BULLETINS

OF THE

Arrial Exprrinurnt Asaratatunt

Bulletin No. XXXIII
Issued MOITDAY, PEB. 22, 1909

MR. KCCURDY'S COPY.

BEINN BHREAGH, NEAR BADDECK, NOVA SCOTIA

BULLETIN STAFF

Alexander Graham Bell
Editor
Gardiner h. Bell
Assistant Edito
Charles R. Cox
MABEL B. McCurdy
Typewriter
Stenographer

Buneting of the Aoriol Puperiment Apapelation. *

Tanclej Jiedal..
Baldain* Electuro...
2. Fork of the Ao Zate
3. Kiacer 2eneout Comounicationst-
 Hauro, Comeron, Lewle \& Hascie to Bill...2-6 Bell to Mauro, Cseneron, Iavis \& Massic...6-6

รెelfriag Mtenorial Tablet..................................... 7 -7
Lacture on Aviation By F. W. Badewin.................6mis

Foresgn Avialton, the Grade Triplane, The Joreh Aeroplone, Gyantah Avintion, The Aerial Touring cxub of Frwnee, the Hoth.P.
 2-bta zotor and the Ho Hit. Propellerm.

1ancley Yadal.

Peb. 17. 1909:- At a meeting of the Board of legents of the Snithaonisn Institution held Yeb. 10, 1909, the following resolution, prepocod by Senator Cabot Lodge was adopteds-

Rysorving That the Iangley Hedal be amarded to vilbur and Orville Wright for adveneing the selence of Aerodromics in its application to Aviation by their succeasful investigetions and cemonatrations of the practicability of mechanical flight by man*。

It whe the sense of the Beard that two medals should De atruck off, one for each of the Brothers, and that ewch medal should beat both namea. A. C. 8.

Belavin's Lecture.

Tab. 18. 1909: Mr. and wris. Y.W. Baldwin left Beinn Bhreagh this afterneon for Wew York. 度. Boidain propeses to apond a day or twe in Mew York at the Automobile and Motor Boat Show, and will then proceed to $s t$. Catherines Ont. where he will lecture Feb. 25, before seac privete Club or society with which he is connectee. On Feb. 27, he will deliver, at the Univerality of Torente, a lecture on Aviation, a eopy of wich appears in thia Bulletin. He will roturn to Beina Threagh frem Foronto via wontreal and Cuebee. A.G.B.

Taro．Ganerong Tente of Habate to Bed．

To A．G．Bell，
Beddeck，苗．
\＃aphington．Dofor Pobo 11．1909：－Complying with the direct－ Ions contained in youra of the $2 d$ inat．，模．Cameron has had a conaultation with 証．C．J．Bell in regard to the question as te vother there should be a joint application In the names of all the mombers of the Aerial Itperiment Association including Lieut．Selfridge，or raice two appli－ catlone，one in the name of Hr．貫．Baldvin alone，and the other a jeint applicsison．tro Bell coincides with the viea hold by 1 ir．Cameron，thet there should be two eppliestions．
 olains 2 to 12 ，and 13 to 16 inclagive，he is unquestionably the sole inventer thereos，and as this mottor is clearly and casily segregable from the aubject－matter of the other claina，the patent would unguestionnbly be atronger ae a ale patent than it would De if incladed in the joint application．

Wr．Cameron has carefully considered your suggeate Ions dated Junuary 25th， 1909.

Conessomoonxex in 2 Lateral direckion．We do not think that it wonld be wise to insert in the ciaims the Linitation ein the Lateral direction＂．Ve think it would be better to place in the body of the specification asy after the word bemplogede in the last line of page 3 ，sorsthing 1ike the rollowingt－

> In some indtences, this coneavo- conFex form say be auch that the aupperting ourfmoen will be curved townrd emeh other in a fore sand aft direction, the upper eurface having its upper side and the Lower surface its lower asde eonvex in tiom and sft al rection. Prefernbly, however, the upper aurface has ite upper aide convex and tho lower suarface ita Lower eide convex in a aisrection from side to dide, fhile said aurfaces are approximately parallel slong the lines where they would be out by any vertseal fore and aft plane*.

模th such s atatemont in the body of the mpecification it would be made clast that the inventor contomplated as an oxpreasica of his inventive idea the concavemeonvex support Ing surfaces, whether the eoncavity extenced in a lateral or a fere and art direction, and the expreselon of the claims, ench for exangle an clain t, is brond enough to include either of these forme. Fib think that your euggestion and dizcuasion of this ratter will thwe have enabled na to raterialis broeden the mpecifleation.

Specifightiona pare: 15, Ine. S, Your eriticisn ae to the mole function at this point is auite cerrect, and the word ©sele was left in fren the old opecifieation by en overalight.

Mr. Balduin ${ }^{\text {B }}$ suggeatien for a Droader claim than prem sont clafin is is a gook one, though we fear that the elain is se broad that we wizi hsve dirficulty in obtaining it. Fevero theless, we will make the effort.
chainis. The abggested correction to this clain is a good one, and wlil be made.

Main 20, We do not think your firat eriticion of this claim is well rounced. It aimply smounte to a stetement of the ficet that there my be other rudeore on horizontal axes than the ones you omploy. Hevertheless, your rudcera do turn on approxinately horizontal axes, we ehow in the drawings. Poasibly we sight adopt Mr. MeCurdy's auggeation and insert the word "approxinntely" before "herizontel", though bayond sil question, the claime weuld be se construce any way.

Generally Festaing, and in ite normal operation, the machine ace anole is intended to be approximately horizontiol. Whe ther the machine is moving etraight forward or whether it is riaing, or whether if is aeseenaing, the medial line extending from site to atdo of the machine would be approximately horizontal, whe in fact, the aim would be to so mintain it at all times. In any event, when the machine is standon the ground preparatory to a flight, it is undoubtediy the Intention to have the medinl line of the machine oxtending frem alde to side horiaontal, and in this osse the axee of the balameing ruduers are approximately horizontal, as thom in the draninge.

Hoplying to the auggestion contained in the last paragraph of page 4, we feel that if claim 20 were amended as auggested, it would be reaponded to by a vertical rudder, since the exte of the vertical ruader would be verticen, she such axis would be ont right angles to the said roxe and aft medial line of the strueture, and subatantially redial theree tow。

But this is eld. Cortainiy it is old to have one rudder mounted on such an axias though it may be new to have one on oweh elde of the fore and aft medial line of the structure.

Heferring to the f irit paragraph at the top of page 5 of your euggestions, the writer eertainly had net gresped the idea thet.

> The easential lica involved is that the azds whould be at right angles to the madial line of the structure and aubatantialiy radial therete*. (meaning the axes of the belancing ruddere).

TV ethould regard it as oxeoedingy dangerous to make any such ata.tement, either in the apecipitation or in any part of the record of the application, beeauee this would be reaponted to by a vertical rutiter. To place a rudder above the machine with ite axis vertical and its surface vertieal wowld appear to be merely to place the steering rudder above the machine rather than to the raar of the machine, as heretorore.

Qatian S2. This clatin can be easily changed to avoid the eriticiam gou auggest, by using the word momber" inate at of ${ }^{\text {pparto. }}$

Claima ss and 36, Hr. WeCurdy's exiticioms of these claims are sound, ani they will be changed accordingly.
chaim A2, We think that this claim ohoula be ineluded in Mr. Baldwints aole application. Head this elatin in connection with ciain 12, and it will be moent that it is but a troad and less apecific statement of the structure derined in claim 11.

As soon ts we receive your instructions as to Whether you with one or two applicetione preparea, we can speadily forward efther the aingle or two applicatione for execulion, as you may direct.
(signed) Havro, Caneron, Levis * 㭗asie.

Bell to Yaure. Coneron. Tewis 点 Hasies

Ylachington, D.C.
Mob. 17, 1909: Please go ahead with two applications as mage ated.

(signed) Grahen Bell.

A Letter from Mre. Bell to 魚. Curtias.

Beinn Bizearthe Pebo 13, 1909g- that I huve had in mind all along for the Selfridge Memorial is something like the bronac basmrellef by St. Gaudens to Cayt. Jhawerth and his firat regiment of eolored troopa. It in let into the tall iron railinge that separate Boston Conmon from the State Capitol. I have heatitated to mention this, fearing that the funda in ILeut. Takm ${ }^{\text {a }}$ a handa would not adnit of anything so anbltious.

But when one comes to think of it the memorial vould be not ainply to Thomas selfridge peraenally, but to him as mariing a very great and stupendous historical event - the advent of the Anerican Axiy on an entirely new aphere of a.ction. It marice one of the greatest, if not the ereatest, epoch in our Axyy; and looked at in this light it is certain$1 y$ ae well zerthy of adequate cocmomeration aa the enrollment of the firat reginent of celored troops in the Anuy.
(signed) Mabel o. Bell.

AvFazionse By F.v. Beldwin.
(A Iecture to be celivered by Itr. Balawia at the Univeraity of Toronte, Webruary 27, 1909).

- -

It Is a matter ar encouragomont to the Art of Aviation and the cause of Aviation in Conade, that a grost Canadian Univeraity hould De giving sene thought to the subjeet of fiying-machines.

Oniy a few yeare ago intelligent people scorfed at the idea of Rlying, and a man needed a geod deal of courage te professais faith in ita ultimste socompliahment. Repeated failures had given rise to mest unreasensble prejudice. Sweoping critieisum had put the problom in a clase with perpetual metion. Seientific men felt that it mee an unaefe field in which to riak their reputations, and a popular feeling existod that risght involved seme inherent impossibility an wes in genoral a aubject to be avoided.

It is aifficuat to realise how quickly all this has changed, but it is easy to see why it has changed. pight has actualiy beon sceomplished. Mnehines a thousand timea hoasier than the air in which they are supperted make long and suceeseffil veyages. The practicability of flicht has been splendidiy demonstrated. The world is at last convineed that flying is a reality.

Filbur Fright, the Americun Aviator, on the 3lst of Dec. 1908, remined in the air for two hours and 18 minutes and covered an official aistance of $761 / 2$ miles.

During thia slight which is a reeord one for heavierethane air mohines, he ahowed olearly that he had porfect control and could steer up and doun or matco turas with the groetent ease.

Hen more striking than this, though vaethy easier of accorplikment, wes the oresemeountry NIIcht of Henri Par-
 tance of 27 miles in 20 zinutes. she next coy Louls sleriot in a heavier-thanmair mahine of a different type, shev froes Foury to Artenay over rences and houses and back agaln
 performence mas $331 / 2$ niles per hour.

Boen it need more than this to convince the most skoptieal that the tevelopenent of the riyingenschine marice a new era in the progreas of the world.

It mant be remoebered that these are only experimontsl anchines. Their cocmercial value is coubtwil at preaent, but the apoed at which they start is aurely signifionnt of ubat the noar futare may bring forth.

She first leeonotive startled the world by travoling about 10 miles an hour, yet the acredrone begins its career where the incenotive is teriay.

Pertmpe it fa not quite fair to ay begine ite cartor. strictiy apeaking the flying-nachine began ite caroer long bofore it weo able to shy, and a brief histery of ite onrly dovelopment is necessary in order to appreciate the long and tedious struggie of the mechanioal shedgling before ite winge
and muscles were atrong enough to suppert it.
Tom pase without coament over the well worn legends wich go back to mytholeg. Those tales are but traditions which shew how from time immemorial man hae ionged to fly.

The pirst authentic record datee back to Leonardo da Vinci. About 1492 he propared a treatise on the flicht of birds which akewed that he was a eareful observer and gave more than a paasing theught to the aubject. The earliest technical teaigne we have for an apparatus to serve for personal flicht I found anong his notea made about 1500. His plan for winge is interesting inaanuch as he did not attempt slingly to atteoh slaps to a man's asme. He roalized from his stuady of Anntony that the muecles of the arm were not auited for this purpese, and proposed to use the operator's lege for the down atroke of the winga. Ho experiments are recorded and it is coubtrul if his apparatus was ever tried.

Fren thit time on there were many attomp to imitete the filight of birds, and investigations were made from time to time by seientifie men. still nothing of importance ans done until in about the jear 1665 the Royal Bociety of Great Britain made experimonts on the resiatance a plane aurface mot with in falling, and the time it took to drop, if at the sazne time given a motion of transiation. sir Lobert Hooke the ereat experimental physicist elearly eppreciated that When mioving ${ }^{2}$ plane surface met with greatiy increased resistanee to dropping and convorsely if eriven forward ceuld be made to support itself. The resulte of theae inveatigatien
seem to have been lost and with them some cealgne relating to Rlying which sir Christopher Fren made and promised to submit to the Royal Boeiety.

While these experimente at once suggested to us the aeroplane principle of, flight, it is doubtrul if the mon of this time had in mind anything but wing-inaping devices. These wore more or leas hopelese without the ald of mechanieal power and the theory wes prevalent thet man wae not ordained by God to fly. As broken bones invariably aceorpanled these heavenward aspirations, there was abundant proof thet this view was correet.

But shile the superstition of the time did much to retard progress, by far the greateat setback Aviation received was the invention of the balloon in 2783 by the Hontgolfior Brethers. This'statemont may seem paradoxical but nevertheless it is true. Public attention was diverted frem the efforts of the old sohool whe atill pianed their faith on hoaviermhenmair rilght. The atrugele to compete with the birds was given up until 1842. In this jear Henson ereated a atir by patenting a machine wich mae in overy way romarice able. It realiy looked as though it would fly, and the gronteat intereat was taken in his experiments.

Here we have the first atteript to imitate the soaring bird inateed of the flapping bird, and the in iteolf wae a big atep in the right direetion.

Henson's ldea was to obtain support from a large acreplane propelled by two merial propeliers of large climeter resembling amall wind-allis. The power was to be supplied by
a 30 hor we-power atears engine.
Thile clumy and unvielay the dealgn was a materful conception of the awceeantul machine of to-atay. It did not iny, not se mach boeanse his reasoning was in error, but because he die not have the inetruentalities to work with. The stean engine of 'that day was far toe heavy for the purm pese. The form and construetion of his supporting surfaces nay heve been erude, but looking baek at hia pluns in the ilght of reent anceesees, it is perhaps the mest remarkable machine over conterplated, und ahowe a wondorful anticipatm Ion of the medern aerodrone. Had this gendua been the pessessor of the light and efficient moter of the present day, it is altogether iikely that his large machine would have flem so hia medels did.

Klensen and his friende were se senguine of suocese that large Ceopany was formed known as the Aerial Franstt Congany. Their viaions of erossing the Athantic and the suhara ete. were unfortunstely nevor realized, and publie attention turned once more to the lese proalaing but easier eolution of the mattor - the basleon. So that for the neat few yeare what is knose as the lighter-than-air school hela uninterrupted away until in 1863 a Fronchnan, Wadar, publiehpd hie now fanous mantrente uyon Aerinl Autornotion. It appeared in all the newopapers of kurope and reawakened intereat and presoted discussion.

In the moet slequent and dramatic style Thiar oxpreer ead the opinion that the ehief obstruction in the way of navigating the air wase the attention which had been given
to balloons, and that in order to fly it was necessery to rollew the laws of nature and to adhere to naturets plan the bird - maleh is hesvier than aif.

Kis argumente were weakened by some too swoeping deductiens, but nevertheleas his drantic appeal to men of science atimalated what may fairly be called the renalssance of the heavier-than-air seheol.

In帚e years iater Traneis Herbert Menhim read a very able paper on the aubject of man-fight before the firat meting of the Aeronautieal seciety of Oreat Britain. Arter stualying the flight of a floek of birate he cano to the conclusion that the lifting effect of a large austaining surface could be moat economicelly obtained by arranging a number of man aurfaces abeve each ether in tiers. In 1066 he built a moat ingenious gilder upon this prinelple, and wile his machine did not glide satiarmetorily his happy idea of suparpeaing aurfacee mes Iater taken advantage of, and he will simays be remembered as a man whe lived a long way aheed of his t kne.

Hopelsse at seomed the atruggle of these early pionoers their efforts offectualiy paved the way for the twe great men whe were simultaneously to demonstrate the reasiblilty of rifgt.

Otte Lilienthel, A German Fingineer of great oris inality, and IAr Hiran Hazim attaoked the problem in 1092 from ontifrely different sides. Beth achieved auceess, which in apired other tee take up the work, snd the werld wes given twe diatinet lines of reasening (each anply verifice by experiment)
wich ehowed that heavior than air filght was within mane resoh at thet time.

Otte Lilienthal was born Hy 24, 1049 at Anklam, Pamorania. Frea his boyhoed he was much interested in manfilght, and when only 13 years old began practicel experirants with his brether Gustavas. Their Pirat winge conelated of light flape fastaned to the arms. Being naturaily enough afrald of the ridioule of their scheol pellows they made their experimanta by night. Unsuceesaful was were all their efforts to get atarted by running down hill, the anbition to Ry never left otte Lilienthat, and Later when at College ha look up the work again saking careful measurements of the auporting pouer and resistance of birds" winge. In 2891 he built an apparatus luter to be known as a elider.

It consiated of a large autaining surface of about 150 aq. ft. arched in form like a huge wing. 位th this he made thousands of gliding deveents, and beeme very expert in bolancing hia machine in the air.

且 believed that the art of belancing in the oind mast first be learned in the practical way, and showed firet, that properiy eurved aurfacea were much more efficiont than rlat ones, sind aecond, thet sucesse was more likely to be obtained by firat developing an efricient gilder, and then applying power to it, than by at tempting to build a coaplate pewer-driven machine as llaxim did.

Silienthal met his aeath whie experimenting with his glider in August 1896. Sose elaim that a guy wre which supperted his winge gave way. Others that a gust of wind
upset hing, but however it happened this deplorable aceident removed the man whe did most to demonstrate that hunan fight was poasible, whe wes the first in modorn times to faltate the aoaring birds with full-sised apparatus, and the was so well equipped in every way that he undoubtooly woule have selteved final auceess had he lived.

Lillenthal's suceese mas largely due to hie novel attitude toward the problem and his exceptional ability to look upon the flight of bires from a true engineering standpoint.

The only research of this time in Aviation which atands comparison with Lilienthai 's is that of gir firem Hearim. He becmme interested in Aerial Locesotion ae a mechanlal problem and coneluded that a balloon by 1 ts very nature Fac light and fragile - awre bubble. He argued that even if it were peasible to conatruct a moter to develep a hundred horaempower for every pound weight, it would still be mpessible te navigete a belleon against a wind of more than a cortain strength. She mere energy of the motor wold exush the gaswbeg against the pressure or the wind, doferm it and so render it unmanageable.
gir Hiram faxim Bewever, tas net simily a deatruetive eritic, and in eondorning the balloon he was remsy with a substitute. Like Falar ho belleved that insenveh as all thinge that r1y are heavier than the air the problesn matet be solved by a machine wieh has a natural temdeney to fall, and is oniy aupperted by the eynamic resistance of the sir.

The prineiple ugon wich all heavier-than-aix machines depend is that of a kite.

A kite as every behoolboy knowe is supported by the Wind while being held againat it by a string. If thore is no wind it ean still be kopt aleft by ruming ofth it because in thia way an artiricial pind is oreated.

Yow the metormariven machine is lise the kite that is kept up by running, the running boy with hia atring being roplaced by the moter and propellera which by driving it rapidly formari mike the artificisi aupporting wind.

Arter enrsfully studying the power neceasary to Arive a large eeroplane through the air and the lift wich vould result from it, "earim constructed what was praeticalLy a large perrer-driven kite. The stean engine wich drove the propelicers was one of the moat Interasing features of the wele apparatue, ant as a marvel of lightness and pewer is still unsurpassed. The two serew propellers were 17 rt. 10 Inchea in dianeter and under the full 300 horeemperer of the engine exerted ateady push of over 2000 lbs.

The, completed mechine weighed about 6000 lbs. and had a aupperting surface of afproximately 4000 aq. ft. It was nounted on wheels which ran on two rails and had another aet of ralla arranged above to reatrain the machine if if should lift from the track. The firat trial of the mehine was made aeme sime in 1692. When released the fiyingmaneline darted formare quickly aequiring the apeed of an express train. At a speed of 36 miles an hour the wheels left the
track; and, for the first time in the hietory of the world a hespier-then-aif machine oc tully left the ground fully equipped with its ewn motive power and a erew of men.

The first great obstacle was thus overcome. Our flodgling had fluttered suecestrully. It was possible to make a machine light and afficient enouch to support itself. Contrel of it however was a very different mater, and laxime a arrangament wa not promiaing in the rapect. It таs woefully ceficiont in stability, and Sir Hiram did not attemp a free risgt with his apparatus.

The wisen of Lilionthal's plan now becesse still more obvioua. It was one thing to build a machine with the ree quisite pewer so launch itself inte the air, but quite another problem t. keep it there. Safoty is the all important nocesaity. A machine must be stable anough to give men an opportunity to becomb strilled in its management in the air. Practice alone oan do this. It wowid take a man a long time to learn to row for oxmapie in a beat which wiset at the firat atroce of the oars. Since Heaim 4 a experiment in 1892 the atrugete has been for contrel and stability and the importance of Wlienthal* practical methou of experiment wae more than ever approblated. Hicut. Pilcher, a talented young naval orficer, realised this and took up Lilienthal'a work in Fagland. Alse 罵. Oetave Chanute the well known civil one gineer began gliding exper menta in Anerica.

Pileher met the some fate as IAlienthal before he arrived at the atage of installing a moter, but Dr. Chanute was euceesshut in obtaining nost useful information without
an aceident of any kind. He eatablished a cazo near Chicago on the shore of Take Michigan where slopes suitablo for gliding could be found. Fe and hia assiatanta first built a gilder similar to Lilienthal'a but soon disearded it in favor of mach more stable and effictent iruss form which has siace become fenerully known as the Chanute type. The nase of Lawrence Bargrave of Australia might also be associated with the dovelopment of the Chanute type as the basia of the doubleodeciced Chanute Glider is reully a \#argrive Box kite.

Dr. Chanute gave to the world practical working data from which it wan possible to build a aucceseful powerdriven nachine. Still mere than this by his kindly intereat and gencrous advise he encourage and directed the efforts of a younger generation some of wom were later te fulril his most cherished hopes, the notable of these being the Fighta.

While br. Chanute was making his fiele experimente another man in America was laying the roundation of a new science. Prof. Langley, late Secratary of the Smithsonian Institution undertook to buila a machine for the V. S_{o}. Wr Department. Previous to thit he had made exhametive Laberatory experiments wich eatablished heavier-than-air flight as an exact selance. To this he gave the nume of Aerodromice from the Greek verb - aeroaromeo - meaning to traverae air - te run in the air.

The mest startilig fact wich he cocaunicated to the world is now fanous as "Langely* Law". In his beok enticlec - Txperimente in Aerodynamica* published 1001 he says:-
-These new experimenta and theory alao when reviewed in their ilight show that if, in auch serial motion, there be हivan a plane of fixed aize and weight incilind at such an angle and noved forward at auch a speed, that it thall be suatained in horimontal riiett. Then the nore rapid the motion is, the lese will be the power required to auppert ond advanee it.

This statement may seena ye parecoxical that you may well wonder if you have rightsully underatood it. To make the meaning quite clear let me ropeat it In another form and bay that theoe exo perivente show that a derinite mount of power so expended at any constant rate will attain more coonomical reaults at high speeds than at low i.e.e, one horsoo power thus enployed will tranaport a larger woight at 20 miles an hour than at 10, a still larger at 40 niles than at 20 , and so on eith an increasing econows of power with each hicher apeed up to sone romote limit not yet attained by experiment but probably represented by higher speeds than aa yet have been reached in sny other mode of transport".

In 1096 Prof. Langley obtained excellent resulta from
a large model driven by an extrenely light guseline moter and proceeded to reproduce it on a somle large anough to earry a man. The mechanieal dirficulties involved in this apparentiy simple plan cannot be appreciated by one who has not attompted to do it.
 and the ongineering ekill of Mr. Cherlea Monley, his able assietant, mas net to be denied and in 2905 the full-aized mochine wes remdy for trisi. The quarter sized modele had been aucceastully launched by a eatapult apparatus which
gave them the nocessary initial veloelty by ilterally throwing then into the air.

The plen was obviously a difficult one to adopt on the full-uized machine which weighed over 000 ibse, but Prof. Langley would not depart from his former plan and her it was that Pref. Iangley's practical senee failed.

On both oceasions on ufich a launching was attompted the aerodrome caught on the launching mys and was procipitated inte the water. Whle uningured by the plunge the mahine was partially wrecked by the over pealeus efforte of a tug-beat ${ }^{*}$ a crev to rescue it and although repalred was never again given anether trial.

To the publie Iangley's asrodrome, nlelcnaned the "ouszard" was an absolute fallure, Dut the truth of the matter is that it was never tried. The launching apparatus, It is true, did fail but not the aerodrome as this was never Iaunched.

The airficulty Lengiey met oith in inereasing the Amonsions of hla suocessful model without sacrificing ©1ther Ligtinesa or atrength rovived an old argument against heavier-then-air filght.

As oarly as 1872 Holmholte showed that, while a amall model of a hoaviar-than-aix machine might oasily be made it \#ne much more difficult to build a large one.

This view mas generally accepted by seientific men Iut in 1692 Prof. Simen Heweomb in an article entitled ois the Airahip Coainge went se far as to say that,

He pointed out that as the seale of the dimensions wes ineromeed the velume and hence the weicht increased more rapidiy than did the autaining surfaces. To illuatrate this lapertant point conelder a apecific example.

Suppose machine weighe one 2b. and has a sustaining aurface of one seq. ft. Eow coneider whet happens when the dinonsions are doubled. The length of the aurface and the breadth of the surface both being doubled will give an area not twice but four times as great which would be rour sf. Pt. The weight however, dependa upen all three dimensions, longth, bresath, and thickness. Ir all these be doubled, wis they are to increase the seale, the resultant weight will, be eight times thet of the half-aiaed model or 8 Ibs. Thus the machine on the large seale, wile it will have four times the surface of the maller one, will weigh eight times as much.

The line of reaaoning holds for aimilar designs in which the dimonaions only are incressed but it hae been deveriy avolded by a aystem known as unit construetion.

Br. Alexander Grahom Boll brought out this importart prinoiple and developed a unit system which is now woll known as tetrahedral conatruction.

In this unique construction the law of the aguares and cubes coes not appiy as an increase in inght simply increases the number of unit eurfaces ampleyed so that the
wight must necessarily increase in the asene proportion as toes the arface. This prineiple is mest impertant. Interpreted another way it means that an inderinitely large mochine will fly equally ae well as a mmsil one provided the loade are properiy aistributed. Foch unit cell in this ayotom offers a certein resistance and carries a proportional load; se that if it is peasible to make azy 1000 of these unite carry 4 a man and an encine it is pessible to make $\mathbf{1 0 0 , 0 0 0}$ of them conbined in one carry up a hundred men and A hundred engines always provided the men and the engines aro not concentrated. Instead of attempting to inerease the alae of an artipicial bird Dr. Bell proposes to conbine a flock of artificial birds.

Recent progreaz in Ariation has been so rapld, and so many have been partially or wholly succesarul that it is mposible to to mere than refer to eeme of the soet notable achievements.

Orville and wibur wright began gliding experimenta in 2908 sleng the general Lines lald cown by Br. Chanute. Howover they quickiy developed original features and in their nore mechanical prineiple of contrel made a great inprovement.

NAlienthal, in his gilding experimente, had maintained equilibrium bu'ahifting the weight of his body. In an unsteady wind this methed required a considerable amount of eymnastic akdil.

The Vright Broth arsedopted the prineiple suggested by Dr. Chanate of keeping the center of grevity fixed and inintaining equilibrium by chinging the angle wioh their
sur faces preaented to the wind. The adventage of this aygtem wad insediately apparent. By it control was rendered much more certain and the manipulation more rapic.

The Fright Brothers workea peraistenthy on their gliding experimente for three years and in 1905 felt theme selves in a poeition to nse power. How well they suceeded everybody knowg. When their achievenents were firit made pubile many people alsereditod then beesuse they chose to keeg their hare carned vecrets to themselves.

In Warch 1906 the Aste Club of Anerica officially annouseed that the wright Brothers had positively done what no other human being had ever before accompliahed. On Slept. 26, 2905, they hed flom a distance of $11 \mathrm{~L} / 8$ miles and on Oet. 5,1905 they made a magnificont plight of 24 biles and came down only because of lack of fuel.

The viright'a metor-driven machine in 1905 now know mas mie on extetiy the mane lines as their giders. It woighed about 925 ibs. Ineluding the operator and wae se atrongly budit that it was able to make landing at high apeed without being atrainad or broken. Their object wes te develop a machine of practiesl utility rather thsin a useo Less and extravagent toy.

While the Fright Brothera were practical anough to buila their own sachine, including the moter, they were seientific eneugh to make Iaboratory exporiments and to thie rare ability te cembine theory and practice they undoubtediy owe thair auceess.

They realised from the first the intrieata nature of the problem. In discuseing their own work they astly remariced that the beat dividonds on the laber inveeted invariably oane from aeking more knowiedge rather then more power.

Winc the results obtained by the Wright Brothere were nore or lees doubted in Durope, France began to take a great interest in the subject. Public spirited mon orferod prizes for hoavier-than-air comptition and the french Government encouraged inventora in a practical Fay.

Santoe Dunont, wlresdy fomeus for hia dirigible balloon was the first to reapond.

He succeeded in making the ifrat official free plight in a double-decked machine of rather elumsy deaign on the 2lat of October 2906. The greateat enthuaiasm was aroused by his anceess and more than fifty machines were built as a direct result of Santes Dumont's achievements. Prance imasediately jumped inte the lead and is still far these Wile it is true that the United States have preduced the greateat aviatore, France builas ten machines to any other country's one.

In Oct. 1907 Br . Alexander Graham Bell organized an Asseelation to be known as the Aerial Bqerivent Association. The Asseciation consieted of five nembers and had as ita objeet the building and improvement of heavier-thanair machines.

3xper mente were firgt made with a large tetrahedrul kite at Dr. Boll's Suamer Hone in Hova Scotia. The late

Lieut. Solfridge wont up in this man-lifting kite and it uas hoped to get data as to the lift and what is technicaliy called drift or resistance with a view to instailing a motor and propell tra convert the kite inte a free piying machine. The rifght entirely astiafactory but unfortum nately the kite was wrecked by being pulled through the mater after it had come down.

The Aesociation then noved its hsedquartere to the
 the Aasociation. Gilding experimonta were cormenced. For these gliding experimente the Assecietion adopted the Chanute type, and obtained aome useful information from it before building their Pirst motor-driven machine. Selfridge"s
 were wing-like and covered with red silk) was a distinet departuee frow the flat Chanute type.

The main supporting aurfaces were bowed toward each other at the extreaties and tapered from fore to aft like a birate wing.

The sachine wae fitted aith runners and tried on the lee of Iake Kculka. Although it was hardiy sxpected that it weula fly on firet trial the mehine lert the ice after traveling about 200 ft . and made a very promaing flight of 319 ft. The machine cams dow owing to the failure of a single aurface tail but aid is se gently that it was imposalble to tell juat when the runner atruck the ice. This wae the firat publie filight of a heavier-than-air machine in Aeserica and was a matter of great encouragoment to the Aerial

Woperiment Aseceiation. Upen a second trial, In attempting to fly her in undy weather the med ving Fas badiy wrecked and the "White ㅋing* succeeded it.

The White iling wes an improvoment on the mied Vinge in having balaneing rudders but ohe alse was rather badly smashed and the Curtiss "June Buce aa the third machine Was called, was realiy the firat aerodrome built by the Assoeiation otich made satiarsetory inighte.

Altogether this machine has mede over a hundrad flichts verying in length fron long jums to aucteined Righta of $21 / 2$ miles. On Juy 4 th, 1808 athe won the Beiontifie American Erophy for the firat heavier-tharmair machine to fyy a kilometer (under teat conditions).

Al though the "June Bug" was still in comission the Asaceistion built a now machine, WeCurdy's egilveroburts Which is equipped with a powerful water-cooled motor. The "Silver-Dart* made a night of over a mile in Hewmendaport,
 Bootia.

While it if absolutely imposaible to get anything like an adequate idea os a Myingmachine without zoeing 2t, perhaps a few iliustrations may give some impression of What an mezodrome looks like under may.
(rentern sises).

Fow poople reelize whit an infortant part aport is likely te play in the development of the practical flsingo mehine. Hetermear racing ia direc ay reaponaible for the development of the licht engine wich macea flight poasible. yet the men whe raes netor-care had no idea of developing the ilyingmachine. Shoy racod for the pure joy of racinge. Theae same men are already taking up the aerodrome, and the meat useful lewons will undeubtedly bo learned froe the extrome racing machinea in wioh comfort, and stability, if nece be, are snerificed to speed.

That form the pasanger aerodrone of the future vill take, and what it will be used for, ne man can possibly foretell, but in Fiew of the prewont possibilitiee how long are regions, heretofore inaccesaible iigely to renain unexploredf

Such places as Thlbet and the heat of Arrien, for example, have ae far reaisted civiliantion, not becanse White men couldn's live there but because they couldnet ext there。

In the hittory of the world roads have hitherte gene, hand in hand with eivilisation, and it is important for us te realize that the great universal highiay above us is now open.

But whic the IIying-amehine may cut down distances. and be of great value ge a means of cormunication there is snother aignificance wich, though not noarly so broad as the apread of eiviliation, comes home to us moro forcibly. The big Juropean Powers are aponding vast aums of money anmually upon anropauties net as a miasionsry enterprise, nor
in the intereat of a spost.
France and Germany in partioular; sure alive to the Paet that flyingonachines may revelutionize the art of war. The struggie for the aupromacy of the air has comannced in earnest. In this strugele the British Japire has a great ceal at stake. Tigland"g insular security is threatenod. The wea is no lenger a barrier. Teen in the prasent state of the Art a Airigible balloon like Count von Zoppelin's is a greater momace to Jondon than twe Oerman Favies.

An ingreasion acens to exiat that e general agreezant was node at the Hague conferenee that explosives ehould mot be dropped from dirigibla balloons and flyingmachines. Aa a matter of fact this propoanl was made, but only one Pirat claas pover sgreed to it.

Wilifary suthorities agree thet plyingmanchines or dirigible belloons conla operate in alnest perfect sufety
 grownd and from this height could drop explosivas with great aceuracy.

If this be ths case, Tondon could be deatroyed and the conbinet navies of the werld could not prevent it. A military training is hardly neeesaary to soe that-our bule warke must be extended upwards, and our aerial pleet maino tained at least upon a two power basis. A great neemfaring Feople shoula never be contont to eec other nations control the sea above we.

However apart frem this use in warfare, ryyingmane ines will be of insatimable value for acouting. Major Squier
of the U.S. Signal Corps has ©ravm attention to this fact and pointed out two striking examples wich illustrate how flying-mmehines will be used ae the eyea of the Axmy.

If the Vind ted states Any or Mavy had posseesed a dirigible balloon or a Plyingemachine during the Spanisho Anerican Ihar the wherenbouts of Cevera's rieet would quickiy have been diseovred.

The other exwnile is still more atrizingt- The Japanese attaek on 208 Meter hill was one of the bloodiest contests the world hes ever seen yet the sole object of khim great slaughter was to place two or three men at its aumelt to direct the fire of the Japanese siege guns upon the Ruse aian fleet in the herber of Port arthur.

The usefulness of fiying-machines in war ensures the continuous development of the art of aviation. The great military powers are afrald of the flyingomachine, and the strugele to improve it must therefore ge on. Selfoprotection comands more practical, more airmorthy and more efficient machinea.

Fhight hae beon aceraplished. The flyingmachine is actualiy here and no great Fation can afferd to negleet it.

$$
\mathrm{P}_{*} \mathrm{E}_{\mathrm{E}} \mathrm{Ba}_{0}
$$

Porelm Axiation.

We have recoived the Bulietin of the Italian Aeronautical Soeiety Elovomber 12, 1906. It containa, wnder the hoad of Aviation, deserigtions of the following aero-
 Le Joune, Zipfel, ICese and Demaneat. Also are given degeriptions and illustratione of the following light motore for aeronautieal purpeses. Onesie, Ledbricge, Garbon-brille and hareet.

It also contains a description of a new roam of cannon which will send projectiles alreetiy overhead. Shey use an ingenieus plan of telling where a shot has been placed. The projeetile omits a amore bhich floste in the air in the path of the projectile. the ennnon used is auch like an orilinary camnon oxeept that it has greater olearance from the ground and ifs whels rold in tourd each other and loek in this position.

The Grade Frinianes- Baron Pierre de Catere onterec for the prise of 1 xilometer given by the Aare Club of BelEivn, made at zrecht on the 20th of December, in his biplane construeted by the Voigin Brochers. Several rilenta in one of whioh the attainse 121 m .

She Joreh Aoroplangs-An aeroplane, contbructed by H. Hans Joroh, had fiown 19 at mayence during the first part of Jumuary 1909.

Geanish Ayiationz- The King of Spain has anked Copt. Kindelan to ge to Frence and Aserica in orter to savist in experimenta in Aviation. On this official miasion Capt. Kindelan will be secompanied by one of his comrades.

An Aviation Society is boing forsed at Barcelone.
The Aerial Fouring Mub of Trenog: This Club which has been recently formod by the Fouring Club of Prance, has Just veted a grant of 100 france in faver of the aubseription oponed by the Aeronaticel club, having ae on object the offering of a priae to the aviator we alll be the firat to accompliah a distance of 200 kilaneteri from one toan to ane ther.
 the moat admirable atande at the Aeronautieal Solon and the firat thing wich ought to be mentioned is the maycifioent installation of the E. Z.P. eatabli ahment.
ifr. Robert Risnault-Pelterie is without de bt the only Prench Aviater the has himaelf invented, calculated and constructed, by his on personsl means and in the amallest dotails, machinea which have taken the air the first time. Beofore inventing his derinite models he had experimonted with diverae types of blplanes and monoplanes. Hia defat, es aviator, dates baek to 1903. Hanawlt-Pelterie is then, among his conterperary avinters, in age, the youngeat, in prorosel on, onc of the eldost of aviaters. After comparisdee trials the gound aviator finaliy metteled on the monoplane type wich he conaldered as auperier, and eapable of apoed combined with suppleness and great stability.

Ceneral Chareateriathest- The M. B.P. 2obis embocies the ohareteristies of his former machines.

Its oharacteristics are :- Monoplane with a pair of supple finge wich may be rrexpea at the will of the operatot. The rear aupporting surfisce. of the machine is made to aet as a control. The starting cevice conaista of two whels in tandem under the body and a light wheel at the extremity of each wing.

The machine is 9 in in breadth and 80 in length. Its aupporting surfacest 420 k 11 . by $25 \mathrm{sq} . \mathrm{m} 275$, thet 18, 26 кil. 600 in aq m.

Tha Bodys- It is apindis-like, made of frorses and tubea of eteel of triangular construction, indeformable in every way (probably tetrahedral).

The yinget- The greateat and most sought for quality of an aeroplane and one which avas it up more than mything else is the relation of its weight as compared to its cimensions. The R. K_{8} P. 2-bis omploy a mest perfeet surface.

The wings of the monoplane $\mathrm{R}_{0} \mathrm{H}_{6}$ P. 2-bis are 9 m 60 in breadth. Their aurface is 25 sq . m . 75 . The wight of the machine in flight teing 420 kil . They are capable of lifting per sq. m 26 kil . 600 at a speed of 60 kilometers yer hour. The wings are made uy of united wood fibres breadthwise which Join the two beams, one running along the cutilng edge of oach wing. These beams must be remarkably aupple as alse must be the whole construetion of the winge in order to ale 20w of maxping.

Hech wing is attoohed to the lower part of the running geat by means of ataye. These atays alse control the warping of the winge.

The Controla end the gaint- The horisontal control is in the rear. It is of aingle surface and constitutes the tail of the machine. The vertical control is placed under the rear extrendty of the frame. In shape and in relative poaition to the machine it is very like the rudier of a boat.

The operator is seated in the coek-pit. His body is well proteeted from the wind or advance as he is housed in on all sides.
 The moter of the monoplane E. K.P. Embla in of $50-35 \mathrm{H} . \mathrm{P}$. and contains 7 eylindora. The weight of the $\mathrm{K}_{0} \mathbb{Z}_{0} P_{0}$ motors, - quiperent complete but carrying no water, is remarkebly 1ight. The 20-25 H.P. weigha 53 kil . 500 . The $50-35 \mathrm{H} . \mathrm{P}_{\mathrm{F}}$ woigha 68 kil . The $40-45 \mathrm{~m} . \mathrm{P}$. woigh 97 k 12 . Wight of the radiator $9-10$ xil.

The propelier of the $\mathbb{R} \cdot \mathrm{R}_{0}$ P. Z-bis manglane is of metal continining four blades 2 meters in alameter.

The oll-tank contains 6 litere and the gasoline tank 40 liters wich makes poasible the continuous running of the ongine for two houre.

The year 2909 neams to have opened with guite a muaber of aeroplane accicents in France.

The Antelnette moneplane, operated by welferinger,
sfter hoving mate many suceasaful flighte at Iasy, met with
 bediy anased. A Pew lays Pollowing thie the Vencome monerikne, wheh the exhibised at the SmLon st Paring was wrocked at Bugatelle. 酸 have report from Iewy that the Obre monoplesne wa complately vreoked after un ararecored Right of ne contesciknoe.
 Porbmate. Trotagh ho has been mesing many flights with two machine he hat hai me sericus apeldent of late.

On the 1cth, 19th and soth of January he made a

 rorme te tha body ar tha machint.
 ine, though itw waight in not suterialiy loas thun the Fo. 2, has materinlly Lens surfaee. Thus it may be seen that it raquires a grestor apeod in ordor to aupport itpe2s. The

 PoLburis 25 F, P. noter. Perhaps. the ncat interecting chamecteristac of this machine is the warping of the frent and the rear contral for lateral stablilty. Bleriat ataisa not long age that his analler machine,

Fe. 9 is vastiy more difricult to control than his larger machine.

It is atatod in La Revue d'Aviation that u (Paul Ilosanalor, Alfred Leblane, Delagrange, Garnier and Papayre, and a number of Italion and Bpanish Orfiesra will be inatructed by Wilbur 欮ight in the eantrol of hia machine. It also atatea that in case Oryilie uright in recovered by Apri2, Filbur wight will come to Fort Mayer to fill the conditions of the Anerican contract and Orville wright will continue hia brether's work in France.

Ga Revue states that the new Society wich has been formed for the aele of machinea han elready suceeoded in ailing firtann yright mechines.

The actidity in France in the way of Aviation is woasthing to be enviec. There are the wrighta with their biplane and the Voisin Brathers Fith their three types, the biplane and the triplane and the Goupy type. Bolotoff, Parman, Hoors-Brabazon, de Caters, Henry Fourneir, Goupy, the Vivinua end Zipfel, all experionced aviators, are daily making trinke and are endeavoring to give the world a per fect aereplane.

There is a report that Marman may install in hia new machine an American ongine, wator-coolod 70 H.P.

Moorc-Brabazon is at preaent atetioned at Mournelon Where he has texen up again the triale of his biplane in cocupany with Bagriel Voisin. The French seem to place great fasth in Brabason and la Levue prodicta for him a great future.

The Coupy triplane has undergone a feveranges. As it istande it eontains 45 square seters of auppertine autface.

Zipfel has gone to comwany where he will make exparimenta the Themelhof oump of neanouvrea near Berinn.

$$
0 . \mathrm{K} . \mathrm{B}_{0}
$$

