> IMAGE EVALUATION
 TEST TARGET (MT-3)

Photographic Sciences Corporation
 (716) 872.4503

CIHM/ICMH Microfiche Series.

The Institute has attempted to obtain the best original copy available for filming. Featuras of this copy which may be bibliographically unique. which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are chocked below.

Coloured covers/
Couverture de couleur
Covers damaged/
Couverture endommagée
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculés
Cover title missing/
Le titre de couverture manque

Coloured maps/
Cartes géographiques en couleur
Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que blese ou noire)
Çoloured plates and/or illustrations/
Planches et/ou illustrations en couleur
Bound with other material/
Relié avec d'autres documents

Tight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombrie ou de la distorsion le long de la marge intérieureBlank leaves added during restoration may appear within the text. Whenever possible, these have been umitted from filming/
II se peut que certainos pajes blanches ajoutes lors d'une rétauration apparaissent dans le texte, mais, lorsque cela était possible, ces pages n'ont pas été filmées.

L'Institut a microfilmé le meilleur exemplaire qu'il lui a été possible de se procurer. Les détails de cet exemplaire qui sont peut-être uniques du point de vue bibliographique, qui peuvent modifier une image reproduite, ou qui peuvent exiger une modification dans la méthode nermale de filmage sont indiqués ci-dessous.

Coloured pages/
 Pages de couleur

Pages damaged/
Pages endommagées
Pages restored and/or laminated/
Pages restaurées et/ou pelliculées
Pzges discoloured, stained or foxed/
Pages décolorées, tachetées ou piquėesPages detached/
Pages détachéesShowthrough/
TransparenceQuality of print varies/
Qualité inégale de l'impressionIncludes supplementary material/
Comprend du ma:ériel supplémentaireOnly edition available/
Seule édition disponible
Pages wholly or partially obscured by errata slips, tissues, etc., have been refilmed to ensure the best possible image/
Les pages totalemant ou partiellement obscurcies par un fauillet d'errata, une pelure. etc., cnt été filmeées à nouveau de façon à obtenir la meilleure image possible.

Additional comments:/
Commentaires supplémentaires:

This itern is filmed at the reduction ratio checked bslow/
Ce document est filmé au taux d.j réduction indiqué ci-dessous.

The copy filmed here has been reproduced thanks to the generosity of:

Library of Parliament and the National Library of Canada.

The images appearing here are the best quallty possible considering the condltion arid legibility of the original copy and In keepling with the fllming centract specifleations.

Original coples In prinsad paper covers are filmad begirining with th.e front cover and ending on the last page with a printed or illustrated impression, or tha back cover when appropriate. All othar original coples are fllmed beginning on the first page with a printed or illustrated impression, and ending on the last page with a printed or illustrated impression.

The last racorded frame on each microfichs shsil contain the symboi \rightarrow (meaning "CONTINUED"), or the symbol ∇ (mearing "END"), whichever applies.

Maps, plates, charts, stc., may be fllmed at different reduction ratios. Those too large to be entirely includad in one exposure are filmed beginning in the uppur left hand cornor, left to right and top to bottom, as many frames as required. The following dlagrams illustrate the mathod:

L'exemplexire filmé fut reproduit grâce à la générosité de:

La Bibliothèque du Parlement et ia
Bibliothèque nationaie du Canada.

Les images suivantes ont été reproduites avec le plus grand soln, compte tenu de la condition ot de la netteted de l'exemplaire filmé, et en conformiké avec les conditions du conerat de filmage.

Les exempiaires originaux dont la couverture en papler ost Imprimée sont flimd́s en commançant par le premier piat et en terminant soit par la dernidre page gui comporta una emprainte d'impression ou d'illustration, solt par le zecono plat, seion ie cas. Toun les autres exemplaires originaux sont filmés en commençant par la prenidre page qui comporte une ampreinte d'Impression ou dilliustration ot en terminart par la dernidre page qui comporte une telle empreince.

Un des symboiea sulvants apparaitra sur la dernidre image de chaque microficha, salon to css: ie symbole \Rightarrow signifie "A SUIVRE". io symbole ∇ signifie "FIN".

Les cartes, planches, tableaux. etc., peuvent atre filmés à des tau: de reduction difforents. Lorsque ie document est trop grand pour âtre reproduit en un seul cilché, it esi filmá à partir de l'angie supdrieur gauche, de gauche à droita. et de haut en bas, on prenant ie nombre dimages nd́cessalre. Les dlagrammes suivants illustrent la md́thode.

[From the Canadian Recond of Science, Vol. 11., No. 2, April, 1886.]

Variation of Water in Trees and Shrubs.
By D. P. Penhallow.
The amount of water which highly lignified plants contain, particularly as influenced by season and condition of growth, obviously boars a more or less important relation to physiological processes incident to growth, and most conspicuously to thoss which ombrace the movement of sap. Studies relating to the mechanical movement of sap in early spring, at once suggest the question as to how far this is correlated to greater hydration of the tissues at the time when this movement is strongesi. It was with a view to exhibiting this relation more clearly, that determinations of moisture in a large number of woods, representing growth of one and also of two years, collccted at different seasons, were made by me in $1874 .{ }^{1}$ The range of seasons was not as complete as could have been desired, and no attempt was made io formulate a ganeral law applicable to this question. With a view to extension of data in this direction, I undertook additional determinations ir. 1882. The final determinations were made in most cases by Mr. W. E. Stone, then acting as assistant. It is the object of the present paper to combine all the results thus obtained, together with such other facts

1 W, S, Clark: Agrionlture of Maseachusetton, p. 280
as have come to hand, and to see kow far they indicate a general law.
Theoretical considerations lead us to infer that if there is any variation at all, the hydration of the strueture must be greatest during the period of active growth, and least during the period of rest. How far this is supported by the facts, will appear in the following.

IIYDRATION OF DEAD WOOD.

Incidentally to the main question, specimens of dead wood, devoid of the bark, and representing an age of four to six or eight years, were collected and the moisture determined. While the branches were dead, none of them were in advanced stages of decay, so that the eontained water could not be regarded as that of active decomposition, but simply that whieh would be readily retained in the lifeless, air-dried substance as exposed on the tree. The results obtained from fifteen speeies of trees showed an extreme variation of 6.4 per cent., the range being from 12.9 per cent to 19.0 per cent. of water. The mean hydration oltained from these determinations, was 15.1 per cent. The results appear in the following table:-

Hydration of Dead Woods.
Determined at $100^{\circ} \mathrm{C}$.

splecies.	rer cent. water.
Arer sarcharinum.	18.8
Amelanchier canadensi	19.0
Betula alba....	15.9
" excelsa	13.7
Carninus americana	13.8
Castarea vesca....	14.0
Cydonia rulgaris	12.9 13.6
Cornus sericea.	13.6
Pinus strobus.	12.9
Pirns malus.	17.4
Prunns serotina	15.5
Quercus aba.....	18.6
Tsuga canatensis	13.5
Ulma	15.1

Variation of Water in Trees.

IYDRATION OF WOOD FROM LIVING TREES.

The specimens, upon which the principal facts of this paper are based, were collected as soctions of living trees, representing on the one hand, branches of two years growth, and on the other, branches from two to four years old. For the obvious reason that the bark could not be proporly separated from the wood with any degree of uniformity, it was left on in every case, so that in all the determinations here given, the results show the combined percentage of water in wood and bark. Obviously, this gives a result which differs materially from that which would be obtained if bark and wood were considered separately. Also, while ea: y was taken not to collect specimens in which the dead bark was strongly developed, thus securing as great uniformity as possible, the very fact that the bark was presert, as well as the certainty of its being variable in structural character and thus also in hydration, as collected even from the same species at different seasons, rendered variations in the results unavoidable. This will doubtless appear upon examining individual cases, but the error from this source is reduced in the aggregate, so that the mean results, in vicw of all the precautions taken, may doubtless be accepted as correct.

From an examination of the resultis that follow, it will appear that, comparing the younger with the older wood, the percentage of water is sometimes greater in one, sometimes greater in the other, apparently conforming to structural peculiarities of the species. The mean results, however, show clearly what we might infer upon theoretical grounds, viz., that in the youngest growth, as also in the sap wood, the percentage of water is higher by two per cent. than in the older grow th where the heart-wood is in relative excess. This is found to hold true in the mean results, not only for each season, but also for all seasons; in the former case, however, this difference shows a variation of from 0.8 per cent. to 3.3 per cent. of water.

Variation of Water in Trees.

Variation of Wuter in Trees.

Variation of Water in Trees.

If we next inquire ints the relation whieh seasons bear to the contained water, we shall observe that the percentage rontinually rises from the midwinter period mutil ppring, and that it again falls from the elose of summer to the midwinter period. The extreme variations as exhibited in our figures, show, between February and Scptember, a difference of 8.4 p . e. for the youngost growth, and 7.1 p . e. for that whieh is older.

Mean Hyibration of Woms.

Montis.	Per Cent. Water.		No. for Average.	
	1st Year.'	2nd Year.	1st Year.	2nd Year.
February	44.7	43.9	37.0	38.0
Mareli...	47.2	44.8	59.0	60.0
Aprii .	51.7	48.4	${ }^{6.0}$	7.0
September Decomber		51.0 47.2	19.0 61.0	18.0 58.0
Mean...	49.0	47.1	36.4	36.2

Our figures also indieate that the maximnm hydration of the tissues must oeeur either in September, ow at some period intermediate to this month and April. By gritphie representation of these results, it will beeome possible to determine with approximate aceuraey the true period at whieh this maximum is reaehed. The figures show that, fro:n February to April, the rate of pereentage increase is much more rapid than the rate of pereentage deerease from September to Deeember. A curve whieh will show this, should also show the period of maximum pereentage. By reference to the ehart, it will be seen that the eurves for both young and old wood run nearly parallel, but that they tend to approaeh at their greatest depression, and to separate more widely at their greatest elovation. It is also seen that, from midwinter to spring, the curve rises rapidly and reaches its greatest slevation about May 18th for the youngest wood, while that for the older wood attains its maximum a few days later, or about the 22nd. From this
time on, the curve descends at a more gradual rate until December, when it suddenly drops to its minimum depression, which evidently occurs in January:

periods of cessation of grow'h.

As, upon theoretical grounds, the tissues contain most watar when the growth is most active, data which will onable us to fix accurately the limiting perieds for the season's growth, will have an importunt ogaring upon this question. Mr. W. E. Store, ${ }^{1}$ accepting the completion of terminal buds as marking comnletion of the longitudinet growtid for the entire year, has cained the following data, as establishing periods limitiry grovth in trees for the latitude of West Point, New York, $41^{\circ} 23^{\prime} \mathrm{N}$. : -

Jusie ist.
Acer saccharinum. Wang. " rubrum. L.
Amelanchier canadensis. Torr \& Qr.
Carya alba. Nutt.
Fagus ferruginea. Ait.
Fraxinus americana. L.
Hamemelis virginica. L.
Kalmia latifolia. L.
Populus tremuloides. Ifichx.
Quercus alba. L.
" bicolor. Willd.
" ceccinea. Wang.
" prinus. L.
Sambucus pubens. Michx.
Tilia americana. L.
Ulmus americana. L. " fulva. Michx.

Juse 15 th.
Betula lenta. L.
Carpinus americana. Michx.
Castanea vesca. L.
Juglans nigra. L.
Lindera benzoin. Mcissner.
Morus rubra. L.
Ostrya virginica. Willd.
Prunus cerasus. L.

[^0]July 19tif.
Andromeda ligustrina. Muhl.
Alnus incan . Willd.
Nyssa multiflora. Wany. Staphylea trifolia. L.

Indetbrminate Period.
Ampelopsis quinquifolia. Michx. Celastrus scandens. L. Rhus. Sp. Vitis. $s p$.

This, therefore, gives us the following percentage quantities, showing cessation of growth at different periods :-

May 1st, commencement of growth. June 1st, cessation of growth in 51.5 p . c.

June 15th, " "	"4.2 "	
July 19th,	"	12.1 "
Indeterminate period	"	12.1 "

Growth in length having ceased at these periods, the energy of the plant then becomes directed to the lignification of tissues and the deposition of reserve material for growth the following year. These changes, however, involve of necessity, a continual decrease in the contained water. The data above, also, show that the majority of plants coimplete their longitudinal growth within the first six weeks of the growing season; that most of these complete their growth in from three to four weeks; and that, as the season advances, the number of plants still growing rapidly diminishes until the middle of July, after which there are left but few, those being plants like the grape, which continue to grow to the very ond of the season.

A graphic representation of these changes will enable us to institute a comparison with the relations of aeasons to hydration of the structure. The lower figure of the chart is the curve expressing this decrease of growth with advancing season. A comparison of both curves will show most conspicuously, that that period, during which growth for
the season is most rapid is coincident with the period of maximum hydration of the tissues.

It is cvident from the facts stated, that the amount of water contained in trees can have no direct relation to their bleeding when punctured. Indeed, it is a well-known fact that the bleeding of trees, such as enables us to collect maple sugar, is a purely physical proce, wholly dependent upon the effect of external temperature in producing variable internal tension, hence in no sense connucted with physiological processes ; that this bleeding may occur at any time during the rest period, provided the conditions of temperature are farorable; hence, that it is most pronounced when there is the least water in the tissues: that during the seasons of most active growth, when the plant contains most water, no bleeding occurs.

conclusions.

From the foregoing facts, we are justificd in the conclusions which follow:-
(1.) The hydration of woody plants is not constant for all scasons, and depends upon conditions of growth.
(之.) The hydration reaches its maximum during the latter part of May or early June, and its minimum during the month of January.
(3.) Hydration is greatest in the sap wood; least in the heart wood.
(4.) Greatest hydration is directly correlated to most active growth of the plant,-lignification, and storage of starch and other products, being correlated to diminishing hyăration.
These conclusions are io be undere:ood as applying only to latitudes lying between New York and Boston. For other latitudes, certain modifications might be necessary.

[^0]: ${ }^{1}$ Bull. Torrey Bot. Club., xii. 8, 83.

