The Institute has attempted to obtain the best original copy available for filming. Features of this copy which may be bibliographically unique, which may alter any of the images in the reproduction, or which may significantly change the usual method of filming, are checked below.

Coloured covers/
Couverture de couleur

Covers damaged/
Couverture endommagée

\square
Covers restored and/or laminated/
Couverture restaurée et/ou pelliculéeCover title missing/
Le titre de rouverture manque

Coloured maps/Cartes géographiques en couleur

Coloured ink (i.e. other than blue or black)/
Encre de couleur (i.e. autre que bleue ou noire)

Coloured plates and/or illustrations/
Planches et/ou illustrations en couleurBound with other material/
Relié avec d'autres documentsTight binding may cause shadows or distortion along interior margin/
La reliure serrée peut causer de l'ombre ou de la distorsion le long de la marge intérieure

\square
Blank leaves added during restoration may appear within the text. Whenever possible, these have been omitted from filming/
Il se peut que certaines pages blanches ajoutées lers d'une restauration apparaissent dans le texte, mais, lorsque cela ètait possible. ces pages nont pas été filmées.

Additional comments:/
Irregular pagination.
Commentaires supplèmentaires:

This item is filmed at the reduction ratio checked below/ Ce document est filmé au taux de réduction indiqué ci-dessous.

originat ami gitctal gaparg.

ON SPEOTRAL ANALYSIS APPLIED TO PHARMAOY.

M1. E. 1. SMUTTLBWOMTH.
A parusal of the interesting paper on this subject, read by W. W. Stoddart, F. G.S., F.C.S., at the recont meoting of the British Pharmaceutical Conference, induced me to repeat the experiments therein detailed, w° th a view of ascertaining whether the constancy of the spectra was such as could be relied upon; and whether tipe spectroscope could be applied with advantage to tho detection of adulteration, and substitution, as suggested by the author.

The instrument used was constructed by D. K. Winder, of Toronto, and contained four fint glass prisms, having a refracting anglo of serenty degrees. An ordmary coal oil lamp was employed as a source of light, with a small condensing lens for increising the inteusity then required. The liquids examined were, in all cases, contained in white glass bottles of 0.5 inch diameter, of the kind commonly known as one drachm homeopathic rials.

Two sets of experiments were made; one with the preparations diluted, as nearly as possible, to the same extent as recommended by Mr. Stoddart; the other, with the tinctures in an undiluted state, the condensing lons being employed to increase the light.

In comparing the results of the first set of experiments with those obtained by the author of the paper referred to, considerable differences were observed. Some of these were apparently traceable to a difference in the porers of the instruments employed; as in the cases of Tincts. Stramonii, Semare, and Lobelix, thich exhibited well marked lines, though none were montioned by Mr. Stoddart. The priucipal rariation mas found, however, in those instances where a partial absorption, or darkening were described, or Where one color was stated to overlie another. An inquiry into the cause of this want of coincidence revealed the fact that the amount of absorption varies with the state of dilution of the substanco under examination, and that the result is further modified by the intensity of the light. This mas rendered particularly erident in.the case of Tinet. Iod:. Mr. Stoddard describes the spectrun thus:-"Impervious to light, except in a thin stratum. When diluted, the bluc and riolet are absorbed, and part of the green much darkened." My observations trere as follows:-

Ordiluted:-All absorbed but part of the red, which appears as a bright band.

Mroderately diluted:- Violet and bluo atsorbed; grien partially so.

Dilute:-Violet absorbed, blue patially absurbed.

Very dilute:-Violet amd blue partishly absorbed.

Here we have four distinct spectra of the same preparation, each of which might be taken as characteristic, if the precise degree of dilution or inteinsity of light were given; but without which the indications, as a practical test for the recognition of the substance under examination, ate of no value whatever. Many othor instances of disagrecment might be adluced, but; as it is probable that they all arise from tho caases mentioned, it will not be necessary to allude to thom.

The question to be settled is, What is the proper degree of dilution? Mir. Stoddart says the ratio should vary from tro to ten times or more; Tinct. Hyos. Bienn. requiring three or four times its volume of proof spirit, to be seen to the best advontage. This is not my experience, as the spectrum of Tinct. Hyos. Bienn. appeared to the best advantage when undiluted. The chlorophyll lines in Tincts. Senna, Stramonii, and Lobelix, mhich wero"not noticed by Mr. Stoddart, were obscrved in the undiluted preparations. Instead of dilution, I should recommend an increase of the light by means of a condensing lens. In this way the greater number of the liquids can be examined in their ordinary state. The same intensity of light might be employed by diferent operaturs by selecting a standard of comparison. For instance, a degree of light which just rendered risible the red band in Tinct. Iodi. might be talsen; this tincture is one of the best that could be chosen, as its color is constant, not being dependant ou rariable vegetable constituents.

From the experiments made (and the results were in all cases verifed by Mr. Winder), I do not think the application of spectral analysis trill result in much practical advantage to pharmacy. As a means of distinguishing between various preparations it is not of particular value, as the experienced oye can as readily recognize a tincture by its color in the bottle, as its spectrum in an instrument, although, perhaps, not with the same nicety. Aiter a little experience, the spectrum of a liquid may be foretold by judging of its color. Greenish tinctures, as those from leaves, invariably show a darb line, or lines; yellowish or reddish tinctures alrass absorb more or less of the violet or blue. It is purely and solely a matter of color. The addition or subtraction of colorless substances docs not affect, in any may, the spectrum, except a chango of color is produced; and, as the activity of a proparation seldom depends on coloring matter, very little is to be oxpected from the spectroscope in detecting adulteration or substitution.

As a source of pleasme and interest to the pharmacist, howerer, this now application of spectral analysis promises much, scarcely less than the brillinint appearances of incandescent bodies. Iudeed, the spectra of somo liquids oven rival in beauty some of the tinest lines of the metals. A solution, in alcohol, of the coloring matter of urdinary grass, is particularly to be noticed as exhibiting chlorophyll lines of great distinctness. Somo of the aniline colors, dissolved in alcohol, aro also remarkably pretty. A somewhat uncommon appearance is given by the color known as "Blep de Lyon." The midule of the spectrum is entirely absorbed, leaving the red and violet as bright bands; when very dilute, a line appears in tho yellow, which is then visible.

A handy substitute for the side prism may bo noted. When a comparison of two spectra is desired, it may bo effected by bringing the bottoms of the vials containing the liquids together, befure the slit. Of course, it is ecessary for the bottles to be quite full, and corked.

On the Process for Preparing James's Powder.*
by MiChaEl dononat, esq.,
hosozary hexber of tive colldot of phabact of rHiLADEIPIIIA, ETF., ETC.

More than two centuries ago a medicine mas in repute made by burning shavings of hartahom or of bones along rith sulphuret of antimony, and continually raking or stirring them together until the sulphurwas burnt off, and the powder had become light grey or ash-coloured. It was known as Lile's and Schawanberg's fever porder, and was much used about the middle of the serententh centurg.

In 1746, Dr. Robert James, a physician of talent and eminent learning, finding the porsder to be an excellent medicine, and having made a trifling alteration in the process of preparing it, secured a right to tho exclusivo manufacture by a patent. The conditions of obtaining a patent were that tho politioner shall mako oath that he is the sole inventor, and that he has deposited in Chancery a true and preciso specification of the mode of producing the article for which ho secks the monopoly. But Dr. James was not the sole inventor, nor dad his specification disclose his process; nor could the powder, thenceforward called "James's Porder," bo prepared by the means which he pretended were sufficient: he concieved that his best security ras secrecy. Dr. James, therefore, virtually had no patent right.

For a long serics of ycars nothing was certainly known of the composition of the porsder uritil the investigntion ras undertaken by Dr. George Pcarson, who in 1791 gare an account of it to tho Royal Society, and a communication which wis published in the 'Philosophical Mransactions.'
a nedicine founded on the experiments of Pearson, and intended as a substituto for James's Powder, was intioduced into the

[^0]London Pharmacopoodia of 1783 under the name of Pulvis Antimonialis. It was atcordingly used by apothecariosa3 a suce edmoum on account of tho ligh price of the real James's powder; but it never obtained the confidence of practitioners; nud hence the origin of the adjunct used in proseriptions, reris. Indeed, it never desorvel their cmfidence, being, is directed in the Pharm?e poia, an aluost inert substance.

Dr. Pearson informs us that all the parcels of James's powder, that he hiul sjen wuald bo called whits powders, but no two of them wore white in the sane dogreo; they had cither "a shade of yellow, or stone colour, and nois were perfectly white, or so white as some speamens of latvis Antimunialis uf the shop3. Some parcels hal a brassy t.este, others no taste. Dr. Pearson having formed a powder from bone-ashesan l cride sulphuret of antimsy possessed of properties similar in hind to every ono of those ascertained to bslong to James powder, with scarcely any differenco in the degreo of them, considered that thoy were tho same. Beside this synthetic proof, he adducel the evidence of analysis, and mado experiments in proof before competent judges." He says, "it is vory probable that no degreo or duration of fire applifd in open or close vessels alone can producs a calx of the same kind as that in Jamos's powder, nor, periaps can such a powder be composed by fire applied in close vessels to calx of antimony mixed with calcined bone; but if cals of antimony, duly calcined, be mixed with calcined bone, and exposed to air, in a due degree of fire, for a sullicient length of time, and then in a still greater diagres of fire be applied to it in close ressels, such a compound may béformed as James's powder.
powder is formed by a mixture of any calx of antimony and bone ashes, cxposod to any degree of tire in close ressels, without previous exposure to fire and air."
Pearson concludes fromall inis experiments that James's powder consists of phosphate of limo and a peculiar calx of antimony, different from all others, composing a triplo compound in the proportion of about 57 parts of calx of antimony and 43 of phosphate of of lime, or a double compound of the same elements.
The admitted me:ical efficacy and the high price of James's porder induced the rarious colleges of physicians to introduce into their pharmarnpouias a process for imitating it. They took for their guide the investrgations of Pearson, and dictated formule which apparently did not much differ from the prescription of that accomplished physician. This preparation called Pulviz Antimonialis, proved an utter failure, having neither the composition nor the .a lical effects of the powder of James. In the manipulation of the manufacturers, tho clief object seemed to be the production of a powder as white as sno:r,-the very quality which it ought not t. possess if intended to resemble the powdor of James, which at that time was always slightly yelluw, or cream culoured. or oren
stone-colourod, as wre loarn from Pearson. stone-colourod, as we learn from Pearson.
I made an numbur of trials of the process of the three British Pharmaccopoins (1816), bat could not obtain the powder white like the Pulris Antimonialis of the drugnists, or like the James's powder then in nse. The ronsted materials introduced into tho shittle.pot, with another inverted, both luted together, were maintained at a white lieat in an air-
furnace for two hours. When cold, tho included matter was foumd converited into a dense, clos-grained, buff-coloured mass, as hard is limesturn and very heavy. Beng amain heated to whiteness, it becauc a deop olive-bruwn, harier than bufore.

I repeated the process on new, matorials, heating them similarly in a different arr-furnace, itad ubtaining an olive-brown semuvitrified mass with dark streaks, harder than the former mass, a smatl purtion of a whito enamel apparimy on the side of the skittlepot.

It was phain, therefure, that the heat was too high, and that the use of the air-furnaceoriginally directed by Pearson, and adopted in all the pharmacupwias, was an error. I, therefure, repeated the process, and placed the skittle-put containing tho powder in a common fire grate, heaping coal round and and over it. In due time the skittle-pot became red-hot, and in this state was bept for an hour and a half or two hours. When cold, it was found to be a snow-whito powler, covered by a congeries of crystals a quarter of an inch thich. Thus one important fact was acertained.

On ropeating this method several times, and using an iron ladle in a common coal fire, the resulting powder, instead of being uniformly white, proved in some iustances to be buffcoloured; but cecasionally tho snow-white powder was obtained. As the failure was nut due to the final heating, it must have originated while the materials wero in the ironlade. Farious $2 x p e r i m e n t s$ convinced me that the heating in the ladle is tho most important part of the whole process; and at length it became evident that wrlen the heat, accompanied by continued stirring or raling, was maintained until the porrder changed from dark brown to a light yellowish-grey: the final heating in a skittle-pot brightened it, or the greater part of it, to a perfect white. The light yellowish-grey colour heromentioned will be bost understood by comparing it to the dust of a Bath brich, often used for cleaning dinner knives, but a little paler.
But to heat the powder while in the ladle fully to this colour, but not beyond it, was the difficulty.
During these cxperiments I preceived that when the quantities of the two ingredients were as large as ten ounces of cach, the re sulting powder when taken from the skittlepot nover proved white, but generally dark grey, interspersed with a deep yellow-colored portion. The fact pointed to the conclu-
sion that the ladle was too small for that sion that the ladle was too small for that quantity of materials, that due raking during phuration was accordingly imperfect. bemisplierical ladlo capable of holding a gallon being procured, a chargo of ten ounces of each ras placed on the firo and continually raked for scveral hours, at first without any intermission, and at length with short intervals of rest, until the proper colour was attained. This matier, being finely powdered was introduced into a proportionately largo skittle-pot and cxposed to a rell-built coal fire in at common grate, and kept red-hot for three hours. When cold, the top portion proved to bo a thin cake of dark-coloured matter; under that was a small quantity of yellow portion; and the remainder snowwhite.
On trying so largo a chargo as sixteen ounces of each ingrediont in the large ladle it proved to be unmanageable; the carbon at
an early period ignited; the mass softened, collected into dark-coloured lumps, which could not bo raked notssithstinding much edfort. Findmg it nupracticable, I took out the charge when cold, and being porsdered, it was returned into the ladle in four different portions, each of which was soparately raked whilo heating, unthl the proper colour appeared to be attaned. The whole of the powder being charged into a very largo skittlepot, was heated in a well-built and wellsupplied fire for several hours. The powder, when cold, was found to be yellow throughout; for tho proper proportion between the quantity of matter and the containing iron ladle had not been observed, the necessity of which was thus amply proved. It is a certain fact that a large quantity in a small ladle will never afford a white powder.
By reversug the conditions of the process, that is, by acting with due care on a small quantity of materials in a very large ladle, wo are pretty sure of bringing the charge safely through its first atage of danger. Thus when four ounces of hartshorn-shavings and the same weight of sulphuret of antimony were well raked in a ladle of the capacity of a gallon, until the requisite colour was attained, and when heated in the skittle-pot for an hour or more in the usual manner, tho porrder almost always turned out white, generally snow-white, but sometimes with tho creamcoloured tinge noticed by Pearson. Under the condition of small charges in a very largo ladle, the snow-white colour was sometimes produced by a very hot fre in fifteen minutes after tho skittle-pot had become red-hot but with a fire not so hot, a much longer time was necessary.

After following up theso experiments for scmo time, I found that merch trouble and anxious watching would be saved by raking the bone-shavings, without the sulphuret of antimony, until the ermeniacal fumes, tho sulphur, and the extromely fetid gases had been oxpelled; and makmg properallowance in subsequently apportioning the antimony.

Adopting this method, sir ounces of calcined hartshorn-shavings mised with four ounces of sulphuret of antimony, wero raked over a graduated fire, in my iargest ladlo, until the powder lhad assumed the usual yellowish-grey hue. It was then transferred to a small skittlo-pot, which, being placed on a stand in a large fire grate, coals were built round and over it, and a cover applied. The skittle-pot was bept red hot for six hours. When cold, it was cautiously examined. No part of tho partially cohering pordor was white; it was almost all dark grey, but much darker towards the top; the portion at the very top was full of particles of metallic antimony, and oven small masses of it which had assumed a somerrhat rounded form. The dark grey colour of the wholo mass seemed to be caused by intermirture of thousands of mi uto shining particles of the metal with the phosphate of lime. Round the mouth of the skittle-pot and on its cover was a small accumulation of white nowder, some of which was minutely crystallized, and was deposited by the dense rhite smoke which issued from the skittle-pot overy time tho cover was removed, and ceased when it was replaced. At the bottom of the skittle-pot was a small quantity of yellum powder. It was remariable that although many processes had been conducted in this fire-grate in all respects in the same manner, oxcept that the fire lad been maintained for two hours only, the pow-
der had always turned out white, a significant fact which scemed strongly to indleate that the heating had been contmued too lones, and perhaps too intensely. It also ayreed with the two cases already deseribed, m which tho intense heat of the furnace during two hours had produced the samo injurums effect. It corresponded also with tho fact already stated, that a portion which had been adequately raked was rendered perfectly white in the cruciblo by fifteen mumtes' red heat in a strong fire, tho same effect not being produciblo by a weaker heat for a much greater length of time.
In due time, after finishing a quantaty of my James's powder, I was anxious to know sonothing of its medical effects, and with this vier gavo it to several friends for trial, and used it also in my oum person. But in most of the cases tried, the powder had a rough action, producing sickness, and sometimes romiting. I had used equal quantaties of bone-ashes and sulphuret of antimony as directed by Pearson, and followed in the pharmacopoias, but this proved to be too much of the sulphuret. I therefore made new trials of the process with half the quantity of antimony. In these proportions the difficulty and uncertamty of the process were greatly diminished; the powder ahmost always turned out snow-white, and when used as a medicine m due doses was for the most part easily borno in the prome we. But at is very probable that Dr. James employed a less ratio of sulphuret of antimony eren than onehalf; he sometimes preseribed has powder in doses of ten grains every six hours, and cven trenty grains at once, without much effect on the stomach, bowels, or skin.

There is a slight objection to conducting the process of roasting in an iron ladle, and raking with an iron rake; minute particles of protoside of iron are found in the resulting powder, vely small in quantity, but unpleasant in appearance. This may be remedied by substituting an enrthen dish, and it was such a vessel that Prarson used in his experiments; but the iron ladle is far more convenient.

I believe that James's powder may be prepared in the following manner:-Let any quantity, say cight ounces, of bone-shavings be heated in an earthen- vare dish or an iron ladle, over a moderate fire, and frequently stirred or raked during its incineration. When burnt to a black powder mad annoniacal fumes are no longer perceptible, let four ounces of levigated sulphuret of antimony be thrown in, and let stirring with an iron rod from the bottom and all parts be immediately commenced and rapidly continued, so that the sulphureous fumes shall have a free issue and be no longer discoverable. This is most important.
During the desulphuration the heat should be Lept as low as may be sufficient to cause the discharge of the vapour. In the dark, the porder should show a thin, blue flame, as faint as possible; but as often as this flame
disappears, the heat should be gently raised disappears, the heat should be gently raised until it again appear. But neither the bottom
of the ladle nor the porder should be allowed of become red-hot whilo vapours are dischargcd, or while there is blue flame from the burning sulphur. At length cren a higher heat will not expel any moro sulphnr. During this roasting, innumerable bright spicula of metallic antimony will sparkle through the poirder. ithe ladle and its contents may be
minutes, the raking being continued. If the process has been rightly conducted, the penvder, at this stage, will have assumed the colnur of the dust of bath brick.
The contents of the ladle shonid now be powdered, sifted, transferred to a skittle-pnt, its cover laid on, and the whinle placed on a stand in the firc-grate, and lumps of coal are to be built round and above it in such a way as to permit a freo current of air to pass through. The skittle-not and its eontents will thus bo brought to a uniform bright redheat, which may be maintained at that degre for about an honr, more or less, aremuling t. the quantity. The slittle-pot is then to be taken from the fire, and should the powder prove to be pure white, exeept perhaps a thin layer at the top, it only requires to he reducer to the fimest powder in an carthen mortar, and sifted through a fine silk sieve. Should́ the powder not prove white, it may bo returned to the skittle-pnt, placed in the fire as before, and continued in a state of ignition for half an hom, aceording to the juikment of the operator.
In the first part of the proerss, the sulphuret of antinmony is slowly decomprsed; its sulphuid burns, and exhales in the state of sulphurous acir. The antinnny, now insulated, arpears in small hrilliant spicule, which, as the lieat increases, gradually disaprear. In the second part of the process, when the roasted matter is heated in the skittle-pot, antimony, while in the state of vapur com bines with oxygen, and is convorted into protoxide, part of which crystallizes in the upper part of the skittle-pot, or escapes as a thick, white smoke Tho heat increasing, the protoxide is converted into antimoniate of antimony, which remains mixed or combined with the phosphate of lime.

If the heat be raised much above that of a good coal fire in a common grate, the mass will slightly colhere, and in some parts wial become yellowish and vitrenis. If the heat be still higher, as that of an air-fumace, the porder will change to an olive-brown mass as hard as stone.

All the time the powaer is in the skittle-pot and very hot, protuxide of antimuny is escaping or cijstallizing on the cover, and hence the difference discoverable by analysis, and by the medical efforts of different parcels of James's powder. It therefore lecunces an important and difficult question, what is the criterion by which the completion of the process is to be judged? I know of no other then this, that when the powder is white it is fit for use: any greater or lonser-contmued heat I believe to be mjurious. It may mot almays happen that the whole charge will prove white; when it does not, the whitest parts are to be separated, and, if worth the
trouble, theremaindermay be slightly calcined again. But should the first charge, after being duly heated, prove darli-coloured throughout, it cannot be improved and may be rejected.

Befure concluding this paper, 1 may mention some facts relative to James's powder which were communicated to me a great many years ago by a very old gentleman who had been an apothecary in Dublin, Mr. William Specr, the clever inventor of a rell-known fiydrometer for asceritaining the strength of excisable spirituous liquors. It was ns fol-lows:-
In 1758 Dr. Anthong Rellnn, a Fellore of King and Queen's College Physicians in
$t_{\text {he }}$ physicians of Mercer's Hospital. The Fellows refused to meet him on account of his enyploying James's puwder in his practice, although the decreo against antimonials by the French Collego of Plysicians had been long hefrere repealed. In consequence, ho wrote to Dr: James, who advised him to go to London to 1 ractise, which he did. Becoming intimate with Dr. Janes, the latter, during several interviews, commumicated the process practicall:- to lim, his patent-right having expirel. In 1760, Relhan returned to Dublin, and being acquainted with Mr. Ducros, an eminent aputhecary, then residang in Whlliam Strect, he communicated the process to him confidentially. Ducros prepared the powder in presence of Relhan, and it was repatedly ndministemad in Mercer's Hospital and other places, with exactly the effects of James's puwder. Mr. Speer was apprentico to Mr. Ducros, and on his death in 1868 sucsecded twhis business. the widow gare up to Mr. Speer a \IS. buü containing the account of the Pulvis Jacubi, which ho retained over after: The following is the process:-"Tako one pound of hartshorn-shavings; boil them in a large quantity oi water, and dry them by a slow fire. Rul, them to a fine powder. Then put an equal weight of tho hartshorn and niwiered crude antimuny into a crucible, and set it on a moderato fire, stirring it rith at ling rod of irun for six hours or as long as it smokes."

I have repeated the above process several times, but never could produce the snowwhite pawder with which wo aro familiar; tho resulting coluur being generally that of batli bricklust already described, but on a fow occasions paler. Yet the statement of Mr. Speer is I think supported by facts. Dr. Y'earson says, "It is probablo that this powder was made fur several years with merely the heat necessary to carry of the sulphur and calcine the bone, in an open vessel, and consequently it was of a light clay or ash colour. Its property of turning white in a greater degree of fire appears to have been a subse"uent discovery." But in this greater degreo of fire the nowder discharges copious fumes of protoxide cf antimony, and becomes less active as a medicine; and at length assuming the hard, vitreuns state, it loses all medical power. On une occasion, when I had obtained the porder from the iron ladle paler thanusual, 1 took several doses of it without any striking effect, which proves at least that, in this state, it is innoxious; its taste was most disagreeable, whereas the white powder is tasteless. I imagine that in this form tho powder wonld prove to be in its most active state ; that it was in this forin that Lalo's and Schawanbery's powdor obtained its colebrity; and that the subsequent process of whitening it by fire deteriontes its medical efferts more or lessaccording to its degree and contmuance. But is of little use to nsist on tha part of the subject in the present day. If the whitening process in the skittle-pot were relinquished, and the light ash-coluured porder from the ladie were accepted, we should probably have an efficacions medicine of uniform or little-varying strength.

Clare Strel, Dublia.

Poisoning by Oarbolio Acid

Has occurred in Ergland. On the 5th of February, Dr. Machin was called to a hos-
pital wheme three women had, by mistake, bathed thomselves with a sponge with carbolic
ucid to cure the itch. A few minutes after tho operation they complained of burning headache, dizziness, and soon became unconscious. Although ablutions with warm water and soap wero ortered, ono of the women died, without being restored to consciousness, in the course of four homs. Tho second became conscious, and attenpted to vomit ; an ometic was administered, and afterwards a cup of strong coftee, which brought sume relief, but in spite of all remedies she died the third day. The third patient recovered. Tho carbulic acid employed was black and oily, and apparently iumur. Only six olmees of the acid were used. Jumbul of Applied Chemistry.

Hydriodio Ether and its Uses. ${ }^{-}$

Within the past few years the attention of pharmaccutical and other chemists, thraugh the contiment of Europe, and subsequently in this country, has been called to the mature, chemical properties, ind therapentical uses of this compound, Which had provously been known only in the laboratory of the theoretical and experimental chemist. It is composed of iodine (I), and the radicsl, ctlyy ($\mathrm{C} \mathrm{E}^{5} \mathrm{E}^{5}$), and is therefore the iodide of ethyl, and ropresented by the formula, $\mathrm{C}+\mathrm{II}^{5} \mathrm{I}=155.3$. To obtain it, we very cautiously, and little by little, mix ten warts ly Neight, of pure resublimed iodine, fife of alcohol, and one of phosphorous, and distil into a receiver kept cool by surrourding ice. The safest way to effect the combination of these ingredients, is to place the phosphorous and alcuhul in a matrass or flask, and gradually raise the temperature to $108^{\circ} \mathrm{F}$., in order to melt the former, and then to side the iodine, in small quantities at a time, through a glass tubc, closed at the lower end, but having a number of very small lateral perforatiuns near the bottom. The mixture is then stirred with this tube. which is allowed only to reach almost to the bottom of the stratum of alcoliol, and therefore only admitting the latter, which gradually dissolves the iodino, thus rendering the reaction moderate and comparatively safe. About form-fifths of this mixture is then distilled at a temperature of about 150°. The distillato invariably contains an excess of alcohol, which, howerer, may be easily separated by washing with pure distilled water. The supernatant liquid is decanted, and tho ether dried rith a little chloride of calcinm.

On the large scale, and for practical purposes, we believe that inother safer and cheapor method is now renerally employed, which is tho following: Muriatic acid in its gascous form, that is, deprived of tho water in which, in its liquid state it is dissolved, is conducted into absoluto slconol until the latter has become saturatec, and this solution is placed with iodide of potassium in a retort, from which, after standing twenty-four hours to permit n thorongh reaction, it is distilled and washed freo from alcuhol, and dried as in the first process. The residue, after distillation, rill bo chloride of potassium, IKCl. Ono hundred parts of alcohol will absorb about sixty-eiglht parts of the muriatic acid gas, and the quantity of the iodide of potassium used should be exactly sufficient to conrert this smount of gas, in its union with tho

* Frem the Joumai of Appilied Chemistry.
potassium of the iodide, into chloride. The yeaction of the gis with the alcoloul being attended with evolution of heat, the liguid should he kept surrounded with ice or some other freezing mixture.

As prodiced by oither of the methods abovo named, Hydrindic ether is a colorless uninflammablo liquid, of a specificgravity of 1.94, or nearly donble that of water, of at sharp, pungent taste, and of a penctrating ethereal uton. Its butheng jomet is at 148° F., and tho specific gravity of its vapor is $\overline{\mathbf{v} .4 .}$ At a red heat it is decomposed, giving of the purplo vapors which are peculiar to ivdine. When exposed to tho nction of the stmosjuhere for any length of time, it assumes roddish tints from the liberation of iodine, a change which may lue easily prevented by introducing a globule of metallic quicksilvor into the bottlo containing it. It is nearly insoluble in water, but vory soluble in alcolol, from a solution in which it is precipitated by the aldition of water. It is also casily soluble in simplo ether.

When placed in contact with unetallic zinc, the latter unites with tho iudine, fuming iodide of zinc, and leaving the radical ethyl in the form of a colorless gas, having a faint, eihereal odor, of a specific gravity of a little moro than 2, and burning with a brilliant white flame. At the temperature of 37°, and under a pressuro of $2 \frac{1}{3}$ stmosplieres, it is reduced to a colorless, transparent liquid, which is soluble in alcoliol. The isolation of this radical reyuires a temperature of a little more than 300°. Common cther is tho protoxide of this compound, represented by the formula, $\mathrm{C}^{4} \mathrm{H}^{5} \mathrm{O}=37$, and alcohol is the same when hydrated ($\mathrm{C} 4 \mathrm{H}^{0} \mathrm{O}^{2}=46$). Besides its use in the chemical laburatury as a raggent fir the purposes mamed, it has within tle past few years attracted the attention of physicians, especially in Anerica and England, is a romedial arent, to be administered by inhalation, in many cases in which the use of iodine is indicated. It is given in doses of 12 or 15 drops, inhaled from a napkin or sponge. In these doses, it is a gentlo stimulant, and anti-spasmodic, but in larger quantities, and when inhaled for a considorable tine, it becomes a porerful anresthetic agent.

It is especially adapted to discases of the lungs and bronchial tubes, and hence it has been most successfully administered in cases of bronchitis, phthisis, asthma, catarrh, and their kindred discases. It increases the nppetite, produces an increascd pulse, and is said to produce great vivacity of spirits and activity of thought.

When prepared with phosphorous, as by the first fornula, it is sometimes nauseating to the patient, on account of remaining traces of that substance, but when prepared by thic other method, and of pure materials, it is freo from any such objection, as any excess of chlorine would be completely expelled by the degree of heat which is necessary for distillation. The alcohol employed in its preparation should bo of the purest quality, and especially should it bo deprived of all traces of fuscl oil, as is also indispensable in the manufacture of chloroform.

If, as has been represented, this compound has all tho virtues of iodine, bringing the patient under all the beneficial influences of the latter, without any of its unpleasant effects, thon we cannot too carnestly encourago its use by the medical faculty, and would call upon manufncturing chenists to propare a
suitable stock for the market, of a quality which shall not tend to throw tho article unto bad repute.

Manufacture of Rofincd Potash.

The salts are broken into fragments tho sizo of an egg, und lixiviated in water. Tho lixivium should mark from 20° to 25° on tho Beamme areometer ; it is passed into cauldrons, where, by successivo evaporations, crystallisations, and solutions, the separation of the salts is effected.

In the first set of cauldrons, the lixiviato is oraporated untilit marks 40° on the Beaume areomoter ; at this density, most of the sulphate of potash is precipitated. Tholiquid is left to sottle, and decanted into crystallising pans, whero the greater part of tho chlorido of potassium crystallises when quite cold.
'the mother liquor is evaporated in the second set of cauldrons until it marks 45°, dming which process it precipitates carbonato of soda. After settling, the lixiviate is again passed into the crystallising pans, where, on cooling, a now deposition of chloride of potassium takes place. The lixivium is again heated in tho third set of cauldrons, aind rendered sufficiently concentrated to mark either $50,51,52$, or 53 areomotric degrees. Carbonate of soda is still deposited ; tho liquid in the crystallising pans, when cool, still precipitates chloride of potassium, and when cvaporated to dryness, yields commercial refined putash, generally contaming from 78 to 82 per cent of carlunate of potash. In order to obtain potashes rofined to a still higher standard, these are dissolved at 80°, and the solution ovaporated to 61 or 63 areometric degrees. Carbonate of soda $1 s$ deposited, and the linuil ubtained, when eraporated and calcined, yields potashes from 88 to 94 per cent of carbonate of potash.

It has been shown that the greatest part of the sulphate of potash contained in the salts was deposited luring the first eraportion of tho lixivium. This salt, polluted in the first ingtance by the impurities of the lixivium, contitine, besides the alkaline carbonates, chloride of potassium. By means of rakes, the salt is taken up as it precipitates, placed to drain in vessels of perforated sheet iron, dissolved, and subjected to a fresh crystallisation. Commercial sulphate of potash obtained.

The chlorido of potassium successively deposited during the different yhases of oraporation of the lixivium is left to drain, and, when deprived of the liguid which moistens it, is saleable. After the second or third cooling, it is not, however, aufficiently pure to be introduced into trade, and must bo collected and restored to the first set of couldrons, there to be operated upon anew.

The carbonate of soda produced by eyaporation of tho lixivitum purified after desiccation by means of successivo solutions and crystallisations, repeated tro or three times. The sodr-salt thus obtained furnishes, after calcination, commercial white-soda --M. Gaston Tissandier, in Chemical Neus.

Cleromic Acid.

Is perhaps the best, and certainly the least painful, of all caustics. It is extremely well adapted to destroy all morbid growths or excrescences. Not prinful, and not liable to spread like most caustics, it has been successfully used to destroy cancroid excrescences on or near the os uteri.

CANADIAN PIHARMACEVTYCAM SOCIETY.

Parsidant,

 War. ELLIOT, Esq.The regnlar mertings of the Society take place on the Finst Fridax evening of cath month, at the Mechanias' Institute, when, after the transaction of business, there is a paper reat, or discussion engayed in, upon subjects of intercst and ralue to the members.

The Society admits as members, Chemists and Druggists of gooll stunding, und their assistants and apprentices, if elected by a majorit! rote, and on payment of the following fees:

Principals

\$4 00 per Annum

Assistants \& Avorentices, 200

The Jourval is furnished yree to all members.
Paties wishing to join the Society may send their names for proposal to any of the members of the Suciety. A copy of the Sonstitution and By-lates of the Socicty will be fumished on application.

HENRY J. ROSE, Secretary.

THE CANADIAN

E. B. SUUTTLEWORTH, EDITOR.

TORONTO, ONT., NOVEMBER, 1869.
Correspondence and general communicitions, of a chameter suited to the objects of this Joernal, are invited, and wall always be welcome. The writer's name should accompany hes communication, but not necessarily for publication.
Sabscriptions will not be acknowledged by letter, as our sending the paper may be taken as sufficient evidence of the receipt of the money.
All communications conucted with the paper to be addressed, post-paid,
"Editor Canadias Pharmacfutical. Joumal, Tononto."

TINOTDBES.

in glancing around the shelves of a drug store one cannot fail to be impressed with the extent of the class of spirituous compounds designated tinctures; nor is the idea erroneous, as it is probable, that of all the divisions of officinal preparations, the class Tincture is the most numerous and important. The druggist is, perhaps, more particularly interested in his tinctures than in any other part of his stock; their bright appearance is secured by carcful filtration; sediments are not so much as heard of; while the ever clean and polished bottles, guiltless of finger marks, or stalactitic incrustations, maintain a constancy of level, in regard to their contents, despite the most exhaustive demands, and, like tho widow's cruse of oil, arealmays full.

Tinctures can bonst of considerablo antiquity, alihough, when compared with the ointmonts and infusions of ancient times,
they might even bo termed moilern, as, in the sense in which the word is now understuod, they could not certainly havo existed previous to the discovery of alcohol. This perivel is variously stated. Rhases, an Arabian, who lived in the ninth centmy, is said by some to lave been the discoverer of brandy, and several phamacentical preparations, of which alcohol was the vehicle, are attributed to hin. In Watts' Dictionary of 'hemistry, the credit is given to Abucasis, who lived in the twelfth century; while others attribute the discovery to Ramond Lullius; or to Arnold, of Villa Nova, a ciremist who resided at MLontpellier, in 1300; but Brande thinks that inasuuch as the Egyptions secm to have derived their chemical lnowledge from Oriental nations, and as the process of distillation was known to them, at at very remote period, it is likely that they were also acquainted with alcohol. However, this may be, it is probable that as soon as the solvent properties of alcohol became known - and they conld not long be concealed-one of the first appil cations wuld be to the healing art.
But not matil later years have tinctures assumed that prominence which they nuts enjoy. Even in tho sixteenth century-1f the description of the great dramatist may be taben as characteristic of that poriod-the apothecaries' shop presented a scry different aspect to the presunt.

"About the shelves

A beggarly account of cmpty boxes,
Green carthern pots, bladders, and masty scots, Remnants of packthread, and old cakes of roses, Were thmly scattered, to make up a show."
The absence of liquid preparetions is particularly noticeable, and as it is evident that the Apothecary of Mantua made as much cisplay as possible, it may be presumed that tinctures formed but a slight part, if any, of his stock.

Unfortunately, our library is very deficient in works of antiquity-even Gray, of respected memory, is not at hand, or we might trace out, in detail, the listory of tinctures to the present time. Suffice it to say, howerer, that in this day there is nu class of preparations in more general favor or request. The number appears to be incressing, though an eflort in the direction of curtailment seems to have been made by the compilers of the first British Pharnacopceia; but in the edrtion of 186 twe find fresh accessions. The number of tinctures at present oflicinal, according to this authority, is sixty-five. In the United States there is a decided leaning towards fluid extracts, some druggists even making their tinctures from these preparations. This practico cannot be too strongly condemned; as, at best, the composition of the tinctures is excoedingly uncertain and variable, and that of the fluid extracts is still
more so, frum the grent number of processes employed in their manufacture, nad tho great temptation on the part of manufacturers to turn out articles deficient in strength. It is a emparatively ensy mater to judge of the quality of a crude drug, by its appearmee, but this is next to impossable in the case of fluid extracts.

Cutil recent years, the process of meceration was alone cuployed in the mamufacture of tinctures. The introduction of the mothod of disphacoment by M. Butlay \& Son, of Paris, in 1833, has, however, effected a gradual but complete revolution in its favor. Tho process quickly gained notice in France, and was embraced at once by many of the leading phamaciens. In Great Britain the subject received considerable attention, but it was not until 1864 that the authorities officially recugnized the process. In the edrtion of the P. B. for that year, wo find percolation adopted in 39 out of 50 , the whole number of tinctures then officinal. But the abundument of maceration by the P. B. is, after all, only partial ; for, as if afraid to trust wholly to displacement, it directs the previous maceration of the ingredients fur furty-eight hours, and the final expression of the drug. The authorities of the V'nited States think differently; relying on the sliill of the operator, they trust to pereolation, alune, fur a thorough exhaustion. It is not our province, in an article like the present, to discuss the relative merits of these methods; we intend, at a future period, to treat the matter at length, as it is a subject at which we feel particularly interested.

NEW SUBSORIBERS.

We ask the assistanco of our friends in obtaining subscribers for the coming year. Tho Jourval has, so far, met with a fair sharo of encourayement, but there are still some drugghsts whose names are not on our list. Wo have never made any special effort in the way of obtaining subscribers, by canvassing, or otherrise, relying for success on the merits of the undertaking, and the efforts of our friends. We have no desire, however, of hiding our light under a bushel, and aithough the Journal was instituted as the organ of the Phamaccutical Society, and for the benefit of its members, we should like to have a gond outside circulation as well. The now year offors the best time for subscribing, as a new rolume will be commencel at that time. We might also intimate, 5 that a goodly number of subscriptions fall due at that period, which we hope to rener.

Tue Pharmaceutical Society of Great Britain purpose publishing a "Year Book of Pharmacy," to contain abstracts of all papers
on pharmaceutical subjects, issued during the year, whether at home or abrond. The "Annunl Report on the Progress of Pharmacy," in the "Procecdings of the American Phar. macoutical Asseciation," is suggested ns a model, but it is intended to make the abstracts more in detail thom usmal with that publication. The work is to be bomnd with the Ammal Proceedings of the Conference, which will then make a book of about 500 pages, octavo.

Tho recent meeting, at Exeter, of the British Association for the Advancement of Science, has been made the subject of a book, of a burlesque character, entitled Excter Change ; edited by Snug the Joiner ; in which the deliberations of the Association, and its learned members, are treated in a satirical, though exceeding good humored and nonoffensive manner. The style of Professor Tyadall, is very cleverly imitated in the paper "On the Alcoholic Compound termed Punch." The paper closes with the following:-
"Experiment has proved that the juice of three or four lemons, and three-quarters of a pound of loaf sugar dissolved in about three pints of boiling water, give saporous waves which strike the palato at sucls intervals that the thrilling acidity of the lemon-juice and the cloying sweetness of the sugar are no longer distinguishable. We have, in fact, \mathfrak{a} harmony of saporific notes. The pitch, however, is toolor, and to heighten it, we infuse in the boiling water the fragrant yellow rind of one lemon. Here we might pause, if the soul of man craved no higher result than lemonade. But to obtain the culminating saporosity of punch, we must dash into the bovrl, at least, a pint of rim and nearly the same volume of brandy. The molecules of alcohol, sugar, and citric acid collule, and an entirely new series uf vibrations are produced -tremors to which the dullest palate is attuned.
"In punch then, we have rhythm within rhythm, and all that philosophy can do is to takg kindly to its subtile harmonies. It aill depend in some measure upon precious habits, whether the punch when mized will be taken in excess or in moderation. It may become a dangerous ally of gravity and bring a sentient bsing to the gutter. But, on the other land, it may become the potent inner stimulus of a noble outward life."

Tinct. Ferrl Aect.

J. Deane and T. Jefferson (Proc Br Ph. Con, Pharmarontirel $J_{i, w}$) having realized the instabil.ty of the above preparation, and the difficulty of preparing it on short notice, propose the the icllowing:-

Liq. Ferri Persulph. $2 t$ oz. (fluid).
Liq Ammonia q. s.
The precipitated oside of iron, after being thoroughly washed and pressed as dry as possible, is to be dissolved, withont heat. in 520 grams, or, approximately, 9 lluid drachms, of glacial acetic acid, and the solution diluted with distilled water to 5 luid ounces. One part of this, with threo parts sp. vini rect.,
will represent the tinct. ferri acetatis, B. P. In this way a very elegant and convenient preparation may be ohtamed, which will keep for a considerable timo, samples so prepared having been kept over twelvo months without any change beyond tho formation of a small quantity of a crystalline doposit' which, however, is entirely solublo on dilution with either sp. vini rect. or ar. destillata; the solution is in fact, slightly supersaturated, but it was found that any attempt to make a more dilute solution, such as twice or thrice the strength of the tincture, interfered with its keeping propertics.

OANADIAN PHARMAOEOTIOAL SOOIETY.

The regular monthly meeting of the Society was held in the Mechanics' Institute, on Friday evening, 6th inst.; the President in the chair. The change of the night of meeting caused a perceptible improvoment in the attendance.
After reading and adoption of the minutes of last mectins, the following new members were elected:

phincipals.

Jas. Aysworth, Tanworth.
Connelits Dawson, Warkworth. Assistant.
Chas. T. Betr, Tamworth.
The President regretted that the application of Mr. Dawson had not been brought up sooner, owing to his absence from Toronto at the last meetings of the Society.
Mr. R. W. Elliot, on behalf of the Committee on Legislation, reported that he had seen the member of the Ontario Legislature who had chargo of the Bill, and it was expected soon to be placed in the hands of a special committec of the House, in view of which the Society should examine the Bill carefully. From a reference to the English journals, we fuund sume small impediments in the working of the British law, which it would be well to guard against; and then we had receiced many hints and opinions from our own non-rusident members that demanded our attention, so as to have the Bill as perfect as possible.

The clanses of the Bill were then read over and discussed.

With regard to the name, it was decided, on motion, that the Suciety shall be called "The Ontariu Cullege of Pharmacy."
A revision of the Committee mentioned in Section was rendered imperativo by the death and remoral of some of the nembers composing it, and the names of Mr. S.J. Parker, Onen Sound ; Mr. A. W. Kempt, Peterboro', and Mr. Jas. Browne, Ottawa, wero substituted for Mr. Jas. H. Parker, Mr. Gilmor, and W. MI. Massoy.

The dates nere altered, and the time for registration was extended to July 1st, 1860.
The advisability of having a clause in-
sertod in the Act, requiring the formule of all the patent medicines sold in Canada, wherever made, placed in the hands of tho Registrar of the Socicty, was then discussed, and it was decided to authorize the Committeo to ondeavor to obtnin its insertion.
Mr. Shuttleworth then read several letters he had received sinco last session, regarding proposed alterations in tho Act. Many of tho opinions were thought impracticable. Ono proposal, that only members of the Society should be allowed to vote for the first Council, reccived an animated discussion; but the majority thought that it would tend more to popularize the Council, and increaso the confidence of Parliament, to have all bona fide druggists allowed to vote. The question of what constituted a bona fide druggist, suggested by a correspondent, was thought to bo easily ascertained; or if a specific test was desirable, the written testimony of two or more physicians as to a druggist's ability to make up ordinary prescriptions, would be satisfactory.
The suggestion that diruggists be exempted from jury service was urged, and the VicePresident said that he believed the English law of exemption nas authority here, as he had himself been exempted by a learnsd judge on that ground.

The following committee was then appointed by the meeting to attend at the special comanittee of the Ontario Legislature : President, Vice-President, Treasurer, Messre. R. W. Elliot, Shapter, and Shuttleworth.

The Treasurer, on behalf of the Lecture Committee, brought up the question of Lectures for the season. He said that the number in attendance at the last course was said to be fourteen, and to place that number in attendance at the University or Victorin Collego would cost some two hundred and eighty dollars; and, after stating the financial condition of the socicty, left it for the meeting to decide whether to authorize a continuation of the chemisiry course of lectures or not, tho Mrechanics' Institute having decided not to ogranize chemistry lectures unless the Society came to some similar arrangement to last year's. The subject was freely discuesed by the members present.

Mr. Shuttleriurth gave an account of a system of teaching adupted by Mr. Schacht, and described by him in a paper "On Pharmaccutical Education," read at the British Pharmaceutical Conference. The plan consisted in the taking of a popular work on chemistry, such as, Roscoe's, and studying one or two clapters each night, explaining it fully, and cross caamining on it. This had been found to work admirably, and Mr. Shuttleworth concluded by offering his services to conduct such a class in his own house. In reply to s question as to remuneration, he
said that it would bo quite gratutions on his part. This offor was received with warm approval by tho mecting, aud on mution of Mr. Elliot, tho sum of $\$ 75$ was pliced at tho dispusal of tho Lecture Committee, to defray any necessary expenses, as books, appuratus and prizes, for the class, m adopten' which, many members spoke in favournble terms of the ability of Mr. S. to conuluct such at class successully.

Mreting ajjourneel.

Hinryy J. Rose, Secretary.

note on the bleaohing of aimond OII FOR USE IN TOILET PREPARATIONS.

ay e. в. shettleworth.

Tro varieties of oil of sweet almonds occur in commerec; one colorless, which is expressed from the almonds deprivel of their cuticle; the other, and by far most common variety, is of a jollow color, more or less deep, wlich is derived from tho brown skin of the almond.
As cold crean, and other toilct preparations are frequently prepared by the druggist, and as it is indispensable that these articles should bo periectly colorless, the Uleweling of the cil becomes a matter of necessity. This has generally been effected by agitation with fuller's earth, and exposure to direct sunuight. As the method is very tedious, a readier process mas sought by the writer. All the ordinary bleaching mixtares were tried, including that of Engelhardt, (Polutech. Jour: จ. Dingler), viz., putassum behromate and chlorhydric acid; the general result was decomposition of the oil. Filtration through animal charcoal remored a great part of the color, and may be used where perfect bleaching is not required. The best results were obtained with putassiun permanganate, although when a strong solution is used the onl is attacied and a mixture formed very slow of separation, and culured brown from the deposition of ofide. A dilute sulution-1 part of the salt to 9600 prrts water-will be found best. Tho following process is suggested:Dissulve 1 grain of pertu.urgatate an 20 ounces of cold water; agitate with an equal buuk of the oil; soparato by means of a fumnel, and wash with water. If the colur is nut entirely remured, repeat the process with fresh solntion. Filter througi: paper, if necessary.

Progress of Modern Chemistry.

We extract the folluising frum the aldress of the President of the British Assuciation to the Chemical Section, as embodying an account of the principal changes which chemical philusophy has underguse durum the past ten years :

It is almays an excellent recommendation
to n theory or hypothesis when, amiongst the cultivators of the scien :o to which it pertains, very little differenco of opinion exists as regarls its admissability and scientific value. Thlis is, in a high degree, tho case with regard to the atomic theory. The vast majority of chemists, I believe, accept this thoory as the most suitable exponent of tho fundamiontal truths of their science, and certainly, if the quality of the tree may be judged by its fruit, there is no uther view which furnishes a elearer image to our minds of the chemical coustitution of bodies, and, at the samo time, conducts to the discovery of so many important facts and relations. By Dalton's profound hypothesis, all bodics are supposed to be composed of atoms of infinitely small dimensions. But these atoms are supposed not to be single; two or more of them are held together by certain forces, and thus constitute what is called a molecule. One atom of carbon, one atom of calcium, and three atoms of oxygen, joined together by the force called chemical affinity, constitute a molecule of cavonate of lime. Vast num bers of such molecales, bound to each other by the force of cohesion, form a visible piece of chalk. If a chemist wishes to examine a body, his first endeavor is to ascertain of what sort of atoms the body is formed. This is a mere matter of experiment. He next determines how many of such atoms are contained in each molecule of tho body, and, finally, he ascertains how these atoms are arranged, or, nore correctly, combined within the molecule; for it is quite ciear that a substance like saltpetre, which contains one atom of nitrogen, one of potassium, and three of oxygen, may have these atoms arranged in very different manners, and still havo the samo composition. Wo might assume the potassium and nitrogen in more intimate union, nearer to each other than they are to oxygen, or we might consider nitrogen and oxygen more closely packed together, and, so to sjeab, attachrd as a rhole to the potassium ; in both cases, saltpetro rould hare in each molecuie the same number of atoms, and the weight of the molecule would be the same. The three determinations just mentioned are of fundamental importance to the chemist ; not that such inquiries are the only ones which interest him, for we shall, in the sequel, notice others of almost equal importance.

Nor must it be suppused that ynestions of this nature are of quite a modern date; for Lcucippus, 500 B.C, appears to have sought to explain the nature of things, by the assumption that they aro formed by the union of small particles, which latter received the name of atoms from Epicurns. It is true the notion of atoms, as conceived by the Grecian philosophers, is not quite the same as ours, but their speculations contain our notions pretty much in the same way as the acorn cmitains the nok tree.

The determination of the quality of the atoms in a molecule, or the analysis of the latter, has not undergone any changes during the last fer years; and the same may bo said about finding of the relative weiglt of a molecule, or the determination of the number of atoms which are contained in it. With regard to tho latter point, homerer, it may be mentioned that Avogadru's 'yppothesis, according to which equal rolumes of gascous substances, measured at the same temperature and pressure, contain the same number of molecules, guides us chiefly in assigning to
each moleculo its relative weight and its number of atomis. This hypothesis has won mure and more tho confilenco of chemists, and it is now ndmitted to hold goul in nearly all well-examined enses.

Our views relative to the combinations of atoms in mulecules, and our methods of ascertaining this arrangement have, however, undergone great alterations, and received great additions during the last ten ur fifteen years. To a considerable of these clanges I will now, for a short time, invite your attention. Since our modern views, howover, originated, in a great measure, from the study of organic bodies, and since the majority of chemists now devote thoir time and labor thereto, I shall confine my remarks principatly to the organic branch of the subject.

Eightecu years ago, Prof. Williamson read before the members of this Association a remarkable paper, which contained the germ of our modern chemical riews, and was the cause of many discoveries. He proposed to regard three large classes of bodies, acids, bascs and salts, from the same point of view, and to compare their chemical properties with thoso of one single elected substance. For this term of comparison he chose water. Now water is composed of three atoms-two of hydrogen and one of oxygen. Williamson showed that all oxygen acids-all oxygen bases, and the salts resulting from a combination of the two-can, like water, be considered to bo composed of three parts, or radicals, two of the radicals playing the part of the hydrogen atoms in water, and the thlrd that of the atom of oxygen, thus:
$\mathrm{H}\} 0$
$\mathrm{H}\}$ Water.

$$
\left.\begin{array}{l}
\mathrm{K} \\
\underset{\sim}{H} \\
\text { patasale } \\
\text { hydratc. }
\end{array}\right\} O
$$

$\left.{ }_{\mathrm{H}}^{\mathrm{N}} \mathrm{O}\right\} \mathrm{O}$
nitrite.

Potassic hydrate is water which has ono of its atoms of hydrogen replaced by an atom of potassium ; hydric nitrite is water which has one atom of hydrogen replaced by nitric oxide; and potassic nitnite is water with one of its hydrogen atoms replaced by nitric oxide, and the other hy potassium. This spreculation, as every chemist knoms, is well suppurted by cxpermments; it embraces three large classes of bodies which, till then, had been considered as distinct. M. Gerhardt, in 1853, extended Williamsons views, by distinguishing two other types of molecular structure, represented, respectively, by hydruuen and aumionia, and succeeded, by help of the radical theory, in arranging tho ma-
jority of the then known substances under one or the other of the three types already mentioned.
Like every theury which is in haranony with experience, the above considerations led to results of unerpected importance ; for it soon became apparent that the radicals which thus replace hydrogen in water are not all of the same chemial value. If we place together the formule of hydric nitrite and carbonic acid-

$$
\underset{\text { Iydric nlutite }}{N O}\} O
$$

CO >0
Hydric nluite. Carbonic acil.
wo perceive at once, that the atomic group NO has replaced one atom of hydragen in one molecule of water, and carbonic oxide, CO , two atoms of hydrogen in one molecule of water. Nitric oxide (NO) is, therefore, said to be equiralent to one atum of hydrogen. The radical of phosyl oric acid (PO) is found to bo equivaler to three atoms of hydrogen. Professnr (faling was oue of the
first to observe this difforenco in the equivalonce of atoms, and gruups oi ntoms, or, contemplated by the distingluished physicompound radicals, as thoy aro termed, at cian who first proposed its introduction, and difference which ho marks, as shown in the following examples:

> Rnilleals.

Equivalent	one atom of cl.	Kanialent tuthuatuma of hyilmesto
Nitric ox	(NO)	Camhonie oxile [$\left.{ }^{\prime} \mathrm{O}\right]^{\prime \prime}$
Mcthyl	(CH 53$)^{\prime}$	Methyleno [$\mathrm{CHz}^{\text {a }}$
Ethyl	(C'2H3)	lithylune [CiMt ${ }^{\text {c }}$

The notion of equivalence enabled Professor Kekuld to form most interesting speunations on the constitution of orramic bodies, and to exp'sin the relation botweon composition and equivalents of such radicals as methyl, CA_{3}, ethyl, $\mathrm{C}_{2} \mathrm{H}_{5}$, methylone, CH_{2} othyleno, $\mathrm{C}_{2} \mathrm{H}_{4}$ and aiotylene, $\mathrm{C}_{2} \mathrm{H}_{4}$.

If from one molecule of marsh-gins, CH_{4}, one atom of hydrogen is abstrasted, the residue, CH_{3}, called methyl, can combine with an atom of hydrogen again, and produco tho original marsh-gas moleculo. But methyl, instead of combining with an stom of hydrogen, can unite with in atom of chlorine, or an atom of bromine-that is to say, the place of the atom of hydrogen can be taken by an atom of chlorine or bromine. Mrothyl being thus equivalont to an atom of hydrogen, is said to be monovalent. If from a molecule of marsh-gas two atoms of hydrogen are removed, the residue CH_{2}, called methylene, can again unite with two atoms of hydrogen, or, instead of hydrogen, tiro atoms of chlorine or bromine, and from the compounds $\mathrm{CH}_{2}, \mathrm{CHCl}_{2}, \mathrm{CH}_{2} \mathrm{Br}_{2}$ respectively. NLe ny^{-} leno, therefore, being equivalent to two atoms of hydrogen, is termed divalent. The radical CIX, left after the abstraction of three atoms of hydrogen from marsh-gas, is abls to reproduce with three atoms of hydrogen one molecule of marsh-gas, or to combine with thrce atems of chlorine, and form chloroform, CHCl_{3}. The resuduc, CH , is thus trivalent equivalent to three atoms of hydrogen. But carbon, formen [CH1, netylen, CH_{2}, mothyl, CH_{3}, not only combine with hydrogen, chlorine, or other elements according to their equivalence, but also amongst themselves, and thus produce the so-called hydrocarbons, native as well as artificiel. Methyl combines with methyl and produces dimethyl, or better bnownasethylichydride, $\mathrm{CH}_{3}+\mathrm{CH}_{3}=\mathrm{C}_{2} \mathrm{H}_{6}$; methylene combines with methylene, and forms ethylene, $\mathrm{CH}_{2}+\mathrm{CH}_{2}=\mathrm{C}_{2} \mathrm{H}_{4}$. $\mathrm{Me}-$ thylene is divalent, a:d methyl monovalent; therefore methylene combines with two equiralents of mechyl and forms propylic hydride, $\mathrm{C}_{3} \mathrm{H}_{8}, \mathrm{CH}_{2}+2 \mathrm{CH}_{3}=\mathrm{C}_{3} \mathrm{H}_{5}$. Six equivalents of formen are satpinsed to be contained in benzol $\left[\mathrm{C}_{6} \mathrm{H}_{6}\right], 6 \mathrm{CH}:=\mathrm{C}_{6} \mathrm{H}_{6}$.

The Strength of different samplos of Donovan's Solation."

BI W. HILATMFIELD, F.C.S.
Groat as has been the value to medicinal practice of the preparation suggested by Dr . Donovan, and designated by his name, it has been opon to the serious inconvenienco that those contributors to pharmacentical science wholave proposed alterations in the formula for its manufacture have eithor recommended an alteration in the original strength, or have advised such a variation in the mode of mani-

[^1]
fession.

These aro, at least, five published formule for Donoran's solution, to bo found in tho archures of pharmacoutical contributions, and not one of which is procisely in accordanco with the other. On cxamining the products which are tho results of theso processer, they vary considerably, and all differ in analytical conatitution srom that proposed by Dr. Donovan, and thus that relianco on uniformity of strength which the phyaician and tho dispenser aliko should secure, is entirely merged in tho ain to improve or modify.
The formules that have been chiefly recimmoniod are as folloms:-

1. Donovan.

Arsenic metal	6.08
Mercury.	14.82
Iudine.	49
Alcohol..	q. 8.

Water.................................... §. $_{8} 8$ 2. Pcreira.

Arsenic.............................. 6.08
Nercury............................ 15.38
Iodine................................... 50 -
Alcohol
Boiling water 3 3 3. Dublin Pharm.

Pure arsenic....................... ${ }^{6}{ }^{6}$.
Merciry 16^{-}
Puro iodine... $50 \frac{1}{2}$
Water.. 38
Alcohol................................... $3^{\frac{1}{2}}$ 4. Sonbetran.

Terivdide of arsenic............ 35 grs .
Biniodide of mercury.......... 35
Water is $_{3}$
And a writer in the 'Pharmacentical Journal,' with a viow of avoiding the inconvenience resulting from the noncombination of the iodine with the arsenc, which, he states, frequently occurs, giving the following:-
E. Arsenious acid
$7 \cdot 02$
Iudide of mercury
$36 \cdot 24$
Hydriodic acid. $30 \cdot 49$
Distilled water 3856
"Mix and male up to its originel volume." "The hydriodic acid is best prepared by decomposing a known weight of iodido of barium with sulphmric acid."
Althongh the three first of these processes wero recommended by very high authority, it will be purceived that thoy vary in the proportions of their ingredients; and, as it is admittod that there is some patience required and dificulty in effecting the completo combination of the arsenic with the iodine, Mr. Soubeiran proposed the direct union of the iodides of the metals. But, indepenkiently of the deviation from the strength originally cortemplated by Dr. Donovan, MI. Soubeiran's form is open to the oljection that the iodides of mercury nnd arsenic vary in the proportions of moisture they contam, and thus lcad to varyins results. To alter a mode of manipulation may be perfectly legitimate, but to alter proportions of a preparation intonded for public use, without leave of the introducer, is ε carcely right. Great confusion las arisen in pharmacy from such a practice, and many very excellent preparations lanve been pronounced a failure, and been superannuated, owing to the difficulty entailed on a dispenser in attempting to determine which of many under one name is intended by the
physician, and thus those, which for many reasons ho may not see fit to use, become shelved. Dr. Donovan had in view a preparation which ho seemed to havo perfected, and the formula for which he most liborally published. Ho admits the difficulty of producing the combination with colerity, but he is fairly entitled to clain for a process which, if an altoration bo mado, shall not involvo a variation in the proportions which ho sets forth. When Dr. Donovar first made the solution, he found that it generally proved'to be of a very pale yellow, and then only when seen in large quantity, sometimes being ay pale as water. Whon a fow grains of iodine were added, it becamo yellow; but when exposed to ordinary daylight, it resumed its original coloulless appearance ; and fu:ther additions of iedine presented the samo phenomenon. Dr. Donovan's formula is entitled to all commendation; and, provided the unterials are pure, and with due attention to the manipulation, a preparation of definite composition, and haring invariable properties, may be obtained. Thus:-

$$
\begin{aligned}
& \text { Pure arsenic resublimed...... } 6.08 \\
& \text { Pure distilled mercury } 14.82 \\
& \text { Iodine resublimed .. } \\
& \text { Alcohol, } \\
& 45 \cdot \\
& \text { Water.. } \\
& 31 \text { or q. } \mathrm{s} .
\end{aligned}
$$

The arsenic should be in the finest possible condition; the more minute, the more ranid the combination with the iodine. This combination should be fizst made with the arsenic by the sddition of a little water, sufficient of the iodine bcing used for a perfect union! this should be carefully dried, and the remainder of the process completed by the entire and effectivo combination of as much of tho alcohol as may berequired. Tho proportion of rater being added to make up eight ounces, there should result a solution of a permanent character, boih physically and chemically. Dr. Donovan found that when the trituration of the ingredients was continued until the alcohol became as thick as treacle, he obtained the most effective and complete solution. This may be left to the operator, provided it be borne in mind that there should bo no residue whatever. The process of Dr. Donovan may be advised for adoption, with these rrecautions, until the framers of any future tharnacopocia sce fit to anthorize the recommendation of any other:

Ooal Waphtha and Benzole comparod wit Petroleum and its Products.*
ey phofygsok van der weyde, m. d.
Benzole, which has lately been infroduced as a gas carbonizer, was originally obtained from the benzic acid found in gum benzoes, henco the mance. Later it was found to be produced in ereat abundance by the distillation of coai tar. This tar, being distiiled, gives a black oil, called dead oil, which, by re-distillation, produces coal naphtha. This coal naphtha contains about seven per cent. of pure benzole, which it is quite difficult and laburious to obtain pure, for which reason most so-called benzoles are only coal naptha, consisting of a mixture of several hydro carbon oils, haring some solids in solution, but all possessing a similar degree of volatability. These substances are, besides the benzole, tuluol, cymol, cumol, then a few solids in

[^2]solution, callod napththalin, anthracon, and fually phonylic and chrysolic alcolol. Tho lattersubstances are, however, perhaps rathor a product of subsequent treatment than in educt.
Tho pure benzole is a hydro carbun, like the petroleum products, but of different clemical combination, containing, by weight, 12 parts of carbon to one of hydrogen, while the petroleum products contain only nbout five parts of carbon to one of hydrogen. licing richent in carbon, it has moro power to increase the luminosity of gas than the same amomet of petroloum naptha; in fact, common ar passed through it becomes combustible. and burns, according to Gmeli:, with a smoky flame.

Noturithstandinto this equal volatility, it is much heavier than petroleun naptha, its specific gravity being $0.8 \overline{0}$ for water $=100$; this corresponds with 35° of Beaume's hydrumeter. Any petrolemm product of this specific gravity is not volatile enough to make its vapor combugtible at the common temperature, and even at 180° Falr.; and will not burn well in a lamp, being therefore, only used for a lubricator. Some matural petroleum of Western Virginia and Ohio, of ex actly this specific gravity, give, by distillation, no maptha at all, and only little kerosene, and, therefore, are only used for hubricators. The so-called paraflin oil, oltained at the latter stages of the distination of petroleum, when all the naptha and kerosene has proviously been dri ren of, is too greasy and thick to burn well; it is therefore Kept separate, and suld as a lubricator; its specific gravity ranges from 30° to 35 Deatime, and is thus about equal to beazole.

Common kerosene of a spacific gravity of 0.79 , corresponding witl2 48° Beamme, is not oven volatile enough to be us d as a cabonizer, and will not make air combustiblo when blown through it, and will not burn withont a wick. Benzole, mutrithstsnding its greater speectic gravity, is just as combustible as petroleum naptha, or so-called benzine, and it cctathot be haudled with as much safety as ordinary kerosene vil. The boiling point of good kerosene oil is about 140° Fahr., while it gives of combustible rapors at 110° and above, not below. The boiling point of benzole is 177°, while it gives of combustible vapors at the common temperature, like benzine from petroloum.

It may be set down as a rule that any fluid which can communicate illuminating vapors to air or gas, at the common temperature, will give of combustible vapors, which, when mixed with air in the right proportion, may make an explosive mixture. In this respect benzole is equal to the petroleum naplitha, or benzino. Hovever, as its builing point is somo 100° higher than tho latier substance, it is less volatile, and comparatively safer, though not alsolutely safe, nor as entirely free from explosive vapors as good ordinary kerosene vil.
The specific gravity of benzole vapor is 2 . 75, that of gasolin $=0.30(a: r=1.00)$; the latter vapor has more expansive tension, that is, wiil expand further, consequently will take fire from a greater distance. If we take threo open vessels, one contaning kerosene, the second benzole, the third gasuln, and approach a flame to cacl of them, the gasolin, will take fre at a siort distance, the benzcle will take fire at a shorter distance, the kerosene will not tako fire at all, oven when plunging the fire in it-it caunot burn
withuat a wick, uxcept abuva 110 , (benzole, will unly refuse to ignito without a wick, beluw 40 , gasolin will take fire without a wick at 20°, and oven belorr, if of a high grade.) This is a simple practical test of the comparative safety of these three important substances, now so extensivels introdued for illuminating parposes.

The Now Hypnotic, Chloral.

In a lecture recuntly delivered by Herr Liebreich before the Berlin Medical Suciety, the following statements are made.
The form best adapted for administration ' is the hydrate, $\mathrm{C}_{2} \mathrm{HCl}_{3} \mathrm{OH}_{2} \mathrm{O}$. This substance is white and glistening, has : pungent odur, a bitter taste, and is casily soluble in water. When injected under the cutis it causes no local irratation. Lichreich thus employecs it in a number of cases in the treatment of insane persons. In a dose of 1.35 grammes, it usually brings on a sleep of five hours duration. In the caso of a patient affected with melancholia amd stupor, 3-5 grammes disoolved in a wineglass of water and given by the mouth produced a sleep of sixteen hours. In a case of very painful inflamation of tho wrist-joint, about $2 . \overline{5}$ were given, followed by hynopsis and anresthesia to an extent sufficient to allow of bandaginer the wrist, which had been impossible bolore. In all the cases the aleep was natural in character.

Von Langenbeck, in a lecture upon the application of hydrate of chloral to the treatment of delirium potatorum, describes a case of comminuted frecture of the humerus, followed by violent delirium tremens; $0 \cdot 42$ gram. of opium with hrandy, were given during twelvo hours without effect. Gangrene appeared shreatening, and exarticnlation was thougin of. Von Langenbeck ordered 4 gram. of hydrate of chle ral, to be ewallowed in oue dose, and afterwards 2 gram., to bo injected three times in quick succession. A sound sleep followed, lasting sixteen hours, from which the patient awole free from his threatoning symptoms. Von L. thinks he has observed fayorable effects in a caso of trismas trammaticus. It was stated at the
time by Von Bardeleben, that he had likewise time by Von Bardeleben, that he had likewise
observed excellent effects in many cases from internal doses of 2-5 grammes. A good formula is the following: -

R "Hydrate of chlozal," 2 grammes: Aque distillate,
Syrupi simplicis, ini 15
MI. S. for one dose.

- Ally. Mral. Ccotir. Zty., Nos. 64 and Gü, in Boston Medical ame Suryical Journal.

Fote on Salphurous Acid.*

by wentworth lascelles scott, f.c.s., eitc.
Having had some little experience in relation to the manufacture of the above acid, both in quantities of a few ounces, and upon a very extensivo plan, I can scarcely corrobomate those contributors to the "Pharmaceutical Joumal" who have spoken of the extremo difficulty of preparing "sulphurous acid, B. P." I have recently superintended the erection of some apparatus for the production of the acid upon rather a large scale,

[^3]at the wurks of a well-known manufacturing firm, and, except in sumo mmor details,
the arrangements present no particularly the arrangenents present no partacularly
novel points.

A uniform pressuro of 3 lls . por square inch is maintinned by means of a watercolumn. and the process goes on conthuously, tho acid in the first receiver-jar being drawn of when sulficiently strons, and its place accupied by the weaker fluid contaned in the last jar of the series; this, in its turn, baing rofilled with distilled water. As only the purest and most compact varieties of carbon aro wermitted to be used in the retort, which is of cast iron, and constructed specialiy for the purpuse, the stoppages for clearing ont, etc., are few and far between. Oil of vitiol, containing 7.4 per cent. of mulyydrons acid, is found more convenient in practico than either a weaker or stronger variety; as when too concentrated acid is employed, a portion of it is labble to entire reduction, mad sulphur incrustations are formed in unpleasant abondance, while upon the other limed, a dilute vitrol causes! the evolution of sulphuretted hydrogen. A llttle carbonic oxide is generally tu be detected amongst the gases avolved but its presence is in no degree objectionable.
For washing the gas, simple wator is of course sufticient, but the addition of some sulphite of lead, and a fow pieces of charcoal, gives a purer acid. I quite agree with those previcus writers who are of opinion that a 5 per cent. solution of sulphurous acid is of ample strongth for all ordinary purposes, but, at the same time, I cannot admit the existcuce of my insurmountable dificulties in the way of preparing it of 13 times or even twice the above strength.

The following table shows the mean specific gravities at $60^{\circ} \mathrm{F}$. of pure solutions of sulphurous acid, containing from $0 \cdot \overline{0}$ per cent. up to 10 per cent. of the anhydrous acid. I believe their accuracy may be depended upon, the determinations having been made by oxidation and conversion into the barium salt of sulphuric acid:-

Several substances appear to excrcise a preservatuze action apon sulphurous acid, or in

[^4]other words retard its oxidation, among them grape-sugar, formic acad, camphor, and more especinlly aldelycte; and I think it might be worth while to nscertain, firstly, the exact amount of influence exerted by the lait two, and secondly, whether tho addition of either, in small quantities, would present any very serious ubjections.
Sulphuricacid is naturally a very murelcome ingredient; but old sulphurous acid contaming it may be restored for all practical purposes by the cautious addition of a sollation of sulphite of barium in suffletent quantity to precipitate very necarly, butnot quite all the sulphuric acid as insoluble sulphate of barium the latter being afterwards separated by filtration or decimtation. I lay perhaps rather more strest upon the the use of suljphite of barimu than I should have done if I had not seen the extrenely pernicious effects of some of the acid ordinarily sold, when used in the form of "spray" for thront afiections, owing merely to the presence of an undue proportion of the higher oxide of sulyhur.

Nev Process for Deodorising Alcohol without the use of Heat or Redistillation.

A new prucess for effecting this object has been recently indicated ly Dr. Artus, and described by ham m the lest numher of the Vierteljalursschrift fïr technische Chemie. In it he makes use of charcoal impresmated with alumina, which is prepared as follows: The clarconl is first gramulated and reduced to fragments of about the size of a split pea. These are sifted so as to separate the finer from the coarser portions. For ever ten pounds of coal one pound of common alum is dissolved in fiteen pounds of water, and, in a separste vessel, one pound os carbonate of soda in five loumds of wates. The granulated cinaceal is thrown into a wooden vat, and while it is being stirred, it is wntered first with te solution of alun, and afterward with the soda. The ressel in which this uperation is performed nust be able to contain at least double the quantity of material that is to be introduced into it, as the addition of the carbomate of soda causes effervescence, and cousiderable foaming through the evolution of carbonic acid gas. After the mhole of the solution of soda l:as been added and the whoie well mixed, the mixture is allored to rest for twelve hours, when it is thrown on a strainer, and the hquid allowed to drain off. The charcoal thus aluminized is first dried in the air, nfter which it is introduced into closed retorts or iron vessels, where it is heated to \hat{A} red heat. When cold two and a half pounds of this prepared coal is the proportion necded for every German cimer, or about one hundred gallons (four and a half hectoltres) of crude aledtol.
The manner of using thas deolorizer is to nlace the coal within plaited stram nats, and to sink it, by means of heary weights, in the liquid to be deodorized. Aiter a period of trenty-four to thar y-six hours, the coal is taken out, submitted to a second calcuration, and again introduce: intw the hquad. The same opcration is repeated a third and last time. The spirits, after being allowed to remain at rest for a period of four wecks, are found to be free irman every trace of the fusel-oil they originally contained. The exponse of tha process is small in proportion to tha profits and adrantages to be derived from it. No redistillation or rectify ing $2 x$ requirad. -jIanujacturer cind D:ahier.
flatires from forsign sibures.
(Frum the Clumbal Newo.)
Fvolution of Ammonlat finy from 5itshroounc.
MI. EI. Borscow. - Tha author says that, many ycurs ago, the late Prufessur Sitelis observed that when aylass rud, mustened with dilute hydro-chloric acid (specatic gravity $1 \cdot 12)$ was bronght mear viguruusly and healthily growing mushrooms, there appears a white vapur, evidently due to the formation of chlor. ammon. This fact has heun cuntirued by Dr. G. Lolman, whilu the late S!leaumer von Humboldt stated that mushrumas constaatly give ofi, not only ammonia, but also hydrogen. The author of this laper lans thoronghly investigated this subject, taking due caro to climinate all somees of erros from his experiments by every precaution modern science can suggest aud successfully apply. Several engraving3 wonld be absulutely necessary for the proper understuding of these researches; hat we lrieny notice the following results:-(1) different linds and species of mushroonts give off, while growing vigorously, weighable quantitics of ammoniat; (2) this evolution of anmonia is not connued to fill-grown mashrooms only, but also to the youmf individuals, and even to some varicties of mushruom spawn; (3) this evolution of ammonia is a proper function of the living organism of theso cryptogamic vegetables, and is rery little, it at all, infucuced by caterior causes; (4) there is no diract relation lectween the eluantity of ampmonia and tiat of carbonic acid given off duming a given jeriod of time. Tho quantity of ammonia given off during a certain length of tinc lears itu direct relanoun to the weight of the substance froun "hach it is given off. - Bullelin de l'ácudímie Imperin!c des Aciences de S't. J'ctersioury, Vul. xiv., No. 1.

Neir neagent for nzarlat.

M. Coitun.--When, to a solutiva of bracine in nitric acid, hyolrosulphide of sulphide of sorlium is added, in concentrateo solution, the mixture becomes, first, violet, next greencolored, provide.. tlac alkaloid is in excess. Morphia does not give any similar reaction undea the same conditions; dilute acids render it rose-colored, whilo sulphuretted lydrogen is givein off; 2 milijgrms. of brucine impurt, ir this a.anoini, at alecide l culumatan, eren to lanif a litre of water.-.Jusmal de Phas:macio ct de Chemic, July 1869.

Ecrent Iiescaredrs on the zinence of Eoses.

M. Flnehiger.-Chenically considered, the essential oil of roses is 2 mixture oi an oil containing oxysen, to which alone t!c sumell and perfume is due, and a solid hycirocarbon, a stenropaten absolutely deroid of suchl, atad comprosed according to the formnla Ciglic. This lyydrecarbon is soluble in chloroform, inses ait 32^{2} amd boils it 2クo․ Putnsimm does inot act upua this sulastance; treated rith a mixture of bichromate oif jotassa and sulphuric acid, it jiclds, faintly, a suell of acrolienc: with fuming nitric secid, bityric, formic, fumaric, valcrianic, and succinic acids are iormed.-Ibid.
 phurle Arld.
Mr. Cottelle.-It is a: vell-known fact that the concentration of sulpluric acid in platinum versels is an expensive pracess, naviog
to the higl: price of the first parchase nf these
apnaratus, and the cxpense attanding any
soldering or repair. I'he author has had made a column, lined inside witl fire-bricks, and made outsido of good ordinary bricks; it rests on a large pedestal. This camm is open at both top and bettom; but in theso openings are fitted fire-clay stoppers. 'I!'10 inside of this apparatus is fitted with protiously calcined pumice-stone; inside the lower portion of this column, openings aro mado between the bricks, through which a curront of highly heated air is forced. From tloe top, the acid which has to be cuncentrated is mado to trickle on the pumice-stone, and, neeting I with a curront of highly heated air, the superflnous water is driven off, and the acid, on arriving at the bottom, is in a concentrated state, :and rums oft in properly arranged vessels.-Ibid

Autl-giust Tarnssh, or Varnish for brom and siect lluts.

Wake the following ingredients, $1,2,3$, in a pounled condition, and digest them ly a regular heat till melted, then add the turpentine very gradually, stirring all the while.

The mixture sloould be digested until complete solution has taken place, then add

lectified alcohol........... 180 parts.

Filter through fine cloth, or thick bibulous papers, and preserve in well-stoppered bottles or cases, It will be fund very cffective in preserving things from rust.-Munfacturer and Builder.

Mlolybiamax und Cheomitum.
These metals can, accurding to Loughlon, be casily prepared as fullows:-A mirture of one part of pure molybdic acid and ono and 3 half of cyanide of potassium is placed in a proelain crucible, and the lid luted on; this is placed in a large crucible, and the interstices having been packed with animal charcoal, the entire arrangement is exposed io a stro:ig white heat for trelve hours; when cold, the inner crucible is foumd lmed with a white silver-like metal not acted upon by hydro-chloric acid, but readily dissolved by nitric acid, and liaving a specific gravity of 8.5.G. By sulstituting oxide of chromium for molybdic acid, metallic chrominan is obtained. - Enginecr.

To cienn Palnt.

There is a very simple method to clean paint that has become dirty, and if our housewires should adopt it, it vonld save them a great deal of trouble. Provide a plato with seme of the best whiting to beliad, and have ready some clean marn water and a yuece of fiannel, which dip into the water mul squecze nearly dry; then take as much whiting as willadhere to it, apply it to the painted surface, when a little rubbing wial instantly remore any dirt or grease. After which, wash the part well with clean water, mbbing it dry with a soft chamois. Paint thus cleaned looks as well as mhen first laid on, without any injury to the most delicate colors. It is far better than using sonp, and docs not reguire more than half the time and labor. - Manufacluar and Builder

nicachlof Spcnges.

The white sponges seen on the stands of our street peddlers, are blesched in tho folloring manner:-The softest, fanest specimens
are selected, and tho ssind removed from the, Neir Test fur Blood Staius.
csvities by shnling; they aro then trashed in hot water, and, aitar squeczing out the water, aro placod in a bath of dilute hydrochloric acid, and alloved to remain for half an hour. Thoy are then taken out, and, after another washing in hot water, are placed in a fresh bath of dilute acid, to which has been added sin fer cent. of disolved hyposulpi ste of soda, and thero allowed to remain twenty-four hours. The sponge is finished 1 . washing in water, and drying. - Madical Re:uril.

Chemiteal Vicather giass.

A gool weather guide is made by placing in a glass tube or narrow phial two drachuns of camphor, a half drachm of pure saltpetre, a half drachm of muriate of ammonia. and two ounces of proof spirits. In dry weather the solution remains clear; on the approach of a change minute stars will rise up in the liquid, and stormy weather is indicated by great disturbance.

Nicir Eemedy for Toothache,

The Lancet says toothache can be cured by one drachm of collodion to tro drachms of Calvert's carbolic acid. A gelatinous mass is precipitated, a small portion of which, insertedin the cavity of an aching tooth, iovariably gives imnediate relicf.
Camphor Ece-Yo. I.
Take of -

$$
\begin{aligned}
& \text { Spermaceti, } \\
& \text { White wax (puro), } 4 \text { oz. } \\
& \text { Oil of swect almonds } \ldots \ldots . . .1 \text { int. }
\end{aligned}
$$

Melt together by a gentle heat, add, of Camphor (in small pieces) . 4 oz.
Whon dissulved stir until partly cold, and add essential oil of bitter almonds and cxpressed oil of mace, two fluid drachms, and pour into moulds.-Pharmacist.

Camphor Ice-io. 2.
Take of-
Hard, clarified mutton suet, 8 oz . Spermaceti, . Wax, of each Camphor, $\frac{1}{2}$ "
Proceed as before.-Ibid.

Extract of Lime Julce and Giycerine.

Take of
Olive Oil (best),
Lime water, of each................ 4 oz.
Oil of lemon,..................... 1 fl . dr .
Mir.-llid.

Ecather Farnish (Ercach.)

Shellac................ ...	grammes.
T'urpentane Ternic..... $\overline{5}$	${ }^{6}$
Alcohol.................... 10	6
Ext. Logrood............ 1	${ }^{6}$

Potis Chromate.
\qquad
q. s.

Dissolre the potash and ext. logwood with a little sulphate of indigo in the spint, and ald the other ingredients.

Ingrowing Toc Rall.

Dr. Babl (Nredicol Tinces aul Guacte) has used "with uniiorm success" in ingrowing nail, a saturated sulution of the persulphate of iron. Suceess depends upon the thoroughness with which a bit of cotton saturated with it is insinuated between tho nail and tho fungous fesh, the cotton being also turned back orer the fiesh on the outside. - Seicntific imerican.

Upon the authority of the Lomion Lencet, an inportant test for blood had been discovered in Austria; consisting of the application of tincture of guaiacum and ozonzed cither, wheh produces a beautiful blae tint with blood or blood stains. The test is excessively delicate; and we happened to bo present at a lecture given by Mr. Bloxam, 112 which he showed some experiments with it, and added that, in the case of a blood stain tiventy ycars 1 old, he had extracted a single lmen fiber with , an almost inappreciable amount of stam on it. The characteristic blue colour wan immediately induced by the test, and readily deI tected by microscopical exammation. The testimony of so able at chemist leaves no doubt as to the value of the discovery. Ozonized cther, we may remark, is merely a solution of peroside of hydrogen in ether.
31. Argago was the finst to obscric that a wre, when traversed by a powerful current, and plunged into iron filings, retained around it considerable quantity-a mass of the thickness of a quill.

gitotes mal Qurtics.

Preservation of Garlic.-In answer to the inquiries made on this sulject in the Scptember number of the Jocinal, we may s.y that the same yuery was proposed by the Alnerican Pharmaceutical Association, and was answered by A. P. Sharp, Proc. Am. Pharm. Assoc., 1SG4. The plan projosel is the fulluwing. Cullect, at the proper season, the quantity requared; remove all superfinous leaves, stems, sec.; place the garlic in well-stopped bottles, and pour upon it a small quantity of alcoliol-about tro ounces to a quart jar. The rapor of the alcohol is absorbed by the bulbs, entirely destroying their ritality; hence all tendency to germinate is destroyed, and on this the preservation principally depends. The author says that garlic treated in this manner has been kept for years, and at the same time its rirtures liare been maintained to tho last, ss far as indicated by cither tiasto or smell.

Cliauges.

A. V. Paliner, late manager of the business of Alcxander \& Co., Barric, has commenced a ners business, under the style of Λ. V. Palmer \& Co., Barric.

Destrucion of the Distillehy of Goon: ermarin and Werts by Frme.-Our raders are, dnubtless, by this time, aware of the abore event, we may, howerer, say, that it is the hopo of the enterprising firm, to resume business in the course of three or four months. At the present time, some fuur hundred men are at roork remoring the debras, and it has been found that the injury done to the walls is not so great as wis at first supposed, and that the upper stories only will require rebuilding.

Eralc \quad mporit.

During tho past month trade has been such as to merit no specinl remark, being, on the whole, quiet, but varied occasionally by great activity for a day or two.
The destructive fire at MLessrs. Gooderham \& Worts' distillery has had the effect of raising the price of Alculul very materially, and quotations for that article cannot be given with any degree of certainty.

The supply of Sulphuric Acid las also been affected by a like catastrophe having taken place at the chemical works in London. This, with a rise in the Cnited States market, together with other causes, induces holders to be very firm in making sales.

Those articles which are in favor or the buyer on last month's quotations aro Bismuth and its preparations, Camphor, Socotrine Alocs, Oil Lavender, English, Oil Peppermint, E. I. Rhubarb ; and Castile Soap, Opium, and Diorphia are quuted much lomer, but the downrard tendency has been stopped, and they have since adranced slightis. Those articles which are against the buyer are Alcohol, Vanilla Beans, Hyosciamus and its preparations, Gum Tragacanth of all grades. Quinine is tending uppards, having advanced 1d. per oz. in England, quotations here being unchanged.

In Dyestuffs we quote Magenta Crystals considerably lower; all other kinds remain firm.
The high price of American exchango will scriously affect the price of Dyestuffs, Naral Stores, and all other cheap goods usually bought in the Ancrican market.

Noten-The notes quoted in our price list are constantly varying, and are intended to shor the limits within which a retail druggist shculd sapply himself. The mange of prices is caused by the difference betireen cash and credit, whole packages and smaller lots, and, in some cases, differ. ence of quality.

PERETMMEET

FANDKERCHIEF Extracis, Jockey Club, Frangipanni, Patchouly, West End, Musk, Spring Flowers, Mignonette, Ncw Momn Hay, Swect Pea, and all the popular scents.

Extra Quality.-6 oz. Octagon Cnt; 3 oz. Octagon Cut; 11 oz. Plain, stoppered.
Best Quality.-1 $1 \mathbf{\text { oz. Plain, stoppered. }}$
No. 1 Quality.-If oz. Squat Cork'd; 1 oz. Stone Jug; loz. Giass Jugs; $\frac{3}{3} \mathrm{oz}$. Pancl; $\frac{1}{2}$ oz Squat; $\frac{1}{2}$ cz. Squat; $\frac{1}{3}$ oz. Oral; 4 oz. Squat Hair Oils, Pomades, Tooth Washes, Tooth Pomders, Colognes, Lavanders, Sachets, Camphor Ice and Roll, Toilet Vinegar, Milk of Roses, cte., in all the pepular styics.

Price Lists on application to
LYMLAN, ELLIOT \& Co.,
1-1y.
107 Eivg Strcet East, Toronto.

WIIOIESAIE PRICES CUIREEINT-MNOV, 1869.

[^0]: - Froma the Pharmaccutical Joumal, London.

[^1]: - From the Pharmaccutical Journal, Loedon. Read boforo the Brition Ihara accutlcal Conference, 1869.

[^2]: *From the Journal of Applied Chemistry.

[^3]: - From tic Marmaceutical Journal, Lonion. Read vefore the British Marmaceutical Conference, 18 .

[^4]: - Tilliam Baileg and Son, Wolverhampton.

 Male from Impure ratcr.

