The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le ter:s. mais, lorsque cela était possible. ces pages n'ont pas èté filmėes.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-étre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-de;sous.

Coloured pages/
Pages de couleur

\square
Pages damaged/
Pages endommagées

\square
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées

Pages discoloured, stained or foxed/
Pages déculorées, tachetées ou piquées

Pages detached/
Pages dètachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continue

Includes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-tête provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

AGBICULTURAL JOURNAL,

 AND
TRANSACTIONS

OF THE

fower Comada Agricultural sacietu.

The agriculturis's of Lower Canada should fo all in their power to produce such articles a will mer i a realy sale, at remunerating ptices. Artichss that are produced for export, as well as for home consumption, will beform likily to pay the producer, hecause there will not be :nuch probability of the marfet becoming glutted. We are glad to pereeve fin active sale of articles that may not cerkuinly be of great value, but they sell for mioney, when, without this demand for them, bieg might be watted or nerlected. We Alude particularly to the extensive salc of eggs Find of vats to pack theinh in, for the United States, also common straw hats, which are a neix article of exportation to the same coun-衩. Fowls, we believe, are purchased for the same purpose, and if not, they might be, foa great advantage, considering the prictes we hare seen paid for fowls in the markets of New York and Boston. Butter, if good and pitked in a proper manner, would generally pay well for exportation, and now that the price of fresh butter has fullen considerably arthe market, farmers would do well to prebire it in another way for sale, by packing it misuitable casks or crocks. It is not profitbion to take fresh butter to market and nat peable to dispose of it for a fair price, and hidbutter is not inproved by such exposure fipacked subsequently. It would be much ctter to pack the butter at once from the hüri when it cools and is made up; handng too often is an injury to the quality and ppedrance. We have most excellent but$\mathrm{ra}_{\mathrm{r}}^{\mathrm{c}}$ made in Lower Canada, and all fit might be equally good if propertmanaged. The articles wo have enu-
merated :ibove might be prorluced to supply almost any demand that would be for them, and thougl they may not appear of great consequence, they ata well deserving of the attention of farmers, and might be found more proftable than other brameles of husbundry. The cultivation of flax and hemp for Canadian manufacture, and for home use, we have long recommended, but these plants are still neglected, and not grown to any extent. The cause, however, is the uncertainty of finding a sure and remunerative market. which we cunnot expect until mills are erected for dressing flas and hemp, and parties found who will purchase the crop when produced These crops cannot be growr with. out considerable expense to the farmer, and it would be unreasonable to expect him to incur this expense without some chance of selling the produce. Manufacturing sugar from the beet is another branch of industry we should encourage. This climate and soil would be very suitable for prolucing the sugar beet, and as good sugar might be made from it as from the sugar cane. This manufacture has been introduced into Ireland, and we have seen late accounts of the produce of sugar being very superior, equal to any made from the sugar cane. We refer our readers to an article we copy below from the "London Illustrated News," on this subject.

BEET-ROOT SUGAR FACTORY AT MOUNTMELLICK, QUEEN'S COUNTY, IRELAND.

We are indebted to modern chemiztry for the knowledge that the sweemess of many vegetable substances is due to the sugar contained in them, and for the art of extractirg it from them in its crystallised form. Till the commencement of this century, all the sugar of commerce
-then amounting in Europe to between 250,000 and 300,000 tons, as well as all that was consumed in Asia- (probably a much larger quan-tity)-was obtained from the cane, and that was supposed to be the only substance from which art could extract sufficient to supply the wants of mankind. To cultivate it and manufacture sugar for the market of Europe was for many years the principal inducement for continuing and extending the slave trade. Two lines of Cowper express at once the general belief, and the horrors to which it led:-

Has God then given its sweetness to the canc, Unless his laws be trampled on, in vain!

Soon after the commencement of this cemtury, when the war preveuted France and the Continent in general from obtaining colonial produce, some French chemists thought of applying the knowledge they had acguired of the nature of sugar to producing it from vegetables grown in their own country; and being encouraged by Napoleon, as well as by the enormous price of the tarticle (upwards of 2 s . per pound), they succeeded in producing a coarse and weak sugar from bect-root. This occurred about 1810, and from that period the manufacture of sugar from beet has been continued and extended. Though it was much checked on the return of peace, and the free importation again of sugar from the colonies into Europe, the manufacture had become so important, that the Government of Fiance and some of the Governments of Germany encouraged and protected it by imposing high duties on cane sugar. From that beginning, promoted by being in the centre of all the knowledge of Europe, having at its service all the arts of Europe and an unlimited command of free labor, it has come to ijval cane sugar, and beet-root is now one principal source of supplying sugar-not only for France, but for Belgium, Germany, Russia, and indeed the whole Continent of Europe. It has improved agriculture and given employment to a great number of people. In 1830 the whole pioduce of France was estimated at about 8000 ons; in 1851 at nearly 80,000 tons. The beet-root sugar made in the Zollverein was estimated in 1840 at about 15,000 tons ; and in 1851, at about 45,000 tons. Probably, half as much more at least as is made in France and in the Zollverein is made in all the other parts of the Continent. In Belgium the quantitymade is said to be 7000 tons, in Russia 45,000 tons ; making a total of beetsoot now manufactured in Europe at least 150,000 , an probably 180,000 tons, or nearly onesevenih part of the present consumption of Europe, America, and our various colonies. In 1847 this was estimated at upwards of $1,000,000$ tons; and, as the production has increased considerably since that period, it is now probably not less than $1,100,000$ tons.

The most extraordinary fact, however, iu connexion with the manufacture is, that the price at which beet-root sugar can now be produced
enables the manufacturer to compete with sugar made from cane by slave labor without pro. tecting duties, though they are gtill continued both in France and Germany. The quantities of sugar made from beet, and the low price at which, by the help of the protecting duties, it is enabled to be sold, are amongst the causes of the great reduction in the price of sugar, by which our community and the whole of Europe benefit, and of which the West India planters bitterly complain. According to a parliamen. tary return, the average price of Cuban and Brazilian sugar in Europe in 1842-44 (but since then several improvements have been made in the manufacture) was $17 \mathrm{~s} .5 \frac{1}{2} \mathrm{~d}$. per cwi., equivalent to $\mathrm{f17} 9$ s. 4d. per ton. Mr. Sullivan, the great scientific guide to those who are undertaking to make boet-root sugar in Ireland, in his pamphlet on the subject, puts it down at £21 or £22, which may, perchance, lead his sanguine countrymen into error. It is right to add that Mr. Sullivan's estimates are made from the selling price at Hamburg, where these foreign sugars had a market, and they did not, on account of the high duties, find a market here at the period of the return. At the same time we must state that the present price of Havannah sugars in the London markets varies between 178. 6 d . and 21 s . per cwl., in proportion to their fineness; and the price of Brazilian sugars varies between 13s. 6d. and 21s. 6d.: and we are not in a comdition to judge of the relative goodness of beět-root and these other sugars, but some of them are very fine.

We may alse notice that Mr. Sullivan puts down the rate of freight at too high a figure; and he may be incorrect in other statements which we have no power to verify. He says, "the usual freight from the East Indies and Penang is $£ 5$ per ton." Now, the average freight from Calcutta for the eleven years 1841 . 1851, as stated by Mr. Lindsay, in his work on the Navigation Laws, was $£ 410 \mathrm{~s} .6 \mathrm{~d}$. ; but the average of the last four years was only $£ 37 \mathrm{~s}$. 11 d. ; and $£ 10$, which Mr. Sullivan says it sometimes amounts to, has not been once reached m the last twenty years. Within the last year, however, freights from Calcutta have been down to 15 s. ; some of the latest advices speak of them as having risen to $£ 22 \mathrm{~s}$., which is more likely to be about the average hereafter than £5. This is of great importance to the lrish manufacturer, because sugar can, we believe, be imported from India at a lower price than from any other country. We will not, however, enter further into criticisms that might damp the ardour of those who are engaged in what promises to be a very usciul, and, we may hope, prontable enterprise. Not pretending to saj exactly at what price cane sugar can now or may hereafter be imported into Eugland, it is a certain fact that beet-root sugar has fairly competed with it on the Continent, where the cost of carriage from the seaboard has hitherto been very considerable; and it is estimated that
beet-rnot sugar can be manufact:r a in many parts of Europe at a less price than must bo given for cane sugar. In Mr. Sullivan's elaborate pamphitet he insists very surongly on the great advantages possessed by Ireland for growing beet; and he estimates the cost of obtaining pure sugar at from $£ 1617 \mathrm{~s}$. to $£ 1918 \mathrm{~s}$. per ton, occording to the quantity of sugar in the root. We are airaid that this comparative estimate is 100 sanguine in favor of Ireland; but certainly enough has been dons on the Continent, and there is so much probability of the expense of the manufacture being still further reduced, that the experiment now making in Ireland on a frand sciale to manufacture sugar from beetroot, to compete with sugar manufactured from cane in, our own colonies and paying equal duties, seems fully warrauted. There is at least 3 probability of success.
Of all Bonaparte's mighty schemes and conquests, it is singular that none have had such baiding and important results as his temporary prohibitions of trade-intended to be only temfporary, but to effect the ruin of England. from his Berlin and Milan decrees there has sprung a great manufacture, which is giving a pprmanent direction to the industry and improvement of Europe, and has done more than all our squadrons on the coast of Africa to suppress the slave trade, by reducing the price of sugar and rendering slave labor unprofitable by binging it into competition with frec labor. Of such consequences none of the men of 1810 thal the most remote conception ; and we every fay see similar instances, more distinctly proving of nations than of individuals, that the Difrinity "points our actions rough hew them as We will." Another important truth is made manifest by this great change, viz. that all the supposed advantages of soil and climate are of litle importance in creating wealth, compared milh industry, knowledge, and skill.
Following the examples, of which we have given a rough and brief sketch, a company has foeen formed for manufacturing beet-root into sugar in Ireland, and a factory, erected afterthe tesigns of Mr. Ashenhurst, of Dublin, covers a large area at the entrance of the town of Mountmellick, in Queen's County, sixty miles from Dublin, and six miles from Portarlington griliray station. In little more than three months the first building has been completed. It is the first step for introducing the manufacture into Irel.ad. It is erected with a refinery, replete mith all the appliances necessary to produce tgar of the first quality by the most approved continental methods, combined with some improvements which will ultimately reduce the Post of manufacture much below that on the Continent. The cost of the building, inclusive of machinery, was $£ 10,000$. It has two steameagines, together of 40 horse power, an 1 employs 160 laberers. In addition, the company's perations afiorl occupat. . to a considerable tumber of lakor'rs in cultivating beet-in-
creasing their resources, and finding a market fur the produce of the land. From the superior quality of the root produced, Irela id appears admirably adapted to the growth of the bsen At present the supply is limited, and tha price enhanced by the company's dernands. They were not anticipated, and the farmers of the locality were not prepared for them. The company requires 300 tons of beet-root per week, which will soon exhaust all the produce of the neighbourhood. It is feared, therefore, that they will be limited in their operations by wantinc the raw material, of which, however, an abundant supply is expected next spring. The average produce is said to be 26 tons per acre, at 16s. per ton, which is 10 tons per acre more than is produced on the Continent. The price, however, is 3 s . higher than on the Continent ; but the company has made contracts for next season at the continental prices. The results already attained promise ultimate success. The promoters have had the courage to brave popular prejudice, and prove to sceptics, that results effected in continental Europe could be attained in Ireland, where climate and soil are favorable to the object. The company have also erected an auxiliary establishment at Donneyhouse, Queen's County, for the purpose of cutting and drying the bet-root, by which its saccharine properly is retained uninjured for an indefinite period, enabling, which is one of its advantages, the manufacture to be continuously carried on. The maximum strength in saccharine matter of the continental roots is 7 per cent. raw, or 612 per cent. refined sugar. The trials of the root of Ireland of this year gave $7 \frac{1}{2}$ per cent. in raw sugar. Refined sugar was to be made in the first week of April, although not largely, in consequence of the excellent quality of the grain of the raw sugar.
The cost of manufacturing the sugar from the roct on the Continent averages $£ 9$ per ton; at Mountmellick the cost has been $£ 75$ s. per ton. This result has been attained by superior machinery and superior arrangements to those of the Continent ; and it is reasonable to hope even for further economy in cost of production. The iotal cost of manufacturing raw sugar on the continent averages $£ 1715 \mathrm{~s}$. per ton at the present price of roots. At Mountmellick the total cost is $£ 17$ per ton. There is no reason, therefore, why the company may not succeed. It is incorporated by Royal charler, and has a capital of $£ 120,000$, with the privilege of extending it to $£ 300,000$. The company purpose to erect in the present year six factories more in Ireland, which will be indebted to the company for the successful introduction of a new and important manufacture, suited to her climate and her vants.

The difficulties to be overenme were not merely mechanical : the la borurs required instruction in the details of the various processe:; The results now attaine 1, after a few weeks' instruction, are full of encouragement. The
sugar receives a high character in the makets, planters and brokers admitting that it cannot be distinguished from the best casesugar-a reputation never before achieved by beet sugar. As the details of malking beet sugar will doubtless be interesting, we publis! stetional Views of the Fuatory at Monntmellick. A reference to the ground on plan and the sectional Views will enaule the reater to form a pretty clear id a of the different stages of the process throngh which the beet asses before it beromes sugrar; but, in order that the matier may be fully understood, we also give the details of the manufacture, as pursued at Monntmellick, which have been furnished us by tise compiny.

process of manufacture.

The roots are topped and tailed, re-weighel, and then washed in the cylindical washing machine, from which they are thrown into the rasping machine, from which they pass at the rate of two half tons per hour, beins converted jnto a soft pulp. This pulp is filled into woollen bage, and receives its first pres-i.gg, wheh is given by a machine like Nasmyth's steam hammer: from thence it is passed to one of a number of powerfial hydrustatic presses, capable of exerting a pressure of many hundred toms. All the juices are received into a tank communicating with a montjuis, or juice elevatur, which by steam pressure raises all the fluid to the third story of the building. Here are four successive coppers called defecators; into one of these the juice is poured, while within is a copper coil or worm heated by steam of sivty degrees to the inch pressure derived from the nine differe', steam generators in another part of the establishment : the heat being applied, a quantity of lime mised with water is poured in, when a filthy scum rises, while clear juice luns down throngh the filters, previously filled with charcoal, of which there are twelve in all. After passing through it is raised by another mon'juis to a large iron tank, and drawn off as required into auother range of coppers similar to those above. The juice here luses by evaporation four-fiths of its water, runs again through the filters into another mon'juis, is agrin elevated into great iron tanks, and passes into the vacnum pan, where the remaining water is evapmated. It is then run into a soft grainy state into the heater, where it is raised to a highe: tempurature, and next run juto the crystallisers. When sufficiently cold it is pas-ed through a sort of mill, and tinally into one of the newly improved centrifugal machines, where the separation of the molasses takes place. This centrifurai machine is self-fepling and self-discharging, and will do more work in an hour than four of the old machines in six hours. The sugar is now perfect. To make loaf or refined sugar, the raw sugar is dissolved and passed through the filters a thirl time, again boiled in the racnum pan, and when nearly cold in the crystallisers it is poured into cones, which are put (fifty in num-
ber at one time) into a rotatory cage, and by the centrifugal force the molasses is thown out of them. After the sugar is taken out of the come. the top and base of the pyramids is timished by rotatory cutting-machines: they are thenallow. ed to stand for a few hours, and packed in blue paper, as seen in the shops. Some operations and some machitue:y we are not permitted to desseribe, but the above will give a fair idea of the various processes necessary to convert the root into the crystallised grain or snow lumps, of whels specimens ran be seen at almost an! broker's in Mincing-lane.-Illuslrated London 7imes.

CULTIVATION OF THE POTATO.

The mode of Planting or Setting.-This mus vary according to the nature and condition of the land to be planted. If it is naturally rich in quala!, or is artificially worked upio a highly fertile state, the planting may be at wide intervals from ros to row, and thin along the rows; if the land is poor or ill-conditioned, the planting may be proportimably thinnel. The sane rule wid hold good as respests the varieties of potato to be planted, and the choice should be made ac-cordingly-the smaller and dwarf growing sorts for rich suils, the larger and freer growing sorns for the pourer suils. We have no room for remarks upon varieties; but woold, in passing, say that the regents, the pink kidneys, the whil ruffs, the red ruffs, the Dcvonshirgzeds, the York reds, and some others, are knowi. to us as good general vaicties for the best soils; as are also those eally varieties, the ash-leaved kiducy and the Yorkshire kidney; and we also know the ox-noble, the whi'e blossom, the snother ground, the carly shaw, the poor man's profit (blue,) and the mangold wurzel (this is for cattle exclusive(y), to be gool varieties, and well adıpted fo: inferior snils.

The Sets.-These should be prepared inmediately prior to planti of. The smaller potatoes may be advantageously planted whole, but the larger ones should be cut into proper sized sels, none being sinaller than a very large walnut; and care must be tishen to see that each set has at least two perfect eyes. We think the best crops are to be obtained from planting large sets cut from the best and finest potatoes. "This, however, is seldom done owing to the great difference in value bitween the marketable and the chat or seed pitato.

Planting.-On soi's recently broken up from pastures or seeds, where it is desirable to prevent the grassy sod from being turned up and exposed on the surface, it is customary to set by the spade or by a kidd of dibbling. In selling with the common spade the usual conrse is to lay lines along the field; a number of men, each attended by a setter, work along the line at given di-tances, so that all finish at the same time, and are prepared to remove the lines for the next row; the men make a hole with the spade by
digying it into the soil, and slighty turnine it so as to atimit the potato set; and as they proceed rapidly down the line, they make the holre, the fall or setter drops in the set, upen which the man puts his foot on passing, and it is done.This inole we frequently plactise; and our sets are put in at ten-inch intervals, and about four jinches in depth, in rows athout twenty-seven inches apalt. On the ood cultivated lands the custumary mode of planting, is on the furrow sole made by the plough. The usual course we pursue is as follows:-The land being properly prepared, and the manure ready for spreading, tro lines are drawn or points are set out about 45 to 50 yards astunder at each end of the fieldfrom point to point the whole length of the field the spreading of the manure cominences, being thrown ont of the catt, and is well shaken about by lads, the cart being led as straight from puint to point, or down the line, as possible, and the spreialing is just wide enough to give room for the nevt operation, and no wider ; as we hold it to be of very great importance that the matnure be put in fresk, the potato set upon it, anul the whole covered in at oice As soon as this is done the whole business proceuts to gether: the ploughman draws ont two ridnes along these manured lines, going a round or "boul" on eaci, by which he will leate the edges of the furrows nearly 28 inches wide, the setters proceeding to set the one as soon as ready, whist the ploughman is setting out the ot:ter; and thus the work goes on thronghout the fiell-the selters are setting oue ridge or furrows around it whilst the ploug!man is preparing the others; our usual practice being to set on the sole of the land side of every third furrow, the width of each furrow being in accordance with the desired width between the rows. The manaring is alsoarranged ina similar way ; each ploughman his a lad to follow and draw into the furrow the manure as equally as possible, and along the rows to be planted more particularly. The sets are planted on the furrow sole with their eyes downward- if possible, aud at atont 10 -iach intervals, according to the comdition or fertilisy of the field; a light hiarrow is drawn over, and occasionally a ligh rolleither may be done without injury to the crop. Another commen course is to ridge the field, as on the Northurnherland plan for swedes, deposit the manure in the same mauner, and plant the potato on the mature, and cover in and roll thawn as for turnips; we have frequemly seen this done, but never to much adrantage, poscibly uwing to the looseness of the soil around the selt, and the larger vacuum caused by the decay of the manure, and also the set in the ridge.
Subsequent Culture.-The first operation on the pratate plant appearing above ground is to give the crop a light harrowing across the rows; in a few days the first horse-hoeing may take place, takiur care to pa-s the side coulters as tiear to the plants as possible; in a day or two the ridge harrow should follow: both these opefaiuions should be repeated, if the weather is fa-
vorable, in about a fortuight afterwads; tho great object is to keep up athorough good pulverisation, as well as to promote cleanlmess.As the platuts grow, the neat process is to pass the mould plough between the rows. and just throw ugoin, or tather in amongst the plants, sufficipul loose mould to keep them from exposure, and ad their growth. The next horsehoeing may follow in a week or two, this to be followed in a few days by the bidge-har row; this will generally make a fine luoee monld, which the mould plaugh in the next operation should finally throw up and around the plants sufticienty high to make one regular ridge, from the top of which the plants should appear to grow free and unconfined, not being too closely pressed tugrether, nor yet covered ioo high up their stems. Hand woeding, filling up by sets with dibble or spade, should take place immediately after the second horse-hoeing, and handhocing should immediately piecede the last moulling up. As our paper has reached the limit we allot to ourselves, we will just say that in the autumn we may offer a few remarks upon the sloing and preservation of the croy during winter, and the mode of preservation for sale or maket. We offer with diffilence.
Af.w words upon the Potato Disease.-Amilst the various and conflicting idear relative to the origin and nature of the !eiato disease put forth by the scientific world, as also the suggestions to be adopted to remedy such a singular and distressing visitation, we do not feel competent to ofier any well-digested opinion. We are painfully conversant with the lact, and we only profess to tahe a common business-like practical view of the question as n stands: there it iswe must make the best of it. We are by $n 0$ means partial to the adoptiun of nostrums of any kind ; but as it is a certain fact that this is a progressive discase, from sume cause yet to be discovered, our desire is that preventives may be attempted, and that our great assistants in modern agriculture-the agricuitural chemistswill, as they have ever dune, give us their best aid. We know what smut in wheat is-we know that smut-balls will infect the seed-we know that the same field that has been affected by smus or blacks in oats will proditece smus in the wheat crup following it; we therefore diess our seed with varic us supposed specifics. We therefore venture to suggest a similar course with potato sets-something likely to retard or arrect the flow of impregnated matter from set to stem, or to destroy it in its progress either from stem to set, or vice eersâ. Lime, sulphur, charcoail, vitioulized solutiuns, salt, chalk, gypsum, and a hundred other things might be judi-ciou-ly mingled with the sets, and pussibly some might be found to destray the peetilemitial virus, supposing the seat of he disease may ultimately to discovered to be in the root. We merely sugrest-we urse general effort-something mutt be attempleit on a large and broad prin-ciple-discard nut becauss y'u can't foresse the
result-try. When the disease has extensively prevailed in a crop, the best practice we have seen pursued is, early in the autumn, to pull up all the tops or stalks, and hill up as closely as possible with the hand hoe, su as to keep the roots from atmospheric or other influences.

ON THE GROWTH OF WHEAT.

to the editor of the northampton mercury.
Sir,-I beg permission to reply to your correspondent's letter on my plan of growing wheat. He is very good natured and very shrewd; and when he reads the following plain statement of facts, he will, I am persuaded, see, without taking offence, that he has passed judgment on the scheme before he had fully mastered its merits.

The plan is simply this:-To have at one and the same time a fallow and a crop of wheat on the same acre of land; so that, while each triple row has the benefit of a broad interval of three feet, the interval itself is becoming ready for the next year's sowing.

Does this practice pay? For all turns upon that ; and upon that point you and your years shall judge for yourselves from this reader's balance-sheet of outlay and profit on a four-acre piece of wheat at Milthorpe, in the parish of Lois Weedon, in this county. I name the place and the field (a field which is by the road-side and always open to inspection) because every detail of my farming is here well-known, and any approach to exaggeration, either as to the ainount of produce or as to cheapness of labor, would be fatal to the credit of my plan.
$f \mathrm{~s} . \mathrm{u}^{\mathbf{4}}$.
Ploughing (12s.) the half portion of the acre................................. foul stubble.............................. 60

Pressing the channels 01000
Dropping the seed by hand............... 0 5 0
One pack and a-half of seed (in roand numbers)

020
Rolling ... 006
Hoeing the rows, scarifying the intervals, bird-keeping, and all the operations down to harvesting and marketing

200
Rates, taxes, and interest................... 0 . 100
Total amount of oatlay...... 3150
Five quarters and one bushel of wheat (at 35 s .)

8150
Two tons of straw (at 40s.).
400

net profits on this plan of growing it the present year have been to the proprietor $£ 9$ per acre; to the tenant, ot course, according to his rent.

Now, if this can be accomplighed, as it hat been by myself, what earthly reason is there why, upon wheat land, the same thing could not be done by others? I cannot see why, with such implements as I use for expeditious sowing and tillage, the same profitable system could not be carried out to the greatest extent. My profession, my pursuits, and my incliration, are all opposed to any enlargement of my operations in farming: but, had it been otherwise, and sapposing i had taken in hand 100 acres of fresh land instead of four, my profits the presen: year, at present prices, would have been £900.

But, perhaps, it may be thought there is something peculiarly generous in the quality and condition of my soil. Here, also, you shall judge for yourself. The field I speak of is a gravelly loam, with a subsoil of the same, varied here and there with sharp gravel and sandy clay. When I took to it from my tenant in October, 1850 , it had been in wheat the same year, and was, in fact, exhausted, no manure having been laid on it for four years, since the swedes, which were eaten off the land. 1 did nothing but clean and level it, and ploogh is one inch deeper than it ever had been ploughed before, and so got in my seed. When the wheat came up in November, I trenched the intervals two shallow spits deep, bringing ap to the to six inches of the subsoil, making altogether, with the ploughing, thirteen inches, and in this most important point (as well as others) difiering in practice from Jethro Tull.

1 lay a stress upon shatlow digging at the outset, the principle being to increase the staple by degrees. For, were I to begin with two full spits deep, I should do a very foolish thing, foolish in two ways. I strould bring up more of the crude sabsoil than could be decomposed and tempered by the summer fallow for the coming crop; and, at the same time, I should be paying, perhaps, double price for this un-called-for and injurious expenditure of labor. Acting upon this principle, I pay for two shallos spits, 34 s . the half portion of the acre, inclusive of cleaning. I have paid that sum this year, the spadesman earning 12s. a week.

Is not this worth thinking about? Here we have wheat after wheat on exhausted land, without manare, and with little more than a peck of seed to the acre, and yet the yield is upwards of five quarters to the half acre. How is this?

There is no mystery or magic in it. For, when I said I had no manure for my wheat, I spoke incorrectly; for I have manure in abundance, organic and inorganic manure, for wheat crops on the same field ad infinitum; manure of the very same description, containing, that is, the very same elements of fertility with that which the farmer carries from his yard, or buys
in the market. For, in the subsoil of all loams, and of almost every description of clay, there is sso much inorganic food for the plant as to be Enactically inexhaustible. And, if you ask trhere is the organic food, the ammonia, and carbon? I point to the atmosphere, and remind you of the proved fact, that both are found there, and with every shower of rain, every descent of the dew, and every fall of snow, are brought domin on the porous soil and there retained, fether for future use, or to be taken up at once for the growing plant. All that is wanted is, to gire to each well-separated plant fair play, by feting in upon it the cun and the air, to afford bis roots width and depth to revel in, and to ibeep the surface of tioe soil opert and free from frreeds. Do this, and Dame Nature will do the test.
"This only is the witchcraft I have used.
Send for the lady, let her witness it."
Bol, if I use no yard manure for my wheat, frhat becomes of the straw? I do not sell it. Hio good farmer, I conceive, would do so, though te could get for it $£ 2$ a ton, because he knows
Shal its intrinsic value is much beyond that. Purchased it I have for many years, and never could get it under 40s. But, when it is turned Eno manure, i carry it to my lana, fresh and cnexhansted of its riches, and bury it deep in he well-tilled and retentive clay. With what pesult?
My winter beans, and all my principal root trops, are planted in single rows five feet apart; Ind a few weeks ago, I weighed my swedes fiten from a measured rood of ground, and the mount was six tons 15 cwt ., being upwards of itons to the acre. Before the swedes were orn I cut from the spot on which they grew a eavy crop of early rye. From the intervals eireen the swedes I drew 60 bushels of potabes. And in the lines from which they were then there is now in vigorous growth a crop of finter beans.
In another part of the field there was an acre firinter beans, which yielded this year between eren and eight quarters; and in the intervals furzel, also a heavy crop.
With results like chese I do not hesitate to fix e price of 40 s . on gond wheat-straw, as fodder Ind liter, and thus convert into rich, forcing tanure.
I request your correspondent's allention to the segoing plain statement of facts, and am, Sir,

Your obedient servant,
The Author of "A Word in Season." Dec. 31, 1851.

GRICULTURAL EDUCATION.-THE VALUE OF CHEMISTRY.

To avoid a recapitulation, we advise our reaIrs to refer with care to our last article; they init then be better able to follow us through the esent paper.

The question put by observant, thoughtful people, to each other and to the scientific, concerning this ash, suggested to the analytical chemist two inquiries, lirst, " What is the general composition of the ash?" and, second, "What special differences exist among the ashes of different plants, and of different parts of the same plant ?" "We will endeavour to answer these in order.
First, then, the nature of the ash. It will be remembered that in our former papei we said that the inorganic part of well-constituted soils consicts of 10 or 11 different substances, namely, potash, soda, lime, magnesia, silica, iron, manganese, sulphur, phosphorus, an- chlorine. This fact alone is comparatively uninteresting, bocause of atself it is not significant. When, however, we learn that upon analysis the ash of all our cultimated plants yields these same substances in greater or less proportion, the solution instantly flashes across our minds, and our reason brings us at once to the conclusion, that as these substances are necessary to the plant, and can only be obtained from the soil, the soil must contain them in the proportion necessary to the vitality or health of the plant.
Second, With regard to the special differences in the quality of tine asin, we remark that though these elements are all present in our cultivated plants, the ash of different plants, and of different parts of the same plant, exhibit them in very different proportions.

It has been proved :nat the quantities of ash left by the leaves and stem, the straw and the grain of different plants, vary considerably; and it is also proved the ash left by these various parts varies not more in quantity than it does in nature. From an analysis given by Profassor Fownes, of the Hopetoun oat, we shall see this to be the case.
"One hundred poands of the Hopetoun oat contained of sulphuric acid and of alkaline matter respectively the following very different proportions:-

	Potash and	Sulphuric
Soda.	Acid.	

And nut only are the proportions of the several substances unlike, but in certain parts of the plant some of them are almost entirely absent. Thus, the grain and the straw of wheat have an ash which contains phosphoric acid and silica respectively:-

> Phosphoric Acid. Silica.

Grain...... 50 per cent.... None-
Straw...... 1 to 3 ... 30 to 60 per cent. The presence of phosphoric acid in large proportion characterises the grain, while that of silica in large proportion characterises the straw."

The analysis of the ash of different plants gives precisely similar results. And we infer, from the results of chemical research and from the
inteliggent observation of the growth and habits of plants, that one kind of crup under the same circumstances will take foom the soil more of one kind of morganic matter, another crop more of nuother.
Let nome be sceptical of the value of ehemistry to the farmer, if in its relation to practical agriculture such experiments as we have adluced involve comelusions like the following:-

First, "As different parto of the same plant require different prop rtiony of these inorganic sub.tances, they muit, at different seasms of their growth, draw these sulstances from the soil, more of one thing at one time, more of another thing at another. They may \{lomist, therefore, on a given soil at one period of their growth, and not at another. That sod which clothes the tree with lu. uriant verdure, may yet not be able to ripen ist fruit ; that which causes the straw to rush up to early maturity, may refuse to fill the ear.
2ndlly." As different plants also draw from the soil the same substances in unlike proportions, they willgrow with unlike vigour in different soils. Hence that which bears a profitable crop of one kind is often unable to yield a good return of another; hence, also, the varied fowers and herbage which diversify the surface of all our fields."
"Well," some maiket-table gentieman may say, " you have done nothing but to throw into two conclusions all the facts that have led the farmer to the system of rotation of crups: vur observation and experience have taught us as much as your chemistry." "Traly, the observation and experience of centurics," we reply, "have given you as a great barren fact what chemistiy the moment it was applied to agriculture gave as a fact, and with this difference, that it gave it as an intelligent fact accompanied by its proper solution. The elucidation of one fact like this is invaluable, throwing, as it does, a broad glare of light upon others, as in the case of the principle involved in the above conclusions, which furnishes a key to so many practical points of husbandry long known, though never understood. It may be as well to stop, and view the principal of these points that have thus sud.lenly fallen under illumination.
Repeated observation and long expenience, both upon the naturally poor, the impoverished, and the virgin soils, taught the lesson that there was a process of exhaustion at work when continued cropping was resoted to, and to some extent enablec the farmer to counteract its op:ration. Now with respect to exhaustion the principle in question affords a definite notion of that process; annl, furthermore, divides it into two kinds. Not only may there be a general exhaustion, i. e., as under a systematic rotation, where the soil may be impoverished in all its ten or eleven elements, but there may be likewise the special extausticn springing from the abstruction of one or more of those substances, as in the case of the continuous growth of any
particular plam. These exhalsive processes are both fatal to the fertility of the soil. It will be remembered what we gaid atiove of the cos.stivemts that characterized the grain amd the straw respectively. Supposing that corn is grown, therefore, and both straw and grain taken to market year by year, gencral eshanstion is piotlucel, i. e., the soil is robbed of these s.bstances that go to form both ear and straw. Rethan the sthurs to the land in the shape of manure, bun still dis pose of the grain at market, and you ouly atbstract to any extent one substance ; it is that one which feeds the ear, howe ver, and without which there will grow only straw. In Eug'and the high price of wheat has tempted our farmura thay to exhibit in a striking mamer the evil of this system. No country, however ferile, with a flourishing commerce, which for eenturits expoits its produce in the shape of grain ami catale, can retain its fertility unless the s.me commerce makes restitution to the soil in some solt. We see the disastrous effects of this pulicy in the present exhausted state of the orr-ginally-finest soil in the world, that of Virginia, whicli can now no lunger furnish its staple pro-ductions-wheat and tobaceo. From sutela d di-covery as this springs, of course, the theory of manuring, or, as it may be called, the theor, of renovalion, which shows the importance of returning to the soil the essential substimes that have been taken from it. Hence the increasing attention paid by men of sense ato artificial manures; hence the inmmense sums of nones espended in the same (in 182740,000 tons of bones were imported into this country, valued fiom £ 100,000 to $£ 200,000$ stenling) ; and henee the repeated discussions taking place at club dimers and elsewhere, as to the comparalive merits of the varionsfamilics oi the phosphates, sulphates, nitrates, minute, and carbonates, in all heir ratuial or affianced relationships. The sheernonsense that i , talked on the majority of such occasions, together with the ignorance and carelessness so frequently displayed in application, or rather misapplication, of these substitutes, proves. plainIy how little this theory even yet is mander tood. The knowledge of the composition of the asha knowledge which science only can give-aided by a calcolation of the exact quantity of the component pants of the soil that are exported from our land in the shape of beef, mutton, or grain, teaches us that in certain cases a sma!! supply oi lime or phosphorus or siliea would do more to restore lost fertility than a larye supply of farm-yard manure. We heard of a farmer, not two days ago, who, determined on a very heavy crop of turnips, manured his land twice-in October, and again in May-applying twenty-five loads per acre each time. The result was a surpassing crop of chickweed. Supposing that he had not done enough, the next spring for oats, he added a third dressing of twenty-five loads. The result was an im. mense bulk of straw, but not one oat. of all bad farming this is the wr rst ; and verily, when
we think of it, our crops of wheat, \&e., of which we are mont sanguine, frequently, fiom the very same reason, disappoiut us.

For judicinusly tegulating the application of power and the expenditure of capital, we must depran upon an intimate anequaintanco with the thenry of the restitution of a distubed equiburum, involving a close investigation of the constituents of soils and plants.
The principle in question throws light on the rotation of crops. It is a system that may well clain the dignity of a matural law. A verter of considerable tatent observes of forest trees. "In the wide forest many generations of broad-leaved trees live and die, and succeed each other; but the time comes at last when a general pestilence seems to assail them ail-their tops droop and wither, their branches fall off, their trunks rot. They die out, ani a narruw-leaved race succeeds them. This race a-ain has its life of centuries perhaps, but death seizes it too, and the expanded leal of the beech, the ash, and the oak, again eheers the eye." Just so do the grasses of our meadows succeed each other, and we are wise in imitating this beautiful arrangement.
It is from the fact that dificrent plans carry off different substances (those cultivated for their grain takiner phosphorus, and those grown for dieir straw and their bulbs extracting respectively silica and alkaline matter), and not from the notime that one crop takes more in quantit! thall another of all those things that nur crops derive from the soil, upon which the intelligent practice of rotation is founded. But bj no system of this kind, however skilfully worked, can we avod the ultimate exhaustion of the soil. The direct restitution of its abstracted constituents is the only means by which we can economically re-establish the equilibrium that has been dishrbed. We are aware, on the one hand, that it is easy to de-fertilize a soil by the repeated gowth of any one plant; while, on the other, the facts already andoneed asiure us that we may distance this underirable result by a judicious alternation of crops, and thus work up all the avai able materials of the soil to advantare, and by a very slow process. How frequently is it the care that some farms get a bad name, and are abaudoned ayain and ngain, being regarded as bottomless pits to the investment of capital, until some cunning fellow astonishes the neighbourhood by the unexpected development of hitherto latent resources! It has been the fate of some men to dig and delve, their lives long, a few feet above a silver vein. The gift of the divining rod is not made to cvery one. The surcessfin man of business owes his profits, perhaps mainly, to the inaptitude, ignorance, or carelessness, of his fellows. From what to many an unthinting person would appear a heap of worthless cinder rubbish, the scavenger speedi'y riddles an ample fortune, and trundles a carria ge; and m the universal and toilsome searich for
gold, our successors will extract weath out of the very reluse rejected by ourselves as valueless.

Our principle may find an illustantion in the manner in which some few of the elements of the suil have been diecetly supphed. In some patis of Eugland the effect of hme is very maked in the imploved tuan it gives to the sos 10° Yet mathy of cur reatiens will have seen the truth of the old proverb caemplified-" Lime enriches the father and impureri-hes the son"-i.e., they will have witnessed foun the application of lime a temporary fertility, fulluwed by a sterolity the more obstiate (past a certain puint), in proportion to the frequency of the dressing. This has bern the expenience also of those who have applied gyp-um, nitrate of soda, bone clust, \&e. \dagger For a cett.in number of years their etlect was rowd ; bejond his they were thrown away, and were even found to be injurious. All abused stimulus in time ceases to act. This is the case in the human subject with opium; and it may be remembered that water will hold a definite quantity of salt in solution, and no more. In the suchling of iron alss, lime in certain quantity in invaluable to prodicce a ruming of metal: beyond that it is valueless. No farming can succeed that acts upon the principle of restoring periodicaliy one or two substances, while mine or ten others are being ruthlessly reduced year by year; and success will become but the more speedy and entire as we bend our practical investigations to this sulject. Under the combined influence of atmosphere, rain, mineral springs, and veretable decay, an exhausted soil may be repaired in the cousse of years; but then a man who pays 30 s . or 40 s . an acre rent, cannot affor: to give his: land such respite: aiad thero are comparatively few men that keep up the old practice of dead fallowing.

Int the commencement of our preceding paper we noticed the mutual dependence subsisting between the soil, the plant, and the animal, and the clone resemblance actually to be traced between them. it will suit our parpose to bear out his analogy yet further.

The inorganic part of the soil, or the ash, yields eleven certain substances; the ash of the plant likewise yiel.ls the sarne; and upon analyring the ash that remains from the burning of both flesh and bone, the same are again discovered. As in the plant, to confirm the analugy, the proprrtion of this ash varius in different parts of $t .{ }^{*}$ animal-" The fresh bone leaves one-half of its weight when bu rne., the fresh muscle not more

[^0]than one hundredth part;" yet the proportion present in the muscle is as essential to its healthy existence as the larger quantity to the bone. Mr. Fownes remark--" There is a striking difference among the three in respect to their inorganic pait. Thus it may be criven as a general characteristic of each, that the soil contains silica and alumina-the plant contains silica, and noalumina-the animal contains neither silica nor alumina.

The alumina gives consistenci and tenacit; to the soil; the silica gives strength and firmness to the stem of the plaut. For such purposes the animal does not requize their aid, and is therefore destitute of them. The yuestion, why must the soil contain these certain substances? meets, then, with the following reply, which goes yei further to establish the analogy we are considering, by showing that the animal organism is only a higher kind of regetable, as Liebig expresses it, the development of which begins with those substances, with the pro uction of which vegetable life usually terminates. The soil must contain them because they are essential to the vitality of the plant ; and the plant moust contain them because they are essential to the animal life which it is its function to support. There are then certain given substances, necessary to the structure and support of bone and muscle, to be found in the soil. How can the animal obtain them? It cannot eat earth; if it did, its digestive apparatus is not fitted to desintegrate nor assimilate the specific ingredients. There must then be a medium. That medium is given in the plant, whose roots penctrate into the earth, and diligently collect and present to the animal certain principles juentical with the chief constituents of blood! The life of the plant is therefore subsidiary to the life of the animal.

And it is also imperative that the substances of which bone and muscle are composed are yielded to the young animal in the milk of its mother. The processes of combustion and transformation demand in the case of the adult animal very large supplies. In the young animal, however, these processes are far more energetic. Notwithstanding that the metamorphosis of organized parts goes on more slowly than in the adult, there is a more active respiration and a rapidgro wth that claimanincessantand increased supply, and a supply also that shall be concentrated: this claim is recognised in the nature of the mother's milk. Nor is this demand by any means relinquished, although materially reduced, after the structure is matured; for in the lowest as well as in the highest class of the animal kingdorn there is a constant change, a decay and renewal, or, as we have befure termed it, a metamorphosis of organized tissues going on. So much so is this the case with man that he is supposed at the end of every seven years to bear no very unfair resemblance to poor Pat's stockings, which were so darned and redarned "that sure not a thread of the original remain-
ed." It is impossible to conceive what some rogues might not make of this in a court of law, where the identity of their persone were concened! Surely it is the fear that such facts as this shall get abroa', and enter into silly peoples heads, to the subversion of all order and consttutional security, that leads certam peisonages to talk about the danger of educating the "dangerous c'asses!" Silly people.

It is then evident that the animai is bound by an indissoluble bond to the earth-a bond whacn. if broken, death will ensue. A hazardous experiment is tried whenever an attempt is made to loosen this bond ; and this is virtually done when the animal is ill supplied, through the soil oi plant, with those pinciples on which it depend. What is the meaning of distinguishing certain grass lands as breeding, suckling, and feeding lands, if it is not that experience teaches that the peculiarity of one is to rear fine lambs, \&c.of the other to produce fat beasts, \&c.? This right and judicious discrimination is a man secret of successful grazing; but it is only gaines after a series of losses when gained only br natural observation, totally unaided by scientific investigation. How so? Why, owing to the constant consumption of those substances that characterize these different pastures, the fact 0 : this year may be untrue ten years hence; ana ten to one that extensive loss has superventu between the change and the discavery of it. thi farmersare aware of this, and hundreds, for waut of the aid that chemistry could render them (and in numerous instances common sense only), are floundering about in uncertainty with a radicairs diseased flock, and a stunted herd, cursing fres trale instead of thein own ignorance.

We veritably believe that much of whats called "local disease" may be traced to the exhaustion that has taken place in one or mort of the substances so often mentioned. Som: farms are known to have had names because oi the puculiar maladies that attack, at certam stages of their growth, the stock reared or fed upon them. And at different stages of gromt we know that different elements are assimilated.

Suppose, now, that a tenant has exhausted tie land of its phosphate by the growth of whe: year inter year, but with little intermission, and, determined upon affording it relief, he lays it down with grass. As phosphorus cannot be restored by the atmosphere, we know that unless: is restored by some other means, no plants, none at least hat require it, will grow where it is not A cow turned upon the pasture such a cours would insure, might possibly keep herself alire, but should she have to support a calf she would do so, so long as she was able, from her omn system (Is this not a beautiful provision?), and then death to both would ensue. "The animal," says Fownes, " cannot long be indepenient $\dot{\text { af }}$ the quality of the dead.earth on which it treads." The cheapest and most expeditious mode of restoring the used-up phosphates to the land is to dress with bone-dust. Phosphates enter largely
into, and indeed are the chief constituents of bone; therefore, curious as the fact may seem, it is still true, that by supplying bone-dust to the soil you give bone to the animal.
Nothing has yet been said concerning the organic parts of soils, plants, and animals. For the most rart, these subserve the purposes of respiration, and are obtained from the atmosphere. They have little to do with the formation of blond, and, being of minor importance, we will leave the consideration of them for another occasion, and return to the solution of the agricultural prollem, viz., How can those substances be replaced which have been taken from the soil, and uhich cannol be furnished by the atmosphere? In farm-yard manure? No; because a very small proportion ot the elements necessary to the vitality of the animal will be thus returned: they are assimilated by the aumal, and exported from the farm at some time. To arrive at any raluable reply to the question there are many things to be ascertained. We will mention three:
First, we must ascertain definitely what substances are abstracted from the soil by different plants. Thanks to chemistry, we have pretty correct information on this subject; and our information teaches us to divide vegetables into three or more classes: 1st, polash plants, which includes the best mangold-wurtzel, turnips, and maize; 2nd, lime planis, comprehending clover, beans, peas, \&c.; 3rd, siliccous plants, including wheat, oats, rye and barley-i. e. silica goes principally to form the straw of these.
Secondly, we must know in what quantity or priportion these substances are abstracted from the soil by different plants. The results of many experiments are before us. The celebrated chemist Liebig gives us, in the matter of phosphates removed from a surface of land equal to four acres, the following data : Peas $117 l \mathrm{bs}$., wheat 112.431 bs ., rye 77.05 lbs ., turnips 37 . 84 lbs.
Thirdly, we must arrive at some approximate pronortion of the ingredients returned to the soil in the animal manure. Chemistry a third time iends us its effective aid, and the researches of Dr. Liebig prove how full , he has overcome this difficulty. So much so is this the case, in each of the three requisites to a successful practice of agriculure just mentioned, that he (Dr. Liebig) anticinates the time when the farmer may be able to keep an exact record of the produce of his fields; the waste that has taken place in certain substances, and in the measure in which they may be supplied, will then be a matter oaly of easy calculation.
None of these questions-the practical comprehension of which is so essentiai to success in the economic cultivation of the soil-can be answered by art.
In all experiments made by men who are not goided by scientific pranciples the chaner of caccess is very small; and just because they are usually failures, they are seldom tried. The
ground indicated by science, and which exposes us to no danger of falling, is the only safe footing; and in bringing this interesting inquiry to a close, we would advise all who have their own interest at heart to effect some stand upon it. Liehig concludes one of his chapters with these words, "It is confidently looked fur that, by the united efforts of the chemists of all countries, we shall arrive at a rational system of gardening, horticulture, and agriculture, applicable to every country, and to all kinds of suil; and which will be based upon the immutable foundation of olserved facts and philosophical induction." So be it.
S. R.F.

A FEW REMARKS ON FOREST TREES.

Sir,-Trees, though perhaps not the most useful, are, centainly, the grandest ubjects which adorn the face of Nature. Surely nothing can be more ayrecable to eye of man than the pleasure experienced in viewing luxuriant masses of foliage, such as are presented by the "monarch of the forest," the oak, the sycamore, the elm, and, very frequently, by the chesinut. Again, we must feel considerable delight in viewing some of the lonely-locking description of trees-such as the polar, the willow, the yew, the eypress, \&c. The mind, when dwelling on them, is led into such a pleasing contemplation, that we often prefer walking on the bank of a river overshadowed by thuse sad and melancholy emblems of destiny, yet highlyornamental objects.

To the man of science and the lover of nature, no time is more agreeably spent than that which is devoted to the study of the mannificent which induces the growth of the seed or acorn to a mighty tree, which guides the sap through th.e capillary channels, and produces, with unerring certainty, the development and capausion of the leaves. What extraorimary wonder they are! What beautiful and de' cate tracery they exhibit! How perfectly adapied they are to inhale the gases requisite for the nourishment of vegetation; and, by doing so, how decidedly they preserve the balance of creation! All is the work of incomprehensible and consummate wisdom; and how beautiful is the outline!
"Stom largiver. yet thou dost rear The Gorhead's most benignant grace, Nor know we anything so fair
As is the smile upon thy face;
Flowers laugh before thee on their beds,
And fragrance on thy footing treads;
Than dest preserve the stars from wrong.
And the most ancient heavens, thro thee, are fresh and strong."

Wordstorit.

The limits or difference betreen trees and shrubs have never been accurately decided on, as trees, even of the same description, vary so much in different comntries, and even in various parts of the same climate-as an example, we mav recosnise the srhntיי ...isin
climates, attains to the size of a large tree, whilst, in Killarney, it is never more than a considerable shrub. However, as a general rule, we may remark, that most shrubs have but one single skin or covering on the stems; whilst trees are covered with two barks. Some have asserted that shrubs invariably have the outer and inner skins, called by botanists cortex and liber. I am not skilled enough to decide on this; yet, even if they differ from trees in this particular, the disagreement is so slight or inconsiderable, that it searcely merits the attention of any, except those skilled in vegetable anatomy.

It is by no means improbable that trees were originally all of the same tiad, but have become different, according to the different soil and climate they have been distributed in. American trees and shrubs, when brought and planted in this country, will become, in time, like our own of the same species; and British specimens, planted in America, will, in time, assume the appearance presented by their specses.
To determine the age of trees has always been a particular desideratum with botanists. The rings or concentric circles visible in sections of the trunk are supposed to be produced by the altermatuons of the seasons; yet this method is very uncertain, and camot be at all relied on, except in examples of timber grown in temperate climates. Dr. Lindley gives, in his "Intruduc tion to Botany," resulls founded on the measurement and calculation of the zones of some trees, which are quite at variance with the hown age of the trees. Most of the trees growing in Great Bitain are of the class called Exogens, or such as have a regular growth or increase of the stem; the age of those may be determined with sufficient accura: y, excepting where old age has destroyed the heart; then, though the tree may still flourish for years, the periodical increase will not take place. Those rings are most ubservable in transverse sections of ash and larch; and they aflord an index of the warmih or coldness of the season, as they increase in proportion as the year is favorable. The difference of thickness of the same zone is also remarkable: this is caused by the prevalence of cold winds on the side of the tree opposite to that on which the circle i- thickest; thas, wind blowing constantly from the north, duing the summer, will interrupt the function of the leaves on that side, and rause an accumulation of wood to take place on the south side.

The rapidity of the growsth of trees usually depends on three impontant circumstances-viц., climate, soil, and situation; yet, raking all things into consideration, there are trees which will grow with more than twice the rapidity of others; gad the following table, showing the proportionate necrease, has been calculated:-

Circumference.

1st year. 2nd year. 3rd year. ft. in. ft. in. . ft. in.
Cak . \quad.. 0101 0111 i 01

The age 10 which some trees will live is remarkable. There are cedars on Lebanon wheh, because of their immense bulk-measuring 36 fect in circumference-are supposed to have existed in the time of Solomun. Adamson has asserted that some of Barbab trees (Adamsonia digitata) of Afica, are fully 5,000 years old.Yours, \&c., E. F., Templebredin, January 6, 1851.

KIDNEY BEANS.

Kidney Beans giow bist in a light dry soil, in which respect they differ from the common field and garden beans, and may thus be cultivated successfully for their green pods, where other legurnes could not. There are numerous varielies of the kidney bean at present in cultivation. We select the following from Lawson's Hanual:-

Dwares (Phascolus rulgaris.)

1. Common White Kidney Bean.-Cuhivated in the field in France, for its tipe seeds, but not adapled for using green, i, consequence of the tourghness of the imner skin of the pod. Pols long and cy!indical; seeds white, round, and small, weighing 56 arains each, on an average. Propurtions per cent. of the seed hernel, $93 \cdot 33$; husk, 6.67.
2. Phoarf Canferbury.-A much esteemed son for using in a green state, the porls being semarkably tender; and good also for pickling. Pods straight and narrow; seeds white, straight and stirhty. fattened, weighing 6.7 grains earh. Proportions per cent. of the seed hernel, 92.5; husk, 7:2. Very (יarly sort.
3. Rounl Light-dun Kidney Rean.-Grows very low and close. Pods shon, with a to:igh skin, on which account it is distiked, and therefore seldom cullivated in this country. The serels are small (7.6 grains each), and of a light dan color.
4. Common whitc Runncr.-This is considured by Lawson as occupying an intermediate position between the true dwarf hidney bean (P. vulgaris) and the runner (P. mullifiorus.) The seeds of the common white rumner are large, flat, and kidney-shaped. The plant grows about three ferl high.
5. Scarlet Rumner Kidncy Bean.-This is included in the species P. mulliflorus. The scarlet rumner is the best known of all the kidney beans, and probably the best bearer. It is cultivated for the beauly of its Rowers, as well as for the economical uses to which its pods and seeds can be applied. The seeds are remarkably plump, kidney-shiped, and the color is of a deep purple, almost approaching in black on the sides, sparingly interspersed with cream-
colored patches, which predominate on the edges. An averaged sized seed weighs 18 grains.-Cyclopediu of Agriculture.

OBSERVATIONS ON SEEDS.

No. 1.

In February and March, 1848, I inserted two papers in the Farmers' Her ald on the "Management of Seed," in which I gave details on the growth of seeds, of fallow, and green crups, i. e. such as turuip, carrut, clover, iy egrass, \&c., with opinions that such cultivation was panticularly suitable to small occupiers.
This opinion is streugthened by the exorbitant prices charged by most seedsmen for really good seed, and the immense quantity of rubbi-h fhrown upon the market at a low price to catch the unwary.
BuI I think that it would be quite as interesting and useful to treat the subject in a more general manner, aud eudeavour to show how the produce of our seeds could be improved in quanity and quality. To this end I shall devone a few papers, of which this may be considered the introductary one.
In the first place, it may strike, some as a novelty, althourg perfectly true, that the improvement of live stock and crops may be brought about by preci-ely similar means, although that of the vegetable kingrom may, from their lower scale of oryanization, an! greater means of reproluction, be carried out in much less time, at muth less expense, and to a far grealer development than in the animal kingdum. I make these remarks because the improvement of stock, and the means by which it is attained, are well noderstood by almost every farmer, although few are in a poition to carry out their siew:- But that of seeds, although precisely identical, is lithe thought of, and left almost eniirely to accident.

1. And first by selection: taking live stock as an example-A farmer selects :animals possessing partirular points; breeds from these, and teeps the produce constanly and plemifally supplied with the most nutritious food. His itock becomes noted for carly maluaity, furm, \&e.; he sells them at a high price: a few of the buyers employ similar means with their purchase;, and have almost equal quality-the majority by injodicinue erossing and neglect, stiming of food, \&ce., deteriurate theirstock and its produce; bat the original selector still obtains high prices, for the superiurity of his stock is obvious.
The seed improver has no such advantage. He selects plants-say turnips for a few years, and saves the seed; sells il at a remunerating price for a year or two; the purchasers proluce seed from this without selecting, transplanting, or taking eare to prevent crossing, however they sell it as the real anticle at a low price, sufficient to privent the original selector gelling a remunerating price for his own. He leaves off
growing it ; the cheap seed gains the varitely an ill name. People say-" 0 , that sort has degenerated," and run to buy a new selected smit of some one else; zid this because the quality of the produce cannot be judged of from the seeds.
2. The second improvenent is by Hybridization, called crossing in animals.
The adrantage this has been to our breeds of animals is well known; probably all our improved breeds derive much of their supeniority from it. Animals have one advantas: over vegetables,- that this crussing can take place on a large scale yearly, by procuring a few nale animals, and that a sind of perpetual crossing can be kept up, where the utumerous females can be of a kind hardier, coarser, and coming to less early maturity; while the few males required can be tended with greater care, and the produce be kept entirely for falling purposes.
However, the axiom Omne ex oro, is true both of animals and vegetables, and the method of reproduction identical. Most plants are hermophrodites, that is, have slamens and pistil, i. e. male and female organs in the same flower,--the pollen or dust from the first falls upon the last and ferilizes it. Some plants, as Indian cora, have the stamens and pistils in different parts of the same plant; in others, as the hemp, in different planns. In both these latter cases, it is easy to hybidize, by pullugg up or off the male plants a potion, and placing plants: of another vaiety of the same species near and intermised with them. But in plants where the stamens and pistil are in the same flower, (as they are in all farm plants, except those mentioned) and the flower itelf is minute, it becomes a difficult process. Each bud must be carefilly opened before the pollen is dereloped, and the stamens removed in minute flowers with the poin of a needle; in larger unes, with a tine pair of scissors: and when the flowers open of inemselves, pollen of the required variety procured to fertilize the pistils.
3. Importation, or change of cimate, is a third means of oblaining improved anmals and plants. Both these derive peculiar impressions and systems of growth, from a long cominuance in a peculiar climate and soil-these their produce relain tor a few years in other situntions. The Arabian horse is enabled, by a hot climate, -exerions required and scanty food through many generations- 10 bear fatigue, and become swift and hardy, anid has improved under our sky into our matchless breed of race horses-less continuous exortion bring here required, and more generouis form being given.
And so with plasis. The flax grown continuously duriug short t:ot Russian summers, when the हeed from it is remuved to the moister and conier ones of Great Britain, produces the tinest fibre in the world. Here the contrast, heing too great, completely changes the produce ;-the same sced that would have produced
coarse branching flax if sown in Russia, produces the finest fibre when sown in Ireland. This is a defect in the plant, but a defect which suits our purpose. But, as in other cases, when this plant acclimatizes itself, i. e. produces a plant in greater natural perfection, it is less suitable to our purpose, and we say it degenerates. This it does very guickly; so that Riga seed, or seed grown from Riga seed, is only sown to produce fine flax.

Most of our culivated plants are in some degree the result of an infringement of nature, originally produced in climates where what we should consider an excess of summer heat, winter cold, or great dryness or moisture exists. This excess in the portion we wish to exceed in, whether leaf, seed, or root, we perpetuate as much as we can: if a plant is removed to arother spot not very different in climate and soil, this peculiarity will be permanent ; if it differs materially, it will only last a few years; and, if altogether opposite in climate, quite the reverse quality may be set up. Thus the fine Spanish wheat would, it is likely, be mildewed and shrivelled in the cold damp climate of Scotland.

To show that foreign countries have supplied us with important varieties of plants, I need only mention the Belgian carrot, the Swedish turnip, the Swedish alsike or hybrid clover, the Italian ryegrass, and the French giant or doublecut sainfoin; but I think that if their peculiarities are to be permanent, we must continue to import the seed from the places where indigenous, -except the Belgian carrot, the climate there resembling ours.

Our change of climate may be beneficial fora time, but the varieties gradually tend to assimilate themselves to our more native kinds. Thus the Swede turnip in the richer soil and milder climate of England, has grown much larger, but is far less hardy. No seed is more apt to be hybridized in its growth, and more liable to be adulterated afterwards than Swede turnips; and carrots ought to be grown from selected and transplanted roots, so that every root is seen to be true, and grown by those who cultivate a large breadth, and can thus select only the best roots.

Italian ryegrass seed is distinguished from common by the presence of an awn or beard, any considerable absence of which may be detected by sprinkling a few of the seeds on a black surface as sleeve of a coat. Yet, as in other grasses, the absence of the awn is often caused by soil and climate and proves nothing against the trueness of the sample. Italian will probably "degenerate," or rather assimilate, in time, to the common English. It was introduced by Lawson, of Edinburgh, about twenty years back, into Britain.

The French double-cut or giant sainfoin is a still more recent introduction, although mentioned by Lawson in his Manual, in 1836; it grows quicker and higher than the common bind, and
affords two crops of hay, or one of hay and one of seed annually. The seed crop had better be the second cut, as in the first the quantity of sced is often but triffing. The seed is regularly imporied from France, and may be obrained rough or milled at a mere trifle above the price of English. From its peculiar advantages, 1 l is at present exciting considerable interest among sainfoin growers.

Swedish clover is apparently a hybrid between the perennial white and the broad red clover; its produce is not so large as the last kind, but exceeds the first - and is particularly useful when lands are sick of red clover. I say apparently a hybrid, because it is the common clover of the Swedish meadows, and was not produced by artificial means. In this country it seems inclined gradually to assimilate to the perennial white, or native clover of England.

All these seeds are easily obtained; bat should a difficulty arise in procuring pure and genaine, I should be happy in affording fusther information through the editor of this paper.-W. 25th March.

REPORT ON POULTRY EXHIBITION.
TIIE PODETRX
Were more numerous than on former occasions, and consisted of some first-rate specimens in each class. The show-yard was thronged with billiancy and fashion, and the whole appearance superior to anything of the kind we have before witnessed. Our gracious Sovereign has set an example to the ladies, whose taste seems more centred than formerly in the profit and economy of domestic arrangements. We were glad to perceive that our excellent Viceroy particularly remarked our poultry collection; and as he has promised his fostering care to all our agricultural pursuits, we have every reason to hope it will cause a better understanding between the Dublin Society and the exhibitars.
The Cochin China were absolutely superb and deservedly attractive; unmixed specimens are new to us. It is our opinion that finer birds, or of higher breeding, could not be produced than those exhibited. Mrs. Cartan was the successful competitor, and took the premium for darkcolored birds; at the Birmingham show, at which there were 158 lots of Cochin China, and thirteen premiums given to that class, they were all awarded to the red yellows, since which nothing else would be looked at in England; some fine young birds of this color were exhibited by Mr. Nolan, and, we understand, sold at a very high figure. There were some few good Dorkings; Lieutenant-Colonel Hill took the premium; but though of high breeding, we have seen them of much larger size. They do not seem to be sufficiently appreciated here; there is no better table-fowl, nor do any chickens come so soon to perfection. To ascertain the value of the Dorkingo, or other large fowl, they
should be handled, otherwise the premium may be awarded to feathers instead of flesh.
We understand that the Dorking cock, exhibited by Mr. Nolan, at the Jast agricultural show, and awarded a premium, as the best of all poultry, was again exhibited; if the judgment were left to us, we whould say Lieutenant-Colonel Shaw's birds were the best in that class.
The beautiful black Polish, with white topknots, were few, and not of first class; there were but two pens of them; Mre. Victory was the sucressful competitor The spangled Polish were not noticed by the judges. We would not like to be at variance with the judgment, but are of opinion there were several lots of Spanish superior to those awarded the premium. When gentlemen undertake to judge, they should consider the age as well as the breeding of the birds, and make the award to the young and vigorous, instead of the old and debilitated, a circumstance which has not been observed in the present instance ; lots 72, 78, 95, 106, and 110, were each, in our opinion, superior to the prize birds. A variety, new to us, white Spanish, was recommended. We do not think the Hamburgh have, by any means, kept their position; in former years we have had some fine specimens : they have, unquestionably, degenerated. The Malays were numerous and very good. We regret it - not being more frequently crossed on the cuiamon poultry; the introduction of fresh blood, and increase of size, being an important improvement in the cottagers' fowl.
Anzong the late introductions we observed the Columbian. Those are what a facetious person observed, that "one of their eggs was enough for two ordinary gentlemen for breakfast." They are certainly enormous. The Sebrights were particularly attractive, and for the first time recommended by the judges; they are beautiful little creatures. The American turkeys were superb. Mr. Nolan's cock was of gigantic size, and said to be twice the weight of the bird awarded the premium, but disqualified by one of his hens meeting with an accident. His Norfols carried off the prize. The large Chinese geese were avarded the premium. The judges should be in possession of the fact, that those geese are but half reclaimed, and their flesh black, diy, and carriony. The Toulouse, on the contrary, are domestic, unobtrusive in a stackyard, fleshy, fair, and tender; they are those so much in request by the French gourmand. The Aylesbury ducks were numerouc, and but few first-rate specimens; the Rouens were middling.
Although our poultryshow has taken the precedence of most others, yet we find that recently commenced shows in England have entirely distanced us; and although we stand in a position peculiarly calculated for the propagation of poultry, our list consists of only 227 lots, while the Birmingham show, established but three years since, counts 1,055 lots. Can this great difference be attributed to the public or the

Society? We have heard murmurs, as to the exposure of first-rate fowl to the inclemency of the weather, and know there has been material losses by it. There is no English show that is not under the shelter of a building, and conducted by experienced, practical persons; and wo would strongly suggest a like course to be adopted by our Irish societies, which, no doubt, would give general satisfaction, and remove the present causes of complaint, both as to the nomenclature and introduction of new and valuable varieties into their list. It is a branch of the industrial resources of this country that deserves particularattention: our export of eggs, notwithstanding the potato blight, has been enormous; and being reduced to an agricultural country, this branch of it requires all our foster-ing.-Irish Farmer's Gazette.

Expeditious culture of cucumbers.-A gentleman's gardener, near Burford, being very short of manure, got permission to have some rough grass cut in the park, and made with it a cucumber bed for two lights, on the 28th of February, with a small quantity of manure on the top of the grass put in the soil; the same day, planted two "Manchester Hero" cucumber plants out of 60size pots; cut 2 cucumber on the 27 th of March, 114 inches; on the 29th, one 16 inches; on the 30 th, one 15 inches with another 13 inches left io cut.-Oxford Journal.

BE KIND.

by spencer t. hall.
Be kind to the old man, while strong in thy youthBe kind, not in seeming alone, but in truth; He once was as young and as hopeful as thou, With a bosom as light, as unwrinkled a brow !
Be kind to the poor man, and give of thy bread, With shelier and pillow to comfort his head;
His lot and thine own may be one ere he dieth, Or neighbour to thine the low grave where he lieth 1
Be hind to the crooked, the lame, and the blind; What's lack'd in the body they feel in the mind; Aud while virtue through trial and pain cometh forth, In the mind, not the body, is man's truest worth.
Be kind to the fallen, who lives but to moum;
Be kind to the outcast, who seeks to return;
Be kind to the harden'd, who never hath pray'd;
Be kind to the timid, who still is afraid!
The injured, who down by oppression is borne; The slighted, who withers; the victim of scorn; The flattered, who tropples aloft but to fall; The wronger and wrong'd- 0 ! be kind to them all!
For vast is the world of the generous mind, But narrow the sphere to the selfish assign'd: And clear is the path of the gentle and trueOf the haughty and vain, how delusive the view!
Then unto the old show respect while thou mayestThe poor, while to Him who gives all things thou prayest-
The weak or the lost, 'neath the load of his sorrow. And thy own cup of joy shall o'erion ere the morrow:

Agricultural Iourand,

AND
TRANSACTIONS
OF THE lower canada agricultural scr!ety. MONTREAL, JUNE, 1852.

We beg to remind the Directors of the Lower Camada Agricultural Suciety that the Monthly Meeting takes place at their Rooms, in this City, on Wednesday the Gth day of June instant, and that a full attendance would be desirable.

The Annual General Meetiag of the Lower Canada Agricultural Society took place 19th May, 1852. Gentlemen present:-

Right Rev. Dr. Fulford, Lord Bishop of Montreal, Hon. Mr. DeBeaujen, Hon. Mr. DèBleury, Alfred Pinsoneault, P. L. Le Tourneux, P. E. Leclere, Mr. Fulford, L H. Morean, Rev. Mr. Morin, David Laurent, Dr. Vaiois, M. P. P., MI. Bibaud, Major Campbell, John Yule, Captain Walker, L. A. H. Latour, J. DeWitt, J. G. Gilbault, A. Kierskowski, John Fraser, J. Hurteau, Major Lauchlan, Dr. Leprohon, St. Charles, Rev. M. Desau'niers, and Wm. Evans.
P. L. LeTourneux, Esq., V. P., being called to the Chair, Wm. Evans, Esq., was appointed to act as Secretary. The Secretary read from the Transaction Book of the Society the Resolution of last Quarterly Meeting, directing him to give notice for the Annual General Meeting to take place this day. The Secretary had given notice in several of the newspapers, both in English and French, in Montreal, and had written to H. L. Langevin, Esq., of Quebec, one of the Directors of the Society, requesting that he would have notice given of the Meeting in some of the Quebec papers.

The Accounts were laid upon the table, and a Balance Shect, containing a general statement of the Funds of the Society, placed hefore the Meeting. is letter from II. L. Langevin, Esq,, of Quebec, was read, and the Secretary was instructed to reply to it, that some of the Directors would prohably be chosen this day from Quebec and that District, who would represent in the Society that section of
the country, and that already, through the election of Presidents of the County Agricultural Sorcieties as Honorary Members of the Lower Canada Agricultural Society, all parts of Lower Canada would be amply represented in this Soriety, if those gentlemen wished to avail themselves of the opportunity, and maintain friendly relations with the Lower Canada Agricultural Society. The latter Socicty have at this moment printed circulans inviting the formation of Agricultural Committees throughout the country to ast in concert with this Society in promoting agricultural improvement, and circulars have also been ordered to be addressed to Agricultural Societies, School Commissioners, Municipalities, \&c., upon the same sulject.
The proposed hearty co-operation of all parties interested in the improvement and prosperous condition of Agriculture, this Mecting conceives, would be a preferable course to a division of the Lower Canada Agricultural Society into two separate Boards of Directos. If Committees are formed and put themselves in communication with the Lower Canala Agricultural Society, a very great impulse might be given to agricultural improvement, by publishing the reports, suggestions, and recommendations of Local Committees in the Agricultural Journal, and thus uniting tie whole country in one Association for the improvement of husbandry. All this machinery might be put in active operations without creating any feelings of jealousy, if Agriculturists were disposed to unite in such a good work for the interest of their country.

The following Report was submitted and read by the Secretary, Mr. Evans:-

Annual Report of the Directors of, the Lower Canada Agricultural Society.

Five years have now elapsed since the first organization of the Lower Canada Agricultural Society, and the Directors for the past year rejoice to have it in their power, from their personal observations as well as from reports from every section of the country, to assure this Meeting of the steady progress of agricultural improvement in Lower Canada

This progress may be slow, but it is very satisfactory to know that an improved system of husbandry has been introduced in almost every parish, and from the circumstance that this improvement has been adopted as we!! by Camadian as by British farmers, we may confidently anticipate that it will extend, particularly when the favorable results produced by an improved system are manifest in the neighborhood where introduced. The success of a good system of husbandry will always be the strongest recommendation to its general adoption by the rural population. We have ample experience, that, in all countries, farmers are slow to adopt new systems until they are proved to be beneficial, and, therefore, we should not be surprised or disappointed that improvement does not make such rapid progress in agriculture as in other manufactures and occupations. A suitable education would probably overcome this difficulty, as it would enable men to estimate more correctly the value of changes proposed to them, free from the prejudice of former habits and local customs.
It may be expected that the Directors of the Lower Canada Agricultural Suciety should offer some further proof, than that of reports and their own opinion, of the progress of agricultural improvement in Lower Canada.
The cultivation of green crops and sowing of clover and grass seeds are considered most essential in all good systems of husbandry, and it was the greatest defect in Canadian farming heretofore that the cultivation of these crons was neglected. The Directors are happy to state that the case is different now, and for the last few years, and particularly this year, there is a vastly increased demand for, and sale of, English, French, Dutch and American red and white clover seed, timothy seed, beans, tares, mangel-wurzel, and beet seed, turnip, carrot, and parsnip seed, and all for field culture. It is a well established fact that a few years back the quantity of these seeds sown in the country (with the exception of American clover and timothy seed) was very trifling, and rarely cultivated, except in gardens. The

Scedsman of the Lower Canada Agricultural Society, Mr. George Shepherd, has sold all the forcign elover and mangel-wurzel seeds he imported for this year, and the quantity was fall short of the demand. He has also sold a large quantity of Canadian clover, timothy, carrot, parsnip, and other seeds. To the Agricultural Society of the County of Saguenay he has sold over 1000 lbs . of clover seed, and other seeds in proportion. The Directors believe that other venders of agricultaral seeds have also sold large quantities this spring. Several of the Directors have raised superior samples of red clover seed last year, and many farmers have commenced saving of turnip, mangel-wurzel, carrot, parsnip, tares, and other agricultural seeds. There is a corsiderable demand from all parts of the country for the most improved implements of husbandry, and the best are sought for, whatever the price, and by Canadian farmers. The Directors conceive that these unquestionable facts leave no doubt whatever that our system of hushandry is improving, and will improve. There is another proof-the anxiety of many Canadian farmes to improve their neat-cattle, shecp, and swine. This feeling may not be general, because the means are wanting, and the lands are not yet generally in a state to keep a good stock of neat-cattle or sheep. It is satisfactory, however, that this desire for improvement exists, and when the success of those who endeavor to improve their live stock is made manifest b_{0} experience, it is to be hoped the desire will become general. We should not forget that some years 'back there was a large importation of beef, mutton, pork, cheese, butter, and fowls, into Canada from the United States. Now we export to that country horses, neat-cattle, sheep, butter, fowls, and eggs, barley and oats, to a large amount, notwithstanding a heavy duty is payable upon all these articles. The quantity of cheese manufactured in Lower Canada is greatly increased, and some is of as good guality as any made in North America, proving that our climate and pastures are well adapted for dairy purnọses. Excellent butter is manufactur-
ed, though a considerable proportion is not so carefully managed as would be necessary, and this circumstance diminishes considerably the value of the produce of dairy cows, which a little skill and attention would remedy.

It is only necessary to compare the meat markets of our cities now with what they were thirty years ago, to have further proof of the improvement of agriculture in Lower Canada. In beef and mutton particularly the improvement is surprising. In what was formerly the staple produce of Canada, wheat, we cannot, unfortunately, boast of nuth improvement, chiefly in consequence of the ravages of the wheat-fly, which prevents the sowing of the grain at an early season as heretofore. Every exertion is, however, making to remedy this evil, by the introduction of new varieties of seed that are capable of cultivation so as to escape damage from the fly. The disappointment in regard to wheat is not, perhaps, an unmitigated evil, as probably it had considerable influence in changing the system of husbandry, and inducing farmers to pay some attention to rotation and the cultivation of a greater variety of crops. Under existing circumstances, live stock and their products, judiciously .nanaged, would pay as well as wheat. There is encouragement to grow barley and oats, and by careful cultivation and weeding of the crops (and the Directors regret to report that the latter duty is too much neglected by farmers), excellent crops of these grains might be raised in Lower Canada, the climate and soil being favorable for them.

In regard to the publication of the Agricultural Journals, the Directors, in December, 1850, made an arrangement with Mr. R. W. Lay, of this city, to publish the Journals for a period of five years, and to collect the subscriptions due to the Society for the Journals, previous to the 1st of January, 1851 . Mr. Lay published the Journals only for one year, and discontinued it from the 31st December last, and has not yet paid to the Directors any part of the amount he collected for them, or made any regular statement to them. The

Directors, in consequence, were obliged to have the Journals published on their own account, and arranged with Mr. John Lovell for the present to publish it for them from the 1st of January last. The expense of publishing 1000 copies in English and 1500 in French, for this year, will be about $£ 300$, exclusive of the editor, translator and wood engravings. The Directors rely upon the support of the friends of agriculture, that they will sustain the Journal and secure the Society against any loss by its publication. It would not be unreasonable to expect that subscribers would be obtained for every number published, in a population of one million, chiefly agricultural, and this would pay all expenses of publication, and enable the Directors to apply the Legislative grant to an annual exhibition. It is difficult to reconcile in the same indi-idual the desire to promote the improvement of agriculture in Lower Canada, and the refusal to contribute five shillings annually towards the support of the only Agricultural Journal published in the country, whatever might be its merits, and it is scarcely possible that such an inconsistency can exist. Mr. Cherrier has been employed by the Directors to make a tour through the country in order to obtain subscribers to the Journals and to collect subscriptions, and circulars have been printed to be addressed to Presidents of County Agricultural Societies, to the Clergy, School Commissioners. Municipalities, and influential parties throughout Lower Canada, and there is every reason to hope that the Journals will pay their own expenses this year. At all events, the Directors considered they had no option but to publish the Journals in conformity to the terms of the Act of Incorporation, and for the benefit of agriculturists, and if it could be made self-supporting, it would be better to have it entirely under their own control than in the hands of any other parties.

The Directors of the Lower Canada Agricultural Society have applied the means at their disposal chiefly to the circulation of usefulinformation throughout the country, with a view of exciting a general interest in agriculture, and a desire for its improvement. They
were of opinion that this course, considering the peculiar circumstances of Lower Canada, was calculated to produce more general benefit to the rural population than any exhibition they could have held up to this period, and they appeal with confidence to this Meeting for approval of their procecdings. Last fall they held two Provincial Ploughing Matches, one at Quebec, and one at Varennes, paying £50 in premiums at each place. The application of this amount of their funds, the Directors conceive, will have a good effect in encouraging a laudable desire to excel in the operation of ploughing, so necessary to good and successful farming.
From a desire to form a friendly intercourse and hearty co-operation with the County Agricultural Societies, the Directors elected the Presidents of these Societies Honorary Members of the Lower Canada Agricultural Society, (a measure, they hope, you will approve this day,) and invited them to a general Agricultural Congress, which took place on the 10 th of February last in this city, in assist in the "scussions and deliberations which might take place. Several of these gentlemen were at that Meeting, and others had written interesting letters accounting for their absence, and expressing their satisfaction and willingness to unite with this Society in forwarding the objects for which, it is presumed, all Agricultural Societies are organized. For the information of Presidents who were not present at the Congress, the Agricultural Journals, containing reports of the proceedings at the Congress, have bcen forwarded, with a respectful request that they would acquaint the Directors of this Society with their opinions and views upon these different subjects, and make any other suggestions they might conceive to be expedient.
The opinion of the Directors of the Lower Canada Agricultural Society remains unchanged in regard to the necessity and expediency of providing means for imparting an agricultural education to the children of the rural population of Lower Canada, and they conceive a commencement might be made by the intro-
duction into the country schools of suitable books, such as Agricultural Catechisms and Class Books, prepared or selected for the purpose, for the reading and study of the pupils. But they conceive it would also be expedient to establish in the District of Montreal and Quebec an Agricultural School connected with a Model Farm, where youths over 14 years of age would be reccived, educated, and instructed in the science and practical art of agriculture. This would encourage men of education and capital to become agriculturists, and be the means of saving much capital that would otherwise be wasted when employed in agriculture by those who would be inexperienced in the business. All other professions and businesses have the advantage of a suitable education and training, but agriculture never had this common justice that was so essentially necessary to its interests and prosperous progress. The expense of the first establishment of these Institutions is the great objection, and the agricultural population are not in a position to enable them to establish them from their own means. Their introduction would, therefore, appear to be hopeless, unless through Legislative aid. If once established under judicious superintendence and proper management, there is no reasonable cause to doubt that they would be self-supporting, or otherwise the system of husbandry adopted at these places would not be advantageous as an example, and the land live stock and implements, would be good security for the expenditure on their purchase.

The Directors of the Lower Canada Agricultural Society would recommend to the Members of the Society, who may be engaged in agricultural pursuits, have adopted a good system of husbandry, and are interested in the prosperity of agriculture, to make reports of their experiments, cultivation, management, and the results, for publication in the Society's Agricultural Journals. Such reports, carefully made, from whatever quarter they may come, would have a very beneficial influence in recommendation of goed systems of husbandry, and in extending agricultural improvement.

Dr. Juhnson is reported to have said, "He who wants to do a great deal of good at once, will never do any," and perhaps this saying should be a warning to us not to attempt to do too much good at once. The Directors of the Lower Canada Agricultural Society confidently hope that the Agriculture of Lower Canada will ultimately attain a high state-of perfection and prosperity, though this desirable change may not be generally effected so rapidly as they would wish. A new and perfect system cannot be forced upon the people, but will be sure to recommend itself gradually, chiefly by the successful results obtained by those who practise if first.

The Directors of the Lower Canada Agricultural Society in August last had a proposition made to them by one of their Members, Alfred Pinsoneault, Esq., to place at their disposal a farm at La Tortue, containing about 500 acres, with the live stock, implements, hay, oats, and straw then upon it, for the term of five years, on favorable terms, to be managed by them as a Model F. 'm. This offer was accepted, with one condition, that if the Legislative did not grant a sufficient aid for the establishment of an Agricultural Schonl to be in connection and attached to the Model Farm, the Directors would have the power to surrender the farm to Mr . Pinsoneault at the termination of the first year, being the 1 st of September next. A Committee of Directors were appointed to visit and superintend the Farm. Contracts were perfected between the Directors and Mr. Pinsoneault, and a French gentleman, Mr. Ossaye, an experienced agriculturist, was engaged to superintend and manage the Farm. The live stock, implements and produce were estimated by arbitrators, and passed over to the Directors on the 1st day of Sepiember last, with possession of the Farm. Mr. Pinsoncault was appointed Treasurer of the Model Farm, and has receives $\mathbf{5 3 0 0}$, currency, to be applied to the cultivation of the Farm this year, and to pay the salary of Mr. Ossaye, but this amount was to be refunded to the Society in case the Farm should be given upat the end of the first
year of the lease. At the last Quarterly Mecting of the Directors, on the 12 th instant, Mr. Pinsoneault stated that he was anxious to know as early as possible, if the Directors would :ontinue to hold the Farm to the end of the term of five years, and from the uncertainty that existed of the Legislature granting a sufficient aid for the establishment of an Agricultural Schonl connected with the Farm, as first proposed, he thought it would be best at once to propose to the Directors to take the Farm off their hands on the 1st of September next ensuing, and accordingly handed to the Chairman of the Meeting a written proposition to that elfect, which was acceded to by a Resolution adopted at that Meeting, and the Farm, live stock, implements, and produce are to be given up to Mr . Pinsoneault on the 1st of September next, on such terms as may be arranged between the llirectors and that gentleman. Mr. Ossaye's erigagement with the Directors is to terminate at the same period.

The Directors of the Lower Canada Agricultural Society have entered into a long detail of their doings, subrintted a faithful account of their stewardship, and, perhaps, speculated too sanguinely on the favorable future prespects of Agriculture in Lower Canada. It is in the the power of this Society to do murh to secure the favorable results now anticipated. The Directors, whom you may elect this day, incur considerable responsibility to their country in assuming the dutics which that Office imposes upon them. The intention of the framers of the Act for Incorporating the Lower Canada Agricultural Society was, that every gentleman who might in fature be clected as a Director of that Society uould do his duty in that capacity to promote, by every means in his power, the improvement of Agriculture in Lower Canada.
It maybe imagined what a vast amount of good might be produced by thirty-three gentlemerise. lected from all parts of the country thai compose the Board of Directorsacting constatitly while in Olfice, in conformity to this implied engagement, when they undertake the duties of Directors.

The Directors have refrained from offering you any exciting picture of the pleasures and happincss of rurallife, in order to induce you to be more ardently atlached and favorably disposed to ogriculture. The most eloquent language they could employ would not make agriculture any thing more or less than whatit is, and alwayshasbeen, from the Creation of the human race, the most necessary, most useful, and, there. fore, the most honorable occupation practised by mankind, and this fact alone should be sufficient motive and recommendation to all agriculfurists to endeavour to attain to the highest perfection possible, in the practice of this the noblest of arts and pursuits.
The Directors of the Lower Canaila Agricultural Society beg to submit a statement of their funds for the past year. At the lasi Annual General Meeting they owed a balance of about $£ 320$; this year all has been paid up to the lst instant, except what is due for printing the Journals this year, upon which $£ 50$ has been paid, and the subscriptions are nearly all due, and the Directors have paid $£ 320$ in every way upon the Model Farm, inclading Insurance and expenses of making contracts. By the annesed statement referred to above, there is a balance remaining in the Montreal Bank of $£ 626 \mathrm{~s}$. 7d., currency.
The Hon. C. S De Bleury then moved, seconded by L. A. Moreau, Esq., that the Reporit then read by the Secretary be received and adopted, which was carried unanimously.
MajorCampbell submitted the names of several members of the Society for election as Directors for the ensuing year. When, after due consideration, the following gentlemen were elected:-
Hon. A. N. Morin, Provincial Secretary, Hon. G. R. S. DeBeaujeu, Hon. A. Ferrie, Hon. C. S. DeBleury, the Rev. M. Désaulniers, Rev. M. Morin, Major Campbell, Alfred Pinsoneault, John Yule, P. E. Leclère, M. Valois, M. P. P., -Chapais, M. P. P., Kamouraska, Charles Taché, M. P. P., Rimonski, Alfred Turgeau, F. A. LaRocque, David Laurent, D. Leprohon, St. Charles, G. Hurteau, J. Vincent, F. Armand, P. L.

Le'Tourneux, I. A. H. Latour, G. Gillbault, G. Chagnon, Wm. Evans, Dr. Mieilleur, Capt. Rhodes, Quebec, H. L. Langevin, Quebec, L. A. Moreau, T. F. Allird, John Drummond, A. Kierskowski, and John Fraser, Esquires.

The thanks of the meeting were then moved to the Chairman, P. L. LeTourneux, Esq.which was carried unanimously.

A vote of thauks was subsequently passed to the Secretary and 'Ireasurer, Wm. Evans, Esq., for his services in that capacity.

When the election of Directors was completed, the business of the Annual Geieral Mecting was concluded.

By order, Wm. Evans, Secretary to the General Meeting.
Montreal, 19h May, 1852.
the lower canada agricultural SOCIETY.

Dr.
1851.

Sept. 20. To Goverument Grant, £1000, less commission charged by Bank of Montreal, $£ 5 \ldots . . . £ 9950$
Oct. 10. To balance of grant of 1850 remaining in the hands of. Alfred Pinsoneault, Esq.,....... 171011
To Subseriptions for Journals previous to 1851
ToSubscriptions of annual members, received from 20 th May, 1851, to 1st January, 1852...

350 1852.

May 12. To subscriptions received for English Jouraal, for this year, up to this date............ To do. do. French Journal do. $2012 \quad 6$ To Donation and Subsciptions of Life members this year........
To Subscriptions from Annual Members, do.

1000

To Subscriptions received by Post Ulfice for Journal of 1851, to be allowed Mr. Lay

200
$£ 107616$ 43
May 19, 1852.
WM. EVANS,
Scc. and Treas. L. C. Agricultural Soociely.
Cr.
1851.

Sept. 20. By ha'ance to Speretary
and Editur, due up to 1st May,
1851
$£ 118$

Oct. 10, By Mr. Bibaud, paid him for Translation

35176
By paid R. \& A. Miller as per Accounts.
By paid Mr. John Lovell, on account of Printing Journals, previous to 1st January, 1851. Bypaid Alfred Pinsoneault, Esq., as Treasurer of the Model Farm, as por Cash Book.......
By paid for Insurance, and for making contracts for Model Farm, as per Cash Book......
By paid Provincial Ploughing Matches in the District of Quebec and Montreal, Oct., 1851
$100 \quad 0 \quad 0$
By paid Mr. Shepherd rent of rooms, to May, 1852.
$710 \quad 0$
By paid Mr. Lajoie for translation, August, 1851

434
By paid Mr. Cherrier for do. Sept. and Oct., 1851
1852.

May 12. Byallowance to Secretary and Editor for the past year, ending 1st May, 1852, and for travelling expenses.............
By paid advertising, hand-bills, \&ic., as per Cash Book........
By paid Postage, Stationery, incidental expenses as per Cash Book and vouchers......
$156 \quad 0 \quad 0$
y paid Mr. John Lovell on account of Printing Agricultural Journal for this year.............
$\begin{array}{lll}50 & 0 & 0\end{array}$
By commission to Mr. Cherrier for collecting Subscriptions....
By paid distributing Journals in Montreal.

6150

By paid for wood-engraving and blank receipts

3139

By paid M. Beauchemin for Office Books.

4176

By paid Translator Mr. Ossaye's Report, and Dr. Taché's communication

7173
$10 \quad 6 \quad 2 \frac{1}{2}$

156

May 19, By balance in Montreal Bank.

150
$62 \quad 6 \quad 7$
$£ 107616$ 42
May, 19, 1852.
WM. EVANS,
Sec. and Treas. L.C. Agricultural 'Society.

In the afternoon of the 19 th May, 1852; a meeting of the Directors of the Lower Canada Agricultural Society, elected in the forenoon of the same day, took place at their Rooms in this City.

Gentlemen present:--Major Campbell, Rev. M. Désaulniers, Rev. M. Morin, Al-
fred Pinsoneault, John Yule, David Laurent, P. E. Leclère, John Fraser, Dr. Valois, M. P. P., P. L. Le'Tourneux, L. A. Morean, L. A. H. Latour, J. G. Gilbault, A. Kierskowski; G. Hurteau, Dr. Leprohon, and Wm. Evans, Esquires.

John Yule. Esq., being called to the Chair, Major Campbell proposed, seconded by Dr. Valois, M. P. P.:-

That P. E. Leclère, Esq., of St. Hyacinthe, be ele:ter President of the Lower Canada Agricultural Society for the present year.Which was carried unanimously.

Mr. Yule then left the Chair, and Mr. Leclère, the new President, was conducted tn it by Major Campbell; who, upon taking the Chair, returned thanks for the honor done him, and assured the Director that he would do all in his power to fulfil the duties oi his O币ice as President.

The following Gentlemen was elected VicePresidents of the Society:-

Capt. Rhodes, P. L. LeTourneux, Esq., David Laurent, Esq., Dr. Valois, M. P. P., John Drummond, Esq., and John Fraser, Esq.

Proposed by the Rev. M. Désaulniers, seconded by the Rev. M. Morin:-

That Wm. Evans, Esq., late Secretary and Treasurer of the Society, he re-elected to the same offices for the present year.-Carried unanimously.
Proposed by L. A. H.Latour, Esq., seconded by David Laurent, Esq., that the following Gentlemen compose the Journal Committee: P. L. LeTourneux, Alfred Pinsoneault and John Yule, Esquires.-Adopted.

Proposed by A. Kierskowski, Esq., seconded by John Fraser, Esq.:-

That the following Gentlemen compose the Executive Committee:-The Ex-Presidents of the Society; Major Campbell, John Fraser, and A. Kierskowski, Esquires.-Adopted.

Proposed by John Yule, Esq., seconded by S. Hurteau, Esq., and adopted unanimously:-

That the following Gentlemen compose the Committee to visit and superintend the Model Farm at La Tortue:--Rev. M. Desaulniers, Major Campbell, John Fraser, David

Laurent, G. Hurteau, John Yule, Alfred Pinsoneault, John Drummond, A. Kierskowski, P.L. LeTourneux, L.A. Moreau, Esquires, the Rev. M. Morin, and the Secretary of the Society.
It was then determined that John Fraser, G. Hurteau, John Drummord, Esquires, accompanied by the Secretary, do visit the Model Farm immediately, make a particular inspection of the whole concern, accounts, \&c., and on doing so, the Secretary is instructed to call a Meeting of the Farm Committee to whom the Report of the visitors is to be submitted.

The business of the day having then concluded, the thanks of the meeting were voted to the Chairman. By order,

> Wm. Evans,

Scc. \& Treas. L. C. A. S. Montreal 19th May, 1852.

The Quarterly Meeting of the Directors of the Lower Canada Agricultural Society took place, pursuant to written notices addressed to the Members by the Secretary, on Wednesday, the 12 th day of May, 1852 , at 11 o'clock, A.M. Gentlemen present:-The Hon. G. R. S. DeBeaujeu, Major Campbell, John Yule, A. Pinsoneault, P. L. LeTourneux, D. E. Leclere, D. Laurent, J. Fraser, Wm. Valois, M. P. P., 亡. A. H. Latour, J. G. Gilbault, and Wm. Evans, Esquires.
P. L. LeTourneux, Esq., V. P., took the Chair. The Secretary submitted several letters and other documents, and the accounts, vouchers \&c., for the past year, were placed before the meeting.
The first subject brought forward was the letter of Mr . Dorion, proposing to publish the Agricultural Journals, and the Directors thought it most advisable not to make any change for the present in regard to the publication of the Journal, until an effort would be made to increase the number of Subscribers, and the Secretary was instructed to acquaint Mr . Dorion of this decision of the Directors.
The next was a letter from Mr. Lajoie,
upon the same subject, and the Secretary was instructed to return thanks to that gentleman for his excellent suggestions, but that the Directors could not publish the Journal upon the terms proposed.

Proposed by Major Campbell, seconded by John Fraser, Esq., and adopted:-

That P. L. LeTourneux be added to the Journal Committee.

Proposed by A. Kierskowski, Esq.,seconded by A. Pinsoneault, Esq., and adopted :-
That the Society of Agriculture of Lower Canada, having already expressed upon a former occasion the great interest it takes in the formation of a Department of Agriculture, (Bureau Officiel l^{2} Agriculture), and confident in the solicitude of Government to provide for the true interest of agriculture in the province, believes it to be its duty as well towards the governing, as the governed, to suggest from tirce to time to the said Department such practical measures as would be best calculated to promote the said interests of agriculture.

At the head of these measures, the Society believes it ought to place, as deserving of encouragement on the part of the Department, the publication of a Journal of Agriculture. This publication being made without any view to speculation, and experience having already demonstrated to the Society the numerous difficulties in the way of augmenting its circulation, and by this way, in proving its moral and material condition, they would respectfully recommend to the solicitude of the Agticultural Department the presentation of a law, having for aim to oblige the different Societies of Agriculture of the Counties to consider the said Journol as their official organ in future, and that all notices of exhibitions of agricultural productions be published in the said Agricultural Journals, and the effect of such a law would immediately make it necessary to publish the Jourial weekly instead of monthly, as at present.
Proposed by F. E. Leclere, Esq., seconded by David Laurent Esq., and approved unani-mously:-

That the following Circular, of which Mr. Leclere read and presented a copy in French, should be printed in the Agricuiltural Journal, and also in the form of a Circular, to be addressed by the Secretary to the Presidents of County Agricultural Societies, the Commissioners of Education, and to the Mayors or Presidents of Municipalities throughout the country.
Office of the Lower Canada Agricultural Society.
Sir,-The Lower Canada Agricultural

Society publishes a monihly Journal, devoted exclusively to the advancement of this import. ant branch of industry. This Journal has hü existed for some years, but unfotunately, owing to the apathy which has hitherto prevailed amoug a great number of our fellow citizens, the circulation has failed to compensate for the industry and outlay expended in its circulation, in a manner in satisfy the general wish. It devolves of necessity, therefore, upon us to devise means for promoting the circulation of the Ag ricultural Journal as extensively as passible throughoul the Province, and even for its intioduction into the housas of the poorer class of farmers.

With this view the Directors of the Society of - Agricalture of Lower Canada have come to the conclusion that, by addressing the Presidents of the different Societies of Agriculture in cais part of the Province, also the Presilents of the various :Mumicipal and Educational bodies, their combined effurts in support of the present project might be found attended with complete suceess. convinced as the Directors are that from the high position of influence occupied by these gentleme:, their council would be found to influence the several Associations over which they presile, to the extent of inducing them to subscribe for a certain number of copies for distributin among the farmers, after their perusal by the:aselves.

The Directors might cite many examples where this project has been put into exccution with success, in many of our Municipal and Educational Institutions; and in every case the President had merely to propose the measure to have it instantly adopted. The Directors, therefore, take the liberty in addressing you, to pray you will bring before the body over which you preside, the necessity of encouraging the circulation of their Journal, by stibscribing for a centain number of eopies. The Journal, as you are aware, is publisheil monthly aud cois merely five shillings yearly, the expenses of postage are not exacted by Government.
The Directors of the Lower Canada Agricultural Society, in conclusion, would:inform you that they have named as Agent of their Journal, an active and intelligent man, who will shorly wisit cach of your locaiities to collect the fruits of your efforts. The different Prosidents are respectfully requested to address a copy of this
cireular to the different members of the bodies over which they preside.

> By order, Wm. Evans, Secy.

Montrcal, May, 1852.
Moved by L. A. II. Latour, seconded by P. E. Leclere, Tisq.:-

That the thanks of this Society are due to Dr. Meilleur, S. E., for the interest he has taken in the cause of Agriculture, by recommending is his "Circulars" to the Sichool Commissioners the importance of their having the art of Agriculture taught in the Model and Elementary Schools. of their causing to be distributed copies of the Agricultural Journals in all the parishes, and of their doing all in their power to place at the disposal of the teachers and school-mistresses grounds, as spacions as possible, in order that they may be cultivated by themselves and their pupils under their (the Commissioners) superintendence; and, finally, for continuing to favor the progress of Agricultural knowledge on all occasions; trusting that the School Commissioners may continue to be guided by his instructions and advice.

This being the day for the Meeting of the Model Farm Committec, and all the gentlemen present being members of that Committee, except Mr. Latour, the subject of the Model Farm at La Thortue was brought forward for consideration, and, after considerable discussion, Alfre:l Pinsoneault, Esq., submitted a written document bearing his signature, of which the following is a copy, and handed it to the Chairman:

Having learned from Persons well informed that the Government will not grant money for the e:tablishment of an Agricultural Coliege ai La Tortuc. I ask the Directors of the Lower Canada Agricultural Suciety, that my farm be returncd to me on the 1st September next. uniler the same ennditions it would have been returned, if the Government, after being duls petitioned, had refused togive a grant of money.
(Signed,)
A. Pinsoneault.

Montreal, 12 h May, 1852.
In consequence of the above request, I hereby consent to the agreement (hetween me and the Socety) becoming null and void, on and atter the first day of Santember next.

12th May, 1852.
It was then proposed by John Yule, Esq.,
seconded by Dr. Valois, M. P. P., and adopted unanimously:-

That the offer of Mr. Pinsoneanlt, to take his Farm at La Tortue, and annul the leasc, be accepted.

Proposed by Major Camplell, seconded by John Fraser, Esiq., and adopted :-

That notice be given for the Annual General Mecting of the Lower Canada Agricultural Society, to take place at their Rooms in this city; on Wednesday next. the 19 th inst., at 11 o'clock, A. M., and that the Secretary prepare this Report, and a statement of the Funds of the Society, to be submitted on that day:

The meeting then separated.
By order,
Wm. Evans, Scc. \& Treas. L. C. A. S. Montreal, May 12, 1852.

We have received the communication of "An English Translator," but think it objectionable, unless the writer will consent to revise it, and omit any part that has not reference to agriculture, or agriculamal education. We shall bighad to insert the letter with these alterations, as it is well written.
New Members proposed by L. A. H. La-tour:-
Dr. J. G. Bibaud, of Montrenl; C. E. Belle, N. P., of Montral; R. Bellemare, Esq., of Montreal; Dr. T. Iluguet Latour, of Boucherrille ; Dr. C. Huguct Latour, of St. Rėmi ; P. R. Lafremaye, of Mlontreal ; L. Labreche Viger, of Montreal; Edomard Lefaiure, of Vaudreuil ; IR. Trudenu, Esq., Ovid Pellier, Esq., Annual Members.
Life.-A modern philosopher has apportioned man's full existence as follows:-
Seven years in childhoorl's sports and play-7
Seven years in school from day to day - 14
Seven jears at a trade or college life - 21
Seven years to find a place and a wife
Seven years to pleazure's folling sjiven
Seren years by business hardly driven $\quad-45$
Seven years for some, a wild g yose chase- -49
Sceven years for wealhh, a boolless race - 56
Seven years for hoarding to your heir - 63 Seven years in weakness spent and care - 70 Then die, and go- you should know where!

Absence and other engagements prevented us from visiting the Panorama of the Crystal

Palace, previous to Friday last, wnd we regret that the circumstance of this Journal being publisherl on the firsi day of each month only prevented us from rendering any service to Mr. Barnum, by any notice we could give of it until now, in recommendation of this lighly interexting picture of the Crystal Palace, and the Great Exhithition of the Iudustry and productions of all Nations. Panoramas, well got up, and that of the Crystal Palace is especially entiled to this character, are both interesting and instructive to young and old.

Mr. Barnum deserves general patronage, for having chosen such a subject for a Punurama, and thus affording an opportunity to those who did not see the original, to see the exact representation of, unquestionably, the ${ }^{\circ}$ most interesting Exhibition that has ever taken place, and one in which all Naions were interested, and we hope Mr. Barnum swill be amply re-. munerated for the rich treat he has aflionted to the citizens of Montreal by his splendid Panorama.

agricultural report for may.

The month of May commenced with a cold rainy day, but was succecded by dry cold weather, very suitable for spring work, but not very favorable for vegetation. IIad the spring commenced carly in April we might have expected cold in May, but after so long and severe a winter, we did hope that the month of May would be beautifilly finc, which we regret, it has not been. A cold, harsh wind has prevailed that renderell the soil dry . and hard, and in many places dificult to work or plough, and up to the 29 h there was scarcely any dew at nights. On the night of the 6th we had some rain, succecded by very high. and cold winds. Rain fell again on the 201h and 21 st, accompanied by a very low demperature and a harsh wind. This sort of weather is not by any means favorable for grain lately sown, and just appearing over ground. We have been told that in many places it was very difficult to plough, and we believe a largo, portion of the land intended to be ploughed. last fall was not done, in consequence of the
early commencement of winter. This circumstance will greatly retard the spring sowing. It is most desirable that fall plonghing should be finished if possible before the winter, and the land well drained, and the furrows cleaned out. When this is done, the soil will be in much better condition for spring sowing, and for producing a good crop, and if farmers used due diligence, and had their land properly drained, the fall ploughing might be finished generally before the winter commenced, and had it been done last fall, most of the sowing and planting might be finished before the end of May, as it always should be. When the spring sowing and planting is extended into the month of June, the chance of good crops is very doubtful, unless in a most favorable season, that is neither very moist nor very dry. There has been a considerable demand this spring for Fife wheat, or what is known by that name. We have been told it succeeds well in Upper Canada. We conceive it to be a great inconvenience, and has an injurious tendency, to give new names to wheat or other grain. Farmers do not know what kind of grain they sow, when new names are applied to them. It may be very proper for a farmer, who, by great attention, raises a distinct variety of grain, not known before, to give it what new name he pleases, but it creates much confusion, when we give a new name to an old variety of grain that has been long cultivated, and is known by another name. If the cultivators of such grain wish to give it a new name, they should let farmers know what was the former name by which it was designated, or inform the public how they had raised a new variely not known or distinctly described before. We do not wish to give offence by these remarks, but several enquiries have been made of us as to the correct designation of wheat advertised for seed, and the names and description published by Lawson \& Sons, of Edinburgh, is the only one that we refer to in answering these queries, as we consider it the very best authority. We know that very few farmers have raised new varic-
ties of seed in this country, because there is not sufficient attention given to such malters. In the United States it is scarcely possible to know any particular variety of grain by their old proper names, as described by Lawson. We should recommend that when it is desired to give a new name to varicties of seeds, the old name should also be retained, and let the new one be an addition to it. This would prevent confusion and uncertainty. In importing seeds from any country, it is very proper and necessary to give the name of the country that has produced them, because, by these means, we shall be able to determine what country produces the best and most suitable seeds for our cultivation in Lower Canada. It is quite necessary in a perfect system of agriculture that the greatest atten.ion should be given to all these matters, though trif. o they may appear. It is also very necessary to have clean and unmixed varieties of every description of seeds.
Whaterer we may expect from merchants, who have themselves to buy the seed they sell for sowing, farmers who sell grain for sowing should have it clean, or they should not advertise it for sale, because when it is so advertised, we have renson to expect it to be fit for seed, which it cannot be, if mixed with different rarieties, and with seeds of weeds. These matters should be well understood, as to the obligation there is upon vendors of agricultural seeds, to sell only such as are fit for seed, and profitable for farmers to purchase. If farmers sell seeds to puchasers in the market, or to persons coming to their farm to purchase, they may sell it as it is, without any warrantry, and this will be perfectly fair, but no seeds should beadvertised for sale that are not clean and fit to sow.
In top-dressing for grain crops with farmyard manure, it is almost impossible to have a clean crop. If for oats or peas it is not of so much consequence, but for wheat or barley, the sample will not be clean or fit for seed. Well fermented manure should be employed when top-dressing for grain crops, or even when ploughing it in
for them, unless they are in drills and hoed, and that is seldom done in Canada. Indeed, unfermented manure is very unsafe to use, except for drilled crops where any weeds that grow from it may be destroyed by hoeing. Summer fallow is very little practised in Lower Canada, and it cannot certainly be from any objection to waste the land for a rear, because we see almost upon every farm some land little better than waste. An acre properly summer-fallowed would produce a crop of double the value of an acre that was not so cultivated, and the expense would not be very great. It is not one good crop only that it would give, but perhaps three or four, and the land would certainly be clean. It is of very little benefit to grow crops that are net free from weeds, and it is altogether inconsistent with good farming to allow them to grow in cultirated crops. Fall wheat is far from being an even crop this year. The last winter has left fall wheat very patchey, and we believe there are not many fields of it in Lower Canada that have not suffered more or less. Where it was deeply coveren with snow, last winter, we have been told the plant has been destroyed, we suppose from being too deeply, and too long, covered from air and light. It is very annoying to a farmer to see a field which he had done all he could to cultivate well, and sow in time, hase many spots or patches in spring, where the plants are destroyed by the frost. This circumstance is a great discouragement to the sowing fall wheat to any great extent, though we think it might be successfully cultivated, by adopting a proper plan on summer-failowed land. The land should be formed into small drills, at about 9 or 10 inches from centre to centre, so as to mako about 10 or 12 drills on each ridge of 9 feet Fide. The seed might then be sowed broadcast, and the land lightly harrowed, $s 0$ as to cover the seed, but not to level the drills. We have repeatedly recommended this plan, but it cannot be adopted except on land that has been summer-fallowed. If fall wheat nould succeed, it would be a great adrantage
to farmers, as they would have so much of their work dune before the hurry produced by our short spring. This year we had no spring weather in April, the transition was at once from winter to summer, though the temperature has not ranged high up to this period. Potatoes have brought high prices lately, 5 s. the bag, said to contain one minot and a half. They would pay well if even a moderate crop could be raised, at these prices. Farmers do not like to give up the cultivation of potatoes, notwithstanding the uncertainty of the crop, and the danger of rotting in the cellars or roothouse. The best variety of the potato for the table are the safest to plant. The dryest and smallest potatoes are less liable to the rot than the larger and softer varieties, and special manures, such as compost ashes, charcoal, and salt, though the latter cannot be considered a manure, are considered better and safer than that of the farm-yard. Composts are not attended to as they should be. The quantity of manure might be greatly increased by composts formed of cleanings of drains, moss, ashes, lime, salt, and any spare farmyard manure, liquid manure might also be thrown over it, and all should be turned over and well mixed. This would be good for top-dressing, and for potatoes or other root crops, sugar, beet, and even the mangel wurzel, and carrot, are said to succeed better, but particularly the former, after a crop of grain, (oats or barley,) manured had been taken off the land, and we have no doubt but it would prove so in practice. The manure gets to be well rotted and incorporated with the soil, and hence more suitable for these sort of crops, We perceive by our exchange papers that a steam plough has made several experimental trials lately near Edinburgh, and is reported to have succeeded very well. It will plough 7 acres (Scotch we believe, which is considerably larger than the English acre), in ten hours, at an expense of from 16 to 18 shillings, or about 2s. 6d. the acre. It turns fout farrows at a time, and may be made to turn six. The first cost of the implement is about $£ 300$, but the engine can
be employed to trash, aid do all other work uponthe farm that is usually executed by straw machinery. Furtler improvements were expreted to be made in this machine, to make it more suitable to the common purposes of ploughing. It was tried on ploughed land, and moved over it without difficulty, and. ploughed it a second time. We have a plan of the implement, but canuot judge sufficiently of its merit by that alone. It is only when seen in operation that a correct opinion can be formed of it.

We have seen many parts of the neighbourhood, and there cannot be any duabt that the country is suffering for the want of rain, particularly the young crops, meadows, and pastures ; indeed the meadows have niot yet much appearance of grass, and probably will not produce a heavy crop this year. When clay soil becones very dry at this season, as at present, it requires considerable rain to soften it sufficiently. Dry weather will have some effect in checking weeds, and in land cultivating for green crops, farmers will have it in their power to dry up and destroy roots of weeds to a considerable extent, if they use proper exertion. We had an opportunity this spring of knowing the great desire of Canadian farmers particularly, to obtain new varicties of seed wheat, and to pay high prices, if they could only obtain samples that were clean, unmixed, and of good quality. We had several applications this spring for seed:, but all later than they should be. Parties requiring seeds should apply in time, previous to the 1st of February, and then we would be able to make the best selections, and be certain that the orders would be strictly complied with. When deferred to a late period, both the price and the quality are at the option of the seller instead of the purchaser. The market prices of agricultural products, generally, are nut to be complained of by either seller or buyer, though the price of butter has fallen considerably. We hope, in conelusion, our next report will be more fivorable, and that we shall have it in our power to
state the very promising appearance of tie crops of every description. If man doe lias part wedi he may rely with perfect confidence upon the Giver of all Good that the result will be favorable.
Montreal, 29th May:
Pornt Levi, May 20, 1852.
To Wm. Evans, Esq., Sccretany to the L. C. A. S.
Dear $\mathrm{Sin}^{2}-\mathrm{I}$ have received yours of the 15 th instant, by which the Directors of the Lower Canada Agricultural Society do me the honorte ask my opinion and alvice relative to centian questions, and especially with regard to Agricultural Schoons, with or without Model Farns attached. My opinion 1 shall give wihh pleasure, and to be as concise as possible, I generally approve of your plan of Agricultural Schools and Model Farms; as proposed in the April number of the Agricultural Journal ; howover, I am far from thiuking 200 acres sufficient for the Farm : five or six hundred would, at least, be necessary, in my opinion, in order to try different rotations of cropping and to see what will be most alvantageous in the climate. We ought not to forget that the tarnip crop, which seems to be the hiuge on which almost all rotations are made to turn in Great Britain, cannot be followed here but in a very limited extent, and that for numerous reasons, which are too well known to practical farmers to need mention. It is also necessary to have a pretly extensive Farm, in order to keep different breeds of catile through the year. I am of opinion that the land to form the Farm should be bougit ly Government. Land being so cheap here, and although such an establishment would necessarily cost a goodd deal to begin with, its value in a few years would be great. As to small Model Farms in each Municipality, at a cost of £150 a year, I am of opiuion it would be so much waste; and that the knowledge to be acquired by visiting such a Farm after it has been in operation several years, would be more likely to be obtained by visiting some of the nume vus Farms in the vicinity of Quebec or Montrea!, belnnging to wealthy and public spirited morchants, and generally coulucted by Europpan practical farmers, and which may be seen any day. I am afrail that we farmers do nut sufficiently reflect how much we owe to those merchant farmers. It is they who have im-
ported improved breeds of all kinds of animals and seat; ; it is they who set before the farmers' eyes many new modes of culture recently discovered in Europe, and whic'i on accomnt of the expenses required, and the uncertainty of the result in this climate, makes it necessary for him who lives by farming to adopt with great caution. In fact they in some derree supply in this country the place of those rich landed proprietors, who in Great Britain make experiments, and lead the way to farmers.

But it is only on a proper Model Farm that we can expect to see experiments fullowed out and made public, with that degree, of precision which we see has been done by many great farmers in Great Britain, and which we find detailed in Stephen's Book of the Farm, and which detail and exactness in every particular is absolutely necessary to make experiments useful.
Where else are the public to see a fair trial of thorough drainingr ; subsequent ploughing, special manures, \&c. I cannot help again referring yon to that pait of my last letter in February, which mentions the state of the roads in this county, for no European farmer, whose knowledge and experience might be so rseful to us, will venture to come to settle here until we have good Turnpike road established. I an certain that if the minister, whose particular charge is the advancement of agricultural improvement, was to f.vour this very extensive, populous, and important County-important not only on account of its agricultural capabilities, but also for its gold and other productions, and especially for its situation, with a visit, he would immediately lend his aid to all those in the County who know and with the properity of the County, to enable them to $x e t$ Turnpike roads. Nu doubt there are many other localities where such roads would be beneficial, but none where they are more needed than here. I remain very respectfully, Your very obedient servant, Ciharjes Robertson, President A. S., No. 2, Dorchester.

Extract from a lettcr dircetell to L. A.II. Latour, Esq, by a friend at Bnston.
Although on all hands we hear only of the complaints of subscribers at want of punctuality, I must say that I receive your Agricu:tual Jummal very regularly-perhaps it is because monthly and not weekly or oftener. But why not weekly? is Lawer Canada not able to publish a sing!e
weekly Journal devoted to this most important interest of society, while every hittle commercial and political interest we know have their numbers daily? Nothing can better indicate the state of feeling on any matter than the press, aml not alone by what is said thereon, but by the very fact of being spoken of at all. And no interest need claim a hearing which speaks out not weekly at least, and which will not have a worl in it of general news to vary the entetainment of its columns. A monthly Journal will never be supported, as we here in these: States know, nor even be able to advance an interest or promote a view. I loos forward, therefore, as a friend, to the publication of a weekly Journal, embracing the agricultural operations of your province, and, from observing the erection of an Agricultural Department in Canada, I conceived this hope.

Other gentlemen* of this Union have been elected Honorary Members of your Society, I perceive from this. (May number) I approve of these elections as tending to extend the interest taken in your agricultural affaits, as well as the fraternity of grod men in their own peaceful domain.

Boston, 22nd May, 1852.

- Messrs. Henry Wager, John Delafield, and. Alexander H. Johnson.

METEOROLOGICAL RESULTS MADE AT ST. MARTIN, ISLE JESUS, C. E., by charles smallvood, M. d., For April, 1852. BAROMETEL.
incher.
Mean Reading of ihe Baronseter corrected and reduced to $12, \ldots .$. . F.

29,470
Highest do. the 4th day,
29,804
Lowest do. the 21st day, 28,890
Monthly Range,............................. 0,914
THERMOMETER.
Mean Reating of the Standard Thermometer,...............................
Highest do. do. Mavimuin do., 65.50
Lowest do. do. Minimum do., 22;00
Monthly Range.............................
Mean Temperature of Evaporation, 43;50 36,17
Snow fell on 3 d.lys, amounting to inches,
Rain fell on 7 days
Most prevalent Vind, do

Least du. do.,
Most windy day the 2lst day, mean miles per hour,
Least do. do. the 26th day, mean miles per hour inappreciable,
Greatest Intensity of the Sun's Rays.

NEW FLAX MILL.

Mr. Ludolf, of Leeds, in a letter to Mr. Watkins, of Ombersley, Worcestershire, who has interested himself in the growth of flas, makes the following offier to take the straw :-"I would agree to give 60s. per ton for all flax straw that is grown next season in Worcestershire, if at least 800 acres are grown, so that I can fill a mill in your quarter. My other friends in Lincolnshire and North Riding of Yorkshire send a sheet of paper round to the farmers asking thein to put down upon it how many acres they are likely to grow next season. Do you think this plan could be adopted with you? If you would let me know in March if a sufficiency of acres will be grown, I will take such measures as to be ready with the mill for the season. Taking the weight of flax straw per acre at 28 cwt ., which is a very moderate estimate, and the seed at 20 bushels, at 6 . per bush., the return will be as follows:- \quad s.

28 cwt. of straw, at 60 s . per ton... $4 \cdot 4$
20 bushels seed, at 6s.............. 60
Gross profit per acre...£10 4 A correspondent who has forwarded us the above extract adds: This plan of Mr. Ludolf, if adopted, would at once remove the difficulty that farmers have always felt respecting the management of the fibre; they would merely have to thresh out the seed, and send the plant at once to market. Hoping that this statement may induce many of the landlords and tenants of this county to contribute to the above-mentioned 800 acres, and knowing no better method of making it known than asking your permission to insert it in your widely circulated Journal.-Gloucester Chronicle.

PROPORTION OF BUTTER EXTRACCED FROM MILK.

Sir,-I sec, in your last Gazette, an account of the proportion of butter from Irish milk, stated by Mr. Gillespie, of Beaumont, to be nearly one pound to the gallon; but I do not think his a fair trial, as he took the milk all from one cow. Now, I have given much time and attention for some years to the dairy business, and I know, from practical experience, that some cows yield far more butter than others; also, that on the same farm, you will find one field good for yielding butter, and the next field to it, only divided by a fence, to be bad for casting butter. But I have found, from repeated trials of milk taken from the mixed milk of twenty cows, the average quantity of butter produced, to be one pound to one and a half gallons of milk, on good pasture; and two gallons on ground, not good tor yielding butter. But. I am certain, from experience, to form any general rule of the quantity of milk that ought to produce one pound of butter, must be a disappointment, as so many circumstances occur to cause it to deviate, such as pasture, state of the weather, and the health of the cows-that the exact quantity to be produced will vary much at times: however, I would be glad to hear the epmon of others on the matter. Should you think the above worth a place in your valuable pat per, you are at liberty to make use of it.-Youns, \&e., W. H. Ratunorne, Fabra Iilla, December 27,

The following extracts, showing the advantages of linseed-cake and linseed-meal, for fattening cattle and rearing calves, are taken from M'Adam's cricular:-
" Almost every person in the habit of feeding cattle for the butcher, is acquainted with the fattening qualities of linseed-cake, but rearing oalves with linseed-meal has only been introduced in this neighbourhood within the last three or four years (1838); it is now quite established, and a great saving is the result.
"Half a pound of this meal is sufficient for a calf daily, and this costs only one halfpenny, while a quantity of milk, containing the same proportion of nutriment, would cost 6 d . to 8 d . per day; a saving would thus be effected of, at least, 6 d . a day on each calf, which is 3 s .6 d . a week for one calf, and. $£ 3$ 10s. a week for twenty calves; and this, for three or four months, amounts to a sum worth saving.
"The linseed-meal is the cake ground; the best way of using it is to steep, at the rate of $\frac{1}{4}$ lb . for each feed, in cold water, for twenty to twenty-four hours, then to dilute with warm water to the temperature of new milk, a gruel about equal in bulk to the milk usually given. If any milk be added, a pint each feed is quite enough.
"The general report of our farmers and dairymen who have continued the use of this meal for rearing calves, during the last ten to fifteen years, is, that the calves are more healthy when fed on milk, and that there are fewer deaths. It is very nutritive, and at the same time keeps the stomach and intestines in a cool and wholesome condition. No case of what is called black-leg has occurred with this feeding, that we ever heard of."

A letter was read from Messrs. D. Maclean \& Sons, of St. George's-street East, London, the inventors of a machine for separating the fibre from unsteeped flax straw, to suit it for certain coarse purposes, such as bagging, tarpaulins, rick and railway-truck covers, kc. They stated that, from experimental trials of their machine, they found 46^{3} cwt. of straw, after the seed had been taken off, to yield one ton of clean fibre, and that, in the present condition of the machine, and with inexperienced hands to work it, 50 lbs . of fibre could be cleaned, per diem, at an expense for labor of 4 s . But they believed, by some alterations of the mechanism, and with expert workmen to attend it, double that quantity could be turned out in the day; while they expressed an opinion that, the cheapness of labor in Ireland, the working expenses might be considerably reduced. Taking their calculations as a basis, it would appear that the dried straw of a statute acre of flax, weighing about 34 cwt., after the seed had been taken off, would yield $14 \frac{1}{2} \mathrm{cwt}$. of dry fibre, estimated at a value of 20 s . per cwt., for the purposes of manufacture. Taking 2ls. as the probable value, the fibre would bring $£ 154 \mathrm{~s} .6 \mathrm{~d}$. ; and, calculating $£ 6$

Abstract

139. as the probable expense of preparation by the machine and of carriage to the English or Scotch market, there would remain a nett proceed of $£ 811 \mathrm{~s}$. 6d. ; and, adding the value of welve bushels of seed, at crushing price-say 3s. 6d.-there would be a total of $£ 1117 \mathrm{~s}$. 6 d . per statute acre against the cost of the cultivation, which would leave a very fair profit to the rower. Although, from the novelty of this mode of prepariug flax, and the absence of any exact data hitherto, the society was unable to rerify this calculation, the committee conceived themselves warranted in calling attention to the subject, and in advising those flax-growers in the southern districts who had been unable to convert their produce imto money, owing to the want of local facilities for steeping and scutching, to procure this machine, and prepare the fibre for sale in the dry state. At the sarne time it ras judged advisable to urge the establishment dscutch-mills, by which alone the fibre could te brought to its full value.

Peat charcoal-(From the Gardener's Chro-ricle).-The fertilising qualities of peat charcoal, even in its plain state, are very great; but when mixed with night-soil its good properties are of course much increased, and in the latter condition ${ }_{8}$ less quantity is required for an acre. Farmers diten fail in raising small seeds-turnips for insfance ; more especially in the south of England. The turnip-seeds are sown in poor hot soil, without any stimulent being immediately available; the seeds in consequence vegetate slowly, giving the fly time to eat the seed-leaf before the rough leaves have been produced. This can only take place in poor soils. On the other hand, marketgardeners never fail in obtaining excellent crops, horever hot the weather may be, a result owing enirely to their land being rich. This fact, therefore, should induce farmers to mix their small seeds with powiered peat charcoal before they sow them-all complaints of their failing then would cease. Everything ought to be done that can be done tostimulate young plants; they cannot grow too fast. Farmers, like gardeners, do not want to occupy the land six months with one crop, if the same can be grown in four. Charred peat might be used in many ways. It might be employed with advantage in cowhouses, piggeries, and in dung-heaps. When potatoes are planted, if charred peat is used instead of dung, the young crop will have none of those scabby appearances which always occur where dung is used in the furrow; and the latter offers a great harbour for all sorts of insects. Peat charcoal has been proved to be a perfect deodorizer, and mixed with this material, our fown filth might be carted to the country and made available at once. This is the more necescrary, as the hardness of the times will not allow the farmer to send his waggon and four horses, mith a man or two to fetch home a load of dung, much of the goodness of which has been washed and heated out of it. Formy own part, I have for
some years used nothing but liquid manurewater, salt, soot, and wood-ashes; but now I shall employ charred peat. All the plants I cultivate grow most luxuriantly in plain, as well as mixed with night-soil. To amateurs I am sure it will prove a boon, as it will do away with the filth and nuisance of dung.

Gastarpaint.-We have received the following as the proportion of gas tar and water to make paint:

$$
\begin{array}{lllll}
\text { Gas tar, } & \text {... } & \text {... } & \text {... } & \text { parts. } \\
\text { Ifater, }
\end{array}
$$

A few minutes after they have well boiled are fit for use. Pot this frequently, and keep boiling. A wheel-barrow, half full of sand, makes a good, portable fire-place, on which you may confine the fire with a few bricks, over which may stand the iron pot with gas tar and water.

It is essential to keep the mixture boiling whilst in use. The water acts mechanically; it never really mixes with the gas tar, and ultimately dries or evaporates, but enables a skin or surface to be obtained from the gas tar which is more lasting and more repellant of wet than plain gas tar.-Yours, \&c., A Subscriber. Rostrevor, Feb. 4, 1852.

THE WILLOW TREE.

BY ELIZA COOR.

Tree of the gloom o'erhanging the tomb; Thou seem'st to love the churchyard sod ; Thou ever art found on the charnel ground, Where the laughing and happy have rarely trod. When thy branches trail to the wintry gale, Thy wailing is sad to the hearts of men; When the word is bright in summer's light-
'Tis only the wretched that love thee then, The golden moth and the shining bee Will seldom rest on the Willow Tree.

The weeping maid comes under thy shade, Mourning her faithful lover dead;
She sings of his grave in the crystal wave, Of his sea-weed shroud and coral bed.
A chaplet she weaves of thy downy leaves, And twines it round her pallid brow;
She falls on her knees while she softly sighs,
"My love, my dearest, I come to thee now !" She sits and dreams of the moaning sea, While the night-winds creep through the Willow Tree.

The dying one will turn from the sun,
The dazzling flowers and luscious fruit, To set his mark in thy sombre bark, And find a couch at thy moss-clad root. He is fading away like the twilight ray, His cheek is pale, and his glance is dim; But thy drooping arms, with their pensive charms, Can yield a joy till the last for him; And the latest words on his lips shall be, "Oh, bury me under the Willow Tree!"

PROVINOIAL MUTUAL AND GENEral insurance company.

Office,-Church Street, Toronto.

INSURFS in its Metcal Branch, Farm Property and Detachol! Buildings,--ull extra hazardous Risks buring excluded.

The P'mornhetony Branch includes Fife Insurance generally, as well us Inland and Occan Marine Insurance and Life Insurance.

WILITAME EVANS. Jun., Agent for Montreal, "ill receive applicatinuss fur lusurance, in writing, nit dressed to him at his residente, Côte St. 'P. ul. ir left fur him at the harinate sture of J. IIenry Evans, Esq., St. P'aul street, Montreal.

AGRICULTURAL WAREHOUSE.

T
HE Subseriber has cunstantly on hand, Samples of various kinds of Aghicutural Impieanents, among which will be fiund, Ploughs. CultiFators. Seed Suners, Strav Cutters, Corn Shellers, Subsuil Pluughs. Vergetable Cutters, Thermumeter Chírns, Hurse Rakes, \&e. Sc. Expected by the opening of the Navigation, a large assortment of Cast Steel Sparles und Shovels, Cast Steel Hay and Mañure Forks, Hocs, \&c., \&e.
Agrent fur Sale of St. Onge's Fatent Stump Extractor.
P. S.-Any lind of Farming Implements furnished to order, on the must reas mable terms.

GEORGE HAGAR,
103, St. Paul Street

Montreal, 1st April, 1851.

IMPORTANT TO FARMERS.

THE Subscriber offiers for sale the following seeds:-
7,000 lhs. Dutch Red Clover,
1,000 do. French " "
3,000 do. Dutch White "
500 du. Shiromy 's Purple TopeSweedish Turnips,
500 do. East Luthian " " "
200 do. Laing's lmproved " "
The above varieties of Turnips warranted from Rape. 400 lhs . Mangle Wurzel,
100 do. Frimich Sugar Beet,
200 do. Aberdera Yellow Turnip,
20Q.do. White Glabe Turnip,
200 do. Belgim Whiee Field Carrot,
200 dlu. Attringhasor
$\ddot{\square}$
200 do. Liing Orange
100 do. " Surray "
The Carrot'Seed are' the growth of Canàda, from the Subscriber's Nursery Ground.

His usual supply of English and French Garden Seeds.

ヶ.. GEORGE SHERHERD.
Nursery and Seedsman to the Agricultural Society of Lower Canada.
March ist, 1852.

LOWER CANADA AGRICULTURAL SOCIETY,
Office and Library at No. 25 Notre Dame Street, Montreal,
Over the sted-store of Mr. Gearge Shepherd, the seeds.' man of this Society,
TIIE Secretary itul Truanure of the Suriety is in athemancer daily, from tell to mare neluels.
The Lithrary hats atreaty some of the leses worke." on Agreculture Alou, the Transacinons of the: Ilighlamd nul Rosal Irish Agrien tural Sucieties. the Lendom Former's Masazine, the Trambactions of: the New York State Agricultural Suciety, nud many. wher Eritish and American Ayricult..ral I'r. ri, dicals. which are tegulaly received. Tho Agricutural: Journal and Transactions of the Lower Cinada: Asticultural Sucit ty, buth in English and French are to be had at the office from the co manencement, in 1848, up to the present.
All communication in reference to the Agricultural Journals from the first of Jammery, instant, to be, adheresed prost paid to Wm. Frans, Enyl, Siatretary of the I. C. A. S. and Estitor of the Agriculturai Journals.

Members of the Lower Canula Agricultural Suciety are respectully ieguestod to pay up their anpaual subscriphious immediately.

Wm. EVANS,
Secretary and Treasurer, L. C. A. S. 1st January, 1852.
Cupios of Ex,uns' Treatise on Agriciltures. and the' θ supplementary volumes buth in English mad Frenich to be had at the uffice of the Surimy with counplete files of the fowere Camadia Auricultural Journal for? the years 1844, 1845 and 1846 .

MATTHEW MOUDY,

mangfactioner of

THRESHLNG MaCMLNES, REAPING MA. CHINES, STUMP ANI STONE EXTRAC. TORS, ROOT CUTTERS, REVOLVING AND CAST-STERL HOREFRMKES, PA: TENT CHURNs, WAGGONS, \&e. \&c. \&e.

Tinie Subscriber has been empliye winere 1846 inh manufacturing bis improved TIABESHING MACHINES, with Horse pawer: He was avarded the highest Prize nt the Turrelonine Coiniy Ex: hilition afier competition with many others. They have threshed and clennel, with 2 burser, from 100^{5} to 124 minots of Wheat per day, und from 200 to 250.4 of Oats, and have given universal satisfaction: He gruarantees all purchasers for any recourse by Paigo: \& Co., of Montreal, who allese having a patent forin th:ese machines, dated December, 1848! and warrantis them equal to any mude here or clsen here, for efficiency and durability.
One of his Reaping Maolines miny be seen at? Kerr's Inotel, St, Latwience Street, priee £2.j.
Having lately erected new and enlangel Warks for theabovearticles, he will execute prompily all orderis; in his line. "
Threshing Mills constantly on hiand: Two second: hand Mills, in warrantéd order, che: pifor cash.

Threshing Mills repaired, and finishiits work? dune:

Agency in, Montreal, at Lade's Foundry, Griffing town in St. Andrews, L. C. at MTr. Henry Lemplcy'
Montigiti-Trinted by Jonit Loveli, St Nitholm

[^0]: * Its princigel use we conceive to lic in the porver it possesses to dissolve those components of the soil that are not soluble in water, and thus to present them to the roots of plants in an appreciable furm.
 \dagger The expenditure in such manures as the latter twu is nut sufficiently great to show the effect we. describe: and even in the case of lime, when we know that the addition of 400 bu-hels per acre to a soil 12 inches deep will only add I per cent, the farmer may finid benefit for à very long time.

