in prood which they consume. It is possible to keep dens upon the man whose they are. Inste than they eat, that they are veritable burfor him, he sometimes becomes theirs, and appareing his servants, living and laboring and horses. The cow, in all civilised cound apparently lives to keep and feed cows, hogs She should be made to pay for her beard at such is always a boarder upon some person. for the boarding-house keeper. If she fails in that, she rative rates as will leave a profit vice which she will not willingly contribute. Her, she should be made to render a serher hide into leather. She should not be slyly Her carcass should be made into beef, and nate man. A cow with the business habit of keept to board upon some other unfortupaid up, through the man who owns and feeds keeping all her accounts with the world kind of cow I recommend. Her powers I will briefly a good business cow. That is the

In the further endeavor to produce large supplies of fisewhere in this report. ertility of the soil the farmer can best attain this end by food without exhausting the emove trom his premises the least amount of end by the selling of such products as tiscussing the subject a single illustration will suffice to arming to conserve the fertility of the soil. Wume to indicate the adaptation of Dairy xported from any district they carry away in the When $1,000,000$ bushels of wheat are alue of $\$ 240,000$. In other words, the elements substance of the grain plant-food to the a the wheat, if replaced by the use of comments or the substances of fertility removed pentioned sum. Whereas, when buttermmercial fertilizers, would cost the previously way from the place where it was produced less that $\$ 1,000,000$ is exported it carries squired in the soil by crops for their $1,000,000$ worth of butter will give their growth. It is evident that the production of foduction of a quantity of wheat equal in to a larger number of persons than the mounts, which severally represent the value of the fertility difference between the two e payment of the extra labor employed. A larger rural removed, can be applied to cupied in remunerative work by Dairy Farming thral population may certainly be
growing. The culture of fruit and market gardening alone offer equal facilities and opportunities for the profitable employment of labor in the production of food from nature's storehouse and resources.

These facts have been recognised by many of our leading farmers for the past quarter of a century. A knowledge of the underlying principles upon which they rest is now being systematised and made widely available by means of co-operation and organisation among farmers for this purpose. The Farmers' Institutes, so popular among those living in the most progressive and prosperous districts on the continent, are largely the outgrowth of successful co-operation among dairymen. The cheese factories were the agencies through which this co-operative principle was first made practically useful in a widespread degree for the profit and the improvement of the ordinary farmers. The first one on this continent was erected near Rome, N.Y., in 1851, by Mr. Jesse Williams. The late and deeply lamented H. Farrington, of Norwich, Ont., had the honor of introducing co-operative cheese-making into this province. His factory, which was erected near his home, began operations in 1864. Three years later the Ontario Dairymen's Association was organised. It held an annual convention, and was subsidised by the Provincial Government. Its efforts were directed towards the extension of co-operative dairying, and the giving of information and encouragement to beginners in the erection and equipment of suitable factory buildings. Instructions were given at its conventions by competent persons on the best methods of feeding and rearing stosk suitable for dairy purposes. It promoted the organisation of Dairy Boards of Trade, at which the products of the factories could be sold to the best advantage In 1877 the first Association, by mutual agreement among its members, became divided into the Dairymen's Association of Western Ontario and the Dairymen's Association of Eastern Ontario. Each of these then received an annual grant of $\$ 1,000$ from the Provincial Government. In 1886 the Ontario Creameries' Association was organised to promote the creamery interests of the province. At first it received a grant of $\$ 500$. During the past year the Government appropriations to these associations were $\$ 2,500$ each to the Dairymen's Association of Western Ontario and the Dairymen's Association of Eastern Ontario and \$1,500 to the Ontario Oreameries' Association. The need for the enlargement of the grants made by the Government arose from the employment of inspectors and instructors by these organisations. Now eight competent and experienced men spend their whole time during the summer months visiting the cheese factories, inspecting the milk, and advising with the cheese-makers as to the best methods for the manufacture of cheese and the management of the factories. The Oreameries' Association employ two men to render similar service to the creameries of the province. The work of these inspectors has been extremely valuable to the farmers interested in dairying. The quality of our cheese has been generally improved to such an extent that during this past season market reports reveal the gratifying fact that the cheese of Untario on the average has sold for more than three-quarters of a cent per pound higher than the cheese of the adjoining States of the same month's make and at the same time. Three-quartess of a cent per pound on the total season's make will repre sent over $\$ 475,000$ of increased revenue to the patrons of the cheese factories in this province. The value of the educational work that is being done through this mean should not be lost ןsight of, even in presence of such large and substantial increase t the receipts of the province through its farmers.

Ontario's make of creamery butter has hardly yet found its way into the channe of commerce in sufficient quantity to cause its importance to the farmers and the met chants to be recognised. There is all the more reason why the extension of that industr in every reasonable and prudent way should be encouraged and fostered. But the othe day there was sold in the city of Toronto a carload of dairy butter at 10 cents p. pound; on the same day, in the same city, creamery butter was sold at 26 cents p mound. When it is considered that, by reason of unsuitable care and ill-adapted utensi and conveniences, more milk is taken on the average to produce a pound of butter fro private dairies than in creameries, the enormity of the loss sustained by somebody somebodies-citizens of Ontario-through the manufacture of inferior butter becom more apparent. Of course some dairy butter is as fine as any creamery butter, but
difference be which it was for fine crear times before Ontario from money that the province and ever-to-g which it has of substantia

The part meetings held with more in experimental 1889, I had t conventions meetings, 12 ; Besides t five weeks abs allow me, to a ations outside of this to poin and of benefit present occasic elsewhere.

The Ontar mention may be Experimental 1 service of the w in districts wher has not been in way of cash ret By reason of th almost wholly f important thoro ted a large num making. Oonse he whole milk ature of the pa hat of deep can se of the shotiameter, withou kimmer by whi ade in two com ilk required fo g of the milk i re above 90 de e milk to betwe tion by foul ai its their own
facilities and of food from he past quarter ney rest is now ad organisation ong those living argely the outcories were the ally useful in a mers. The first Jesse Williams. honor of introaich was erected ario Dairymen's absidised by the n of co-operative s in the erection t its conventions g stosk suitable oards of Trade, best advantage. s, became divided men's Association of $\$ 1,000$ from Association was first it received ns to these associario and the Dairyeameries' Associa. nment arose from Now eight comer months visiting -makers as to the he factories. The the creameries of able to the farmers improved to such fying fact that the rters of a cent per nth's make and a: n's make will repre se factories in this hrough this mean tantial increase t
y into the channel rmers and the mer sion of that industr red. But the othe tter at 10 cents p sold at 26 cents p . d ill-adapted utensi ound of butter froc ned by somebody rior butter becoos nery butter, but
difference between the market value of that one carload of dairy butter at the price at which it was, with difficulty, sold, and the amount that would have been easily realized for fine creamery butter was over $\$ 3,000$. That sum might be multiplied five hundred times before it would represent the diminished value of the present butter product of Ontario from the want of co-operative creameries. The Government cannot spend any money that will more quickly and certainly redound to the advantage of every citizen of the province than the amount which may be spent discreetly on behalf of the ever-growing which it has row dairy interests, which the financial, educational and fostering assistance of substantial prosperity.

2.-FARMERS' INSTITUTE WORK.

The part of my time which was devoted to attending Farmers' Institutes and special meetings held in the interests of the dairy industry of the province was spent, I think, with more immediate and direct advantage to the farmers than that portion given to 1889, I had the honor to College. Since January 1st, conventions of Dairymen's Associations of the Dairy Department of the College: meetings, 12 ; total, 81. Besides these 81 ga five weeks absence for herings of farmers in Ontario, I took the opportunity during the allow me, to accept invitations to which the Minister of Agriculture was good enough to ations outside of this province, and present at three conventions of Dairymen's Associof this to point out that it would be of Farmers' Institutes. I have introduced mention and of benefit to the Professors that advantage to the Farmers Institutes of Ontario present occasionally at meetings and convertunity should be affordəd them of being elsewhere.

3.-CREAMERY MANAGEMENT.

The Ontario creamery has now been in operation for parts of six seasons. Passing mention may be made of the purposes for which it was erected and equipped upon the Experimental Farm here. It was intended that it should have educational value for the in districts whole farming community of the province, and especially for those living has not berts where no creameries have been established and where the cheese factory system way of cash introduced. The farmers may learn from our reports what to expect in the By reason of the almost wholly from farmers at a distance of from to the city of Guelph, our patronage is mportant thoroughbred stock interests of the country surrounding from the college. The ted a large number of the best farmers in country surrounding Guelph; have prevenmaking. Oonsequently long roads must the vicinity from sparing any cream for butterthe whole milk has been rendered impracticable by the obtain a load. The collection of ature of the patronage already referred to hat of deep cans, setting in tanks of cold water system adopted by the farmer has been se of the shot-gun can, which is a cylinderical Most of the patrons have adopted the iameter, without any tap or faucet. Skimming pail, 20 inches deep by $8 \frac{1}{2}$ inches in kimmer by which the cream is dipped from off th is done by the use of a coneshaped pade in two compartments, each measuring 26 in, $x 18$ of the milk. The tanks are usually ilk required for the successful use of $26 \mathrm{in}, \mathrm{x} 18 \mathrm{in}$. x 23 in.deep. The treatment of the g of the milk immediately after it is drewn, re above 90 degrees ; (2) The use of sufficient wate setting of the milk at a temperae milk to between 48 and 44 degrees; and (3) Ther or water and ice to gradually cool tion by foul air. The patrons are allowe (3) The protection of the milk from contamiits their own convenience. The creame to do the skimming at any time that best its their own convenience. The cream collector measures the cream in a cylinderical
pail 12 inches in diameter, and credits each person with the number of inches in depth. After the whole quantity of cream from each patron is thoroughly mixed, the collector takes a sample and puts it into one of a number of glass tubes, which he carries for that purpose. These tubes are all numbered, and the number of the tube used is placed opposite the name of the patron in the collector's book. The cream from each patron is collected every second day, and a sample is put each time into one of these test tubes. The test tubes form part of the equipment of an oil-test churn, which is used for the discovery of the butter-making value of each sample of cream. A description of the use will be given in a subsequent part of this report. It is thus made possible to pay each patron equitably according to the quantity and quality of the cream furnished. The skim milk is left on the farm for use in the raising of calves or the feeding of pigs.

The creamery has been in a limited sense a school for the practical instruction of students who desire practice in butter making. Butter-makers, and those interested in other creameries, have always been welcome to visit it and to study the modes and details of the practice followed there.

Though entirely under the management and control of the Government, through the Professor of Dairy Husbandry, the creamery affords its patrons no special money returns beyond what may be realised from any joint stock or private concern in any part of Ontario. The patrons who supply the cream are paid for it at the price realised from the sales of the butter manufactured, after all expenses from cream collecting, labor and furnishings, such as tubs, fuel, ice, cloth, salt etc., have been deducted. While these expenses are kept as low as is compatible with obtaining the best qualities of the articles used, the rate of expenses per pound of butter is high. The cost of collecting the cream depends so largely upon the distance to be travelled for the quantity that may be collec ted, that the number of patrons and cows within a given area determine the cost per pound to a very large degree. In our case the number of patrons and the quantity of cream supplied are still unnecessarily small for the area covered by the creamery wag gons. The rate of this expense is correspondingly high. The agreement with the pat rons at the beginning of the season was to the effect that they were each to receive, after the end of each month, a cash advance on cream supplied at the following rates per tb of butter :-June, 14 cents ; July, 14 cents ; August, 15 cents ; September, 15 cents. After providing for these prices and paying all expenses out of receipts from the sale of butter and butter-milk, there was a balance of $\$ 254.69$. That amount was partially accounted for to the patrons by paying 2 cents per Ib . above the promised advance on July butter, and one cent per tb on August and September butter, while a balance of $\$ 117.91$ stil? remains on hand for distribution among them.

A summary of the season's business is presented herewith.

Receipts.

Sales of butter
$\$ 2,862 \quad 57$
(butter-milk
22166
$\$ 3,084$ 23

Disbursements.

Patrons for cream
Labor.

Cream gathering

\qquad
Salt, tubs, fuel, ice, repairs and sundries. Balance on hand
$\$ 2$2,035
2233677

3390 1179

Butter manufactured

21.84 cents.

Average price of butter per 献,

42
Number of patrons... 103
Number of days in operation
03
Routes travelled by cream wagons
2.80 cents per D. of butter.

Cost of cream gathering
" labor, including delivery of buttermilk
1.70 "
" furnishing, etc
inches in depth. ed, the collector carries for that 3 placed opposite tron is collected tubes. The test the discovery of se will be given patron equitably milk is left on
al instruction of ose interested in modes and de-
ent, through the al money returns any part of On. realised from the cting, labor and

While these ies of the articles lecting the cream at may be collec. ine the cost per d the quantity of e creamery wag. ent with the path to receive, after ng rates per Hb of 15 cents. After the sale of butter artially accounted ce on July butter, ee of $\$ 117.91$ still

ENTS.

13,104 B .

21.84 cents. 42 103 2
th. of butter.

As already stated the cream only was gathered to the being left on the farms. reduced. This was done and 42 recommended that the number of creamery routes be butter as was manufactured the previons furnished cream to make almost half as much The butter was mostly packed in tin-lined tubs and the cream supplied by 137 patrons. The home markets are yearly becoming more active was sold for consumption in Ontario. for creamery butter. Salt of Canadian make was and discriminating in their demand of an ounce to one ounce per pound of butter. was used at the rate of from three-quarters

The oil-test churn was used to det
ply of every patron's cream. The requirements fer cent. of churnable fat in each sup-
(1) Careful sampling of the cream. it its for its successful use are :-
into another before the sample is taken for the test be poured at least twice from one pail
(2) Accurate measuring;
(3) Souring of the cream ;-
they should be warmed up to 70 degreere that all the samples of cream are equally sour, being churned ;
(5) Subsequen after the first churning to a temperature of 1350 Fahr .
(6) Churning cooling to 65° or 70°;

In
In a case where the butter-oil of any sample does not separate to show a clear line of demarcation between itself and the other constituents of the corate to show a clear line of churning and heating should be repeated.

I have taken the liberty to discuss the question of winter dairying in another par of this report. If farmers generally would venture to adopt it gradually, the quickened interest thus directed to dairying would result in cows being it gradually, the quickened cally fed; more milk would be produced at less cost; theing more suitably and economitably consumed on the farms, and increased fertility the coarse grains would be profifollow.

4.-EXTENSION OF THE CREAMERY SYSTEM INTO THE WINTER

As a nation progresses in skilful agricultural methods, so it advances in all the attainments of civilisation. Farmers are called clodhethods, so it advances in all the ff one will gauge the progress of farmers in most natioppers, hayseeds and nobodies, but gress of that nation itself in most that appertains to good, he will have gauged the prore developed, and as farmers are prosperous, so good living. As the farm resources vealthy. The progress of agricultural operations and the whole nation be strong and ther kinds of prosperity and desirable achievement in their success run parallel with all The dairy cow is essentially an artificial prodact in our nation.
fow is a creature that comes to us as do other ature's laws ; but those qualities which make animais-a product of the operation of nent of her original inherent functions and the result ofle as a dairy cow are a developence and judgment, founded upon accurate observatt of the exercise of human intellian has developed to its utmost the power or pply skill and judgment in order to preserve capacity of an animal, he must continue to cow has not naturally the power of producing that power and prevent its deterioration. ear, but man, by an enlightened and istelligent more than two thousand pounds of milk per to increase the yield of milk to eight or even management, can so develop that power
augmented capacity be not carefully preserved the cow will lose her acquired talent, and, if altogether neglected, will lapse into the original state. There are now in this province cows by the score, nay, hundreds, which would produce annually, if their inherent powers were rightly treated and sustained, eight thousand pounds of milk. It is not that we need so many different breeds of cows in our dairies to make them successful and profitable, as that we need a great many different men with directive capacity to enable the cows to apply their powers to advantage. If a farmer will develop, increase and protect the productive powers of the cow he owns, he will have taken one long step towards making his farm more profitable and himself a more intelligent man.

The creameries are in a large measure unsatisfactory and unprofitable because the men who attempt to support them neglect these two points-the proper development and care of their cows and the due preparation and growth of crops suitable to their support. The growth of suitable and adaptable crops is one of the most important factors in the beginning of an extension of the creamery business. The largest returns with the smallest expenditure of labor, money and fertility, are only to be obtained from the best animals, fed on the best food by the best men. That is a rather short way of expressing it, but when rightly applied it covers the whole of successful dairy husbandry as applied to creameries. These two essential preparations of the cow and the plant, of which I have spoken, open the way for the production of milk, and the creamery provides for the manufacture of milk into one of the most wholesome articles of food, whioh every one wants and likes, and which can be sent from the farm with the largest profit to the man selling it. From the milk yielded by the cows of this province we make in large quantities cheese, a product which is a concentrated and very nourishing food-perhaps more so thon butter is. I wish here to show the weakness of our butter-making system. Of the milk yielded by the cows of this province nearly as much is converted into butter as into cheese. Our cheese has won for Canada the reputation of being one of the finest cheese producing countries in the world, while our butter has earned for us the unenviable notoriety of sending to England the strongest butter received there from any part of the world. There must be something wrong in the way we do things when we have not earned as good a reputation for producing butter as we have established in connection with our exports of cheese. There was a time when we had no reputation as a cheese-making people,-when the cheese was made at home in the dairies of the farmers. Now, of all the cheese made in this province 994.5 per cent is made in cheese factories, and only one-fifth of one per cent. in home dairies. In my opinion, in that short set of figures is revealed the real reason why our cheese-making business has established such a high reputation, while on the other hand our butter-making operations have secured for us, in market reputation, only that which too frequently characterises tbe product itself-a bad odor. Of all the butter made in the province from the milk production of nearly as many cows as we used in cheese-making operations, less than three per cent. is made in creameries-less than three per cent. in one case as against 994.5 per cent. in the other. If we had this position in regard to butter-making reversed, and only three per cent. of our butter were made at the farm dairies, we should get higher figures for our total product.

Let me examine still further this making of 97 per cent. of our butter product in the farm dairies-mostly small. Is that an economical and profitable way of producing butter To a man who gives the matter any serious consideration it at once becomes evident that it is not. The total make of butter in the farm dairies of the province is estimated at over $30,000,000 \mathrm{lbs}$. annually. I have taken some pains to discover what amount of labor is employed in making that quantity of butter, by finding out how long it takes to make ten pounds of butter in the home dairy, and I find that it takes on the average six times as much labor to make a pound of butter in a small dairy as is required to make pound in the creamery. The amount of labor required to make $30,000,000$ pounds of butter in home dairies is equal to 750,000 single days labor, whereas if made in cream eries it would take less than 130,000 single days of labor. There would be 620,000 days of ten hours each of labor to spare in the homes of Ontario by having this butter made in creameries. Now, in this province we should be proud above all things of the virtue,
industry, inte spirit out of t and all the w. national prosp should have m producing but to say against must make o produced from the same quan milk product o reason of the e say that I mad milk after bein the proper man ripened by sou cent. of the tota churning practi qualities of crea cent. of the tota I put the loss ac at five per cent. of butter run off of butter that sh annually fed to the cost. That butter we have n ad the butter be vill bring on tl narketed at the iently fine, and nd dairy makes. urned their atter is creating for tting a good ma e kind of butter nality, not only cause the man v ery day. Then high price. En ird of all the che e and a-half per ree pounds of ch ry hundred pou lars worth of bu cheese market, ter market, whi nk England is pa tious to send her Holland, or even While I have b meries instead o butter, I do not er in the summe avoring to see ir ully contend ag production.
ed talent, and, n this province herent powers 8 not that we ful and profitto enable the se and protect g step towards
fitable because s-the proper d growth of daptable crops extension of liture of labor, ls, fed on the at when rightly ameries. These oken, open the acture of milk and likes, and it. From the eese, a product putter is. I wish d by the cows of Our cheese has ng countries in y of sending to There must be od a reputation ports of cheese. ple,-when the cheese made in fifth of one per evealed the real tation, while on rket reputation, lor. Of all the cows as we used reries-less than we had this posiour butter were uct.
er product in the producing butter? mes evident that o is estimated at what amount of long it takes to n the average six quired to make a 0,000 pounds of made in creambe 620,000 days this butter made ngs of the virtue,
industry, intelligence and beauty of our women; and yet our farmers are crushing the spirit out of their wives and daughters by letting them milk cows, set pans, chushing butter, and all the work incidental to that process. This seems to be a small, factor in our
national prosperity but should have more leisure for triely a very important one, that the women on our farms producing butter which sells for twelvanly work, and should spend less of their time in to say against the butter these ladies make burteen cents per pound. I haven't a word must make our methods economical. The difference there is a waste of labor. We
produced frem produced from a given quantity of milk when handled in crween the amount of butter
the same quantity milk product of ty of milk when handled in private dairies, weales, and the product of reason of the existing province, show a loss of a million and ould, if applied to the total say that I made investite of affairs. To show how 1 arrive alf pounds of butter by milk after being churned ions to ascertain the amount of butt that conclusion I may the proper manner at ced in the way that is all too common, and aft left in the butterripened by souring-I feameries. By the creamery process and after being handled in cent. of the total fat of the muttermilk so poor that it conte cream being thoroughly churning practised in home dain, while buttermilk produced by the tess than three per qualities of cream mixed just ies-sometimes sweet, sometimes sour, sommon method of cent. of the total fat of the before churning-contained upward, sometimes these two I put the loss accruing from imp a difference of twenty per cent. of of twenty-three per at five per cent., which is an imperfect knowledge and unsuitable practice total butter-fat. of butter run off and fed to inside estimate, and that gives a mile practice in farm dairies of butter that should have peen or wasted in some other way-a million and a-half pounds annually fed to animals which could at from twenty cents to twenty-five and a-half pounds the cost. That is one which could have been better fed with enty-five cents per pound, butter we have made in the perious loss. The other is that we have not ral at one-sixth had the butter been made iprovince the return per pound that we would reeived from the vill bring on the average creameries. Creamery butter, at the would have received narketed at the same tio four cents per pound more than e very lowest estimate, iently fine, and hame time. We have lost because the lhan dairy butter made and nd dairy makes. In urned their attention to gris wen have been deterred from butter, of both creamery his creating for what we grain growing and grain selling. The whole thing cows and have etting a good market. We have to sell, a demand at profitable prices ; in depends upon e kind of butter they need have the people to make that market if we in other words aality, not only may a higher and want. Therefore, by the malkin we can only supply cause the man who gets finer price be realised for it, but a making of butter of that ery day. Then the foreign butter will eat twice as much, and demand may be created; high price. England imports market is open for an unlimited quantity butter three times ird of all the cheesend imports a good deal of cheese from us . wo - and a-half percent she gets from all foreign countries; but we send her about onece pounds of cheese of the butter she imports from abroad. We send her only about ry hundred pounds of every hundred pounds she imports, and less than two pout thirtylars worth of butter abrotter she buys, and yet she buys two and ahalf timo pounds in cheese market, I do not sead as she buys of chfese. If we have a-half times as many ter market, which is not see any reason why vee should not secure been able to capture ok England is patriotic more extensive, and so gain a larger ina large share of the ious to send her money and motherly enough in regard to her income to ourselves. I Holland, or money this way for butter as to send it to Denmarkies to be just as. While I have our friend Uncle Sam, as long as she gets fair value for it, Norway meries instead of recommending improvements in our methods and the it.

butter, I do not thime dairying, and suggesting England as an inand the adoption of er in the summer tink that ours is a country which can go successfully inde market for avoring to smer time. I have been considering this quescessfully into producing ully contend agto it as far as possible, and it is my opinion that no some years and | r production. The natural conditions of Oanadache adape not of for a cort a certain line of |
| :--- | production. The natural conditions of Oanada are not of such a charaineter as tc

adapt it for the profitable production of batter for export in the summer time. We should work in harmony with our natural conditions, and not contend against them. We cannot successfully compete with Sweden, Denmark or Ireland, in producing butter in the summer time for the English market. The butter we produce in the summer time should be for our own home trade. If we produce a fancy quality our home market will be doubled in its extent, and if we can double that market it will be found that it is just as large a market as it will pay us to supply. I have no desire to foster the making of butter in summer time for export; 1 do not think it will pay us. Our country, I think, is adapted for the production of cheese in summer time ; it is essentially a country for the production of cheese during those months, and it is admirably adapted for the growth of calves and the manufacture of butter during the winter months. If we will make our cows come in at the proper time, and make butter from their milk, the most profitable part of the dairying season will be from October until April, and not, as now, from April until October. This plan will be found to have many advantages-(some of which I will now try to enumerate)-over the system at present followed in this province. There will be a longer working season. No man can afford to go idle for six months in the year. He should also give his dairy and his cows employment twelve months of the year that they also may produce. Thus he will give himself employment for a long season in a manner which will be highly remunerative to him. Another advantage is, that by making their cows calve in October, the farmers of this province will have better stock than by having them calve in April. An April calf is expensive to rear, and a June calf is often a burden and expense upon the man who owns it. It is usually hard to winter the first year.

A dairyman keeps cows, first to give milk, then to give stock, and then to make beef-milk, stock and beef; and a man who has them in that order will make more money from them all three, than if he had begun the other way about it. Another advantage is that the winter is the period when high prices rule for the product of cows. Butter will bring on the average one-half more per pound frum October until April than it will from April until October. A farmer could afford to sell a pound of butter for less between October and April than between April and October. That, then, is the time when he ought to be in the business. In addition to being the period of high prices and cheap production, winter is the period for safe transportation. Butter can be sent to Eagland during the winter without the risk of its being spoiled on the way. Another advantage is that the elements of fertility which exist in the plant food remain on the farm.

Our fathers kept cows that milked in the summer time, and we have been doing the same, and have condemned anything new as a " new-fangled notion," just because it is not something that has been practised from time immemorial. However this is not , new-fangled notion. The people of Denmark, years ago, were a sad, discontented people against the Government, against the wealthy, against everything in fact but themselva -a poor, unfortunate poverty-stricken people. The Agricultural Society of the Kingdom, and the Dairymen's Association formed afterwards, tried to stir up the farmers of that country to keep cows and make butter during the winter, and to gro the right kind of plant food for animals, and thus work out their own salvation. The men thought it was all moonshine, I am told ; but bye-and-bye some thought they wou try, and the result was, that when I was in Denmark three years ago I heard no talk hard times, for the dairy business had completely revolutionised the condition of agrics ture. They now send butter to England when it is dear and when transportation is sal and grow steers and send beef over there to such an extent that, although the kingda of Denmark is only about one-sixteenth the size of Ontario, they send about as much value of fat cattle as we do from the whole Dominion of Canada. In the same many by keeping abreast of the times and adopting whatever is good, though new, we a increase our export of fat cattle, and at the same time receive larger returns from dairy products. Some stock breeders think or say that if we go into butter-making winter we must have a cow that is worth nothing for making beef. The Danes bu superior butter-making cows, generally lean when milking. More than half of the they send to England in the year is in the shape of fattened cows, and by the act
returns of the a head less t

We need have had in men. If the would find th are one or tw have not utte done and the more valuable year round. changed durin during that se the best and returns from entirely new, of at least five converted into interest in this because as the more money to for everyone. will understand of milk, and th cheese, is a mal dairyman, and fore to say that ing our nationa develop and hea

The followi honor to deliver
line the inside forms a small glo Each bud or glok cow's milk. The lestruction of t cow's blood into ion in it, not in atter part of the quid part of the lobules of fat uickly as the liq tho is of so mode quantity of the odesty should n found compatil rgely affect the salt will induce ndition, with its
mer time. We inst them. We acing butter in he summer time me market will nd that it is just the making of ountry, I think, country for the or the growth of will make our most profitable now, from April e of which I will ince. There will in the year. He ne year that they ason in a manner by making their k than by having ine calf is often a winter the first
and then to make will make more out it. Another product of cows. until April than of butter for less then, is the time of high prices and ter can be sent to ne way. Another main on the farm. ve been doing the just because it is ever this is not iscontented people net but themselver cal Society of the d to stir up th vinter, and to groo salvation. The thought they wou I heard no talk ondition of agrice ansportation is sut though the kingda 1 about as much n the same mana though new, we a or returns from to butter-making The Danes nan half of the vs , and by the ace
returns of the Board of Trade I find that these fatterd
a head less than our magnificent steers. That istened cows bring only eleven shillings We need, in regard to this matter have had in the past, a little more sympathy beties, a little more co-operation than we men. If the farmers would co-operate to support theen the the farmers and the creamery would find these advantages, which I have merely their creamery through the winter they are one or two points on which I desire to make hinted at, more than realised. There have not uttered a word antagonistic to cheese factosielf clear. In all I have written I done and the ralue they are to this province. Nowies. I recoginise the work they have more valuable ; I would like to see them made Now, I would like to make them even year round. Good returns are got from the summere valuable by being worked all the changed during the winter months, which would work now, but if the equipment were during that season of the year be operated as creat take a very great outlay, they might the best and most approved style without incurring cres, and the butter could be made in returns from them would be greatly enhanced. The expense of new buildings, and the entirely new, is not a very heavy expenditure. The cost of a creamery, even if built of at least five hundred cows can be built at a cost creamery capable of handling the milk converted into a creamery at an expense of not more $\$ 1,300$. A cheese factory can be interest in this subject ; every man who wishes his than $\$ 250$. Every farmer has an because as the farmers produce more food they his country well has an interest in it, more money to spend or invest, which means more money fore to spare, and consequently for everyone. It just revolves itself into this, that tif for the merchant and better times will understand the cow and her requirements, the best the man who will study so that he of milk, and the most advanced methods of converting methods of producing a large yield cheese, is a man who is doing everything in his power to milk into the best butter and dairyman, and through those interests the interests of to advance his own interests as a fore to say that the creameries of this province are one the whole nation. I have thereing our national growth, a factor which it should be of the greatest factors in furtherdevelop and heartily support.

5.-BUTTER MAKING.

The following is transcribed as the substance of part of an address which I had the honor to deliver before the convention of the Creameries' Association of Ontario :
" While her milk is being elaborted by association of Ontario :
line the inside of the milk-ducts and vesicles in ber a cow, the ends of the cells, which Forms a small globule, and when that is perfected it droper, seem to enlarge. Each one Each bud or globule, so formed, is a globule of fat; froms off into the serum of the milk. cow's milk. These tiny buds of fat seem to grow on the surface made all the butter from lestruction of the cells, and partly by the conversion surface of the cells, partly by the cow's blood into fat. They trickle down in and with the some of the substance of the ion in it, not in solution as are the other solids in it. the milk, and are held in suspenatter part of the milking, probably because they do it. They mostly come during the iquid part of the cow's milk. The fore milk is thinner move so quickly or easily as the lobules of fat do not free themselves from the inner than the strippings, because the uickly as the liquid of the milk. If one finds internal linings of the milk-ducts so ho is of so modest and retiring a disposition that sending milk to a cheese factory, a man quantity of the average milk given by the that he will not keep at home for table use odesty should not be respected or trusted tow, but always and only the last quart, his found compatible. The condition of the cow's such modesty and honesty may not rgely affect the quality of the milk she gives. Bad and her nervous system very salt will induce in the cow a condition in which she feeding, foul water or the absence ndition, with its consequent effects, may be caused by ne not yield good milk ; a similar

11 (a.c.)
nent. A cow has a peculiarly delicate organization, and must be handled with kindness, and any man who abuses a cow beats out the profit ; for she will pay him back by giving less milk, and that of a poorer quality. The globules of fat, before-mentioned, are so numerous that in a thimbleful of milk there will be found millions of them. It is estimated that there are at least one thousand millions of them in every cubic inch of milk. From these specks of fat the butter is made. To get them out of the milk is the task of the butter maker, they are too small to be strained out with the finest sieve ; fifteen hundred of the largest of them placed side by side, like a row of marbles, would not measure more than one inch. If milk be left at rest they will rise to the top because they are lighter than the liquid in which they float. The heavier parts of the milk are drawn down by the force of gravitation, and as the serum of the milk, composed of water, casein, sugar, albumen, etc., moves downward, it displaces the cream globules and forces them towards the top. There are two methods of separating these fat globules from the milk; a natural method and a mechanical method. In the natural method, the power of gravitation is used to pull the heavier portion of the milk down, with the effect that the lighter part, the fat globules, are pushed upward. In the mechanical method, centrifugal force is applied to attain a like result. When a quantity of milk is put into a rapidy revolving vessel or cylinder, the heavier parts will be forced outwards against its resisting side or inner surface with sufficient pressure to push the lighter particles, the globules of fat, towards the centre of revolution. In that way the water, casein, sugar, albumen and the other heavier constituents of milk, find their way to the outside of the quantity being treated in a revolving cylinder, while the globules of fat are collected in concentric form on the inside surface of the quantity being treated. This is the law, that the cream, mainly composed of fat-globules, travels in a direction opposite to that of the force exerted upon the milk, whetber the force be centrifugal or centripetal.

If ordinary milk be set in a deep-setting pail and be left at a temperature of 60 degrees Fahr., it would take these small specks from three to six days to get to the top at the rate at which they would move. They can be helped to move faster. The milk at a temperature between 90 and 98 degrees is slightly enlarged in bulk, and by putting it into the deep-setting pails at the higher temperature, $\left(90^{\circ}\right.$ to $\left.98^{\circ}\right)$, tha advantage of 3 falling temperature from above 90° to 40° or 45° may be gained. That treatment wiu expedite and facilitate the upward movement of the globule of fat. mesh of lacto-fibrin the milk is also believed to prevent the formation of a delicate mesh of lacto-iorim which would hinder the globules from rising freely.

The cream itself is only that part of the milk into which the globules of fat hars been gathered in large numbers. Cream has no regular or constant per cent. of fat ; the range is from 8 per cent. to 75 per cent of fat. In one hundred pounds of cream then may be only eight pounds of butter, or there may be seventy-five pounds according its quality of richness. The globules of fat have no skins or organic coverings disting in constitution from their own substance. Like drops of quicksilver that have separatea from each other, they have no pellicle. But sometimes the serum of the milk become so viscous that a quantity of it will adhere to the surface of the globules and like a cous ing of gum will prevent their movement upwards when the milk is set, or their mors ment inwards when the milk is treated in a centrifugal machine. If a quart of wart water be stirrred into every pailful of milk when it reaches the dairy room from ti stable, the separation of the cream will be facilitated. The water may be at a tempea ture anywhere between 150 and 180 degrees Fahr., and should be warm enough to ris the temperature of the milk to above 90 degrees. In the winter season especialiy, id culty is experienced sometimes in churning the cream. The addition of water at a tas peratur of 70 degrees to the cream, while it is still sweet, to the extent of ${ }^{25} \mathrm{p}$ cent. of as bulk, will cause it to yield its butter in less time and more completely. water should be added before the cream is sour and at least 20 hours before the churix is commenced. The next treatment required is the development of lactic acid. quantity of sweet cream be churned and an equal quantity of sour cream of the sa quality as to composition be also churned, there will be obtained from the sweet cre
only 77 po from the churning of to 77 pound pounds of b in the same churning th should be ke to permit it and also for performed f by impaction will stick to butter has 'c in the churn addition of the tempera winter. It After the but The butter-m 50 to 55 deg, off free from an hour to dr for that purpc ing should b three-quarters those who pur with a view to or firkins, or in winter time the starting o stock."

During the Ontario, held in unanimously ca
"Moved by Association expr ing on of experi coming season. desirability of in necessary for the

In conseque of Agriculture, h indertaking of ex of the College an isposal for begin mited to parts o ssociation of Ea eparations were the factory was to three compart
d with kindness, a back by giving ned, are so numIt is estimated of milk. From ask of the butter a hundred of the asure more than lighter than the vn by the force of ar, albumen, etc., the top. There ral method and a used to pull the the fat globules, pplied to attain a el or cylinder, the ace with sufficient centre of revoluavier constituents evolving cylinder, de surface of the sed of fat-globules, milk, whether the
temperature of 60 o get to the top at ster. The milk at and by putting it the advantage of a hat treatment will he rapid cooling of esh of lacto-fibrin
lobules of fat have er ceent. of fat ; the inds of cream ther ounds according coverings disting that have separate of the milk becoms ules and like a coss s set, or their morm If a quart of wart lairy room from th ray be at a tempes arm enough to rais ason especialiy, difí n of water at a the he extent of 25 re completely. s before the churnim of lactic acid. ur cream of the sic from the sweet cre
only 77 pounds of butter out of every possible 100
from the sour cream 97 pounds of every possible pounds, while there may be obtained churning of cream thoroughly soured, one obssible 100 pounds. That is to say, by the to 77 pounds from the churning of cream in ains butter in the proportion of 97 pounds, pounds of butter lost in the province anm in a sweet condition. There are thousands of in the same churn at one churning. The onlly from the churning of two qualities of eream churning thoroughly mix 'from twelve only safe plan is to have all the cream for each should be kept at a temper. θ of from 60 twenty hours before the operation begins. It to permit it to become sour, θ of from 60 to 70 degees acore the operation begins. It and also for cream from centrit The higher temperature is requing to the season of the year, performed for the purpose of by impaction to unite. If causing the globules of fat to season. The churning is will stick together; when wo globules strike each other astrike on to each other and butter has 'come,' and the parge numbers of them unite in a suitable temperature they in the churning of the particles may be washed and remat way, it is said that the addition of water if requin that the serum or medium shall bed. All that is required the temperature being kept at as already described) by the developerly treated (by the winter. It is imperative that from 57 to 59 in the summer timement of acid, and by After the butter particles areat a thermometer should be used time or from 62 to 66 in The butter-milk may be removed as large as wheat grains, the cheveal the temperature. 50 to 55 degrees. It may thus be and replaced by pure water at a a ming may be stopped. off free from a milky appenas be washed in the granular state a temperature of from an hour to drain. It may thee, the granular butter should be left When the water runs for that purpose. Pure salt of balted in the churn or removed in the churn for half ing should be regulated to of fine velvety grain only should bed to the butter worker three-quarters of an ounce suit the taste and requirements used. The rate of saltthose who purchase Conce to one ounce per pound will be for the customers. From with a view to giving the or firkins, or finished in putter an attractive appearance, whet market should be made in winter time ; then as soon as a rolls. I advise the making of fine be packed in tubs the starting of a creamery as number of farmers in any sectine butter on the farms stock."

$$
\mathrm{g} \text { the winter and the raising of the best }
$$

6.-EXPERIMENTAL CHEESE-MAKING.

During the course of the convention of the Dairyman's Association of W Ontario, held in London on January 16th and 17th 188man's Association of Western unanimously carried. Association express its approval of thended by Jas. Carmichael, and resolved, That this ing on of experimental work in cheese-magintion of Mr. Thos. Ballantyne, for the carrycoming season. Resolved further, that we recing in two factories in the province during the desirability of instructing Professor Robertsommend to the Minister of Agriculture the necessary for the proper prosecution of experimental ine such provision as he may deem In consequence of this recommentions."
Agriculture, he was good enough to mat and my own representations to the Minister andertaking of experiments. A sufficient supp all necessary financial provisions for the ft College and we have no equipment for of milk is not available in the vicinity isposal for beginning and conducting experime cheese-making work. The time at my mited to parts of two weeks, One of the factoris in the manufacture of cheese, was ssociation of Eastern Ontario, was selected as the ples of the President of the Dairymen's reparations were made at a very small expenditure of for the work. The preliminary the factory was deemed sufficient for all practical pu money. The ordinary equipment three compartments of almost equal capacity purposes. One milk vat was divided en compartments of almost equal capacity, by the soldering milk vat was divided
strong tin across it. It was so constructed that three equal quantities, from a vat full of milk which had been previously well stirred, might be treated in similar or different ways. Owing to the short time available for the work, the experimental examinations were confined to four lines :-

1st. The influence and noticeable effects of the use of different quantities of rennet extract in the same milk, when handled under similar conditions of temperature, time, acid and salt.

2nd. The noticeable effects of the use of different rates of salting upon curd that in other respects was treated alike.

3 rd . The effect of continuous stirring of the curd after the removal of the whey, compared with the effects resulting from matting of the curd with partial packing, and close packing, piling and covering.

4 th . The effect of different setting temperatures upon the same milk when made up under similar conditions of treatment in every other respect.

The experiments were commenced on the 27 th day of August, at the factory, as already intimated, of Mr. M. K. Everetts, at Merrickville, Ont. The following I find among my notes made at the time. "The weather during the last week of August has been the warmest of the summer. Most of the milk when heated had a gassy odor similar to what has been much complained of by cheese makers during the summer. With the exception of the milk received on August 31st, it all showed an over-ripe or acidy condition. The presence of acid could be discerned by the hot iron test immediately after or before the cooking temperature was reached. The factory and utensils were creditably clean ; the whey was returned to the patrons in the milk cans, and a bad odor aris ing from the whey tank and surroundings was the only objectionable feature of the premises."

The cheese were shipped to Guelph within a week after they were made, and were all cured in the same room at an average temperature of about 65°, until Nov. 9 th, when they were put in a dry, cool cellar. The result of examinations made by myself, Messrs. R. M. Ballantyne, and A. F. McLaren, as well as by a large number of experts, who examined them during the progress of the dairymen's conventions at Belleville and Stratford in Jan. 1889, are given in the following tables.

1st. On August 28 th, $4,000 \mathrm{lbs}$. of milk were used to test the effect of different quantities of extract of rennet. The milk was thoroughly mixed in one vat and then $1,333 \mathrm{lbs}$. of it were put in l_{0} each of the three compartments of the experimental vat. Hansen's extract of rennet was used. The milk in the different compartments was desig nated as Lots 1, 2 and 3. The following table will show the treatment :

| |
| :--- | :--- | :--- | :--- | :--- | :--- |

Three cheese
lot numbere
Rate of salt a
$1,000 \mathrm{lb}$. of m
Weight of cu each hoop .. Weight of chee
ust 30th ust 30th
Weight of che tober 18th... Weight of chees uary 3rd
Order oi merit by myself t_{0} effects of differ
of salting, Oct
By Messrs. Ba and Maclaren, By myself, Jan. Order of merit as
by myself to by myself to the effects of quantities of extract, Oct. 22
By Messrs. Bal By Messrs. Bal By myself, Jan. 2 By experts at B Convention wh pared only N_{c} and 8
By experts at st Convention wh pared only No with 4, 6, and 7,
verage lb. of Average lb , of m quired per lb . of calculated from at Jan. 3rd

The averag was from 5.4 to

The average was 2.7 per cent

As far as I progress of curin milk, cured as qu think the rapid left in the cheese The function of ectly, a larger qu hortly after the heavier body " \mathbf{r} isalt than from

2nd. During ts of curd were s fferent rates of s In each lot, o nother at the rat
ilk. I do not thi e manufacture ar perts and my ow
m a vat full of ar or different examinations
tities of rennet perature, time,
on curd that in
l of the whey, al packing, and
k when made up
the factory, as following I find dk of August has gassy odor simisummer. With ver-ripe or acidy mmediately after ensils were credia bad odor arise feature of the
made, and were il Nov. 9th, when y myself, Messrs. xperts, who exam. e and Stratford in
effect of different one vat and then experimental vat. rtments was desig.

Lot 3.

1,333 lbs.
3 oz.
$9.53 \mathrm{a} . \mathrm{m}$.
10.04 "
10.16 "
10.40 "
11.00 "
11.35 "
12.05 p.m.
12.05 "
12.30 "
2.30 "
2.40 "
3.10 "
3.10 "
85°

165

The average shrinkage of weight by the curing from August 30th to October 18th was from 5.4 to 5.8 per cent. The average shrinkage of weight by the curing from October 18th to January 2nd 2.7 per cen As far as I was able to discern by close examination there was no diffeer progress of curing ; the cheese made by the use of 3 oz . of renne was no difference in the milk, cured as quiekly as those from 9 oz . Evidently the rennet extract per $1,000 \mathrm{lbs}$. of think the rapidity or the slowness of curing depends rennet is not the curing agent. eft in the cheese, the quantity of salt curing depends upon the proportion of moisture The function of rennet in cheese-madded and the temperature at which they are kept, sectly, a larger quantity is required in the seems to be coagulation. To effect that perhortly after the cows have come in, than during of cheese from fodder-milk and milk heavier body" results from the use of a larging the summer and autumn. A cheese of salt than from the use of a less quntity of these. 2nd Duringerg of
ts of curd were salted at different re tests, three cheese in each of eighteen different In each lot, one cheese was salted at ther respects was treated alike." nother at the rate of $2 \frac{3}{4} \mathrm{lb}$., and a third at the $2 \frac{1}{2} \mathrm{lb}$. of salt per $1,000 \mathrm{lbs}$. of milk, ilk. I do not think that it would serve any good rate of 3 lb . of salt per $1,000 \mathrm{lb}$. of e manufacture and treatment; hence I state good purpose to specify all the details of perts and my own conclusions. 1 state only the results of the examinations by

In the comparisons as to the order of merit in market value, on November 1st and January 2nd, the following presents a summary of the judging :

Cheese with 3 lb . of salt per $1,000 \mathrm{lb}$. milk.	Cheese with 23 lb , of salt per $1,000 \mathrm{lb}$. milk.	Cheese with $2 \frac{1}{2} \mathrm{lb}$. of salt per $1,000 \mathrm{lb}$. of milk.
1st.-Fifteen times.	1st.-Once.	1st.-Once.
2nd.-Once.	2nd.-Fourteen times,	2nd.-Three times.
3rd.-Once.	3rd.-Twice.	3rd--Thirteen times.
Equa-Once.	Equal-Once.	Equal - Once.

The cheese with the highest rate of salting had invariably the "heaviest" and "firmest body." The flavor on January 2nd was better in the cheese with 3 lb . of salt than in the others. These conclusions apply mainly to cheese made during the latter half of August and during September and October. The larger the amount of salt used, the drier the curd becomes, and the longer is the time required for curing.

3rd. "The effect of (1) continuous stirring of the curd, after the removal of the whey, was compared with the effects resulting from (2) matting of the curd with partial packing and from (3) close packing, piling and covering."

A series of five tests was instituted. Two of the lots were made up "white " or without coloring, and three were made "colored." 3 oz . of extract of rennet per 1,000 lbs. of milk were used in every lot. The method of procedure was to fill each of the three compartments of the experimental vat with an equal quantity of milk from a vat where it had been previously mixed. The treatment of all was similar, until the whey was drawn off, which was done when the hot-iron-test would show "acid hairs " to the length of from $\frac{1}{8}$ to $\frac{1}{4}$ of an inch.

After the removal of the whey, the curd of Lot 1 was stirred on a rack with a strainer until it was "dry and firm." The condition of being "dry and firm" is reached when no free whey will colleet in the curd when it is allowed to mat. The curd was then allowed to mat, was turned frequently, was packed close and ultimately piled seven or eight layers deep.

Meanwhile the curd of Lot 2 was also stirred on a rack with a strainer, until it was "dry and firm." It was then allowed to mat, was frequently turned, but was not packed more than two layers deep.

At the same time the curd of Lot 3 was also stirred on a rack with a strainer until it was "dry and firm." It was afterwards stirred occasionally and not allowed to mat; no piece of it was at any time larger than the size of a hen's egg ; most of it was kept in a condition of a separation of the particles, the same as before the removal of the whey.

One cheese of each lot was salted at the rate of $2 \frac{1}{2} \mathrm{lb}$. of salt per $1,000 \mathrm{lbs}$. of milk; one at the rate of $2 \frac{3}{4} \mathrm{lbs}$., and another at the rate of 3 lb . per $1,000 \mathrm{lbs}$. of milk.

Another method of procedure was to divide the curd of one large vat into three nearly equal lots immediately after the removal of the whey as hefore mentioned. The three lots were then treated differently as described above ; viz., Lot 1 was stirred until "dry and firm," and afterwards matted, turned frequently, packed and piled seven or eight layers deep; Lot 2 was stirred until "dry and firm," and afterwards matted, turned, and laid two layers deep; Lot 3 was stirred uutil "dry and firm" and after. wards stirred occasionally and kept from matting.

I will in this case also give only a summary of the judging as I do not think that any good end would be served by a publication of all the little details.

Summar and myself as

First 9 e
By myself, Octoh
By Messrs. Ball November 1st. By myself, Januai By experts at Bel By experts at Stra

Secon
By myself, October By Messrs. Balla November 1st By myself, January By experts at Belle By experts at Strat

Third
By myself, October By Messrs, Ballan November 1st By myself, January By experts at Bellev By experts at Stratf

Fourth 9

y myself, October 2: Sy Messrs, Ballant November 1st y myself, January 2 experts at Bellevil yexperts at Stratfor

Fifth 9 e
myself, October 22 Messrs, Ballanty November 1st
myself, January 2 n
amary of the five ach the five
rage quantity of rke a pound of chees weight of cheese,

As between Lots in market value. 4th. The effect o similar conditi time was not a
ember 1st and of sall
nilk.
heaviest" and ith 3 lb . of salt aring the latter nt of salt used,
val of the whey, partial packing
up "white" or ennet per 1,000 fill each of the nilk from a vat until the whey id hairs" to the
on a rack with a firm" is reached he curd was then piled seven or
iner, until it was was not packed
a strainer until allowed to mat of it was kept in oval of the whey. 000 lbs . of milk of milk. ge vat into three mentioned. The was stirred until ad piled seven or terwards matted firm" and after
lo not think that

Summary of Five examinations of the cheese of each of the five tests by other experts
myself as mentioned in and myself as mentioned in the table of the extract of rennet test

Lot 3.
(Stirred).

Equal,
Equal.
Equal.
Equal.
Third.

Third.
First.
Third.
Third,
First.

Third.
Second.
Third.
Second.
Third.

Second.
First.
Third.
Third.
Second.

Third.
First.
Equal.
1st-Four times,
2nd-Four times,
3rd-Ten times. Equal-Five times.
cage quantity of milk required to
rike a pound of cheese calculated from e weight of cheese, January 3rd.....
10.53 lb .
10.60 lb .
10.74 lb .

As between Lots 1, 2 and 3 in each series of 9 cheese, there was in market value.
4th. The effect of differe no appreciable differ-
er similar conditions of treatment temperatures upon the same milk when made up time was not available for continuing it other respect, was fexamined by one test
6. Wh

Each compartment of the experimental vat was filled with an equal quanticy of milk which had been previously mixed. The milk in one compartment was set at a temperature of 84°; in another compartment at 90°, and in the third compartment at a possible throughout The treatment and conditions were made and kept as neari the quality of the cheese. the whole process. There was no appreciable dion the cheese from August 30th-(one

Shrinkage.-The average shrinkage in weight October 18 th, was 5.08 per cent. ; the and two days after the cheese were mary 3rd was 1.70 per cent.
shrinkage from October 18 then then in cheese-making does not hasten
General Conclusions.-The quantity larger or less proportion of water (or moisture) is or retard the curing process except as a larger or less proportion retained in the cheese by its use.

For long-keeping cheese the smallest quantity of rennet that will perfectly coagulate the milk, fit for cutting, in from 45 to 50 minutes at 86° Fahr. will give the best results.

A proportionately larger quantity of rennet should be used when the milk is overripe or acidy.

For "spring" and early summer-made cheese the quantity of sait should not exceeả $2 \frac{1}{4} \mathrm{lb}$. per $1,000 \mathrm{lb}$. of milk; for midsummer and autumn-made cheese the rate should be increased to $2 \frac{1}{2}$, then to $2 \frac{3}{4}$, then to 3 lb . of salt per $1,000 \mathrm{lb}$. of milk.

The tests with matting and close packing, versus matting, versus loose stirring, indicate that no one of these treatments is essential to the making of finest cheese ; the main point is that the whey shall be stirred out of the curd until it becomes dry and firm" before the acid is developed to cause the curd to matting and packing result in as far as half an inch. When that is provided for, the matis giving to the cheese a more flakey and silky texture.

The setting temperature does not seem to exercise any important influence on the quality of the cheese; in ordinary practice 86° is the most serviceal conducive to the when the milk is acidy or over-ripe a higher temperature will be more conct certain manufacture of cheese of fine texture and body.

BULLETINS FOR CHEESEMAKERS AND PATRONS.
 Notes for Cheese-Makers for May.

Factories and their Surroundings.

1. The present, not next week, will be fitting time to see that all the draings facilties are adequate and in good working order.
2. Whey runs, spouts and tanks should be put into such order that leaking will prevented.
3. If there be a leakage anywhere from floors, spouts or tanks, which is immediately preventible, provision should be made at once for drainage, if only by shalif open trenches. A liberal supply of lime and gypsum should be spread around su places. Don't fail to secure a barrel or two of each some time this month for use dur the hot weather.
4. If the factory buildings are not painted and will not be painted, get them whit washed this month. If you cannot get that done by the proprietors or managers, permission and do the rest yourself. A whitewashed curing whitewashed. If the che tion can be kept 10 degrees cooler in summither the buyers nor the patrons will wi become injured, through ex wash your reputation then.
5. Make the surroundings of the factory neat and tidy. Plant a few trees a great many flowers.
ntity of milk at a temperat at 96° Fahr. ole throughout he cheese. ast 30th-(one per cent. ; the
does not hasten (or moisture) is
fectly coagulate the best results. he milk is over-
ould not exceea the rate should
$\angle s$ loose stirring, inest cheese ; the comes "dry and the hot iron test packing result in
influence on the able temperature; e conducive to the

ONS.
at all the drainas that leaking will anks, which is e, if only by shall spread around su morth for use durf
nted, get them win tors or managers, of imperfect constu vashed. If the cho he patrons will w lant a few trees as
6. While keeping the outside of the premises as creditable to your taste and neat habits as possible, make the inside to reflect still more your aversion to everything untidy and dirty. Give every part of the factory a thorough cleaning and keep it in a sweet state all summer.
7. Before the curing-room contains any cheese, fumigate it by burning some sulphur in alcohol. That will prevent the growth of mould on the outside of the cheese.
8. The leisure hours of May, before the large flow of milk is received, should be employed putting all the apparatus, appliances, utensils and machincry in the best of working order.
9. Be sure that the making room floor is so well constructed and supported that it will not shake or vibrate during the coagulation of the milk.

Milk and Making.

1. Procure a copy of "Milk for Cheese Factories" for each of your patrons by applying to the Dairy Department, Ontario Agricultural College, Guelph, stating the number required and the addresses to which they are to be sent.
2. Look out for "leeky" flavors in the milk. Don't put such milk into the vat with that of the other patrons. If you have time, make it up by itself and send the cheese from it to the patron for his private use.
3. Make provisions for keeping a short record of each day's work, of the exceptional they are shipped.
4. Milk sours readily and rapidly for a number of weeks after the period of lactation begins. Hence milk seldom requires to be ripened for setting during May,
5. Use enough rennet to coagulate the curd into a state fit for cutting in form 17 to 20 minutes, at from 82° to 88° Fahr.
6. Cut it rather early, slowly and very carefully.
7. Use the horizontal knife first.
8. Afterwards allow the curd to settle until whey comes over nearly the whole surface.
9. Then begin to cut with the perpendicular knife.
10. Immediately after the cutting is completed, begin to stir the mass slowly and and continuously, until the curd is cooked.
11. Heat should not be applied until 10 minutes after the stirring is begun.
12. The heating should be effected gradually, at the rate of about 1 degree for every 4 or 5 minutes until 98° Fahr. is reached.
13. Draw most of the whey early, und so guard against being caught unprepared for the rapid development of acid.
14. Don't dip the curd until the presence of acid is discernible by the hot iron test. Sweety flavors result from too early dipping in May.
15. After dipping the curd, stir it gently and keep it at a temperature above 94°.
16. Don't attempt close matting, high piling or packing of the curd. See that the whey is separated from it.
17. When it begins to feel "slippy" and smells like fresh made butter, it should be put through the cutter or grinder.
18. Acid develops so rapidly that care must be taken to keep the treatment well in advance of the change in the curd.
19. After grinding or cutting, stir for 10 or 15 minutes before salting.
20. Apply salt at a rate of about $1 \frac{1}{2} \mathrm{lb}$, early in the month, to 2 lb . per $1,000 \mathrm{lb}$. of milk during the last ten days, varying the quantity slightly according to the condition of the
21. Begin to put the curd in the hoops within 20 minutes after the salt is stirred in.
22. Use only pure water in bandaging.
23. Guard against the formation of edges or shoulders from the hoop-followers being too small. Apply the pressure gradually until the whole power through the long lever is used, after four hours.
24. Leave the press-cloths on, and turn the cheese in the hoops every morning. Let no cheese leave the press-room until the shape is symmetrical and the finish neat.
25. Don't press the scaleboards on the ends of the cheese.
26. When the press-cloths are removed, use hot clean whey-oil or butter, into which has been dissolved a teaspoonful of soda per cupful of oil.
27. Try to keep the temperature of the press-room above $60^{\circ} \mathrm{Fahr}$.
28. The curing.room should be kept at a temperature constantly between 65° and 70° Fahr.
29. Provide strong, smooth boxes of the exact size.
30. Stencil the weight of the cheese in neat figures on the side of every box.

Patrons.

1. Try to get each patron to take a personal interest in the care of the milk.
2. Encourage every farmer in your neighborhood to sow a small area of oats and pease or oats and vetches for summer supplementary feed.
3. Persistently endeavor to induce every patron to plant at least 5 acres of fodder corn in rows three feet apart.
4. Send to the Dairy Department, O. A. C., Guelph, for a bulletin of instruction on the planting of fodder corn and the curing of silage.

Milk for Cheese Factories.

Feed. -The milk of cows being a direct elaboration from their blood, whatever interferes with a healthy condition of that fluid will also effect the quality and quantity of the milk secreted. Too much care cannot be exercised in proviling feed suitable, succulent, easily digestible, wholesome and nutritious. The grass of early summer is too watery and weak in nutriment for its bulk to be fed alone to the greatest advantage. A judicious allowance of bran, pease and oats, oil-cake or cotton-seed meal will increase the milk supply and fortifythe cow's system for the larger production of milk during mid-summer, fall and winter. Fodder corn, sown broadcast, does not meet the needs of milking cows. Such a fodder is mainly a device of a thoughtless farmer to fool his cows into believing that they have been fed when they have been only filled up. The same plant when grown under conditions favorable to its attainment of mature size and quality-in rows or hills 3 feet apart with from 2 to 6 seeds per foot in the row-yields a fodder by means of which cows are enabled to produce the largest amount of milk, butter or cheese per acre area of the land required for their support. Fodder corn is not a complete ration for the most economical production of the best milk. When supplemented by feed rich in albuminoids, such as these already mentioned, better returns for the feed consumed are realised. Last summer one of our leading Canadian dairymen, feeding 18 cows upon fodder corn to supplement scant pasture, furnished milk to a cheese factory. In course of time he provided a supply of bran, and by the end of the first week thereafter he found by an examination of the factory books that he was credited with enough extra milk to pay for the bran consumed ($2 \frac{1}{2} \mathrm{lb}$. per cow per day) and to leave him a balance of $\$ 2.43$ of extra profit for that week.

Water.-Water is nature's vehicle for carrying about most of the matter which she requires to move from place to place. The great boulders were quietly clasped in her arms and without apparent effort brought from the northern ridges to the southern parts of our province. The tiniest specks of nourishing
matter neede
to their prop by a cow to of the eleme like function place, it is lial cow until after which has beet impurities. T public health, There should b hot weather. of winter. I h will give as mu with wholesom Salt.-Dai their stable fee denied salt for milk, and that hours less time conditions of tre

Shelter.-0 Stables during t 40° to 55° Fah adjacent thereto In all the manag as will insure ex

Milking.regularity as to I say "he" beca ing the winter m since 1 left the f_{s} It is certainly m for table use or n tamination from otherwise might

Aëration.-

 is poured into one implies three thi peculiar odor whi in its flavor. (2) have the best cond Then the milk wil needful and adva tirring, dipping or wilk by evaporati ecause as has alre hese are called, ecome active onl ndisturbed carbo ommencement of an keep up their pagulate such mi ennet of milk that mediately after it milk required tois stirred in.
lowers being e long lever
orning. Let neat.
, into which
veen 65° and
y box.
milk.
a of oats and
cres of fodder
nstruction on
od, whatever quality and ised in protritious. The for its bulk f bran, pease tifythe cow's 11 and winter. Such a fodder that they have a under condiIs 3 feet apart thich cows are ea of the land ost economical inoids, such as Last summer to supplement vided a supply nination of the bran consumed for that week. of the matter oulders were a the northern of nourishing
matter needed to replace the worn-out tissues of the Lody are likewise carried to their proper places in this wonderful omnibus. The identical water swallowed of a cow to serve as a carrying medium in her blood for the equable distribution like function in the nutrition throughout her whole body is made to serve a place, it is liable to continue so throughe yields. If that water be impure in the first cow until after its consumption by the creature whole mission, from the drinking by the which has been contaminated by decaying anime consuming the cow's product. Water impurities. The milk from cows drinking animal matter is specially likely to retain its public health, and interferes greatly with the water is a menace and danger to the There should be an abundant supply of pure water hot weather. It should be furnished at a comfortable easily accessible by the cows during of winter. I have not found that cows which able temperature during the cold weather will give as much milk or milk of as good quality denied access to abundance of water with wholesome satisfying feed. as good quality as when plenty of water is provided

Salt.-Dairy cattle should
their stable feed daily. A series of experimalt every day, and salt should be added to all denied salt for a period of even one week they will convinced me that when cows are milk, and that of an inferior quality. Such milk will from $14 \frac{1}{2}$ to $17 \frac{1}{2}$ per cent. less hours less time than milk drawn from the same will on the average turn sour in 24 conditions of treatment being equal.

Shelter.-Comfortable
Stables during the winter sharters are indispensable to the health and well-being of cows. 40° to 55° Fahr. In summer-time a shade terature constantly within the range of from adjacent thereto, to protect against the bristle-making influence of in the pasture fields, or In all the management of cows such conditions should infence of July and August suns. as will insure excellent health and apparent contentment. be provided and such care given

Milking.-When practicable, milking should be d. regularity as to time. He only that hath clean hands by the same person, and with I say "he" because I think the men of the farm should do all be allowed to milk a cow. ing the winter months. I have exercised the right of changing the milking, at least dursince 1 left the farm. It is no more difficult to milk of changing my mind on that subject It is certainly more cleanly, and leaves the milk in a much hands than with them wet. for tablo use or manufacture. Pure stable atmosphere is much more desirable condition tamination from that source. Immediate straining will otherwise might be dissolved to the permanent injury of will remove impurities which

Aëration.-After the straining is is poured into one large can and left there just as the milk should beaërated. Too often it implies three things that are very injurious to its cows have given it. That neglect peculiar odor which the cow imparts to the milk will be left cheese-making. (1) The in its flavor. (2) The germs of fermentation that come in the until it becomes fixed bave the best conditions for growth and action what come in the milk and from the air Then the milk will become almost unfit for thorough coagulation by rennet. Hedisturbe (3) heedful and advantageous to aeerate it for three reasonation by rennet. Hence it is tirring, dipping or by trickling it over an exposed surface theret, because by pouring, pilk by evaporation any objectionable volatile element the there is eliminated from the because as has already been stated the milk contains that may be in it. Secondly, these are called vibriones. A strange peculiarity about of fermentation. Some of become active only in the absence of free oxygen When thicrobes is that they ndisturbed carbonic gas is generated, and that furnishes warm new milk is left ommencement of action by these almost invisible creatures the best condition for the an keep up their decomposing work even in the presences. After they get started they pagulate such milk so as to yield a fine quality of oxygen. It is impossible to nnet of milk that is ripe can never be perfect unless it ing cheese. Ooagulation by mediately after it is taken from the cow. Nerfect unless it has been thoroughly aërated milk required to make a pound of fine cheese. Thiect of aition will increase the quantity milk required to make a pound of fine cheese. Thirdly, because the airing seems to
give vigor to the germs of fermentation that bring about an acid condition of the milk, without producing the acid. So much is this so that it has been found impracticable to make strictly first-class Cheddar cheese from milk that has not been aërated.

Cooling - The subsequent cooling of milk retards the process by which it is turned sour. Certain germs of fermentation exist in milk which in the act of multiplication split one molecule of sugar-of-milk into four molecules of lactic acid. By delaying the operation of these germs the milk is kept sweet for a longer period. The cooling of the milk should never precede the aëration. A temperature of from 65° to $70^{\circ} \mathrm{Fahr}$. will be found cold enough for the keeping of milk over night, when it has been previously aired.

Protection.-Milk is a liquid of absorbent proclivities. It should be protected against injury that would result from exposure to impure air. A general purpose milk-standis a device specially adapted for the spoiling of milk in that way. Such a stand serves as a milkstand and also a carriage stand, both of which are legitimate uses. Sometimes it is also occupied as a hog bivouac for the convenience of these animals, the end of whose whey rough furnishes one step for the stand. Both of these latter extensions of its uses and hospitalities are all wrong.

Honest Milk.-The employment of inspectors promises to improve the quality of the milk furnished by some patrons, whose highest moral aspiration is limited by an effort to keep the self appointed commandment, "Thou shalt not be found out." The adulteration of milk by the addition of water, the removal of any portion of the cream or the keeping back of any part of the strippings is forbidden by both Dominion and Ontario statutes. Any person who is found out so doing will not escape lightly. The inspectors appointed by the Dairymen's Associations have been equipped with suitable and competent testing instruments and have been instructed to render every assistance to cheese-makers, looking towards the prevention of adulteration and the conviction and punishment of those who may be found guilty of the practice.

Matters most needful of Care.-In the following short paragraphs 1 have ventured to gather helpful advice on the matters most needful of care.

1. Milk from cows in excellent health and apparent contentment only should be used.
2. Until after the eighth milking, the milk should not be offered to a cheese factory,
3. An abundant supply of suitable succulent, easily digestible, wholesome nutritious feed should be provided.
4. Pure cold water should be allowed in quantities limited only by the cow's capacity and desire to drink.
5. A box or trough containing salt to which the cows have access every day is 1 requisite indispensable in the profitable keeping of cows.
6. Stagnant impure water should be prohibited. The responsibility for the efficacy of that beneficial prohibition rests wholly with the individual farmer.
7. Wild leeks and other weeds common in bush pastures gire an offensive odor and flavor to the milk of animals consuming them.
8. All vessels used in handling of milk should be thoroughly cleansed immediatel after their use. Washing first in tepid or cold water to which has been added a litte soda, and subsequent scalding with boiling water, will prepare them for airing, that the may remain perfectly sweet.
9. Cows should be milked with dry hands, and only after the udders have beed washed or thoroughly brushed.
10. Tin pails only should be used.
11. All milk should be properly strained immediately after it is drawn.
12. Milking should be done and milk should be kept only in a place where surrounding air is pure. Otherwise the presence of the tainting odors will not

July chee This year it sl plentiful rainfa ditions for the manufacture of requirements :

1. Cows n
(a) An ab
(b) Opport
(c) Access
(d) Shade
(e) Regular
(f) Manage
2. Cows she
against the atten
3. (a) Milk
(b) It shoul
(c) It shoulc
(d) It should

It will be of these matters by connection therew

When the yi uantity in some during last session and condensed mil

It forbids the dulterated, or mi as skimmed milk, trippings has been or each offence ag ustice or justices ollars, together wi

The fine when nd the other half istributed among ereof.
on of the milk, impracticable to
t is turned sour. ation split one g the operation the milk should 11 be found cold ired.
rotected against ilk-standis a deserves as a milketimes it is also of whose whey of its uses and
he quality of the ited by an effort " The adulterahe cream or the ion and Ontario ly. The inspecvith suitable and ory assistance to e conviction and

1 have ventured
y should be used. a cheese factory lesome nutritious
the cow's capacity
ess every day is
ity for the efficacy
offensive odor ani
ansed immediatel been added a litth r airing, that the udders have bee

Irawn.

 a place where odors will not13. All milk should be thoroughly aired immediately after it has been strained The treatment is equally beneficial to the evening's and the morning's milk.
14. In warm weather all milk should be cooled to the temperature of the
after it has been aired, but not before
15. Milk is better for being kept
large quantity in one vessel.
16. Milk-stands should be "
from the sun, as well as to shelter them from rains the cans or vessels containing milk
17. Only pure, clean, honest ill
not always go unpunished.

Notes for Cheese-Makers for July.

July cheese, like July butter, has a reputation for being the poorest of the summer
year it should This year it should be exceptionally fine. The abundance of poorest of the summer. ditions for the prill leave the pastures with richer herbage thas in June, with a too manufacture of fine cheese can requirements : \quad cheese can be continued by the patrons milk in a fit state for the
(a) An abundant allowas providential care in the following matters, viz.:-
(b) Opportunity to drink pur succulent or other feed;
(c) Access to salt every day;
(d) Shade in the pasture fields from the "bristly" influence of July suns ;
(e) Regularity in milking;
(f) Management and handling with continuous kindness, having an eye to profits,
2. Cows should be prevented from drinking impure water and should be profits. against the attentions of all dogs.
3. (a) Milk should be strained immediately after milking.
(b) It should be aired by the use of an aërator or by dipping, pouring or stirring.
(c) It should be cooled to the temperature of the atmosphere.
(d) It should be protected from contamination by the foulness of impure air.

It will be of quick and durable advantage to direct the attention of all pat these matters by sending to each a concise, clear direct the attention of all patrons to clear and courteous reminder of duty in When the yield of milk by the cows begins to shrink, the temp quantity in some other way is increased. The Act passed by the tation to make up the during last session, to provide against frauds in the supplyin the Dominion Parliament and condensed milk manufactories is a piece of wholesome leging of milk to cheese, butter It forbids the sending to any a folesome legislation.
dulterated, or milk from which any cream factory milk diluted with water, or in any way ss skimmed milk, or milk from which any has been taken, or milk commonly known trippings has been kept back, part of the milk known as for each offence against the provisions milk that is tainted or partly sour. The penalty ustice or justices of the peace, is a fine not excet, upon conviction thereof before any ollars, together with the costs of prosecution. orost prosecution.
nd the other half to the represenall be payable, one-half to the informant or complainant istributed among the patrons in proportion to the to which the milk was sent, to be ereof.

Let every cheese-maker get a copy of this Bulletin published in the local newspaper, and further, let him see that every patron is furnished with a copy of that issue.

Some of the qualities that are expected and desirable in the cheese of July are :-

1. Rich, clean, creamy flavor ;
2. Solid, firm, buttery body ;
3. Fine, silky, flaky texture ;
4. Bright, uniform color ;
5. Attractive, neat, symmetrical, stylish appearance.

In order that cheese having just these qualities may be manufactured regularly, 1 make the following notes for guidance.

1. Thorough distribution of the rennet in the milk must be effected by diluting the rennet extract and by vigorous stirring.
2. Sufficient rennet to coagulate the curd into a state fit for cutting in from 35 to 40 minutes at from 86° to 90° should be used. When an extra quantity of rennet is used, a corresponding increase in the weight of salt should be added to the curd.
3. The contents of the vat should be perfectly still when coagulation commences. Vibration of the floor and of the vat during the thickening of the milk causes waste.
4. The horizontal knife should be used first in cutting ; and active stirring should not commence until the cubes of curd becomes slightly healed.
5. The temperature should be raised gradually to 96° or 98° Fahr.
6. The stirring should be continued until the curd particles are so well "cooked" or "dried "that when a handful has been pressed for a few moments they will fall apart again as the result of any slight disturbance.
7. As soon as the presence of acid is discernible by the hot iron test the whey should be removed. In the caso of gassy curds, a further development of acid before the drawing of the whey will be beneficial.
8. Hand stirring will be of advantage until the curd is firm.
9. The temperature should be maintained at or above 94°.
10. The curd should be allowed to mat into one mass.
11. It should be turned so frequently that whey will not collect or stand in small pools in or on it.
12. If it becomes gassy it should be aired (if need be by grinding and stirring) and afterwards kept at a temperature above 94°.
13. The gas formed in gassy curbs hinders the developement of acid and the presence of acid prevents the formation of gas. The treatment should provide for the removal of the gas by aëration and the maintenance of temperature by the application of hot watef to the curd or steam to the vat or sink in which it is.
14. Close matting and packing of the curd are beneficial only after the curd is sufficiently dry and when aëration is provided for.
15. When the texture of the curd becomes stringy in its nature, it shonld be pr through the cutter or grinder.
16. Aëration should be effected by stirring before the addition of salt. Usually l. minutes of such treatment will suffice.
17. Salt should be added at the rate of from $2 \frac{1}{2}$ to $2^{3} \mathrm{lb}$. per $1,000 \mathrm{lb}$, of milb according to the dry or wet condition of the curd. A judicious variation in the quantif of salt should be made in proportion to the moist or dry state of each curd.
18. The "hooping" of the curd should begin when the harsh surface, produced each piece of curd by the salt, commences to give place to a slippy, mellow quality.
ocal newspaper, t issue.
f July are :-
red regularly, 1
by diluting the
in from 35 to 40 of rennet is used, d.
tion commences. auses waste.
stirring should
well " cooked" or ey will fall apar
the whey should acid before the
or stand in smal
and stirring) and
d and the presenor for the removal d ation of hot wate
after the curd
, it should be pr
salt. Usually
$1,000 \mathrm{lb}$. of mils on in the quantiry curd.
rface, produced llow quality.
19. Shoulders or projecting edges on cheese workmanship, and lessen their value from 2 to 3 sese are unsightly evidences of careless Careful pressing and bandaging and the turning of the per ewt. in the English markets, will prevent their formation. The pressure should cheese in the hoops in the morning In that way cheese can be finished having should be continued for at least 20 hours appearance. noon will reduce the temperature. 21. The curing room should The inspectors report that a good many faroughly ventilated and should be kept clean.

Notes for Cheese-Makers for August.
 A cheese factory's reputation is

September and October output. The beging determined by the quality of its August maker who has had only partial success during of August is a fit time for every cheese, Ontario of his factory. A comparison of the prices we. ther to redeem his reputation Ontario with the figures reported from the United reali if for the summer cheese of cheese are in demand at higher rates than American States markets shows that Oanadian gained in reputation and in market favor with cheese will sell for. That we have half of our this advance and advantase are the british importers and consumers is eviproducts. To reachakers is well known to those who viof the applied skill of less than ambition or aspirationd to speedily help those who work in factories and handle their

However, we dor improvement is well-nigh impracticable. factories without any able to such "cool August cheese.' That brief description cable orders from England, calling for preserved for the winter trade, a firm, solid body "full mild, rich flavor that may be finish, with clean, bright rinds, free from cracks, "full of meatiness," a fine outside likely to appear mouldy. cracks, and bandages fresh-looking and not

To help the cheese-makers in manufacturing a class of goods that may be satisfactorily shipped on such orders, I call attention to some things, both outside be satisfac-

Around the Premises.-Insum. or remedied, will show their worst effects inefficient drainage facilities, unless enlarged hours of labor and a fe:v dollars of expense, the this month. At the cost of only a few be kept free from the noxious odors that arise from stadiate vicinity of every factory can and foulness of these about the factories in som stagnant slop pools. The frequency permanent prosperity of our cheese manufacturing sections is not only a menace to the in charge of the factories.

At factories from which whey is drawn back to the patron's farms in waggons, the leaking and spilling near the whey tank too often leave its vicinity in an almost impassapprondition. A few loads of gravel will abate the nuisance and leave the place fit for approach during the succeeding months when the roads become bad.

The shrinkage in the milk supply will leave a shortage in the whey tank. In order washed whey may have more feeding value, the tank should be thoroughly cleaned and At factories where hogs are fed, provision shou one feed a day of some green fodder, such as clover, on be made for supplying them with ornstalks. Salt should be fed liberally during this monts and vetches, oats and pease, or In the Making-room. - This month.
nd troublesome. Some afternoon after the chs the one when flies boco me most numerous 0 close up the making-room windows and doors, and to burn a small quantity of suod plan
for the purpose of fumigating the place. If a tablespoonful of alcohol be mixed with the sulphur, it will burn more freely. Care must be taken to prevent the fumes from getting into the curing room. The tins of the milk vats and the insides of the sinks should also be washed afterwards before they are used. All vats, presses and utensils should get a thorough quarterly-cleaning-up early this month. Every cheese-maker should persistently fight untidiness and filth in every form, and he ought to have a woman's passion for cleanliness and a similar antagonism to dirt.

In the Curing-room. - There will be difficulty in curing the cheese made during July at a sufficiently low temperature. Ventilation of the room during the early mornings, as well as during the evenings and nights, will be of benefit. Floors should be sprinkled with cold water morning, noon and evening. While the cheese are being turned on the shelves there should be an abundant admission of light. August is the month when the "skippers" are apt to do damage. A plentiful shaking of fly powder in the room before it is shut up for the day will destroy the cheese flies.

Cheese boxes should not be stored in the curing-room. The odor from the elm wood penetrates the cheese and affects their flavor.

Patrons.-Since the milk is richer and less in quantity, there will be an increased temptation to "even up" by the addition of water, or to "even down" by the removal of cream. You will be doing the community moral service, as well as the cheese trade some good, by reminding the patrons that the Dominion Act of last session is in force and will be enforced against all discovered delinquents.

Patrons are more likely during this month than at other times to forget to provide salt for their cows, and to neglect to supply an abundance of pure cold water. Cool evenings are no excuse for the neglect of aeration. All milk should be most thoroughly aired immediately after it is strained.

The making of cheese for exhibitions is usually undertaken during the first two weeks in this month. Send a circular to every patron, making mention of those matters that are referred to in this bulletin, and inviting their co-operation, in order to aid you in the manufacture of cheese fine enough for exhibition and prize-taking. If some patrons pay no heed, and no improvement results, don't get discouraged. Keep right on insisting on a better state of things in their practice.

Making the Cheese.-When the evenings are cool and the milk needs ripening, don't fail to leave it in the vat until it reaches the proper state of maturity before the rennet is added. Use enough rennet to coagulate mature milk to a state fit for cutting in forty minutes when set at 88° Fahr. Dilute the extract to the extent of one pailful of water for every vatful of milk, and then mix it thoroughly by vigorous, rapid stirring,

When you are troubled with gassy curds, allow a development of acid, such as will be indicated by threads from the hot iron test a quarter of an inch long, before the removal of the whey. It is a good plan to run most of the whey off at an earlier stage and to leave only enough whey on the curd to permit a free stirring of it. After thr whey is drawn, air the curd thoroughly and make provision for keeping it warm. When a curd sink is used, if need be to retain the heat, put the curd back into the vat, but laf the temperature be kept above 94°. Frequent turning and aëration will facilitate the development of acid, providing the temperature is maintained. After the curd cutter hay been used, the curd should be stirred and aired for fifteen or twenty minutes before the application of salt. From $2 \frac{1}{2}$ to $2 \frac{3}{4}$ pounds of salt per thousand pounds of milk should by added to curds that are fairly well dried by the previous stirring. They should be pur in the hoops within twenty minutes after the salt has been mixed in.

Pressure should be applied very gradually. The cheese should be bandaged neath, when they are turned in the hoops within two hours after they are put in the presse They should again be turned in the hoops some time in the following morning. Whea practicable, cheese should be pressed for at least twenty hours.

Endeavor to get everyone who sends milk to your factory, or who is concerned is its management, to try to bring it to the very front in point of reputation for the exte
be mixed with the fumes from les of the sinks os and utensils y cheese-maker ight to have a
de during July early mornings, oors should be heese are being August is the g of fly powder
m the elm wood
be an increased wn" by the rell as the cheese ast session is in
rget to provide ld water. Cool most thoroughly
ng the first two nose matters that o aid you in the ome patrons pay t on insisting on

Is ripening, don't before the rennet cutting in forty of one pailful of rapid stirring. acid, such as will long, before the t an earlier stage of it. After the it warm. When o the vat, but lef will facilitate the he curd cutter hay inutes before the of milk should by ey should be pur
e bandaged neath put in the presse morning. Whe
oo is concerned tion for the exat
lent quality of its product. Work conscientiously for that end, then talk your factory up always and wherever you go, and get your patrons to do likewise. In your factory and work to make your factory and its product worthy of a higher reputation, especially for August cheese.

Notes for Cheese-Makers for October.

A few years ago "October cheese" of Canadion OCTOBER.
in the English markets. Their soft, porous body made were deservedly in bad repute quickly; they did not possess the keeping qualities, combinem liable to go off in flavor two years a dece much desired by English importers and with richness of body and quality has come a better of the cheese-makers througe in the markets. By the exerciseted, and with the finer "October cheese" may to "September's." Cheese can well established that hereafter then the reputation of our of the year. Conveniences for be made as firm and fine during will be counted equal until the cheese is ripe are required

> Milk,-The milk delivered at factor other solids than during the summer month during October has a higher per cent. of fat and when the cows are stabled during the cold nigh flavor will be equally rich and nice, other suitable succulent nutritious feed. Turnip and fed liberally on fodder corp or any whose milk is furnished to a cheese factoryip tops and rape should not be fed to cows strained immediately and forthwith aired as thoroughly is drawn the milk should be quality of cheese than it improve its flavor and prepare y as during the hot weather of milk should not be cooled will be possible to obtain if that for the manufacture of a finer more suitable place for keeping it $00^{\circ} \mathrm{Fah}$. A milk-house or the farm is neglected. The of the outside air goes below 50° over night than the milk-stand whentchen will be a
when the temperature services, to assist in the detection of a contir whe the close of the season ; their this Department. factories are still very defective ; but at equipment of the making-rooms of some almost any room can be made so close in its walls of a little labor and building paper regulated at will by the use of a stove. Thorough ventile the inside temperature may be
secured. The foll secured. The following paragraphs will be of servitilation once every day should be perienced cheese-maker's knowledge and in instructing in the refreshment of the ex-
to follow : othg the others in the best practice it; the ripening should be ripened by the application of heat before the rennet is hours will be required betwowed to proceed to such a degree that nennet is put into perceptible to the taste or discerne addition of the rennet and the develore than three or discernible by the hot iron test and the development of acid, milk which has become nearly sour to then the ripening should never be resorted to. Old should never be used frm enough for cutting in from 45 quantity sufficient to coagulate the curd into a state thould be diluted with water to the volume of at temperature of 86° or 88° Fah. It 4. After coagulation is perfect, the curd at least one gallon of liquid for every vat. the application of heat should be delayed for 15 minue cut finer than during the summer; and the temperature should be raised to 98° minutes after the stirring is commenced; they be drawn off. After the middle of the mont maintained at that point until the trable.

12 (A.C.)
5. Care should be taken to so apply the heat and perform the stirring that the curd particles will be so dry, before the development of acid is perceptible, that after being pressed in the hand they will fall apart by being slightly disturbed.
6. The curd should be stirred before and after the removal of the whey until the whey is so well separated out of combination with its particles that they produce a squeaky sound when bruised between the teeth or otherwise.
7. After the whey is drawn off the curd should be kept at a temperature above 94° Fah. If it becomes colder than 94° the development of acid will be hindered and excessive moisture will be retained in it during the souring process. The presence of such extra moisture in the curd at this stage will leave the cheese with a weak or pasty and tallowy body, according to the degree of acid development permitted.
8. A cover over the vat or a curd sink with steam pipes seems a simple and effective provision for keeping the curd warm ; where no rack is used, the putting of a few pails of hot water in the lowered end of the vat will maintain the temperature.
9. Just after the removal of the whey the curd should be hand-stirred until after the whey that will run has been drained off; after the curd is dry and firm it may be allowed to mat into one mass, but not before that condition is reached. All stirring should be performed so as to avoid bruising the grain of the curd.
10. It may then be frequently turned and 'packed close, till the layers of curd are four or five deep. Whey should never be allowed to collect in small pools on it at this stage. The close packing in layers four or five deep, with frequent turning, prevents the outside of the matted pieces from becoming chilled or more deeply colored by the action of the air than is the rest of the curd.
11. The hot iron test is almost indispensable for determining with certainty, from day to day, the exact stage of acid developm nt at which all the whey should be drawn off ; the filaments-thread-like processes-should be about one-quarter of an inch long. The proper degree of change for the cutting and salting of the curd has taken place when it feels mellow, velvety and "slippy," and shows a texture passing from the flaky or leafy into the stringy and fibrous. If it be too moist or soft it should be cut or ground at a rather earlier stage and hand-stirred until dry enough before the addition of salt. The most of the hand-stirring should precede the salting.
12. Not less than 3 db . of salt per $1,000 \mathrm{H}$. of milk should be used, and when the curd is on the soft or moist side $3 \frac{1}{4} \mathrm{HD}$. per $1,000 \mathrm{HD}$. of milk should be added ; the $3 \frac{1}{4} \mathrm{Db}$. rate is also preferable during the latter part of the month when cold weather prevails.
13. Immediately after the application of salt the pieces of curd become harsh and gritty on the surface ; then in from 15 to 25 minutes the harshness gives place to mellowness. At the second stage-and the temperature should not be under 88°-the curd should be hooped and pressure applied. Delay at this point or coldness of the surd destroys the desirable rosy flavor, and imparts to the cheese the bitter taste of the salty white whey.
14. Particular care should be taken to use only pure warm water when turning the cheese for bandaging, before the rinds are fully formed.
15. Especially in a cold press room, pains should be taken in the applying of pressure to the cheese before they are left for the night.
16. All cheese should be finished in symmetrical shape and kept in the hoops until the rinds are smooth and the edges free from any projecting "shoulders."

Curing the Cheese.-The temperature of the curing room should be kept as nearly regular at 65° as possible. Where the September cheese are kept in the same room with those of October make, the latter should be kept on the warmer shelves. A slight chilling, after a cheese has been curing at 65° for two weeks, does little damage ; but a steady temperature and constant curing give the best results. Bitter-flavored cheese are usually the result of chilling in either the making-room, press-room or curing. room. If the cause be prevented the consequence will be unknown.
that the curd t after being
ney until the ey produce a
are above 94° red and excessence of such or pasty and
e and effective of a few pails re.
ed until after m it may be stirring should
rs of curd are s on it at this 6, prevents the by the action
ertainty, from uld be drawn an inch long. en place when the flaky or cut or ground dition of salt.
and when the ed ; the $3 \frac{1}{4} \mathrm{tb}$. eather prevails. me harsh and place to mel88° - the curd f the surd deste of the salty
en turning the
ying of pressure
the hoops until 8."
kept as nearly the same room ves. A slight damage ; but a flavored cheese oom or curing.

To Factory Managers.-As this is the last bulletin of this season, I desire to counsel the managers of factories the of notes for cheese-makers for that appear to menace the permanent success of our cheese guard against three tendencies 1. The employment of inexperienced, in of cheese industry : the factories,
men to manage the inside work of men are leaving the occupation.
cion of the makers, until the able of poor quality, simply because they happen to foolish policy of using factory furnishings

So much additional trouble, loss, wen to be a little lower in price. furnishings of men without aptitude rouble, loss, worry and disappointment price. the proprietors to exercise the utmost in charge of large factories that from the putting selves as to the fitness of an applicast care and caution, and invariab istrongly urge No factory should incur needless risk by enquiry from a reliable exply to inform themprice or of profit.
7.-THE OHEESE

The future of our dairying trate
conditions-the child of our own judgment essentially be an outgrowth of our presen shall not go back further than the time when skill. Touching first upon the present I from the fact I have just stovince, some twenty-four yeese manufacturing industry was majority, but like many of that our co-operative systems ago. It will be observed much sense, if we are to jud ourselves it has grown a long time dairying has attained its improvement of methods and the occupatiom its present state. Its prout gathering very it was taken in hand by the Dairupation of area in our provins progress both in the Association was called into Dairymen's Association of Ontario, was very slow until ceived a new impulse. The Assonce and began to guide and foste ; but as soon as that manifested by our farmers, but wastion not only deepened ander the industry it reby engaging in the dairy business the means of leading them and extended the interest much more service to the provines. The Dairy Associations to increase their profits has prevailed that in the Dairymen, than even we often givens of Ontario have been of sole duty of which has been number of our cows. In thinkingment the output of ourio we have organisations the ciation and those which have spg so, a great injustice is our cheese and to increase the Associations to the farmers of sprung from it. The first done both to the parent assobility and great value of this province have been to demain uses of the Dairymen's advantages to be gained by applyation; the necessity of beingrate to them the possivility of that earnest and applying intelligence in their being more self-reliant ; the our population can take continuous effort for improvement withiness; and the desiraciations more than to any othe rank among their fellows. Without which no class of regards co-operation among other agency we are indebted for To the Dairymen's Assoplishing such admirable work farmers. Our Farmers' Institutes present condition as f Dairymen's Associations, and cations for early training. In many of their best workers are in a direct outgrowth cations that they have not merely out have made it necessary therely made it possible for the farm of I claim for the Assoae could be a successful dairye should be a broader-minded to make more money, alivening agency in our midryman. In this way they have and better man before and the raw material for cloth. The function of the farmer in been a civilising and armer calling to his aid more for the rest of the race ; and society is to produce food bod from the soil of his fieldse resources than if he had no dairy dairyman is merely a fater. From the action ofs he is aided by the energy and dairy. When he produces sthe reward of his labor - hese in accord with nature's law he ists of the sun, air and the reward of his labor ; but he is still far fromers law he is enabled to raise plants from having drawn from his fields by the
aid of these agencies all the good it is possible to get by making animals serve to elaborate food for men's use. To place cattle upon a farin is not to place a tax upon the labor of the farm, but to call into requisition a factor which will increase the available food supply from the whole property; that is the place of cows and all cattle. The cow fills her place as an economical factor when she lives upon those parts of the crops not adapted for human consumption : and living upon them produces food which makes it possible for a larger number of men to be fed from a given number of acres. All the best of our dairymen understand this, and due understanding and appreciation of the fact has resulted in an increase of the available food supply in this province ; an increase which has rendered it possible for us to support economically a larger population than we could otherwise sustain, and which at the same time has afforded ample remuneration to the men whose labor has been expended in producing this extra food supply. The farmer who sells direct everything he raises on his land is selling off plant food-the substance of fer-tility--in large quantities, and if he r-turns nothing to the soil is in the same course of action as a storekeeper with a limited stock who clears his shelves and counts all his returns as profits. Such a storekeeper would soon be under the necessity of putting up his shutters, and in the same way a man who uses his farm in the way I have mentioned will soon have a poor farm, and being a poor farmer will soon be a poor man. Unless a man will conserve the elements of fertility, his land will not be able to stand the drain incident to producing food. I want to say further that the co-operative system of dairying carried on in cheese factories is restoring fertility to land that has been exhausted, and is repairing the financial health of the farming populations in those sections of the country where it has been carried on with good judgment. I heard this statement made lately by a man of large experience in one of the counties of Ontario. He was a tax collector, and although that functionary is not a gentleman whom we are always delighted to honor, he has excellent opportunities of forming just opinions in regard to a matter of this kind. He said that his experience had always been that when he came into the vicinity of a cheese factory he found the taxpayers ready with their money, whereas when he was in other sections where there was no cheese factory he was constantly being asked to wait till threshing time, or Christmas time, or till the grain was sold, or some other time. That is a proof that dairying on the co-operative plan has had the effect of ${ }^{3} 30$ increasing the earning power of the farmer that he is in possession of more readily available cash. Then it has saved in other parts large sections of the country from becoming non-productive. We sometime think that, after all, the whole value of dairying to the proviace is that it has brought back farms from a state of barrenness to a state of high productiveness. I think the farms need never have been exhausted, and we find that in those sections where dairying is most extensively carried on they have the best and most productive farms. I do not think there is any need at all for a man to exhaust his farm and to work it so bare that it will grow nothing but thistles and weeds in order to prove that dairying will restore its fertility. I would not think as much of a man who did that as of one who had the good sense to engage in dairying work, and whose farm was never exhausted. I have no sympathy to waste on the farmer who has so little foresight, intelligence and thrift as to take from his farm its fertility. Ignorance and neglect will entail the penalty which he must pay. I claim that dairying has preserved the fertility of the fields, and increased it beyond their virgin productiveness. Then it has put a capitalized market value into the farms of the province. If a farm, by reason of having more cows and a cheese factory close by, will bring in a larger annual income, it is of correspondingly greater value. Then it has added to the income of the former without lessening the production of any saleable crop. If we had merely found a new way of getting money, and in applying and putting it into operation had abandoned the means of getting money from other sources, it might have been no gain or improvement. If the farmers of this province in receiving $\$ 6,000,000$ a year for their export dairy products, had in that merely taken the money frou one pocket and put it into another, and had lessened their receipts from grain growing or any other source, they would not have made themselves any wealthier, but it is capable of proof that no farmer who has increased his income from the sales of milk to a cheese factory has lessened his production of grain by a single bushel. On the other hand, he has so much increased the productive-
to elaborate he labor of le food supow fills her not adapted it possible best of our has resulted ich has rencould otherto the men farmer who stance of ferne course of ounts all his f putting up ve mentioned Unless a man in incident to ng carried on and is repairthe country made lately tax collector, delighted to o a matter of ame into the ney, whereas istantly being sold, or some the effect of more readily country from ue of dairying to a state of and we find have the best nan to exhaust weeds in order uuch of a man rk, and whose ho has so little Ignorance and has preserved less. Then it rm , by reason innual income, of the former y found a new abandoned the improvement. ort dairy proo another, and would not have er who has inis production of the productive-
ness of his farm that it will grow twenty-five per cent more on the average than it would otherwise. Where a cheese factory is supported, we find that it is an addional source of income which does not operate detrimentally to or in any way lessen the realisation of income from other sources from which we have in the past been accustomed to derive it. So much have I put together by way of referring to the past of our dairying. We all like to bc successful and respected at home, but at the same time we also like to be well esteemed abroad, and there is no department of our agricultural, industrial or manufacturing enterprises that has won for us abroad such a splendid reputation as has our ivrmense export of dairy produce. No man in England will ever try to disparage this province as one in which the finest dairy products cannot be manufactured, although many of them think we cannot keep go on growing wheat or beef and pork as has been done in the past. We have given indisputable proof that we can and will continue the production of cheese of the finest quality, which proves that we have a climate and country suitable for calling into advantageous use the best energies of man, suitable for the maintenance of the best kinds of dairy stock and the economical production of food of this kind of the very best quality. In this way our dairy business has advertised us abroad as a solid, substantial, progressive and prosperous poople, and beyond this oar cheese business has done more than anything else to correct erroneous ideas prevaient among the English in regard to our climate. In a brief three weeks time, four years ago, at the Colonial and Indian Exhibition, it was not difficult to give this province and its resources advertising to the extent of six hundred miles of single columns of newspapers, and that without any expense ior advertising bills, but simply by writing about cheese and butter. In that way we have got a most desirable reputation and the most extended information about our province spread abroad through our dairy business. Having said so much in regard to the record of the past, there are some things to be learned from it which we cannot afford to ignore, and in writing of the present I wish to write of it with its weaknesses and defects, and to review them in the light of our past history. I would like to examine the present status of dairying, especially as regard co-operative cheese factory work, in relation to the profits that are and may be derived from it. We have in the province over 780 co-operative cheese factories, supported by over 42,000 patrons, receiving the milk of over 260,000 cows. Now, if these 42,000 patrons were all men of enthusiasm, intelligence and good judgment they could raise our cheese industry to a much higher plane, from which they could realise twice as much profit inside of a year and keep up the improvement at the same ratio for the next five years to come. I find in the first place that there are many men halting between two opinions, as to whether it pays to support a factory or not. By sending out circulars and getting returns as far as possible I find that over five thousand, of the forty-two thousand supplying milk, do so for less than three months in the year to the factories of this province. They are the men who are never quite sure whether they will send milk more than one week or not. While attending a dairy convention held in the State of New York I heard a man in a position of authority state that it would pay the farmers of that State to shoot and bury one-half of the dairy cows there. I also heard another gentleman of equal prominence there, and a man occupying an official position, say that not more than one-third of the dairy cows in the State were actually yielding a profit to their owners. I do believe that one-third of our dairy cows are not yielding cheir owners a profit. The first means of improvement in this respect, I would suggest, would be to eradicate the thoughtless indifference of these men who have never made up their minds as to what a cow is for, and improve them into keeping better cows in a better way. The average yield per cow, has often been cited at three thousand pounds of milk per year. I would leave myself upon record as saying that the average yield of the cows of Ontario is over three thousand pounds per annum each, but is under three thousand ponnds per annum when measured by the cheese factory season. I got a large number of returns, which were made by cheese-makers who took some pains to verify their correctness from which I find that the largest yields per head of the best herds supplying milk to eighty factories, through the whole cheese factory season of six months and one day, was 3,500 pounds, and the average of the poorest herds going to the same factories during the same time was 2,235 pounds. What is the matter with our cows ? If the cow is a con-
trivance of neture to aid the farmer in producing more food from his fields, it is a very clumsy and inefficacious contrivance that consumes the keep of six months and gives back only that amount of milk-a contrivance which, instead of being a source c ? profit, is only a burden and expense to the man who has to keep it in running order. I think these cows are made the wrong way. The man makes the cow. The dairy cow has been the product of man's skill, and reflects that. She is an artificial product, and the main operative agency in improvement is the brain of man. The man who refuses to use his brain simply lets nature and the cow do the worst they can for him-that is, the best they can for themselves, but the worst for him. To succeed in moulding the cow we must go back and get a proper male. The man who wants to make a China tea-cup does not go to a brickyard and get his clay, nor does the man who intends building a steam engine go the bush for his piston-rod. We must have the proper material, and the only material that is at our hand which can be worked into the best possible form for the use of man in the dairy cow is the material inherited from cows and bulls that have had milking power and milking records. If we do not begin there we have to refine the material, which is unnecessary labour when we may have our raw material of the right quality to begin with. A man should no more think of using a bull in his dairy herd that has been kept fat from its calfhood up than he would think of using brick clay to make a China tea-cup. Such an animal is not the buil for a dairyman. Let it have a record of eight or ten thousand pounds of milk per year behind it in dams back for two and more generations. Again, a man who wants to buy a bull to hcad a dairy herd, will go to a stable and find a bull calf that suits his notions as to its points. He will then go into the cow stable of the stock breeder and ask to see the dam of that hull, and find perhaps a lean cow, a large cow, a large milking cow with an angular frame, not rounded and padded with flesh below her skin. "But," he says, "have you got a calf from this other big fat cow ?" "Yes." "What do you want for it ?" "Fifty dollars more than for the pther one." He goes back and buys the calf from the fat cow, and still expects that he is going to succeed in improving his dairy herd. I do not care whether the cow be a Jersey, Holstein, Ayrshire or Shorthorn, the dairyman who buys a bull from a fat cow usually makes a mistake, and if he keeps that bull fat afterwards he destroys what probability there was of getting improved blood into his herd. The man who does not know what kind of a cow he wants will never make a heifer shapen that way ; but the man who has the ideal of the cow he wants, will make his heifer grow that way for him. Then the present of our dairying strikes me as being weak in this respect, that even if we had good cows on the average we have not learned to feed them economically. We have 2,235 pound cows, but these same cows are five-acre cows, needing the fodder from five acres to produce that small quantity of milk, viz. : three acres of pasture and two of fodder. There is no adequate return for the labor spent upon such animals. Instead of five-acre cowe we want to have a good many of one acre cows, and instead of 2,235 pounds as a record we want at least a record of 7,000 pounds. A man may feed a cow on one acre which will give him 7,000 pounds of milk a year, and he is making a good deal more food per acre than the man who mal 3 only 2.235 pounds per cow and has to feed her the fodder of five acres. As a man produces food he creates wealth, and will have his own share in the handling thereof. Now, I do not want to denounce an evil without suggesting a remedy for it. Reduced acreage is the thing, and I would recommend the farmers to sow some rye. Two acres of winter rye is enough for c one hundred acre farm, and that will furnish food early in the season before the other crops are fit to use. Then bran should be fed ; bran or pease meal, or something like that when early pasturage is rank and not calculated to give the best results. Oats and pease cut in the green state should then be fed ; and after they are through there should be a crop of ensilage corn ready, of some variety that will give a large growth of leaf and stalk, full to overflowing with nourishing properties. If he would have that, the farmer must give up the old-fashioned practice of sowing three bushels of corn to the acre. Last year many men who sowed a quarter of a bushel to the acre reaped a most satisfactory crop.

A successful dairyman, whose hairs are grey and whose bank account is heavy, gave me this statement as his experience. He bought bran and fed fodder corn by the most
impr
augm
work
for h
had b
$\$ 2.41$
for a
least
eratio
far be
adapt
way as
find fr
are ve
inadeq
these a
is also
tories.
as they
make
betwee
please
who
ters
even d
of the
industr
cows thi
kind of
future o of Onta awakene led to th or meth that giv up into business will cert men, bet highest or twent strengthe summer to the fol this, it wi milking s the chees when the a butter f skim milk spring con cheese-ma full of gre cise of int resultsof our dai
it is a very ad gives back P ${ }^{2}$ profit, is er. I think ciry cow has luct, and the refuses to use at is, the best the cow we hina tea-cup is building a erial, and the ble form for Ils that have to refine the 1 of the right is dairy herd brick clay to Let it have a back for two a dairy herd, nts. He will that bull, and ar frame, not ou got a calf Fifty dollars fat cow, and do not care an who buys tat afterwards is herd. The heifer shapen is heifer grow weak in this to feed them re cows, need: three acres or spent upon one acre cows, 0 pounds. A lk a year, and 2.235 pounds food he creates not want to the thing, and rye is enough son before the or something results. Oats through there arge growth of puld have that, of corn to the reaped a most
is heavy, gave n by the most
improved methods, and he frund that the supply of milk yielded by his cows was largely augmented thereby. The bran cost him 814 per ton After one week's experimental work he went to the cheese factory and found that at the price cheese was then selling had been to him. He had more in the value of the milk than the extra cost of the bran $\$ 2.41$ in one week, besides having his cows pay for his bran and leave him a profit of for a longer period that season. The manurial value from feeding the bran was not the least important gain.

Having said so much upon that aspect of the question, I will pass on to the consideration of our factory equipment-buildings, utensils, and so on, in which we are very far behind indeed. Cheese factory buildings are not on the average such as ary adapted to the present requirements of dairying. They should be constructed in such a way as to enable those managing them to have perfect control of the temperature. I are very imperiectly constructed in Western and Eastern Ontario that many of them inadequate to the needs of the present systempect. The equipment of utensils is quite these are kept in such a s ate that the less they of cheese-making, and in some instances is also improvement nee id in the class of men who used the better for the cheese. There tories. The men who run our cheese factories to-day are notoyed in running cheese facas they were ten years ago. In many instances I Ifind the men of the same ambition make a cheese that will pass. Ten or fifteen years the sole ambition of makers is to between makers to nake cheese that would please-to reach a higher stand fang of rivalry please everybody, the eater included. That is what is reach a higher standard that would who enthusiastic about their work, and will take wanted. We want cheese makers ters all the details of their business, and will take the pains to make themselves maseven during a year of moderate prices need not refer to prices beyond saying that of the farm work has left the same profits we have passed through, no part industry. If that can be said after a year of as the cheese-making and dairying cows that take five acres to feed, what a year of moderate prices, with 2,235 pound kind of cows rightly fed, and with buildings and not do in a good year with the right future of dairying, to my mind, is bound up with the fliances of improved utility. The of Ontario. If by any means the farmers of this provinee farmers of this province awakened into action they will make lots of money province can have their energies led to think and read and work for themselves they out of cheese, but if they cannot be or method, be helped very much. Therefore let us can never, by any extraneous process that gives the milk that makes the Therefore let us work at the man who keeps the cow up into acting intelligently, and if we do our success so we get these individuals waked business will be established, it: field extended, its profits increased, The foundations of the will certainly be much higher than it is at present. Wexts increased, and our reputation men, better and yet more economically fed, so as to produce better cows kept by better highest class of men that can be induced fed, so as to produce better milk; we need the or twenty dollars a month is nothinged to be cheese-makers, for the cost of an extra ten strengthening our prime industry of cheospared with the desirability of supporting and summer feed for our cattle. It will be found the We require besides to have a cheaper to the following summer it is possible to get that by carrying ensilage from the winter this, it will be found possible to make cows mill cheapest food for cows. Then, having milking season should begin, not in March or At least ten months in the year, and the the cheese factory is to be made profitable the but from November to January. If when the cheese factory closes as a cheese the cows may come in early, and then a butter factory. One set of buildings and factory it can be opened the next day as skim milk can be used for the purpose of raising thatus will do for the whole year. The spring comes the milk will not be needed for thaisg the best class of calves. When the cheese-making. I think winter dairying is full calves, and it can go to the factory for full of great possibilities. If we only avail oursel of the greatest promise in Ontariocise of intelligence-these starting points for new enterprise new openings for the exer-results-we shall have no occasion to be ne new enterprise and the achievement of new of our dairying indu try.

8.-THE HOG AS AN ADJUNOT TO THE DAIRY.

From Balletin xxx, issued by the Bureau of Industries on "the Swine Industry in Ontario," I quote the following sentences from pages 40-41: "During the last eight years $60,000,000 \mathrm{lb}$. of hogs, valued at $\$ 3,160,000$, have been slaughtered in bond in Canada for exportation. What change is necessary in order to enable the Ontario farmer to supply this pork $\gamma^{\prime \prime}$ On page 7 of the same Bulletin it is stated that during the five fiscal years 1884.9, "there were also imported to be slaughtered, in bond, $41,155,383$ lb. of hogs, live weight, valued at $\$ 2,044,398$, which with the imports for home consumption make a total deficit of $\$ 9,409,597$ in the five years, being an annual average of $81,881,920$; or, if the duty be added, an annual deficit of $\$ 2,167,800$."

The facts presented in these quotations indicate that there is a large demand for hogs and their products that might be and ought to be fronished to our own markets with profit, by the dairy farmers of the Province. By way of further introduction of this subject, I will quote some passages from an address which I had the honour to deliver before the Dairymens' Aspociations in 1889. "Dairymen neglect one of the best servants they can have in the animal creation, when they do not avail themselves of the hog to aid in making money trom the by-products of milk. The attitude of farmers towards the pig has been an unfriendly one. "It is a popular, though untrue, saying that "the only good Indian is the dead Indian," and farmers seem to cherish a similar belief in regard to the hog. That opinion, however, is in direct opposition to the best interests of the men who keep cows for the manufacture of dairy products. If the man who ketps ten cows will fatten twenty hogs in the summer and half as many in the winter, he will find, perhaps to his amazement, that this little branch of business will bring him in more money and profit than he thought could be made from it. Whey is a valuable hog feed. There are nearly seven pounds in every hundred pounds of whey which the hog can use to advantage. The composition of whey is as follows :-Water, 93 per cent. ; nitrogenous substances, 0.92 ; fat, 0.35 ; milk sugar, 4.65 ; lactic acid, 0.33 ; ash, 0.75 .

These elements of food value in whey should produce at least two pounds of live weight in hogs. One hundred pounds of whey, fed in the most judicious manner, should produce two pounds of pork ; it will not do it when fed alone, but fed in combinatio. with other foods it will. Sows, like cows, should be selected for their profit-making powers. A man who knows well enough that unless he ias a good dairy cow he need expect no profit from her, often acts as though he believed that anything that grunts and squeals will make money for him out of its feed; but the squealing and the grunting are the main part of it with some hogs. In selecting a sow, she should be selected first for her length, then for her depth and then for her breadth. The three qualities shoald be valued in that order of merit-length, depth and breadth. A sow should be made to farrow in March or April and in September. A breeding sow should never be fed upon decayed food. The waste from the kitchen and the table is wholesome feed for pigs when it is fed clean and before it becomas decomposed ; but a never-empty and consequently never-clean swill barrel is a menace to the health of the hogs and a hindrance to profit. A breeding sow should always get as much salt as she likes to take ; her food should be salted and she should have access to salt besides ; she will not thrive without it. The quarters of breeding sows during the winter should be comfortable. They too ofien lie in and under strawstacks, or out in open sheds, and the other swine which are being wintered lie with them and on them to make more warmth. Dead pigs and sickly pigs from birth are the consequence. Their sleeping places should be well ventilated and dry.

A boar should be selected for length, depth and breadth. He should have proportionately large bones, for small bones are indicative of a weak constitution and a disposition to lay on lard instead of muscular meat. A plentiful supply of hair indicates a strong constitution, and a predisposition to lay on flesh.

Young pigs should be suckled for about three months ; if they are weaned when five or six weeks old they will not do as well. The sow can nurse them as well as not
if properly milk and or boil her

The li and fatteni Many of th the object the pigs ta and not ma reputation that way fo not sour. acid has no or milk whi Thoroughly whey had b And let me " goose whe any other wi allowance of fed mainly o help to keep in spite of t pounds of ch be allowed to sammer time when fed to

The slec ventilated. and the best

The follo were fattened

On Aug. respectively. None of them points. They much as they cold water in
\qquad
\qquad
\qquad

The average

Industry in e last eight in bond in tario farmer ring the five , 41,155,383 or home connual average
demand for own markets retion of this ar to deliver best servants of the hog to towards the t " the only ief in regard erests of the ho ketps ten he will find, him in more ble hog feed. hog can use ent. ; nitroish, 0.75 .
unds of live anner, should combinatio profit-making cow he need t grunts and the grunting selected first alities should ould be made never be fed ome feed for apty and cona hindrance ke ; her food ve without it. hey too ofien ch are being nd sickly pigs lated and dry. have proporand a disposi ir indicates a

weaned when

 as well as notif properly fed, and the pigs will grow and thrive so much the better. Skim-milk, buttermilk and bran should form some part of a milking sow's ration. It is profitable to scald or boil her feed until after the pigs are weaned.

The little pigs should always have access to cold water for drinking. In feeding and fattening these little pigs, they should have the trough room in length, not in depth. Many of the hog troughs, I see around the country, seem to have been constructed with the object of affording bath accommodation for the pigs, so deep and wide are hey that the pigs take headers right in o them. The feed room of the trough should be in length and not mainly in depth for all sizes of hogs and it should be kepti clean. Pigs have the reputation of being filthy animals, but a pig will keep itself clean if it gets instruction in that way for one week and a good example. The feed for little pigs should be sweet, acid has no feeding propertie whey, some of the sugar is converted into acid. Lactic or milk which is sour will do. It has a slightly helpful digestive action, so that whey Thoroughly sour whey is extravag no harm, but part of the food value has been lost. whey had better be of a mixture of grains. and unsuitable for pigs. All meal fed with And let me remark in passing, that grains : pease, wheat, middlings and bran are suitable, "goose wheat " to the acre, in this time a farmer can frequently grow thirty bushels of any other way as through his hogs. With their wheat, he cannot market that so well allowance of salt every day ; charcoal or wood ashes feed, pigs should receive a liberal fed mainly on whey. A very small quantity of ashes are very beneficial when hogs are help to keep them thriving when the whey is of saltpetre and sulphur once a week would in spite of the best of care. A mixsure may be maty sour, as it will sometimes become pounds of charcoal, half a pound of saltpetre and one made of eight pounds of salt, eight be allowed to take all they like of the mixture. Pigs shound of sulphur. The hogs may summer time when penned up; half an acre of clover will hieve some green feed in the when fed to pigs that are also given whey and grain in will yield the best returns in pork

The sleeping quarters of pigs grain in comoination therewith. ventilated. The best weight at which to sell boing fed should be dry, clean and well and the best returns for food consumed is from 150 in order to realise the highest price

The following tables give the observer to 200 pounds, live weight." were fattened during the season.
pens of hogs that raspectively. They were divided tere separated into tbree pens, containing 6,5 and 5 None of them were pure bred, though most of theme as possible in age, size and breeding. points. They were all fed on middlings only, with salt and Berkshire or Chester White much as they could eat, being fed three times a day and water, and were allowed as cold water in the troughs.immediately before the time of feeding.

		Weight Aug. 9th.	Weight Sept. 13th.	Gain.	Middling consumed.	Middlings consumed per tb, of increase live weight.
	6 hogs. 5 " 5 "	586 焐. 465 " 399 "	$\begin{aligned} & 924 \mathrm{tb} . \\ & 726 \text { " } \\ & 673 \text { " } \end{aligned}$	338 tb . 261 " 274 "		
					950 mb .	2.81 tb ,
					836 "	
					908 "	3.31 *
	16 hogs.	1450 mb .	2323 tb .			
				87310.	2694 to.	3.08 tb .

The average live weight of the hogs on Aug. 9th was 96.6 fb . each, Sept. 13th " 145.2 "

The object in feeding the middlings was to prepare the three lots for an experiment in the feeding of corn meal alone, pease meal alone and a mixture of barley meal and middlings alone in the fattening of these 16 hogs . The hogs of each of the three lots in pens 1, 2 and 5 were weighed every week. The meal in each case was fed, as were the middlings, mixed with cold water in the trough, immediately before the hogs had access to it. They were fed three times a day and each pen was allowed as much as the hogs would eat. In the tables I have arranged the figures under four feeding periods of four, four, four and three weeks each.

Pen 1-Six hogs fed on cornmeal only with water and salt, Sept. 13th to Dec. 28th.

Feedi ${ }^{\text {g p perixd. }}$	W aight at beginning of period.	Weight at end of feeding period.	Gain.	Cornmeal consumed.	Cornmeal consumed per th. of in crease live weight,
t. 13th to Oct. 12th.	924 mb .	1184 tb.	260 tb .	1111 tb .	4.27 th ,
Oct, 12th to Nov, 9th	1184 "	1447 "	263 "	1174 "	4.46 "
Nov. 9th to Dec. 7th.	1447 "	1666 "	219 "	1161 "	5.30 "
Dec. 7th to Dec. 28th	1666 "	$18+2$ "	176 "	911 "	5.17 "
Sept. 13th to Dec. 28th. .	924 tb .	1842 tb .	918 tb .	4357 Ib .	4.74 th.

Pen 2-Five hogs fed on pease meal only with water and salt, Sept. 13th to Dec. 28th.

Feeding period.	Weight at beginning of feeding period.	Weight at end of feeding period.	Gain.	Pease meal consumed.	Pease meal consumed per fb , of in crease live weight.
Sept. 13th to Oct. 12th	726 nc	945 tb .	219 tb .	1049 tb .	4.79 ft ,
Oct. 12th to Nov, 9th	945 "	1140 "	$195{ }^{\text {' }}$	931 "	4.77 "
Nov. 9th to Dec. 7th	1140 "	1390 *	250 "	1126 "	4.50 "
Dec. 7th to Dec. 28th	1390 "	1534 "	144 "	815 "	5.66 "
Sept. 13th to Dec. 28th.	726 tb .	1534 tb .	808 tb .	3921 tb.	4.85 fli,

Pen 5-Five hogs fed on a mixture of barley meal and middlings alone with water and salt, from Sept. 13th to Dec. 28th.

The fol per lb. of in

Feeding

Sept. 13th to 0 Oct. 18th to No Nov, 9th to Dec Dec. 7th to Dee Sept. 13th to De

On Nove breeding were appearance wo obtain some in hogs in pen 6 before the hog fed as much as quantity of mi ensilage as the from Novembe

Ine follow consumed :-

Pen 6: $\mathbf{4}$ hogs Nov.
" 7:4 "

According ensilage for the be correctly caler I desire here 2 and 5 from Au of 90.6 lbs . each each pound of in only, from an ave were consumed fo

The twenty-f January 1st. Th The hogs of Pen following table wi weight of each ho

1 experiment ey meal and three lots in as were the gs had access as the hogs oriods of four
to Dec. 28th.

Cornmeal consumed per th . of in. crease live weight.
4.27 th,
4.46 "
5.30 "
5.17 "
4.74 th,
h to Dec. 28th
eal
ed.
Pease meal per 1b, of is weight.

4.79 tb .
4.77 "
4.50 "
5.66 "
4.85 th .

Mixtured barley mas and midhlings as
one with wate

The following table is arranged for comparison of the quantities of feed consumed

Feeding period.	Corn meal consumed per lb, of increase live weight.	Pease meal consumed per lb . of increase live weight.	Mixture of barley meal and middlings consumed per lb. of increase live weight.
Sept. 13th to Oct. 12th	4.27 lb ,	4.79 lb ,	3.91 lb ,
Oct. 12th to Nov, 9th	4.46 "		
Nov. 9th to Dee. 7th		4.77 "	4.43 "
Dec. 7th to Dee. 28th	5.30 "	4.50 "	4.75 "
Sept. 13th to Dec. 28th	5.17 "	5.60 "	$5.5 .$
	4.74 lb .	4.85 lb .	

On November 9th, after a period of preparatory feeding, eight hogs of similar age and breeding were weighed, and left four in each of two pens. They were not pure bred, but in appearance would have passed for Berkshire hogs. A test wos wndertaken with them in obtain some information on the value of rape ensilage for fats undertaken with them to hogs in pen 6 were fed on middlings only, with wat for fattening purposes. The four before the hogs were allowed access to it. They water and salt mixed in the trough fed as much as they would eat. The four hogs iney were fed three times a day, and were quantity of middlings consumed by the hogs in pen 7 were fed on about one-third the ensilage as they would eat. The tratogs in pen 6, and were allowed as much rape from November 9th to December 21st, when therwise was alike. The feeding lasted

Iue following table shows the compar the supply of rape ensilage was exhausted. consumed :-

According to this one test ons pound of middlings is equal to 5.12 lbs . of rape ensilage for the production of pork. The cost of the rape ensilage in this case of rape be correctly calculated.

I desire here to call attention to the fact that in the feeding of the hogs in Pens 1, 2 and 5 from August 9th to September 13th on middlings feeding of the hogs in Pens 1, of 90.6 lbs . each up to 145.2 lbs . each, only 3.08 lb . only, from an average weight each pound of increase live weight, whereas 3.08 lb . of middlings were consumed for only, from an average weight of 226.2 lbs, eash feeding the hogs in Pen 6 , on middlings were consumed for each pound of increase live up to 291 lbs , each, 5.75 lbs . of middlings

The twenty-four hogs of Pens 1 , January 1st. The last feed was ans 1, 2, 5, 6 and 7 were killed on December 31st and The hogs of Pen 1, and numbers 4 to all the hogs on the morning of 30th December. following table will give some interesting of Pen 2, were killed on January 1st, The weight of each hog was taken immediately before probably useful information. The live
taken immediately after it had ceased to bleed. The hogs were all scalded, scraped, dressed and hung up where they would not freeze. On January 6th the dressed weight was taken:

Pen,		Fed on	Live Weight	$\begin{gathered} \text { Dead } \\ \text { Weight. } \end{gathered}$	Dressed Weight.	Werght of lard on guts.	Per cent. of shriakage from live weight to dressed weight.
7 \{	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \end{aligned}$	Middlings and rape Ensilage. Ensilage.	${ }_{249}^{260}$ lb.	${ }_{242 \mathrm{~h}}^{254} \mathrm{l}$	${ }_{2}^{2184} \mathrm{lb}$ 224 212		14.3 per cent.
1	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \end{aligned}$	Middlings.	298 282 289 259 306	$\begin{array}{ll}292 & \text { a } \\ 273 \\ 253 \\ 250 \\ 300 & \text { al }\end{array}$	$\begin{array}{ll}227 & \text { " } \\ 245 \\ 225 \\ 2642 & \text { " }\end{array}$		\} 13.3 per cent.
5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \end{aligned}$	$\begin{array}{\|l} \text { Barley-meal } \\ \text { Middlings. } \end{array}$	$\begin{array}{ll} 2731 \\ 283 \\ 283 \\ 238 \\ 238 \\ 298 \\ 2531 \\ \hline \text { "̈ } \end{array}$	$\begin{aligned} & 2664 \\ & 277 \\ & 232 \\ & 239 \\ & 291 \\ & 2462 \end{aligned}$			15.6 per cent.
$2\{$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Pease-meal.	2891 288 301 301 2791 312 312	le ${ }^{282}$ 282 ${ }^{282}$ "			$\}^{17.0}$ per cent.
2	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	Corn-meal.					(14.1 per cent.

One hog of each lot was cut through in front of the shoulders, behind the shoulders and in front of the hams. It was intended to photograph these sections had the difference between the proportions of fat and lean from the different kinds of feed been decidedly apparent. The difference would not have been evident to the eye from an exact photograph. A few of the notes made on the spot are transcribed here :- i

- Corn-Meal Fed.-Lean meat rather brighter in the color than the others; equal to the pease-meal $1 . d$ in firmness and proportion of fat and lean ; lard more chalky in shade than others.

Pease-Meal Fed.-The color of the lean meat hardly so bright as the corn-meal fed.
Barley-Meal and Middlings Fed.-Color of the lean meat rather pale ; larger pro. portion of lean to fat than in the corn and pease-meal fed ; flesh and fat softer in body than in the two other lots.

In the following table is shown the order of quality under the three heads of " color," "largest proportion of lean to fat," and "firmness of flech and lard."

First.
Second.
Third ...
Fourth
Fifth....

- Other
from conel comes old pound of i creased co feeding ho consumed did the ho

By co
the hogs in
spectively

Feeding

Sept. 13th to
Nov. 9 th to D

The inc the hogs in during the F

In corn-
In peas
In barle increase live

I consid one pound of

The floo ment leaves

Hog ma farm, much realised in ad recogrised an stand and use
alded, scraped, dressed weight
of shriakage from veight to dressed t.
per cent.
per cent.
per cent.
per cent.
per cent.
ad the shoulders had the differis of feed been the eye from an here :others ; equal to o chalky in shade
e corn-meal fed. pale ; larger proat softer in body

from coner hog-feeding has been in progress. From the data given in these tables, and comes older and heavier there is a gradual increase in to point out that as a hog bepound of increase live weight. It is not increase in the quantity of food consumed per creased consumption of feed upon these few ew to base a scale of the per cent. of infeeding hogs upon middlings only from 226 tests, hut I may mention that in the case of consumed bighty-six per cent. more feed for evach up to 291 lb . each (pen 6), they did the hogs from 90.6 lb , each up to -145.2 lb . ead pound of increase live weight than

By comparing the quat
the hogs in pens 1,2 and 5 on corr- feed consumed per pound of increase live weight by spectively during the first eight and the last seven week barley-meal and middlings re-

Feeding period.	Corn-meal consumed per lb , of increas live weight.	Pease-meal consumed per lb. of increace live weight.	Mixture of barley-meal and middlings consumed per lb. of increaselive weight,
Sept. 13th to Nov. 9th. Nov, 9th to Dec. 28th.		4.78 lb 4.92	$\begin{aligned} & 4.16 \mathrm{lb} \\ & 5.06 \mathrm{c} \end{aligned}$

The increased per cent. of the consumption of feed per lb . of increase liva weight in the hogs in the second period from Nov. 9th to Dec. 28th over the rate of consumption during the period from Sept. 13th to Nov. 9th is as follows :-

In corn-meal fed hogs, 20 per cent. more feed per lb, of increase live weight.
In pease-meal fed hogs, 3 per cent, more feed per lb, of increase live weight.
In barley-meal and middlings mixture fed hogs, 21 per cent. more feed per lb , of increase live weight.

I consider that it is possible by a judicious mixture of grain in hog-feeding to obtaia one pound of increase live weight up to 200 lb . for every four pounds of grain fed,

The floors of our feeding pens all have their fall towards the trough ; that arrangement leaves the back part of the pen always dry for a sleeping place.

Hog manure is one of the best fertilisers; in feeding hogs little is taken off the farm, much is left on it of manurial value, and satisfactory money returns may be recoguised and undeveloped source of wealth for the men who will endeavor to under-
stand and use them well.

9.-FODDER CORN AND THE SILO.

Indian corn (Zea Mays) is cultivated in every quarter of the globe. The plant is believed to be indigenous to South America, though the origin of its use as an agricultural product is still obscure. The remains of charred cobs have been dug from Indian mounds; and the Spaniards in the course of their conquering inroads found it growing as a holy ornament upon the graves of Mexicans. Mention is made of the discovary of cultivated corn fields about the mouth of the Kennebec river, Maine, in 1605. Cartier found waving corn fields at Hochelaga in 1635. Its spread into Europe is believed to have been from America by the ships and hands of the Norsemen long before the adventures of Oolumbus. From Mediterranean ports it was spread through Europe, and as everything foreign in those days was called "Turkish," it carries the name of "Turkish corn" to this day in many of the kingdoms there. As an agricvltural product it is of vast commercial importance to the farmers of this continent, and its enormous yields, without serious exhaustion of the fertility of the soil, have made it the means of rapidly enriching the districts and countries where it has been grown successfully. Contrary to the belief of many farmers in Ontario, it can be grown to advantage for fodder purposes in every section of the province. In the counties in Ontario where it is valued for its grain producing qualities, the average yield per acre in 1888 was 78.2 bushels in the ear against the officially stated yield of 26.3 bushels (shelled corn) in the corn-growing States. With this crop, as with the more commonly grown cereals, the several varieties attain their maximum of service and value in the most northernly limits within which they can be grown to maturity. In the season of 1889 corn was ripened successfully as far north as Minden, Haliburton. It can be grown for fodder purposes profitably in every part of the whole province.

While a loose loamy soil is thought to be best adapted for its growth, large crops can be obtained from clay lands as well as from sandy soils. The varieties are practically innumerable. They are due to climatic conditions, selection, cross-fertilisation and cultivation. Attention to the controllable treatment will doubtless enable the farmers of this province to develop varieties more suitable and serviceable to themselves than any that are yet known. The height, attained by the plants of different varieties, ranges from two feet to fourteen feet. The number of nodes or joints on each stalk is irregular. The leaves vary in size and number. Ears may be carried at any node ; sometimes two or three are borne on one node ; occasionally as many as ten ears form on one stalk. In our climate, varieties that carry more than two or three ears per stalk have not been ripened. The number of rows of kernels on each cob may always be evenly divided by two ; they range from eight rows up to thirty-six. The kernels vary in shape, size and color. Sixty-eight varieties were grown during the season experimentally. The valuable and essential pecularities of most of them will be presented in tabular form. A bulletir of instruction on the methods of cultivation that should be adopted was issued early in the season. A second edition was called for in November. The following is the bulletin which contains simple cuts to illustrate the way of constructing silos adapted for the economical preservation of green crops in their most digestible state.

Fodder Corn and the Silo.

No single subject connected with agriculture is to-day creating so much discussion or receiving so much thoughtful attention from the farmers of Ontario as that of ensilage. And it deserves more attention than has yet been given to it. A lingering prejudice still exjsts in the minds of a few farmers against the construction and use of silos. That feeling, which is unworthy to be called a judgment, had its origin in the partial failures of some of the first efforts to introduce the ensilage system of preserving fodders into this country. But as the causes of such failures, (or, at the best, oniy partial successes), have been discovered and can be always guarded against, remediel' or removed, satisfactory results may now be relied on with certainty.
mings In the handling of any perishable commodity, hap-hazard treatment will give haphazard results. Occasionally no loss may be sustained, but generally the damage and
loss will be ledge of " as other me and easiest who under invariably prudence.

Let m an air-tigh succulent st ensilage, is are corn sile

Former ders when p that was the would result The rotting ed to guard loudly adver of the fodde tatement, al consumes it anything out the fact still scientist " wh he could not He knows he out cured ch silage has a h

Growing luence on the suitable for en will contain th without loss. hen cut. Th in our provinc
(1) Plant rtificial unde ecommend for pring. Early eed and so pr oil will be pro
(2) Seed, ecleaned mor row to near m ill three feet a apart. The W. A comm eing stopped u
(3) Cultiv soon as the ght harrows. eeds The ha requent cultive ote growth.

The plant is as an agriculgrom Indian and it growing e discovery of 1605. Oartier is believed to ore the advenEurope, and as o of "Turkish product it is of hormous yields, eans of rapidly

Contrary to odder purposes s valued for its shels in the ear e corn-growing everal varieties s within which successfully as as profitably in
wth, large arops sare practically sation and culthe farmers of selves than any varieties, ranges talk is irregular. ; sometimes two one stalk. In k have not been venly divided by shape, size ani

The valuable rm. A bulletir s issued early in ag is the bulletin adapted for the
much discussion that of ensilage. gering prejudice se of silos. That - partial failures fodders into this artial successes, or removed, satis.
nt will give hap. the damage and
loss will be proportionate to the absence of applied knowledge and skill. A clear knowledge of "how to do it " and "the doing of ic" just that way will enable farmers as well as other men to successfully cope with the things most difficult to do well. The simplest who undertake them simiar preparatory equipment and performing ability in the men invariably satisfactory task to the farmer ap of fodder corn in a silo is now an easy and prudence. an air-tight building, box, tank, comparw names. A silo (from the French) is simply succulent state are put for preservation e.nd curing trench or pit into which fodeors in a ensilage, is the feeding substance after is curing. Silage, or as it is sometimes written are corn silage, clover silage, oats and pease silage, ete.
Formar Results. -It used to ho motod th

Former Results.-It used to be stated that there wa ders when put into and taken from a silo. Wher the wilag a loss on the feeding value of fodthat was the case, but a similar depreciation of quality ange was partially rotten, of cours9 would result if hay, grain or straw were allowed to teand consequent loss in feeding value The rotting was and aiways is resultant from unsuitable condition in the mows or granary. ed to guard against and remove. Then came the periconditions. These the silo is intendloudly advertised the presumption of those who period when scientific (?) men and oihers of the fodder increased by the heating in a silo. stated that they found the feeding value tatement, and in estimating the feeding value of a However, the cows agreed with the consumes it is always worth more than the of a fodder the verdiet of the animal that anything out of a silo you did not put into it," wainion of the analyst. "You cannot take the fact still contradicts the assertion. V ould the bravado used as a silencer. But scientist " who told him with scholarly dignity and a dairyman pay any heed to "a book he could not take anything out of his cheese curing unbecoming contempt for facts that He knows he puts in green, uncured cheese, almost whom which he did not put into it? put cured cheese almost wholly digestible. In the sally indigsstible, and that he takes silage has a higher feeding value than the dried fodder.

Growing the Crop.-The manner in which the
Auence on the possibiliiy of its advantagecus curing crop is grown has very important insuitable for ensilage uses. It should be grown to near In Ontario the corn crop is the most will contain the largest amount of nourishment, and will turity. Thereby the several plants vithout loss. Tue feeding value per acre ist, and will also be capable of long preservation then cut. The conditions requisite for securing highest when the crop is almost mature our province are : (1) early planting, (2) thin seedi degree of growth in the corn plants
(1) Planting.-The land for a corn crop sheeding, (3) frequent cultivation.
rtificial underdrainage. It should be work should be drained, either naturally or by coommend for most Ontario soils deep fall worked into a fine seod-bed. To attain that I pring. Early planting should be shallow, thewing, and only surface cultivation in the red and so prevent rotting. A liberal qua, that the sun may werm the seed-bed and oil will be profitably applied. Phosphate quantity of barnyard manure worked into the (2) Seed.-Thecrop should be rewe fertilisers are said to be valuable.
cleaned more economically by planting in rows. If the land be very weedy it can perhaps row to near maturity in the locality is the sort the largest variety of corn that will fill three feet apart both ways will be enough. That should be used. Three seeds to the 2. apart. The seed should be put in not 'hicke The rows should be from 3 ft , to 3 ft .6 ow. A common force-feed seed drill may eing stopped up.
s soon as the corn appears twoltivation is preferable to "hilling up " or "moulding up." ght harrows. That treatment will keep ground it should be harrowed over with eeds The harrowing should be repeated twice growth of grass and destroy tender requent cultivation between the rows or hills afterwe the corn is six inches high. pte growth. The cultivation should be hills afterwards will keep down weeds and proote growth. The cultivation should be continued, but after the down weeds and pro-
feet high it should be shallower. That may be kept up until the stalks are higher thar theman and the horse. When the lower leaves begin to turn yellow and the ears of corn are in the milky stage, and quite fit for boiling for table use, the crop should be cut.

Theory of Curing.-It is possible to cure silage to advantage, and in such a way that it may be preserved indefinitely, mainly because the cells of plants continue to live after the stalks are severed from the roots. It is the function of plants while growing to deoxidise carbonandaccumulate the energy of the sun for the future service of lower animals and man It is the function of animals to oxidise and so expend the energy previously stored in the plants and which the animals have appropriated in the form of food. The cells of plants in the stalks, leaves and grain, after these parts are separated from the root or whol plant which bore them, simulate the action of living animals so far that they begin to absorb oxygen and evolve carbonic acid. In this manner is heat generated. And i these cells be robust from sufficient maturity, the temperature will be considerably increased. Robust cells from plants almost mature are also much less liable to become the prey of minute bacteria. They are able to resist their attacks. If confined in bull in the presence of ordinary atmospheric air, they will raise the temperature to a point between 125° and 150° Fahr. When the temperature is maintained anywhere between these points for some days the life of the cells is destroyed, as are also the spore of mould, etc., which will have been deposited from the air on the plants or parts of the plants These spores are practically everywhere disseminated. Hence in building and filling a silo the observation of a few simple requirements are indespensible to success.

Building a Silo.-If a silo be erected is a separate structure, its foundation had bette be a low stone or concrete wall. A clay floor raised above the outside level to prevent damp ness will be cheapest and best. A sill of planks may be bedded on the top of the foundation wall. A common balloon frame may be erected by using as studs 16 ft . or 18 ft . planks, 2 in $\times 10$., or 2 in. $x 12$ in., placed 2 or $2 \frac{1}{2}$ feet apart. To secure them safely at the bottom against lateral pressure while the silo is being filled, they should be mortised and toe nailed, or cut so that the heels will extend down in front of the sills as shown in Fig. 2 To give additional security, the planks for the sills may be cross-lapped at the corners as shown in Fig. 1.

(Fig. 1.)

(Fig. 2.)
(B) Inch lumber. (C) Tar paper. (D) Matched or planed lumber. (E) Tar paper. (A) Studs. (B) Inch lumber. (C) Tar papde siding. (J) Post.

Studs.

The do boarded, short bo y will m uld be fa ind shou
talks are higher than ellow and the ears of the crop should be cut. nd in such a way that ntinue to live after the growing to deoxidise wer animals and man eviously stored in the

The cells of plants n the root or whole ar that they begin to t generated. And if will be considerably less liable to become If confined in bulk nperature to a point naintained anywhere as are also the spore plants or parts of the ence in building and pensible to success.
foundation had bette level to prevent damp top of the foundation . or 18 ft . planks, 2 in safely at the bottom be mortised and toe Ils as shown in Fig. 2 lapped at the corners

The roof will give additional strength to the sides for resistance to outward pressure if it be made after the truss pattern. Instead of ties or joints running straight across from the tops of the studs or the plates, where they would be in the way during the filling, they should extend like false rafters from the top of each stud to the rafter opposite, being spiked to it at about one-third of its length from the ridge. On the inside of the studs should be first nailed a lining of inch lumber running horizontally. It should be so put on as to make lock-joints at each corner, as shown in Fig. 2.

A covering of tar paper, with the edges lapped four inches, should then be tacked on. Over that should be put inch lumber running horizontally, planed on the exposed side and all the better for being tongued and grooved. That will make a practically air-tight building. To make it also frost proof, the outside of the studs may be covered in a similar way. A single thickness of lumber can be made to do, but the double ooarding, with paper between, is preferable, since the tar paper is thus kept close against the outside boards.

(Fig. 3.)
Studs. (B) Ineh lumber. (C) Tar paper. (D) Matched or planed lumber. (E) Tar paper. (F) Outsiele siding. (J) Post. (K) stone foundation. (L) Sill. (M) Clay floor covered with cut straw.

The door should be of the ice-house style. A space between two studs may be left boarded, or may be sawn out flush with their sides. Oleats may then be nailed on and short boards fitted in. Care should be taken to so place strips of tar paper that y will make the joints at both sides of the door air-tight. A 10 or 12 inch board uld be fastened into each corner to extend from the bottom to the top, and 'the space ind should be filled with sawdust. To preserve the inside lumber it should receive a 18 (A.c.)
coating of coal tar, mixed with a few ounces of rosin, applied hot and liberally. Where a mow of a barn or part of some other building is to be fitted up for silage uses, the inside finish of the silo should be the same as for a separate structure,

(Fig. 4.)
(A) Studs. (B) Inch lumber, (C) Tar paper. (D) Matched or planed lumber. (E) Tar paper. (Y) Outside siding. (i) Door. (H) Cleats. (I) Outside door on hinges, and in two or three pieces. (N) Corner board. (O) Sawdust.

Filling the Silo.-For economical filling the tools, implements and conveniences should as far as possible, be adapted to the cheap and easy performance of the work. That implies the making the best use of the machinery already owned on the farm. For the cutting of the corn in the field I prefer and recommend a common corn knife, or an old-fashioned sickle. A strong reaper may do the work by horse power, but if the crop be heavy and the corn from ten to twelve feet high the rakes will not clean the board, and stalks will be dragged behind. For a hauling convenience an ordinary waggon may be made to serve by putting the wheels from a front axle on the hind axle. A truck or a waggon with low wheels and a large flat platform may be used. In either of these cases, by trail ing a gangway behind the persons loading the fodder may carry it up in armfuls. These are not the best conveniences, nor do I recommend that way of loading. In the way nor to be described the bandiest kind of a truck can be provided. Three strong pieces of timber 6 by 6 inches and each 12 feet long are used. Strong poles will serve the purpose if flattened on one side. They are placed 16 inches apart, centre to centre, and the middle piece is extended 3 feet beyond the two outside ones. Three feet from the othee ends of the two outside pieces a 2 -inch plank, 8 feet long, is securely bolted across the three 12 feet pieces. A covering of planks is continued, each securely bolted, until the platform comes to the end of the two outside pieces, leaving the middle piece extending Then by removing the reach from a common farm waggon, the platform so constructid

(Fig. 5.)
can be at purpose king-bolt under it the top o The two hind axle beneath can be us plank of easily an

The the work capacity attached neither p the way inches to silo. Ev already d stalks can it should throw it o teamster have been the previ platform. cutting bo and both occasional filling may convenien corners ju two days covered w should be closely tuc and to kee

Size a measureme venient sh at least of t Where lum outlay need building, th chased and silage per a a feeding v tenance of total cost f

Summ

1. It s
2. The
almost mat
iberally. Where silage uses, the
(E) Tar paper. (Y or three pieces. (N
nveniences should rk. That implies For the cutting of an old-fashioned crop be heavy and rd, and stalks will may be made to ruck or a waggon ese cases, by trailn armfuls. These In the way now e strong pieces of serve the purpose to centre, and the feet from the other bolted across the y bolted, until the le piece extending orm so constructed
can be attached to the under side of the axles. The middle piece will serve the double purpose of a reach and front support. It can best be attached to the front axle by a long king-bolt passing down through it. A large flat washer and a screw nut with a key under it will make a strong, suitable and safe connection. A brace passing back from the top of the king-bolt to the front plank of the platform, will improve the attachment. The two pieces extending beyond the platform at the other end are to be attached to the hind axle on the under side. Two clamps passing over the axle with a bar and nuts beneath the six by six pieces will fasten them securely to the under side. The "hounds" can be used as a brace by attaching the end of it to the middle piece through the hinder plank of the platform. A rough sketch accompanies this to make my description more
easily and clearly understood.

The stalks may be filled into the silo without cutting, but more labor is involved and the work of emptying for feeding is rendered doubly difficult. Any strong cutter, wit capacity for a large quantity per day, will serve the purpose. Carriers should be neither practicable nor desirands on a level with the top of the silo, which ordinarily is the way of machinery equipment Horse power or engine may be used. Everything in inches to a foot of cut or uncutsing ready, the filling may be commenced. From six silo. Every farmer with a placed evenly over the bottom of the already described. If the corn field crop should provide two of the carrying platforms stalks can be loaded most economically near the silo, one team will do the hauling. The it should be, wilting will be unnecessary. Trom the roof. If the crop be as ripe as throw it on the low platform as on the teamster might at the same time be loading, and thus avoid the double handling. The have been cut and laid in armfuls on the gron the same platform the corn which will the previous load. At the silo the ground during his absence from the field with platform. The horses may be changed from can be fed into the cutter from the waggon cutting box two men will be required. A 2-inchad to the empty waggon. At the and both are better than one inch or occasionally level the heavier parts of the During the filling, care should be taken to filling may proceed every day, every second convenient. In either case the contents shay or every third day as may be found corners just before the addition of a new layld be tramped around the sides and in the two days the sides and corners should be again then the silo is full, after the lapse of covered with a layer from two to three feet the should be laid on close, and for thee feet thick of any kind of straw, cut or uncut. It closely tucked around the sides and into cut stray is rather preferable. It should also be and to keep until wanted, be that time four weeks or the silage may be thus left to cure

Size and Cosi of Silos. A silo 10 feet wide by 50 feet measurement, will hold about 125 tons of settled orn feet long by 16 feet deep, inside venient shape and should not have any partitions, Every at least of that capacity. From the foregartitions, Every 100-acre farm should have one of Where lumber is cheap and the farmer does most of thobable cost may be easily calculated. outlay need not exceed $\$ 1$ per ton of capacity building, the quality of lumber of capacity. It will vary according to the finish of the chased and put on at an es, ense of from 21 , Trice of material, etc. Tar paper can be pursilage per acre may safely be reckoned on. $\frac{1}{2}$ to 3 cents per square yard. Fifteen tons of a feeding value equal to one ton ofed on. Every two tons of well cured corn silage has tenance of cattle, horses and sheep; and 100 hay for the production of milk or the maintotal cost for rent, seed, labor, ect., not exceeding $\$ 150$ silage can be grown and cured at a

Summary. To sum up the whole matter-

1. It seems to be essential that the silo be air-tight.
2. The crop to be ensiled must be grown to a stage when the several plants will be
3. The crop to be ensiled should be put in loosely at first, to permit of quick and sufficient heating; only the sides and corners should be tramped.
4. The flling may proceed every day, every second day or every third day with equally satisfactory results.
5. The silage may be covered with cut straw to a depth of two feet; or it may be left uncovered altogether at the expense of wasting only the top six inches or less.

Conditions and Results.-In the following four sets of conditions and results, I have tried to put the whole theory. By "life" I mean life as in the cells or life in the spores, which would be destroyed by a temperature above 125° Fahr. If air finds admission through a knot-hole or crack or, down the sides from neglect of tramping, it will carry spores with it and so introduce new life.

Sito Conditions.

A. Life in the cells in the presence of air.
B. Life in the spores in the presence of air.
C. Life in the cells with no air.
D. No life in cells or spores with no air.

Results.

Oxidation generating heat.
Mould.
Fermentation.
Preservation.

Growing a Corn Crop for the Silo.

The field set apart for growing corn was one of twenty acres of area; its soil was a clay loam, apparently nearly uniform in quality on the surface ; the land lay almost level; the inclination towards the north-east was not sufficient to call for more than passing mention. The intention was entertained to clean the field from thistles and to provide a crop for the filling of the silos. The land was plowed in the fall, one-half only of the field received a dressing of manure, which had been hauled out during the winter. Part of it was plowed under in the spring and part was cultivated on the top by the use of the disc harrow and spring-tooth harrow. There was no apparent difference in the crop from these two different treatments of the manure.

Each variety of corn was planted across the field, running across both the part that was not manured and the part that was manured. There was a marked difference between the two sides of the field, in the appearance of each variety, during the whole period of the growth of the crop.

A force-feed seed drill was used to do most of the planting. It was found to be in every way as serviceable as the corn planter. The rate of seeding was gauged by driving the seed-drill for a distance of 100 feet on the bare lane; the number of grains that dropped from each spout, that was allowed to run, were then counted; the gauge was varied until only the number desired would pass through within 100 feet. When 150 grains of the large ensilage varieties were dropped per 100 feet in each row, from 15 to 18 lb . of seed were required per acre, with the rows three feet apart. The drill was set to plant as shallow as possible; the seeds were put in at an average depth of two-anda half inches.

As the crop on the part of the field that was not manured, came up and continued to grow, it was seen that it was altogether too irregular to afford any useful data, for comparison with the yield of the same varicties on the manured land, or for comparison between the yield of the different varieties on the unmanured land. Within a few feet of each other in the same row, the height and weight of the plants would vary as three is to one, on the part of the field where no manure had been put; there was a generally uniform height, during all stages of the growth in the plants in the same row, on the part where manure had been applied. For that reason mainly, no weighings or analyses were mad of the corn from the parts of the rows where no manure had been put.
it of quick and third day with ; or it may be or less. results, I have e in the spores, finds admission g , it will carry
ting heat.
its soil was a y almost level; e than passing and to provide e-half only of ing the winter. the top by the difference in
the part that erence between fole period of
found to be in ged by driving of grains that the gauge was t. When 150 ow, from 15 to edrill was set h of two-anda
and continued sseful data, for for comparison thin a few feet 1 vary as three there was a the same row, 0 weighings or nure had been

The following may be mentioned as obskrved difperenogs resulting prom the application of barnyard manure:
(1) The corn on the manured half of the field was on the average from 21 to 3 feet taller than on the other half when both were cut in September.
(2) It tasselled out from a week to ten days earlier.
(3) The varieties which carried an average of ten ears or nubbins to every ten stalks on the manured part of the field, bore an average of only three small nubbins per ten stalks on the unmanured land.

Over a large portion of the field either "sulphate of ammonia" or "superphosphate" was applied with the seed in every second row of corn, across both the manured and unmanured parts. The use of these commercial fertilisers produced no observable effect on the rapidity of the growth or the weight or quality of the crop. The absence
of noticeable results from the to conditions of soil or season which eluded observation. After the corn-planting
On the morning of 23 rd May, a light frost the weather was exceptionally unfavorable. the morning of 29th May, the frost was so severe as to plots that were up ; and on corn plants that were above it. These frosts were followed back to the ground all the the field too wet to permit the planting to be resumed by heavy rainfalls, which left planting was finished, frequent and heavy rains came and before June 11th. After the tivation or hoeing. Until the first week of July, the corn bast entirely prevented culgrow, while the weeds had to be left in undisturbed the corn had a very poor chance to of matters very much increased the labor required to cleas the fien of the field. That state ing was the method of cultivation: (1) light harrows were used afterwards. The followfour or five inches high ; (2) as the long-continued rains had used after the corn was about hard, a two-horse cultivator, that stirred the ground had caused the soil to become very was improvised to loosen it to a depth of three or fou both sides of one row at a time, with a one-horse scuffler was th on continued; (4) or four inches; (3) shallow cultivation rows was done twice, and in places oftener, to complete the between the plants in the thistles.

Although it has the longest and most successful explecided by the judgment of those who have had hills or rows, it was considered desirable to that corn for ensilage should be grown in to gain further information on the comparative some at different rates of seed per acre, acre. Some useful knowledge may also be gleaned quantities and values of the yield per the same variety when planted at different dates which prevailed until the end of June, hindered the unusually cold and wet weather, advantage which ordinarily would accrue to it from the loarly-planted corn from having the

I have gathered the most of the inform anger period of growth. examinations into a number of tables.

Table I shows the quantity of seed per acre, the mode and time of planting, the date of the various stages of growth, and the yield in green weight of the several varieties
tested.

Varieties，	$\frac{\stackrel{\rightharpoonup}{\partial}}{\frac{0}{\theta}}$		$\begin{aligned} & \text { \& } \\ & \text { en } \\ & 4 \\ & \text { む } \\ & \text { प } \\ & \text { W } \end{aligned}$	Date of－					$\begin{aligned} & 0 \\ & \frac{0}{4} \\ & \frac{t}{4} \\ & \frac{6}{4} \\ & \frac{6}{6} \frac{2}{d} \\ & \frac{d}{x} \end{aligned}$	
				$\begin{aligned} & \text { 兑 } \\ & \text { 俛 } \\ & \text { a } \end{aligned}$	昌 总 H H	$\begin{aligned} & \text { 曷 } \\ & \text { 弟 } \end{aligned}$		$\begin{aligned} & \text { d } \\ & \frac{0}{8} \\ & \frac{0}{6} \\ & \text { 世 } \\ & \frac{1}{3} \end{aligned}$		
$\underset{\text { Southern Sweet．}}{\text { Mammoth }}$	$\begin{gathered} 1 \mathrm{a} \& \mathrm{~b} \\ 1 \mathrm{c} \\ 2 \mathrm{c} \end{gathered}$	$\begin{gathered} 3 \mathrm{ft} . \\ 4 \\ \hline \end{gathered}$	lb． 15 28 18	$\begin{gathered} \text { May. }_{\text {. }} \\ 22 \end{gathered}$	Aug． 26	Aug． 30	Aug． 30	Sep． 7	7	lb．
										．．．．．．．．
					$22{ }^{\prime \prime}$	29	29	7	6	22,045
Red Cob Ensilage ．．．$\{$	$\begin{aligned} & 2 \mathrm{~d} \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 4 \\ & " 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 18 \\ & 281 \\ & 15 \end{aligned}$	＂	6121	4	4	7	10	$\begin{aligned} & 25,389 \\ & 29,356 \\ & 31 ; 283 \end{aligned}$
				8		4			5	
				\％		27	27		4	
Mammoth S．S．．．．．．	5	7 in.	196	＊	20	28	28	7	0	44，719
Red Cob Ensilage	6	＊	152	22	22	＊	＊	．\cdot	0	44,126
Giant Prolific S．．．．．Ensilage．．．	$\begin{array}{r} 7 \\ 8 \\ 9 \\ 10 \end{array}$	$\begin{gathered} 3 \mathrm{ft} . \\ " \\ 7 \mathrm{in} . \end{gathered}$	15 15	June 11 May 8	")	29 26	29 26	7	7	34,043 31,929
			15	$\text { May }_{6} 8$	21	27	27	＂	7	29，910
			165	＂	＊	＊	28	＂	0	41，582
Pearce＇s Prolific	11	i^{6}	180	＊	2	5	8	22	．．．．．．	27，228
Sibley＇s Pride of the North．．．．	12	3 ft ．	18	June 18	21	25	25	7	5	29，701
Pearce＇s Prolific ．．．．．	13	＊	20	13	8	19	21		10	32，828
Red Cob Ensilage	$\begin{aligned} & 14 \mathrm{~b} \\ & 14 \mathrm{c} \\ & 15 \mathrm{~b} \\ & 15 \mathrm{c} \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 56 \\ & 31 \\ & 28 \\ & 15 \end{aligned}$	May ${ }_{\text {22 }}{ }^{\text {2 }}$June411	24	27	27	77	6 5	42,932 37,710
									5 0	37,710 28,726
					28	Sep： 4	Sep：${ }^{5}$		8	23，642
		4	3016	＂	$\stackrel{26}{6}$	Aug． 30	Aug．30	．$\quad .$.	79	34,15824,757
$\underset{\text { Ensilage．．}}{\text { Giant }}$ Prolific S．．．．	$\begin{aligned} & 16 \mathrm{~b} \\ & 16 \mathrm{e} \end{aligned}$									

Note．－Lots 1a，b and c badly injured by frost May 29；lots 5，6， 10 and 11 were virtually broadeast and not cultivated．

Table II．－Showing average result of analyses of Corn in Table I．

－	＂ 					웅
Corn in rows 3 ft ．	80.421	1.391	11.841	5.331	425	591
Corn in rows 7 inches apart．．．．	74.768	1.038	16.040	6.854	． 507	.793

The low per cent．of water in the＂corn in rows 7 inches apart＂（broadcast），is doubtless due to the fast that the stalks had become somewhat withered and dry at the lower end before they were cut．

The weights per acre were calculated from weighing of 250 ft ．of the crop，fron two rows of each lot planted 3 ft ．apart ；a larger area of the broadcast corn was weighed．

Table III shows the results of the analyses of the ears（husk，grain and cob）， stalks and leaves separately，from 160 corn plants，which were 10 average plants taken

It wi the crop ent．of th in the lea

from each lot grown in rows 3 feet apart, and reported on in Table
cut on September 18th and cured in bundles in were put in a dry loft in the barn until the the field for 10 days, after which they weighed and sampled for analyses. The green weight of November, when they were weight was 169.18 fb . which was made up of 103 ears (husk, grain and cob).

> 160 stalks. Leaves
32.40 th.
lb.

able I.

" (broadcast), is d and dry at the
of the crop, from corn was weighed. grain and cob), rage plants taken

Table VI shows the results from growing different varieties of corn side by side two rows of each-to discover the comparative degrees of maturity attained in 100 days ${ }^{\text {' }}$ growth, and also for comparison of the yields per acre. All the varieties were planted in rows 3 feet apart, and the rate of seeding was as nearly as possible one grain every six inches in the row. The stages of growth were termed, -"Tasselling," "Silking," "Blossoming," "Out of Bloom," "Early Milk," "Late Milk." The weight per acre was calculated from the actual weighing of the crop of 250 feet of two rows of each variety. The dates of planting were from June 12th to June 13th and of eutting from September 20th to September 23rd.
and sa of the " medi

Ears

Stalks.

Leaves
Early milk.
Blossoming.
Parly milk.
Tasselling.
Early Milk.
do
Silking
do
do
Blossoming
Early milk.
do
Late milk.
Early milk.
Late milk.
Early milk.
Late milk.
do
Silking.
Early milk. do
Out of bloom.
Early milk.
do
do
do
do
do
do
do
Late milk.
Early milk.
Out of bloow.
Silking.
Late milk.
Blossoming .
Silking.
Early milk.
do
do
do
Late milk.
Early mill.

Table VII shows the analyses of average corn stalks, taken from the several varieties in Table VI ; they were cured from September 18th for 10 days in the field, and remained in the barn loft afterwards until November 14th, when they were again weighed
n side by side aed in 100 days' were planted in grain every six g," "Silking," weight per acre vo rows of each and of eutting
of growth reached.
milk.
ming
milk.
ming
milk.
ling.
Milk.
ming.
milk.
milk.
nilk
mik,
nilk.
milik.
nilk.
nilk. milk.
bloom
filk
ming
milk.
nilk.
milk.
m the several in the field, and - again weighed
and sampled for analyses ; they were divided into three classes, according to the height of the plants, the separate analyses of which will be found under the heads-" large,"
"medium," "small."

䂞类	Analyses.	Reached " Silking Stage."			Reached "Out of bloom" and " early milk stage."		
		Large.	Medium.	Small.	Large.	Medium.	Small.
Ears ...	Water ...	$\begin{array}{r} \text { p.e. } \\ 78.90 \end{array}$	p.e. 78.68		p. c.	p.e.	p.e.
	Soluble carboh	17.96	18.92	72.25	75.01 203	66.23	67.58
	Crude fibre.....			23.77 \{	18.25	+2.79	2.53
	Fat (ether extract) Ash	${ }_{0}^{2.77}$	1.70 0.53	2.77 0.99	3.75	4.39	24.08 4.41
Stalks..	Water	0.17	0.17	0.22	0.77 0.19	1.13	1.14
	Crude protein	71.65	69.32	73.90			0.26
	Soluable carbohydrates.... . ${ }_{\text {O }}$	18.70	21.11		75.86 1.19	70.71 1.28	73.38
	Crude fibre	8.43	7.92	${ }^{18.05} 7$	15.11	20.40	1.79
	Ash	0.93	1.30	7.13 0.62	${ }_{6}^{6.98}$	6.32	16.42 7.46
Leaves.	Water	0.29	0.35	0.32	0.61 0.25	0.95 0.34	0.57
	Grude protein	32.34	33.03	25.73		6.34	0.38
	Soluble carbohydrates........ $\{$	46.07	44.27	46.67 f	${ }^{7} 7.38$	31.53	33.02
	Fat (ether extraet)	16.07	18.01	21.32	41.44	38.87	37.18
	Ash	${ }_{3}^{1.92}$	1.49 3.20	${ }^{1.89}$	18.65 1.81	18.49 1.66	18.78
				4.29	4.55	${ }^{1.66}$	1.75 3.74

Table VIII shows the composition of these corn stalks in the green state, as calculated from the analyses recorded in Table VII.

were found in the ears (husk, grain ane total quantity of dry matter in the plant, which plants taken from the lots named in Table VI stalks and leaves respectively, of the sample

This table in the main agrees with the conclusions drawn from Table V , viz.: that nearly if not quite half the total dry matter, valuable for feeding purposes is found in the leaf of the corn plants, which have not passed the stage of growth termed "early or late
milk." 14 (A.C.)

Bince a stage of growth near maturity is on all sides acknowledged to be advantageous for the preservation of the crop in a silo, the following varieties are named as the best adapted of any that we have tested, for growth in those districts where the oorngrowing season does not exceed 100 days.

Pearce's Prolific, King Philip Flint, Pride of the North No. 23 and Longfellow.
Where a longer growing season or a favorable one may be depended upon, the following varieties have shown that they are worthy of commendation:

Wisconsin White Flint. Wisconsin Yellow Dent Sibley's Pride of the North. Wisconsin White Dent.

Angel of Midnight. Golden Dew Drop.
 Canada Yellow.

Horse Tooth, and others.

In sections of the province where larger varieties of corn will mature-enough to sarry ears to the glazing or roasting period-the following varieties may be expected to return larger yields than those already mentioned :

Mammoth Southern Sweet. Red Oob Ensilage.
Giant Prolific Sweet Ensilage.

Sheep Tooth.
Hickory King.
Parish White Dent, and others.

Silo Construction.

Besides the silo, built in the new main-barn buildings, one was constructed in the sorner of an old frame barn-all above ground, which was being remodelled for cows for the Experimental Dairy. The plan of its construction was made to differ in some particulars, from the directions given in the Bulletin xlii on Building a Silo. The finish on the inside of the studs was different on each of the four sides of the silo.

On one side of the silo, a lining of inch lumber dressed on one side, was nailed on che studs ; this was covered with a sheeting of tar-paper; on the tar-paper was put a lining of inch lumber dressed on one side, tongued and grooved.

On another side of the silo, the construction on the inside of the studs was similar, with only the difference, that the inside lining of lumber was not tongued and grooved.

On the third side of the silo, the studs were lined on the inside with tar-paper ; on that was nailed horizontally, a sheeting of inch lumber tongued and grooved and dressed on the side next the inside of the silo.

On the fourth side of the silo, the finish on the inside of the studs was made by the use of only one thickness of inch lumber neither dressed nor tongued and grooved; it was nailed on the studs horizontally.

Tue following concise statement may help to make the differences of inside finish, slear to the minds of the readers who have had no experience in silo building :

First side ; studs $2^{\prime \prime} \times 10^{\prime \prime}$; inch lumber dressed on on one side ; tar-paper ; inch lumber dressed on one side, tongued and grooved.

Second side ; $2^{\prime \prime} \times 10^{\prime \prime}$; inch lumber dressed on one side ; tar-paper ; inch lumber dressed on one side but not tongued and grooved.

Third side ; studs $2^{\prime \prime} \times 10^{\prime \prime}$; tar-paper ; inch lumber dressed on one side and tongues and grooved.

Fourth side ; studs $2^{\prime \prime} \times 10^{\prime \prime}$; inch lumber as it came from the saw.
The lumber on all the sides was put on horizontally. The purpose of the dirfge swors in the construction of the sides was to discover the cheapest way of building on that would preserve the silage.

I may here anticipate by reporting that up to the time of writing, with the exceptio of a short distance from the top of the silage there was practically no waste or spoilin against the first, second and third sides. Against the fourth side, the silage was decaye
or moul the top around
ed to be advantage8 are named as the cts where the oorn-
nd Longfellow.
epended upon, the
1:
eers.
mature-enough to may be expected to
and others.
s constructed in the odelled for cows for 0 differ in some para Silo. The finish the silo.
side, was nailed on ar-paper was put a
studs was similar, gued and grooved.
with tar-paper ; on grooved and dressed
uds was made by the ued and grooved ; it
nces of inside finish, building :
ide ; tar-paper ; inch
-paper ; inch lumber
one side and tongued

saw.

urpose of the DIFFER way of building one
gg , with the exceptio no waste or spoilin he silage was decaye
or moulded for a space of from 4 to 6 inches in from the side, for the first six feet from around the seam between each two boards.

No particular statement of the expense of the construction of this silo is here made, as it formed a part of the general remodelling of the barn. The expenses charged to remodelling the barn were also augmented by the remodelling of a stone root-house into an experimental piggery, and by making the necessary changes in the water supply, etc., to the creamery to fit it for winter butter-making in connection with the Experimental
Dairy, etc., etc.

Sections of the inside of the silo were covered with a painting of coal-tar applied hot ; other sections were painted with crude petroleum ; other parts were left with the lumber on the inside bare. Since the two substances were applied with a view to the preservation of the lumber, nothing can be said yet, concerning their efficacy in that regard. Howervation
Hower to them in a more natural petroleum was applied, left the silage immediately adjacent that were oovered with the painting of tar. more agreeable odor, than did those parts

I have no changes to molse in
Building a Silo, except to say that it is evidently dvantage to have the lumber tongued and grooved. unnecessary and without apparent

Filling the Silo.

Two carrying platforms, almost similar in construction to the description in the alletin, were provided. They were found to answer the purpose admirably. The three ain pieces of timber used as the carriers of the platform need not be heavier than $3^{\prime \prime} \times 6^{\prime \prime}$ stead of $6^{\prime \prime} \times 6^{\prime \prime}$ as previously recommended. The platform need not be constructed of lanks heavier than $1 \frac{1}{2}$ instead of $2^{\prime \prime}$. In the Bulletin th statement is made,- "The alks can be loaded most economically direct from the root. If the crop be as ripe as it ould be, wilting will be unnecessary." Further experience has shown us that in the stricts, having only a short season for the growth of corn, it is difficult to obtain a crop fficiently ripe to obviate the need for wilting in the field. Part of the silo was crop rect from the root,-the plants were in the silo withina. Part of the silo was filled ere cut in the field; part of it was filled with corn an hour from the time when they ree days. No analysea of the silage has been made as yet, but wilted for from one to eals the fact that to the smell and taste, the silage as yet, but an examination of it d and is better preserved. Three conditions aining of the best quality of silage without waste from ments seem to be essential to the 1. The plants shoud be grown to a stage almost maulding or decay.
2. They should be wilted in the sunlight, until the ware.

75 per cent of the total weight.
3. The silage around the sides a
ed thoroughly while it is being filled,

Covering the Silage.

On the top of the corn silage, a layer of millet silage was put for preservation; on top at a layer of rape silage was preserved for feeding to hogs as mentioned in another of this report. The covering of the silage was a layer of straw about two feet deep. is quite adequate when put on within two days after the last silage has been putin.

Feeding the Silage.

The silage from the silo at the dairy barn is being fed to milking cows. None of este or examinations into its feeding value are yet in a forward enough state to be ted upon here. When the silage is uncovered for feeding, unless the silo be frost may be guarded against by the putting of movable condition for offering to cattle. he plaoing of a lager of straw upon them. movable poles across the top of the sile

Cost of the Grop.

I have not thought it best to introduce here a statement of the cost of raising the corn crop and putting it into the silos. The work on the whole was experimental, and involved more than twice the usual labor for planting, weighin , etc. It has been my humble opinion in all my work in connection with the college and experimental farm, that those in charge are always justified in causing a judicious expenditure of public money to obtain and disseminate intormation of value to the farmers, but not in growing corn or anything else for only direct profit or pay by the acre.

Correspondence on Corn and Silos.

The correspondence with farmers about the growth of Fodder Corn and the Building of a Silo has become increasingly larger. I copy here extracts from three out of the many grateful and appreciative letters received.

From Mr. Robert Murray, Avening P.O., Simcoe Co., Ont.
"Perhaps you " may remember me stating in a letter to you last spring, that I had planted two acres " of corn in the way you directed when here: I cultivated it the same way. Now that I " have got the crop cut and see what a large amount of first-class food I have, I wish to " thank you and to tell you that my expectations have been far more than realised. A " good deal of it was from 10 to 12 feet high. Wishing to know how many tons there "were to the acre, I measured off a piece and weighed the corn and the result was $27 \frac{1}{3}$
"tons. To be sure there was no mistake, I measured a second piece, which proved to be "a trifle more. I never had the like of it before. I am sorry I have no silo to put it in."

From Mr. John S. Read, Bayview P.O., Grey County, Ont. . . . "I write to "inform you about the silo you gave me some advice about. I sowed the corn June 18th " which was a month too late ; I could not sow sooner on account of wet weather,
" commenced cutting corn October 7th. I let it lie a couple of days to wilt, put it into
"silo and left it $3 \frac{1}{2}$ days, then levelled it down and tramped the sides and corners well
"I did not put in more than 10 tons at a time. It heated from 120 degrees at 6 inche
" to 135 degrees at 15 inches from the top of the heap. It got slightly cooler toward th
: bottom. I covered with tar-paper and put a couple of feet of straw on top. I opened a
" the end of six weeks ; about 4 inches of top were bad, and four inches wide of the side
"were also bad for 2 feet down. Do you think it would be any improvement to put
"few inches of chaff under the tar paper? The stock are very fond of it and are doin
"well. The silage is pretty sour, probably more than it would have been if the corn ha
" been more matured. The silo is built inside of barn ; it is double boarded with roug
" lumber with tar-paper between.
From Mr. W. M. Mills, Arden P.O., Frontenac Co., On " inform you of the complete success of my silo. We have been feeding it over a wef "and my cows eat it greedily, so much so that they never appear to have cnough of " . . . I did not commence with my corn until June, I then sowed broadcast abo "six acres. I then planted in drills four acres. We next planted in hills up to Ju "12th eight acres, the latter on old June grass sod, dry upland, no manure. The most " the first ten acres was well manured and a part not at all, but it made no difference. "was all about as good as it could well be. The broadcast was as stout as possible. I
" about half an acre by lodging and rotting; the drills were superb, the hills were gra
" Riding through it on horseback I could not reach the top with my hand in the mos
" it, and it was neither sultivated nor hoed.
JAS. W. ROBERTSON.

[^0]: *Required to take Veterinary Obstetrics again

 + Has to pass another examination in Organic Chemistry.
 \pm Has to pass another examination in Systematic Botany.

[^1]: II.-Farm.
 (a) Farm Proper.

 1. Permanent Improvements-Fencing, etc
 2. Farm Maintenance-
 $\$ 54519$
 Salaries and wages
 Live stock to replace stock \$2,794 20
 Seeds............. 6,76300
 Store stock for feeding. $501 \quad 22$
 Maintenance of stock. 68470
 Manure 2,599 88
 Binding twine. 24090
 Furnishings and repairs $\quad 4560$
 Fuel, light, etc. $\quad 84896$
 Printing, postage, and stationery 5000
 Contingencies 7713
 19048
 \$14,796 07
 Less revenue
 $\$ 15,34126$
 1,659 . 62
 \$13,681 64
 3. Experimental Plots and Feeding :

 Salaries and wages-

 | Assistant Superintendent | 860000 |
 | :---: | :---: |
 | Instructor (part wages) | 10000 |
 | Labor | 24033 |

 Seeds....... $\$ 94033$
 Manures 79630
 Live stock for experimental feeding 1713
 Furniture, furnishings, repairs, etc, 8530
 Printing, postage, and stationery............................. 22729
 17183
 $\$ 2,238 \quad 18$.

[^2]: * Gold Medal

[^3]: * Gold Medallist.

