IMAGE EVALUATION TEST TARGET (MT-3)

Photographic Sciences Corporation

CIHM/ICMH Microfiche Series.

CIHM/ICMH Collection de microfiches.

The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
 Couverture endommagée

Covers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)
Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents
Tight binding may cause shadows or distortion along interior margin/
La re liure serrée peut causer de l'ombre ou de le distortion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ II se peut que certaines pages blanches ajoutées lors d'une restauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-ètre uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci-dessous.Coloured pages/
Pages de couleur
Pages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquéesPages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impressionIncludes supplementery material/
Comprend du matériel supplémentaire

Only edition available/
Seule édition disponible
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/ Les pages totalement ou partiellement onscurcies par un feuillet d'errata, une pelure, etc., ont été filmées à nouveau de façon à obtenir la meilleure image possible.

Additional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/
Ce document est filmé au taux de réduction indiqué ci-dessous.

The last recorded frame on each microfiche shall contain the symbol \rightarrow (meaning "CONTINUED"), or the symbol ∇ (meaning "END"). whichever applies.

Maps, plates, charts, etc., may be filmed at different reduction ratios. Those too large to be entirely included in one exposure are filmed beginning in the upper left hand corner, left to right and top to bottom, as many frames as required. The following diagrams illustrate the method:

L'exemplaire filmé fut reproduit grâce à la génerosit' de:

La bibliothèque des Archives publiques du Canada

Les images suivantes ont été reproduites avec le plus grand soin, compte tenu de la condition et de la nettaté de l'exemplaire filmé, et en conformité avec les conditions du contrat de filmage.

Les exemplaires originaux dont la couverture en papier est imprimée sont filmés en commençant par le premier plat et en terminant soit par la dernierre page qui comporte une emprainte d'impression ou d'illustration, soit par le second plat, selon le cas. Tous les autres exemplaires originaux sont filmés en commençant par la première page qui comporte une empreinte d'impression ou d'illustration et en terminant par la dernière page qui comporte une telle empreinte.

Un des symbules suivants apparaîtra sur la dernière image de chaque microfiche, selon le cas: le symbole \rightarrow signifia "A SUIVRE", le symbole ∇ signifie "FIN".

Les cartes, planches, tableaux, etc., peuvent être filmés à des taux de réduction différents. Lorsque le document est trop grand pour être reproduit en un seul cliché, il est filmé a partir de l'angle supérieur gauche, de gauche à droite. et de haut en bes, en prenant le nombre d'images nécessaire. Les diagrammes suivants illustrent la méthode.

1. Arithmetic in Whole Numbers : the Rules of which are expressed in a clear, concise, and intelligible manner; and the operations illusrated by examples worked at length, and by numerous explanatory notes and observations; with an ample variety of examples for the exercise of Learners, calculated to initiate them in the Kinowledge of Real Eusiness. Also, the New Commercial Tables, adapted to the present Legislative Regulations of Weights end Measures, and the modern practice of Trade.
II. Vulgar Fractions; explained in an easy and familiar manner, in the practice of which the mostelegant and abbreviated modes of operatiun are peculiarly inculcated.
III. Derimat Fractians; ehocdated with the unnos perpiculy ; with Involution, Ecolution, Position, I'rogresion, and the calculation of Interest and Annuities, on an extended seate.
IV. Dudecimals; or the Multiplication of Fort and Inches; with numerous example's for practice, adapted to the various business of Artificers.
V. Mensuration of Superfiries; preceded by plain and conciso Geometrical Dofinitions.
VI. d Collection of Questions, promiscuously arranged; intended as recapitulatory exercises in tho principal Rules of Arithnetic.
VII. A conipeadions System of Dook-ktepitg.

BY FRANCIS WALKINGAME, Writing-Master and Accountant.

FROM THE FORTY-THIRD DERBY EDITION, Revised, Corrected, and enlarged by the addition of SUPERFICIAL MENSURATION, And A
COMPENDIUM OF BOOK-KEEPING BY SINGLE ENTRY, BY WILLIAM BIRKIN,
Editor of the Improved Edition of Jones' Dicrionary; Author of the Rational English Expositor, §c.

MONTREAL.
R. \& A. MILLER, No. 10, ST' FRANCOIS-XAVIER STRELET 1 ®52.

THE AUTHOR'S PREFACE.

Abstract

Tns public will, no doubt, be surprised to find there is in in tempt made to publish a book of ARITHMETIC, when there en .ech numbers already extant on the sane subject, and several of win have so lately made their appearance in the world; but I flatter myself that the following reasons, which induced me to compile it, the method and the conciseness of the Rules, which are laid down in so plain and familiar a manner, will have some weight towards its having a favour able reception. Having some time ago drawn up a set of Rules and proper Questions, with their Answers annexed, for the use of my own school. and divided them into several books, as well for more ease to myself as the readier improvement of my scholars, I found them, hy experience, of infinito use; for when a master takes upon him that laborious (though unnecessary) method of writing out the Rules and Questions in the children's books, he must either be wiling and slaving himself. after the fatigue of the school is over, to get ready the books for the next day, or else must lose that time which would be much better spent in' instructing and rpening the minds of his pupils. There was, however, still an inconvenience which prevented them from giving me the satisfaction I at first expected; that is, where there are several boys in a class. some one or other must wait till the boy who first has the book finishes the writing of those rules or questions he wants, which detains the others from making that progress they otherwise might, had they a proper book of Rules and Examples for each boy; to remedy which I was prompted to compile one, in order to have it printed, which might not oilly be of ase in my own school, but in other schoc $\%$, where the instructers wish their scholars to make a quick progress. ' \ddagger will also be of great use to such persons as have acquired some knowledge of numbers at school, to make them the more perfect; likewise, to such as have completed themselves therein, it will prove, after an impartia perusai, on account of its great variety and brevity, a most agreeable and entertaining Exercise Book. I shall not presume to say anything more in favour of this work, but beg leave to refer the unprejudiced reader to the remark of a certain Author,* concerning compositions of this nature. His words aue as follow:- "And now, after all, it is possible that some, who like best to tread the old beaten path, and to toil at their business when they may do it with plensure, inay start an oljection against the use of this well-inSended Assistant because the course of Arithmetic alwaye the same; and therefore say that some boys, lazily inclined, when they see another ar work upon the same question, will be apt to make his operation pas!

[^0]Sor their own. But these little formorios are soon detected hy the dirgence of the 'Tutor; harefine as diflerent guestions to diflirent lenys do not in the least promote the in inprownint. so ne ither do the sume questions imperde it. Nather is it in the power of amy mistor, (in the
 new examples at phasme in any Rulr; lmat the same questinn wili tiequenty weme in the smme Ralio, unt ithstanting his greatest care mud skill to the contrary.

 can be as little questinued wha makes a much groater progress by this than by the commen methoul."

To enter into a lons detail of exory Rale wonld tire the reader, and
 general diea of the method of proweding mad lave the rest to speak for itself, which, I hope, the reater will that to answer the tithe, mal the recommendition given it. As to the lintes, they follow in the samo mamer as the table of contents spucitios, and in much the same order as they are genemally tame in selonds. I have gone thromgh the four fundanental Rales in Intererss lises. befone those of seroral dememinations, in orter that, they being well maderstom, the latter will he performed with math more ease and devpath aceording to the rules shown, than by the constomary mothot of dottinge In Maltiplication I have shown beth the beanty and use of that exerillent Rule in resolving most Questions that derou in merehandisines: and have prefixed tu Reduction several Bills of Parels, which are aplicable to mal business: In working Interest by Devinuls 1 have added tables to the Rules, tior the more ready calculating of Ammities, Se.. and have not only shown the use, but the mothod of makine them: likewine a table calentated for find-
 by Multiplication and Addinon only, which miy aloo be applied to the calculation of Lucomes, salaries, of Wase, for ay mmbor of days; and I may venture to say, I hase embe hirongh the whole with so mach planness and perspionity, that there is mone better extant.

I have noting farther to ald bat a whan of my sinere thanks to all those gentlemen, schoohasters, and others, whese kime appobation and encouragement have mow extiblishad the we of this book in almost every school of eminene thomont 1 ne king!om, hit 1 think my gratitude more esperially due th thase whan haverd me with their remarks; thomoh I hust still bex of wery comelid and joticions reader, that if he should. lis chanco. time a mansweition of a lether, or a false
 in correcting, yot erots al the pres will inevitably crop in, and some may also have slipued my unservation; in cither of whic h cases the ad monition of a gool-matmed reader will be very acceptable to his

Much obliged and most obedient hmmbe servant,
F. WALKINGAME

CONTENTS.

P3ic
Adlition 46
Nubtraction 96
Multiplication 96
Division 97
14 Cirrulating Decimals 99
19 Reduction 101
Timbles 103
Rale of Three 106
29 Cochante …........ 107
Involution 110 110 112
Fivolution 112
Biquadate Root 119Division 44 Roots of all Powers
119
Single Position 120
4. Dontble l'osition 121
Progression Arithmetical 123
126
12653 simple Interest and Annuities
5.) Disconat 13j
138${ }^{61}$ Equation of Payments.Componad Interest and Ammi-

 69 69 69 69 69

 71 71 71 71 71

 72 72 72 72 72

 73 Geometrical Definitions 152
7.4 Menearation of a Parallelogram,76 \&c............................... 151
Alligntion 78
Comparison of Weights and
ties149
Discomnt 15i141Duodecimal.sMeasmres81
Permutation 82vulgar fractions.
Definitions, \&c80165
Reduction 84
Circle 167
Addlition 91
11, Inserihed square 163
Subtraction
Multiplication Curnhar Are 169
Division 92 析
Rale of Three 3 Sngments
94 Lllipse 171
Double Rule of Three 94 Collection of Questions 172
DECIMAL FRACTIONS. Supplemental Questions 173
Defivitions \&c 94Book-Keeping iod

KOPDANATION OF

ARJTGMLTICAI, sIGNS OR CHARACTERS

- is the sign of Andition; and is called plus, or more.
-- is called minas, or less, and denotes Subtraction.
x ——into, and denotes Mulimideation.
$\div-b y$ and denotes Division.
\Rightarrow is the sign of Equality.
: : : are the signs of Proportion.
\checkmark is the Radical Sim, or sign of Evolution.
of denotes the diflirence between two quantities when it is uncertain which is the greater.

HLIUSTRATIONS.
$6+3=9$ significs 6 phis 3 equal 9 : that is, 6 added to 3 equal 9 .
$7-4=3$ signifies 7 minus 4 equal 3 : that is, 4 taken from 7 leaves 3.
$4 \times 3=12$ is read 4 into 3 equal 12 : that is, 4 multiplied by 3 equal 1 ?
$12 \div 4=3$ is read $12 \ln 4$ gqual 3. But Division is more conreniently expressed in the form of a Fraction: thus, $12=3$; twelve divided by four equal three.
As 2:4::8:10; As 2 are to 4 , so are 8 to 16.
$\boldsymbol{v}^{\prime} 16=4$; the Square Rool of 16 equal 4.
${ }^{\bullet} \cdot \sqrt{ } 64=4$; the C'ube Root of 6.4 equal 4.
A vinculum connects two or more terms which are to be considered as forming one term or quantity: It is signified by a line drawn over them; or by parentheses including them.

A point is often used instead of the cross to denote Multi-

Arit cal c units
N_{1}
signi
and

TUTOR'S ASSISTANT,

BEING A COMPENDIUM OF

PRACTICAL ARITHMETIC.

Integcrs, or Whole Numbers.
Aritrmetic is the science of numbers; or the art of numeri. cal computation. A whole number is a unit, or a collection of innits.

Numbers are expressed by ten written characters called figures, or digits : viz. $1,2,3,4,5,5,7,8,9$, which 3 rg significant figures, all declaring their own values by the names; and the cipher, or naught (0) an insignificant figure, indicating no value when it stands alone.

NUMERATION AND NOTATION.

A figure standing alone, or the first on the reght of othere, Jenotes only its simple value, as so many units, or ones; the second is so many tens; the third, so many hundreds, \&c., in: creasing continually towards the left in a tenfold proportion.

Numeration is the art of reading numbers expressed in fig. ures ; and Notation, the art of expressing numbers by figures.

THE TABLE

Note．To read any Number．Divide it into periods of six figures each，begiming at the right hand：and each period into semi－periode with a different mark，for the sake of distinction．The first on the right hand is the C＇nils＇perionl，the second the Millions＇period，\＆c．Be－ ginning at the left，ohserve that the three fignes of every complete semi－ period must be reckoned as so na＂．hundreds，tems，amel units；join－ ing the word thousands when yon come to the middle of the period，and the proper name of the perion at the end of it．

2．To express any given．Namber in Figares．Begin at the left，and write the ligures which dmote（iss on many lundreds．tens，and unils．） the mumber in that semi－periot；and proceed thas with cach snecessive semi－perionl．till the whole is conploterl；phacing a separating comma In the middle of each period，or immoliately after the thomsants，and a semicolon between the period．But observe，that thongh every semi－ period but the first on the left mast have its complete number of three fig－ pres，that may be incomplete，and consist of only me or two fignres：also， where significant figures are not required in any put of a mmber，no semi－period must be oniticd，hut the phaces minst be filled up with ciphers．

Example．Write in figures，serenty thousand four hondred billions， fwo hundred and ten thonsand millions，and ninety－six．

First，write 70 （seventy）with a comma，hese being thonsands；ther 400 （four hundred）with a senicolon，denoting the end of the period； pext，write 210 （two hundred and ten）：mbl．becanse they are thousands， put a comma after them，and then 000 （three ciphers，there being no more millions）followed by a semicolon，to denote the completion of the period；again，put 000 （three more ciphers，denoting the absence of thousands）with a comma alter them，and then 096，（ninety－sir，） which will complete the number：thas， 70,$400 ; 210,000 ; 000,096$ ．

exercises in numeration and notation．

Read，or write in words the following numbers

＊（1） 3	（13） 721	（25） 500050005
（2） 30	（14） 906	（26） 1010100
（3） 33	（15） 4294	（27） 11110101
（4） 300	（16） 94294	（28） 499994949
（5） 303	（17） 294294	（29） 3584600987
（6） 330	（i8） 3703	（30） 584610070840
（7） 333	（19） 703703	（31） 5816100708100
（8） 127	（20） 311311	（32） 37613590200116
（9） 172	（21） 113113	（33） 5008000400000
（10） 217	（22） 131131131	（3．1） 601008000180070
（11） 271	（23） 708807780	（35） 37000000000075048
（12） 712	（24） 807078087	

[^1]
Express in figures the following numbers.

(1) Nine; ninety; ninety-nine; nine hundred; nite huts dred and nine; nine hundred and ninety ; nine hundred and ninety-nine.
(2) One hundred and eight.; one hundred and eighty; eight hundred aud one; eight hundred and ten; one hundred and sixteen; one hundred and sixy-one; six hundred and eleven.
(3) One hundred and twenty-threc ; one hundred and thirtytwo; two hundred and thirteen; two hundred and thirty-one \cdot three hundred and twelve; three hundred and twenty-one.
(4) Two thousand five hundred and seventy-two.
(5) Seventy-two thousand five hundred and seventy-two.
(6) Five hundred and seventy-two thousand five hundred and seventy-two.
(7) Ten thousand nine hundred and ten.
(8) Nine hundred and ten thousand nine hundred and ten
(9) One hundred and nine thousand nine hundred and one.
(10) Oue hundred and ninety thousand and ninety-one.
(11) Nine hundred and one thousand and nineteen.
(12) One hundred and fourteen millions, one hundred and forty-one thousand four hundred and eleven.
(13) Four hundred and six millions, six hundred and four thousand four hundred and sixty.
(14) Six hundred and forty millions, forty-six thousand and sixty-four.
(15) Seven millious, seventy thousand seven hundred.
(16) Seven hundred milions, seven thonsand and seventy.
(17) Ten millions, one thonsamil one humitred.
(18) One hundred and one millions, eleven thousand che hundred and ten.
(19) Twelve billions, saventeen thousand and nine millioas and eighty-nine.
(20) Seven thousand five hundred and four trillions, sixty thousand millions, eight hundred thoveand.

Romun Numert

I	1	One.	OT	6	Six.	XI	11	Fleven.
II	2	Two.	III	7	Sever	XII	12	Twenve.
III	3	Three	III	8	Eipht.	XII	13	Thirteer,
IV	4	Four.	X	9	Nine	XIV	14	Fourte
IV	5	Five	K	10	Ten	XV	15	Filts

$\bar{X} V I$	15	Sixteen.	CC 200	Two hundred.
XVII	17	Seventeen.	CCC 300	Three hundred.
XVIII	18	Eighteen.	CCCC 400	Four hundred.
XIX	19	Nineteen.	D 500	Five hundred.
XX	20	Twenty.	DC 600	Six hundred:
XXX	30	Thirty.	DCC 700	Seven hundred.
XL	40	Forty.	DCCC 800	Eight hundred.
1	50	Fifty.	DCCCC 900	Nine hundred.
LX	60	Sisty.	M 1000	One thousand.
LXX	70	Seventy.	MDCCCXXX	1830 One thciusand
LXXX	80	Eighty.		eight hundred and
XC	90	Ninety.		thirty.
C	100	One hundred.		

Note. A less numerical letter standing before a greater, must be taken from it, as I before V or X, and X before L or C, \&c., thus, IV. Four; IX. Nine; XL. Forty ; XC. Ninety, \&c. And a less numerical letter standing after a greater, is to be added to it, thus, VI. Six; XI. Eleven; LX. Sinty ; CX. One Hundred and Ten.

All operations in Arithmetic are comprised under four elementary or fundamental Rules: viz., Addition, Subtraction, Multiplication, end Division.

ADDITION

Teaches to find the sum of several numbers.
Role. Place the numbers one under another, so that units may stand under units, tens under tons, \&c.; add the units, set down the puite in their sum, end carry the tens as so many ones to the next row; proceed thus to the last row, under which set down the whole amount.

Proof. Begin ac the top and add the figures downwards: if the sum is found the same as before, it is presumed to be right.
*(1) 275
110
473
354
271
352
(2) 1234
7098
3314
6732
2546
6709
(3) 73245
37502
91474
32145
47258
21476
(4) 271048
325476
107584
625608
754087
27! 736

[^2](5) 590046 (6) 370416 (7) | 781943 | |
| ---: | ---: |
| 73921 | 2890 |
| 400080 | 60872 |
| 4987 | |
| 19874 | 998 |
| 201486 | 47523 |

(8) What is the sum of $43,401,9747,3464,2263,314$, 974?
(9) Add 246034, 298765, 47321, 58653, 64218, 3376, 9821 , and 640 together.
(1C) If A has $£ 56 . \mathrm{B} £ 104 . \mathrm{C} £ 274 . \mathrm{D} £ 1390$. E $£ 7003$. F £1500. and G £998.; how much is the whole amount of: their money?
(11) How many days are in the twelve calendar months?
(12.) Add 87929, 135594, 7964, 3621, 27123, 8345, 35921; $2374,64223,42354,3560$, and 152165 together.
(13) Add 6228, 27305, 7856, 287, 7664, 100, 1423, 25258, 028, 3135 , and 838.
(14) How many days are there in the first six months of the year; how many in the last six; and how many in the whole?
(15) In the year 1832, how many days from the Epiphany or 'Twelfth-day (Jan. 6th) to the last day of July?
(16) In the common year how many days from each Quar-ter-day to the next? That is, from Lady-day to Midsummer-day, from thence to Michaelmas-day, from thence to Christmas: day, and from Christmas-day to the ensuing Lady-day?
(17) When will the lease of a farm expire, which was granted in the year 1799, for ninety-nine years?
(18) A person deceased left his widow in possession of $€ 2500$. His eldest son inherited property of the value of £11340. T'o his two other sons he bequeathed a thousand pounds each more than to his daughter; whose portion exceeded the property left to her mother by $£ 500$. A ncphew and a niece had legacies of $£ 525$. each; a public charity £105.; and his four servants the same sum to be divided

[^3]amongst them. What was the aggregate amount of his proparty?
(19) Tell the name and signification of the sign put between the following numbers: and find what they are equal to, as the sign requires.
$$
1724+619+17+5400+12+909
$$
(20) Required the sim of forty-nine thousand and sixteen; four thousand eight hundred and forty ; eight millions, seven hundred and seven thousand one hundred; nine hundred and ninety-nine; and eleven thousand one hundred and ten.
(21) When will a person, born in 1819, attain the age of 45 ?
(22) Henry came of age 13 years before the birth of his cousin James. How old will Henry be when James is of age?
(23) Homer, the celebrated Greek poet, is supposed to have flourished 907. years previous to the commencement of the Christian era. Admitting this to be fact, how many years was it from Homer's time to the close of the 18th century; and how long to A. D. 1827 ?

SUBTRACTION

Teaches to take a less number from a greater, to find the remainder or Difference.

The number to be subtracted is the Subtrahend, and the other is called the Minuend.

Role. Having placed the Subtrinead under the Minuend, (in the same order as in Addition,) begin at the muts, and subtract each figure from that above it, setting down tie remainder underneath. But when the lower figure is the greater, borneo tin; which add to the upper, and then subtract: set down the remainder, and carry one to the next figure of the Subtrahend for the ten that was borrowed.

Proof. Add the Difference to the Subtrahend, and their sum will be the Minuend.

(10) From 123456789 subtract 98765432.
(11) From 31147680975 subtract 767380799.
(12) Subtract 641870035 from 1630054154.
(13) Required the difficence hetween 2.40914 and 24091
(14) How much does twenty-five thousand and four exceei sixteen thousand three hundred and ninety?
(15) If eighty-four thousand and forty-eight be deducted from half a miltion, what will remain?
(16) The amual inrome of Mr. Lemmington, senior, is twelve thousand five hundred and sixyy pounds. Mr. Lemmington, jumior, has an income of seven thousand eight hundred and eightcen pounds per annum. Llow much is the son's income less than his fither's?
(17) George the Fourth, at his accession to the throne, in 1820, was in the 58 th year of his age. In what year was he born, and how long had he reigned on the 29th of January, 1829, the anniversary of his accession?
(18) The sum of two numbers is 36570 , and one of them is twenty thousand and twelve: what is the other?
(19) 'Thomas has 115 marbles in two bags. In the green bag there are 68: how many are there in the other?
(20) 'Two brothers who were sailors in Admiral Lord Nelson's fleet, were born, the elder in 1767, and the younger in 1775 . What was the difference of their ages, and how old was each when they fonght in the battle of 'Trafalgar, in 1805 ?
(21) Henry Jeukins died in 3670 , at the age of 169 . How long prior to his death was the discovery of the continent of America by Columbus, in 1498 ?-Also, how many years have elapsed from his birth to 1827 ?

Example. From 32906.547 sultract 8010468.
39906547 Minnend. Say 8 from 7 I camot; borrow 10, and 7 are 8210468 Subtrahom. 17. 8 from 17, ! remain; set down 9 and carrs 24696079 Difference. 1.-1 mut 6 are 7.7 from 4 I cannot; borrow 32906.547 Proof. 10 and 4 are 14. 7 from 14. 7 ; set down 7 and cilly 1.-1 and 4 are 5. . from ., uothing ; set down (9) maght.-0 from 6,6 ; set down (6.-1 fron \cap I camnot; but 1 from 10, 9; set down! and camy 1. Browed in like mamer to the nud.

When the pupil is initiated in the pracijee by working an example or two, he may simplify the work by oniting to express some of the particulars. Thas, in the precoling example, it will be sumiocient merato to say, 8 from 17, 9; set down ! ant cary $1 ; 1$ and 6 are $7,7{ }^{5}$ 7; set down 7 and carry 1 . Sc.
(22) Borrowed at various times, $\mathcal{E 6 4 4 . , ~ £ 9 5 7 . , ~} \mathbf{E 9 0}$., $£ 1378$., and $£ 1293$.; and paid again the different sums of £763., £591., £1161., £1000., and $£ 847$.-What remains unpaid?
(23) Explain the name and signification of the sign used and work the two following examples.

$$
10874-9999 \quad 51170-50049
$$

(24) John is seventeen years younger than Thomas: how old will Thomas be when John is of age ; and how old wil! John be when Thomas is 50?

MULTIPLICATION

Teaches to repeat a given number as many times as there are units in another given number.

The number to be multiplied is called the Multiplicand; that by which we multiply is the Multiplier; and the number produced by multiplying is the Product.
Role. When the multiplier is not more than 10 multiply the units' figure of the multiplicand, set doven the units of the prodnct, reserving the tens; maltiply the next figure, to the product of which carry the dens reserved: pruceed thus till the whole is multiplied, and set down the last product in full."

MULTIPLICATION TABLE.

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	8	9	10	11	12
$\mathbf{2}$	$\mathbf{4}$	6	8	10	12	14	16	18	20	22	24
3	6	9	12	15	18	21	24	27	30	33	36
$\mathbf{4}$	8	12	16	20	24	28	32	36	40	44	48
$\mathbf{5}$	10	15	20	25	30	35	40	45	50	55	60
$\mathbf{6}$	12	18	24	30	36	42	48	54	60	66	72
$\mathbf{7}$	14	21	28	35	42	49	56	63	70	77	84
8	16	24	32	40	48	56	64	72	80	88	96
9	18	27	36	45	54	63	72	81	90	99	108
10	20	30	40	50	60	70	80	90	100	110	120
11	22	33	44	55	66	77	88	99	110	121	132
12	24	36	48	60	72	84	96	108	120	132	144

" Example. Multiply 713097 by 4.
Say 4 times 7 are 28 . set down 8 and carry $2 ; 4$ times
$713097 \quad 3$ are 36 and 9 are 38 . set down 8 and carry $3 ; 4$ tines
 dovn 5: 4 times 7 are 20, set lown 28.
(1) Multiply 25104736 by 2.
(7) Multiply 3725104 by 8 .
(2) Multiply 52471021 by 3.
(8) Multiply 4215466 by 9.
(3) Multiply 7925437521 by 4 .
(4) Multiply 27104107 by 5.
(5) Multiply 23104759 by 6.
(6) Multiply 7092516 by 7 .
(12) Multiply 780149326 by $3,4,5,6,7,8,9$, and 10.
(13) Multiply 123456789 by $4,5,6,7,8$, and 9.
(14) Multiply 987654321 by $9,10,11$, and 12.

When the multiplier is between 12 and 20 , multiply by the units' figure in the multiplier, adding to each product the last figure multiplied. \dagger
(15) 5710592×13.
(16) 5107252×14.
(17) 7653210×15.
(18) 2057165×16.
(19) 6251721×17.
(20) 9215324×18.

When the multiplier consists of several figures, multiply by each of them separately, observing to put the first figure of every product under that figure you multiply by. Add the several products together, and their sum will be the total product. \ddagger

Proof. Make the former multiplicand the multiplier, and the maltiplier the multiplicand; and if the work is right, the products of both operations will correspond. Otherwise. A presumptive or probable proof (not a positive one) may be obtained thms: Add together the figures in each factor, casting out or rejecting the nines in the sums as you proceed; set down the remainders on each side of a cross, multiply them together, and set down the excess above the nines in their product

[^4]at the top of the cross. Then cast out the nines from the product, and place the exepss below the cross. Il these two correspond, the work is probably right: if unt, it is certainly wrong.
(22) 271041071×5147.
(21) 170925161×7419.
(23) 62310047×1668.
(25) 9500985742×61879.
(こ6) $1701495868567 \times 4768706$.
When ciphers are mermixed with the significant figures in the multiplier, they may be omitted; but great care must be taken to place the first figure of the next product under the figure you multiply by.*

Ciphers on the right of the multiplicr or multiplicand (if omitted in the work) must be placed in the total product. \dagger

(27)	57120.1×27009.	(30)	1379500×3400.
(28)	7561240325×57002.	(31)	7271000×52600.
(29)	562710934×590030.	(32)	74837000×975000.

A number produced from multiplying two numbers together is called a compósite number; and the two numbers producing it are called the factors, or compönent parts. When the multiplier is a composite number, you may multiply by one of the factors; and that product multiplied by the other will give the total product. \ddagger

(33) 771039×35.	(37) 7984956×144.
(34) 921563×32.	(38) $8760472 \times 999 . \$$
(35) 715241×56.	(39) 7039654×9999.

(40) A boy can point 16000 pins in an hour. How many can five boys do in six days, supposing them to work 10 clea, hhours in a day?

Examples.		
- Multiply 31864 by 7008. 31864		$\ddagger \underset{63175}{\text { Multiply }} 63175$ by 45.
7008	Proof.	$5 \times 9=45$
$\overline{254912}$	\times	$\overline{315875}$
223048	4×6	9
223302912		$\overline{2842875}$
$\dagger_{63351}^{\text {Multiply }}$	350 by 5200 .	§ For an abridged method of
5200	Proof.	multiplying by a series of nines,
$\overline{12770}$	1	see the Key.
31925	4×7	
232020000	1	

(41) If a person walks upon an average 7 miles a day, how many miles will he travel in 42 years, reckoning 365 days to a year?
(42) Multiply the sum of 365,9081 , and 22048 , by the difference between 9081 and 22018.
(43) Required the continucd product or $112,45,17$, and 99. Nore. Multiply all the numbers one into another.

DIVISION

Teacnes to find how often one mumber is contained in another: or to divide a number into my equal parts required.

The number to be divided is called the Dividend; that by which we divide is the Divisor ; and the number obtained by dividing is the Quotient; which shows how many times the divisor is contained in the dividend. When it is not contained an exact number of times, there is a part of the dividend left, which is called the Remainder.

Rule. When the divisor is not more than 12, find how often it is contained in the first figure (or two figures) of the dividend; set down the quotient underncath, and carry the overplus (if any) to the next in the dividend, as so many tens; find how often the divisor is contained therein, set it down, and continue in the same mamer to the end.

When the divisor exceeds 12 , find the number of times it is contained in a sufficient part of the dividend, which may be called a dividual; place the quotient figure on the right, multiply the divisor by it, subtract the proluct from the dividual. and to the remainder bring down the next figure of the dividend, which will form a new dividual: proceed with this as before, and so on, till all the figures are brought down.

Froof. Multiply the divisor and quotient together, adding the remainder (if any) and the product will be the same aṣ the dividend.
(1) Divide 725107 by $2 .{ }^{*} \quad$ (2) Divide 7210472 by 3.

[^5](3) Divide 7210416 by
4. 1 (14) $7210473 \div 37 .{ }^{\oplus}$
(4) Divide 7203287 by
5. (15) $42749467 \div 347$.
(5) Divide 5231037 by
6. (16) $734097143 \div 5743 . \ddagger$
(6) Divide 2532701 by
(7) Divide 2547335 hy
7. (17) $1610478407 \div 54716$.
(8) Divide 2504730 6 Cl
8. (18) $4973401891 \div 510834$.
(9) Divide 70312645 by 10.
(10) Divide 12801763 by 11.
(11) Divide $79043: 260$ by 12.
(12) Divide 37000421 by 3 , 5,7 , and 9 .
(13) Divide 111111111 by 6 , 9, 11, and 12.
When the civisor is a compósite number, you may divide the dividend by one of the compōnent parts, and that quotient by the other; which will give the quotient required. But the true remuinder must be found by the following

Rule. Multiply the second remainder by the first divisor: to that product add the first remainder, which will give the true one.

$$
\begin{array}{l|l}
\text { (25) } 3210473 \div 27 . \delta & \text { (27) } 6251043 \div 42 . \\
\text { (26) } 7210473 \div 35 . & \text { (28) } 5761034 \div 54 .
\end{array}
$$

- Example. Divide 40855 by 29.

Dividend.
Divisor 29)40355(1403 Quotient.

29	29	
$\overline{118}$	$\overline{12672}$	
116	2316	
25.	23	Remainder.
23	$\overline{40855}$	Proof.
23		

+When the divisor is large, the quoticnt figures are most oasily found by tria's of the first figure (or two) in the leading figures of tho dividend.
\ddagger Ciphers at the right of the divisor may be cut off, and as many figures from the right of the dividend; but these must be annosed is the remainder at last.
\$ Example. Divide 314659 by 21.
$21=7 \times 3) 314659$

$$
\left.\frac{7) 104886-1}{14983-5}\right\}=5 \times 3+1=16 \mathrm{nem} .
$$

1081

A number may be divided by $10,100,1000$, \&c., by merels butting off one, two, three, \&c., figures on the right : the other ggures are the quotient, those cut ofl are the remainder.

Thus $76390 \div 10=7639 ; 238457 \div 10=23845$ and 7 rem.
And $4598653 \div 1000=4598$ and 653 rem.

(29) $65941089 \div 10$.	(31) $18043320 \div-10000$.

(30) $7208465 \div 100$.
(32) $7406572 \div 1200$.
(33) What is the difference between the 12th part of 107724, and the 23d part of 346610 ?
(34) If a ship bomed to Jamaica set sail from liverpool on the 25th of January, 1828, and arrived at that island on the 8th of March, what was the velocity of her stiling per day and per hour ; the distance being 4558 miles?

Note. This is the direct distance. The circuitous course of the ship would be considerably more.
(35) 'The period of Jupitor's revolution in his orbit round the sun, which is the year of that planet, is 4330 of our days. How many of our ycars, reckoning 365 days to the year, are equal to five years of Jupiter?
(36) I would plant 2072 clms in 14 rows, the trees in each row 17 fect asunder: what length will the grove be ?
(37) If a chest of oranges, 1292 in number, be distributed, one moiety among 19 boys, the other anong 17 girls: how many will fall to the share of each ?
(38) The circumference of the earth's orbit, or annual path round the sun, is about 596440000 miles. Supposing the year to be exactly $365 \frac{1}{4}$ days, or 8766 hours, how many miles in an hour, and how many in a minute, are we carried by this motion?
(39) Required the sum, the difference, the product, and the quotient, of 3679 and 283 : and also the quotient of the product divided by the sum.
(40) The sum of two numbers is 4290 ; the less number is 143: what is their difference, product, and quotient; and the quotient of the product divided by the diflerence?
(41) The product of a certain number multiplied by 694; when 320 are added, is equal to 500000 : what is that number?
(42) Allowing the earth to revolve on its axis in exactly 24 hours, and the circumference at the equator to be 24864 miles; at what rate per hour and per minute are the inhabitants of that part carried round by the revolution? Also, at what rate are the inhabitants of London carried round, the circumfererios in that latitude being 15480 miles?

STERLING MONEY.

4 farthings (qrs.) make 1 penny, d.
12 pence 1 shilling, s.
5 shillings 1 crown, cr.
20 shillings 1 pound, or sovereign, $£$.
$\frac{1}{4} d$. denotes a farthing, $\frac{1}{2} d$. a halfpenny, and $\frac{3}{4} d$. three farthings.

$$
\begin{aligned}
& \text { Qrs. } 4=1 \text { penny. } \\
& 48 \equiv 12=1 \text { shilling. } \\
& 240=60=5=1 \text { crown. } \\
& 960=240=20=4=1 \text { pound. } \\
& \text { onsolete cons. }
\end{aligned}
$$

A guinea (weight 5 duts. $9 \frac{1}{2} g r s$.) value $21 s$. A moidore, 27 s . A pistole, $17 s$. A mark, 13s. 4c. An angel, 10s. A noble, 6s. 8d. A tester, 6d. A groat, 4d.

Notes. Gold is considered the standard metal; and thero is no alteration in the new coin, either in fineness or weight, from that of former, coinages; 21 sovereigns being equal in weight to 20 guineas. 1869 sovereigns weigh exactly 40 ths troy. Λ sovereign is therefore a littlo more than $5 \mathrm{dwts} .3 \frac{1}{4} \mathrm{grs}$. ($5 \mathrm{dwts} .3274 \mathrm{grs}$.) and a half sovereign rather exceeds 2 dwts. $13 \frac{1}{2}$ grs. (2 durfs. $13 \cdot 637$ grs.) The new silver coin. is of the same fineness as that of former coinages; but 1 tt . of silver is now coined into $66 s$. instead of $62 s$. , as it was fomerly, so that one shilling now weighs 3 duts. $15 \frac{3}{1} \frac{1}{1}$ grs., and other silver pieces in proportion.

The mint value of gold is $\mathfrak{X} 3 . .17 .10 \frac{1}{2}$. per ounce, and of silver $5 s .6 d$.
The standard for gold coin is $\stackrel{2}{2}$ parts (commonly called carats) of fine gold, and 2 parts (or carats) of copper, melted together. For sib ver coin, $11 \mathrm{oz} . \underset{2}{2}$ duts. of fine silver, alloyed with 10 diwts. of copper.

MONEY TABLE.

4 are 1	$\left\lvert\, \begin{gathered} q-s . \\ 32 \\ 32 \end{gathered}\right.$	$\left.\begin{array}{ll} d . & s . \\ 36 & \text { are } \\ 3 \end{array} \right\rvert\,$	${ }_{20}^{4 .}$		
	$34 . \ldots 812$	43.	$30 . . .26$	170... 14	90... 410
			$40 \ldots 34$	180... 150	100... 50
	$33 \ldots 91$		50...4 2	$190 . . .1510$	110... 510
12			(00... 50	200...16 8	120... 6
	42...103		70... 510		$130 . . .610$
	44... 11	108... 9	$80 . . .68$	Shilling	$140 \ldots 70$
	$46 . .1112$	120...10	90... 76	s. \quad E. s.	150... 710
		132... 11	100... 84	20 are 10	160... 80
		12	110...9	$30 . \ldots 110$	170... 810
		156... 13	$120 . . .10$	40... 20	180... 90
	d. $\quad s$.	168... 14	130... 1010	$50 \ldots 210$	190... 910
	12 are 1	180... 15	140... 11	60... 30	200... 100
30...7 ${ }^{\text {d }}$	24... 2	192...16		$70 . . .310$	210. 1010

Note. When the units' figure is cut off from any number of shillings, half the remaining figures will be the pounds. Thus, 256s. $=$ £12. 16s. because half of $25=12$; and the one over prefixed to the θ, gives 16.

WEIGIITS AND MEASURES.

TROY WEIGHT.
24 grains (gr.) make 1 pennyweight, dut. 20 pennyweights 1 ounce . oz. 12 ounces . . 1 pound, . tb .
Grains. $\quad 24=1$ pennyweight.
$480=20=1$ ounce.
$5760=240=12=1$ pound.
Gold, silver, and gems, are weighed by this weiget

Grains. $20=1$ scruple.
$60=3=1$ dram.
$430=24=8=1$ ounce.

$$
5760=283=96=12=1 \text { poind }
$$

This is used only in the mixing of medicines.
These are the same grain, ounce, and pound, as those in Troy Weighes

AVOIRDUPOIS WEIGHT.

Drame. $16=1$ ounce.

$$
256=16=1 \text { pound }
$$

$$
3584=294=14=1 \text { stone }
$$

$$
7168=448=98=2=1 \text { quarter. }
$$

$$
28672=1792=112=3=4=1 \text { cwt. }
$$

$$
573440=35840=2240=160=80=20=1 \text { ton. }
$$

By this weight nearly all the common necessaries of life are weigbed. A truss of hay $=56 \mathrm{lb}$. and ono of straw $=36 \mathrm{~m}$. A load is 38 trusses. A peck loaf weighs 17 tb .6 oz .1 dr . In the metropolis, 8 to are a stone of meat. A fother of lead is $19 \frac{1}{2} \mathrm{cwt}$. In some districto; goods of various descriptions (as cheese, coal, \&c., are sold. by the lond owt. or 120 m.
wool.
When wool is purchased from the grower, the legal stone of 14 Ht . and the tod of 28 tb . are used. But in the dealings between woolstaplers and manufacturers,

15 pounds are . . 1 stone.
2 stones or 30 ts. $\quad 1$ tod. 8 tods, of 240 lb . . . 1 pack or sack.

COMPARISON OF WELGHTS.
A grain is the elementary or standard weight
1 ounce avoirdupois is . . $437 \frac{1}{2}$ grains.
1 ounce troy 480
1 pound troy 5760
1 pound avoirdupois . . 7000
175 pounds troy $=144$ pounds avoirdupois.
175 ounces troy $=192$ ounces avoirdupois.
We may, therefore, reduce lbs. Troy into Avoirdupois by multiplying them by 144 , and dividing by 175 , \mathbb{N}.

lineal, on long measure.

12 inches (in.) make
1 foot, ft
3 feet, or 36 inches
1 yard, . . . yd.
2 yards, or 6 feet 1 fathom, . . fa.
$5 \frac{1}{2}$ yards, or $16 \frac{1}{2}$ feet . . . 1 pole, rod, or perch, p.
4 poles, or 22 yards 1 land chain,* . ch.
40 poles, or 10 ch., or 220 yds. 1 furlong, . . fur.
8 furlongs, or 1760 yards . . 1 mile, . . . m.
3 miles 1 league, . . . l.
Barley-corns.

Norr. It is commony suppesed tnat tne English inch was original 15 taken from three grains of barley, seected irom the middle of tho ear and well dried.

A twelfth part of an inch is called a line.
4 inches are a hand, used in measuring the height of horses. 5 feet are a pace. A cubit $=1 \frac{1}{2}$ feet nearly.
This measure determines the length of lines. A line has the dimen ulon of length only, without breadth or thickness.

[^6]OR'd
stone deal.
plying
d.
p
h.
itr.
riginal
of the

5 feot
dimen'

CLOTH MEASURE.
$2 \frac{1}{4}$ inches (in.) make . . 1 nail, . . n.
4 nails, or 9 inches . . 1 quarter, . qr.
4 quarters 1 yard, . $y d$.
5 quarters 1 English ell, E. e.
A Flemish ell is 3 qrs. A French ell 6 qrs. Used for all drapery goods.

SUPERFICIAL, OR SQUARE MEASURE.

144 square inches (sq. in.) make 1 square foot, sq.ft.
9 square feet 1 square yard, sq. yd. $30 \frac{1}{4}$ sq. yards, or $272 \frac{1}{4}$ sq. feet 1 sq. rod, pole, or perch

Also, in the measure of land,
40 perches make 1 rood, . . r.
4 roods, or 4840 yards . . 1 acre, . . a.
10,000 square links 1 square cnain, sq. c.
10 sq. chains, or 100,000 links 1 acre, . . a.
640 acres 1 square mile, sq. m.
Inches. $144=1$ foot.

$$
1296=9=1 \text { yard }
$$

$$
39204=2724=304=1 \text { pole } .
$$

$$
1568160=10890=1210=40=1 \mathrm{rood}
$$

$$
6272640=43560=4840=160=4=1 \text { acre }
$$

Roofing, flooring, \&c., are commonly charged by the Square, contain ing 100 square feet.

By this measure is expressed the area of any superficies, or surface. A superficies has measuruble length and breadth.

CUBIC, OR SOLID MEASURE.

1728 cubic inches (in.) make . 1 cubic foot.
27 cubic feet 1 cubic yard.*
40 feet of round timber, or
50 feet of hewn timber $\}$
1 ton, or load.
42 feet 1 ton of shipping.
A cord of wood is 4 feet broad, 4 feet deep, and 8 feet long, being 128 cubic feet.
A stack of wood is 3 feet broad, 3 feet deep, and 12 feet long, being 108 cubic feet.
This determines the solid contents of bodies. A solid has three dimensions, length, breadth, and thickness.

[^7]
IMPERIAL MEASURE.

This is the standard now established by Act of Parliament, as a gensral measure of capacity for liquid and dry articles. 2 pints (pt.) make . . . 1 quart, qt.
4 quarts $. ~ . ~ . ~ . ~ . ~$
gallon, gal.
The imperial or standard gallon must contain 10 tts . Avoirdupois weight of pure water, at the temperature of 62° of Fahrenheit's thermometer. This quantity measures 2774* cubic inches; being about one-fifth greater than the old wine measure, one-thirty-second greater than the old dry measure, and one-sixtieth less than the old ale measure.

IN DRY MEASURE,
2 gallons (gal.) make . . 1 peck, pk. 4 pecks 1 bushel, b. 8 bushels 1 quarter, q r.
Corn to be stricken off the measure with a round stick, or roller.
Obsolete. A coom = 4 bushels; a chaldron $=4$ quarters; a wey $=$ 5 quaiters; a last $=2$ weys.

Solid inches. $\quad 2 \pi 7 \frac{1}{4}=1$ gallon.

$$
\begin{aligned}
& 554 \frac{1}{2}=2=1 \text { peck. } \\
& 2218=8=4=1 \text { bushel. } \\
& 17744= 64=32=8=1 \text { quarter. } \\
& \text { of coALs, }
\end{aligned}
$$

3 bushels make 1 sack.
12 sacks, or 36 bushels . 1 chaldron.
21 chaldrons 1 score.
All the measures used for heaped goods are to be of cylindrical form; the diamcter being at least double the depth. The height of the raised cone to be equal to three-fourths of the depth of the measure.

The old dry gallon contained $268 \frac{4}{5}$ cubic inches.
Note. The bushel, for measuring heaped goods, must be 17.81 inches in diameter, and 8.904 inches deep; or if made 18 inches in diameter, the depth will be 8.717 inches. The cone to be raised 6.6 inches in height.

In wine and spirit measure, the olu gallon contained 231 cubic inches.

63 gallons were . . . a hogshead, hhd.
2 hogsheads, or 126 gallons a pipe or butt.
4 hogsheads, or 252 gallons a tun.
More accurately, $277 \cdot 274$ cubic inches.

Some other denominations have been long obsolete; as, an anker (10 gallons;) a runlet (18 gallons;) a ticrce (42 gallons;) a puncheon (84 gallons.) But casks of most descriptions are generally charged according to the number of gallons contained.
Solid inches. $34 \frac{21}{3}=1$ pint.

$$
\begin{aligned}
& 699^{\frac{5}{1}} 2=1 \text { quart. } \\
& 277_{4}^{4}=8=1 \text { gallon. } \\
& 17466^{3}=504=252=63=1 \text { hogshead. } \\
& 34933 \frac{1}{2}=1008=504=126=2=1 \text { pipe. } \\
& 69867^{2}=2016=1009=252=4=2=1 \text { tun. }
\end{aligned}
$$

In ale, beer, or porter measure, the old gallon contain ed 282 cubic inches; and measures of the following denomi nations have been in use :-

A firkin, containing . . . 9 gallons.
A kilderkin 18 gallons.
A barrel 36 gallons.
A hogshead 54 gallons.
A butt 108 gallons.
Cubic inches

$$
\begin{aligned}
& 34 \frac{21}{3}=1 \text { pint. } \\
& 69^{\frac{5}{6}}=2=1 \text { quart. } \\
& 277 \frac{1}{5}=8=4=1 \text { gallon. } \\
& 2495 \frac{1}{4}=72=36=9=1 \text { firkin. } \\
& 4990 \frac{1}{2}=144=72=18=2=1 \text { kilderkin. } \\
& 9981=288=144=36=4=2=1 \text { barrel. } \\
& 14971 \frac{1}{2}=432=216=54=6=3=1 \frac{1}{2}=1 \text { hogsh'd. } \text {. } \\
& 29943=864=432=108=12=6=3=2=1 \text { butt. }
\end{aligned}
$$

*RULES FOR CHANGING OLD MEASURES TO IMPERTAL.
Ale Multiply by 60 , and divide by 59 ; or add $\frac{1}{59}$ part. (True' within $\frac{1}{10 \overline{0} 0}$ part of the whole.)

Or, multiply by 179 , and divide by 176. (True, within $\frac{\mathrm{I}}{10 \mathrm{D} \cdot 00}$ part.):
Dry. Multiply by $3:$, and divide by 33 ; or deduct $\frac{1}{33}$ part (Error, less than $\frac{1}{3} \frac{1}{\pi 0}$ part.)

Wine. Multiply by 5 , and divide by 6 , or deduct $\frac{1}{6}$ part. (Error, less than $\frac{1}{\square \sigma_{0}}$ part.)

Or, multiply by 624, and divide by 749. (Error, less than $\frac{10000}{}$ part.)
*rules for changing imperial to old measures.
Ale. Multiply by 59 , and divide by 60 , or deduct $\frac{1}{60}$ part.
Or, multiply by $1 \underset{7}{ } 6$, and divide by 179 .
Dry. Multiply by 33 , and divide by 32 , or add $\frac{1}{32}$ part. -That is, add one peck in every quarter, one quart in every buskel, or half a pint in every peck.

Wine. Multiply by 6 , and divide by 5 , or adid $\frac{1}{3}$ part.
Otherwise, multiply by 749, and divide by 624.

[^8]| 60 seconds (sec.) make | 1 minute, . \min |
| :---: | :---: |
| 60 minutes | 1 hour, . . $h r$. |
| 24 hours | 1 day,* . . d. |
| 7 days | 1 week, . . wk. |
| 52 weeks, 1 day, 6 hours, or $\}$ | |
| 365 days, 6 hours . . . | |
| 365 days, 5 hours, $48 \mathrm{~min} ., 51 \frac{1}{2}$ seconds | The Solar year. \dagger |
| 100 years | 1 century. |

Secouds. $60=1$ minute . $3600=60=1$ hour. $86400=1440=24=1$ day. $604800=10080=168=7=1$ week. $315.57600=525960=8766=365 d .6 h .=52 v .1 d .6 h .=1$ Julian year. $31556931=525948=8765=36.5$ d. $5 \mathrm{~h} .48 \mathrm{~m} .51 \mathrm{I}_{2}^{\prime \prime}=1$ Solar year.

The year is divided into 12 Calendar months; January, February, March, April, May, June, July, Augast, September, October, November, December.
The days are thirty in September,
In April, June, imd in November;
Twenty-eight in Febrnary alone,
And in each other thirty-one: But every leap-year we assign To February twenty-nine.
The leap-years are those which can be exactly divided by 4 ; as, 1824,1828 , \&c. Hence it appears that the year is accounted 365 days, for three years together ; and 366 days in the fourth: the average being $365 \frac{1}{4}$ days. (The Julian Year.)

Four weeks are frequently called a month; but in this sense it is better to avoid the term.

Note. In all questions in this book, where the proposed or required time consists of years, months, weeks, \&c., allow 4 weeks to a month, and 13 months to a year.

GEOMETRY.

$$
\begin{gathered}
60 \text { seconds (") make } \\
60 \text { minutes } \\
360 \text {. } \\
360 \text { degrees }
\end{gathered} . \quad . \quad . \quad . \quad 1 \text { minute,' } 1 \text { degree, o }
$$

Many highly important calculations in the mathematical sciences are founded on this division of the circle.

In Astronomy, the great circle of the ecliptic (or of the zodiac) is divided into 12 signs, each 30°.

[^9]In Geography, a degree of latitude, or of longitude on the equator, measures nearly $69_{\frac{1}{10}}$ British miles. But a minuto of a degree is called a geographical mile.

ARTICLES SOLD BY TALE.
12 articles of any kind, are 1 dozen.
12 dozen 1 gross.
12 gross 1 great gross.
20 articles
20 score.
2 quires

DEFINITIONS.

1. A number is called ábstract, when it is coasidered simply or without reference to any subject ; as seven, a thousand, \&c.
2. When a number is applied to denote so many of a particular subject, it is a concréte number; as seven pounds, a thousand yards, \&c.
3. A denomination is a name of any particular distinctive part of money, weight, or measure; as penny, pound, yard, \&c.
4. The association of a concrete number with its subject, forms a quantity.
5. A simple quantity has only one denomination; as seven pounds.
6. A compound quantity consists of more denominations than one; as seven pounds five slillings.

REDUCTION

Is the method of changing quantities of one denomination into another denomination, retaining the same value.

Rule. Consider how many of the less name make one of the greater; and multiply by that number to reduce the greater name to the less, or divide by it to reduce the less name to the greater.

Examples.
Reduce £8..8..6 $6 \frac{1}{2}$. into farthings.
The $£ 8$. being multiplied by 20 , and the 88 . added, make $168 s$.; these being multiplied by 12 , and the $6 d$. added, make $2022 d$. ; which being multiplied by 4 and the 2 farthings added, make in the whole 8090 farthings.
(1) In $£ 12$. how many shillings, pence, and farthings? Ans. 240s. 2880d. 11520 qrs.
(2) In 311520 farthings, how many pounds? Ans. £324..10.
(3) Change 21 guineas into farthings. Ans. 21168 qrs.
(4) In £17..5..3! . how many farthings? Ans. 16573 qrs.
(5) In $£ 25 . .14 . .1$. how many pence? Ans. 6169d.
(6) Reduce 17940 pence to crowns. Ans. 299 crowns.
(7) In 15 crowns, how many shillings and sixpences? Ans. 75 s. 150 sixpences.
(8) Change 57 half-crowns into threepences, pence, and farthings. Ans. 570 thrcepences, 1710d. 6840 farthings.
(9) How many half-crowns, and how many sixpences, are equivalent to $£ 25 . .17 . .6$. ? Ans. 207 half-cr. 1035 sixpences.
(10) Convert $£ 17 . .11$..9. into threepences. Ans 1407 threep.
(11) Change $£ 10 . .13 . .10 \frac{1}{2}$. into halfpence. Ans. 5133.
(12) In 52 crowns, as many half-crowns, shillings, and pence, how many farthings? Ans. 21424 far.
(13) Convert 17380 farthings into $£$. Ans. $\mathcal{L 1 8 . 2}$..1.
(14) In 21424 farthings, how many crowns, half-crowns shillings, and pence, of each an equal number? Ans. 52.
(15) Reduce 60 guineas to shillings, crowns, and pounds. Ans. 1260s. 252 crowns, $£ 63$.
(16) Reduce 76 moidores* into pounds. Ans. £102..12.
(17) How many shillings, half-crowns, and crowns, an equal number of each, are there in $£ 556$.?

Ans. 1308 of each, and $2 s$. over.
(18) In 1308 crowns, as many half-crowns, and as many shillings, how many pounds?

Ans. £555..18.
(19) Seven men bronght $£ 15 . .10$. each into the mint, to be exchanged for guineas; how many would they have?

Ans. 103 guineas and 7s. over.
(20) In 525 American dollars, at $4 s .6 d$. each, how many pounds sterling?

Ans. £118..2..6.
Converse to the preending Exampia.
In 8090 farthings, how miny pomuls?
4) 8090 qrs . Dividing the firthings by 4 , we oltain $2022 d$.
$12) \overline{2029} \frac{1}{2} d$. and 2 over, which are farthings, becanse the re-
$2 \mid 0 \overline{16 \mid} 8 s$. 6d d. mamber is a piot of the divideme. Divide 2022 by 12, and we obtain 163s. and (id. over: these
Ans. £8..8.. $6 \frac{1}{2}$. shillings divided by 20 , give $£ 88 \mathrm{~s}$., so that the answer is $\mathbf{£} 8.8 .6$. 6 i.

[^10]
WEIGHTS AND MEASURES.

troy weight.

(21) In 27 nunces of gold, how many grains? Ans. 12960.
(22) Reduce 3 lb .10 oz .7 dut. 5 gr . to grains? Ans. 22253.
(23) In 8 ingots of silver, each ingot weighing 7 lb .4 oz. 17 dwts. 15 gr . how many grains? Ans. 341304 gr .
(24) How many ingots weighing 7 lb .4 oz .17 dwts .15 gr. each are there in 341304 grains? Ans. 8 ingots.
apothecaries' weight.
(25) In 27 Hb .73 .23 .1 -. 2 gr. how many grains? Ans. 159022 grains.
(26) In a compound of 93.43 .1 . 9 . how many pills of 5 grains each?

Ans. 916 pills.
AVOIRDUPOIS WEIGHT.
(27) In 14769 ounces, how many cwt.?

Ans. 8 cwt. 0 qr. 27 lb .1 oz.
(28) In 34 tons, 17 cwt . 1 qr. 19 ll . how many pounds?

Ans. 78111 lb.
(29) In 9 cwt .2 qrs. 14 lb . of indigo, how many half stones, and how many pounds? Ans. 154 half stones, 1078 lb .
(30) How many stones and pounds are there in 27 hogsheads of tobacco, each weighing neat $8 \frac{3}{4}$ cwt. ?

Ans. 1890 stones, 26460 lb.
(31) Bought 32 bags of hops, each bag $2 c w t .1$ qr. $14 l b$. , and another of 150 lb ., how many $c w t$. are there in the whole? Ans. 77 cwt .1 qr. 10 lb.
(32) In 27 cwt . of raisins, how many parcels of 18 lb . each? Ans. 168.
CLOTH MEASURE.
(33) In 27 yards, how many nails?

Ans. 432.
(34) In 75 English ells, how many yards?

Ans. 93 yards, 3 qrs
(35) In 24 pieces, each containing 32 Flemish ells, how many English ells? Ans. 460 English ells, 4 qrs.
(36) In 17 pieces of cloth, each 27 Flemish ells, how many yards? Ans. 344 yards, 1 qr.
(37) In $911 \frac{1}{4}$ yards, how many English ells? Ans. 729.
(38) In 12 bales of cloth, each containing 25 pieces, of 15 English ells, how many yards? Ans. 5625.

LONG MEASURE.
(39) In $57 \frac{1}{2}$ miles, how many furlongs and poles?

Ans 460 furlongs, 18400 poles.
(40) In 7 miles, how many feet and inches?

Ans. 36960 feet, 443520 inches.
(41) In 722 leagues, how many yards? Ans. 380160 yaras.
(42) If the distance from London to Bawtry be accounted 150 miles, what is the number of leagues, and also the number oí yards, feet, and inches?
Ans. 50 leagues, 264000 yards, 792000 feet, 9504000 inches.
(43) How often will the wheel of a coach, that is 17 feet in circumference, turn in 100 miles? Ans. $31058 \frac{1}{1} \frac{4}{7}$ times round.
(44) How many barley-corns will reach round the globe, the circumference being 360 degrees, supposing that each degree were 69 miles and a half? Ans. 4755801600 Sce Table of Geometry, page 28.

LAND MEASURE.
(45) In $27 a .3 r$. $19 p$. how many perches? Ans. 4459.
(46) A person having a piece of ground, containing 37 acres, 1 perch, intends to dispose of 15 acres: how many perches will he have left? Ans. 3521 perches.
(47) There are 4 fields to be divided into shares of 75 perches each; the first field contains 5 acres; the second 4 acres, 2 perches; the third 7 acres, 3 roods; and the fourth 2 acres, 1 rood: how many shares will there be?

Ans. 40 shares, 42 perches rem.
(48) In a field of 9 acres and a half, how many gardens may be made, each containing 500 square yards?

Ans. 91, and 480 yards rem.
IMPERIAL MEASURE.
(49) In 10080 pints of port wine, how many tuns? Ans. 5 tuns.
(50) In 35 pipes of Madeira, how many gallons and pints? Ans. 4410 gals. 35280 pints.
(51) A gentleman ordered his butler to bottle off $\frac{2}{3}$ of a pipe of French wine into quarts, and the rest into pints. How many dozen of each had he? Ans. 28 dozen of each.
(52) In 46 barrels of beer, how many pints? Ans. 13248
(53) In 10 barrels of ale, how many gallons and quarts? Ans. 360 gals. 1440 qts.
(54) In 12480 pints of porier, how many kilderkins? Ans. 86 kil. 1 fir. 3 gals.
(55) In 108 barrels of ale, how many hogsheads? Ans. 72.
(56) In 120 quarters of corn, how many bushels, pecks, gallons, and quarts? Ans. 960 br .3840 pks .7680 gal .30720 qts.
(57) How many bushels are there in 970 pints?

$$
\text { Ans. } 15 \text { bu. } 1 \text { gal. } 2 \text { pts. }
$$

(58) In 1 score, 16 chaldrons of coals, how many sacks and bushels?

Ans. 444 sacks, 1332 bushels.

TIME.
(59) In 72015 hours, how many weeks?

Ans. 428 weeks, 4 days, 15 hours.
(60) How many days were there from the birth of Christ, to Christmas, 1794, estimating $365 \frac{1}{4}$ days to the year ?

Ans. $655258 \frac{1}{2}$ days.
(61) Stowe writes, that London was built 1108 years before our Saviour's birth. Find the number of hours to Christmas, 1794. Ans. 25438932 hours.
(62) From July 18th, 1799, to April 18th, 1826, how many days? Ans. $9770 \frac{1}{2}$ days, reckoning $365 \frac{1}{4}$ days to a year.
(63) In a lunar month, containing 29 days, 12 hours, 44 minutes, 2 seconds and eight-tenths, how many tenth parts of seconds?

Ans. 2551442 .
(64) How many seconds are there in 18 centuries, estimating the solar year at 365 days, 5 hours, 48 minutes, $51 \frac{1}{2}$ seconds?

Ans. 56802476700 seconds.

COMPOUND ADDITION

Teaches to find the sum of Compound Quantities.
Rule. Add the numbers of the least denomination: divide the sum by as many as make one of the next greater; set down the remainder (if any) and carry the "quotient to those of the next greater: proceed thus to the greatest deniomination, which add as in Simple Addition.
Proof. As in simple Addition.

Example.

£. \quad 8. $\quad d$.
15.. $7 . .41$
7..18.. 10 年
11..19.. 5
6..10..11\$
4.. O.. 91
45..17.. 4

Say 1, 2, 5, 7 farthings are 1 penny 3 farthings; set down $\frac{3}{4}$ and carry 'd.- $1,10,11$, $16,20,30,40 \mathrm{~d}$. are 3 s .4 d .; set down 4 d . and carry $3 s .-3,12,20,27,37,47,57 s$. are $£ 2$. 17 s .; set down 17 s . and carry $£ 2$. The rest as in Simple Addition.

In Addition of Money, the reduction of one denomination to the next greater is generally done without the trouble of dividing, by the knowledge previously acquired of the Money Tables.

B 2

MONEY.

$y d s$.
135
70
95
176
26
279

WEIGHTS AND MEASURES.

TROY WEIGHT.
(13) oz. diot. gr. 5114
(14)
lh. oz. dwt. gr.
$\begin{array}{llll}5 & 2 & 15 & 22\end{array}$
$\begin{array}{llll}3 & 11 & 17 & 14\end{array}$
$\begin{array}{llll}3 & 7 & 15 & 19\end{array}$
$\begin{array}{llll}9 & 1 & 13 & 21\end{array}$
$\begin{array}{llll}3 & 9 & 7 & 23\end{array}$

5	2	15	17

apothecaries' weight.

(15)	(16)		
7b. 3. 3. ${ }^{\text {B. }}$	3.		
$\begin{array}{lllll}17 & 10 & 7 & 1\end{array}$	2	1	
$\begin{array}{llll}9 & 5 & 2 & 2\end{array}$	1	7	
2711112	10	2	0
$\begin{array}{llll}9 & 5 & 6 & 1\end{array}$	5	7	1
$\begin{array}{llll}37 & 10 & 5 & 2\end{array}$	9	5	2
$\begin{array}{llll}49 & 0 & 7 & 0\end{array}$	1	4	1

d.
$1 \frac{1}{4}$
5
$7 \frac{3}{4}$
5
$3 \frac{1}{4}$
5
$1 \frac{1}{2}$
1
$7 \frac{1}{4}$
$3 \frac{1}{4}$
5
$3 \frac{1}{4}$

12)

d.
$5 \frac{1}{2}$
$10 \frac{1}{4}$
$0 \frac{1}{2}$
$10 \frac{1}{2}$
0
$1 \frac{3}{4}$

GHT.
16)
B. gr.

012
117
014
115
213
118

ASSIBTANT. 1 COMPOUND ADDITION.
AVOIRDUPOIS WEIGHTS.
(17) u. oz. dr.

1521515
2721410
3031511
$25510 \quad 4$
$\begin{array}{lll}173 & 6 & 2\end{array}$
$635 \quad 13 \quad 13$
(18)

cuot.	qrs.	$l b$.
25	1	17
72	3	26
54	1	16
24	1	16
17	0	19
55	2	16

$\begin{array}{lllll}\text { (19) } & \text { t. cwt. } & \text { qrs. } \\ 7 & 17 & 2 & 12\end{array}$
$\begin{array}{llll}5 & 5 & 3 & 14\end{array}$
$\begin{array}{llll}2 & 4 & 1 & 17\end{array}$
$\begin{array}{lll}3 & 18 & 219\end{array}$
$\begin{array}{llll}7 & 9 & 3 & 20\end{array}$
$8 \quad 5 \quad 124$

LONG MEASURE.

(20)	$y d s$.	ft.	in.	(21) lea.	m.	fur. po.
	225	1	9		72	2
	1	19				

$\begin{array}{llll}27 & 1 & 7 & 22\end{array}$
$\begin{array}{llll}35 & 2 & 5 & 31\end{array}$
$\begin{array}{llll}79 & 0 & 6 & 12\end{array}$
$\begin{array}{llll}51 & 1 & 6 & 17\end{array}$

| $72 \quad 0 \quad 5 \quad 21$ |
| :--- | :--- | :--- | :--- |

cloth measure.

(23)				(24)		
yds.	qrs.	E.	E. e.	qrs.	n.	
135	3	3	272	2	1	
70	2	2	152	1	2	
95	3	0	79	0	1	
$\mathbf{1 7 6}$	1	3	156	2	0	
26	0	1	79	3	1	
279	2	1	154	2	1	

IMPERIAL MEASURE.

land measure.

(35) A, B, C, and D, were partners in the purchase of a quantity of goods: A laid out $\mathfrak{E} 7$. half-a-guinea, and a crown ; $\mathrm{B}, 49 \mathrm{~s} . \mathrm{C}, 54 s .6 d$ and D, 87 d . What was the purchase?

Ans. £13..6..3.
(36) A man lent his friend at different times these several sums, viz. $£ 63$.-£25..15.-£32..7.-£15..14..10. and four score and nineteen pounds, half-a-guinea, and a shilling. How much was the whole loan?

Ans. £236..8..4.
(37) Bought goods, for which I paid $£ 54 . .17$; for packing 13 s .8 d .; carriago £1..5..4; and expenses over making the bargain 14s. $3 d$ d. What was the whole cost ? Ans. £57..10.. 3
(38) A nobleman, previous to quitting town, wished to discharge his tradesmen's bills. On inquiry he found that he owed 82 guineas for rent;-to his wine-merchant, $£ 72 . .5$;to his confectioner, £12..13..4;-to his draper, £47..13.. ;to his tailor, $£ 110 . .15 . .6$;-to his coach-maker, $£ 157 . .8$;-to his tallow-chandler, $£ 8 . .17 . .9$;-to his corn-factor, $£ 170 . .6 . .8$; -to his brewer, $£ 52 . .17 . .0$;-to his butcher, $£ 122 . .11 . .5$;to his baker, f.37..9..5;-and to his servants for wages, $£ 53 . .18$. What money must he draw from his banker, inoluding $£ 100$. that he wished to take with him?

Ans. £1032..17..3.
(39) A father was 24 years of age (allowing 13 months to a year, and 28 days to a month) at the birth of his first child between the eldest and next born was 1 year, 11 months, and 14 days; between the second and third were 2 years, 1 month, and 15 days; between the third and fourth, 2 years, 10 months, and 25 days. When the fourth was 27 years, 9 months, and 12 days old, what age was the father?

Ans. 58 years. 7 months, 10 days.
(40) A clerk having been out collecting debts, presented an account that A paid him $£ 7 . .5 .2$;-B $£ 15 . .18 . .6 \frac{1}{2}$;C $£ 150 . .13 . .2 \downarrow$;-D $£ 17 . .6 . .8 ;-$ F 5 guineas, 2 crown pieces.

4 ha
G whol

4 half-crowns and $4 s .2 d$. ;-F paid him only twenty groats ;G $£ 76 . .15 . .9 \frac{1}{2} ;$-and $\mathrm{H} £ 121 . .12 . .4$. How much was the whole amount? Ans. £396..7..61 $\frac{1}{4}$.
(41) A nobleman had a service of plate, which consisted of twenty dishes, weighing 203 oz .8 dwts.; 36 plates, 408 oz . ζ dwts.; 5 dozen spoons, 112 oz. 8 dwts.; 6 salts, and 6 pepper-hoxes, 71 oz .7 duts.; knives and forks, 73 oz .5 dwts .; two large cups, a tankard, and a mug, 121 oz .4 dwts.; a teaurn and lamp, 131 oz .7 duts.; with sundry other small artrcles, weighing 105 oz. 5 dwts. The weight of the whole is required.

Ans. 102 lb .2 oz .13 duts.
(42) A hop-merchant buys 5 bags of hops, of which the first weighed 2 cut. 3 qrs. 13 lh .; the second, 2 cwt .2 qrs. 11 lb. ; the third, 2 cwt .3 qrs. 5 lb .; the fourth, 2 cwt .3 grs. $12 l b$.; the fifth, 2 cwt .3 qrs .15 lb . He purchased aiso two pockets, each pocket weighing 84 lb . I desire to know the weight of the whole. Ans. 15 cwt. 2 qrs.

COMPOUND SUBTRACTION

Teaches to find the difference of Compound Quantities.
Rule. Subtract as in integers: but borrow (when there is occasion) as many as are equal to one of the next greater denomination: observing to carry one to the next for that which was borrowed.*

Proor. As in Simple Subtraction.
MONEY.

[^11]

$y d s$.
107
78
$y d s$.
71
3
-
a.

175
(41 it, 14 ceed t
(42 in cas he cle he the
(43
APOTHECARIES' WEIGHT.
(20) (21)

| th. | 3. | 3. | Э. | gr |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | 7 | 2 | 1 | 15 |
| 5 | 7 | 3 | 1 | 18 |
| | | | | |

(22) $l b$. ox. $d r$. $3510 \quad 5$
$2912 \quad 7$
(19)

lb. oz. dut. gr. $\begin{array}{llll}7 & 2 & 2 & 7 \\ 5 & 7 & 1 & 5\end{array}$
it. 3. 3. 3
avoirdupois weight.

(14)

s. d.

 00 $1911 \frac{5}{4}$(15)

s. d.

120
136

s.	d.
0	0
0	0
0	0
5	9
7	$4 \frac{1}{2}$

IGHT.
qrs. lb.
assistant.]

TIME.

(40) When an estate of $£ 300$. per annum is reduced by the payment of taxes to 12 score and $£ 14 . .6$. what are the taxes? Ans. £45..14.
(41) A horse with his furniture is worth $£ 37 . .5$; without it, 14 guineas; how much does the price of the furniture exceed that of the horse? Ans. £7..17.
(42) A merchant commencing trade, owed $£ 750$; he had in cash, commodities, the stocks, and good debts, $£ 12510 . .7$; he cleared the first year by commerce $£ 452 . .3 . .6$. What was he then worth? Ans. £12212..10..6.
(43) A gentleman left $£ 45247$. to his two daughters, of

[^12]which the younger was to have 15 thousand, 15 hundred, and twice $£ 15$. What was the elder sister's fortune?

Ans. £28717.
(44) A tradesman being insolvent, called all his creditors together, and found he owed to A $£ 53 . .7 . .6$;-to B $£ 105 . .10$, -to C $£ 34 . .5 . .2 ;-$ to $\mathrm{D} £ 28 . .16 . .5$;-to $\mathrm{E} £ 14 . .15 . .8$;-to

between us? Ans. Due to the agent £28..14..4.

(46) The great bell at Oxford, the heaviest in England, is stated to weigh 7 tons, 11 cwt .3 qrs. 4 lbs ., that of St. Paul's, in London, 5 tons, 2 cut. 1 qr .22 lbs ., and that of Lincoln, called the Great Tom, 4 tons, 16 cwt. 3 qrs. 16 lbs. How much is the aggregate weight of these three bells inferior to that of the great bell at Moscow, which is 198 tons?

Ans. 180 tons, 8 cwt. 3 qrs. 14 lbs.

COMPOUND MULTIPLICATION

Is the method of multiplying Compound Quantuties.
Rule. Multiply the least denomination; reduce the product und carry to the next, as directed in Compound Addition; and the same with the rest.

When the multiplier is a composite number above 12 , multiply (as before directed) by its compōnent parts. For other numbers, multiply by the factors of the nearest comprsite; adding to the last product, so many times the top line as will supply the deficiency ; or subtracting so many times, if there is an excess.
[TUTOR's
ndred, and
£28717. creditors C105..10, $5 . .8$;-to his stock lebts was Iow much cffects? 11..10. he followoods sent stockings 14..8; tin at he has .. 15 ; íruit nish wool, e account B..14..4. ngland, is St. Paul's, f Lincoln, bs. How inferior to s?
14 lbs. For other ompusite ; e as will , if there

MONEY.

\pm	s.	d.	s.	d.	f. s. d.
(13) 0	9	6×18.1	(16) 15	$3 \frac{1}{2} \times 35$.	(19) 153×97.
(14) 1	2	$6 \times 26 . \ddagger$	(17) 7	$2 \frac{3}{4} \times 75$.	(20) 064×43.
(15) 0	7	$8 \frac{1}{2} \times 21$.	(18) 9	7×37.	

(21) What is the value of 127 Ht . of souchong tea, at 12 s . $3 d$. per th.?

Ans. £77..15..9.
(22) $13 \overline{5}$ stones of soap, at $7 s .5 d$. per stone? Ans. $£ 50 . .1 . .3$.
(23) 74 ells of diaper, at $1 s .4 \frac{1}{2} d$. per ell? Ans. £5..1..9.
(24) 6 doz. pairs of gloves, at 1 s . 10 d . per pair? Ans. £6..12.

Note. When the fraction $\frac{1}{4} \frac{1}{2}$, or $\frac{3}{4}$ is connected with the multiplier, take half the given price (or the price of one) for $\frac{1}{2}$, half of that for $\frac{4}{4}$, and for $\frac{8}{4}$, add them both together. \oint

* In this example, say twice 3 are 6, 6 farthings are $1 \frac{1}{2} d$. set down $\frac{1}{2} d$. and carry 1 ; twice 7 are 14 and 1 are $15,15 d$. are 1 s . $3 d$. set down 3 d . and carry 1 ; twice 12 are 24 and 1 are $25,25 \mathrm{~s}$. are $£ 1 . .5$. set down 5s. and carry 1; twice 5 are 10 and 1 are 11, set down 1 and carry 1 ; twice 3 are 6 and 1 are 7, set down 7 .

$\begin{aligned} s . & d . \\ +9 . . & 6 \\ & 2 \times 9=18 \end{aligned}$	$\begin{aligned} & \text { f. s. } \\ & \ddagger \text { 1.. } \\ & \text { 1.. } \\ & \hline \end{aligned}$
$\overline{19.0} 0$	$\overline{9 . .0 . .0}$
3	3
$\overline{\text { E8..11.. } 0}$ Ans.	$27 . .0 . .0$
	Multiplicand $\times 2=2 . .5$ 5.. 0
\oint Example.	¢¢9.. 5.. 0 Ans
What is the value of 11 lbs. of tea, at 10 s .9 d .	s. ${ }^{\text {d }}$. $\frac{1}{2} \times 10 . .9$
per 16.3	11
	$\overline{\text { E5..18.. } 3}=$ the value of 11.
	$\frac{1}{2} \times 5 . .4 \frac{1}{2}=$.. do. 4 .
	2.. $84=$.. do. ${ }^{\text {d }}$
	E6.. 6.. 33 Ans.

(25) What is the value of $25 \frac{1}{2}$ ells of Holland, at 3 s. $4 \frac{1}{2} d$
(32) $17 \frac{3}{4}$ yards of superfine scarlet cloth, at $£ 1 . .3 . .6$. per yard? Ans. £20..17..1 1 .
(33) $37 \frac{1}{2} \mathrm{lb}$. of hyson tea, at $12 s .4 \mathrm{~d}$. per lb .? Ans. £23..2.. 6
(34) $56 \frac{3}{4} \mathrm{cwt}$. of molasses, at $£ 2 . .18 .7$. per cwt .?

Ans. £166..4..74
(35) $87 \frac{3}{4} \mathrm{Hb}$. of Turkey coffee, at $4 s .3 d$. per lb. ?

Ans. £18..12..11 $\frac{1}{4}$.
(36) $120 \frac{3}{4}$ cwt. of hops, at $£ 4 . .7 . .6$. per cwt. ?

Ans. £528..5..71
When the multiplier is large, multiply the given quantity (or price) by a series of tens, to find $10,100,1000$ times, \&c., as far as to the value of the highest place of the multiplier; multiply the last product by the figure in that place, and each preceding product by the figure of corresponding value ; that is, the product for 100 by the number of hundreds, the product for 10 by the number of tens, and the original quantuty by the units' figure, $\& \cdot c$. The sum of the products thus obtained will be the total product.*

- Example. Multiply $£ 7 . .14 . .9 \frac{1}{2}$. by 3645.

	$\begin{aligned} & \text { f. s. } \quad d . \\ & \text { 7..14.. } 9 \frac{1.2}{} \times 5= \\ & 10 \end{aligned}$	$\begin{aligned} & \text { f. s. } \quad \text { d. } \\ & 38 . .13 . .11 \frac{1}{2}= \end{aligned}$	$\begin{gathered} \text { times } \\ 5 \end{gathered}$
The product for 10	$77 . .7 .11 \times 4=$	309..11.. $8=$	40
The product for 100	$\overline{773 . .19 . .2} 10 \times 6=$	$4643 . .15 . .0=$	600
The product for 1000	7739..11.. $8 \times 3=$	18..15.. 0	3000
	Ans.	210.15.. $7 \frac{1}{2}=$	3645

[TUTOR's
at $3 s .4 \frac{1}{2} d$
$4 . .6 .0 \frac{3}{4}$.
..14..4 $\frac{1}{2}$.
$€ 4.2 . .10 \frac{1}{2}$.
9..10. 3.
t. ?
5..15..3.
3..5.. $7 \frac{1}{2}$.
8..12..5.
1..3..6. per
..17.. $1 \frac{1}{2}$.
£23..2.. 6
t. ?
6..4..7 7 .
?
.12..114.
8..5..71
on quantity times, \&c., plier; mul, and each value; that he product tuty by the tained will

times.

ASSISTANT.] COMPOUND MULTIPLICATION.
(37) 407 lb . of gall-nuts, at $3 s .9 \frac{1}{2} d$. per ib .?

$$
\text { Ans. £77..3.. } 2 \frac{1}{2}
$$

(38) 729 stones of beef, at $7 s .7 \frac{1}{4} d$. per stone?

Ans. £277..3..54.
(39) 2068 yards of lace, at $9 \varepsilon .5 \frac{1}{2} d$. per yard?

Ans. S977..19. 10.
(40) What is the produce of a toll-gate in the course of the year if the tolls amount, on an average, to $11 s$. $7 \frac{1}{2} l l$. per day ? Ans. $\mathcal{L} 212 . .3 .1 \frac{1}{2}$.
(41) How much moncy must be equally divided among 18 men, to give each $£ 14 . .6 . .8 \frac{1}{2}$? Ans. £258..0..9.
(42) A privateer manued with 250 sailors captured a prize of which each man shared $£ 125$..15..6. What was the value of the prize? Ans. £31443..15.
(43) What sum did a gentleman reccive as a dower with his wife, whose fortune was a cabinet with two divisions, in each division 87 drawers, and each drawer containing 21 guincas?

Ans. £3836..14.
(44) A merchant began trade with $£ 19118$; for 5 years together he cleared $£ 1086$. a year ; and the next 4 years $£^{2} 2715 . .10 . .6$. a year ; but the last 3 years he was in trade he had the misfortune to lose, upon an average, £475..4..6. a year. What was his real fortune at the end of the 12 years?

$$
\text { Ans. £33984..8.. } 6 \text {. }
$$

(45) In many parts of the kingdom coals are weighed in the wagon or eart upon a machine, constructed for the purpose. If 3 of these draughts amounted together to 137 cwt. 2 qrs. 10 lb. ; and the tare, or weight of the wagon, was 13 cwt . 1 qr.; how many coals had the customer in 12 such draughts? Ans. 391 cwt. 1 qr. $\$ 2 l b$.
(46) A certain gentleman lays up every year £294..12..6. and spends daily $£ 1 . .12 . .6$. What is his annual income?

Ans. £887..15.

WEIGH'S'S AND MEASURES.

(47) Multiply 9 ll .10 oz .15 dwts .19 gr . by 9,11 , and 12
(48) Multiply 23 tons, 9 cut. 3 qrs. 18 lb . by 7, 8, and 9.
(49) Multiply 107 yards, 3 qrs. 2 nails, by 10, 17, and 29.
(50) Multiply 33 bar. 2 fir. 3 gal . by 11 , and 12.
(51) Multiply 110 miles, 6 fur. 26 poles, by 12, 13, and 39.
(52) A lunar month contains 29 days, 12 hours, 44 min . 3 seconds nearly. What time is containcd in 13 lunar months?

COMPOUND DIVISION

Teaches to find any required part of a Compound Quantify
Rule. Divide the greatest denomination; reduce the remainder to the next less, to which add the next; divide that, and proceed as be fore to the end.

When the divisor is above 12 , the work must be done at length :'mn less it is a compositc number, for which observe the directions in Simple Divis:on.

Proof by Multiplication.

MONEY.

* (1)		(2)	(3)		(4)		
$\begin{array}{r} \text { £. } \\ 2)(25 \end{array}$	$\begin{array}{cc} s . & d . \\ 2 & 4 \end{array}$	$\begin{array}{\|rrr} & \text { f. } & s . \\ 3) & d . \\ 37 & 7 & 7 \end{array}$	$\begin{array}{r} \text { 4. } \\ \hline 17 \end{array}$	$\begin{array}{ccc} s . & d . \\ 5 & 7 \end{array}$	$\begin{array}{r} \mathbf{x} . \\ 5 \longdiv { 5 2 } \end{array}$		
	£. s.	d.		£.	d.		
(5)	7810	$9 \frac{1}{2} \div 6$	(9)	87	40		
(6)	2519	$7 \frac{3}{4} \div 7$.	(10)	68	00		
(7)	1614	$1 \frac{1}{2} \div 8$.	(11)	49	47	by	
(8)	12415	$2 \frac{1}{2} \div 9$.	(12)	496	86	by	
(13)	$66 \quad 6$	$6 \frac{3}{4} \div 25$.	(16)	248			
(14)	59612	$7 \frac{1}{4} \div 36$	(17)	928	2	by	
(15)	$564 \quad 4$	$6 \div 63$	(18)	608	39	by	144

(19) Divide £1407..17..7. by 243.
(20) Divide $£ 700791$.14..4. by 1794.
(21) Divide $£ 490981 . .3 .7 \frac{1}{2}$. by 31715.
(22) Divide $£ 19743052 . .5 . .7 \frac{1}{2}$. by 214723.
(26)

1 buy it
(27)
nogshe (28)
price p (29)
price of
(30)

500 sail
(31)
ticket What money
(32)
his yea
£266..
(34)
pric" p
(35)
(36)
(40)
minutes.
the thi them a
ferenc both?
will m
(4)
half a

Quantity
remainder to occed aa be
length : : $:$ an ons in Simplo
(4)
s. d.

70
by 10 .
by 11 .
by 12.
by 12.
by 99 .
by 110 by 144 .
what is that $8 . .6 \frac{1}{4} \frac{8}{12}$.
£57..3..7. $.12 . .8 \frac{1}{3} \frac{2}{5}$. cloth, what ...2..117.
(26) If 20 cwt . of tobacco cost $£ 27 . .5 . .4 \frac{1}{2}$; at what rate did 1 buy it per cwt.? Ans. £1..7..3 $\frac{1}{2} \frac{2}{0}$.
(27) What is the value of one hogshead of beer, when 120 nogsheads are sold for $£ 154 . .17 . .10$? Ans. $£ 1 . .5 . .9 \frac{3}{4} \frac{16}{120}$.
(28) Bought 72 yards of cloth for $£ 85 . .6$. What was the price per yard? Ans. $£ 1 . .3 . .8 \frac{1}{4} \frac{24}{7}$.
(29) Gave £275.3..4. for 18 bales of cloth. What is the price of one bale ? Ans. $£ 15 . .5 . .8 \frac{3}{4} \frac{1}{4} \frac{0}{8}$.
(30) A prize of $£ 7257 . .3 . .6$. is to be equally divided among 500 sailors. What is each man's share? Ans. $£ 14 . .10 . .3 \frac{1}{4} \frac{3}{5} \frac{8}{0} \frac{9}{0}$
(31) A club of 25 persons joined to purchase a lottery ticket of $£ 10$. value, which was drawn a prize of $£ 4000$, What was each man's contribution, and his share of the prizemoney? Ans. Each contribution 8 s. and share of prize $£ 160$.
(32) A tradesman cleared $£ 2805$. in $7 \frac{1}{2}$ years. What was his yearly profit? Ans. $£ 374$.
(33) What was the weekly salary of a clerk who received £266..18..1 $\frac{1}{2}$. for 90 weeks ?

Ans. £2..19..34.
(34) If 100000 quills cost me $£ 187 . .17 . .1$. what is the price per thousand? Ans. £1..17.. $6 \frac{3}{\frac{3}{2}} \frac{40}{100}$.

weights and measures.

(35) Divide 83 lb .5 oz .10 dwts .17 gr. by 8, 10, and 12.
(36) Divide 29 tons, 17 cwt. 0 qrs. 18 lb . by 9,15 , and 19.
(37) Divide 114 yards, 3 qrs. 2 nails, by 10 , and 16.
(38) Divide 1017 miles, 6 fur. 38 poles, by 11, and 49.
(39) Divide 2019 acres, 3 roods, 29 perches, by 26.
(40) Divide 117 years, 7 months," 26 days, 11 hours, 27 minutes, by 37 .

PROMISCUOUS EXAMPLES.

(1) Of three numbers, the first is 215 , the second 519 , and the third is equal to the other two. What is the sum of them all? Ans. 1468.
(2) The less of two sums of money is $£ 40$. and their difference $£ 14$. What is the greater sum, and the amount of both? Ans. £54. the greater, £94. the sum.
(3) What number added to ten thousand and eighty-nine, will make the sum fifteen thousand and forty? Ans. 4951.
(4) What is the difference between six dozen dozen, and half a dozen dozen; and what is their sum and product? Ans. Diff. 792, sum 936, product 62208.
(5) What difference is there between twice eight and fifty and twice fifty-eight, and what is their product?

Ans. 50 diff. 7656 product.
(6) The greater of two numbers is 37 times 45 , and their difference is 19 times 4 : required their sum : ad product.
Ans. 3:5.4 sum, 264:685 product.
(7) A gentleman left his elder daughter $£ 1: 00$. more than the younger, whose fortune was 11 thousand, 11 hundred, and $£ 11$. Find the portion of the elder, and the amount of both. Ans. Elder's portion £13611. amount £25722.
(8) The sum of two numbers is 360 , the less is 144. What is their difference and their product?

Ans. $7 \approx$ difference, 31104 product.
(9) There are 25.55 bullocks to be divided among 509 men. Required the number and the value of each man's share, supposing every bullock worth $£ 9 . .1$ 1... 6 .

Ans. Each man had 5 bullocks, and $\mathcal{E} 48 . .12 . .6$. for his share.
(10) How many cubic feet are contained in a room, the length of which is 24 feet, the breadth 14 feet, and the height 11 feet ?*

Ans. 3696.
(11) A gentleman's garden, containing 9625 square yards, is 35 yards broad: what is the length? Ans. 275 yards.
(12) What sum added to the 43 d part of $£ 4429$. will make the total amount $=£ 240$?

Ans. $£ 137$.
(13) Divide $20 s$. among A, B, and C , so that A may have $2 s$. less than B , and $\mathrm{C} 2 s$. more than B .

$$
\text { Ans. A 4s. 8d. B 6s. 8d. and C } 8 s .8 d .
$$

(14) In an army consisting of 187 squadrons of horse, each 157 men, and 207 battalions of foot, each 560 men, how many effective soldiers are there, supposing that in 7 hospitals there are 473 sick ?

Ans. 144806.
(15) A tradesman gave his daughter, as a marriage portion, a scrutoire, containing 12 drawers; in each drawer were six divisions, and in each division there were $£ 50$. four crown pieces, and eight half-crown pieces. How much had she to her fortune?

Ans. £3744.
(16) There are 1000 men in a regiment, of whom 50 are officers : how many privates are there to one officer? Ans. 19.
(17) What number must 7847 be multiplied by, to produce 3013248?

Ans. 384.

[^13]* Add aibtract t t and fifty oroduct. and their oduct. oroduct. more than hundred, amount of <25722. s is 144. product. 509 men. hare, suphis share. room, the the height s. 3696. are yards, 5 yards. will make - £137. may have

8s. $8 d$.

 orse, each how many pitals there 144806. ge portion, r were six our crown had she to £3744.om 50 are Ans. 19. to produce ns. 384.
(18) Suppose I pay eight guineas and half-a-crown for a quarter's rent, but am allowed $15 s$. for repairs; what does my apartment cost me annually, and how much in seven years? Ans. In one year, £'31..2. In seven, £217..14.
(19) The quotient is 1083 ; the divisor 28604; and the remainder 1788; what is the dividend? Ans. 30979920. (20) An assessment was made on a certain hundred, for the sum of $£ 386 \ldots 15 . .6$. the amount of the damage done by a riotous assemblage. Four parishes paid $\mathfrak{L} 37 . .14 . .2$. each ; four hamlets $£ 31 . .4 .2$. each ; and four townships $£ 18 . .12 . .6$. each: how much was deficient? Ans £36..12..2.
(21) An army, consisting of 20,000 men, got a booty of £12,000; what was each man's share, if the whole were equally divided among them?

Ans. $12 s$.
(22) A gentleman left, by will, to his wife, $£ 4560$;-to a public charity, $£ 572 . .10$;-to four nephews, $£ 750 . .10$. each ; Lto four nieces, $£ 375 . .12 . .6$. each; -to thirty poor housekeepers, 10 guineas each; -and to his executors, 150 guineas. What was the amount of his property? Ans. $£ 10109 . .10$.
(23) My purse and money, siid Dick to Harry, are worth $12 s .8 d$. but the money is worth seven times the value of the purse: what did the purse contain? Ans. $11 s .1 d$.
(24) Supposing 20 to be the remainder of a division, 423 the quotient, and the divisor the sum of both, plus 19 ; what is the dividend? Ans. 195446.
(25) A merchant bought two lots of tobacco, which weighed 12 cwt .3 qrs .15 lb . for $£ 114 . .15 . .6$.; their difference in weight was 1 cwt. 2 qrs. 13 ll . and in price £7..15..6. Required their respective weights and value.*

Ans. Greater weight 7 cwt. 1 qr. value £61..5..6. Less weight 5 cut. 2 qrs. 15 lb . value $£ 53 . .10$.
(26) Divide 1000 crowns in such a manner among A, B. and C , that A may receive 129 crowns more than B , and B , 178 less than C. Ans. A 360 crowns, B 231, C 409.
(27) If 103 guineas and $7 s$. be divided among 7 men, how many pounds sterling is the share of each? Ans. $£ 15 . .10$.
(28) A certain person had 25 purses, each purse containing 12 guineas, a crown, and a moidoire, how many pounds terling had he in all?

Ans. £355.

[^14](29) A gentleman, in his will, left $£ 50$. to the poor, and ordered that $\frac{1}{3}$ should be given to old men, each man to have $5 s$. $-\frac{1}{4}$ to old women, each woman to have $2 s .6 d .-\frac{1}{5}$ to poor boys, each boy to have $1 s$.-f to poor girls, each girl to have $9 d$. and the remainder to the person who distributed it: how many of each sort were there, and what remained for the person who distributed the money?

Ans. 66 men, 100 women, 200 boys, 222 girls , .£2..13..6. for the distributor.
(30) A gentleman sent a tankard to his goldsmith, that weighed 50 oz .8 dwts. to be made into spoons, each weighing 2 oz. $16 d w t s$. how many would he have? Ans. 18.
(31) A gentleman has sent to a silversmith 137 oz .6 dwts 9 gr . of silver to be made into tankards of 17 oz .15 dwts .10 gr each; spoons, of 21 oz .11 dwts .13 gr . per dozen; salts, of 3 oz .10 dwts. each; and forks, of 21 oz .11 dwts .13 gr . per dozen; and for every tankard to have one salt, a dozen spoons and a dozen forks: what number of each will he hase?

Ans. Two of each sort, 8 oz. 9 dwts. 9 gr. over.
(32) How many parcels of sugar of 16 lb .2 oz: each are there in 16 cwt .1 qr. 15 lb .?

Ans. 113 parcels, and 12 lb .14 oz . over.
(33) In an arc of 7 signs, $14^{\circ} 3^{\prime} 53^{\prime \prime}$, how many seconds? Ans. 806633".
(34) How many lbs. of lead would counterpoise a mass of bullion weighing 100 lbs . Troy ?* Ans. $82 \mathrm{lb} .4 \mathrm{oz} .9 \frac{25}{175} \mathrm{dr}$.
(35) If an apothecary mixes together 1 lb . avoirdupois of white wax, 4 lbs . of spermaceti, and 12 lbs . of olive oil, how many ounces, apothecarics' weight, will the mass of ointment weigh, and how many masses of 3 drams each will it contain ?

Ans. The whole $247 \mathrm{oz} .7_{\mathrm{T} \frac{\mathrm{f}_{4}}{2}}$ dr. and 661 of 3 dr . each.

PROPORTION.

Proportion is either direct, or inverse. It is commonly cailed the rule of three; there being always three numbers or terms given, two of which are terms of supposition; and che other is the term of demand : because it requires a fouth

[^15]term which

Ge of der is of which

Als third lowe

Requi the $t h i$ the sec
RuLE duct by Hation a
The f Thiee

1. Le to make
2. Le be divid quotien 3. W cation a and tha answer be redu
\dagger The
Direct ed by n grrange
Rule from the or less that sim the proc product required.
Notr.
whothe

[TUTOR's

poor, and n to have $\frac{1}{5}$ to poor lo to hare lit: how d for the $n s .18$. z. 6 dwts ots. 10 gr ; salts, of 13 gr . per en spoons are?
rr. over.
each are
z. over. seconds? $06633^{\prime \prime}$.
a mass of $9 \frac{25}{175} d r$. rdupois of e oil, how f ointment it contain? lr. each.
commonly three numsition; and es a fourth
ss. Lead is mpARISON or
term to be found, in the same proportion to itself, as that which is between the other two.

General rule for stating the question. Put the term of demand in the third place: that term of supposition which is of the same kind as the demand, the first; and the other, which is of the same kind as the required term, the second.*

Also; the terms being thus arranged, reduce the first and third (if necessary) into one name; and the second into the lowest denomination mentioned.

THE RULE OF THREE DIREGT

Requires the fourth term to be greater than the second, when the third is greater than the first; or the fourth to be less than the second, when the third is less than the first.

Ruse. Multiply the second and third together, and divide their pro duct by the first: the quotient will be the unswer, in the same denomiHation as the second. \dagger

The following methods of contracting the operations in the Rule op Theree are highly important, and should never be lost siglit of:-

1. Let the first and third terms be reduced no lower than is necessary to make them of the same denomination.
2. Let the dividing term and either (but not both) of the other terms be divided by any number that will divide them exactly; and use the quotlents instead of the original numbers.
3. When it is conveniently practicable, work by Compound Multiplication and Division, instead of reelucing the terms.

* Some modern authors prefer placing the term of demand the second, and that similar to the required term the third. This arrangement will answer the purpose equally well, observing that those of like kind must be reduced (if necessury) to the same name.
\dagger The following General Rule comprehends both the cases of Direct and Inverse Proportion under one head; which is considered by many scientific men of the present day as a more systematic grrangement.

Rule. The question being stated, and the terms prepared, consider, from the nature of the case whether the required term is to be greater or less than the second, or term of similar kind: if greater, multiply that similar to the answer by the greater of the other two, and divide the product by the less; if less, nultiply it by the less and divide the product by the greater. In either case the quotient will be the term required, in the same denomination as the similar term.
Norr. It is evident that the above Rule will answer generally, whother the term of demand is put in the second or third place.
(1) If one $l b$. of sugar cost $4 \frac{1}{2} d$. what will $54 l b$. cost ?*
(2) If a gallon of beer cost 10 d . what is that per barrel? Ans. $£ 1 . .10$.
(3) If a pair of shoes cost $4 s .6 d$. what is the value of 12 dozen pairs ? \dagger
(4) If one yard of cloth cost $15 s$. $6 d$. what will 32 yards cost at the same rate ? Ans. $£ 24 . .16$.
(5) If 32 yards of cloth cost $£ 24 . .16$. what is the value of one yard? $A n s .15 s .6 d$.
(6) If I gave $£ 4$..18. for 1 cwt. of sugar, at what rate did I buy it per $l l$.?
$A n s .10 \frac{1}{2} d$.
(7) Bought 20 pieces of cloth, each piece 20 ells, for 12 s $6 d$. per ell, what is the value of the whole? Ans. $£ 250$.
(8) What will 25 cwt .3 qrs. 14 lb . of tobacco come to, at 15⿺辶 $\frac{1}{2} d$. per $l b$.?

Ans. £187..3..3.
(9) Bought $27 \frac{1}{4}$ yards of muslin, at $6 s$. $9 \frac{1}{2} d$. per yard, what is the amome of the whole?

Ans. $£ 9 . .5 . .0 \frac{3}{4} \frac{1}{2}$.
(10) Boufght 17 cwt . 1 qr .14 lb . of iron, at $3 \frac{1}{2} d$. per $l b$ what was the price of the whole? Ans. $£ 26 . .7 . .0 \frac{1}{2}$.
(11) If coffee is sold for $5 \frac{1}{2} l$. per ounce, what will be the price of $2 c w t$.? Ans. £82..2..8.
(12) How many yards of cloth may be bought for $£ 21$. 11..1 $1 \frac{1}{2}$. when $3 \frac{1}{2}$ yards cost $\mathfrak{E}^{\prime} 2 . .14 . .3$.?

Ans. 27 yards, 3 qrs. $1_{\frac{1}{3}}$ nail.
(13) If 1 cut. of Cheshire cheese cost $£ 1 . .14$..8. what must I give for $3 \frac{1}{2} l b$.? Ans. 1s. $1 d$.
(14) Bought 1 cut. 24 ll .8 oz . of old lead, at 9 s . per cwt . what did the lead cost? Ans. 10 s . $11 \frac{1}{2} \frac{11}{2} \frac{2}{4} d$.
(15) If a gentleman's income be $£ 500$. a year, and he spend 19s. 4d. per day, what is his annual saving ? Ans. £147..3..4.
(16) If 14 yards of cloth cost 10 guineas, how many Flemish ells can I buy for £283..17..6.? Ans. 504 Fl. ells, 2 qrs.
(17) If 504 Flemish ells, 2 quarters, cost $£ 283$..17..6. what is the cost of 14 yards?

Ans. £10..10.

- lb. d. ll	pr. s.d. p rs.
- As $1: 412: ~ 54$	- As $1: 4 . .6: 144$
$4 \quad 18$	12
18 4)972 qrs.	$2 . .14 .0$
$1 \sqrt{243} d$.	12
20s. 3d. $=$ ¢1.01. 3. Ans.	C32..8..0. Ans.

(18) At the rate of $£ 1 . .1 . .8$. for 3 lb . of gum acacia, what must be given for 29 lb .4 oz ? Ans. 10..11..3.
(19) If 1 English ell, 2 quarters, cost $4 s$. $7 d$. what will $39 \frac{1}{2}$ yards cost at the same rate?

Ans. $£ 5 . . \dot{\text {. } . ~} 5 \frac{1}{4} \frac{5}{7}$.
(20) If 27 yards of Holland cost $£ 5 . .12 . .6$. how many E-: glisl clls can I buy for $£ 100$.? Ans. 384 ells.
(21) If 7 yards of cioth cost 17 s . $8 d$. what is the value of 5 pieces, each containing $27 \frac{1}{2}$ yards? Ans. 17..7..01 $\frac{1}{4}$.
(22) A draper bonght 420 yards of broadcloth, at the rate of $14 s .10 \frac{3}{4} l$. per ell English : what was the amount of the purchase money?

Ans. £250..5.
(23) A grocer bought 4 hogsheads of sugar, each hogshead weighing neat 6 cut .2 qrs. 14 lb . at $£ 2 . .8 . .6$. per cwt . what is the value?

Ans. £64..5..3.
(24) A draper bought 8 packs of cloth, each pack containing 4 parcels, each parcel 10 pieces, and each piece 26 yards; at the rate of $£ 4 . .16$. for 6 yards: what was the purchase noney?

Ans. $£ 6656$.
25) If 24 lb . of raisins cost $6 s .6 \mathrm{~d}$. what will 18 frails cost, h frail weighing neat 3 qrs. 18 ll .? Ans. £24..17..3.
(26) When the price of silver is $5 s$. per ounce, what is the value of 14 ingots, each ingot weighing 7 ll .5 oz .10 dwts.? Ans. £313..5.
(27) What is the value of a pack of wool, weighing $2 c w t$. $1 q r .19 \mathrm{lb}$. at $17 s$. per tod of 28 lt . ?

$$
\text { Ans. £8..4.. } 6 \frac{1}{4} \frac{2}{2} \frac{2}{8} .
$$

(28) Bought 171 tons of lead, at $£ 14$. per ton ; paid carriage and other incidental charges, £4..10. Required the whole cost, and the cost per $l b$.
Ans. $£ 2398 . .10$. the whole cost, and the cost per lb. $1 \frac{1}{2} d . \frac{4}{3} \frac{432}{3} \frac{5}{5}$.
(29) If a pair of stockings cost 10 groats, how many dozen pairs can I buy for £43..5.? 2 Ans. 21 doz. $7 \frac{1}{2}$ pairs.
(30) Bought 27 doz .5 lb . of candles, at the rate of 5 s .9 d a dozen: what did they cost? Ans. £7..17..73.
(31) A factor bought 86 picces of stuff, which cost him f517.17..10. at $4 s$ s. 10d. per yard. How many yards were there in the whole, and how many English ells in a piece?

Ans. 2143 yards; and 19 clls .4 qrs. $2 \frac{60}{6}$ nails, in a piece.
(32) A gentleman has an amuity of $£ 896 . .17$. What may he spend daily, that at the year's end he may lay up 200 guineas, after giving to the poor quarterly 10 moidores?

$$
\text { Ans. } £ 1 . .14 . .8 \frac{4}{28} 8 .
$$

THE RULE OF THREE INVERSE
Requires the fourth term to be less than the second, wher. the third is greater than the first; or the fourth to be greater than the second, when the third is less than the first.

Rule. Multiply the first and second together, and divide their product by the third: the quotient will be the answer, as before.
(1) If 8 men can do a piece of work in 12 days, in how many days can 16 men do the same ?*
(2) If 54 men can build a house in 90 days, how many men can do the same in 50 days? Ans. $97 \frac{1}{5}$ men.
(3) If, when a peck of wheat is sold ior $2 s$. the penny loaf weighs 8 oz .; how much must it weigh when the peck is worth but $1 s .6 d$?

Ans. $10 \frac{2}{8}$ oz.
(4) How many sovereigns, of 20 s . each, are equivalent to 240 pieces, value $12 s$. each? Ans. 144.
(5) How many yards of stuff three quarters wide, are equal in measure to 30 yards of 5 quarters wide? Ans. $50 y d s$.
(6) If I lend a friend $£ 200$. for 12 months, how long ought he to lend me $£ 150$.? Ans. 16 months.
(7) If for 24 s . I have 1200 ll . carried 36 miles, what weight can I have carried 24 miles for the same money?

$$
\text { Ans. } 1800 \mathrm{lb} .
$$

(8) If I have a right to keep 45 sheep on a common 20 weeks, how long may I keep 50 upon it? Ans. 18 weeks.
(9) A besieged town has a garrison of 1000 soldiers, with provisions for only 3 months. How many must be sent away, that the provisions may last 5 months?

Ans. 400.
(10) If $£ 20$. worth of wine be sufficient to serve an ordinary of 100 men, when the price is $£ 30$. per tun ; how many will $£ 20$. worth suffice, when the price is only £24. per tun? Ans. 125 men.
(11) A courier makes a journey in 24 days, by travelling 12 hours a day: how many days will he be in going the same journey, travelling 16 hours a day?

Ans. 18 days.
(12) How much will line a cloak, which is made of 4 yards of plush, 7 quarters wide, the stuff for the lining being but 3 juarters wide?

Ans. $9 \frac{1}{3}$ yards.

H_{as} to fil man
d, wher e greater their pro. in how w many $\frac{1}{5}$ men. nny loaf peck is $0 \frac{2}{8} o z$. valent to s. 144. are equal 0 yds. ng ought zonths. at weight

300 lb . nmon 20 weeks. ers, with nt away, s. 400 . an ordiow many per tun? 5 men. ravelling the same days.
f 4 yards ing but 3 yards.

DIRECT AND INVERSE PROPORTION PROMISCYOUSLY ARRANGED.
(1) If 14 yards of broadcloth cost $£ 9.12$. what is the purchase of 75 yards? Ans. £51..8..63 $\frac{3}{14}$.
(2) If 14 pioneers make a trench in 18 days, in how many days would 34 men make a similar trench; working, in both cases, 12 hours a day? Ans. 7 days, 4 hours, $56_{\frac{8}{17}}$ minutes.
(3) How much must I lend to a friend for 12 months, to requite his kindness in having lent me $£ 64$. for 3 months?
Ans. £42..13..4.
(4) Bought 59 cwt .2 qrs. 21 lb . of tobacco, at $£ 2 . .17 . .4$ per $c w t$. what does it come to ? Ans. £171..2..1.
(5) A woollen draper purchased 147 yards of broadcloth, at $14 s .6 d$. per yard. Suppose that he sold it in pieces for coats, each $1 \frac{3}{4}$ yard, how much must he charge for each, so as to gain $£ 16 . .10 . .9$. by the whole? Ans. $£ 1 . .9 . .3 \frac{3}{4}$.
(6) If $£ 100$. gain $£ 4$..10. interest in 12 months, what sum will gain the same in 18 months? Ans. £66...13..4.
(7) A draper having sold 147 yards of cloth, at the rate of $£ 1 . .9 . .3^{\frac{3}{4}}$. for $1 \frac{3}{4}$ yard, found that he had gained $£ 16$..10..9. What did the whole cost him, and how much per yard?

> Ans. The whole £106..11..6. and 14s. 6d. per yard.
(8) If $£ 100$ in 12 months gain $£ 4 . .10$. interest, in what time will $£ 66 . .13 . .4$ gain the same interest? Ans. 18 months
(9) If a draper bought 147 yards of clotu, at $14 s .6 d$. per yard, and sold it in pieces for coats, each $1 \frac{3}{4}$ yard, for $£ 1 . .9 . .3 \frac{3}{4}$.; how much would he gain per yard, and by the whole? Ans. 2s. 3 d. per yard, £16..10..9. by the whole.
(10) If 1 cwt. cost $£ 12 . .12 . .6$. what must be given for 14 cwt. 1 qr. 19 lb.?

Ans. $£ 182 . .0 . .11 \frac{1}{2} \frac{8}{1 \frac{8}{2}}$.
(11) If $£ 100$. gain $£ 4 . .10$. in 12 months, what interest will $£^{(175}$. gain in the same time?

Ans. £16..17..6.
(12) A regiment of soldiers, consisting of 1000 men, are to have new coats, each to be made of $2 \frac{1}{2}$ yards of cloth, 5 quarters wide, and to be lined with shalloon of 3 quarters wide. How many yards of shalloon will line them?

Ans. 4166 yards, 2 qrs. $2 \frac{3}{3}$ nazls.

THE DOUBLE RULE OF THREE

$\mathrm{H}_{\text {as }}$ five terms given, three of supposition and two of demand, to find a sixth, in the same proportion with the terms of demand, as that of the terms of supposition. It comprises two
operations of the since e rule.-But it may comprise three four, or more operations of the Single Rule; as there may be seven terms given to find an cighth, or nine to find a tenth, \&c. In this respect it is unlimited; and is therefore more properly called compound proportion.

Rule 1. Put the terms of demand one under another in the third place; the terms of suppusition in the same order in the first place; except that which is of the same nature as the required lerm, which must be in the second place.

Examine the statings spamately, using the midhle term in each, to know if the proportion is direct or inve se. When direct, mark the first term with an asterisk: when inverse, mark the third term.

Find the product of the marked terms fir a Divisor, and the product of all the rest for a Dicidend: divide, and the quotient will be the answer.*

Rule 2. (1) Of the conditional terms, put the prineinal cause of action, gain or loss, \&c., in the first place. (i) Put that which denotes time or distance, \&e., in the scomd, and the other in the third. (3 Put the terms of demand muder the like terms of supposition. (4) If the blank falls in the third place, multiply the first and second terms for a divisor, and the other three for a divident. (5) But if the blank is in the first or second place, divide the product of the rest by the product of the third and fourth terms. for the answer.

Note. It will save much labour to write the terms of the Dividend over, and those of the Divisor under a line, like those of a componnd fraction, and to cancel them aceordingly. Sce Reduction of Vulgar Fractions, Case 6.

Proof. By two operations of the Single Rule of 'Three.
(1) If 14 horses eat 56 bushels of oats in 16 days, how many bushels will serve 20 horses 24 days ? \dagger

* See also Supplemental Questions, Nos. 6 and 7.

By two single statings h. b. h. $\quad b$. (1) $\operatorname{As} 14: 56:: 20: 80$
d. $\quad l . \quad d . \quad b$.
(2) As $16: 80:: 24: 120$
(2)

Is :
trad

[TUTOR's

 ise three c may be enth, \&c. properlythe third rst place; rm, which
n each, to mark the rm.
e product ill be the
cause of 11 denotes cird. (3 1. (4) If nd terms the blauk y the pro-

Dividend compound of Vulgar
'Three. ys, how
hels.
tatings $0: 80$
$4: 120$

ASSTSTANT. 1 practice.
(2) If 8 men in 14 days can mow 112 acres of grass, how many men can mow 2000 acres in ten days? Ans. 200 men
(3) If $£ 100$. in 12 months gain $£ 6$. interest, how much will £75. gain in 9 months? Ans. £3..7..6.
(4) If $£ 160$. in 12 months gain $£ 6$. interest, what principal will gain £3..7..6. in 9 months? Ans. $£ 75$.
(5) If $£ 100$. gain $£ 6$. interest in 12 months, in what time will $£ 75$. gain $£ 3 . .7 . .6$. interest ? Ans. 9 nonths.
(6) If a carrier charges £2.2. for the carriage of 3 cwt . 150 miles, ? J. l ought he to charge for the carriage of 7 cut .3 grs. 14 lb . : miles? Ans. £1..16..9.
(7) If 40 acres of grass be mown by 8 men in 7 days, how many acres can be mown by 24 men in 28 days? Ans. 480.
(8) If $£ 2$. will pay 8 men for 5 days' work, how much will pay 32 men for 24 days' work?

Ans. £38..8.
(9) If a regiment of soldiers, consisting of 1360 men, consume 351 quarters of wheat in 108 days, how much will 11232 soldiers consume in 56 days? Ans. $1503_{\frac{9}{8} 5}$. qrs.
(10) If 939 horses consume 351 quarters of oats in 168 days, how many horses will consume 1404 quarters in 56 days?

Ans. 11268.
(11) If I pay $£ 14 . .10$. for the carriage of 60 cwt . 20 miles , what weight can I have carried 30 niles for £5..8..9. at the same rate? Ans. 15 cwt .
(12) If 144 threepenny loaves serve 18 men for 6 days, how many fourpenny loaves will serve 21 men for 9 days?

Ans. 189.

PRACTICE

Is so called from its general use among merchants and tradesmen.

It is a concise method of computing the value of articles, \&c., by taking aliquot parts.

The General Rule is to suppose the price one pound, one shilling, or one penny each. Then will the given number of articles, considered accordingly as pounds, or shillings, or pence, be the supposed value of the whole; out of which the aliquot part or parts are to be taken for the real price

Nore. An aliquot part of a number is such a part as being taken a certain number of tines will produce the number exactly: thus, 4 is an aliquot part of 12 ; because 3 fours are 12 .

ALIQUOT PARTS.

Of a pound.	Of a penny.	Of a quarter.	Of an oz. Troy.
s. d. \mathbf{x}.	$2 \text { qrs. are } \frac{1}{2} d \text {. }$		Thesame as
100 are $\frac{1}{2}$	1 qr. is ${ }_{4} d$.	14 are $\frac{9}{2}$	The same as
$\begin{array}{lllll}6 & 8 & \ldots & \frac{1}{3}\end{array}$		7 ... $\frac{1}{4}$	the parts of a
50	Of a ton.	$4{ }^{4}$...	£. changing
$\begin{array}{ll}4 & 0 \\ 3 & 4\end{array}$		$3{ }^{3} \frac{1}{2} \times \cdots \quad \frac{1}{8}$	the names
26	10 are $\frac{1}{2}$	$\begin{array}{llll}2 & \cdots & \frac{1}{14} \\ 13 & \cdots & 1 \\ 1\end{array}$	from shillzngs
$20 \ldots \frac{1}{10}$	$5{ }^{5}$	15 \cdots $\overline{11}$ 1 is $\frac{1}{28}$	
$18 \ldots$	4 $\frac{1}{5}$		
$1{ }^{1} 4 \ldots \ldots .15$	23 qr ls $l b \frac{1}{4}$	Of	
$13 \ldots$	$2 \frac{1}{2} \ldots \ldots . . \quad \frac{1}{8}$		
$100 . .1{ }^{1}$	$2^{2} \ldots \ldots \cdot \frac{1}{1^{0}}$		
0 8 .. $\frac{1}{36}$	1 is $\frac{1}{20}$	are $\frac{1}{2}$	Of a dwt.
0 6 ...		玉	
Of a shilling.	Of a	1 is $\frac{1}{16}$	
	qr. lb. cwt.		6
6 are $\frac{1}{2}$	2, or 56 are $\frac{1}{2}$	Of a lb. Troy.	4
4 $\frac{1}{3}$	1, or 28	oz. $\quad l b$.	3
3	16.	6 are $\frac{1}{2}$	
2		4, \&c., as in	$1 \frac{1}{2} \quad \ldots \quad \frac{1}{18}$
11 $\ldots \ldots \ldots$.		the parts of	1 is
1 is $\frac{1}{12}$	$7 \ldots \frac{1}{16}$	a shilling.	

Rule 1. When the price is less than a penny, call the given num ber pence, and take the aliquot parts that are in a penny; then divido by 12 and 20 , to reduce the answer to pounds.

1426	$16 . .0 . .7 \frac{1}{2}$.	Ans. £20..9..
2\|0)1180..10	(3) 5470 at	(5) 4573 at $\frac{3}{4} d$.
10.	Ans. $£ 11 . .7 . .11$	Ans. £14..5..9

Rule 2. When the price is less than a shilling, call the given number shillings, take the aliquot part or parts that are in a shilling, add the quotients together. and divide by 20 , as in the preceding rule.
(1) 7547 at $1 d . \quad \mid \dagger(2) 3751$ at $\left.1 \frac{1}{4} d . \quad \right\rvert\,(3) 54325$ at $1 \frac{1}{2} d$. Ans. £31..8..11. Ans. £19..10..83. Ans. £339..10..71

$$
\begin{aligned}
& 1 d .=\frac{1}{12} 7547 \mathrm{~s} \\
& 20) 628 . .11 \\
& \text { A3s. } 231 . .8 .11
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\dagger 1 d . & =\frac{1}{12} 3751 \mathrm{~s} . \\
\frac{1}{4} & =\frac{1}{6} \quad 312.7
\end{aligned} \\
& 78 . .1_{5}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { £19..10..93 }{ }^{3} \text { Ans }
\end{aligned}
$$

(4) 6254 at $1 \frac{3}{4} d$.

Ans. £45..12..01
(5) 2351 at $2 d$.
Ans. £19..11
(6) 7210 at

Ans. £67..11..101 $\frac{1}{2}$.
(7) $2 \% 10$ at $2 \frac{1}{2} \mathrm{~d}$.

Ans. £28..4..7.
(8) 3250 at $2 \frac{3}{4} d$.

Ans. L'37..4..91
(9) 2715 at 3 d .

Ans. £33..18..9.
(18) 2715 at $\left.5 \frac{1}{4} d . \quad \right\rvert\,(32) 9872$ at $8 \frac{3}{4} d$. Ans. $£ 59 . .7 . .9 \frac{3}{4}$. (19) 3120 at $5 \frac{1}{2}$ ll. Ans. £359..18.. 4 (33) 5272 at $9 d$. Ans. £71..10. (20) 7521 at $5 \frac{3}{4} d$. Ans. £180..3..93 $\frac{3}{4}$. (21) 3271 at 6d. (34) 6325 at $9 \frac{1}{4} d$. Ans. $2243 . .15 . .6 \frac{1}{4}$. (35) 7924 at $9 \frac{1}{2} d$. $\frac{A n s . £ 313 . .13 . .2}{(36) 2150 \text { at } 9 \frac{3}{4} d .}$ 7914 at $6 \frac{1}{4} d$.
Ans. $£ 206 . .1 . .10 \frac{1}{2} . \quad \begin{gathered}(36) 2150 \text { at } 9 \frac{3}{4} d . \\ \text { Ans. } £ 87 . .6 .10 \frac{1}{2}\end{gathered}$ (23) 3250 at $6 \frac{1}{2} d$. (37) 6325 at 10 d . $\frac{\text { Ans. £'88..0..5. }}{(24) 2708 \text { at } 6 \frac{3}{4} d .} \frac{A n s . £ 263 . .10 . .10}{(38) 5724 \text { at } 10 \frac{1}{4} d .}$ Ans. £95..12..71 (11) 2147 at $3 \frac{1}{2} d$. Ans. £31..6..¿2 (12) 7000 at $3 \frac{3}{4} d$. Ans. £109..7..6. (13) 3257 at $4 d$. 27) 2701 at $7 \frac{1}{2} d$. Ans. £54..5..8.

Ans. £76..3..3. (25) 3271 at 7 l .
(14) 2056 at $4 \frac{1}{4} d$.
Ans. £36..8..2. (15) 3752 at $4 \frac{1}{2} d$.
$\frac{A n s . ~ £ 70 . .7 . .0}{(16) 2107 \text { at } 4 \frac{3}{4} d .}$

$$
\begin{gathered}
* \frac{1}{4}= \begin{cases}\frac{1}{12} & \frac{2106 s}{\text { of }} \\
\frac{1}{4} & \frac{(175 . .6)}{43 . .10} \frac{1}{2}\end{cases} \\
\text { Ans. } \pm 107.214 \left\lvert\, 9 . .10 \frac{1}{2}\right.
\end{gathered}
$$

This example is worked by taking $\frac{1}{12}$, and then $\frac{1}{4}$ of that; because a farthing is $\frac{1}{48}$ of a shilling ; which is $=\frac{1}{12}$ of $\frac{1}{4}$, or $\frac{1}{4}$ of $\frac{1}{12}$, because 4 twelves are 48.
(4) 2107 at $1 s .1 d$.
Ans. $\mathbf{E 1 1 4 . . 2 . . 7 .}$
(5) 3215 at $1 s .1 \frac{1}{4} d$. Ans. £177..9..10 ${ }^{3}$
(6) 2790 at $1 s .1 \frac{1}{2} d$. Ans. £156..18..9.
(7) 7904 at $1 s .1 \frac{3}{4} l$. Ans. £452..16..8.
(8) 3750 at 1 s. $2 d$. Ans. £218..15.
(9) 3291 at $1 s .2 \frac{1}{4} d$. Ans. £195..8..03 $\frac{3}{4}$. (10) 9254 at $1 s .2 \frac{1}{2} d$. Ans. £559..1..11.
(11) 7250 at $1 s .2 \frac{3}{4} d$. $\frac{\text { Ans. } £ 445 . .11 . .5 \frac{1}{2}}{(12) 7591 \text { at } 1 s .3 d}$. Ans. £474..8..9. (13) 6325 at $1 s .3 \frac{1}{4} d$. $\frac{\text { Ans. } £ 401 . .18 . .0 \frac{1}{4} \text {. }}{\text { (14) } 5271 \text { at } 1 s .3 \frac{1}{2} d \text {. }}$ Ans. £340..8.. $4 \frac{1}{2}$ (15) 3254 at $1 s .3 \frac{3}{4} d$. Ans. £213..10..101 (16) 2915 at $1 s .4 d$. Ans. £194..6.. 8. (17) 3270 at $1 s .4 \frac{1}{4} d$. Ans. £221..8..1 $\frac{1}{2}$. (18) 7059 at $1 s .4 \frac{1}{2} d$. Ans. £485..6..11
$\left|\begin{array}{c}(19) 2750 \text { at } 1 s .43 d \\ \text { Ans. } 191 . .18 . .6 \frac{1}{2} \\ \hline(20) 3725 \text { at } 1 s .5 d .\end{array}\right|$ (34) 7104 at $1 s .8 \frac{1}{2} d$. Ans. £606..16. (35) 1004 at $1 s .8 \frac{3}{4}$ l.
(21) 7250 at $1 s .5 \frac{1}{4} d$.
(36) 2
$\frac{\text { Ans. } 5521 . .1 . .10 \frac{1}{2}}{(22) 2597 \text { at } 1 s .5 \frac{1}{2} d}$
$\overline{(37):}$ Ans. £184..2
Aиs. $\mathfrak{E} 189.7 . .3 \frac{1}{2}$.

Ans. L227..12..93 (38) 2104 at $1 s .9 \frac{1}{2} d$.
Aus. L533..4..912. Ans. £188..9..8. (39) 7506 at $1 s .9 \frac{3}{4} d$. (:1) 7524 at $1 s .6 d$.
Ans. £56.1.6. Ans. £680..4..712. (40) 1071 at $1 s .10 d$ (25) 7103 at $1 s .61 d$. Aus. £98..is..6.
(26) $3: 54$ at 1 s. $6 \frac{1}{2} d$.
(41) 5200 at $1 s .10 \frac{1}{4} d$.
$\frac{\text { Ans. £250..16..7. }}{(27) 7925 \text { at } 1 s .6 \frac{3}{4} d .}$
\qquad Aus. £482..1..8.
(42) 2117 at $1 s .10 \frac{1}{2} d$
Ans. £619..2..93 $\frac{3}{4}$.

Role 4. When the price is an even number of shilmgs, the giver quantity may be multiplied by half that namber. aoumase the units' figure of the product for shillings, and the rest of the product will be pounds. Or take the aliquot part of a pound.

(1) 2750 at $2 s$. Ans. $£ 275$.	(4) 1572 at 8 s . Ans $1628 . .1$	(7) 5271 at $14 s$. (Ans. む3689..14.
(2) 3254 at 4 s . Ans. $£ 650 . .16$.	$\begin{gathered} (5) 2102 \text { at } 10 s . \\ \text { Ans. } £ 1051 . \end{gathered}$	$\begin{gathered} (8) 3123 \text { at } 16 s . \\ \text { Ans. } £ 2498.8 \end{gathered}$
	$\begin{array}{\|} (6) 2101 \text { at } 12 s \text {. } \\ \text { Ans. } £ \text {, } 260 . .12 . \end{array}$	$\begin{array}{r} (9) 1075 \text { at } 16 s . \\ \text { Ans. } £ 860 \end{array}$

(10) 1621 at 18 s . Nots. At 2 s . take the tenth, and at 10s. take Ans. $\mathbf{£}^{1458 . .18 .}$ the half of so many $\mathbf{£}$.

Rule. 5. When the price is an odd number of shillings, work by Kule 4th for the greatest even number, and add $\frac{1}{20}$ of the given quantity for the odd shilling.-Or, take such parts of a pound as will make the given price.
*(1) 3270 at $3 s . \quad$ (4) 3214 at $9 s . \quad$ (7) 2150 at $15 s$ Ans. £490..10.
(2) 3271 at $5 s$. Ans fl416. 6 Ans. $£ 817 . .15$.
(3) 2715 at 7 s .

Ans. £950..5.

Ans. £1416..6.
$(5) 2710$ at $11 s$.
Ans. $£ 1490 . .10$.
(6) 3179 at 133.
Ans. £2066..7.

Ans. $\mathbb{L} 1612 . .10$.
(8) 3142 at $17 s$. Ans. $£ 2670 . .14$. (9) 2150 at $19 s$.

Rule 6. When the price consists of shillings and pence, suppose the given number to be pounds, and take such aliquot part, or the sum of such aliquot parts, as will make the given price.-Or, work for the shillings as in the preceding Rules, and take parts for the residue.

Ans. £903..6..8	Ans. £429..1..8. Ans. £6280..7
(2) 3150 at 3 s. 4	7514 -
Ans. $£ 525$.	Ans. 1721..19..2. Ans. £1532..16..5
(3)	(9) 2517 at 5 s. 31.
Ans. £339..7..6.	Ans. $1660.14 . .3$ Ans. L1
(4) 7150 at	0) 2547 at $7 s .3 \frac{1}{2} d$. (16)2572
Ans. $£ 595 . .16$	s. $£ 928 . .11 . .10 \frac{1}{2} .14 n s . £ 1$
(5.) 3215. at	(11) 3271 at 5s.91d. (17)725l at
Ans. £214..6..8.	Ans. $£ 9.43 . .16 . .4 \frac{3}{4} \cdot$ Ans. $£ 5324$.
)	2)2103 at $15 \mathrm{~s} .4 \frac{1}{2} d$. (18)32.0 at 15 s .
Ans. $£ 450$	£1616..13..71 4 Ans. $£^{2} 2511 . .3 . .1 \frac{1}{2}$

Ror.e 7. When the price consists of pounds, shillings, and pence multiply the given quantity by the number of pounds, and ake aliquot parts for the residue.-Or, work for the shillings as in h: e preceding Rules, \&c.-Or, when the given uumber of articles is 5 vf jarge, work by Compound Multiplication.

Ans. $£ 490 . .10$

- (1) 7215 at $\mathbf{5 7} 7.4$ (7) 2107 ut $\mathbf{E 1 . . 1 3}$

Ans. $\mathbf{L}^{2} 51948$.
(2) 2104 at ± 5.3.
(8) Ans. $^{2} 476 . .11$.

Ans. $\mathbf{f 1 0 5 3 5 . 1 2 .}$
(3) 2107 at $\mathbf{~} 2 . .8$.

Ans. £13931..13..4.
Ans. £5056..16.
(9) 2154 at $£ 7 . .1 . .3$.
(4) $\overline{7156}$ at $\mathbf{C 5} . .6$.

$$
\text { Ans. } £_{15212 . .12 . .6 .}
$$

14) 2157 at $£ 2 . .7 . .4 \frac{1!}{2}$ (15) 142 at $\boldsymbol{x}_{1 . .15 . .24}^{2}$.

Ans. $\mathbf{x} 37920 . .10$. 10) 9701 at $\mathbf{L N} . .3 . .4$. (16) 95 at $\mathbf{f 1 5 . . 1 4 . 7 4 \text { . }}$

Aus £5911..3..9. Aus £i50.51..0..7 h. Ans. £73..0..84.
(6) 3215 at $\mathbf{x 1 . . 1 7}$ (12) 2157 at $\mathbf{4} 3 . .15 .154$ (18) 2175 at $52 . .15 .41$.

Rule 8. When the given quantity consists of several denominations multiply the price by the number of the highest, and take aliquot parts for the inferior denominations.
(1) At $£ 3 . .17 .6$. per cwt. what is the value of 25 cw :2 grs. 14 lb . of soap ? \dagger
(2) At $£ 1 . .4$..9. per cut. what is the value or 17 cwt. 1 qr 17 lb ? Ans. £21..10..8.
(3) Sold 85 cut .1 qr .10 lb . of iron, at $\pm 1.7 .8$. per cwt . what is the value of the whole?
(4) If hops are sold at $£ 4 . .5 . .8$. per cwt. what must be given for 72 cwt .1 qr. 18 lb .? Ans. £310..3..2.
(5) What is the value of 27 cwt .2 qrs .15 lb . of \log ood at $£ 1$..1..4. per cutt.?

Ans. £29..9..61
(6) Bought 78 cwt . 3 qrs. 12 ll . of molasses, at $£ 2 . .17 . .9$ per $c w t$. what must I give for the whole? Ans. £227..14.
(7) Sold 56 cwt .1 qr. 17 lb . of sugar, at $£ 2 . .15 . .9$. per $c w t$ how much is the whole charge? Ans. $£ 157 . .4 . .4 \frac{1}{2}$.
(8) What is the value of 97 cwt .15 lb . of currants, a £3..17..10. per $c w t$. ? Ans. £378..0.. 3
(9) At £4..14..6. the cwt. what is the valuc of 37 cwt . 2 orr 13 lb . of raw sugar?

Ans. £177..14.. 8$\}$

$$
\begin{aligned}
& \text { - } 8 .=\frac{1}{5} 7215 \\
& \begin{array}{r}
7 \\
50505
\end{array} \\
& \frac{1443}{\boldsymbol{x} 51948} \mathrm{Ans}
\end{aligned}
$$

+ 2 qrs. $=\$$ £3..17.. 6

Gr

of the

- M

C1..18.. 63.
(10) Bought sugar at $£ 3 . .14 . .6$. the cut. what did I give for 15 cut .1 gr .10 lb .?

Ans. £57..2..9.
(11) Required the value of 17 oz .8 dwts .18 grs . of gold, at $£ 3 . .17 . .10 \frac{1}{2}$. per ounce. Ans. £67..17..11.
(12) At $£ 37 . .6 . .8$. per cwt. the value of 1 cwt. 2 grs. $10 \frac{1}{2}$ lb. of cochincal is required.

Ans. £59..10.
(13) Required the value of 13 hhds .42 gals of Champagne wine, at £25..13..6. per hhd. Ans. £350..17..10.
(14) A gentleman purchased at an auction an estate of 149 a. 3 r. 20 p. at $£ 54 . .10$. per acre. What was the whole purchase money, including the auction duty of $7 d$. in the \mathcal{f}. the attorney's bill for the deeds of conveyance, $£ 33 . .6 . .8$. and his surveyor's charge for measuring it, at $1 s$. per acre?

$$
\text { Ans. } £ 8447 . .5 . .0 \frac{1}{2}
$$

Rule 9. To find the price of 1 lb . at a given number of shillings per ewt.

Multiply the shillings by 3 and divide tie produ: : by 7 ; the quotient will be the price of $1 l b$. in farthings.*
(1) What is the price of 1 lb . at 44s. $4 d$. per cwt. ? \dagger
(2) What are the respective prices per $i \leq . .3585 .4 d . ; 4$ s.; and $116 s .8 d$. per cwt.? Ans. $9 \frac{1}{4} d$, $\frac{3}{4} d$., and $1 s .0 \frac{1}{2} d$.

Rule 10 It is sometimes experlient to change the price id the quantity for each other. Thus 48 yards at $2 s .0 d$. will be equivalent to 33 yards at $4 s$. ; because $2 s .9 \mathrm{~d} .=33 d$. and $4 \mathrm{~s} .=48 \mathrm{~d}$.
(1) What is the value of $72 y d s$. at $3 s .5 d$. and at $14 s .7 d$. ;er yard?

Ans. £12..6., and £52..10.
(2) $80 y d s$. at $15 s .3 d$. and at $16 s .8 d$. per yard?

$$
\text { Ans. } £ 61 ., \text { and } £ 66 . .13 . .4
$$

(3) 42 lbs. at $11 \frac{1}{2} d$. and at $1 s .3 \frac{1}{4} d$. per $l b$.?
Ans. £2..0..3., and £2..13..41

TARE AND TRET.

Gross weight is the wight of any goods, together with that of the package which contains them.

[^16]Neat weight is that of the articles alone, or what remains witer the deduetion of at allowances.

I'are is an allowamer for the weight of the package. It is wither sio much in the whole, or at so much per bag, box, barret, de., or at so much in the ewt.

Iret is an allowime of 4 纺, in 104 解. (or $\frac{1}{2}$ part) for waste.
Cloff is an athwamer of \because of in 3 cut. on some goods: but both these are mearty womber.

Nuth: is the remanier when any particular allowance has been dedurted.
live. When the orer is at sumen forh bac. Sec., the whole

 there is 'tyes allownil.

 hrs!! $\quad \therefore \cdots$! ! ! ! -

tens. 5:

INVOICES, OR BILLS OF PARCEIS.

London, Scpt. 1, 1830.
Bought of Jane Harris.

$$
\begin{aligned}
& \text { lb. cwt.grs.lb. } \\
& \text { - } 14=\frac{1}{8} \quad 12 . .2 \text {.. } 24 \text { gross } \\
& l b . \quad \frac{1 . .2 . .10}{} \text { tare. } \\
& \text { 1.. } 19 \text { tret. } \\
& \text { Ans. } 10.2 .23 \text { neat. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 16. cwt. qrs. lb. } \\
& \dagger 7=\frac{1}{16} \text { 15.. 3.. } 20 \text { gross. } \\
& \text { 3.. } 27 \frac{1}{2} \text { tare. } \\
& 2 6 \longdiv { 1 4 . . 3 \text { .. } 2 0 \frac { 1 } { 2 } } \text { suttle. } \\
& \text { 2.. } 8 \text { tret. } \\
& \text { 14.. 1.. } 12 \frac{1}{2} \text { suttle. } \\
& \overline{14 \times 2} \div 3=\begin{array}{r}
14 \ldots 1 \\
9 \frac{1}{2} \\
\text { cloff. }
\end{array} \\
& \text { Ans. 14.. 1.. } 3 \text { neat. }
\end{aligned}
$$

De by, June 3, 1830 Bought of John Sims and Son

$$
\begin{array}{llll}
s . & d . & \text { E. } & \text { s. } \quad \text { d. }
\end{array}
$$

15 yds. satin . . . at 96 per yard
$18 \frac{1}{4} \mathrm{yds}$. flowered silk .
at $17 \quad 4$
4
12 yds. ricil brocade.
161 yds. sarcenet at 3 2
$13 \frac{1}{8}$ yds. Genoa velvet.
23 yds. lustring . . at 63
$£ \overline{62 . .11 . .94}$
(3) Miss Enfield,

Nottingham, June 4, 1830.
Bought of Joseph Thompson.

> £. s. d.
$s . \quad d$.
$4 \frac{1}{2}$ yds. cambric . . at 126 per yard.
$12 \frac{1}{2}$ yds. muslin. at 83
15 yds. printed calico.
2 doz. napkins . . at 2 each ..
14 ells diaper . . . at 17 per ell
35 ells dowlas . . . at $1 \frac{1}{2}$ \qquad
$£ \overline{17 . .14 . .11}$
Received the above, Joseph Thompson.
(4) Mrs. Mary Bright sold to the Right Honourable Lady Anna Maria Lamb 18 yards of French lace at 12s. 3d. per yd 5 pairs of fine kid gloves at $2 s$. $2 d$. per pair, 1 dozen French fans at $3 s$. $6 d$. each, two superb silk shawls at three guineas each, 4 dozen Irish lamb at $1 s$. $3 d$. per pair, and 6 sets ot knots at $2 s$. $6 d$. per set.-Please to make the Invoice for her. Total amount £23..14..4.
(5) Mr. Thomas Ward sold to James Russell Vernon, Esa, $17 \frac{1}{4}$ yards of fine serge at $3 s$. 9 d . per yd. 18 yds . of drugget at $9 s$. per yd. $15 \frac{1}{2}$ yds. of superfine scarlet at $22 s$. per yd. 16% yds. of Yorkshire black at 18 s . per yd. 25 yds. of shalloon at $1 s .9 d$. per yd. and 17 yds . of drab at 17 s . $6 d$. per yd.-Mare an Invoice of these articles. Total amount $£ 60 . .10 . .5 \frac{1}{4}$.
(6) Mr. Samuel Green, of Wolverhampton, sent to Messrs. Wright and Johnson, agreeably to order, 27 calf skins $\mathfrak{t t}$ 3s. $6 d$. each, 75 sheep skins at $1 s .7 d .39$ coloured ditto ut
's. $8 d$ and 12

Rev. S per tb . East I ł. 15 soffee drugget at er yd. 16 shalloon at rd. -Make .. $10 . .5 \frac{1}{4}$. to Messrs. : skins ut ditto ut
's. $8 d .15$ buck skins at $11 s .6 d .17$ Russia hides at 10 s. $7 d$. and 125 lamb skins at $1 s$. $2 \frac{1}{2} d$.-Draw up the Invoice. Total amount £39..1..8 $\frac{1}{2}$.
(7) Mr. Richard Groves sent the following articles to the Rev. Samuel Walsingham: viz. 2 stones of raw sugar at $6 \frac{1}{2} d$. per th. 2 loaves of sugar, $15 \frac{1}{2} \mathrm{lb}$. at $11 \frac{1}{2} d$. per Ht . a stone of East India rice at $3 \frac{1}{2} d$. per ${ }^{\mathrm{H}}$. 2 stones Carolina rice at $5 d$. per H. 15 oz . nutmegs at $5 \frac{1}{2} d$. per oz. and half a stone of Dutch soffee at $1 s 10 d$. per Ht . -Make a copy of the Invoice.

Total amount $£ 3 . .5 . .5 \frac{3}{4}$.

BILLS OF BOOK-DEBTS.
(8) Mr Charles Cross,

Chester.
1830. To Samuel Grant and Co., Dr

April 14. Belfast butter, 1 cwt . at $0 \quad 6 \frac{1}{2}$ per fb . Cheese, 7 cwt .3 qrs .12 lb . at 560 long cwt.
May 8. Butter, $\frac{1}{2}$ firkin, 28 lb . at $0 \quad 5 \frac{1}{2}$ per tt .
July 17. 5 Chesh.cheeses, 127 lb . at $0 \quad 6 \frac{1}{4}$ "
Sept. 4. 2 Stilton ditto, 15 lb .at $010 \frac{1}{2}$ "
Cream cheese, 13 lb . at $0 \quad 8 \frac{1}{2}$ "

$$
\text { £30..1.. } 6 \frac{3}{3}
$$

Dec. 28. Received the contents, Samuel Grant.
(9) Mr. Charles Septimus Twigg, Newark. To Isaac Jones, Dr.
, 829.

$$
s . d
$$

£. s. d
1)ct. 22. Tares, 39 bushels at 110 per bush
.830 Pease, 18 bushels at 304 per qr.
Feb. 18. Malt, 7 qrs. . at 636 per qr. Hops, 2 cwt. 1 qr at $1 \quad 5$ per ft .
Feb. 20. Oats, 6 qrs. . at $24 \frac{1}{2}$ per bush. Beans, 17 qrs. . at 374 per qr.

$$
\overline{£ 84 . .9 . .11}
$$

1830. July 1. Recelved the above for Isaac Jones

Thomas West.

SIMPLE INTEREST

Is the premium allowed for the loan of any sum of money during a given space of time.

The Prin inal is the money lent, for which Interest is to be received.

The Rate per cent. per annum is the quantity of Interes, (agreed on between the Borrower and the Lender) to be paid for the use of every $£ 100$. of the Principai, for one year.

The Amount is the Principal and Interest added together.
I. To find the Interest of any Sum of Money for a Year.

Rule. Multiply the Principal by the Rate per cent. and that Product divided by 100 will give the Interest required.

Note. When the Rate is an aliquot part of 100 , the Interest may be calculated more expeditiously by taking such part of the Principal. Thus, for 5 per cent. take $\frac{1}{2}$; for 4 per cent. $\frac{1}{25}$, or $\frac{1}{5}$ of $\frac{1}{5}$; for 2 per cent. $\frac{1}{3}$, for $2 \frac{1}{2}$ per cent. $\frac{7}{4}_{\frac{1}{0}}^{0}$; for 3 per cent. $\frac{1}{50}$, olus $\frac{1}{2}$ of that; \&c.

This Rule is applied to the calculation of Commission. Brokerag., Purchasing Stocks, Insurance, Discounting of Bills, \&c.*
II. For several Years. Multiply the Interest of one jear by the number of years, and the product will be the answer.

For parts of a year, as months and days, \&c., the Interest may be found by taking the aliquot parts of a year; or by the Rule of Three: and it is customary to allow 12 months to the year, and 30 days to a month. \dagger

* To discount a Bill of Exchange is to advance the cash for it befrre it becomes due; deducting the Interest for the time it has to rur Bank. ers always charge Discount as the Interest of the sum.
\dagger At the rate of 5 per cent the interest of $\boldsymbol{f} 1$. for a year is 1 s ., or one penny for a month. Therefore, the principal \times the number of months, gives the interest in pruce.

Or. take the parts of a year for the months, out of as many shillings as there are pounds in the principul.

Thus, to find the interest of $£ \cdot 10 . .10$. for 2 monhs, say $40 \frac{1}{2} \mathrm{~d} . \times 2=$ $81 \mathrm{~d} .=6 \mathrm{~s} .9 \mathrm{~d} . ; \mathrm{or},: 2$ months being $\frac{1}{8}$ of a ycar, $40 \mathrm{~s} .6 \mathrm{~d} . \div 6=6 \mathrm{~s} .5 \mathrm{Ga}$. Ans.

For days, take the alipnot parts of a month. The interest for days at 5 per cent. may aiso he fomm by multiplying the principal by the number of days; and the pronluct divided ly 365 will give the answer in shillings; or divided ly $7300(-365 \times 2)$ will give the answer in pounds.
(1) What is the interest of $£ 375$. for a year, at $£ 5$. per cent. per annum ?*
(2) What is the interest of $£ 945 . .10$. for a year, at $£ 4$. per cent. per annum? Ans. £37..16..434.
(3) What is the interest of $£ 547 . .15$. at $£ 5$. per cent. per annum, for 3 years? Ans. £82..3..3.
(4) What is the intercst of $£ 254 . .17 . .6$. for 5 years, at $£ 4$. per cent. per annum?

Ans. £50..19..6.
(5) What is the amount of $£ 556 . .13 .4$. at $£ 5$. per cent per annum, in 5 years? Ans. $\mathfrak{L 6 9 5} .16$..8.
Note. Commission ud Brokerage (commonly called Brokage) are allowances of so much per cent. to an agent or broker, for buying or selling goods, or transacting business for amother.
(6) My correspondent informs me that he has bought goods to the amount of $£ 754 . .16$. on my account, what is his commission at $£ 2 \frac{1}{2}$. per cent. ? Aus. $£ 18 . .17 . .4 \frac{3}{4}$.
(7) If l allow my factor $£ 3 \frac{3}{4}$. per cent. for commission, what. will he require on $£ 876 . .5 . .10$? Ans. $£ 32 . .17 . .2 \frac{1}{2}$.
Note. Stock is a general term to designate the Capitals of our Trading Companies; or to denote Property in the Public Funds; which means the Money paid by Govermment for the interest of the Nationa! Debt. The quantity of Stock is a nominal sum, for which the owner receives a certain rate of interest while he holds the same.
(8) At $£ 110 \frac{1}{\frac{1}{4}}$. per cent. what is the purchase of $£ 2054 . .16$. South Sea stock ? Ans. £2265..8..4.
(9) At $£ 104 \frac{3}{8}$. per cent. South Sea annuitics, what is the purchase of $£ 1797 . .14$.?

Ans. £1876..6..113 $\frac{3}{4}$.
(10) At $£ 96 \frac{3}{4}$. per cent. what is the purchase of $£ 577 . .19$. Bank annuities?

Ans. $£ 559 . .3 . .3 \frac{3}{4}$.
(11) At $£ 124 \frac{5}{8}$. per cent. what is the purchase of $£ 758$.. 17..10. India stock? Ans. £945..15..44 .
(1.2) What sum will purchase $£ 1284$. of the 3 per cent. Consols, at $£ j y \frac{7}{8}$. per cent. ; including the broker's charge of f, or $2 s .6 d$. per cent. on the amount of stock ?

Ans. $£ 770 . .7 . .11 \frac{3}{4}$.
or it befre ur Bank. : is $1 \mathrm{~s} .$, or number of ny shillings $0 \stackrel{1}{2} d . \times 2=$ $6=6 s .9 a$.
st for days ipal by the the answer answer in
(13) If I employ a broker to buy goods for me, to the amount of $£ 2575 . .17 .6$. what is the brokerage at $4 s$. pes cent. ?*
(14) What is the broker's charge on a sale amounting to £7105..5..10. at 5 s .6 d . per cent. ? Ans. £19..10..91 .
(15) What is the brokage on goods sold for £975..6..4. at $6 s$. $6 d$. per cent. ?

Ans. £3..3.. $4 \frac{1}{2}$.
(16) What is the interest of $£ 257 . .5 . .1$. at $£ 4$. per cent. per annum, for a year and three quarters? Ans. $£ 18 . .0$.. $1 \frac{1}{2}$.
(17) What is the interest of $£ 479.5$. for $5 \frac{1}{4}$ years, at $£ 5$. per cent. per annum? Ans. $£ 125 . .16 . .0 \frac{3}{4}$.
(18) What is the amount of $£ 576 . .2 .7$. in $7 \frac{1}{4}$ years, at $£ 4 \frac{1}{2}$. per cent. per annum? Ans. £764..1..818
(19) What is the interest of $£ 259 . .13 . .5$. for 20 weeks, at £5. per cent. per annum?

Ans. $£ 4 . .19 . .10 \frac{1}{4}$.
(20) What is the interest of $£ 2726 . .1$..4. at $£ 4 \frac{1}{2}$. per cent per annum, for 3 years, 154 days ? Ans. $£ 419 . .15 . .6 \frac{1}{4}$.
(21) Compute the interest of $£ 155$. for 49 days, and for 146 days, at $£ 5$. per cent. per annum. Ans. $£ 1 . .0 . .9 \frac{1}{2}$. and $£ 3.2 . .0$.
(22) What will a banker charge for the discount of a bill of $£ 76 . .10$. and another of $£ 54$. negotiated on the 18 th of May; the former becoming due June 30, and the latter July 13 ; discounting at £5. per cent.? Ans. 8s. 11d. and 8s. 3d.
When the Amount, Time, and Rate per cent. are given, to find the Principal.
Rule. As the amount of $£ 100$. at the rate and for the time given is to $£ 100$., so is the amount given to the principal required.
(23) What principal being put to interest will amount to $\boldsymbol{E} 402 . .10$ in 5 years, at $£^{2}$. per cent. per annum ? \dagger
(24) What principal being put to interest for 9 years will amount to $£ 734 . .8$. at $£ 4$. per cent. per annum?

Ans. $£ 540$.

Rule. terest to
per cen
When
Rule.
interest f
and the
(29)
in 5 ye
in 7 ye
(31)
in 9 ye

Is the fore it gain at money hence,

$$
\begin{array}{r}
\hline \mathbf{~} . \\
\times 350 \\
\hline 10 \\
4 \\
A
\end{array}
$$

$\dagger \mathrm{As}$
years.
e, to the t $4 s$. pes punting to $10 . .9 \frac{1}{4}$. 5..6..4. at .. $3 . .4 \frac{1}{2}$. cent. per 3. $0 . .1 \frac{1}{2}$. s, at $£ 5$. .16..03. s, at $\boldsymbol{£} 4 \frac{1}{2}$. ..1. $1.8 \frac{1}{2}$. weeks, at 19..101 per cent $.15 . .6 \frac{1}{4}$. s , and for

E3..2..0. t of a bill 18th of latter July nd 8s. 3d. en, to find ne given is amount to years will $£ 540$.

Ans.
(25) What principal, being put to interest for 7 years at $£ 5$. per cent. per annum, will amount to $£ 334 . .16$.?

Ans. $£ 248$.
When the Principal, Rate per cent. and Amount are given, to find the Time.
Rule. As the interest for 1 year is to 1 year, so is the whole interest to the number of years.
(26) In what time will $£ 350$. amount to $£ 402.10$. at $£ 3$. per cent. per annum ?*
(27) In what time will $£ 540$. amount to $£ 734.8$. at $£ 4$. per cent. per annum? Ans. 9 years.
(28) In what time will $£ 248$. amount to $£ 334 . .16$. at $£ 5$. per cent. per annum?

Ans. 7 years.
When the Principal, Amount, and Time are given, to find the Rate per cent.
Rule. As the principal is to the whole interest, so is $\mathbf{£ 1 0 0}$. to its interest for the given time. Divide that interest by the number of years, and the quotient will be the rate per cent.
(29) At what rate per cent. will $£ 350$. amount to $£ 402 . .10$. in 5 years? \dagger
(30) At what rate per cent. will $£ 248$. amount to $£ 334 . .16$. in 7 years?

Ans. £5. per cent.
(31) At what rate per cent. will $£ 540$. amount to $£ 734 . .8$. in 9 years?

Ans. £4. per cent.

DISCOUNT

Is the abatement of so much money, on any sum received before it is due, as the money received, if put to interest, would gain at the rate, and in the time given. Thus $£ 100$. present money would discharge a debt of $£ 105$. to be paid a year hence, Discount being made at $£ 5$. per cent.

\boldsymbol{x}.

* $\frac{350 \times 3}{100}=£ 10 . .10$. the interest for 1 year.
$£ 402 . .10$. $-£ 350 .=£ 52 . .10$. the whole interest. As $£ 10 . .10: 1$ year : : $£ 52 . .10: 5$ years. Ans.
 years. Then $15 \div 5=£ 3$ the rate per cent.

Role. As $£ 100$ with its interest for the tine given is to that interest, so is the sum given to the Discount required.

Also, As that Amorint of $£ 100$. is to $\boldsymbol{£ 1 0 0}$., so is the given sum to the Present worth.

But if either the Discount or the Present worth be found by the proportion the other may be found by subtracting that from the given sum.
(1) What are the discount and present worth of $£ 386 . .5$. for 6 months, at $£ 6$. per cent. per annum ?*
(2) How much shall I receive in present payment for a debt of $£ 357 . .10$. due 9 months hence, allowing discount at £5. per cent. per annum? Ans. £344..11..6 $\frac{3}{4} \frac{1}{8} \frac{5}{3}$.
(3) What is the discount of $£ 275 . .10$. for 7 months, at $£ 5$. per cent. per annum? Ans. £7..16..1 $\frac{3}{4} \frac{9}{24} \frac{5}{7}$.
(4) What is the present worth of $£ 527$.9..1. payable in 7 months, at $£ 4 \frac{1}{4}$. per cent. per annum ?

$$
\text { Ans. £514..13..101 } \frac{1}{2} \frac{693}{2459} .
$$

(5) Required the present worth of $£ 875 . .5 . .6$. due in 5 months, at $£ 4 \frac{1}{2}$. per cent. per annum. Ans. $£ 859 . .3 . .3 \frac{3}{4} \frac{7}{4} \frac{5}{7} \frac{5}{5}$.
(6) What is the present worth of $£ 500$. payable in 10 months, at $\mathfrak{£ 5}$. per cent. per annum?

Ans. $£ 480$.
(7) How much ready money ought I to receive for a note of $£ 75$. due in 15 months, at $£ 5$. per cent. per annum?

$$
\text { Ans. } £ 70 . .11 . .9_{\frac{3}{17}} .
$$

(8) What will be the present worth of $£ 150$. payable at 3 instalments of four months ; i. e. one-third at 4 months, onethird at 8 months, and one-third at 12 months, discounting at $£ 5$. per cent. per annum?

Ans. £145..3..8 $\frac{1}{2}$.
(9) Of a debt of $£ 575 . .10$. one moiety is to be paid in 3 months, and the other in 6 months. What discount must be allowed for present payment, at $£ 5$. per cent. per annum? Ans. £10..11..4

$$
\begin{aligned}
& \boldsymbol{£} . \quad \mathbf{£} . \quad \mathbf{~} . \quad s . \\
& \text { As } 103: 3:: 386 . .5 \text { £. } \text {. } \\
& 3386 . .5 \\
& \text { 103) } \overline{1158 . .15}(11 . .5 \text { discount. } \\
& \frac{1133}{25} \quad \overline{375 . .0} \text { present worth. } \\
& \frac{20}{103) 515}=58 .
\end{aligned}
$$

(10)

per anr

 6 mont(11) credit, much r

Note. precisely Ainount, See pag

Is that that is, not bei Interes

Rule. then find for the n and the
to that in. sum to the y the prothe given
(10) What is the present worth of $£ 500$. at $£ 4$. per cent. per annum, $£ 100$. being to be paid down, and the rest at two 6 months? \quad Ans. £488.7..81 $\frac{1}{2}$.
(11) Bought goods amountirg to $£ 109.1 \mathrm{G}$. at 6 months' credit, or $£^{\prime 3} \frac{1}{2}$. per cent. discount for prompt payment. How much ready money will discharge the account?*

Ans. £105..13..4 $\frac{1}{2}$.
Note. The Rule to find the present worth of any sum of money is precisely identical with that case in simple Interest in rihich the Amount, Time, and Rate per cent. are given to find the Principal. See page 63.

COMPOUNJ) INTEREST

Is that which arises from both the Principal and Interest: that is, when the interest of money, having become due, and not being paid, is added to the Principal, and the subsequent Interest is computed on the Amount.

Rule. Compute the first year's iuterest, which add to the principal: then find the interest of that amount, which add as before, and so on for the number of years. Subtract the given sum from the last Amount, and the remainder will be the Compound Interest.
(1) What is the compound interest of $£ 500$. forborne 3 years, at $£ 5$. per cent. per anmum ? \dagger
(2) What is the amount of $£ 400$. in $3 \frac{1}{2}$ years, at $£ 5$. per cent. per annum, compound intcrest? Ans. £474..12..6 $6 \frac{1}{4}$.
(3) What will $£ 650$. amount to in 5 years, at $£ 5$. per cent. per annum, compound interest? Ans. $£ 829 . .11 . .7 \frac{1}{2}$.
(4) What is the amount of $£ 550 . .10$. for $3 \frac{1}{2}$ years, at $£ 6$ per cent. per annum, compound interest? Ans. $£ 675 . .6 . . \overline{5}$.
(5) What is the compound interest of $£ 764$. for 4 years and 9 months, at $£ 6$. per cent. per annum?

Ans. £243..18..8.

\footnotetext{
*The discount in cases of this sort is so much per cent. on the sum, without regard to time. It is, therefore, computed as a year's interest.

(6) What is the compound interest of $£ 57 . .10 .6$. for 5 years, 7 months, and 15 days, at $\mathfrak{E} 5$. per cent. per annum ? Ans. £18..3..84.
(7) What is the compound interest of $\pm 259 . .10$. for 3 years, 9 months; and 10 days, at $£ 4 \frac{1}{2}$. per cent. per annum ? Ans. L46..19..101

EQUATION OF PAYMENTS

Is when several sums are due at different times, to find a mean time for paying the whole debt; to do which, this is tho common
Rule. Multiply each term by its time, and divide the sum of tho products by the whole delt, the quotient is accounted the mean time

$$
£^{2}
$$

(1) A owes B £200. whereof

$$
40 \times 3=120
$$ $\boldsymbol{£} 40$. is to be paid at 3 months, $\mathcal{f} 60$. at 5 months, and $£ 100$. at 10 months: at what time may the whole debt be paid together without prejudice to either?

$$
60 \times 5=300
$$

$$
100 \times 10=1000
$$

$$
2 \mid 0 0 \longdiv { 1 4 | 2 0 }
$$

$$
\text { Ans. } 7 \frac{1}{10} \text { months. }
$$

(2) B owes C $£ 800$. whereof $£ 200$. is to be paid at 3 months, $£ 100$. at 4 months, $£ 300$ at 5 months, and $£ 200$. at 6 months; but they agree that the whole shall be paid at once; what is the equated time? Ans. 4 months, $18 \frac{6}{8}$ days.
(3) A debt of $£ 360$, was to have been paid as follows: viz.: $£ 120$. at 2 months, $£ 200$. at 4 months, and the rest at 5 months ; but the parties have agreed to have it paid at one mean time: what is that time? Ans. 3 months, $13 \frac{1}{3}$ days.
(4) A merchant bought goods to the value of $£ 500$. to pay $£ 100$. at the end of 3 months, $£ 150$. at the end of 6 months, and $£ 250$. at the end of 12 months; but it was afterwards agreed to discharge the debt at one payment: required the time.

Ans. 8 months, 12 days.
(5) H is indebted to L a certain sum, w.ich is to be paid at 6 different payments, that is $\frac{1}{4}$ at 2 months, $\frac{1}{8}$ at 3 months, $\frac{1}{8}$ at 4 months, $\frac{1}{4}$ at 5 months, $\frac{1}{8}$ at 6 months, and the rest at 7 months; but they mutually agree that the whole shall be paid at one equated time: what is that time? Ans. $4 \frac{1}{4}$ months.
(6) A is indebted to $\mathrm{B} £ 120$. whereof $\frac{1}{2}$ is to be paid at 3 months, $\frac{1}{4}$ at 6 months, and the rest at 9 months: what is the equated time of the whole payment? Ans. $5 \downarrow$ months.

Is the Rols articicle at the ra Nots. above portiona fule of change
lb. roai has ho to char 20 cwt. 4 cot. :
per cut per yar the ball
for $3 \frac{1}{2}$
(6) must be per cut

As

+ As for the

A_{B}
 48

BARTER

Ls the exchanging of commodities.

Roles. Compute, by the most expeditious method, fae value of the article whose quantity is given: then find what quantity of the other at the rate proposed, may be had for the same money.

Nors. Sometimes one tradesman, in bartering, advances his goods above the reuly money price. In this case, it will be necessary to proportionate the other's burtering price to his realy money price, by tho Rule of Three.
(1) What quantity of chocolate at $4 s$. per $l b$. must be ex. changed for 2 cut. of tea, at 9 s. per $l b$. ?*
(2) A and B. barter: A has 20 . cut. of prunes, at $4 d$. per lb. roady monicy, but in barter will have $5 d$. per. $l h$., and 13 has hops worth $32 s$. per out. ready money: what ougii I: to charge his hops, and what quantity must he give for the 20 cwt. of prunes?
(3) How much tea at 9s. per ib. cán I have in barter for 4 cut. 2 qus. of chocolate, at $4 s$. per $l b$.? ... Ans. 2 cwt.
(4) A exchanges with $\mathrm{B} 23 \frac{5}{2}$ cwt. of cheese, worth 52 s 6 d . per cut., for 8 pieces of cloth conitaining 248 yards, at $4 s .4 d$. per yard; the difference to be paid in money. Who receives; the balance, and how much ?... Ans. A.receives $£ \%$..19..1.
(5) How much ginger at $15 \frac{1}{4} d$. per $l b$. must be exchanged for $3 \frac{1}{2} l b$. of pepper, at $13 \frac{1}{2} d$. per $l b$? Ans. $3 l b .1 \frac{3}{6} \frac{5}{1}$ oz.
(6) How many dozen of candles, at $5 s .2 d$. per dozen, must be bartered for 3 cut .2 qrss. 16 lb . of tallow, at 37 s .4 d . per cust.? Ans. 26 dozen, $3 \frac{5}{6} \frac{4}{2} l b$.
(7) A exchanges with B 608 yards of cloth, worth $14 s$ pes

* $224 \times 9=2016$ s. the value of the toa.

As $4 \mathrm{~s} .: 1 \mathrm{lb} .:: 2016 \mathrm{~s} .: 504 \mathrm{lb}$. of chocolate. Ans.

+ As $4 d .: 5 d .:: 32 s$. $40 s$. the price per cuct to be charged for the hops.

$$
20 \mathrm{cwt} .=2240 \mathrm{lb}
$$

11200 d . the value of the prunes.
 $\frac{13}{480} d$
yard, for 85 avt. 2 qrs. 24 ll . of war, and $£ 125 . .12$. in cash. What was the wax chargei. per cwt.? Ans. £3..10.
(8) Λ barters with 1320 dozen of candles at $4 s .6 d$. pet dozen, for cotton at $8 l l$. per $l b$. and 5300 . in $3 h$. What was the quantity of cotton? Ans. 11 cwt. 1 qr.
(9) How much cotton, at $1 s .2 d$. per $l b$. must be given for 114 lb . of tebacco, at $6 d$. per $l b$. ?

Ans. $48 \frac{9}{7}$ lb.

PROFIT AND LOSS

is a Rule by which we discover the gain or loss in the buy. ing and selling of goods; and which enables us to adjust the prices of articles, so as to gain or lose so much per cent., \&c.

The questions are solved by the Rule of I'hree, or Practice
The prime cost means the purelase money: therefore
The prime cost $\left\{\begin{array}{c}\text { plus the gain, or } \\ \text { minus the loss, }\end{array}\right\}$ equal the selling price.
The selling prico minus $\left\{\begin{array}{l}\text { the prime cost equal the gain. } \\ \text { the gain equal the prime } \text { cust. }\end{array}\right.$
The selling price plus the loss equal the prime cost.
Gain or loss per cent. meaus so mach on $£ 100$. purchase money, or prime cost: therefore, when $£ 20$. per cent. are gained, $£ 120$. is the selling price per cent.; when $\mathfrak{£ 2 0}$. per cent. are lost, $£ 80$. is the sell ong pricc.

Case 1. Given, the prime cost and the selling price of an integer or quantity, to find the gain or esss per cent.

As the prime cost given: the gain or loss : : $£ 100$. : the gain or los per cent.

Case 2. Given, the prime cost as before, with a proposed gain or lost per cent. to fiud the selling price.

As $£ 100$.: $\left\{\begin{array}{c}£ 100 \text {. plis the gain } \\ \text { or } £ 100 \text {. minus the loss }\end{array}\right\}: \begin{aligned} & : \text { the prime cost }: \text { the selling } \\ & \text { price. }\end{aligned}$
Case 3. Given, the selling price of an integer or quantity, and the gain or loss per cent. to find the prime cosb
$\left.\begin{array}{l}\text { As } £ 100 \text {. plus the gain } \\ \text { or, } £ 100 \text {. minus the loss }\end{array}\right\}: £ 100$.: : the selling price : the prime cost
Case 4. Given, the selling price of an integer, and the gain per cent. to find the gain pir cent. at some other proposed price.

As the selling price $: £ 100$. plus the gain :: the proposed price : the selling price per cent. from which deduct $£ 100$. for the gain per cent. required.
Secondly, To find another selling price, at a diferent gain per cent.
As $£ 100$. plus the gain : the selling price $:: £ 100$. plus the proposed gain: the selling prace required.
A mnch greater variety of cases may oceur ; but it is presumed that the student wno arains a due knowledge of these will casily compre lond tue retim

Assist
(1)
is the
cent.
(5)
for 16
(6)
for to
cent. p
(8)
cent. p
they hi
(9)
yard to
(10)
gained
him pe
(i1)
8. $6 d$.
(12)
(18)
same be
(14)
retailed gain, an
[TUTOR's
125..12. in s. £3..10. $4 s .6 d$. per What was cwt. 1 qr. le given for s. $48 \frac{9}{7} l b$.
in the buy. to adjust the er cent., \&c. or Practice
rice.
ase money, of £120. is the 30. is the sell an integer or re gain or loss ed gain or loss t : the selling , and the gain
he prime cosh gain per cent.
ed price : the gain per cent.
ain per cent. the proposed
presamed that asily compre

ABSISTANT.] PROFIT AND LOSS.
(1) If 1 yard of cloth cost 11 s . and is sold for 12 s . 6 d : what is the gain per cent. ?*
(2) If 60 ells of Holland cost $£ 18$. what must 1 ell be sold * for to gain £8. per cent. ? \dagger
(3) If 1 lb . of tobacco cost 1 Gd . and be sold for 20 d . what is the gain per cent.? Ans. £25.
(4) If a parcel of cloth be sold for $£ 560$. gaining $£ 12$. per cont. what is the prime cost?

Ans. £500.
(5) If a yard of cloth be bought for 13s. $4 d$. and sold againt for $16 s$. what is the gain per cent.? Ans. $£ 20$.
(6) If 112 lb . of iron cost 27 s .6 d . what must 1 cwt . be sold for to gain £15. per cent.? Ans. £1..11..71 .
(7) If 375 yards of cloth be sold for $£ 490$. at $£ 20$. per cent. profit, what did it cost per yard ? Ans. £1..1.. $9 \frac{1}{4} \frac{1}{3} \frac{2}{5} \frac{5}{5}$.
(8) Sold 1 cwit. of hops for $£ 6 . .15$. at the rate of $£ 25$. per cent. profit. What would have been the gain per cent. if they had been sold for $£ 8$. per cwt.? Ans. £48..2.. $11 \frac{1}{2} \frac{2}{9}$
(9) If 90 ells of cambric cost $£ 60$. how must I sell it per yard to gain $£ 18$. per cent. ? Ans: $12 s .7 \frac{18}{4} \frac{18}{50} d$.
(10) A plumber sold 10 fothers of lead for $£ 204 . .15$. and gained after the rate of $£ 12.10$, per cent. What did it coss him per cwt.? Ans. 18s. $8 d$:
(11) What was the profit on 436 yards of cloth, bought at 8s. 6d. and sold at 10 s. $4 d$. per yard? Ans. $£ 39 .: 19 . .4$.
(12) Bought 14 tons of steel at $£ 69$. per ton, which was tetailed at $6 d$. per $l b$. What was the loss sustained ?
(13) Bought 124 yards of linen for $£ 32$. Hows. should the same be retailed per yard to gain $£ 15$. per cent. ?

$$
\text { Ans. } 5 s: 11 \frac{98}{124} d
$$

(14) Bought 249 yards of cloth at $3 s$. 4π. per yard, and retailed the same at $4 s$. $2 d$. per yard. What was the whole gain, and how much per cent. ? \ddagger

Ans: £10..7..6. profit; and £25. per cent.

$$
\begin{aligned}
& \text { sixp. } \frac{\frac{2}{22}}{\text { cost }} \frac{\frac{2}{3}}{\text { s. }{ }^{\text {sixp }}}
\end{aligned}
$$

price. And $£ 19.8 . .9 \frac{1}{1} \div 60=6 s .55_{4}^{3} d$. the price per ell.
t tor the sulving of this question, see Cases 1 and $\%$

FELLOWSHIIP, OR PARTNERSHIP

Is a rule by which any number or quantity may be divided

* into certain proportionate parts. It is applied to determine the respective shares of gain or loss of the several partners in a company; in proportion to their respective shares of the capital employed as a joint stock : also in the division of common lands, and other cases of a similar kind.

FELLOWSHIP WITHOUT TIME.

Ruif. As the whols stock is to the wholo gain or loss; so is each individual share to the correspondent gain or loss.

Pronf. The sum of the shares will be equal to the wholo gatn or loss.
(1) A and B join in trade. A puts into stock $£ 20$. and B $\mathfrak{£} 40$; they gain $£ 50$. What is the share of each ?*
(2) A, B, and C joined in trade; A put in $£ 20$; B $£ 30$ and C $£ 40$; and they gained $£ 180$. Whatt is each man's part of the gain? Ans. $A \notin 40 . B \notin 60 . C £ 80$.
(3) Four persons, B, C, D, and E formed a joint stock; B put in $£ 227$; C $£ 349 ; \mathrm{D} £ 115$; and E $£ 439$; they gained £428. Required each person's share of the gain.

$$
\text { Ans. } B £ 85 . .19 . .6 \frac{3}{4} \frac{69}{11_{3}} . C £ 132.3 . .9 \frac{12}{113}:
$$

1) $£ 43 . .11 . .1 \frac{3}{4} \frac{235}{113}, E £ 166, .5$.. $6 \frac{1}{4}{ }^{\frac{7}{17} 3^{2}}:$
(4) D, E, and F entered into partnership. D's stock was $£ 750$; E's $£ 160$; and F's $£ 500$; and at the end of 12 months they lad gained $£ 684$. What is each man's particular shaio of the gain? $\quad A n s, D £ 300, E £ 184$. and $F £ 200$.
(5) A tradesman is indebted to $\mathrm{B} £ 275 . .14$; to $\mathrm{C} £ 304 . .7$; to $\mathrm{D} £ 152$; and to $\mathrm{E} £ 104 . .6$; but upon his decease his estate is found to be worth but $£ 675 . .15$. How must it be divided among his creditors ?
Ans. B's share £222..15..2-6584. C's $£ 245 . .18 . .1 \frac{1}{2}-15750$. D's $£ 122 . .16 . .2 \frac{3}{4}-12227$. and E 's $£ 84 . .5 . .5-15620$.
(6) Four persons trade together with a joint capital ; of which A has $\frac{1}{3}, \mathrm{~B} \frac{1}{6}, \mathrm{C} \frac{1}{6}$, and $\mathrm{D} \frac{1}{6}$, and at the end of 6

$$
\begin{aligned}
& \text { * } 20+40=60 \\
& \text { As } 60: 50::\left\{\begin{array}{r}
20: \pm 16.13 . .4=\text { A's share. } \\
40: \text { 33.. } 6 . .8=B^{\prime} \text { 's share. }
\end{array}\right. \\
& \text { 50.. 0.. } 0 \text { Proof. }
\end{aligned}
$$

shonths they gain $£ 100$ ．What is cach person＇s share of the gain？

Ans．A £35．．1．．9－12．B £26．．6．．34－9．

C $£ 21 . .1 . .0 \frac{1}{2}-30$. and 1$) . £ 17 . .10 . .10 \frac{1}{2}-6$.
（7）Two persons joined in the purchase of an estate yield－ ing $£ 1700$ ．per annum， 10 er $£ 27200$ ．whereof D paid $£ 15000$ ： and E the rest ：some time after，they sold it for 24 years purchase．What was each person＇s share ？＊

Ans．$D £ 22500 . E \nsubseteq 18300$.
（8）D，E，and F，form a joint capital of £047．Their re－ spective shares are in proportion to each other as 4,6 ，and 8 ．
；so is eacid whole gatu £20．and B h ？
0 ；B $£ 30$ each man＇s ．C $£ 80$ ． nt stock ；B they gained
． $3 . .9 \frac{12}{113}$ ． ．．5．． $6 \frac{1}{4}-\frac{7}{13}:$ ＇s stock wis of 12 months ticular shä̈e $l F £ 200$. ；＇C $£ 304 . .7$ ； decease his w must it bo
． $1 \frac{1}{2}-15750$ 5－15620． t capital ；of the end of 6 and the gain is equal to D＇s stock．Required each person＇s stock and gain．

$$
\begin{aligned}
& \text { Ans. D's stock £143..15..6每 gain, £31..19..0年7. } \\
& \text { E's . . . 215..13..4 . . . 47..18.. } 6_{\frac{6}{27}} \text {. } \\
& \text { F's . . . 287.11..13 . . } 63 . .18 . .0 \frac{3}{2} \frac{3}{7} .
\end{aligned}
$$

（9）D，E，and F，joined in partnership；the amount of their stock was $£ 100$ ；D＇s gain was $£ 3$ ；E＇s $£ 5$ ；and F＇s $£ 8$ ； what was each man＇s stock ？

Ans．D＇s stock $£ 18 . .15$ ．E＇s $£ 31 . .5$ ．and F＇s $£ 50$ ．

FELLOWSHIP WITH TIME，

Rule．As the sum of the products of each person＇s money and tipne， is to the whole gain or loss；so is each individual product to the cor－ responding gain or loss．
（1）D and E enter into partnership；］puts in $£ 40$ ．for three months，and E $£ 75$ ．for four months，and they gain £70．What is each man＇s share of the gain ？\dagger
（2）Three tradesmen joined in company；I）put into the joint stock $£ 195 . .14$ ．for three months； $\mathrm{E} £ 169 . .18 . .3$ ．for 5 months；and F £59．．14．．10．for 11 months：they gained $\underset{f}{\ddagger} 34 . .18$ ．What is each min＇s share of the gain？

Ans．D＇s £102．．6．．4—5008．L＇s＇s £148．．1．．1彣－482S02． and F＇s $\mathfrak{L 1 1 4 . . 1 0 . . 6 \frac { 1 } { 4 } - 1 4 7 0 7 .}$
（3）Three merchants join in company for 18 months： 1 ， purs in $£ 500$ ．and at 5 montlis＇end akes out $£ 200$ ．at 10

[^17]| ＋ $40 \times 3=120$ | As $4010 \cdot 710 \cdot\left\{\begin{array}{l}\text { 120 }\end{array}\right.$ |
| :---: | :---: |
| $75 \times 4=300$ | |
| 420 | $\overline{70}$ Proof． |

months' end puts in $£ 300$. and at the ond of 14 noonths takes out $£ 130$; E puts in $£ 400$. and at the end of 3 months $£ 270$ more, at 9 months he takes out $£ 140$. but puts in $£ 100$. at the end of 12 months, and withdraws $£ 99$. at the end of 15 months ; F puts in $£ 900$. and at 6 months takes out $£ 200$, at the end of 11 months puts in $\mathcal{L} 500$. but takes out that and $£ 100$. more at the end of 13 months, They gain $£ 200$. Required each man's share of the gain.

Ans. D £50..7..6—21720. E' $£\left(62 . .12 . .5 \frac{1}{4}-29859\right.$, and $I^{\prime} £ 87 . .0 . .0 \frac{1}{4}-14167$.
(4) D, E, and F, hold a piece of ground in common, for which they are to pay $\mathfrak{f} 36 . .10 . .6$: 1) puts in 23 oxen 27 days; E 21 oxen 35 days; and F 16 oxen 23 days. What is each man to pay of the said rent?

Aus. D £13..3..11 $\frac{1}{2}-624 . E £ 15 . .11 . .5-1688$. aud F £ $7 . .15 . .11$ - 113 ü.

ALLIGATION

Is a rule by which we ascertain the mean price of any com. pound formed by mixing ingredients of various prices; or the quantitios of the various articles which will form a mixture of a certain mean or average value. It comprises four distinct casos.

Case 1. Alligation Medial. The various quantities and prices being given, to find the mean price of the mixture.
Rule. Multiply each quantity by its price, and divide the sum of the products ly the sum of the quantities.*
(1) A grocer mixed 4 cut . of sugar, at 56 s . per cwt , with 7 cwt . at 43 s . per cwt. and 5 cwt . at 37 s . per cwt. What is the value of 1 cwt . of this mixturo? Ans. $\mathscr{E L}$?. $4.4 \frac{1}{2}$.
(2) A vintner mixes 15 gallons of canary, at $8 s$. per gallon, with 20 gallons, at $7 s .4 d$. per gallon; 10 gallons of sherry,

Fxample.

* A farmer mixed 20 busliels of whent, at 5 s . per bushel, and 36 bushels of rye, at $3 s$ per bushel, with 40 bushels of barley, at $2 s$. per bushel. What is the worth of bushel of this mixture?

$$
\begin{aligned}
& 5 . \\
& 20 \times 5=100 \\
& 36 \times 3=103 \\
& 40 \times 9=80 \\
& \left.\frac{90}{9} \quad 96\right)
\end{aligned}
$$

at $6 s$. per gal
quarter quarter quarter
with 1
Lisbon
per qua
(5)
with 8
the fine

Cas
being $\}$ bear a

Rule. average
Link
Place Is linke quantitic

Note. accordin bers pro
(1) 20d. 2 be take
at $6 s .8 d$. per gallon; and 24 gallons of white wine, at $4 s$ per gallon. What is the worth of a gallon of this mixture?

$$
\text { Ans. } 6 s .2 \frac{1}{2} \frac{4}{6} \frac{6}{9} d .
$$

(3) A malster mixes 30 quarters of brown malt, at 289 . per quarter, with 46 quarters of pale, at $30 s$. per quarter, and 24 quarters of high dried ditto, at $25 s$. per quarter. What is one quarter of the mixture worth? Ans. $\mathcal{L} 1 . .8 . .2 \frac{1}{\frac{1}{1}} \frac{6}{10} d$.
(4) A vintner mixes 20 quarts of port, at $5 s .4 d$. per quart, with 12 quarts of white wine, at $5 s$. per quart, 30 quarts of Lisbon, at $6 s$. per quart, and 20 quarts of mountain, at $4 s .6 d$. per quart. What is a quart of this mixture worth ?

$$
A n s .5 s .3 \frac{3}{4} \frac{5 n}{8} \frac{n}{2} d .
$$

(5) A refiner melts 12 lb . of silver bullion, of 6 oz . fine, with 8 lb . of 7 oz . fine, and 10 lb . of 8 oz . fine; required the fineness of 1 lb . of that mixture.

$$
\text { Ans. } 6 \text { oz. } 18 \text { dwt. } 16 \mathrm{gr} .
$$

Case 2. Alligation Alternate. The various prices being given, to find the quantities which may be mixed, to bear a certain average price.

Rule. Arrange the given prices in one column, with the proposed average price on the left.
Link each less than the average with one greater.
Place against each term the difference between that with which it Is linked and the mean: and the respective differences will be the quantities required.

Note. Questions in this rule admit of a great variety of answers, according to the mamer of linking ticai。 also by taking other numbers proportional to the answers iond
(1) A vintner would mix four anrts of wine together, of $18 d$. 20 d .24 d . and 28 d . per quart, what quanty of each sort must be take to sell the mixture ai: $22 d$. per quart ? ${ }^{*}$
(2) A grocer would mix sugar at $4 d .6 d$. and $10 d$. per $l b$

so as to sell the compound fur $8 d$. por $l b$. What quantity of each kind must he take?

$$
\text { Ans. } 2 \text { lb. at } 4 d .2 \text { ll. at } 6 d . \text { and } 6 \text { lb. at } 10 d .
$$

(3) How much tea at $16 s .14 s .9 s$. and $8 s$. per $l b$. will compose a mixture worth $10 s$. per $l b$.?

Ans. 1 lb . at 16s. 2 lb . at 14 s .6 lb . at 9 s . and 4 lb . at 8 s .
(4) A farmer would mix as much barley, at $3 s .6 d$. pet bushel, rye at $4 s$. per bushel, and oats at $2 s$. per bushel, as will make a mixture worth $2 s$. $6 d$. per bushel. How much of each sort ? Ans. 6 b. of bariey, 6 of rye, and 30 of oats.
(5) A tobacconist would mix tobacco at 2 s ., $1 s$. $6 d$. , and $1 s .3 l l$. per $l l$. so that the compound may be worth $1 s .8 d$. per $l b$. What quantity of each sort must he take?

Ans. 7 ll . at $\mathfrak{2} s .4 \mathrm{lb}$. at 1 s .6 d . and 4 lb . at 1 s .3 d .
Case 3. Alligation Partial. This is similar to Case 2. except that one of the quantities is timited.

Rule. Link the prices, and place the differences as before.
Then, as the difference opposite to that whose quantity is given, is to each other difference; so is the given quantity to each required quantity.
(1) A tobacconist intends to mix 20 lb . of tobacco at $15 d$. fer 16 . with others at $16 d .18 d$. and $22 d$. per $l b$. How many pounds of each sort must he take to make one pound of the mixture worth 17d.?*
(2) How much coffee, at $3 s$. at $\check{c} s$. and at $1 s$. $6 \dot{d}$. per $l b$. with 20 lb . at $5 s$. will make a mixture worth $2 s .8 d$. per $l b$.? Ans. 35 ll . at 3 s . 70 lb . at 2 s . and 10 lb . at 1 s . 6 d .
(3) A distiller would mix 10 gallons of French brandy, at $48 s$. per gallon, with British at $28 s$. and spirits at $16 s$ s. per gallon. What quantity of each sort must he take to afford it for $32 s$. per gallon? Ans. 8 British, and 8 spirits.
' (4) What quantity of teas at 12 s .10 s . and 6 s . muṣt ve mixed with 20 jt . at $4 s$. per ft . that the mixture may be words $8 s$. per lb.? Ans. 10 lb . at 6 s . 10 lb . at 10s. 20 lb . at 12 s l. per $l b$? $1 s .6 d$. brandý, at at $16 s$. per to afford it spirits.
s. muṣ̀ 've y be wort b. at $12 s$

Case 4. Alligation 'Total. 'This is also similar to Case 2, except that the whole quantity of the compound is limited.

Rule. Link the prices, and place the differences as before.
Then, As the sum of the differences is to each particular difference; so is the quantity given to each required quantity.
(1) A grocer has four sorts of sugar at 12d. 10d. 6d. and $4 d$. per $l b$. and would make a composition of $144 l b$. worth $8 d$. per $l b$. What quantity of cach sort must he take ?*
(2) A grocer having 4 sorts of tea at $5 s .6 s$. $8 s$. and $9 s$. per $l l$. would have a composition of 87 ll . worth 7 s . per $l b$. What quantity must there be of each sort ?
Ans. $14 \frac{1}{2} \mathrm{lb}$. of 5 s . 29 lb . of $6 s .29 \mathrm{lb}$. of 8 s . and $14 \frac{1}{2} \mathrm{lb}$. of 9 s .
(3) A vintner having 4 sorts of wine, viz, white wine at $16 s$. per gallon, Flemish at $24 s$ s per gallon, Malaga at $32 s$. per gallon, and Canary at 40 s . per gallon; would make a mixture of 60 gallons worth $20 s$. per gallon. What quan: tity of each sort must he take?

Ans. 45 gallons of white wine, 5 of Flemish, 5 of Malaga, and 5 of Canary.
(4) A jeweller would melt together four scrts of gold, of $24,22,20$, and 15 carats fine, so as to produce a compound of 42 oz . of 17 carats finc. How much must he take of each sort? Ans. 4 oz. of $24,4 \mathrm{oz}$. of $22,4 \mathrm{oz}$. of 20 , and 30 , oz. of 15 carats fine.

COMPARISON O WEIGHTS AND MEASURES.

This is merely an application of the Rule of Proportion.
(1) If 50 Dutch pence be worth 65 French pence, how many Dutch pence are equal to 350 French pence ? \dagger
(2) If 12 yards at London make 8 clis at Paris, how many; ells at Paris will make 64 yaïls at London? Ans. $42 \frac{2}{3}$

(3) If 30 lb at London make 28 lb . at Amsterdam, how many $l b$. at London will be equal to 350 lb . at Amsterdam?

Ans. 375.
(4) If 95 lb . Flemish make 100 lb . English, how many $l b$. English are equal to 275 ll . Flemish? Ans. 289? $\frac{\rho}{19}$

PERMUTATION

Is the changing or varying of the order of things.
To find the number of changes that may le made in the position of any givein number of thengs.
Rule. Multiply the numbers $1,2,3,4$, \&e., continnally together, to the given number of terms, and the last product will be the answer.
(1) How many changes may be rung upon 12 bells, and n what time would they be rung, at the rate of 10 changes in a minute, and reckoning the year to contain 365 days, 6 hours?
$1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10 \times 11 \times 12=479001600$ changes, which $\div 10=47900160$ minutes $=91$ years, 26 days, 6 hours.
(2) A young scholar, coming to town for the convenience of a good libsary, made a bargain with the person with whom he lodged, to give him £40. for his board and lodging during so long a time as he could place the family (consisting of 6 persons besides himself) in different positions, every day at dinner. How long might he stay for his $£ 40$?

Ans. 5040 days.

VULGAR FRACTIONS.

DEFINITIONS.

1. A Fraction is a part or parts of a unit, or of any whole number or quantity; and is expressed by two numbers, called the terms, with a line between them.
2. The upper term is called the Numerator, and the lower corm, the Denominator. The Denominator shows into how
lam, how erdam? s. 375. many $l b$. $289 \frac{\circ}{19}$
he position
together, to e answer.
bells, and 0 changes 365 days,

1 the lower into how
nany equal parts unity is divided and the Numerator is the number of those equal parts signified by the Fraction.*
3. Every Fraction may be understood to represent Division; the Numerator being the dividend, and the Denominator the divisor. \dagger

Fractions are distinguished as follows:

4. A Simple Fraction consists of one numerator and one denominator: as $\frac{3}{4}, \frac{1}{12}, ~ \& x c$.
5. A Compound Fraction, or fraction of a fraction, consists of two or more fractions connected by the word of: as $\frac{1}{2}$ of $\frac{3}{5}$ of $\frac{7}{T_{2}^{2}}, \& c$. This properly denotes the product of the several fractions.
6. A Proper Fraction is one which has the numerator less than the denominator: as $\frac{1}{4}, \frac{3}{4}, \frac{3}{4}, \frac{1}{1}, 8$ e. +
7. An lmproper Fraction is one which has the numerator either equal to, or greater than the denominator: as $\frac{4}{4}, \frac{5}{4}$, $\frac{2}{4}, \frac{15}{1}, \& c . \ddagger$
8. A Mixed Number is composed of a whole number and a fraction, as $1 \frac{2}{3}, 17 \frac{1}{2}, 8 \frac{1}{9} \frac{1}{7}, \& c$.
9. A Complex Fraction has a fractional numerator or denuminator: but this denotes Division of Fractions. Thus, $\frac{\frac{2}{3}}{\frac{5}{6}}$, two-thirds divided by five-sixths, $\frac{8}{1 \frac{2}{3}}$, eight divided by one and two-thirds.

* In the fraction five-twelfths $\left(\frac{5}{i}, 2\right)$) the Denominator 12 shows that the- unit or whole quantity is supposed to be divided into 12 equal parts: so that if it be one shilling, each part will be one-twelfth of 1.s. or one penny. The Numerator shows that 5 is the number of those twelfth parts intended to be taken: so $\frac{5}{12}$ of a shilling are the same as 5 pence ; $\frac{5}{2}$ of a foot, the same as 5 inches.
\dagger The fraction $\frac{5}{32}$ signifies not only $\frac{5}{12}$ of a unit, but 5 units divided into 12 parts, or a twelfth part of five : and it is obvious that five twelfth parts of one shilling (or five pence) is the same as one. twelfth part of five stillings. 'This mode of considering Fractions temoves many of the student's difficulties.
\ddagger A proper fraction is alvays less than umty: thus $\frac{3}{4}$ wants one fourth, and $\frac{11}{12}$ wants one-twelfth of being ecual. to 1 . But an ims proper fraction is equal to unity when the teroi: are equal, and greater than unity when the mumerator is itat g"octor.

Thus $\frac{4}{4}$, or $\frac{11}{11}$, or $\frac{73}{73}$, is each $=1$; and $-: \frac{69}{2}=3 \frac{9}{25}$.
10. A Common Measure (or Divisor) is a number that will exactly divide both the terms. When it is the greatest number by which they are both divisible, it is called the Greatest Common Measure.

Note. A prime number has no factor, except itself and unity.
A rultiple signifies any product of a number; and is therefore divisiblo by the number of which it is a multiple: thins $14,21,28,8 \times c$., are multiples of seren. Also 14 is a common multiple of 2 and 7 ; 21, of 3 and 7, \&c.

REDUCTION

is the method of changing the form of fractional numbere or quantities, without altering the value.

Case 1. To reduce a fraction to its lowest terms.
Role. Divide both the terms by any common measure that can be discovered by inspection; which will produce an equivalent fraction in tower terms. Treat the new fraction in a similar manner; repeating the operation till the lowest terms are obtained."
When the object cannot be accomplished by this process, divide the greater term by the less, and that divisor by the remainder, and 60 on Fll nothing remains. The last divisor will be the greatest common measure; by which divide both terms of the fraction, and the quotients will be the lowest terms.
(1) Reduce $\frac{30}{\frac{32}{2} 5}$ to its lowest terms.
(2) Reduce $\frac{2 \cdot}{6} \frac{0}{8} \frac{9}{2}$ to its lowest terms.
(3) Reduce $\frac{1}{5} \frac{9}{7} \frac{8}{8}$ to the least terms.
(4) Reduce $\frac{87}{8 \frac{5}{8}}$ to the least terms.
(5) Abbreviate $\frac{5}{6} \frac{1}{b} \frac{4}{2}$ as much as possible.
(6) Reduce $\frac{1}{2} \frac{3}{\frac{1}{7}} \frac{4}{\frac{4}{2}} \frac{1}{5}$ to its lowest terms.

* This first method of abbreriating fractions is, when practicable, alvays to be preferred: and in the application of it, the following obqervations will be found exceedingly useful.
- An even number is divisiblo by 2.

A number is divisible by 4 , when the tens and units are so; and by 8, whon the hundreds, tens, and units are divisible by 8.

A number is a multiple of 3 , or of 9 , when the sum of its digits is a multiple of 3 , or of 9 .

A 5 or a 0 in the mits' place, admits of division by 5 ; one cipher ad mits of division by 10, tuo, hy 100 , Sut

Anu digits
contain A m tiple of All γ place:
ber that greatest lled the

ty.

re divisi, \&ec., aro 7 ; 21, of
jat can be fraction in repeating
divide tho and so on common quotients

ns. ${ }^{n} 3$.

ns. $\frac{1}{1}$
ns. $\frac{1}{4}$.
ns. $\frac{3}{8} \frac{3}{8}$.
ns. 3.
ns. 4.
practicable, lowing ob-
so; and by s digits is a e cipher ad

(8) What are the lowest terms of $3 \frac{31}{3} 5 \frac{9}{2}$? Ans. 7 .

Case 2. To reduce an improper fraction to its equivalent number.
Role. Divide the upper term by the lower.
This is evident from Definition 3.
(1) Reduce ${ }^{12}{ }^{9}$ to a mixed number. ${ }^{12}{ }^{\circ}{ }^{0}=183$. Ans.
(2) Reduce $\frac{69}{5}$ to its equivalent number. Ans. 13t.
(3) Reduce ${ }^{34}{ }^{5}{ }^{5}$ to its equivalent number. Ans. 27\%.
(4) Reduce ${ }^{1 \frac{2}{2} \frac{4}{2}}$ 號 to its equivalent number. Ans. $56 \frac{1}{2} \frac{3}{2}$.
(5) Reduce ${ }^{3}{ }^{\frac{1}{2} \frac{4}{2}}{ }^{9}$ to its equivalent number. Ans. 1832 .
(6) Reduce ${ }^{1 \frac{1}{1} \frac{5}{6}}{ }^{1}$ to its equivalent number. Ans. $71+\frac{3}{8}$.

Case 3. To reduce a mixed number to an improper fraction.*
Ruic. Multiply the whole number by the denominator of the fracign, and to the product add the numerator for the numerator required, which place over the denominator.
Note. Any whole number may be expressed in a fractional form by putting 1 for the denominator: thus $11=\frac{11}{5}$.
(1) Reduce $18 \frac{3}{7}$ to the form of a fraction. \dagger

A number is a multiple of 11 , when the sum of the 1st, 3d, 5th, \&e., digits $=$ that of the $2 \mathrm{~d}_{2} 4$ th, 6 th, 8 c ., digits, after retrenching the elevens contained in each.

A multiple of both 2 and 3 is, of course, a multiple of 6 ; and a mal. tiple of 3 and 4 may be divided by 12.

All prime numbers, except 2 and 5, have 1, 3, 7, or 9, in the units' place: all others are composite.

Examples.

(1) Reduce $1 \frac{1880}{820}$ to the least Now, because we cannot easily terms possible.
$\div 10 \quad \div 9 \quad \div 2$
$1 \frac{200}{20}=\frac{126}{182}=\frac{14}{18}=\frac{7}{8}$. Ans.
(2) Roduce $\frac{125540}{21545}$ to the lowest terms.

$$
\begin{aligned}
& \begin{array}{llll}
\because 5 & \div 3 & \div 11 & 5 \overline{7}) 76(1
\end{array}
\end{aligned}
$$

> 57)76(1 greatest com. meas. $\overline{19}) 57(3$
> - This is the converse of Case 2 .
> $18 \frac{3}{7}=\frac{18 \times 7+3}{7}={ }^{129}$. Ans. discover a common measure proceed thus :-

(2) Reduce $56 \frac{13}{2}$ to an improper fraction.

Ans. ${ }^{12_{2}^{2}}{ }^{5}$.
(3) Reduce $183 \frac{5}{2}$ it to an improper fraction.

Ans. ${ }^{38} \frac{8}{2}^{4}{ }^{\circ}$.
(4) Reduce $13 \frac{4}{5}$ to its equivalent fraction.

Ans. $\frac{\mathrm{eg}_{5}}{}$.
(5) Reduce $27 \frac{2}{0}$ to its equivalent fraction.

Ans. ${ }^{24}{ }^{5}$.
(6) Reduce 514_{15}^{5} to a fractiond form.

Ans. ${ }^{8} \frac{12}{8}{ }^{2} 9$.
Case 4. To reduce a fraction to another of the same valuc, having a certain proposed numerator or denomonator.
Rule. As the present numerator is to the denominator, so is the proposed numerator to its demominator. Or , as the present denominator is to the numerator, so is the proposed denominator to its numerator.
(1) Reduce $\frac{2}{3}$ to a fraction of the same value, whose numerator shall be 12 . As $2: 3:: 12: 18$. Ans. $\frac{1}{12}$.
(2) Reduce $\frac{5}{7}$ to a fraction of the same value, whose nu merator shall be $2 \overline{5}$.

Ans. $\frac{2}{35}$.
(3) Reduce $\frac{5}{7}$ to a fraction of the same value, whose nu merator shall be 47 .

$$
\text { Ans. } \frac{47}{65 \frac{4}{5}}
$$

(4) Reduce $\frac{2}{3}$ to a fraction of the same value, whose denominator shall be 18 .

Ans. $\frac{12}{1 \frac{2}{8}}$.
(5) Reduce $\frac{5}{5}$ to a fraction of the same value, whose denominator shall be 35 .

$$
A n s . \frac{25}{3} .
$$

(6) Reduce $\frac{8}{9}$ to a fraction of the same value, whose denominator shall be 19 .

$$
\text { Ans. } \frac{16 \frac{3}{3}}{19} .
$$

Case 5. To reduce complex and compound fractions to a simple førm.
Rele. For a complex fraction, reduce both terms to simple fractions: then by inverting the lower fraction, they may be considered as the terms of a conpound fraction. And to reduce a compound fraction, arrange all the uumerators above a line, and the denominators below, with the signs of multiplication interserted; divide all the upper and lower terms that are commensurable, ${ }^{*}$ cancelling them with a dash, and placing their quotients above and below them respectively. Do the same w'th the quotients: then the products of the uncancelled numbers will give the single fraction in its lowest terms. \dagger

[^18]so is the enomint its nume-
ose nuS. $\frac{12}{1}$. nose nu S. $\frac{2}{3} \frac{5}{5}$. hose nu $\frac{47}{65 \frac{4}{5}}$. hose de2s. $\frac{12}{1}$. hose deus. $\frac{2}{3} \frac{5}{5}$. hose de$\frac{16 \frac{3}{9}}{19}$
a simple
fractions: ed as the caction, ar. ors below, upper and dash, and - Do the d numbers
tite the k
(1) Reduce $\frac{36 \frac{2}{3}}{48}$ to a simple fraction.

Ans. $\frac{3}{7}$.
(2) Reduce $\frac{23 \frac{5}{7}}{38}$ to a simple fraction.

(3) Reduce $\frac{47}{65 \frac{4}{5}}$ to a simple fraction. Ans. $\frac{8}{7}$.
(4) Reduce $\frac{19}{44 \frac{1}{3}}$ to a simple fraction. Ans. $\frac{3}{5}$.
(5) Reduce $\frac{2}{3}$ of $\frac{3}{5}$ of $\frac{5}{4}$ to a single fraction. Ans. $\frac{1}{4}$.
(6) Reduce $\frac{5}{8}$ of $\frac{4}{7}$ of $\frac{11}{12}$ to a simple fraction. Ans. $\frac{55}{189}$.
siness of computation, by an eviating to the utmost all fractional expressions, as we proceed.

Examples.

(1) Reduce the complex fraction $\frac{7 \frac{1}{3}}{8 \frac{5}{9}}$ to a simple form.

$$
\begin{aligned}
& 23 \\
& \frac{7 \frac{1}{3}}{8 \frac{5}{9}}=\frac{\frac{23}{3}}{\frac{77}{9}}=\frac{22 \times 9}{\$ \times \pi 7}=\frac{6}{7} \text { Ans. }
\end{aligned}
$$

(2) Reduce $\frac{9}{10}$ of $\frac{2}{3}$ of $\frac{7}{8}$ of $\frac{5}{14}$ to a simple fraction.

$$
\frac{9}{10} \text { of } \frac{2}{3} \text { of } \frac{7}{8} \text { of } \frac{5}{14}=\frac{3 \times 1}{\frac{9}{10} \times \frac{1}{2} \times \frac{1}{3} \times \frac{\$}{4} \times \neq \frac{3}{2}}=\frac{3}{16} . \text { Ans. }
$$

(3) Reduce the annexed fractional expression to its proper quaniny.

$$
\begin{aligned}
& \begin{array}{llllllll}
1 & 9 & 1 & 2 & 2 x & 2 \emptyset & \$ & 8
\end{array} \\
& \text { * } £ 2.8 \frac{1}{8} s .=£ 2 . .8 . .1 \frac{1}{2} . A n s .1
\end{aligned}
$$

IMAGE EVAIJATION TEST TARGET (MT-3)

Photographic Sciences
Corporation

(7) Reduce $\frac{1}{1} \frac{1}{2}$ of $\frac{13 \frac{3}{5}}{14 \frac{4}{6} \frac{2}{5}}$ of $\frac{28}{38 \frac{2}{3}}$ to a simple fraction.
(8) Reduce $\frac{3}{8}$ of $\frac{\pi}{97}$ of $11 \frac{3}{8}$ to a single fraction. Ans. To
(9) Reduce $\frac{77}{27}$ of $37 \frac{1}{3}$ of 5 to its cquivalent number.

Case 6. To reduce a fractional quantity of a given denomına tion to an equivalent fraction of another denomination.
Rucz. Consider what numbers would reduce the greater denomina tion to the less; then to reduce to a greater name, multiply the denom inator by those numbers, and to reduce to a less name, multiply the mimerator:' the compound thus produced, when reduced to a simplo. form, will be the fraction required.
(1) Reduce $\frac{7}{8}$ of a penny to the fraction of a pound.*
(2) Reduce $\frac{3}{4} d$. to the fraction of a crown. Ans. $\frac{1}{8}$ cr.
(3) Reduce $\frac{4}{6}$ divis. to the fraction of a $l b$. troy. $A n s$. $\frac{1}{3} \frac{1}{5} l b$
(4) Reduce $\frac{f}{4} l b$. avoirdupois to the fraction of a cwt. Ans. 青 cwt .
(5) Reduce ${ }_{10}{ }^{7} \frac{7}{2} \sigma$ of a pound to the fraction of a penny. \dagger

(7) Reduce ${ }^{\frac{1}{5} \sigma}$ of a pound troy to the fraction of a penny-weight. Ans. $\frac{4}{5} d w t$.
(8) Reduce $\boldsymbol{\tau}_{\boldsymbol{t} \boldsymbol{\sigma}} c w t$. to the fraction of a $l b$. Ans. \& $l b$.

Case 7. To find the proper value of a fractional quantity.
Rore. Reduce the numerator to such lower denomination as may be necessary, and divide by the denominator; abbreviating as much as possible in valuing the remainders.

Nore. It is evident, from Definition 3, that this Case is precisoly that of Compornd Division.
(1) Reduce $\frac{3}{4}$ of a pound sterling to its proper value. \ddagger

$$
\begin{aligned}
& \text { - } 7 \mathrm{7} d .=\frac{7}{8 \times 12 \times 20}=e_{\frac{7}{1020} .} \text { Ans. }
\end{aligned}
$$

$$
\begin{aligned}
& \ddagger x_{3}=\frac{3 \times 20}{4}=3 \times 5=15 \mathrm{~s} \text {. Ans. }
\end{aligned}
$$

(2) Reduce $\frac{8}{8} s$. to its proper value. Ans. $4 d .3!$ qrs.
(3) Reduce 4 of a lb . avoirdupois to its proper value.

Ans. 9 oz. $2 z^{7} d r$
(4) Reduce $\frac{7}{9} c w t$. to its proper value. Ans. $3 q r s .3 \frac{\square}{6} l b$
(5) Reduce $\frac{3}{5}$ of a $l b$. troy to its proper value.

Ans. 7 oz. 4 dwts.
($ٔ$) Reduce $\frac{1}{2} \frac{4}{5}$ of an ell English to its proper value. Ans. 2 qrs. $3 \frac{1}{5}$ nais.
(7) What is the value of $£_{5}^{5} \frac{1}{5} \frac{1}{6} \frac{2}{8}$? Ans. $19 s .10 \downarrow$ f
(8) Reduce $\frac{2}{3} \frac{8}{5} \frac{8}{2}$ of a mile to its proper value.

Ans. 6 fur. 105 yds.
(9) Reduce $\frac{73}{4} \frac{3}{8}$ of an acre to its proper valus.

Ans. 1 a. 2 r. $3 \frac{1}{3}$ per.
(10) Find the value of $\frac{15}{3} \frac{48}{1} \frac{18}{6} \mathrm{cwt}$. Anis. 1 qr. 22 lb . $\frac{2}{3} \frac{27}{8} \frac{7}{5}$.

Case 8. To reduce any given quantity to the fraction of a greater denomination.
Rule. Reduce the given quantity (if compound to the lowest denomination mentioned, that it may assume a simple form: then multiply pho denominator, as in Case 6.
(1) Reduce $15 s$. to the fraction of a pound sterling.
(2) Reduce $4 d .3 \frac{1}{5}$ qrs. to the fraction of a shilling. Ans. $\frac{z}{s}$
(3) Reduce $9 \mathrm{oz} .2 \frac{2}{7} d r$. to the fraction of a $l b$. avoirdupois Ans. 4 lb.
(4) Reduce $3 q r s .3 \frac{l}{} l b$. to the fraction of a cwt.

Ans. 7 cwt.
(5) Reduce 7 oz .4 dwts. to the fraction of a lb. troy. Ans. $\frac{3}{8} \mathrm{lb}$.
(6) Reduce 2 qrs. $3 t$ nails to the fraction of an English oil.
(7) Reduce 14s. $6 \frac{1}{2} d$. $\mathrm{r}_{\mathrm{T}}^{2}$ to the fraction of a $£$. Ans. £ $_{\text {rit }}{ }^{\text {r }}$
(8) Reduce $4 d .1+\frac{1}{3} q r s$, to the fraction of a crown. Ans. $\frac{39}{38^{9} 0}$ cr.
(9) What fraction of an acre are 3 roods, 32 perches? Ans. $\frac{1}{2}$? a.
(10) What part of a shilling are $\frac{2}{3}$ of $2 d$. Ans. $\frac{1}{b}$
Case 9. To find the least common multiple of two or more numbers.
Roric. Arrange the given numbers in a line, (omitting any one fhat in a factor of one of the others,) and divide any two or more of them by common divisor, placing the quotients and undivided numbers below;
proceed with these in the same manner, and repeat the process till there remnin not any two nambers commensurable : the continued product of the divisors, quotients, and undivided numbers, will be the least common multiple.
(1) Required the least common multiple of $2,3,4,5,6,7$, 9 , and 10 .*
(2) Find the least number divisible by $3,4,5,6,7$, and 8 . Ans. 840.
(3) What is the least common multiple of $2,3,4,5,6,7$, $8,9,10,11$, and 12 ?

Ans. 27720.
Case 10. To reduce fractions to a common denominator.
Rule 1. Multiply each numerator into all the denominators, except its own, for a numerator; and all the denominators for a cimanon denominator. Or,

Rule 2. Find the least common mulliple of the denominators, which will be the least common denominator. Divide this by each denominator, and multiply the several quotients by the respective numerators for the required numerators.
(1) Reduce $\frac{3}{4}$ and $\frac{4}{7}$ to a common denominator. \dagger
(2) Reduce $\frac{1}{2}, \frac{3}{4}$, and $\frac{5}{8}$, to a common denominator.

Ans. $\frac{3}{6} \frac{3}{4}, \frac{4}{6} \frac{9}{4}$, and $\frac{4}{6} \frac{9}{4}$; or $\frac{4}{8}, \frac{6}{8}$, and $\frac{5}{8}$.
(3) Reduce $\frac{7}{8}, \frac{4}{6}, \frac{1}{8}^{\frac{8}{6}}$, and $\frac{6}{7}$, to a common denominator.

Ans. $\frac{73}{8} \frac{5}{9}, \frac{560}{8} \frac{0}{9}, \frac{50}{84} \frac{4}{9}$, and $\frac{723}{8} \frac{5}{6}$.
(4) Reduce $\frac{3}{5}, \frac{1}{2}$, and $\frac{1}{7}$, to a common denominator.
(5) Reduce $\frac{3}{17}, \frac{4}{7}$, and $\frac{3 \frac{1}{2}}{15}$ of 2 , to a common $\frac{4}{7} \frac{3}{3}, \frac{35}{7}$, and $\frac{1}{5} \frac{1}{7}$. Ans. $\frac{315}{1155}, \frac{680}{1155}$, and $\frac{539}{1155}$.
(6) Reduce $1 \frac{1}{4}, 2 \frac{1}{5}$, and $\frac{1}{3}$ of $1 \frac{1}{4}$, to a common denominator. Ans. $\frac{75}{6}$, $\frac{439}{6}$, and $\frac{25}{6}$.

* 2 and 4, bcing factors of 8,3 a factor of 9 , and 5 a factor of 10 , may ke omitted. Thus,

2) $6,7,8,9,10$
3$) 3,7,4,9,5$
$1,7,4,3,5$

Thon $2 \times 3 \times 7 \times 4 \times 3 \times 5=42 \times 60=$ 2520 , the least number divisible by all the given numbers.
$\left.\begin{array}{r}+2 \times 7=14 \\ 4 \times 4=16\end{array}\right\}$ numerators. Ans. $\frac{14}{2}$ and $\frac{18}{3} \frac{6}{8}$ $4 \times 7=28$ the denominator.

ADDITION.

Rocre. Reduce the given fractions to a common denominatea jvor which place the sum of the numerators.
(1) Add $\frac{2}{3}$ and $\frac{5}{7}$ together. $\frac{2}{3}+\frac{5}{7}=\frac{1}{2} \frac{1}{1}+\frac{1}{2} \frac{5}{1}=\frac{2}{2} \frac{2}{1}=1 \frac{8}{21}$. Ans.
(2) Add $\frac{3}{4}$, $\frac{3}{7}$, and $\frac{5}{6}$.
(6) Add $5 \frac{2}{3}, 6 \frac{7}{3}$, and $4 \frac{1}{3}$.
(3) Add $\frac{1}{5}, 4 \frac{1}{3}$, and $\frac{3}{5}$.*
(7) Add $1 \frac{4}{9}, 3 \frac{1}{7}$, and $\frac{1}{2}$ of 7.
(4) Add $7 \frac{2}{3}$ and $\frac{2}{5}$ together.
(8) Add $\frac{9}{10}$ of $6 \frac{7}{8}$, and $\frac{4}{7}$ of $7 \frac{1}{3}$.
(5) Add $\frac{2}{5}$, and $\frac{2}{3}$ of $\frac{3}{4}$.
(9) Add $\frac{1}{5}$ of $9 \frac{3}{8}$, and $\frac{2}{3}$ of $4 \frac{5}{8}$.

Fractional quantities may be reduced to their proper values, and the sum found by Compound Addition.
(10) Add $\frac{3}{8}$ of a pound to $\frac{5}{6}$ of a shilling. Ans. Ss. $4 d$.
(11) Add $\frac{1}{2} d . \frac{5}{8} s$. and $£^{\frac{3}{3}}$.

Áns. 14 s.
(12) Add $\frac{3}{5} l b$. troy, $\frac{1}{6} a z$. and $\frac{5}{8} o z$.

Ans. 7 oz. 19 dwts. 20 gr.
(13) Add $\frac{4}{7}$ of a ton to $\frac{5}{8}$ of a cwt.

Ans. 12 cwt .1 qr. $1 \frac{1}{3} \mathrm{lb}$.
(14) What is the sum of $\frac{2}{3}$ of $£ 17 . .7 . .6 d ., \frac{4}{5}$ of $£ 1 \frac{2}{3}$. and : of a crown? Ans. $£ 13 . .0 .2 \frac{1}{2}$.
(15) Add $\frac{4}{5}$ of $3 a .1 r .20 p$., $\frac{3}{8}$ of an acre, and $\frac{3}{4}$ of 3 roods, 15 perches.

Ans. 3 a. $2 r .33 \frac{1}{4} p$.

SUBTRACTION.

Rule. Reduce the given fractions to a common denominator, over which place the difference of the numerators.

When the numerator of the fractional part in the subtrahend is greator than the other numerator, borrow a fraction equal to unity, laving the common denominator; thon subtract, and carry one to the integer of the subtrahend.
(1) From $\frac{3}{4}$ take $\frac{5}{5}$. $\quad \frac{3}{4}-\frac{5}{7}=\frac{2}{2} \frac{1}{8}-\frac{3}{2} \frac{0}{8}=\frac{1}{2} \frac{1}{6}$. Ans.
(2) From $\frac{5}{5}$ take $\frac{3}{5}$.
(6) From $64 \frac{1}{4}$ take $\frac{2}{3}$ of $\frac{3}{4}$.
(3) From $5 \frac{2}{3}$ take $\frac{9}{10}$ of $\frac{5}{8}$.
(7) From $15 \frac{1}{8}$ take $12 \frac{7}{4} \frac{7}{0}$.
(4) From $\frac{38}{4}$ take $\frac{3}{5}$ of $\frac{1}{3}$.
(8) Subtract $\frac{2}{3} \frac{3}{5}$ from $1 \frac{3}{5}$.
(5) From $\frac{10}{2}$ take $\frac{1}{4}$ of $\frac{3}{3}$.
(9) Subtract $\frac{1}{2} \frac{7}{1}$ from $\frac{1}{8}$ of 9.

Fractional quantities may be reduced to their proper values, cs directed in Addition

[^19](10) From $\frac{3}{8}$ of a pound take $\frac{3}{\frac{3}{2}}$ of a shilling. Ans. $7 s$. $1 \frac{d}{d} d$
(11) From $1 \frac{2}{3} s$. take $\frac{3}{3}$ of $7 \frac{1}{2} d$.

Aus. 1ss. 3d.
(12) What is the difference between $\frac{3}{8}$ of $\pm 1_{\frac{5}{2} \pi}^{5}$; and ${ }^{\frac{8}{10}}$ of $£ 1 \frac{13}{8} \frac{3}{6}$. ?
(13) Subtract $\frac{5}{6}$ cwt. from $\frac{4}{7}$ ton. Ans. 10 cwi. 2 qrs. $10 \frac{2}{3} 1 b$.
(14) From $\frac{2}{3}$ of 5 lb . troy subtract $\frac{5}{8}$ of $3 \frac{1}{2} \mathrm{oz}$.

Ans. 3 ll .2 oz. 1 dwt. $2 \frac{2}{3} \mathrm{gr}$.
(15) Subtract $7 \frac{1}{2} \frac{3}{2}$ furlongs from ${ }^{1} \frac{5}{11}$ mile. Ans. 4 fur. $9 y d s$.

MULTIPLICATION.

Rucx. Prepare the given numbers (if they require it) by the rules of Reduction: then multiply all the numerators together for the numer: ator of the product, and all the denominators for the denominator.
(1) Multiply $\frac{3}{4}$ by $\frac{3}{5}$. $\frac{3}{4} \times \frac{3}{5}=\frac{7}{2}$. Ans.
$\begin{array}{lll}\text { (2) Multiply } \frac{7}{8} \text { by } \frac{3}{3} & \text { (6) Multiply } \frac{1}{4} \text { of } \frac{3}{8} \text { by } \frac{8}{7} \text { : }\end{array}$
(3) Multiply $48 \frac{3}{5}$ by $13 \frac{5}{6}$.
(7) Multiply $5 \frac{9}{7}$ by $\frac{5}{6}$.
(4) Multiply $430 \frac{3}{5}$ by $18 \frac{3}{7}$.
(8) Multiply 24 by $\frac{2}{3}$.
(5) Multiply $\frac{1}{2} \frac{6}{2}$ by $\frac{3}{4}$ of $\frac{5}{7}$.
(9) Multiply $\frac{3}{4}$ of 9 by $\frac{7}{8}$.
(10) Multiply $£ 3 . .15 . .9 \frac{1}{4} \frac{1}{5}$ by $\frac{9}{17}$ of 5 . Ans. $£ 15 . .9 .: 11 \frac{3}{4} \frac{3}{1 T}$:
(11) Multiply $3 \frac{15}{4}$ miles by $\frac{4}{7}$ of $4 \frac{37}{9}$.

Ans. 8 m. 2 f. 1884 yds.
(12) Required the product, in square feet, of 14 ft .7 in . by 8 ft .9 in . Ans. $127 \frac{3}{4} \frac{9}{8}$ sq. ft.

DIVISION.

Roly. Prepare the given numbers (if they require it) by the rule of Reduction; then invert the divisor, and proceed as in Multiplication.:
(1) Divide $\frac{9}{2 \pi}$ by $\frac{3}{5} \cdot \dagger$
(2) Divide $\frac{1}{2} 4$ by $\frac{5}{6}$.
(3) Divide $672 \frac{9}{30}$ by $13 \frac{5}{8}$.
(4) Divide $7935 \frac{3}{7} \frac{4}{8}$ by 183.
(5) Divide 16 by 24.
(i) Divide $\frac{9}{10}$ by $4 \frac{1}{2}$.
(7) Divide $\frac{4}{8} \frac{4}{3} \frac{1}{5}$ by $\frac{3}{10}$ of $\frac{10 \frac{1}{2}}{T^{7} 5}$.
(8) Divide $9 \frac{1}{6}$ by $\frac{1}{2}$ of 7 .
(9) Divide $\frac{3}{8}$ by $\frac{2}{3}$ of $\frac{3}{4}$ of $\frac{5}{8}$.
(10) Divide $\frac{2}{3}$ of 16 by $\frac{5}{7}$ of $\frac{3}{4}$.

[^20](11) Divide $£ 1 \frac{12}{2} \frac{1}{6}{ }^{2}$ by $\frac{32}{8}$ of $1 \frac{2}{8}$. Ans. $£ 3 . .17 . .10 \frac{1}{4}, \frac{2}{3}$. (12) Divide 1s. $4 \frac{1}{2} d . \frac{5}{6}$, by $\frac{2}{3}$ of $\frac{18}{5}$. Ans. $6 d .3 \frac{1}{\frac{1}{2}}$ grs.
(13) Divide 3 qrs. $24 \frac{1}{\frac{5}{8}} l l$. by $\frac{7}{16}$ of $1 \frac{1}{2}$, in the fraction of a cwt. : and yalue the quotient.,. is Ans, 1 cwt. 1 qr. $15 \frac{5}{\frac{5}{3}} \mathrm{lb}$. (14). What must $£ 7 . .14 . .6$. be multiplied by'; to produce £21..17..9?

Ans. 25.

THE RULE OF THREE.

$\dot{\text { Ru'us. }}$ Prepare the torms, previous to stating, so that no siubseqnent Reduction will be necessary: then, having stated the question, as preyiously directed, invert the dividing term', aid the contuued product of the three will be the answer.
(1) If $\frac{3}{4}$ of a yard cost $\boldsymbol{x} \frac{5}{8}$. what will $\frac{0}{10}$ of a yard cost ?
(2) If $\frac{5}{8} y d$. cost $£^{\frac{2}{3}}$. what will $\frac{1}{1} \frac{1}{2} y d$. cost ? Ans. $14 s .8 d$
(3) If $\frac{3}{4}$ of a yard of lawn cost $7 s$. $3 d$. what will $10 \frac{1}{3}$ yards cost? Ans. £4..19..101 $\frac{1}{2}$.
(4) If $\frac{7}{8} l b$. cost $\frac{3}{4} s$: how much will $\frac{9}{8} s$. buy ? Ans. $1 \frac{1}{2} \frac{1}{l} l b$.
(5) If 48 men can build a wall in $24 \frac{1}{4}$ days, how many men can do the same in 192 days? \quad Ans. $6 \frac{1}{16}$ men.
(6) If $\frac{3}{4}$ of a yard of Holland cost $£_{\frac{1}{3}}$. what will $12 \frac{2}{3}$ ells cost at the same rate?

Aus. £7..0.. $8 \frac{3}{\frac{5}{4}}$.
(7) If $3 \frac{1}{4}$ yards of cloth; that is $1 \frac{1}{5}$ yard wide, be sufficient to make a cloak, how much that is $\frac{4}{5}$ of a yard wide will make another of the same size?. Ans. $4 \frac{7}{8}$ yards.
(8) If. $12 \frac{1}{2}$ yards of cloth cost $15 s$. 9 d . what will $48 \frac{1}{4}$ yards cost at the same rate?

Ans. £3..0..91 $\frac{4}{2} \frac{4}{23}$.
(9) If $25 \frac{3}{7} s$. will pay for the carriage of $1 \mathrm{cwt} .145 \frac{1}{4}$ miles; how far may $6 \frac{1}{2} \mathrm{cwt}$. be carried for the same money?

Ans. $22 \frac{{ }^{\circ}}{28}$ miles.
(10) If ${ }^{\text {Po }}$ of a cwt cost $£ 14.4 \mathrm{~s}$. what is the value of $7 \frac{1}{2}$ cwt.? Ans. $£ 118.6 .8$.
 come to ? Ans. $£ 61 . .3 . .4$.
(12) How much in length that is $7_{T^{3}}$ inches broad will make a foot square? Ans. 20 t_{5} inches...
(13) What is the value of 4 pieces of broadcloth, each 27 ; yards, at 15s s. per yard?

Ans. $£ 85 . .14 .{ }^{3} \frac{1}{6}$ \&.
(14) If a penny white loaf weigh 7 oz . whez a bushel of wheat costs $5 s .6 d$. what is the bushel worth when a penny white loaf weighs but $2 \frac{1}{2} \mathrm{oz}$.? Ans. $15 \mathrm{~s} .4 d .3 \frac{1}{5} \mathrm{qrs}$.
(15) What quantity of shalloon that is $\frac{3}{4}$ of a yard wide will line $7 \frac{1}{2}$ yards of cloth that is $1 \frac{1}{3}$ yard wide? Ans. 15 yards.
(16) Bought $3 \frac{1}{2}$ pieces of silk, each containing $24 \frac{3}{8}$ ells, at 6s. $0 \frac{3}{1} d$. per ell. How must I sell it per yard to gain $£ 5$. by th3 bargain?

Ans. 5 s. $9 \frac{1}{4}$ d. $\frac{36}{4} \frac{6}{6} \frac{9}{6}$.

THE DOUBLE RULE OF THREE.

(1) If a carrier receive $£ 2 \frac{1}{10}$. for the carriage of 3 civt. 150 miles, how much ought he to receive for the carriage of $7 c w t .3 \frac{1}{2} q r s ., 50$ miles ?

Ans. £1..16..9.
(2) If $£ 100$. in 12 months gain $£ 5 \frac{1}{4}$. interest, what principal will gain $£ 33 \frac{3}{8}$. in 9 months? Ans. $£ 85 . .14 . .3 \frac{1}{4} \frac{5}{4}$.
(3) If 9 students spend $£ 10 \frac{1}{9}$. in 18 days, how much will 20 students spend in 30 days? Ans. £39..18..429.
(4) Two persons carned $4 \frac{5}{4} s$. for one day's labour : how much would 5 persons earn in $10 \frac{1}{2}$ days, at the same rate?

(5) If $£ 50$, in 5 months gain $£ 2 \frac{37}{\frac{37}{4}}$. What time will $£ 13 \frac{1}{8}$. require to gain $£ 1_{1 \frac{1}{12}}$.? Ans. 9 months.
(6) If the carriage of 60 cut., 20 miles, cost $£ 14 \frac{1}{2}$., what

DECIMAL FRACTIONS.

Is Decimal Fractions the unit is supposed to be divided luto tenths, hundredths, thousandth parts, \&c.,. consequently the denominator is always 10 , or 100 , or $1000, \& c$.

In our system of Notation, the figures of a whole number follow each other in a decimal (or tenfold) proportion. Hence, the numerator of a decimal Fraction is written as a whole number, only distinguished by a separating point prefiaed to its Thus 5 for $\frac{5}{10}, 25$ for $\frac{25}{100}, \cdot 123$ for $\frac{1 y^{3}}{1000}$.

The denominator is, therefore, not expressed ; being always understood to be 1, with as many ciphers affixed as there are places in the numerator.

The different values of figures will be evident in the gan mexed Table.

From this it plainly appears that the figures of the decimal fraction decrease successively from left to right in a tenfold proportion, precisely as those of the whole number.*

Ciphers on the right of other decimals do not alter their value: for $2=\frac{2}{10}, 20=\frac{20}{100}, \cdot 200=\frac{200}{1000}$, are all equal. Bat one cipher on the left diminishes the value ten times, two ciphers, one hundred times, \&c., for $\cdot 02=\frac{2}{10}, \cdot 002=\frac{2}{10 \hbar \overline{0}}$, \&c.

A vulgar fraction having a denominator compounded of 2 , or 5 , or of both, when converted into its equivalent decimal fraction, will be finite : that is, will terminate at some certain number of places. All others are infinite ; and because they have one or more figures continually repeated without end, they are called Circulating Decimals. The repeating figures are called repetends.

One repeating figure is called a single repetend; as 222, \&c.; generally written thus, $\cdot 2$ '; or thus $\cdot k$. But when more than one repeat, the decimal is compound repetend; as $\cdot 36$ 36 , \&c., or $\cdot 142857142857$, \&c. 'These may be written ' 366^{\prime}, and $\cdot{ }^{\prime} 142857 \prime$; or $\cdot \$ \$$, and $\cdot 142857$.

Pure repetends consist of the repeating figures alone; but mixed repetends have other figures before the circulating decimal begins: as $\cdot 045^{\prime}, \cdot 96^{\prime} 354^{\prime}$.

Finite decimals may be considered as infinite, by making ciphers to recur, which do not glter the value.

Circulating decimals having the same number of repeating figures are called similar repetends, and those which have an unequal number are dissimilar. Similar and conterminous repetends begin and terminate at the same places.

[^21]
ADDITION.

,RoLg, Place the numbers so that the decimal points may stand io' perpendicular line: then will units be under units, sc., according to their respective values. Then add as in integers.
(1) Add $72 \cdot 5+39 \cdot 071+2 \cdot 1574+371 \cdot 4+2 \cdot 75$.
(2) Add $30 \cdot 07+2 \cdot 0071+53 \cdot 432+7 \cdot 1$.
(3) Add $3 \cdot 5+47 \cdot 25+927 \cdot 01+2 \cdot 0073+1 \cdot 5$.
(4) Add $52 \cdot 75+47 \cdot 21+724+31 \cdot 452+3075$.
(5) Add $3275+27 \cdot 514+1 \cdot 005+725+7 \cdot 32$.
(6) Add $27 \cdot 5+52+3 \cdot 2675+5741+2720$.

SUBTRACTION.

Fols. Place the subtrahend under the minuend with the decimal points as in Addition; and subtract as in integers.
(1) From' 2754 take' 2371 .
(2) From 2•37 take 1-76.
(3) From 271 take 215.7.
(4) From' $270 \cdot\{$ takè $75 \cdot 4075$.
(5) From 571 take 54.72.
(6) From 625 take 76.91.
(7) From $23 \cdot 415$ take 374
(8) From • 107 take 0007.

MULTIPLICATIÓN.

Rule. Place the factors, and multiply them as in whole numbers and in the product point off as many decimat places as there are in both factors together. When there are not so many figures in the product, supply the defect with ciphers on the left.
(1) Multiply 2.071 by $2 \cdot 27$.
(2) Multiply $27 \cdot 15$ by $24 \cdot 3$.*
(3) Multiply 2365 by ' 2435.
(4) Multiply 72347 by $23 \cdot 15$.
(5) Multiply 17105 by $\cdot 3257$. (11) ... $907 \times \cdot 0025$.
(6) Multiply $1710^{\circ} 5$ by $\cdot 0327$. (12$)^{\prime} \cdot 3409803 \times \cdot 0016218$.

When the multiplier is $10,100,1000, \& c$. , it is only removing the separating point in the multiplicand, so many places topwards the right as there are ciphers in the multiplier: thus, $\cdot 578 \times 10=578, \cdot 578 \times$ $100=57 \cdot 8, \cdot 578 \times 1000=578$, and $\cdot 578 \times 10000=5780$

CONTRACTED MULTIPLICATION.

Rouis. Write the multiplier under the multiplicand in an inverted order. the units' figure ander that place which is intended to be retair. ed in the product.

[^22]assistant.]
In multiplying. bugin with that ligure of the multiplienne which etands uver tho multiplying lignre, rejecting all wn the righe of that; and set down the first lighere ol atl the provlucts in a jerpendicular row.

Increase the first figne of emeld proluct liv carrying to it what would

 iuchasive, \&e.

Note. If perfect merurary as far as the last derimad fenter be de. sired, it will he eligible to tind we figure more in the prondect tham is uctually wamted.
(13) Multiply $38467: 158$ by 3683, and let there be only foir places of decimals, in the prodine.*
(14) Multiply 3•141592 by 5:37.13: retaining only four places of decimals in the product. Ans. 1656995.
(15) Multiply $238 \cdot 645$ by 8217%, reaining only the inte. gers in the prodact. \quad /nis. 1961061.
(16) Multiply, $375 \cdot 13758$ hy 16.7321 , and reserve only ano place of decimais ; and again, reserving three places. Ans. 6276.9, and 6276.951.
(17) Muliply 3953756 by $75 t 12$, retaining ouly four laces of decimals.

Ans. 299.0700.

DIVISION.

Divide as in integers, and the first figure of the quotient will be of the same value as that figure of the dividend which stands over the units in the first product of the divisor, so that the point must be placed accordingly ; ciphers being prefixed, when necessary.

Note 1. After proceeding throngh the dividend. In ascerthin if tha quotient is correctly pointed, observe that the derimal places in the ditifor and quotient together must egmal in manber thase of the divinemat.
2. When there are feser decimal places in the dividemd than in the livisor, equalize them by atfiring cinhers; ant the drotient, to thrs extent, will be a whole number.

Conl:acted method.
384.672158
386.3
11540165
2308033
3077.32
11.540
1416.7476

Common method 384691.58

3•683

| 11.540 | 16474 |
| ---: | ---: | ---: |
| 307737 | 72681 |
| $23080: 32$ | 948 |
| 11.540164 | 74 |
| 1416.7475 | 37914 |

3. Ciphers may le sulijoinet to the decimal part of the dividend, or brought down as if they ivere subjoined, in order to continue the ope ration to any degree of exactness desired.
(1) Divide 217.75 by 65.
(2) Divide 709 by $2 \cdot 57.4$.
(3) Divide 125 by 1015.
(4) Divide 48 by 144.
(5) Divide $5 \cdot 714$ by 8275.
(6) Divide 715 by 3075 .
(7) $7382.54 \div 6.4252$
(8) $\cdot 0851648 \div 423$.
(9) $267 \cdot 15975 \div 13 \cdot 25$.
(10) $72 \cdot 1564 \div \cdot 1347$.
(11) $85643 \cdot 825 \div 6 \cdot 321$.
(12)
$1 \div 3 \cdot 1416$

To divide by $10,100,1000$, Ne., remove the separating point in the dividend so many phaces tovivards the left as there are ciphers in the divisor, mad the thing is necomplished.

Thus $5784 \div 10=578 \cdot 4,5784 \div 100=57 \cdot 84,5784 \div 1000=5784$ $5784 \div 10000=-5784$.

$$
\begin{array}{ll|l}
(13) & 3719 \div 10 & (15) \\
(14) & 1307 \div 1000 \\
3.74 \div 100 . & (16) & 34 \cdot 012 \div 10000
\end{array}
$$

CONTRACTED DIVISION.

Ascertain the valne of the first q quotient figure, from which it will be known what number of figures in the quotient will serve the purpose required. Use that aumber of the figures in the divisor, (rejecting the others on the right,) and a sufficient number of the dividend, to find the first ligure of the quotient; make ench remainder a new dividual, and for each succeeding figure reject another from the divisor: but observe to carry to each product from the rejected figures, as in Contracted Multiplication.

Nure. When there are fever figures in the divisor than the number wanted in the quotient, proceed by the comnnon rule till those in the divisor are just as many as remain w be found in the quosient, and then use the contraction.
(17) Divide 70.23 by 7.9863 , to three places of decimals.*
(18) Divide $721 \cdot 17562$ by $2 \cdot 257432$, to the extent of only three places of decimals in the quotient.
(19) Divide $25 \cdot 1367$ by $217 \cdot 35$, to the fourth decimal.

0×15
tisisu
5.590
7.0
719
31
24
7
-

Common Method.
7.98*3)70.2300(8.793
$\frac{638904}{63399} 6$
$\frac{.590}{719} \frac{11}{190}$
$\frac{718 / 767}{30} \frac{1230}{}$
239589
$\underset{-6.464}{ }$
[TUTOR's θ dividend, or tinue the oje
$\div 6.4252$.
$\div 423$.
$\div 13.25$.
$\div \cdot 1347$.
$\div 6 \cdot 321$.
$\div 3 \cdot 1416$.
g. point in the ciphers in the $1000=5.784$
1000. 10000.
hich it will be ve the purpose (rejecting the nd, to find the v dividual, and : : but observe in Contracted
an the number ll those in the fient, and then
ff decimals.* tient of only
decimal.

Method.

 300(8.793(20) Divide $51 \cdot 47542$ by $\cdot 123415$, to the second decimal. (21) Divide 27104 by 3712 , the integral quotient only.

Circulating decimals.

To reduce a circulate to a vulgar fraction.
Kule. 1. For a pure repetend, make the circulating figures thd numerator, to as many nines for the denominator.
2. For a mixch repetend, subtract the finite part from the whole, and make the difference the numerator; the denominator to which will consist of as many nines us there are repelends, with as many ciphers suljoined as there are finite figures.

Exasples.

(1) Reduce $\cdot 1^{\prime}, \cdot 3^{\prime}, \cdot 9^{\prime},{ }^{\circ} 01^{\prime}$, and ${ }^{\prime} 142857^{\prime}$ to their equivalent vulgar fractions.
$\cdot 1^{\prime}=\frac{1}{8} ; \cdot 3^{\prime}=\frac{3}{11}=\frac{1}{3} ; \cdot 0^{\prime}=\frac{?}{1}=1 ; \cdot{ }^{\prime}=\frac{1}{\prime}=\frac{1}{9} ;$ and ${ }^{\prime} 1428577^{\prime}$

(2) K'educe $\cdot 03^{\prime} 45^{\prime}$ and $3.5^{\prime} 126^{\prime}$ to equivalent vulgat fracs tions.

$$
\begin{aligned}
& .03^{\prime} 45^{\prime}=\frac{345-3}{9900}=\frac{343}{0900}={ }_{1} \frac{3}{1} \frac{8}{0} 0=\frac{19}{5} \frac{9}{50} .
\end{aligned}
$$

In Addition and Subtraction of Circulating Decimals, make them similar and conterminous, and carry to the figures on the right whatever would arise from the repotends bcing continued.

Note In all cascs, when the repetend is 9 , make it a cipher, and add 1 to the next figure: for $\cdot 909, \& c .=1$.

In Multiplication, carry to the product of the right hand figure what would arise from the product of the rcpetends continued; and in finding the sum of the products, observe what is directed in Addition.

In Division, it is only necessary to observe that the operation may be carried on with the rcpeating figures of the dividend to any extent required.

Note. When the Multiplier or the Divisor is a circnlate, the most convenieyt thethod is, to change it into a common fraction.

Fxamples.

(3) What is the sum of $25^{\prime} 142857^{\prime}, 103^{\prime} 90^{\prime}, 12.035^{\prime}$, and 4.02'567'?

Similar.
$25^{\prime} 142857^{\prime}=25^{\circ} 142857^{\prime}$
$10 \cdot 3^{\prime} 90^{\prime}=10 \cdot 3^{\prime} 909090^{\prime}$
$12 \cdot 035^{\prime}=12 \cdot 03^{\prime} 555555^{\prime}$
$4.02^{\prime} 567^{\circ}:=4 \cdot 02^{\prime} 567567^{\prime}$

Similar amd contcrminous.
$=25 \cdot 14^{\prime} 285714^{\prime}$
$=10 \cdot 39^{\circ} 090909^{\prime}$
$=12.039555555^{\circ}$
$=4.02^{\circ} 567567^{\prime}$
Sum $51.59493 \% 6^{\prime}$
(4) What is the difference between $567^{\prime} 367^{\prime}$ and $550^{\prime} 9729^{\prime}$ ' Also, between 57 , and $49 \cdot 8^{\circ} 53^{\prime}$? $567^{`} 367^{\prime}=567 \cdot 3^{`} 6736^{\prime} 73673673^{\prime} \quad 57$.
$55.019729^{\prime}=55 \cdot 0^{\prime} 972997299729^{\prime}$
difference $512 \cdot 2700676373943^{\prime}$
$49 \cdot 8^{\prime} 53^{\prime}$
difl. $\overline{7 \cdot 146^{\prime}}$
(5) Multiply $65 \cdot 316^{\prime}$ by $\cdot 753$
(6) $\begin{array}{r}65 \cdot 316^{\prime} \\ .753 \\ \hline 195950 \\ 3265833^{\prime} \\ 5721666^{\prime} \\ \hline \cdot 183450 \\ \hline\end{array}$

$$
\begin{aligned}
& 3^{\cdot} 36^{\prime}=3 \frac{3}{6} \frac{6}{0}=3 \frac{4}{4}=\frac{3}{1} \% \\
& 13 \cdot 45^{\prime} \\
& 37 \\
& 94^{1} 18^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \text { product } 45 \cdot \overline{256198,} \text { \& } \mathrm{c} \text {. }
\end{aligned}
$$

(7) Divide $150 \cdot 9045^{\prime}$ by $33 .(8)$ Divide $17 \cdot 8054^{\prime}$ by $3 \cdot 6^{\prime}$. 3) $150 \cdot 9^{\prime} 045^{\prime}$
$1 \longdiv { 5 0 \cdot 3 ^ { \prime } 0 1 5 ^ { \prime } }$
4.5728637^{\prime} quotient.
$3 \cdot 6^{\prime}=3 \frac{9}{9}=3 \frac{3}{3}=\frac{14}{3}$.

(9) What are the equivalents to $004^{\prime} 354^{\prime}$ and $65.00063^{\prime} 648^{\prime}$?

(10) What is the sum of $57.575+3 \cdot 59^{\prime} 163^{\prime}+210 \cdot 16^{\prime}+$ -06'3759'? Ans. 271•397'057674235892'.
(11) Required the difference between $36 \cdot 3045207$ and $47.280^{\prime} 43^{\prime}$. Ans. 10•9759135982268'.
(12) Multiply $4^{\cdot} \cdot 428571^{\prime}$ by 347 ; and $17 \cdot 0^{\prime} 54^{\prime}$ by $6^{-14} 48^{\circ}$: $A n s .1536^{\circ} 714285^{\prime}$; and 104.85×38720 b $^{\prime}$.
(13) Divide $1536^{\cdot} 714285^{\prime}$ by 347 ; and $104 \cdot 85^{\prime} 387205^{\prime}$ ly $0^{\prime} \cdot 148^{\prime}$.

Ans $4^{\prime 4} 428571^{\prime}$; and 180 $54^{\prime \prime}$.

$$
\stackrel{20)!5 \cdot 00 s}{\bar{E} \cdot 25} \text { Ans. }
$$

[^23](15) Required the mixed decimal number equivalent to £3..9..1 $1 \frac{183}{25} d$. Ans. $£ \times 3 \cdot 45471$.
(16) Express 7 weeks, 3 days, in the decimal of a year. Ans. yr. $142465+$.

To find the proper value of a Decimal Fraction of any Integer.
Rule. Multiply the given decimal by the proper number to reduce it to the next inferior denomination, pointing off the given number of decimals in the product; rednce these to the next, and so on to the lowest; and the whole numbers on the left (being collected together) will be the value required.

A decimal of a $£$. may be thus valued by inspection. Donble the tenths for shillings, and call the number in the second and thirl, farthinge, abating one above 12, and two above 37. But if the second is 5 , or upwards, call the 5 one shilling, and reckon only the excess above five with the third.

By reversing these directions, any given sum in shillings, \&c., may be expressed in the decimal of a $£$.-Thns, half the shillings aro tenths. and an odd shilling, 5 hundredths; the rest (in firthings) add into the secnnd and third places, increasing one above 11 farthings, and two above 36.
(17) What is the value of 8322916 of a £.*
(18) Reduce $£ .740596$ to its proper value.

Ans. 14s. 9d..2-97216 qrs.
(19) What is the value of 082084 of a $l 6$. troy?

Ans. 19 dwts. 16.80384 grains.
(20) What is the value of 4909375 lb . avoirdupois?

Ans. 7 oz. $13 \cdot 68$ drams.
(21) What is the value of $£ \cdot 19895$?

Ans. 3s. 11 d..2. 992 grs.
(22) What is the value of 625 of a cut.? Ans. 2 qrs. 14 lb .
(23) What is the value of 071428 of a hogshead of wine?

Ans. 4 gal. 1.999856 qts
(24) What is the value of 0625 of a barrel of beer?

Ans. 2 gallons, 1 quarb
(25) What is the value of $\cdot 142465$ of a year?

Ans. $51 \cdot 999725$ days

〔TUTOR's quivalent to $3 \cdot 45471$. of a year. 42465+.

any Integer.

ber to reduco en number of on to the lowogether) will

Donble the nd third, fare second is 5 , excess above
gs, \&c., may ys are tenths. add into the igs, and two

216 qrs.
1 grains. ois? 3 drams.

992 qrs. qrs. 14 lb. d of wine? 856 qts jeer?
1 quart
5 days

assistant.]
decimals.

Decimai Tobles of Coin, Weight, and Mcasure.							
table i. Sterling Money. £1. the Integer.		3 qrs .	- 0625	12	-025		
			-011666	11	-0229x6		
		1	-020833	10	-020833		
s. ${ }^{\text {dec. }}$	s. dec.	TABLE ili. Troy Weight. 1 ll . the Integer. Ounces the same as Pence in Table ir		9	-01875		
19 95	$\begin{array}{ll}9 & 45\end{array}$			8	$\cdot 016666$		
$18 \cdot 9$	$8 \cdot 4$			7	-014583		
17 $\cdot 85$	$7 \quad 35$			6	-0125		
16 8	$6 \cdot 3$			5	-010416		
15 75	$\begin{array}{ll}5 & 25\end{array}$			4	-008333		
$14 \cdot 7$	$4-2$	$\begin{gathered} d w t s . \\ 10 \\ 9 \\ 8 \\ 7 \\ 6 \\ 5 \\ 4 \\ 3 \\ 3 \\ 2 \\ 1 \end{gathered}$	Decimals. $\underset{1}{2}$ -041666 1		-0C625		
$13 \cdot 65$	$\begin{array}{lll}3 & \cdot 15\end{array}$				-004166		
$12 \cdot 6$	$2 \cdot 1$				$\cdot 002083$		
11 $\cdot 55$	$1 \quad .05$		-0375	table iv. Avoir. Weight. 1 cut. the Integer.			
10			-033333				
$6 d$.543211	-025 -020833 -016666 - 0125 -008333 -004166		.029166 .025				
			-020833		Decimals.		
			-016666	3	$\cdot 75$		
			-0125	2	$\cdot 5$		
			-008333		$\cdot 25$		
			-004166				
	-003125	$\begin{aligned} & 12 \mathrm{gr} . \\ & 11 \\ & 10 \end{aligned}$	$\begin{array}{r} .002083 \\ .001910 \end{array}$	$1476 s$.	$\begin{aligned} & \cdot 125 \\ & \cdot 116071 \end{aligned}$		
	. 0020833			12	-107143		
	-0010416		$\begin{array}{r} .001736 \\ .001562 \end{array}$	11	-098214		
Table in.Eng. Coin. 1sLong Meas. 1 Footthe Integer.		-9 $\cdot 001562$ 8 .001389		10*	-089286		
				9	-080357		
		-001042		8	-071428		
		7	-0625				
				4 $\cdot 000694$ $\mathbf{3}$ $\cdot 000521$		5	. 044643
Inches.	$\begin{aligned} & \text { Decimals, } \\ & \cdot 5 \end{aligned}$	4	$\cdot 035714$				
6		21	-000347	3	$\cdot 026786$		
5			. 000173		$\cdot 017857$		
4	-333333	1 oz . the Integer.		1	- 008928		
3	-25	Penny-weights the same as Shillings					
2	-166666			80%.	-004464		
1	-083333	in the	first 'Table.	7	- 003906		

Decinal T'ables of Coin, Weight,											
$\begin{aligned} & 60 z . \\ & 5 \\ & 4 \\ & 3 \\ & 2 \\ & 2 \\ & 1 \\ & \frac{3}{3} \\ & \frac{1}{2} \\ & 4 \\ & 4 \end{aligned}$	-003348	80 g .	- 3174460		059						
	-003348										
	001674		-1984	1	.003968.001984						
	1116	40 30	$\begin{aligned} & 1587 \\ & \cdot 1190 \end{aligned}$	table vil							
	-000558	20	- 07936	Measures.							
	-000418	10	-039682	Liquid. Dry.							
	-000279		-035714								
	-000139	8		1 Gal. 1 Qr. the Integer.							
table v. Avoir. Weight. 1 lb . the Integer.		$7 \quad .027777$									
		5		Pts	Dec.	Bush					
		4	-015873								
Ounces.	Decimals.$\cdot 5$.011904						
		. 00									
	$\begin{aligned} & \cdot 5 \\ & \cdot 4375 \end{aligned}$					-125					
6	-375		. 001984		0625						
5	$\cdot 3125$		-001488		-03125						
4	25										
3	-187		-00049	Decimals. ${ }^{\text {Q }}$							
2	$\stackrel{.125}{.0625}$			-01562		2					
1		Integer.									
	-03125										
	. 027343			. 005859 003906 001953		$\begin{aligned} & 3 p t s \\ & 2 \\ & 1 \end{aligned}$					
6	-023437										
	-019531										
4	-015625	30	$\cdot 47619$								
3	-011718	20	-317460	table viif Long Measure. 1 Mile the Integer							
2	-007812	10	$\cdot 158730$								
1	-00390	9	-14285								
table vi. Liquid Measure. 1 'run the Integer.		7	$\begin{array}{r} \cdot 111111 \\ \cdot 095238 \end{array}$								
		65		1000	$\begin{array}{\|l\|} \hline \text { Decimats. } \\ .568182 \\ .511364 \end{array}$						
		-079365									
Gallons.				$\begin{array}{r} \cdot 063492 \\ .047619 \end{array}$	$\begin{aligned} & 900 \\ & 800 \end{aligned}$	$\begin{array}{r} 511364 \\ \cdot 454545 \end{array}$					
100	-39682:	211	$\begin{array}{r} \cdot 047619 \\ \cdot 031746 \\ \cdot 015873 \end{array}$	$\begin{aligned} & 700 \\ & 600 \end{aligned}$	$\begin{array}{r} \cdot 397727 \\ \cdot 340909 \end{array}$						
90	- 357142										

ures.

Dry.
1 Qr.

Decimal T'ables of Coin, Weight, and Measure.						
500 yd .	$\cdot 284091$	80 d .	219178	table x. Cloth Measure. 1 Yard the Integer. Qrs. the same as Table iv.		
400	$\cdot 227272$	70	-191781			
300	-170454	60	-164383			
200	- 113636	50	-136986			
100	-056818	40	- 109589			
90	-051136	30	-082192			
80	$\cdot 045454$	20	-054794	Nails. 3 2 1	Decimals. $\cdot 1875$ -125 .0625	
70	-039773	10	. 027397			
60	-034091	9	-024657			
50	-028400	3	-021918			
40	-022727	7	-019178	table xi. Jead Weigut. A Foth the Integer.		
30	-017045	6	-016438			
20	-011364	5	-013698			
10	-005682	4	-010959			
9	-005114	3	-008219	IIund.	Decimals.	
8	-004545	2	. 005479	10	-512820	
7	-003977	1	.002739	9	- 461538	
6	-003409	1 Day the Integer.		8	-410256	
5	-002841	12 hrs .	. 5	7	- 358974	
4	-002273	11	$\cdot 458333$	6	- 307692	
3	-001704	10	-416666	5	- 256410	
2	-001136	9	- 375	4	205128	
1	-000568	8	-333333	3	-153846	
2 ft .	-0003787	7	. 291666	2	-102564	
1	-0001894	6	'25	1	-051282	
6 in.	-0000947	5	-208333	3 qrs	$\cdot 038461$	
3	-0000474	4	-166666	2	-025641	
2	-0000315	3	-125	1	-012820	
1	. 0000158	8	-083333	14 lbs .	-0064102	
		1	. 041665	13	-0059523	
	1	30 m .	-020833	12	-0054945	
	E.	20	-013888	11	-0050366	
		10	-006944	10	-0045787	
1 Year the	e Integer.	9	-00625	9	-0041208	
Months	he same as	8	-005555	8	-0036630	
Pence in	ir Table it	7	-004861	7	-0032051	
Days.		6	-04166	6		
300	Decimats	5	-003472	5	-0022893	
300	-821918	4	-002777	4	-0018315	
200	$\cdot 547915$	3	-002083	3	-0013736	
100	-273973	2	-001388	2	-0009157	
90	-246575	1	-000694	1	$\cdot 0004578$	

THE RULE OF THREE.

(1) If $26 \frac{1}{2}$ yards cost $£ 3 . .16$..3. what will $32 \frac{1}{4} y d s$. cost ?*
(2) If 73 $\frac{3}{4}$ yards of cloth cost $£ 2 . .12 . .9$. what will $140_{\frac{1}{2}}$ yards of the same cost ? Ans. £47..16.. $3 \frac{1}{2}$.
(3) If a chest of sugar, weighing 7 cwt .2 qrs. 14 lb . cost $£ 36 . .12 . .9$. what will 2 cwt . 1 qr .21 lb . of the same cost? Ans. £11..14..23.
(4) What will $326 \frac{1}{4} l b$. of coffee be worth when $1 \frac{1}{2} l b$. is sold for $3 s .6 d$. ? Ans. $£ 38$.1.. 3.
(5) What is the value of 19 oz 3 dev s . 5 grs . of gold, at £2..19. per oz.? Ans. £56..10..5..2 3 qrs.
(6) What is the charge for $827 \frac{3}{4}$ yards of painting, at $10 \frac{1}{2} d$. per yard?

Ans. $£ 36$..4..3..1-5 qrs.
(7) If I lent my friend $£ 34$. for $\frac{5}{8}$ of a year, how much pught he to lend me for $\mathrm{T}^{5} \mathrm{E}$ of a year? Ans. $£ 51$.
(8) If $\frac{3}{4}$ of a yard of cioth, that is $2 \frac{1}{4}$ yards broad, niake a garment, how much of $\frac{4}{5}$ of a yard wide will make a similar one?

Ans. $2 y d s .1 \cdot 75$ nail.
(9) If 1 oz . of silter is worth $5 s .6 d$. what is the price of a tankard that weighs 1 lb .10 oz .10 dwts .4 grs .?

Ans. £6..3..9..2•2 qrs.
(10) What is the value of 15 cwt .1 qr. 19 lb . of cotton, at 15d. per lb.? Ans. £107..18..9.
(11) If 1 cwt . of currants cost $£ 2 . .9 . .6$. what will 45 cwt . 3 qrs. 14 lb. cost at the same rate? Ans. $£ 113 . .10 . .9 \frac{3}{4}$.
(12) Bought 6 chests of sugar, each 6 cwt. 3 qrs. at $£ 2 ., 16$. per cwt. What do they come to? Ans. £113..8.
(13) Bought a tankard for $£ 10 . .12$. at the rate of $5 s .4 d$. per oz. What was the weight? Ans. 39 oz .15 dwts .
(14) Gave $£ 187 . .3 . .3$ for 25 cwt .3 qrs. 14 lb . of coffee: at what rate did I buy it per $l l$.? Ans. $1 s$. $3 \frac{1}{2} d$
(15) Bought 29 lb .4 oz . of snuff for $£ 10 . .11 . .3$. What is the value of 3 lb .? Ans. £1..1..8.
(16) If I give $1 s .1 d$. for $3 \frac{1}{2} l b$. of rags, what will be the value of 1 cwt .?

Ans. £1..14..8.

EXCHANGE

Is the act of bartering the money of one place for that of another, by means of a written instrument called a Bill of Exchange.

The operations in this Rulo consist in finding the quantity of one sort of money that will be equal to a given sum of the other, according to the existing Course of Exchange.

Par of Exchange signifies the equality in the intrinsic value of two sums of money of different countries, and shows how much of the one is worth a constant sum (or piece of coin) of the other.

Course of Exchange is the comparative value between the money of two different countries at any particular time, which often fluctuates above or below the Par.

Agio is a difference of so much per cent. in the value of the Bank-money and the Current-money of some foreign countries, the former being of superior value.

To change Foreign Muney into British Sterling Money, or Sterling into Foreign, according to a given Course of Exchange.

Rutr. As the quantity of Foreign mentioned in the given course of exchange is to the quantity of Sterling, so is any other sum of the Foreign to its corresponding value in Sterliny money.

And by mutually changing the words Foreign and Sterling, the Rule will serve for changing Sterling into Foreign moncy.

I. FRANCE.

Accounts are kept at Paris, Lyons, and Rouen, in livres, sols, and deniers, and exchange is made by the écu, or crown $=4 s .6 d$. at par.

$$
\begin{aligned}
& \text { Table. } 12 \text { deniers make } 1 \text { sol. } \\
& 20 \text { sols. } .
\end{aligned} . \frac{1}{l} \text { livre. }
$$

(1) How many crowns must be paid at Paris to reccive \boldsymbol{I} London $£ 180$. exchange at $4 s .6 d$. per crown ?*

$$
\begin{aligned}
& \text { e. d. cr. } \boldsymbol{£} . \\
& \text { * As í. } 6: 1:: 130 \\
& \frac{\ddot{2}}{\underline{2}} \text { sixp. } \quad \frac{40}{8290} \text { sixp. }
\end{aligned}
$$

(2) How mucr. wer.ing must be paid in London, to receive in Paris 758 crowns, exchange at $4 s$. 8 l . per crown?

$$
\text { Ans. } £ 176 . .17 .4 .
$$

(3) A merchant in London remits $£ 176 . .17 . .4$. to his correspondent at Paris: what is the value in French crowns, at $4 s$. $8 d$. per crown?

Ans. 758 crowns.
(4) Change 725 crowns, 17 sols, 7 deniers, at $4 s$. $6 \frac{1}{d} d$. per crown, into sterling money. Ans. E164:.14..01. $\frac{3}{3}$ 每.
(5) Change $£ 164 . .14$.. $0 \frac{1}{2}$. sterling into French crowns, exchange at $4 s$. $6 \frac{1}{2} d$. per crown.

Ans. 725 crowns, 17 sols, 7 tity deniers.

if. SPain.

Accounts are kept at Madrid, Cadiz, and Seville, in dollars, yials, and maravedies, and exchange is made by the piece of eight $=4 \mathrm{~s}$. 6 d . at par.

Table. 34 maravedies make 1 rial.
8 rials 1 piastre, or piece of eight. 10 rials 1 dollar.
(6) A merchant at Cadiz remits to London 2547 pieces of eight, at $4 s$. $8 d$. per piece : .how much sterling is the sum? Ans. £594..6.
(7) How many pieces of eight, at $4 s .8 d$. each, will answer a bill of $£ 594 . .6$. sterling ? Ans. 2547.
(8) If I pay here a bill of $£ 2 j 00$., for what Spanish money may I draw my bill at Madrid, exchange at $4 s$. $9 \frac{1}{2} d$. per piece of eight? Ans. 10434 pieces of eight, 6 rials, $8 \frac{3}{2} \frac{0}{3}$ mar.

III. ITALY.

Accounts are kept at Genoa and Leghorn in livres, sols, and deniers, and exchange is made by the piece of eight or dollar $=4 s .6 d$. at par.

Table. 12 deniers make 1 sol .
20 sols . . . 1 livre.
5 livres . . 1 piece of eight at Genoa.
6 livres . . 1 piece of eight at Leghorn.
N. B. 'The exchange at Florence is by ducatoons; at Venice by ducats.

Table. 6 solidi make 1 gross. 24 gross . . 1 ducat.
(9) How much sterling moncy may a person receive in London, if he pay in Genoa 976 dollars at $4 s$. $5 d$. per dollar? Ans. £215..10: 8.
(10) A factor has sold goods at Florence for 250 ducatoons, at $4 s .6 d$. each : what is the value in pounds sterling? Ans. £56..5.
(11) If 275 ducats, at $4 s$. $5 d$. each, be remitted from Venice to Iondon, what is the value in pounds sterling?

$$
\text { Ans. } £ 60 . .14 . .7
$$

(12) A traveller would exchange $£ 60 . .14 .7$. sterling for Venice ducats, at $4 s .5 d$. each ; how many must he receive? Ans. 275.

IV. PORTUGAL.

Accounts are kept at Oporto and Lisbon, in reas, and exchange is made by the milrea $=6 s .8 \frac{1}{2} d$. at par.

Table. 1000 reas make 1 milrea.
(13) A gentleman being desirous to remit to his correspondent in London 2750 milreas, exchange at $6 s$. $5 d$. per. milrea, for how much sterling will he be creditor in London? Ans. £882..5.. 10.
(14) A merchant at Oporto remits to London 4366 milreas, 183 reas, at $5 s .5 \frac{5}{8} d$. exchange per milrea : how much sterling must be paid in London for this remittance?
Ans. £1193..17..6..3•0375 qrs.
(15) If I pay a bill in London of $£ 1193 . .17 . .6 . .3 \cdot 0375$ qrs what must I draw for on my correspondent in Lisbon, exchange at $5 s .5 \frac{5}{8} d$. per milrea? Ans. 4366 milreas, 183 reas
v. HOLLAND, FLANDERS, AND GERMANY.

At Antwerp, Amsterdam, Brussels, Rotterdam, and Famburgh, some accounts are kept in pounds, shillings, and pence, as in England; others in guilders, stivers, and pennings : exchange with London, at from $33 s$. to 30 s . or $38 s$. Flemish per pound sterling.

Table. 8 peninings make 1 groat.
2 groats, or 16 pennings 1 stiver.
20 stivers 1 guilder, or florin.
also, 12 groats, or six stivers, make 1 schelling. 20 schellings, or 6 guilders 1 pound.
(16) Remitted from London to Amsterdam a bill of £754.i10. sterling : how many pounds Flemish is the sum, the exchange at $33 s .6 d$. Flemish per pound sterling?

> Ans. £1263..15..9. Flemish.
(17) A merchant in Rotterdam remits $£ 1263 . .15 . .9$. Flemish to be paid in London; how much sterling money must he
draw for, the exchange being at $33 s .6 d$. Flemish per pound sterling?

Ans. £754..10.
(18) If I pay in London $£ 852 . .12 . .6$. sterling, how many guilders must I draw for at Amsterdam, exchange at 34 schel. lings, $4 \frac{1}{2}$ groats Flemish per pound sterling?

Ans. 8792 guild. 13 stiv. 1 gr. $6 \frac{1}{2}$ pennings.
(19) What must I draw for in London, if I pay in Amsterdam 8792 guild. 13 stiv. $14 \frac{1}{2}$ pennings, exchange at 34 schellings, $4 \frac{1}{2}$ groats per pound sterling? Ans. $£ 852 . .12 .6$.

To convert Bank Money into Currency; and the cartrary.
As 100 : 100 plus the agio : : the Bank-money : the Currency.

As 100 plus the agio : $100:$: the Currency : the Bankmoney.
(20) Change 794 guilders, 15 stivers, Current money, into Bank florins, agio $4 \frac{3}{8}$ per cent.

Ans. 761 guilders, 8 stivers, $11 \frac{73}{\frac{3}{3}} \frac{5}{5}$ pennings.
(21) Change 761 guilders, 9 stivers Bank, into Current money, agio $4 \frac{3}{8}$ per cent.

Ans. 794 guilders, 15 stivers, $4 \frac{3}{10}$ pennings.
VI. IRELAND,

The par of exchange, long established with Ireland, was
 $=£ 1$. English ; or 13d. Irish $=1 \mathrm{~s}$. English.

But the English and Irish currency are now assimilated.
(22) A gentleman remitted to Ireland $£ 575 . .15$. sterling: what would he receive there, the exchange being at $£ 10$. per cent. ? Ans. £633..6..6.
(23) What would be paid in London for a remittance of $£ 633 ., 6 . .6$. Irish, exchange at $£ 10$. per cent. ? Ans. $£ 575 . .15$.

CONJOINED PROPORTION ; OR COMPOUND ARBITRATION OF EXCHANGE
Is the method of comparing the coins, weights, or measures of one country with those of another, when the comparison is to be made through the medium of those of other countries.

Case 1. When it is required to find how many of the first sort mentioned are equal to a given quantity of the last

Rus. Place the terms alternately, antecedents and consequents, in two columns, left and right. The last tern, being an antecedent, will stand on the left.

Divide the product of the antecedents by the product of the consoquents for the answer.

Proor. By as many single statements as the question requires.
(1) If 20 lb . at London make 23 lb . at Antwerp, and 155 lb at Antwerp make 180 lb . at Leghorn, how many ll . at London are equal to 72 lb . at Leghorn ?*
(2) If 12 lb . at London make 10 lb . at Amsterdam, and 100 lb . at Amsterdam 120 lb . at Toulouse, how many $l b$. at London are equal to 40 lb . at 'foulouse? Ans. 40 ll .
(3) If 140 braces at Venice be equal to 156 braces at Leghorn, and 7 braces at Leghorn equal to 4 ells English, how many braces at Venice are equal to 16 ells English?

Ans. $25 \frac{5}{3}$.
(4) If 40 lb . at London make 36 lb . at Amsterdam, and 90 lb . at Amsterdam make 116 lb . at Dantzic, how many lb. at London are equal to 130 lb . at Dantzic? Ans. $112 \frac{2}{2} \frac{2}{9}$.

Case 2. When it is required to flnd how many of the last sort mentioned are equal to a given quantity of the first.

Rule. Place the antecedent and consequent terms as before; but the last term, being a consequent, will stand on the right. Divide the pro duct of the consequents by that of the antecedents.
(5) If 12 lb . at London make 10 lb . at Amsterdam, and 100 lb . at Amsterdam 120 lb . at 'Toulouse, how many lb . at Tonlouse are equal to 40 ll . at London? Ans. 40 lb .
(6) If 40 lb . at London make 36 ll . at Amsterdam, and 90 lb . at Amsterdam 116 lb . at Dantzic, how many $l b$. at Dantzio are equal to 122 lb . at London? Ans. $141 \frac{1}{2} \frac{3}{6}$

D ARBI-

r measures comparison r countries. of the first last

> * Anteccdents. Consequents.
> 20 lb . London $=23 \mathrm{lb}$. Antwerp.
> 155 ll . Antwerp $=180 \mathrm{lb}$. Leghorn.
> 72 lb . Leghorn $=$ how many London?
> 18
> $\frac{20 \times 155 \times 72}{23 \times 1 \$ 9}=\frac{1240}{23}=53 \frac{2}{2} \frac{1}{3} l b . \quad A n s$.
> ©
> 1

INVOLUTION

Is the method of finding the powers of numbers.
Any number is the first power of itself, and the root of all its powers : and when the root is multiplied by itself the product is the second power; the second multiplied by the farst produces the third, \&e.

The second power is commonly called the square, and the third power the cube.

Numbers called indices, or exponents, are placed on the right, a little above the line, to denote the respective powers. Thus, 3^{2} signifies the square, or second power of 3 ; the smal! figure ${ }^{2}$ being the index, or exponent.

To involve a number to any power.

Rule. Multiply the given number (or root) by itself continually one time less than the index of the powor: that is, once for the second, twice for the third power, \&c.

Observe, that any two or more powers multiplied together will proo duce a power whose index is the sum of their indices. Thus, the seventh power is the product of the fourth and the third, because the sum of the indices $4+3=7$.

ILLUSTRATIONS.

The first power of 3 is 3^{1}, or 3 .
The second power of 5 is $5^{2}=5 \times 5=25$.
The third power of $\quad 4$ is $4^{3}=4 \times 4 \times 4=64$.
The fourth power of $\cdot 05$ is $\cdot 05^{4}=\cdot 05 \times \cdot 05 \times \cdot 05 \times \cdot 05=$ -00000625.

The fifth power of $\quad \frac{2}{3}$ is $\left.\overline{2_{3}}\right|^{5}=\frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{3}{3}=\frac{33}{24}$.
(1) Required the squares of $43,2174,4 \cdot 3$, and $\cdot 2174$.

Ans. 1849, 4726276, 18•49, and $\cdot 04726276$
(2) Cube 111, $1 \cdot 11$, $\frac{3}{4}$, and $2 \frac{5}{8}$.

Ans. 1367631, $1 \cdot 367631$, $\frac{27}{87}$, and $18 \frac{4}{5} \frac{5}{512}$
(3) Involve 9 to the ninth power. Ans. 387420489
(4) Find the third, fifth, and eighth powers (without fimeling the fourth, sixth, and seventh) of 17.

Ans. 4.913, 14.19857, and 69.75757441
(5) What are the third and sixth powers of 05 ? Ans. $\cdot 000125$, and $\cdot 000000015625$

EVOLUTION

Is the method of extracting the roots of powers. It is therefore the reverse of Involution; by referring to which it will
rool of all If the proy the forst
re, and the
ed on the ve powers. ; the small
ntinually one ccond, twice
her will pro hus, the sevuse the sum
$\times \cdot 05=$
$=\frac{33}{243}$.

- 2174. 726276
l $188_{5}^{45}{ }^{4}{ }^{5}$ 420489 thout fimpl-

757441
015625 ich it will
be obvious, that the Square Root of a number, multiplied by itself, will produce that number; and that the Cube Root, multiplied twice by itself, will produce the number (or power) of which it is the root.

Nots. The roots of complele powers are called rational; and those which cannot be completily extracted, are called aurds, or irrational roots: thus $\sqrt{ } 4=9$, is rational; but $\sqrt{5}$ is a susch. The surd roots ulay, however, be found to any extent proposed.

SQUARE ROOT.

Rule 1. Place points over the units, hundreds, \&c., so as to form seriods of two figures each.
2. From the first period on the left, subtract the greatest square contained in it; put the root on the right as a quotient; anmex the succeedlog period to the remainder, and call that mumber the Résolvend.
3. Divide the resolvend, exclusive of the units, by double the root; annex the quotient to the root, 'and also to the right of the divisor wo complete it : then multiply the divisor by that quotient figure, and subtruct the product from the resolvend.
4. The remainder, with the next period joined, will form a new re. solvend; and double the root, a new divisor; with which proceed as before.

Note 1. When the number of figures in the Intcger is uneven, the first period will consist of but one figure. When there is an odd numper of decimals, a cipher must be added to complete the periods.
2. When the figures of the whole number are exhnusted, periods of ciphers may be used at pleasure, to continue the extraction in decimals. In all cases, the root will consist of as many figures as there are periods, whether integral or decimal.

Roots.	1.	2.	3.	4.	5.	6.	7.	8.	9.
Squares.	1.	4.	9.	16.	25.	36.	49.	64.	81.

(1) What is the square root of 119025 ?*
(2) What is the square root of 106929 ? Ans. 327.
(3) What is the square root of 22071204? Ans. 4698.

(4) What is the square root of 2268741 ? Ans. $1506 \cdot 23+$.
(5) What is the square root of 7596796? Ans. 2750.228+.
(6) What is the square root of 4.372594 ? Ans. $2 \cdot 091+$.
(7) What is the square root of $2 \cdot 2710957$? Ans. $1 \cdot 50701+$.
(8) What is the square root of 00082754 ? Ans. $01809+$.
(9) What is the square root of $1 \cdot 270059$? Ans. $1 \cdot 1269+$.

To find the Roots of fractional Numbers.

Role. When the terms of a Fraction are complete powers, extract their roots for the corresponding terms of the root.

When they are surds, find an equivalent fraction, by multiplying both terms by the denominator; or by the least number that will make the denominator a square. Then divide the ront of the numerator by the root of the denominator for the answer.-Or, reduce the fraction to a decimal, and extract its root.

Mixed numbers may either be reduced to their equivalent fractions; or into a decimal form.
(10) What is the square root of $\frac{2}{5} \frac{3}{1} \frac{9}{8} \frac{4}{4}$?
(11) What is the square root of $\frac{9 p^{1} 11^{\frac{R}{4}}}{}$?
(12) What is the square root of $51 \frac{21}{5}$?
(13) What is the square root of $27 \frac{9}{10}$?
(14) What is the square root of $9 \frac{4}{4} \frac{3}{3}$?
(15) What is the square root of $\frac{2}{3} \frac{4}{4} \frac{5}{1}$?
(16) What is the square root of $\frac{4773}{57}$?
(17) What is the square root of $85 \frac{1}{1} \frac{4}{5}$?
(18) What is the square root of $8 \frac{5}{7}$?

Ans. $\frac{2}{3}$.
Ans. 帛.
Ans. $7 \frac{1}{5}$.
Ans. $5 \frac{1}{4}$.
Ans. 31 .
Ans. $89802+$ Ans. $93309+$

Ans. $9.27+$ -
Ans. 2.9519 + .

To find a mean proportional between uny two given numbers.

Rur.e. Extract the square root of their product.

(19) What is the mean proportional between 3 and 12 ? $\sqrt{3 \times 12}=\sqrt{ } 36=6$ the mean propartional. Ans.
(20) What is the mean proportional between 4276 and 842 ? Ans. $1897 \cdot 4+$.

To find the side of a square equal in area to any given surface.
Rute. Extract the square root of the given area for the side of the nquare sought.
(21) If the content of a given circle be 160 , what is the side of the square equal? Ans. 12.64911 .
(22) If the area of a circle is 750 , what is the side of the equare equal?

Ans. 27-38612.

The area of a circle given, to find the diameter.
Rule. As 355: 452, or, as $1: 1.273239:$: the area : the squaro of the diameter; or, multiply the square root of the area by $1 \cdot 12837$, and the product will be the diameter.
(23) What length of cord must be tied to a cow's tail, the other end fixed in the ground, to enable her to eat just an acre of grass, and no more; supposing the cow and tail to measure $5 \frac{1}{2}$ yards? Ans. 33.75 yards.

The arca of a circle given, to find the circumference.
Rule. As $113: 1420$, or, as $1: 12 \cdot 56637:$: the area : the square of the circumference; or, multiply the square root of the area by 3.5449 , and the product will be the circumference.
(24) When the area is 12 , what is the circumference? Ans. $12 \cdot 279$.
(25) When the area is 160 , what is the circumference? Ans. 44-839.

Two sides of a right-angled triangle being given, to find the third side.

Case 1. The base and perpendicular being given, to find the hypotenuse.
Ruie. The square root of the sum of the squares of the base and perpendicular is the length of the hypotenuse.

Case 2. The hypotenuse and perpendicular being given, to find the base.
Rule. The square root of the difference of the squares of the hypotonuse and perpendicnlar is the length of the base.

Case 3. The base and hypotenuse being given, to find the perpendicular.
Rute. The square root of the difference of the squares of the hypo tenuse and base is the height of the perpendicular.
(26) The top of a castle from the ground is 45 yards high, and it is surrounded with a ditch 60 yards broad: what length must a ladder be to reach from the outside of the ditch to the top of the castle?

Ans. 75 yards

(27) The wall of a town is 25 feet high, and is surrounded by a moat of 30 feet in breadth : required the length of a ladder that will reach from the outside of the moat to the top of the wall? Ans. $39 \cdot 05$ feet.
N. B. These two questions may be varied for examples to the second and third cases.
(28) In an army consisting of 331776 men, how many must be in rank and file to form a solid square?

Ans. 576.
(29) A certain square pavement contains 48841 equal square stones. How many are contained in one of the sides?

Ans. 221.

CUBE ROOT.

Rule 1. Point every third figure of the given number, beginning at the units' place ; find the greatest cube in the first period, and subtract it therefrom; put the root in the quotient, and bring down the figures in the next period to the remainder for a Resolvend.
2. Multiply the square of the root found by 300 for a Dirisor, and annex to the root the number of times which that is contained in tho Resolvend.
3. Add 30 times the preceding figure (or figures) multiplied by the last and the square of the last, to the divisor, and multiply the snm by the last for a Subtrahend; subtract it from the Resolvend, and repeat the process as fir as necessary.*

The subjoined Theorems (deduced from Problem 91, page 266, Em.
rson's Algebra) are very conveniont approximations for the Cube Root. srson's Algebra) are very conveniont approximations for the Cube Root.:

$$
\frac{1}{4} r+\frac{1}{2} \sqrt{ }\left(\frac{4 n-r^{3}}{3 r}\right)=\frac{1}{2} r+\sqrt{ }\left(\frac{n}{3 r}-\frac{1}{1} r^{2}\right)=
$$

Note．As the units mast glways be pointed，there will be some－ times only one or two figures in the first period．－The decimals must ulways consist of so many figures as will constitute complete periods， as in the Square Root．－Also，what is observed in Note 2，Square Root， will hold good in this Rule．

Roots．	1.	2.	3.	4.	5.	6.	7.	8.	9.
Cubes．	1.	8.	27.	64.	125.	216.	343.	512.	729.

（1）What is the cube root of 99252847 ？＊
（2）What is the cube root of 389017 ？
Ans． 73.
（3）What is the cube root of 5735339 ？Ans． $1 \% 9$.
（4）What is the cube root of 32461759 ？Ans． 319.
（5）What is the cube root of 84604519 ？Ans． 439.
（6）What is the cube root of 27054036008 ？Ans． 3002.
（7）What is the cube root of $673373097125 ? \cdot A n s .8765$.
（8）What is the cube root of $12.97 \% 875$ ？Ans．2．3\％．
（9）What is the cube root of 001906624 ？Ans． 124 ．

D，the required root，nearly．In which a denotes the given number， and r an assumed root found by trial．

The second formula，which is more convenient than the other，be－ cause it contains no ligher power than the square of r ，may be thus expressed

Divide the given number by three times the assumel root，and from the quotient subtract $\frac{1}{12}$ of the square of the assumed root：the squiare root of the remainler，added to half the assumed root，will give the root required．See also the method of extracting any noot by approx－ imation．

$$
\begin{aligned}
& \text { * } 9925 \sim 34 \bar{r} \text { (} 163 \text { the root. }
\end{aligned}
$$

$4 ^ { 2 } \times 3 0 0 = 4 8 0 0 \longdiv { 3 5 2 5 2 }$ resolvend.
$\therefore+6 \quad \begin{aligned} 70 & =4 \\ 36 & =6^{2}\end{aligned}$
4800 divisor.
5556
6
$\overline{33336}$ subtra耳⿻丷木en?.
$\left.46^{2} \times 300 \doteq 634800\right) \overline{1916847}$ resolvend.
$4140=46 \times 30 \times 3$
$9=3^{2}$
$\begin{array}{r}634800 \\ \hline 638949\end{array}$
3
1916847 sultraiend.
(10) What is the cube root of $36155 \cdot 02756$? Ans. 33.06十.
(11) What is the cube root of $33 \cdot 230979937$? Ans. $3 \cdot 215+$.
(12) What is the cube root of $15926 \cdot 972504$? Ans. $25 \cdot 16+$.

To find the Roots of Fractional Numbers.

Rule. When the terms of a fraction are complete powers, extract their roots for the corresponding terms of the root.

When they are surds, if both terms be multiplied by the square of the denominator, an equal fraction will be produced, the denominator of which will be a cubc. Then divide the root of the numerator by the root of the denominator for the answer.-Or, the fraction aay be reduced to a decimal; and its root extracted.

Mixed numbers may be reduced as in the Square Root.
(13) What is the cube root of $\frac{25}{6} \frac{5}{8} 6$?

Ans. $\frac{5}{9}$.
(14) What is the cube root of $\frac{324}{1500}$?
(15) What is the cube root of $12 \frac{1}{2} \frac{9}{7}$? Ans. $\frac{3}{5}$:
(16) What is the cube root of $31 \frac{1,5}{3} \frac{5}{3}$?

Ans. $2 \frac{1}{3}$.
(18) What is the cube root of ${ }^{4}{ }^{185}$ Ans 8298.2655_{5}^{4}
(18) What is the cube root of $\frac{4}{7}$? Ans. $8298265+$.
(19) What is the cube root of $\frac{5}{7}$? Ans. $8220707+$.
(20) What is the cube root of $7 \frac{1}{5}$? Ans. $1 \cdot 930978+$.
(21) What is the cube root of $9 \frac{1}{8}$? Ans. $2 \cdot 092845+$.
(22) What is the cube root of $8 \frac{5}{7}$? Ans. $2 \cdot 0578352+$.
(23) A water cistern in the form of a cube contains 60 cubic feet, 143 inches; what is the length of the side?

$$
\text { Ans. } 47 \text { inchcs. }
$$

(24) There is an excavation made for a cellar equal in length, breadth, and depth ; which required 4913 cubic feet of earth to be dug out. What is the length of the side?

$$
\text { Ans. } 17 \text { fect. }
$$

(25) There is a building of cubic form, which contains 389017 solid feet : what is the superficiajn content of one of its sides?

Aus. 5329 sq. fcet.

Between two numbers given, to find two mean proportionals.

Rule. Divide the greater extreme by the less, and the cube root of the ruotient multiplied by the less extreme gives the less mean; muls tiply the said cube reot lyy the less mean, and the product will be the greater mean proportional.
(26) What are the two mean proportionals between 6 and 162 ? Ans. 18 and 54.
(27) What are the two mean proportionals between 4 and 108 ?

Ans. 12 and 36.

Ans. 章.
Ans. $\frac{3}{5}$. Ans. $2 \frac{1}{3}$. Ans. $3 \frac{1}{7}$. Ans. $7 \frac{2}{5}$. 98265+. $20707+$ $30978+$. 32845+。 $78352+$. ns 60 cubio

7 inches. ar equal in ubic feet of de?
17 feet. ch contains t of one of sq. feet. portionals. cube root of mean; muls ; will be the
veen 6 and 3 and 54. veen 4 and and 36.

To find the side of a cube equal in solidity to any given solid as a globe, cylindcr, prism, cone, fic.
tule. The cube root of the solid content given is the side of a cabe of equal solidity.
(28) If the solid content of a globe is 10648, what is the side of a cube of equal solidity?

Ans. 22.
The side of a cube being given, to find the side of a cube that shall be double, treble, \&c., in quantity to the cube given.
Rule. Cube the side given, and multiply it by $2,3, \& c$. , the cube root of the product will be the side sought.
(29) There is a cubical vessel whose side is 12 inches, and it is required to find the side of another vessel that will contain three times as much.

Ans. 17•30699 inches.

BIQUADRATE ROOT.

Rule. Extract the square root of the given number, and then the equare root of that square root, which will be the biquadrate root required.
(1) What is the biquadrate root of 531441? Ans. 27.
(2) What is the biquadrate root of 33362176 ? Ans. 76.
(3) What is the biquadrate root of 5719140625 ? Ans. 275.

АGENERAL RULE FOR EXTRACTING THE ROOTS OF ALL POWERS.

1. Prepare the given number by pointing it into periods of two figures each for the square root, three for the cube root, \&c.
2. Find the first figure of the root, and subtract its power from the first period.
3. Bring down the first figure in the next period to the remainder, and call that the dividend.
4. Involve the root to the next inferior power to the given one, and multiply it by the index of the given power for a divisor.
5. Find a quotient figure by common division, and annex it to the root; then involve the whole root to the given power Sor a subtrahend, which subtract from the first two periods.
6. To the remainder bring down the first figure of the next period for a new dividend; find a new divisor and a new subtrahend, as before; subtract from three periods, and proceed thus to the end.

Otherwise. To find ANY ROOT by approxumation.
Rule. Let g denote the given number or power, n the index of the power, a un assumed power nearly equal to g, r its root, and R the required root.
${ }_{2}$ hen, as $\frac{(n+1) a+(n-1) g}{2}: a$ ©n $\pi:: r: R$ Co $r ; *$ which dif.
ference or correctional numbrr, being added or subtracted, (as required,) will give R, and by repeating the process, any degree of accuracy may be obtained.
(1) What is the square root of 141376 ? \dagger
(2) What is the cube ront of 53157376 ?

Aüs. 376.
(3) What is the fourth root of 19987173376 ? Ans. 376.
(4) Required the fifth root of $2508 \cdot 474615614240625$.

Ans. 4.785.
(5) Required the sixih root of $3 \cdot 1416$. Ans. 1-210201+

SYNGLE POS!TION

Is the method of using one supposed number, and working with it as the true one, to find the real number required. \ddagger

Rule. As the result from the supposition is to the true result, so is the supposed number to the true one reguired:

Proor. Add the several perts together, according to the conditions of the question.
(1) A schoolmaster being asked how many scholars he had, said, " If I had as many, half as many, and one quarter as many more, I should have 88. . How many had he ?

This for the Cube Root will be, As $2 a+g: a \subset g:: r: R$ in r.
+141376 (376 the root.

$$
\begin{aligned}
& 3 \times 2 = 6 \longdiv { 5 1 } \text { dividend. } \\
& 37^{2}=1369 \text { subtrahend. } \\
& 37 \times 2 \xlongequal[=74) 447]{ } \text { dividend. } \\
& 276^{2}=141376
\end{aligned}
$$

\ddagger Questions belonging to this Rule have the results proportional to their suppositions; the conditions requiring the number sougit to be increased by the addition of itself, or of some known multipie cr pait thereof, or to be diminished by the subtraction of such part.

8 Suppose he had 40. Then $40+40+20+10=110$.

$$
\text { And, as } 110: 88:: 40: \frac{88 \times 4 \mid 0}{1150}=\frac{3.52}{11}-32 \text { Ans. }
$$

mation.

index of the and R the re-
;** which $d i f$. (as required,) accuracy may

Aus. 376. Ans. 376.

[^24](1) A, B, and C, would divide $£ 200$. among them, so that B may have $£ 6$. more than A, and $\mathrm{C} £ 8$. more than B. How much must each have ?*
(2) A man had two silver cups of unequal weight, having one cover to both of 5 ounces. Now if the cover is put on the less cup, it will double the weight of the greater; and put on the greater cup, it will be thrice as heavy as the less. What is the weight of each?

Ans. 3 ounces the less, and 4 the greatcr.
(3) Three persons conversing about their ages; says K, "My age is equal to that of H , and $\frac{1}{4}$ of L's;" and L says, "I am as old as both of you together." Required the ages of K and $L_{1} ; \mathrm{H}^{\prime}$ being 30 . Ans. K 50, and L 80.
(4) D, E, and F', playing at cards, staked 324 crowns; but disputing about the tricks, each man seized as many as he could: E got 15 more than D; and F got a fifth part of both their sums added together. How many did each person get? Ans. D $127 \frac{1}{2}, E 142 \frac{1}{2}$, and $F 54$.
(5) A gentioman meeting with some ladies, said to them; " Good morning to you, ten fair maids." "Sir, you mistake,"
like kinds, or by their sum, when unlike; the quotient will be a cor rectional number; which being added to the nearest supposition when defcctive, or subtracted fiom it when cxcessive, will give the number required.

- 60, or 60 too little.

$$
\begin{array}{r}
s u p . \\
40 \\
70 \\
\hline 6 \quad 60 \\
\hline 2000 \\
1900 \\
\hline
\end{array}
$$

divisor. $60+30=4 ; 0) 54010$ dividend.

$$
\overline{x 60}=\text { A's share. }
$$

Or, by the Rule in the Note.
$\frac{70-40 \times 30}{60+30}=\frac{30 \times 30}{90}=10$, the correctional number. Then $70-10=6030$ A's share, as before. an B. How ight, having er is put on reater ; and as the less.
ic greater. es; says K, and L says, the ages of and $L 80$. crowns; but many as he part of both person get? and $F 54$.
aid to them; ou mistake,"
will be a cor ppostion when ve the number

$$
\begin{aligned}
& \\
& \text { hare }=7 . \\
& 1 \text { B's }=76 \\
& \text { 1 C's }=84 \\
& \text { Sum } 230 \\
& +30 \text { or } 30 \mathrm{tm} \\
& \epsilon . \\
& 0 \\
& 6 \\
& \frac{4}{0} \text { Prowf: }
\end{aligned}
$$

amber.
answered one of them, "we are not te • but if we were three times as many as we are, we should be as many above ten as we are now under." How many were they? Ans. 5.

ARITIMAETICAL PROGRESSION.

An Aruhmetical Progression is a series of numbers increasing or decreasing uniformly by a continued equal diffcrence. Thus,
$\begin{array}{llll}1, & 2, & 3, & 4, \\ 2, & 5, & 8,11,14, \& c . \\ \text {, }\end{array}$ are increasing Arithmetical Series. $\left.\begin{array}{rrrrr}9, & 8, & 7, & 6, & 5, \& c . \\ 16, & 12, & 8, & 4, & 0, \\ \text { \& } .\end{array}\right\}$ are decreasing Arithmetical Series.

Observe, that the terms of the first series are formed ly adding successively the common difference 1 , and the second by the common difo ference 3. The terms of the third and the fourth diminish continually by the sultraction of 1 and 4 respectively.

In an odd number of terms, the double of the mean (or middle term) is equal to the sum of the extremes, or of anv two terms equidistant from the mean. Thus, in $1,2,3,4,5$; the double of $3=1+5=2+4=6$.

In an even number of terms, the sum of the two means is equal to the sum of the extremes, or of any two equidistant terins. Thus, in 2, 4; 6, 8; 10, 12, $6+8=2+12=4+$ $10=14$.

To give Theorems or Rules for the solution of the various cases, the terms are represented by symbols, or lettors.

Thus let a denote the less extrime, or least term,

$$
\begin{array}{ll}
z & \text { the greater extreme, or greatest term; } \\
d & \text { the common difference, } \\
n & \text { the number of terms, and } \\
s & \text { the sum of all the terms. }
\end{array}
$$

Any three being given, the others may be found.
Note. The twenty cases in this Rule may be resolved by the follow ing Theorems:-
$a=z-(n-1) d=\frac{2 s}{n}-z=\frac{s}{n}-\frac{1}{2} d(n-1)=\frac{1}{2} d \vdash \sqrt{\left(\frac{1}{2} d+z\right)^{2}-2 d s}$.
$z=a+(n-1) d=\frac{2 s}{n}-a=\frac{1}{n}+\frac{1}{2} d(n-1)=\sqrt{\left.\left(\frac{1}{2} d-a\right)^{2} \right\rvert\, 2 d s}-\frac{1}{2} d^{2}$
$d=\frac{z-a}{n-1}=\frac{s-a n}{n-1} \cdot \frac{2}{n}=\frac{n z-s}{n-1} \cdot \frac{2}{n}=\frac{(z+a) \cdot(z-a)}{2 s-a-z}$.

$$
\begin{aligned}
\dot{n}= & \frac{s-a}{d}+1= \\
& \frac{2 s}{a+z}=\frac{\frac{1}{2} d-a+\sqrt{\left(\frac{1}{2} d-a\right)^{2}+2 d s}}{d}= \\
& \frac{\frac{1}{2} d+z-\sqrt{\left(\frac{1}{2} d+z\right)^{2}-2 d s}}{d} . \\
s=\frac{1}{2} n(a+z)= & \frac{a+z}{2} \cdot \frac{z-a+d}{d}=\frac{1}{2} n \cdot \overline{2 a+d(n-1)}=\frac{1}{2} n \cdot \overline{2 z-d(n-1 .)}
\end{aligned}
$$

Moreover, when the least term $a=$ nothing, the Theorems become $z=d(n-1$,$) and s=\frac{1}{2} n z$.
Case 1. The two extremes and the number of terms being given'; to find the sum.
Rule. Multiply the sum of the extrexes by the number of terma; and balf the product will be the answer.*
(1) How many strokes does the hammer of a clock strike in 12 hours? \dagger
(2) A man bought 17 yards of cloth, and gave for the first yard $2 s$. and for the last $10 s$. What was the price of the 17 yards?

Ans. £5..2.
(3) If 100 eggs be placed in a right line, exactly a yard from each other, and the first a yard from a basket, how far must a person travel to gather them all up singly, and return' with every egg to put it into the basket ?

Case 2. The same three termis given, to find the common dif: ference.
Ruis. Divide the difference of the extremes by the number of terms less 1 , and the quotient will be the answer.
(4) Á man had eight sons, whose ages were in arithmetical progression; the youngest being 4 years old, and the eldest 32. What was the common difference of their ages ? \ddagger
(5) A man travelling from London to a certain placé, went 3 miles the first day, and increased every day by an equal excëss, making the twelfth day's journey 58 miles:

[^25]What was the daily increase, and how far did he tra 1 in 12 days?

Ans. 5 miles daily increase, the whole distance 366 mules.
Case 3. The two extremes and the common difference being given, to find the number of terms.
Rule. Divide the difference of the extremes by the common differ: epuce, and the quotient increased by unity is the number sought.
(6) A person travelling into the country, went 3 miles the first day, and increased every day 5 miles, till at last he went 58 miles in one day. How many days did he travel ? Ans. 12.
(7) A man being asked how many sons he had, said, that the youngest was 4 years old, and the eldest $32 \cdot$ and that his family had increased one in every 4 years. How many hau 品?

Ans. 8.
Case 4. The greater extreme, the number of terms, and the common difference being given, to find the less cxtreme.
Rule. Multiply the common difference by the number of terms lesp \ddagger; subtract the product from the greater extreme, and the difference will be the less extreme.
(8) A man went from London to a certain town in the country in 10 days; every day's journey exceeding the former by 4 miles, and the last being 46 miles: what was the first?

Ans. 10 miles.
(9) A man took out of his pocket, at 8 several times, so many different numbers of shillings, every one exceeding the former by 6 , the last being 46 : what was the first ? Ans. 4.

Case 5. The common difference, the number of terms, and the sum being given, to find the less extreme.
Ruis. Divide the sum by the number of terms: from the 4 ootient subtract half the product of the common difference into the number of terms less 1 ; and the remainder will be the less extreme.
(10) A man is to receive $£ 360$. at 12 sever?? payments, each payment to exceed the former by $\mathfrak{£ 4}$. and is willing to bestow the first payment on any one that can tell him what b jis. What will that person have for his pains? Ans. $£ 8$.

Case 6. The less extreme, the common difference, and the num ber of terms being given, to find the greater extreme
Pris Multiply the number of terms less 1 by the common diffor
ence; to this product ald the less extreme, nud the sum will be the greater extreme.
(11) What is the last number of an arithmetical progression, beginning at 6 , and continuing by the increase of 8 to 20 places? Aus. 158.

GEOMETRICAI IROGRESSION.

A Geometrical Progression is a series of numbers increasing or decreasing uniformly by a common ratio; that is, by the continual multiplication or division of some particular number. Thus,

1, 2, 4, 8, 16, 32, \&c., is an increasing Gcometrical Series, in which the terms are formed by muluplying successively by the ratio 2.

81, $27,9,3,1, \frac{1}{3}, \& \mathbf{c}$. , is a decreasing Gcometrical Series, in which the terms are formed by dividing successively by the ratio 3. it is evident that either of these may be continued without end.

In an odd number of terms, the square of the mean is equal to the product of the extremes, or of any two terms equidistant from the mean. Thus, in $3,6,12,24,48 ; 12 \times 12=3 \times 48$ $=6 \times 24=144$.

In an even number of terms, the product of the two means is equal to the product of the extremes, or of any two cquidistant terms. Thus, in $32,16,8,4,2,1 ; 8 \times 4=32 \times 1=$ $16 \times 2=32$.

To give Theorems, or Rules expressed in symbols, for the solution of the various cases, as in Arithmetical Progression, let a denote the less extreme,

\boldsymbol{z}	the greater cxtreme,
\boldsymbol{r}	the ratio,
\boldsymbol{n}	the number of terms, and
s	the sum of all the terms.

Any three being given, the others may be found.
Notr. The twenty Theorems following solve all the possible cases jn Geometrical Progressiou.
Theor, I. $r^{\mathrm{p}-\mathrm{1}}=\frac{z^{*}}{a} ; \quad$ or, $\frac{\text { Log. } z-\log \cdot a}{\log \cdot r}+1=n$.

[^26]II. $\frac{r z-a}{r-1}=s$; or, $z+\frac{z-a}{r-1}=s$.
III. $\left(\frac{z}{a}\right)^{\frac{1}{n-1}}=r$; or, $\overline{\log . z-\log \cdot a} \div \overline{n-1}=\log . r$
IV. $z+\frac{z-a}{\left(\frac{z}{a}\right)^{\frac{1}{n-1}}-1}=s$.
V. $\frac{s-a}{s-z}=r$.

VI. $\left(\frac{s-a}{s-z}\right)^{\mathrm{n}-1}=\frac{z}{a} ; \quad \begin{aligned} & \text { from which } n \text { may be found, as in } \\ & \text { Theorem I. }\end{aligned}$ or, $\frac{\log . z-\log . a}{\log \cdot(s-a)-\log \cdot(s-z)}+1=n$. VII. $a r^{0-1}=z z$.

YIII. $\frac{a\left(r^{\mathrm{n}}-1\right)}{r-1}=s . \quad$ IX. $\frac{(r-1) s+a}{r}=s \frac{s-a}{r}=z_{2}$
X. $r^{n}=\frac{(r-1) s}{a}+1 ;$ or, $\frac{\log \cdot \overline{(r-1) s+a}-\log . a}{\log r}=r$.
XI. $z \times \overline{s-z}^{0-1}=a \times \overline{s-a}^{n-1}$; whence z may be found by Double Position. XII. $\frac{s r}{a}-r^{n}=\frac{s-a}{a}$; whence r may be found in the same manner.
XIII. $\frac{z}{r^{n-1}}=a . \quad$ XIV. $\frac{z\left(r^{n}-1\right)}{r^{n}-r^{\mathrm{n}-1}}=s$.
XV. $r z-(r-1) s=a . \quad$ XVI. $r^{n-1}=\frac{z}{r z-(r-1) s} ;$ or, $\frac{\log . z-\log \cdot r z-(r-1) \dot{s}}{\log r}+1=n$.
XVII. $a \times \overline{s-\left.a\right|^{n-1}}=z \times\left.\overline{s-z}\right|^{n-1}$. XVIII. $\frac{r^{n-1} s}{s-z} r^{n}=\frac{z}{s-z}$

From the two preceding, a and r are to be found by Double Position.
$\mathrm{XIX} . \frac{(r-1) s}{r^{\mathrm{n}}-1}=a . \quad \mathrm{XX} . \frac{r^{n}-r^{n-1}}{r^{n}-1} \times s=z$.
In a Geometrical series decreasing ad infinitum. a becomes $=0$, and n is infinite, or greater than any assignable number.

Hence the three following will exhibit all the various cases of such a scries.
l. $s=\frac{r z}{r-1}=r \cdot f \frac{z}{r-1}=\frac{z^{2}}{z-\frac{z}{r}}$.
II. $z=\frac{s(r-1)}{r}$.
III. $r=\frac{s}{s-z}$.

Nore. In these cases, when the ratio is a proper fraction, r must be saken $=$ the reciprocal of the fraction. Thus, when the ratio is $\&$, $r=-\frac{1}{3}$.

Case 1. The less exireme, the ratio, and the number of terms being given, to fiul the greater extreme (or any remote termi') wilhout producing all the intermediate terms.
Rule 1. When the least term is equal to the ratio. Write down a fow of the leading terms of the serics, and over them the arithmetical series, 1, 2, 3, 4, ©c., as indices or exponents. Find which of the in: dices, added together, will give the index of the term sought, and the continual product of the terms standing under those indices will be the term sought.
2. When the least term is not equal to the ratio. Write down tho leading terms as before, and over them the indices, $0,1,2,3,4, \& 0$. Examine which of these, aided together, will give an index one less than the number of the term sought; multiply the terms under such indices into each other, dividing the product of every two by the first term, and the last quotient will be the term required.*

Otherwise. By Theorem VII.
(1) A man agrecs, for 12 peaches, to pay only the price of the last; reckoning a farthing for the first, and a halfpenny for the second, \&c., doubling the price to the last. What must he give for them? \dagger
(2) A farmer, who went to a fair to buy some oxen, met with a drover who had 23, for which he asked him £16. a piece. After a great deal of dodging between the parties, it was finally agreed that the farmei should pay the price of the last ox only, reckoning a farthing for the first, and doubling it to the last. How much would they cost him?

Ans. £4369..1..4.

* If the least term is unity, there will (of course) be no division.
\dagger Here $a=1, r=2$, and $n=12, a$ and r being unequal.
$\left.\begin{array}{llllll}\text { Indices, } & 0, & 1, & 2, & 3, & 4 . \\ \text { Geom. series, } & 1, & 2, & 4, & 8, & 16 .\end{array}\right\}$ Then $4+4+3=11=n-1$.
Hence $10 \times 16 \times 8=2048 \mathrm{grs}=z$, and $2048 \mathrm{grs}= \pm 2.2 . .8$ Ame.
ious cases

1. $r=\frac{s}{s-z}$.
n, r must be θ ratio is
of terms mote termi'
rite down a arithmetical In of the in: ght, and the 3 will be the te down the , 2, 3, 4, \&o. one less than such indices ist term, and

he price of

 Ifpenny for What mustoxen, met im £16. a parties, it rice of the d doubling
69..1..4.
division.
$1=n-1$.
2.8 Ane.
(3) A sum of money is to be divided among 8 persons, the first to have $£ 20$. the second $£ 60$. and so on in triple proportion. What will the last have?* Ans. $£ 43740$.
(4) A gentleman dying left nine sons, to whom and to his executors he bequeathed his estate in the manner following: To his executors $£ 50$., to his youngest son twice as much as to the executors, to the next, double that sum, and so on ta the eldest. What was his fortune? Ans. £25600.

Case 2. The less extreme, the ratio, and the number of terms being given, to find the sum of all the terms.

Rule. Find the greater extreme as before, and divide the difference between the cxtremes by the ratio less 1 ; to the quotient add the greater extreme for the sum required. This is Theorem II. Or, by Theo:rem VIII; without finding \approx.
(5) A young man conversant with numbers, agreed with a gentleman to serve him twelve months, provided he would give him a farthing for his first month's service, a penny for the second, and $4 d$. for the third, \&c. What did his wages amount to ? \dagger

Ans. $£ 5825 . .8 . .5 \frac{1}{4}$.
(6) A man bought a horse, and by agreement was to give a farthing for the first nail, three for the second, \&c. Now supposing there were 8 nails in each of his four shoes, what was the price of the horse? Ans. $£ 965114681693 . .13 . .4$.
(7) A person whase daughter was married on new-year's day, gave her husband $1 s$. towards her portion; promising to double the sum on the first day of every month during the year. What was her portion? Ans. £204..15.
(8) A laceman, well versed in numbers, agreed with a gentleman to sell him 22 yards of rich brocaded gold lace, for 2 pins the first yard, 6 pins the second, \&c., in triple proportion. What was the price of the lace, valuing the pins
$\left.\begin{array}{rrr}* \\ \text { Indices } 0, & 1, & 2, \\ \text { meries } 20,60,180,540 .\end{array}\right\}$ Then $3+3+1=7=n-1$.
Hence $\frac{540 \times 540 \times 60}{20 \times 20}=540 \times 27 \times 3=43740=z$.
Otherwise $a r^{n-1}=20 \times 3^{7}=43740=z$.

+ Here $a=1, r=4$, and $z=12$. Therefore $s=\frac{4^{12}-1}{4-1}=\frac{16777215}{3}$
55592405 qr8.
at 100 for a farthing? Also, what did the laceman gain supposing the lace to have cost him $£ 7$. per yard ?

Ans. The lace sold for £326886..0..9. Gain $£ 326732 . .0 . .9$.
Case 3. The first term, and the ratio, being given, to find the sum of an infinite decreasing series.
Rule. Divide the square of the first term by the difference bewren the first and second.*
(9) What is the sum of the circulating decimal $\cdot 9$, or the

(10) Required the sum of the infinite series $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}$, \&c.; also of the series $\frac{1}{3}+\frac{1}{3}+\frac{1}{2}$, \&c. Ans. 1, and $\frac{1}{2}$:
(11) Suppose a body to be put in motion by a force which gives it a velocity of 10 miles the first minute, (or any given space of time,) 9 miles in the second equal space, and so on jn the ratio of $\frac{9}{17}$; how many miles would it pass over, if continued in motion for ever?

Ans. 100 miles.

SIMPLE INTEREST, BY DECIMALS.

To give Theorems for the solution of the different cases in Simple Interest, let p denote the principal, r the ratio, t the time, (in years,) i the intcrest, and a the amount.

Note. The Ratio is the intercst of $£ 1$. for one year, at the rate per cent. proposed, and may be found by Proportion: thun, at $£ 5$. per cent. per anvum, say,

$$
\text { As } £ 100: £ 5:: 1 £: £ \cdot 0,5 \text {, the ratio. }
$$

Therefore the ratio at
3 per cent. is . . . $03 \left\lvert\, 4 \frac{1}{3}\right.$ per cent. is . . . 045

31	\cdot	.	.	.	035	5
4	\cdot	.	.	.	05					
$5 \frac{1}{2}$.	.	.	$.055, \& \mathrm{c}$						

Case 1. When the principal, rate per cent. and time are given, to find the interest.
Rule. Multiply the principal, ratio, and time together, and the pro duct will be the interest required.

That is, $p r t=i$.
(1) What is the interest of $£ 945 . .10$. for 3 years, at $£ 5$. per cent. per annum ? \dagger

[^27](2) What is the interest of $£ 54.7 . .14$, at $£ 4$. per cent. per annum, for 6 years? Ans. $£ 131 . .8 . .11 . .208$ qrs.
(3) What is the interest of $£ 796 . .15$., at $£ 4 \frac{1}{2}$. per cent. per annum, for 5 years?

Ans. £179..5.. $4 \frac{1}{2}$.
(4) What is the interest of $£ 397 . .9 . .5$. for $2 \frac{1}{2}$ years, at $£ 3 \frac{1}{3}$. per cent. per annum?

Ans. £34..15..6..3.55 qrs.
(5) What is the interest of $£ 554 . .17 . .6$. for 3 years, 8 months, at $£ 4 \frac{1}{2}$. per cent. per annme? Ans. £91..11..10 0 d.
(6) What is the interest of $£ 236 . .18 .8$. for 3 years, 8 months, at $£ 5 \frac{1}{2}$. per cent. per mmum?

$$
\text { Aas. £.47..15..7..2 } 293 \text { grs. }
$$

When the interest is for any number of days only.
Rure. Multiply the interest of $£ 1$. for a day, at the given rate, by abe principal and the number of days, and the product will be the answer.

The Interest of $£ 1$. for one day.
At $£ 2$ percent. $=\mathfrak{£} \cdot 00005479452^{*} \mid$ at $£ 4=00010958904$
$2 \frac{1}{2}=00006849315 \quad 4 \frac{1}{2}=\cdot 00012328767$
$3 \quad=00008219178 \quad 5=00013698630$
$3 \frac{1}{3}=\cdot 0009589041 \quad 5 \frac{1}{2}=\cdot 00015068493, \& x c$.
(7) What is the interest of $£ 210$. for 120 days, at $£ 4$. por cent. per annum ? \dagger
(8) What is the interest of $£ 364 . .18$. for 154 days, at $£ 5$. per cent. per annum?

Ans. $\mathfrak{x} 7 . .13 . .11 \frac{1}{4}$.
(9) What is the interest of $£ 725.15$. for 74 days, at $\mathcal{C 4}$. per cent. per annum? Ans. £5..17. 8 年.
(10) What is the interest of $x 100$. from the 1 si of June, 1826, to the 9 th of March following, at $£ 5$. per cent. per annum? Ans. £3..16..113.
Case 2. When p, r, and t are given, to find a.
Rule. $p r t+p=a$.
(11) What will $£ 279 . .12$. amount to in 7 years, at C4 $_{4}^{\frac{1}{8}}$ per cent. per annum? \ddagger
(12) What will $£ 320 . .17$ amount to in 5 yoars, at $£ 3$ t per cent. per annum? Ans. $£ 376 . .19 . .11 . .2$ (3 qrs.

[^28](13) What will $£ 926 . .12$. amount to in $5 \frac{1}{2}$ years, at $£ 4$. per cent. per annum? Ans. £1130..9..0..1-92 qrs.
(14) What will $£ 273 . .18$. amount to in 4 years, 175 days, at $£ 3$. per cent. per annum? Ans. $£ 310 . .14 . .1 . .3 \cdot 3512$ qrs

Case 3. When a, r, and t are given, to find p.
Rule. $\frac{a}{r t+1}=p$
(15) What principal, being put to interest, will amount to $£ 367 . .13 . .5 .3 \cdot 04$ qrs. in 7 years, at $£ 4 \frac{1}{2}$. per cent. per annum?
(16) What principal will amount to $£ 376 . .19 . .11 . .2 \cdot 8$ qrs . in 5 years, at $£ 3 \frac{1}{2}$. per cent. per annum? Ans. $£ 320 . .17$:
(17) What principal will amount to $£ 1130 . .9 . .0 . .1 \cdot 92$ grs. in $5 \frac{1}{2}$ years, at £4. per cent. per annum? Ans. £926.. 12
(18) What principal will amount to $£ 310 . .14 . .1 . .3 \cdot 3512$ qrs. in 4 years, 175 days, at $£ 3$: per cent. per annum? Ans. £273..18.

Case 4. When a, p, and t are given, to find r.
Rucx. $\frac{a-p}{p t}=r$.
(19) At what rate per cent. fer annum will $£ 279 . .12$. amount to $£ 367 . .13 . .5 .3 \cdot 04$ qrs. in 7 years ? \dagger
(20) At what rate per cent. per annum will $£ 320 . .1$ \%. amount to $£ 376$..19..11.. 28 qrs. in 5 years?

Ans. $£ 3 \frac{1}{7}$. per cent.
(21) At what rate per cent. per annum will $£ 926 . .12$. amount to $£ 1130 . .9 .0 . .1 \cdot 92$ qrs. in $5 \frac{1}{2}$ years?

Ans. £4. per cent.
(22) At what rate per cent. per annum will $£ 273.18$ amount to $£ 310 . .14$..1.. $3 \cdot 3512$ qrs. in 4 years, 175 days? Ans. £3. per cent

Case 5. When a, p, and r are given, to find t. Rove. $\frac{a-p}{p r}=t$.

[^29][TUTOR'S. rs, at $£ 4$. 92 qrs. 175 days, 3512 grs
(23) In what time will $£ 279 . .12$ amount to $£ 367$..13..5.. 3.04 grs at $£ 4 \frac{1}{2}$ per cent per annum ?*
(24) In what time will $£ 320 . .17$. amount to $£ 376 . .19 . .11$.. 2.8 qrs. at $£ 3 \frac{1}{2}$. per cent per annum? Ans. 5 years.
(25) In what time will $£ 926 . .12$. amount to $£ 1130 . .9$..9.. 1.92 grs. at $£ 4$. per cent. per annum? Ans. $5 \frac{1}{2}$ years.
(26) In what time will $£ 273 . .18$. amount to $£ 310 . .14 . .1$.. $3 \cdot 3512$ qrs. at $£ 3$. per cent. per annum?

Ans. 4 years, 175 days. annuities.
An annuity is a yearly income or rent. Perpetual Annuitier gre those which are to continue for ever ; Terminable Annuities are to cease within a limited time ; and Life Annuities are to continue during the term of life of one or more persong.

The Amount of Annuities in Arrears.
Let u denote the annuity, r, t, and a, as before.
Case 1. Given, u, r, and t, to find a.
Mous. $\left(\frac{\overline{t-1 . r}}{2}+1\right) \times{ }_{4}=a$.
(27) If a salary of $£ 150$. be forborne 5 years, at $£ 5$. per eent. per annum, what will be the amount ? \dagger
(28) If £250. yearly pension be forborne 7 years, what will it amount to at $£ 4$. per cent. per annum? Ans. $£ 1960$.
(29) There is a house let upon lease for $5 \frac{1}{2}$ years, at $£ 60$. per annum, what will be the accumulated rent, allowing inforest at $£ 4 \frac{1}{2}$. per cent. per annum?" Ans. $£ 363 . .8 . .3$
(30) Suppose an annual pension of $£ 28$. remain unpaid for 8 years, what would it amount to at $£ 5$. per cent. per annum? Ans. £263..4.
Nore. When the annuity is payable half-yearly, or quarterly. will denote a single payment, r, the interest of $£ 1$. for that interval ci time, and t, the number of payments.
(31) If a salary of $£ 150$, payable every half-year, remain unpaid for 5 years, what will it amount to in that time, allow: ing interest at $£ 5$. per cent. per annum ? Ans. $£ 834$..7..6.
$\quad 367 \cdot 674-279.6=88.074$, and $279.6 \times \cdot 045=12.582$; then 88.074
$\div 12.582=7$ years, Ans.
$\left.\quad+\left(\frac{4 \times \cdot 05}{2}+1\right) \times 5 \times 150=\overline{(2 \times \cdot 05}+1\right) \times 5 \times 150=1 \cdot 1 \times 5 \times$
$150=£ 825$. Ans.
（32）If a salary of $£ 150$ ．，payable every quarter，were left unpaid for 5 years，what would it amount to in that time at £5．per cent．per annum？

Ans．£839．1．． 3.
Note．It may be olserved by comparing the results of the 27 th， 31st，and 32nd examples，that half－yearly payments are more advantar geous than yearly，and quarterly more than half－yearly．

Case 2．When a, r ，and t ，are given，to find u ．
Rule．$\frac{2 a}{(r .(t-1)+2) \times t}=u$ ．
（33）If a salary amounted to $£ 885$ ．in 5 years，at $£ 5$ ．per cent．per annum，what was the salury ？＂
（34）If a house has been let upon lease for $5 \frac{1}{2}$ years，and the amount in that time is $£ 363 . .8$ ．．3．at $£ 4 \frac{1}{2}$ ．per cent．per annum，what is the yearly rent？ Ans．$£ 60$.
（35）If a pension amounted to $£ 1960$ ．in 7 years，at $£ 4$. per cent．per annum，what was the pension？Ans．$£ 250$ ．
（36）Suppose the amount of $=\mu$ ension was $£ 263 . .4$ ．in 8 years，at $£ 5$ ．per cent．per annum，what was the pension？

Ans．£28．
（37）If the amount of a salary，payable half－yearly，be $£ 834 . .7$ ．．6．in 5 years，at $£ 5$ ．per cent．per annum ；what is the salary per year？\dagger

Ans．$£ 150$.
（38）If the amount of an annuity，payable quarterly，was £839．．1．．3．in 5 years，at $£ 5$ ．per cent．per annum；what was the annuity？Ans．£ís0．

Case 3．When u, a ，and t are given，to find r ．
Ruir．$\frac{(a-u t) \times 2}{(t-1) \times u t}=r$ ．
（39）If a salary of $£ 150$ ．per annum amounts to $£ 825$ ．in 5 years，what is the rate per cent．？\ddagger
（40）If a house has been let upon lease for $5 \frac{1}{2}$ years，at $\boldsymbol{£ 6 0}$ ．per annum，at what rate per cent．would it amount to £363．．8．． 3 ？ Ans．£4⿳亠丷厂彡2．per cent．

$$
\frac{825 \times 2}{(\cdot 35 \times 4+25) \times 5}=\frac{1650}{22 \times 5}=\frac{1650}{11}=x_{150 . A n s}
$$

\dagger Eee note，p． 133.

$$
\frac{\ddagger(825-\overline{150 \times 5}) \times 2}{4 \times 150 \times 5}=\frac{825-750}{2 \times 150 \times 5}=\frac{75}{150 \times 10}=\frac{1}{20}=0 \mathrm{k}
$$

$\boldsymbol{r} \boldsymbol{r}$ ；thercfore the rate is $\boldsymbol{£} 5$ ．per cent．
(41) If a pension of $£ 250$. per annum amounts to $£ 1960$. in 7 years, what is the rate per cent.? Ans. £4. per cent.
(42) Suppose the amount of a yearly pension of $£ 28$. be $£ 263 . .4$. in 8 years, what is the rate per cent. per annum? Ans. £'5. per cent.
(43) If a salary of $£ 150$. per anmum, payable half-yearly, amount to $£ 834 . .7 . .6$. in 5 years, what is the rate per cent. ? Ans. £5. per cent.
(44) If an annuity of $\mathfrak{L 1 5 0}$. per annum, payable quarterly, amount to $\mathcal{L} 839 . .1 . .3$. in 5 years, what is the rate per cent.?

Ans. f:5. per cent.
Case 4. When u, a, and r are given, to find t.
RoLe. $\frac{\sqrt{\sqrt{8 r \frac{a}{u}+(Z-r)^{2}}-(2-r)}}{2 r}=t$.
Or, put $\frac{1}{r}-\frac{1}{2}=m$; then $V\left(\frac{2 a}{u r}+m^{2}\right)-m=t$.
(45) In what time will a salary of $£ 150$. per annum amount to $£ 825$. at $£ 5$. per cent. ? \dagger
(46) If a house is let upon lease at $£ 30$. per annum till it amount to $£ 363 . .8$..3. at $£ 4 \frac{1}{2}$. per cent. per annum, for what term of years was it let? Ans. $5 \frac{1}{2}$ years.
(47) If a pension of $£ 250$. per annum, haring been for, borne a certain time, amount to $\mathcal{L} 1060$. at $\mathcal{L} 4$. per cent., how long has been the time of forbearance? Ans. 7 years.
(48) In what time will a yearly pension of $£ 28$. amount to $£ 263 . .4$. at $\mathscr{L} 5$. per cent. per anmum? - Ans. 8 ycars.
(49) If an annuity of $£ 150$. per annum, payable halfyearly, amounted to $£ 834 . .7 . .6$. at $£ 5$. per cent, what time was the payment forborne? ** Aus. 5 ycars.
(50) If a yearly pension of $£ 1 E 0$., payable quarterly, amounts to $£ 839 . .1 . .3$. at $£ 5$ per cent. per annum, what has been the time of forbearance? Ans. 5 years.

$$
\begin{aligned}
& \text { See Note, p. 133 } \\
& \frac{\mathrm{t} \sqrt{8 \times \cdot 05 \times \frac{825}{150}+(9-\cdot 05)^{2}-(2-05)}}{2 \times \cdot 05}= \\
& \frac{\sqrt{40 \times 5 \cdot 5+3.8025}-1.95-\frac{2.45-1.95}{\cdot 1}=\cdot 5 \div \cdot 1=5 \text { ycars. Ans. }}{\frac{2}{1}=}
\end{aligned}
$$

A Table by which the Interest of any sum from E1. to $\mathbf{E 3 0 0 0 0}$. may be easily computed for any number of days, at any rate per cent.

No.	E. s. d. qrs.		No.	s. d.	qrs.	No.	qrs.
30000	82310	$0 \cdot 11$	200	1011	$2 \cdot 03$	1	$2 \cdot 63$
20000	541510	2.74	100	55	$3 \cdot 01$	0.9	$2 \cdot 37$
10000	$27 \quad 711$	1.37	90	411	0.71	$0 \cdot 8$	$2 \cdot 10$
9000	24131	3.23	80	4	2.41	0.7	1.84
8000	21184	$1 \cdot 10$	70	310	$0 \cdot 11$	0.6	1.58
7000	1936	$2 \cdot 96$	60	33	1.81	0.5	1.32
6000	16889	$0 \cdot 82$	50	28	$3 \cdot 51$	0.4	$1 \cdot 05$
3000	$\begin{array}{llll}13 & 13 & 11\end{array}$	2.68	40	22	$1 \cdot 21$	$0 \cdot 3$	0.79
4000	10192	0.55	30	17	$2 \cdot 90$	$0 \cdot 1$	0.53
3900	844	$2 \cdot 41$	20	11	0.60	0.1	0.26
2000	$\begin{array}{llll}3 & 9 & 7\end{array}$	$0 \cdot 27$	10	06	$2 \cdot 30$	0.09	0.24
1000	2149	2:14	9	05	3.67	0.08	0.21
900		$3 \cdot 12$	8	05	$1 \cdot 04$	0.07	0.18
800	$2 \begin{array}{lll}3 & 10\end{array}$	0.11	7	0	$2 \cdot 41$	0.06	0.16
700	1184	$1 \cdot 10$	6	03	3.78	0.05	0.13
600	11210	2.08	5	03	$1 \cdot 15$	0.04	0.11
500	174	$3 \cdot 07$	4	0.2	$2 \cdot 52$	0.03	0.08
400	111	0.05	3	01	3.89	0.02	0.05
300	016	1.04	2	01	$1 \cdot 26$	0.01	0.03

The above Table is thas constructed: as 365 days : $\mathbf{£ 1}$.: : 1 day 2 $2 \cdot 63$ grs., \&c. Hence it appears that the several tabular sums are thopo which answor to the respective numbers of days, at the rate of $\boldsymbol{E} 1$. per year.

In a similar Table in Rees's Cyclopadia, there are no fewer than 16 orrors. In Dr. Hutton's Table, (Arithmetic, page 84, 12th edition,) thero is one error. The above may be depended on as accurate.

Rule. Multiply the principal by the rate, both in pounds, and the product by the number of days: divide the last product by 100 , collect from the Table the several sums answering to the several parts of the quotient, and the aggregate amount will be the Interesti required.

Example 1. What is the interest of $£ 370$..10. for 220 ddys at $£ 4 \frac{1}{2}$. per cent. per annum?
£. s. d. qrs.
 000. may b or cent.
qrs.
$2 \cdot 63$
$2 \cdot 37$
$2 \cdot 10$
1.84
$1 \cdot 58$
$1 \cdot 32$
1.05
0.79
0.53
0.26
$0 \cdot 24$
0.21
$0 \cdot 18$
$0 \cdot 16$
0.13
$0 \cdot 11$
0.08
0.05
0.03
. : : 1 day : ms are thorp te of $£ 1$. per
wer than 16 2th edition, durate.
nds, and the y 100, collect parts of the quired.
r 220 days qrs.
$2 \cdot 41$
$2 \cdot 08$
1.81
$2 \cdot 41$
$2 \cdot 37$
0.13
3.21 Ans decimal.

Example 2. 'Taking Ex. 8, page 131, we havo 364.9

$$
\begin{array}{r}
\frac{5}{1824 \cdot 5} \\
\frac{154}{72980} \\
273675 \\
\hline 2809 \mid 73 \cdot 0 \\
\hline
\end{array}
$$

$$
\begin{array}{cccc}
& \text { E. } & \text { s. } & d . \\
\text { qgainst } 2000 \text { stands } 5 & 9 & 7 & 0.27
\end{array}
$$

Example 3. What is the interest of $£ 17 . .10$. for 117 days et $£ 4 \frac{3}{4}$. per cent. per annum?

$$
17 \cdot 5^{\prime}
$$

$4 \cdot 75$
$\overline{875}$
$1225{ }^{\circ}$
700
$\longdiv { 8 3 \cdot 1 2 5 }$
117
581875
914375
$\overline{97 \mid 25 \cdot 625}$

Fo find the amount of a yearly income or salary, \&e, for 9 number of days.

Multiply the number of pounds per year by the number of lays; collect the Tabular sums answering to the product, as before, and their aggregate will be the answer.

Example. What will a person receive for 45 days, at the fate of $£ 105$. per annum?

$$
\begin{aligned}
& \begin{array}{r}
105 \\
45 \\
\hline 525 \\
420 \\
\hline 4725 \\
\hline
\end{array}
\end{aligned}
$$

Nors. Any of the preceding examples of interest for days, in page 191, or examples 20 and 21 , page 68 , may be worked by this method.

A Table showing the number of lays from any day in the month to the same day in iny other month through the year

	To	尔			安	盛	$\stackrel{0}{\square}$	$\stackrel{\text { 娄 }}{\text { 号 }}$	$\stackrel{\text { coin }}{\underset{\sim}{3}}$		－	家	®
志	Jan．	365	31	59		120	151	181	12	213	273		334
	Feb．	334	365	28	59		120	150	181	212	242	27	303
	Mar．	306	337	365	31	61		122	153	184	214	245	275
	Apr．	275	306	334	365	30	61	91	122	153	183	14	244
	May	245	76	304	335	365	31	61		123	153	184	214
	Jine	214	）	279	304	334	365	30	61	92	122	153	183
	July	184	215	243	274	304	335	365	31	62	92	123	153
	Aug．	153	184	212	43	273	304	334	365^{-1}	31	61		： 22
	Sept．	122	153	181	212	242	273	303	334	365	30	61	91
	Oct．	92	123	151	182	212	243	273	1304	335	365	31	61
	Nov．	61	92	120	151	181	212	242	273	304	334	365	30
	Dec．	31	62	90	121	151	182	212	243	274	304	335	365

DISCOUNT．

Let s represent the sum to be discounted，r the ratio，t tha time，（in years，）and p the present worth．

Case 1．Given s, r ，and t ，to find p ．
Rule．$\frac{s}{r t+1}=p$ ．
（1）What is che present worth of $£ 357 . .10$ ．to be paid 9 months hence，at $£ 5$ ．per cent．per annum ？＊
（2）What is the present worth of $£ 275 . .10$ due 7 months nence，at $£ 5$ ．per cent per annum？Ans．$£ 267 . .13 .10 \cdot 152 d$ ．
（3）What is the present worth of $£ 875 . .5$ ． 6 ．due 5 months hence，at $£ 4 \frac{1}{2}$ ．per cent．per annum？

Ans．£859．．3．．3．．3•01824 qrs．
（4）How much ready money can I receive for a note of $£ 75$ due 15 months hence，at $£ 5$ ．per cent．per annum？ Ans．£70．．11．．9•1764d．

[^30]Case 2. When p, r, and t are given, to find s.
Ror.e \quad prt $+p=s$.
e ratio, t tha
to be paid 9
ue 7 months $13 . .10 \cdot 152 d$. lue 5 months

1824 qrs. or a note of annum? ..9•1764d.
(5) If the present worth of a sum of money due 9 months hence, allowing $£ 5$. per cent. per annum, be $£ 344$..11..G. 3.168 qrs., what was the sum due ?*
(6) A person owing a certain sum, payable 7 months hence agrees with the creditor to pay him down $£ 267 . .13 . .10 \cdot 152 d$., allowing $\mathfrak{E} 5$. per cent. per anmum for present payment: what is the debt?

Ans. $£ 275 . .10$.
(7) A person receives $£ 859 . .3 . .3 . .301824$ qrs. for a sum of money due 5 months hence, allowing the debtor $£ 4 \frac{1}{2}$. per cent. per annuin for present payment: what was the sum due? Ans. £875..5..6.
(8) A person paid $\subset 70 . .11 . .9 \cdot 1764 d$. for a debt due 15 months hence, being allowed $£ 5$. per cent. per annum for the discount. How much was the debt? Ans. $£ 75$.

Case 3. When s, p, and t are given, to find r.
Rule. $\frac{s-p}{p t}=r$.
(9) At what rate per cent. per annum will $£ 357 . .10$., pay. able 9 months hence, produce $\mathfrak{f i 3 4 4 . . 1 1 . . 6 . . 3 \cdot 1 6 8 \text { qrs. for }}$ present payment ? \dagger
(10) At what rate per cent. per annum will £275..10., 2 payable 7 months hence, be worth $£ 267 . .13 . .10 \cdot 152 d$. for present payment? Ans. £5. per cent.
(11) At what rate per cent. per annum will $£ 875 . .5$..6., payable 5 months hence, produce the present payment of £859..3..3..3.01824 qrs.? Ans. £41 $\frac{1}{2}$.per cent.
(12) At what rate per cent. per annum will $£ 75$. , payable 15 months hence, produce the prosent payment of $£ 70 . .11 . .9 \cdot 1764 d$. Ains. £5. per cent.

Case 4. When s, p, and r are given, to find t.
R(die. $\frac{s-p}{p r}=t$

$$
\begin{aligned}
& 344 \cdot 5733 \times \cdot 05 \times \cdot 75+344 \cdot 5783=£ 357 . .10 . \text { Ana } \\
& +\frac{357 \cdot 5-344 \cdot 5783}{344 \cdot 5783 \times \cdot 75}=\cdot 05 \text { or } £ 5 . \text { per cent. Ans. }
\end{aligned}
$$

(13) The present worth of $£ 357 . .10$., due at a certain time so come, is $£ 344 . .11 . .6$..3•168 qrs. at $£ 5$. per cent. per annum : in what time should the sum have been paid without any discount ?
(14) The present worth of $£ 275$..10., due at a certain time to come, is $£ 267 . .13 . .10 \cdot 152 d$. at $£ 5$. per cent. per annum : in what time should the sum have been paid without dis:count?

Ans. 7 months.
(1.5) A person receives $£ 859 . .3 .3 . .3 .01824$ qrs. for $£ 875$. . 5 .6., due at a certain time to come, allowing $£ 4 \frac{1}{2}$. per cent. per annum discount: in what time should the debt have been discharged without any discount? Ans. 5 months.
(16) I have received $£ 70 . .11$..9•1764d. for a debt of $£ 75$., allowing the person $£ 5$. per cent. per annum for prompt payment: when would the debt have been payable without piscount?

Ans. 15 months.

EQUATION OF PAYMENTS.

To find the equated time for the payment of a sum of money dus at several times.

Ruls. Find the present worth of each payment for its respective time by Case 1, Discount, page 138, thus:-

Add all the present worths together, call their sum p^{\prime}, and the sum of all the payments s^{\prime}; then by Case 4, Discount, p. 139. \dagger

$$
\begin{aligned}
& \frac{t}{r t+1}=\varphi \\
& \frac{s^{\prime}-p^{\prime}}{p^{\prime} r}=e,
\end{aligned}
$$

$$
\frac{357 \cdot 5-344 \cdot 5783}{344 \cdot 5783 \times \cdot 05}=\cdot 75=9 \text { months. Ans. }
$$

\dagger The above is Kersey's Rule. It produces a result something less than the precise truth, but sufficiently accurate for any purpose of real utility. The only Rule that is strictly true for the equatzon of two payments at Simple Interest is that given by Malcolm, which is founded on the principle, that the interest nl the money withheld after it becomes due, ought to be equal to the discount of that which is paid before it is due. But Malcolm's Rule, though it has leen simplified in expression by Bonnycastle and others, and is capable of further simplification than I have yet seen in print, is at best very operose, and may be regarded, Mr. Keith justly observes, as a useless curidsity. Eniror.
(tutor:g
dosistint.j
(1) D owes E $\mathcal{E} 200$., whereof $\boldsymbol{£ 4 0}$. is to be paid at three months, $£ 60$. at 6 months, and $£ 100$. at 9 months: at what time may the whole debt be paid together; discount being allowed at $£ 5$. per cent. per annum ?*
(2) D owes E $£ 800$., whereof $£ 200$. is to be paid in 3 months, $\mathfrak{£ 2 0 0}$. at 4 months, and $£ 400$. at 6 months; but they agree to have the whole paid at once; allowing discount at the rate of $£ 5$. per cent. per annum'. 'The equated time is required. Ans. 4 moñths, 22 ilays.
(3) E owes F $£ 1200$., which is to be paid as follows: £200. down', £500. at the end of ten monthis, and the rest at the end of 20 months; but they agree to have only one payment of the whole, discountin'g at $£ 3$. per cent. per annum. The equated time is required. Ans. 1 year;' 11 days:

COMPOUND INTEREST. \dagger

The same symbols are adopted in this as in Simple Interest; and denote the same things; except that the ratio (r, which in Simple Interest denotes the interest of $£ 1$, signifies in this Rule the anount of $£ 1$. for a year. It may be thus found by Proportion.

As $£ 100: \notin 105:: \dot{\boldsymbol{E} 1}: \notin 1 \cdot 05$, the ratio at $£ 5$ per cent: per annum. The ratios are, therefore,

- $\frac{40}{1 \cdot 0125}=39.5061 ; \frac{60}{1 \cdot 025}=58.5365 ; \frac{100}{1 \cdot 0375}=96.3855 ;$
then $200-\overline{30 \cdot 5061+58 \cdot 5365+96 \cdot 3855}=5 \cdot 5719$;
and $\frac{5.5719}{194.4281 \times 05}=57315=6$ months, 26 days. Ans.
\$The law of England does not allow the lender to receive Compoun Interest for his money when the receipt of the Interest has been fo borne. But in the granting or purchasing of Annuities, Leases, \&e either immediate or in reversion, it is customary, and indeed nocessar. to compute them on the principles of Compound Interest, for otherwis the calculation would involve most egregious injustice and abeurdity.

A Table of the Amount of $\mathfrak{x} 1$. for years.

	per Cent	3 f per Cent.	4 per Cent.	$4 \frac{1}{2}$ per Cent.	per Cent.
1	$1 \cdot 0300000$	1.0350000	1.0400000	$1 \cdot 0450000$	$1 \cdot 0500000$
2	$1 \cdot 0609000$	$1 \cdot 0712950$	1.0316000	1-0920250	$1 \cdot 1095000$
3	1-0!27270	1-1087179	1-1248640	1-1411661	1-1.576250
4	1-1255088	1-1475230	1-1698588 ${ }^{\text {d }}$	1-1925186	$1 \cdot 2155062$
5	1-1592741	1-137686:3	1-2166.399	1-2461819	1-2762816
6	1-1940523	1-2925.53	90	01	56
7	1-2.98739	19722793	$1 \cdot 3159318$	1-3608618	$1 \cdot 4071004$
8	1-2667701	1:3168090	$1 \cdot 36856690$	1-4291006	1-4774554
9	1-30.17732	$1 \cdot 3023974$	$1 \cdot 123: 3110$	1-4860951	1-5.513282
10	1-34391(64	$1 \cdot 410.5903$	1-4802.143	1-5599694	$1 \cdot 6 \times 88946$
11	1/3842333!	$1 \cdot 45996997$	$1 \cdot 539.4 .91$	1.6228530	17103394
12	1-49.57609	1:5110(687	1-6010:392	$1 \cdot 695881$	$1 \cdot 7958563$
13	$1 \cdot 468: 3337$	$1 \cdot 56395051$	$1 \cdot 6650735$	1.772190	1-8856491
14	1•510:8897	$1 \cdot 61869.45$	1.7316764	1-8519449	1.9799316
15	1-555960\% 4	$1 \cdot 6753433$	1-800943.)	$1 \cdot 9352824$	$2 \cdot 0789288$
16	1.60.4\%064	1.73339860	1074.9812	-1223702	2.1828746
17	1-6528476	1.7946756	1.9.47900.5	- 11333768	2.2920183
18	$1 \cdot 7024331$	$1 \cdot 6.744892$	$2 \cdot 03.5816$	2.2084783	$2 \cdot 4066192$
19	1.753.5060	1-9225013	2-1068492	$2 \cdot 3078603$	25269302
20	1-80611112	1.9897389	$2 \cdot 1911231$	$2 \cdot 4117140$	2-6532977
21	1-8602946	$2 \cdot 0594315$	$2 \because 2787681$	2-5202412	$2 \cdot 7859626$
22	1-9161034	$\underset{\sim}{2} 1315116$	9.36999133	$2 \cdot 6336520$	2.9252607
23	1-9735865	2×061145	2.4647155	27521663	$3 \cdot 0715237$
24	$2 \cdot 0327941$	2×8333235	$2 \cdot 5633042$	$2 \cdot 3760138$	3.2250999
25	$2 \cdot 0937779$	$2 \cdot 363 \cdot 4.50$	$2 \cdot 66 . .88363$	$3 \cdot 0054345$	$3 \cdot 3863549$
26	2-1565913	$2 \cdot 4159596$	2.77.1698	3-1406790	$3 \cdot 5556727$
27	2×212390	2.531 .9671	2.3333636	3.2820096	$3 \cdot 7334563$
28	2×2879277	2.62017:0	-.9087033	$3 \cdot 4297000$	$3 \cdot 9201291$
29	$2 \cdot 3565655$	2.7118780	3-1186514	3:5840:365	$4 \cdot 1161356$
30	2.4272625	2.80679:37	3:243397.5	$3 \cdot 7453181$	4.3219424
31	2.500030:3	-90.50315	3.3731331	$3 \cdot 9138.274$	4.5380395
32	2.5750827	$3 \cdot 0067076$	$3 \cdot 5080587$	$4 \cdot 0399810$	$4 \cdot 7649414$
33	$2 \cdot 6583352$	$3 \cdot 1119103$	$3 \cdot 6483811$	4×740302	$5 \cdot 0031885$
34	2.73190 .83	3.2.2036003	37913163	$4 \cdot 4663615$	$5 \cdot 2533479$
35	28138624	3-333:5001	$3 \cdot 9460390$	4.6673473	$5 \cdot 5160153$
36	2.890.783	3-4.902661	4-1039932.5	$4 \cdot 6773785$	$5 \cdot 7918161$
37	$2 \cdot 9859266$	3.57 102.54	4:2680993	$5 \cdot 0960605$	$6 \cdot 0814069$
35	3.07478.34	3•6960113	$4 \cdot 1333134$	5-3262192	6.3854773
39	$3 \cdot 1670269$	3•8253717	4.6163660	$5 \cdot 5658991$	$6 \cdot 7047511$
40		3.9592	4.8010	5	7•0399887

These tabular numbers are the successive powers of r; thus, $1.05^{2}=$ $\because-1025$, \&c.*

[^31]Case 1. When p, r, and t are given, to find a.
Rule. $p r^{r}=a$. Or, log. $r \times t+\log . p=\log . a$.
Or by the Table. Multiply the tabular amonnt of $£ 1$. by the principal, and the product will be the anount required.
(1) What will $£ 225$. amount to in 3 years, at $£ 5$. per cent, per annum ?*
(3) What will $£ 200$. amount to in 4 years, at $£ 5$. per cent per annum? Ans. £243..2..0..1 2 qrs (3) What will $£ 450$ amount to in 5 years, at $\mathcal{E 4}$. per cent. per annum?

Ans. £547..9..10..2-0538368 qrs.
(4) What will $\mathscr{£} 500$. anount to in 4 years, at $£ 4 \frac{1}{2}$. per cent. per annum?

Case 2. When a, r, and t are given, to find p. Rule. $\quad \frac{a}{r^{2}}=p . \quad \mathrm{O}_{1}, \overline{\log \cdot a-\log \cdot r} \times t=\log \cdot p$.
(5) What principal, being put to interest, will amount to £ $260 . .9 . .3 \frac{3}{4}$. in 3 years, at $£ 5$. per cent. per annum? \dagger
(6) What principal, being put to interest, will amount to £243..2..0..1'2 qrs. in 4 years, at $£ 5$. per cent. per annum? Ans. £200.
(7) What principal will amount to $£ 547 . .9 . .10 . .2 \cdot 0538358$ qrs. in 5 years, at $£ 4$. per cent. per annum? Ans. $£ 450$.
$=14$, because the index always corresponds with the time. By referw ring to Theorem VII, Geometrical Progression, it will also be seen that such last term $=r \times r^{r-1}=r^{2}$, when $a=r$.
The immense increase of money accumulating at Compound Interest for a long period is sutlicient to astonish the humam mind, and to stagger the credibility of persons who are not in some degree conversant with the properties of Geometrical I'rogression. The amount of a farthing, placed ont at Compound Interest at the commencement of the Christian era, and continued to the conclasion of the eighteenth century, would be 144035 quintillions of pounds. But of the magnitude of this sum, spoken of in the abstract, no just conception can be formed When, however, by a further calculation, we have ascertained that to coin such a quantity of money (were it possible) in sovereigns of the present weight and finencss, would require 60,308170 solid globes of gold, each as large as the carth, we are enabled to entertain a more adonuate idea of the sum whose vastness, without heving receurse to this adscititious assistance, placed it almost boyond the reach of our lis ited understandings.

The amount at Simple Interest, for the same period, would be only 1s. 103d.--Eniror.

$$
\begin{aligned}
& \cdot 105^{9} \times 225=1 \cdot 57625 \times 225=260 \cdot 465625=.5260 . .9 .33 \text { Ans } \\
& +\frac{n 60.465625}{105^{3}}=\frac{250.465625}{1 \cdot 157025}= \pm 225 . \text { Ans. }
\end{aligned}
$$

(8) What principal will amount to $£ 596 . .5 .2 \cdot 232075 d$. in 4 years, at $£ 4 \frac{1}{2}$ per cent. per annum? Ans. $£ 500$.
Case 3. When p, a, and t are given, to find r.
kuex. $\frac{a}{p}=r^{\prime}$, the root of which, being extracted, will give \dot{r}.
Or, $\overline{\log \cdot a-\log \cdot p} \div t=\log \cdot \dot{r}$.
(9) At what rate per cent. per annum will $£ 225$. amount to £260..9.33. in 3 years ?"
(10) At what rate per cent. per annum will $£ 200$ amount to $£ 243 . .2 .0 . .1 \div 2$ qrs. in 4 years? Ans. $£ 5$. per cent.
(11) At what rate per cent. per annum will $£ 450$. amount 0 £547..9..10..20538368 qrs. in 5 years? Ans. $£ 4$. per cent.
(12) At whạt rate per cent. per annum will $£ 500$. amount to $£ 596 \cdot 2593003125$ in 4 years? Ans. $£ 4 \frac{1}{2}$. per cent.

Case 4. When p, a, and r are given, to find t.
which being continually divided, by r till nom
RuLx. $\frac{a}{p}=r, \quad$ remains, the number of the divisions will bu a, a to t.
Or, $\overline{\log \cdot a-\log \cdot p} \div \log \cdot r=t . \dagger$
(13) In what time will $£ 225$. amount to $£ 260.9$. 3 3 at £'5. per cent. per annum? \ddagger
(14) In what time will $£ 200$. amount to $£ 243 . .2 \cdot 025 \mathrm{~s}$ a £5. per cent. per annum?

Ans. 4 years.
(15) In what time will $£ 450$ amount to $£ 547 . .9 . .10$ 2.0538368 qrs. at $£ 4$. per cent. per annum? Ans. 5 years.
(16) In what time will $£ 500$ a amount to $£ 596: 2593003125$ at $£ 4 \frac{1}{3}$. per cent. per annum?

Ans. 4 years.

THE AMOUNT OF ANNUITIES IN ARREARS.

Nore. u represents the annuity, pension, or yearly rent; a, r, and t as before.

- $\frac{260 \cdot 465625}{225}=1 \cdot 157625$, and ${ }^{8} \sqrt{ } 1 \cdot 157625=1 \cdot 05$, or 55 . per cent. And
+ In all cases of this nature t cannot be found without Logarithme, uuless it be a whole number.
$\pm \frac{260 \cdot 465625}{225}=1 \cdot 157625 ;-\frac{1 \cdot 157625}{1.05}=1 \cdot 1025 ; \frac{1 \cdot 1025}{1 \cdot 05}=1 \cdot 05 ; \frac{1 \cdot 05}{1.05}=1$. The number of divisions being tiree, which gives the time sought $=1$ years. Ans.
.2.232075d. in Ans. $£ 500$. find $\%$. d, will give r.
£225. amount
£200. amount £5. per cent. £450. amount 2s. £4. per cent. £500. amount 4 $4 \frac{1}{2}$. per cent.

b find t.

by r till mos ions will bu ca a
£260..9..33: at
243..2.0255: в Ans. 4 years. o £547..9..10 Ans. 5 years. $96: 2593003125$ Ans. 4 years.
grs.
y rent ; a, r, and

S5. per cent. And
thout Logarithms,
$=1.05 ; \frac{1.05}{1.05}=1$. time sought $=3$

A Table of the amount of \boldsymbol{x}_{1}. annuity for yrars.

	3 per Cent.	$3 \frac{1}{2}$ per Cent.	per comt	4. $\frac{1}{\text { per Cont }}$	per Cent.
-1	$1 \cdot 0000000$	1.0000010	1.000000	$1 \cdot 00000$	$1 \cdot 000000^{\prime}$
2	$2 \cdot 0300000$	$2 \cdot 03.90000$	2.0400096	¢ $2 \cdot 150100$	$2 \cdot 0.000000$
3	$3 \cdot 0909000$	$3 \cdot 1062950$	$3 \cdot 1915000$	3-1:70950	$3 \cdot 1.52 .000$
4	$4 \cdot 1836270$	4.2149429	4.64646 .40	4.2701911	4:3101250
5	$5 \cdot 3091358$	$5 \cdot 36916.59$	5-417:3226	$5 \cdot 1707007$	$5 \cdot 5056312$
6	6-4684099	6.5 .50152	6133975	115	68019128
7	7:6624622	7-7.794075	789399\%	$8 \cdot 0191517$	$8 \cdot 14.0003 .4$
8	8-89233361	9.0514868	$9 \cdot 142263$	9:3:00013.5	9.5491038
9	10-1591068	10.3684923	10.5927953	$10 \cdot 8021141$	$11 \cdot 0: 0.5642$
10	11*4633794	11.7313932	$12 \cdot 0061071$	$12 \times 3820 \% 2$	12.5770924
11	1280\%79.88	$13 \cdot 1419920$	$13 \cdot 43633.314$	13.9111736	14*0679\%0
12	14-1990297	14:6019617	1502.50:-	1.5-46.10316	15.917120 .4
13	$15 \cdot 6177906$	16.1130304	16.602083\%	17-1599130	17.7129327
14	$17 \cdot 0863243^{\prime}$	$17 \cdot 67698855$	19-2!19112	18.9321091	$19 \cdot 59361318$
1.5	18:5989140	19.2956810	20.023 .3076	$210 \cdot 5310.040$	21.578 .9634
16	$20 \cdot 150881$	20.9710293	$21 \cdot 3 \cdot 4.311$	71933119	$23 \cdot 6754916$
17	21-7615878;	28.7050158	23 -69\%)	24.741706;	9-9.90366
18	23.4144354	24 4!996914	95-54.5409	$26 \cdot 4530931$	$20 \cdot 135: 334.5$
19	25.1168685	26.3571806	27-6719093	29.0635\%39	30.53900.37
20	26.8703745	2¢, 2796819	99-7780735	: $11: 3714225$	3:3.0659539
21	$28 \cdot 6764857$	302694708	31-9692016	33.73 .386	2.71423.6
22	30-5367803	32.3289023	$34 \cdot 247969$	36-30:33377	38.30 .2142
23	32. 328837	$34 \cdot 4604139$	$36.61: 833.9$	$39 \cdot 937019.97$	$41 \cdot 4301749$
24	34.4264702	$36 \cdot 60 \%$,984	20-0896040	$41 \cdot 6891960$	4.4.5019936
25	36.4592643	38.9493.769	41.64.90032	$44 \cdot 96.52093$	47.7.2093.
219	38.5.50429	41.3151019	44:317145	478706448	51.119434
27	40.7096335.	$43 \cdot 759060.5$	47.0842143	50.71138233	34 -6691961
98	$42 \cdot 9309825$	$46 \cdots 9062 \sim 6$	43:367.30?	5.3-993333:	$58 \cdot 4025: 24$
$\stackrel{9}{ }$	$45 \cdot 2188502$	48.9107996	2096693\%	$57 \cdot 1230309$	$62 \cdot 3627115$
30	47:5754157	51.6226776	$56 \cdot 0349376$		$66 \cdot 4383171$
31	$50 \cdot 0026782$	54.42947 .13	$59+28385$	647.02375	70.7607895
32	52.5027595	57.33450:26	(6×701468	68.6652449	75:2939290
33	55.0778412	$60 \cdot 341 \geqslant 104$	66-309.572	72.750\%:93	$80 \cdot 0637704$
34	57-7301764	6.3-4.3 31597	\| $69 \cdot 3.8963{ }^{\text {a }}$	$72 \cdot 0.36501$	8.-.06669.889
35	$60 \cdot 4620817$	$66 \cdot 65+40130$	$73 \cdot 650246$	81-11661:18	$30 \cdot 32013063$
36	63•2759441	70.0076031	77-29313\%	$66 \cdot 163969$	$95 \cdot 3363221$
37	$66 \cdot 174222.4$	73.4.73695)	81.7032161	$21 \cdot 0.413139$	1014231382
¿8	69-1594490	77-0233949	$85.97633 .8{ }^{4}$	96-13020.44	$107 \cdot 7095451$
39	7~2342324	30.7249069	90.40\% 140%	$101 \cdot 464236$	$114 \cdot 09.50284$
40	75.40125.93	1845502779	95.02,515	167.030382	$120 \cdot 7997735$

Note. The preceding Table is formed thus: the first verrs amonnt
 $+1=31525$, the third vear's amomut. Se.

C

Case 1. When u, t, and r are given to find a.
Rule. $\frac{r^{2}-1}{r-1} \times u=a$.
Or, by the Table. Multiply the tabular amount of \boldsymbol{E}. annuity $h y$ the given anuity, and the product will be the amount required.
(17) What will an annuity of $£ 50$. per annum amount to in 4 years, at $£ 5$. per cent. per annum ?*
(18) What will a pension of $\mathcal{E} 45$. per annum, payable vcarly, amount to in 5 years, at $£ 5$. per cent. per annum?

Ans. £248..13s.. $3: 37$ qis.
(19) If an anmual salary of $£ 40$. be forborne 6 years; at $\mathcal{L} 4$. per cent. per annum, what is the amount?

Ans. £265..6..4..2 257゙̄フ55616 qrs:
(20) If an annuity of $\mathcal{L} 75$., payable yearly, be omitted to be paîd for 10 years, what is the amount at $£ 5$. per cent. pet annem?

Cese 2. When $a_{;} r$, and t are given, to find u :
Role. $\frac{r-1}{r^{2}-1} \times a=u$.
(21) What ammity, being forborne 4 years, will amount to £215..10..11 . at $£ 5$. per cent. per annum? \dagger
(22) What pension, forborne 5 years, will amount to $£ 248$. $13 s .3 \cdot 27$ qrs. at $£ 5$. per cent. per annum? Ans. £45.
(23) What salary, being onitted to be paid 6 years, wifl umount to $£ 265 . .6 . .4 . .2 \cdot 25775616$ qrs. at $\mathfrak{f 4}$. per cent. per annum? Ans. $\boldsymbol{x}^{2} 40$.
(24) If the payment of an armuity, being forborne 10 years, amount to $£ 943 . .6 . .10 \cdot 0656 d$. at $£ \mathfrak{E}$. per cent. per annuix', what is the aunuity? Ans. $£ 75$:

Case 3. When u, a, and r are given; to find t.

$$
\frac{1 \cdot 05^{4}-1}{05} \times 50=(1 \times 1550625-1) \times 1000=215 \cdot 50695=2015
$$

10..1t. Ans.

Or, iy the 'Juble' thus: $+4310125 \times 50=2 S 215.50695$, as befurv.

$$
+\frac{05 \times 21550025}{105^{4}-1}=\frac{45 \times 01550025}{250505}=051000=050 . \text { And. }
$$ equired.

un amount to

rum, payable er annum?
$s .327$ qis. e 6 years; at

7̄5616 qrs: be omitted to per cent. pet $0 \cdot 0656 d .+$
find x :
will amount to
ount to £248. Ans. £45. 6 years; wifl per cent. per Ans. £40. orne 10 years, t. per annuix, Ans. £75:
find t.
$30625=5213$.
jes, as befurw.

Buie. $\frac{(r-1) a}{u}+1=r^{\prime}$,
which being continually divided by r titl nothing remains, the number of divisiond will be equal to t.
(25) In what time wili $£ 50$. per annum amount to $£ 215:$: 10..1 $1 \frac{1}{2}$: at $£ 5$. per cent. per annum, for non-payment ?*
(26) In what time will $£ 45$: per annum amount to $£ 248$: $13 s .3 \cdot 27$ q.rs. allowing $£ 5$. per cent: per annum for forbearautce of payment?

Atis: 5 years.
(27) In what time will $£ 40$. per annum amount to $\mathcal{£} 265$ 6.:4.2 25775616 qrs. at $£ 4$. per cenit. per annum ?

Ans. 6 years.
(23) In what time will $£ \neq 75$. per annum amotrnt to $£ 943$:: $6 . .10 \cdot 0656 \mathrm{~d}$. allowing $£ 5$. per cent. per annum for forbedrancë of payment?

Ans. 10 years.
Note. The examples relating to the Present Worth of Annuities at Simple Intercst are now expunged from this work, becanse, being entirely useless, except as a miere arithmetical exercise, it is presumed ihat the judicious teacher will prefer the substitution of other matter of more real utility which is introduced to supply their place: The Theoremd are, however, retained in a note, page 148, in order that the ingenious student, who may wish to calculate any example both ways. may havg an opportunity of indulging his curiosity, and of comparing the true and the false results. That the principle of computing their value by Sim: ple Intercst is crroncous and absurd; will bee manifested by the follow: ing observations :-
The present worth of an amnity of $£ 150$., to continue only 40 years; calculated at $£ 5$. per cent. per ammum, Sinuple Interest, (by Theorem 1; Note, page 148,) would be $£ 3950$. डsut this sum, put out at the same rate, will produce $£ 197 . .10$. ammal interest (or $£ 47 . .10$ a year more than the proposel annuity) for ever. If computed on the true principle; (by the Theorem, Case 1, page 149,) the present value is $£ 2573 . .17 . .3$,
The present value of any perpetual anniity (great or small) computed at Simple Interest, is an unlimited or infinite stim; but by using Com: pound Interest, we shall obtain ar rational result. For instance, an an: nuity of $£ 150$., to continue for ever, will, (by Case 1, Perpetual Annuities, page 159,) at $£ 5$. per cent., be wortl $£ 3000$. purchase ; which, it is evident, is the sum that wiell yield $£ 150$: amual interest.-EEDitok.

$$
\cdot \frac{0.5 \times 215 \cdot 50625}{50}+1=.001 \times 215.50625+1=1.21550625 ; \text { which }
$$ being continually divided by $1 \cdot 05$, the number of divisions will bod, the years required. Ans.

THE PRESENT WORTH OF ANNUITIES.*

A Table of the present worth of $£ 1$. annuity for years.

	3 pcr	35 per Cent. 4	4 per Cent.	,	.
1	0.9708738	0.9661336	0.9615380	0.9569378	$0.95 \bigcirc 3810$
2	$1 \cdot 9134697$	$1 \cdot 8996943$	1-68609947	1-8726677	$1 \cdot 8594105$
3	$2 \cdot 8286114$	$2 \cdot 6016370$	$2 \cdot 77.50910$	2.7489643	272 2 22481
	$3 \cdot 7170984$	$3 \cdot 6730702$	$3 \cdot 6298952$	35875256	3:54:59506
5	4.5797072	4:5150.924	$4 \cdot 4518223$	$4 \cdot 339976$	$4 \cdot 3294768$
6	$5 \cdot 4171915$	$5 \cdot 3285530$	$5 \cdot 2421368$	$5 \cdot 1578723$	50756922
7	6.2302330	$6 \cdot 11.4 .940$	6.00:0.9.46	$5 \cdot 6927003$	5.78633735
8	$7 \cdot 0196922$	6.8739556	6.7327.443	$6 \cdot 5958859$	$6 \cdot 4632129$
9	7.7861089	7.6076866	7-43.33:31.3	7×2687903	7-1078218
10	8:5302023	8:31660584	8'11089.56	7.9127180	$7 \cdot 7217351$
11	9.259624	511	8.	67	$8 \cdot 3064144$
12	$9 \cdot 95 \cdot 400 \cdot 40$	(9)66:33:344	9.38.5073.)	$9 \cdot 118.5806$	8.8632518
13	$10 \cdot 634995.53$	10:3027385	$9 \cdot 98.50476$	9. 6528.520	$9 \cdot 3935732$
14	11×2960731	$10 \cdot 920.9203$	$16 \cdot 5631227$	102228251	9.8986412
15	$11 \cdot 93793.50$	$11 \cdot 5174109$	$11 \cdot 1183872$	$10 \cdot 73954.50$	10.3796583
16	12.5011019	12.0941163	11.652954		$0 \cdot 8377698$
17	$13 \cdot 1661183$	$12 \cdot 6513206$	$12 \cdot 1656686$	11.7071912	$11 \cdot 2740665$
18	13.7535129	$13 \cdot 1896817$	$12 \cdot 6592967$	12-1599916	11-6895872
19	$14 \cdot 3237989$	$13 \cdot 7098374$	1:3-1839391	$1 \bigcirc 59$	$12 \cdot 0853210$
20	14.8774747	$14 \cdot 21 \geq 4033$	13:5903260	$13 \cdot 0079363$	12.4622105
21	$15 \cdot 41502.40$	14.6979		13.4047237	12:821.1599
22	15.9369165	$15 \cdot 1651$	14.4511150	13.7844246	13-1630028
23	$16 \cdot 4436083$	15.6204104	14-3569413	$14 \cdot 1477747$	$13 \cdot 4885741$
24	16.9355420	$16 \cdot 0583675$	15:2469688	$14 \cdot 4954732$	13.7986420
25	17-4131476	$16 \cdot 43151$	$15 \cdot 6220796$	$14 \cdot 89390$	8
26	$17 \cdot 8769423$	$16 \cdot 8903.922$	1.59827683	15.1466113	14.3751855
27	18:3270314	$17 \cdot 2853644$	$16: 32958.54$	$15 \cdot 4513027$	14.6430338
28	$18 \cdot 7641082$	17.6670187	16.663062?	$1.5 \cdot 7+423734$	14.3981274
29	19•1384.)46	$18 \cdot 03.76669$	16.9837143	$16 \cdot 0218834$	15.1410737
30	19.6004414	$18 \cdot 3920153$	17-69303:39	$16: 2838834$	$15 \cdot 3724511$
31	20.0004286	18.73627 .5	17.5831933	16:5443903	15.5928106
32	20:3897656	$19 \cdot 0688654$	$17 \cdot 8735512$	$16 \cdot 738390711$	$15 \cdot 3026768$
33	20.76 .57919	$19 \cdot 3!02081$	$13 \cdot 14 \sim 6454$	$17 \cdot 02288619$	16.0¢ 25493
34	21.13183688	19770068.42	18.411197 .5	17.2467 .576	$16 \cdot 1929041$
35	21-4872 202	$20 \cdot 00066611$	18.66416130	$17 \cdot 46101221$	$16 \cdot 3741944$
	21.3332 .56	20×190433	$18 \cdot 9032317$	$17 \cdot 6660404$	$16 \cdot 5468518$
3.	$22 \cdot 1672355$	20.570 .5254	$19 \cdot 142578.8$	$17 \cdot 862939616$	16.7112874
	22-4924617\|	20-8410373	19:367863.9	$18 \cdot 04999001$	16.8678928
,	22-8032153	21-10-4999	19:5844345	$13 \sim 205551$	17.0170408
10	93.1147721.	21.3500023	19.792773	$13 \cdot 401: 842$	17•1590865

* Present Worth of Annuities at Simple Intarest.

Theor. I.
$\frac{r(t-1)+2}{2 t r+2} \times t u=\rho$.
If $\frac{t r+1}{(r,(t-1)+2) \cdot 6} \times 2 p=n$.

Note. The above table is thus formed: $\mathbf{f} 1 . \div 1 \cdot 0.5=9523810$, the present worth of the first year; this $\div 1 \cdot 05=9070295$, which, added to the first year's present worth, gives 1.8594105 , the present worth of 2 years; then $9070295 \div 1 \cdot 0.5$, and the quotient added to $1 \cdot 8594105=$ 2.7232481 , the present worth of 3 years, \&c.
('ase 1. When u, t, and r are given, to find p, the present worth:
Rule. $\quad\left(u-\frac{u}{r^{l}}\right) \div(r-1)=p$.
Or,h.•th" - ble. Multiply the tabular present worth for the time given the, en annuity, and the moduct will be the present worth required.
(29) What is the present worth of an annuity of $£ 30$., 19 continue 7 years, at $£ 5$. per cent. per annum ?*
(30) What is the present worth of a pension of $£ 40$. per annum, to continue 8 years, at $£ 5$. per cent. per annum?

$$
\text { Ans. } £ 258.10 .6 . .3 \cdot 264 \text { qrs. }
$$

(31) What is the present worth of an annual salary of $£ 35$, to continue 7 years, at $£ 4$. per cent. per annum?

> Ans. £210..1..5•04d.
(32) What is the yearly rent of $£ 50$. , to continue 5 years, worth in ready money, at $£ 5$. per cent. per annum ?

$$
\text { Ans. } \mathfrak{x} 216 . .9 . .5 . .2 \cdot 08 \text { qrs. }
$$

Case 2. When p, t, and r are given, to find u.
RuLs. $\frac{p r^{2}(r-1)}{r^{t}-1}=u$.
(33) If an annuity be purchased for $£ 173 . .11 . .10 \cdot 08 d$. , to

$$
\begin{gathered}
\text { III. } \frac{(t u-p) \times 2}{(2 p-(t-1) u) \cdot t}=r . \\
\text { IV. Put } \frac{1}{r}-\left(\frac{p}{u}+\frac{1}{2}\right)=m ; \text { then } V\left(\frac{2 p}{r u}+m^{2}\right)-m=t .
\end{gathered}
$$

For Annuities in Reversion, it is only necessary to observe the Rules for Reversionary Ammities at Compound Interest, and to calculate (according to the directions therein given) by the Theorems for Simple Interest.

* $30-\frac{30}{1 \cdot 057}=30-\frac{30}{1 \cdot 4071}=30-21 \cdot 3204=8 \cdot 6796$ and 8.6796 $\div \cdot 05=£_{173} \cdot 592=£ 173 . .11 . .10 \cdot 08 \mathrm{~d}$. Ans.

Or, by the Table, $5.7863735 \times 30=\boldsymbol{£} 173.591205$. Ans.
be continued 7 ye ers, at $£ 5$. per cent. per annum, what is the annuity ?*
(34) If $\ddagger<58 . .10 . .6 . .3 \cdot 264 q r s$. be paid down for a salary 8 years to come, at $£ 5$. per cent. per annum, what is the salary?
$A n s £_{40}$
(35) If the present payment of $£ 210 . .1 . .5 \cdot 04 l$. be required for a pension for 7 years io come, at $£ 4$. per cent. per annum, what is the pe.,sion?

Ans. $£ 35$.
(36) If the present worth of an annuity, 5 years to come, be $£ 216 . .9 . .5 . .2 \cdot 08$ qrs. at $£ 5$. per cent. per annum, what is the annuity? $A n s, £ 50$.

Case 3. When u, p, and r are given, to find t.
Rule. $\frac{u}{p+u-p r}=r$,
which being continually divided by r till nothing remains, the number of divisions will be equal to t.
(37) How long may a lease of $£ 30$. yearly rent be had for £173..11..10.08d., allowing $\mathscr{L} 5$. per cent. per annum to the purchaser ? \dagger
(38) If $£ 258 . .10 . .6 . .3 \cdot 264$ qrs. is paid down for a lease of $£ 40$. per an mm , at $£ 5$. per cent. per annum, how long is the lease purch. dfor? Ans. 8 years.
(39) If a house is let upon lease for $£ 35$. per annum, and the lessor disposes of the lease for $£ 210 . .1 . .5 \cdot 04 d$., allowing after the rate of $£ 4$. per cent. per annum, what term of the lease remains unexpired? Ans. 7 years,
(40) For what time is a lease of $£ 50$. per annum purchased, when present payment is made of $£ 216 . .9 . .5 .2: 08$ qrs., at $£ 5$. per cent. per annum? Ans. 5 years.

ANNUITIES, ETC:, IN REVERSION:

To find the present worth of annuities in reversion.

Role 1. Find the present worth of the annuity, for the time of ite continuance, as if it were to commence immediately, by Case 1, page 149. Then find what principal will amount to that sum in the given

- $173.592 \times 1.4071 \times \cdot 05 \div 4071=12.213 \div 4071=$ f30. Ans. Or, by the Table, $173.592 \div 5 \cdot 7863735=$ £ 30 . Ans.
$\dagger 173.592+30-(173.592 \times 1.05)=203.592-132.2716=21 \cdot 3204 ;$ and $30-21 \cdot 320.1=1 \cdot 4071$; which being continually divided by 1.05 , the number of divisions will be 7: therefore $t=7$ years. Ans. Or, by the Table, $173.592 \div 30=5.7864$; and referring to the column of 5 per eert, we find the number $5 \cdot 7363735$ against 7 years.
ent be had for annum to the
for a lease of ow long is the ns. 8 years. annum, and 4d., allowing t term of the as. 7 years. num purchas..5..2:08 qrs., is. 5 years.
version.
the time of it y Case 1, page min the given

$=$ £ 30. Ans.

$716=21 \cdot 3204 ;$ ivided by $1 \cdot 05$, - Ans. Or,by :olumn of 5 ger
time before the annuity commences, (by Case 2, Compound Interest, page 143,) which will be the present worth.

Rule 2. Find the present worth of a similar amnity supposed to commence immediately, and continue during the whole period; and also the present worth of the same till the time when the reversionary annuity actually commences, and the diffcrence of these two will be the present value required.

Notr When calculating by the Table, this is the most eligible tenethod.

Rule 3. Find the amount of the anmity at the time of its cessation. (by Case 1, page 146,) and the present worth of that amome (heing found by Case 2, Compound Interest, page 143) will be the value required:
(41) What is the present worth of a reversion of a lease ot f40. per annum, to continue for 6 years, but not to commence till the end of 2 years, allowing $f 5$. per cent. per amum to the purchaser ?*
(42) What is the present worth of a reversion of a lease o. f60. per annum, to continue 7 years, but not to commence till the end of 3 years, allowing $£ 5$. per cent. per amum to the purchaser? Ans. £299..18..2•16d.
(43) A house is let at $£ 30$. per annum on a lease, of whinch 4 years are yet unexpired, and which the lessee is desirous of renewing at the same rental, to continue 7 years beyond the term of the present lease. What will the lessor expect as a bonus for such a renewal of the lease, considering the house to be worth double the present rent, and allowing interest for the money now advanced at $£ 5$. per cent. per annum?
Ar:s. £142..16..3..1•152 qrs.

To find the annuity in reversion which a given sum will pur: chase.
Role. Find the amount of the given sum for the time before the annuity commences, by Case 1, Compound Interest, page 143, which wil be the value of the anmity at its commencement.

Call this value p, and then find the annuity as in Case 2, page 140.
(44) What annuity, to be entered upon 2 years hence, and

$$
\text { - } 40-\frac{10}{1 \cdot 05^{6}}=40-\frac{40}{1 \cdot 3400956}=40-29 \cdot 84861=10 \cdot 15139 ; \text { and }
$$ $10 \cdot 15139 \div \cdot 05=203.0278 ;$ then $203 \cdot 0278-1 \cdot 05^{2}=f 184 \cdot 1522=7$ £184..3..0..2-112 qrs. Ans.

then to continue 6 years, may be purchased for $£ 184 . .3$..0.. $2 \cdot 112$ qrs. at .55 . per cent. per annum ?"
(45) The present worth of a lease, taken in reversion for 7 years, but not to commence till the end of three years, is £299..18. $2 \cdot 16 d$., allowing \mathcal{L}^{5}. per cent. per annum to the purchaser: what is the yearly rent? Ans. $£ 60$.
(46) There is a lease that has yet 4 years to run, and the lessee has purchaced the reversion of a renewed lease, at the same rental of $£ 30$. per annum, for the term of 7 years, commencing at the expiration of the present lease, for which he has paid down $£ 142.16 . .3 . .1 \cdot 152$ qrs. What increase of rent is reckoned on the property according to this contract, allowing $\mathfrak{f} 5$. per cent. per amum for present payment? Ans. $£ 30$.

FERPETUA! ANNUITIES, OR FREEHOLD ESTATES
Case 1. Wher u and r are given, to find p, the present worth, or purchase money.
RULE. $\frac{u}{r-1}=p$. t
(47) What is the worth of a freehold estate of $£ 50$. yearly rent, allowing $£ \overline{3}$. per cent. per annum to the buyer $\ddagger \ddagger$
(48) What is a real estate of $£ 140$. per annum worth in present money, allowing $\mathbf{4} 4$. per cent. per annum to the pur: chaser?

Ans. $£ 3500$.
(49) What must the purchaser give for a freehold estate of $£ 437$..10. yearly rení, so as to make $£ 3 \frac{1}{2}$. per cent. per annum by the investment of his capital? Ans. $£ 12500$.

Case 2. When p and r are given, to find u.
Rule. $p \times \overline{r-1}=u$.
(50) If a freehold estate is bought for $£ 1000$., what must

$$
\begin{aligned}
& \text { * } 184 \cdot 1522 \times 1 \cdot 1025=203.0278 \text {; then } \\
& \frac{203 \cdot 0278 \times 1 \cdot 3400956 \times \cdot 05}{3400956}= \\
& \frac{203.0278 \times 1+(203.0278 \times \cdot 3400956)}{\cdot 3.00956} \times \cdot 05=\frac{203.0278}{3400956} \\
& +203.0278 \times \cdot 05=800.0005 \times 05=\mathbf{x} 40 . \text { Ans. } \\
& \text { Or, by the Trable, 184.1522 } \div(6 \cdot 4632129-1 \cdot 3594105)=184 \cdot 1522 \div \\
& 4 \cdot 6035024=\mathbf{E} 40 \text {. Ans. } \\
& \dagger \text { This rule is deduced from the formula in page 149; for, in Annai } \\
& \text { ries contimuing for ever, } t \text { is infinite, and the subtractive quantity } \\
& \div r^{*}=o \text {; therefore the theorem assumes the above form. }
\end{aligned}
$$

[TUTOR's
£184..3..0.. reversion for ree years, is nom to the Ans. $£ 60$. run, and the lease, at the years, comor which he rease of rent stract, allow: ? Ans. £ 30 . rates present worth,
f $£ 50$. yearly yer? \ddagger uum worth in im to the pur$n s . £ 3500$. hold estate of cent. per ans. $£ 12500$.
d u.
0., what musi
$203 \cdot 0278$
3400956
) $=184 \cdot 1522 \div$
; for, in Annai ive quantity
be the yearly rent, to pay the purchaser $\mathbf{£ 5} 5$. per cent. per annum interest for his money ?*
(51) If an estate be sold for $£ 3500$., what is the yearly rent allowing to the purchaser $\mathcal{L} 4$. per cent. per annum?

Ans. $£ 140$.
($5 \cdot 2$) If a freehold estate is bought for $£ 12500$., and will yield the purchaser $£ 3 \frac{1}{2}$. per cent. per annum, what is the yearl Y rent?

Ans. £437..10.
Case 3. When p and u are given, to find r.
Rexe. $\frac{u}{p}+1=r$.
(53) If an estate of $£ 50$. per annum is bought for $£ 1000$, what is the rate per cent. per annum ? \dagger
(54) If a freehold estate of $\mathbf{2 1 4 0}$. per annum is sold for $£ 3500$., what interest will it pay to the purchaser?

Ans. £4. per cent.
(55) If an estate in perpetuity of $£ 437 . .10$. per annum is sold for $£ 12500$., what interest will it pay to the purchaser? Ans. $£ 3 \frac{1}{2}$. per cent.

EREEHOID ESTATES IN REVERSION.

To find the present worth of a freehold estate in reversion.

Rule. Find the value of the estate, supposing it were to come inta (mmediate possession, as in Case 1, page 152. Then suppose that valua (p) to be a, and find what principal will amount to a in the time to come, previous to possession, by Case 2, Compound Interest, page 143. Such principal will be the present valie.
(56) What must be paid down for the purchase of a freehold of $£ 50$. per annum, to be entered upon 4 years hence, ailowing the purchaser at the rate of $£ 5$. ger cent. per annum for his purchase money ? \ddagger
(57) What must be paid down for the reversion of a real estate of $£ 200$. per annum, so as to pay the purchaser $\mathfrak{£ 4}$. per cent. per annum for his capital, supposing 2 years to elapse before the estate comes into possession?

Ans. £4622..15..7..1•76 qrs.

$$
\begin{aligned}
& \begin{array}{l}
1000 \times \cdot 05=£ 50 . \text { Ans. } \\
+\frac{50}{1000}+1=1 \cdot 05=\text { f5. per cent. Ans. } \\
\ddagger 50 \div \cdot 05=1000 ; \text { then } 10.00-1: 2155=£ 829 \cdot 7067=£ 822 . .14 . .1: ? \\
\text { Q.432 qrs. Ans }
\end{array}
\end{aligned}
$$

(58) A freehold, producing $\mathbf{\text { f } 2 8 0}$. annual rent, is to be dis: posed of, with a reserve of the next 3 years' rent to the present proprietor. What is it worth in ready money, allowing $\boldsymbol{e}^{2} 3 \frac{1}{2}$. Fer cent. per annum to the purchaser?

$$
\text { Ans. } £ 7215 . .10 . .9 . .3 \cdot 36 \text { qrs. }
$$

To find the yearly rent of an estate in reversion, having its present value given.
Rule. Find the amount of the given present value in the time before possession: thus, $p r^{f}=a$. Then consider that amount to be the present falue (p) of the perpetual annuity, and find the annuity thus: $p \times$ $(r-1)=u$.
(59) What must be the rent of a freehold property, to come into possession 4 years hence, for which $£ 822 . .14 . .1 . .2 \cdot 432$ prs. is paid down, allowing the purchaser $\mathbf{E 5}$. per cent. per คnnum ?*
(60) A freehold estate is sold for $£ 4622 . .15 . .7 . .1 \cdot 76$ qrs., the vender reserving to himself the first two years' rent. Reguired the annual value to pay the purchaser $£ 4$. per cent. per annum for his capital. Ans. £200.
(61) A freehold estate has been purchased for $£ 7215 . .10$.. 9..3.36 qrs., the possession of which is not to be given up till after the expiration of 3 years. What must be the aninual rent to pay the purchaser at the rate of $£ 3 \frac{1}{2}$. per cent. per annum?

Ans. £280.

DISCOUNT, ON THE PRINCIPLES OF COMPOUND INTEREST. \dagger

Notr. The following Table is constructed by the continual division of 1 by the ratio (r) : thus $1 \div 1 \cdot 05=\cdot 0523810$, the first year's present worth; then $9523310 \div 1 \cdot 05=9070295$, the second year's preseni worth; and $\cdot 90,70295 \div 1 \cdot 05=8638376$, the third, \&cc.

- $822.70625 \times 1 \cdot 2155=1000$; then $1000 \times \cdot 05=£ 50$. Ans.
\dagger This is merely a repetition of the various cases in Compound In. terest. For instance, to find the present worth of any debt due some time hence, is precisely the same operation as finding what principal will amount to that sum in the given time; and this observation will equally apply to the identity of the other cases. The entire omission, therefore, of Discount, (at Compound Interest,) arranged under that specific head, would be no detriment to the learner. It is, however, repained here, for the sake of those who may think some repetition of the gubject desirable:-Editor.
to be dise to the pre, allowing
$\cdot 36$ qrs.
having its
time before the present thus: $p \times$
ty, to come 4..1..2-432 r cent. per ..1-76 qrs., rent. Re. per cent. s. £200. £7215..10.. siven up till the aninual r cent. per s. $£ 280$.

terest. \dagger

inual division ear's present ear's present

Ans.
ompound In. bt due some hat principal ervation will ire omission, der that spehowever, re etition of the

A Talle of the present worth of \mathbf{x}. due apy number of yoars hence from 1 to 40.

Yrs. 3 per Cent.		3, per Cent.	4 per Cent.		
1	-9708738	9661836	$\cdot 961.5385$	-9.099378	91593310
2	-9425959	.9335107	-9245562	-9157299	-9070?95
3	. 9151417	-9019427	-883.9963	-8768966	(i3s376
	- 8884870	-8714422	-8548042	-333.5613)
5	-8626088	-8419732	-8219921	-30:4:510	1
6	8374843	8135006	790314.5	76789.7	
7	-8130915	-7859910	$\cdot 7599173$	-7349235	106913
8	$\cdot 7894092$	7594116	-730¢902	-70318.71	Era 2394
	$\cdot 7664167$	337310	-7025867	-6:29044	-6446089
10	. 7440939	-7089183	$\cdot 6755641$	6430277	6139133
11	7224213	-684.457	6495809	-6161987	93
12	-7013799	-6617833	$6 \$ 45970$	-5896639	-5.568374
13	-6809513	-6394041	60057!	- $564{ }^{-1} 16$	5303214
14	-6611178	-6177818	-5774751	- 53 ! $\times 7.7$	-5050680
15	-6418619	- 5968906	. 55.52645	- \%1204	481017
16	-6231669	67059	982	-4744693	4581115
17	-6050164	- 5.572038	-5133 3	-4731764	1365967
18	-5873946	- 5383611	-493¢. 281	-4593004	-4155207
19	-5702860	-5201557	-4746424	-43333018	-30:7340
20	- 5536758	-5025659	- 4563869	-4146429	$\cdot 3768895$
21	$\cdot 5375493$	-4855709	-438833	-396787	24
22	-5218925	4691506	-4219554	2797009	3418499
23	-5066918	-4532856	-405: 26	633.501	-325,5713
24	-4919337	-4379571	- 3901215	347703.5	-3100679
25	-4776056	- 4231470	-3751168	- 3327306	-2953028
26	47	-4088377	$\cdot 3606892$	8409	
27	-4501891	:3950122	- 346316	046914	2673483
28	-4379768	-3316543	-3334775	- 2915707	2.550926
29	-4243464	-369 ${ }^{\text {782 }}$	-320651.4	-27901:50	. 2429463
30	-4119868	-350\%19	- 3033187	2770000	2313774
31	3.	-3442:304	-90400.	析	-
32	-388337	-332.5897	-3850579	44, 4 ? 0 !	$\checkmark 003562$
33	-3770263	-3213427	-2740942	2393719	19933725
34	$\cdot 3660449$	-3104761	2695.501	20:39.59	9035.14
35	$\cdot 3553834$	-2999769	-953.415\%	21420.44	1812
36	- 3450324	-2398327	${ }^{2} 2436687$	'20.023:	17.0 .74
37	-3349829	. 2800316	- 2342968	-1961992	1644356
38	-3252262	-2705619	. 22.52885	-1877504	1566054
39	-3157536	.2614125	-166206	-17serats	- 1491480
40	-3065568	2525\% 5	2032390	1-4\%	. 14204

Case 1. To find the present worth of any sum due after a cer tain period.
Rule. The same as in Case 2, Compound Interest, considering at the debt whose present value is required.
(1) If $£ 344 . .14 . .9 . .1 \cdot 92$ qrs. be payable in 7 years' time, 'hat is the present worth, discount being made at $£ 5$. per .nnt. per annum ?*
(2) A debt of $£ 409 . .9 \cdot 00992 s$, payable 4 years hence, in agreed to be paid in present money: what sum must the creditor receive, discounting at $£ 4$. per cent. par annum? Ans. $£ 350$.

Case 2. To find the debt whose present worth is givent. Rule. See Case 1, Compound Interest.
(3) If $£ 245$. be received for a debt payable 7 years henee, allowing $£ 5$. per cent. per nanum to the debtor for present payment, what is the debt ? \dagger
(4) There is a sum of money due at the expiration of 4 years, but the creditor agrees to take $£ 350$. in ready money; allowing £4. per cent. per annum discount. What was the debt?

Ans. £409..'9-00992s.
Case 3. When the rest are given, to find the time. Rule. See Case 4, Compound Interest.
(5) A person receives $£ 245$. now for a debt of $£ 344 . .14 . .9$. 1.92 qrs., discounting at $£ 5$. per cent. per annum: in what time was the debt payable ? \ddagger
(6) There is a debt of $£ 409 . .9 \cdot 00992 s$. due a certain time hence, but $£ 4$. per cent. per annum being allowed to the debtor for the present payment of $£ 350$., it is required to find in what time the sum was to be paid.

Ans. 4 years.
Case 4. When the rest are given, to find the rate per cent. Rule. As in Case 3, Compound Interest.
(7) The present worth of $£ 344 . .14 . .9 . .1 \cdot 92$ qrs., payable

$$
\begin{aligned}
& \text { * } 344.7395 \div 1 \cdot 407 \mathrm{l}=\mathbf{L} 245 \text {. Ans. } \\
& \text { Or, by the Table, } \cdot 7106813 \times 344 \cdot 7395=\mathbf{£ 2 4 5} \text {. Ans. } \\
& +245 \times 1 \cdot 4071=\mathbf{x} \cdot 4447395=£ 344.144 .9 .1 \cdot 92 \text { qrs. Ans. } \\
& \ddagger 344 \cdot 7395 \div 945=1 \cdot 4071 \text {; the continual divisions of which by } 1 \cdot 05 \text {, } \\
& \text { wild be } 7==\text { the number of gears. Ans. }
\end{aligned}
$$

after a cer
sidering a an at $£ 5$. por
s hence, is n must the annum? s. $£ 350$.
s given.
rears hence, for present
iration of 4 ady money, hat was the $9 \cdot 00992 \mathrm{~s}$.

- time.
£344..14..9.. m : in what certain time to the debted to find in s. 4 years.
e per cent.
qrs., payable

Ans.
which by 1.06 .

7 years hence, is $£ 245$., at what rate per cent. per annum is discount allowed?"
(8) There is a debt of $£ 409.9 \cdot 00992 s$. payable in 4 years, but it is agreed to take $£ 350$. present payment. Required the rate of discount.

Ans. £4. per cent.

EQUATION OF PAYMENTS AT COMPOUND INTEREST.

Role 1. Find the present worth of each payment respectively; and add them together for the whole present worth: then the time in which that present worth will amount to the sum of the debts will be the true equated time required.
2. Find the amount of each debt from the time of its becoming due till the time of the last payment, and add the respective amounts and the last payment into one sum. Then find the time in which the sum of the debts'would amoint to that sum of the amoants: subtract this from the time of the last payment, and the difference will be the true. - quated time.
(1) Required the true equated time for the payment of a debt of $£ 400$. of which $£ 320$. is now due, and the rest at the end of 5 years; reckoning compound interest at the rate of £5. per cent per annum. Ans. 90714 years.
(2) If $£ 100^{\prime}$. will become due one year hence, and $£ 104$. three years hence, what is the true equated time for payment of the whole, allowing compound interest at $£ 4$. per cent. per annum? ${ }^{\wedge} n s .2$ years.
(3) If a person will have to receive $£ 200$, at the end of 3 years, and $£ 80$. more at the end of 5 years, in what time ought he to receive the whole at one payment, allowing $£ 5$ per cent. per annum, compound interest ?

Ans. 3.5518 years.

DUODECIMALS

Are so named from the integer of each denomination contałming twelve of the next inferior. They are in general use. among artificers for computing the quantities of their materials and labour ; both in Superficial and Solid Measure. \dagger

[^32]12 inches (${ }^{\prime}$) make 1 foot. 12 seconds (") 1 inch, or prime. 12 thirds (${ }^{\prime \prime \prime}$) 1 second, \&c.

To multiply duodecimally.
Roue 1 Under the multiplicand write the corresponding terme of tho multiplier.
2. Multiply by the feet in the multiplier, observing to carry one for every twelve, from each lower denomination to the next superior.
3. In the same manner multiply by the inches in the multiplier, setting the result from each term one place farther to the right.
4. Proceed in like manner with the remaining denominations, and the sum of the products will be the total product.

Nori 1. Length and breadth multiplied together produce the area of a superficies; and this multiplied by the thickness, produces the solid content of a body.
2. It is generally more eligible to take aliquot parts out of the malsi plicand for the inches, \&c., in the multiplier.

		$f t$.	11		$f t$.	111		ft.	1	$!$		
	Mult.	7		by	3	6*						
	Mult,	8	5	by	4	7	Ans	8. 38	6	11		
	Mult.	9	8	by	7	6	a.	72	6	0		
	Mult.	8	1	by	3	5	a.	27	7	5		
	Mult.	7	6	by	5	9	\boldsymbol{a}	43	1	6		
	M	4	7	by	3	10	a.	17	6	10		
	Mult.	7	59	9 by	3	53	a.	25	8	6	2	3.
	Mult.	10	45	5 by	7	85	\boldsymbol{a}	79	11	0	6	6.
	Mult.	75	7	by	9	8	a.	730	7	8		
(10)	Mult.	97	8	by	8	9	a.	854	7	0		
(11)	Mult.	57	9	by	9	5	a.	543	9	9		
(12)	Mult.	75	9	by	17	7	a.	1331	11	3		
(13)	Mult.	87	5	by	35	8	a.	3117	10	4		
(14)	Mult.	179	3	by	38	: 0	a.	6960	10	6		
(15)	Mult.	259	2	by	48	11	a. 1	12677	6	10		
(16)	Mult.	257	9	by	39	11	a. 1	10288	6	3		
(17)	Mult.	311	47	7 by	36	75	a. 1	11402	2	4	11	11.
(18)	Mult.	321	73	3 by	9	36	a.	2988	2	10	4	6

ft. in.	in. Otheruise	Proof by Decimals.
$\cdots 7$	$6=\frac{1}{2} 7 \quad 9$	$7 \cdot 75$
36	3	3.5
23.3	$\overline{233}$	$\overline{3875}$
$3106^{\prime \prime}$	$3106^{\prime \prime}$	2325
916	27 1-6	$\overline{27 \cdot 125}$ sq. fee?

Glazing, Masons' flat work, and some parts of Joiness' work, are computed at so much per square foot.

Painters', Plasterers', Pavers', and some descriptions of Joiners' work, are estimated by the square yard.

Roofs, Floors, Partitions, \&c., by the square of $i 00$ feet.
Bricklayers' work by the square rod, containing $272 \neq$ feet
(19) A certain house has 3 tiers of windows, 3 in a tier tne height of the first tier being 7 feet 10 inches, the second 6 feet 8 inches, and the third 5 feet 4 inches, and the breadth of each window is 3 feet 11 inches. What will the glazing cost at $14 d$. per square foot ?*
(20) What is the price of 8 squares of glass, each measuring 4 feet 10 inches long, and 2 feet 11 inches broad, at $4 \frac{1}{8} d$. per square foot?

Ans. £1..18..9.
(21) What is the value of 8 squares, each measuring 3 feet by 1 foot 6 inches, at $7 \frac{3}{4} d$. per square foot? Ans. $£ 1 . .3 .3$.
(22) What is the price of a marble slab 5 feet 7 inches long and 1 foot 10 inchess broad, at $6 s$. per square foot?

$$
A n s . \neq 3 . .1 . .5
$$

(23) What will be the expense of ceiling a room the length of which is 74 feet 9 inches, and the width 11 feet 6 inches, ait $3 s .10 \frac{1}{2} d$. per square yard? " Ans. $£ 18 . .10 . .1$.
(24) What will the paving of a court-yard cost at 43 d d. per square yard, the length being 58 feet 6 inches, and the breadth 54 feet 9 inches?

Ans. £7..0..10.
(25) The circuit of a room is 97 feet 8 inches, and the height 9 feet 10 inches: what is the charge for painting it, at 2.s. $8 \frac{3}{4} d$. per square yard?

Ans. $£ 14 . .11 .2$.
(26) What is the expense of a piece of wainscot 8 feet 3 inches long and 6 feet 6 inches broad, at $6 s$. $7 \frac{1}{2} d$. per square yard?

Ans. $£ 1 . .19 . .5$.

(27) What will the paving of a court-yard cost at 3 s .2 d . per square yard, the length being 27 feet 10 inches, and the breadth 14 feet 9 inches?

Ans. £7..4..5.
(28) A certain court-yard is 42 feet 9 inches in front, and 68 feet 6 inches long; a causeway the whole length, and 5 feet 6 inches broad, is laid with Purbeck stone, at $3 s .6 d$. per square yard, and the rest is paved with pebbles, at $3 s$. per square yard. What is the expense? Ans. $£ 49 . .17 .0 \frac{1}{2}$.
(29) What will the plastering of a ceiling cost at 10d. per square yard, süpposing the length 21 feet 8 inches, and the breadth 14 feet 10 inches?

Ans. £1..9..9.
(30) What will the wainscoting of a room cost at $6 s$. per square yard, supposing the height of the room (including the cornice and moulding) is 12 (eet 6 inches, and the compass 83 feet 8 inches; the three window shutters each 7 feet 8 inches by 3 feet 6 inches, and the door 7 feet by 3 feet 6 inches? The shutters and door being worked on both sides, are reckoned work and half-work.
(31) In a piece of partitioning 173 feet 10 inches long, and 10 feet 7 inches in height, how many squares?

Ans. 18 squares, 39 feet, $8^{\prime} 10^{\prime \prime}$.
(32) A house of three stories, besides the ground floor, meastring 20 feet 8 inches by 16 feet 9 inches, is to be floored at $£ 6 . .10$. per square : there are 7 fire-places, two of which measure 6 feet by 4 feet 6 inches each, two others 6 feet by 5 feet 4 inches each, two others 5 feet 8 inches by 4 feet 8 inches each, and the seventh 5 feet 2 inches by 4 feet, and the well-hole for the stairs is 10 feet 6 inches by 8 feet 9 inches. What will the whole amount to ?

Ans. $£ 53 . .13 . .3 \frac{1}{2}$.
(33) If a house measures within the walls 52 feet 8 inches in length, and 30 feet 6 inches in breadth, the roo being of a true pitch, what will it cost roofing at $10 s .6 d$. per square ?

$$
A n s . £ 12 . .12 . .11 \frac{3}{4}
$$

Notr. A roof is said to be of a true pitch when the rafters are $\$$ of the breadth of the building. In this case, therefore, the breadth must pe accounted equal to the breadth and half-breadth of the building.
(34) What will the tiling of a barn cost at $25 s .6 d$. per square, the length being 43 feet 10 inches, and the breadth 27 feet 5 inches on the flat, the eave-boards projecting 16 inches on each side?

Ans. £24..9..53 ${ }^{\frac{3}{4}}$.
Note. Bricklayers oompute their work at the wots of a brick and
st at 3s. 2d. nes, and the モ7..4..5. in front, and ength, and 5 t 3s. 6d. per s , at $3 s$. per 49..17..0 $\frac{1}{2}$. t at $10 d$. per hes, and the £1..9..9. st at $6 s$. per ncluding the compass 83 feet 8 inches et 6 inches? es, are reck$36 . .12 . .2 \frac{1}{2}$. hes long, and
eet, $8^{\prime} 10^{\prime \prime}$. ground floor, to be floored wo of which ers 6 feet by s by 4 feet 8 y 4 feet, and ; by 8 feet 9
53..13.. $3 \frac{1}{2}$. feet 8 inches oi being of a er square?
$2 . .12 . .11 \frac{3}{4}$.
rafters are $\frac{5}{4}$ of e breadth must he building.
25s. 6d. per 1 the breadth rrojecting 16 $£ 24$..9..5 $\frac{3}{4}$. of a brick and
a hatf thick; therefore, if the thickness of a wall is more or less, if Inust be reduced to the standard thickness by multiplying the area of the wall by the number of half bricks in the thickness, and dividing the product by 3.
*(35) lf the area of a wall is 4085 feet, and the thickness two bricks and a half, how many rods does it contain of the standard thickness? Ans. 25 rods, 8 feet.
(36) If a gar in wall is 254 feet in compass, 12 feet 7 inches high, and 3 bricks thick, how many rods does it contain? Ans. 23 rods, 136 feet.
(37.) How many rods are there in a wall $62 \frac{1}{2}$ feet long, 14 feet 8 inches high, and $2 \frac{1}{2}$ bricks thick ?

Ans. 5 rods, 167 feet.
(38) The end wall of a house is 28 feet 10 inches in length; the height of the roof from the ground is 55 feet 8 inches; and the gable (or triangular part at the top) rises 42 courses of bricks', reckoning 4 courses to a foot. The wall to the height of 20 feet is $2 \frac{1}{2}$ bricks thick, 20 feet more, 2 bricks thick, and the remaining part a brick and a half thick; and the gable is 1 brick thick. What is the charge for the whole wall, at $£ 5 . .16$. per rod ? Ans. $£ 48 . .13 .5 \frac{1}{2}$.

To multiply several figures by several, and obtain the product in one line only.

Rule. Multiply the units of the multiplicand by the units of the multiplicr, set down the units of the product, and carry the teus; nexi multiply the tens in the multiplicand by the units of the multiplier, to which add the product of the units of the multiplicand multiplied by the tens in the multiplier, and the tens carrjed; then multiply the hundreds in the multiplicand by the units of the multiplier, adding the product of the tens in the multiplicand multiplied by the tens in the multiplier, and the units of the multiplicand by the hundreds in the multiplier; and so proceed till you have multiplied the multiplicand alf through, by every figure in the nultiplier.

First, $4 \dot{\times} 4=16$, that is 6 and carry 1. Secondly, $(3 \times 4)+(4 \times 2)$ and 1 that is carried $=31$, set down 1 and carry 2 . Thirdly, (2×1) $+(3 \times 2)+(4 \times 4)+2$ carried $=32$; that is, 2 and carry 3. Fourth$\mathrm{ly},(5 \times 4)+(2 \times 2)+(3 \times 4)+(4 \times 2)+3$ carried $=47$; set down'7 nd carry 4. Fifthly, $(3 \times 4)+(5 \times 2)+(2 \times 4)+(3 \times 2)+(4 \times 5)$ -4 carried $=60$; set down 0 and carry 6 . Sixthly, $(3 \times 2)+(5 \times 4)$ $+\cdot(2 \times 2)+(3 \times 5)+6$ carried $=51$; set down 1 and carry 5. Sev

[^33]enthly, $(3 \times 4)+(5 \times 2)+(2 \times 5)+5$ carried $=37$; set down 7 and carry 3. Eighthly, $(3 \times 2)+(5 \times 5)+3$ carried $=34$; set down 4 and carry 3. Lastly, $3 \times 5+3$ carried $=18$; set down 18 , and the work is finished.

MENSURATION OF SUPERFICIES.

GEOMETRICAL DEFINITIONS.

Geometry is the science which investigates the nature and properties of lines, angles, surfaces, and solid bodies.

A point has no parts or magnitude.
A line has length only, without breadth or thickness.
A line drawn wholly in the same direction, or the shortest distance between two points, is a right or straight line. That which continually changes its direction is
\qquad a curve.

Parallel lines preserve the same distance from each other throughout ; and therefore would never meet, though infinitely pro: duced.

An angle is the degree of inclination of two lines, or the opening between them when they meet in a point; which is called the angular point.

When a line meeting nother inclines not either way, but makes equal angles on pach side, those are called right angles; and the lines are perpendicular to each other. Thus the angle ADC $=$ the angle BDC.*

An oblique angle is either acute or obtuse. An acute angle. is less than a right angle, as BDE ; and an obtuse angle, greater than a right angle, as ADE.

[^34][TUTOR's
t down 7 and t down 4 and d the work is dies.
nness.

1 acute angle ,btuse angle,
es at the same etters, placing mis, the angla

A superficies or surface is a space contained within ines and nas two dimensions, length and breadth.

A solid is a space or body bounded by surfaces, and has three dimensions, length, breadth, and thickness.

A triangle is a superficies bounded by three lines. A quadrangle, or quadrilateral, is bounded by four lines.

A right-anglél triangle has one right angle, (Fig. page 116,) an obtuse-angled triangle has one obtuse angle, and an acutaangled triangle has all its angles acute.

An equilateral triangle has the three sides (and consequently the three angles) all equal to each other.

An isosceles triangle has two equal sides.
A scalene triangle has all the three sides unequal.
A parallelogram is a quadrangle having the opposite sides equal and parallel. When the angles are right ones, it is called a rectangle. ${ }^{\text {b }}$ And a rectangle having all its sides equal is a square. ${ }^{\text {e }}$

A thombus has all its sides equal, but oblique angles. ${ }^{\text {d }}$
A rhomboid has oblique angles, and only its opposite sides equal.

All other quadrilaterals are trapeziums ; but a trapezium that has two sides parallel is called a trapezoid.

The base ${ }^{f}$ of a figure is the side on which it is supposed to stand; and a line drawn from the vertex, or opposite angle, perpendicular to the base, is the altitude, or perpendicular hright.

Right-lined plane figures of more than four sides are called polygons. A 1 lygon of five sides (or angles) is a pentagon, one of six a hexi..gon, \&c. Vide Table, page 166.

A circle ${ }^{\mathbf{s}}$ is a plane figure, contained under one curve line, called the circumference, which is in every part equidistant from the centre, or middle point within it. The circle con: tains more space than any other plane figure of equal compass.

A straight line passing through the centre, and meeting the circumference in two opposite points, is called the di: $a m e t e r ;{ }^{\text {b }}$ and half the diameter, or the distance from the centre to the circumference, is the radius.!

An arc of a circle is any portion of the circumference.:

[^35]A chord is a right line joining the extremes of an arc!
The versed sine is part of the diameter cut off by the chord. ${ }^{m}$

A segment is a space contained between an arc and its chord. ${ }^{8}$ A semicircle is a segnent, the chord of which is the diameter.

A sector is bounded by an arc and two radii.? When the two radii are at right angles it is a quadrant, or fourth part of the circle.

The circumference of every circle is supposed to be divided into 360 equal parts, called degrees ; and each degree into 60 equal parts, called minutes, \&c.

The measure of an angle is determined by the number of degrees in the arc of a circle contained between the two lines forming the angle, described round the angular point as a centre. Thus the angle ACB (Fig. 8.) is an angle of so many degrees as are contained in the are AB. Hence, a right angle contains 90 degrees.

An ellipse (or regular oval) is a plane figure bounded by a curve called the circumference, returning into itself, and described from two points, called the foci or focuses, in the transverse (or longest) diameter. The shortest diameter, which intersects the transverse at right angles, is called the conju: gate. The diameters are also called axes. ${ }^{\text {p }}$

MENSURATION.

Problen 1. To find the area of a Parallelogram, whether it be a Square, an oblong Rectangle, a Rhombus, or a Rhomboid.

Rule. Multiply the length by the altitude or perpendicular breadth: the product will be the area.

(1) The base of the largest Egyptian pyramid is a square, whose side is 693 feet. Upon how many acres of ground does it stand?
(2) Required the area of a rectangular board, whose length is $12 \frac{1}{2}$ feet, and breadih 9 inches.
(3) What quantity of land does a

i AB or AD, Fig. 8. m DE. ${ }^{n}$ AEBDA. © Fig. 9. p Fig. 19.
thombus contam, the base of which is 1490 , and the perpendicular breadth 1280 links?
Problem 2. To find the aren of a Triangle. Fig. 4.
Ruit. Multiply the base by, the altitude. and half the product will be the area.
(1) Required the number of square yards in a triangle, whose base is 49 feet, and height $25 \frac{1}{4}$ feet.
(2) What is the area of the gable of a house, the base or distance between ihe eaves being 22 feet 5 inches, and the perpendicular from the ridge to the middle of the base, 9 feet 4 inches?

Rule $\dot{2}$: When the three sides only are given.-From half the sum of the sides subtract each side severally: multiply the half sum and the three remainders continually together; and the square root of their product will be the area.
(3) The three sides of a triangular fish-pond are 140,336 , and 415 yards respectively. What is the value of the land which it occupies, at $£ 225$. per acre ? Problem 3. To find the arca of a Trapezium, or à Trajezoid.
Rure. Divide the trapezium into two triangles by a diagonal: multiply the diagonal by the sum of the two perpendiculars falling upon it; and balf the product will be the area.

Fig. 5.

That is, $\frac{\mathrm{DE}+\mathrm{BF} \times \dot{\mathrm{A}} \mathrm{C}}{2}=$ the arca.

Fig. 19.
(3) Required the area of a trapezoid whose parallel sides are $20 \frac{1}{2}$ feet and $12 \frac{1}{4}$ feet respectively; the perpendicular distance being $10 \frac{3}{4}$ feet?
(4) How many square feet are in a board, whose length is $12 \frac{1}{2}$ feet, and the breadths of the two ends 15 inches and 11 inches respectively?

Problem 4. To find the area of an Irrogular Figure.
Rule: Divide it by drawing diagonals into trapeziums and trianglea Find the area of each, and their suin will be the area of the whole:

1. Required the content of the irregular figure $A B C D E F G A$, in which are given the following diagonals and perpendiculars: namely, $\quad \mathrm{AC}=5.5$

$$
F D=5 \cdot 2
$$

Fig. 6.

$$
\mathrm{GC}=4 \cdot 4
$$

$$
\mathrm{Gm}=1 \cdot 3
$$

$$
\mathrm{Bn}=1.8
$$

$$
\text { GO }=1 \cdot 2
$$

$$
\mathrm{Ep}=0.8
$$

$$
\mathrm{pq}=2 \cdot 3
$$

Problem 5: To find the area of a Regular Polygon.
Rtbe 1. Multiply the perimeter (or sum of the sides) by the perpen dicular drawn from the centre to one of the sides; and half the pros duct will be the area.

Rtle 2. Multiply the siquare of the side by the corresponding tabular area, or multiplier opposite to the riame in the following tableí and the product will be the area.

$\begin{aligned} & \text { No. of } \\ & \text { sides. } \end{aligned}$	Name's of Polygons.	Areas, or Multipliers.
3	Trigon, or Equilateral Triangle	$0 \cdot 4330127$
4	Tetragon, or square	$1 \cdot 0000000$
5	Pentagon	$1 \cdot 7204774$
6	Hexagon	$2 \cdot 5980762$
7	Heptagon	$3 \cdot 6339124$
8	Octagon	4.8284271
9	Nonagon	$6 \cdot 1818242$
10	Decagon	7-6942088
11	Undecagon	$9 \cdot 3656399$
12	Duodecagon	$11 \cdot 1961524$

[TUTORA allel sides icular dis:
e length is ies and 11
iguré. hd triangled e whole:
lygon. the perperi alf the prow
ponding tabi iwing tablé
as, or pliers. 30127 00000 04774 80762
39124
34271
18242
42088
56399
61524.
(1) Required the area of a regular pentagon whose side is 25 feet:
(2) Required the area of an octagon whose side is 20 feet. Problem 6 To find the diameter or circumfersnce of a Circle, the one from the other.*

Fig. 7.
$\left.\begin{array}{r}\text { Rule. As } 7: r \\ \text { or, as } 113: \\ 35 \dagger \\ \text { 35 } \ddagger\end{array}\right\}::$ the diameter : the
 circumference; and reversing the terms will find the diameter.

(1) Required the circumference of a circle whose diameter is $12:| |$
*To find the proportion which the circumference bears to the diameter, aind thence to find the area of a circle, is a problem that has engaged the anxious attention of mathematicians of all ages. It is now general. ly considered htmpossible to determine it exactly ; but various approxlmations have been found, some of which have been carried to so great a degree of accuracy, that in a circle as immense in magnitude as the oibit of the planet Saturn, the diameter of which is about 158 millions of miles, we are enabled to express the circumference (the diameter being given) so nearly approximating to the triith, ts not to deviate from it so much as the breadth of a single hair. The three approximations in the Rule are those in general use.
\dagger This is the ratio assigned ly Nrchimêtes; a celebrated philosopher of Syracuse, who flourished about two centhiries before the Christian era. It answers the purpose sufficiently well when particular accuracy is not required.
\ddagger This was disegvered by Metius, a Dutchmian, abont two centuries since. It is a very good approximation, agreeing with the truth to the sixtli figure.
\$This is an abridgment of the selebrated Van Cenlen's proportion, who was nearly contemporary with Metius. By a patient and most laborious investigation, he determined it truly to 36 places of figures, ($3 \cdot 141598$, \&c.) But it has been since extended to considerably more than 100 places. This proportion is extremety convenient, from the circunstance of the first term being unity; which saves the labour of division, in finding the circumference of any other circle whose diamo for is given. It is not quite so accurate as the preceding.

$$
\left.\begin{array}{r}
\text { H } 7: 22: 12: \frac{22 \times 12}{7}=\frac{264}{7}=37.714285 \\
\text { нr, as } 113: 355:: 12: \frac{355 \times 12}{113}=37.699115 \\
\text { or, m } 1: 3.1416: 12: 3.1410 \times 12=37.6992
\end{array}\right\}
$$

(2) What is the circumference ber the diameter is 45 ?
(3) What is the diameter of a column whose circumference ts 9 feet 6 inches?
(4) If the circumference of a great circle of the earth (as the equator) were exactly 25000 miles, what would be the diameter?

Problem 7. To find the area of a Circle.

Role 1. The area is equal to a fourth part of the product of the circumference into the dianeter, or the product of half the circumferenco into half the diameter.

Therefore, when the dianeter is 1 , the area $=\frac{1 \times 3.1416}{4}=7854$; whence we have
Rule 2. Multiply the square of the diameter by 7854 , and the pro duct will be the area.

Rule 3. Multiply the square of the circumference by 07958 for tho area.
(1) Required the area of the circle proposed in Example 1. Problem 6.*
(2) Find the area of the circle proposed in Example 2; Problem 6.
(3) What is the area of the end of a roller whose diameter is 2 feet 3 inches?
(4) Required the area when the circumference is $8 \frac{1}{4}$ feet.

Problem 8. To find the side of a square inscribed in a circle.
Ruse. Mnltiply the radius by 14142 , (that is, by $V^{2} 2$,) or multiply the diameter by $7071 . \dagger$
(1) Find the side of the square inscribed in the circlo whose diameter is 12 .
(2). What is the side of the square inscribed in a circle whose diameter is 6 feet 5 inches?

$$
\frac{37.6992 \times 12}{4}=37.6992 \times 3=113.0976
$$

$$
\text { or, } \left.12^{2} \times 7854=12 \times 12 \times 7854=113.0976\right\} t
$$

+ The following Rules exhibit the principal relations botweon the oircle and its equal square, or insoribed square.
$\left.\begin{array}{l}\text { 1. The diameter } \\ \text { 2. The circumfer. } \times 8862269: \\ \times \cdot 282948\end{array}\right\}=$ the side of an equal square.

3. The diameter $\times 7071068$
4. The circumfer. $\times 2250791\}=$ the side of the inscribed squaro
5. The area $\times 6366107$
e.
luct of the cir: circumferenco
$1416=7354 ;$
;4, and the pro . 07958 for the a Example 1: Example 2. hose diameter ce is $8 \frac{1}{4}$ feet. ed in a circle. y' 2 , or multiply in the circli ed in a circlo
ons botweon the qual square.
necribed squaxo

Problem 9. To find the length of a Circular Arc.
Kule 1. From 8 times the chord of half the arc subtract the chord of the whole arc, and $\frac{f}{b}$ of the difference will be the length of the arc, nearly.

That is $A D \times 8-A B \div$ $3=\operatorname{arc} \mathrm{ADB}$.

Fig. 8.

Note. Half the chord of the whole arc, the chord of half the arem and the versed sine, are sides of a ripht ineled trimgle; any two of which being given, the third may be found as directed in page 110 .

Rule 2. Multiply the number of degrees in the arc by the rauius. and the product by 01745 , for the lengtif of the arc.
(1) The chord of the whole arc is :30, and the versed sine 8. what is the length of the arc ?
(2) What is the length of the are when the chord of the half arc is 10.625 , and its versed sine 5 ?
(3) Required the length of an arc of $12^{\circ} 10^{\prime}$, the radius baing 10 feet.

Problem 10. To find the area of a Sector of a circle.
Fig. 9.
Rule 1. Multiply the length of the arc by the radins, and half tho p. odnct will be the area.

Role 2. As 360° : the degrees in the arc : : the area of the circle : the area of the Sector.

(1) Required the area of the sertor, when the radius is 15 , and the chord of the whole arc 18 fect.
(2) What is the erea of a sector whose arc is $147^{\circ} 29^{\prime}$, and the radius 25 ?
(3) Required the area of a sector, whose radius is 20 feet; and the versed sine 1 foot 9 inches.*
6. The side of a square $\times 1.414214=$ the diameter $\}$ of its circum-
7. The side of a square $\times 4 \cdot 442383=$ the circumf. scribing circle.
8. The side of a square $\times 1 \cdot 128: 379=$ the dimmeter of an equal cir-
9. The side of a square $\times 3.544908=$ the circmuf. $\}$ cle.

- By the properties of the circle, the versed sine X the remaining part of the diameter $=$ the equare of half the chord of the arc; whenes all the requisites may be found.
(4) What is the area of the sector, when the chord of half its arc is 14 feet 2 inches, and the versed sine 6 feet 8 inches?*

Problem 11. To find the area of a Circular Segment.

Rijue 1. Find the area of the sector; and also the area of the triangle formed by the chord and the two radii of the sector: their difference, when the segment is less than a semicircle, or their sum, when it is greater, will be the area of the segment.

Rule 2. Divile the height of the segment by the diameter, and find the quotiont in the column of heights in the following table. Multiply she corresponding area by the square of the diameter, for the area of the segment. \dagger

Talle of the Areas of Circular Segments.

$\begin{aligned} & \dot{\tilde{u}} 0 \\ & \text { 合 } \end{aligned}$	$\begin{gathered} \text { Area } \\ \text { of } \\ \text { Segment. } \end{gathered}$		Area of Segment.		Area of Segment.	淢	Area of Segment.
-01	-00133	14	-06683	26	-16226	39	-28359
-02	-00375	$\cdot 15$	-07387	$\cdot 27$	- 17109	-40	-29337
-03	. 00687	$\cdot 16$. 08111	$\cdot 28$	- 18002	$\cdot 41$	- 30319
-04	- 01054	$\cdot 17$	-08854	$\cdot 29$: 8905	- 42	-31304
. 05	-01468	$\cdot 18$	-09613	$\cdot 30$	-19817	$\cdot 43$	- 32293
. 06	-01924	-19	- 10390	$\cdot 31$	$\cdot 20738$	-44	- 33284
-07	-02117	$\cdots 0$	-11132	$\cdot 32$	- 21667	- 45	- 34278
-08	-02914	21	$\cdot 11990$	$\cdot 33$	$\cdot 22603$	- 46	-35274
-09	-03501	22	-19811	$\cdot 34$	-23547	$\cdot 47$	- 36272
$\cdot 10$	-0.1088	23	- 13647	$\cdot 35$	-24498	$\cdot 48$	- 37270
$\cdot 11$	-04701	-24	-14494	$\cdot 36$	-25455	-49	-38270
$\cdot 12$	- 05339	$\cdot 25$	-15355	$\cdot 37$	-26418	$\cdot 50$	-39270
$\cdot 13$	-06000			$\cdot 38$	-27386		

(1) What is the area of a segment, when the chord of the whole are is 60 , and the chord of half the arc $37 \frac{1}{2}$?

[^36] sine 6 feet 8

Scgment.

e area of the tri. tor : their differ their sum, when
iameter, and find table. Multiply r, for the area of
nents.

	Area of Segment.
$\cdot 39$	$\cdot 28359$
$\cdot 40$	$\cdot 29337$
$\cdot 41$	$\cdot 30319$
$\cdot 42$	$\cdot 31304$
$\cdot 43$	$\cdot 32293$
$\cdot 44$	$\cdot 33284$
$\cdot 45$	$\cdot 34278$
$\cdot 46$	$\cdot 35274$
$\cdot 47$	$\cdot 36272$
$\cdot 48$	$\cdot 37270$
$\cdot 49$	$\cdot 38270$
$\cdot 50$	$\cdot 39270$

the chord of the : $37 \frac{1}{2}$?
re is found by the versed sine (DE) ameter (and conse
e second quotieut ving taken out the retional part of the en, for the sake of
(2) What is the area of a segment whose height is 18 , and the diameter of the circle 48?
(3) Required the area of a circular scgment whose height is 2 and chord 20 .
(4) What is the area of the segment of a circle whose radius is 24 , the chord of the whole arc 20 , and the chord of half the arc $10 \cdot 2$?
(5) If the radius of a circle is 10 feet, what is the area of the segment whose chord is 12 feet?

Problem 12. To find the circumference of an Elllipse, the trans verse and conjugate diametcrs being given.

Rule. Multiply the square root of half the sum of the squares of the two diameters by 3.1416, and the product will be the circumferenco nearly.*
(1) What is the circumference of an ellipse whose trarisverse diameter is 24 , and conjugate 18?

Fig. 10.

(2) The two axes of an ellipse are 60 and 45 yards re' spectively: what is the circumference?

Problem 13. To find the area of an Ellipse.
Rule. Multiply the product of the axes by 7354 for the area.
(1) Required the area of an allipse whose axes are 35 and 25 .
(2) What will be the expesse ot trenching an elliptic garden, whose axes are 70 and io $\hat{i} \in \in$, at $3 \frac{3}{4} d$. per square yard?
(3) Required the area of the eliijpse in Grosvenor Square, London, the transverse diameter bing 8.40 chains, and the conjugate $6 \cdot 12$ chains.

Problem 14. To find the area of ais Elliptic Segment, the base being parallel to either axis.

Rule. Divide the height of the segment by that axe of which it is a part, and find, in the T'able of Circular S's gments, a versed sine equal to the quotient.

[^37]Multiply the corresponding tabular area and the two axes contina. ally together, and the product will be the area required.
(1) What is the area of an elliptic segment cut off by a line (called a double ordinate) parallel to the conjugate diarreter at the distance of 36 yards fom the centre, the axes being 120 and 40 yards respectivel:?
(2) Requirct the number of suatre yards in the segment of an ellipse, cut off by an ordina a bataiel to the transverse diameter; the height being 5 feet, iud ile two axes 35 and 25 feet respectively.

A COLLECTION OF QUESTIONS.

(1) What is the value of 14 barrels of soap, at $4 \frac{1}{2} d$. per lb., each barrel containing 25.4 lb .? Ans. L66..13..6.
(2) A and 1 B joined in partnership; A put into the joint stock $\mathscr{E} 20$. for 5 months, and $13 \mathscr{L} 460$. for 3 months: they gained $£ 100$. What is each man's share of the gain?

Ans. A's £53..13..92790., and B's £46..6..2 $\frac{28}{29}{ }^{8}$.
(3) How many yards of cloth, at 17 s .6 d . per yard, can \mathbb{I} have for 13 cwt. 2 qris. of wool, at 111 . per $l b$.?

Ans. 100 yards, $3 \frac{1}{5}$ qrs.
(4) If I buy 1000 ells of Flemish linen for $\mathscr{C} 90$., at what price must I sell it per Enghish oll to gain $£ 10$. by the whole?
(5) A has 648 yards of cloth at 14 s . per yard, ready money, but in barter will have 16 s . 13 has wine at $£ 42$. per tun, ready money: what must he charge it per tun in barter; and what quantity must be given in exchange for the cloth?

Ans. L48. per tun, and the quantity, 10 tuns, 3 hhds., $12 \frac{3}{5}$ gals.
(6) A jeweller sold jewels to the value of $\mathcal{E} 1200$., for which he has received in part 376 French pistoles, at $16 s .6 d$, each. How much more is due to him? Ans. £477..6.
(7) An oilman bought 417 cut. 1 gr. 15 lb . gross weight of train oil, tare 20 lb . per cut. : how many neat gallons were there, allowing $7 \frac{1}{2} l b$. to a gallon? Ans. 5120 gallons.
(8) If I bny cloth at $14 s .6 d$. per yard, and sell it at $16 s$ 9d., what is the gain per cent.? Ans. fi!5..10..4 $\frac{1}{2}$.
(9) Bought 27 bags of ginger, each weighing gross $84 \frac{3}{4} \mathrm{lb}$; tare $1 \frac{3}{3} \mathrm{lb}$. per bag, tret as usual: what is the value at $8 \frac{1}{8} d$. per lb.?

Ans. £76..13..2装.
(10) If $\frac{2}{3} o z$. cost $\frac{7}{7} s$. what will $\frac{5}{6} l b$. cost? Ans. $17 \mathrm{~s} .6 d$.
(11) If $\frac{5}{6}$ of a gallon cost $\frac{5}{8}$ of a $£$. what will $\frac{5}{9}$ of a tun cost ?

$$
\text { Aus. } £ 105 .
$$

(12) A gentleman who spends one day with another $£ 1 . .7 .10 \frac{1}{2}$. lays up at the year's end $£ 310$. What is his annual income?

Ans. $\mathcal{E} 318.1+1 . .4 \frac{1}{2}$.
(13) What is the difference in ounces, hetween 13 fithers of lead, and 39 boxes of tin, each box weighing 30876 .?

Ans. 212160 ounces.
(14) A captain, commanding a crew of 160 mariners, captured a prize worth $£ 1360$. The captain was allowed onefifth, and the rest was equally divided among the sailors. What was each man's share?

Ans. The raptain had $\mathfrak{x s 7 2}$ and earh sailor 56.16.
(15) At what rate per cent. will $\mathfrak{f 0 5 6}$ amom to $£ 1314 .$. 10. in $7 \frac{1}{2}$ years, at simple interest? Aus. L5. per cent.
(16) A has 24 cows worth $2: 3.12$. each, and $B 7$ horses worth $£ 13$, each. How moch will make goo? the difference, in case they interchange their droves of catto? Aas. $£ 4 . .1 \%$.
(17) A man left $£ 1 \% 0$, to he given to three persons, A, B, and $\mathrm{C} ; \mathrm{B}$ to have twice as much as A , and C as much as A and B; what was the share of each?

Ans. A £20. B ixio. and C $\operatorname{L60}$.
(18) $£ 1000$. is to be divided anacng three men, in such a manner, that if A has $\Sigma^{\prime} 3$. B shall have $£ 5$. and $\mathrm{C} \mathcal{L} 8$. How much will each man have?

Ans. A L187..10. B £312..10. and C $£ 500$.
(19) A piece of wainseot is 5 feet $6 \frac{1}{2}$ inches long, and 2 feet $9 \frac{3}{4}$ inches broad: what is the supringial conient?

$$
\text { Ans. } 2 t f f^{\prime \prime t} 0^{\prime} 3^{\prime \prime} 4^{\prime \prime \prime} 6^{\prime \prime \prime \prime} \text {. }
$$

(20) A garrison of 360 men, who had originaly six months' provisions, having entured a sioge of 5 months, without obtaining any relief or fresh supply, wish to know how many men must depart, that the provisions nay suffice for the residue 5 months longer?

Aus. 288 men.
(21) The less of two mumbers is 18%; the difference 34. The square of their protuct is required. ans. 1\%07920.229
(22) A buther sent his man with $221 b$. to a fair to buw cattle; he bought oxen at $£ 11$. cows at 10 s. colts at $t=$ a and hogz at $£ 1 . .15$. ach, and of each a like number. wna was th` number of each? Ans. 13 of ench sort, and £8. ove-
(23) What number added to 11 各 will produce 363878

$$
\text { Ans. } 24 \frac{3}{6} 7 \mathrm{~F}
$$

(24) What number multiplied by $\frac{3}{7}$ will produce $11_{1}^{9} \frac{9}{7}$? Ans. $26 \frac{4}{5} \frac{9}{1}$.
(25) What is the value of 179 hogshearls of tohacco, each weighing 13 cut. at $£ 2 . .7 . .1$. per cut.? Aus. £5478..2..11.
(26) My factor informs me that he has bought goods on my
 sion come to at $£ 331$. per cent.? Ans. $£ 17 . .10 . .5 . .2 \frac{1}{2} \frac{7}{5}$ qrs
(27) If $\frac{1}{3}$ of 6 were three, what would $\frac{1}{4}$ of 20 be? Ans. $7 \frac{1}{2}$
(28) Reduce 3 grs. It 16 . to the decimal of a cut.

Ans. 875 cwt .
(29) How many $l b$. of sugar, at $4 \frac{1}{2} d$. per $l l$. must be given in barter for 60 gross of inkle, at $8 s, 8 d$. per gross?

Ans. 13862 lb .
(30) If I buy yarn for $9 d$. per $l b$. and sell it again for $13 \frac{1}{2} d$ per $l b$. what is the gain per cent. ? Ans. £50.
(31) A tobacconist hixixes 20 lb . of tobacco at $9 d$. per $l b$. with 60 lb . at 12 l . per $l b .40 \mathrm{ll}$. at $18 d$. per $l \mathrm{l}$. and 12 lb . at $2 s$. per $l b$. what is a pound of tho mixture worth?

Ans. 1 s. $2 \frac{1}{1} d$. $\frac{9}{1 T}$.
(32) What is the difference between twice eight and twenty, and twice twenty-cight; also between twice five and fifty and twice fifty-five?

Ans. 20, and 50.
(33) Whereas a noble and a mark just 15 yards did buy; How many ells of the same cloth for $£ 50$. had I? Ans. 600 ells.
(34) A broker bought for his principal, in the year 1720 $\mathfrak{E} 400$. South Sea stock, at $\mathfrak{L} 650$. per rent. and sold it again when it was worth but $\mathcal{L} 130$. per cent. What was the whole loss?

Ans. £2080.
(35) C has candles at 6 s. per dozen ready money, but in barter will have $6 s .6 d$. per dozen; D has cotton at $9 d$. per $l b$. ready miney: what price must the cotton be charged ir barter ; and how much must be exchanged for 100 dozen o ${ }^{\text {: }}$ candles! Ans. The collon at $9 \frac{3}{4}$ l. per lle and the quantity. 7 cat .0 grs .16 ll.
(36) If a clerk's salary is £if3. a year, what is that pe day? Ans. $4 s$.
(37) B has on estate of $£ 53$. per annum, and pays $5 s$. 10w 2o the subsidy: what must C pay, whose estate is worm $£ 100$. per annum?

Ans. $11 s .0_{5}^{4} \overline{4} \pi$.
(38) If I buy 100 yards of rihand, at 3 yards for a shilling and 100 yards more at 2 yarls for a shilling, and sell the
[TUTOR's
11 ? $\frac{9}{7}$? s. $26 \frac{4}{5} \frac{9}{9}$. acco, eacb 78..2..11. ods on my is commis 5.. $2 \frac{1}{2} \frac{7}{5}$ qrs ? Ans. $7 \frac{1}{2}$ net.
875 cwt . st be given ? $1386_{3}^{2} l b$. in for $13 \frac{1}{2}$ d n.s. $£ 50$. $9 d$. per $l b$. ad $12 l$. at
$2 \frac{1}{1} d$. 운 and twenty, e and fifty , and 50. s did buy ; o. had I? 600 clls . year 1720 sold it again as the whole s. £2080. oney, but in n at $9 d$. pex charged in 00 dozen o: the quantity.

is that pe

 Ans. $4 s$. ,ays $5 s .10$ the is worm Hs. $00_{5}^{4}-\bar{d}$. or a shilling and sell thewhole at the rate of 5 yards for 2 shillings; whether do I gain or lose, and how much? Ans. Lose 3s. $4 d$.
(39) From what number must $\frac{3}{5}$ be deducted, that the remainder may be $\frac{1}{8}$?

Ans. $\frac{2}{4} \frac{9}{5}$.
(40) A farmer wishes to mix rye at $4 s$. a bushel, barley at $3 s$., and oats at $2 s$. How much must he take of each to sell the mixture at $2 s .6 d$. per bushel?

Ans. 6 of rye, 6 of barley, and 24 of oats.
(41) If $\frac{3}{8}$ of a ship is worth $£ 3740$., what is the value of the whole?

Ans. £9973..6..8.
(42) Bought a cask of wine for $£ 62 . .8$. at 5 s . 4 ll . per gallon. How many gallons were there?

Ans. 234.
(43) A dissipated young fellow ia a short time got theough $\frac{1}{8}$ of his fortune; he then gave $£ 2200$. for a commission in the army: his profusion continued till he had no more than 880 guineas left, which was $\frac{3}{20}$ of his money after the commission was bought. What was his fortune at frrst ?

Ans. Ll 0.150.
(44) A sum of money is to be divided amengst four men. so that the first shall have $\frac{1}{3}$, the second $\frac{1}{4}$, the third $\frac{1}{6}$, and the fourth the remainder, which is $£ 28$. What is the sma? Ans. $£ 112$.
(45) What is the amount of $\mathcal{L} 1000$. in $5 \frac{1}{2}$ years at $\mathcal{L} \frac{3}{4}$. per cent. per annum, simple interest? Aus. f126]..5.
(46) Sold goods, amounting to the value of $£ 600$., at two 4 monihs. What is the present worth at $£ 5$. per cert. per annum, simple interest? Ans. $£ 682 . .19 . .5 \frac{1}{3} \frac{1}{18} \mathrm{~T}$. .
(47) A room 30 feet long and 18 feet wide is to be cover. od with painied cloth. How many yards of three-quarters Wide will cover it? Ans. 80 yards.
(48) Betty told her brother George that, though her marriage portion took $£ 19312$. out of her family, it was but of of two years' rent. What was his annuai income ?

> Ans. £16003..6..8.
(49) A gentleman having 50 s , to pay among his lahourers for a day's work, gave to every boy 6id, to every womm $8 i$, and to every man $16 d$. There was an equal number of erch description. What was that mmber? Lus ao of euch.
(50) What is the solid content of a stone that mearites : Seet 6 inches long, 2 feet 9 incres broad, and 3 feet 4 inchos deep?

Ans. $41 \frac{1}{3}$ soud feet.
(51) What does the pay of a ship's crew, consisting of 64C salors, amount to for 32 inonis service, each man's pay being 22 s 6 d . per monh! Ans. 223040 .
(52) A traveller would change 500 French crowns, at 4. . Bl. per crown, into sterting money, but he must pay a halipemy per crown for change. How much sterling money will he receive?

Ans. $1111 . .9 . .2$.
(53) B and C traded together, and gained $£ 100$; B put in EG10, C pat in so mach that he was entilled to $£ 60$ of the gain. Whet was C's smk? Ans. £960.
(51) Trom what principal sum did $£ 20$. interest arise in one year, at the rate of Lib. per cent. per annum? Ans. $\mathbf{x} 400$.
(a5) How many fronch pistoies, at $17 s$ s. 6 d . each, are equal to 672 Spanish guilures, at $2 s$ e each ? Ans. $76 \frac{4}{5}$.
(56) Out of 7 choess, each weighing 1 cwt. 2 qrs. 5 lb ., how many allownees for seamen may be cut, each weighing 5 o. 7 drams?

Ans. $3563 \frac{35}{8}$.
(57) If 43 taken from 120 leaves 72 , and 72 taken from 9 ! leaves 19, and 7 taken from thence leaves 12 , what num3 er is that, out of which, when you have taken 48, 72, 19, and i, leaves 12?

Ans. 158.
(58) A farmer, maskillod in nunbers, ordered $£ 500$. to be divided among his \bar{a} soms, thus: "Give A, says he, $\frac{1}{3}$, B $\frac{f}{4}$ $\mathrm{C} \frac{1}{5}, \mathrm{D} \frac{1}{5}$, and $\mathrm{E} \frac{1}{4}$ patt." Divide this equitably among them according to the father's intention.

Ans. A $£ 152 . .10 .1 \frac{1}{4} \frac{10}{4} \frac{5}{5} . B £ 114 . .7 . .6 \frac{3}{4} \frac{9}{5} \frac{7}{3}$.

(59) When first the marriage knot was tied Between my wife and me,
My ago dith hers as far cacced, As three times tirce does three; But when ten yeare, and half ten years, We man and wife had been,
Her age came then as near to minc As eight is to sixteen.
Quest. What was each of our ages when we married ? Ans. 45 years the man, 15 the woman.
(1) How wany gatlons of the imperial standard measure are respectively equal to a hogshead of wine and a hogshead of ale, old measure; and what was the difference between the two homsheads in cubic inches?
(2) What quantity of the old ale measure would corres. pond to 5y gallons of the imperial standard?
wns, at $4 . s$. oay a halimoney will 11..9..2. ; B put in GO. of the s. $\mathcal{L} 960$. arise in one $s . £ 400$. a, are equal ins. $76 \frac{4}{5}$. qrs. $5 \mathrm{lb} .$, h weighing 35633妾. taken from what num. 72,19 , and $1 n s .158$. E500. to be he, $\frac{1}{3}, \mathrm{~B} \frac{1}{4}$ mong them
.. $7 . .6 \frac{3}{4} \frac{4}{4} \frac{2}{5}$. $. .7 . .2 \frac{1}{4} \frac{4}{6}$
narried? he woman. ice betwean
ould corres.
(3) How many gallons of the old wine measure are equal in quantity to 63 gallons, imperial measure?
(4) Reduce 15 quaricrs, 3 hushels, 1 peck, old neasure, to its equivalent in the imperial stambard meatsure.
(5) A lady who was asked the time of the day, said that it was between thren anl forr: but being desired to name the cxact time, she replied, "The minute hand is adranced half an hour precisely before the hour hamd." Required the exact time.
(6) If 7 men can haill a wall 40 yarls long, a feet high, and 2 feet thick, in 35 divs; how many men will build a wall 240 yards long, 6 leet high, and is leot thick, in 8 days ?*
(7) The woight of' a rortain har of ion 2 feet lomes, 3 inches broad, and 1 inch thick, is 8) $(1, s$. What is the weight of a bar of similar quality which is $7 \frac{1}{4}$ fect lorg, $4 \frac{1}{2}$ inches broad, and $3 \frac{1}{2}$ inches thick?
(8) A person who had fure-nimins of a mine, made his younger brother a present of hall his share, and sold half the remainder to his consin dom, who soon after purchased $\frac{1}{3}$ of the younger brother's share; lut now olmers to dispose of half his interest in the mine for $\mathcal{E} \mid 50$. Latmating at the same rate, what is the value of the whole mine, and of each brother's share?
(9) A, travelling from London to Manchester, and B from Manchester to Sondon, set out at the same time. They meet at the cod of six day, A having travelled 3 miles a day

[^38]more than B. At what rate did each go, the distance being 186 miles?
(10) A coach, which runs the whole distance in 31 hours, starts from London at the same time that another, which does it in 21 hours, starts from Manchester. Required the number of hours elapsed, and the distance tranciled by each when they meet.
(11) A load of corn was sold for 215 . at a loss of 15 per cent. What shonld it have been sold for to grain as much per cent. as the corn cost ?
(12) 'Two men purchased a grindmg sone 42 inches in diameter for a gninea; of which the finat paid twelve shillings. They agree that the first shalluse it till his share is worn down, What will be the diametor when the second receives it?
(13) If A and 3 together do a piece of work in $7 \frac{3}{4}$ days, which Λ alone would accomplish in $12 \frac{1}{2}$ days; in what time would B do it himself?
(14) A person lent $E 100$. and agreed to receive in return a yearly payment of dio. for 13 years. Wtacther would he gain or lose thereby, reckoning Compound Interest at $\mathcal{E} 5$. per cent. per annum?
(15) By sclling a horse for LDO. I gained one-fourth of what he cost me ; but the whole cost (incluting the expense of his keep) was one-fouth more tian the original purchase. How much did I give for him, what did I capend in keeping him and what did I guin per cont.?
(16) It has been found by experiment, that sound is conveyed throngh the air at the rate of 1110 leet in a scond. How far distant is the clond, when $\frac{79}{4}$ seconds elapse between seeing the flash of lighning and hearing the thunder?
(17) What is the hoight of a tower that projects a shadow 75.75 yards long, at the same time that a perpendicular staff, 3 feet high, gives a shade of 4.55 feet in length?
(18) A bankmpt owes $f 2580$ and the value of his effects is $£ 846$. and the amome of reoverabie dents $£ 358 . .12$. besides which he has an mexpired lease thai has 13 years to rum, valued at $\mathcal{C l O}$. a year mere than the stipulated rent. If the lease be disposed of for present moner, allowing Compound Interest at $x 5$. per cent. per amman; and if the working. of the commission and other expenses amoment to $£ 172$; wha will his creditors have in the prond, provided they allow him $\boldsymbol{£} \mathbf{1 5 0}$. to recommence buniness?
(19) A youth aged $1:$ years, hawing had bequeathed to him
on annuity of $\mathcal{L} 50$. for 12 years, to commence when he somes of age, the executors think it will be more advantageous to exchange this for an annity to commence immodiately, and continue till he is 21 , to enable them to give him some "ducation and a trade. What will be such anamity, $£ 100$. being reserved at the conclusion to set him up in business?
(20) There is an island 73 miles in cireniaferene, to travel round which three pedestrians all start at the same time: A travels 5 miles a day, 1 travels 8 , and $C 10$ miles a day. In how many days will they all come together again, and how many circuits will each have made ?
(21) What will a banker charse for discounting a bitl of £52..10. on the 7 th of April, the bill betrg dae ua the 10 oh of May?
(22) My agent in I hamiry advised mo that he han purchased goods on my wewint the the amotat of $5756 . .10$. at six months' credit, or fiss. per cont. disoum for prompt payment, if I send a remitaiace of $£ 40$. to be paid down on account, after deducting out of it his charge for commission at $£ 21$. per cent., what will remain to be discharged at the end of six months!*
(23) If I insure a house for f250. at the ammal charge of 1s. 6d. per cent., and the fumitne, Be., tox $x=0$. at the rate of $4 s$. 6 d . per cent., what shatl I have to pary yeany to tho Insurance offee, including the duy paid to Coverment of $\frac{1}{8}$, or $2 s .6 \mathrm{~d}$. per cont. ?
(24) If 12 oxen will eat 91 acree of grass in 4 wells, and 2; oxen will eat 10 acres in 9 weets, how many exen wh eat 2.4 acres in 13 weebs, ahowag the gras to grow mo iurmly?

Ficutcon.
(25) A bath is suppied with whter by two cocks, fom one

 efllux to be mitorm?
(26) A person who liad spent twotimes of his money at one place, and hali the remander at antate, fount tha he had $£ 32 . .12$. left. How bach hathen fat?
(27) The length, broadh, und heght oi a mona aro: 0

[^39]

IMAGE E'JALUATION TEST TARGET (MT-3)

and 4 yards respectively. What is the longest right line that can be taken within that room?
(28) What must be the length of a cord with which a horse may be tethered to a certain point in a straight fence, so as to allow him the liberty of grazing to the extent of 1 rood, supposing that he can reach 2 yards beyond the tether?
(29) A person playing at cards, lost three nights successively. The frist night he lust half his sovereigns and half a soverign besides; the second night he lost half the remainder and half a siveraiga more; and the third night half the remainder and hait a sorercign more, which reduced his stock to tweaty. How many sorereigns had he at first?
(30) The noonth of Juy, 1528 , was remarkable, both in England and several parts of the Continent, for excessive rains. Ai Derby, the quantity collected in the pluviameter (or rain-guage) between the hours of miac, A. M., of the 9th of that moath and six the following morning (an interval of 21 hours) was 3.59 inches; to the evening of the 15 th it amomed to $7 \frac{1}{2}$ inches; and by the conclusion of the 29 th , an interval of 31 days, of which 10 only were very rainy, whe total depth of water collected was $11 \frac{1}{3}$ inches. How many hogsheads, of 54 and 63 imnerial gailons respectively, fall on an acre of gromid to amonit to the depth of one inch; and how many hogeheads of euch lind foll on the suriace of an acre during each of the thee soveral intervals above mensioned?
(31) A person who uccupies a prece of ground for which he pays a rent of $E 10$. per ammom, wishes to take it upon a lease for forty years, will the obligation of laying out upon it during the present yar sboo. in the erection of a building, which is to be lot ia dond teranathe combition at the termination of the leas. The ginestion is, how much will be a fair ammal rent for the lessere to pay during the term of contimance of such thure, intaiting the eromad remt paid at present to be a hir one, and sapmog the cushmary interest of monery ba at wort ar peont per annam? Also, suphethe homest the at Et, per cent. per annum?
(ox) Ghat wit he the expense of enoring and guttering

 5% fect lonem a tout wide: solnd for the former being

Iruron's yht line that ich a horse ce, so as to rood, supr?
hts succesand half a he remain. ht half the educed his tirst? le, both in excessive pluviameter of the 9 th interval of he 15 th is the 29th, very rainy, res. How spectively, f one inch; suriace of ibove men.
for which it upon a g out upon a building, the termiill be a fair of continuat present interest of n? Also, 1? guttering roof being guttering mer being foot?

A COMPENDIUM OF

4

BOOK-KEEPING,

BY SINGLE ENTRY;

Intended for the purpose of initiating Youth in the LEADING PRINCIPLES of that important Branch of Science.

BOOK-KEEPING is the art of recording pecuniary or commerctal transactions in a regular and systematic manner.
The science of Book-keepug admits of inmmerable valietics of method: but its goneraj principles are invariable. These be ing woll understood, the knowledge of any particular systern, adapted to the peculiar coricerns of any counting-house, wid no easily acquired.

Single Entry, being the most simple and concise, is the method aso. aly adopted in retail business.

The Goneral Rule to be observed in every system of Book-keeping, is,

T'o make any person Debtor (Dr.) for money or gonds which he reeeives from me, and to make him Creditor (Cr.) for whatever I receivo from hin.

The books usually kept in Single Entry, are the Day-Book, the CasbBook, the Ledger, and the Bill-Book.

The Day-Book, when a person commences business, begins with an inventory of the existing state of his atfairs: after which are entered, in the regular order of time, the daily transuctions of Goods bought and sold.

The Cash-Book contains the particulars of all Money transactions. It is ruled in a folio form: on the left hand page, Cash is debited to all sums received, and on the right, Cash is credited by all sums paid. The Balunce (or quantity which the Dr. side exceeds the Cr .) shows the amount of Cash in hand. This should be ascertained weekly, and in some concerns daily, in order to prove if it corresponds with the real Cash in hand.

In the Ledger are collected the dispersed accounts of each person from the Day-Eook and Cush-Book, and entered in a concise manner in one folio; the sums in which he is $D r$. being arranged on the left-hand, and those in which he is Cr . on the right-hand page of the folio: so that the Batance of his acconnt (the difference between the Dr. and Cr. sides) may always be casily ascertaned by inspection. The transferring of accomis from the Day-Books and Cash-Book to the Ledger, is called posting.

In many trades it is found convenient to keep hie arenunts of Goods Sold at the former end, and those of Gonds Boaght al the tall.ir end of the Ledger. Bint in concerns of magnitude, two Leders ine mue convenemt one for Coods soid, and the other, chlles the "Bought Leflerr." fur Gouds Bought.

In the BIL,-BOOK are copted the parinulars of all Pills of Erchange, whether Receivable or Paynhle. The fermer ate thos" whach come into the 'Tradesman's pes session, and are drawn upon some other person; the later are those which are drawn upon ard accepted by him.-Printed Bill-buoks may ho had of any Donkseller.

Note. In the following trarisactions, Bills Recelrable are ronsidered as Cash: but many Aecountants do ine enter them ae such, till cash has been actually reosiy - 1 for thiem

MEMORANDUMS

OF TRE TRARSACTIONS STATED IN THE FOLLOWING BOORR.

Ton. 5. Received from Allen, Wild, and Co, of Leeds, on credit, 9 piecees of super bluc cloth, each 36 yds, at 25s. 6d. per yard :-and 2 pioces of narrow brown, 84 yls. at 4 s .9 d .
8. Sold Bermard Mason 2 st. raw sugar, at 9.2d. per lb. -3 ll lb . green ten, at 8s. $6 d$.-and 33 yds. blue cloth, at 28 s .
9. Bought of Sumuel Fletcher, 1 cut. 1 qr. 5 lb . Kent hops, at $\mathbf{x s} . \mathrm{T}^{7}$ per coot.-and $1 \frac{1}{2}$ cut. of Worcester, at $\dot{y} 5 . .11 . .6$;-six months' credut, or 5 per cent. discount for cash.-1'aid him Bill, No. 1, E24..3..9. and received from him a cheque on Smith and Co. Bankers, for the differencc, including discount.
\therefore. Bought of Simmonds and Co. Liverpool, 2 cut. yellow saap, at 76s.-12 doz. dip candles, at 8s. 6d.-and 4 doz. mould do. at 11 s . 3 d .
:4. Sold William Tomlinson 7 yde. narrow cloth, at 5s.3d.-and 15 yds. calico, at $8 \frac{1}{2} d$.
19. Sold Hazurd and Jones $1 \frac{1}{2}$ st. Yellow sonp. at $9 d$. per $2 b$.- $\frac{1}{2}$ st, mottled, at $9 \frac{1}{2} d .-9 \mathrm{ib}$. candles, at $9 d$.-and 3 lb . mould do. at $12 \frac{1}{2} \lambda$.

Paid Cash for Bill, No. 1, W. Holmes, $\mathbf{x 4 5 . . 1 0}$.
23. Received from J. Sauderson, goods as per invoice $\mathbf{\text { E7}}$. ..3..6.
52. Sold Hazard and Jones $17 \frac{1}{2} \mathrm{lh}$. louf sugar, at $18.1 \mathrm{~d} .-12 \mathrm{lb}$. raw do. at 10d.-1 $1 \frac{l b}{}$. Congon tea, at 7s. 6d.-and $\frac{1}{2} l b$. Hyson, at 12 s .
si. Faid the balance due to J. Herdson, cash £37..5..6. abatement 4d.-Sold him on credit 10 l . hops, at 13d. -and half a ream of cap-paper, at $7 d$. per quire.
Feb. 1. Sold W. Tomlinson 2 st. yellow soap, at 9 d. per $l b .-6 \mathrm{lb}$. mould candles, at 1 s .1 d .-and 16 lb . lump sugar, at $12 \frac{1}{2} \mathrm{~d}$. Received of him cash for account duc, including the present good, $\mathbf{x 4} .13$. abatement $3 \frac{1}{2} d$.

Paid Bernard Mason the balance due, cash $\mathbf{f 8 3 2}$; abatenent 5s. $2 \frac{1}{2} d$.
4. Heceived of James Taylor $\frac{1}{2}$ yr's. interest on $\mathbf{E 7 0}$. due this day, £1..15.
J Sold W. Tomplinson 1 pịece super blue cloth, 36 yds. at 27 s . 6 d .-for Bill at one month.
3. W. Fomlinson paid me a Bill on Jones and Co. London, due May 10, $\mathbf{E} 60$. which should have been at one month.-Charged him diocount, $10 s$.-Yaid, agreeably to his order, the differenco to J. Aims, in cash, \boldsymbol{x}_{10}.
\because. Bought of J. Sanderson, cheese $25 \mathrm{cwt}$.3 qrg. 17 ll. at E3..2..f. per cevt.-Paid his whole accomnt in cash, £ f_{3}. abatement 18. 83.4. Accepted Allen, Wild, and Co.'s Bill at two months, drawn Jan 3, $\mathbf{4} 80$.
12. Received of Hazard and Jones's assignee, cash $\mathbf{E L} . .7 . .2$. for com

[^40]DAY-BOOR, (page 2.)

[^41]
ds purchased a blank book py from their r." This last

1	James Taylor Tu half a year's interest on $\mathbf{£ 7 0}$. at $\mathbf{£ 5}$. per cent. per annum	1	8. 15	0
3	William Tomlinson 'To 1 piece superfine blue cloth, 36 yds . at 27 s . $6 d$. For bill at one month.	49	10	0
3		80	18	21
2	Allen, Wild, and Co., Leeds Llen, Wild, and Co., Leeds To my acceptance of their Bill at 2 months, drawn Srd Jan. B. P. Book. No. 2.	80	0	0
	Oats' Purveyance, in Partuership with J. Herdson. \dagger To Cash, for Oats purchased by me \ddagger Do. do. - by J. Herdson Do. for warehouse room, \&ic.	$\begin{array}{r} 26 \\ 449 \\ 1 \end{array}$	11 0 13	0 3 8
3		477	4	11
	By Cash received for Oats sold Do. do. by J. H.	$\begin{gathered} 507 \\ 55 \end{gathered}$	2	2 8
3		562	11	10
3		85	6	11
	John Herdson To Cash advanced to him on Oats' concei. 1 Oats sold and roceived for by him	$\begin{array}{r} 433 \\ 55 \\ \hline \end{array}$	17	8
1		488	19	8
	By Oats purchased by him his share of profit	$\begin{array}{r} 449 \\ 42 \end{array}$	0 13	${ }^{3}$
1		491	13	81

[^42]

INDEX TO THE LEDGER*

- The Ledger has an Alphabetical Index, showing, at one view, in what folio ans gorgon's account may be found

EXAMPLE OF A PARTNERSHIP CONCERN.

John Herdson and I have been engaged in a joint concern as purveyors of odis for the army. I have purchased oats for the joint stock to the amount of 820.11 has paid, for oats purchased by him, $£ 449 . .0 . .3$. I have received, for oats that ave than disposed of, $£ 507 . .9 . .2$; and mv partner has received. from the same source, f:55..2.8. I have advanced to him, at different times, $£ 433 . .17$. ; and have paid, for warehouse rom and other sundry expenses, $f 1.13 . .8$. From these general heads, collected from the particulars recorded in the Granary Book, it is required to state the transactions.

It may, perhaps, be interesting to the learner to he informed that the above was a real occurrence ; for an accurate statement of which the writer was some time sing applied to by the parties concerioud.

B

LEDGER:

nio	0	ω	0.0	0	\bigcirc	0 \%	ぶ	0
- 9	0	$\underset{\sim}{\infty}$	~ 9	O.	2	9	¢	\bigcirc
Q 4	Q	$\stackrel{9}{9}$	$\stackrel{\sim}{\sim}$	G ${ }^{2}$	$\stackrel{\square}{\square}$	$\square 0$	-	0

\|
ज1\|
\%10

[^0]: - Dilwosth

[^1]: The figures in parentheses refer to the Fditor＇s Key to thia work．

[^2]: * Say 2 and 1 are 3, and 4 are 7, and 3 are 10, and 5 are 15, set down 5 and carry $1 ; 1$ and 5 we 6, and 7 are 13, and 5 are 18, and 7 are 25, nud one are 26 , and 7 are 33, set down 3 and carry $3 ; 3$ and 3 are 6, and 2 are 8 , and 3 are 11, mol 4 are 15, and 1 are 16, and 2 are 18, set down 18: sin the sum is 183%.
 ifiter practising a few examples, it will be better for the learnor to

[^3]: add the figures without naming them. Thus, in adding the first column of the above example, say $2,3,7,10,15$; set down 5 and carry 1, \&c.

 - Tr amethod will tend both bo quickness and precision.

[^4]: * To multiply by 10 , annex a cipher to the multiplicand, for the pro. duct. To multiply by 100 , annex two ciphers, \&c.

 ## Examples.

 + Multiply 96048 by 15.
 Say 5 times 8 are 40 , set down 0 and carry $4 ; 5$ times
 96048
 15
 1440720 4 are 20 and 4 are 24, and 8 are 32 , set down 2 and carry $3 ; 5$ times 0 and 3 are 3 , and 4 are 7 , set down 7; 5 time 6 are 30, set down 0 and carry 3 ; 5 times 9 are 45 and 3 are 48 , and 6 are 54 , set down 4 and carry 5 ; 5 and 9 are 14, set down 14.
 ; Mnltiply 76047 by 249.

 | 76047 | | |
 | :---: | :---: | :---: |
 | 249 | | Proof. |
 | $\overline{684423}$ | Product by 9. | 0 |
 | 304188 | do. by 40. | 0×6 |
 | 152094 | do. by 200. | 0 |

 $1 \overline{893.5703}$ Tretal product

[^5]: * Example. Divide 7983105 by 4.

 Divisor 4) 3 323105 Divilend.
 Quotient 183:026-1 Rem.
 $\frac{4}{732810.5}$ Proof.

 Say the fours in 7. once and 3 over; the fours in 33,3 limes 4 are 32 and 1 over; the fours in 12, 3 times; the fours in 8 , twice; the fours in 1,0 and 1 over; the fours in 10, twice 4 are 8 , and $\mathfrak{2}$ over; the fours in 95 , six fours are 24 fund 1 over.

[^6]: -The chav consists of 100 links, each link being $=7 \times 0$ inches,

[^7]: - A sohid yard of earth is called a load.

[^8]: * Examples applying to these Rulcs will be fuund in the Misoells neous Questions in the latter part of the book.

[^9]: * A day is the time in which the earth revolves once upon its axis. by law and custom it is reckoned from midnight to midnight; but tho astronomical day begins at noon.
 \dagger The Solar, or true year, is that portion of time in which the earth makes one entire revolution round the sun.

[^10]: * 27 shillings. The moidore is current in Portugal, but not in Eng land.

[^11]: * Example. Subtract $£ 54 . .17$..94. from $£ 89 . .12 . .7 \frac{1}{2}$.
 C. 8. d.
 89..12..71
 54..17..93
 34.14..93

 Because 3 farthings cannot be taken from 2, say 3 from 4, 1, and 2 are 3 ; set down 3 and carry 1. -1 and 9 are 10, 10 from 12, 2 , and 7 are 9 ; set down 9 and carry 1.-1 and 17 are 18, 18 from 20, 2, and 12 are 14: set down 14 and y 1 to the pounds.

[^12]: - In this example allow 4 weeks to a month, and 13 months to the jear.
 t In this, reckon 30 days to a month, and 12 months to the year.

[^13]: * Multiply the three dimensions continually together.

[^14]: * Add the difference to the sum, and divide by 2 for the greater; aubtract the difference from the sum, and divide by 2 for the less

[^15]: *Bullion is the tern denoting gold or silver in the mass. Lead is weighed by Avoirdupois weight. See the Table of Comparison or Weights.

[^16]: - Multiplying by 3 reduces the shillings to fourpences, and 7 fourpences (or 2a. $\mathbf{1} d$.) are the value of 1 cwot. at 1 farthing per u.

 $$
 \begin{aligned}
 & +44 s .4 d . \\
 & \frac{3}{\frac{133}{19}} \text { farthings }=43 \text { en per } l b . \text { Ans. }
 \end{aligned}
 $$

[^17]: ＊The sale of a property for so many years purchase，is understood to be，for so much present money as the annual rent or value \times that number of years．

[^18]: *That is, having a common divisor.
 t This rule is of the highest importance as tending to expedite the k

[^19]: * When there are integers among the given numbers, first find the sum of the fractions, to which add the megerers.

 Thus in Ex. 3, $\frac{1}{5}+\frac{3}{5}=\frac{3}{5}$; then $\frac{3}{5}+\frac{1}{3}=\frac{9}{3}+\frac{5}{8}-\frac{14}{8}$; and $4+\frac{14}{15}=$ 414. Ans.

[^20]: - A number inverted becomes the reciprocal of that number: which is the quotient arising from dividing unity by the given num per: thus $1 \div 7=\frac{1}{7}$, the reciprocal of $7 ; 1+\frac{3}{3}=\frac{5}{3}$, the reciprocal of $\frac{3}{3}$:

 $$
 \dagger \frac{20}{20}+\frac{3}{4}=\frac{3}{2 \phi} \times \frac{1}{3}=\frac{3}{3} \text { Ans. }
 $$

[^21]: *The first, second, third, fourth, \&c., places of decimals are called primes, seconds, thirds, fourths, \&ic., respectively ; and decimals are read th $\cdot 9: 57.57$ fifty-seven, and five, beven, of a decimal; that is, fifty woven, and fifty-seven hundredths. 206.043 two handred arid six, and numper four, threc; that is, 206 , and forty-three thousaudthe

[^22]: *The end examplo may, be maltiplied in tuo products, first by 3 , apd that product by 8 for 24. The 3 rd, $6 \mathrm{th}, 7$ th, and 12 th may be cos trected in a similar way.

[^23]:

[^24]: * Questions belong to this Rule which require the addition or subtraction of a number, \&c., which is not any known part of the number required. The results are, therefore, not proportional to their suppositions.
 \dagger The following Rule will, in some cascs, bn found more eligible:
 Multiply the difference of the supposed numbers by the less errors sod diside the produet by the difforence of the errors when they are of

[^25]: - The learner should find each of these cases among the precod ing Theorems. Thus, the present Rule will be found designatod by $i=\frac{1}{2} n(a+z) \&$,$c .$
 $+\overline{12+1} \times 6=13 \times 6=78$. Ans.
 : $\overline{3-4}-\overline{8-1}=28 \div 7=4$ years. Ane:

[^26]: - In this case, if the quotient of $\frac{z}{a}$ be divided continually by r, tilt pothing remains; the number of divisions +1 will give n.

[^27]: " See the third formula, Theorem I. for infinite series, page 128;

[^28]: *The table is formed thus:-
 $t \cdot 00010953904 \times 240 \times 120=£ 31.56164352=53.33 .14$. Ans.

[^29]: * $\cdot 045 \times 7+1=131$; then $367 \cdot 674 \div 1 \cdot 315=\mathbf{x} \mathbf{2 7 9 \cdot 6 = 5 2 7 9 . . 1 2}$ Ans.
 $\therefore \frac{367 \cdot 674-279 \cdot 6}{279 \cdot 6 \times 7}=\frac{88 \cdot 074}{1057!}=045$, or $\boldsymbol{f} 42$. per cent. Ans.

[^30]: ： $357 \cdot 5-\cdot 05 \times 75+1=344 \cdot 5783=\mathbf{C} 344 . .11 . .6 . .3 \cdot 168$ grs．Ans．

[^31]: * The amount of $\mathfrak{x} 1$. in t years is the last term of an increasing geo. metrical series, of which the first term $=$ the ratio, and the number of tirms $=t$, because the first year's amount is identical with the ratio; and as $1: r:: r: r^{2}=$ the amount in 2 years, as $1: r:: r^{2}:: r^{3}=$ the imount in 3 years, \&re. The successive amounts r, r^{2}, r^{3}, \&c., are bidently in geometrical progression, and the amount in t years is

[^32]: per cent. Ans.

 + For a clear and intelligible explanation of the different Measuree nee the Tables, page 24, \&c.

[^33]: * In this and the throe following examples the rod is considered $=272$ feet.

[^34]: *When more than two lines meet, forming several angies at the same point, it is necessary to designate each angle by three letters, placing that which is at the angular point in the middle. Thus, the anglo BDC is that formed by the lizea BD and CD.

[^35]: - Figs. 1, 2, and 3. b Fig. 2. © Fig. 1. © Fig. 3. •Fig. 5.
 ${ }^{\prime}$ The line AB, Figs. 3 and 4, is the base, and CD the altitude.
 - Fig. 7. ${ }^{n}$ The line AB Fig. 7. ${ }^{1} A C$ or BC. ${ }^{\mathrm{k}} \mathrm{AD}$ or ADB, Fig. \&:

[^36]: *When the half chord (see AD, Fig. 7) of the arc is found by the properties of a right angled triangle, ther $A E^{2}=$ the versed sine (DE) X the remaining part of the diameter ; whence the diameter (and conse gnently the radius) will be known.
 \dagger When there is a remainder (or fraction) after the second quotieut figme, in dividing the height by the dianeter; having taken out the urea answering to the two figures, add to it such fractional part of the wiference between that mat the noxt suchepding area, for the sake of greater amuracy.

[^37]: * If the half sum of the two diameiers be multiplied by $3 \cdot 1416$, the product will give the circumference suficiently near for most practival porposes.

[^38]: * Questions of Compinat Proportion in vith the torms are numer
 followine metiod is imale conembing.

 Ruse. Arange the lema, of the first rane nat ofict in one line, and the comesponting tems of di- secon wow wathert axuely nuder

 the lank term is comectad, and the fuphin with be the abwer.

 Solution of tho abrew nomule.
 1

[^39]: * See Niote to Examale 11, Divernot, mege 71.

[^40]: * Thife column contains the figures if re cten* to the follo of the Ledger in whleh any account is posted. They should 1.3 atton m red ank.
 + The preposition By is alwiys ins beftre any arbiclo for whlch a person is credited.
 \ddagger The preposition To is genera?l glect.d before articles for which a gerson su defets
 ed; but some Bookkoogers cirai: \boldsymbol{x}

[^41]: - Many tradesmen keep an Invoric Book. into which all invoices of goods purchased are rogularly transcrithed. Some paste the inwoices themselves within a blank book The account of Allen. Wild, ald Co. (D. B., p. 1,) is sipposed to be a copy from their invoice. Some make the In! oice liook serve also for the "Bought Ledger." This last method, when tho nature of the trade will achnit, is well worth adopitigg

[^42]: - This is supposed to be bought by the long cwt. (120 ld.) agreeably to the general practice.
 + Vide Example of a Partnership Concern, p. 187.
 \pm In this concern, the entrios of Cash are not made in the Cash-Dook; this being oniy a general statement of transactions supposed to have taken place before the opening of these books

