The Institute has attempted to obtain the best original copy ayailable for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloureci covers/
Couverture de couleurCovers damaged/
Couverture endommagéeCovers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de couverture manqueColoured maps/
Cartes géographiques en couleurColoured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)Coloured plates and/or illustrations/
Planches et/ou illustrations en couleur

Bound with other materia!/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/ Il se peut que certaines pages blanches ajoutées lors dune restauration apparaissent dans ie texte, mais, lorsque cela ètait possible. ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode normale de filmage sont indiqués ci.dessous.Coloured pages/
Pages de couleurPages damaged/
Pages endommagéesPages restored and/or laminated/
Pages restaurées et/ou pelliculéesPages discoloured, stained or foxed/
Pages décolorées, tachetées ou piquées

Pages detached/
Pages détachées

Showthrough/
Transparence

Quality of print varies/
Qualité inégale de l'impression

Continuous pagination/
Pagination continueIncludes index(es)/
Comprend un (des) index

Title on header taken from:/
Le titre de l'en-téte provient:

Title page of issue/
Page de titre de la livraison

Caption of issue/
Titre de départ de la livraison

Masthead/
Générique (périodiques) de la livraison

\squareAdditional comments:/
Commentaires supplémentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

Vol II.-No. 9.
DECEMBER, 1874.

Price in Canada $\$ 2.00$ per An. United States $=\$ 250$

IMPROVED CURREN'L WAL'ER WHEEL

The means of utilizing the powor afforded by the current of a river, whore sufficient fall cannot bo obtained to run a turbine wheel successfully, have been brought to comparative perfection within a few years by the improvements which have been made in this class of devices. Necessarily, where eveu the best form of current wheel is used, the application of the power of the stream is made ic but an imperfect degree as regards economy, a large proportion of it running to waste, and only the effect of the water directly in contact with the wheel being gained; but as no other expense than that of constructing and setting the wheel is incurred, the investment is often a very profitable one. To obtain all the power which the volume of water in the stream would afford would require the building of a dam, and ronsequently the employment of capital, frequently to a very liberal excont, in securing the primary facilities for doing business; and where the capital is not at command, or a large business is not contemplated, an ample return may be realized on a moderate investment by putting in a current wheel of the most approved construction. Such a wheel is illustrated in the enyraving on the preceding page, which shows a basin made in the bank at right angles with the stream, its sides being protected by planking, for which stont may be substituted if cheaper or more convenient. In this basin floats the raft which carries the wheel, the frame of the raft being so made as to balance the weight of the wheel. The basin or slip is dug deep enough to float the raft and wheel at low water, and extends into the bank a distance equal to the length of the whole apparatus, which may thus be drawn back entirely out of the current. This is a point of special value, as by means of this arrangement the wheel and raft can be withdrawn out of resch of drift wood and thus be protected from injury when the stream is swollen by heavy rain or melting snows.

The wheel, which is an undershot, is shown projecting into the current and in operation, its motion being communicated through: the gearing A, to the horizontal shaft B. On this shaft slides a loose pulley, C, having on the left hand side of ita hul an annular recess and a clutch, by which, when desired, it is engaged with the shaft B. The annular recess receives one end of the shipper lever D, the other end of which is made fast on the bank, and by means of a hinge the lever is rendered adaptable to the position of the raft at any stage cf water. The shaft E , which is rotated by a wheel at one end as shown, has chains wound around it, leading to the opposite ends of the raft; and tinus, by turning the wheel toward the bank, the raft is drawn in, while by turning in the other direction it is moved out into the stream. When the raft is ryn out, the wheel is held in position by a pawl which drops into a recess in the shaft E . 'l'he rollers F , on the sides of the raft, only one of which is shown in the engraving, facilitate the moving of the raft by their contact with the plauking of the basin, preventing the friction which would result from the raft being forced by the current against the side of the slip.

It will be seen that when the raft is moved out, the lever D will draw the clutch into action, and the motion of tho shaft B, received from the water wheel, will be transmitted through the loose pulley, C , and its belt to the machinery of the mill. On the other hand, when the raft is drawn in, the lever D, remaining rigid, will push the parts of the clutch asunder and the loose pulley will cease to turn. By this arrangement, the same appliances by which the raft is moved in and out serve to regulate the transmission of power and the starting and stopping of the machinery.-Scientefic Ime, scan.

The Builder has the following: Many have scen working on the Thamesa steam dredger, named the Sampson, with an endless chain of laden buckets rising at a low level and disappearing at a higher altitude. The Sampson of the Thames has, it scems, been moored at Hartlepool, and as it works by tide Sundays are perforce called in as working days. Miners are an inquisitive body of men, and on their leisure day a number watched the Sampson's buckets go up and down, and tried to count them. Having reached 1,000 , they gave up their task, exclaining, "Sampson was a strong man, but, by gum, lads, he never lifted 60 many buckets of mud as this fellow, and kept at it as he docs; when will the last bucket stop, ch?"

PROF. FLEHMING JENKIN ON P.I'LEN'I'S AND THE PA'IENT LAWS.

At the University of Jidinburgh, on Nov. 3rd, Prot Fitecm. ing Jenkin delivered to the Engineering class a lecture on Patents and the Patent Laws, of whicit the followith is an abstract :-

In the outset he referred to the vulgar error that a wan ol mere native shrewdness could make some great discover in a branch of enginecring of which he hnew nothing pratteath or theoretically. Yet a whule tribe of patentees, miscitled in ientors, really did exist, who belouved that they had almust fortuitously, without effort to themselves, piched up some great nugget which must have lain stari. in th- face of the practical workers of the ground for years. Two classus of men made valuable inventions, the men who by practical expenence in a given manufacture knew the defects of existug mechanism and the requirements of some special manufacture, or the meal whose theoretical knowledige ot a subject was such that they could understand the conditions of success in amachine or araufacture better than thuse who had a mere practical acquaintance with the subject. There was a popular idea that if patents cost only a few shillings the poor anventor would be greatly benefited. He thought the cases were very few where an invention of real merit was lust to the inventor in consequence of the expense of a patent. It a yoor man could not persuade any one to invest the cost of a pateat in his idea, he would certainly tind it equally diticult to induce mon to invest moneg in expermmental manafacture ater he had secured the patent. The real dithculty was the wat of money to introduce the invention in most cases, and the difficulty did lead poor men who had valuable patents ulcastonally to part with them for a price disproportionate to what was ultimately found to be the value of the invention. No doubt, if these men paid less for their patents they sould have more money left for experiments, but, on the other hand, it must be remembered that cheapness would lead to the vexatious multiplication of trifling and dishonest patents, and this led to the consideration of the grounds on which patents were granted by the State.

Patents were not granted as rewards of merit, but purely $\mathrm{r} \eta$ grounds of public utility. The State followed the simple prosciple of paying for results, either actual or in prospret. A inonopoly for a limited number of years, was oftered as an miducement to make Inventions, to disclose thear, and to apply them. All who wished that the patent laws should remam in furce ought to contend that without this inducement men would invent less end carry out fewer useful inventions. If they could not persuade the Legislature of thi-, patent laws wand os abandoned, for it was certain that the restrictions they umposed caused some hindrance to the improvement and extension of manufactures. There were many trilling amprovements which manufacturers would adopt if they had to pay no royalty, but for which they refused to pay a penny while the patent lasted. The sum of many trifine improvements would often bo equivalent to a single sreat improvement, and by preventing this, patents injured the commanity. Moreover, inans patents wero taken out for trilles which were certam to be reinvented by dozens of men as soon as the want for the artucte was felt. Whenever a manutacturer was stopped by a previous patent from carrying out some little mprovement of has own, he began to consider as monstrous the proposition that a man should hava a munopoly in an adea merely because he thuugh of it first. These werc excellent arguments amamst wrauting patents for trifling or obvous improvements, and these vesatious patents would be muth multiplied if their cost sere lessencd, but they left quite untonched the reasons for granting temporary monopolies of really valuable inveutions. The mere publication of an idea was a very different thing from the introduction of a succersful invention. It was a mistake to think that when a valuable idea was published capitalists and angineers flew to seize it, and struggled fiercely as to who should have the honour and profit of carrying it into ctiect. Perhaps if Watt had published the idea of a separate coudenser in a scientific journal and stopped there, we inight have been without our present form of steam-engine to this day, but if this be thought too daring an hypothesis he (the l'rofessor) cond nurertheless insist that the inventor of any invention, however excellent, had to force it upon the public at much expense and much labour and vexation. Very fer men indeed would risk money, time, and peace of mind in the struggle but for the
hope of a selid reward, and here hay the real justitication of the patent laws. They were at liberty to feel some satisfactun at the fact that they did m some cases sive a solid reward to mun who derets tet encouragement, and no oue could dispute that the hews, if existurg at all, ought to bo so framed a. to give the greatest chance of a reward to the meritorious.

It was mportant to every engineer to consider whether the exsturg lans could be amemded, and if 80 in what manner, and the question was spectally meteresting now, as thero was a rumurr that the pirsent government intended to legislate on the subject. Harsug stated that in his opinion the existDei rogulation, by wion ha !rovisiomal protection might bo had tor a moderate sum, was quite fece from the objection to ma. hag the patent atself tou cheap, while it enabled inventors to draw ap at urate and complete specifications, the Professor nent on to bay that the following were the chief reforms in the atual laws whith were popularly suggested:-1. That putent cases shuuld lee tried by nome special tribunal. 2. That patcuts shutid only be granted after the Crown had in some tuanier tisted the novelty and impurtance of the invention .. Hat patents shuald not remain valid unless worked within a certam time. 1. That the rewards tor successful inventions Hounhly paid by Guvenament untead of boing earned in trado. . Fhat the shenthe wituesses shomld be appointed by the intumal tryins the patent case, and not chosen by the two partics to the suit. None of these suggestions, he continued, at very decply into the existing laws, hut aimed rather at
 They politul to the following defects in the present method of avectainiug this validity: -1 . That the Court sometimes rally culld nut understand the patent, the issues or the witnesist, ‥ That patente -ere often granted for so-called in. rentives whilh had been previousiy patented or disclosed ; 3. That patents were often used as mere traps to catch those who frally intruluecd an mprovement; 4. 'That the rewards or pronito frum pateats secmed uiten to bear a very false relation to their real value, and ., that scentific witnesses became partiears. . ill thase were real detects, but some of them had roots so decp in the nature of thinge, that no clange of law would munh disturb them.
After discussing at some lensth the proposed reforms and the dituts aimed at, the Professor summed up his opinions as Whlluw-- The pateut laws should le maintained and need not Wh ot atity mudificd, that any tribunal or referees appointed to whisth r the novelty or utility of an application for a patent shuild unly have power to give an opmon, and should not be alluwnd to decide whether the patent was novel or useful ; that batents heed nut be made cheaper; that tho nominal position of the slicathe witness should be made to agree with his real prostive, and that the reward of the inventor should depend on uutuaty but the commercial success of the patent.

THE WOOLWI H 35.TOY STEAM HAMMER.

Ther rection of the $35-\mathrm{thn}$ Nasmytl.'s steam hammer iteclf which alth wgh performed under the supervision of a represnat tivi from Misssrs. Nasmyth, Wilsun and (o., was neverthrtess artually conducted by foremen and artuficers of the Fraal fun latories in the Arsenal at Wuolwich, exhibited maly pmints of interest in the contrivances by which it was ertictiod It was an undertaking of some magnitude, as the enfire hic ight of the hammer was over 4Jft, and it was necessary to raise the various portions, several of which weighed it tons each, to a still greater elevation in order to get them into position. A gigantic pair of shear legs was constructed hy Mr. Mehew for this purpose (see page 260.) It consisted of two carcfully selected fir-poles 74 ft . long, having che botnm endi roumded and working in sockets in two large move. ar". wrudin "shoes." The shoes could be shifted about to any, yured position, but were retained at a normal distance yarr 0° 2nft `ear their summits two slout cross-picces of nimlur wire made last on either sides of the poles, supported in mins of wrought iron bands ctrawn tight with bolts and nuts, and pins running through the poles bencath. The bands and pins admitted of a certain amount of lateral play between the phtics and crosibead. The poles were 1 ,fit. asunder at the crosshatad A large hock and tackling which had been erpressly constructed for litting portions of the foundations for
the 10 -ton steam hanmer in the gun fuctories were suspendest from the rrosaltead Two snatch blocks were then secured at each corner of the crosshend abuve, and two othurs at the bases of the poles 1 strong rope being rove through one of the lower saateh.blocks, it passed throuth the upper correspondthg ono, thence through the hage block aud down to another attached to the portion of the hammer riquired to be lifted, afterwards ascending again throngh the large lock and passing down the second leg of the sheers Both eands of the rope wre made fast to crab winches, rouma which they werc ooled. Thus when the cross strain of lifting up the weights came upon the sheers it was counteracted by the tension of the ropes down each leg, that necessarily tendiats to stendy the legs. There we., of course, a tendency to pull the feet of the wheer legs with their shoes out of position, but this was casily overcome wy attaching the legs at the bottom to portions of the foundations already fixed in the ground. I lanlk of thuber phaced betwera these effectually prevented all shafting ot the legs Four guy ropes or stays were attahhed to the sules nad crosshead at their point of junction to stealy the nheer.. Und of these was secured to a pile of baulks in the adjacent timber field, whilst the remaining three were attachell to various parts of the surrounding buildings. Hut the strain upon these was very trinting, for the angle which the sheer-legs made witt the perpendicular was so slight that when the weight came on them it acted almost in the direction of their lensth. Hence a means was arrived at for manipulating the huge hambs, of the steam hammer, and depositing them in any required position, of the simplest possihile character. By loverang and tightening the side gaysa lateral movement was ubtamed, the crosshead admitting of this; and by performing a smmlar operation with the two back guys, a forward or a backward movement was secured. There were, of course, steadying guy ropes to provent the castings swasimg abuut. Thur engraving shows the plan adopted, ns applied to the lifteng of a staudard weighing upwards of to tons. The crab winches were kept in position by being loaded with pig iron, aud by betag chanat to contiguous parts of the building.

The furnaces ior the new hammer are of the ordinary reverberatory character, but of quite unprecedeuted sise in urder to contain the enormous forgings which are required to be raired to the welding heat in them. Only one is actually mushed and in working order; the second is in cuarset of rupid completion. They possess at the same timic cerlain peculiantices of construction which will be deseribed in due course. They are earh built upoo a block of concrete ffi. thick, laid in an excavation dug out for it, and having large shabs of cast iron placed upon the top, so as to distribute the pressure evenly throughout the whole mass. l'pon these slabs a series of cast non stindards is erceted for the floor of the furnace to rest on, four rows of standards being beneath the hearth, where, of course, the greatest weight, that of the " heat," comes. The hearth has sour strong cast iron girders around it, forming a $\times q u a r e$ frame above the standards; and the bottom of the hearth consist: of thick cast iron slabs It is sunk about ift, so as to admit of a deep bed of fettling being formed within it upon the iron slabs. Girders also run along the sides of the furuace floor for the wall-plates and brick side liniugs to be buitt on. Theso girders rest upon the standards before alluded to. The end walls are built upon large cast iron cruss-beams, whath are perforated transversely with holes and grovied longrtudmally to prevent their twisting and buckling with the heat. The two side walls of the furnace, and one end wall-that ower the fireplace-are constructed externally of light plates of cast ro. -see page 360 -with fanges at the edges to connect them, and ribbed on the outside for strength.

Psutu, Dec 19.-The engineers of the Huron and rucb c Railway are making rapid progress in the surve y of the live from Perth, via Franktown and Richmond, to the city of ()ttawa It will be an air lino for over thirty miles, the great"st cutting being not over five fect. Mrr. Fowler, Managing Direcior, accompanied by Mr. Strong, engineer, carefully examin it the line today. Nothiny will prevent the work being commenced at Perth, east and west, duriug January or February, and completed to the Kingston and Pembroko Railway in time for the next Provincinl Fair at Ottawa. A survey has been made from Perth to the Kingston and l'embroke Railway, in the township of Oro.

SHEARS LSED IN CONSTRUCTING THE 35-TON STEAM-HAMMER.

COAL FURNACE, ROYAL GUN FACTMRIES, WOOLWICH ARSENAL.

LMPROVED AR-COMPRESSORS.

covstnected hy till helamatel jhon- Wohks, from the: desions OF MESAMS. HEYSOLD AND FIGH.

Tlue use of compressed air as a motive power is destined to receive an enormous development as its capabilities and advantages become better understoot. What countless wealth is thro en away in the unheeded fabls of our rivers and the low and ebb of the ocean tides, simply because few consider that the power thus wasted could be conveyed to almost any dintance, at very trifling cost, hy means of compressed air or rope trausmission 1 As long ago as 1837, a series of experiments was male in Coscia, by order of the Italian Government, to determine the resistance of tubes to the flow of air through them; it was found that:

1. The resistance is directly as the length of the tube.
2. It is directly as the square of the velocity of the flow.
3. It is inversely as the diameter of the tube.

Aul as the volume ie directly as the equare of the diameter when the velocity is given, it follows that, under a given pressure and velocity, the relative resistance - that is to say, the risistance devided by the power - will vary inversely as the cubre of the diameter.
There is, consequently, a great advantage in making the tubes and openings through which the air has to pass as large as porsille. Lexperience has shown that tubes can be made so as to allow of very little leakage. At the Mont Cenis tunnel no leak was ever found in tubes nearly a mile and a half in length, nor did the expansions and contractions of the tubes, dine to changes of temperature, 'ppear to affect sensibly the frimuess of the joints. On one occasi n it becrme necessary to leave the receivers full of compressed air for twenty-four days; the loss inall that time did not exceed -500 part of the daily supply.
It is therefore possible to transmit power by compressed air to very great distances with scarcely appreciable loss in its tansmission. There is, however, a much more important source of loss than that just mentioned. When air or any other clastic thind is compressed, there is generated an amount of heat which is the exact equivalent of the force emploved in the compression. This heat, in practice, is radiated from the compressor, the reservoir. and tubes, and is lost; when the compressed air has attained the same temperature it possessed before compressing, it has lost in cooling exactly as much power as was expended in compressing it ; but since the air still remaius under a considerable pressure, if allowed to expund, its temperature fills below that of the a mosphere, and in so doing it develops work, but, inasmuch as the temperature inexpansion will not be depressed nearly as much as it wasi nereased in compression, the loss of work will always be considerable, increasiug with the pressure to which the air has has bee'l subjected; this loss is moreover susceptible of exact calculation. Taking the case of the Mont Cenis tunncl, wherea pressure of six atmospheres was attained, the air, instead of being compressed to one-sixth of its volume, as would have bern the case were no heat gencrated, actually entered the reservoir when its volume had been reduced but 3.6 times, and theoretically, the power available would have been but 60 per cent of that expended; practically, it was somewhat less than this. If the air were compressed to eight atmospheres, there would remain available but 55 per cent., and for about eleven atmospheres of compression but 50 per cent. of the compressing power could be obtained. If the compression is less, say four atmospheres, 67 per cent. would be secured, lu. three atmospheses 72 per cent. would, ascording to theory, be avaibable, and so forth; hence we see that where the lower pressures will perform the work to be done, and will not necessitate the use of extra large and costly engines to utilize the power, there is an evident advantage in not using a very high degree of compression.

To this loss of power, practically inherent in compressed air, we must ald the loss due to its transmission through tubes, thi, where the pressure is not excessive aud where the velocity is reduced ly the use ot large tabes, is a much smaller itein of lons than the other; it would not be over one-third or ne-finuth of $1 t$, and in carrying the air through say 10 to 15 niles of pup would not exceed say 5 to 8 per cent.

As we have stated it is 1 mpossible, under ordinary circumetances, to utilize more than say 50 to 60 per cent. of the power expended in compressing the air, yet, from the fact that
compressed air enables us to carry at a small cost the permet wasted in waterfalls to points where it can be used with inf vantage, the loss of 30 per cent. in the motive power is a small matter, and the actual power obtained would out, is: general, much less than if generited with our mote economi , steam-cngines.
'I'he use of compressed air for driving umierground a a 1 : ery, whether it be hoisting-enginer, rock-drilly, coal.- ntt r or other machines, is peculiarly atvantageous, for it prow. a valuable addition to the ventilation of the mine mill duces the temperature, which in deep mmes is so "x impl" It can be carrided to much greater distamees thin stemm, whi" moreover, is very destructive to mine-timber

One of the chief reasuns for the limited appliratinn on . ${ }^{\prime \prime}$. pressed air to the transmission of yower has heren th. . .m. plexity and mechanical defects in the compressing-mahat.; These defect; however, are bein; overcome as the attent of our enginecrs is directed to the subject, and the appli, .atin of compressed air for the transmission of power will wh. , w. edly receive an immense extension from the simphti, thi i, these machinos. We present to our readers on paye 3 sha a ent of one of the most compact, simplo, and practical of our arcompressors.

It can be driven by means of a water-wheel, wind-mill, seam engine, or other motor. It occupies a s!ivec of but 10 t in, inches by 6 feet, 4 inches on the gromen pha, and 11 fort, 3 inches in height. The air-compressing cylinders are 20 in hion in diameter, 24 .inch stroke, and, in this particular mas hin are driven by a 14 -inch belt on a 42 -inc's pulley, makithe duont 60 revolutions per minute. 'I'he air-pistons are trunh. wi. nected to the crank-pins by connecting-rods three time, th. length, of the stroke. The cylinder casings, tank, bed pitt and housing-brackets are all cast in a singlo piece, manhis a very simple and substantial structure. The cranh-whects arturned and balanced; the crank-shaft, which also carrien the large spur-wheel, is or wronght iron $\overline{7}$ inches diameter $14{ }^{\circ}$ teeth of the spurare of small pitch, but are strengetheneat by a shrouding on tach side and by one in the maddle, matio: really two x heels in one casting.
One of the most important features in this compressu: 1 an ingenious contrivance of Messrs. Heynolds \& Fish. Wh what the air-discharge valve drops from its seat as soon as the presure in the receiver exceeds that for which the weishted lewr is set. This puts the compressing cylinders in dirent communication one with the other, so that mstead of the curne being strained by the full pressure of the steam, and manur a uscless expenditure of work, the work done is stmbl! moning the pistons back and forth freely in an atmosphere conpressed to the same degree on each side of the pritu. American Arlısan.

II W TO SEE STLEREOSCOPIC PICTURES WIMHULI. STLREOSCOPE.
The ability to see binocular pictures in stereuscophe rilte is twofold in its bearings. Firet : a photograplar cancamus. properly mounted pictures with the unassisted eye withas much pleasure as though le were using a stercoscuph, the effects of nearness and distance will le quite as thurwaght appreciated, and, as a whole, the advantage will equal thut whe tained by proper stereoscopic inspection, keeping out of subth the enlargenent obtained by the examination throush the-eye-piece, the function of which, in this case, is, to cularge phtures as well as to diverge the rays coming from them. luwdentally arising from this is the possession of a power of heng able instantly to detect a pair of pictures which have beed wrongly mounted. Some time since a well-known wholesale dealer in stercoscopic slides in London was very much sulprised when, upon bestowing what he supposed to be a luwas cursory glance at a number of stereoscopic pictures stat in for selection by a photographer, we threw a number aside ws being unsuited for sale on account of improper mumation. and this gentleman also marvelled when, upon testing cina v . these condemned pictures in the stereoscupe, he foumathat a ev ry one of them the effict was preado-scopm, the fers ob jecis being shown as the more distant ones.

Before giving directions with respect to the method whath the eyo may be so tutored as to readily decern betieco t.a one and the other, we may observe that, if a pernt iroma binocular camera negative be plachl uncut in the stereo-
scope, the efiert will he pseudo-scopic that is, relative positions of near and distant objects will be reversed; but, if a print from a negative taken by what is lanown as a "Latimer"lark" camera be examined, it will be found quite correct. In the former case the right eye is made to examino the picture intermed to be, and which should have been, opposito the left eye, and vile versa IIere is a simple rule to ubserve :-If the slide holdiug the sensitive plate has been motionless during the taking of buth sides of the picture or daring the impressiug of bothends of the plate, then the impages must be transposed befure they a an be seen in storeoscopic rolief. Wa n:a now assuming that ordinary instruments have been used, and do not intend our ubservations to apply, in anticipation, to other retlecting instrments which might easily be invented, and nearly as easily made, for the purpose of controverting the mile.

But a second mivantage arises-and that not morely the ability to discern between correctly and incorrectly mounted pictures and of secinj; both in stercoscopic relief, hut one of which we have frequently tome the value when the binocular camera was directed to is view-we allude to the power conferred of sceing upon the ground glass of the camera the precise effect, as respects stereosity, which will eventually bo produced. In the course of our experience we have met with very few who wure fully alive to this great advantage, or who, being alive to it, could adequately realise it in their own practice. Vet it is true that bw a slight optical effort both the images thrown on the eroume glass by the lenses of the caucron can be resolved into one, and that image possessing all the rellet to be found in nature.

We now come to the means to be employed hy which such effects may bo secured ; and, first of all we shall suppose the case of a perion desirou of learnin: how to see in proper reliel a correctly mounted picture.

The tirst attompt must be made by means of a diagram. tpon a shect of plain white pap er let two simple ink marlis, dots or crosses, br made close to the under margin, and abont an weh apart. Now, upon another shect of white paper place any kind of ink mark, and place it at adistance of eighteen or twenty inches from the , yes. Now hold the former paper on such it manmer as that it shall be about halfway between the eyes and the othor paper, the marks being at the top and the position such as merely to allow the single mark to bo seen and nos more; in short, so that the two marks on the one shert and the one mark on the other shall be nearly in a line. Then look intently at the single, or more distant mark, and while doing so, the mind will soon become conscious of the fact that there are three chosses or marks now visible upon the hearer paper, which, by the way, may be moved in or out from the eyes till these conscious images coalesce. Hy a little effort the tyes can soon be diverted from the contemplation of the distaut mark to the central one of the three which intervenc, and which lies directly in the path of the distant mark.
When affer a little practice this can be easoly done, then make two marks a little farther apart than those upon which the first attempt was in inv, increasing, if need be, the distance tetween the eyras and the sheet containing the sinete mark. Ifter ten minutes spent ia this mole of practice such in amonat of control will hive been acquired over the muscles of the ryיs that a 1 inor ular photograph many then be made to take the place of the louble-inage diagram. But this photouraph shoild be ratefully selected, it must have strong leading chararteristics, nud, above all, its h. ves must be mounted nearer to each other than is usual. It will be better for the student to select a well-marked picture, cut it through the middle, and make it overiap so as to bring its elementary parts closer together 'Ireat this picture as was done with the daumm. Let it lue hell un, at a distance of about cighteen taches, against a sheet of paper containing a mark which is more than twice as far fion the eyes. Direct the eyes towards the mark and they will inperceptibly observe that there are three photogral 'rs intervening lectween the vision and the inage. Now without any effort let the eycs be insensibly directed toward the central one of the three pictures, and the instant this is effected the picture stands before them in all the telinf of naturr, bring romposed of both the original imsyes We shall lint hore enter into the philosophic bearings of beact; all we notice is the fact.

When the fnregoing effect has been obtained, the eyes will ever afterwards obey the will, and by diverging the aves
slightly or, to state it more correctly, by relalering them paral. lel, stercoscopic pictures may be seen in all their marrellous relief without an instrument.

I'be comverse of this is more usis. The pictures, which must be reversed, aro placed dircetly opposite the eye at a distance of about eighteen inches, and an object of smatl dimensions, such as a pencil, held between tho eyes and the pictures in such a way and at such a distane that when the right eyo is direrted to the left picture it shall intercept it to some extent, doing the same thing when tho right-hand picture is viewed by the left eye. In this poaition, oxamine the pencil atten. tively, and the mind will soon realise the fact that there are three pictures in the background, tho cantre one of which may, with little effort, bo made the subject of examination by the eyes. This method differs from the former, inasmuch as the axes of the eyes conjerge to such an extent as to cros* between the eyes and the picture. No pain or peril whatever to the organs of vision results from the proper examination of images in this manner, although, like everything else, the power is capable of being abused.

NEW PROCLES FOL RENDERING GTASS HA11. AND にIRE-PIROOF.

The Salut lublic of Lyons wives an accornt of some experiments that have lately luen made with a view to testing the value of a process, invented by M. de la lastie, a manufacturer of liourg, for strengthening glass so as to render it not only hail-proof, but also to resist the effects of fire and recidents.

Therse experiments were carried out at the railway station of Point d'Aiu at the request of the authorities of the railway company, in order to satisfy then of the value of this invention, which natumally would be of the highest importance to them, werc it poscible to render less liable to breakage the glass roots, the repairs of which form a serious itum in the expenditure of milway companies.

A shect of glass 6 millimutres in thickness, held in a wooden frame, was placed on the lloor of the room, and a brass ball weighing 100 grammes was left fall on it, from a height which was gradually increased until the glass was broken by the shock. It was found that ialling from a height of 24 centimetres the glass was shattered by the ball.

A sheet of glass only halt the thickness (viz., : millimetres), but which had been prepared by the new process, was then placed in the frame, and the same weight was allowed to fall upon it, gradually increasing the height, but without any efiect even when dropped from the ceiling of the room.

The experiment was next continued out of doors, and it was not until the weight have been dropped from a height of $: \cdot 75$ centimetres, that the plate of glass was broken. Dropped on the ground a sheet of the prepared glase rebounded slightly, and with a sound similar to that of metal when thrown down

Another experment was made with a view to togt its resis. tance to fire. A slip of common glass was held in the flame of a lamp, and at the end of 24 seconds it snapped in two. The srac was repeated with a slip of the prepared glass, but the flame had no fect upon it; and even after plunging the heated g! iss sud, -ay into colel water the glass was not brokin The importance of such an invention may easily be inagined, and its application in ass endless varicty of ways will readily suggest themselves not only to engineers, builders, \&e, but to persons engated in almost every class of trade.

Some time ago the Eaglish engineers engaged on board the ironclads of the lurkish fleet were dismissed or withdrawn and natives appointed in their room. According to the Levant Heruld the Turkish mechanics have since come to grief, some having narrowly escaped being "bolled." Those in charge of the Mrhomoudeh, one of the largest of the ironclads, had reccived orders to get the ship under weigh. After several fruitless efforts to get the engines to move, growing impatient, says the Herald, they began to try the virtue of some of the cocks whose uses they had had no previous opportunity of becoming acquainted with. Une of these took the reconnoitring artisans considerably by surprise, answering their researches with a jut of steam which quickly filled the engine room and scalded their hands and faces.

CENTRAL TELEGRAPF OFFICE, GENEIAL POBT OFFICE, LONDGN, ENGLAND.

it the meting of the ahmonia doadmy of sciences hem at tho legranmer of the month, Dr.A. (i. (copere, formerly of Har State Cicologimal Surey made some interesting remarks on 1 albiomia. Vflo shlihither on a map of Californasand Nevala, the portions now latul, but o ocered hy salt or brackish water duinger the epoch int yrocdines the age of man, Dr. 1 cuper aine that probably muth of the coast tange was also

 Numetols fmall tresh wat.، lahes ako existed, wheh have Joft trposits, cyecinlly wath slupe of the sterra Nevada, but not yet survered enongh to do fue theit limits. The Sicrra must then have been mus h lunco to allon these lakes to stand where they would now dram out completely. Most of the States of Crwala and rah n at covarid be lage tresh-water lakes. filling what in now alle 1 the "coreat liana,' and whech have sime evaporated was tu lorm the salt lahes now enstmen, by ron'l msaion of the salts aluagn contam d in lathes and rivers. This is shown by the deqnits of treshater shells at hish
 "aner fossils later than the chetwoun m the (ircat Basm.
 monto and Cim Joaquin salless was meuped by brackish water, as proved by thi " maha, ol abouths and porpoises found by Professor Blahi mal others wear hern river. All the principal level valleys now fomimy the best agricultural lands were also occupical by arms of thaviahat sea or of the occan. The gialf of calionnia a thaded urer the desert a humdred miles or more noth of its prestat hame.
Ther Sacramentw basia hat uthe t unticts besades the holden liate (if that cxisted at a'l) through an met openime at
 Montorey bay. Thas matmy ishatan probably existed which are bow joind to the mans lame, among hem the peninsula of Sm Franciso. Some of the intets bear the const were occotpied ly marshes, throuph which the amimals of that period reached the nearest ishande, as shomn by the remains of the fossil cl-phant found mar'san l'rancisco, near this city. Similar remains fomd lig Blunt and Harford, of the Coast Surver, on santa liesa i-land, show that it was then cither joined to the main lamd be dry aromal or marshes, as were protably the whel mat ris of isiands now forming the somb shoth of the stath thathan dhamel. The evidence of
 water ammals now loma in the valleys mentioned, which have beome man, or lefs billed up in deposits from the adjoining hills. Hhe tollowne ane the move striking forme, descrited ly l'uferor le int in the "Report of the linted States licoforial samey of the dermormes," issued lact year
 or mat livermore valles. Woll (Comesendenences) larger than the a isting linde, trom same depove; also fomm in the ter-
 bothills of Mencod county, latizer than the exsinime camel : akso t mans of prohaps annther ancoes from Alameda connty. Butale (bison lutyrons) hund in arevenl parts of Califormia and the easten states. las-or ant dhening trom the living form. Horse (Eipuss occilentalie) of which remansare common in most of the states, hiongh a , honses existed on this contiuent whon it was disco:ered by Laroje:ans Lhinoceros (h.
 in Secra Ne vada. Elephant (IS. a errecamus.) one of the commonest of the great lossil ammals tiroughont the lenited states. Mastodon (.J. omertcomere, more nare, fisl atso tomad in many localities. Another species (.1. obscurns) tinst found in the diulf states, and sume th the foothalls of the Vierm,
 sincics m size, Unt prolathy of frela water, from a lake deposit of Devala county. lienains of palms and other tropical trees, - hie tly trom the lake basins of the Sierra.
lrom these evidnces we perceive that the rlimate of that day was tropical. The comntry consisted of penimsulas and inlands like those of the present Fiast indies, resembling them also in climato and productions. From the evtent of water surromoding therr, there was abmodant manfall and luxuriant legitati. n_{1} suitable for the ammats mentionem it is not unlikely that some of the en amats may have cxisted before the plio. ene epoch as well is in it, lout the explamations are still insufticient to decude this.

The termination oi this ioppical epoch in Califormia was maked by enormous voleanie ontbursts, which poured out great streams of lava on the slope of the Sierra Nevada cover. lug entircly large tracts towards the north. At the same time the whole comntry was apparently raised by the elevation of new mountain ranges, nud increase of old ones, causing the lakes to be drained, and their heds filled by washings from the hills, mixed with volcanic materials. This great convulsion no doubt exterminated most of the tropical tlora and fuma of Calitormia, although some of its representatives might have cxisted later in neighbouring regions, and their lesiendants may still be fonnd in tropical America. That all atr not extinet is probable from the analogy of tertiary species clsewhere, and from the fact that most of tho marine and freshwater shells of the strata deposited at lhat time are till living, some however, only smuth of Galifomin. Many extimet land animals have been found to have lived in Europe since the appearance of man on the rarth, and ther, is strong evidence in the Calaveras shull and others that the same fact is true of Calitomia. It does not, however, necessarily prove that man existel in the pliocen. cpoch, as his remains may have been buited under volcanic onthows of later date, together with post-pliocene amimals, or even bones of pliocrne species mixed with them by aid of volcanic couvulsions.

The immense period of time that has elapsed since the pliocene cpoch is shown by the vast accumulations of volcanic materinls poured out by Mount Vesuvius on the top of marine strata of shelle, every one of the spucies still living in the Mediter ranean and thercfore of late pist-pliocene date. Yet history and the evidence of human remains ge back throbah only a thin portion of these volcanic strata ' Califormia, hefore the and of the pliocene, was certainly badly suited for the existence of man. The deposits formed during the convulive age, to the thickness of humdredn of feet are themselves al. most lestitute of all fossils, althoush burging such a rich collection.

While this was going on in ('alifornia, there was probably a great geological change taking place in other parts of the world, followed by the glacial are. In this, the northem hemisphere down to about lat. is deg., was mostly covered bs ice, "and the great deposit calied the "Drift," found in Europe and the Eastern States.
'lhe Geological Survey proved convulsively that this deposit of erratic lioulders dia not reach over Califoraia, and it is doubtrul if even as fat as Vanconver's Isiand. Still the inHuence of the fro\%en period was no doubt exerted here in the funn of extensive glaciers coveriug the Sierra, at least balt way down their western slope, and probably the highest parts of the coast range. Now we have in summer a mere remnant of that great ice-field, which no doubt did a great part in the excavation of the tremeudons canons now cut deep below the previous volcanic deposits of the sierra. There is cuidence also in the present existence of far northern land-shells along the whole length of the Sierra Nevada, that the glacial puried progresses slowly, allowin: them to spread southward lefore its advauce, wilhout being exterminated. In Europe, it has been fonnd that man existed both before and after this period, living, like the present Esquimatix, on the edge of the perpetual snow, and advaucin: north again as it receded.

The "nd of the reign of jece hrings us to the pesent epoch, in which there has been very little change in the omtines of the land in California, although some changes in the fauna and fora, as well as climate, which are jet undetcrmined. The polcanic disturbances have continued with deciensing intensity since the advent of man in the post-pliocene epoch, and may have clevated considerable portions of land, espectally sonthward, followed by increase of dryness, and proballs freater extremes of temperature. A rising of land ucar the Aretic Sea would further decrease the temperature. Iudsing from the continual discoverice still being made in the study of thase latest formations of the carths surface in Europe and the hinatern States, wo may safely say that a vast fiehd still remame open for the investigation of scicnce in Califormin.

The Locomotices of the Horld.-Dr. Ensel. director of the l'russian Statistlcal liarcau, estimates the number of locomotives in the world at 45,$4 ; \div$. Their ageregate forec is calculated at 10,000,000 horse power. Such estimate8are, honever, neressarily rather vague.

PRINCIPLAS OF SIIOP MANIDLLATION FOR E GINERMNG APLRENTICLS.

Lis J. Jimamms, Ionimon.

(Continued from page 231.)
THF ARHASGEME:NT OF E:NGINEEBING S:STABLSHBMESTS.
Thu first and, perhaps, the most important matter of all in funding enginecring works is that of arraugement. As a commerval consideration affecting the cost of manipulation, and the cost of handing material, the arrangement of an extablishment may determine in a large derree the profits that may be carne I_{1} and upon this matter of profits depends the existence of such works.
Aside from the cost or diniculty of obtaining sround suffiient to carr: out plans for engineering establishments, the duecsity of their arrangement that is met with is no doubt owing mainly to a want of reasoning from general principles in the preparation of plans.
The similarity of tho operations carried on in all works directed to the manufacture of machinery, and the kind of hrowledge that is required in planning and conductios such worls, would lead us to suppose that at least as much system would exist in machine shops as in other manufacturing estab:ashments, which is certainly not the case in America, and hardly the case in Europe.

I'here is, however, this difierence to be considered: that "hereas most other establishments are arranged at the beginnius for a specific amount of business, machine shops generally urou up around a nucleus, and are gralually extended as their reputation and the demand for their productions increase: lesides, the variety of operations required in an en. gituecring establishment are apt to leal to a confusion in arsaugement, which is two often promoted, or at least not prevented, by the mant of a true estimate of the cest of handling aud moving material.
The material consumed by an enginecring establishment comsists manly of iron, fuel, sand; and lumber. 'These articles or their product is, during the processes of manipulation continually approaching the erecting shop, from which finished marhincry is discharged after its completion. 'This constitutes the erecting shopas a kind of focal centre of the works, which should be the base of a general plan for arrangement. 'Il.is etablished, and the foundry, smithy, fiuishing and patteru shops, regarded as feedin" departments to the erecting shop, It follows that the connexious between the erecting shop ame the other departments should be as short as possible, and such as to allow free passage for the material and communication between the managers aud worlimen. These conditions would suggest a central room for erecting, with the various departments for casting, forgiug, and finishing, radiating from the erecting shop like the spokes of a wheel, or, what is bearly the same, branching of at righ tangles on cither side, and it one end of a hollow square, lea -ing the fourth side of the erecting room to front on in strect or read, permitting free esit for the machinery when completed.
ly an arrazement of this kind the materin is received on the periphery, as we may say, the producb discharged in the entre, aud the communcatiou between departments is the most direct that it is possible to have. By observing the phass of the best establishments of modern arrangement, especially those in Europe, the apprentice will see that thas bystem i approximated to in many of them, especially in establishmeuts devoted to the manufacture of some special class of Work.
liandling and moving material is in fact the leadiug ohject to he considered in the arrangement of engincering works, The constructive manipalation cal le watched and estimated, and luults detectel by comparivon, hut haudling, like the destgus for machiacry, is a more obscure matter, and may be zreatly at fanlt without the defects being apparent to auy but those who are lighly skilled.
l'resuming an enginecring establishment to consist of onestory buiddings, and the main operations to be courlucted on the zroman level, the only vertical lifting to be performed will w in the erecting roon, where the parts of the marhine are asembled this roou should bo reached in every part by an werhead travelling criuc, that can not ouly be used in furnamg moving, and placing the work, but in loading it upon cars or wagons.

Catitings, forgings, and general supplies of the crecting toom can be casily brought irom the other depaitments on truckwithout the aid of the motive power; so that the erectine and foundry cranes will do the entire lifting duty required in any but very large establishments.

The auniliary departments, if disposed about an erecting shop in the centre, should be so arranged that materbal which has to pass through two or more departments can do so til th. order of the processes, and without having to (ross thic erce thin; shop. Casting, boring, planing, drilling, and fittutg tor caamples, should follow each other and the depmonents be arranged ac`ordingly:

Whenever a casting is moved twice wet the same trach on moved and returned over the same course, it shows falt of arrangement, and useless expeuso. The same rule apphtes to any kind of material. A great share of the handling aloult ath engineering establishment is avoided if the material can be received on a higher level than the working tloors, if. fo. instance, coal, iron, and sand is recejved from railway cars at an elevation sufticient to allow it to be deposited where at wanted by its gravity, it is equivalent to saving the pewer required to raise it again to such a level if the material was dh. livered on the ground, for if the coat, iron, or sand, is not th be raised it has to be moved hori\%ontally, and piled up, which amounts to the same thing in the end.

It is not proposed to consider the details of shop arrangement further than to furnish a ciue to the general pranciphes that should be consulted in devising plans of arrang ment.

Such general priaciples are much more to be relied unon than even experiencei n the arrangement of shops, because all experience must be gainca in connexion with special condttions that often warp ani prejudice the judstnent and le.d to errors in forming plans where the conditons are ditherent from those where such experience was gained.
(To be continued.)

FDLUND'S THEORY OF ELEC"XRIUII'.

The Swedish physicist, Professor Edlund, has lately published, in Stockholm, a suall work in which he exponads his theory of electric phenomena. The following short account ot the principles of this theory (which we take from lee Mondes), may not be unacceptable.

We are to suppose the existence of a matter, subtle and elastic in the highest degree, expanded everywhere, not inly an vacumb, but in the parts of space occupied by ponderable matter ; and that two molecules of this cther, placed at a distance from each other, are mutually repelled alone the line of their connection, and in iuverse ratio to the squares of the distances, Tho electric ether, then, resembles an ordinary gas. Is regards the relation of ethes to the rest of mitter, we have merely to suppose that, in the badies called gond der tric conductors, the cther which they contain, or at least a part of this, is displaced easily from one point to another It is suppesel that, as is the case with ordinary gas, the molecules of electric ether movo easily, and can bu disjabed with hatle force. If the ether is in a material body which is a non-conductor of electricity, this mohility is arrested, and it depends on that of the molecules of the material body. If this non-condacting body is a g as, or a liquid with perfect iluidity, the particles of ether conserve their mobility; they are then transported alonf with the particles of the gas or the liquid. From thes molnlity of the molecules of ether it aecessarily follows that the hydrostatic pressure must be equal in all directions, as in liquids and ordinary gases. We may, then, apply to the ethor the principle of archimedes, that a body introduced into a fuid loses a quantity of weight equal to the weight of the fluid dispinced; though, naturally, the question here is not about gravity, but about repulsion between the molecules of ether. A great deal of light has been thrown on the appilic:tion of this principle by some of tine well-known diamagnetio experiments of phacker. He found that a maynetic body having a magnetic force inferior to that of the liguid in which it is held in suspension, is repelled by the poles of the masHet, and that a diamagnatic body suspended in a magnetir liquid is more strongl! repelled lye the same poles than it it were in a fluid of gascous matter less magnetic.
A molecule of ether is at rest from the moment when it is equally repelled ou all sides. A matecial boily cannot move

beet sugar factory.-(See page 274)
under the effect of an electric sction if the ether which it contains is repelled on all hands in an equil manner. If the repulsion be less at one side than at the other, the body will move, if it be free, in the direction determined by the resultant of the repulsive forces. If we wish to determine the movement produced in a body, 13 , by tho fact of another body, A, being situated in its neighbourhood, we may, without russtricting the solution of the problem, congider Λ as fixed and immorable, and B alone as freo It ronld then be necessary to take the following circumstances into , onsideration :

1. The action directly uxertod between thu ether of A and that of B.
2 The action, on the ether of B, of all the sarrounding modium, with exception of the cther contained in A.

3 The action of the ether A on the ether which, if B wero removed, would be found in the space actually occupied by B .
4. The action of tho wholo surrounding medium, Fith exceptiou of the space occupied by A, on the ether which, in the case of 13 being removel, would be found in the spsce occupied by 13 .

We thns evidently tako all tho active cansen into consideration. The first tri" cases have reference to the effect of the wholo mass of surrounding ether on the orber of B, the lant two expresp, on the othres hand, the same cfect on the ether which, if B were removed, woold be found in the place actually occupicd by it Now, taking the algebraic sum of the two first, and subetracting the sum of the two lawt, we have, in conformity with Archimendes' priaciple, the expression of the rovement gencrated in B. This is shown by namerous applications.
mincral Rasoubces or Bbitisu Colomifa. In the year ending the 30th of June, 1874, the exports from British Columbia were of the value of $\$ 2,061,743$, the gold dust and bars exceeding a million. The gold exports in the three months ending tho 30th of September, 1874, amounted to $\$ 407,734$; and in Suptember alone, $\$ 190,000$; and these atatemunts aro exclusive of gold shipped in private hands. A nugget weighing over 46 oz , and worth upwards of $\$ 700$, was recently tasen out of Dease Creek ; it is stated that this is the largest nugget that has been found in British Columbia. Tho local Government have bent a party to explore and prospect the head waters of the Stickeen. The north east end of Vancouver's Island is thought to be rich in minerals, as well as in cedar, Gr, and white pinc, as Mr. J. Coon has ascended Nimpkisb river, eight miles to a lake fifteen miles in lepgth, crosed the lake, and ascended Camascena river, tinding gold digging that will pay 3 dollars a day to the hand. Ca the lakua coal seam was seen, and copper and irou were mat with everywhere.

Tar New Glasgow Chronicle is pleased to be able to suy that operations aro to be immediatoly commenc-i on the rallusy from New Glargow to tho Straits of Canso Merses. Schreiber and Barpee, who have been in Halifax for some days arrauging final devals with the Local Government, went over to Prince Edward Island on Monday, to sette up ther business in connoction with the Island Asilway. Next week they expect to transfer their "plant" to New Glasgow, when ective operations will immedistely commenco. Engincers arrived bere on Munday, and are uow engagod in locsting the line.

Mechanics' Magazine.

MONTREAI, M\&CdMIHEA, 1871.

hidustrations:
improved Curront Wa-ter-whed 257
Shears used in constructing tho 35.ton Steam-hammer........ Conl intnace, Royal Gum Factortcs...................
Improved Alr-Compres-
sors.......................... 201
Telegraph Onte, Iondon,
England.............261, $\mathbf{0} 65$
Bect-Susar Factory...... 268
The Cansuda Biroh........ 20
French Ambulance Car-
rlages.................272, 273
Thostevens lattery and
linglnes..
overiner scresp of the
S.S. Brltannlc......... 27
small Arms.......... 2s0, 281
Tniversal Dislufector... 281
'Tobacco Manurac-
ture.................. 284, 285
Do Negrl and Hermann's Euglue.......... ©ss

Conteits :
Improved Current Wa. ter-wheel..................
Prof. Fleeming Jenkin on Patents and the patent Laws...............958
The Woolwich 3u-ton Steam-hammer........ 259
Improved Air-Compres. sors.......................... 202

How to seo Stercoscople Ifetures wlthouta Stercoscoju. \qquad 202
l'rocoss for ronderlug glase hall and fre-proof....... 20 Callfornas nt difloront opoolis.
Irindiples of Bhop Minni-
\qquad
Ledlund's 'l'beory of Electrlolty. \qquad
Minoral resources of Bri-
\qquad
suow llords....................... 27
T.omdon, Eng., Tolegraph

Ollce... 27
Tho Cnuada Mrob........... 271
Tobncco Manufacture in France.
Rovlows.
.
Rallway Ambulance Car. rlages........................... 27 Tho Stovens Rattery....... 275
I.owering Scrow of the S.
S. IBritanulo.................

Manufncture of Smallarms..
Unlversal Disinfector... 278
282
Iules for haudling iltro
glycorine.....................
Odors. 285
Cutting steel ralls cold..
Bclontitlo Nows..............
Mallwny Ninttors............
De Negrl and Hermann's İnglne......................... $2 S 7$

SNOW HOADS.

In our last we gave an illustration of a good form of snowylow for country roads and a short description of the best method of constructing it. It seems to us, however, that no farmer should need a snow-plow oxcept to clear out his own private roads on his farm. Snow roads, wo mean public roads, in Canada and also in the Statos, wo believe, aro left, if not entirely, at any rate, almost entiroly to the traffic which passes over them, to bo kept in order. In pretty public spirited localities the leading man in the village may ofton be seen out after a heavy snow-fall, with his plough and a good pair of horses, hard at work for the general good, or perhaps, the young men who have spent a few hours loning round the biggest stove in a village store may voluntecr a scratch team among them and start out, as soon as the storm beglns to break, to track out the stage road to tho noxt village. This is all very well in its way, but our roads, so important an element in our civilized condition, should not bo left to such bap-hazard improvement. It scems to us just as necessary for the municipalities to look after the rosds in wintor as in summer, and we are convinced that it would be a great boon to the travolling public if a track large enough for two teams to pass without tuming out werc lept open always over all our public roads. Heavy storms are not so frequent as to ronder this matter one of very grent expenso. While on this subject wo feel compelled to enter our most omphatic protest against the action of thoso municipalitics which aro 80 obstinatoly persisting in adhering to the old stylo of singlo track. It can hardly be the expense of altering the shafts, for this would be as nothing to cach individunl farmer compared to the advan-
tage he would derive from the improved roads. It seems to us to bo but another instanco of that stupid conservatism which was so well oxemplified in the case of the farmer who always balanced tho bag of grain on one side of his horse's back by an equally heavy bagy of stones on tho other. Persis. tence in this systom is especiallyjannoying sometimes, as oncurred recently in a parish not far from Montreal. Bcyond this parish wero others which had adopted the double trach, and it only romained for this parish to adopt it too, to nue them all a good road into tho city. When the matter came ap before this corporation they negatived the movement almost unanimously. It seems to us that the matter is a subject for provincisl legislation. No one doubts the superionty of the double track on the one hand, or tho necessity for a uniformity of road on the other and there is littlo doubt but that success and credit would attend the attempt at provincial legislation in its favour.

As most, if not all, of our readers aro aware, the telegrauh system of Great Britain is now in the hands of the government and forms a part of the post-office system. A large new builhing has recently been erected for the department in Loullon, and ourillustrations on pages 264 and 265 show two interiors of this buildiug. The extent of the work may be judged from the following description which we extract from the columns of tho Illustrated C.ondon Nelos,

There are 1210 instrument clerks, of whom 7.40 are females, and there are about 270 messengers. This does not include the engineering staff, or that of the Controller. Between five and six hundred instruments are here kept at work, and the wires therewith connected within and beneath the building have an aggregato length of nearly three hundred miles. lie. sides this electric apparatus there are twenty-six lines of puenmatic tube, with air pumps worked by three powerful steamengines, for conveying messages bodily, by means of atmos. pheric power, between the principal City offices and the West Strand office, opposite Charing-cross Station, and the Central Telegraph Office.
"It seems natural, in the first place, before we examine the instruments and their use, to look at the source of the clectric fluid which constitutes their powor. This is supplied by the galvanic apparatus in the battery-room, on the ground floor of the building. Mere are many cup-boards with shelves, upon which stand rows of earthenwaro jars, called Daniell's battery cells. Each contains a roll or hollow cylinder of conper, immersed in a solution of sulphate of copper, and an inner bath of sulphuric acid, with pieces of zinc or spelter. Several cells are usually joined to work together, the number being greater or less, for the generation of a more or less powerfal curreat. 'Lhis will depend on the distance to be traversed, the amount of work to be performed, and the seison or the weather. As many as forty cells may bo in joint use fur a Liverpool message, or sixty for one to Edinburgh; but there is more "leakage" at some times than at some others. The square boxes or jars, which yiold a largor amount of electric force than the round ones, are cmployed for the Wheat. stono instruments, as these, wo shitl presently see, convey many more words in a minute. 'The enginect's foreman, who has chatge of the lBattery Room, informed our reporter that the contents of an ordinary cell would be decomposed, by constant working, in one week. But the material is not lost; the copper, when again restored by an easy process to the condition of solid metal, is of extreme purity, and is readily purshased by the manufacturers of telegraph wire. All wires are
supplied to Government by contract, but the copper and zinc battery-plates come from a Government manufactory in Glou-cester-road, Camden 'lown. The wires used here are copper, sheathed in gutta-percha. For the olectric transmission of time signals, which require a very powerful single shack, not a long-continued stream of force, a special battery is used. This is the Le Chanehe battery, formed by placing rolls of carbon, instead of copper, between the solution of peroxide of manganese, in the inner coll, and that of chloride of ammonia, in the outer cell. The Battery lioom contains, in all, 23,000 cells, but many of these are worked in sets or groups, more or less numerous, connected with the same wire. Thero are, as wo understood, about one thousand soparate batteries here. The efficiencs of any one of them can be tested in a moment, by the superintendent in the instrument-gallery above.

The south-west is partly devoted to newspaper despatches and reports, and to the special "racing circuits;" the extra lorce of spare instruments, on Wheatstone's automatic system, is placed here, for use on particular occasions. The two eastern galleries are mainly occupied by the metropolitan telegraphs. They contain 263 instruments, of which 21 are duples, 101 Morse printers, and 100 single needles. The central hall contains the instruments which aro connected with the different provincial circuits of Eugland. The provincial telegraph business employs 205 instruments at the Central Olice; and of these 57 are Wheatstone's automatic, 20 are duplex, 7 are Hughes's type-printers, and 97 are Morse printers. But on the south side of the central hall aro the pneumatic despatch-tubes for sending telegrams bodily, through an un. derground tube, to or from the more important London offices. Un the west side is a tall and wide frame, called the test box, exhibiting in its front a greal number of metal knobs and wires; these afford means of establishing an electric communication with any station throughout the kingdom. They derive their power from 4000 cells in the Battery-Room. The battery test bos, above referred to, and. the sympathetic clock, with the chronifer, or regulator of clocks, are situated also here, between the two western galleries. The total floor space is 50,000 square feet; the mahogany desk space exteads in length three quarters of a mile."

Any of our readers who has ever enjoyed a tramp through a Canadian hard-work iorest will acknowledge at a glance the faithful delincation of the Canadian birch on pago 260.

To any who have ever enjoyed hard times in the woods, as we Lave, it will be suggestive of many a comfort-of fires lighted by the aid of its bark in spite of long continued rain, of extra plates and dishes which when used might be thrown away and so relieve the tired sports man from the nasty work of washing dishes. It is suggestive too of the frail but, eafo in skilfal hands, birch-bark canoe, and one or tro of our readers may have seen an Indian bulletin in hieroglyphics on its papery inner surface. We were out once iu the carly fall with a sportsman whose love of ' picturesque knew almost no greater treat than to set fire to the tattered, hangins, bark and watch the flames rush up the tall trank, and out along the knotted branching stems. Ho repeated the experiment, however, once too often for our peace of mind. On this occasion as the fire began first to lick along the branches we were astonished to hear shrill and painful cries. The next moment a mother bird fluttered from her nestin a forked twig of the tree and perching on a neighbouring limb responded in mournful long-drawn notes to the gradually fading shrill crics of her brood. Wo felt almost as sorry for the fisherman as for
the bird. He had no idea that any birds bred so late in the senson and the pained look in his face and his restless slumbers that night bote withess to a sorrow that will smely last longer than that of the poor mother inird.

We conclude, in this number, var illustrations of tobacro ma. nuficture as carried on in France. 'There, as here, it will be perceived that all, except the heaviest worl, is done by women. The French peoplo are great smohers, aul consequently the industry has attained immense proportions, and the machine. ry used in the manufacture in said to be of the most shalfulay constructed description. The reventu derived from this article alone amounts annually, in Frauce, to at least $\$ 00,000$,000 ; the number of cigars antually consumed is estimated at 875 millions. In the largest establishments, where the operatives number many hundreds in each, nearly all the work is done by machinery, even to the damping which has been till lately univerzally done by hond. In our illustrations, this month, on pages 284 and 28.5 we show the packing in small paper packets of smoking tolateo, scaferlati as it is called, and the manufacture of cigarettes.

Some time agr, we desclibul and illustrated a device, the invention of Mr. Boys of Ontario, for utilizing the motions of a ship, rising aud falling aud rolling with the waves, in propelling her through the water. A Mr. Doverill of Victoria, Australia, has recutly patentel a similar invention. Ithe results of the experiments were recently detailed before the Royal Society of Victoria. It would appear irom these experiments that the duration of the voyage was 3,026 homts, the number of rolls being $1,764,0 \times 8$, and ot pitches $1,041,137$. The approximate number of compound oscillations was 14 per minute, ascertained by means of a peadulum, and some other instruments, which we believe are now in the possession of Mr. Bessemer.

Reports as to the success of the various parties obscrving the trassit of Vems are rapidly coming in. At Jfadras and in Japan, the observations wers more or less interfered with by clonds. At Shanghai the sum was obscured during the whole period of trausit. The observations in India and in Esypt were very successful. At Cairo one hundred photorraphs were taken. The Ghedive is sald to have lent every posable aid to the observers.

Preparations for the Aretic Expedition about to be sent out by the government of Great Britain, are being rapidly pushed forward. The arrangements are under the chief superintendance of Rear Admiral Sir Leopold Mrelintock who is well known as an Arctic navigator. Two ships have already been selected for the expedition and are being fitted, and an oincial has left Portsmouti for Scotland to cxamine the whaters to be selected for the expedition.

The production of bect-susar seems to occupy somewhat the same position in some parts of Erance, that the production of checse has of late assumed in the Eastern townships of this Province. Our illustration on page 268 represents a sugar factory on about the same scale as our cheese factories. The fictory illustrated is one that was much admired at a recent exbibition of agricultural products and implements at the ChanpsElysees, and is the result of the experience of 11 . Pelticr a celebrated French producer of agricultural implements. 13y its means the labour of six or eight unskilled men can easily produce 700 or 800 kilogramues of sugar daily.

REVIEWS.

We have received a copy of an Italian periodical, Le Industrie, $I^{\prime \prime}$ Agrecolturn, which is devoted to the interests of mechanical matters and agriculture. This publication is a very neatly got up and well printed weekly Tho number we have received contains part of an interesting articlo on a new machine for tho measurement of the thicknesses of silk and other threads. The article is illustrated by numerous dravings.

VICK'S FLORAL GUIDE.
We have reccived the number for January, 1875, of this periodical. It is at least as beautifully got up as its predecessors and is full of interest to all who devote themselves, much or hittle, to horticulture. We are glad to see that it will appear in fiture every three months instead of semi-annually. The naseries at Rochester N. Y. of which the guide is a parthal catalugue are the finest on the continent, and their products, in seeds \&c. are implicitly rehed on by horticulturists in the United States and Canadas.

RAIINAY AMBULANCE CARRIAGES.

The want of proper ambulance carriages during the FrancoLicman War led, after its conclusion, to a careful consideration of the best means for accommodating and transporting the sick and wounded, and the "Societt Francaise de secours aux Blesses" has designed the Sanitary Train, the vehicles of which we illustrate this month on pages 272 and 273 , this train having been constructed by the Frencl Rolling Stock Construction company at Ivry. The train is composed of twenty-four vehicles, namely:

1. A depat wagon containing drugs, linen, wrappers, mattresses, stretchers, surgical instruments, and accessorics.
2 A carriage to accommodate four doctors.
2. A cooking wagon.

I A store wagon, for wine, food, and fuel.
5. Twenty wagons for wounded; it being possible to make various changes in these vehicles, according to requiremont.

The carriages are all arranged with end entrances, with a cuntral passage from end to end, so that a means of circulation througl:out the train is provided, platforms being provided at both ends of cach whicle to complete the communication.
Twe depot wason, illustrated by Figs. 1, 2, and 3 on page 172 contains, as just stated, all the mutériel required by the doctors and surgi ons, with mattresses, blankets, \&c. Besides the end doors, this car has two sido doors for the (ntry or removal of stores, the end openings being only emploged for communication. The interior arrangement is extremely good, the stures are placed in drawers and other suitable receptacles, all heing thoroughly classified and numbered in such a way that immediate access to any of the contents can bo obtained. A desk for the storekeeper is placed beside one of the side catrances. Both desk and seat are made to slide, and are upon hinges, so that they can be instantly ruoved when access to the vehicle from the side is desired. A small recess in one of the corncrs of the carriage, and sheltered by a curtain, forms the bed of the storekeeper. The end platiorms are lighted by means of 8 lantern placed at each cxtremity under the roof, and the interior of the carriage is nlluminated by means of two ordinary roof lamps. The end dours can be locked both from inside and outside by means of ahey which serves for each vehicle in the train.

The doctors' carriage (shown by Figs. 4, 5, and 6 on page 2:2,) is fitted up with much taste and luxury, and is appheable under ordinary conditions as a epecial saloon carriage. The interiur is divided into six distinct compartments, namely, four separato rooms for the doctors, a waterluset, and a small closet containing the warming apparatus. These compartments are arranged symmetrically on each side of the carriage, so chat a clear passage is left down the centre. Liach of the four apartments is fitted with a bed, and serfes at the same time as a worbroom. On wne side of the carriage is hinged a small table, fitted with writing materials, \&c. There are besides two chairs, which can be opened, and converted into a comfortable bed. Each compartment contains a sus
pended moderator lamp ; an aneroid, a thermometer, and an alarm clock, and to each door is attached the namo of the oc. cupier, and a notice of the hours during which he is on dure
The heating apparatus is upon a new system, that of lirandean and Talbert. This apparatus is cylindrical in form, con. taining a fireplace at its lowest part, and a reservoir of water above, connected with a series of circulating tubes laid under the floor of the carriage. A small pipe led from the reservorr into the tanks supplying the lavatories, slightly varms the water used to supply the latter.

Tho kitchen carriage, illustrated by Figs. 7, 8, and $y^{\mathrm{c}} \mathrm{c}$ page 272, has been arranged with very considerable tare It contains a range suitable for cooking for from four to firhundred persons, and of course is provided with all necessars utensils, which are carefully secured in their proper places, so that thoy shall not be disturbed by the oscillation of the pos hicle when in motion. In each corner is a large reservuir fut water fed from a pipo led up to the roof. Beneath the reste. voirs are cupboards holding table utensils, and beside the reservoirs are largo coppor basins for washing up these utenats.

The interior arrangement of the store wagon-of whus views are shown hy Figs. 1 to 4 on page 273 correspond somewhat with that of the depott carriage. It contains drawers to hold a large number of bottles, a coal chest, cases for breas. meat and ice safes, and suitable hooks for suspending cartasse, This vehicle has also two side doors to permit the loading and unloading of goods.

The twenty hospital wagons cone of which we illustrate bs Figs. 10, 11 , and 12) are arranged either with supermposed berths for the wounded, with scats for convalescente, as s dining-room carriage, or filled with suspended stretchers. Lab of these arrangements can be easily and quickly transturmoi to any of the above-nentioned forms. The wagons can be employed as ordinary freight wagous having side doors, they arr peculiar howover in being mado with double walls in order to preserve an equable temperature within the carriage, part ot the spaca becereen tho walls being employed to stow aray the benches iorming seats for convalescents. The bedsare arranged in two or three tiers, the maximum number belas fifteen. They consist slmply of wooden frames, and raching carrying the mattress; the frames are attached to hooks in the side of the carriage, and to suitable posts, reaching frum the floor to the roof, but which are very casily removed.

Each wagon has a heating apparatus and water-closet, and the lighting is effected by the lamps attached to the pwist carrying the beds. Sliding doors serve to give free allumsous to stretchere, on which wounded pationts are placed.
When arranged to afford dining accommodation each wagon contains six tables, the legs of which are loched to the thoor, but arranged so as to be casily removed. The tables give accommodation for 30 or 40 persons. In the convalescent wagucs the floor area is occupicd with seats that can bu casily shitted, and as already stated, stowed away in the space between to: double walls of the vehicle. As we have already stateit, th: wagons, instead of beiag provided with fixed berths, caatr fitted with stretcher beds suspended to topes depeuding from the roof.

Each complete train of twenty-four carnages iucludes waly two special vehicles, the doctors' and the kitchen carriajes, the others may be employed as cummon freight wagons io time of peace. The ductors' carriage, however, may betw. ployed for special purposes in urdinary tatiic.-Enybuering.

We learn from the Polytechnesches Centralblatt that a Gurut. ment officia! in Paris, M. Rathelot, has succeedeu in desip. hering a number of valuable documents which were burnt dit. ing the outhreak of the Communc in that city. These had lan so long in the fre that the leaves of the separate pulume formed a homogeneous mass, resembling a carbonised blob of wood. However carcfully it was attempted to separate the leaves, they fell asunder in fine powder. Rathelut first of a] cut off the back of the book, thon immersed the whule in wake then exposed it at the orifice of a calorifer, to a pretty stuons heat. Through rapid evaporation of the water the : indisidal leaves becamo loosened, and could, with care, be separated The successive pages were then read off. In this was aboit 70,000 such documents have been saved. The writing looked dull, the paper itself a bright black, the former could be rad with ease.

THE STLEVENS BATMERY.

This colebrated American ironclad was, by the will of the late Edwin A. Stevens, of Hoboken, New Jerses, to have been presented, in a completo condition, to the State of New Jersey. If nas further directed that the machinery and tools used in wantruction and not exceeding $1,000,000$ dols. in money, should be appropriated for the purpose of carrying out this provision of tho will. It was still further provided that, should the State of New Jersey not receive the said vessel, the exentors were to er 13 the ship and to retain the proceeds of such ste as part of the estate of the testator. A special Act of congress having been obtained, authorising the State to accept the gift under the provisions of the will, the Legislature, by an act approved April 1st, 1869, accepted the vessel on the anms above stated. It was the intention of the executors and their engineers to put afloat a vessel that should be the most formidable iron-clad on the ocean. 'The amount of money appropriated proved insulticient to complite the vessel, and after the hull and the machinery had been nearly finished, tho auth was necessarily stopped, leaving the ship in the condinon hercafter described. A question having bren raised as to the real ownership of the vesse), suits in (hancery were com. menced, and, pending these suits, the State Legislature, by an Itt, to which reference has already been made, directed a poatite sale and the payment of the proceeds into court. The resel was accordingly sold and the Federal Government, being the highest bidder, secured it, subiret to the approval of cangress. The followiug deseription of the vessel is from The Engineer.
leagth over all of the vessel is 401 ft ; length between perpeudiculars, $390 f \mathrm{ft}$; breadth, 45 ft ; armour, 54 ft ; depth to mand deck, 24 , tt. ; draught, maximum, fore and aft, $22 f t$. displacement at $\%$ fft. draught, 5006.02 tons; area of immersed gidhap section to circumscribing parallelogram, 15807 , ratio of displacement to circumscribing parallelopiped, 0 544. The general appearance of the vessel, if completed as here proposd, will bo that of a "monitor" iron-clad, such as is illustrited in the anneswd cut. The proportion of length to breadth $-\$ 666$ to 1 -is that now usually observed in sea-going high porered steamers, and is comewhat less than in those which eppesent the extremo limit yet attained The lines are fair and fine, giving a sharp bow and the fine rum which is essenthat to the eflicient working of screv propellers the proportuns of the midship section, which has a breadth equal, ici) nearly, to double the intended draught, are such as are wit calculated to make the vess-l casy in a sea-way. The displacement per foot of draught at the intended load line is $+1+19$ tous, or $35 \cdot 35$ tons per inch. The hull of the ship is duble, the inner and outer skins being separated by a space larying from $22 \sin$. at the bottom to $6 \frac{1}{2}$ in. at the top of the duser portion. Suven transverse bulkheads are built, dividing the ship into distinct water-tight compartments. Two addi1.0 ail buthheads are carried across the ship below the berth lich. Coal bunker bulkheads, forward and aft, and the sivual smaller bulkheads in the extreme ends of the vessel, still forther strengthen the structure, and assist in securing immumb from hability to founder in consequence of injury to the wull. The hull is further strengthencd by the balkheads of the "turret chamber," which stifien the whrle structure by yog the decks, the coal bunkers, and the lower longitudinal liibhtads firmly together. The double bottom is not only cade water-tight as a whole, but is divided into spaces of 32 ft . a length each, separated by water-tight partitions, formed by caulking frames and cross-floors. These spaces were to be fithd each with its own pipe leading to the bilge pumps, thus trabling them to bo pumped out separately. The stem of the vessel riges vertically, and is of a section loin. by 3in. The cell-lhe construction of the vessel behind it, and the imerase strength of this portion of the hull, will enable it to -use rary heavy thocks without serious injury. The whole withis part may be torn away to a distance of $35 f t$. from the等; the satety of the vessel Three of the partitions in the har levigg honzontal, formed br the extensiou of b° ist hoohs lak to the transverse bulkieads, a projectile may penetrate, \because a seam may start, at any one point without doing other The stern "overhane of these small compartments with water. The stern "overhang" is carried well out over the rudder, fbich it fully protects. It is prepared to receivo armourghating like other portions of the vessel. The outer skin is
composed of selected boiler plate, which is stated to have been tested as received, under the inspection of an officer of the Government, and received only when found to have a tensile strength of $60,000 \mathrm{lb}$ per square inch of cross section. Its tenacity is at least 20 per cent greater than that of iron customarily used in the construction of iron versels by foreign builders. The thickness of keel strake is lin; the garboard strakes are fin. thick; the intermediate strakes are of $d \mathrm{in}$. iron; and the wale strakes are $\mathfrak{f i n}$. In thickness. The keel strake is double riveted, as are also the garboard and two wale strakes Tho riveting has all been done by hand, with ooth care nad skill. The inner skin is also of selected charcoal iron, of "C No. 1 "quality, such as is crenernlly ubed ouly fur boiler-plate. Its joints were all planed and fitted undis tho inspection and the direction of the engineer in charge, and the workmanship is unexceptionablo. Its thickness is lin. for a distance of 193 ft anidships, $\frac{1}{2}$ in for a distan e of $30 f t$. at the ends, and sin at the intermediate portions. It is double riveted fore and aft. with treble riveted butt-straps for 240 ft . amidships. The inner skin is carried up to the 14 ft line, and is made water-tight throughout, as already stated, permitting the rupture of the outer skin without endnagering the safety of the vessel. This, with the division of the whoie into short water-tight spaces by caulking the frames, is an insurance against oven loss of trim by the penetration if the water throughout the space between the two hulls. The four bulkhends ncarest the middle of the vessel are of plating 3 in . thick. All joints are planed and fitted, and all lines of junction with the hall are carefully strengthened and made water-tight. Water-tight doors with packing are fitted to the passurge leading fore and aft to these bulkheads The bulkheads are stiffened by angle iron frames. The four bulkheads immediately beneath the intended location of the turret are ntreagthened by angle iron frames, spaced 20 in apart, extending from top to botton. The coal bunker bulkheads are of tin. iron, are water-tight and are strengthened by angle iron frames $4 \mathrm{in} . x$ $4 i n . \times$ lin. riveted back to back The main deck is supportel by heavy yellow pine deck beams, of scantling 14 in . $x 14 \mathrm{in}$. and. 16 in $\times 4 \mathrm{in}$. spaced usually 36 in . between centres. They ret at each end upon a heavy and very strong iron shelf, which serves also to strengthen the ship as a stringer The beams are also secured to the skin of the vessel by strong iron hnees. They are intended to be supported in the middle by a line of iron stapchions not yet in place This deck is planhed with selected Southern yellow pine, free from sap, shakes, ur other defecte, and thoroughly seasoned Its thickness is 81. in. throushout. It is not fastened down. The berth deck extends from the foremost bulkhead to the boiler compartment, and from the stern to the engine-room bulkheqd. It is supported by angle iron beams neasuring tin. $\times 3 \mathrm{in} . \times \frac{1}{2} \mathrm{in}$. and spaced 24in. apart. The planking is laid with splined joints, and is 3 nm . In thickness, except under the anchor hois. ter, where it is sin. thick. This deck is laid down, and permenently secured in place. The plans of store-rooms, oflicers quarters, and all jomer work remain to be prepared, and may be given any shape that may be desired by the purchaser, or such as may be determined by the form ultimately given the vessel.

The machinery consists of two main engines, number of steam cylinders, 4 ; diameter of ditto, 72 in ; stroke of piston, $45 i n$. , reftigerating surface of surface condensers 12,650 square feet; number of screw propellers, 2 ; diameter of ditto, 18 ft ., pitch of ditto, 27 ft ; number of boilers, 10 ; area of heating surface, 28,000 square feet ; area of grate surface, 866 square feet.
The main engencs are arranged in pairs, each of the two pars driving a screw indepeadently. Each pair has its own surface condenser and its own set of pumps, including a centrsfugal circulating pump, driven by a small ind prendent engine, taking sleam from the main steam pipe The main engines are of the vertical return connecting-rod type, formerly known as the Maudslay and Field engine They are shown in the engraviag in side elevation and section, and in rad levation. Thus general design was decided upon as being at once com. pact, readtly accessible, and convenient in operation, and as stuwing well in a ship of which the form mas too fine to admit of twin engines of other types

The sarnia and Point Edward Street Railway Company expected that the rails would be laid and the road in running order by Christmas.

LOWEMING SCREW OF THE S. S. BRITANNIC.

LOWERLNG SCREW OF THE S. S. BRITANNIO.

The views on page 277 show an arrangement for lowering the propeller of atcamships as fitted on board the S. S. Britannic, a vessel constracted by Messrs. Harland and Wolff, of Belfast, a ilm of which Mr. Harland is the senior partnor.

Wo may refer, in the first place, to tho reasons for introducing this lowering propeller. In long ships the fitching in a heavy scaway, and the vertical motion of the waves, tend to expose the upper portion of the serew when fitted in the usual way, and the evil effects arising from this are the "racing" of the engines and its attondant dangers, togother with a diminished speed of the vessel.

With the lowering propeller theso defects are guarded against ana some laportant features secured. Soveral writers have pointed out the loss of powerdue to the screw working in water disturbed by the passage ofthe ship; this also is partially remedied, as one-half of the propeller works bolow the vessel's bottom, and the additional head of water presents a denser medium for the propeller to work against.

The S.S. Camel, 170 ft . n length, built some threo years ago by Messrs. Harland and Wolf, Belfast, for their own use, was the first vessel fitted with this arrangement, and its successful working ever since, in voyayes round the coast and to distant ports of the Continent, led to its adoption in the S. S. Britannic, belonging to the White Star line, the cumpany being anxious to retain the supremacy for high speed and good average results which their steamers have gained in the rough Atlantic passages betweon Liverpool and New York.

The fig. at top of pag: 277 shows the propeller in its normal position at sca, the ahaft S being in a straight line with the rest of the shafting. On arciving in shallow water, or nearing a port, the screw is raised, so that the bottom of it is above the lovel of the keel, as shown in Fig. 2, and when the blades require examining or replacing, the shaft can be raised still higher, t us exposing the boss and allowing ready access when the shi ${ }^{h}$ is in light trim. This latter is an additional advantage, asp there is very inferior dry-dock accommodation in New York, and the docks in the Mersey azo often engaged for some time in advance.

The last two lengths of shafting are coupled wich a universal joint, shown at U, Figs. 2 and 3, P boing a ixed plummer block, and B a : liding bush lined with strips of lignumvitw in the manner usually adopted for stern tube bearings. The bush is guided by th two cheeks of the stern post, and raised, by means of the rods R with gearing on the middle deck at L, by a steam engine, or by a hand winch placed on the apper deck, alditional manual power being also at command at the capstan head H placed on the top of the turtle back. The shaft works through a slot in the bulkhead A, the water being excluded by the radial gland G working on the two centres B and C. The universal joint works in a chamber in the after end of the tunnel T, and is at all times accessible to the engineers.

The lifting rods \mathbf{R} and gearing L are enclosed in iron casings extending to the upper deck, excluding any water that might rise. To prevent warps or nets from fouling the screw when raised in shallow water, a sliding keel K is ran out, by means of the rods D worked by hand on the upper deck, or by the rod E in the universal joint space.

The want of the customary keel piece joining the inner and outer stern posts convers an appearance of weakness, but this is amply compensated by the increased width and additional th ickness at the head of the screw aperture, and the centre of effort of the rudder being raised aboye the ordinary height. Δ false foot is fitted to the bottom of the rudder post, and this foot can be readily removed, allowing the screw boss to be changed without disturbing the shaft, which is another very important feature.

The Britannic has made three voyages to America, and the whole arrangement has worked most satisfactorily, the screw being raised or lowered by steam in two minutes.-Engineering.

Tus Citzzei's lumber renort calculates the amount of lumber made at Ottava for 1874 , at $371,500,000$ feet, the amonat held at $120,500,000$, and the amount sold at $251,000,000$. There are logs enough on hand for the sipring to make a hundred million feet of lumber. It is calculated there will be as much stock on the market next year as this.

MANUFACTURE OF SMALL-ARMS.

Birmingham has long been famous for the manufacture of arms. At the time of the great Rebellion her swords were to high repute, and it was for supplying tho Parlizmentary forcet and for refusing to supply the king's, that the fiery l'mace Rupert displayed ouch severe bostility to the people when be seized and burned the town. In the roign of William 11 , tho making of guns was added to tho then increasing tadus. trics of the place, and it has since developed to such an extra. ordinary extent, and the skill of the workmon has been so great, that the trado is now, aud has long been, one of the most important staplo trader of tho many-tradod town. It is divided into two principal . .es of work-military and spor. ing. Military arms are chle ly mado by machinery, aud sporting by hand, with the excepion of the action, which is par. tially machined, and in both cascs the processes of manulac. ture are full of interesting examples of the skill and angenums
 over the apparently most difficult of materiale.

The following rery interesting account of the varioss processes involved in this manufacture is from the columas of Iron.

For the purpose of the present paper we selected the wellknown works of Micssrs. P. Webley and Son, of Weaman streth at which we could witness at one time the largest amount of work in the trado.
To begin at the beginning. The iron used fur guns is ots peculiar make, and consists of several layers of iron and steet piled together-both the iron and steel varying in qualis; according to the quality of the barrel it is desired to make The whole is then put into a furnace, and when sutticeanty heated rolled out into square rods, differing in size according to the quality and dimensions of barrel required. "The better the barrel the smaller the size of iron it is made of." In this condition it comes to the welder. Welding is most importat in making a gun-barrel. The workman takes a strip of 1 ron, heats it red-hot, places it in a machine, and by turnug a wheel twists $i t$ to the shape of a screw. Any defect in the iron is soon seen in this process, as in the case of a "fault," the screw is to that extent imperfect and useless. In every guan barrel of medium quality there are two, and in the best three of these bars, each being twisted in alternate directions, onv to the right, the second to the left, and when there is a third, that to the right again. By this means is obtained that vaned twist which we see in gun-barrels. The various ways of twistin, are known as "plain twist," " Damascus." and so on

The two or three rods are then wolded together the entire length, and go back to the mill to be what is called over-rolled, that is, rolled out edge-wise to the required size. The metal is then twisted on a mandril and wolded together on the anvil. When it leaves the mandril it is a hollow prece of twisted aron, with spaces between each winding. Weldiag is the process by which it is made into a barrel, and is a very delicate operation, requiring great skill in the wurkmen, of whom three are engaged at each anvil. The hollow twistod metal is heated red-hot; as soon as it is taken out of the fire the workman strikes the end sharply on a metal plate on the floor, which forces the heated iron to close, he the plazes it on the aavil, and all three beat the heated portion with thers various hammers. Two of them then take a long pieca of steel, called a "float," and whilst the third turns it round and moves it to and fro on the anvil, work the float backwards and forwards, thereby clearing the surface of "scales," and all other impurities. This process is repeated until the whole barrel is enade. Ouly about four inches can be welded at eax passing through the fire, an uniform heat of that part of it: metal worked on being absolutely necessary for the prudachos of a perfect barrel.

In illustration of the great changes produced in the prucess, of barrel making, we may mention here, that 17 lb . of 1003 are used in making the two barrels of a best dunble.barreled gun, which, when finished, only weigh 3느니. The iron in the best barrel costs $7 d$, a pound ; and that in cheap ones 3d.

The barres has next to be bored-anotherimportant proces First it is "rough-bored." In th. 8 operation a four-sided "bit" which cuts at each edge, is placed in the barrel, barrel asd borer are placed in a machine, and by the use of great porit the bit works its way through the barrel, smoothing sol levelling the suriace of the bore. It is then "fine bored." It
this operation a square bit, "with a wooden spill on one side," is osed, which only cuts on one cdge, and its cuttings are loft on the bit in the form of the very innest powder. A slip of thin paper is put betweon the spill and the bit to incresso the dee, and such is the delicacy of this operation, that this simpleaddition is sufficient to produce the resalt required. Tho tobes aro then turaed at breech, muzzle, and soveral intermedisto parts, to gauges apecially mado not only to suit the varions borcs, but to suit tho varied requirements for light, mediam, or heavy guns, in each bore.
In the manufacture of a specially light pair of barrols the reader can readily understand the necossity for a judiclous distribution of metal.
The next oporation is grinding, which is a laborious-pro. bably the most laborious part of barrel making. It also requires great skill, and much practical exporionce, but thore is potbling specially to describo in the work. The stones used ia grinding aro from Derbyshire. The barrel is now ready for provisional proving, and on its return from this first test it is carefully ozamincd to seo if there are any grey. P ?cks-overy rech speck berug considered a dofect-or any oriuct imperfection which may detract from its value. It is then re-set, and foasly (as a separato tube) struck up into shape.
For a double-barrel gun, two (an exact pair) are now joint. od together, and the locking-lump fitted in. That part of the tobes which lies under the rib is then tinned, and the forward parts of the two tubes are soldered together on a parallel, the lomp is then bound into its place by iron wire bands. A com. pastion of brass dust and boras is placed round it, and then the breech ond of tlin -. ited barrels is subjected to an intense beat, and the brazing is effectually gecured. Instead of tho ordinarily pungling morn of brazing by the usual hearth and bellows-in which it is amost impossiblo to entirely excludo dirt, and obtain a uniform heat-the Messrs. Wobley have wassructed \mathfrak{n} mume, which is heated by coke, and the ends of the barrels are placed in the intense heat thus generated, ndd are never in contact with the coke itsalf By this process the brazlog is effected in about two minutes; in the common nay it takes about ten minutes. This method, however, can ooly be used when there are a number of barrels to be brazed, sit would not pay to heat the mume for one or two. The brech end baving been thus secured, the barrels are ready for the ribs to bo fitted and soldered on, they are then struck of from end to end, with various-shaped strikers, and are then uken to the action.flier, who provides for putting the "action" on the barrels. Then follow in order the furniture forgeis and filer, who provide the guard, the trigger, sc., the lock forger and filer. Of lock naking, Mir. J. D Goodman truly says:-"Till within the last few years locks were entirely the production of hand labour, the several parts were forged on the anvil by men whose wonderfal skill became proverbial. They were afterwards put together by filers, to be fixished by the polisher and hardener. At tho present time the steam bammer and stamp are superseding the forge, and milling machinery is doing much of the filer's work, but in no case, eren when machinery is carried to the highest perfection, can the filer be dispensed with ; the locks cannot be put together antil all the limbs havo passed through bis bands to receive the final adjustment." "the parts are again taken to the ac-tion-filer, who fits on the breech action, to which ho attaches the lock', trigger, and guard. It then goes for final or definitire proof, vith action attached, and is afterwards finally smothed, and when viewed and found perfect is passed to the Hocker.
One of the most interesting operations in gun-making is that of making the top lever action for breech-loading gans. Yessrs. Webley make a specialty of this action, "which is made eitaier single or donble bite; when the latter, Mr. Purdep's patent dooble bolt is used, for the right of using which they bave a licence from Mr. Pardey." They have put down smmo special and ingenious machines for the purpose of machining it in the most perfect manner. You first see a rough tobing piece of iron, which has been stamped roughly into the frmm required. This forms the body of the action, and it is Grit passed between two cutters, which cut it into the exact vidth. It is then cut to fit on the joint of the barrel. It is com ready for drilling. In this operation the body is placed ins " jig ," which is, in fact, the pattern in which are the holes Dhrough which the drill works, and makes the body ready br bhe bolt. This done, it is placed in another jig, and drilld for the joint holes and slots. It is then passed to ancther
machine, by which the slot is sawn out for the lump of the barrol.
It is now realy to be worked on the barrols of the gan. And first a plug, the exact size of tho cartridge is inxed into each barrel, and the lump is cut horizontally, and then the ends of tho barrels aro squared. Tho nest operation is to cat the lump the propor shapo, which is done crosswise. It then goes to n machine by which it is cut out for the oxtrector, and with tho extractor which has beon proparly turned and fitted, it is given to the jointer, who joints the parts togethor Then the luckholes aro cut out, then the grip in tho lock into which tho bolt passes. The gan is now ready for proof. Aftor it has stood this test it is percussioneci by hand labour. The workman now puts in tha locks, fits in the bolts, pats in the perpendicular spindle, and the lover on the spindle at tho top The whole action is then filed into shape, smoothed, and ' at last ready for the stocker, whose work is horeafter describpd
We have not paused in this progressive account of making a top-lever action to describe any of the machines by which the various operations are performed. They are all self-acting, and one man can suporintend several at the eame time, for when onco set they work nutomatically. In all the catting operations the body is fixed into a iig or mould on a movable table. All the cutters are of the sames shape as the pattern to be cut, and some of thom are composed of as many as seven pieces. Some of them have a double action, and as the cutter is guided by a yattern fixed on the table opposito to the piece to be cut, the utmost exactitude is secured in all the opera. tions, whother of cutting or drilling. In ail cases the best lard oil is used for the purpuso of lubrication. It is quite an intollectual treat to see these machines at work.
The stocks are of wainut. Mr. Webley, senior, pays the greatest attention to this part of the gun. He is always in search of good-espocially of good English-walnut, which is the best. By constant matchfulness he is able to secure a large quantity of the finest wood for this parpose, and we saw some splendid specimens of walnat on the occasion of our visit. The diffrence in the value of wood for gun-stocking is great; onn stock-p:eco may not be worth more than a shilling, while another is worth twenty-five. After the tree has been sawn into planks, great care has tu be taken in marking out the stocks so as to cecure the right way of the grain; and, after cutting out, the pieces have to be kept from tro to three years in order that they may be thoroughly seasoned.
The rough wood is taken by the stocker, who cuts it into the proper shape; he then lets in the stock the action, then she lock-plates without the inside work, afterwards putting on the inside work and lettug that in also, he fits on the forcund, and rounds all the wood into shape, and passes it on to the screver, who lets in the trigger-plate, trigger-guard, sc, and fits tho pins and screws to bind the whole together, and passes it to the man who fits the hammers (called in muzzleloading guns percussioning). Barrels are then bored for shooting, and the gun is carefully shot at forty yards for penetration and pattern. Should it not shoot up to the required standard of excellence it is altered until it does. It is then passed to the finisher, who finally makes of the stock chequers, and smooths all the work level. The whole is then taken asunder, the barrels are finally smoothed, engraved, and named, at which stage it goes to the barrel-browne:.

Browning is a very interesting process. The browner takps the bartel and paints on a coat of acid, after which it looks as if covered with rust. This is rubbed of with a wire brush, and it is then boiled in water, and another coat of acid put on, and so on till the work is done, and the figure is completely developed. This operation takes from three to four days for the best guns. For military guns it is much simpler, and more casily done.
The action, locks, and other parts are next polished, then engraved and named, and afterwards case-hardened. Tho whole is then ready for the hands of an experienced action filer, who frees the action, which in hardening usually swells a little. The gan is then pat together by the man who Anishes it, and it is then ready for final examination and regulating, and wo have a gun fully and completely ınade.
We were very much struck with the great variety of systems of gans and rifles manufactured by Messrs. Webley, as well as by the many grades of quality, commencing at the lowest, consistent with soundness, and progressing step by stop to the very finest work that skill and taste can produce. Amongst the various systems shown to ws, we noted, as still being in

large demand, the old original double-grip Lefaucheux action with lever over guard; then the same action made self-locking Ly a very sumple addition, patented by Mr. T. W. Webley in 186t, whith has been still further improved upon by making it treble-grip, by the addition of a compensatiog bolt. This is a great advantago, more especially for rifles, and was patented by Mr. James Lang of London. Snap-action gone both with single and Purdey's double bolt are mado with the lovers plated in every conceivable position; on the top, betweon the hammers; on the side, either right or left, under guard; side of guard or in front of it, and with the bow made open to receive the thumb, known as Purdoy's lever. '-hese again, are all made with or without rebounding (self balf-cocking locks, and with lever fore-part fastening, entircly doing away with the old fashioned bolt. The best of these by far, is a very neat arrangement of lever, strong and certain in its action, which we did not consider the spring fore-parts to be.

Great attention is paid by Messers. Webley to the making of double and single sporting, "Express," and long-rango rifles. The favourite action for double "Express" rifle, being the treble grip, the joint patent of Mr. T. W. Webley and Mr. James Lang. To turn out a perfect double rifle, with both barrels shooting accurately, is the height of gun-making art. In single nfle, "Express" and otherwise, they use the "Swinburn" breech action, of which they hold a very high opinion, allegiug that it has all the advantages of the "Martini" brecch action, without its many defects. We annex an engraving of the Swinburn sporting carbine.
For the information of our readers, we farnish illustrations of various systems and forms of lever of brecel-loading guns manufactured by Heisrs. Webley.
the diessrs. Webley and Son have a world-wide reputation as manufacturers of certain well-known kinds of revolving fistols Among these are pre-eminently noted the Royal Irish Constabulary pattern made by them for this force in 18iss, and selected by the Inspector-General of the Forces, after a keen competition. This arm has since been adopted, and largely used by the Queensland Goverment, the Victoria Governuent, and the Cape Mounted Police. Λ large number of these revolvers were also used by Her Majesty's officers en. baged in the Ashanteo war.
Another pattern worthy of especial notice is a revolver constructed about two years ago, which, in comparison with the size of cartridge used therewith, is the smallest yet manufactured. This revolver has been most appropriately named "The liritioh Bulldog," which is stamped on the top strap of each pistul. This weapon has found a great demand in all export markets.
II e will now initate our readers anto the mysterics of re-volver-making. You first see the pistol body, which is a rumhlavang lit of mallcable iron of the form and shape reyured. In the centre of each of these peces of iron is a square holc, which is, after several processes, to receive the cylander contaimng the chambers of the revolver. The first process is to force a long piece of cutting stecl, called a "drift,' through thes liole, and thereby cut it into shape. Two " drifts, the secomd of a fincr cuttiog power than the first are used, and the furce rugured to ellect this sumetimes amounts to a presoure of ten tuns. This forms a 'standard, to which all the other parts of the work have to be done, and it must be abolutely true. The next operation is a very beantiful bit of machine work. The piece of iron is put in a block the size of the drift-hole, and by moving it backwards and forwards the sides are phand or milled quite truc. This machac also - ats wut the recess by which the cartridge passes anto the chambers. When onc side has been milled it is reversed, in order to mill the other side. This beautiful machine is cajable of the most delicate working; in proof of which we sam, oh a piece of irun, the name of the workman, which he had cut out as an allustration of its power.

The malled body is next placed in a jig, in which all the action-holes are drilled; then the strai) is made for the handle of the pistol, and it is next cut alon: the top of the strap and round the body, and the slot for the slacld-spring 18 cut in.

In making the cylinder, a round bar of steel 18 cut into the requred length, and a lecle then drilled through the centre. Hhis cencre is the standard fiom which thic rest of the work is done. The cylinder is next turned gute smooth, and to its exact gauge. It is then placed in a chuck, and tho chambers
aro drilled. In the chuck are the divisions giving the number of chambers to be drilled in each cylinder, and as each chamber is made, the chuck and cylinder are turned to the noxt division, and is again drilled, and so on, until all are completed. The case with which this drilling machine works te manifest from the fact that a six-chambered cylinder can be drilled in from five to seven minutes. The bolt holes are then cut, and then the ratchets, there being as many boltholes and ratchets as there are chambers in the cylinder.
This done, we go to barrel-making. A square bar of solid stecl of the length of the barrel is placed in a chuch in a lathe, and is slowly drilled through. After drilling about three-eighths of an inch, the drill is drawn out, bringin. with it the dirt and the refuse. A barrel of four inches and a half in length can be bored in ten minutes. Soapsuds are used in this operation, which are in a bucket saspended over the lathe, and flowing down through a hose, continually runs on the boring tool, thus preventing it from getting too hot. When bored, the barrel is cut down for screwing, and the screw cut for jointing to tho body. It is then cut into shape. Two nuts are fastened on the screw end, and it is laid in a pair of cutters, and by a succession of cuts up the barrel, it is finally shaped.
By similar proce-ses the hammer, sear, and trigger are made Each being put in ajig, haring the necessary holes drilled, the sides flattened or machined, and all work needful to make each part fit and work accurately is done. The rounding and pointing the nose of the cock is a very interesting operation.

All the parts being thus prepared, they are put together by the action-maker, and afterwards sent for proof. On returning, the pistol is taken to pieces, smoothed up and sighted. These operations have to be very carefully cone, as the utmoit accuracy is required in making a good sight. This done, the revolver goes to the stocker, then to the polisher; after it is polished, it has to be cleaned and put together, and at last. after all these operations have been skilfully and carctully executed, the revolver is ready for use.

THE LNIVERSAL DISINFECTOR.

It is the opinion of those who have most studisd the matter that the presence of typhoid fevers and ruch other ill-health is duc in a very large measure to the presence in the house of losely constructed " modern conveniences." These discases are just now almost epidemic in some parts of Canada, and of an unusually fatal type. We illustrate, from Engineeriny, on page 281 a new invention intended to he used in public buildings, privatc houses, hospitals, clubs, \&c., Sor entirels removing all smell from water-closets, drains, and other places whence offensive or dangerous emanations may arise, end what is now being introduced by a company entitled the t'miversal Disinfector Company (Limited). For closet use the disinfectide liquid is contained in a vessel called the "disinfector,' whech is placed under the seat of the closet, and is enterely out of sight. When so fixed, it is called into operation by the ordnary movement of the handle, which causes the usual flushang of the pan, and supplics a definite, although small quantity of the disinfecting fluid at the moment of the closing of the pan, and while the water is in rapid motiou within it. This pernod is chosen so as to preveut all wasto of the disinfecting fluid, and to insure the full beneficial results from it at the moment of application. The water remaining in the pan receives a blue tinge, and at once deodorises any gas that may urise, or any facal matter that has escaped the water-lushing. The disinfector holds enough liquid for 950 uses of the closet, and the cost of each operation does not exceed the sixteenth par of a penny.

As shown by the engraving, the apparatus is of simple construction. It consists of a vessel of gutta-percha, at tho hottom of which is formed a short barrel in which a piston worss. Just above the bottom of the vessel are holes which allow the disinfecting fluid to flow into the barrel, while from the bottom of the barrel itself a gutta-percha tube is led off to the pan of the closet. When the piston is in the position shown in the engraving, the bartel evidently becomes charged with the disinfecting fluid, while as the piston descends a portion of this fluid is forced out again through the charging holes until the piston passes them, when the remainder is by the continual descent of the pistonf orced out through the gatta.
percha tube alrealy mentioned into the pan of the closet. The rod from the piston la, as withave said, cunnected to the ordinarv lever which crusis tho fushing of the pran. It will he seen that by the arrangement we have described, a pump action is oltained without the employment of any valves. The apparatus can be very casily fixed, and insures the economical use of the disinfectant.

ON REMOVING st'AINs.

Manv articles of clothing, carputing, sc., otherwise in good condition, are thrown axdie in consequence of having contracted an unsightly spot by contact with grease, wine, or other soiling substancos in very fow instancos is the texture of the materinl injured; and a rendy means of removing the stain, or of restoring the colour, if it has been discharged, would often be zhally omployed, were it not that the owner of the damaged article is fuarful lest the means employed should tend to argravate tho ovil, either by enlarging the stain, changing thu solour of the ground, or rotting the texture of the fabric. With a little carr, however, and attention to the nature of the material, the dye, thel the stan, these bad results may be avoided, ated the sollod muturial restored to its pristine integrity.

In order to proceed with any degree of certainty in our endeavours to renove stalus, we must divide them into three classes, as each variety will require a peculiar treatment. The first class comprehomde thuse status whech do not in any way affect the nature of the material or colour, but simply alter its appearance, and which cun be removed by the application of one agent alone. These we may designate Simple Stains.
The second division includes such as are produced by two or more substances conjointly, and which cousequently require the employment of severni cleausiug agents These are known as Mixed Staims.
In the third category wo may place such stains as are produced by bodies which alter or destroy the colour.
In the first class wo may phec water, oily matters, vegetable juices, blood, and irun or hals stains. If water be allowed to Gall on some kinls of silks, satins, or woollon fabrics, it dissolves away part of the dressing, nud the consequence is that a dull spot appears un the glossy ground. 'Fo remove a stain of this nature, it is necessary to steam the spotted material until it is all equally moistutued. It may then be hot pressed, or if amall, ironed with a hot but perfertly clean iron.
Grease spots may honerally bo removed from the most delicate material by the employment of benzine, or oil of turpratine, care buing takon that sufliciont be employed to re tove all line of demarcation. Ux-kall is particularly useful anestracting greaso ataius irom woollen goods If the stain be very theckly crusted and old, it may be sometimes advant ageous to sufeen tho greasu (previous to the application of benzine) by means ot a warm rou laid on a piece of thick bloting-paper which has been placed over the spot

Tar and pitch producu stalne casily removed by successive applications of spiritw of turpentine, coal-tar naphtha, and benzanc. If they are very old anh hard, it is as well to soften them by lightly rubbing wath a pledget of wool dipped in good olive-oil. The sottened mass will then ensily gicld to the action of the other solvents. Resins, varnishes, and sealingwar may bo removed by warming and applying strong methylated spirits. Care must always be taken that, in rubbing the material te remove the stums, the triction should always be applied the way of tho stuff, and not indifferently backwards and forwards.
Most fruits ytelit juicu, when, owing to the ecid they contain, permanently injure the tone of the dye ; but the greater part may be removed without leavigy is stan, if the spot be rinsed in cold water in which a fow drops of liquer ammonia have been placed before the ypot has dried. Wine also leaves an ugly stain on white materinis ; from these it may be removed by rinsing with cold water, mplying locally a weak solution of chlorile of hme, and agan rinstug ta na abundance of water. Tho dressing munt again be hmpartod by steaming, star, hang, and hut.pressumg.
Fushatik and the solutile salts of inon-such as are used by phateotaphers 2 m thetr developitug solutions \&r -produce stahas which, il allowed to dry, and esperially if afte rwards th. materal has been washed, are diticult to catract witbont injury to tho ground. When fresh, such strins yield rapidly
to a treatment with moistened cream of tartar, aided by as little friction, if the material or colour is delicate. If the ground be white, oxalic acid employed in the furtu of a cula centrated aqueous solution, will effectualy renuve fresh wow stains. Acids produce red stains, or blacks, blues, and voletes, made from the vegetable colours (except ind:yo.) If the acid has not been atrong enough to destroy the material, and the staing are freah, the colour may generally be restored by repeated soakings in dilute liquor ammonia, applicd as luially as possible. Photographers frequently stain their chathes and cloths with nitrate of silver. The immediate cud rapuated ap, plication of a very weak solution of cyanide of potassium (as companied by through rinsings in cleau water, will ghe terally remove these without injury to the colours.-En;/ish .Mechanir

NEW RECIl'ES.

composition for pleture frames.

1. To make composition ornaments for picture frames Boil i lbs. of the best glue in 7 half pints of water, melt 3 lbs , of white resin in 3 pints of raw linseed oil ; when the ingredents are well boiled, put them into a large vessel and simmor them for half an hour, stirring the mixture and taking care that it does not boil over. When this is done, pour tho mature into a large quantity of whiting, proviously rolled and sifted very finc, mix it to the consistence of dough, and it is ready for use.

2 Digsolve 1 lb . of glue in 1 gallon of water; in another kettle boil together 2 lbs. of resin, 1 gill of Venice turpentine, an 11 pint of linseed oil : mix together in one kettle, and continue to boil and stir them :ogether till the water has evaporated from the other ingredients; then add finely pulverized whiting till the moss is brought to the consistence of soft putty. This composition will be hard when cold : but being warmed, it may be molded to any shape by carved stamps or prints, and the molded figures will soon become dry and hard, and will retain their shape and form permanently. Frames of either material are well suited for gilding.

anytible ank.

If we write with a very dilute solution of chloride of copper, which has scarcely more color than pure water, the charaiters are invisible; but if gently heated, they become distinctly yellow, and are casily read Let the paper cool, and they vaninh, and they may bo made to appear and disappear an indefinte number of times. If heated too strongly, the compound is d composed, and the writing becomes permanently brown from the deposition of the copper. The chloride of copper may bu conveniently made by mixing solutions of ammonic chluride (sal ammoniac) and of cupric sulphate (blue vitriol.)
The change of color in this and kindred cases is due to the iemoval of the water of crystalization by the heat. In chemical combination with the water, the salt is trausparent, without the water, it is opaque The salt, being very delipuscent, rapuly absorbs moisture from the air when cool

Inon as a Woid Paesenver.-According to lluburt, the best means of rrotecting wood which is exposed to monsture, especially railroad ties, is to drive into them long, fine tron nasls with broad and flat heads. When wood thus protected is placed in the ground the nails rust, and the rust spreadsequally throughout the wood protecting it. The thes may also be wound with irou wire. Hubert states that wood treated this way has been buried in moist carth and remaned sound for nearly fifteen vears.

A Strone Whitr Paytz.-Dissolvo $2 \underset{2}{2}$ or. of gumarabie mat quarts of water, and stir it into 1 polund of wheat flour until the while becomes of a pasty consisteris. It is then to be heated, and $1 \frac{1}{2}$ an each of sugar of lead and alum dissulved ma intele water, added thereto, and the composition well stirred untal it shows sigas of boiling when it must be remored from the fire. Add while hot six drops of carbolic acid. Thas as a very tenacious and durable paste and may be used on almost any sibbstance.

MAKING PACKETS OF TOBACCO.

MAEING CIGARETTES.

RULES FOR HANDLING NITRO-GLYOERINE.

An Mr. Mowbray, the chemist at the Hoossc Tunnel, has probably had a larger and more thorough experience with nitroglycerine than any man in America, we are glad to bave the opportunity of appending the rules made by him for handling and transporting this famoas explosive. The following rales and instructions are substantially those which have insured the unnsual safety maintained at Hoosac Tannel :-

1. Eandle with the greatebt care, avoiding every possible jar or concussion, and be very carefal, if any is spilled outside the can, to avold slriking it with or against any hard substance.

2 When in a solid state, thaw out by placing the cans in a vessel of warm water, nevor warmer than the wrist can bear, first pouring some of the warm water from the pessel into the can, and slways remuving the can or cans before adding more warm water to that in the vessel in which the cans are placed.
3. When filling cartridges hold them carefully orer a tray about two feet by three, the bottom of wbich must be thoroughly covered with plaster of Paris, which latier must be replaced as rapidly as lightly saturated with the nitro-plycerine. Jemorandum; plaster of Paris saturated with nitro-glycerine does not readily explede.
4 If necesbary to store nitro-glycorine in a liquid state for any length of time, insert tha cork loosely, an 1 pour a pint of cold water in each can, which water must be frequently and carefally poured off and replaced with fresh cold water in warm weatber, always taking care to retain tho bladder undor the cork. If ice can be procured, however, it its botb safer and more desirable to congeal the nitro-glycerine and kecp it in a solid state.
5. Uso gutta percha funnels for filling water holeb. Never
tamp the drill holes, it is totally nunecessary and is pretty sure to kill the individual who does it.
6 Never use hot irons to warm tho water, or for soldering the cane, both are sure to canse explosions.

7 Never sicdge or drill in a hole or seam where nitro-glycerine has been spilled, without first firing an explow st to clean the place out.
8. Never pour nitro-glycerine into a hole, unless perfectly sare that the hole is sound and will hold water; if otherwise, slways nse a cartridge.
9. To obtain the best resulte, ase drill holes al ways 6 feet in depth. or over, fire with powerfoi exploders and well insolsted wire, by ellectric battery and with simaltaneous explosion.
10 After a blast look carefully for any unexploded cartridges that may be laying around loose.

11 Allow none but the most carefal, competent, and sober persons to handle or have charge of nitro-glycerine, and enforce ridgid obedience to orders and compel the adoption of every precaution to provent accidents or explosions.
i2 Never use empty cans for other purposes, transport them to a eafe place, and destroy them by fire, or with a fase and exploder.
13. Carefolly examine the cans from time to time, and notice if any pin holes have been eaten throagh at the level of the nitro-glyceribe therein Should the presence of sach holes be detected, procure nem cans or atone jars, and place the contents of the nnsound can therein, never loosing your hold of the upper portion of the ansound cans, lest it break loose and trouble ensue.
14. When congealed, nitro-glycerine is absolatcly safo; if, possible, therefore, it should al ways be stored surrounded with ice, since esplosion is impossible when a solid state.

ODORS.

Among mineral substances, few solids, bat quito a number of liquid and gases, aro endowed with more or less powerful scents, in most cases not very pleasant ones, and usually characteristic. Those odors belong to simple substances, such as cklorine, bromine, and iodine; to acids, as hydrochloric and hydrocyanic acid; to carburets of hydrogen, as those of petroleum ; to alkalinu substances, ammonia, for instanco, otc. The odors observable among minerals may almost all bo referred either to hydrocarbonic or hydrosulphuric gases, or to various solid and liquid acids produced by the decomposition of fats or to peculiar principles secreted by glands, such as musk, ambergris, civet, and the like.

The odor of plants is due to principles very unequally distributed throughout their different organs; some solid, as resine nnd balsame, others which are liquid, and known by the uame of essenres or essential oils. In most cases the essence is concentrated in the flower, as occurs with the rose and the violet In other plants as in bont grass and Florence iris, only the root is fragrant. In cedar and sandal wood, it is the wood that is so; in mint and patchouli, the leaves; in the Tonquin bean, thr seed, in cinnamon, it is the balk which is the seat of the odornus principle. Thus the orange bas three: that of the leaves and fruit, which gives the essence known by the name of psti' grand; that of the flowers, which furnaces neroli; and again the rind of the fruit, from which essence of Portugal is extracted.
What, now, is the chemical nature of the odorous principles in plants? The chemistry of today reduces almost all of them to thrce catagorics of well ascertained substances: hydrocarburets, aldehydes, and ethers. We will ondeavour to give a clear account of the constitation of these three kinds of sabstances, and to mark their place in the register of Science. The hydrocarburets are simple combinations of carbon and hydrogen, as, for instance, the petroleum oils. They represent the sumple compounds of organic chemistry. As to aldehydes and ethers, their composition is rather more complex; besides carbon and bydrogen they contain oxygen. Every one knows what chemists mean by an alcohol ; it is a definite combination of hydrogen, carbon, and oxygen, neither acid nor alkaline, which may be regarded as the result of the union of a bydrocarburet with the elements of water. Common alcohol, or sprits of wine, is the type of the most important series of alcohols, that of the mono atomic alcohols. Chemists represent 1t by the formula $\mathrm{C} 2 \mathrm{H} \omega \mathrm{U}$, to indicate that a molecule of it arises from the union of two atoms of carbon with six atoms ot hydrogen ond one of oxygen. Independently of the alcohols, which are of great number and varying complexity, organic chemistry recognizes another class of bodies, of which vinegar is the type, and which receive the name of organic acids, to mark the resemblance to mineral acids, such as oil of vitriol or aquafortis. Now, cvery alcohol, on losing a certain amount of hydrogen, gives rise to a new body, which is called an aldehyde ; and cvery alcohol, on combining with an arid, produces what is called an ether. These rapid details allow us to understand precisely the chemical character of the cssences or essential oils which plants elaborate within their delnate tissues. Excopt a small number among them which contain sulphur, as the essences of the family of crucifers, they all present the same qualitative composition-carbon and $\mathrm{hg}-$ drogen, with or without oxygen. Botween one and another of them merely the proportion of those three composing ele. ments varies, by regular gradations, but so as always to correspond cither to a hydrocarburet, or to an aldehyde, or to an ether. In this case, as in almost the whole of organic chemistry, everything is in the quantity of the composing clenents. The quality is of so little importance to Nature that, while following alivays the same lawe and constantly using the same matrraln, sho can, by merely changing the ponderable relathons of the latter, produce, by myriads of various combinations, myriads of substances which have no resemblance to each other. The strange powers of the olements and the myssterious forces concealed in matter make themselves known to us in a still more remarkable phenomenon, to which the name of asmery is given. Two bodics, throughly ualike as regards their propertics, may present absolutely the same chemical cumposition with respect to quality and quantity of eloments. "But in what do they differ?" it may bo asked. They differ in the arrangement of their molecales. Coal and the diamond are identical in substance. Common phosphorus and
amorphus phosphorus are one and the eame in substance. Now, the odorous principles of plants offer somo exceedingly curious cases of isomery. Thus the essence of turpuntine, the essenre of lemon, that of bergamot, of neroli, of juniper, of salvin, of lavender, of cubebs, of pepper, ond of gillyflower are isomeris bodies, that is, they all have the same chemical composition Subjectrd to analysis, all these produrts yield identical sub stances in identical proportions, that s , for each molecule of essence, ten atoms of carbon and sixtecn atoms of oxygen, as denoted by their common formula CloOlo. We see now these facts as to isomery prove that the qualities of bodies depen! far more on the arrangement and the inner movements of their minute particles, never to be reached by our search, than on the nature of their matter itself, and they show, too, how far wo still are from having penetrated to the first conditions of the action and forces of substances.

But chemistry has not stopped short with escertaning the inmost composition of these substances, it has succecded $1 / 45$. producing quite a number of them artificially, and the vanpounds thus manufactured, wholly from clements, in ...uratories, are absolutely identical with the products extracted from plants. The speculations of theory on the arrangements of atoms, sometimes condemned as useless, do not merely ald in giving us a clearer comprehension of natural laws, which is something of itself, but they do more, as real nastances prove. they often give us the key to brilliant and valuable anventions. An Italian chemist, who was then employed in Parls, Piria, in 1838, was the first who imitated by art a natural aromatic principle. By means of reactions suggested by theory, he propared a salicilic aldehyde, which turned out 10 be the essence, of meadowsweet, so delicate and subtile in its odor. A few years later, in 1843, Cahours discovered methyl-salicilic ether, and showed that it is identical with the essence of who tergreen. A year after, Wertheim composed essence of mustard, whilo believing himself to be making only allyl-sulphocyanir cther. These discoveries produced a sensation Vowadaye the chemist possesses the means of creating many other natural essences. Common camphor, essence of bitter almonds, that ot cummin and of cinnamon, which are aldehydes, as we have seen, may be prepared without camphor leaves or almonds, without cummin or cinnamon. Besides these c thers and alle'bydes, whose identity with essences of vegrtalle origin has been proved, there exist, among the new bodies known to chtmistry, a certain number of products formed by the union if common alcohol or amylic alcohol with different acids, that ito say, of ethers, which have aromatic odors more or less r. sembling those of some fruits, but as to which it cannot yet he affirmed that the odors are due to the same principles in both cases. However this may bo, perfumers and confectioners, more industrious and wide-awake than chemists, have immediately made good use of many of these properties.
Artificial aromatic oils made their first appearance at the World's Fair of London in 1851 There was there exhibitel a pear oil, diffusing a pleasant smell like that of a jargonel, and employed to give an aroma to bonbons. This product is nothing else than a solution of amylacetic ether in alcohol. Apple onl was exhibited beside tho pear oll, having the fragrance of the best rennets, and produced by dissolving amylvaleric ether in alcohol. The commonest essence was that of pincapple, which is nothing else thau ordinary butyric ether. There was observed, too, an cssence of cognac, or grape oil, used to impart to poor brandies the highly prized aroma of cognac The produrt which was then, and still is, the most important article of manufacture, is the cssence of mirbsne, which very closely resembles in its odor that of bitter almonds, and which commerce very often substitutes for the hater. Essence of mirbade is nothing else than nitrobenzine, which results from the action of nitric acid on benzine. Benzine, in turn, is met with amngs the products of distillation of tar, which also yield the sulbstances used iu preparing those beautiful colors called aniliue -F. Papillon, in Revue Scientyfque.

We understand that the Grand Trunk Railmay are aluut to put ticket clerks on their trans to perfurm the duties in cuanettion with the collection and issuo of tickets and fates on the trans. This courso has prubably been bruughtabuat by the declaration of the conducturs that they could nut perfirm the whole of the dutics required by the Company in conactiou with this porton of their work.

SCIENTIFIC NEWS.

Cochtonolbs in tife Carbonifbrods of Capr Berton.- In the Canadian Naturallist (Vol. VII., No. 5) Mr. Scudder describes two new species, having two wings, described by 10 Brown. He has given them the names of Blalina Bretonenshs and B. ITeeri. They are in a duskish shale, and are associated with leaves of Sphenophyllum and fern.

Mabme Cmamplatm Deposits on Lamds morth of Laht Supe-nios.-Dr. Dawson, in his annual address before the Natural History Society of Montreal, says that Professor Bell, in the "Report of the Canadian Geological Survey for 1870-71," states the occurrence of marine shells, similar to those of the Champlain deposits in the vicinity of Montreal, at a height of 547 feet abnve the sea. Dr. Dawson also remarks that in the hills behind Murray Bay and Les Eboulements, he has observed these shelis at a height of at least 600 feet; and also that Mr. Kennedy has recently found marine shell deposits of the same era on Modreal Mountain, at a height of 534 feet above the sea.
Pantino on Zinc withodt Pant.-M. Pascher, of Nuremberg, has latoly invented a simple process for colouring sheet zinc, based on the employment of acetate of lead. On applying this substance, mixed with a minimam preparation, a reddish brown tinge is obtained. The cupola of the synagogue at Nuremberg was thus coloured as an experiment over a year ago, and, to all appearance, is get unaffected by the weather. By adding other bases, lighter or darker tints of grey and yellow way be obtained, giving the zinc work the appearance of carved stone. With a solution of chlorate of coppor the preparation turns the sheets of zinc black.

Asurner tunnel under the Alps is proposed : it will pass under the St. Bernard and be $20,000 \mathrm{ft}$. in length. The novel feature of this undertaking is that under the summit, the tunnel will be widened out to make a station, and a shaft will be cut, up which passengers will be taken to a hotel on the top of the mountain.
A Correspondent of the Albany Aryus, who evidently knows whereof he writes is imparting valuable information on transportation. He says:-"A few years agoa Canadian ship builder remarked that 'a rule of thumb law' was that to obtain the cheapest transportation, the vessel should have as many tons carrying capacity as ber destined voyage had miles. The distance between Chicago and Buffalo is a thousand miles, and by this rule the cheapest transportation, would be in vessels of a thousand tons. In arranging the size of the new enlarged Welland Caual it was adapted for vessels of t welve or fifteen hundred tons, which would be the number of miles to Oswego or Kingston, showing that the Dominion engineers have followed that rule : " The ocean ships, he says, are constructed on that rule.

A sew compass has been invented in France by M. Duchemin, the magnetic force of which resides, not in a bar or needle, as in the ordinary instrumont, but in a flat steel ring, magnetised, with its poles at two opposite extremities of the same diameter. This ring, supported upon an aluminium traverse, pivoted on agate at its centre, has attached to it the ordinary compass card, and acts promptly and efficiently. The author claims for it the following advantages:-(1) A magnetic power, double that of a needle whose length is that of the diameter of the ring; (2) two neutral points instead of one, as in the needle; whence it happens that none of the magnetism escapes, and that strong sparks like those from the Holtz machine do not derange the poles; (3) a better and more prompt performance of the compass, the card seeming to float, as it were, in a liquid; (4) a large increase in the sensitiveness of the instrument; (5) the ability to regulate the magnetic intensity of the ring, and thus to compensate for local causes. This is effected by means of a second magnotised steel ring, smaller than, and inside of, the first, the position of which-and therefore its neutralising action-may be easily adjusted. Tinder the direction of the Minister of the Marine, a trial trip of the new compass was made on the steambost Fron with very satisfactory results. M. Duchemin now proposes, as an improvement, the use of a set of such rings, forming a spherical or spheroidal system of still greater masnetic power.

RAILWAY MATTERS.

Av old copy of the English quarterly Revtew of the year 1819 contains an account of a schemo for a railroad, on which it is pooposed to make carriages run twice as fast as stage coaches. The editor ovidently failed to appreciate the idea, or to boliove in its possibility, for ho comments apon it thus wise :-"Wo are not partisans of the fantastic projects relative to established institutions, and wo cannot but laughat an idea so impracticable as that of a road of iron upon which travel may be conducted by ateam. Can anything be more utterly absurd or more laughable than a steam-propelled wagon movVing twice as fastas our mail coaches? It is much more possible to travel from Woolwich to the arsenal by the aid of a Congreve rocket."

Paper Car-mierls.-An American paper says that the Connecticut River Railroad Company is about introducing, for trial, a set of paper dar-wheels under the forward truch of one of its engines. These wheels are manufactured by briaging a pressure of 350 tons upon sheets of common straw-paper, which forces them into a compact mass, which is then turaed perfectly round and the axle forced into a hule in the centre, this requiring a pressure of 25 tons weight. The tire is of steel, and has a one-quarter inch bevel upon its sneer edge, thus allowing the paper tuiling tu be furced in, 250 tons pressure being required in the process. Two iron plates, one upon each side of the paper, are bolted together, which prevents the possibility of the fillings coming out. The tire rests upon the paper only, and partakes of its elasticity in conseyuence.

A Safrty Car Snos.-A car shoe has been invented by Mr. Stillson, of Minneapolis, Minnesota, which is designed to prevent cars from leaving the track. It consists of a clampliko arrangement, which is aflixed between the wheels of each truck. This runs about two inches above the rail, and if anything happens to throw the wheels from the track the clamp at once grasps the rail, holds the car on the track and brings the train to a halt very quickly. During one of the experiments, in a curve of the road, on a down grade, a rail was removed from the track. The car having the shoe on was started down the grade, its speed being not less than thirty males an hour. On reaching the gap the wheels jumped the trach, the car settled down upon the shoe, which at once grasped the rail that had not heen removed, held the car in an upright position on the track, and fiaslly brought it to a standstill in a distance of 250 feet. At a qecond trial, with a speed of fifteen miles an hour, the same result was accomplished, the car being brought to a halt in 30 feet.

DE NEGRI AND HERMMANN'S ENGINE.

We illustrate on page 288 from Engineering a new stylu of borizontal Engine, which was recently exlibited in England.
It is of 8 horse power nominal, and, beside being well designed is well made, and works very smoothly. The leading feature of novelty in the engine is undoubtedly the very ingenious automatically variable expansion gear, which is the invention of Mr. C. De Negri. With this gear, as the governor balls are extended or contracted, the steam is cut of at any earlier or later stage in the stroke, so that the engine is controlled without the use of a throttle valve, although the load may vary considerably.
It will be seen from the engraving, which shows at lig. 1 an elcration, and at Fig. 2 a plan of the cngine, that there is only one eccentric, eccentric rod and valve rod. These actuate the principal valve in the ordinary way, the back valve being entirely worked from the principal oue, in which the two steam ports are carried through, 80 that in the two extreme positious of the back valve on the principal one, when one induction port is open the other is shut; the exbaust being controlled entirely by the principal valve.
The manner in which the back valvo is worked by the princtpal valve is as follows: There is a flat disc piece with a recess cut out of its circumference, so that it somewhat resembles a cam. The bottom of the recess is struck from the centre ot the disc piece, with a radius as much less than the radius of the disc piece itself, as the required play of the back valve on the front one. Rollers are fixed in the back valve, so that the dibc prece, when revolving, works against, and fits between them, at any point in its revolation. The disc piece revolves as many times to

LE NEGRI AND HERM 9NN'S ENGINE.
one revolution of the engine as it has recesses on its periphery, in the present case only once, the governor being so urranged as to cause, when up, a lead to the revolutions of the disc piece.
In Figs. 1 and 2 are shown the eccentric rod from which both the main and back valves are worked. The extenaion of the rod has both a revolving and a reciprocating motion as it is geared into a wheel which revolves the disc piece, and which also travels with it. The rod is square at the rear ond, which Forks in a square collar, which allows of it following the travel of the valve. Fig .5 shows a section through the governor stand, which has ascrewed busb e, and as the governor balls are extended they hift this bush, causing a twist or lead between the wheel which gives motion to the slde rod c and the wheel which takes the motion for the governor The indicator da rams, ahow the great range of cnt-off given by the
gear we have described, which gear, we may add, acts very promplly

A part from the novelties we have described, there are several, special features in this ungine which are deserving of not:ce. One peculiarity is that the guide bars are cast in one, and bored ouf, the crosshead carrying slippers at top and bottom, which are torned to fit the guid.. The wear can readily be taken up by meaus of keys betwoen the crosshead and slippers. The engine has a disc crank and a small countershaft to carry tho valpe and pump eccentrics as well as driving the governors, thus allowing that part of the gear to be kept as small as possible. This countershaft is drivenf rom the crank pin by a drag hnk. It Whal also be seen that in this engine tho centres are kept very zow, by which arrangement the strain usually thrown on the belplare and on the bolts, by whick the various parts aro attached to the bedplate, is reduced.

